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Introduction

This monograph is the last volume in the series Acoustic and elastic wave fields in geo-

physics. The previous two volumes published by Elsevier (A. Kaufman and A. Levshin,

2000; A. Kaufman, A. Levshin and K. Larner, 2002) dealt mostly with wave propagation

in liquid media. Here we consider waves in elastic media, and their description is based

mainly on the classical papers of Stokes, Love, Lamb, Rayleigh, Stonelcy, and others.

The first chapter is devoted entirely to propagation of longitudinal, torsional, and

bending waves along a thin bar. Several examples illustrate a reflection of these waves

and the deformations they cause. Some attention is paid to the transition from the

dynamic stage to equilibrium. In the second chapter, proceeding from Newton's laws,

we derive an equation of motion of an elementary volume of the elastic medium. Then,

by means of Hooke's law, we obtain the equation for a displacement field. To solve it,

we introduce scalar and vector potentials, formulate boundary conditions for wavefields,

and derive wave equations for potentials. By analogy with acoustic waves (Parts I and

II), the concepts of potential and kinetic energies, as well as the Poynting vector, are

described. Hooke's law in the Cartesian system of coordinates is described in Chapter

1. Here we derive relationships between stress and strain in any curvilinear orthogonal

system of coordinates.

Behavior of waves in a homogeneous medium for several types of sources is studied

in Chapter 3. First we investigate longitudinal and shear waves caused by elementary

spherical sources in the near, intermediate, and far zones. Then the field generated by

the point force is described in detail. In the last section we consider longitudinal and

shear plane waves, which serves as a preparation for the next chapter.

In the fourth chapter we describe the reflection and transmission of plane waves, start-

ing from an analysis of strains and stresses that accompany them. We discuss in detail

behavior of reflected and transmitted waves caused by different incident plane waves,

including discussion of the dependence of wavefields on parameters of a medium and the

angle of incidence. In conclusion, recursive expressions for reflection and transmission

ix



coefficients describing plane waves in the n—layered medium are derived.

Chapter 5 is devoted to surface waves. First, we consider Rayleigh waves in a homoge-

neous half-space. We discuss such topics as the characteristic equation for the velocity of

propagation, the dependence of wave amplitudes on the depth below the free boundary,

and elliptic polarization of particle motion. Then we study Stoneley waves, which may

appear at the interface between fluid and elastic media and between two elastic media.

Further, we describe Love waves, which arise as a result of the constructive interference

of plane SH waves traveling up and down inside a layer of finite thickness overlaying

the half-space with the higher shear velocity. Finally, in the last section, behavior of

Rayleigh waves in this medium is considered.

Chapter 6 is devoted to the study of waves generated by linear and point sources

in a homogeneous half-space, when a source is located either at or beneath the free

boundary. Asymptotic behavior of waves in the far zone is studied using integration in

a complex wavenumber plane. In addition, we investigate reflection and transmission of

waves caused by a linear source in the presence of the boundary between fluid and elastic

media.

Chapter 7 describes waves in the borehole that are generated by an elementary spher-

ical source. Main features of the normal modes, Stoneley waves, and as head waves are

described.

Finally, in the last chapter we focus on plane wave propagation in a transversely

isotropic medium. Influence of the angle of incidence on the velocities of different plane

waves, orientation of rays with respect to the phase surface, and other questions are the

subject of this Chapter.
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Chapter 1

Hooke's law, Poisson's relation and

waves along thin bars

Under an action of forces, all real bodies experience deformation, and either their size
or shape or both change. This means that the relative position of body particles vary,
and this effect becomes more noticeable with an increase of force. Some features of the
dependence of deformation on a force magnitude are qualitatively shown in Fig. 1.1a.
The initial portion of the curve is practically a straight line. Within this range Hooke's
law is valid, and each element of the stress tensor is a linear function of strains (Appendix
E). In other words, expanding stresses as functions of strains in Taylor's series, we discard
terms that are relatively small. Thus, in this range we can apply the linear theory of
elasticity to study a deformation. The latter displays two important features, namely

a. Deformation disappears as soon as forces are removed, that is, we ignore any free
vibrations that may arise.

b. The relative change of the position of particles is usually very small.
With further increase of force, the rate of change of deformation becomes greater, and

finally a body is broken. The value of the force magnitude corresponding to the breaking
point varies for different materials. It also depends on the type of force. For example, in
the case of chalk, the breaking force, causing a stretch, is smaller than the twisting one.

There is another interesting feature of deformation. Suppose that a force corresponds
to the bending portion of the curve. Then when we begin to decrease the force a change
of a deformation may occur along the curve, which differs from that shown in Fig. 1.1a,
and the hysteresis effect is observed.

In principle, the process of deformation may take place at different rates. For instance,
if the force varies slowly (quasi-statically), there is sufficient time for heat exchange

1



CHAPTER 1. HOOKE'S LAW, POISSON'S RELATION AND WAVES...

Figure 1.1: (a) Dependence of deformation on force (b) Rectangular bar (c) Influence
of the bar length (d) Influence of the bar cross-section

between a body and a surrounding medium, that is, a deformation is isothermal. In such
a case the influence of vibrations arising in the body is insignificant. In contrast, wave
propagation is accompanied by relatively rapid motions of elementary volumes (particles).
Correspondingly, heat exchange between these volumes of a medium is almost absent,
and the process of deformation is adiabatic (Appendix E). In both cases we use the same
linear theory of elasticity, but there is a very small difference in values of elastic constants
(Appendix E).

1.1 Hooke's law and Poisson's relation

Two approaches allow one to establish physical laws of the linear theory of elasticity. One
of them requires a knowledge of the atomic-molecular lattice of a medium, in particular,
such parameters as mass and the charge of positive and negative ions. Also it is essential
to have an information about internal electromagnetic forces acting between charges,
because it is due to them that elastic waves exist. We will follow the second approach,
which is entirely based on experiments performed by R. Hooke, T. Young, S. Poisson,
and others.

Hooke's law

In order to derive Hooke's law, we will proceed from the experimental studies of bar
deformation in an equilibrium, when either stretching or compressional forces are applied.
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Hooke's experiments Consider a bar of length / having the rectangular cross-
section S, and suppose that two extensional forces with equal magnitudes but opposite
directions act on the bar faces, Fig. 1.1b. It is implied that these forces are uniformly
distributed over each face. From the physical point of view, it is obvious that at the
instant when these forces are applied, waves arise inside the bar, and they travel between
faces. However, with an increase of time, the effect of propagation becomes less noticeable
due to attenuation, and finally waves disappear. Then, equilibrium is observed, since
external forces are constants (Part I). For now we pay attention only to this last stage,
but later we will study both propagation and equilibrium, as well as the transition from
one stage to another. Experiments performed by R. Hooke with bars in equilibrium, that
have a different length, I, and the same cross-section demonstrated the following. An
expansion of the bar, SI, is directly proportional to the force magnitude:

51 ~F (1.1)

This is the essence of Hooke's law, and it states that with an increase of force, |F|, an
expansion of the elastic body, SI, also linearly increases. Of course, such behavior takes
place only when the force magnitude corresponds to the initial portion of the curve in
Fig. 1.1a. It may be appropriate to notice that 51 is a sum of displacements of both
faces of the bar, and Hooke's law is also valid in the case of compression.

The first generalization of eq. 1.1 is related to a distribution of internal forces arising
due to deformation. Let us mentally draw the cross-section S at any place on the bar
and consider portion A, Fig. 1.1b. This portion is surrounded by the lateral surface
of the bar, where external forces are absent. The force F acts on its left face and on
section S. Since the bar is in equilibrium, the resultant force, acting on portion A, has
to be equal to zero. This means that the force applied to the surface 5* coincides with
F. In contrast, portion A creates the force - F , which acts on portion B. Because
our conclusion is independent of a position of S, we can say that internal forces are
uniformly distributed inside the bar, and their magnitude is equal to |F| at each of the
bar's points. In other words, external forces —F and F arc transmitted inside the bar.

Until now we have discussed expansion of the bar. As was already mentioned, the
Hooke's law, eq. 1.1, is also valid when both forces are directed toward the middle point
O, Fig. 1.1b, and compression takes place. Now we are prepared to demonstrate that
there is a relationship between the displacement 51 and the original length of the bar,
/. This task can be solved in two ways. One of them is an analysis of measurements
of displacements with bars having different lengths. The second approach follows from
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Hooke's law and the condition of an equilibrium. First, in accordance with experiments,
the bar expansion, 51, is directly proportional to its original length:

51 ~ I (1.2)

This shows that bars with the same cross-section and different lengths experience different
expansions, provided that in all cases the external forces arc the same. Moreover, between
them there is a linear relationship, given by eq. 1.2. For instance, if the bar length is 21,
an extension is equal to 251, and in general, it becomes nSl when the bar length is nl.
In particular, in the limit, an extension of an infinitely long bar also tends to an infinity.
Such dependence between the length / and an expansion SI is a remarkable feature of
a deformation, that has an interesting explanation (Part I). As follows from experiments,
the expansion SI depends on forces F and —F as well as length /. However, the
relative change of the length, Sl/l, is defined by the force. Correspondingly, in place of
eq. 1.1 we can write

y ~ F (1.3)

It is useful to derive cq. 1.3, using a different approach, which docs not require ad-
measurements. In fact, consider two identical bars of the length I and cross-section S,
rigidly connected together, Fig. 1.1c. The length of the new bar is 21, and, as follows
from the condition of an equilibrium, the force, applied to the portion A at points of the
middle section, is equal to F. In accordance with eq. 1.1 an expansion of this portion
of the bar is equal to 51. In the same manner, the stretching of the portion B is 51,
too. Thus, the total expansion of the bar with the length 2/ is 251. By analogy, we
obtain eq. 1.3 for bars of an arbitrary length. It is proper to emphasize that we consider
only cases when expansion or contraction, 61, is much smaller than the length I:

51 < / (1.4)

Until now we paid attention to a displacement of the bar faces. In order to apply eq.
1.3 to any cross-section of the bar, consider its portion of the length x, confined by the
middle cross-section and S(x), as well as the lateral surface, Fig. 1.1b. Because of
a symmetry, a pair of forces —F and F does not move the middle section, and the
displacement 5l{x) is directly proportional to the length x of this portion. This gives

X
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where x is the distance from the origin O.
Next, we will make one more step in a generalization of eq. 1.1, which allows us

to transform the relationship 1.3 into the equation. Let us imagine that two identical
bars are connected, as is shown in Fig. l.ld. As before, the same forces are applied to
faces of each bar. It is clear that the new bar has an extension 51 in spite of the fact
that forces acting on its faces are twice as great. However, areas of the cross-sections
are also increased by two. Therefore, the ratio F/S remains the same for the single
and combined bars. This consideration suggests that the relative extension of the bar is
defined by the force per unit area, that is, a traction (Appendix C), and we can write

M
The last step is an introduction of the coefficient of proportionality, which gives

1=4
Here E is called the Young modulus, (Appendix E). Note that F/S and 51/1 describe
normal stress and strain in the bar, respectively.

Poisson's relation

As we already know, experimental studies performed by R. Hooke allowed others to
obtain eq. 1.7. A series of measurements, carried out much later by S. Poisson discovered
another important relation describing a deformation. Consider the bar with length / and
cross-section S = h\hi that is subjected to an action of external forces, Fig. 1.1b. The
experiments showed that the bar extension, 51, is accompanied by a contraction of the
cross-section. In the opposite case, the bar compression leads to an increase of S. This
phenomenon was studied by S. Poisson, who discovered that

hi hi I

The coefficient a is called Poisson's ratio. For all imaginable materials, a has a positive
value. The sign "—" shows that if 51 > 0, (expansion), then 5h\ < 0 and 5hi < 0.
On the contrary, in the case of contraction, 51 < 0, we have 5hi > 0 and 5h2 > 0.
As follows from eq. 1.8, relative changes of the bar dimensions, normal to the external
force, are the same:

5h. = 5hl

hi h2
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At the same time, displacements themselves, Shi and 5fi2, differ from each other, if
hi ^ h2. In essence, eq. 1.8, which we will further call Poisson's relation, describes the
second law of elasticity. Both the Hookc's and Poisson's relation arc experimental. They
provide the foundation of the linear theory of elasticity and play the same role in the
theory of elasticity as Newton's laws in classical mechanics and Maxwell's equations in
electrodynamics.

Differential form of Hooke's law and Poisson's relation

It is useful to represent eqs. 1.7 and 1.8 in a different form that allows us to study
deformation in the vicinity of any point of an elastic medium. Let us consider two cross-
sections of the bar, S(x) and S(x + dx), located close to each other, Fig. 1.2a. As a
result of deformation, they are displaced at distances u(x) and u(x + dx), respectively.
Taking into account that forces applied to each surface are the same, we conclude that
relative displacements are equal, that is

u(x) = u{x + dx) = Fx

x x + dx ES

Here x is the distance from the origin O, which does not move during deformation,
and Fx is the scalar component of the force. From the last equality we have

(x + dx) u(x) — x u(x + dx)

Since the distance between two cross-sections is very small, it is natural to assume that
displacements between them change linearly. Then, expanding the function u(x + dx)
in the Taylor series and discarding all terms except the first two, we obtain

du
x u(x) + dx u(x) — x u(x) + x—dx

dx

Comparison with eq. 1.10 shows that the relative expansion of the bar is characterized
by the first derivative du/dx. The position of the cross-section S(x) was chosen
arbitrarily, and, correspondingly, du/dx describes a deformation of the bar at each
point. In our case, a value of du/dx is independent of the point coordinates, and we are
dealing with homogeneous deformation. However, in general, this function, du/dx, may
change from point to point, and inhomogencous deformation is observed. By definition,
du/dx is called the strain at a point, or more precisely, the diagonal element of the strain
tensor (Appendix D). Note that if a displacement u is a function of several coordinates,
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Figure 1.2: (a) and (b) Illustration of eqs. 1.10. 1.13 (c) Deformation of an elastic

column (d) Bar extension due to gravitational field

we have to use the partial derivatives, and the strain is written as

exx = p (1.11)
ox

Then, in place of eq. 1.10 we have

eXx = -£-£ or -§- = Eexx (1.12)

As follows from eq. 1.11, the strain exx characterizes the rate of change of the dis-

placement, as well as a type of deformation. For instance, if du/dx > 0 expansion

occurs, whereas compression is observed when du/dx < 0. It is clear that the strain is

dimensionless.

Next, we perform similar transformations with cq. 1.8 and consider a cross-section

of an elementary parallelepiped of the bar in the plane YOZ, Fig. 1.2b. Taking into
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account that a deformation is homogeneous, we have

Shi v{y) v(y + dy)
hi y y + dy

(1.13)

where v(y) is the displacement of the cross-section S(y) along the y-axis and y is

the distance from the origin. Again, using the Taylor series, eq. 1.13 gives

5 h\ dv
hi dy'

and, by analogy,

dh'2 dw

~h^^lh

Here w is the displacement along the z-axis. Respectively, Poisson's ratio, eq. 1.8, is

written in the form

dv dw du

^r = ̂ r = -a^r (L 1 4

ay dz ox

Thus, the rate of change of the corresponding components of the displacement vector

s = wi + vj + w;k (1-15)

is the same along the y- and z-axes. By definition,

eyy = - and ezz = — (1.16)

are also the diagonal elements of the strain tensor and, in accordance with cq. 1.8, they

are related to each other,

eyy = ezz = -aexx (1.17)

provided that forces arc applied only along the x-axis. By analogy, if they arc directed

either along the y or z axes, we have

e-xx — e-zz — -ve-yy a n d exx — eyy — -aezz

respectively.
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Ratio Fx/S and stress

Now let us discuss ratio Fx/S in eq. 1.12, which describes the ir-component of the

traction t. The latter can be introduced in the following way (Appendix C).

tx = (X • n) = ^ (1.18)

Here n is the unit vector normal to the surface S(x) and directed toward the portion of

the bar that creates the surface force. In our case, the vector X has only one component

X =Xxi (1.19)

As follows from eq. 1.18, if n = i then Xx = Fx/S, but Xx = —Fx/S when n = —i.

Since forces applied to bar faces have opposite directions, the function Xx has the same

sign inside the bar. Correspondingly, eqs. 1.12 can be rewritten as

e*x = ^Xx or Xx = Eexx (1.20)

This shows that in the case of an expansion, (exx > 0), Xx is positive, whereas it is

negative if a compression takes place. Note that Xx is the diagonal element of the stress

tensor. In the same manner we have

eyy = ^Yy or Yy = Eem (1.21)

and ezz = — Zz or Zz = Eezz

E

when force is oriented either along the y- or z-axis. As is shown in Appendix C,

functions Yy and Zz, as well as Xx, are the diagonal elements of the stress tensor. At

the beginning we will use these notations, but later, throughout almost all monograph

the notion r^ is applied. Thus, the differential forms of Hooke's law and Poisson's

relation are

Xx = Eexx and eyy = ezz = —aexx (1-22)

As was pointed out, this system is used to describe numerous phenomena in an clastic

medium. First, we will study simple cases of homogeneous and inhomogeneous deforma-

tion.
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Example one Consider an elastic column placed on an ideally rigid foundation,

and suppose that force Fo acts on its top surface St, Fig. 1.2c. Because of this and

the weight, a cross-section of the column S(z) varies, and our goal is to find its value,

provided that the stress is constant inside the body:

Zz = const (1.23)

Since the external force Fo is transmitted through the elastic column and its mass

between the top St and the cross-section S(z) is equal to

p I S(z)dz,

the condition 1.23 can be written as

where r\ is a variable of integration, I is column length, and g is gravitational

acceleration. Two terms at the left side of eq. 1.24 describe stresses caused by the

external force and the weight of the column above the cross-section S(z). Multiplication

of this equation by S(z) and then differentiation by z yield

Fo d,S(z) p gSt
-pgS{z) = - ^ or \nS(z) = —z + C

Of UZ PQ

Since

lnSt = .PJl^l + C,

we finally obtain

S(z) = Stexp^(l-z) (1.25)

Thus, in approaching the origin, z — 0, the cross-section of the column exponentially

increases, and it provides a constancy of the stress, eq. 1.23. As follows from eq. 1.25

with a decrease of the density p, the change of the function S(z) also becomes

smaller. In other words, if an influence of the weight would be absent then a homogeneous

deformation takes place with the constant cross-section of the column. From eq. 1.25 we

see that

S(z) -> oo if Fo -> 0 (1.26)
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This means that the stress caused by a weight cannot be constant along the z-axis. In

accordance with Hooke's law, the displacement of the surface St is

XI ^0 ,

Taking into account that a deformation is homogeneous, the strain at points of the column

is constant, and it is equal to

where Fo is the scalar component of the force and is negative.

Example two Suppose that the bar is suspended, as is shown in Fig. 1.2d. Its

cross-section S, length /. density p, and the Young modulus E are given. Our goal

is to determine a bar extension due to the gravitational field. First, consider a portion

of the bar, bounded by surfaces S(O) and S, located at distance z from origin O.

The force applied to S(z) is equal to the weight of the lower portion of the bar:

Fz=gp(l-z)S (1.28)

Since this force is uniformly distributed over the cross-section, the stress is

Zz=
Fj=gp{l-z)1 (1.29)

and it varies linearly within the range

o < § < g pl
It is clear that force Fz is external with respect to the upper part of the bar and,

correspondingly, eq. 1.28 gives

This shows that we are dealing with an inhomogeneous deformation. Integration of eq.

1.30 yields

99 z2

Inasmuch as w(0) = 0, we obtain

w(z) = ̂ -(l - | ) (1.31)

In particular, an extension of the lower end, (z = I), is

w(l) = ̂ , (1.32)

that is, it is directly proportional to a square of the original length.
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Superposition of displacements

To this point we have studied deformation caused by a single force. Taking into account

that eqs. 1.12 are linear, we can apply the principle of superposition (Appendix D),

which is formulated in the following way. If a deformation en corresponds to the force

Fn , then the resultant deformation, caused by a sum

F = Fi + F 2 + + F n ,

is equal to

e = e i + e 2 + + en (1.33)

Note that we have already discovered two kinds of deformation, namely, homogeneous

and inhomogeneous deformations. The first corresponds to the case in which the strain

remains the same inside a body, whereas, the second kind of strain is a function of a

point. Of course, within an elementary volume, deformation is homogeneous (Appendix

D). To illustrate the principle of superposition consider three more examples in which

forces act on different faces of the rectangular body.

Example three Suppose that a body is surrounded by a fluid and the pressure is

equal to P. In such case there are only forces that are normal to the body faces and,

by definition

Xx = Yy = ZZ = -P, (1.34)

where P > 0. The presence of the minus sign is related to the fact that the force caused

by a fluid is directed inside a body. Our task is to find displacements of faces along the

coordinate axes caused by all three forces. Applying Hookc's law and Poisson's relation

(eq. 1.8), we determine the relative displacement due to each force. Then, using the

principle of superposition, we add them together. First, consider a compression along

the x-axis due to the stress Xx. As follows from Hooke's law,

Because there are forces acting on two other faces of the volume, expansion along x

is observed. In accordance with Poisson's relation and Hooke's law, we have

du2 dv a du3 dw a
ox ay E ox oz E
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Therefore, the total strain, du/dx, is

du du\ dii2 du-z
— = —- H H -
dx dx dx dx

or

| = -i(l-2.)P (1.37)

In the same manner we obtain

| = -i(l-2.)P and ^ = -|d-2.)P (1.38)

Since a deformation is homogeneous, strains describe a change of the volume size along
coordinate axes, that is

M = fi = 4<l-2.)P (1.39,

Here l\, I2, and /3 are the initial lengths. In particular, when the volume is a cube,
displacements of faces are the same.

It is easy to find a relationship between pressure and a relative change of volume
caused by compression. The initial and new volumes are

V = hhh

and

Vl = (h + Sh)(l2 + Sl2)(l3 + 6l3) = hhk{l + ^ ) ( 1 + ^ ) ( 1 + ^ )
'i h h

Discarding higher-order terms we obtain

v^m + ̂  + ̂ - A (1.40)
n h h

or

^-«y^ d.«)
Here 5V/V = 0 = divs is a dilatation (Appendix D). and, correspondingly,

P = -M— = -Mdiv s, (1.42)
V
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where

M-W^) (L43)

is the bulk modulus.

As follows from eq. 1.41 Poisson's ratio, a, cannot exceed 1/2; otherwise, with an

increase of pressure, volume would increase too. Note that the velocity of propagation

in a fluid is defined by the density p and the bulk modulus M (Part I).

Example four Assume that there are forces oriented along the .T-axis that produce

a bar extension. There are also forces applied to faces perpendicular to the y-axis, so

that these faces of the bar cannot move in this direction. At the same time, faces normal

to the z-axis are not subjected to an action of forces. Applying again the principle of

superposition, we have

^ = I^-£^ (1.44)
H E bX E Oy

where Fy is an unknown force. In order to find it, we take into account that Sl2 = 0,

and this gives

1'2 E Sy E SX

or

^ = a ^ or Yy = aXx (1.45)

Substituting the latter into eq. 1.44 we have

exx = ^ = Ul-a2)Xx or Xx = —E—exx = Etexx (1.46)
OX hi 1 — <7

Here Et = E/l — a2 is usually called the effective Young modulus.

Example five Unlike in the previous case, the faces of a bar normal to the y and

z-axes cannot move, but force F r produces a deformation along the a;-axis. This

means that there are normal stresses at faces 5*̂  and Sz. Then, for strains exx, eyy,

and ezz, we can write

-—Y - —V - —7

£xx — j? x TP y F

em = ~Xx + ±Yy-^Zz=0 (1.47)
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This system contains three unknowns: exx, Yy, and Zz. First of all we find Yy.

Eliminating Zz we obtain two equations

^xx — j^ -^ x jp 2 y
hi hj

and

_ a(l + q) ( l - ^ 2 )
0 - ^ — ^ + — g — ^

The last equation gives

Yv = ^ X , (1.48)

and, correspondingly,

n 2 cr2(l + cr) A^

or

Xx = E,,exx (1.49)

Here

E» = (l + a K l - 2 a ) g ( L 5 0 )

is another effective Young modulus. As will be shown later this modulus defines the

velocity of the longitudinal waves. By analogy with eq. 1.48 we also have

Zz = ^—Xx (1.51)
1 — <7

1.2 Longitudinal waves in a thin bar

In the previous section we studied deformation, when a body is in equilibrium, and,

correspondingly, its particles do not move. At the same time, as we know, such a state

does not occur instantly; it is preceded by wave propagation and attenuation. Now

we turn our focus to the wave phenomena and start from the simplest case, when the

longitudinal wave propagates along a slender bar, Fig. 1.3a.
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Figure 1.3: (a) Derivation of wave equation (b) Illustration of eq. 1.75 (c) Wave fields
of the step function (d) Superposition of two cornpressional waves

One-dimensional wave equation

By analogy with acoustic waves (Part I), we first derive the equation describing wave
propagation along a bar. With this purpose in mind consider the bar element, bounded
by two cross-sections, S(x — dx/2) and S(x + dx/2), and the lateral surface, Fig.
1.3a. Suppose that the wave propagates along the :r-axis and reaches the cross-section
S(x - dx/2). From this moment we begin to observe deformation of this bar element,
dV = Sdx. With some time delay, the wave arrives at the front face of the volume, S(x+
dx/2). Force F(x, t), which accompanies the wave, has the same direction at both cross-
sections, but may differ in magnitude. For instance, in the case of compression, this force
is directed along the :r-axis, whereas it moves in the opposite direction when expansion
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takes place. The force at points of the section S(x + dx/2) acts on a medium located

in front of the bar element. In accordance with Newton's third law, force Fx(x + dx/2),

having the same magnitude and opposite direction, acts on the surface S(x + dx/2) of

the elementary volume. Thus, the resultant force, applied to this bar element at any

instant t, is

Fx(x-^,t)+Fx(x + ^A)

It is essential that both forces are considered at the same moment and that they always

have opposite directions. In general, their magnitudes are different. In accordance with

Newton's second law, the equation of motion of the bar element with the mass m = pSdx

is

d2u(x. t) , dx . . dx , . .
m ^ > = Fx(x - — , t) + Fx(x + —, t) (1.52)

Here u(x, t) is the x-componcnt of the displacement of the center of mass, m. Eq.

1.52 contains three unknowns, u(x,t), Fx(x — dx/2, t), and Fx(x + dx/2,t). In order

to derive an equation with respect to only one of these functions, we use the concept of

traction, t, and Hooke's law. As was shown in the previous section and in Appendix

C, the ^-component of the traction t is defined as

tx = X • n

Respectively, we have

Fx(x - y,<) = tx(x - y,<)5 = -Xx[x - y , t ) S (1.53)

dx dx dx
and Fx{x + —,t)=tx[x+—,t)S= Xx{x + —,t)S

Substitution of eqs. 1.53 into eq. 1.52 yields

d2u(x. t) dx . , dx . .
p dx ^ ' = Xx[x + —,t) - Xx(x - —,t) (1.54)

Here Xx is the normal stress at the front and back faces of the volume element. As the

distance dx is very small, we can assume that the stress Xx linearly changes between

the volume faces. It allows us to replace the right side of eq. 1.54 as

. dx , . dx . dXx(x,t) , , .

xx(x + Y't]~Xx{x ~ y t ] = tx ' (L55)
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and it becomes

at1 ox

where derivatives are taken at the same point. The next step involves the use of Hooke's

law:

Xx = E exx = E^ (1.57)

From the last two equations, we obtain

d2u ^d2u d2u 1 d2u ,
pW = Ew or dx~2 = cfW (L58)

As we know (Part I), the latter is the wave equation in an one-dimensional case and

Q = y f (1.59)

describes its velocity of propagation. We derive the same equation for strain and stress.

In fact, taking the derivative with respect to x from both sides of cq. 1.58, we have

da? W ~ tfW^/
or

d2e 1 d2e
oexx i d exx ( i g o )dx2 ~ c2 8t2 y ^ '

Then, the use of Hooke's law gives

d'2XT 1 d'2XT

It is natural that all three quantities characterizing wave propagation satisfy the same

wave equation. It is a partial differential equation of the second order, and its general

solution for displacement (Part I) is

u(x, t) = Af [a(t - | ) ] + Bg[a(t + | ) ] (1.62)

Here / and g are continuous functions that have first and second derivatives with

respect to both distance x and time t. Their behavior is defined by the primary source,

which generates the wave. A and B are some constants, as well as the parameter a.
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Since an argument of any function is dimensionless, this constant is measured in sec .
Now it may be appropriate to remind ourselves the following.

a. A solution of the wave equation was first obtained by D'Alembert who applied
in essence the trial-and-error method. It does not determine functions / and g, but
defines a structure of arguments, that is, a relationship between distance x and time t.

b. In deriving eqs. 1.58-1.61, it was assumed that u(x,t), exx (x,t), and Xx(x,t)
are continuous functions. However, it turns out that even a discontinuous function can
be a solution of the wave equation.

c. It is easy to show that u(x,t), given by cq. 1.62, satisfies the wave equation. In
fact, performing a differentiation, we have

where derivatives are taken with respect to the argument of the function, which is a(t —
x/ci). It is clear that

d2f _ 1 d2f
~dx^~~?l~W1

and the same is valid for the function g[a(t + x/ci)].

d. Since with an increase of time the same value of the argument t — x/ci is observed

at greater distances, the function / [a(t — X/Q)] describes the outgoing wave that

is traveling away from the origin, if x > 0. In contrast, the function g[a(t + X/Q)]

characterizes the incoming wave, if x > 0, because with a decrease of distance the same

value of the argument t + x/ci takes place later. It may happen that the wave field is

described by either by the outgoing or incoming waves or by the superposition of them.

Now consider the main properties of these waves in some detail.

Outgoing wave By definition, expressions for the displacement, the particle veloc-

ity, strain, and stress arc

u(x, t)=A f[a(t - | ) ] , u(x, t)=A af'[a(t - | ) ] , (1.63)

exx(x,t) = -—f'[a(t -)], Xx(x,t) = -—f'[a(t -)]

As we can see, the last three quantities have the same dependence on distance and time.

From eqs. 1.63 it also follows that

exx = - - , (1.64)
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that is, the ratio of velocities of the particle and wave defines the strain with an accuracy

of a sign. As was mentioned earlier and in Appendix D the strain exx is usually very

small: (exx <C 1). Therefore, the particle velocity is many orders smaller than the

wave velocity. It is clear that in the case of the compressional wave, exx < 0 and both

velocities have the same direction. Due to this fact, compression takes place. On the

contrary, when they have opposite directions, exx > 0; the extensional wave propagates.

Let us imagine that at the instant t = 0, the wave approaches the left face of some

portion of the bar, which has a length equal to ctft. Then during this brief time

interval, St, the bar end moves at the distance uSt, and, correspondingly, the ratio

u/ci describes the strain. As follows from Hooke's law, eq. 1.64 can written in the form:

u Xx Xx E r—
— = — ^ or — — = = ~VEP (1-65)

By analogy with electrodynamics, the right side of eq. 1.65 is called the impedance of a

medium for longitudinal waves:

Z = - = sJ~Ep = cip (1.66)
Cl

As is also the case in acoustics, impedance plays an important role in describing reflection

and transmission of waves.

Incoming wave In accordance with eq. 1.62 we have in this case

u(x,i) = Bg[a(t+-)], u(x. t) = Bag'[a{t + -)] (1.67)
ci ' ci

, . Ba ., , x., . . BaE . . . x.,
exx(x, t) = —g'[a(t + -)], Xx(x, t) = g'[a{t + -)}

Cl Ci Ci Q

u , u Xx As
exx = — and — = — or — = Z

ci ci E u

Since the wave propagates toward the origin, (x > 0), both the wave and particle

velocities have the same direction in places where compression occurs. However, the

directions arc opposite to each other in places where tension occurs. The similarity for

outgoing waves is obvious.
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Displacement field

In accordance with Poisson's relation

dv dw du

dy dz dx

wave propagation along the x-axis is accompanied by motion of particles along all axes.

In the approximation of a thin bar, it is assumed that all functions describing the wave

u(x,t), exx(x,t), u(x,t), Xx(x,t)

are the same at all points of any cross-section of the bar. Besides, the strains eyy and

ezz, caused by the stress Xx, are uniformly distributed over each cross-section S.

Because of symmetry, components of the displacement v and w are equal to zero

along the middle line of the bar (x-axis), and then they linearly increase toward the

lateral surface. Because of all these assumptions, we can only approximately describe

the displacement, field s. As follows from eq. 1.63, all strains vary synchronously, but the

vector field s:

s = ui + vj + wk (1.69)

can be rather complicated. In order to study its behavior, we use eqs. 1.63 and 1.14.

They give

d-^-~fHt-X-)l (1.70)

dv£i) = Aj^ x du, = Aj^ x
dy a ci dz ct ci

After integration of the last two equations, we have for the field s

u{x,t) = Af [a{t - ^)], v(Xyt) = ̂ ^f'[a(t-^)]y, (1.71)

W(x,t) = ^f'[a(t-j)]z,

since v = w = 0 at points of the 2-axis. As is seen from set 1.71, the displacements

along the y and z axes are defined by the rate of change of the component u(x,t).

Taking into account that the bar is thin, we usually have

?;<v, and w < it (1.72)
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However, the strains exx, eyy, and ezz are comparable, eqs. 1.70, and therefore, the

dilatation, O, is equal to
An nr-

(-) = div s = (1 - 2a) f'[a(t - - ) ] (1.73)

As was shown earlier, the dilatation defines the relative change of an elementary volume,

0 = AV/V, and wave propagation is accompanied by either compression or expansion

of the volume. At the beginning, we assumed that the displacement u(x,t) is uniformly

distributed over the cross-section. If, in addition, we neglect by components v and w ,

it is easy to see that curl s = 0. In other words, wave propagation is not accompanied

by rotation of elementary volumes of the bar. At the same time, wave causes a change

of volumes. This is why these waves are called dilatational or irrotational waves.

Reflection and transmission

Now, suppose that the bar consists of two homogeneous portions and S is the boundary

between them. In general, they differ in terms of both the Young modulus and density

P-

Ei yt E2 and px / p2

Since at points of the cross-section S, (x = 0), the velocity C\ is usually a discontinuous

function, we cannot apply the wave equation. Therefore, it has to be replaced on S by

boundary conditions. One of them is a continuity of the displacement u

ul(Q,t)=u2(Q,t) (1.74)

Here U{(x,t) and U2(x,t) arc scalar components of displacement along the .r-axis at

each portion of the bar. It is clear that if condition 1.74 is invalid, we would observe

either overlapping of two portions of the bar or a gap between them. In order to derive

the second condition, consider an elementary volume, confined by surfaces Si and S2,

Fig. 1.3b, which are located at distance dx from each other. In accordance with the

Newton's second law, we have

m9^ = FX{S{) + FX(S2) (1.75)

Here m is the mass of the volume and FX{S\) and FX(S2) are external forces acting

on its faces. Since Fx = (X • n)S, we have

m^ = [x^)-xu-±)\s
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or

pdx^ = X2x(^)-Xlx(-^), (1.76)

where X2x and X\x are normal stresses at opposite sides of the boundary.

As S\ and Si approach the boundary S, (dx —> 0), the left side of eq. 1.76 tends

to zero, since an acceleration cannot be infinitely large. Therefore, the right side also

tends to zero, and we conclude that the normal stress is a continuous function at the

boundary

X,x(0,t) = X2x(0,t) (1.77)

Thus, boundary conditions are

u1(0,t)=u.2(0,t) and Xlx(0,t) = X2x(0,t) (1.78)

Our goal is to find the wave field that satisfies the wave equation at each regular point

of the bar and boundary conditions, eqs. 1.78. Assuming that the primary (incident)

wave propagates along the x-axis, it is obvious that in the first portion of the bar,

(x < 0), there are two waves - the incident and reflected waves - whereas in the second

portion, (x > 0), we observe the transmitted wave. Respectively, expressions for the

displacements are

ui{x,t)=Af{a{t-—)] + Bf[a(t+—)] if x < 0 (1.79)

and u2(x.t) = Cf [a(t - —)] if x > 0

Here A is known, while B and C have to be determined, and

cu = \— and c 2 ; = J — (1.80)
V Pi V P2

Of course, functions u\ and u2 satisfy the wave equation at each portion of the bar.

Now it is proper to make a comment. We supposed that the incident, reflected, and

transmitted waves are described by the same function

/Kt±|)]
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This is only an assumption. However, if U\{x.t) and u2(x,t) satisfy boundary con-

ditions, then we can say that this guess is correct. Now, making use of eqs. 1.79 and

Hookc's law

Xx = Eexx = E—,
ox

system 1.78 gives two equations with two unknowns

A + B = C and - AZX + BZX = -Z2CX (1.81)

since

Z =- = pc
c

Their solution yields the expressions

B = y ^ A and C = - ^ - A, (1.82)

which represent the famous Fresnel formulas. Thus, we have demonstrated that u\{x,t)

and v,2(x,i) satisfy wave equations for corresponding parts of the bar and boundary

conditions, provided that B and C are given by eqs. 1.82. This means that all

three waves depend on time and distance in the same manner and that coefficients of

reflection and transmission, eqs. 1.82. are defined by the ratio of impedances. Certainly,

this important result is always valid, as long as boundary conditions are independent of

time. Frcsncl's coefficients can be also written in the other form:

B^VKEh-^EhA=n-mA ^ c ^ J^A ( l g 3 )
y7pjEi + y/p2E2 n + m n + m

where n = c\/c2 is the refraction coefficient and rn — p2/Pi is the ratio of densities.

Thus, expressions for displacement u in each part of the bar are

Ul(x, t) = Af[a(t - —)] + ̂ ~ ^ A f[a(t + —)] (1.84)
cu Zi + Z2 Cu

and u2(x, t) = ^ - V ^ f[a(t - —)]

In particular, at the boundary, (x = 0), we have

Ul{o,t) = {\+ x
 7

2)Af(at) and u2{o, t) = Ul(o, t) = / A f(at) (1.85)
Z-| + ZJ2 ZJ-\ -\- ZJ2
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Eq. 1.85 emphasizes that at the boundary, the reflected and incident waves vary syn-

chronously, and this fact plays a fundamental role in migration (Part II). Of course, the

transmitted wave displays similar behavior. As follows from the first equation of the

1.84, the strain at the boundary caused by the incident and reflected waves is

e.x = -(-l + f ^ ) / V )
(-11 Zx + Z2

Thus, at the boundary the strain of the incident and reflected waves has the same sign, if

Zy < Z2- This means that either both waves are comprcssional or both arc cxtcnsional.

For instance, at the rigid boundary, Z2 —> 00, the compressional wave gives rise to the

reflected compressional wave. In contrast, if Z\ > Z%, the incident and reflected waves

arc of different types. This is clearly illustrated in the case of a free boundary, Z2 = 0,

when the compressional wave causes the extensional reflected wave.

Now we illustrate wave behavior, considering several examples. In all of them it is

assumed that the external force changes instantly and then remains constant for some

time. Speaking strictly, such behavior is impossible, since a finite time interval is always

needed to generate the constant force. For this reason we treat such wave as the limiting

case when the real force arises very quickly. Behind the wave front the force remains

constant and, of course, all functions - u(x,t), exx(x,t), and Xx(x,t) - satisfy the

wave equation.

Example one First, suppose that the incident wave propagates along a homogeneous

bar and the stress, Xx, behaves as

Xx = A h[a(t --)], (1.86)

where h is the step function.

h[a{t - - ) ] = 0 if t<- and h[a(t - - ) ] = 1 if t>-

Consider an elementary volume of the bar with an infinitely small extension dx. Be-

cause of this, the wave almost instantly reaches the back and front faces of the volume.

Correspondingly, external forces acting on both faces have the same magnitude but op-

posite directions. Therefore, the total force is equal to zero, and this element moves at

a constant velocity. Thus, stress, strain, and particle velocity behave as step-functions,

whereas displacement is a linear function, Fig. 1.3c. In other words, functions, u, exx,

and Xx remain constant behind the wave front, but the distance of the particle from the

original position changes linearly. We have discussed a compressional wave. Behavior of

these functions in the case of the extensional wave, exx > 0, is similar.
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Second, assume that a semi-infinite bar has a rigid end. When the incident wave

reaches this end, the whole bar is compressed, exx < 0, and it moves at a constant

velocity, u > 0. At this moment the reflected compressional wave arises and, as result,

the strain and stress magnitudes double behind the wave front of the reflected wave.

Since the particle velocities of the incident and reflected waves have opposite directions,

the resultant velocity of the bar is equal to zero between the rigid end and the front of the

reflected wave, Fig. 1.3d. Thus, one portion of the bar does not move, and it is twice as

deformed as the rest of the bar, which moves with the velocity u. If the bar end is free,

then the compressional wave causes the extensional wave. Because of this behind the

wave's front the particle velocity doubles but deformation vanishes. Unlike the previous

case of the rigid end, both portions of the bar move but with different velocities, and in

one part both the stress and strain are equal to zero. Now we are prepared to consider

several more examples.

Example two Suppose that the bar of length I is under an action of two constant

forces that are applied at the same moment t — 0, Fig. 1.4a. At this instant, two

compressional waves arise and move in opposite directions. Since they reach the center

of the bar simultaneously, the strain at this point becomes equal to 2exx, but the

particle velocity is zero. Here exx is the strain caused by the single wave. At the instant

t — l/ci extensional waves arise, and they again arrive at the middle point O at the

same time. Correspondingly, this point is still at rest, but a deformation disappears.

Because reflected waves regularly appear at both ends of the bar, we can say that the

velocity at point O is always equal to zero,

«(0,t) = 0, (1.87)

and the center of mass is located at this point. At the same time strain like stress,

is a periodic function, Fig. 1.4b. Of course, condition 1.87 follows from the fact that

the resultant external force is equal to zero, while the wave propagation explains how

it happens. The periodic function exx(0, t) can be represented as a sum of sinusoidal

functions and the constant. Because of attenuation, harmonic functions decay, and in

equilibrium strain becomes constant. Unlike the middle point, other points of the bar

experience motion, which is also described by the periodic function of time. Again due

to attenuation, sinusoidal harmonics disappear and only the constant portion remains.

It turns out that the latter linearly decreases in approaching the middle point O.

Example three As is well known, the essence of Hookc's law is the fact that a

displacement A/ is directly proportional to the bar length A/ ~ /. For instance,
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Figure 1.4: (a) Bar under the action of two forces (b) Strain at the middle point as a

function of time (c) Illustration of Hooke's law (d) Displacement of the low end of the

bar as a function of time

a scmi-infinitc bar has an infinite extension, A/ —> oo. This behavior of A/ poses

the following question. How does the low end of the bar, Fig. 1.4c, "know" where the

opposite end is located? In order to find an explanation, consider the motion of the low

end under action of the constant force FT:

Fr = 0 if t < 0 and FT — const if t > 0.

provided that the upper end of the bar is fixed. Since the force Fx is directed downward,

an extensional wave arises at the instant t = 0 and propagates toward the upper end.

At the same time, the low end moves with constant velocity along the :r-axis. Because

of a reflection at the upper end, the extensional wave arises at the instant t = l/c and

travels downward, but the particle motion has an opposite direction. For this reason, the

bar stops to move behind the wave front. At the instant t = 2l/c the wave reaches the

low end, and the whole bar is at rest. However, at the same moment the compressional
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wave appears at the low end and propagates upward. Correspondingly, the direction of

the motion of the low end changes. Thus, its velocity v0 remains constant only within

the time interval

When the compressional wave reaches the upper fixed end at f = 3 / /2Q, it gives rise

to another compressional wave. The new wave propagates downward and the particle

velocity is directed along the rc-axis. In particular, at the instant t = 4 / /Q all points of

the bar are at rest. At this moment, the extensional wave starts to move upward. Thus,

we begin to observe the same behavior of the particle velocity as before. It is obvious

that the function v(t) is periodic, and its period is equal to

T=— (1.88)
Q

Within each period we have

T T
v(t) = v0 if < t < 0 and v(t) = -v0 if 0 < t < — (1.89)

Therefore during the first half of the period, the displacement of the low end u(l, t)

linearly increases with time, Fig. 1.4d, and reaches its maximal value

u = -v0 (1.90)
ci

Then, in the other half of the period, the displacement linearly decreases and the low end

returns to the original position at the instant t = Al/ci. By analogy with the previous

example, it is important to represent the even periodic function u(l, t) as the Fourier

series
h °° /

U M = f + J>ncos2™-, (1.91)
n=l

where

211 Cl

bn = - u(l.t)cos2im^-dt (1.92)

o

In particular, the constant bo is equal to
2i
cl

bo = T^O / tdt = 2 or —- = (1.93)
l J Ci Z ci

o
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Thus, the total displacement of the low end of the bar is a sum of the constant displace-

ment and a system of harmonics with different frequencies. It is remarkable that the

constant part of the displacement

Al = £ = f (1.94)

is directly proportional to the original length of the bar. In other words, Al is propor-

tional to the time during which the wave travels from the lower to the upper end. As

follows from eq. 1.94, Al/l = VQ/CI, and this result is not surprising, since the left and

right sides of this equality characterize the strain. Since

VQ _ Xx

Q E

we have

A/ Xx Xx
-r = ~ET or exx = —rl E E

This describes Hookc's law, provided that Al is half of the maximal displacement

of the low end. In this light it is appropriate to notice the following. Hooke's law

is based on an experimental fact, namely, that under an action of constant force, the

displacement of the bar end reaches some value and then remains constant. Certainly,

such behavior is different from one prescribed by the function u(l,t). This discrepancy

is easily explained if we take into account an effect of attenuation. In reality, vibrations

described by harmonics of Fourier's scries (n > 1) decay relatively quickly with time,

since the period T is very small. Correspondingly, observations performed at times

significantly exceeding T allow us to find Al. Of course, if the external force Fx

varies slowly, the influence of harmonics is strongly reduced even at earlier times. This

analysis shows that the wave "informs" the low end of the bar about its original length

/.

Example four: propagation of pulse and Newton's first law Suppose that at
the instant t — 0 the narrow impulse of the force

Nx = FJt (1.95)

is applied to the left end of the bar, which has a length I and the cross-section S,

Fig. 1.5a. At this moment, the pulse of the compressional wave arises and moves with

the velocity Q. We assume that ciSt -C I and that a change of the bar length due

to either a compression or extension is extremely small. At the beginning we study a
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Figure 1.5: (a) The bar under action of constant force (b) Velocity of the middle point as
a function of time (c) Displacements of the point p and the center of mass as functions
of time

motion of the middle point p. which is the center of mass at equilibrium o. As we
know, propagation of the comprcssional pulse is accompanied by particle motion with the
velocity v0, (i>0 Cc ) , in the same direction. For this reason, at the instant t = I/2c
point p starts to move along the x-axis during the time interval 5t, and then it
stops. The wave pulse reaches the right free end of the bar at the instant t = 1/Q. At
this moment the extensional reflected wave arises and starts to propagate toward the left
end. When it reaches point p, this point begins to move again with velocity Vo along
the x-axis, but only during time interval 5t. Finally, at moment t = 21/'q this wave
pulse approaches the left free end, and the compressional reflected wave arises. Thus, we
sec that the velocity v(t) of the middle point is a periodic function, Fig. 1.5b, and its
period is equal to

T=l- (1.96)

Here T is time of wave traveling between the bar ends. Similar behavior of the velocity
v(t) takes place at other points. For instance, at the bar ends, both the period becomes
and the particle velocity double. The latter happens due to superposition of the incident
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and reflected waves. As is seen from Fig. 1.5b, the velocity of the middle point p during

each period is either zero or is equal to VQ. On the other hand, in accordance with

Newton's first law, the velocity of the center of mass is constant, and it is defined from

the equality

mV = Nx = Fx5t, (1.97)

where m is the bar mass m = p IS and p is the density of the bar in equilibrium.

Certainly, there is a difference between the actual velocity v(t) at the middle point

p, Fig. 1.5b, and the constant velocity V of the center of mass o. In order to find

a relationship between them, we introduce an average value of the function v(t). By

definition we have

T

'"av = \ l v(t)dt or v™ = ^ v 0 = ^ v 0 (1.98)
o

Thus, the coefficient of proportionality between vav and v0 is the ratio of the width of

the pulse to the bar length. Multiplication by m of both sides of eq. 1.98 gives

m vav = ^j^v0 = p ciS 6t v0 (1.99)

As was demonstrated earlier

ciFx

Its substitution into eq. 1.99 yields

mvav = FJt (1.100)

Comparison with eq. 1.97 shows that the constant velocity V in Newton's first law

represents an average velocity. vav (t), of the middle point p. The same is valid for all

other points of the bar. Note that if the width of the wave pulse coincides with the bar

length, then

V = v0

At the same time, if St <^i T, velocity V is much smaller than particle velocity v0.

Next, consider displacement of the middle point p. It moves relatively quickly, as the

linear function, (sp(t) = vot), in the presence of the pulse. Then point p is at rest
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until arrival of the next pulse. This jerk-like motion is shown in Fig. 1.5c. Displacement

so(t) of the center of mass is different. During the time interval St, when the constant

external force Fx is applied, displacement is parabolic. This result directly follows from

Newton's second law. After it, (t > Si), so(t) is a linear function

so(t) = Vt if t > St

So far the effect of attenuation associated with particle vibrations along the rc-axis, as

well as in the radial direction, has been ignored. Since v(t) is the periodical function,

it can be represented as the Fourier series

°° t
v(i) — V + y^ bn cos 27m—

n=i

With an increase of time, sinusoidal functions decay due to attenuation and point p

starts to move with constant velocity V. In such a case all points of the bar begin to

move with the same velocity V, as if it were ideally rigid body. At the same time the

middle point p coincides with the center of mass, and Newton's first law describes its

motion. We can say that in limiting cases of an elementary particle, (I —> 0), or an

ideally rigid body, (Q —> oo), Newton's first law describes their motion at any time. As

is seen from Fig. 1.5c, the center of mass is located either in front of or behind the bar

center. During each period these points coincide when the wave pulse is located in the

vicinity of the bar center or near its ends. Let us notice that the maximal separation

between these points is usually very small and it is approximately equal to

Example five Now consider the arising of the reflected wave at the free end of the

bar, when the incident waveform is an arbitrary function, Fig. 1.6a. First of all, it is

useful to represent this wave as a system of narrow pulses, following one after another,

Fig. 1.6a. Each pulse causes a reflected pulse. Correspondingly, the resultant reflected

wave has two important features, namely

a. At the bar end the reflected and incident waves are of different types.

b. The front of the reflected wave is caused by the front of the incident wave.

Superposition of these waves is shown in Fig. 1.6b-g. Suppose that the extensional wave

approaches the free end, Fig. 1.6b. Then, due to a reflection, the compressional wave

appears, Fig. 1.6c. The thin line corresponds to this wave. Superposition of both waves

shows that at the beginning the resultant wave (thick line) is still extensional. It happens
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Figure 1.6: (a) The incident wave is an arbitrary function of x (b-g) A superposition of

the incident and reflected waves at different instances near the free end. [After Kolsky,

1963]
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because near the bar end, the magnitude of the reflected wave is smaller than that of

the incident wave. With an increase of time, we start to observe an appearance of the

compressional wave, which becomes more and more noticeable, Fig. 1.6c. Finally, when

the back of the incident wave reaches the bar end, we see only the compressional reflected

wave.

Example six: wave propagation and Newton's second law Now assume

that at the instant t = 0 the constant force is applied to the left end of the bar, Fig.

1.5a. Correspondingly, the compressional wave arises and travels at a velocity Q. In

this case, unlike in example four, a portion of the bar between the wave front and the left

end becomes deformed, and its particles move with the same velocity VQ. At the instant

t — l/ci, the whole bar is compressed and moves with this velocity. It is essential that

the reflected extensional wave appears at the right end at this moment and propagates

through the bar. It causes both an expansion of elementary volumes and their movement

with the velocity VQ. Therefore, behind the front of this wave, particles move with the

velocity 2VQ, but deformation disappears. For example, at the instant t = 2 / / Q the

bar is not deformed, and each of its particles has the velocity v = 2v0. Also at this

moment the reflected wave of compression arises and propagates toward the right end of

the bar. Because of this, at the instant t — 31/Q the whole bar moves with the velocity

v = 3vQ, and the reflected wave of tension appears at the right end. It is clear that this

process of reflections repeats itself, and propagation of waves between bar ends causes an

increase of velocity at any point along the body. As illustration, behavior of the velocity

v(t) at the middle point p is shown in Fig. 1.7a. It is evident that the function v{t)

is similar at other points. As follows from Newton's second law

Fx = max (1.102)

behavior of the velocity, V, of the center of mass is completely different, and this velocity

linearly increases with time

V = axt = —t (1.103)
m

Since

vQ = C—^ and m = plS, (1.104)

eq. 1.103 becomes

V(t) = 'p (1.105)
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Figure 1.7: (a) Velocity of point p and the center of mass as a function of time (b)

Displacement of point p (solid line) and center mass (dashed line) as a function of time

Certainly, the motion of the middle point p and the center of mass differ from each other.

This is especially seen at the beginning of a motion when observation time is comparable

with T. However, with an increase of time motion of point p asymptotically approaches

that described by Newton's second law. In fact, if t 3> T, an increase of velocity by VQ

at instances

becomes very small with respect to velocity v(tn). This means that a discontinuous

function v(t) can be practically replaced by the linear function V(t), given by eq. 1.103.

From the definition of acceleration and eqs. 1.103 and 1.104, we can express acceleration

in three ways:

v0 voci dV Fx

ax = 7F = ~~T' ax = -K7-, ax = — (1.106
T I at m

The last two formulas characterize the rate of change of the velocity of the center of

mass, and in this case V(t) is a continuous function. However, at all points of the bar,

particularly at the middle point p, a change of velocity occurs abruptly, and the first

equation of the 1.106 may serve as a measure of such behavior. Suppose that there are

several bars and the same force Fx is applied to one of their ends. They may differ from

each other by density, length, and cross-section. In general, their motion under an action

of force Fx is also different. For instance, if an acceleration, ax, of the center of mass

of some bar is higher than for some other bar, velocity V(t) grows more rapidly, and we
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usually say that inertia of this body is smaller. Also, proceeding from Newton's second

law, it is conventional to consider mass, m, as the parameter that characterizes inertia.

In other words, mass m defines a time interval during which the center of mass of the

moving bar reaches a certain value of the velocity, if Fx = const. For instance, with an

increase of mass acceleration decreases and therefore this time interval increases. It is

natural to raise the following question. Why does the mass TO, that is the product ISp,

define inertia? To answer this question, consider in detail the influence of each factor.

First, with an increase of the bar length, I, the time of the wave traveling between bar

ends, T, also increases, and in accordance with eqs. 1.106,

ax = 7p

the rate of velocity change becomes smaller. This linear dependence between length /

and inertia is obvious. An influence of density p manifests itself in two ways. First of

all, with an increase of p the wave velocity becomes smaller, since

1

Second, as follows from eq. 1.65, the particle velocity also decreases in the same manner:

1

\/P

Thus, the effect of both factors results in a linear relationship between inertia and density.

Finally, with a change of cross-section S, the stress and therefore the particle velocity

VQ, changes too. For instance, with an increase of S, the stress Xx becomes smaller

and the velocity v0 decreases. Respectively, inertia shows itself to be stronger, because

the time interval during which the velocity v(t) reaches a certain value increases. Thus,

as in the cases of length and density, inertia linearly depends on cross-section S. Now

we can say that inertia, as an intrinsic property of a body, is related to the time of wave

propagation between the bar ends and to particle velocity. It seems we have found out

why mass m, as the product plS, characterizes inertia and, certainly, this explanation

is applied to an arbitrary body. Next, let us demonstrate that inertia is independent of

the Young modulus. For instance, with an increase of E. the particle velocity decreases

as, eq. 1.65,
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while the wave velocity increases in the same manner. For this reason, these two effects

cancel each other, and inertia does not change. In fact, from eq. f .64 we have

ctv0 = & = ^ (1.107)

and the influence of E vanishes.

Consider, as in example four, a transition from an elastic bar to an ideally rigid one.

As we already know, with an increase of the Young modulus the wave velocity increases,

but the particle velocity becomes smaller. In other words, with an increase of E, both

the particle velocity VQ and the time interval T — l/ci, during which the velocity

v(t) remains constant, decrease. At the same time the product QVO is preserved.

Respectively, in the limiting case of an ideally rigid body

Q —> oo and VQ —> 0

the velocity becomes a continuous function V(t), and it describes the motion of all

points of the bar. It is also instructive to study displacement, s(t), of different points

of an elastic bar. For instance, within the time interval

( 2 n - l ) - < i < ( 2 n + l ) -

the velocity v(t) of the middle point is constant, and its displacement s(t) is a linear

function of time. Besides, in each successive time interval, an increase of the slope of the

line describing the displacement is the same, Fig. 1.7b. At the same time, in accordance

with Newton's second law, the motion of the center of mass is described by the parabola:

axt
2

Comparison of functions sp(t) and so(t), Fig. 1.7b, shows that within each time

interval T, the center of mass is cither in front of or behind the middle point p. As

in case of the impulse of the force (example four), the separation between these points

is very small. Also it is clear that with an increase of time, (< > T), these functions

practically coincide. In conclusion let us make some comments:

1. Newton's first and second laws describe the motion of the center of mass, and

its relative position changes with time under the action of impulsive or constant applied

force.

2. Because of this, Newton's second law shows the linear change of velocity V(t) of

the center of mass in the case of constant external force. Meanwhile, in reality, particles

move by jerks.
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3. Propagation of reflected waves between bar ends explains the process of a summa-

tion of the particle velocities. In other words, it is understandable why the velocity of

the bar increases with time even if the external force Fx is constant.

4. Motion of a body is accompanied by a periodic change of stress and strain at each

of its points.

5. The geometric parameters of the bar and its density define a rate of change of the

particle velocity v(t), that is, inertia of a body.

1.3 Longitudinal sinusoidal waves in a bar

We found out earlier that the solution of the onc-dimcnsional wave equation has the

form:

u{x, t) = Af[a(t - - ) ] + Bg[a(t + - ) ] (1.108)
C( Ci

where u(x,t) is the particle displacement of the bar, A and B are constants, and /

and g are practically arbitrary functions of distance and time. Thus, all results obtained

in the previous section are completely applied to the sinusoidal waves. At the same time

it is also useful to consider them separately (Parts I and II), taking into account their

special role in the theory of wave phenomena and numerous practical applications. As is

well known, the convenient use of sinusoidal functions is related to the following factors:

1. Linear operations, such as a summation of sinusoidal waves of the same frequency,

as well as differentiation and integration, do not change the shape of the sinusoidal

(harmonic) function. In other words, their frequency remains the same. This fact greatly

simplifies the study of sinusoidal waves.

2. The shape of transient waves is preserved when they propagate along a bar and

attenuation is absent. However, this factor causes a change in wave shape, i.e., it is

impossible to describe this process by either single function f[a(t — x/c[] or g[a(t + x/ci\,

or by a sum of them. At the same time, even in the presence of attenuation, the sinusoidal

wave as a function of time preserves the same frequency. This is the second reason why

it is very convenient to study wave phenomena using sinusoidal waves even when part of

an elastic energy is transformed into heat.

3. The use of Fourier's integral allows us to treat an arbitrary transient wave as

superposition of sinusoidal waves (Part I).

4. Finally, in many cases, sources of waves generate sinusoidal oscillations that create

harmonic waves.
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As before, we will often deal with sinusoidal waves, and so let us recall the basic

features of a sinusoidal wave. Suppose that at some point of the bar that coincides with

the origin of coordinates, (x = 0), there is a source of sinusoidal vibrations

u(0,t) = Asinut (1.109)

Certainly, the sinusoidal wave is generated and propagates away from the source. In

accordance with eq. 1.108 we have:

u(x,t) = Asmuj(t- -) or u(x, t) = Asm(ut - kx) (1.110)
Q

Here UJ is an angular frequency and

fc=- (1-111)

Q

is the wave number. By definition, ujt — kx is the phase of the outgoing wave and, in

the same manner, ujt + kx is the phase of the incoming wave. The period T, and the

wavelength, A, arc defined as

r = i = * X = C,T = ̂  = ̂  = ̂  (L112,
/ UJ J UJ k

The period T and the wavelength A characterize the time and distance intervals during

which the phase changes by 2TT, and in this sense they are similar. There is an evident

analogy between the angular frequency UJ, and the wavenumber k, and correspondingly,

the latter is often called the spatial frequency. For instance, with an increase of the wave

number, the wavelength becomes smaller. As follows from eq. 1.111 both frequencies are

related to each other. If the wave velocity Q is frequency-independent, then there is a

linear relationship between k and UJ. In a dispersive medium, where the wave velocity

is a function of UJ, this relation becomes more complicated.

Next let us describe fields that accompany the sinusoidal waves. First of all, they do not

have a beginning or an end. By definition, for the outgoing wave we have

u{x,t) = Asin(ujt — kx), vx(x,t) = A ujcos(ujt — kx), (1.113)

eXx{x, t) = —A k cos(ojt — kx), Xx(x, t) = —A kEcos(ojt - kx)

Similar formulas describe the incoming sinusoidal wave. Of course, as in a general case

of nonstationary waves, eqs. 1.113 give

vJx2t1 = _XAx2t)_ o r _Xx(x,t)t

C\ E Z
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where Z = pci is the bar impedance. The reflected and transmitted waves are also

sinusoidal waves with the same frequency as the incident wave, and the reflection and

transmission coefficients

Z\ — Zi 1Z\

ZJ\ -\- £11 ZJ\ -\- Z2

are independent of a frequency. Both of these features greatly simplify the study of wave

behavior. Now let us consider one example.

Normal modes Suppose that a source is located at one end of the bar of a finite

length I, and it generates a nonstationary wave. As we know, due to a reflection at

both bar ends, the resultant wave consists of the system of waves traveling in opposite

directions. It is convenient to discuss superposition of these waves in terms of sinu-

soidal waves with different frequencies. In fact, in accordance with Fourier's integral,

the nonstationary wave can be represented as a superposition of sinusoidal waves with

all possible frequencies, and they have infinitely small amplitudes and different phases.

Each of these sinusoidal harmonics gives rise to a system of reflected waves with the same

frequency. Considering their interference for each frequency we can expect that interfer-

ence has either a constructive or destructive character. However, in the presence of the

primary source, the resultant wave contains all frequencies. This happens because the

effect of a destructive interference at some frequencies is compensated by an action of the

primary source which generates waves at such frequencies. Completely different behavior

is observed when this source ceases to act, since only the interference of waves moving

in the opposite directions defines the frequency content of the resultant wave. In other

words, the resultant oscillations are formed only by sinusoidal waves that experience the

constructive interference.

Next, we discuss what determines frequencies corresponding to constructive inter-

ference, and frequencies' relationship with the bar length, wave velocity, and boundary

conditions. Consider sinusoidal solutions of the wave equation, and as follows from eq.

1.108 they have the form:

u(x,t) — Asm(ut - kx) + Bsin(ivt + kx) + C cos (cot - kx) + Dcos(urt + kx) (1.115)

It is clear that, all four sm(ut±kx) and cos{u)t±kx) functions obey the wave equation.

Making use of known trigonometric formulas, we obtain

u(x,t) = 0, cos kx smut + b sm kx cos uit + ccos kx cos tot + dsin kx sin ujf, (1.116)
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Each term of this sum can be interpreted as a superposition of two sinusoidal waves with

equal amplitudes traveling in opposite directions. For instance,

— sin (cut — kx) -\— sin(wi + kx) = a cos kx smut, (1.117)

and this describes the standing wave because all points of the bar vary synchronously.

Besides, there are points (nodes) at which motion is absent. Such behavior shows that

each term of the sum given by eq. 1.116 describes the standing wave. It is essential that

the terms represent the result of an interference of sinusoidal waves of the same frequency.

It is natural to expect that in the case of destructive interference, amplitudes of these

standing waves are equal to zero. To illustrate a calculation of frequencies corresponding

to the constructive interference consider one example. Suppose that both ends of the bar

do not move, i.e.,

u(0,t)=0 and u(l,t) = 0, (1.118)

and the origin of coordinates coincides with one of the bar ends. As follows from eq.

1.116 at all times

0 = a sin u)t + c cos ut

Thus, a = c = 0. Correspondingly, eq. 1.116 is simplified and we have

u{x, t) — sin kx (bcosuit + dsinuit) (1.119)

The second boundary condition gives

sinfc/ = 0 or kl = — = nn. (1.120)

i.e.,

nn nn ci , .
kn=— or un = —Y1 (1.121)

Thus, boundary conditions are satisfied only if frequencies (wavenumbers) obey eq. 1.121.

In other words, constructive interference occurs when frequencies are related to the bar

length in a certain manner. Wave numbers kn are called eigenvalues, and the corre-

sponding solution un(x,t) is written as

un(x,t) =sinknx (bncosujnt + dnsinu)nt) (1.122)
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It represents a sum of two standing waves, which are shifted in time by vr/2. The latter

can be also written in the form

un(x,t) = An sin knxsin(cont + <p) (1.123)

where An and (pn are independent of both distance x and time t. The function

smknx is called the eigenfunction, and un(x,t) represents the normal mode. As follows

from eq. 1.123 there is an infinite number of normal modes, and therefore the resultant

wave inside the bar is a sum of normal modes:

u(x,t) = %sinfc n£ (bn cos LJ nt + dn sin unt) (1.124)
n=l

To determine unknown coefficients bn and dn we have to define the initial conditions:

u(x,0) = UQ(X) and —\--—- = VQ(X), (1.125)

which describe behavior of the displacement and its velocity at some instant t = 0.

Then, as follows from eq. 1.124,

OO 00

ua{x) — 2_\bn svnknx and VQ(X) — VJ o;ndn sin A;nx (1.126)
n=l n=l

Thus, the given functions UQ(X) and VQ(X) are represented as the Fourier's series and,

using the known formulas for its coefficients, both sets of amplitudes, bn and dn,

arc easily determined. The same approach is used in a general case, when the wave

propagates inside an elastic body of an arbitrary shape. This means that as before,

the oscillations of this body result from a superposition of normal modes, which arc

characterized by an infinite set of eigenvalues.

1.4 Hooke's law for shear stresses and torsional waves along a bar

In order to study propagation of waves caused by a bar twist, we first consider shear

stress and shear strain, as well as the relationship between them. Suppose that at some

instant t — 0, one face of a rectangular parallelepiped inside a medium is subjected to

the action of the tangential force Fy, Fig. 1.8a. Because of this force, a wave arises and

propagates toward the opposite face. Since the volume is very small, the wave reaches

the back face very quickly and the same force Fy acts on a medium behind the volume.

In accordance with Newton's third law, this medium acts on the back face with the force
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Figure 1.8: (a) Transmission of the shear force (b) Illustration of eqs. 1.128 (c) Stresses

inside elementary volume (d) Forces acting on the rectangular parallelepiped aibiCidi
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—Fy. In equilibrium, both forces Fy and — Fy have equal magnitudes but opposite

directions. Their resultant force is equal to zero, but they form the couple, which tries

to rotate the volume counterclockwise. Such motion causes a deformation of a medium

in the vicinity of the horizontal faces and, correspondingly, the tangential (shear) forces

Fx and -F,T appear, which act on these faces, Fig. 1.8a. Of course, in equilibrium

the total force and the resultant moment of all four forces are equal to zero. However,

before equilibrium occurred, motion of the elementary volume resulted in a change of its

shape. This means that the angle between intersecting faces varies, and instead of TT/2 it

becomes TT/2 — 7. First of all we assume that the elementary volume is cubical and that

forces are uniformly distributed over the cube's faces. Because of this, at equilibrium,

magnitudes of forces F^ and Fy are equal to each other. For simplicity it is also

supposed that the ^-component of forces is zero, Fz = 0. Now we introduce shear

stresses rxy and Tyx in the following way:

Fx= rxydS i and Fy = TyxdS j (1.127)

Here dS is the face area and i and j are unit vectors. Since the resultant moment is

equal to zero, we have

The notation r.y indicates that this stress characterizes the force component, directed

along the i-axis and applied to the face, which is normal to the j-axis (Appendix C). In

equilibrium, stress rxy has the same value at all four faces of the elementary volume.

Next we express the angle of distortion, 7, in terms of the displacement derivatives. As

is seen from Fig. 1.8b, after a deformation the angle between intersecting faces becomes

where a + 0 = 7. It is obvious that

t a n a = - or a — —- and t a n / ? = - or /? = —, (1.128)
x ox y ay

because a and 8 are very small. Thus

7 = ^ + ^ (1-129)
dy dx

Making use of notations for strain (Appendix D), we have

e*y = ey* = ] ^ + ^ = ^ (l-l30)
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Thus, strain exy is equal to the angle of distortion 7. In general, angles a and [3 are

different, and later we will study two special cases: a — (3 and (3 = 0. Taking into

account that deformations are very small, we have, as in the case of normal stress, the

linear relationship between shear strain and shear stresses

Tyx — M exy, (1.131)

where the coefficient of proportionality /i is called the modulus of rigidity. In a general

case, when distortion is also observed in planes XOZ and YOZ we have

Tn = /ieE, TyZ = fj,eyz (1.132)

where

du dw dv dw , .
exz = -7T- + ^-, eyz = — + — 1.133

oz ox oz ay
In essence, eqs. 1.131 and 1.132 represent Hooke's law for shear stresses and shear strains.

Earlier we pointed out that at equilibrium,

Txy = Tyx (1.134)

In the same manner we obtain

TXZ — TZX and ryz — rzy (1.135)

This clearly demonstrates that stress is a symmetrical tensor (Appendix C). Note that

forces applied to the volume faces are transmitted inside of the elementary volume. Their

distribution is shown in Fig. 1.8c.

In previous sections we considered deformation of an elementary volume due to an

action of normal stresses and found that equilibrium can be provided by only two forces,

applied to the opposite faces of the volume. As a result its shape does not change, and

the angle between intersecting faces remains equal to TT/2. In contrast, in the presence

of shear stresses, equilibrium takes place when there are shear stresses at all four faces,

Fig. 1.8a. In describing the longitudinal waves, we used two elastic parameters, Young

modulus E and Poisson's ratio a. Now we will show that the modulus of rigidity fj,

can be expressed in terms of E and a. In order to demonstrate this important fact,

consider two special cases, when either a — [3 or (3 — 0.

Case one: pure shear For simplicity we restrict ourselves to the two-dimensional

case when stress rxy is independent of the ^-coordinate. Suppose that a rectangular



46 CHAPTER 1. HOOKE'S LAW, POISSON'S RELATION AND WAVES...

parallelepiped abed is simultaneously subjected to the action of forces that produce

extension and compression along the y— and x-axes, respectively (Fig. 1.8d). As a

result, the angle between intersecting faces remains equal to ?r/2, but the length of sides

ab and be varies. As follows from Hooke's law and Poisson's relation, as well as from

the principle of superposition, we have for strains eyy and exx:

eyy = -jjr- —^r- and exx = — -g- (1.136)

Since we assume that TXX — — ryy, eq. 1.136 gives

_ l + o- ( 1 + a )

that is they differ by a sign only and are constant within abed. Next consider forces

acting on the rectangular parallelepiped a-J)iCid\ located inside abed, Fig. 1.8d. Since

this volume is at equilibrium, the resultant force, acting on each clement of volume, for

instance ob\C\, is equal to zero. Taking into account that the face obi is parallel to

ab, the stress at its points is equal to TXX, but at the face oc\ it coincides with ryy.

Correspondingly, forces applied to these faces are

Fx — — Txxob\\ and Fy — — ryyocij

because TXX < 0 and Tyy > 0. In order to provide equilibrium, the force acting on the

face biCi has to be equal to

F = Txxobxi + Tyyoctf or F = Tyy(j - Vjobi (1.138)

As is seen from Fig. 1.9a, the normal component Fn is equal to zero, but the tangential

component is

Ft = TyyV2obi

This means that the tangential strain rt is equal to

rt = A = TyyV2fl = Tyy ( 1 . 1 3 9 )

It is clear that there is only shear strain at all faces of volume aibiCidi (its exten-

sion along the z-axis is implied). In essence, we applied Cauchy's formula of stress

transformation for this simple case.

Because of an expansion along the y-axis and shortening along the x-axis, the

parallelepiped aibiCidi is deformed into a rhombus, Fig. 1.9b, and the angle between
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Figure 1.9: (a) Normal and tangential forces applied to face b-ic-i (b) Deformation into

rhombus (c) Illustration of eq. 1.145

intersecting faces slightly changes. The remarkable feature of this deformation is the fact

that an orientation of diagonals ciiCi and b\di does not change, i.e., a — (3 — 7/2.

Such a deformation is called pure shear, and it may occur for different types of waves.

As follows from cqs. 1.137

d i v s = exx+ eyy = 0, (1.140)

since ezz = 0, and therefore volume does not change. In accordance with eqs. 1.128

we see that

curl, 8 = ^ - ^ = 0, (1.141)
dx dy

and rotation is absent.

Now we find a relationship between the shearing strain exy, i.e., the angle 7, and

the stress r4 (Tyy). After deformation (Fig. 1.9b) we have

°4 - '< - ?) - \T^ d-142)
ob\ 4 2 ' l + e 9 9

Note that for small 7

t a n r - -1)= t a n 7 r / 4 ~ t a n 7 / 2 _ 1 - 7/2 _ _
a l lM 2'~ 1 + tanTT/4tan7/2 ~ 1 + 7/2 ~ 7 '
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eq. 1.142 becomes

1 " 7 = T — — = 1 " 2eyy,
1 -|- tyy

since exx = — eyy (eq. 1.137), and e w < 1. Thus

7 = 2ew (1.143)

Substitution of eq. 1.143 into eq. 1.137 yields

2(1 +CT) 2 ( 1 + CT)
7 = ^ r t or exy = Txy

i.e., the modulus of rigidity fi is equal to

"=2(1^)' ( L 1 4 4 )

and we expressed [i in terms of the Young modulus and Poisson's ratio.

Case two: simple shear Now we study deformation that accompanies propagation

of shear waves, as is shown in Fig. 1.9c. In this case, face d\C\ does not move and the

distortion angle 7 coincides with a. As before, it is assumed that forces producing

a deformation, are parallel to diagonals in their vicinity, and they cause either their

extension or shortening. For instance, as follows from Hooke's law (eq. 1.137), the

relative change of diagonal D Fig. 1.9c, is

At the same time from the triangle aid\a\ we have

S
tan 7 = ——

aidi

Also

didi — Dcos — and 5 — a\a\ — -r-

4 COS7T/4

Since 7 is small, eq. 1.145 gives

AD 2(l + a)

which gives again the known expression of /i. It is clear that deformation does not

change volume, and, correspondingly:

div s =0
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The distortion angle 7 characterizes the rate of change of the displacement component
u with respect to y:

du
dy

while dv/dx = 0 and w = 0. We conclude that curl s ^ 0. This suggests that simple
shear is a combination of pure shear and rotation (Appendix D). From the geometric
point of view, this is illustrated by the change of an orientation of the volume diagonals.
Next we apply our knowledge of Hooke's law for normal and shear stresses to one special
case, which will allow us to understand some features of shear waves.

Torsion of a circular bar with a constant cross-section

Suppose that one end of the bar is fixed, while the shear forces T are applied to the
free end and their action is equivalent to that of a pair of forces with the moment M
(directed along the z-axis), Fig. 1.10a,b. It causes a deformation (twist) of the bar, and
shear stresses arise. The solution of this problem was given by Coulomb at the end of
the eighteenth century and is based on two assumptions:

1. The twist does not change the distance between cross-sections, i.e., displacement
along the bar axis is absent.

2. After deformation, cross-sections remain planar and the radii drawn in these planes
do not bend.

Taking into account these assumptions, we investigate the distribution of the dis-
placement at each cross-section and demonstrate that this field s satisfies the following
conditions: (a) Particles do not move at the fixed end. (b) External forces are absent
on the lateral surface of the bar (c) At the free end, the distribution of stresses is such
that their action is equivalent to the given moment M. In order to solve this problem
it is convenient to first represent the bar as a system of thin coaxial cjdindrical shells of
thickness Ar and find stresses and strains for each shell, Fig. 1.10c.

Consider the elementary volume of a shell that has extension Az and thickness
Ar, Fig. 1.10c. Due to deformation, points of lines ab and ai&i or cd and C\di
remain in the same planes. At the same time, distance did exceeds distance aia.
Correspondingly, the angle between faces ab and aidi becomes equal to TT/2 —7. It is
essential that the twist of all cross-sections of the bar is characterized by the same angle
7. This deformation gives rise to shear forces acting on four faces of the volume, Fig.
l.lOd. However, they are absent on the external and internal lateral faces of the shell
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Figure 1.10: (a,b) Shear stress and moment applied to cylindrical bar (c) Deformation
of the elementary shell of the bar (d) Illustration of eq. 1.160

element. In accordance with eq. 1.132 we have for shear stress

T = / i7 ; (1.146)

where r describes the force tangential to the cross-section of the bar. Now we relate
the shear stress r to the angular displacement <p. As is seen from Fig. 1.10c, we have:

rip np

t a n 7 = — or 7 = — , (1.147)

since 7 is small. Here z is the distance between a cross-section and the fixed end,
(z = 0). In particular, at the free end

7 = ^ (1.148)

Substitution of eq. 1.147 into eq. 1.146 gives the relationship between the stress T and
the angle ip:

T = n-<p (1.149)
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Thus, at equilibrium the shear stress T is directly proportional to the angle ip and the
radius r of the shell, and inversely proportional to the distance between a cross-section
S(z) and the fixed end of the bar. Since at n equilibrium r =const, we conclude that
the angle ip is directly proportional to z and, in particular, it linearly decreases in
approaching the origin, (z = 0). As follows from eq. 1.149 the shear stress r varies
at points of a cross-section and disappears at the bar axis, (r = 0). This is an example
of an inhomogeneous deformation along r. It is instructive to compare eq. 1.149 with
Hooke's law describing a longitudinal displacement w{z):

rzz = EW^ = E^ (1.150)
z dz

Certainly there is a similarity between them, and a displacement along the arc rip(z)
plays the same role as w(z). Note that in both cases the displacements, w(z) or np,
are directly proportional to distance z. Now we will represent eq. 1.149 in a different
form. Consider two cross-sections of the bar, located at distances z and z + dz from
the fixed end. Since

y{L) _ f{z) _ ip(z + dz)
L z z + dz

we have

z<p{z) + dz ip(z) = z<p(z + dz)

Applying the Taylor expansion and neglecting higher-order terms, we obtain

zcp(z) + ip(z)dz w z<p(z) + Zip'(z)dz

or

Correspondingly, eq. 1.149 becomes

T = tirTz (L151)

or

r = ^ (1.152)

The analogy with Hooke's law for normal stress, cq. 1.150, is obvious. As follows from
eq. 1.151, at the state of equilibrium the derivative dip/dz is a constant along the
cylindrical shell.
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Displacement s and stresses in a solid bar

Now we will show that under certain conditions an approximate theory given by Coulomb

represents the exact solution. Let us consider a displacement field s and stresses inside

the solid bar. As is seen in Fig. 1.10b, at any cross-section the (^-component of the field

s is

ip dip
s ^ = r<p or sv = r-z = -~-rz, (1.153)

and it is directly proportional to radius r and distance z from the fixed end,

(dtp/dz =const). Respectively, at the Cartesian system of coordinates we have

d(p y d<p dip x dip
u = -^-zr{— = ~^-yz and v = ^-zr- = -^-xz, 1.154

dz r dz dz r dz

while w — 0. Here

s = u i + v j

By definition

&xx &yy &zz U

and dilatation is equal to zero. As we know, this means that deformation does not cause

a change in volume. At the same time, shear strains in this plane, (z =const), are

du dip dv d<p
— = —^-z and — = —z 1.155
dy dz dx dz

Therefore

curl, s = 2—z, (1.156)

and an elementary volume experiences rotation about the z-axis. As follows from Fig.

1.10b and eqs. 1.154

Txz - - ^ y , ryz = ^ x (1.157)

In order to find other components of the stress tensor, we make use of the principle of

superposition, as well as Hooke's law and Poisson's relation. This gives

TXX a a Tyy o a TZZ a a
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Since exx = eyy = ezz = 0, the system has only zero solution:

Txx = Tyy = T22 = 0, (1.158)

that is, normal stresses are equal to zero. Taking into account also the relationships

between shear stresses and strains, we have

du dv
J dy dx

,dv dw. dip
T" = ll{¥z + ̂ ) = V

Thus, at equilibrium all three normal components of stress are zero, and there are only

two components of shear stresses. They describe forces acting on an elementary area

normal to the bar axis. Note that the stress components TXZ and ryz were obtained

in two ways. In order to determine stresses on the lateral surface of the bar, consider an

elementary volume near this surface. From the condition of equilibrium (Appendix C),

we obtain

rxr = rxxl + Txym + Txzn,

Tyr = TyJ + Tyym + TyzTl, (1.160)

rzr = rzxl + Tzym + Tzzn

Here

/ = —, m = '—, n = 0
r r

Thus

Txr = Tyr = Tzr = 0, (1.161)

and the solution given by eqs. 1.154 satisfies the boundary condition at the lateral

surface, if it is not subjected to an action of external forces. It is also clear that the field

s obeys the boundary condition at the bar end, since s(0) = 0. Now we focus on the
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free end, z = L, and determine the external forces acting on this cross-section, which

create the displacement field s, given by eqs. 1.154. Directional cosines of the plane are

/ = 0, m = 0, n = 1

Substitution of eqs. 1.158 and 159 into set 1.160, which also describes stresses at any

cross-section of the bar, gives

TXz = -p-Q-V, Tyz = lI~g~X' r « = ° (1.162)

Therefore, on the free end there are only shear stresses, and they are distributed in the

same manner as in any other cross-section of the bar. Next it is useful to find the sum

of forces acting on a bar cross-section. Performing an integration, we have

/ TxzdS = — ji— I y dxdy = 0

s s

and

/' d(p f
/ TyzdS = M̂ — / x dxdy = 0 ,

s s

since across the surface S x and y are odd functions. At the same time, the z-

component of the resultant moment differs from zero, and it is defined as

Mz = M r x T)z dS

s

or

Mz = J(xryz - yrxz)dS = ^ j{x2 + y2)dS = M | | / r2dxdy (1.163)
5 5 's

Thus, an action of tangential forces uniformly distributed over the cross-section, in par-

ticular on the free end, is equivalent to the torque M, which has only the component

Mz:

Mz = fi^I0 (1.164)
oz

Here

7 0 = Ir2dS (1.165)
s
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is called the polar moment of inertia of the cross-section. Since dS = 2nrdr, eq. 1.165

becomes

a

I0 = 2n fr3dr = ^ - (1.166)

o

and

dtp ira4 -Ka^ip{L)
M^llTz^T = ̂ — (L167)

The coefficient of proportionality between the resultant moment and the torsional angle

is called torsional stiffness. It is directly proportional to the fourth power of the bar

radius a and inversely proportional to the distance from the fixed end. Note that in

the case of a thin cylindrical shell, we have

Io = 27rr3Ar

Thus, we have demonstrated that Coulomb's theory correctly describes the displacement

field s and stresses at an equilibrium, when shear stresses produce the moment at the

free end and external forces are not applied to the lateral surface.

1.5 Torsional waves

Until now we have considered the bar in equilibrium, when the resultant moment Mz

(eqs. 1.167)

7TO1 dip
Mz = M^r^~2 oz

is the same in all cross-sections. Next, suppose that at some instant t = 0, shear forces

are applied to the free end, z = L. Because of deformation (twisting), the wave starts

to propagate along the bar, and moment Mz becomes a function of time and a position

of the cross-section z. At the same time, particles of the bar move along arcs with the

radius r (0 < r < a), in a direction perpendicular to the z-axis. Let us derive an

equation of motion of an elementary volume of the bar, bounded by its lateral surface

and cross-sections S(z) and S(z + dz), where z is the distance from the fixed end.
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As we know, wave propagation is accompanied by an appearance of shear forces. They

create moment Mz(z + dz) at the face S(z + dz), as well as moment Mz(z), acting

on the portion of the bar, located in front of the elementary volume. In accordance with

Newton's third law, the moment applied to the face S(z) is

M = -Mz(z)

Thus, the resultant moment, producing torsion of the volume, is equal to

Mz(z + dz) -Mz(z) =M

Taking into account that dz is small and Mz is a continuous function, we have

M = d-^dz (1.169)

Earlier we demonstrated that motion of an elementary volume can be represented as a

superposition of a pure shear and rotation as a rigid body. In accordance with Newton's

second law, such motion (rotation) is described by the equation (Appendix A):

M = I% (L17°)
where / is the moment of inertia of the cylindrical element with the length dz, and

d2ip/dt2 is angular acceleration. Since the polar moment of inertia IQ, eq. 1.166,

characterizes the moment of inertia of the cylindrical bar with unit density p — 1kg/m?

and length dz = 1 m, it is easy to find / . In fact, applying the principle of superposition,

we obtain

I=^pdz (1.171)

Thus, as in the case of the longitudinal waves, we proceed from Hooke's and Newton's

second law, applied to the elementary volume. Substitution of cq. 1.169 and cq. 1.171

into eq. 1.170 gives

dMz _ na4 d2tp

~dz~~^rPW
Finally, making use of eq. 1.164, we have

d2ip 82<p d2ip 1 d2ip ,
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Here

C = ^ (1.173)

is the velocity of propagation of torsional (shear) waves. It is clear that cq. 1.173 is

the wave equation, which is similar to that for longitudinal waves. However, waves

satisfying these equations differ from one another by direction of particle motion, type

of deformation, and velocity of propagation. As follows from eq. 1.144, we have

cs = W^T——r~ , while c, = W—,
y 2(1 + o)P y P

whence

c.s- = , / c, (1.174)
v/2(l + <r)

Since Poisson's ratio varies within the range

we always have

cs < ch (1.175)

that is, shear waves propagate more slowly than longitudinal waves. In particular, when

a= 1/2,

c, « 0.6Q (1.176)

Comparison of these waves shows that the modulus of rigidity \i plays the same role for

shear waves as the Young modulus E plays for longitudinal waves, whereas the angular

displacement tp is an analogy of the displacement w along the bar. Note that eq. 1.173

correctly describes the velocity of shear waves in any elastic medium. At the same time,

the expression

V P
is valid for longitudinal waves traveling along the bar, when the lateral surface is not

subjected to action by external forces.
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Boundary conditions

Suppose that the bar consists of two homogeneous portions with different parameters \i

and p. Since the wave equation cannot be applied to the interface, we replace eq. 1.172

with boundary conditions. First of all, angles ip1 and <p2 at both sides of the boundary

have to be equal to each other; otherwise the bar would be broken. Thus, we have

tPi(z) = ^ 2 0 ) (1.177)

Consider an elementary volume bounded by cross-sections S(z+Az/2) and S(z — Az/2),

which are located at opposite sides of the interface. The resultant moment

Mz(z + ^)-Mz(z-^),

acting on an infinitely thin cylinder (Az —> 0 and / —> 0), has to be equal to zero. If it

had a nonzero value, angular acceleration would be infinitely large, which is impossible.

Correspondingly, the second boundary condition is

Mlz(z) = M2z{z) (1.178)

It is easy to show that wave equations and boundary conditions for longitudinal and shear

waves are similar. Boundary problems for these waves become identical if we change the

notations in the following way

if —> w a n d /J, —> E

This allows us to use results obtained for longitudinal waves in the previous sections and

represent angle ip as

<p(z, t) = Af [a(z + cst)} + Bg[a(z - c,t)] (1.179)

Also in studying reflection and transmission of shear waves, we can use the same coeffi-

cients as in the case of longitudinal waves, provided that the impedance is equal to

Zs = csp = p. - = y/jlp (1.180)
V P

Bearing in mind the analogy with longitudinal waves and the fact that the incident wave

arises at point z = L, we can represent this wave and a reflected wave in the form

<p{z, t) = <pof [a(z + c,t)] + ^ " f W M * - c^)l (L 1 8 1)
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This shows that when the incident wave travels along the part of bar with impedance

Z\ and Z2 > Z\, the reflected wave at the boundary causes a rotation of the bar in the

opposite direction. In particular, at the fixed end the angular displacements due to both

waves are equal by a magnitude but have opposite signs. At the same time, the resultant

moment becomes twice as large. If the second medium has smaller impedance, Z2 < Z\,

both waves at the boundary cause a twist in the same direction. In the limiting case of

the free end (Z2 = 0), the angles, due to the incident and reflected waves, are equal to

each other

while the resultant moment at the free boundary vanishes.

Let us also notice that frequencies of normal modes arising in the bar, having cither

free or fixed ends or a combination of them, are defined from the same expressions as in

the case of longitudinal waves. Before we consider an example, it is useful to write down

relationships between the angular and wave velocities, as well as the moment Mz. As

follows from eq. 1.179, in the case of the incident wave we have

<p{z,t) = ipof[a(z + cst)], ^(z,t)=alfQf'[a(z + cst)}, (1.182)
oz

wo(z, t) = ^ ^ = <p0 cs a f'[a(z + cst)}, Mz{z, t) = M /„ a <p0 f '[a(z + c,t)]

Therefore

a. = M^A = %L ( 1 . 1 8 3 )
cs /Oyu dz

and the expression for the reflected wave differs by a sign only. Certainly, there is a

similarity with the analogous relationships for longitudinal waves.

Example: wave propagation and Hooke's law for torsion Suppose that at the

instant t — 0, the constant moment Mz is applied to the free end of the bar, (z — L),

while the opposite end, (z = 0), is fixed. As follows from eqs. 1.183, the free end starts

to rotate with constant velocity COQ and the wave propagates along the bar. At the

instant t — L/cs, the reflected wave arises at the fixed end and twists the bar in the

opposite direction. Correspondingly, behind the wave front a deformation disappears.

At the moment t = 2L/cs, the angular displacement of the free end is equal to

V{L)=LU0 — , (1.184)
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and the whole bar is not deformed. At this instant, the reflected wave arises and decreases

the angle ip. Because of this, wave the bar again experiences deformation. When the

wave reaches the fixed end, it gives rise to the reflected wave with rotation in the opposite

direction. Therefore, behind the wave front deformation again vanishes and at the instant

t = 4L/cs the whole bar is not deformed, and the angular displacement at the free end

is equal to zero. In other words, this end returns to the original position. When the

reflected wave arises, we observe the same motion as at the beginning, (t = 0). Thus

the function describing the behavior of the angle <p(L, t) is periodic, and it coincides

with the function shown in Fig. 1.4d. Expanding tp(L,t) in Fourier's series, we see that

the constant part is equal to

T/2 T/2

bo 1 4 f 2 f u>0T cv0L

o o

Because of attenuation of sinusoidal harmonics, the angle ip tends to be a constant

corresponding to an equilibrium:

ip0 = or — = — = — (1.185)
cs cs L az

that coincides with cq. 1.183. Note that variations of the angle tp(L,t) take place within

the range

2LOnL
0 < <p< —!L-

cs

and due to attenuation, with time ip gradually approaches to the average value tp0.

1.6 Bending of a bar at equilibrium and bending waves

Until now we have studied two relatively simple types of waves, namely longitudinal

and torsional waves. Each is characterized by one kind of motion and deformation.

Next we discuss bending waves, where elastic deformation is more complex and wave

propagation changes an elementary volume as well as its rotation. Note that similar

behavior characterizes Rayleigh and Stoneley waves. We will limit ourselves to a one-

dimensional case related to the seismic responses of some constructions, i.e., dams, during

strong earthquakes. It is also worthwhile to mention that the bending waves may also

propagate along elastic plates, for example, ice sheets. As before, in order to derive an

equation describing the bending waves, we have to establish the relationship between

deformation and internal forces at equilibrium.
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Figure 1.11: (a,b) Horizontal beams (c,d,e) Compression and tension of different portions

of deformed beam (f) Deformation due to two moments M and —M

As in the case of torsion, Coulomb was the first to suggest an approximate theory

of bending. Under certain boundary conditions, this theory correctly describes the dis-

tribution of stress and strain inside thin bar (beam). Let us imagine a horizontal beam

that is either supported at two ends or at one end, as is shown in Fig. l.lla,b. We

will neglect the effect of its weight. When vertically oriented force is applied, the bar

becomes deformed, Fig. l.llc,d,e. It is essential that there is always a line (surface)

whose length remains unchanged; it is called the neutral line. Because of deformation,

the bar portion located above this line, Fig. 1.11c, is shortened and in a state of a com-

pression (C). At the same time, below the neutral line we observe a stretching of lines

that are parallel to the bar axis, and correspondingly, tension (T) takes place. If the

external force is directed upward, Fig. 1.1 Id, tension and compression occur above and

beneath the neutral line, respectively. The same picture is observed in the case of the

cantilever, Fig. l.lle. Longitudinal stress is equal to zero at points on the neutral line

and it increases with increased distance from this line. In order to describe qualitatively

a distribution of stresses at equilibrium, let us mentally draw a cross-section S(z) of the
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bar at some point z, Fig. l . lle. As an example, consider the right portion of the bar,

subjected to the force F, directed downward. Since this beam element is at equilibrium,

the resultant force must be equal to zero. Correspondingly, the left portion of the bar

causes the shear force —F, which is applied to the face S(z) and

EF=°
Besides, the external force F causes deformation, and therefore normal stresses arise.

They have different signs above and beneath the neutral line. As a result, internal forces

associated with these stresses form the moment, which is trying to rotate the beam

counterclockwise. This moment compensates an action of the moment due to external

force F, which has an opposite direction. Thus, the resultant moment is also equal to

zero:

]TM=O

There is one important case, when the internal shear force F is absent. This occurs

if bending is caused by two moments applied to the bar ends, Fig. 1.1 If. In other

words, equilibrium takes place when only normal stresses exist. This case was studied

by Coulomb.

Coulomb's theory of pure bending

As was pointed out, we assume that bending of a thin beam arises due to moments

applied to its ends, and after deformation cross-sections remain plane. Also it is implied

that the radius of the curvature is the same for all points of the beam, Fig. 1.12a,

R = const (1.186)

By definition, the normal stress TZZ is equal to

rzz{x) = E ^ ^ (1.187)

It is positive above the neutral line and has an opposite sign below. Here z is the

original length of an elementary volume and Az(x) is its change, which varies over the

cross-section. Thus, we have one more example of an inhomogeneous strain. It is easy

to relate TZZ to the radius of curvature R. In fact as is seen from Fig. 1.12b:

z z + Az Az x , ,

R = H^ °r -=R> (L188)
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Figure 1.12: (a) Bending bar with constant radius of curvature (b) Illustration of eq.
1.188 (c) External force F£ applied to free end of beam (d) Illustration of eq. 1.199
(e) Replacement of force F£ (I) by a couple and shear force
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and both strain and stress linearly change with increased distance from the neutral line.

Thus, in accordance with eq. 1.187 we have

-r FT

ezz=x and rzz = — (1.189)

Correspondingly, the z-component of the force associated with this stress and acting on

the element dS of a cross-section is equal to

Ex
dFz{x) = —dS (1.190)

R

These forces are continuously distributed over area S, and they have opposite directions

above and beneath the neutral line. It is clear that each force dFz{x) forms the moment

with respect to this line:

dMy = x dFz,

and in order to find the resultant moment we have to perform an integration, which gives

My = I x dFz

s

Making use of eq. 1.190, we obtain

My = — x2dS (1.191)

5

The integral describes the polar moment of inertia / :

/ = f x2dS (1.192)

s

Thus, we express the torque caused by forces dFz in terms of the radius of curvature

and the polar moment of inertia

My=
El or R = ̂  (1.193)

It is obvious that with an increase of R, bending decreases, and correspondingly the

moment My decreases. As follows from eqs. 1.193 and assuming that the moment My

is given, we see that with an increase of the product El, the radius R increases too.

This means that El plays the role of "the bending stiffness", since with its increase

the bending lessens. For instance, if more masses are placed away from the neutral line,
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the beam is able to sustain the moment of greater value. As is well known from calculus

(Part I), the curvature 1/R can be approximately represented as

provided that bending is sufficiently small. Substitution of eq. f .194 into eq. 1.193 yields

My = E I ^ - (1.195)

Here x{z) is the displacement of the neutral line with respect to its original position.

As follows from eq. 1.186, at all points of the beam

— V = const (1.196)
dzz

Consider an elementary volume, bounded by the lateral surface of the beam and its cross-

section S(z) and S(z + Az). In accordance with Newton's third law, moments applied

to these faces have opposite directions but the same magnitude, eq. 1.193:

Mv(z) + My(z + Az) = 0 (1.197)

Therefore, they provide equilibrium at each element of the bar, and the shear force Fx

is absent:

¥x = {) (1.198)

Equilibrium of a cantilever

For comparison, it is useful to consider a more complicated case which is important for

deriving the wave equation. Suppose that force Fx is applied to the free end of a

cantilever, Fig. 1.12c. Note that the word "cantilever" describes a beam supported in

such a way that both the position and a slope are fixed at one end. As usual, it is assumed

that the length of the beam L is much greater than its cross-section dimensions. Unlike

the previous case, the radius of curvature R varies along the bar and, correspondingly,

the moment My becomes a function of z. Our goal is to demonstrate the presence of

shear force Fx and also to find the function x(z) when the beam is at equilibrium. Under

action of the external force Fx the beam experiences a deformation and, respectively,

normal stresses arise at each cross-section and they depend on the coordinate z. For

this reason, the resultant moment My also changes along the bar axis. Therefore, in
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order to provide equilibrium of an elementary volume, Fig. 1.12d, we have to assume the

presence of shear force Fx. Otherwise, the resultant moment about the y-axis would

not be equal to zero and equilibrium would not take place. As is seen from Fig. 1.12d,

the condition of equilibrium for the moments is

My{z + Az) - My{z) + FxAz = 0 or ^ A z + FxAz = 0 (1.199)
OZ

that is,

x{ ' dz

In deriving the latter we discarded the term, proportional to (Az)2, since force Fx(z +

Az) ~ Fx(z) + AzF'x{z). As follows from eq. 1.199 the shear force, acting on the cross-

section, is defined by the rate of change of the moment My. Earlier derived eqs. 1.193

and 1.195 for the resultant moment My, caused by internal forces, remain valid for any

external forces applied to the free end. For instance, taking into account eqs. 1.195 and

1.199 we have

Fx = - E I 9 ^ , (1.200)

provided that /=const.

Before we continue, let us demonstrate that the shear force Fx(z) does not change

along the beam. To do this we mentally apply forces F£(z) and — F£(z) at any point

p of the bar, Fig. 1.12e. Certainly, this new system of forces is equivalent to the original

one, i.e., the force F£ is at the free end. These three forces can be treated as the couple

of forces FX(L) and — Fx(z) and the shear force Fx(z) acting at point p. The

moment of the couple is directly proportional to the distance between point p and the

free end, whereas the shear force Fx remains constant. In order to provide equilibrium,

a deformation has to produce the couple and the single force with the same behavior as

the external force. Thus,

Fx = const.

Next, as illustration, we define function x(z). Consider a cross-section S(z). which

can be treated as the face of the right portion of the beam. In order to provide its

equilibrium, the normal stress TZZ at this face has to create the moment My about the

line x = 0 and z =const with the same magnitude as the moment due to the external

force Fx, but acting in the opposite direction::

My = FX(L - z) (1.201)
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Thus, making use of eq. 1.195, we obtain

FX(L -z) = EI^ (1.202)

Its integration by z gives

FXL z-Fx- = El— + d
2 dz

At the fixed end of the beam we assume that

x{0) = 0 and ^ - ^ = 0 (1.203)

The second boundary condition yields:

FxLz-F*=El£
2 dz

Integrating again, we have

FXLJ-FXJ = EIX(Z)+C2

The first equality of set 1.203 gives C^ = 0 and

It is useful to notice that displacement of the free end, z = L, is

x(L) = | j y , (1.205)

and it increases as a cube of the distance from the fixed end.

Stress and displacement fields for pure bending

As we know equilibrium takes place after attenuation of waves and, correspondingly,
distribution of displacements, stresses and strains at this second stage preserves some
important features of these fields, which are carried by bending waves. Now we describe
Coulomb's solution in detail and also investigate displacement of bar particles. Consider
the beam with the rectangular cross-section and, as before, assume that the origin of the
Cartesian system of coordinates is located at the neutral line at the middle of the beam.
The z-axis is oriented along the beam, the rc-axis is directed downward and the y-axis



68 CHAPTER 1. HOOKE'S LAW, POISSON'S RELATION AND WAVES...

is perpendicular to the plane XOZ. We restrict ourselves to the case of pure bending,

when both ends of the beam are subjected to an action of the force couples with moments

My and - My

They have the same magnitude but opposite directions. Coulomb assumed that stresses

arising due to the bending are

Ex
Txx = Tyy = Txy = Tyz = Txz = 0, Tzz = — , (1.206)

-ft

where E is the Young modulus.

After a deformation, the z—line is transformed into a circle with radius R. In

other words, R is constant at all points of the beam, and it represents its radius of

curvature. Thus, as follows from Coulomb's solution, there is only one component of

stress TZZ, and it is the normal stress at elementary areas perpendicular to the beam

axis. This stress is directly proportional to distance x. Our purpose is to formulate

conditions under which Coulomb's approximation becomes an exact solution. Since TZZ

is independent of z, it is clear that stresses given by eqs. 1.206 provide equilibrium of

an elementary volume, if volume forces are absent.

Next, consider stresses at the lateral surface of the beam, which is formed by four

plane strips. Letting v be the unit vector normal to the lateral surface and making

use of Cauchy's formulas (Appendix C), we have

ecu — ^c^c ' scii ' oc z

Tyv = rxyl + Tyym+ Tyzn (1.207)

TZV = rxzl + Tyzm + Tzzn

Since the normal to the lateral surface, v, is perpendicular to the z-axis, (n = 0), we

obtain

Txv = Tyv =Tzv = 0 (1.208)

Thus, the solution given by cqs. 1.206 obeys the boundary conditions at the lateral

surface, if the external forces are absent at its points. Cross-sections of free ends are

parallel to the plane XOY and, correspondingly, directional cosines are

/ = m = 0, n = 1 (1.209)
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Substitution of eqs. 1.206 and 1.209 into set 1.207 yields

TXV = TVV = Q and Tzz = ±— (1.210)

tt

Therefore, Coulomb's formulas satisfy the boundary condition at the free ends, if external

forces have only the normal component, Fz, which is distributed over these ends in

accordance with eq. 1.206. As was shown previously the normal stress TZZ produces an

extension above the neutral line but a compression beneath it. Respectively, the resultant

force, acting on a cross-section of the beam, vanishes, but the total moment My differs

from zero. In fact, we have

f E f
/ Tzzdxdy = — / xdxdy = 0,

# J

s s

but the scalar component of the moment is

/
Ft FT

rzzxdxdy — — I x2dxdy or My — ——
1 L J It

s s
and it was derived above.
The displacement field

Now we begin to study the behavior of the function s:

s = u\ + vj + tyk,

which characterizes displacement of beam particles. Proceeding from Hooke's law:

e-xx = ~^[TXX - O (Tyy +TZZ)\

eVV = ^[Tyy-(r(rxx+Tzz)}

ezz = ^[rzz-a{Txx + ryy)} (1.211)

_ 1 _ 1 _ 1
exy — ~Txyi e x z — Txzi &yz — ~Tyz

jl jl fl
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and making use of eqs. 1.206, we obtain

CJ T T T*

exx = eyy = ~-gTzz = -a-, ezz = - ^ = - , e ^ = exz = eyz = 0 (1.212)

Therefore, according to the definition of strains:

du_dv___ax_ dw__x_ , ,
dx~ dy~ R7 dz~ R [ >

ay ax az ox oz ay

The set of eqs. 1.213-1.215 permits us to determine all three components of the displace-

ment s. First, integrating the second equation of set 1.213, we have

w = X^+ojo{x,y), (1.215)

where uio(x,y) is an arbitrary function of x and y. Substitution of the latter into the

last two equations of set 1.214 gives:

dz dx R dx dz dy dy

Their integration yields

u = -— - z~g-~ + uo(x, y) and v = -z—- + vo(x, y) (1.217)

Here uo(x,y) and vo(x,y) arc arbitrary functions of x and y. In order to find these

unknown functions, we substitute eqs. 1.217 into eq. 1.213, and it gives

d'2uj0 , du0 ax d2uj0 dv0 ax
-Z^-T + ̂ T = —W a n d ~z^T + ^~ = —n (1-218

ox2 ox R oy2 dy R

These equations are valid for any z, and this fact allows us to greatly simplify them.

Correspondingly, in place of this set we have:

and

duo___ax_ dvo___ax_ ,, w m

dx ~ R ' dy ~ R ( '
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An integration of eqs. 1.220 yields

uo = ~ + f\(y) vo = -^+Mx), (1.221)

where }\{y) and /^(a;) are arbitrary functions and each of them depends on a single
argument. Next we establish a relationship among functions f\{y) , f2{x), and wo(x,y).
Substitution of eqs. 1.217 and 1.221 into the first equation of set 1.214 gives

2z - — - — + — - 0
dxdy dy dx R

Since the latter is valid for any z, it can be replaced by the set:

f ^ = 0 and ^ l M + ^ M _ ^ = 0 (1.222)
ax ay ay ax n

From eqs. 1.219 and 1.222, it follows that the function Wo(x7y) is linear with respect
to x and y, i.e.,

wo{x, y) = Ax + By + C, (1.223)

where A, B, and C are constants. At the same time, from eq. 1.222 we have:

dy R dx v '

because functions at the left and right sides depend on different arguments. Integration
of the last equality gives

2

f2{x) = -Dx + Dl and fi(y)^^- + Dy + D2 (1.225)
ZR

Here D, £>i, and £>2 are constants. Substitution of eqs. 1.224 and 1.225 into eqs. 1.215
and 1.217 and the use of eq. 1.221 give

u = -£:-a?^f--Az + Dy + D2, (1.226)

v = -—-Bz-Dx + Dh w = — + Ax + By + C,

which contain six unknowns: A, B,C,D, Di, and Z?2- In order to determine them, we

make use of the fact that the origin of coordinates is at the middle of the beam. Because

of symmetry, the cross-section z = 0 does not move during bending, i.e.,

w = 0 for z = 0 (1.227)
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This gives

A = B = C = 0 (1.228)

Also due symmetry at the origin 0, (x = y = z = 0), we have

u — v — w = 0

Therefore

Dl=D2 = Q (1.229)

Finally, consider a linear element of the bar, oriented along the y-axis and passing

through the origin. After deformation, it preserves its orientation. This behavior can

described as

- ^ = 0 if x=y=z=§
ay

Correspondingly, the first equation of set 1.226 gives

D = 0 (1.230)

Thus, expressions for the displacement components are

u = - ^ + a(^-y% v = -°f, w = ̂  (1.231)

For instance, points of the neutral line, (x = y = 0), experience displacement

z2

« = - - , « = «, = 0,

that is, the straight line is transformed into a parabola. Also consider a cross-section of

the beam, z = ZQ. After deformation, its points are situated at the surface:

x
z = zo + w = zo(l + —)

H

The latter also describes the plane; that is, due to pure bending, cross-sections remain

plane. As follows from eqs. 1.231, the displacement component along the 2>axis is

directed toward the neutral line and it is proportional to the square of coordinates. It is

interesting to note that the (/-component, v, is independent of the coordinate z, and

its magnitude linearly increases with an increase of x and y, but the sign is defined
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by that of these coordinates. Component w has similar behavior, but it is a function of
x and z. In accordance with eq. 1.213, the divergence of the field s is

dW.-fi^-fi^U,.. (,.232)

and it is independent of coordinates y and z. Thus, bending is accompanied by a
change of elementary volumes, and the normal stress TZZ can be treated as the source
of the field s. Now consider the second important characteristic of the vector field,
namely, curl s:

dw dv du dw dv du
curlxs = - —, curias = - — , curlzs = - —

dy az dz ox ox dy

The use of eq. 1.231 gives

2z 2oy
curlxs =0, curias = —— curl2s = —— (1.233)

This means that bending also causes rotation of an elementary volume as a rigid body.
For this reason, we may say that bending waves differ from both longitudinal and torsional
waves.

Bending waves

Until now we have assumed that a bar is at equilibrium. Next, suppose that
either the force F^ or the moment My, or both, are applied at some place on the
bar, for example, at its ends. Due to deformation, internal forces arise and the bending
waves start to propagate. Unlike longitudinal and torsional (shear) waves, bending waves
carry more complicated motion of elementary volumes that includes both translation and
rotation. At the same time, its motion along the bar axis is absent.

To derive an equation describing bending waves, consider an clement of the bar with
an extension Az, Fig. 1.13. Suppose that the wave propagates along the z-axis toward
large values of z. When it reaches the back face of the element, S(z), this surface
becomes subjected to an action of the moment My (z) and the shear force Fx(z).
Inasmuch as the volume length, Az, is extremely small, the wave almost instantly
reaches the opposite face and acts on a medium located in front of this element. Its
action is characterized by the same direction of the moment and the shear force as at the
back face. Then, in accordance with the Newton's third law, the front face of the volume
element is subjected to the moment and the force, which have opposite directions. Thus,
the resultant force and the resultant moment applied to the bar element are
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Figure 1.13: Forces and moments acting on an elementary volume

Fx = Fx(z + Az) - Fx(z) (1.234)

and

My = My(z + Az) - My{z) (l.235)

The moment My causes rotation of the element as a rigid body around an axis that is

parallel to the y-axis, and it can be represented as

My = d-^Az (1.236)

An action of force Fx displays in two ways. First of all, it displaces the elementary

volume along the a;-axis, and in accordance with Newton's second law we have:

B'2v BF B2ii
Fx(z + Az)-Fx(z)=pAzS— or -£ = p S — (1.237)

Here S is the cross-section of the element, p is its density, and u is a displacement

of the neutral line due to a wave. We assume that this displacement is very small, and,

correspondingly, the length of this line practically remains the same, i.e., its extension

is neglected. It may be proper to note that at equilibrium, the moment My linearly
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changes between faces and, therefore, forces applied to S(z) and S(z + Az) are equal by

a magnitude. In other words, they do not cause translation of the bar element. Second,

shear forces give rise to the moment about the axis, which is parallel to the y-axis and

passes through the center of the elementary volume. It is equal to

FxAz (1.238)

Thus, the total moment causing rotation of this element is

( ^ + Fx)Az (1.239)

Applying Newton's second law for a rotation (Appendix A), we obtain:

Here a is an angle of rotation of the element, and / is the polar moment of inertia.

Thus, we arrived at two equations:

qd
2u dFx d2a dM

P S—-r = —— and p I—- = —-^ + Fx, (1.241
of/ az at2 oz

which describe simultaneous translation and rotation of an elementary volume bounded

by the lateral surface of the bar and cross-sections S(z) and S(z + Az). This system

contains several unknowns, namely, u(z,t), a(z,t), Fx(z,t), and My(z,t), and our

goal is to obtain one equation with respect to displacement u(z,t). By definition, a

characterizes a slope of the neutral line with respect to the 2-axis at some point z and

the instant t. It is obvious that for small values of a we have

du
a ~ tan a — ——

oz

Thus, set 1.241 becomes

d2u dFx d3u dMv

otz oz oz at2 oz

Differentiation of the last of eqs. 1.242 with respect to z and the use of the first of these

equations allow us to eliminate the unknown force Fx. Thus we obtain one equation:

T d'u dM, 92u
pIo^W2 = ̂  + pSW (L243)

with two unknowns. Taking into account eq. 1.195

y dz2
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we arrive at the equation with respect to the single unknown, u(z.t):

This is the linear partial differential equation of the fourth order. Certainly, it is not

one-dimensional wave equation at its conventional form

82u _ 1 82u

~d72 ~72W
but some solutions of eq. 1.244 describe a wave phenomenon.

Sinusoidal waves

Suppose that external forces are sinusoidal functions of time. Taking into account that

eq. 1.244 is linear, we observe the sinusoidal vibrations of the bar, too. Correspondingly,

the displacement u(z,t) can be represented in the form

u(z,t) = Re[u{z)e~lU)t] (1.245)

Its substitution into eq. 1.244 transforms the latter into an ordinary differential equation

of the fourth order with respect to the complex amplitude u(z), and we obtain:

-p I LU2^ = IE—t - pSuJ2 u = 0
dz2 dz2

or

^ + 2a^-bu = 0, (1.246)
ozi dz2

where

f>u2 , u2Sp
a = 2 E ' b=^E~ ( L 2 4 7 )

Respectively, a solution of eq. 1.246 has the form:

u{z) = Aie
klZ + A2e

k2Z + A-Aek*z + A4e
k/iZ (1.248)

Here kn are roots of the characteristic equation:

ki
n + 2ak2

n-b = () (1.249)
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So

k2
n = - a ± \/a2 + b

or

fc» = 6 i ( - ^ ± V 1 + y j (L250)

As follows from eq. 1.247,

a2 _ p u>2I

~b ~ 4ES

Since

I — r'l S and — = cf,

we have

b ~ c2Ti ~ X2 ' [ ]

where A is the wavelength of the longitudinal waves and TQ is the so-called the radius

of inertia of the cross-section. In deriving eq. 1.244, we assumed that the normal stress,

TZZ, linearly increases with a distance from the z—axis. Otherwise, the equality

"• = *'£
becomes invalid. This condition implies that the wavelength has to greatly exceed the

bar width. Thus, eq. 1.244 is applied, when an equality

r0 < A (1.252)

takes place. Of course, the same relation is valid for the wavelength of bending waves.

This inequality greatly simplifies eq. 1.250, and we have:

/ 2 o \ i/4

*»=5f) (±1)"2
or

/ \ 1/4 / \ 1/4
k>='(£) ^ h—(M -'"• (L253)
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/ x. 1/4 y \ 1/4

*=(£) ""*• *• = "(£) ^
Therefore, the general solution for the displacement u(z,t) is

u(z, t) = Re{^! exp[i(kz - cot)] + A2 exp[-i(kz + tot)} (1.254)

+A3 exp(kz — iuit) + A4 exp(—kz — iut)}

Here

^(^y'V (1.255)

is the magnitude of wavenumber of a bending wave. It can be also written in the form

/ \ 1/2

k = I (1.256)
\ciroj

The first two terms in eq. 1.254 describe waves traveling along the bar in the opposite

direction with the phase velocity

OH = -,= (Qr0^/2 or ^M = ^ (^f2 (1.257)
k Q V A /

The latter clearly shows that the velocity of bending waves is less than that of longitudinal

waves, (r0 <C A), and the difference between them becomes more noticeable with a

decrease of frequency. Unlike with longitudinal and torsional waves, the velocity of

bending waves, Q,(u>), depends on a frequency, and it is directly proportional to the

square root of ui. It is obvious that due to dispersion, propagation of the bending

wave is accompanied by a change of its shape. As is well known, two factors usually

cause a dispersion. One is a transformation of elastic energy into heat, and the other is

interference of waves, propagating, for example, in a waveguide. The latter occurs when

the wavelength is comparable to or smaller than the distance between interfaces. In our

case, both of these factors are absent. Two more terms in a solution with coefficients

Aj, and A±, eq. 1.254, represent periodic oscillations as functions of time, which

exponentially change with distance. Each term varies simultaneously at different points

along the bar. Certainly, they do not characterize wave propagation and have rather a

diffusion behavior. The equation of bending waves describes displacement, u(z,t), of

the neutral line along the :c-axis. At the same time, motion of bar particles is much more
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complicated and results in translation and rotation of an elementary volume. Earlier,

considering an equilibrium, we demonstrated that

curls j^ 0 and divs ^ 0 (1.258)

This means that the bending waves belong to a more general type of wave than do

longitudinal and torsional waves, and in this sense they are similar to the Rayleigh

waves.

Boundary conditions

Since propagation of bending waves is described by a differential equation of the fourth

order, there arc more boundary conditions than in the case of longitudinal and shear

waves. First, suppose that the bar consists of two homogeneous portions and the cross-

section S(z) is the boundary between them. It is obvious that at the interface both the

displacement u(z,t) and its derivative du(z,t)/dz have to be continuous functions:

Ul(z,t)=u2(z,t) ^ ' = ^ y ' (1.259)

Otherwise the bar would be broken. Also the moment My and the shear force Fx are

continuous, that is, in accordance with eqs. 1.195 and 1.200:

d2
Ul d2u2 d3

Ul <93«2 , .
b^^TY = ^2-^-5-, ^ i ^ T = ^2~a~T (1.260)

ozz ozz ozA oz6

Discontinuity of one of these functions leads to infinitely large angular or linear acceler-

ation. Thus, eqs. 1.259 and 1.260 describe behavior of bending waves at the interface.

Let us also consider two more boundary conditions, when waves are sinusoidal functions

of time.

Case one The displacement u and its derivative with respect to z are given

functions at some point ZQ:

u(zo,t) — aicosut, — ^ — = bisinut (1.261)

In particular, it may happen that a\ — b\ — 0. Note that du(zo,t)/dz characterizes

the bar slope at point z§.

Case two The moment My and the shear force Fx are given at point ZQ. This

means that

±-^ = a2cosLut, ^ ^ ^ s m w i (1.262)
OZ OZ
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For instance, at the free end without external forces:

0,2 = 62 = 0

Of course, one can introduce different boundary conditions. To illustrate the behavior of

bending waves, consider several examples and start from the simplest model of a bar.

Example one: infinite bar Suppose that bending waves are caused by a dis-

placement at some point z — 0, and the boundary conditions arc given by cq. 1.261.

Inasmuch as the wave field has everywhere a finite value and incoming waves are absent,

the solution of eq. 1.254 can be written as

u(z,t) = AiCos(u)t-kz) + A4e~kz cosut if z > 0 (1.263)

For negative values of z the displacement has a similar form. Applying boundary

conditions, we obtain

Ai + Ai= ai, kAx - kA4 — b\,

whence

Al = ^ 1 , Ai = k-^ (1.264)
Ik Ik

and the displacement is

U(Z) t) = ^ l ± h cos{u)t _ kz) + ^i-bie-kz c o g wt ( 1 2 6 5 )
Zhj ZK

Thus, u(z, t) represents a superposition of the wave, traveling away from point z — 0,

and vibrations, which exponentially decay with distance. Taking into account that

e-kz = e-2n zj\K ( L 2 6 6 )

we see that the second (diffusion) part of the wave field is noticeable only in the vicinity

of point Zo, at distances that are smaller than the wavelength.

Example two: reflection from free end Suppose that the incident wave propa-

gates toward the free end, (z — 0), where the moment My and shear force Fx are

equal to zero

My{(),t) = (), Fx(0,t) = 0

or

d2u , <93u
— - = 0 and — = 0 at z = 0
ozl ozi
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It is natural to expect an appearance of the reflected wave at the free end, as well as
decaying vibrations. Therefore, the displacement can be written as a sum:

u(z,t) = AAe~ikz + A2e
ikz + Be~kz , if z > 0 (1.267)

where A\ is given. From the boundary conditions we obtain two equations with two
unknowns

—A2 + B = Ax — iA2-B = -iA1

whence

A2 = >-\AU B = ^ A l (1.268)

and the displacement field is

u(z,t) = A^cosikz + ut) - sin(kz - cot) + y/2 e~kz cos(cjt - -)] (1.269)

In particular, at the free end

u(0,t) = 2A1(cosujt +sin cut) = 2\/2A1sin(u)t + - ) , (1.270)
4

and its amplitude is almost three times that of the incident wave.
Example three: reflection from the fixed end As we already know, at the

fixed end we have

«(o..) = o ^ M = o

Then, making use of eq. 1.267, these conditions give

A2 + B = -Al iA2 - B = iAx

Thus

A2=
l—±AU B = --^A1 (1.271)

Comparison with eqs. 1.268 shows that in both cases, the amplitude and phase of reflected
waves coincide. At the same time the complex amplitudes of vibrations differ by a sign
only. As follows from eq. 1.254,

u(z,t) = A^cosikz + cut) -sm(kz-Lot) -V2cos{uit- j)e~kz] (1.272)
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Of course, at the boundary both u(0,t) and du(0,t)/dz vanish.

Example four: normal modes By analogy with longitudinal and torsional

waves, consider a formation of normal modes in a bar of finite length /. In order to

solve this task, it is convenient to take the real part of the complex amplitude of the

displacement and represent it in terms of the sinusoidal and hyperbolic functions:

Re u(z) = Ai cos kz + A2 sin kz + B\cosh kz + B2sinh kz (1.273)

For illustration, suppose that boundary conditions are

. . <92u(0,t) ., , d2u(l,t)

The first two equations give

Al + B1=0, - Al+B1=0, i.e., A1 = Bl=0

and

u(z) = A2 sin kz + B2 sinh kz (1.274)

The second set of boundary conditions yields

A2sinkl + B2sinh kl = 0 - A2 sin kl + B2 sinh kl = 0 (1.275)

Therefore, this system has a nonzero solution when

B2 = 0 and kl = nn (1.276)

and

u(z, t) — A2svn— z cos cut, (1.277)

where A2 is an arbitrary constant. As follows from eq. 1.276

/ _ n

and normal modes arise, provided that the bar length, /, is equal to the integer number

of Afc/2. A similar relationship was observed for other waves. As follows from eq. 1.257,

frequencies of normal modes can be represented as

wn = Qro(™)2 (1.278)

By analogy we can determine frequencies of normal modes for different boundary condi-

tions.



Chapter 2

Basic equations of elastic waves

In this chapter, we will derive an equation that describes the displacement field s. Then

we introduce scalar and vector potentials and derive the wave equations and boundary

conditions that characterize the behavior of these functions. Finally, we will focus on

the relationship between kinetic and potential energies in an elastic medium and on

Poynting's vector.

2.1 Equations of motion of an elementary volume

Let us consider an elementary cube inside a medium, as is shown in Fig. 2.1a. When

a wave passes through this volume, it becomes deformed, and internal forces arise. As

a result, the medium surrounding the elementary volume, acts on each face of the cube.

Since the faces are small, it is assumed that the forces are uniformly distributed over

them. Correspondingly, it is natural to introduce the vector t, which characterizes the

force per unit area: F — t dS (2 11

Here dS = dxdy — dxdz — dydz, and in the Cartesian system of coordinates

t = txi + tyj + tzk (2.2)

The mutual orientation of forces applied to the cube faces is not arbitrary but obeys

two rules that follow from the physical considerations. First, consider opposite faces, for

example, S(x — Ax/2, y, z) and S(x + Ax/2, y, z), that are perpendicular to the

x-axis. When the wave approaches the back face S(x — Ax/2, y, z) at some instant t,

the surrounding medium acts on this face with a force that, in general, has the normal

83
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Figure 2.1: (a) Surface forces acting on elementary volume in a medium (b) Behavior

of shear forces (c) Translation of elementary volume (d) Compression (expansion) of

elementary volume (c) Pure shear deformation

and tangential components:

Fn(x-^,y,z,t) and Ft(x - ^-,y,z,t) (2.3)

After a very small time interval At, the wave reaches face S(x + Ax/2, y, z), and forces

given by eqs. 2.3 act on the medium in front of the elementary volume. In accordance

with Newton's third law, face S(x + Ax/2, y, z) is subjected to action of forces:

Ax Ax
-Fn(x + —,y,z,t) and - Ft(x + —, y, z, t) (2.4)

Here ti = t + At. During the extremely small time interval (At —> 0), forces applied to

the back face may slightly change by a magnitude, but their direction remains the same.

Otherwise, the rate of change of wavefields would be infinitely large. Thus, at opposite

faces perpendicular to the x-axis, the normal components, as well as the tangential ones,



2.1. EQUATIONS OF MOTION OF AN ELEMENTARY VOLUME 85

have opposite directions. It is clear that the same behavior of forces is observed on other

faces of the volume.

In order to formulate the second rule, let us discuss the action of shear forces, and, as

an example, consider faces perpendicular to the x— and y-axes, Fig. 2.1b. In general,

magnitudes of forces applied to opposite faces are not equal to each other, and for this

reason they produce both translation and rotation. In our case, the latter takes place

about the z-axis, Fig. 2.1b, and, as is well known (Appendix A),

Mz = Iaz (2.5)

Here Mz is the ^-component of torque, / is the moment of inertia, and az is the

z-component of angular acceleration. By definition (Appendix A),

Mz = Fxdy ± FtJdx = (tx ± ty)dxdydz (2.6)

and

7 = ^ (dx2 + dy2)dxdydz (2.7)

Thus, in place of eq. 2.5 we have

tx±ty = ^(dx2 + dy2)az (2.8)

Here p is density and tx and ty are components of traction on faces perpendicular to

the y— and x-axes, respectively. Inasmuch as acceleration, az, cannot be infinitely

large, we conclude that with a decrease of the volume, tx tends to ty and in the limit

tx= ty (2.9)

This means that at intersecting faces shear forces are directed toward each other. The

same behavior takes place on other faces of the cube.

Equation of motion

Now we will derive an equation of motion of an elementary volume. We introduce three

vectors - X, Y, and Z - in the following way (Appendix C):

tx = X • n, ty = Y • n, tz = Z • n, (2.10)

Here n is the unit vector normal to the cube faces, and

X = Txx'l + Txyj+Txzk, Y = Tyx'l + Tyyj + Tyzk, Z = Tzxi + Tzyj+Tzzk (2.11)
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Each scalar component rmn is a continuous function of x, y, and z, and all of

them form the stress tensor. It is essential to note that usually vectors X, Y, and Z

can be arbitrarily oriented with respect to the face normal, n. However, as we have

demonstrated, their mutual orientation at different faces obeys certain rules. Our goal is

to use of Newton's second law and write equations of motion along the coordinate axes.

By definition, we have:

do 6 n o 6 r^o 6

mW = £ F*> ™— = J2 Fyk, mw = j : Fzk (2.12)
fc=i fc=i fc=i

where m is the mass of an elementary volume; u, v, and w are scalar components of

displacement s; Fxk,Fyk, and Fzk are components of the force applied to the /c-face

of the volume. First, we add the x'-components of forces acting on all faces. It is obvious

that the sum of forces Fxl and Fx3. applied to two opposite faces perpendicular to the

x-axis, is

^ 1 + ^ 3 = 1- X ( x + y , y , z ) - X ( x - y , 2 / , 2 ) dydz

or Fxl + Fx3= \Txx(x+
(-±:ytZ)-Txx(x--±)y,z) dydz (2.13)

The presence of the minus sign in front of the second term is related to the fact that at

the back face "3,", the normal n and the unit vector i have opposite directions. In

the same manner we obtain:

Fx2 + Fx4=j- X ( x , y+-j-,z)- X ( x , y - —, z)\ dxdz or

Fx2 + Fxi = \ T X V ( X , y + -z-,z) -Txy{x,y- — ,z) dxdz (2.14)
\_ i z

and Fx5 + Fx6= Txz(x,y,z + -^-) - Txz(x,y,z - —) dxdy
Z Z \

Taking into account that distances between opposite faces are very small, we may assume

that stresses change linearly inside the volume, and this gives

Fx,+Fx3 = ^dV, Fx2 + Fx4 = ^dV, Fx5 + Fx6 = ^dV (2.15)
ox ay az



2.1. EQUATIONS OF MOTION OF AN ELEMENTARY VOLUME 87

Substitution of eqs. 2.15 into the first equation of set 2.12 yields

p § = ^ + ^ + ^ (2-16)
at2 ox ay oz

In the same manner, we have

(fV_ _ (hy^ dTyy (hy^ J^W _ (h^ (h^y (h^
pdt2 - dx + dy dz1 p dt2 - dx + dy

 + dz [ '

Thus, we have obtained a system of three equations with twelve unknowns - namely, nine

components of stress tensor and three components of displacement. Now it is appropriate

to make several comments.

1. Stress components, Trnn. are considered to exist at faces of an elementary volume.

Since the latter is small, stress components can be treated as linear functions within the

volume. Correspondingly, their derivatives are constants.

2. At opposite faces of the volume, each stress component has the same sign. This

reflects the fact that the whole elementary volume is either expanded or compressed. At

the same time, as was already demonstrated, each component of the force applied to

opposite faces has opposite signs. In equilibrium, magnitudes of the force components

are equal at opposite faces.

3. As follows from eq. 2.9 and similar equalities

tX tZ , ty tZ , tX ty ,

and so we have

Txy = Tyx, TXZ = rzx, and ryz = Tzy, (2.18)

i.e., the stress tensor is symmetrical (Appendix C).

4. Along with surface forces, an elementary volume is subjected to action of the

volume force

F = idV, (2.19)

where f is the force per unit volume.

Taking into account cqs. 2.18 and 2.19, system 2.16-2.17 becomes

dr-xx drxy dr^ | ^ d'2u
dx dy dz x dt2
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^ + ̂  + ̂  + /, = / S (2-20)
dx dy dz y dt2

drxz drvz drzz ,. d2w

dx dy dz dt2

This system of equations describes both translation and rotation of an elementary volume.

In other words, the equation of rotation follows from set 2.20. This question is discussed

in detail in Appendix E.

Stress in terms of strains

Our next step is to replace set 2.20 with equations that contain only components of

displacement. To do this, we will use Hooke's law and the principle of superposition. In

the first chapter, it was shown that normal stresses TXX, ryy, and TZZ and strains

du/dx, dv/dy, and dw/dz are related to each other as

du
E— = Txx - GTyy - OTZZ (2.21)

Ov
E— = -OTXX + Tyy - OTZZ (2.22)

E-^ = -OTXX - oTyy + TZZ (2.23)

Multiplying eq. 2.22 by a and adding eq. 2.21, we obtain

E{^x+a^)={1-a2)T--a{1 + <j)T- (2'24)

Again multiplying eq. 2.22 by a but adding eq. 2.23, we have

E (a^- + ̂ ) = - a ( l + a)rxx + (1 - O2)Tzz (2.25)

Multiplication of eqs. 2.24 and 2.25 by (1—a) and a, respectively, and their summation

gives

E(l-a)^ + Ea^ + Ea^ = (l + a)(l-2a)rxxdx dy dz
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or E(l - 2a)g + Eo ( g + g + ^ ) = (1 + a)(l - 2a)rM (2.26)

Thus
i? 9M EO (du dv dw\

Txx = (1 + o) Yx + (1 + a)(l - 2a) V&? + % + Ih ) [ '
or

<9u (du dv dw\ .
T- = ̂ d-X

+X{dX
 + dy + ^) (2-28)

Here

^2(1^) and A=(l+afd-2a) (2"29)

are Lame constants. In the same manner, we obtain expressions for Tyy and TZZ in

terms of strains:
r\ r\ r\

TXX = 2)1 h A div s, Tvv = 2n h A div s, TZZ = 2u \- A div s (2.30)
ox ay oz

These equalities clearly show that normal stresses are functions of the diagonal elements

of the strain tensor only. By definition, shear stresses and shear strains are related as

( du dv\ (dw du\

TT- + TT- ) , TXZ=TZX = fj,[— + —\ (2.31)
dy ox) \ox oz)

( dv dw \
and TVZ — TZV — n I — + —- ,

\dz dy J
and they do not contain diagonal elements of strain (Appendix D). Now we are ready to

replace the stresses in eq. 2.20 in terms of displacement. Since

0TXX n d2u x d ,. d2u d (du\ , d ,.

l)X- = 2 ^ + A^d lV S = ̂  + IJTx [dx) + XdxdlV S

and
<9T™ d'2u d (dv\ drxz d'2u d (dw\
dy dy2 dx \dy J dz dz2 dx \dz J

the first equation of the set 2.20 becomes

/ i V
2 « + ( A + / , ) ^ : d ivs = ^ (2.32)

By analogy we have

liV2v + (A + n) —div s = p ^ (2.33)

and

MV2w + (A + fi) —div s = p—^- (2.34)



90 CHAPTER 2. BASIC EQUATIONS OF ELASTIC WAVES

Equation for displacement s

Multiplication of eqs. 2.32 2.34 by unit vectors i, j , and k, respectively, and their

summation yields

<92s
/iV2s + (A + /j,)graddiv s = p — (2.35)

This equation plays a fundamental role in the theory of elastic waves. It is also useful to

represent eq. 2.35 differently. Taking into account the equality

curlcurl s = graddiv s—V2s, (2.36)

in place of eq. 2.35 we have

<92s
curlcurl s+(A + 2/x)V2s =PTTJ (2.37)

Both of these forms are rather complicated equations, and, certainly, they do not corre-

spond to the conventional form of a wave equation. At the same time, in two important

cases, eqs. 2.35 and 2.37 are reduced to two wave equations that describe elastic waves

propagating with different velocities. Before we discuss this subject, it is proper to no-

tice the following. The equation for displacement was derived in the Cartesian system

of coordinates. However, as is well known (Part I), spatial derivatives of the scalar and

vector fields

grad ip, div M, curl M, V V

are invariants, and, therefore, eqs. 2.35 and 2.37 are valid in any orthogonal system

of coordinates. It has also been demonstrated that every vector field, including s, is

characterized at regular points by a system of two equations

curl s = aW{p) div s = (35{p) (2.38)

Since they are linear differential equations, their solution can be written as a sum:

s(p)=s 1(p)+s 2(p) (2.39)

In general, these different vector fields are related to each other, and they obey the

systems

curl si = 0 div Sl=l3S{p) (2.40)
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and

curl s2 = a W div s2 = 0 (2.41)

Let us note that if functions Si and s2 satisfy eqs. 2.40 and 2.41, respectively, then

the sums si + s0 and s2 + s0 also obey these systems, provided that s0 is a solution

of the homogeneous system:

curl s0 = 0 and div s0 = 0 (2.42)

Now consider separately three important cases.

1. The wave associated with the field si Suppose that s2 = 0 and the
displacement field is described by eqs. 2.40, i.e.,

s = si (2.43)

Since curl si = 0, eq. 2.37 is greatly simplified, and we arrive at the wave equation

(A + 2M)V2s = p ^ (2.44)

or

where

„ - ^
is the velocity of waves that cause a displacement field si, eqs. 2.40. In accordance

with eqs. 2.29 we have

and it depends on the density p, as well as the Young modulus and Poisson's ratio.

Earlier we studied propagation of waves along a thin bar with the velocity

Cl = ^ (2.48)
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and called them longitudinal waves. In that case it was assumed that the parameter a

is equal to zero, i.e. the particle displacement in the direction perpendicular to the bar

axis was neglected. It is obvious that cq. 2.48 follows from cq. 2.47, if we let a = 0.

At the same time, waves described by eq. 2.44 may cause displacement of particles in

different directions if

curl s = 0 (2.49)

By analogy to acoustics fields, they are usually called dilatational waves. This is because,

by definition, the second equation of set 2.40 characterizes a relative change of volume,

i.e., the dilatation:

div s = 9 = —^ = 13 5(p) (2.50)

This means that these waves are associated with deformations that change the volume

provided that condition 2.49 is met. Now it is proper to make two comments:

a. The right side of eq. 2.50 can be represented in terms of stress. Performing a

summation of eqs. 2.21-2.23, we obtain

div s = — = -J^(TXX + ryy + TZZ) (2.51)

or

d i v s = — (rxx + Tyv + Tzz), (2.52)
M

where

M = E (2.53)

is the bulk modulus. This suggests, eq. 2.52, that volume change occurs due to forces

that are normal to the volume faces. Applying the conventional terminology of vector

analysis, we may say that the diagonal elements of the stress tensor are sources of this

field s. Taking into account that div s characterizes the wavefield, it is obvious that

the sum:

TXX + Tyy + Tzz

is also an invariant with respect to the coordinate systems.

b. Dilatational waves are also called longitudinal or P waves. Sometimes the term

"irrotational" is used. Now, proceeding from eq. 2.49, we will begin to study the types of



2.1. EQUATIONS OF MOTION OF AN ELEMENTARY VOLUME 93

motion and deformation that accompany longitudinal waves. For simplicity, we restrict

ourselves to two-dimensional cases, where

du Ov
s = u(x,y)i + v(x.y)j, w = 0 and — = — = 0 (2-54)

oz az

Correspondingly,

i j k

divs = — = — (Txx + Tyy) and cur ls= — — — = 0 (2.55)

u v 0

As follows from cqs. 2.54 and 2.55,

curlx s — curly s = 0,

and curl2 s has to be equal to zero:

T ~ T = 0 (2-56)
dx dy

As was described in Appendix A, the motion of an elementary volume as a rigid body is,

in general, a superposition of translation and rotation. At the same time, deformation

of this volume can be represented as a combination of compression (expansion) and pure

shear, which are in general accompanied by both types of motion (Appendix D). First,

consider translation, Fig. 2.1c. This motion takes place when all particles of the volume

have the same displacement, i.e.,

u(x,y) — const and v(x,y) — const (2.57)

Therefore, all derivatives of these components with respect to coordinates are equal to

zero, and condition 2.49 is met.

Next we focus on compression (expansion) of an elementary volume, when displace-

ment components u and v may vary only along the x and y coordinates, respectively

(Fig. 2.1d). Then

du dv
dy dx

As follows from eq. 2.56, condition 2.49 is met again. One more deformation also

obeys this equality, and it is called pure shear, Fig. 2.1e (Appendix D). Unlike with

compression, the volume remains the same, i.e., div s = 0, but the angle between
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intersecting faces slightly changes. Due to such deformation, the angles formed by two

pairs of sides - a\b\_, 61 Ci and airfi, diCi - arc equal. As is seen from Fig. 2.1c, points

of side ab experience different displacements along the x-axis, u(y), and we have

y y + dy

since the angle 7 is very small. The last equality gives

1 \ , 1 \ 1 , \ 1 x du 1 du u(y) .„ „ .
y u(y) + dy u(y) = y u[y + dy) = y u(y) +y — dy or — = = 7 (2.08)

This derivative characterizes a distortion angle. In the same manner, considering dis-

placement of side ad, we obtain

Therefore, in accordance with eq. 2.56, condition 2.49 is met. We see that translation,

compression (expansion), and pure shear may accompany longitudinal waves. Note that

both translation and pure shear are described by the displacement field, s0, which

satisfies the homogeneous system, cqs. 2.42. For this reason, they may be observed for

both fields Si and s2 as well as in the general case, eqs. 2.38. Thus, change in an

elementary volume is a typical property of longitudinal waves. As will be shown later,

the second type of motion (rotation) is absent for these waves.

2. The wave associated with the field s2 Next, assume that the displacement

field is described by eqs. 2.41, i.e., s = S2 and

div s = 0 (2.60)

Then, the equation for displacement, 2.35, becomes

„ , d2s „ , 1 d2s , ,

^B = pW or V 8 = ^ ' (2'61)

where

C = ^ (2.62)

Thus, we have again arrived at a wave equation that characterizes propagation of waves

with velocity cs. An example of such a wave is the torsional wave in a thin bar (Chapter

1), and its velocity is still defined by eq. 2.62. These waves are accompanied by rotation
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of elementary volumes, and for this reason they are called rotational or shear waves. The
last term is used because rotation is caused by shear forces. It is obvious that velocities
of longitudinal and shear waves depend on the same elastic parameters, namely E and
a, as well as on density p. Taking into account eq. 2.29, we have

c- = p i > • ( 2 - 6 3»

and the ratio of velocity is

or

£i - / ^ _ / 1 (0 ez\
c« " V A + 2M " y 2 + A/M

 [Z-bb)

Since A > 0 and [i > 0, we see that the velocity of shear waves is always smaller
than that of longitudinal waves, cs < q. Because of this, the former are also called
S (secondary) waves, and they arrive after the longitudinal P (primary) waves. As
follows from eq. 2.65,

0 < cs < - U i (2.66)
V2

Now let us describe types of motion and deformation that can be caused by shear waves,
and, therefore, obey cq. 2.60. By definition, this wave docs not produce compression
or expansion of an elementary volume; i.e., such deformation is impossible for shear
waves. Also translation and a pure shear alone cannot describe the displacement field
of these waves. However, they can contribute to the field S2 along with rotation of
an elementary volume (Appendix D). As is clearly seen from Fig. 2.2a, the strains
associated with rotation are

du dv
— = - 7 and — = 7 2.67
dy dx

The presence of the minus sign in the first equation is related to the fact that angle 7
is positive, but du/dy < 0. By definition, we have

dv du
curL, s = — = 27,

ox ay
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Figure 2.2: (a) Rotation of elementary volume (b,c) Pure shear and translation of
elementary volume (d) Simple shear as superposition of pure shear, translation, and
rotation

while dilatation is equal to zero. Thus, rotation is a characteristic of shear waves, i.e.,
they cannot exist without rotation of elementary volumes of a medium. By analogy
with longitudinal waves it is possible to perform one generalization and represent the
displacement field of shear waves, as

s = sr + s0
(2.68)

Here sr is the displacement field due to rotation, while s0 is associated with translation
and pure shear. Of course, one or both of them may be absent. Taking into account eqs.
2.42, we obtain:

curl s = curl sr (2.69)



2.1. EQUATIONS OF MOTION OF AN ELEMENTARY VOLUME 97

We use this equality in order to express curl sr in terms of stresses. Let us consider

a so-called simple shear (Appendix D). In this case, as is illustrated in Fig. 2.2b,c,d,

a shear wave involves an elementary volume in both types of motion (translation and

rotation), as well as deformation of the pure shear. Since the displacement s has only

one component u(y), we have:

curl.s = —— = - 7 (2.70)

oy

On the other hand, in accordance with Hookc's law

du dv 1 du
exy = -K- + ^ - = -Txy = ^ - , because v = 0

oy ox n oy
Therefore, eq. 2.70 gives

curlzs = —Txy (2.71)

A*

It is easy to generalize this result for a three-dimensional case. For instance, if there is

rotation of an elementary volume around the x— and y-axes, we have

curlxs = Tyz, curias = TXZ (2.72)
[i /-I

Multiplication of eqs. 2.71 and 2.72 by the corresponding unit vectors and then a sum-

mation yield

curl s = (ryzi + rxzj + Txyk) (2.73)

The vector

W = Tyz\ + TXZ] + rxyk (2.74)

is formed with the help of the nondiagonal elements of the stress tensor, and it can be

treated as the density of vortexes of field s. Thus, the system of equations of the

displacement field s, which accompanies shear waves, has the form

curls = W, divs = 0 (2.75)
A*

3. General case We have demonstrated that in a homogeneous medium, either

longitudinal or shear waves may exist. The more general case is also possible, when the

system of equations for the displacement field s is

curl s = —(Tyzi + Txzj + Txyk) (2.76)
A*
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and

div s = JJ{TXX + ryy + TZZ) (2.77)

Therefore propagation of a wave associated with this field s may cause both types of

motion and deformation, namely: a. translation, b. rotation, c. pure shear, and d.

compression (expansion).

It turns out that the velocity of propagation of these waves is smaller than that of

shear waves. This may be related to the fact that waves produce different types of motion

and deformation. The bending waves considered in Chapter 1, is an example of this type

of wave, as are Rayleigh waves, which will be studied later. Previously, we represented

the total field as a sum: s = Si + S2 + SQ. In general, Si, s2, and So are related to each

other and describe one wave, propagating with the same velocity. However, there is one

obvious case in which longitudinal and shear waves exist simultaneously. Of course, these

independent waves travel with different velocities, q and c,,. Later we will demonstrate

that within some range of distances from the source, the field So may also describe some

wave disturbance (Laplace motion).

Boundary conditions

Since eq. 2.35 is valid only at regular points of a medium, at interfaces between media

with different elastic parameters this equation must be replaced by boundary conditions.

They characterize the behavior of forces and displacement s at points of such an

interface. For simplicity, suppose that the latter is the plane XOY, i.e., z — 0.

Also, we imply that elastic media are welded at the surface of their contact. Then the

tangential and normal components of displacement have to be continuous functions at

points of the boundary:

s — s 01

«i = M2, v\ — V2, u>i = W2 at z — 0 (2.78)

Besides, the normal and shear stresses acting on each element of the boundary are also

continuous functions:

(1) _ (2) (1) _ (2) (1) _ (2) / 9 7Cj\
zz zz ' xz xz ' yz yz \ I

These equalities follow from Newton's second law describing translation and rotation.

If eqs. 2.79 were invalid, either the linear or angular acceleration, or both, would be
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infinitely large, which, of course, is impossible. Taking into account the relationship

between stress and strain, eqs. 2.79 can be also written in the form:

A 1e 1 + 2 M l ^ = A 2 e 2 + 2 M 2 ^

/ du, + ap\ = /a* + apN
\ dz dx J \ dz dx )

(dvi dwi\ (dv2 dw2\
fh Vdz- + ^)= /i2 Vdz-+ -w)

where 0 =div s is dilatation. Thus, eqs. 2.78 and 2.80 allow us to formulate boundary

conditions in terms of displacement and its derivatives. It is useful to describe boundary

conditions for three special cases.

Case one: free interface In order to provide continuity of stresses at such a

boundary, they have to be equal to zero at its points:

TXZ = 0, ryz = 0 , TZZ = 0 at z = 0 (2.81)

Eqs. 2.81 represent boundary conditions at the free surface. However, displacement

components are not defined at this surface. Note that if instead of the solid there is a

fluid, eqs. 2.79 are simplified and we have

rzz=Q, (2.82)

since shear stresses are absent.

Case two: ideally rigid boundary By definition, particles belonging to this

interface cannot move and, correspondingly, all components of the displacement are equal

to zero:

u = 0, v = 0, w = 0 at z = 0 (2.83)

Case three: boundary between solid and fluid A slippage may occur along
such an interface and, therefore, only the normal component of displacement has to be

continuous. Since shear stresses are absent in the fluid, they are equal to zero at points

of the interface. The normal stress is a continuous function. This gives

wlz=w2z, r«=r«=0, T^=T% (2.84)

As before, index "1" corresponds to an elastic medium.
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Boundary value problem

Boundary conditions, eqs. 2.78 and 2.79, can be treated as a surface analogy of the

differential equation for displacement field s. From the physical point of view, it is

clear that an infinite number of functions satisfy eq. 2.35 and these conditions. In fact,

changing the type of primary source and its position, we obtain different wavefields, but

each of them obeys eq. 2.35 and sets 2.78 and 2.79. In order to remove this ambiguity,

we need additional information, which can be derived from the theorem of uniqueness.

In other words, this allows us to formulate the boundary value problem. By analogy with

the case of an acoustic medium (Part I), it is possible to show that the wave fields are

uniquely defined, provided that they satisfy a certain set of conditions. Let us assume

that the multilayered medium with homogeneous layers is bounded by some surface So

and surface S^, a t infinity. It turns out that a solution of the boundary problem is

unique if it obeys

1. The initial condition.

2. Eq. 2.35 for displacement field s at regular points.

3. Boundary conditions at surfaces So and SQO-

4. Conditions 2.78 and 2.79 at interfaces.

The initial condition implies a knowledge of wavefields at all points of a medium

at some instant t = 0. Usually we assume that the wavefield is absent at the initial

moment. The behavior of a wave at points of surface S^ corresponds to the outgoing

spherical wave, so that it satisfies the Sommerfeld condition (Part II). As far as surface

So is concerned, information about wave behavior at its points can be formulated in

different ways. First, suppose that surface So surrounds the primary source, and it

is located at its vicinity. In such a case, we usually know stresses at points of So as

functions of time. Instead of this condition one can imagine that the force F(t) is given

at some point or that several forces arc specified at different points of a medium. In

particular, distribution of external forces is often known at the free surface. Of course,

it is possible to introduce different conditions at surface So that also describe strains as

well as the displacement field.

Scalar and vector potentials

In accordance with eqs. 2.39, displacement field s is, in general, a sum of two fields, Si

and S2, which obey eqs. 2.40 and 2.41, respectively. By analogy with the acoustic and

electromagnetic fields, we introduce two functions that may often simplify wave studies.



2.1. EQUATIONS OF MOTION OF AN ELEMENTARY VOLUME 101

As usual, we deal with a layered medium. In each layer, longitudinal and shear waves
propagate with constant velocities. Consider again three different cases.

Case one: dilatational waves From the equation curl Si = 0, it follows that
the vector field S! can be described with the help of the scalar potential U only:

si = grad U (2.85)

In order to obtain the equation for U, we substitute eq. 2.85 into eq. 2.45. This gives

Here C is some constant. In accordance with eq. 2.85, there is an infinite number of
functions U that describe the same displacement field Si. Taking this into account,
we choose such U that the constant C is equal to zero. Then, the scalar potential U
also obeys the wave equation

Certainly, a transition from the vector field Si to the scalar one may greatly simplify
a wave study, even when displacement has a single component. Knowing the function
U, we can calculate displacement s and then, making use of Hookc's law, determine
stresses.

Case two: shear waves Taking into account that dilatation for shear waves is
equal to zero (div s2 = 0), we have

s2 = curl A, (2.88)

where A is the vector potential. It is obvious that there is an infinite number of functions
A that describe the same field s2. Substituting eq. 2.88 into eq. 2.61 and applying the
same approach as in the first case, we obtain

V ' A ^ (2.89)

The use of the vector-potential A instead of s2 is not so obvious, because they are both
vectors. However, in some cases it is sufficient to deal only with the single component
of A. Moreover, this component may be directed along the Cartesian axis, which brings
additional simplification. In general, a reflection of the longitudinal waves causes an
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appearance of shear waves and vice versa. For this reason, in order to satisfy boundary

conditions it is necessary to use both potentials.

Case three In general, when displacement s is a sum of Si and S2, we obviously

have

s = grad U + curl A (2.90)

In essence, we have already demonstrated that potentials obey wave equations. The same

result can be derived differently. To show this, we rewrite eq. 2.35 as

d2

/7,V2(s! + s2) + (A + /i)grad div(si + s2) = / 9 ^ ( s i + S2)

or

d2

AtV2(si + s2) + (A + /x)grad div S l = P ^ ( s i + s2) (2.91)

since div S2 = 0. Taking into account that curl curl si = grad div Si — V2Si and

curl Si = 0, we have

(A + 2 M ) V 2
S l - ^ + M V 2 s 2 - ^ = 0 (2.92)

This result is trivial, since both fields Si and s2 satisfy wave equations. Substitution

of cq. 2.90 into cq. 2.92 gives

grad (A + 2M)V2f/ - p ^ ] + curl [MV2A - p ^ ] = 0 (2.93)

Because there is an infinite number of pair of functions U and A that describe the

same field s, we can always choose the functions U and A that obey wave equations

2.45 and 2.61, respectively. It is clear that eq. 2.92 is satisfied.

2.2 Kinetic and potential energy and its flux

In studying wave propagation in acoustic media, we demonstrated that the density of

kinetic and potential energy is defined as (Part I):

1 M
eo = ^pv2 and u0 = ^—div2s, (2.94)
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respectively. Here p is density of a medium, v is particle velocity, v = ds/dt, and

M is the bulk modulus. Therefore, the total mechanical energy in an arbitrary volume

is

W(t) = 1 f(p v2 + M div2s) dV (2.95)

v

In general, three factors cause a change in this energy, namely

1. The presence of external (primary) sources of waves inside volume V.

2. Transformation of mechanical energy W into heat Q.

3. The flux of this energy through a surface surrounding the volume.

Then, in accordance with the principle of conservation of energy, we have

^^L-Q-^N-dS, (2.96)

5

where L is an amount of the kinetic and potential energy produced by external sources

per unit of time and Q is an amount of the mechanical energy that is transformed into

heat, also per unit of time. Finally

^N-dS (2.97)

s

is called the energy flux, and it defines an amount of energy passing through the closed

surface S during one second. Correspondingly, the vector N is the density of the flux,

and it plays the same role as the Poynting vector for electromagnetic fields or the current

density j for electric current. This shows that the magnitude of N equals the amount

of energy passing through an elementary surface, dS, with unit of area per unit of time.

It is essential that this surface is perpendicular to vector N. In SI units we have

= joule = watt
m2s m2

Since vector dS in eq. 2.97 is directed away from the volume, the positive value of the

flux means that energy leaves the volume. In contrast, energy increases inside the volume

if the flux is negative. In general, vector N has a different magnitude and direction at

different points of a closed surface S. For instance, at some points it can be directed

inward, whereas at other points it is directed outward or is parallel to the surface. As

was shown in Part I, in an acoustic medium

N = P v , (2.98)
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where P is pressure caused by a wave. Thus, vector N is equal to the product of

the additional pressure and the particle velocity. For example, if pressure P is positive

(compression), vectors v and N have the same direction. In contrast, at points where

P is negative (expansion), these vectors have opposite directions. Vector N always

shows the direction in which the wave moves. We can say that vector N allows us to

visualize wave propagation as transmission of energy. For instance, assuming that the

primary sources are absent inside the volume, L = 0, and the process of propagation is

adiabatic, Q = 0, eq. 2.96 becomes

^ - = - I N • dS (2.99)

s

In this case, any change of energy W can only be caused by its flux.

Elastic potential

By analogy with eq. 2.98, we derive an expression for vector N in an elastic medium.

Since a distribution offerees in this medium is characterized by the stress tensor T*, it

is natural to expect that in eq. 2.98 the additional pressure P has to be replaced by

T», which gives

N = T*v

In order to prove this relationship we assume that surface S surrounding volume V

is subjected to action of surface forces. For simplicity, the influence of volume forces

is neglected. Forces applied to surface S can be treated as external, and the work

produced by them is equal to

A= it{q) -s(q)dS (2.100)

s

Here q is the point on surface S and s(q) is its displacement:

s(q) = u(q) i + v{q) j + w(q) k (2.101)

By definition, the traction vector t(q) is the force per unit of area and

t(q) = txi + tyi+tzk (2.102)

In the previous section we applied the relations

tx = X • n, ty = Y • n, tz = Z • n, (2.103)
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where n is the unit vector normal to the surface element,

n = cos(n, x) i + cos(n, y) j + cos(n, z) k, (2.104)

and scalar components of vectors X, Y, and Z are elements of the stress tensor:

X = Txxi+Txyj+TXZ\L, Y = Tyxi+Tyyi+Tyzk, Z = Tzxi+Tzyj+Tzzk (2.105)

Taking into account eq. 2.103, we have

A= I (X u + Y v + Z w) • dS (2.106)
•J

s

Therefore, the rate at which the surface forces perform the work is equal to

s

Here it is appropriate to make two comments:

1. Taking derivatives with respect to time, we neglected higher-order terms. For

instance

d ._. . __ du dX
- X u = X 1 u
dV ' dt dt

Since H < 1 and dX/dt Ĉ 1, their product is neglected.

2. It is obvious that dA/dt can be treated as a change of the work per unit time,

because

dA = —St if 5t = Is
at

This work produces a change in kinetic and potential energy inside the volume during the

same time, (St — 1 s). The rate of change of both types of energy can be represented

in terms of volume integrals:

BE f deQ dU f du0 , . , „ . ,
-dt=J^idV and -dt=J^dV ( 2 J ° 8 )

V v

Here eo(p) and Uo(p) are densities of kinetic and potential energy at any point p

inside an elastic medium. The function eo(p) is known, because every elementary

volume moves like a rigid body and, therefore,

1 2 p \(du\2 (dv\2 fdw\2]
60 = -^ =2 U J + (at) + (-at) (2'109)
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To derive an expression for density UQ, which characterizes a deformation, we proceed

from cq. 2.107, which can be written as

dA = dE + dU (2.110)

Note that the work of surface forces produces mechanical energy, which arrives inside the

volume as the flux of vector Y. This means that

dA = - IY- dS if 5t = ls (2.111)

s

As follows from eqs. 2.108 and 2.109,

dE = p(uu + vv + ww)dV, (2.112)

v

where

du .. d2u
u = —- and u = -^-r

dt dt2

Next we also represent the work dA in terms of the volume integral. Taking into

account eq. 2.106 and the Gauss formula, we have

dA= I div ( x ^ + div (Y^\ + div ( z y^) j W if &t = l s (2-n3)
v

The use of equality

div ((pa) = (f div a + a • grad <p (2.114)

gives

v

| ( x . g r a d g + Y . g M d | + z . g r a d | ) r f v -
x,-

Thus, we expressed the work of surface forces per unit of time as a sum of two volume

integrals. It turns out that the first integral in eq. 2.114 characterizes a change of kinetic



2.2. KINETIC AND POTENTIAL ENERGY AND ITS FLUX 107

energy during the same time St. In fact, using equations of motion derived in the previous

section,

div X = pu, div Y = pv, div Z = pw,

and eq. 2.112, we find that

dE = / (u div X + v div Y + w div z ) <iV

v

Thus, eq. 2.115 can be rewritten as

dA-dE= I (x • VM + Y • Vt> + Z • Vw\dV (2.116)

v

Comparison with eq. 2.110 shows that the integrand in this equality can be treated as a

change of potential energy density per unit of time:

duo = —^—dt and dt = 1 s
at

Correspondingly, we have

( „ • „ • „ • \ , du du du

duQ=[X • Vu + Y • Vv + Z • Vw)dt= TXX—+Txy—+ TXZ —
\ ! ox oy oz

dv dv dv dw dw dw ,
+Tyx-^- + TW^- +Tyz—+ Tzx— + T zy— + T zz— dt

ox oy oz ox oy oz
Since the stress tensor is symmetrical, we have

du0 = Txxdexx + Tyydeyy + Tzzdezz + Tyxdeyx + Tyzdeyz + rxzdexz (2.117)

This equation demonstrates that the density of potential energy u0 is a function of

strains, and it permits us to represent the right side of eq. 2.117 as

du0 du0 9u0 9u0 du0 9t i0 ,O 1 1 O^
du0 = -—dexx + -—deyy + -—dezz + -—dexy + -—deyz + -—dexz (2.118)

o&xx o^yy C'Czz oeXy CCj/z oexz

From the last two equations, we obtain

du0 du0 du0 ,„..„,
Txx = a , Tyy = -7, , Tzz = ~^ , (2.119)

oexx oem, oezz
Js-A/ yy 66
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du0 du0 du0

oexy deyz dexz

Thus, the stresses are expressed in terms of derivatives of the function it0, which is often

called the elastic potential (Appendix E). At the beginning we neglected volume forces.

It is easy to show that our results remain valid in a more general case when these forces

are taken into account.

Flux density Y

As follows from eqs. 2.107 and 2.111, we have

j> (Xti + Yv + Zii>) • dS = - / N • dS

s 's

Therefore, it is natural to assume that

N = - fx?i + Yfj + Zw\ = Nxi + Nyj + Nzk, (2.120)

where

NX — -TXXU - TyXV ~ TZXW, Ny — ~TyXU ~ T yyV ~ TyZW (2.12l)

Nz = —TZXU — TyzV — TZZW

The latter represents the product of the stress tensor and the particle velocity

N=-T*v (2.122)

For illustration, consider three cases. First, suppose that a wave propagates through a

homogeneous fluid. Then

TXX = Tyy = TZZ = ~P End TXy = TXZ = TyZ = 0

Correspondingly

Nx = PM, Ny = Pi),, Nz = Pw and N = Pv,

which coincides with eq. 2.98. Second, assume that shear stresses are absent. This gives

NX = ~TXXU, Ny = -TyyV, N, = ~ T, ,W

and

Nx = -TXXU i - TyVv j - TZZW k, (2.123)
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which describes the flux of energy in the case of longitudinal waves.

Finally, if TXX = ryy = TZZ, we have

Nx = ~TyxV - TXZW, Ny = ~TyxV - TyzW, Nz = ~TXZU - TyzV

For instance, when torsional waves propagate along the bar, we have ryx = 0 and

w = 0. Then

Nx = Ny = 0, but Nz = —TXZU — Tyzv,

and vector N is directed along the bar axis z.

2.3 Strain, stress, and Hooke's law in the curvilinear orthogonal system of
coordinates

As we know, forces applied to an elastic body cause a change in its shape and size, and

in order to determine the changes it is necessary to find the length of every line after

deformation. Our goal is to evaluate the distance between two points located close to

each other and find its expression in different systems of coordinates.

Cartesian coordinates

Consider two arbitrary points in a medium,

P (x,y,z) and Q (xi, yu zi),

and suppose that the distance between them, r, is very small, Fig. 2.3. Let us introduce

directional cosines, I, m, and n of the line PQ. By definition we have

X\-X Ul-y Z i - Z / o i o , A

— I, — m, =n (2.124)
r r r

Correspondingly, coordinates of point Q are

Xi = x + Ir, yi = y + fnr, Z\ = z + nr (2.125)

After deformation, the particle that was at point P comes to point P\{x , y , z ), where

x =x + u(x,y,z), y =y + v(x,y,z) z = z + w(x,y,z) (2.126)
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0

Figure 2.3: Relative change of line length

and u,v, and w are scalar components of displacement. At the same time the particle

at point Q moves at point Qi{x'1,y'1,z'1). Here

xl = x + Ir + U\, y1 = y + mr + v i z1 = z + nr + w-\ (2.127)

Taking into account that displacement is a continuous function of coordinates, we expand

each scalar component, ulj ?;1; and w\, in the Taylor series. Discarding all of its terms

except the linear ones, we get

(du du du \
ux = u + r \ —I + —m + —n = u + r • grad u

\ox ay oz )

(dv dv dv \ .
Vl = v + r — / + T^m + —n = v + r • grad v (2.128)

\ox dy oz )

(dw dw dw \
Wi = w + r [ -^r—l + -^—m + T—n = w + r • grad w

\ ox oy oz )

In deriving this system of equations, we used the fact that coordinates of points P and

Q differ by Ir, mr, and nr, respectively. Thus, coordinates of point Q are

/ f du du du \
x1=x + lr + u + r[ —I + —m + —-n

\ax ay oz )

, (dv dv dv \ , .
yl =y + mr + v + r [— I + —m + —n 2.129)

\ox dy dz )
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/ div dw dw \
Z-, = z + nr + w + r —— I + ^—m + —— n

\ dx ay dz )

For the distance r\ between points P\ and Qi, we have

r, = r(l + e) = [(x[ - x'f + (y[ - y f + {z\ - zf}1'2 (2.130)

Here e is a relative change in the distance between points P and Q. Then substitution
of 2.129 into 2.130 gives

\ \ ( du\ du du]2 \,dv ( dv\ dv]2

^ = r{[l{1+a-x)+md-y+nd-Z\ +[ld-X
+m{1 + d-y)+no-z\ ^ ^

, dw dw ( dw \ 121

Since I2 + m2 + n2 — 1 and the terms that contain the product of derivatives are
small, we obtain:

r\ — r (1 + exxl
2 + eyym

2 + ezzn
2 + eyzmn + ezxnl + exylm), (2.132)

where

du dv dw
ox dy dz

dv dw dw du du dv
dz dy dx dz dy dx

are components of the strain tensor (Appendix D). In general, they vary from point to
point. As follows from eq. 2.132, a relative change in the distance of the short line is

e = cxxl
2 + eyym

2 + ezzn
2 + exznl + eyzm,n + exylm (2.133)

and it is defined by the strain components. Also, we can treat strains as coefficients of
terms in eq. 2.132 that contain the square of directional cosines or their product. Taking
this fact into account, we find a relationship between r̂  and r at different systems of
coordinates. This will permit us to determine expressions for strains.
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Curvilinear orthogonal system of coordinates

To facilitate our study of strains, it is useful to recall the main features of these systems
(Part I). We start from the simplest Cartesian coordinates, where the position of any
point is defined as

x = d, y = C2, z = C3, (2.134)

where C\, C*2, and C3 are constants. From the geometric point of view, each of
these equalities describes a plane perpendicular to the corresponding coordinate axis. For
instance, x — C\ means a plane that is parallel to plane YOZ. Varying C\ we arrive at
a family of planes that are all perpendicular to the x-axis. Similarly, equations y = C2
and z = C3 characterize families of planes that are parallel to planes XOZ and XOY,
respectively. These three families represent coordinate planes that are perpendicular to
each other. By definition, at every coordinate plane one coordinate (x, y, or z) is
constant, while other two vary. Note that (a) there are always three coordinate planes
that pass through the same point, and their intersection determines the position of this
point; and (b) planes YOZ, XOZ, and XOY belong to corresponding families of the
coordinate planes.

There is another approach that allows us to determine the point's location. Consider
first planes x = a and y = [3. Their intersection gives a straight line parallel to the
z-axis. Changing a or (3 or both of them, we obtain a family of straight lines that
are parallel to each other. In the same manner, the intersection of planes x = a and
z — 7, as well as of y — (3 and z — 7, produces two other families of lines, which arc
called coordinate lines. It is obvious that three coordinate lines pass through each point
and form direct angles with each other. Along each line, two coordinates - for instance,
y and z - remain constant, but one changes. The axes of coordinates passing through
origin O are examples of these lines. Thus, at each point three coordinate lines, x, y,
and z, are normal to the corresponding coordinate planes, and the intersection of such
lines defines the position of the point. Because coordinate lines are straight, expressions
of grad, div, curl, and laplacian in the Cartesian system are greatly simplified. First,
elementary displacement along coordinate lines is equal to a change of coordinates:

dlx = dx, dly = dy, dlz = dz (2.135)

Respectively, elementary areas of coordinate planes that are formed by coordinate lines
are

dSx — dydz, dSy — dxdz, dSz — dxdy (2.136)
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and the elementary volume surrounded by elements of coordinate planes is

dV = dx dy dz (2.137)

Also, if the elementary vector ds is arbitrarily oriented, then its magnitude is equal to

|ds | = {dx2 + dy2 + dz2)1/2,

where dx, dy, and dz are its scalar projections on the coordinate lines. As follows

from the vector analysis (Part I),

V<p = - ^ - <f><p dS, V M ^ - 1 - / M d S , V x M = - ^ - / M - d l (2.138)

s s s

Here n is the unit vector showing a direction of vortexes. Then, replacing the integration

in eqs. 2.138 by a differentiation and using eqs. 2.135 2.137, we obtain

dip. dtp. dip. ,. A/r dMx dMy dMxgrad <p = - ^ i + - ^ j + - ^ k div M = — ^ + — ^ + — ±
ox oy dz ox oy oz

i J k

curlM= f- f- f- , (2.139)
dx dy dz
Mx My Mz

2 d2ip d2f d2<p
Vv=dx^ + W + ^ = g V

Next, we discuss a more general case in which coordinate surfaces are not usually planes,

and so the coordinate lines can be curvilinear. However, they are still perpendicular to

each other. Suppose that a, (5, and 7 are coordinates of a point and their relationships

with Cartesian coordinates are

f1(x,y,z) = a, f2(x,y,z)=f3, fz(x,y,z)=1 (2.140)

For instance, the function fi(x,y,z) = a describes the coordinate surface, where one

coordinate, a, is constant, but two others, /? and j , vary. In accordance with eqs.

2.140, we have three families of coordinate surfaces, and their intersection forms three

families of coordinate lines: la, lg, and Lr Unlike in the Cartesian system, these lines

are in general curvilinear, but at each point they form direct angles. As before, along
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each coordinate line only one coordinate varies, but two others are constant. This fact

is obvious, since every line is the result of an intersection of two coordinate surfaces -

for instance, (i = const and 7 = const. It is also convenient to introduce three

unit vectors, iQ, , i^, and i7, each of which defines the direction of the coordinate

line. Thus, we have three families of coordinate surfaces, as well as three families of

coordinate lines, and both of these groups equally characterize the position of a point.

By definition, every coordinate surface can be treated as the surface of equal values of

the corresponding coordinate. Therefore, the gradient of the latter is perpendicular to

this surface, i.e., it is directed along the coordinate line. Thus means that

Va = |Va| itt = ^ i a , V/J = |V/7| ip = ^ L , , V 7 = |V7 | h = J i 7 , (2.141)
ala alp ulj

where dla, dip, and dl7 are elementary displacements along coordinate lines. Taking

into account that coordinate lines are usually curvilinear, these displacements do not

coincide with a change of coordinates, and unlike in the Cartesian system, we have

dla — hada, dip = hpdfl, dLf = h^d-f (2.142)

Here ha, hp, and h7 are called the metric coefficients and, as a rule, they are functions

of coordinates of the point. From eqs. 2.141 and 2.142, we have

1 / da \ I da \ I da \

* r y + y + y ' (2-i43)

hj \dx) +\dy) +\dz) ' ft2 \dx) +\dy) +\dz)

It is assumed that within elementary displacements, eqs. 2.142, metric coefficients: ha,

hp, and h7 are constants. Since the angles between unit vectors are equal to TT/2, eqs.

2.141 give

da dj3 da d(3 da df3

dx dx dy dy dz dz

9a dj da dj da dj d(5 dj dfi cty dfi d-y
dx dx dy dy dz dz ' dx dx dy dy dz dz

In accordance with eqs. 2.142, elementary areas of coordinate surfaces are

dSa — dip dlj — hp h7 d(i dj, dSp — dla dl7 — ha hn da dj, (2.144)



2.3 STRAIN, STRESS, AND HOOKE'S LAW IN THE CURVILINEAR... 115

dS7 — dla dip — ha hp da d(i,

and the elementary volume formed by coordinate surfaces is equal to

dV = ha hp h7 da df3 dj (2.145)

It is obvious that the length of an elementary displacement, ds, arbitrarily oriented

with respect to coordinate lines, is defined as

ds'2 = dll +dl'2g + dl'21 (2.146)

As was demonstrated in Part I, we have:

„ 1 9(3. 1 9w. I dip.

ha da hp dfi h7 dj

div M = } —{hphyMa) + —{Kh^Mp) + —(hahpM7)hahph^ \_oa ' op 07

ha iQ hp ip h-y i 7
1 O d d

curl M = —- —- — and
hahphn oa op 07

haMa hpMp hjMj

V72 1 \d fhph^d^\ d /hakyd<p\ d (hahf,d<p\\
V hahphy [da \ ha da) 8(5 \ hp d/3) dj \ h7 dj)\ [ ' '

Usually metric coefficients are derived from the geometry of the coordinate system. For

instance, in the cylindrical system of coordinates r, <p, and z, they are

hr = 1, hv = r and hz = 1, (2.148)

whereas in the spherical system R, 9, and cp we have

hR = l, h0 = R and hv = RsinO (2.149)
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Strain in the curvilinear orthogonal system of coordinates: a, {3, and 7

As was pointed out earlier, in order to obtain expressions for strains we have to derive

eq. 2.132 in the system of coordinates a, [3, and 7. Consider two neighboring points,

P(a, (3, 7) and Q (a + a, (3 + b, 7 + c), situated at a small distance r — PQ from each

other. Suppose that I, m, and n are directional cosines of vector P Q at point P,

i.e.,

dla dig dln
I = — , m = —K n = —- (2.1oO)

r r r

Using eqs. 2.142, we also have

, haa hfib hjC / o l - - n
/ = , m = -^-, n = -J-, (2.1ol)

r r r

since

da — a, d/3 = 6, d-y = c,

whence
Ir mr nr

a = —, b= ——, c = — (2.1o2)
ha hp h7

The equations above allow us to represent a change of coordinates of point P in terms

of metric coefficients, directional cosines and distance r. Because of deformation, points

P and Q move at points Px and Qi, respectively, Fig. 2.3. Let us assume that

coordinates of point Pi arc

a + C, P + V, 7 + £

In order to determine coordinates of point Qi, we take into account the fact that (,

rj, and £ are functions of a, /i, and 7. Correspondingly, in the linear approximation,

coordinates of point Q\ are equal to

a + a + C, + a-^-+ b-£-+ c-J?-, (2.153)
da d[3 97

_ dri dn dri d£ , d£ df

da 8(3 c?7 9a 3(3 dj

Therefore, the difference in corresponding coordinates of points Pi and Qi is



2.3 STRAIN, STRESS, AND HOOKE'S LAW IN THE CURVILINEAR... 117

dq , / dri\ drj ^ d£ d£ ( d{\

da \ dd ) dj da 9/3 \ d-f J

To evaluate the distance rx = P\ Q\, we have to find metric coefficients ha , hp , and

h1 at point Pi. Again in the linear approximation we have:

, a/ia 9/zQ <9/ia

, 9/i« 9/ia dhg ,
h = h + ^ + V~^+^, (2.155)

By definition, projections of vector Pi Qi on the coordinate lines at point Pi are

M a = h'a d , (ri)fj = tip rh, (ri)7 = /t7 ̂  (2.156)

Performing multiplications on the right side of this set, we have to discard from our

approximation terms of the second and higher orders with respect to £, r/, and £, as

well as their derivatives. For instance, component (Vi)Q becomes

= aha [l + ̂ )+bhal±+chaT^ + a(-^- + ar]-^ + a£—^
\ da) op oj da dp 07

Taking into account that components of vector PPi ,

PPi = uQiQ + M̂ i/3 + u7i7,

at point P are related to (, rj, and £ as

Wa = / l a C M/3 = ^ r y , U7 = / l 7 £,

and making use of eqs. 2.152, we have

(n)a = r / 1 + - - + - — — + -——- + -——- +m—— + n——\
I \ da ha da ha dp ha 07 / hp dp h107 J
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- • [' 0 + i £ + - ^ - * > ^ " « + • * v t <2-158'

Finally, we obtain

(n)a = r [/ (l + h-f-^ + K%lu^ + h-Jh-'u^ (2.159)

/la 9 ,, _i s K d j 1
+ mVsTp{KUa) + nY1T1

{KUa)\
By analogy,

(r,),, = r [m (l + ft?>ff + V ^ - . , ^ + K%'^)

and ( n ) 7 = r n ( 1 + /«7 ^ + a ^ Ua~da + p ' U?~h~)

+ lhila{h^)+miiUh^)]
Let e be a relative extension of the linear element PQ, i.e.,

r 2 = r 2 ( l + e ) 2 = ( r i ) 2 + ( r i ) 2 + ( r i ) 2 ( 2 1 6 1 )

Substituting eqs. 2.159 and 2.160 into eq. 2.161 and discarding squares and products of

ua, up, and w7, we obtain

(1 + ef = l2 + m2 + n2 + 2l2eaa + 2m2ePa + 2n2e77 + (2.162)

2mnep1 + 2nleai + 2lmeap



Here
1 dua u(i dha uy dha 1 dug u7 dhg ua dhg

ha da hahp d(3 hah7 d'y ' hg d,6 hgh~, d'j hahg da '

1 duj ua dhj u8 dh7 hj d fu7\ hg d (ufj\ , .
Ai7 07 /ia/i7 oa / i ^ ^ op hg op \h^ J h7 07 \hpj

h-fdjXhaJ hadayhjj ' hada\hpj hpd[J\haJ

Since I'2 + m2 + n2 — 1, after taking a square root eq. 2.162 becomes

e = eaa I
2 + epp m2 + e77 M2 + e^7 mn + e7 a nl + eag ml, (2.164)

which coincides with eq. 2.133. Coefficients

C-aa, fi/3/3, 677, e/3j, f^a, eaf}

are six components of the strain tensor in the curvilinear orthogonal system of coordi-

nates, and they were first derived by Lame. As an illustration, consider the cylindrical

and spherical system of coordinates. As we already know, in the first system

a — r, (3 = <p, and 7 = z, while ha = /i7 = 1 and hg = r

Therefore
dur lduv ur duz

err = -7Z-, e,fiv = -—^ + —, ezz = —-, 2.165
Or r dtp r oz

1 duz du,p dur duz du,p uv 1 dur
^•ipz ^ 1 ~T{ ? &rz ~T{ ~r ~T{ ? &rw ~~^ ~r 7.

r dip oz oz or or r r dip

In the spherical system R7 97 ip

ha = 1, hg — R, h7 = Rsin9,

we have
duR 1 due uR 1 duv ug , a u R

dR R 36 R Rsm6 dip R R

1 dun duv uv dug ug 1 duR
6ipR = Rsin9 3<p +~d~R~~R.1 &m = ~d~R ~ R̂ + ~R~d6~
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Hooke's law

In the curvilinear orthogonal system of coordinates, angles between faces of an elementary

volume are equal to TT/2, and they can be treated as planar faces. Correspondingly,

relationships between stresses and strains (Hooke's law), derived in the Cartesian system

of coordinates, remain valid in the general case. Note that a difference of face areas of the

elementary volume is an order of magnitude smaller and in the limit it can be neglected.

As was shown earlier,

TXX = A 0 + 2fiexx Tyz = iieyz

Tyy — A O + 2/J.e.yy T ZX = flC^

TZZ — A 0 + 2jiezz rxy — jiexy

Here 0 = div s is invariant. Therefore, we have

raa — A 0 + 2/ieQQ, rpp — A 0 + 2^6,3,3, T 7 1 = A 6 + 2/I e77 (2.167)

T 7 a = \± eja, Tp7 = nepn, Taj3 = fx eag



Chapter 3

Elastic waves in a homogeneous

medium

We will first consider longitudinal and shear waves caused by spherical sources, and next
we will study waves caused by the action of a single force F(i). Finally, we will discuss
propagation of plane waves in a homogeneous medium.

3.1 Longitudinal spherical waves

First suppose that a longitudinal wave is caused by vibrations of a spherical shell having
a very small radius. Also, it is assumed that each point of the shell surface is subjected
to an action of force that has only the radial component and the same magnitude:

F(t) = r 0 S i r (3.1)

Here S is the surface area, To is the normal stress, and ir is the unit vector normal to
5. Because of stress variations caused by very small changes in the shell radius, a wave
arises and propagates through a homogeneous medium. It is obvious that a distribution
of wavefields that accompany the wave - namely, stresses, strains, displacement and
velocity of particles - possesses spherical symmetry. Taking this into account, we choose
a spherical system of coordinates with the origin at the source center and assume that
all fields depend on the coordinate R only and on time t.

Scalar potential
To determine wavefields, we use the scalar potential U related to displacement s

(Chapter 2):

s = grad U (3.2)

121
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U is also a function of R and t:

U = U(R, t) (3.3)

At regular points, U satisfies the wave equation

where

is the velocity of propagation of longitudinal waves. In addition, we have to describe the

behavior of the potential on the shell surface and formulate initial conditions. Vibrations

of the source generate the outgoing wave, the magnitude of which decreases with distance

R and in the limit:

U(R, t) -> 0 if R^-oo (3.6)

This simply means that sources of waves are absent at infinity. The same behavior follows

if we imagine a spherical surface with a radius so large that the wave does not reach it

before or during the time of observation. Suppose that displacement of the shell surface

is the given function of time

f 0 t <0
*« ( t ) = { s0 f(at) t > 0

Then, as follows from eq. 3.2, the boundary condition for the potential at points of the

shell surface can be represented as

— = / ° * < ° (3 7)
dR~ \ s0 f(at) t > 0 ' '

Assume that Ro is the shell radius at rest. The wave was absent at each point of the

medium until the instant t = 0, when the source was turned on, that is,

dU
sR(R,0) = 0 or 7775 = 0 for t<0 (3.8)

oR

In accordance with Hooke's law, the second derivative, d2U(R,0)/dR2, also vanishes.

Note that the initial condition contains information about waves at infinity. Thus, the
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solution of the boundary value problem in terms of scalar potential should satisfy the

following conditions.

1. At regular points of the medium

v 2 a^9
cf at/

2. At the surface of the source

3. At the initial moment, the wavefield is absent inside the medium

* M = 0 if * > « , . « = 0

First, we solve the wave equation, which, in the spherical system of coordinates (Chapter

2), is

1 d (R2dU\_ ld'2U
J?dR{RdR)-c?W (3'9)

since the potential depends on coordinate R only. To simplify its solution, we introduce

a new function: W = R U. Differentiation and multiplication by R2 give

RdR-^+R^R

Therefore, eq. 3.9 becomes

d'2W _ 1 d'2W

1m2 ~7f~drr

This equation was already derived in studying the propagation of waves along the bar

(Chapter 1). Its solution consists of two independent functions,

M01 (*~?)] and 5 ih('"^)]
Correspondingly, for scalar potential we have

U(R,t) = ^h [ai (* " f ) ] + f •9i [fli (t+f) •• (3-10)
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where A and B are constants. The second term at the right side of this equation does

not satisfy the initial condition, since it describes the wave traveling from infinity to the

source. For this reason, we let B — 0, which gives

U(R,t) = ̂ h [«i(*-f)| (3-11}

It is clear that U(R, t) describes the propagation of a wave away from the source at the

origin with the phase velocity Q and satisfies the wave equation and eq. 3.6. In order

to determine the unknown coefficient A and function f\, we use condition 3.7, which

is valid at points of the source surface. It follows from eq. 3.2 and eq. 3.11 that

. , dU A \ ( R\] Aai rl \ ( R\]

where / / \a,\ (t — R/Q)] is the first derivative of the function with respect to its argument:

a,i(t — R/c.[). Now we make three assumptions. First, suppose that pulsations of the

source are characterized by very small displacement:

1. |s f l(i) |<i*o

For this reason, in satisfying boundary condition 3.7, we approximately define the position

of the shell by the constant coordinate i?o- Correspondingly, displacement of the surface

point becomes:

•^ ' - - jg ' -K' -^l -^ ' - 'h ('"?)] (3'12)
Thus, the determination of unknowns is related to the solution of the differential equation.

To simplify this procedure, we also suppose that the second term on the right side of this

equation is relatively small,

*I*4R)]H£4R)]I
and that

3. t » ^
Q

Then, instead of eq. 3.12, we obtain

sOf(at) = - ^ M ( 3 . 1 3 )
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The latter equality takes place if

ai = a-, fi{ait) = f{o,t), and A = — R^ s0

Substitution of cq. 3.13 into cq. 3.11 gives an approximate expression for scalar potential:

U(R,t) = -^f[a{t-f^ (3.14)

It is obvious that the function U(R,t) satisfies the wave equation and the condition

near the source. Since the function / [a(t — R/ci)] and its derivatives are equal to zero

when the argument a(t - R/c{) is negative, scalar potential U also obeys the initial

condition. Therefore, we have solved the boundary value problem. Eq. 3.14 describes

scalar potential in a homogeneous medium, provided that the spherical source has a very

small radius.

Equations for displacement, velocity of particles, and dilatation

Taking into account eq. 3.2, we have for the radial component of displacement SR

and for the velocity of radial displacement vR — sR(R,t) the following expressions:

•'<*.)-£*/[.(«-£)]+!£./'[<•(.-(•)] and (3,5)

•«™=§~4H)]+^4K)]-
while

se — sv — 0 and v g — vv — 0

By definition, dilatation is equal to

9 = divS = ^2^Ii(R
2sn) (3.16)

Performing a differentiation, we have

•--iM^'-K'-!)] (3-l7)
At the same time,

curl s = curl grad {7 = 0,
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and, as we know, longitudinal waves do not cause rotation of an elementary volume,

regardless of its orientation.

Spherical wave
Let us emphasize again the fact that if the argument a(t — R/c{) is negative, the

function / and its derivatives are equal to zero. Also, it is clear that distribution

of wavefields in space is defined by the single coordinate R. In other words, these

functions remain constant on the spherical surface with the center at the source. This

wave possesses spherical symmetry and, for this reason, it is called a spherical wave. The

displacement and velocity of particles have only the radial component perpendicular to

these surfaces, (R = const), and this fact reflects one of the features of longitudinal

(dilatational), waves. Suppose that the source surface changes its position during time

interval At:

Q<t< At,

and we study the wave at some point located at distance R from the source. As follows

from eqs. 3.15, motion of particles is absent if

Q

since the argument is negative. Then, at instant t = R/ci, the wave arrives simultane-

ously at all points having the same coordinate R, and we observe the wavefront. Within

the time interval

R R A

— < t < — + At,
Cl Ci

particles of a medium are involved in motion, and elementary volumes become deformed.

At instant

t=* + At,

the rear of the wave passes the point of observation, and the medium is then again at

equilibrium. Thus, regardless of the distance, the duration time of of the wave is equal

to At, and the arrival time of the wave increases with R. As an illustration, consider

wave distribution as a function of distance R. First of all, the wave may exist only at

distances R that satisfy the condition

R< c,t
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Let us distinguish two cases, namely

1. At > t and 2. At < t

In the first case, the source still vibrates at instant t, and therefore the wave occupies
the spherical volume having a radius equal to Rc = C(t. In the second case, the source
was turned off before the wave arrived at the observation point. Respectively, at instant
t = R/ci, the rear of the wave reaches points with the coordinate

R = ct(t- At)

Thus, we observe the wave within spherical layer having the thickness AR = ciAt.
Wavefields

Now we outline some features of wavefields SR and VR. The work of external
forces of the source is transformed into the mechanical energy of the wave, and its amount
remains the same since the influence of dissipation is neglected. As we know, when time
elapses, the volume of the spherical layer occupied by the wave becomes large, and the
energy density decreases. This shows that with an increase of distance R, wavefields
become smaller, which of course follows from eqs. 3.15. In accordance with eq. 3.17, we
see that behavior of dilatation 9, regardless of the distance from the source, is defined
by the second derivative of the function / [a (t — R/c[)]. For instance, in the vicinity
of the source, the first term of the expression for the displacement

R%sof [a{t~fj
plays the dominant role, but dilatation essentially depends on the derivative of the second
term

^' ' [«H) ]
The other important feature of function 0 is that its dependence on distance remains

the same everywhere. Finally, as follows from eq. 3.17, dilatation of the spherical wave
decreases relatively slowly, (1/R), and it is inversely proportional to phase velocity
Q. This suggests that a finite value of this velocity is a vital factor in producing a
deformation. For instance, if the wave propagates instantly, (Q —>• oo), then the
displacement, sn(R,t), becomes equal to

sR(R,t) = ^f(at),
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Figure 3.1: (a) The function f(t) and its derivatives (b) Zones of compression and tension
(c) Distribution of Sjt as a function of time

and, therefore, dilatation G, characterizing a change in an elementary volume, vanishes.
This result is not accidental, and it is true for any wave.

To demonstrate the wavefields, suppose that displacement of the shell surface, (R, =
i?o), begins to increase at instant t — 0, then reaches the maximum, and then gradually
approaches zero. In addition, we assume that the first and second derivatives of f(at)
are also equal to zero at the beginning t = 0 and at instant At. Behavior of those
functions is shown in Fig. 3.1a. As we see, the function f"{at) changes its sign twice.
Let us suppose again that we observe the wave at some point with the coordinate R.
Until the moment t — R/ci, the wave is absent. Then, during the time interval

R R x
— < t < — + At,
Cl Ci

there are two subintervals during which dilatation is negative, but between the intervals
it is positive. We assumed that displacement of the source shell is characterized by one
maximum only. In a more general case, the number of time intervals with positive and
negative values of dilatation would increase. The zones of compression and expansion



3.1. LONGITUDINAL SPHERICAL WAVES 129

carried by the wave always accompany each other within the moving spherical layer, Fig.

3.1b. In order to prove this fact, consider the integral from dilatation

Jedt = - ^ i , (3.i8)

where

R R v
h = e, t2 = — + At + e, e<l,

Cl Ci

At is the duration of the source action, and

t-2

I = a I f" \a(t--\\ dt (3.19)

Since at instant t — t\ the wave has not yet arrived at the observation point, the scalar

potential U and its derivatives are zero. Therefore, eq. 3.19 becomes

'"'[•(-?)]
If we assume that the function / ' [a (t2 — R/Q)] differs from zero, then in accordance

with eqs. 3.15 there must be particle motion behind the wave rear. Because this is

impossible, we have to set

/ ' L u 2 - ^ j | = 0 , i.e., fedt = Q (3.20)

The latter shows that if the source generates vibrations during a finite time interval,

then for any function / (at) there are zones of compression and expansion within the

spherical wave. Moreover, distribution of dilatation between the front and rear of the

wave is such that condition 3.20 is met.

In accordance with eqs. 3.15, the displacement of particles and their velocity are

described by the sum of two terms, and each term has a different dependence on distance

R. For this reason it is natural, as in the case of acoustic waves (Part I), to distinguish

three intervals of distances - the near, intermediate, and far zones.

1. Near zone If distances from the source are relatively small, the first term of

expressions for sj; and Vjt is dominant, eqs. 3.15, and we have
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In this zone, functions SR and VR decrease relatively quickly with distance from the

source, and their dependence on time is the same as that for corresponding functions on

the source surface. However, dilatation cannot be derived from the approximate equation

for displacement, eq. 3.21. As was pointed out earlier, in order to obtain the correct

expression of 0 it is necessary to take into account the second term of the function SR

(R,t), eqs. 3.15.

2. Intermediate zone With an increase of distance from the source, the influence

of the second term at the right side of eqs. 3.15 becomes more noticeable. Because of

this, with a change of distance R, the shape of wavefields SR (R, t) and VR (R, t) as

functions of time also varies. An example of such behavior of displacement is shown in

Fig. 3.1c.

3. Far zone As follows from eqs. 3.15, at sufficiently large distance we have

•-<*'>-fif-4H)]' •"'"•"-^••'•['•H)] (3-22)
In this zone, unlike in the previous one, all wavefields decrease with distance relatively

slowly. As in the near zone, wave behavior as a function of time is independent of distance

from the source. With an increase of R, the curvature of the wave surfaces becomes

smaller. This leads to an increase of an area, where the wave can be treated as the plane

one with almost the same magnitude.

If we assume that the wave is sinusoidal, then in accordance with eqs. 3.15 we have

Rl ( R\ Rl SOLJ ( R\
sR(R,t) = -^s0smco(t--)+ ° ° cos a; ( t - - )

R2 \ cij ciR \ cij

Correspondingly, the far zone is observed when the distance exceeds the wave length, A;:

R > Xi (3.23)

It is obvious that behavior of particle displacement s associated with the longitudinal

wave is the same an clastic and acoustic media (Part I).

Strain and stress
Now we focus our attention on forces acting on faces of an elementary volume bounded

by coordinate surfaces. As was shown in Chapter 2

eRR = -Q^, e»e =efV = -R- (3-24)

and

e-8ip — eVR — eRe — 0, since se — sv — 0 (3.25)
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Taking into account eqs. 3.15, we have

eRR = ^ — / \a [t ^ - — / \a[t 3.26

R3 [ \ cj\ c,R2 [ V c,J\

and

Rl ,\ (. R\\ , Rlsoa \ ( R\]

We can again distinguish the near, intermediate, and far zones. In the first two zones,

both strains CRR and egg (evv) can be comparable, but in the far zone the radial strain

becomes dominant:

RRR > egg and eRR > evv (3.27)

Note that the existence of strains does not require the presence of the corresponding

component of the displacement. For instance, particles do not move along the 9 and

ip coordinate lines ( sg = sv = 0), but strains egg and evv, differ from zero. In

accordance with Hooke's law:

TRR = A 0 + 2/i eRR, rgg = \ e + 2n egg, TW = A 0 + 2/i evv (3.28)

and

TRB = /i efl9, T R V = \i eRlfit Tgip = fi eBlf (3.29)

Since nondiagonal elements of the strain tensor are equal to zero, we have

TRB = TRV = T$V = 0, (3.30)

and the elementary volume surrounded by coordinate surfaces is subjected to the action

of normal stresses only. As in the case of strains, the behavior of stresses varies depending

on distance from the source. For instance, taking into account eqs. 3.17 and 3.26, stresses

in the wave zone arc

r M = A8 + 2, eRR = J^JUL f [a (* - | ) ] , (3.31)
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while

Tge = Tipv = Xe or Tge = -Rl^X
R

Sa f" [*(t-fj\ (3-32)

Thus, in the wave zone, stresses decay with distance in the same manner, and the ratio

between them is

^ - = — = A = Im (3.33)
TRR cfp A + 2/i TltR

Certainly, unlike the acoustic wave, forces acting on faces of the elementary volume differ

from each other. In accordance with eqs. 3.15, the velocity of particles in the wave zone

is

and, therefore,

^ = - - = 4, ^ = \ , (3.35)
TRR cip Z Tee A

where Z = cip is the impedance of a medium.

Spherical source with finite radius
Until now we have implied that the radius of the source, i?0, is very small, and

observations are performed at times essentially exceeding RQ/CI. Next we remove

these restrictions and consider sinusoidal waves. Of course, as before we can define the

displacement of the source. However, let us approach it differently and assume that the

stress

TRR(Ra,t) = RzTQe-%ujt (3.36)

is the same at all points of the source surface. As follows from eqs. 3.28,

or

TRR(R,t) = (\ + 2,i)^+2^SR (3.37)

Since

dU
SR~dR>
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we have in the vicinity of the source

TaR(Ro,t) = (X + 2 ^ + ^ (3.38)

This allows us to determine the unknown coefficient A in the expression for the potential

U(R,t) =Re (U e-l0jt), (3.39)

where

U = ̂  elkR (3.40)

R

is the complex amplitude of the potential and k = W/Q is the wavenumber. Substitution

of eq. 3.36 and eq. 3.40 into eq. 3.38 gives

, L , d2 ( elkR\ 2A d ( e l k R \
To = A [{x+2^dR2{-ir) + ^dR{-ir)

Performing differentiations, we obtain

A{w) = T°U°e — (3.41)

Also, it is useful to represent A as:

A(w) = l°R°e
2 ' (3.42)

Here

2 C s J Cs A " Co .QNW 0 p - ~5~> " P - w 0 p — > C5 - W - (3.43Jn0 ci \ p

where cs is the velocity of shear waves. Now it is easy to derive an expression for the

potential of a transient wave. Suppose that T##(_R0 , t) is an arbitrary function of time

and T(UJ) is its spectrum. Then, applying Fourier's integral, we obtain

oo

U(R,t) = — / A (u) e-ik(Ro-R) e-
lujt dui (3.44)

2-KR J
— oc
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Figure 3.2: (a) Source of shear wave (b) Displacement sv in the near zone (c) Zones of
a rotation with different directions

3.2 Spherical shear wave in a homogeneous medium

Suppose that a spherical shell or a solid sphere is placed in a homogeneous medium and
that it vibrates around the z-axis, Fig. 3.2a. In order to determine wavefields, it is
convenient to introduce, as before, the spherical system of coordinates originating at the
source center. It is clear that all points of the spherical shell move around the z-axis
at the same angle ip, which in general varies with time. Correspondingly, the source
displacement has only the (^-component. In particular, for points of its external surface,
R — Ro, we have:

so(Ro,t) = Rosin9 f(at) (3.45)
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Thus, maximal displacement occurs at the equatorial plane, (0 = TT/2), while points

located at the z-axis remain at rest. Such motion of the source causes in its vicinity

deformation of a medium, and therefore the wave arises. To simplify derivations, we make

several assumptions. First, assume that as well as the source, particles of a medium have

only the (^-component of displacement, but

sR = se = 0 (3.46)

Then, taking into account the symmetry, (dsv/dip = 0), the expression for divergence

of the field s has the form

^ A L ^ i.e., divs = 0 (3.47)
R2sm0dip RsmO dip

This means that propagation of such a wave is not accompanied by a change in the

volume, and it suggests that we are dealing with a shear wave.

The potential of the spherical wave
As was demonstrated in the previous chapter, we can represent displacement asso-

ciated with a shear wave in terms of the vector potential ip:

s = curl */>, (3.48)

which satisfies the wave equation

W = i g ,3.4.,
Here

cs = J^ (3.50)

is the velocity of propagation of shear waves. Note that function s also obeys the same

wave equation. In principle, we can solve this equation, assuming that vector sv depends

on the azimuthal angle 6 in the same manner as that of the source, eq. 3.45. However,

it is simpler to proceed from the vector potential T/». In accordance with eq. 3.48,

an infinite number of vectors ip describe the same field s. This clearly shows that,

usually, functions ip do not have any physical meaning. However, it does not exclude

a case in which some vector ?/> characterizes a certain physical quantity. Bearing in

mind an ambiguity in choosing i/>, let us attempt to solve the boundary value problem,

provided that V has a single component along the axis of rotation, Fig. 3.2a, i.e.,

ip = ij) k, (3.51)
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and the scalar function ip depends on time t and coordinate R only. Here k is

the unit vector. Since it has the same direction at all points of a medium, eq. 3.49 is

simplified and we have

** = ?% « 3 - 5 2 '
Taking into account our assumptions

dip dtp
~dd = ~£kp= '

eq. 3.52 in the spherical system of coordinates becomes

WM [R OR) ~ d>W (3'53)

Eq. 3.53 has exactly the same form as the wave equation for scalar potential that describes

the longitudinal spherical wave. For this reason, again applying the substitution W =

R ip, we arrive at the equation

32W _ 1 d2W

Therefore, the function ip characterizing the outgoing shear wave is

W<) = ̂ /i[ai(*-^)] (3-54)

The simplicity of eq. 3.54 is due to several assumptions that require justification. Because

of this, our first goal is to demonstrate that the wavefields described by eq. 3.54 satisfy

boundary conditions, provided that constants Ao and a1; as well as the function

/iU(*--) ,
L cs .

arc properly chosen. First, we will find an expression for displacement. From cq. 3.48,

it follows that

iR Rig Rsin0 iv

1 d d d
S = W ^ 9 M d O d^ (3 '55)

ipR Ripf, RsmOipy
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where iR, ig, and iv are unit vectors oriented along coordinate lines. As is seen from

Fig. 3.2a

tpR = ijp cos 9, ipe = -tp sin 9, W = 0

or

i'R = ̂ / i U(* - -)1 cos0, i>e = - ^ / i L ( i - - ) l sinfl, $ = 0 (3.56)

Substitution of cq. 3.56 into cq. 3.55 gives

sR = 0 and se = 0, (3.57)

which agrees with our assumption about field geometry. Moreover,

*4[>*>-^]
Performing differentiation, we obtain

sv(R,t) = A0 {^fl [Ol(* - f)] + ̂  // [Ol(* - f)] } sin. (3.58)
It is clear from eq. 3.58 that particle displacement has the same dependence on angle 9

as the source. As we did with longitudinal waves, we will determine unknowns from the

condition near the source.

Small spherical source

First, consider a transient wave caused by the spherical source with a relatively small

radius, RQ (RQ —> 0). Then, as follows from eq. 3.58, near the source, displacement is

approximately equal to

sv(R,t) = ̂  A L(< - ^) j sintf (3.59)

We suppose that the time of observation greatly exceeds the ratio R/cs:

i > - , so that sv(R,t) = A° f^Hthm9, if R ~ i?0 (3.60)

In the vicinity of the source, particles of a medium move in the same way as the surface

of the source, and therefore

so I {at) = ~EPi h(ait)
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It is obvious that this expression is true at any time, if

cii = a, fi(ait) = f(a t), and A o = RQ S0 (3.61)

Thus, the expression the displacement becomes

sv{R, t) = Rl s0 | - 1 / [a(< - ^ ) ] + ̂ - /' [a(i - ^ ) ] | sin 9 (3.62)

It is essential that ^( i? , i) obeys all conditions of the boundary value problem and,

therefore, in accordance with the theorem of uniqueness, describes the wavcficld caused

by the given source. In fact, direct substitution shows that vector s = sv\v satisfies the

wave equation

V2s = 1 ^
cldV

at regular points. Also, sv(R,t) vanishes everywhere when t = 0. It tends to zero

with an increase of distance R and coincides with particle displacement of the source

surface if R = RQ. This means that all assumptions were correct and the shear wave

is accompanied by the field sv(R,t), eq. 3.62. Taking a derivative from sv(R,t) with

respect to time, we obtain for particle velocity

«,<*«> = «8«. {%r [«(«- f)] + ^ r r [.(. - f ) ] } -m. (mi
Comparison of eqs. 3.62 and 3.63 with eqs. 3.15 in the previous section shows that

expressions for displacement and velocity of particles caused by longitudinal and shear

waves, respectively, coincide if cs = Q.

The field s
Now we are ready to describe behavior of the spherical shear wave. For illustration,

suppose that motion of the source is

{ 0 £ < 0

f{at) ()<t<r (3.64)

0 t > T

Because of source vibrations, the shear wave appears and moves away from the source.

Its phase surface
R

t = const
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is spherical, and the motion of particles is tangential to this surface. Unlike the longitudi-

nal wave caused by the spherical source, displacement sv varies on the phase surface of

the shear wave as sin^, and it reaches maximal value at the equatorial plane, 9 = TT/2.

Again, as with longitudinal waves, it is natural to distinguish the near, intermediate, and

far zones. In the first zone, particle displacement varies synchronously with the source

and decays relatively quickly with distance. As an example, distribution of the function

sv in the near zone between the wavefront and its rear is shown in Fig. 3.2b. In the

intermediate zone, the field sv is defined by both terms in eq. 3.62, which differently

depend on R. Correspondingly, a wave shape varies with distance. Finally, in the far

zone the field changes rather slowly, and its behavior is controlled by the derivative of

the function / [a(t — R/cs)}. Suppose that the shear wave is sinusoidal. As follows from

eq. 3.62, we have

sv = S0R'Q — sino;(i ) + —— cosw(f ) sin6»
Six, C$ Jlt.Cif C$

This clearly shows that as with the longitudinal wave, the far zone exists at distances R

exceeding the wavelength As:

Next consider motion and deformation of an elementary volume of a medium. First

of all, since div s = 0, the shear wave does not produce a change in the volume.

The elementary volume can experience rotation as well as pure shear and translation

(Appendix E). Because curl s is sensitive only to rotation, it is useful to find its

components. By definition we have

iR R ie R sin 6 \v

1 _d_ d_ d_
CUr S ~ R2 sin 0 ~dR, 89 Ihp

0 0 Rsm6 s^

So

curlj? s = RsinQ ~Q0<ys[nO AV)> C u r l» s = ~rR~dR^Rs'p^ Cmllfi S = ° ^3'65^

Making use of eq. 3.62, we obtain

curlfl s = 2R2
0 So | ig / \a(t - f)] + ^ - / ' \a(t - ^)1 | cos 6 and (3.66)
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=•* s = RI „ { £ / [.(, - 5,] + _£.,- [n(f _ 5,] + | l r [a(t _ 5,] j ̂

Thus, the axis of rotation of an elementary volume is located in the plane ip = const, and
its orientation changes from point to point. As follows from cqs. 3.66, the ^-component
of curl s prevails in the far zone, and we have

cur\e S=
R^^Sm9f"\a(t-R)} (3.67)
cjR [ cs J

Consider the integral

1,2+S
f

I — / curlfl s dt
ti-e

Here t\ and ti are arrival times of the front and rear of the wave, respectively, and e
is a very small number. By analogy with the similar integral for dilatation carried out
by longitudinal waves, we conclude that

/ = 0 (3.68)

This means that within the spherical wave, there are intervals of distance R, with
opposite directions of rotation. Fig. 3.2c. However, equality 3.68 is an approximate
one, and it becomes more accurate with an increase of R. Taking into account that
displacement related to translation obeys the homogeneous system

curl s = 0 and div s = 0,

we can say that an elementary volume is in general involved in both types of motion:
rotation and translation.

Strain and stress
Deformation related to a shear wave may cause only pure shear; otherwise, div s

would not be equal to zero. Proceeding from equations for strain derived in Chapter 2,
we have

eRR = 0, eee = 0, e w = 0, e ^ = - ( -^ - sv cot 0 J , (3.69)

ds,fi sv
e*R--dR~H' eRe-[)
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Let us make some comments:

1. The absence of diagonal elements of the strain tensor indicates that a volume does

not change.

2. Since neither type of motion causes deformation, shear strains characterize a pure

shear, i.e., a change of the angle between neighboring faces of the volume. 3. As we

know (Appendix D), a superposition of two types of motion and pure shear is equivalent

to simple shear. Substitution of eq. 3.62 into set 3.69 yields

eve = 0 (3.70)

and

e,R = -K »o { J j / [«(t - *)] + j £ - / ' [»« - | ) ] (3-71)

+M /"[" ( i-! )]} s m e

Thus, only one shear strain, eVR , differs from zero. By definition, this means that the

angle between coordinate lines R and <p changes, whereas angles formed by lines R

and 6, as well as <p and 9, remain equal to TT/2. Of course, if an elementary volume

is arbitrarily oriented, then all angles between faces can be distorted. In accordance with

Hookc's law, normal stresses arc equal to zero, since

e/?R = eee = e w = 0 and div s = 0

Besides

There is only shear stress acting on faces of the volume perpendicular to the coordinate

line R. It defines the surface force oriented along the ip-line. From eq. 3.71 and the

relationship TVR = fj, evn, we have

+£4O]H
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and its behavior varies with distance R. In particular, in the far zone,

TvR = -%^*rUt-±)]**e (3.73)

As follows from eq. 3.63, the velocity in this zone is

vv(R,t) = *L^-f» U - -)1 sin0 (3.74)
R cs [ cs J

Therefore, we have

vv{R,t) = cs = 1
TvR(R,t) fl Zs

Here

H p cl
Zs = — = = pcs 3.76

cs cs

is the impedance of the shear wave in the far zone. Earlier we demonstrated that the

Poynting vector is defined as

Y = TV

where r is the stress tensor, and in our case

/ 0 0 TRV \ ( 0 \

Y = 0 0 0 0

\rRv 0 0 ) \ vv J

Hence

YR = TRIPVIP, Ye = 0, Yv = 0 (3.77)

and, as we can expect, the energy travels only in the radial direction away from the

source.

The unknown Ao In order to determine wavefields for an arbitrarily radius Ro,

we assume at the beginning a sinusoidal dependence on time. Then, as with longitudinal

waves, the complex amplitude of the ^-component of the potential xjj can be written in

the form

'il> = Ao , where ks = — (3.78)
it Co
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In accordance with eq. 3.62, the complex amplitude of displacement slfi is equal to

f JksR AU ., n \
~sv(R, ks) = Ao It^- + %± etk'Rj sin 0 (3.79)

At the surface of the source we must have an equality:

^ eiksRo
«o = Ao—~2— (i + iksR0)

Therefore

Ao = -^A^e-iksR<, (3.80)

Next, suppose that instead of displacement, we know shear stress, TVR t acting at points

of the source surface. As follows from eq. 3.71 and Hooke's law, the function TVR(RO, t)

varies as sin(9, i.e.,

TVR(RO, t) = ̂  roe~iud sin8 (3.81)

Taking into account eq. 3.72, the complex amplitude of TVR is

~ / 3 3iks k^\ _AU u
T^ = -B^\-R^ii-i)e 8R™9

At the boundary R. = RQ it has to coincide with TVR{RQ, t), given by eq. 3.81, whence

we obtain

r0 R3
0 e-M'R*

B°~ ^ + ZiksRQ-klRl) ( J '82)

Now, knowing Ao or Bo and applying Fourier's integral, we can find the field associated

with transient waves.

3.3 The displacement field s caused by the point force

Prior to a study of wave propagation, it is useful from the mathematical and physical

points of view to consider the case of equilibrium that follows the dynamic stage. Our

goal is to establish a relationship between the displacement field s and the given volume

force F, causing deformation of a medium, i.e., we have to solve the boundary value

problem. In order to solve this task, we use (a) the Helmholtz formula, allowing one to

represent the vector field as a sum of the source and vortex fields; (b) the solution of the

Poisson equation; (c) the condition of equilibrium; and (d) formulas of vector analysis

that relate volume and surface integrals.
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Figure 3.3: Illustration of cq. 3.83

Scalar and vector potentials of the force field F

Suppose that within some portion, Vb, of a homogeneous medium, Fig. 3.3, constant

forces are applied and their distribution is known:

F(q) = p f(q) dV (3.83)

Here q is the point of volume Vb and i(q) is the force per unit mass

f(q)=fx(q)i + fy(q)i + fz(q)K (3.84)

and i, j , and k are unit vectors along coordinate axes. As follows from the theory of

fields, two equations,

curl f = W and div f = 0 , (3.85)

characterize behavior of the field i(q). By analogy with the field of displacement, we

represent the force f (q) as a sum.

f (g)= t1(q)+ f2(q), (3.86)

where

curl fi = 0 div fi = Q(q) (3.87)

and

curl f2 = W{q) div f2 = 0 (3.88)

From the first equation of set 3.87, we have

f^q) = grud U{q) (3.89)
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The second equation of the system of eq. 3.88 gives

f2(q) = cm\ A(q) (3.90)

Thus for the total field t(q), we have

f(q) = grad U(q) + curl A(q) (3.91)

Here U(q) and A(g) are the scalar and vector potentials of the force field i(q).

Certainly there is complete similarity with the displacement field s, which was earlier

represented as

s = grad ip + curl tp (3.92)

Next we arrive at equations describing functions U and A. This procedure was discussed

earlier, and substituting cq. 3.89 into the second equation of the 3.87 we obtain

div grad U = S(q) or V2U = 0 (q) (3.93)

From the first equation of system 3.88 and eq. 3.90, we have

curl curl A = W(q) (3.94)

The latter can be presented in a different form. Taking into account the known equality

curl curl A = grad div A - V 2 A, (3.95)

eq. 3.94 becomes

grad div A - V 2 A = W(q) (3.96)

Since

curl A = curl (A + grad T)

where T(q) is an arbitrary scalar function, we conclude that an infinite number of vector

potentials A(q) describe the same force field ^(q)- Among them we choose those

that greatly simplify eq. 3.96. To do this, let us assume that

div A = 0, (3.97)
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which is usually called the gauge condition. Correspondingly, eq. 3.96 becomes

V2A = - W (3.98)

Note that there is also an infinite number of scalar potentials U(q), but they characterize

the same force field fi(q) and differ from each other by a constant. Thus, we have arrived

at Poisson's equations for both potentials

V2f/ = 9 (q) and V2A = -W(q) (3.99)

Here functions 0 (q) and W(g) are known, and they are

S(q) = d i v f = | ^ + | ^ + | ^ (3.100)

i j k
O r\ r\

and W(<7) = curl f = — — —
ox oy oz
Jx Jy Jz

Here fx{q), fy{q)> a n d fz{q) are scalar components of the known field f (q), which

differs from zero in volume VQ. As forces f (q) are absent outside volume Vo, both

potentials obey Laplace equations

V2U{q) = 0 and V2A(g) = 0 if V + Vo (3.101)

The Poisson and Laplace equations for scalar potential play a fundamental role in the

theory of potential fields, such as gravitational and electric fields. For example, in the

case of gravitational field g (q), we have

curl g — 0 and div g = — 4 njp

Here 7 is the gravitational constant and p(q) is the volume density of masses. Corre-

spondingly, the equation for potential, (g =grad U), is

V2C/ = - 4 7T7/9 (3.102)

Its fundamental solution is

U{p) =-y J ^-dV, (3.103)

Vo
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where Vo is volume occupied by masses, R is the distance between points q and p

where p is a point of observation. Substituting eq. 3.103 into eq. 3.102 and performing

differentiation and volume integration, it is possible to prove that U(p) obeys the Poisson

equation. The same result can be obtained differently. From Newton's law of mass

attraction, it follows that potential due to elementary mass is equal to

p{q)dV
dU(P) = 7 — ^ —

Then, applying the principle of superposition, we obtain eq. 3.103. Since this equation

describes potential of the gravitational field, it has to satisfy eq. 3.102. Note that point

p can be located everywhere - inside volume VQ, at its surface or outside. In the last

case, function U(p) obeys the Laplace equation. At the surface, surrounding Vo, the

Poisson equation is not defined. In the same manner as the gravitational field, potential

U(p) differs from zero outside volume Vo, and this fact is hardly surprising.

When point p is situated inside Vo, the denominator R in eq. 3.103 can tend

to zero. However, this singularity is easily removed because the elementary volume near

point p decreases more rapidly. These results are entirely applied to potential U of the

force field. Comparison of eqs. 3.93 and 3.102 shows that

Vo

Because scalar components of vector potential satisfy the same equations as U:

V2AX = -Wx{q), V2Ay = -Wy(q), V2AZ = -Wz{q),

we have

* o > = i / ^ w-hj^- ™=h!^
Vo Vo Vo

or

Vo

Thus, we have expressed both potentials in terms of the given force f (q) and, in

principle, our first task is solved. However, functions Q and W contain derivatives

from scalar components off, eq. 3.100, and this is certainly a shortcoming of eqs. 3.104
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and 3.105. It is much more attractive to express integrands in these equations in terms

°f fxi fy> a n d fz themselves, and this is our next task.

Relationship between potentials and components of volume force f

We use two known formulas of vector analysis (Part I):

1 9 i i i I
- d i v f = d i v - - f • g r a d - (3.106)

and

1 « 9 f ? 1
-cur l f = curl— + f x g r a d - (3.107)
R R R,

Here index q means that differentiation is performed with respect to coordinates of

point q. Substitution of eq. 3.106 into the integrand of eq. 3.104 gives

Vo V0

Beyond volume Vo, force f is equal to zero. Accounting for this, we can rewrite the

first integral as

/div^W=/div^W, (3.109)
J R J K
Vo V

where Vo is a portion of V.

Now, applying the Gauss formula (Part I), we have

/dJv̂ W = / ^ ? (3,10,
v s

Here S is the surface surrounding volume V and dS =dSn. The unit vector n is

directed outside volume V, and q is any point of the volume. Taking into account

that force f(q) is equal to zero at points of the surface S, Fig 3.3, we conclude that

/ " d i v ^ | W = 0 (3.111)

Vo

and therefore

U(p) = ̂ fi(i)-V^dV (3.112)
Vo
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It is also convenient to represent this expression in the form

u(p) = -^Jf(Q)-V^dv, (3.H3)
Vo

since

« 1 « 1
VR = ~VR <3-114>

and integration and differentiation are performed with respect to different points. By

definition we have

U(P) = ~ j [fM§~ + fM)~ + fMl^} dV, (3.115)
Vo

and it represents the relationship between scalar potential U and components of force

i(q). Here x, y, and z are coordinates of point p.

Next we derive similar expressions for vector potential A. Substitution of eq. 3.107

into eq. 3.105 yields

A(p) = ±- i curl ^ dV + ±- h{q) x V^ dV (3.116)
4TT ,/ K 4TT J K

Vo VB

Applying Stokes' formula of vector analysis (Part I), the first integral of eq. 3.116 becomes

/ V x ̂  dV = j> (n x ̂ \ dS (3.117)
v 's

As before, S surrounds volume V, and Vo is its portion, Fig 3.3a, whence

Vo

We obtain

A(p) = s / f ( 9 ) X ^ V

Vo

or

A(p) = ̂ fv-^xf(q)dV (3.118)
Vo
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This gives

A^-iI^U-fvlA)dV] (3-119)

Vo

Vo

After performing differentiation with respect to coordinates of point p, it is easy to

see that potential A(p) obeys the gauge condition, eq. 3.97. Both sets of equations -

3.104 and 3.105 and 3.115 and 3.118 allow us to determine scalar and vector potentials.

However, the second set is more suitable for our purpose, because it does not require a

knowledge of derivatives offeree components. Besides, eqs. 3.115 and 3.118 permit us

to study one limiting but important case, when the force is applied at the point.

Point force
Again we start from an analogy with the gravitational field and the known expression

of the potential:

U(P)=l(P-^ (3.120)

Vo

Suppose that the field is considered at distances R, which greatly exceed linear dimen-

sions of the volume occupied by masses, VQ. This means that the denominator R is

almost constant, and eq. 3.120 becomes

u(p) = Ji[p(«)dV = 1]!r> (3-121)
Vo

where R is the distance from observation point p to any point q of volume Vo, and

m is its mass. Certainly, with an increase of R, eq. 3.121 gives a more accurate value

of the potential. It is essential that in such an approximation U(p) depends on mass

m, but it is independent of distribution of density p(q) and of the size and shape of

the volume, provided that m remains the same. For instance, a decrease of volume VQ

and an increase of density p(q) do not change the potential, as long as m = const.
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Performing this procedure, (Vo —> 0) in the limit we arrive at the point mass, (Vo —» 0,

p —>• oo). Of course, such a mass does not exist, but this concept greatly simplifies

calculations of the field when distances from the real mass are sufficiently large. Exactly

the same approach is used when we introduce the notion of the point force. Suppose

that the force f (q) is applied in volume Vo and its magnitude and direction are, in

general, functions of point q. Also assume that observation point p is located at a
p

great distance from Vo. Then vector Vl/R in eqs. 3.113 and 3.118 is practically
constant, and we have

U(P) = - ^ I f(q) dV • V-^ (3.122)

Vo

and A(p) =-± J I{q) dV x V-^
i'o

Here R is the distance between point p and any point q of volume VQ. We see that

in such a case, potentials U and A are independent of a distribution of f(q), but they

are defined by the resultant force f°, which is equal to

f ° = I f(q) dV (3.123)

v

Similarly to the gravitational field we can imagine that volume VQ tends to zero, but

i(q) unlimitedly increases, so that f° remains the same. In the limit we obtain the

point force. Respectively, expressions for potentials, eqs. 3.122 are written in the form:

£/M = - ^ f ° - v | (3.124)

and

MP) = " ^ f ° x v i (3.125)

or

uw = -r(f°*Tii + fv07rii + f!Tii) (3-126)

4vr \ ox R y ay R azR)

and
A M - l ( f ° d 1 f ° d ^ A h ) - 1 ( f ° d l f ° d M

(3.127)
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A M - l ( f ° d l f ° d l )

For illustration, consider several cases.

Case one Assume that the resultant force f° is directed along the :r-axis:

f° = (f°, 0, 0). Then eqs. 3.124 and 3.125 are greatly simplified and it gives

f° d 1 f° d 1 f° d 1
U® = -tTXR> ^ = °' ^^tlTzR' A^—td-yR <3-1 2 8>

It is clear that

d_l^ _ x - xq J ^ 1_ _ y - yq d_l^ _ z - zq

dx R~ R3 ' dyR~ i?3 ' dzR~ R3

Case two If the direction of f° coincides with the y-axis, f° = (0, ,/°, 0),

we have

Case three When the force is oriented along the z-axis, f° = (0, 0, fz°), we

obtain

^(P) = - T - ; T p . ^ ( P ) = ^ - 5 > ^ ) = T ^ ^°(P) = O (3.130)47r oz R 4TT oy R in ox R

Case four Suppose that the point force is applied at the origin of the spherical

system of coordinates, (R, 0 , <p). Taking into account that

H-i- <3131>
eqs. 3.124 and 3.125 give

U(p) = ^ , A(p) = ^ (3.132)
4?r R6 An R6

For instance, if the force has only the radial component fn, we have

U{p) = 4^b but A(p) = 0 (3-133)
On the contrary, when f° = /^° i^, we have

U{p) = 0, AR= Av = 0, but A9 = ^ - ^ (3.134)
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The condition of an equilibrium and relationships between potentials of
the force and displacement fields

Earlier we found the linkage between potentials U and A and force components,

eqs. 3.115 and 3.119. In order to determine the field of displacement caused by volume

force, we have to establish a relationship between potentials of fields f and s. To do

this, we use the condition of equilibrium (Chapter 2):

/iV2 s + (//, + A) grad div s + p f = 0 (3.135)

This means that the resultant force, which consists of the surface and volume forces, is

equal to zero. Substitution of eqs. 3.91 and 3.92 into eq. 3.135 yields

/iV2(grad <p + curl ip) + (JI + A) grad div(grad <p + curl ip) + p (grad U + curl A) = 0

Since we can change an order of differentiation and

div curl xp = 0,

we have

p grad V2 ip + fj, curl V2 ip + (p + A) grad V2 ip + p (grad U + curl A) = 0

or

grad [(\ + 2/j,)V2<p + pU] + curl [pV2ip + pA] = 0 (3.136)

This equality takes place if

(A + 2/i) V V + P U = 0 and p, V2tp + p A = 0 (3.137)

or

VV=-^£/, V2IP = - \ A (3.138)
cl cs

Here Q and cs are the velocity of propagation of longitudinal and shear waves,

respectively. This fact clearly shows that equilibrium occurs as a result of propagation of

both types of waves. Note that scalar and vector potentials of displacement field s are

defined only by corresponding potentials of the force field. Finally, Poisson eqs. 3.138

allow us to find functions ip and ip, since U and A are known and

V V
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Here integration is performed over the whole space because potentials U (q) and A (q)

differ from zero beyond volume VQ. In accordance with eqs. 3.115-3.118, determination

of U and A requires integration over volume Vo. Correspondingly, calculation of

potentials of the field s is in general related to double integration, a rather cumbersome

task. This is the main reason why we will pay attention only to the case of the point

force.

Displacement s due to the point force f° To begin with, we find expressions

for the potentials ip (p) and ip (p) and then derive formulas for the displacement field.

Let us assume that force is applied at the origin of coordinates. Taking into account eqs.

3.139 and 3.124-3.125, we have:

V (P) = -TTTT^ f°- / i H ^ > ^ (P) = -^TT-2 f°x / ivhv (3.140)16THC; J R R 16TTZCJ J R R
V V

Certainly, eqs. 3.140 are much simpler than those in a general case, when it is necessary

to perform a double integration. However, we still need to integrate the vector function

over a whole space, and it is rather a tedious procedure. Because of this, we will solve our

task differently and suppose that force f° is directed along the x—axis: f = (fx, 0,0).

This approach was suggested by Stokes, and it greatly simpifies derivations. Then, as

follows from eqs. 3.128 and 3.138,

vl^Sii-A ( 3 ' 1 4 1 »
Now we use the relationship, which can be easily checked by differentiation:

V2 (grad R) = 2 grad - (3.142)

or

V2^ = 2^I, V2^ = 2^I, V2^ = 2^ i
dx dx R dy dy R dz dz R

Respectively, eq. 3.141 becomes

V 2 0 ft ^9R

Therefore,
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As follows from the same eqs. 3.128 and 3.138:

V 2 ^ = 0 V2iL =-^L V2ib = - ^ i
V tfJx

 u ) v Vy 2 ' v V z 2

or

y 4TTC2 dz R 4TTC2
S dy R

whence

Now we are finally ready to determine field s. From eq. 3.92, we have:

s = grad (p + curl ip,

i.e.,

d<p dipz dip dip dipz dip dip
i « O = ^ - + ^ ^ > " ( P ) = ^ i~, W(P) = 7T+X 3.145)

ax- oj/ dz dy ox dz ax-
Substitution of eqs. 3.143 and 3.144 into eq. 3.145 yields

Since

we have

f° ( 1 1 \ 92i? f° 1

also

/° / i i \ a2i?
(; P = 7 - ^ - -3- TTTT' 3.147)

8?r \cf cjj dxdy
and

8vr \C, cf/ oxaz



156 CHAPTER 3. ELASTIC WAVES IN A HOMOGENEOUS MEDIUM

We see that the point force ffc causes displacement of particles in all directions, and, as

was pointed out earlier, this field arises as a result, of superposition of the longitudinal

and shear waves. It is also instructive to determine the dilatation and curl of field s.

Performing differentiations, we obtain

f° d 1
div s = - ^ ^

or

d i V S = - 4 ^ ^

and

f° d 1 f° d 1
curias = 0, curias = — ^ — —, curias = --r^ ^—5

4nc2
s dz R 4irc2

s dy R

or

curlrs = 0, curies = - ^ ^ , curl2s = l l (3.150)

Thus, in general, the point force produces both deformation of an elementary volume

and its rotation. It is easy to derive by analogy expressions for field s when the point

force is directed along either the y— or z—axis.

3.4 Propagation of waves caused by the point force

As in the previous section, we assume that force F is applied in the vicinity of the

coordinate origin, and it has the x-component only:

F = (Fx , 0, 0) (3.151)

Here Fx is an arbitrary function of time. To begin with, we will use results derived

from studying the displacement field in equilibrium. First of all, let us introduce the

potentials of the body force f acting on unit mass,

f = grad U + curl A, (3.152)

where all three functions, f, U, and A, depend on time and coordinates of a point.

Taking a divergence and after it curl from both sides of eq. 3.152, we obtain Poisson's

equations for both potentials:

V2£/ = div f, V2A = -curl f (3.153)
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The last equality is valid, provided that

div A = 0

These equations are exactly the same as in the case of equilibrium, and, correspondingly,
for the point force /° at the origin, eq. 3.128, we have

Here r0 is the distance from the origin to an arbitrary point q(x', '</', z'). Note that
potentials U(q,t) and A(q,t) synchronously change with the force applied at the origin
and this happens regardless of the position of point q. This fact vividly demonstrates
the auxiliary character of functions U and A.

Scalar and vector potentials of field s

The relationship between the displacement s and its potentials,

s = grad f + curl tp, (3.155)

is always valid, since it follows from the system of equations

curl s = W and div s = 0

Now, as in the case of equilibrium, we establish a linkage between the potential of fields
t(q, t) and s(q, t). With this purpose in mind, we use the equation of motion (Chapter

2):

d2s
(X + /i)grad div s + /iV2s + pi = p— (3.156)

Substitution of eqs. 3.155 and 3.152 into eq. 3.156 yields

(A + /i)grad div(grad<^ + curl •0) + /*V (grad<^ + curl ift)

d2

+p(grad U + curl A) = p—-(giadip + curl ip)
atz



158 CHAPTER 3. ELASTIC WAVES IN A HOMOGENEOUS MEDIUM

or

(A + 2/i)gradV2w + p grad U + a curl V2t/> + p curl A —p grad—^- + p curl ——
otz at1

This means that

that is,

W ^ = - ^ (3.157)

and

These arc inhomogencous wave equations, and their right sides arc represented by po-

tentials of the body force. Earlier, we learned that longitudinal and shear waves caused

by the point spherical source obey homogeneous wave equations at regular points. As

we know, the solutions for scalar potential <p and a scalar component of ift have the

forms

—f [t and —/ [t ,
R \ cij R \ cj

respectively, whereas coefficients C\ and C-i are determined from the condition near

the source. This procedure is equivalent to solving an inhomogeneous wave equation with

the given right side. Then, applying the principle of superposition, we see that functions

tpfat) = — ^ I -U (t- - ) dx' dy' dz' (3.159)
4TTC/,/ r V cJ

v

and

</>(p, t) = —l-j [ - A (t - - \ dx1 dy' dz' (3.160)
4ncj J r V CJ

v

obey their corresponding wave equations (cqs. 3.157 and 3.158). Here r is the distance

between points q(x',y',z') and p(x,y,z), Fig. 3.4a. First we focus on scalar potential.

In order to perform an integration, we imagine a medium as a system of thin spherical
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(a) (b)

(c)

Figure 3.4: Mutual position of points p and q and origin 0

shells having the point p as the center, Fig. 3.4b. Their radius, r, changes from zero
to infinity: 0 < r < oo.

Let r be the radius of one such shell and dr its thickness, while dS is the elementary
surface. Taking into account eqs. 3.154 and bearing in mind that the product

r \ cj

is constant at points of the shell surface, we can write

oo

0 S

Calculation of the integral /Calculation of the integral /
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First, consider the surface integral

-^dS, (3.162)

s

where

as is shown in Fig. 3.4a. The integrand can be written as

^V = 4 = -C-^¥1 (3-163)
OX1 TQ TQ

Here

x'
— = cos(r0,i) (3.164)
ro

is the cosine of the angle between the unit vector ro and the x-axis. Therefore

I = -I X^dS = -<fC°S{y)dS (3.165)
J rb J ro
s s

To calculate this integral, we recall the behavior of the gravitational field when a mass

is uniformly distributed over a spherical surface. In accordance with Newton's law of

attraction and the principle of superposition, the field at the origin of coordinates due to

such a mass is

g(O) = - 7 p ^ J j | j d S (3.166)
's

Here r0 is the unit vector directed from the origin to a point of the surface, q. As

follows from eq. 3.166, the x-component of the field the point 0 is

Qx(0) = —JP f —H—dS = -7/9 * 5 dS

s s

or

<?*(0) =ipl (3.167)

The integral / characterizes the x-compoiient of the field caused by the spherical mass,

provided that the surface density p is constant.
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It is clear that with an increase of the shell radius r, the origin of coordinates can be

located either outside or inside a shell. Both cases are shown in Fig. 3.4b,c. As has been

pointed out, it is not easy directly find an analytical expression for / . However, equality

3.167 allows us to solve this task in a very simple manner. In fact, from symmetry it

follows that in the spherical system of coordinates with the origin at point p(x,y,z),

the field has only the radial component

g=(9r ,0 , 0)

This means that field g is perpendicular at the coordinate surface r — const. Then,

use of Gauss's formula

/
<p g • dS = —4 7T7 m,
s

where m is mass inside S and dS = dS n, shows that at each point inside the shell

the field vanishes, since m — 0, i.e.,

7 = 0 if R<r (3.168)

At the same time, outside the shell, the field coincides with that of elementary mass

located at point p. In particular, at the origin of the Cartesian system we have

g(0) = 7 ^ Ro (3.169)

Here Ro is the unit vector directed from the origin to point p. Since m = 4?rr2p, we

have

g(0) = 4^r2
7 / > | j

Correspondingly,

<?x(0) = q(0) • i = 4TT r2 -fp -^f-

or

fc(0) = 47T7P r 2 ^ * 0 ^ = -47T 7P r2 J ^ 1 (3.170)

Comparison with eq. 3.167 gives

an—1
/ = 47rr2 ^ — if r<R (3.171)

ox
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Substituting eqs. 3.168 and 3.171 into eq. 3.161 and introducing a new variable, r =

R/ci, we obtain

Vip,t) = —^ ^ - J rf°(t - T) dr (3.172)

o

In the same manner, components of the vector potential can be represented as

R/cs

^ = 0, V > , t) = —-^- I rf°x(t - T) dr, (3.173)
b

r/c,

and V,(P, t) = " ^ ^ ^ _/ r/°(* - r) dr
o

Displacement components

In deriving expressions for displacement components, we proceed from cqs. 3.155 and

3.172-3.173, as well as from the equality

#• lrfx\t-T)dT=*ft\t-*)1-^ (3.174)
ox J c c c ox

0

This equality is obtained using the rule of differentiation of integrals with respect to the

upper limit. Since determination of s requires some special effort, let us for illustration

consider the component u, which is related to potentials as

_ dip dipz dipy
dx dy dz

Performing differentiations, we have

d^ _ ^d-R^Rf ^dRT^R R dR
dx~ 4ir 9x2 J lx[ ' 4TT dx cf Jx [ c/ dx'

o

W>z 1 92R-' Rf 0 1 3R-1 R 0 R OR ^
dy 4vr dy2 J 4TT dy c2

s cs dy
o
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d'ij,'y 1 82R-A R[S
 0 1 3R-X R 0 R 3R

0

Because

R/cs R/ci R/cs

j Tfx°(t -T)dr= I rfx°(t -r)dr+ J Tfx°(t - T) dr, (3.176)
b b R/a

the sum of terms containing the integral

R/ci

J rfx°(t-r)dr
o

is

1 (d2R~l &R-1 PR-^ f n, ,

0

0

since
V2l/i? = 0 (3.178)

Then, substitution of eq. 3.176 into last two derivatives of set 3.175 yields:

, , 1 fdR\\.of R\ 1 (dRVrQ( R\

1 fdR\2
 t0 ( R\ 1 /a2/?-1 d2R~l\ f" 0. , .

^Rci U J ^ (' " ̂ ) " 4~, {-dyT + ̂ r) J T^ ~ ̂  dT (3J79)
R/c,

Taking into account cq. 3.178 and the equality

(dR\2 (dR\2 (dR\2
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we finally have

^•>=i^'-QH)+4Mi)'- (3-l80)

" 1 . , / R\ 1 ,0 / R\] 1 PR-1 [" 0

R/c,

In a similar manner, we obtain formulas for two other components of displacement:

. , 1 dR dR Tl 0 / R\ 1 0 / R\]

4nRdx % |_cf \ Q/ c? V CJ \

R/c.,

+ 7-^T I Tfx°(t-T)dT and (3.181)

R/c,

R/c,
, . i a/? a R r i , . „ / i ? \ 1 , „ / i ? \ i 1 a 2 / ? - 1 /• , „ .

wfe* = T ^ I T T- • V° * - - - -2/° * - - + ir^nr / r/°(* - T dr

ATTROX OZ \_cf \ cij cj \ csj\ 4TT rac/2; J

Thus, we have found the field of displacement s caused by the point force at any point

of a homogeneous medium. Correspondingly, it is possible to determine stresses and

strains, as well as the divergence and curl of field s. Now, making use of eqs. 3.180 and

3.181, we represent field s as a sum of three terms,

s = S!+s2 + s3, (3.182)

where Si is displacement along the radius-vector R, S2 is located in the plane normal

to R, and S3 is the vector that can be arbitrarily oriented with respect to R. In

order to find these terms, we use relations between components of any vector M in the

spherical and Cartesian systems of coordinates:

MR — Mx sin 9 cos <p + My sin 9 sin if + Mz cos 9

Me — Mx cos 9 cos ip + My cos 6 sin if - Mz sin 9 (3.183)
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Mv = —Mx sin tp + My cos tp

We also need to express derivatives dR/dx1 dR/dy, and dR/dz in terms of 9 and (p.

Since

x = R sin 6 cos tp, y = R sin 8 sin 9?, and z = R cos 0,

we have

OR x . Q dR y . . OR z
—— = — = sin 6* cos w, —— = — = sin y sin w, -7— = — = C O S P (3.184
ox R oy R az R

First, collect terms in eqs. 3.180 and 3.181 that are proportional to

This gives

, N 1 f 0 / R\ dR (dR . dR . dR \
SIP,t) = ——2 / a :

o i--Ur-hj-i+^-j + ̂ -k
47TK c/ \ ci) dx \ox oy dz )

It is clear that dR/dx, dR/dy, and dR/dz are directional cosines of unit vector i#

directed along the radius-vector R. Thus

B ^ = 4^Nl(*-f) (3'185)
Here

"'Hy-'-'HY*1*
is the vector component of the point force in the radial direction.

Next, we find the part of the displacement that is proportional to the function

4-f)
In accordance with cqs. 3.180 and 3.181, we have

, N 1 f [ fdR\2] . dR dR . dR dR ) r0 ( R\

1 [. dR (dR . dR . dR \~\ r0 ( R\
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or

*<»'> = s s 7 ? ( i - i 1 - ) * ( ' " £ ) (3'187)

As follows from eqs. 3.183, unit vector i in the spherical system of coordinates is

i — sin 9 cos ip i# + cos 9 cos <p ig — sin ip \v

Therefore, eq. 3.187 becomes

s^H^N, (*-£), (3.188)

where

( R\ ( R\
t = fr [t ( c o s ° c o s V ifl - sin ip L) (3.189)

CsJ V Csj

is the vector component of the force in the direction perpendicular to the radius-vector

R. Finally, the sum of terms in eqs. 3.180 and 3.181 containing the integral is

, , 1 (d2R-\ d2R-\ d2R-1 \ R't , 0 .

R/c,

Performing differentiation, we obtain

(d'zR-1 . d2R~1 . d2R~l , \ d (dR~l . dR~l . dR~l , \
r, 2 i + a a J + a a k = — — — i + - ^ — J + ^ — k

\ ox1 ox ay ox oz J ox \ ox ay oz )

= -iw^"+'Ji+zk) = -W'i+3-iFi = -k(i-3iii«) (3190»

I r a ; / x \ i

^ir^R^-v-R^n
Taking into account eqs. 3.186-3.189, we can represent s3(p,t) as

R/c.,

S3(P, t) = - ^ j T [ 2 N : (t-r)- N 2 (< - r ) ] rfr (3.191)

R/c,
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Behavior of a wavefleld associated with displacement

We assume that each term in eq. 3.182 can be interpreted as a wave and consider

its main features. This approach may create an impression that such waves may exist

independently from each other. However, as will be shown later, wavefields associated

with either displacement Si or displacement S3 are always accompanied by wave S2.

Because of this, we will also investigate the behavior of the resultant wave in the near,

intermediate, and far zones. Note that sometimes the total wave is represented by the

last term, s3, ofeq. 3.182 only.

Wave field Si By definition, eqs. 3.185 and 3.186, we have

slR(P,t) = ^ M N 1 { t - ^ (3.192)

Here

JVi ( t - - \ = f° (t - -} sin 0 cos ip (3.193)

It is clear that the function sm{p,t) describes a spherical wave propagating from the

point force with the velocity of a longitudinal wave, Q. AS follows from eq. 3.192, the

amplitude of this wave decreases as l/R, regardless of the distance between the force

and an observation point. In other words, we cannot distinguish the near, intermediate,

and far zones. At each point of the wave surface, R = const, displacement has only the

radial component sm, which coincides with the direction of propagation. In this sense,

this wave is similar to a longitudinal wave generated by a pulsating sphere. Both waves

travel with the same velocity Q. As follows from eq. 3.192, displacement sm(p,t) is

proportional to the radial component of force fx° at instant t — R/ci, which depends

on angles 0 and ip. The factor sin0cosy in cq. 3.193 defines the radiation pattern

of the point source. The magnitude and direction of vector si change from point to

point of the wave surface, Fig. 3.5a. As we see, this vector has a very peculiar behavior.

For instance, its magnitude reaches a maximum at the .r-axis, and it is equal to zero at

the plane x = 0. Displacement Si and the radius-vector R have the same direction

if x > 0, and they have opposite directions when x < 0. We can say that the wave

behaves either as a compressional (x > 0) or a tensional (x < 0) wave. In order to

determine the type of this wave, eq. 3.191, we evaluate both the divergence and curl of

vector Si. In the spherical system of coordinates, we have

Rz sin 0 I oR o0 dip J
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(c) (d)

i n i II in iv
T 1 +t "I 1 1 1 >t

Rjcj R/cs R/c) R/cs R/c^+At R/cs+At

(e)

I II in

1 1 1 1 >l

R/c, R/c)+At R/cs R/cs+At

Figure 3.5: (a) Orientation of sm on the wave surface (b) Orientation of S20 on the wave
surface (c) Illustration of case one (d) Four time intervals in case two (e) Time intervals
in case three

i/j Rig Rsin0 \v

1 d d d
a n d C U r l S = ^ m ^ dR m dj

SR Rsg Rsin8 sv

Taking into account that si# = s\v = 0 and performing differentiation, we obtain

Ancf \_R? V ciJ Rci V cUl

Also

, „ , 1 d SIR Id SIR
curlflSi = 0, curlflSi = . ^ ^ — , curl^Si = - ^ - ^ - 7 -

R sin 9 dep * R d 9
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Hence

CUrl*Sl = -^cfW % (* " Q J Sin '̂ CUrl^Sl = " i ^ i ^ (* " Q J C08flcos*'

i.e.,

1 / R\
curl si = - - — ^ — - /° I t I [siii(/3 i<) + cos6>cos</? iv] (3.196)

4TTC; / t \ C; /

As follows from eqs. 3.183, in the spherical system of coordinates the force components

arc

/°=/°s in0coS ¥>, fjj = f% cos 0 cos <p, / ° = - / ° s i n ^ (3.197)

Correspondingly, cq. 3.196 can be represented in the form

curl S l = - ^ M (t-Z), (3.198)

where M is the moment of force i°(t — R/ci):

M = R x f ° (3.199)

In accordance with eqs. 3.195 and 3.198, this wave is neither dilatational nor rotational,

because both div Si and curl Sj differ from zero. It is essential that this feature

displays itself regardless of the distance from the point force. However, in reality this

wave is always accompanied by field S3, and these fields should be interpreted only in

combination.

Wavefield s2 From eqs. 3.188 and 3.189, we have for the vector component of field

S2

SsMH^/^-*)^) (3.200)

Here

is(p) = cos 9 cos (p ie — sin if iv (3.201)

Again, as in the case of field Si, we assume that the function Si(p,t) describes a

spherical wave that is moving away from the origin with the velocity of a rotational

(shear) wave, cs. At points of the phase surface, R= const, displacement s2 has only
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the tangential component, and in this sense it is similar to a shear wave generated by a

rotating sphere. Note that the orientation of vector s2 does not usually coincide with

the orientation of coordinate axes. However, there arc two exceptions, corresponding to

the directions <p = 0 or ip = n and 9 = TT/2. The first is shown in Fig. 3.5b for /£ > 0.

In the same manner as for si, field s2 decays with distance as 1/R, provided that

the argument t — R/cs remains constant. Correspondingly, we again cannot distinguish

the near, intermediate, and far zones. From eq. 3.200, it follows that field s2 is directly

proportional to projection of the point force on the direction defined by unit vector is,

which is perpendicular to the radius-vector R.

Now, using eq. 3.200, we determine div s2 and curl s2. Since

s2fl = 0, s28 = — ^ / x ° (t - - j cos 9 cos <p, (3.202)
4ircf R •"• \ csj

and ^ = --^-2^-^**?,

we have

div s2 = — ^ /» (* - f ) (cos2.cos^ - cos^) (3.203)

i / n\
= ~o 2 02 • afx \ t sin6^cosv?

or

div82 = -2^^(* - f ) ' (3'204)
where ~N\ (t — R/cs) is given by eq. 3.186. By definition

1 \d{smd s2v) ds20] 1 d(Rs2v)
curlRs2 = . HZ— — , curlflS2 = --= — w w 1 - ,

RsmO I oO dip \ Rz oR

, 1 d(R s2g)
CUrl^S2 = R-^R—

Performing differentiation, we obtain

curlflS2 = 0
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curl,* = - ^ / ? ( * - £ ) sin* (3.205)

1 / R\
and curlwS2 — :— /?' I t I cos 6 cos w

Anc^R V CJ
Correspondingly,

^---tkn* ('-f)1" (3-m)

where

i( = sin ip i$ + cos 0 cos y> \v (3.207)

From eq. 3.201, it follows that

it • is = 0,

and, therefore, vector it is located in the plane perpendicular to the radius-vector R,

and it forms angle TT/2 with is. Similarly to Si, the wave associated with vector S2

is neither dilatational nor rotational.

Wave field s3 In accordance with cqs. 3.186 and 3.189, in place of cq. 3.191 we

have

safe t) = 2Sm6CZilR~ ^ 7 TfM - ̂  (3-208)
ii/ci

where is is defined by eq. 3.201. Thus, field s3 has, in general, all three components,

and both its orientation and the magnitude depend on point position. In the same

manner as Si and s2, field s3(p,t) can be treated as a wave. In fact, by definition,

the function f°(t — r) is equal to zero when the argument t — r is negative. Since the

smallest value of r is R/ci, the integral vanishes, until t = R/Q. This time delay

increases with an increase of distance between the origin and an observation point. This

suggests that s^(p,t) describes a wave propagating away from the point force. If the

time of observation, t, satisfies the condition

R R
- < t < - ,
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then eq. 3.208 can be written as

s,(p, *) = 2 S i n ' C 3 i f i ' i s / rfx\t ~ r) dr (3.209)
R/c,

Such replacement is correct, because for larger values of r the argument of the function

fx°(t — T) becomes negative. In such a case, r varies from R/Q to t, and this allows

us to treat wave S3 as a superposition of wave impulses propagating with different

velocities. In particular, when t < R/cs, these velocities are in the range between Q

and cs. The coefficient in front of the integral, eq. 3.191, is inversely proportional to

Ri, but dependence of the integral on R is defined by several factors. Next, we will

derive expressions of div S3 and curl S3 for three different cases.

Case one Suppose that the point force arises at instant t = 0 and acts at all

times. Then, for any observational point there are two distinct time intervals after a

wave arrival, Fig. 3.5c:

R R R
— < t < — and t > —
Cl Cs Cs

During the first one there arc two wavcficlds, S\ and S3, but during the second interval

all three waves, s1; S2, and S3, are present.

Case two Assume that the point force acts only during time interval At:

{ 0 t<0

f°(t) 0<t<At (3.210)

0 t> At
and

A t > - - - (3.211)
Cs Ci

Consider four time intervals, Fig. 3.5d. During them, displacement is formed as

s — si + S3, s = Si + S2 + S3, s = S2 + S3, and s = 0

Case three Suppose that
R R

At <
c, ci
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Then the time interval between the arrival of wave si and that of the rear of wave S2

is naturally divided into three subintervals (Fig. 3.5e), which are

R R R. R R R
— <t< \-At, \-At<t<—, and — <t< h At
Cl Ci ' Ci Cs Cs C,

Corresponding wavefields are

s = Si + S3. s = S3, and s = S2 + S3

We pay attention only to the last case and derive expressions for divergence and curl of

field s3. As will be demonstrated, these functions change with the time interval. For

instance, it turns out that they are equal to zero when fields Si and S2 are absent,

(R/ci + At < t < R/cs). Before we perform differentiation, it is convenient to represent

function s3(p,t) in the form

s3(p, t) = s3R iR + s30 ie + s3lfi iv, (3.212)

where

R/ce

s3R = ^ 3 / fx(t -T)TCITsin0cos<p ., (3.213)

R/c,

R/c3

1 f
Airn, J

Rid

R/cs

S3lfi = ^7^3- / f°(t -T) T drsimp
R/c,

To perform differentiations, we use equality 3.174:

R/cs

A / r f${t - r)dr = R [ I fx\t --) - \ /»(« - -)1 (3.214)
OR J |_cs cs cl cl J

R/c,

From eqs. 3.194, we obtain
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Taking into account eq. 3.210, we find three different expressions for divergence:

div s3 = 0 if - + At < t < — (3.217)
C( Cs

and

divs3 = ̂ ^ / ° ( t - f ) if t > f (3.218)

In accordance with eqs. 3.216 and 3.217, divergence is directly proportional to the radial

component of force fx°, taken at cither instant t — R/ci or t — R/cs. As follows from

eqs. 3.194, we have:

curlflS3 = 0

CUr1^ = 4 ^ [^ &* - f ) - c| ̂  - £)] - ^ (3-219)

curl,B3 = i ^[ i /»(*- | ) - i /0( t -^) ] cosmos,

Respectively, we have

1 /?
curl^sa = 0, curlfls3 = 2 / ° ( t - - ) sin <̂ , (3.220)

I D /? /?

curLs3 = n 9 „ f °(f ) cos 9 cos ip, if — < t < h At
4TTR2 cf ' x ci ci ci

and

curl s3 = 0, if - + At < t < — (3.221)
C( C,

while

1 /?
curlyes3 = 0, curlfls3 = - 2 f°{t - - ) sin y>, (3.222)
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curlys3 = - /°(t ) cos 0 cos <p if — < t < — + At
AnRz cj cs cs cs

Thus, in the first and third time intervals wavefield S3 carries out both dilatation and

rotation and overlaps with waves associated with Si and S2. Note that wave S3 is

spherical, and vector S3 is arbitrarily oriented with respect to its phase surface, (R =

const). The times of arrival of its front and rear are equal to

R , R A

t = — and t= h At.

respectively. Now we are prepared to study field s(p, t) as a function of time and

distance from the point force.

The resultant wave as a function of time
We continue to assume that force fx° differs from zero within some time interval

only.

0 < t < At

If an observational point is located relatively close to the origin, then an equality

R R
At >

cs ci

takes place, and "waves" si and S2 can overlap in time. We, however, suppose that

the offset R is sufficiently large, (At < R/cs — R/ci), and that such superposition is

absent. Then, as we know, motion in a receiver point can be split into three intervals:

1. Between the front and rear of wave Si,

2. Between the rear of wave Si and the front of wave S2, and

3. Between the front and rear of wave s2.

The first interval (R/ct < t < R/ci + At) For this time interval, we have

s(p,t) =s1(p,t) + s3(p,t),

and in accordance with eqs. 3.185 and 3.209

g(M) = ^ fi{t _ B_)iR + 2 - ^ U - ! . j T /i0(( _ T) dT {3m)

R/c,

This expression describes a spherical wave traveling away from the point force with

displacement vector s being arbitrarily oriented with respect to the phase surface.
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From eqs. 3.195 and 3.196 and eqs. 3.216 and 3.220, we have

_ sing cosy [ 1 0 R 1 0 R]

1 /?
curl Si = --—^—— fl(t ) (sin^ i$ + cos#cos^ iv)

and

sin (9 cos 99 0 i?dlVS3 = - ^ f ^ ^ ( i - ^ '

curl s3 = 4? rc2 fi2 f°(t--) ( s i n y iff + c o s ^ c o s V V)

This gives

and curl s = 0

Thus, during the first interval of a motion, we deal with the longitudinal wave, (curl s = 0),

which propagates with velocity Q. Elementary volumes of an elastic medium experience

deformation, but rotation is absent. As was mentioned before, the direction of vector s

does not usually coincide with that of wave propagation. When we considered wavefields

Si and S3 separately, we found that each is accompanied by rotation. However, physical

meaning has only the resultant wave, in which this type of motion is absent.

The second interval (R/ci + At < t < R/cs) Unlike with the first and last

intervals, the duration of this interval depends on distance R. This interval is absent

near the origin and appears when At = R(l/cs — 1 /Q) . Then it becomes wider with an

increase of R. In the limit, (R —» 00) the time interval also tends to infinity. In the

second interval only, field S3 is present, and, correspondingly, it describes the real wave.

As follows from eqs. 3.209,

R/cs

S(P>*) = 4 ^ 3 I r f°{t-T) dr{sm 9cos ipiR-is), (3.225)

R/c,Rid
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while

curl s = 0 and div s = 0 (3.226)

Since both divergence and curl are equal to zero, motion in the second phase is not

accompanied by a change of volume and its rotation. Taking curl from both sides of the

first equation in set 3.226, we obtain:

curl curl s = grad div s - V 2 s = 0 or V2s = 0 (3.227)

Thus, displacement s obeys the Laplace equation; this is why the motion of particles

during the second interval is called Laplace motion. Substituting eqs. 3.226 and 3.227

into the known differential equation of elastic waves:

<92s
P-frp = (A + M) S r a d d i v S~M v 2 s ;

we see that acceleration is equal to zero, and particles move with constant velocity. In

this sense, Laplace motion is similar to the potential motion of the ideal noncompressed

field. Let us also consider the integral in eq. 3.225:

R/c,

h= I T f°(t-T) dr (3.228)

R/c,

Introducing new variable U '•

T — t — ti and dr = —dt\

we obtain
t-R/ci t-R/c,

h=t J fx(U)dU- I Ufx{U)dU (3.229)
t-R/c, t-R/c,

By definition, R/ci + Ai < t < R/cs, which shows that the upper limit of the integral

is not smaller than At, but the lower limit is not positive. Thus, integration is always

performed over the time interval during which f° differs from zero. In such a case,

integrals in eqs. 3.228 are independent of time and of distance R. They are defined by

the behavior of the force oriented along the .x-axis. Applying notations

t-R/c, At

M = J f°x (*i) dh = J f°x (t) dt (3.230)
t-R/cs 0
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t-R/ci At

and A2= J h fx° (tO dh = J t f° (t) dt ,
t-R/cs 0

we obtain for the displacement of Laplace motion

s(p,t) = -—={t A, - A2) (sin9cos<p iR - i,,) (3.231)

Therefore, during the second phase, particles move along a straight line at a constant
velocity. The value of velocity essentially depends on the function fx° (t). In particular,
if velocity changes in such a way that an area beneath function /° (t) is equal to zero,
then the velocity of motion is equal to zero, A\ — 0. At the same time, constant
displacement with respect to equilibrium can be observed, and it is defined by A\.

The third interval (R/cs < t < R/cs + At) During this last interval, total
displacement is a sum

s = s2 + s3,

and in accordance with eqs. 3.200 and 3.209, we have

* • « - ^ i ^ T r 1 '•+ 2 s " " 3 ' " ~ ' ' 7 T •'•" ~T)dT (3-232)

R/c,

Thus, as before, the wave is spherical and it propagates with velocity cs. At the same
time, vector s is usually arbitrarily oriented with respect to the phase surface. As
follows from eqs. 3.204, 3.206, and 3.224:

dlV S2 = ~27rcgi?2/°(* " ^ ) s i n ^ c o s ^ '

1 /?

curl s2 = --— 2~^2^° ' ( i~ ~ ) (sin(^ ifl + cos^cos^ iv)

and

sin ^ cos 99 0 RdivS3 = ^ r ^ ^ ( f - ^ '
i /?

curl s3 = --——— f°(t -) (sin tp i0 + cos 9 cos tp \v)
<¥KCS IX Cs
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Performing a summation, we obtain

div s = 0 and (3.233)

curl s = - ^ \jpf°x(t ~*) + j fl'it ~ *)] (sm^ h + cosflcos^ \v)

Thus, due to a superposition of fields s2 and s3, dilatation vanishes and the rotational
wave is formed. This wave produces rotation of elementary volumes of a medium, as
well as pure shear and translation. Since the divergence of total field s is equal to zero,
dilatation of fields s2 and S3 has no physical meaning.

Thus, considering propagation of wave impulses of dilatational and rotational waves,
we can distinguish the near, intermediate, and far zones. Within the first two zones
the field of both waves changes relatively quickly with distance, and it is described by
all three components, SR, S#, and sv. With an increase of distance, the behavior
of displacement becomes much simpler. In the far zone, dilatational and rotational
waves decay practically inversely proportionally to distance R, and either the radial or
tangential component plays the dominant role. This is the reason they are also called
the longitudinal and shear waves, respectively. In conclusion, let us point out again that
representation of displacement as a sum of three terms - s = Si+ S2 + S3 - is a result
of a solution of the boundary value problem. However, only dilatational and rotational
waves, as well as Laplace motion, have physical meaning.

3.5 Longitudinal and shear plane waves

As in the case of acoustic waves (Part II), we pay special attention to the behavior of
plane waves in an elastic medium. By definition, the phase surface of such waves is planar,
and at the beginning we assume that at its points the magnitude and direction of particle
displacement s do not change. Of course, the same is valid for other characteristics
of wavefields, and this means that the plane wave is homogeneous. Later we will study
the more complicated inhomogeneous wave, in which displacement, as well as strain and
stress, may change very rapidly along its phase surface. As our main goal is to describe
reflection and transmission of plane waves at the planar interface, let us introduce the
Cartesian system of coordinates, so that the y—axis is parallel to the wave surface.
Later (in the next chapter) we will assume that the boundary between two elastic media
is situated in the plane XOY, Fig. 3.6a. It is obvious that at each plane perpendicular to
the y—axis, wave behavior is identical. This allows us to study a wave in one such plane,
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(0)

N - ^ ^ — • .v
.--••' o

)<*•""

(b) z (c)

Figure 3.6: (a) Wave front N of plane wave (b,c) Different orientations of unit vector n

for instance XOZ, which is usually called the plane of incidence. We distinguish three

possible types of homogeneous plane waves: (1) longitudinal wave P, in which particles

move in the direction of propagation, that is, perpendicular to the phase surface; (2)

shear wave SV, in which particle motion is tangential to the phase surface and occurs

in the plane of incidence; and (3) shear wave SH, in which the vector of displacement

s is tangential to the phase surface but perpendicular to the plane of incidence. In other

words, it is parallel to the y—axis. Now we will demonstrate that plane wave P is

compressional and propagates with the velocity

_ _ JX + 2/J,
Cl~ V p

At the same time, plane waves SV and SH are shear waves, and they propagate with

the velocity

V P
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We will use the system of coordinates Xi, yi, and Z\ with unit vectors i1; j 1 ; and

ki, Fig. 3.6a, where j = j-j and ki = n. By definition, for wave P we have

s — wi ki, ui —vi =0

and

duh _ dwj_ _ „
dxi dyi

Therefore,

div s = - ^ - but curl s = 0 (3.234)
OZ\

This means that wave P is compressional, and it advances with velocity Q. The

displacement components of wave SV in the new system of coordinates arc

s = Mi ii, since V\ — w\ — 0

Also

dui _ dui_ _

dxY dyi

It follows from these equalities that

div s = 0 and curl s ^ 0 (3.235)

Thus, wave SV is a shear wave and propagates with velocity cs. Finally, in the case

of wave SH:

s = vi j i , ui = wi = 0

and

dvj _ dv! _ Q

dxx dyi

Again, this gives div s =0 and curl s ^ O and, correspondingly, SH is also a shear

wave. Because divergence and curl are invariants with respect to a change of a system

of coordinates, we have proved, that both wave SV and waves SH are rotational,

whereas wave P is compressional. They can be described by vector and scalar potentials

that satisfy the wave equations

W=;$? and VV = i g . (-.a,
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where

dx2 dz2'

since the wavefields are independent on the y—coordinate. Note that, an infinite number

of functions <p and ip define the same field s, and this fact will be used in choosing

components of vector if). For any compressional wave, we have

s = grad ip (3.237)

In particular, in the case of the plane wave, eq. 3.237 yields

« = ^ and w = ?£ (3.238)
ox oz

Thus, one scalar function <p characterizes both components of displacement vector s.

For rotational (shear) waves, we have

i j k
O d d

s = curl i/> = — — — ,
dx dy dz
i>x i>y V>2

and in the case of plane waves we obtain

u = r-^, v = —— - ^ , w = -—JL
7 3.239

oz oz ox ox

because derivatives with respect to y vanish. Let us assume that for wave SV field

s is described by the single component ipy. Correspondingly, in place of eq. 3.239 we

obtain

u = -d-^, v = 0, W=9-^ (3.240)
oz ox

Suppose that the vector potential for wave SH has the component tpx only, and, as a

result, eqs. 3.239 become

u = 0, v = ——, w = 0 (3.241)
oz

Thus, due to our assumptions, potentials for all three waves obey wave equations with

respect to scalar functions tp, ipy, and xjjx, which greatly simplifies the determination

of wavefields. Note that the validity of these assumptions will be confirmed in solving

the boundary value problems.
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Expression for potentials In accordance with eqs. 3.236, functions ip, ipx, and

ipy are solutions of ae wave equation that has the form

d'2U d2U ld'2U .
^ T + ^ T = ^ ^ 3 - 2 4 2

ox2 dz2 c2 of/

In order to find the function U, we assume that the plane wave is sinusoidal. Then, U

can be represented as

U{x, z, t)=ReU (u, x, z) e~iujt (3.243)

Its substitution into eq. 3.242 yields

Here U (ui,x,z) is the complex amplitude of U, and

k = - (3.245)
c

is the wavenumber for either dilatational or rotational waves. Now, applying the method

of separation of variables, we represent the function U (u>, x, z) as the product of two

functions:

U (ir, z, LJ) = X(x, ui) Z(z, LU) (3.246)

Then, eq. 3.244 becomes

d'2X d2Z 2 1 <12X 1 d2Z 2 .
Z —+X — + k2XZ = 0 or - - — + - y y + fc2 = 0 3.247

ax2 dz2 X ax2 Z dz2

This equality takes place if the first two terms arc constants, and it gives

1 d2X 2 2 1 d2Z 2 2 /
x!*=-*n' and zd^ = "*"-' (3-248)

where nx and nz are quantities that are related to each other (Part II). In fact, from

eqs. 3.247 and 3.248, we obtain an important relationship:

n2
x + n2 = 1 (3.249)

It is obvious that functions

exp (± i k nxx) and exp (± i k nzz)
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satisfy eqs. 3.248, respectively. Taking into account eq. 3.246, the function U and,

therefore, the complex amplitudes of potentials cp, t/'jx, and tjjy can be written in the

form

U (x, z, UJ) = A exp [± i k (nxx + nzz)\ (3.250)

Here A is a constant. It is also convenient to use a slightly different form:

U (x, Z,UJ) = — exp [± i k (nxx + nzz)\ (3.251)
% rv

Since determination of displacement components is related to differentiation with respect

to x and z, the latter form is often more preferable. In general, nx and nz can be

arbitrary numbers, satisfying condition 3.249, but we are interested in two cases only,

namely

nx < 1, nz < 1 and

nx>l, nz = i bz,

where bz is a real number.

As follows from eq. 3.251, these cases describe homogeneous and inhomogeneous plane

waves, respectively. In fact, in the first case, the argument

± i k (nxx + nzz)

and \ji characterize the phase of the wave, and since

|exp [± i k (nxx + nzz)]\ = 1,

the amplitude, (A/k), remains constant at the phase surface.

We have considered the homogeneous plane wave. The picture is completely different

in the case of the inhomogeneous plane wave, where eq. 3.251 can be written as

U (x, z, u) = ^-e±bzZ exp (± i k nxx) (3.252)
ik

It is clear that the phase surfaces are perpendicular to the a;—axis, and the wave ampli-

tude

- e±b^z

K

varies at their points. This shows that we are dealing with an inhomogeneous or evanes-

cent plane wave. As was demonstrated in Part II, they may arise in the vicinity of an

interface. There are several types of such waves, some of which are called surface waves.
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In the case of a homogeneous plane wave, numbers nx and nz are directional cosines

of unit vector n, normal to the wavefront. Since the wave travels along line /, Fig.

3.6b,c, the complex amplitude U can be written in the form

u=_eikl (3.253)
ik

where |/| is the distance between the origin of coordinates O and phase surface TV.

Indeed, from eq. 3.243 it follows that

U(x, z, t) = - Re - e" !(w f " kl) or U(x. z,t) = - - s i n {cot - kl)
k i k

or

U(x,z,t) =-sin (kl-ujt) (3.254)

This equation describes a homogeneous plane wave with amplitude A/k propagating

along the /—line. If / is positive, then we are dealing with the outgoing wave, which

moves away from the origin. On the contrary, when / is negative, the wave is incoming,

approaching origin O. We express parameter I in terms of coordinates of a point,

(x, z), located on the wave surface. From Fig. 3.6b,c, it follows that

n = sin(9 i + cos# k, (3.255)

where 8 is the angle formed by the normal n and the z—axis, and

0< 6 <n

Inasmuch as I can be treated as the scalar component of the radius-vector

r = i i + z k

of any point of the wave plane, Fig. 3.6b,c, we have

/ = r -n = a; sin 6> + z cos # (3.256)

Therefore, eq. 3.257 is written as

A
U (x, z,u>) = —- exp ik (x sin 6 + z cos 9) (3.257)

i k

Comparison with eq. 3.255 shows that

nx = sinO and nz = cos6 , (3.258)
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and we have solved our task. Of course, condition 3.249 is met. To illustrate eq. 3.257,

consider several examples, Fig. 3.6b,c. In the first quadrant, we have

x > 0, z < 0, and 6 > -

Correspondingly, I is positive and the wave (Ni) is outgoing. In the case of N2 (the

second quadrant):

x < 0, z < 0, and 9 < -

Thus, I is negative and the wave is incoming. In the third quadrant (iV3), we have

x < 0, z > 0, and 8 > -,

and, correspondingly, / < 0, i.e., the wave is incoming, as is indicated by the direction

of the normal n. Finally, for the wave in the fourth quadrant (A^), we have

x > 0, z > 0, and 9 < —

Hence I > 0 and the wave is outgoing. We demonstrated that the same argument of

complex amplitude, eq. 3.257, characterizes all possible directions of the plane wravc.

However, later we will use angles that are always smaller than or equal to TT/2, and for

this reason the sign in front of z will be changed in some cases. Now we are prepared

to study reflection and transmission of plane waves in an elastic medium.



Chapter 4

Plane waves in a layered medium

The main subject of this chapter is the study of reflection and transmission of the lon-

gitudinal and shear plane waves at the planar interface. To solve this boundary value

problem we need to understand how surface forces act in the vicinity of the boundary of

two elastic media. We will begin by discussing the behavior of these forces.

4.1 Strain and stress in plane waves

As was demonstrated in Chapter 2, Hooke's law in the Cartesian system of coordinates

is

TXX = A 6 + 2fi exx, ryy = \ Q + 2(i eyy, TZZ = A 6 + 2/x ezz (4.1)

and

Tyz = fJ- Cyz, Txz = fj, exz, Txy = [I Bxy (4.2)

Here
du dv dw ^ du dv dw , .

exx = ^~, e,yy = —, ezz = —, 8 = - - + — + —- (4.3)
ox ay oz ox ay oz

du dv du dw dv dw
and exy = — + — , exz = — + —, eyz = — + —

dy dx dz dx dz dy

Since we are considering wavefields that are independent of the (/-axis, eqs. 4.1-4.3

may be slightly simplified, and we have:

du dw
***=te> ^ = 0, e,, = — , (4.4)

187
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dv du dw dv

dz dz dx dx

and

e = ? + ̂ (4-5)
ox oz

Also
TXX = \Q + 2fi exx, Tyy = A G, TZZ = X 9 + 2fi ezz, (4.6)

and, as in the general case,

Tyz l^ £yzi TXz M ^xzi ^~xy M ^xy V ' /

Note that strain eyy is absent, but the normal stress, ryy, characterizing the surface

force along the y-axis has a nonzero value if 0 ^ 0 .

Next we will study strains and stresses for each type of homogeneous plane wave.

Incident P wave

In the case of the P wave, v = 0 and therefore

du dw du dw
eXx = ^~, eyy = 0, ezz = —, eyz = Q, exy = 0, exz = -— + -— (4.8)

dx yy dz y y dz dx

Thus, there are two diagonal elements of the strain tensor and one shear strain that

describes a change of the angle in any plane parallel to XOZ. Respectively, stresses are

TXX = A 9 + 2/i exx, ryy = A 0 , TZZ = A 0 + 2/i ezz, (4.9)

and

7~yz — 7~xy — ^? 7~xz — /^ &xz

We see that an elementary volume surrounded by coordinate surfaces is subjected to an

action of three normal stresses and one shear stress. The shear stress characterizes the

force oriented along the x-axis and applied to the face of the volume perpendicular to

the z-axis. All of these forces produce deformation, but rotation is absent, since the P

wave is compressional. In particular, if this wave moves along the z-axis, we have

u = v = 0
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and

dw
&xx = eyy = 0 and ezz = ——, (4-10)

whereas

eyz = exy = 0 and exz = 0, (4-11)

because the displacement component w docs not change on the wave surface (z —

const). Therefore, there is only one strain element, ezz, and respectively

TXX = Tyy = A ezz and TZZ = (A + 2/i) ezz, (4.12)

but

TyZ = TXZ =Txy = 0 (4.13)

We see that all shear stresses disappear, and propagation of the longitudinal wave along

the z-axis is accompanied by forces acting in the perpendicular direction, (TXX — ryy ^ 0).

This is the reason why the velocity of the P wave depends on the rigid modulus \i.

Incident SV wave

Since the displacement is situated in the plane of incidence (v = 0) and is tangential

to the wave surface, it has in general two components, u and w. This means that eqs.

4.8 and 4.9 describe strains and stresses for the SV wave, too. However, the action

of surface forces in this case is completely different. Because SV is a rotational plane

wave, these forces do not cause deformation of an elementary volume but only produce

its rotation. Suppose that SV wave moves along the z-axis. As follows from eqs. 4.8,

e-xx = eyy = ezz = 0 and eyz = exy = 0, exz = — (4.14)

There is one nondiagonal element of the strain tensor that describes a distortion of angles

in the plane of incidence. This strain also characterizes the rate of change of displacement

u along the z-axis. For stresses, eqs. 4.9, we have:

Txx = Tyy = TZZ = 0, ryz = rxy = 0, and TXZ = TZX = pi exz (4.15)

Thus, normal stresses are absent, and tangential surface forces directed along the x—

and z-axes are applied to the corresponding faces of the volume.
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Incident SH wave

Because displacement is oriented along the y-axis, i.e.,

u = w = 0,

cqs. 4.4 yield

<iXx = eyy = ezz = 0 and eyz = —, exz = exy = 0 (4.16)

For stresses, we have (eqs. 4.6 and 4.7)

rlii
TXX — Tyy — TZZ — 0 and ryz = ji— , TXZ — rxy — 0 (4-17)

The simplicity of such a rotational wave is obvious and, regardless of the orientation of

the wavefront, to describe the strain and stress we need only eyz and Tyz.

4.2 Reflection from the free surface (normal incidence)

Assume that the sinusoidal plane wave moves along the z-axis and approaches the plane

interface between two media having different elastic parameters. Our goal is to describe

the reflected and transmitted waves arising at the boundary. WTe start from the simplest

case of the free surface (Fig. 4.1a). We assume that elastic parameters of the upper

medium are:

A = [1 = 0 if z < 0

This means that waves are absent in that part of the portion of space and that stresses

are equal to zero. Then, taking into account continuity of stresses, we conclude that at

the free boundary, stresses vanish:

Tzz = TXZ = Tyz = 0 on z = 0 (4-18)

Respectively, the normal and tangential components of the force applied to any element

of the interface arc equal to zero. First, consider the case of the incident P wave.

Incident P wave

As was shown in Chapter 3, the complex amplitude of scalar potential for the incident

P wave can be written in the form

w (z, u) = — e x p (-i kt z ) , if z > 0 (4.19)
i h
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Figure 4.1: (a) Free interface (b) Boundary between elastic media (c) Reflection of P

wave from free boundary (d) Reflection of SV wave from free boundary

Here Ai is known and ki = to/ci. Suppose that the reflected wave is also a P wave,

and correspondingly, its potential is

Vr(z,w) = ̂ j-exp{ihz) (4.20)
% ki

We have changed the sign of the argument because the complex amplitude, ipr, describes

the outgoing wave. Thus, the wavefield is a superposition of two P waves propagating

in opposite directions:

£ (z, ui) = — [At exp (-1 ki z) + Ar exp (i k4 z)] (4.21)
i ki
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Here Ar is unknown. In the previous section, we demonstrated that on the face of an

elementary volume that is normal to the z-axis, there is only one component of stress,

TZZ. As follows from Hookc's law, cq. 4.12:

r « = (A + 2 / i ) ^ or rzz = (A + 2/i) g (4.22)

since

dip
s = grad u> or w = -r—

az

Thus, the boundary condition in terms of potential is

-—^ = 0 on z = 0 (4.23)

Substitution of eq. 4.21 into eq. 4.23 gives

Ar = -Au (4.24)

and the boundary condition is met, if both waves arc longitudinal and amplitudes of

their potentials are the same. However, their phases differ by TT, since —1 = etn. In

essence, we have confirmed our assumption and proved that the normal incidence of the

P wave does not cause shear plane waves. Note that in the vicinity of the boundary, two

other stresses, TXX and Tyy, are also equal to zero. In fact, as follows from eqs. 4.12,

dw d2ip

and, therefore, the stresses vanish on z = 0. From eqs. 4.21 and 4.24, we have for the

complex amplitude of the resultant wave

V (z, u>) = \ [exp H h z) - exp (i k, z)] (4.25)
I Ki

Because scalar potential is an auxiliary function, we focus on the physically meaningful

wavcficld properties. For instance, displacement has only the ^-component, and w =

dip/dz. For the complex amplitude of w, it gives

w — —Ai [exp (—iki z) + exp (ikiz)] (4.26)

or w(z, t) = Wi(z, t) + wr(z, t) = —Ai [cos (tot + fc; z) + cos (ujt — kiz)]
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and, by definition, the reflection coefficient for displacements is equal to

wr{0,t)
K-PP = —77—77 = 1 (4.27J

Wi(0,t)

It is convenient to represent eq. 4.26 in the form

w(z, t) — -1A% cos hz cos cut, (4.28)

and this representation clearly demonstrates that the resultant wave, w(z,t), is the

standing wave with nodes at points

klZn = ^(2n+l) or ^ = \ (2n + 1), (4.29)

where n = 0,1, 2,.... It is obvious that at the free surface, as in the case of acoustic

waves, displacement is doubled:

w(0,t) =-2 Ai cos ut (4.30)

With an increase of distance z, displacement behaves as a sinusoidal function, which

happens because there is, in general, a phase shift between the two waves. As a result of

their interference, a standing wave is formed. In accordance with eqs. 4.12 and 4.28, we

have

TZZ = 2 (A + 2fj) ki A, sin kt z cos cot (4.31)

and TXX — ryy — 2A k[ Ai sin k[ z cos uit

Thus, the resultant stresses are also described by the standing wave with nodes at points

k\ z — nn or ~T~ = ~n (4.32)

A; 2
We see that at all points of a medium, except nodes

rzz > TXX = rm (4.33)

Now let us consider incident and reflected waves separately. For instance, particle velocity

and stress r z z associated with the incident wave are

w(z,t) = -^ = A, UJ sin (cut+ klZ) (4.34)
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and TZZ{Z, t) = Ai kt (A + 2/i) sin (cot + ktz)

In studying acoustic waves (Part II), we introduced the concept of acoustic impedance,

Z = pc= y/pM,

where M is the bulk modulus, and it relates particle velocity w and the pressure P:

P
w = z

From eqs. 4.34, we obtain a similar relationship for the elastic P wave:

w IO ci

Thus, the impedance of a medium for the plane longitudinal wave is

Zi = y/(X + 2/i) p (4.36)

Zi characterizes resistance to motion caused by P wave.

Incident SV wave

Next, suppose that the plane wave SV propagates along the z-axis toward the free

interface and that XOZ is the plane of incidence. Then, as we already know, u ^ 0

but v — w = 0, and the wavefield is described by the y-component of vector potential

tpy. Omitting subscript y, the complex amplitude of potential can be written as

~ B
ipt(z, LJ) = —y- exp {-iksz) (4.37)

Here Bi is known, ks = u>/cs, and cs is the velocity of propagation of the shear wave.

Let us assume that when the incident wave reaches the interface, the reflected wave of

the same type, SV arises, and we have:

i>r = -jr exp (ikaz) (4.38)

Then the resultant wave is

•il)(z: u) = — [Bi exp (-iksz) + Br exp (iksz)} (4.39)
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Propagation of these waves is accompanied by the stress Txz(z,t) as well as TZX, and,
in accordance with eq. 4.15

rxz = ^ (4.40)

In order to determine the unknown Br, we use the boundary condition

TXZ=0 or ^ = 0 (4.41)
oz

Taking into account that

= = - # , (4.42)
oz

eq. 4.41 becomes

| ^ = 0, on 2 = 0, (4.43)

and an analogy with the case of P wave is obvious. Substitution of eq. 4.39 into eq.
4.43 gives

Br = -Bu (4.44)

and, correspondingly,

~ B
ip(z, OJ) = —j- [exp (-iksz) - exp (iksz)] (4.45)

i ks

Performing a differentiation with respect to z (cq. 4.42), we obtain for the complex
amplitude of displacement

u(z, to) = Bi [exp (-iksz) + exp (iksz)],

or

u(z, to) = Ui(z, OJ) + ur(z, uS) = Bi [cos (cut + ksz) + cos (cut — ksz)\

Therefore, the coefficient of reflection is

uT{0,t)
K-SS = ln ,, = 1 (4-46)

U(0t)
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Moreover,

u(z, t) — 2Bi cos ksz cos cut, (4.47)

which practically coincides with eq. 4.28. As before we observe a standing wave, but

the position of nodes is different, since ks ^ ki. At the free boundary, the tangential

component of displacement, u, is equal to

u(0,t) = 2Bt cos cut, (4.48)

i.e., it is twice as big as displacement carried by the incident wave. From eq. 4.40, we

have for shear stress

Txz{z, t) = — 2/x ksBi sin ksz cos cot, (4.49)

and it is also describes a standing wave. Of course, at the free interface rxz and TZX

vanish. Since the function ip(z, t) is a solution of the boundary value problem, our

assumption about the reflected wave is correct. In accordance with eq. 4.37, particle

velocity and stress, caused by the SV incident wave are

u(z, i) = —Bi UJ sin (ut + ksz), TXZ(Z, i) = —B^ ks/ism {tot + ksz)

Hence

Zs = — = — = - = ^[JTp (4.50)

Comparison with eq. 4.36 shows that Z\ > Zs. This means that if TZZ = TXZ, the

shear wave causes higher particle velocity. The same result is obtained if displacement

has only the component along the y-axis (SH wave): u = w = 0 and s = vj.

4.3 Reflection and transmission at the plane boundary of two elastic media

(normal incidence)

In this case, unlike in the previous one, waves exist in both half-spaces, Fig. 4.1b. That

is, at the interface, the incident wave gives rise to reflected and transmitted waves. As

before, we start with longitudinal waves.
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Incident P wave

Let us assume that if the incident P wave moves along the z-axis, the reflected and trans-
mitted waves are of the same type and also propagate along the 2-axis. Correspondingly,
the scalar potential for all of these waves can be represented as

~ A- ~ A
ft(z,w) = T7-exp(jfci;z), <Pr(

ziw) = ~1— exp(-i ku z) , (4.51)
i ku i ku

<p2(z, to) = —— cxp (i k2i z)
i kii

Here ku = w/cu, k2i = OJ/C2I and cu, c% are velocities of propagation of the
P waves in each medium. Now we will attempt to satisfy the boundary conditions,
provided that the shear waves SV and SH are absent. As is well known, at the
interface, displacement and stresses are continuous functions. Because the P wave has
only the component w(z,t) and the stress rzz(z,t) differs from zero (normal incidence),
we have:

WW (0, t) = wf] (0, t) and r « (0, t) = rfj (0, *) (4.52)

In terms of the complex amplitude of the potential, eqs. 4.52 become

% = % and ( A l + 2 ^ i & = (A^ + 2 ^ # ' (453)

where

Vl (W- Z) = Vi (W) Z) + Vr (w> Z)

Substitution of eqs. 4.51 into eqs. 4.53 gives the system for determining of unknowns
Ar and A2:

At -Ar = A2

(Ai + 2 Ml) klt {Ai + Ar) = (A2 + 2 ,i2) k2l A2

or

Ai - Ar = A2 and Zu (A, + AT) = Z2l A2 (4.54)
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Here Zlt and Z2l are impedances for the P waves, hence

Z% — Z\i , . j . c ,
A = 7 7 A (4.55)

A2l + All

and

, 2 Z\i
A2 = -A, (4.56)

These formulas do not differ from those that describe reflection and transmission of

acoustic waves. It is not surprising, since the latter are also compressional waves (Part

II). From eqs. 4.51, 4.55, and 4.56, we have

fiV^^) = -rr- exp(« kn z) + ——-—- exp {-i kn z)\ (4.57)
iku [ Z2i + Zu J

, ~ / \ ^ Zu Ai .
and <p2(z, u!) = ——-—- -— exp (i k2i z)

Zu + Z2i iK2i

For displacement, we obtain

[ 77 ~\

/ j c\ 1 / j -i / I

exp (i ku z) —|——- exp (-i ku z) (4.58)
ZJ<U + An J

9 v
and W2(Z,LO) — — — A\ exp (i k2i z)

Correspondingly, coefficients of reflection and transmission are

~ ~A~' ~ ~A~

Note that these coefBcients change in the following ranges:

- 1 < TZpp < 1 and 0 < TPP < 2

It is easy to derive formulas for limiting cases from eq. 4.58. For instance, when the

lower medium is a free space, we arrive at the known expression

Wi(z, UJ) — Ai [exp (i ku z) + exp (—i ku z)],

since Z2i = 0. On the contrary, if the second medium is ideally rigid, Z2i —> 00, then

Wi(z, to) = A, [exp (i ku z) - exp (-i ku z)\, (4.59)
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while

W2(Z,UJ) = 0

This is obvious, because particles in an ideally rigid medium cannot move. As follows

from eq. 4.59, at the boundary

u)i(0,w) = 0 ,

and continuity of displacement takes place. Of course, eqs. 4.58 remain valid when we

consider the boundary between an elastic medium and a fluid. In such a case, impedance

Z] is replaced by the acoustic impedance Z. For instance, if the upper medium is a

fluid, we write \ix = 0 and have

Respectively, the parameter Ai plays the role of the bulk modulus M, i.e.,

ZU = Z= JWp (4.60)

Note that superposition of the incident and reflected waves, eqs. 4.58, does not form the
standing wave in the upper half-space. This is because amplitudes of these waves are
different.

Incident SV wave

Suppose that the incident wave is an SV plane wave advancing along the z-axis, and
that reflected and transmitted waves are of the same type. Then, the wavefields are
described by the y—component of the vector potential. The complex amplitude of this
component at each part of a medium is written in the form

^ (z, LO) = -— [Bi exp [i kls z) + Br exp {-i ku z)] (4.61)

I Kis

^ 1

and -02 (z, ui) = ——B2 exp (i k2s z)
i k2s

At the boundary, the component of displacement u and stress rxz are continuous
functions, and in terms of complex amplitudes, we have

dtlj-t dtb9 d'2'ilj\ <92'02 , ,
- ^ = ~P and Ml —^ = ii2 - Y on z = 0 4.62
oz oz ozz ozz
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The similarity of eqs. 4.53 and 4.62 is obvious. From eqs. 4.61 and 4.62 we obtain

Bi-Br = B2 and Zu {Bt + Br) = Z2sB2 (4.63)

Hence

B r = 7 i 7
 B i a I l d D* = 7 , 7 B i (4'64)

where Zs = y/JTp is the impedance of a medium to the shear waves. Formulas 4.64

coincide with corresponding expressions of set 4.55-4.56, if Bi is replaced by Ai and

Zs by Zi. Inasmuch as

- d i p - d2i>

<*>») = "to and r » = - " ^ '
we obtain

7 7 ~\

u\ {z, UJ) = -B{ cxp (t ku z) — |—-— cxp {-% k\s z)
Z2s + Z l s J

2 Z
and U2(Z,LO) = -Bi—— u cxp (i k2s z) (4.65)

Similarly to the previous case of the incident P wave, the coefficients of reflection and

transmission are

-7? - Br T - B'2

nss —, Tss Ti

Moreover,

TXZ = -ikls l\ilBl exp (i ku z) + 2s — - ^ exp (-i kls z) (4.66)

, -(2) ., 2 Zu

and TXZ = -ik2s M2 Bi^—. 7
 e xP (* fc2S ^)

For illustration, consider two special cases. First of all, if the lower medium is an ideally

rigid one. Z2s -^ 00, we have

Ui(z,uj) = -Bi [cxp (i kis z) - cxp (-i kis z)] (4.67)
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and TXZ (z. LO) = -ikls fi^Bi [exp (i kls z) + exp (-2 kls z)\

In particular, at the boundary,

u1{Q,u)) = 0, T{H = - 2 2" ku^Bi (4.68)

Thus, as in the case of the P wave, stress is doubled at the interface, but displacement

is equal to zero.

Next, suppose that the lower medium is a fluid, i.e.,

H2 — 0 or Z2s — 0

Correspondingly, eq. 4.65 becomes

ui(z,u) = -B,t [exp (i kls z) + exp (-2 kls z)],

while u2 is not defined since k2s —> 00. This indicates that the incident wave does

not cause motion of fluid particles. As concerns stresses, we have

TXZ = —ikis^Bi [exp (2 kis
 z) ~ e xP (~* kis z)] and TXZ = 0,

which is obvious, since shear stresses are absent in fluid.

The case of the incident SH wave is completely analogous to the case of the SV

wave.

Summing up, we state the following:

1. The incident plane wave (P, SV, or SH) generates secondary waves of the same

type

2. Expressions describing coefficients of reflection (transmission) of secondary waves

are similar for any type of incident wave.

3. Since coefficients for sinusoidal waves are independent of a frequency, they are the

same for transient waves.

4.4 Reflection from the free surface (oblique incidence)

Now we will study a more general case of oblique incidence of the plane wave at the free

surface, Fig. 4.1c, beginning with the incident longitudinal wave.
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Incident P wave

As was shown in Chapter 3, scalar potential of the incident P wave can be written as

~ A-
<pi (x, z. w) — —y- exp [iki (x sin CKJ — z cos aij] (4.69)

i ki

Here ojj is the angle of incidence formed by the ray and the z-axis:

0 < a 8 < -

First assume, as before, that a reflected wave of the same type arises at the interface

only. Correspondingly, the complex amplitude of scalar potential is

A-
<pT (x, z, OJ) = -ry- exp [i ki (x sin ar + z cos ar)} (4.70)

where ar is the angle of reflection formed by the z-axis and the ray of the reflected

wave, Fig. 4.1c. Thus, the resultant potential is

£-, (x, z, UJ) = Pi (x, z, to) + ypr (x, z, LJ) (4.71)

or

cp1 — -r-j-Ai exp [i ki (x sin on — z cos at)\ + (4.72)

—j-Ar exp [i ki (x sin ar + z cos ar)]

Our goal is to find Ar and ar, that cause all stresses to disappear at the free boundary

TZZ(X,0,U)=0, TXZ(X,Q,UJ) = Q, Tyz{x,Q,u)) = 0 (4.73)

Since the displacement component v = 0 and the wavefields do not vary along the

j/-axis, the last equality is satisfied regardless of the values of Ar and ar. Taking into

account Hooke's law, eqs. 4.73 can be written as

(A + 2 M ) ^ + A ^ = 0 and ^ + ^ = 0 , on z = 0 (4.74)
oz ox az ox

or, in terms of the complex amplitude of the potential, we have

(A + 2/i) —^ + A—P- = 0 and — ^ - = 0 on z = 0 (4.75)
oz1 ox2 oxoz
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Substitution of eq. 4.72 into eqs. 4.75 gives two equations with respect to Ar and ar:

ikiAi [(A + 2/i) cos2 a{ + A sin2 a;] exp {iki sin ai)

+ iki AT [(A + 2/x) cos2 aT + A sin2 a r] exp (ifc; sin a r) = 0 (4.76)

and — iki sin aicos c^ ^ e xP {iki sin a<) + iki sin a r cos a r Ar exp (ifc; sin a r) = 0

Since these equalities are valid for any x, we conclude that

ki sin ai — ki sino:r,

i.e., oij = ar, (4.77)

and in place of eqs. 4.76, we obtain

Ai + Ar = 0 and - A{ + Ar = 0 (4.78)

This system does not have a solution, and, therefore, our assumption that the reflected

wave consists only of the P wave is incorrect. This suggests that both longitudinal and

shear reflected waves are generated, and we attempt to satisfy the boundary conditions

with the help of the P and SV waves. In such a case, the total displacement is the

sum of displacements caused by each wave. Therefore, we have:

s = grad ip + curl %j)

or

~ dip dip ~ ~ dip dip , .
u = ^ ~ ^T' v = °> w = -T- + T1- 4-79

ox oz oz ox
because

and wavefields are independent of the y—coordinate. This gives for the complex ampli-

tude of dilatation, 0 :

~ du dw d2tp d'2(p m 9 ~ , ,~ . .
e = 7T + 7T = 7TJ + -JTJ = V V = " *iV 4.80

ox oz ox2- oz1
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Also,

dw d2tp d2'ip du dw d2ip d2yj d2rij)
e" = ~dz~ = lh? + dxdz1 e'xz = ~d~z^~dx~ = ~dx~d~z + !h? ~ ~dz^

Therefore, in place of eqs. 4.74, we have

Expressions for potentials are

~ A- A
ip1 = -rj- exp [iki (x sin a^ — z cos ctj)] + TJ- exp [i/c; (x sin a r + z cos a r)] (4.82)

and •!/>! = —— exp [iks (x sin [iT + z cos /?_)],
iks

where pr is an angle of reflection of the SV wave. Substituting eqs. 4.82 into set

4.81, we arrive at a system of equations with respect to AT, Br, a.T, and (3r. First

of all, proceeding from the boundary conditions, it is easy to derive Snell's law for an

elastic medium. In fact, every term in eqs. 4.81 contains either exp (iki sin c^) or

exp (iki sin ar)
 o r e xP (ikssinpr). Since the boundary conditions take place regardless

of x, we conclude that all three arguments are equal to each other:

kt sin aj — h sin ar = ks sin (ir (4.83)

or

sin/3r sinai
on = a r and = (4.84)

('s ('I

This represents Snell's law of reflection in an elastic medium. Eq. 4.83 shows that the

apparent velocity of three waves along the x-axis is the same. Making use of eqs. 4.83

and performing differentiations, eqs. 4.81 give

h (Ai + Ar) (A + 2/i cos2 a>i) + 2/J, ks Br sin j3r cos j3T = 0

and 2ki sin 04 cos at (Ar — Ai) + ks Br (sin2 (ir - cos2 f3r) = 0
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or

(Ai + Ar) [(A + 2/i) cos2 a>i + A sin2 at] + 2fj,mBr sin i3r cos {3r = 0 (4.85)

and 2 sin a, cos a* (Ar — At) + m Br (sin2,3r - cos2 fir) = 0

Here

C(

m = —
Cs

It is convenient to express the left side of these equations in terms of cota, and cot(3r.

This yields

(A, + A,) [(A + 2//,) cot2 a{ + \]m + 2/i Br cot /3r = 0 (4.86)

and 2m cot a{ (Ar - At) + Br (l - cot2 0r) = 0

Whence

= 2m cat * (JU-A) ( 4 8 7 )

1 - cot2 (ir

Substitution of eq. 4.87 into the first equation of set 4.86 gives

(Ai + Ar) [(A + 2fi) cot2 at + A] (l - cot2 j3r) + 4/i cot a, cot j3r (At - Ar) = 0

Thus,

4/y, cot a8 cot Pr - [(A + 2/i) cot2 a,i + A] (cot2 /3r - 1)
-4r = p; ^i (4.88)

—Am cot aj [(A + 2/i) cot2 ctj + A]
and -Dy ^ A-i:

D\

where

Di = 4/i cot <x; cot j3r + [(A + 2/i) cot2 at + A] (cot2 Br - l)
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It is easy to find the relationship between cot2 f3r and cot2 ai} taking into account that

the apparent velocity, c, along the x-axis is the same. As can be shown

c2 - c2

cot2 at — -—2-^- or c2 — c2 (l + cot2 at)
ci

p ^ / • • *

and cot2 j3T = -—^ or c2 = c2 (l + cot2 /?r)

Whence

cf (1 + cot2 at) = c2 (1 + cot2 /?,,) ,

i.e.

cot2 (3r = m2 (1 + cot2 at) - 1 (4.89)

Thus, we have demonstrated that scalar and vector potentials given by eqs. 4.82 and

4.88 are solutions of the Helmholtz equations

V2$? + kfip = 0 and V2tp + k2tp = 0 ,

correspondingly, and they obey the boundary conditions. In other words, our assumptions

were correct, and these functions, ip and tp, describe the incident and reflected waves

in the presence of the free plane boundary. Besides, we have demonstrated that the SH

wave is absent. As we can see, the incident wave P gives rise to two reflections, namely

longitudinal and shear waves. This fundamental feature of wave behavior is not observed

in a fluid medium (Part II). As follows from eqs. 4.88, in such a case (/i = 0), we have

A A J D 4mcota J

Ar = -Ai and Br = - y - At

cotr pT — 1
or, taking into account eq. 4.89,

4m cot a-i
m2 (1 + cot2 OH) - 2 l

Since cs —> 0 and m —> oo, Br —>• 0, and the SV wave vanishes. Note that coefficient

Ar, eqs. 4.88, depends on the clastic parameters (A, //), incident angle at, and

amplitude Ai, whereas in fluid, amplitudes of incident and reflected waves are equal to

each other. At the same time, in both media, the geometry of waves obeys Snell's law.
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In accordance with eqs. 4.84, the angles of incidence and reflection of the P waves are

equal to each other, and angle (ir is defined from the relation

ar = ai, sin/3. = —sina,, i.e., /3r < an. (4.90)
Cl

as is shown in Fig. 4.1c. Snell's law indicates that, regardless of the the value of angle

a^ both secondary waves, P and SV, remain homogeneous.

Reflection coefficients As follows from eqs. 4.79 and 4.82, the displacement

vectors of P waves at the boundary are

Si = Ai cos(fc(.T sin a,i — cot) n̂  and sT = Ar cos(fc;.i sin an — u)t) n r ,

where nj = sin a\ i — cos ai k and n r = sin a* i + cos a, k are the unit vectors of

rays. The reflection coefficient IZpp = Ar/Ai, and if IZpp is positive, the displacement

vector is directed downward along the reflected P ray. The indices PP and PS mean

that P and S waves are caused by the P incident wave. The displacement vector of

the reflected SV wave is

sr = Br(— cos [Jr i + sin[Jr k) cos(fcsa;sin/3r - cut),

and the unit vector of the reflected S ray is n r = sin f5{ i + cos Pt k. It is easy to see

that n r • sr = 0, i.e.,the displacement carried by the reflected SV wave is orthogonal

to the SV ray. The reflection coefficient HPS = BT/Ai, and if TZPS is positive, the

displacement is directed toward the z-axis.

Case X = fi Formulas 4.88 are essentially simplified when Poisson's ratio is

a — 0.25 or A = (j,, which is often a rather good approximation. Then cf — 3c2
s, and

instead of eq. 4.89 we have

cot2 j3r = 3 cot2 at + 2

Its substitution into set 4.88 gives

K = 4 c o t a i c o t ^ r - ( l + 3cot2Q!i)
2 ^

4 cot al cot (3r + (1 + 3 cot2 a,)2

„ 4m cot a; (1 + 3 cot2 ai)
and Br — K Ai

4 cot a,i cot 8r + (1 + 3 cot2 a,)
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Here m — \/3. Simplicity of eq. 4.91 allows us to see the following features of waves.

The reflected P wave vanishes if

4 cot on cot j3r = (l + 3 cot2 «i)2

or

4 cot a; (3 cot2 a* + 2)1 / 2 = (l + 3 cot2 a*)2 (4.92)

This equation has two roots:

osi = 60° and at = 77° 13'

There is some similarity of this case with the reflection at the boundary between two

acoustic media (Brewster's angle). In both cases, the wave disappears due to the de-

structive interference of elementary spherical waves that arise at the boundary (Huygen's

principle). Behavior of the P-wave amplitude is similar for different values of m and

a (Fig. 4.2a). First of all, with an increase of c^, amplitude \7Zpp\ decreases because

of the destructive interference of elementary waves. If m and a are relatively large,

\lZPP(ai)\ passes a minimum value and then begins to increase, approaching 1. In such

a case, the reflected wave exists for all values of the incident angle. With a decrease of

these parameters, we observe two values of angle, as in the case X = fi, where the P

reflected wave vanishes.

Behavior of the function \TZPS{ai)\ is completely different. For normal incidence

the amplitude of reflected 51/-wave is equal to zero, but with an increase of on due

to constructive interference, it becomes larger. Depending on the value of m, it reaches

maximum in the range between 35° and 65°. Then it decreases, and for the grazing

angle Tips becomes equal to zero.

Incident SV wave

Next suppose that the shear incident wave, SV, approaches the free surface and gener-

ates there two plane waves, SV and P. Correspondingly, the complex amplitudes of

potentials are

ip (x,z,u)) = —^ exp [i ki (x sin ar + z cos ar)] and (4.93)
i ki

ip-f (x, z, LO) = —7- exp [i ks (x sin Pi — z cos 13^} + —j- exp [i ks (x sin j3r + z cos /?,.)]
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Figure 4.2: Reflection from the free surface for different values of m = ci/cs: (a) incident

P wave (b) incident SV wave. Numbers near curves correspond to different values

of m; arrows show Brewster's angles for X = fi (a = 0.25).
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To determine the unknowns Ar, Br, ar, and j3r, we again use the boundary conditions,

eqs. 4.81. As we know, they can be satisfied if all arguments in eqs. 4.93 are equal to

each other at the free surface:

ks x sin p{ = ks x sin f3r = h[X sin ar

or

sin fa = sin (3r ^ sin ar

Cs Cs C{

This shows that the incident and reflection angles of the SV wave are equal:

Pr = Pi (4-95)

At the same time, we have

s i n ^ = sin^v ( 4 9 6 )

Eqs. 4.95 and 4.96 represent Snell's law for the incident SV wave. As follows from eq.

4.96,

sin ar — m sin p{, (4.97)

Since m > 1 (Fig. 4.Id), ar > ji^ If

smA = | ,

then the angle ar becomes equal to TT/2, and the reflected wave P slides along the

free surface. By analogy with acoustic waves, angle Bc is called the critical angle. When

Pi > Pc, the P wave becomes inhomogeneous.

In order to determine the unknowns, Ar and Bri we substitute eqs. 4.93 into set

4.81 and obtain

(A + 2[i cos2 a r ) k\Ar + 2/i ks (Br — Bi) sin /^ cos Pi = 0

and

2ki sin ar cos ar Ar + ks {Bi + Br) (sin2 /3j — cos2 [3,^ — 0

or

(A + 2/t cos2 ar) Ar + 2\i m {Br - Bi) sin j3t cos (3t = 0 (4.98)
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and 2 sin ar cos a.rAr + m (Bi + Br) (sin2 ft — cos2 ft) = 0

Using Snell's law, we obtain

4/i cot ar cot ft - [A + (A + 2fi) cot2 qr] (cot2 ft - 1)
•Or = ^ -Dj (4.99)

1 4^ cot ft (cot2 ft-1)
and Ar = B8

m L>2
where

£»2 = 4/* cot a r cot ft + [A + (A + 2/i) cot2 a,] (cot2 ft - l) (4.100)

Reflection coefficients The displacement vectors of the incident and reflected

SV waves at the boundary are

Si — Bi(cos ft i + sin ft k) cos(fcA.x sin ft — cot)

and s r = Br(— cos ft i + sin ft k) cos(/csa; sin ft — u>t),

whereas n̂  = sin ft i - cos ft k and n r = sin ft i + cos ft k are the unit vectors of

rays. It is evident that n̂  • Sj = n r • sr = 0. The reflection coefficient of wave SV is

TZss = BrjBi. The indices SS and S*P mean that P and 5" waves arc caused by

the S incident wave. We see that displacement carried by the reflected SV wave is

orthogonal to the ray, and its sign depends on the sign of TZss- If TZss is positive, the

displacement is directed toward the z-axis, like the displacement in the incident wave.

At the same time TZSp = Ar/Bl} and if TZSp is positive, the displacement vector for

the P wave is directed downward along the reflected P ray. ]

Case A = /i Then cqs. 4.99 and 4.100 arc simplified, and we have

Br = 4 cot a, cot ft-(1 + 3 cot2 a r f ^

4 cot ar cot ft + (1 + 3 cot2 aT)

4 cot ft (1 + 3 cot2 ay)
and Ar = — ^ B{

m 4 cot ar cot ft + (1 + 3 cot2 ar)
:I t is possible, of course, to present coefficients Rpp, Rps, Rss- a/nd RSP in a

slightly different way, using equalities A + 2/i = cfp, \i — c2
sp, and Snell's law (see, for

example, Aki and Richards, 1980).
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The expression for Br shows that the reflected wave SV vanishes when angles obey

the equation

4 cot ar cot Qi = (l + 3 cot2 ar) ,

which has two roots:

0i = 34° 76' and fa = 30°

Behavior of the reflected waves is shown in Fig. 4.2b. For relatively large values of

in and a the amplitude of the reflected SV wave becomes smaller with an increase of

j3{ and reaches a minimum near j3i = 2>2°. Then it starts to increase. For smaller values

of m and a, this wave disappears at two angles between 25° and 40°. Amplitudes of

the reflected P wave are equal to zero values for normal incidence, smoothly increase

with increased angle and pass sharp peaks near the critical angle.

Reflected waves beyond the critical angle As we already know, if [3{ > 0C,

Sncll's law for the reflected P wave becomes invalid (sina r > 1). Correspondingly,

cos ar — \ 1 l- sin2 /?,• = i bz and bz — \ / -^ sin2 /?,• - 1

y Ks y 4

Therefore, for the potential of the reflected P wave, cqs. 4.93, we have

~ A
<pr(x,z,uj) = —f- exp(—k]bzz + ikix sin ar), (4.102)

iki

where Ar is now complex. We see that an evanescent P wave propagates along the

free surface with the velocity c = cs/ sin/?j, which varies with the angle of incidence f3i

within the range cs < c < Q. The amplitude of this wave, Arexp(—kibzz), decays

exponentially with an increase of depth z. The rate of its change depends on the angle of

incidence. In particular, at the critical angle, the parameter bz is equal to zero, and the

reflected P wave becomes homogeneous. With an increase of flt, the evanescent wave

decays more rapidly. Since ki = u>/ci, the exponential term exp (—kibzz) depends on

a frequency. Correspondingly, the high frequency harmonics concentrate near a surface.

As follows from equations for displacement components, during each period particles of a

medium move along an ellipse whose parameters change with depth z. The evanescent

(inhomogencous) P wave is always accompanied by the reflected homogeneous SV

wave, which moves away from the free surface through an elastic medium. Its apparent

velocity along the boundary is the same as that of the inhomogeneous P wave. As is



4.4. REFLECTION FROM THE FREE SURFACE (OBLIQUE INCIDENCE) 213

seen from eqs. 4.99 and 4.100, the reflection coefficient IZss is now complex and may

be presented as a ratio,

nss = f ^ , (4,03)

where

c \ fb c\2l
E = 4/z6z- cot ^ and F= A + (A + 2/i) M ^ ) (cot2 & - l) (4.104)

It is evident that in this case

•Rss = exp (-?*) , * = 2 tan"1 — (4.105)
F

This means that the reflected SV wave has the same amplitude as the incident SV

wave, but it is shifted in phase. Thus, the resulting total reflected wave consists of two

parts, namely, the evanescent P wave and the homogeneous SV wave. For an observer

at the surface, it is impossible to distinguish them. For instance, the displacement field

of the reflected waves can be represented as

s = grad ip + curl i/>,

and simultaneously we observe different types of motion and deformation that are typical

for compressional and shear waves. Because a portion of the energy of this reflected

wave moves away from the boundary, with an increase of depth z the reflected wave

SV becomes dominant and, therefore, polarization becomes linear. This analysis shows

that only the superposition of the incident wave and both reflected waves satisfies the

boundary conditions - that is, the normal and shear stresses are equal to zero:

Tzz = 0, Txz = 0

This means that at each point of the boundary, the wavefield is a result of the superpo-

sition of all waves. Of course, the same is correct when the angle of incidence is smaller

than the critical angle. Thus, we have demonstrated that a plane wave cannot create a

surface wave that satisfies the boundary conditions. The same is true if the boundary

is ideally rigid. Also note that there is a phase shift between the incident and reflected

waves at points of the boundary. Because of this, at every instant part of the energy of

the incident wave is transformed into energy of the reflected SV wave, but the other

part is transformed into energy of the evanescent P wave. As was mentioned earlier,

Snell's law for the reflected SV wave is valid for all values of B-.
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Incident SH wave

Finally, assume that the SH wave is incident and that displacement has the v-

component only.

i>i (x, z, to) = Ci exp [i ks (x sin Ji + z cos 7J] (4.106)

Since this wave is accompanied by the single stress component ryz, let us suppose that

the reflected wave is also an SH wave, and therefore

v (x, z, LJ) = Ci exp [i ks (x sin 7, + z cos 7 )̂] + Cr exp [i ks (x sin 7 r — z cos 7r)] (4.107)

Here 7, and 7 r are angles of incidence and reflection, respectively. At the boundary,

we have

dv
Tyz = ii~dz =

By analogy with the two previous cases, we conclude that this equality is satisfied, pro-

vided that

sin7j = sin7 r or l i = lT-> (4.108)

and we again arrive at Snell's law. In the same way as before, we obtain

Cr = Q, and Tlss = 1 (4.109)

Hence

v (x, z,u>) = Cj{exp [i ks (a;sin7,; + zcosj^)] + exp [i ks (a;sin7j — zcos7,;)]} (4.110)

We see that displacement at the free surface is doubled, which happens for any angle of

incidence. The similarity with the behavior of acoustic waves is obvious (Part II). Since

v (x, z,t)=Re\v {x, z, w) e~iujt~\ ,

we have

v (x, z, t) — Cj{cos [ks (xsin7j + ZCOS7,) — cut] + cos [ks (a;sin7i — zcosjj) — cot]}

or

v (x, z,t) — 2Ci cos (kszcos/yi) cos (wt — kgXsinjA (4.111)
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Thus, superposition of the incident and reflected waves produces a standing wave along

the 2-axis and a wave propagating along the x-axis with the velocity

c=-^— (4.112)
sin 7 i

In conclusion note the following. The energy of the incident wave is transformed into

that of the reflected waves. For instance, in the case of the incident SV wave, the

energy is distributed between the reflected SV and P waves. Imagine three elementary

vector tubes with a common point at the interface. Then the amount of energy moving

through the tube of the incident wave is equal to the sum of energies flowing through

the two other tubes during the same time interval. If the angle of incidence exceeds the

critical angle fiL > /3C, the mean values of the energy of the incident and reflected SV

waves are equal to each other.

4.5 Reflection from the rigid surface (oblique incidence)

Suppose now that plane z — 0 is the interface between an elastic medium and an ideally

rigid medium. To illustrate reflection, consider the incidence of an SV wave and assume

that the reflected P and SV waves arise. Correspondingly, the complex amplitudes

of the scalar potential and the t/-component of the vector potential are

A
(pr(x, z, LJ) — -r-j- exp [i ki (x sin ar + z cos ar)] (4.113)

and ij)(x, z, ui) — —^- exp [i ks (x sin / j - — z cos /3A] H f- exp [i ks (x sin (3 + z cos f3 )]
i ks i ks

By definition, at the boundary all three components of displacement are equal to zero,

i.e.,

u(x,0,u))=0, V(X,0,UJ) = 0, W(X,0,UJ)=0 (4.114)

Our assumptions about waves imply that the component v is absent everywhere. In

terms of potentials we have

^ - ^ = 0 and f + # = 0 at z = 0 (4.115)
ox oz az ox
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Substitution of eqs. 4.113 into set 4.115 allows us to determine the unknowns AT and

Br, and to establish again SnelPs law:

0r =fJt and S m ^ = S m ^
ci cs

The system of equations with respect to AT and BT is

sin ar Ar + {Bt - Br) cos p\ = 0, (4.116)

cos ar Ar + (Bi + Br) sin p\ = 0

Hence

Br = C o s a r c o s ^ - B i n a , ^ ^
cos a r cos Pj + sm a r sin p{

and Ar = ' ; , Hx . ^
cos ar cos pj + sm ar sm p,

or

i ? ^ C ° S ^ + / ! ' | ^ and Ar = - fW\,B% (4.118)
cos (ar - Pi) cos (a r - / i j

First consider the behavior of reflected waves when the angle of incidence is smaller than

the critical angle:

Pi <pc = sin"1 ^
Q

For the normal incidence, (3i — 0, we obtain

Br — Bi and Ar — 0,

i.e., only the reflected SV wave arises. With an increase of [J,h the amplitude of the

reflected SVr wave becomes smaller and the P wave appears. Beyond the critical angle,

(p1 > j3c), the P wave becomes evanescent and exponentially decays with distance from

the boundary. At the boundary, there is a phase shift between the incident wave and the

reflected SV wave, and their amplitudes are equal to each other: |Z?r| = Bi.
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4.6 Reflection and transmission at the boundary between a fluid and an
elastic medium

As is well known (Appendix D), in the vicinity of the boundary, (z = 0), particles of a

fluid medium and an elastic medium are not rigidly connected to each other. Correspond-

ingly, tangential components of displacement may have different values on each side of

the interface. In other words, in general, they are discontinuous functions on 2 = 0. At

the same time, the normal component of displacement is a continuous function. Oth-

erwise we would observe either a gap between the two media or their overlapping. We

also take into account that all stresses are continuous functions, and shear stresses are

absent in a fluid. This means that in the vicinity of the boundary, shear stresses in an

elastic medium are also equal to zero. Thus, the boundary conditions are

w = w1 and TZZ=T{1J, T ^ = 0, r « = 0 on z = 0 (4.119)

Here the index "1" shows that displacement and stresses, as well as other wave charac-

teristics, are considered in an elastic medium. Recalling that in a fluid /i = 0 and using

Hooke's law, set 4.119 can be represented as

w = wi, A div s = Ai div Si + 2/7̂  —— (4.120)

and — - + — - = 0, —- + — - = 0 on z = 0
az ox az ay

Here u\, v\, and w\ are components of displacement in an elastic medium, while u,

v, and w describe vector s in a fluid. Parameters A] and /i : along with density pl

define the velocity of propagation of longitudinal and shear waves:

AL + 2Ml = Plcl ,j,t = P l c
2

s (4.121)

Parameter A plays the role of the bulk modulus of the fluid: A = p c2. In studying

reflection, our main attention is paid to the case in which the incident plane wave prop-

agates through a fluid and its phase surface is parallel to the y-axis, Fig. 4.3a. In other

words, wavefields are independent of the y-coordinate. In particular,

ay ay ay
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Figure 4.3: Reflection and transmission at the boundary between fluid and solid media.

The incident P wave in fluid: (a) Ray scheme (b) Reflection coefficient \Rpp\ as a

function af the angle of incidence and parameters of media (c) Transmission coefficient

\Tpp\ (d) Transmission coefficient \Tps\. Numbers near the curves correspond to different

solid media: 1. ct = 4.5 km/s, cs = 2.81 km/s, px = 3.0 g/cm3; 2. c4 = 3.0 km/s.

cs = 1.73 km/s, pl = 2.4 g/cm3; 3. ct = 2.5 km/s, cs = 1.25 km/s, pl = 2.1 g/cm3. In

fluid , c — 1.5 km/s, p — 1.0 g/cm3.
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At the boundary, the incident wave gives rise to secondary waves, and we assume that

the plane wave P appears in a fluid, whereas in an elastic medium, the plane waves

P and SV arise. This implies that the displacement component along the y-axis is

absent: v = 0. As in previous sections, it is convenient to introduce scalar and vector

potentials:

s = grad <p if z < 0, (4.123)

and

Si = grad ip1 + curl tpx, where ipl = ^ J (4.124)

Then, eqs. 4.122 4.124 give

dip dip
u = ^ , v = 0, w = ir 4.125

ox oz

d(p1 dtp1 d^ dipland «! = —— - —-, vi = 0, wx = - 1 + —±

ax oz oz ox

Because we are considering sinusoidal waves, we can also apply eqs. 4.119-4.125 to the

complex amplitudes of displacement and potentials. Then, substituting eqs. 4.125 into

set 4.120 and using equalities

div s = div grad <x> = V w = ——\- -^—
ox oz

and div S] = div grad <p, = v <p, = — 1—-—,
ox oz

we obtain the boundary conditions in terms of potentials

dtp d<pl 9Vi
dz dz dx

A V ^ ^ A , V « ? 1 + 2 , , 1 ^ + g | J (4.126)
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Note that the last boundary condition of set 4.119, (ryz — 0), is met for any field s, as

soon as eqs. 4.122 and 4.125 are valid. As was demonstrated earlier, potentials can be

represented in the form

~ A- A
if (x, y, LO) = —j exp [ik (x sin c^ + z cos a^)] + —j- exp [ik (x sin ar — z cos ar)],

%K IK

<Pi (x, z, to) = —- exp [ikf (x sin a? + z cos o^)], (4.127)
z HJ[

B2and ipi (x, z, u) = —— exp [iks (x sin j32 + z cos fi2)]
I K$

First of all, substitution of cqs. 4.127 into the boundary conditions, cqs. 4.126, leads us

again to Snell's laws of reflection and refraction:

sin a2 sin a,- sin /39 sin a,
ar = at and = -, — = -, 4.128

Cl C Cs C

or

sin ctj sin a2 sin j32

c Ci c,

Correspondingly, the system of equations for determining of unknowns Ar, A2, and

B2, cqs. 4.126, is greatly simplified, and we obtain

cos ot% (Ai — Ar) = cos a2 A2 + sin (32 B2

A k (Ai + Ar) = A kiA2 + 2/i: (ki cos2 a2 A2 + ks sin /32 cos /32 B2) (4.129)

2 ki sin a2 cos a2 A2 + ks B2 (sin2 02 — cos2 (32)
 = 0

Introducing notations (Part II)

z* = Pc
 z* = Pi ci z , = px cs

cos a, ' cos a2'
 s cos j32

and making use of an equality

k\ (Ai + 2/ix cos2 a2\ = ki (Ai + 2/i:) — ki 2\iy sin2 a2 =
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c2

hp^f - 2klpl c2 - | sin2 /?2 = hp^f cos2/32,

set 4.129 becomes

cosa t (Ai — AT) = cos a2 A2 + sin/?2 B2

Z* cos «i ( ^ + Ar) = Z\ cos a2 cos 2fJ2 A2 + Z* sin 2[32 cos ^ 2 B 2 (4.130)

Z* sin 2a2 cos /i2 A2 — Z*t cos 2/32 cos a2i?2 = 0

The first two equations give

2Z* cos QiAi = (Z* + Z* cos 2/32) cos a2 A2 + (4.131)

(Z* + 2Z* cos2 02) sin /32B2 = 0

From the last equation of set 4.130, we have

B2 = ^Sin2J C°SfJ2A2 (4.132)
Z\ cos 2p2 cos a2

Its substitution into eq. 4.131 gives

2Z*Z1 cos a, cos a2 cos 2/?2 A, = D A2, (4.133)

where

I? = (Z* + Z* cos 2/32) Z; cos2 a2 cos 2/32 + (Z* + 2Z; cos2 (52) •

Z*s sin 2a2 sin fi2 cos /32 = Z* {Z\ cos 2/32 cos2 a2 + Z* sin 2a2 sin /32 cos /32) +

Zl2 cos2 2/32 cos2 a2 + Z*2 cos2 /?2 sin 2fJ2 sin 2a2 =

Z*Z* (cos 2,B2 cos2 a2 + C°S ̂ 2 S m ^ sin 2a2 sin^2 cos,/32 ) +
V cos,92sina2 /
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Z?(ZT cos2 2/32 cos2 a2 + Z* — cos2 [32 sin2/32 sin2a2) =
sin a2 cos p2

Z*Z\ cos2 a2 + Z"{ cos2 a2 {Z\ cos2 2/?2 + Z*s sin2 2/32)

Whence

2 Z * COS OLi COS 2/?2 A ; ,A11A\
2 ~ ^z i 2~o«—, -z* • 2Ofl—T^TIY (4.154;

cos a2 (Z; cos2 2p2 + Z* sin 2p2 + Z* j

or

_ 1 2Z(* cos 2/32 Ai
2 ~ runt Z\ cos2 2/52 + Z* sin2 2/?2 + Z*

Here

Pi , Q
m — — and ni — —

P c

From eq. 4.132, we have

B = _A 2Z;sin2(J2At
2 TO ns Z* cos2 2/32 + Z* sin2 2/32 + Z*

and

cs
ns = —

c

Substitution of eqs. 4.134 and 4.135 into the first equation of set 4.130 yields

A-A 2Z*A

' Z\ cos2 2/32 + Z*s sin2 2t62 + Z*

Thus

_Z;cos 2 2 /3 2 + Z ; s i n 2 2 / J 2 - ^
r " Z\ cos2 2/̂ 2 + Zs* sin2 2f32 + Z* A ( 4 ' i J b J

We have demonstrated that if coefficients Ar, A2, and B2 arc given by cqs. 4.134-

4.136, boundary conditions are satisfied and, therefore, our assumptions about reflected

and transmitted waves are correct.
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Wave behavior

As follows from Snell's law, in the simplest case of normal incidence (pn — 0), we have

a2 = /32 = 0,

and, correspondingly:

nr 7 r) nr

Ar = -^—^ A, A2 = —— Ai, B2 = 0,
Zi + ZJ ZI + Z

where

Z = p c, Zt = pxcu Zs = pxcs

are impedances for acoustic, longitudinal, and shear waves, respectively. In such a case a

shear wave does not arise, and we again arrive at formulas that correspond to an acoustic

medium.

Also, it is interesting to note that there is an angle of incidence ĉ  when the P wave

is absent in an elastic medium (Fig. 4.3c). In fact, from eq. 4.134 it follows that

A2 = 0 if /32 = TT/4

Since

sin /32 sin o^
cs c

we have

on = sin"1 —°— (4.137)
csV2

Certainly, this happens because of the destructive interference of elementary spherical

waves of the P type. As a result, the only wave in an elastic medium is the SV wave,

and eqs. 4.134-4.136 give

1 9 7* A 7* 7*
^2 = 0, B2 = — - i f ^ , and AT = * * A (4.138)

m ns Z*s + z* Z*s + Z*
In analyzing wave behavior, suppose that at the beginning

1. cs < c < ci
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From Snell's law,

Q . • o °s •
sin ct'i = — sin a,;, sin p2 = — s m a n

c ' c
it is clear that for all angles of incidence an equality sin/?2 < 1 takes place and,

therefore, the plane wave SV is homogeneous, regardless of Q,> However, the P wave

in an elastic medium is homogeneous only if

c
sm ojj < —

Q

At greater angles, it becomes inhomogeneous, and it exponentially decays with distance

from the boundary. In previous sections, we have shown that beyond the critical angle

otci (acl = sin"1 C/Q) ,

cos 0:2 = V 1 — sin2 a2 = i bz

Therefore, Z* = —i |Z;*|, and the reflection coefficient Ar becomes

_Z*s^2[i2-Z*-i \Z\ cos22,/32
r ~ Z* sin2 2/i2 + Z*-i \Z* cos2 2/i2 ' ( }

Coefficient Ar is a complex number and, unlike in the case of total internal reflection

in an acoustic medium (Part II), its magnitude is smaller than unity. This fact is easily

explained, since the part of the energy of the incident wave is transformed into the energy

of the shear wave. Thus, if the angle of incidence does not exceed the critical angle ac,

both transmitted waves are homogeneous, and at the boundary the incident and reflected

waves are in phase. When c^ > aci, the shear wave is still homogeneous, but the P

wave in an elastic medium becomes evanescent and propagates along the interface. At

the same time, there is a phase shift between the incident and reflected waves at the

interface points.

2. c < cs < ci

In the second case, it is convenient to distinguish several ranges of the angle of incidence

a-i. If 0 < sinaj < C/Q, then both transmitted waves are homogeneous, and the

coefficient of reflection is real, (Ar < Ai). In the second range

c c
— < sm oij < —,
ci cs
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angle /32 is real but angle a^ is complex. In other words, the P wave is evanescent

and moves along the boundary, whereas the SV wave remains homogeneous. Finally,

when

c
sm a, > —,

cs

angles a-z and fi2 are both complex. This means that the transmitted P and SV

waves are inhomogeneous, and they travel with the same velocity along the boundary.

Correspondingly, Z\ and Z* are purely imaginary numbers, and the reflected coefficient

is equal to

A = i (l^|cos22/?2+ |Z;|sin22/J2)+Z* ^
i (\Z-f\cos22(J2 + \Z* sin22/i2) - Z* *l { ' '

Since | Ar \ = \Aj], total internal reflection occurs - that is, during a half-period the energy
of the incident wave is transferred to the energies of both evanescent waves, and then it
returns to the fluid. Results of calculation of the secondary fields, eqs. 4.134-4.136, as
functions of the incident angle ĉ  are shown in Fig. 4.3b d. As we know, this parameter
strongly influences on interference of elementary spherical waves, which creates reflected
and refracted waves. For instance, in approaching the critical angle ac\ = sin~1(c/c;),
the amplitude of the reflected P wave rapidly increases, and this is understandable, since
total internal reflection for the P wave is observed. At the same time, for slightly larger
values of c ,̂ we see a decrease of the amplitude of this wave accompanied by a sharp
increase of the SV wave. The latter indicates the strong constructive interference of the
SV elementary waves. Finally, near the critical angle aC2 = sin"1 (c/cs), the amplitude
of the SV wave tends to zero, and total internal reflection takes place. Derivation
of formulas describing reflection and transmission when the incident wave propagates
through an elastic medium is similar to the previous case.

In conclusion, let us note the following: When the incident SH wave propagates
through an elastic medium, it is easy to demonstrate that the reflected wave is of the
same type. The sum of these two wavefields satisfies the boundary condition

Tyz = 0 on z — 0

This means that an incident wave does not generate waves in a fluid. Of course, the
geometry of waves obeys Snell's law

IT = 7i,
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and at the boundary for the w-component of displacement we have

V(X,0,LJ) = 2vi(x,0,w),

whereas other components (u and w) are absent.

4.7 Reflection and transmission at the boundary of two elastic media

Incident P wave

By analogy with the previous case, first suppose that the incident P wave propagates
through the upper medium, Fig. 4.4a, and at the boundary the reflected and transmitted
P and SV waves arise. Thus, the secondary waves include two P and two SV
waves, but the SH wave is absent. Correspondingly, our assumption implies that the
.(/-component of displacement is equal to zero:

v = 0 (4.141)

Since the wavcficlds arc independent on y-coordinatc, stress ryz vanishes. At the
boundary of two elastic media, both components of displacement, u and w, as well as
stresses, are continuous functions:

Ml = U'2, W\ — W-2 (4.142)

r(
z
l}=rf} T^=TW on z = 0

or, using Hooke's law, we have

Ml — U2, U>i = U>2

Ai div si + 2/Xi^1 = A2 div s2 + 2 / i 2 ^ p (4-143)

/ dui dwi\ Idu-2 dw-2\
M i h r + -^r~ h / i 2 h r + ~^r~ > on z = °

\ oz ox / \ oz ox J
where

du diu
div s = — + -—

ox oz



4.7 BOUNDARY OF TWO ELASTIC ELASTIC MEDIA 227

Figure 4.4: Reflection and transmission at the boundary between two solid media.

(a) Ray scheme for P — S\'r waves, (b) Reflection coefficient \Rpp\ as a function of

the angle of incidence and parameters of media, (c) Reflection coefficient \Rps\. Num-

bers near the curves correspond to different solid media: f. cu/c2i — 0.5, P\j p2 — 0.74.

2- Cu/c2i = 0.62, pi/p2 = 0.76. 3. cu/on = 0.75, pi/p2 = 0.78. Poisson' ratio is 0.25 for

all cases, (d) Ray scheme for SH waves.
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Once again we introduce, but in a slightly different form, the complex amplitudes of
potentials

(p1 — A, exp [ikn (x sin wt — z cos «;)] + AT exp [ikn (x sin ar + z cos a,)]

ipx = Br exp [ik\s (x sin [3r + z cos /3r)]

^2 = ^2 exp [iA;2i (.T sin a 2 — z cos 0:2)] (4.144)

ij>2 = B2 exp [ifc2s (x sin /32 - 2 cos p2)],

From the equality

s = grad (p + curl xp,

where

•0 = ^ i

we have

9o9 dib dip dtp
02; oz 02; ox

and

T^AVV + 2 , ( g + ^ )

and
/ d\ d^j dhp\

Txz ~ M \ dxdz + fe2 dz* )

Correspondingly, the boundary conditions in terms of complex amplitudes of potentials
are

dipj dtp1 dip2 dip 2 dfi dipl d<p2 dtp2

dx dz dx dz ' dz dx dz dx

_Al ̂  + 2((, (*L + 1 | ) . _Al ̂  + 2/l2 ( § + 1 | j , (,145)
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( »2~ a2,7, P2.7, \ / a2~ a2,7 2̂ 7. \

In order to satisfy this .system of equations, arguments of all potentials have to be equal,

and we again arrive at Snell's law:

sin a.{ sin ar sin j3T sin a2 sin /32

ClZ Ci; Ci., C2l C2s

or

a r = at

and
sin a r sin /3r sin o;2 sin /32

C\l Cis C2l C2s

Directions of rays corresponding to the incident and secondary waves are shown in Fig.

4.4a. Following Snell's law, substitution of eqs. 4.144 into set 4.145 gives

kn sin cti (Ai + Ar) — fcls cos j3r Br = k2i sin a2 A2 + k2s cos /32 B2

ku cos ct!j (Ar — Ai) + k\s sin 0r Br = —k2i cos a2 A2 + k2s sin /32 B2 (4.148)

-\ik\i {At + Ar) + 2/i! [k2
u cos2 at (A, + Ar) + k\s sin 0r cospr Br]

= — X2 k\{ A2 + 2/x2 [kli cos2 a2 A2 — k\s sin j32 cos /32 B2]

jj,l [2k2
u sin a;, cos a* (̂ 4r — Aj) + A;̂  (sin2 /?r - cos2 /J,.) Br]

— [i2 [2^1; s m a 2 cos a-2 A2 + k\s (sin2 /32 - cos2,92) B-2]

Thus, we have obtained a system of four linear equations with four unknowns (Ar, Br,

A2, and B2). A numerical solution of this system allows us to find all wavefields at

any point in an elastic medium. Reflection coefficients IZpp and IZps are
A J-Z

nPP = ̂ , nPS = -f, (4.149)

and transmission coefficients Tpp and Tps are

TPP = ^ , 7>5 = ^ (4.150)

As an illustration, the behavior of coefficients characterizing the reflected P and

SV waves is shown in Fig. 4.4b,c, when the P wave is the incident wave. The case of

the incident SV wave can be treated in a similar way.
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Incident SH wave

Next we assume that the incident SH wave moves through the upper medium, Fig.

4.4d, and that reflected and transmitted SH waves arise at the interface. Since

s = curl i/) and if) = ip i,

we have
Q j

u — w = 0 and v = — (4.151)
oz

Taking into account that div s = 0 and that the field is independent of the y-coordinate,

the stresses are

rzz = 0, rxz = 0, Tyz=n^ (4.152)

Therefore the boundary conditions have the form

vi = v2 and /i1 —- = /x2 —- on z = 0 (4.153)
oz oz

Since displacement is described by the single component that obeys the wave equation,

we solve the boundary value problem with respect to the complex amplitude, v(x, Z,LJ),

where

vi(x, z, w) = Ci exp [i kls (xsin^i - zcos jt)] +

Cr exp [i kis ix sin 7,. + z cos jr)} (4.154)

and V2(x: z, to) = C2 exp [i k^s {% sin72 — zcos j2)]

Substitution of eqs. 4.154 into set 4.153 leads us, first of all, to the Snell's law:

siii7,: siii72
7 r = 7- and = (4.155)

C\ s C2s

Also, we arrive at a system of two simple equations:

Ci + Cr = C2, nx kls cos7j (Ci - Cr) = n2 fa* cos72 C2 (4.156)

Solution of eqs. 4.156 gives

Zu cos 78 - Z2s cos 72

<̂ r = -^ - ^ Oj (4.157)
z l s cos 7̂  + Z2s cos 72
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i r< 2 ^ i s c o s 7i ^
and G2 = — — Cj

Z l s cos 7j + Z2,, cos 72

The simplicity of these formulas and their resemblance to formulas for the reflection and

transmission of acoustic plane waves is obvious (Part II). In particular, the reflected

wave vanishes due to destructive interference for some value of angle of incidence 7^.

Also, beyond the critical angle (c2s > Cis), an evanescent wave in a medium with higher

velocity is formed and propagates along the boundary (total internal reflection). In this

case, we have

V2(x, z, w) = C2 exp(—k-\sbzz) exp(—ik2Sxsin•yi),

From eq. 4.156 it follows that

_ Zls cos ji-iZ2sbz _ 2 Zis cos 7,
Z-[S cos 7i + iZ2sbz Zu cos 7̂  + iZ2sbz

where

b* = \ / -2^ s i r l 7i - l

V c t
It is easy to see that \Cr\ = C{ and the reflection coefficient TZ,ss = Cr/Ci = exp(—i^f),
where

ry T

* = arg Cr = 2 tan"1 ^ — (4.158)
Z\s cos 7,

In conclusion, let us note the following. If the angles of incidence of the P, SV,
or SH plane waves do not exceed the critical angle, coefficients of reflection and
transmission derived for sinusoidal waves arc also valid for arbitrary transient waves.
Beyond the critical angle, a phase shift between the incident and reflected waves occurs
at the boundary. This shift is independent of frequency. Because of this, use of the known
coefficients of reflection and transmission and the Hilbert transform allow us to find in a
relatively simple way a transient reflected wave (Part II). Since the complex amplitude of
evanescent waves depends on frequency, nonstationary wavefields are defined by Fourier's
transform.

4.8 Ray tubes and flux of energy

Suppose that a plane wave propagates through a homogeneous medium, and choose the
Cartesian system of coordinates, x\,yi,zi, so that the wavefront coincides with the
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plane Z\ — const. By definition, a lateral surface of any elementary ray tube is formed

by rays, which are straight lines, and the area of the cross-section of the tube is constant.

First we will demonstrate that the flux of clastic energy travels along these tubes. We

will consider this subject separately for compressional and shear plane waves. As was

derived in Appendix D, the vector of the density of flux energy, Y, is the product of

the symmetrical tensor of stress and particle velocity, s:

/ TXIXI Txm TXIZI \ ( UX \

Y = - ryiXl rym ryiZl U L (4.159)
\ TZlXl Tziyi TZlZl ) \W\ J

where «i, v\, w\ are components of particle velocity in the coordinate system x\, j/i, z\.

Now we take into account that derivatives with respect to x\ and y\ are equal to

zero and find expressions of Y for each type of plane wave.

Incident P wave

Since displacement s has only one component w^ that is directed along a ray we have

in accordance with Hooke's law

TXlXl=\^, rym=\p^, rZlZl = (A + 2 M ) | ^ (4.160)
OZ\ OZ\ OZ\

and Txiyi = Txizi = Tyizi = 0

Therefore

/ TXIXI 0 0 \ / 0 \

Y = - 0 rym 0 0

V 0 0 rZlZ1 ) \ Wl J

or

Yxl=0, Ym=0, Yzl = -WlrzlZL (4.161)

or

YZ1=-(\ + 2IJ,)W^ (4.162)

We see that elastic energy moves along a ray tube, and the flux through its lateral surface

is equal to zero.
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Incident SV wave

In the case of the SV wave the single component of displacement, v,\, is tangential

to the wavefront, and since

div s = 0,

the stresses are

^ = 2 , ^ = 0, r s m = 2 ^ = 0 > ^ = 2 ^ = 0 (4.163)

A dUl n dUl n
and Txiyi = fi — = 0, TXIZI = n — , T,JIZI = 0

OIJi OZ\
Then

/ 0 0 Txizi \ / MI \

Y = - 0 0 0 ° ' (4-164)
\ rxizi 0 0 ) \ 0 y

that is,

YXI = 0, yy , = 0, YZI = -UXTXXZX (4.165)

or

, , • dui , .
YZ1 = -(Mi——, (4.166)

and again energy flux advances along the ray tube, in spite of the fact that particles in

the medium are moving in a perpendicular direction.

Incident SH wave

In the case of the SH wave, since displacement is oriented along the j/i-axis and, as

before, div s = 0, we obtain

TX1X1 =Tyiyi =TZIZ1 = 0 and rxiyi = rxizi = 0, (4.167)

but ryizi = fi• —
az\
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Thus

Y = - 0 0 TyiZl \ \ v \ , (4.168)

V 0 TylZl 0 / V 0 /

that is,

YXl = Yyi = 0 and YZl = -v ryiZl

or

Yzl = -tiVl^ (4.169)

It is clear that regardless of the direction of particle motion, energy flux moves along

ray tubes. As an illustration, consider sinusoidal waves. In the case of the P wave, for

example, displacement Wi is

w1(zl,t) = Asin(ujt-klz1) (4.170)

Correspondingly, velocity and stress are equal to

W\ (z-[,t) = A LJcos (u)t — kiz-[) (4.171)

and TZIZI (zi, t) = — (A + 2[i) kiA cos (tot — k[Z\)

Whence

YZI = (A + 2/x) u; h A2 cos2 (cut - klZl) (4.172)

As is well known, the mean value of Poynting's vector is defined from the relationship

Y™ = i fyzAt)dt,
1 Jo

and the latter gives

Y^=l-{X + 2^)uoklA
2 (4.173)

or

Y™ = y Z , A2 (4.174)
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Here Z[ is the impedance for the P wave. In a similar manner, for SV and SH

waves we have

YZ1 = y Z s A\ (4.175)

and Zs = p cs is the impedance of shear waves. These results are very useful for under-

standing the nature of the high-frequency spectrum of elastic waves in an inhomogeneous

medium, where the velocity of propagation (Q or cs) varies. By analogy with acoustic

waves (Part II), in such a case we can treat each elastic wave as a plane wave, and its

amplitude, phase, and direction all depend on the observation point. Correspondingly,

wave amplitude can be represented as the asymptotic series with respect to inverse pow-

ers of ui (Debye expansion). Its zero approximation describes the wave amplitude when

energy flux propagates along the ray tubes. Inasmuch as the flux inside a tube remains

the same, eqs. 4.174 and 4.175, let us write the equality

Z(pi) A2(Pi) S(Pl) = Z(p2) A2{p2) S(;p2) (4.176)

Here Z is the impedance of either the compressional or the shear wave, and S(pi) and

S(p2) are two cross-sections of the ray tube. From eq. 4.176 we have

A{p2) = A{Pl)J
 y ' ) ' 4.177

y s(p2) z(p2)
or

A(p2) = - L A(Pl), (4.178)

where

F = Z#\^\ (4.179)
Z{pi) S{Pi)

is the spreading factor (Part II). As in the case of acoustic waves, eq. 4.178 permits us

to determine the change of the displacement amplitude. The direction of rays is defined

by Snell's law.

The previously outlined general features of reflection and transmission of plane longi-

tudinal and shear waves are important for many applications in exploration seismology.

These coefficients arc used in the ray theory of seismic waves in inhomogeneous media

as approximations to the coefficients of reflection and refraction of nonplane waves. The

AVO (amplitude versus offset) technique for determining the lithological properties of
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reflectors is based on knowledge about the behavior of these coefficients as functions of

the angle of incidence and elastic parameters. Because potentials of these waves obey the

wave equation, the principles of migration developed for acoustic waves can be applied

for each elastic wave. In particular, at points of a reflector, the incident and reflected

waves are in phase, provided that the angle of incidence does not exceed the critical

angle. However, there is one important difference - namely, in calculating amplitudes,

it is necessary to take into account the appearance of the P and SV waves at the

boundary, except in the case of the incident SH wave.

4.9 Reflection and transmission of plane waves in a multilayered elastic
medium

Let us consider propagation of stationary plane waves in an elastic medium consisting

of n homogeneous layers between two homogeneous half-spaces (Fig. 4.5). All layers

arc supposed to be in the welded contact, i.e., displacements and stresses arc continuous

across boundaries of layers. Our goal is to find reflection and transmission coefficients

for plane waves P, SV, and SH incident on the upper boundary of the n-layered

"sandwich". To do this, we need to construct a recurrent formalism linking displacements

and stresses at boundaries of this medium.

P-SV case

The chosen Cartesian system of coordinates is shown in Fig. 4.5. Let us consider an

arbitrary layer m bounded by the planes z = zm and z = zm+i, of thickness Hm,

with elastic parameters Am and /zm, density pm, and compressional and shear speeds

C'tm = \/(Am + 2/jm)/pm and csm = \/nm/pm.

Expressions for potentials of stationary P and SV plane waves of frequency LO

propagating in this layer in positive and negative directions away from the z-axis can

be written in the form

<pm = -±- Ume% a™ z + Bmer% a™ z) el(Px ~ ^ (4.180)
lKlm

 V '

and rpm = - L (cme^m * + Dme~l^z\ e^Px ~ ^
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Here

km = u/cim, ksm = u/csm, am = \jkfm - p2, j3m = \/k2
m -p2, (4.181)

where p = ui/c and c is the phase velocity of the waves along ir-direction. As follows

from Snell's law, this velocity is the same for all waves at each boundary. Values of

am, Bm and the coefficients Am, Bm, Cm, Dm vary from one layer to another. Now we

will use the known expressions for displacements,

u(m) = d ^ _ d ^ w(m) ̂ d^ + dpi (4 182)
ox oz az ox

velocities of displacements,

u =-iuu{m\ w =-iuwW; (4.183)
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and stresses,

Let us now introduce two vectors,

( *' "l / *~ \
X m ( 2 ) = ™(m) and N m = m , (4.185)

rJ(m) \ rj .

\ Tzz J \ um J

where components of XTO are complex amplitudes of displacement velocities and

stresses. We also introduce the matrix Qm{z):

( eiamz 0 0 o \

0 e-i am z Q 0

Qm(z)= iB z n 4 ' 1 8 6

0 0 el Pm z 0
v 0 0 0 e~{ P™z j

Using eqs. 4.185 and 4.186 and applying the rules of matrix algebra (Appendix B),

we can relate displacement velocities and stresses in the mth layer with coefficients

^•mi ^ m i ^ m ; ^rw

Xm(z) = LmQm{z)Nm (4.187)

Elements m -̂ of the 4 x 4 matrix L,m depend on elastic characteristics of the mth layer

and phase velocity c.

C-lm C-lm Qm Qm

Qm 9m Gsm Gsm

z r m 'Mm zA*m ^H"m

c c cs cs

\ dm dm - 2 / i m — 2/im— /

Here

qm = sjc1 - c2
sm, gm = ^c'2 - cfm, bm = c2 - 2c2,
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C CCim

From eq. 4.187 it follows that

N m = Qm (zm)Lm ~Km(zm) = Q,m (zm-i)Lm Xm(zm_i)

where Q"1 and L~^ arc inverse matrices of Qm and Lm . Now it is possible to

connect expressions for Xm at the top and bottom of the mth layer as

Xm(2m) =LmQrn(z)Qm
l{zm-1)L-?(zm-l)Xm(zm-1) (4.189)

= LmQm(Hm)Lm XTO(2m_i) = AfmXTO(zm_i)

where Mm = LmQm(Hm)L~^. The elements of matrix Mm depend on phase velocity c,

frequency w, elastic characteristics, and the thickness H,m of the layer. The conditions

of the welded contact allow us to link vectors ~Km(zm) and XTO(zm+1) at two adjacent

layers at the same boundary z — zm :

Xrn(zm) = Xm+1(z r a) (4.190)

As a result we obtain the relation between vectors XTO+1(zm) and Xm(2;TO_1)

Xm+1(2:m) = M r oXm(2 r o_1) (4.191)

Using eq. 4.191, we can connect vector Xi(0) at the top of the layered "sandwich" with

vector ~X.n(zn) at its bottom:

Xn(zn) = MnXn_,(zn) = MnMn_1Xn_2(2 n_i) = MnMn^...M,Y,(0) = 5F,(0) (4.192)

Here the matrix

S = n Mro (4.193)
m=l

is called a propagator, as it "propagates" the wavefield from the top to the bottom of the

layered media. The P and SV waves transmitted in the lower half-space and propagating

in the positive direction of the z-axis may be described by potentials

V?n+1 = T ^ — A , + i el a»+i z ^ x ~ w<) (4.194)
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and yn+l = ̂ ^—C^ el A>+i V ( P * " ^
''-Ks(n+1)

The corresponding vector Xn+i(^n) in the lower half-space is defined by the expression

/ A,+i \

Xn+1(z) = Ln+1Qn+1(z) ° (4.195)

V o /
Incident P wave If the incident wave in the upper half-space is a P wave, the

displacement velocity—stress vector in this part of the medium can be presented as

( A°\
X0(z) = L0Q0(z) B° (4.196)

V A) /
Here coefficients Ao, Bo correspond to the incident and reflected P waves, and coefficient

Do corresponds to the reflected SV wave. Taking into account equalities

Xo(0) = Xx(0) , Q0(0) = E, and Xn(zn) = Xn+l(zn) (4.197)

where E is a unit matrix, we arrive at a system of linear algebraic equations,

/ An+1 \ I Ao \ / Ao \

r° =Q^l(zn)L-i1SL0(0) B° =G B° , (4.198)

\ 0 / \ Do / V Do )

for unknown coefficients Bo, Do, An+-[, Cn+\. Solving this equation, we find the following

expressions for reflection coefficients,

-r>(°) — ̂ 1 — #24 ff41 - ff21 9AA ^-,(0) _ A ) _ ff2l + ff22#pp ,, , QQ,
/ v p p — — , '^PS — i — ' I4.iyji

A0 .922 9\\ - g2A 542 A0 §24

and transmission coefficients,

^-(n+l) Ai+\ ( p(0) p(0) \ / . 9 m x
ipp ——-—— I gn + gn-tipp + gu-tips 11 (4.z!uuj

q-i.n+1) _ Cn+i / (0) p(0)\

AQ V /
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where q^ are elements of matrix G.

Incident SV wave The single difference with the previous case (incident P

wave) is in expression for the vector No :

I ° \
No = B" (4.201)

Co

V A> /
Substituting this vector into eq. 4.198 and solving it we obtain recursive expressions for

reflection and transmission coefficients in the case of the incident SV wave:

— (O) _ #0 _ ff23 .944 ~ #24 .943 „(()) _ A ) _ .923 + .922-RSs / . o n r )s

L'O #22 #44 — #24 #42 ^ 0 #24

and

q-in+l) _ An+i / (o) (0)\ ,. 9 n ^ s

Co V /

( n + 1 ) C n + 1 / (o) (o) \
' 5 5 "~ ^ ^ — "~ I -933 + .932-Kpp + gutlPS I

Go V /

5i7 case

If the incident wave in the upper half-space is an SH wave, the single nonzero component

of displacement in the mth layer may be presented as

vm = (Arne
l fj

m
 z + Bme-1 ^ z) ^ ~ "*) (4.204)

and the stress component as

T^=^n
m

j- (4.205)

The displacement velocity—stress vector has only two components:

/ ~M \
Xm(z) = ^{m) (4.206)

\Tyz J

The corresponding matrices Qm, Lm, and Mm are now

Qm=[ n _i a , , Lm = . . , (4.207)
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M-m — LmQm,Lm

Vector Xn+i in the lower half-space and vector Xo in the upper half-space are defined
as

Xn+1(z) = Ln+1Qn+i(z) ( An^ j and X0(z) = Lo I ^° ) (4.208)

The resulting equation defining unknown coefficients By, An+i is

where, again, 2 x 2 matr ix G — Q~]_Azn)Ln+\ fl MnL0(0). Correspondingly,
TO—1

coefficients of reflection and transmission are

— (0) BQ 521 q-in+1) An+i , p(0) , , 91f )x
'^ss = IT = > 'ss = ^ < — = #11 + 512-n-ss1 (4.210)

^ 0 522 ^ 0

In conclusion, we should remember that coefficients defining reflected and transmitted
waves in all considered cases are frequency-dependent. Moreover, they may be real (if
the angles of incidence inside all layers are less than critical angles for all involved waves)
or complex (if even one of these angles is above the critical angle). Thus, reflection and
transmission of iionstationary (transient) waves in such a medium should be treated using
Fourier's transformation.



Chapter 5

Surface waves in an elastic medium

The purpose of this chapter is to describe so-called surface or boundary waves. The

energy carried by these waves concentrates near some surface, such as a free surface or a

boundary between different media. Waves of this type are different from the evanescent

waves discussed in the previous chapter because they are not generated by homogeneous

plane waves coming to this boundary. Two classical examples of such waves are the

Rayleigh wave in a homogeneous half-space with a free surface and the Stoneley wave at

the boundary between two elastic half-spaces or between a fluid and an elastic half-space.

These waves are composed of two evanescent waves of different types propagating along

the boundary with the same speed - one that is less than the intrinsic speeds of body

waves (compressional or shear) in the medium. The speed does not depend on frequency,

i.e., these waves are not dispersive.

We will also consider in this chapter waves of a more complex nature that arise in

layered media as a result of the constructive interference of multiply reflected body waves.

They still propagate horizontally without leakage of energy in a vertical direction. As

examples of interferential waves, we will analyze Love waves in a homogeneous elastic

half-space overlaid by a homogeneous elastic layer and Rayleigh waves in a homogeneous

elastic half-space overlaid by a homogeneous liquid layer. The speed of these waves is

frequency-dependent, i.e., the waves are dispersive. They are presented as a suite of

modes, and each mode is characterized by its dispersion curve and depth-depending dis-

tribution of energy. Analogs of such waves propagating in a layered fluid were considered

in Part II. Waves of this kind exist, of course, in more complicated vertically or radi-

ally inhomogeneous media. Depending on the problem at hand, they are considered as

a source of noise to be suppressed or as carriers of important information about the

structure under study.

243
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5.1 Rayleigh wave in a homogeneous half-space with a free boundary

Earlier we demonstrated that the SV incident wave may generate an evanescent P

wave as well as the homogeneous reflected SV wave at the free surface. This means that

the sum of these three waves satisfies boundary conditions, and stresses vanish at points

of the free surface. In other words, the evanescent wave cannot exist alone. Moreover,

since all three waves move with the same apparent velocity, it is impossible to distinguish

them.

Now we pose the following question. Is there a surface wave that is similar to evanes-

cent plane waves but that alone obeys boundary conditions at the free surface? This

would imply that such a wave propagates along the boundary and exponentially decays

with the coordinate z. Also, we assume that this wave would not depend on the in-

coordinate, Fig. 5.1a. Let us recall that we have already studied a surface wave in a

fluid, and it displayed all of these features. However, a water wave is caused by the

gravitational field, whereas in the suggested scenario the influence of deformation of a

fluid can be neglected (Part I).

Rayleigh wave velocity
In accordance with our assumptions about a surface wave, the complex amplitudes

of the scalar potential and the ^-component of the vector potential are

t>{x:z,uJ) = Ae-kb' zeikx and ]>(x, z, to) = B e~k b» zel k x (5.1)

Here k = to/c and c is the velocity of propagation of this wave. A, B, bi, and bs are

constants. It is clear that these equations describe a wave in which particle displacement

has only components u and w, with v — 0. If such a surface wave exists, it has to be

a solution of the Helmholtz equations

d2tp d2ip , , ~ , d2'ib d2'tb , 9~ . .
^ T + ^ T + fc^ = 0 and ^ L + ^ + fc^ = o 5 . 2

oxz ozz ox2 ozz

This condition allows us to find a relationship between c and parameters 6; and bs.

Substitution of eqs. 5.1 into eqs. 5.2 gives

-k2 + btk
2 + k2 = 0 , -k2 + bsk

2 + k2 = 0

or

k = Jl - j 2 and bs = J l - ^ (5.3)
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Figure 5.1: Rayleigh wave in a homogeneous half-space: (a) Scheme of wave propagation
(b) Dependence of c/c; and cs/c[ on Poisson's ratio (c) Dependence of c/cs on Poisson's
ratio (d) Dependence of u(0)/w(0) on Poisson's ratio (e) Dependence of amplitudes of
horizontal and vertical components on z/Ais (f) Particle motion at different depths
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The latter shows that the velocity of propagation c of this wave has to be smaller than

cs, i.e.,

c < c, < ci (5.4)

Otherwise, we would not observe the exponential decay of potentials with an increase of

z. Now we have only three unknowns; A, B. and c. Our goal is to prove that such

a surface wave may exist and that its velocity c obeys inequality 5.4. Since we are not

considering how this wave is generated, we are not able to determine both constants A

and B separately; we will leave that for the next chapter. Correspondingly, we focus

on calculating velocity c. To find c, let us consider boundary conditions at the free

surface:

TZZ = 0 and TXZ = 0 (5.5)

This allows us to derive an equation with respect to c. Since

TM = Adrvs + 2 M - , Ttx = t, [g-z+^j

and

s = grad (p + curl i/>,

eqs. 5.5 become

<9S dtjj Shb
and 2 — r — + ^ - T - T T ^ = 0 at z = 0

ox oz ox1 ozl

Now, substituting eqs. 5.1 into eqs. 5.6, we obtain two equations with three un-

knowns:

-A k?A + 2/J, b\ k2A - ik2bs 2 / i 5 = 0 (5.7)

and - 2ik2 bt A - k'2B - k2b2 B = 0
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or

/ c2\ ( r2\1 / 2

('-^-•-"O-i) B=° ( 5-8»
and 2^1-^J A+i[2--jB = 0

If the surface wave exists, coefficients A and B differ from zero. Therefore, the
determinant of the homogeneous system 5.8 has to be equal to zero. This gives

/ c2 \ 2 / c2 \ 1/2 / c2 \ 1/2

H ) -'H) I1-?) • <5-9)
and we obtain an equation with respect to c that is of great importance. First of all,
eq. 5.9 follows from the boundary conditions. This means that if its solution does not
satisfy inequality 5.4, the surface wave is absent. Before we find the roots of eq. 5.9, let
us note that although system 5.8 does not allow us to determine coefficients A and B,
it establishes a relation between them:

In order to calculate velocity c, we square both parts of eq. 5.9, which gives

('-H)4-»H)H) -
*[K+'(S-*HH)]-

Eq. 5.12 implies that either

r = (— ) = 0 (5.13)
\csj

or

r3 - 8 r2 + 8 (3 - 2%) r - 16 (1 - ^) = 0 (5.14)

where r = (c/cs)'
2. The root of eq. 5.13 is c = 0, and, correspondingly, the wave is

absent. Moreover, from eqs. 5.8 we have A — iB = 0, iA + B = 0, and its solution is
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A — B — 0. That is, particles of a medium do not move. Therefore, the degenerative

case c = 0 is not of interest.

Eq. 5.14 is a cubic equation relative to r. Its left side is negative when r — 0, (c — 0)

and it is positive if r = 1, (c = cs). Thus, eq. 5.14 has a positive real root within the

interval 0 < r < 1. In other words, velocity c obeys inequality 5.4, which means that

the surface wave described by eqs. 5.1 can exist in a homogeneous half-space with a free

boundary. This wave is a combination of two inhomogeneous plane waves, compressional

and shear, propagating along the free surface with the same velocity c, which does not

depend on frequency. Such a surface wave was predicted and theoretically investigated

by Rayleigh, and for this reason it is called the Rayleigh wave. In general, the roots of

eq. 5.14 can be found analytically as solutions of a cubic algebraic equation by means of

the Cardano formula. Also, it is useful to consider two special cases when determination

of roots is rather simple.

Case one Suppose that a medium is not compressible, i.e., deformation is absent.

Then the velocity of the longitudinal waves Q tends to infinity, and in place of eq. 5.14

we have

r3 - 8 r2 + 24 r - 16 = 0 (5.15)

This cubic equation has one real root:

r « 0.91275

Therefore, the velocity of the surface wave is approximately equal to

c RJ 0.9553 cs (5.16)

The other two roots of eq. 5.15 are complex and do not represent a surface wave.

Case two Next, we assume that Poisson's ratio a is equal to 1/4, i.e., A = fj,

and

ci = V3 ca (5.17)

Respectively, eq. 5.14 becomes

r 3 - 8 r 2 + | r - | = 0 (5.18)

Its roots are

r' = 2 + ^' r3 = 2 - 7 1 (5'19)
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Unlike the last root,

r3 w 0.8453, (5.20)

the first two roots do not satisfy condition 5.4, and from eq. 5.20 we have

c « 0.9194 c, (5.21)

Thus, in the case (A = /i), the Rayleigh wave moves slightly slower than the shear wave,

but almost twice as slow as the longitudinal wave:

c « 0.5309 q

Results of calculation of functions CS /Q, C/Q, and c/cs for different values of Poisson's

ratio are shown in Fig. 5.1b,c. By definition,

^- E a A _ E

A- ( i+ C T ) ( i_2a) and M -2 i r r^ )
Hence

^ - o w ^ y *"d I = l / ^ T (522)

and the function CS/Q tends to 0.707, when a —> 0. On the contrary, with an increase

of a this ratio approaches zero. The behavior of functions es/c; and C/Q is similar:

in particular, they are equal to zero when an elastic medium becomes a fluid (a = 0.5).

At the same time, the ratio c/cs gradually increases with o when approaching the limit

at a — 0.5.

The field of displacement carried by the Rayleigh wave
To illustrate the distribution of horizontal and vertical components of displacement,

suppose, as before, tha t a = 1/4. Then

c2 c2 1
-T: W 0.8453 and - | = - .
c? cf 3 '

and we have

I ^2 I r 2 C2 / ^2
A / 1 - ^ = A / 1 - -^ -4 « 0.8475 and J l - — « 0.3933,V c2 y c2 c2 Y c2
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while

( / ^ \
ipix, Z,LO) = A exp — k* 1 wZ + i k x , (5.23)

v v (i )

( i ~<? \
ip{x, z,u>) = B e x p I — k i l l - z + i k x \

v V Cs )
From eq. 5.10, we have

B « -i 1.4679 A

This gives
tp(x, z, t) « e-0-8475 kzA cog y.x _ ^ ^2^

and i[>{x, z, t) « 1.4679 A e " 0 - 3 9 3 3 kz sin (kx - cut)
Substitution of eqs. 5.24 into the relationships

dip dtp dtp dtp
u = a ^~' w = ~^~ + ^~

ax a-z O2 ax
gives

«(x, 2, t) w -k A (e-0.8475 fcz _ Q 5 ? 7 3 e-0.3933 kz"j s i n (fcr _ wf ) (5 2 5 )

and w(x, z, t) K. -k A fo.8475 e - ° - 8 4 7 5 kz - 1.4679 e ~ 0 - 3 9 3 3 kz\ cos (fcx - wi)

Since there is a phase shift TT/2 between these components, and they differ by an am-
plitude, particle motion is elliptical. At the free surface, the vertical component w is
about 1.5 times of the horizontal one (Fig. 5.Id). Note that at depth z « 0.192 A,
where A = 2vr/fc is the wavelength, the horizontal component vanishes. Below this
point it changes sign. The distribution of both components with depth is shown in Fig.
5.1e. How the shapes of the ellipses are changing with depth is demonstrated in Fig.
5.If. The major axis of ellipses is directed along the z-axis. Unlike in the case of the
water wave (Part I), motion of particles at the free surface is counterclockwise. The
exponential decay in eqs. 5.1 is directly proportional to frequency and, correspondingly,
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higher-frequency oscillations decrease more rapidly with z. In contrast, the lower is the

frequency, the deeper the Rayleigh wave penetrates.

Now let us make several comments:

1. Unlike evanescent waves, the Rayleigh wave can exist alone, and it propagates

with velocity c, which is less than shear-wave velocity.

2. Later we will show that a real source gives rise to a nonplane Rayleigh wave, which

displays the same features as a plane wave. In other words, its velocity c is still defined

by eq. 5.14, wave potentials exponentially decay with depth, and particles move along

ellipses.

3. Two other roots of eq. 5.14 correspond to different wavefields that also obey the

Helmholtz equations and boundary conditions at the free surface but do not describe

surface wave motion.

Now let us raise two questions.

Could the Rayleigh wave exist in a homogeneous half-space with an ideally
rigid boundary?
To find an answer, we will proceed from eqs. 5.1 and boundary conditions

u — 0 and w — 0

or

dtp dip dtp dip
~a~ = ~a~ a n d 7T = ~ 7 T (5-26

ox oz oz ox
Substitution of cqs. 5.1 into cqs. 5.26 yields

/ 2 / 2

i A+Jl-% B = 0 and Jl-% A-i B = 0 (5.27)
V cs V c'

Excluding constants A and B, we obtain

It is obvious that roots of eq. 5.28 do not satisfy inequality 5.4 and, therefore, the surface

wave is absent.

Could the SH surface wave exist in a homogeneous half-space with a free
boundary?
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Now we will demonstrate that the SH surface wave cannot exist at the free boundary

of such a medium. By definition, the complex amplitude of the .T-component of the vector

potential is

tl) = C e x p (-k . 1 - C—z +i k x ) , (5.29)

V c?
and at the boundary stress Tyz vanishes,

r = / x - ^ = 0 or - ^ = 0, o n z = 0 (5-3°)
" oz oz1

Substitution of eq. 5.29 into 5.30 gives

Since c/cs should be less than 1, we conclude that C = 0 and that, indeed, this wave

cannot exist.

5.2 Stoneley wave

We have shown that the Rayleigh wave may propagate along the free surface of a homo-

geneous half-space, but it is absent if the boundary is ideally rigid. Now let us consider

a more general case and demonstrate that under certain conditions, a boundary wave

similar to the Rayleigh wave moves along an interface between fluid and elastic media or

between two elastic media. This wave is usually called the Stoneley wave.

Boundary between fluid and elastic half-spaces
Suppose there is a wave that propagates along the boundary (i.e., the wavefront is

perpendicular to the x-axis), and its amplitude exponentially decays with increased

distance from the boundary, \z\. As in the case of Rayleigh waves, this happens due to

the destructive interference of elementary waves that arise at the interface. Because in a

fluid shear waves are absent and the y-component of displacement v is equal to zero,

expressions for the complex amplitudes of potentials are

^ = Aier
k 6i z el k x if z > 0 (5.31)

a n d £ 2 = A 2 e k b^ z e l k x, ^ 2 = B 2 e
k ^ z e i k x i f z < 0
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Here

/ C 2XV2 / 2X1/2
6 1 = 1 - ^ , &,,= i - , (5.32)

( 2 \ 1/2
1 7T- , ki — —, a n d k = —,

4s J ^ C

where c is the velocity of propagation of the boundary wave. It is clear that exponential

decay of potentials in both directions from the boundary takes place if velocity c obeys

inequality

c < min(ci,c2s) (5.33)

Let us note that due to eqs. 5.32, functions ip^, ip2, i>-i are solutions of correspond-

ing Hemholtz equations. Applying exactly the same approach we used in studying the

Rayleigh wave, we find such values of c that eq. 5.33 would be met. To do this, we

use known boundary conditions. At the interface between an elastic medium and a fluid,

shear stresses vanish, whereas normal stress and the normal component of displacement

are continuous:

T(2)=0, r^=rg\ w,=w2

or

—— + —— = 0, Ai div si = A2 div s 2 + 2/i2-^—, wi = w2 (5.34)

dz dx dz
Since component v is absent and the fields are independent of the y-coordinate, the

f21

second shear stress, Tyz , is also equal to zero:

T$ = 0 (5.35)

In terms of the complex amplitudes of potentials eqs. 5.34, become

2 d2^2 | d2rp2 d2tp2 = Q

dxdz dx2 dz2

"&? + dri~z) (5-36)
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dtp-, dw9 dip?
oz oz ox

Substitution of eqs. 5.31 into eqs. 5.36 gives a homogeneous system of equations with

respect to A\, A2, B2 :

2i k2 b2i A 2 - k'2B2 - k2 b'22sB2 = 0

- A x k'i AL = - A 2 k'ii A 2 + 2/i2 k
2 (b'2t A 2 +1 b2sB2) (5.37)

—k b\ Ai = k &2i A2 + i k B2

Taking into account eqs. 5.32 and equalities

M2 = P2 C L A2 + 2/i2 = p 2 4 , A i = p 1 c ? ,

in place of eq. 5.37 we obtain

/ c 2 \ 1 / 2 / c 2 \

C2s Pi \ C2sJ Pi \ C2s/

/ c2\l/2 / 2\l/2

As in the case of the Rayleigh wave, the wave propagating along the boundary may exist

if system 5.38 has a nonzero solution. This means that determinant of system 5.38 is

equal to zero:

\ C2lJ \ C2sJ

4 "(2-4) ^{l--\12 =0 (5.39)
4s Pi \ 4s J Pi V c2s)

/ 2\ I/2 / 2 \ 1/2H) K)
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Here px and p2 are densities of a fluid and an elastic medium, respectively. We obtain

an algebraic equation with respect to the velocity of Stoneley waves, and it has the form

(— hi + h) -fA - 4 hr2 - 4 6! (62,62. - 1) = 0 (5.40)

Here r = c/c2s. Letting p{ = 0. we again obtain the equation determining the velocity

of Rayleigh waves. Numerical analysis of eq. 5.40 shows that for any set of parameters

Ci/c2S, c2i/c2s, P2IPi- there is a real root that obeys inequality 5.33 and does not depend

on frequency. In other words, the wave can propagate along the boundary between a fluid

and an elastic medium, and its potentials exponentially decay with increased distance

from this interface. This special type of Stoneley wave is often called a Scholtc wave. It is

interesting to note that the velocity of this wave is smaller than that of the Rayleigh wave

in an elastic half-space (Fig. 5.2a). Since displacement s in a fluid is described by one

potential only, both displacement components decrease exponentially at the same rate. In

an elastic medium, due to the existence of two potentials, the displacement components

have a different dependence on z. The exponential decrease of both components with

z is observed only when z exceeds some value. This value is frequency-dependent and

decreases with increased frequency.

Boundary between two elastic media
In this general case, the wavefields in both media are described by two potentials,

and we have

^1 = A1e-kb^zetkx, ^ = Bie~
k ^ z el k x if z > 0 (5.41)

and

V2 = A 2 e k b * z e t k x , i h = B 2 e k b^ z e>'k x i f z < 0 (5.42)

Here

/ c 2 \ 1 / 2 / c 2 \ 1 / 2

bm = 1 - — , bns = 1 - — , and n = 1,2 (5.43)
\ Cnl/ \ Cns/

At points of the boundary z — 0, stresses and displacement components are continuous

functions. By analogy with cqs. 5.36, we have:

( d^_ dh^_ dhp\ = ( a2^ &2i1_ o^2\
1 1 1 dxdz dx2 dz2 I l2\ dxdz dx2 dz2 J
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Figure 5.2: Stoneley wave along fluicksolid boundary: (a) Velocity as a function of ratio

C'is/c\ (b) Ratio of amplitudes of horizontal and vertical components at the boundary

as a function of c2s/ci

dip1 dx^ dip2 dtp2 , d<Pi 9-ij)l dip2 dtp 2

dz dx dz dx ' dx dz dx dz

Substitution of eqs. 5.41 and 5.42 into set 5.44 gives a homogeneous system of four

equations with respect to Ay, A2, B\, and B2. In order to obtain a nonzero solution,

the determinant of this system has to be equal to zero, and we obtain:

2p1c
2

lsbll 2p2c
2

2sb2l Plc
2
ls ( 2 - 4 - ) P2ci ( 2 - 4 - )

\ Cls/ \ C2s/

Pl(c
2-2cl) -p2(c

2-2cl) -2Plc\sbls 2p2clb2s
= 0 (5.45)

1 - 1 bu ~b2s

bu b2l 1 1
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Performing multiplication, we arrive at the equation that allows us to determine the

velocity of s Stoneley wave:

r 4 \ f p L _ - X _ f P i hl + b \ (Pi hg + b \ ] (5 . 4 6 )
\P2 ) \Pi ) \P-2 ) \

+ 4r2 f a ^ _ i) f a M2s - 61( 6l. - a + 1 )
\P2 4s ) \P2 P2 )

+4 (a ^ - l ) (61( 6ls - 1) (6a 62s - 1) = 0
\P2 C2s /

where r = c/c2.,. Assuming" that px = 0, we again obtain the equation for Rayleigh

waves. In fact, eq. 5.46 becomes

r4 (1 - bu bu) - Ar2 (1 - bu bu) - 4 (1 - bu bu) {b2l b2s - 1) = 0

or

r
4 - 4r2 + 4 = 46a, &2s,

that is,

Next suppose that the upper medium is a fluid. Therefore

C\s — 0 and b\s —> i oo,

and in place of eq. 5.46 we have

r4 f a ^ + j j ^ _ 4r26H - 46H (62, 62s - 1) = 0,

which coincides with eq. 5.40. Study of eq. 5.46 shows that its solution satisfies the

condition

c < min(c l s,c2s), (5.47)

if shear velocities C\s and c2s differ only slightly. In illustration. Fig. 5.3 shows two

shaded zones where eq. 5.64 has real roots, obeying inequality 5.47. Outside of these
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Figure 5.3: Zones of existence of Stoneley wave at the solid:solid boundary. [After Grant
& West, 1965]

zones, the Stoneley wave cannot exist. It turns out that the velocity of the Stoneley wave
usually falls between the velocities of Rayleigh waves and shear waves in the medium with
greater density. It is important that the velocity of the Stoneley wave, as well as that of
the Rayleigh wave, does not depend on frequency.

Could the boundary SH wave exist?
Finally, we demonstrate that the SH boundary wave is absent at the boundary of

two elastic media. Taking into account that components u and w are equal to zero
and that component v can depend on x and z only, we have for the ^-component
of the potential

i,v = d e~k 6l* z el k x, ih = C2 e
k b^ z el k x (5.48)

Boundary conditions are

Vi = v2 and Tiyz = T2yz on z = 0 (5.49)
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or

d-^=9-^ and ^ = 4 ^ on z = 0 (5.50)
oz oz oz1 oz1

Substitution of eqs. 5.48 into eqs. 5.50 gives

bu C1! + b2s C2 = 0 and b2
u Cv - b\s C2 = 0 (5.51)

Since the determinant of this system differs from zero, we conclude that

d = C2 = 0

and that, therefore, the boundary SH wave cannot exist in this case.

5.3 Love waves

Now we will study propagation of the simplest interferential waves, named Love waves for

the physicist who proved their existence. To explain how the interference of elementary

plane body waves produces this type of surface wave, we will consider propagation of

the interferential plane SH wave along the .T-axis in a two-layered medium with a

free surface, in which c\s < c2s (Fig. 5.4a). We will suppose that c\s < c2s and this

wave exponentially decays in the half-space with depth z. The motion of particles is

characterized by linear polarization because displacement has the single component v.

In order to understand the nature of such a surface wave, imagine that the elementary

plane SH wave moves downward in the layer and

cu < c2s (5.52)

At boundary z = 0, this wave will generate reflected and transmitted SH waves. In

accordance with Snell's law, the critical angle is defined from the equation

7 c = s i i r 1 — (5.53)
C-2s

If the angle of incidence 7 i < 7C, then both the reflected and transmitted SH waves

that arise at the bottom of the layer are homogeneous. The reflected wave has a smaller

amplitude than the incident wave because part of its energy has leaked into the half-

space. The reflected wave propagates upward, and is reflected downward at the free

surface without the loss of energy. Correspondingly, at interface z — 0 we again observe

the reflected wave, and so on. Thus, there are two systems of SH plane waves moving
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Figure 5.4: Love waves: (a) Two-layered elastic medium (b) Illustration of eq. 5.53
(c) Ray paths of the downgoing and upgoing waves

either downward or upward with the same apparent velocity along the surface. Since after
each reflection the amplitudes of these waves decrease, these systems of waves rapidly
decay as x increases.

The situation drastically changes if the incident angle exceeds the critical angle,
7j > 7C. In this case, homogeneous transmitted waves are absent, and total inter-
nal reflections take place. Respectively, amplitudes of the incident and reflected waves
are equal to each other at both interfaces, and elastic energy remains unchanged inside
the layer. However, this fact alone does not guarantee the existence of a wave propagating
inside the layer without attenuation. As was pointed out, the wavefield is a superposi-
tion of two systems of homogeneous plane waves, and their fronts form the same angle
with boundaries. If interference between these two sets of waves is constructive, then
the resultant (interferential) wave moves along the layer without attenuation. On the
contrary, when destructive interference occurs, this wave rapidly decreases with distance
along the layer and finally disappears. It is obvious that as in the case of acoustic waves,
the condition for constructive interference depends on frequency.
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Condition for constructive interference and dispersion equation
Since we assume that 7̂  > 7C, propagation of the interferential wave inside the

layer is accompanied by an evanescent wave in the half-space (z > 0). This wave

exponentially decays with depth. Wavefields inside and outside the layer constitute one

wave, traveling along the i-axis. Its velocity c can be easily evaluated from Fig. 5.4b,

where the position of the wavefront is shown at two instances. It is clear that

c — —— = — 5.54
At At sin 7, sin 7,

Here j t is the angle of incidence of the homogeneous plane wave, and it varies as

IT
7c < li < ^

Respectively, velocity c changes in the following way:

c\s <c< c2s (5.55)

Let us note that the presence of an evanescent wave in the half-space does not decrease

elastic energy inside the layer. The loss of energy does not happen because during each

half-period, the total energy leaving the layer is equal to zero (Part II). The wavefield

inside and outside the layer is called the Love wave, and c is its velocity. It is another

example of the surface wave propagating in a horizontal direction. However, unlike the

Rayleigh and Stoneley waves, the Love waves require as a necessary condition of existence

the presence of a layer of finite thickness in which constructive interference must take

place. Correspondingly, when the layer thickness tends to zero, the Love waves vanish,

as was proved earlier. The same is correct if the layer thickness becomes infinitely large,

because the set of upgoing plane waves disappears. Also, it is clear that if the half-space

has a lower velocity (cis > C2S), there are always transmitted homogeneous waves, and

the Love waves cannot exist.

By analogy with acoustic waves (Part II), it is useful to demonstrate that constructive

interference takes place for a certain set of frequencies. Let us consider phase surface N

of the downgoing wave, Fig. 5.4c. As we know, the reflected upgoing and downgoing

waves appear as a result of the action of wave N. If the frequencies are such that the

phase difference between the incident and twice reflected waves is equal to 27m, their

superposition is constructive. Waves with other frequencies have a phase shift different

from 27m, and they destructively interfere. As a result, they cancel each other out after

a relatively small number of reflections. Note that the phase difference of two upgoing

and downgoing waves is defined by the following factors:
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1. The phase shift between the displacements carried out by incident and reflected

waves at the free surface (z = —H) is equal to 0.

2. The phase shift "J of the reflected wave at the layer bottom depends on angle 7i

as well as on elastic impedances of both media. This shift is defined by eq. 4.158 in the

previous chapter.

3. The phase delay due to the extra path of the twice reflected wave relative to the

incident wave is defined by the length of this path ABECD and wavelength Ais of the

shear wave in the layer. Taking into account that the argument of the sinusoidal wave is

2ir
ujt — kisl — cot — -— /,

A is

the condition for constructive interference can be written as

kls \ABECD\ + * = 2nn

or

2vr
— (\AB\ + \BC\ + \CD\) = 2mr-tf (5.56)
A is

Here n is some integer number. By definition Ais = c\s / / , and certainly the result

of interference depends on frequency. As is seen from Fig. 5.4c, AB = BEcos2ji,

CD = CEcos2ryi, and BC = H/ cos 7,. Substitution of these terms into eq. 5.56 gives

2KH_ /cos27 i + _ J _ \ ^ 4 ^ c o s 7 i = 2^ _ ^
Als V cos7j cos7j/ Als

" g C 0 S 7 ' = 2 n 7 r ~ * (5.57)
cls 2

In particular, when the underlying medium is ideally rigid, ^ = 0, in place of eq. 5.57
we have

uinH cos7j
i = mr (5.58)

Cls

In such a case, the evanescent wave is absent, and the Love wave is confined inside the

elastic layer.

Taking into account eq. 5.54, it is easy to eliminate 0087^ from eq. 5.57

/ 2 \ !/2 / 2 \ !/2 7
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and find the relationship between the velocity of the Love wave and frequency. This gives

^ = ^ - ^ (5.59)

However, this equation contains an unknown phase shift at the layer bottom. This shift

can be found from the expression for the reflection coefficient TZSH at the boundary

between elastic media obtained in Chapter 4. When the angle of incidence /yi exceeds

the critical angle 7C, this coefficient is complex:

where

2

b* = (i " Jr)1 / 2

As a result, the dispersion equation for Love waves takes the form

tan (?*bu) = ^ (5.60)

This equation allows us to find the velocity of the Love wave as a function of frequency.

But before we start to investigate solutions of eq. 5.60, we will take a different approach

and derive the same equation from the boundary value problem.

The boundary value problem for Love waves
We represent the complex amplitude of the f-componcnt of displacement as

v{1) = (c\el k~bisZ + c2e-% k ^' A el k x if z < 0

and v{2) = C3 e~k b*> z el k x if z > 0 (5.61)

Here again

/ c 2 \1 / 2 - / c2V/2
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Now we use the boundary conditions and find the equation that relates the velocity of

Love waves to ther frequency. As the normal stress at the free surface is equal to 0, we

have

~(i) dvW
Tv z = Vi -g^~ = 0 on z = -H

From continuity of displacements and stresses at the lower boundary of the layer, it

follows that

~(i) ~(2) dv dv
v = v and u-. —-— = n2 —-— on z = 0

oz oz

These conditions yield:

(jie-i k blsH _ Q^pi k blsH _ Q

Ci + C 2 = C-i (5.62)

i Ml bu ( d - C2) = - ii2 b2s C3

System 5.62 has a nonzero solution for C\, C2, and C3 if the determinant is equal to

zero:

e-i k buH _ei k bXsH Q

1 1 - 1 = 0 (5.63)

i fh (bis)2 -i Mi {bu)2 Ih (hs)2

Performing simple algebra, we can obtain the dispersion equation in a more explicit form.

Of course, the same result directly follows from system 5.62. Excluding C3 in its last

two equations, we have:

c2 = "1»" - ^ ;* Ci=exp (_2l tan-i » J A (5.64)

Substituting C2 into the first equation of set 5.62, after simple transformation using

Euler's formulas, we obtain

, /w m M2 ^2s , ,W ™ / i 2 b2s , .

tan(fcoisii) = 7̂— or tan(— Oisii) = ^7— (5.65)
Mi bis ° Ih bu
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This dispersion equation is exactly the same as eq. 5.60 obtained using the condition of

constructive interference. Eq. 5.65 establishes the relationship between the velocity of

the Love waves c and frequency w, as well as between this velocity and parameters of

the medium. We can rewrite eq. 5.65 in a slightly different form:

/ 2 \ I/2] / 2 \ -I / 2 / 2 \ 1/2

Since the left side of this equation is a periodic function, for any fixed value of c inside

the range prescribed by inequality 5.55 there is an infinite number of roots:

wo(c), u>i(c), w2(c), , un(c),...

Each value of u>n characterizes the frequency of the nth mode of the Love waves

propagating with velocity c. The inverse functions cn(w) describe phase velocity

dispersion curves of Love waves.

Since the left side of eq. 5.66 is a periodic function, it is convenient to present this

equation in the form

kH f ^ - l V ' ^ n + tan-1 — ^-T7? (5-67)

Here n is an integer number.

Now, using eq. 5.67, we will confirm inequality 5.55, beginning with the case when

n = 0. Then cq. 5.67 becomes

d c2V / 2

/ 2 \ I/2 I 1 Y I
fcff(4-_l) = t a n - 1 ^ ^ C^L— (5.68)

Wu ) »i (c*__\'

[el' )
Suppose, first, that the velocity of the Love wave, c, approaches cis'-

Since the right side of eq. 5.68 vanishes, we have

/ c2 \ 1/2

kH -^ f ^ 0 or k —^ 0, i.e., u - > c o
\Cls /
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On the contrary, when c —> cls, the right side of eq. 5.71 tends to TT/2, while

f c2 \ 1/2

To preserve equality 5.68, the wave number has to be infinitely large, that is u —> oc.

Thus, in agreement with eq. 5.55, when the ratio A ls/i7 varies from zero to infinity

0 < % < o o .
n

the phase velocity of the Love wave changes as c\s < c < C2S. It is easy to show that this

conclusion remains valid for any mode. However, there is a difference which concerns the

range of w. In fact, as follows from eq. 5.70, if c = ois and n ^ O , we have

/ r 2 \ i / 2

kH[-^--l) =TTTl
Wls I

or

^=10-i)"1 (5-69)
In the opposite case, when c — Cisi as before Ais/H —> 0. Thus, for any n a change

in the velocity of the Love wave (eq. 5.55) occurs within the frequency range

A o / ,,2 \ 1/2

0 < % < - ( l - ^ ) (5.70)
H n\ ciJ

We see that with an increase of the order n, the range of frequencies (wavelengths) where

the mode exists, narrows. For instance, if

A / _2 \ 1/2

there is only the fundamental mode, n — 0. However, within the interval

/ r2 \ 1 / 2 \ ( r1 \ 1 / 2

two modes can be observed, n = 0 and n = 1. Within the interval

2 / c2 \ 1 / 2 \i / c2 \ 1 / 2

3 V 47 " H <V cl) '
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three modes exist, and so on. The width of such intervals decreases with an increase of

n, and it is equal to

2 / c2 \ 1 / 2

n(n-l) V 4,/
Dispersion curves for the first five modes are shown in Fig. 5.5a.

Displacement vn (z)
Next consider the displacement of the nth mode as a function of z. From eqs. 5.64

and 5.65, we have

C2 / ~ \
— = exp \-i2knbisnH) ,
Gj V /

vn = d I eikn bun z + e-2ikn bUnH e~ikn blsnz \ ei kn x

= Cn cos [/cn&lsn(z + if)] eiknX if - H < z < 0 (5.72)

and vn = Cn cos(knblsnH) e~
knb2snZ el kn x if z > 0.

Here

^ / 2 \ I/2 ^ / 2 \ I/2 ^

6l»n = ( 'f- ~ l j , Ln = f 1 " J r J . a I l d Cn = 2Cj exp (-**„ 6lsnii)

Both 6 l s n and b-2Sn depend on the mode order. By definition, displacement vn is

r ~ i
vn = Dn cos knbisn(z + H) cos (cut - knx) if - H < z < 0 (5.73)

and vn = £)„ cos f A;n&lsnif) e~fc« b'2sn z cos (wt - knx) if z > 0

As in the case of Rayleigh or Stoneley waves, coefficient Dn remains unknowns, since

the primary source is not taken into account. From cqs. 5.73 we sec that the Love wave

is oscillating wave along the z-axis inside the layer but exponentially decays outside of

it. For instance, if n = 0, displacement gradually decreases with depth. For the n = 1,
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v(z+H)

v(-H)

Figure 5.5: Love waves in a two-layered elastic medium: (a) Dispersion curves of phase

velocities (solid lines) and group velocities (dashed lines) for the first five modes (n —

0,1,. . . , 4) (b) Normalized displacement v as function of z/K\s. Here C2S/c-is = 2
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we observe a change of sign, and correspondingly, there is a nodal plane where v\n — 0.

With an increase of n, the number of such planes also increases, as is seen in Fig. 5.5b.

Transient modes of Love waves
In the case of a nonstationary source, constructive and destructive interference of

sinusoidal harmonics that form each mode occurs. As a result of constructive interfer-

ence, transient modes of Love waves are observed. Their waveforms are defined by the

corresponding group velocity curves (Parts I and II). Behavior of the group velocities cgn

as functions of Ais/H for the first five Love modes in a two-layered model is shown in

Fig. 5.5a (dashed lines).

Let us briefly discuss the behavior of any mode presented in a considered frequency

range. Suppose that the observation point has an offset x. Then, as follows from

behavior of function cgn(uj), during time interval x/c2s < t < x/cis, we observe

a wave group with relatively low apparent frequencies that increase with time. Then,

at moment t = x/cjs, a high-frequency group arrives and interferes with the first

group. The apparent frequency of this group decreases with time. As time increases, the

frequency contents of the two groups become very close, and they finally merge into one

quasi-stationary wavetrain called the Airy phase. The resemblance to propagation along

a waveguide in an acoustic medium is obvious (Part II).

5.4 Rayleigh waves in a two-layered medium

Earlier we demonstrated that in a homogeneous half-space, the velocity of propagation

of Rayleigh waves is independent of frequency. We also found out that in a two-layered

medium, different modes of Love waves may exist. They demonstrate a dispersive be-

havior - that is, their phase velocities are functions of frequency. Now we will show that

Rayleigh waves in a layered medium may display similar features. For illustration, we

will consider the case in which a layer of fluid overlays a homogeneous elastic half-space

(Fig. 5.6a).

Fluid layer over an elastic half-space
Suppose that the surface wave propagates along the .x-axis with phase velocity c,

and, in an elastic medium it decays exponentially with depth z. Unlike in the case of

Love waves, displacement s is characterized by two components, u and w, while

v = 0. Correspondingly, expressions of complex amplitudes of potentials are

fa = [A, e k b ^ z + B i e ~ k *i z ) e% kx, fa = A2 e ~ k h* z el k x, (5.74)
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and ijj2 = B2 e~k b^ z pi k x

Here

/ c 2 \ 1 / 2 / c 2 \ 1 / 2 / c 2 \ 1 / 2

H 1 -? ) • ' H ' - d • bu=v-4j • (5-r5)
W U! U!

K>1 — — , K,-2[ — , K'2s —
Cl C21 C2s

Boundary conditions at the interface between the elastic medium and a fluid and at the
free surface are

101 = 102, i-W = r£\ r£)=0 on z = 0 (5.76)

and T^} = 0 on z — —H

Taking into account that

s = grad 99 + curl ip

and Hooke's law, set 5.76 can be represented in the form

<92£2 d 2 0 2 )

2 ^ + 5 | - # = 0 on z = 0 (5.77)
9.T dz dx2 dz2

and <̂ j = 0, on z = —H

since

~(1) 2 ~ r,^

TZZ = Ai div si = AiV <̂ ! = — Ai kfip1

Substituting eqs. 5.74 into eqs. 5.77, we obtain a system of equations with respect to
unknowns Ai, B\, A2, and B2~-

61 (Ai-Bt.) = -bu A2 + iB2
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- A i k\ (A, + Bx) = - A 2 4 A2 + 2fj,2 k
2 (b2

2l A2 - i b2sB2) (5.78)

- 2 i 62; A2 - (1 + /4 ) B2 = 0, ^ i e " f c blH + Bx ek blH = 0

T h e ampli tudes of a surface wave should decrease exponential ly in the solid half-space

(z > 0). This implies t h a t b2s is real, i.e., c < c2s. The existence of this surface wave

means t h a t unknowns A x , B\, A 2 , and B2 differ from zero; t ha t is, the de terminant of

system 5.78 has to be equal to zero.

b\ —b\ b-ii 1

-Pic
2 -Plc

2 p2(c
2-2c2

s) 2p2c\sb2s

2 = 0 (5.79)
0 0 b2l —-2

e-k biH ek biH Q Q

From this we obtain a dispersion (periodic) equation in the following form:

,.„!, ( ^ y T | ) = „ = ̂ | A [4 ̂  _ (2_ | ) 2 ] (5.80)
Let us consider two different cases.

"Hard bottom" d < c2s

Then within the range of possible values of c: C\ < c < c2s b\ becomes imaginary,

and instead of eq. 5.80 we have

This transcendent equation relates phase velocity c (co) to frequency and to the param-

eters of a medium. It is convenient to rewrite eq. 5.81 as

[c2

knH \hj ~ 1 ^vrn + t a n " 1 ^ , (5.82)
V c i

where cn(u) is phase velocity of the nth mode and kn = to/cn.

Letting n = 0, eq. 5.82 becomes

fc2
2np A ^-l=ta,n-1T]l (5.83)

V c i
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H

Figure 5.6: Rayleigh waves in a fluid layer overlaying an elastic half-space: (a) Model of

a medium (b) Dispersion curves of the phase velocities (solid lines) and group velocities

(dashed lines) for the first two modes. p2/Pi ~ 2.2, onlois = \ / 3 , C2S/c\ = 1.333

Here p = H/Au and An is the wavelength in a fluid. With an increase of An the left

side of eq. 5.83 tends to zero, and we have

/ 2 \ 2

This coincides with the dispersion equation for Rayleigh waves in a homogeneous half-

space. Respectively, the phase velocity of the fundamental mode approaches that of

the Rayleigh wave CR when u> —» 0. In other words, the influence of the upper layer

vanishes. As is seen from Fig. 5.6b, the phase velocity of the fundamental mode gradually

decreases with an increase of frequency, and its range of change is

cst < c {UJ) < cR

where cst is the velocity of the Stoneley wave at the fluid/solid boundary. Also, this
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numerical analysis shows that the fundamental mode of the Rayleigh waves exists at

any frequency. As in the case of Love waves, we observe the dependence of the phase

velocity on frequency, i.e., dispersion. In particular, the fundamental mode at the lower

frequencies propagates more quickly. By definition

~ dip dy; ~ dip dtp

ox dz oz ox

and, in accordance with eqs. 5.74, it is easy to see that propagation of the fundamental

mode, as well as of others modes, is accompanied by elliptical polarization of the particle

motion.

Letting now n = 1 we define the dispersion equation of the second mode as

~H \ ~~2 ~ 1 = 7r + tan~1771 (5.84)

As before, at high frequencies, phase velocity approaches C\:

c (w) —>• ci if p —> oo

To determine the low frequency limit, suppose that c (u) = cis. Then eq. 5.82 becomes

/ 2 / 2

—HJ^--1 = IT or 2np J l - ^ - = l (5.85)
C2s y ('i y c2s

It turns out that the latter defines the cut-off frequency of this mode, since at lower

frequencies the wavenumber becomes complex. This means that part of the energy moves

from the layer into the elastic medium (z > 0), and the wave rapidly decays. Thus, the

range of change of the phase velocity is

d < c(w) < c2s, (5.86)

and below the cut-off frequency this mode is absent. Of course, there are also modes of

the higher order, but we will restrict ourselves to the first two modes.

"Soft bottom" a > c2s

In this case b\ is always real as phase velocity c is less than C2.s. It is easy to show

that eq. 5.80 has only one root. The range of change of phase velocity c(w) is the same

as for fundamental mode n — 0 in a previous case.
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Chapter 6

Waves in a layered medium caused

by linear and point sources

We start from a relatively simple two-dimensional case in which the primary source is
linear and stretched for example, along the y-axis, Fig. 6.1a. This means that a
wavefield remains the same in any plane, parallel to the coordinate plane XOZ1 and
deformation in the y-direction is absent. There is an evident analogy with plane waves
(Chapter 4), and it is not accidental that waves generated by such a source can be
represented as a superposition of plane waves. One can say that the study of waves due
to a linear source is a logical intermediate step between the the study of plane waves and
of a more general three-dimensional case. Of course, the linear source is hardly practical,
but all derivations arc significantly simpler in this case. It is essential that linear and
point sources give rise to the same types of waves. For instance, in a homogeneous
half-space with a free surface, we can observe longitudinal and shear direct and reflected
waves, as well as Rayleigh waves. The appearance of these waves due to either a linear
or the point source can be expected. In fact, their appearance follows from the theory
of plane and surface waves, the ray theory, and the reflection of plane waves. Our goal
is not to discover new waves, but rather to study how these waves arc generated and
propagate depending on source type and location as well as on elastic parameters of a
medium.

275
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Figure 6.1: (a) Linear source beneath the surface (b) Boundary condition for stresses at

the plane, z — 0

6.1 Linear source of P and SV waves in a homogeneous half-space with

a free boundary

In order to formulate the boundary value problem in the presence of a horizontal

interface, it is necessary first of all to derive expressions for potentials that describe the

direct longitudinal or shear waves.

Linear source of the P wave in a homogeneous medium

Suppose that an infinitely long cylinder with a very small radius r0 is oriented along

the y-axis, and it experiences sinusoidal vibrations in the radial direction:

r(t) = r0 + sr(t) (6.1)

Here

sr(t) = s0cosut (6.2)

and

^ « 1 (6.3)
ro

It is clear that such a source generates a direct wave that has only a radial component

of displacement. In the cylindrical system of coordinates
s = sr ir, i.e., sg = sy = 0, (6.4)

since the source is situated on the y-axis. By definition,

div s = -—(rsr) (6.5)
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i r r'\g \y

i d d d
and curl s = - ^T 7̂7 -TT-

r or ov ay

sr 0 0

Because of axial symmetry and the independence of the field on the y-coordinate, we

obtain

curl s = 0 (6.6)

Therefore, such a wave is longitudinal and, correspondingly, it is described by scalar

potential only. Its complex amplitude is a solution of the Helmholtz equation

V2£o + *f £o = 0

or, in the cylindrical system of coordinates,

d2ip0 ldip0 2~

-dr^ + rlF + kllp0 = 0 (6'7)

This is the Bessel equation, and its solutions are Bessel functions of the first and second

types,

Jo {k,r) and Yo (k,r),

as well as some combinations of them. Taking into account that the source causes the

outgoing wave and the function e~l describes time dependence, we choose the Hankel

function,

H^ ihr) = Jo (ktr) + i Yo (ktr)

as a solution of eq. 6.7. This choice is related to the fact that at large distances from

the source, its asymptotic expression is

^o]) ihr) ^ \l~^el (k> r ~ ^/4) (6.8)
V ^H'r

This allows us to say that the function

^0 (ktr) = A.Ho (h r) (6.9)
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characterizes the wave generated by the linear source. Here A\ is unknown, and in

order to determine we assume that the stress r r r is uniformly distributed on the

source surface and depends on time t as

TTT (ro) = Ta
rrcostot (6.10)

From Hooke's law we have

dsr
rrr = A div s + 2u——^

dr

or

TTT = -X k?£0 + 2fi^ (6.11)

Since

H^ (ktr) -t—lnktr if r -> 0, (6.12)

the second term in eq. 6.11 prevails near the source, and we obtain

2/i i A\

or

, , = = ^ . , . .13 ,

because r r r = TO
TT at points along the source. Thus,

& = ^ r J U t f > far), (6.14)

and our first task is solved, since this function satisfies all conditions of the boundary

problem.

Also it is interesting to consider the strains and stresses that accompany this cylin-

drical wave. As follows from Appendix E,

dsr sr
drr — "^—, e$S — — , e-yy — U

or r
and

egy = ery = erg = 0
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Hooke's law gives

TrT = A div S + 2/i-7T^ ryy = Tgg = X div S, and Tgy = Try = Trg = 0

Thus, in the cylindrical system of coordinates there are three normal stresses. Now let

us imagine a horizontal plane, 0 = 0, on which the source is located. Then at points on

this surface the normal stress, Tgg, differs from zero.

Further we focus our attention on wavcficlds in a medium with a horizontal interface.

For this reason it is necessary, as in the case of acoustic waves (Part II), to represent the

potential of the direct wave, cp0, in terms of functions that depend on coordinates x

and z. There are several integral forms of the Hankel functions; one of them

00

HW {kir) = 1 / J_e-™« W e}
 m xdm. (6.15)

-KI J mi
—oo

where

mi = dm2 — kf (6.16)

Correspondingly,

oo

o 2 i- p-nii z
£o (k,r) = ^ / el m xdrn (6.17)

z/i j nil
— oo

or

o 2 °? -mi \z\
?o (kir) = - ^ / cos mx dm, (6.18)

2/i J mi
— oo

since sinmx is the odd function.

Homogeneous half-space with a free boundary

Next we assume that the linear source of longitudinal waves is located in a homoge-

neous half-space beneath the free surface, Fig. 6.1a. When the direct wave reaches the

boundary, we can expect the appearance of longitudinal and shear reflected waves, as well

as surface waves. The sinusoidal wavefields associated with these waves are described by

complex amplitudes of scalar and vector potentials

tp = tp0 + <ps a n d ijj, (6.19)
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where <ps is the complex amplitude of potential characterizing the secondary waves and

'ip is the (/-component of the vector potential

v> = %
To determine these unknown functions we have to formulate a boundary value problem

that imposes the following conditions on ip and ip.

1. First of all, they must satisfy the Helmholtz equations

V2 £ + kfy = 0, V2 ip + k2j) = 0 (6.20)

Here

w u>
ki = — and ks = —

Q cs

2. Near the source, the scalar potential must tend to potential of the direct wave

<£ -)• ̂ 0 , if r -> 0 (6.21)

3. At infinity

<p ->• 0 and V; -> 0, if r -> oo (6.22)

and the Sommerfeld condition of radiation has to be met (Part II).

4. Finally, at the free surface, normal and shear stresses must vanish

TZZ = 0 and TXZ = 0, ft z = -H (6.23)

We assume that in the Cartesian system of coordinates, displacement s :

s — grad if + curl ip (6.24)

is characterized by only two components, u and w,

s = ui + wk (6.25)

For this reason we have chosen the y-component of vector potential ipy. Correspondingly,

eq. 6.24 gives

~ dip dip ~ dip Oil) . .
u = ^r-^r> w = ^r + ̂  6-26

ox az az ox
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Then, taking into account Hooke's law:

~ . , ~ dw ~ I du dw \ . ,
TZZ = Adivs + 2 .̂ — , r ^ = M ^ + a ^ ) ' (6-27)

cqs. 6.23 become

-x& + J*»+*±\=Bi 2J!!L + ̂ _ ^ = 0 (r28)
I oz2 ox oz f ox oz ox2 ozz

Note that we have already used these boundary conditions studying Rayleigh waves.

Thus, we have formulated the boundary value problem, and in accordance with the

theorem of uniqueness, only one wavefield obeys all four conditions. First, taking into

account that the free surface is a plane, z = —H, it is natural to find a solution of the

Helmholtz equations in the Cartesian system of coordinates. For instance, in the case of

scalar potential, we have

a £ + a # + *«V = °. (6'29)

which describes the potential at regular points. Applying the method of separation of

variables (Part II), we represent the function <p as

£ = X(x) Z{z) (6.30)

Substitution of eq. 6.30 into eq. 6.29 gives

or

1 d2X 1 cPZ , , ,

The latter is equivalent to one of two sets of the ordinary differential equations

^ + m2X = 0, l | _ ( m 2 _ f c ? ) Z = 0 (6.32)

or
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We choose the first system, eqs. 6.32, because one of its solutions corresponds to the

symmetry of the wavefields with respect to plane x = 0 and because of the behavior of

this solution at infinity, when z —> oo. In fact, solutions of this system arc

e±imx a n d e±mtz ( 6 3 3 )

Taking into account the boundary condition at infinity, the general solution for the

potential ips can be written in the form
oo

Vs = I Bm e~m' z el m xdm (6.34)
— OO

Exactly the same approach to the equation

yields

oo

^ = I Cm e-m° z el m xdm (6.36)
—oo

Here
ms = \/m2 — k2

s (6.37)

Thus, functions ips and tp obey the Helmholtz equations and the condition at infinity.

Since

i vn Te = cos rnx + i sin mx,

eqs. 6.34 and 6.36 can be written as
CO CO

ips = / Bm e~rUl z cos mx dm and rp = / Cm e~m's z cos mx dm (6.38)

— oo —oo

i.e., these functions are even with respect to x, which corresponds to the symmetry

of wavefields. Next, making use of eq. 6.17, we obtain the following expressions for

potentials of waves:

/ oo oo \

£ = Co I / ^- e"m< N el m xdm + f Bm e"TO' z el m xdm 1
Voo —oo /

(6.39)
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and
oo

ji = Co I Cm e~m> z eimxdm (6.40)
— OO

Here

C = ^ (6.41,

In order to determine the unknown coefficients Bm and Cm, we apply the boundary

conditions. Substitution of eqs. 6.39 and 6.40 into eqs. 6.28 gives two equations with

two unknowns for every value of m:

('-mi H \
-X kf + Bm em' H (6.42)

V mi )

+2fj.(rrne~mi H + m^em' HBm - i m m,Cm em* H) = 0

and 2 (i m e~m' H -im m{Bm em' H) - m2Cmem> H - m\ Cm em° H = 0

After doing a simple algebra, we obtain

p-mi H
(2m2 - hi) em< HBm - 2i m msCmem° H = — (2m2 - k2

s) (6.43)

and 2i m m, e m ' HBm + ( 2 m 2 - k2
s) em* HCm = 2im e ^ H

Note that the boundary conditions are written for integrands in eqs. 6.39 and 6.40.

This great simplification is based on the main property of Fourier's transform (Part I).

Solution of system 6.43 gives

= _ J_ (2m»- f t ; ) ' + 4 m ' m l m . e _ 2 m , H

m, (2m2 - k2
sf - 4m2m, m,

Aim (2m2 - fc2) e~mi H e~ms H

and Crn = 2̂
(2m2 — kf) — Am?niims
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As follows from eqs. 6.44, the functions ips and ip do not have singularities. Therefore,

the condition near the source, eq. 6.21, is also met. This means that we have found

potentials caused by the linear source of the compressional waves. In particular, if the

source is located on the free surface we obtain

f e-ml z ei m xdm
V = -8C0 / m2m ' 2 (6.45)

J (2m2 - k2) - 4rn2mi ms
- c o

CO

~ A „ f m (2m2 - k2
s) e~m° z el m xdm

and i) = 4i Co / — ; ^ ^
J (2m2 — k2) — Am2mi ms

- c o

Linear source of SV waves in a homogeneous medium
Assume that the linear source experiences a small rotation about the y-axis that is

caused by shear stress:

T9r = T°gr coswt at r = ro (6.46)

This motion gives rise to a shear wave, and particle displacement is characterized by the

single component sg\

S = Sg'lg b u t Sr = Sy = 0 (6-47)

Since the wavefield is independent of 9, we have

div s = ~^Z (rs«) = °'r uu

while

curly s = — (rsg) ^ 0

Correspondingly, the wavefield can be described by the single component of the vector

potential ip0:

V>o = V>o J' (6-48)

which is oriented along the y-axis, and

s = curl ibn or s0 = - - ^ (6.49)
or
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Because of axial symmetry and the independence of the coordinate y, the complex

amplitude tp0 satisfies eq. 6.35, and its solution has the same form as in the case of the

P-waves:

% = A2H
i
0

1\ksr) (6.50)

To determine the unknown A2, we use Hooke's law:

(d~se «<A (d2^ 1 ty\
Tr0 = I1 \^r = -I1 7TY ~ ~ 7T \ 6 ' 5 1

As follows from eq. 6.12, near the source

H{
o

l\ksr)^-\nksr, (6.52)

and substitution of eqs. 6.50 and 6.52 into eq. 6.51 gives

wr2 i T°
ni0 i Tr9 . .

A 2 = (D.ociJ
4/i

Therefore,

% = -m^^H^\ksr) (6.54)

or

oo

% = d I — e~m° \z\ e?; m x dm (6.55)
J rns

— OO

Here

Cl = -dj^l (6.56)
4 / i

Considering elementary volume in the cylindrical system of coordinates, we see that

TTr = 0, Tgg = 2 / i - ^ , Tyy = 0

and

Tr9 = M [jfr ~ -j , ^ = 0, Tgy = 0
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Homogeneous half-space with a free boundary
Now we assume that the linear source of shear waves is located at distance H from

the free surface, Fig. 6.1a. As before, we may expect that at the boundary both longi-
tudinal and shear reflected waves arise, as well as a surface wave. For this reason, the
wavcficlds arc described by scalar and vector potentials, and their complex amplitudes
can be written in the form

V = ClJAme-m'z°imXdm (6.57)
— OO

OO CO

and i> = d / C~W'S Z el m x dm + f Bm e~m° z el m x dm
J ms J

—oo —oo

By definition, at regular points functions ip and tp are solutions of Helmholtz equations,
and they satisfy the condition at infinity (z —> oo). Substitution of cqs. 6.57 into the
boundary conditions described by eqs. 6.28 gives the system for determining unknowns
Am and Bm:

-\k?Amemi H + 2/i [rrifAm em' H +1 m {e^771* H - ms Bm enls H )] = 0 , (6.58)

-2i m m, Am em< H - m2 (^'"^ + Bm em° H \ - [mi Bm em° H + ms e~m° H ) =

or

(2m2 - fc2) Am emi H - 2i m ms e
m° H Bm = -2% m erm° H (6.59)

and 2i m m, em< H Am + (2m2 - JfcJ) em° H Bm = - ^ ^ ~ fc'>e-™« H

' ms

Solution of this system gives

—4i rn (2m2 — k2) e~mi ^ p~ms H
Am = ( -4^ (6.60)

(2rnz — kg) — <±m,mims



6.2 WAVES IN A HOMOGENEOUS MEDIUM CAUSED BY FORCE F e 287

1 (2m2 - k2
sf + 4m2mtroa 2m, #

and k>m = ^ e 5

ms (2m2 - klf - Am2mims

Thus, the scalar and vector potentials are

4t m {2m ^ C e~m< z e l m x dm (6.61)

(2m2 - k'jf - 4m2
mims

— OO

and £ = -cJ ±- ( 2 m 2 "^ 2
2 + 4m2m 'm- e-2™* ̂  e""1' z e* m ^ dm

./ rns (2m2 - fc2) - 4m2m,ms
— oo

Here ip = ipQ+'ipj, and ^x describes the secondary wavefields.

Linear source of SH wave in a homogeneous half-space
In such a case, we assume that the secondary wave is also an SH wave. Correspond-

ingly, the field is described by the vector potential only:
OO

.0 = Cl f f-L e-
m° \z\ + Bme-m> z \ el m x dm

—oo

Since displacement has a single component v, the boundary condition at the free surface

is

TVZ = 0 or - ^ = 0 if z = -H
dz

This can be represented as

pp.,/,

B -_^e-1msH
ms

The vector potential of the secondary field is
OO

1 = - d / — e"m« (z + 2ff) e* m xdm
J ms

—oo

This vector potential characterizes the shear wave caused by a fictitious source located

at the point having coordinates, (0, —2H). That is, it is a mirror reflection of the real

source with respect to the free surface. Note that the same behavior was observed in an

acoustic medium (Part II).
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6.2 Waves in a homogeneous medium caused by force Fe (two-dimensional
case)

Assume that the external force

¥% = Fx(x,ti) cosut or F^ = Fz(x, 0) cosw t (6.62)

is oriented either along the rc-axis or the z-axis, and it acts on a very thin layer coincident

with plane z = 0, Fig. 6.1b. In general, F x and Fz can be arbitrary functions of x.

We can expect that such sources generate a direct wave, which causes deformation and

the rotation of elementary volumes of a medium. The wavefields are described by both

potentials, and our first goal is to find expressions for the complex amplitudes of these

potentials. It is clear that the boundary value problem for the direct wave requires the

following:

1. The complex amplitudes of the scalar and vector potentials must obey the Helmholtz

equations at regular points.

2. At plane z = 0, both components of displacement must be continuous functions:

U\ = «2 and w\ = u>2 (6.63)

Here u = u\, w = w\ z < 0; u = 112, w = ID? Z > 0; while v = 0.

Also, stresses rzz and TXZ at both sides of plane z = 0 are related to the external

force F e .

3. Finally, the direct wave is outgoing, and the wavefields disappear when \z\ tends

to infinity.

Relationship between the external force and stresses
As we see, in order to solve the boundary value problem it is necessary to relate the

external force to stresses in the vicinity of plane z = 0. Let us consider an elementary

cylinder, shown in Fig. 6.1b. It is obvious that a sum of forces acting on the opposite

faces of the volume has to be equal to zero, that is,

(Fe + t(i)+t(2)) dS = 0 (6.64)

Otherwise, acceleration of volume would be infinitely large when AV —> 0. Here

F e is the external force per unit area of the upper face, dS, of the elementary cylinder,

while t ^ and t'2^ are the vectors of traction, applied to faces. By definition (Appendix

D), the components of the vector t are

tx = rxxnx + Txyny + Txznz, ty = Tyxnx + Tyyny + ryznz (6.65)
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and tz = Tzxnx + rzyny + rzznz

where nx,ny7 nz are directional cosines of normals to the cylinder faces and are directed

outward. Since nx = ny = 0, we obtain

41) = - r W , tx
2) = TX

2} (6.66)

and

-/-(!) — T-(1) V-(2) — T-(2) ('« «7~1

Correspondingly, eq. 6.64 becomes

F: + T%-TW=0 (6.68)

and

^e+^-rW=0 (6.69)

In particular, if the external force is directed either along the x-axis or the z-axis we

have

These formulas along with eqs. 6.63 allow us to find expressions for potentials of the

direct wave.

Spatial spectrum of the external force
As was demonstrated earlier, the complex amplitudes of potentials satisfying the

Helmholtz equations can be represented in the form

oo oo

fa = f Am em< V m xdm, i>, = f Bm em° V m xdm, if z < 0 (6.71)
— oo —oo

and
oo oo

fa= I Crne-m'zelmxdm, ^ = f Dm e~m> zj m xdm, if O O (6.72)
J J

— oc —oo

Here if) is the j/-component of the vector potential and

mi = dm2 — k'f, ms = \Jm2 — k2
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It is clear that eqs. 6.71 and 6.72 can be treated as Fourier's transform of the complex

amplitudes of potentials. In order to determine unknowns in eqs. 6.71 and 6.72, we

use conditions at plane z = 0 (eqs. 6.63, 6.70), and also express the force amplitude,

Fx(x,0) and Fz(z,0), as the Fourier's integrals:

oo oo

Fx (x, 0) = f X{m) el m x dm, Fz (x, 0) = f Z(m) ei m x dm (6.73)
—oo —oo

Here

oc oo

X (m) = — / Fx (x, 0) e~{ m xdx, Z(m) = — I Fz (z, 0) e~l m xdx, (6.74)
2TT J 2-K J

— oo —oo

Eqs. 6.74 allow us to calculate a spatial spectrum for an arbitrary external force. In

illustration, suppose that the force amplitude behaves as the delta function:

Fx (x, 0) = Fx 8 {x), Fz (x, 0) = FZS (x),

(6.75)

where Fx and Fz are constants but S (x) is the delta function:

oo

/
5 (x — XQ) dx = 1

— oo

This means that the sinusoidal force is applied to points of an infinitely thin strip of the

plane z = 0, which is oriented along the y-axis. Then, as follows from eqs. 6.74, the

spatial spectrum of these amplitudes is constant and equals

X(m) = £ , Z(m) = ^ (6.76)

Therefore, in place of eq. 6.73 we have

oo oo

Fx (x. 0) = — / e% m xdm and Fz (x, 0) = — / el m xdm (6.77)
2n J 2TT J

— oo —oo

Potentials of the direct wave
Now we can find the unknowns in eqs. 6.71 and 6.72. First assume that the external

force is horizontal.
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Case one: (Fz = 0) At plane z = 0, the complex amplitudes of wavefields obey

the conditions

~ ~(1) ~(2) ~(2) ~(1) „ , m , ,
Ui=U2, Wi=W2, TZZ=TZZ, Txz - Txz = -Fx (x, 0) (6.78)

Taking into account that

s = grad ip + curl t/>

and

r , , = Adiv8 + 2 ^ , T7a = l i ^ - + - y (6.79)

eqs. 6.78 can be rewritten as

dip1 dip1 _ dip2 dri\)2 d(p1 dipl _ d(p2 dtp2

dx dz dx dz ' dz dx dz dx

/ 2 9 2 y 2 , 3 ^ 2 9V 2 \ ^ 2 ^ , ^ i ^ A ^(^,0) for z = Q
I 9x dz dx2 dz2 J \ dx dz dx2 dz2 J 2TT \J,

Substitution of eqs. 6.71, 6.72 and 6.77 into set 6.80 gives

i m{Am - Cm) - ms(Bm + Dm) = 0, mt{Am + Cm) + im(Bm - Dm) = 0,

(2m2 - k2
s) (Am - Cm) + 2im ms{Bm + Dm) = 0, (6.81)

p
and 2i m m((Am + Cm) - (2m2 - k2

s) (Bm - Dm) = —^- and

From the first and third equations in set 6.81 we obtain

Am = Cm and Bm = -Dm (6.82)
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Substitution of the latter into two other equations of set 6.81 gives

Ara = - - ^ % , S™=^% (6-83)

A n lm Fx n Fx
and Cm = —, Dm = —

mi 2-ir/ikj 27r/ifcj

Therefore, potentials of the direct wave are

oo

^0 = -iC1 [ —e-m' \z\el m xdm (6.84)
J mi

—oo

and
oo

^0 = d I em»zel m xdm, if z < 0, (6.85)
•J

— OO

OO

^0 = - d I e-m°zennxdm, if z > 0
—oc

where

Ci = — ^ (6.86)

In accordance with cq. 6.15,

oo

' Hi J mi
—oo

and, correspondingly, scalar potential can be written as

£o = -* * ̂ l ^ o 1 ' (^r) (6.87)

Case two: (Fx — 0) Suppose that the external force is directed along the z-

axis. Then, proceeding from eqs. 6.63 and 6.70, we obtain the following system, which

describes the behavior of displacement components and stresses on the z — 0.

i m(Am - Cm) - m,s{Bm + Dm) = 0, mi(Am + Cm) + i m(Bm - Dm) = 0,
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(2m2 - fcs
2) (Am - Cm) + 2i m ms(Bm + Dm) = ^ - , (6.88)

2i rn mi(Am + Cm) - (2m2 - fc2) (Bm - Dm) = 0

The second and fourth equations give

Am = -Cm and Bm = Dm, (6.89)

and therefore

i m Am- msBm = 0 (2m2 - k2) Am + 2i rn msBm = -—z— (6.90)
v ' 2nfikj

The solution of system 6.90 is

Am = - ; r 4 § - , Bm = - l™Fz , (6.91)

Cm = ^ Dm =
 imF*

m 2nk2 \i ™ 2-nk'l [i ms

Thus,

oo

^0 = - C 2 / ' e m ' ^e? m xdm if 2 < 0 (6.92)

— OO

oc

^0 = C2 / e~mi ze{ m xdm if z > 0,

— oo

oo

and ^o = ~i C2 I — e~m° ^el m xdm (6.93)
J "i,

— oo

Here

C2 = — ^ - (6.94)
2?r/i KJ

Note that the last integral is expressed in terms of the Hankel function.
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Figure 6.2: (a) External force acts on free surface (b) External force is applied beneath

free surface, z — 0

6.3 Waves in a homogeneous half-space caused by force Fe

Next we will derive formulas of potentials in a homogeneous half-space with a free bound-

ary and distinguish two positions of the plane where the external force Fe is applied.

As before, it is assumed that the force behaves as the delta function of x, and therefore
oo oc

Fx(x,0) = — I eimxdm and F,(x,0) = — [ eimxdm (6.95)
2vr J 2TT J

- o o - o c

Force Fe acts at points of the free surface, Fig. 6.2a Since the z-axis

is directed downward and z > 0, the complex amplitudes of potentials characterizing"

these waves can be represented as
DO OO

£ = f Am e"m< V m xdm and ^ = f Bm e " m * V m xdm (6.96)
— OC —00

Eqs. 6.96 describe the resultant waves, including direct and surface waves. It is obvious

that functions tp and 'tp obey the corresponding Helmholtz equations and the condition

at infinity. Our task is to find such coefficients Am and Bm that boundary conditions

at the free surface are also met. Consider an elementary cylinder, shown in Fig. 6.2a,

and suppose that its upper face z — 0 is subjected to action by external force Fe . In

the limit, when the cylinder height dz tends to zero, the condition of equilibrium is

written as

(Fe + t) d,S = O (6.97)
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In particular, when force F e has either x or z components, eq. 6.97 becomes

rzz = 0, TXZ = -Fx(x,Q) or TZZ = -Fz{x,Q) , TXZ = 0 (6.98)

Taking into account eqs. 6.95 and 6.96, we obtain two system of equations; either

(2m2 - k2
s) Am - 2J m m, Bm = 0, 2im m, Am + (2m2 - k2

s) Bm = A - (6.99)

or

(2m2 - fc2) Am - 2i m msBm = - , 2i m mtAm + (2m2 - fc2) Bm = 0, (6.100)

and they have the same determinant. Thus, in the case of horizontal force, we obtain

2imms (2m2 - k'2s) Fx /« i n-n
•Am = -7; 7VF* a n d -B'" = o n (6.101

2yr/i I? 27r,u £)
Here

D = (2m2 - fc2)2 - 4m2m( ms, (6.102)

and it represents the left side of the equation, which defines velocity of Rayleigh waves.

When the external force is oriented along the z-axis, eqs. 6.100, coefficients Am and

Bm arc

Am = -{^f^Fz and Bm = ^ ^ (6.103)
2TT/J, D 2?r/i D

Thus, expressions for the potentials arc

Case one: Fz — 0

oc

2?r/i J D

— OO

OC

a n d ^ = A . / (2m2-fc,2)e_TOs z ^ m x
2TTJJ, J D

— OO
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Case two: Fx = 0

oo

~ = _F^_ r (2m2-fc^) e_m ; z&i m Xdm

2-Kfi J D

—oo

oo

~ Fx . f 2m mi - m z i m x >
and i> = 1 I e 's ze' ' xdm

2ir/i J D
—oo

Force Fe acts at points of a plane beneath the free boundary, Fig. 6.2b
Suppose that the origin of coordinates 0 is situated at the plane where force Fe is

applied, and consider again two cases: Fe = Fx(x, 0) i and Fe = Fz(x, 0) k. Since the
wavefields are formed by direct waves arising at plane z = 0 and secondary waves that
appear at the free boundary z — —H, it is natural to represent the complex amplitude
of potentials of the total wave as a sum:

r-j i~j f%>

i/? — ̂ 0 + tps and ip = ipo + ips (6.106)
Here ip0 and ipQ are potentials of direct waves given by eqs. 6.84-6.85 and 6.92-6.93.
At the same time, the complex amplitudes of potentials of the secondary waves, which
obey the Helmholtz equation and the condition at an infinity, can be written as

OO CO

V, = I A'me-m' zeimxdm and ^ = f B'me-m* zeimxdm (6.107)

— OO — CO

Since at the free boundary stresses vanish, the complex amplitudes of potentials must
satisfy two known equations:

Next we obtain expressions of potentials for two orientations of force Fe.
Horizontal external force Fx(x,0) In accordance with eqs. 6.84 and 6.85, we

have

oo

£ = -i Cl f \^e-
m' N + Ame-m< A el m xdm (6.109)

J Ymi
— oo
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OO

and i> = Cl j \em* z + Bme~m^ z] el m xdm if z < 0
— OO

Here

Substitution of eqs. 6.109 into set 6.108 yields

(2m2 - /c2) em'lHArn + 2m ms em*HBm = Lx (6.111)

and 2m mie
mtH'Am + (2m2 - k2

s) em»HBm = Mx

Here

Lx = - (2m2 - fc2) — e~m> H + 2m mse~m- H (6.112)
mi

and Mx = 2m2e-m<H - (2m2 - k2) e~m^H

The solution of system 6.111 is

Am = ( 2 m 2 ~ k1) L* ~ 2m ms M*cmM (6 113^

_ (2m2 - k2) Mx - 2m miLx miH
ciuu -Dm — a

where D is given by eq. 6.102.

Vertical external force Fz As follows from eqs. 6.92-6.93

OO

V=-C2 ! (em' z + Ame-mi z) el m xdm (6.114)

— OO

OO

and 0 = -i C2 f ( ^ e m * z + Bme~m^ A el m xdm if z < 0
— OO
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Here

After substitution of eqs. 6.114 into set 6.108, we obtain:

(2m2 - k2) em^HAm + 2m mse
m°HBm = Lz, (6.116)

2m m;e
m< HAm + (2m2 - k'2s) e

m* HBm = Mz

where

U = - (2m2 - k2) e~m'H + 2rn2e-m* H (6.117)

and Mz = - 2 m m4e~miH + (2m2 - fc2) e~ms H

From eqs. 6.116 we obtain

A (2m2 - k2) Lz - 2m ms Mz m H

Am — jj e s (6.118)

_ (2m2 - fc2) Mz - 2m mtLz m Hana nm — — e

Note the following:

1. Function D is independent of the position and orientation of force Fe. This is

understandable, because the equation D = 0 defines the velocity of the Raylcigh wave,

which is a function of elastic parameters and density only.

2. In comparison with the previous case - force applied at the free surface - it is

proper to point out that coefficients Am and Dm in eqs. 6.113 and 6.118 characterize

secondary waves only.

3. As we know, the direct wave carries out both dilatational and rotational motions,

and each of them gives rise to longitudinal and shear reflected waves. This directly follows

from an analysis of functions L and M. Thus, there are four reflected waves and, as

will be discussed later, in the far zone their propagation obeys Snell's law. Besides, the

denominator of coefficients Am and Bm is described by function D, which indicates

the presence of the Rayleigh wave.
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6.4 Wavefields in the far zone (linear source at the free surface)

As follows from eqs. 6.104 and 6.105, the complex amplitudes of scalar potential and the

y-component of the vector potential describing waves in a homogeneous half-space are

oo

2TT/X J D
—oo

oo

V7 = ^ / 2m2-k*e-™,zei rn xd if p Q
V 2?r/i ,/ D

— OC

and
oo

5 = - A . / 2 m ' ~ fc' e - m ' ze* m ^dm. (6.120)
27T/i J D

— OO

OO

~ = ^ | 2 ^ ^ i m
— oo

Here

£> = (2m2 - ^ ) 2 _ 4m2m /m, (6.121)

These formulas were derived provided that elastic energy is not transformed into heat

and, respectively, wavenumbers kx and ks are real. It is convenient and more realistic

to assume that attenuation of waves is very small. Therefore, equations for potentials

have the form

Here Ei and ss are small positive numbers characterizing dissipation of mechanical

energy. Taking into account the time dependence of waves, e~l , we again arrive at

the Helmholtz equations for complex amplitudes of potentials,

V 2 ^ + kf y = 0 and V 2 ^ + k2
s^ = 0,

where

fc? = ^ - H ^ , k* = 4 + *— (6-123)
cl cl cs Cs
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Of course, eqs. 6.119-6.121 describe sinusoidal waves even in the presence of attenuation.

Note also that if the wavenumbers are real, integrands in eqs. 6.119 and 6.120 have

singularities when D(m) = 0, but integrals exist. Taking a square root in eqs. 6.123,

we obtain

kt = - + iei, ki = ---iei, (6.124)

w • w

and ks = h le-i- ks = tS2,

where £\ and £2 are very small positive numbers. It is essential that these roots

are located either slightly above or beneath the real axis of TO, Fig. 6.3a. As was

demonstrated in the previous chapter, if Im ki — Im ks — 0 function D(m) has at

least one real root, and it corresponds to wavenumber fc# of the Rayleigh waves. It

is natural to expect that if wavenumbers are complex (eqs. 6.124), roots of function

D(m) are not real, which may greatly simplify numerical integration along the m-axis

(—00 < TO < 00).

Proceeding from eqs. 6.119 and 6.120, it is easy to derive formulas for particle dis-

placement as well as for normal and shear stresses. Then, carrying out integration, we

can study these wavefields at any point of a homogeneous half-space. However, we will

restrict ourselves to the wave (far) zone, where distance from the primary source greatly

exceeds the wavelength of elastic waves. We pay special attention to this range because

the wave zone in which it is possible to observe different types of waves is of great prac-

tical interest. To derive asymptotic formulas for the far zone, we are going to apply the

methods of stationary phase and of contour integration, based on the Cauchy theorem

(Part II). For instance, use of the first method allowed us to obtain the approximate

formulas for reflected and transmitted acoustic waves in the far zone, including some

evanescent waves (Part II). To begin with, we apply this method for studying longitudi-

nal and shear waves in an elastic half-space. To do this, it is necessary first to discuss

behavior of radicals, m; and rns in eqs. 6.119 and 6.120, as functions of m.

Choice of sign of radicals TO; and ms

From the physical point of view, it is obvious that a wavefield is a single-valued function

of the coordinates of an observation point and a frequency. Correspondingly, integration

in eqs. 6.119 and 6.120 has to give one value for scalar as well as vector potentials,

since they arc solutions of Dirichlct's boundary value problem. However, the integrands

contain radicals

TO; = dm? — kf and ms = y/m2 — k'j,
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Figure 6.3: (a) Location of wavenumbers on complex plane m (b) Trigonometric form

of complex number (c, d) Influence of direction of argument change (e) Branch lines

and argument jumps
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and each of them has two different values (Part II). Because of this, the integrals and

related wavefields become multivalued functions. In order to avoid this problem, let us

first recall the concepts of the branch point and branch cut, and consider several functions

of a complex variable.

Example 1 For comparison, we start from the simplest single-valued function

w(m)=m-k, (6.125)

where k is a real number but m is, in general, complex. In the trigonometric form,

we have

w{m)=Re}1 (6.126)

Here

R — \m — k\ — \k — m\,

and the positive direction along which angle 7 increases from 0 to 2TT is counter-

clockwise, Fig. 6.3b. It is clear that this function is continuous and at each point has a

derivative. In particular, in the vicinity of positive values of m (Im m = 0 ), we have

the same value of w when angle 7 is cither 0 or 2TT, since

R e
l ° = R el 2n

Moreover, this function is analytical everywhere on complex plane m except infinity

(Part II). This feature of functions of complex variables allows us to use the Cauchy

theorem and perform a deformation of the contour of integration. This procedure is the

foundation of the most powerful methods of deriving asymptotic formulas of wavefields

in the far zone.

Example 2 Suppose that

w — Vrn — k or w — VR el7 (6.127)

Taking a square root:

wn = VR exp ( i 1 , n = 0,1

we arrive at two functions, which are called branches of function w:

uh = VRel ^ / 2 and w2 = -VR e% "il2 (6.128)
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By definition

y/R= y/\m-k\

is positive, and point k is the branch point. When an expression describing a physical
quantity contains a function such as w(m), we always need additional information that
will permit us to choose one of these branches. For instance, consider the integral

oo

I(k, z)= I f{m) e - V m - k z ^ (6 129^
o

where z is positive. As soon as m > k, the function

w = yjm-k (6.130)

becomes real, and in order to provide convergence we have to assume that the radical is

positive. This condition is the additional information we need to choose the necessary

branch at points of the m-axis, when

k < m < oo

Our next step is to determine this branch within the integral

0 < m < k

ft turns out that such a procedure can be ambiguous, fn fact, as is seen from Fig. 6.3c, a

change of angle 7 by n either counterclockwise or clockwise gives two different values

at the same point, eqs. 6.128:

1/2 .1 , 1/2• I ; 1 1 / 2 • I ; 1 / 2
w\ — i\k — rn\ or iy2 = —i \k — rn

In other words, we obtain two branches of function w.
Note that in the first example, the same procedure yields only one value of the func-

tion. It is essential that such uncertainty in the last case takes place for any line C on
the complex plane, Fig. 6.3d. In order to overcome this ambiguity and select one branch
of w, we first assume that point k is located slightly above the m-axis and then draw a
contour, shown in Fig. 6.3e. It consists of a very small circle CQ around branch point k
and two semi-infinite lines (branch cuts) located close to each other. Since the imaginary
part of k is extremely small, we can treat the low line C\ as the m-axis when m > k.
Next we introduce the rule that a change of complex number m can take place only
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along paths that do not intersect branch cuts. For instance, moving along path Co, the

argument m — k of the function, eq. 6.130, changes by — 2-7T. Therefore, at the upper

branch line C2

w = -R1'2

We cannot move in the opposite direction, because the path would intersect the branch.

Correspondingly, in order to find the proper branch of function w within the interval

0 < m < k,

we move a point along path C3, and it gives

w = —iR1/2 = —iy/k — m

Example 3 Consider the integral

CO

I=f f(m) e -Vm 2 - k2z ^ (6.131)
•j

—oo

where z > 0. Because

w = Vm2 — k2 = \/{m — k)(m + k),

there arc two branch points (k, —k) as well as two branch cuts, shown in Fig. 6.4a. In

the trigonometric form we have

m-k = R1e
t^±, m + k = R2e

i^? (6.132)

Because z is positive and the integrand in eq. 6.131 has to decrease with an increase of

m, we conclude that at the real axis of m, when m > k (branch line C\)

7 l = 7.2 = 0, (6.133)

and

w = \Jm2 - k'2 = T/RIR2 > 0

A rotation clockwise about branch point k gives for the upper branch line C2

7i = -2TT, 72 = 0 (6.134)
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Figure 6.4: (a) Illustration of example 3 (b) Branch lines of integrands in eqs. 6.119 and

6.120 (c) Three intervals of integration

Since this procedure is not accompanied by rotation around point —k, it is natural that

at both sides of the branch line (C\ and C2), angle 72 is the same. At the same

time, a movement counterclockwise from C2 to C4 increases both angles by IT, and

at points of C4 we have

7i — —7r> 72 — ^ (6.135)

This result is important because branch line C4 coincides with the interval of integration

when m < —k. In this case

w = \JRie-
mR.2e

t7T = y/RiR-2 > 0,

and the integrand becomes smaller with an increase of \m\. Performing a rotation around

branch point —k, we see that ry1 does not change, but 72 becomes equal to —TT,

which is at branch line C3:

7 l = 7 2 = -n (6.136)
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Finally, movement from points of line C3 counterclockwise to points of interval — k <
m < k gives

7i = - T , 72 = 0 (6.137)

Hence

w = \JRlR2e-l'K = -i^fRrR.2

or

w = -iVk2 - m? (6.138)

This expression will be used often in deriving asymptotic formulas.
Example 4 In accordance with eqs. 6.119 and 6.120, complex amplitudes of

potentials are described by two integrals:
00

/ Am (TO, m;, TO,,) e~m' zel m xdm (6.139)
•J

— OO

OO

and / Bm (TO, mu ms) e~w'sZel m xdm

Respectively, there arc four branch points and four branch lines, Fig. 6.4b. Again,
assuming that z > 0, it is appropriate to distinguish three intervals of integration:

TO > ks, y^TO2 - kf > 0, A /TO 2 - k2
s > 0

k8 > m > kh ^m2 - kf > 0, ^Jm2 - k2 = -isjk2
s-m

2 (6.140)

0 < m < ki, -urn2 — kf = —i\lkf — TO2, A/TO2 — k2 = —i\Jk2
s — m2

Equalities are similar for negative values of m.
Wavefields as a superposition of plane waves
As follows from eqs. 6.119 and 6.120, at each point of a medium, scalar and vector

potentials are represented as an infinite sum (integral) of homogeneous and inhomoge-
neous plane waves. Correspondingly, the complex amplitudes of potentials describing
these elementary waves are

* • = S ! i 5 e~n"v"'Irfm' (6141)
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i>m = ̂ -^^fe-m'z^mxdm, if Fz = 0
2-KJJ, D(m)

and

£m = -^-2mF)F
]f ?~mi Z?1 m Xdm, (6.142)

/vr/i JJ(m)

h = ^^e-m^eimxdm if Fx = 0

It is clear that amplitudes of these waves depend on the variable of integration m, and

due to the presence of the term dm, they are infinitely small. Also, we see that with an

increase of m harmonics, <pm and ipm as functions of x and z, change more rapidly

in both horizontal and vertical directions. In contrast, they vary relatively slowly when

m becomes small. This allows us to expect that at sufficiently large distances from the

source, harmonics with small rn values play a dominant role. In other words, they

mainly form wavefields in the far zone. Respectively, in deriving asymptotic formulas,

it is natural to focus on the initial interval of integration in eqs. 6.119 and 6.120. At

the same time, near the source and at some moderate distance from it, harmonics with

rather large values of m can make a significant contribution. It may be useful to note

that integration in eqs. 6.119 and 6.120 can be carried out for positive values of m only.

Indeed, taking into account Euler's formula

e1^ = cos 7 + isin7,

we have

oo

£ = - — f ^-^e-
m' z smmx dm (6.143)

•Kfi J D(m)
o

oo
F /' 2m2 - k2

and ib=— ^Le~
ms z CQS mxdm i f Fz = Q

-ir/i J D{m)
o

In the same manner, we can represent complex amplitudes when the external force is

directed along the z-axis. The variable of integration m, which has the dimension

m~1, is usually treated as the wavenumber of elementary plane waves, ipm and i()m.

By definition, it characterizes the rate of change of these waves in the x and z directions.
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It is useful to distinguish harmonics that describe either inhomogeneous or homogeneous

elementary plane waves. In this light, consider three intervals of integration, Fig. 6.4c.

The first interval: (m > ks) Suppose that TO corresponds to the interval in which

m > ks that is, mi and rns are real and positive numbers:

mi = sjm? - kf > 0 and ms = ^m2 - k2
s > 0 (6.144)

Then harmonics of potentials tpm and ibm, which satisfy this condition (eqs. 6.144),

exponentially decay along the z-axis, and they characterize waves advancing in the

horizontal direction. Certainly, t is clear that we are dealing with inhomogeneous plane

waves, and their phase velocity

c(m) = — (6.145)
m

is defined from the wave argument

—ut + mx

With an increase of wavenumber TO, velocity c(m) rapidly decreases and tends to zero,

so that in the first interval

c, > c{m) > 0 (6.146)

As was demonstrated in Chapter 5, the velocity of the Rayleigh wave, cR, is slightly

smaller than that of the shear wave [cR < cs). For this reason, we may think that the

harmonics of the initial portion of this integral (m ~ ks) form the Rayleigh wave and

at a great distance from the source they play the dominant role. In fact, as follows from

eqs. 6.143, with an increase of m ( m ^> ks), the amplitudes of harmonics ipm and

ipm rapidly decrease. Correspondingly, even at the free surface (z — 0), the influence

of inhomogeneous plane waves with large wavenumbers becomes negligible. On the other

hand, when m ~ |fes|, function D (m), eq. 6.121, has a root that is located a little

above the real axis of TO. Therefore, amplitudes of these harmonics can be quite large.

The approach used here allows us to see again one interesting feature of the surface

wavefield. As follows from eqs. 6.119 and 6.120, potentials contain terms

e~mt z and e~m>z.,

and at the beginning of the first interval we can approximately write

-Jkl -kfz 7 -Jkl -k2
sz



6.4 WAVEFIELDS IN THE FAR ZONE 309

Since

yjkjt -k?>y/kl-k*a,

with an increase of distance from the free surface, the dilatational part of wave motion

decreases more rapidly. Thus, it turns out that superposition of elementary inhomo-

geneous waves with wavenumbers close to ks, but slightly exceeding it, produces the

Rayleigh wave.

The second interval In this interval of integration, the wavenumber m varies

within the range

ki < m < ks,

and therefore

mi = <Jm2 — kf > 0 and ms = —i\Jk2 — w? (6.147)

As with the first interval, the harmonics ipm of the scalar potential describe inhomo-

geneous plane waves. Correspondingly, they may also contribute to the longitudinal

evanescent wave in the far zone. At the same time, the product of the exponential terms

of harmonics f/>m can be written in the form

i ( Jk2 - m2z + ni x ) , /

e Vv " ; if m < |A;S| (6.148)

or

i ks (z cos 9S + x sin 6S)

Here

/ 2\ I/2

cos 6a = M - ^ J , sin 9, = ^ (6.149)

Eqs. 6.148 and 6.149 show that harmonics yjm describe the homogeneous plane wave of

the shear type, which propagates with the velocity of shear waves. The angle of incidence

varies within the range

sin"1 - < 0, < - (6.150)
Q 2

All of these waves make a strong contribution to the shear wave as well as to the conical

wave in the far zone.



310 CHAPTER 6. WAVES IN A LAYERED MEDIUM ...

The third interval Finally, in the initial part of integration

0 < m < kt

both radicals m,i and ms are purely imaginary:

mi = —idkf — m2 and ms = —i\/k2 — m2

Therefore, the harmonics of potentials ipm and tpm are homogeneous plane waves

propagating with phase velocities Q and cs, respectively. The angle of incidence of

elementary longitudinal waves changes as

0 < 0i < \ ,

whereas for shear harmonics we have

0 < 9S < sin"1 — (6.151)
Q

This interval influences both longitudinal and shear waves in the far zone and the conical

shear wave.

To summarize this discussion, note the following:

1. At any point of a medium, wavefields can be represented as an infinite sum of

elementary homogeneous and inhomogeneous plane waves.

2. Within the range integration m > ks, all of these waves are inhomogeneous, and

they move along the boundary with different phase velocities that are smaller than the

velocity of the shear wave. With an increase of rn, these harmonics decay more rapidly

with z.

3. In the interval

0 < rn < ks

the harmonics of potential rpm are homogeneous plane waves that propagate in different

directions with the velocity of shear wave cs. The angle of incidence of these waves

changes from 0 to TT/2.

4. The harmonics of potential ipm are also homogeneous plane waves, if m < ki,

and they move in all directions (0 < 6i < vr/2) with the velocity of longitudinal wave

Q. At the same time, elementary longitudinal waves in the interval

ki < rn < ks
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are inhomogeneous. They mainly form the evanescent P wave in the far zone that

accompanies the shear wave.

5. Because of exponential decay along the z-axis and rapid oscillations in the hori-

zontal direction, wavefields at the far zone are mainly due to harmonics with relatively

small wavenumbers, m. For instance, the longitudinal wave is a superposition of har-

monics ipm when m < k[. The same takes place with shear-wave harmonics, provided

that m < ks.

6. The Rayleigh wave is the result of superposition of elementary waves of the dilata-

tional and rotational types, and its wavenumber is almost minimal among inhomogeneous

plane waves.

7. In accordance with eqs. 6.119 and 6.120, regardless of distance from the source, we

can assume that wavefields consist of longitudinal and shear homogeneous waves as well as

different inhomogeneous plane waves including the Rayleigh wave. However, at relatively

small distances the effect of propagation is masked by the presence of inhomogeneous

waves with large values of m. Since their contribution diminishes with increased distance,

it becomes possible to observe the wave phenomenon.

Contour of integration
Now we begin to derive asymptotic formulas for wavefields using an approach based

on the Cauchy theorem (Part II). As follows from cqs. 6.119 and 6.120, the complex

amplitudes of potentials ip and ip are represented as integrals along the real axis of m.

Applying the Cauchy theorem, it is possible to choose different paths of integration, some

of which are very useful in deriving asymptotic formulas. This procedure implies that

the transition from old to new paths is not accompanied by intersection of singularities

of the integrand. These singularities include the branch points ±fc( and ±fcs, as well

as poles that are determined from the equation

D = (2m2 - k2
sf - 4m2m, ms = 0 (6.152)

By analogy with the case of acoustic waves (Part II), we consider integrals along the

closed path C, shown in Fig. 6.5a. Let us denote / (m) as integrands in eqs. 6.119

and 6.120. Then, taking into account that its singularities arc located outside the area

path C surrounds, we can write:

oo 4

/ f(m)dm + ̂ 2 f(m)dm + ̂  j> (m)dm + / f{m)dm = 0 (6.153)
- o o J = 1 Ci CR

The first term of the sum is the original integral along the real axis of m. The second

is the sum of integrals along four branch cuts: C\, C^, C3, and C4. The third term
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Figure 6.5: (a) Integration along closed path in complex plane m (b) Formation of shear
conical wave (c) Destructive interference of longitudinal evanescent wave

is a sum of integrals around poles in the clockwise direction. Finally, the last term is the
integral along the semicircle of an infinitely large radius R. Applying Jordan's lemma
(Part II), it is easy to see that this integral can be neglected if R —> oc. The last equality
(eq. 6.153), allows us to replace integration along the real axis of m by integration
along the branch lines and near poles. In general, the advantages of this procedure for
numerical integration are not always obvious. However, as was already mentioned, this
deformation of the integration path permits us to obtain approximate formulas for the
far zone. Further, it is assumed that external force has only the vertical component. The
other case (Fx = 0) can be treated similarly. First, we derive asymptotic formulas for
displacement at points of the free boundary.
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Components of displacement (z — 0)

As follows from the definition:

s = grad ip + curl ip,

we have for horizontal and vertical components of displacement

~ dw dip , ~ dip dtp

ox dz dz dx

Substituting eqs. 6.120 into eqs. 6.154 and letting z = 0, we obtain

S = _ tfW m(2m a -* ; -2m,m.) t m x

2TT[I J D K '
— OO

oo

and S = - - ^ - / ^ V m ^dm
—oo

We first obtain the asymptotic formula for the tangential component of displacement

Ub associated with the branch points. As follows from eq. 6.153, this part of the

displacement can be written in the form

ub = -^{Ia + It) (6.156)
ZTT/i

Here Is and /; are integrals along corresponding branch lines.

Contribution of branch lines around point ks, , integral Is

Movement around branch point ks changes the sign of the radical ms, and

integration along branch cuts C\ and Ci is made in the opposite directions. Therefore

we have

ks-\-ioo

r2m» - *g - 2m, m. _ 2m> -- k] + 2m, m. j { m x

J [ D(mhm.,) D(mu-ms) \ l ;

ks

Note that the branch lines are parallel to the imaginary axis, Im m, - that is, the real

part of the wavenumber, m, remains constant along these lines. From eq. 6.121 we

have

I,= f m (2m2 - k2
s) \ i i 1 elmxdrn

J V ' [{2m2 - k2)2 - 4m2mims (2m2 - k2)2 + 4m2rrnms\
kB

(6.158)
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ks-\-ioo

- 2 / m m, m, -, h r, elmxdm
J ' ' [(2m2 - k2

a)
2 - 4rn2m, ms (2m2 - k2)2 + Am2mi ms\

or

I Sm'm, m. (2m2 k2) Am m, m. (2m2 - fc2) ^ m ^ ^

7 (2m2 - A;2)4 - 16m4 mf m2

ka

To evaluate this integral, we introduce a new variable, t:

m = ks + it (6.160)

Correspondingly, when integration is made along the branch lines, t varies as

0 < t < oo

It is clear that

dm = 'i dt, (6.161)

and in the vicinity of branch point ks, where t is small, we have

m ~ ks (6.162)

Also

ms = y/m2 - k2 = \J(ks + it)2 - k2 w \[ks\[2t emlA (6.163)

/ / / c 2V / 2

and m4 = Jm2 - kf « Jk2 - kf = ks 1 - - | if t - > 0

or

/ c 2 \ 1 / 2

mi = fcsa, a = 1 - -§ (6.164)

V c; /
The oscillating term of the integrand becomes

ei m x _ ei (ks + it)x _ eiksxe~xt (6.165)
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The presence of the multiplier exp(— xt) shows that after replacement of a variable, the

integrand in eq. 6.159 starts to decrease rapidly even at sufficiently small values of t, if

i > l . This means that under certain conditions, Is is mainly defined by the initial

part of an integration located near branch point ks, and this fact is used to derive the

asymptotic formulas. From eqs. 6.162-6.164, it follows that

2m2 - k\ K, k2, mmimsK khj2a\f2i e"1"/4, (6.166)

miml ms fa k?J2a\f2t e?7r/4, 16m4m2 m2
 R « 16k7

sa
22t i

Substitution of eqs. 6.161 and 6.166 into eq. 6.159 gives

I. = 4 a ̂ 'f' e**.* [tWe-^dt (6.167)
kT J

The last integral is tabular:

CO

JtV>e-*dt=^ (6.168)
b

Therefore

/ - 2aV^1 £ " / 4 eik'x (6 169)

and, making use of eq. 6.156, displacement component us. related to branch point ks

is

~ Fz [2 ( ^y/2 e ?(fc s .T + ^/4)
u> = — \ - \ l - u 2 ) —, ^ 7 ^ 6 ' 1 7 0

M V ir V k2j (ks xf'2

Contribution of branch lines around point fc;, integral /(

Since the radical mi has opposite signs at lines C3 and C4, Fig. 6.5a, we have

"r,n,n,m,(2rf-t;)c-">^m
J (2m2 - fc2)4 - 16m4 mf m2

Introducing a variable

m = k + it (6.171)
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we have near branch point ki

makh ms = (k? - k*)1/2 =-i (k?s - k?)1/2 and m, = kj/2V2t ein/4 (6.172)

Also

4m mi ms = 4 ^ Jfcf/2e*7r/4 (kf - k2)1'2 Vi (2m2 - k2
s) = kf U - ^ \

Then, substitution of eqs. 6.172 into /; yields

=
 2 z V ^ e kl*Ak'-k'> (6.173)

(2kj - k*)3 (klXf2

Therefore, displacement associated with branch point ki, is

~ F. [2k^k] (k*-kff2iei(k'x + «/4<)
ui = "\/ 5 57^ 1 (6.174)

MV7T (fc2-2jfc2)3 (fc,x)3/2

since

(A?-A?)1/2 = -i(Aj-fc?)1 /2

Next consider the vertical component of displacement, IUJ, which can be written as, eqs.

6.155,

S6 = - ^ ( L s + ij) (6.175)
Z7T/i

Contribution of branch lines around point k3, integral Ls

As follows from eqs. 6.155, we have

L.= [ m, \— , - — r] j m x dm

J [D(mhms) D(mu-ms)\

or

kB+[°° 8m2 m2 m , j m x

L. — I -. dm (6.176)
J (2m2 - k2

sf - 16m4 mf m?s
k.,

Introducing again the variable
m = ks + it,
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we obtain an approximate expression of Ls:

o • 7,2 (j.2 u2\ ft JTT/4: J.1/2 AksX °r

Ks J
0

or

k2
s L, = ^ -^- ^ (6.177)

(ksxf2

Correspondingly, vertical component ws associated with branch point ks is

^ = -2-ELJI v fe;y e , ( ^ + . / 4 ) (6178)
M V 7T (fesx)3/2

In the same manner, integral Li around branch point ki is

J lD{mhms) D(-mhnis)\

or

ki+ioo „ .

L _ [ 2mi (2m2 - kff el m xdm
l~ J (2m2 - A;?)4 - 4m4 mf m2

After a change of the variable, m = k[ + it, we obtain

; 2 _ 2fc? ^ 2 e i 7 r /4 z e ^ ' x ^ ̂  _ v ^ ^ , ? fc2 eC T /4 e ^ ' 1 ,„ , „ ,
/co -/v/ — ^ — 7. TTT; (6.179)

(2kf - klf 2x3/2 (2fc2 - fc2)2 (fc,x)3/2 l ^
Therefore

1 [2F,i kfkl e ^ ^ + V4)
u;; = -2v^ — ^ r w {kixr

 ( }

Displacement field related to branch points
By definition we have

Ub = us + ui and wt, = ws + W[,
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and in accordance with eqs. 6.170, 6.174, 6.178, and 6.180, complex amplitudes u/, and

w\, are

F FI / k2 \ 1/2 p* ( ^ x + ^Z4)

M V 7T (jfe? _ 2Jfe?)S ^ ^ ( f c ^ 2 + -

and

2F, /2" / fc,2\ e« (A.* + *74)
w& = V - M x ~ 12 — ; — ^ ~ 6 - 1 8 2

_i_F^ [2 kf k2
s el (kix + ^/ 4)

~2 7 V ^ (2*2 - A?)2 {klXf2 + •"

These formulas represent a sum of two terms, and each of them describes a sort of fringe of

the cylindrical elastic wave, propagating through a medium. The first one moves along

the free boundary with the velocity of the shear wave, but the other advances in the

same direction with the velocity of the longitudinal wave, Q. This fact may create the

impression that these terms characterize the shear and longitudinal waves, respectively.

However, as will be shown later, it turns out that each of them is a combination of both

types of waves. Because the tangential and normal components of displacement for each

wave, eqs. 6.181 and 6.182, have different amplitudes and phases, an orbit of the vector

s, (s = u i + w k ). is an ellipse, i.e., elliptical polarization takes place. The ratios of

vertical and horizontal diameters of the ellipse for waves moving with velocities cs and

Q are

In particular, if A = \i% these ratios are 1.33 and 0.35, respectively. We see that

in the case of the wave propagating with velocity cs along the boundary, the ellipse is

extended in the vertical direction. For the second wave, the major axis of the ellipse is

oriented along the x-axis.

Until now, we have discussed the contribution of integrals along branch lines. Next we

will evaluate integrals around poles. As was demonstrated in Part II, integration around
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a simple pole gives

//(m)dm = 2 7 r z ^ ^ 4 (6-184)

where

/H = ^ (6.185)
tp2 (m)

and mp is the pole of the integrand. The poles are roots of eq. 6.152

D = (2m2 - A;2)2 - Am2mi ms = 0 (6.186)

and, introducing function £)_,

£>_ = (2m2 - k2
s)

2 + Am1 mt ms, (6.187)

we obtain

DD_ = (2m2 - A:2)4 - 16m4m2m2 (6.188)

-«s['-f+("-» I ) f -0 - I ) f ] -
This is the cubic equation with respect to m2/k2. It was derived when we described

the Raylcigh wave (Chapter 5). For instance, since k2 > kf, there is a real root within

the interval

m2

This means that radicals m; and ms real and positive and, correspondingly, function

D_ ^ 0. In other words, m/A;5 is the root of eq. 6.186, (D = 0). Also it is not difficult

to prove that the remaining roots, if they are real, are located within the interval

m2 kf

If m/ks belong to this interval m; and ms are negative and imaginary and cannot be,

therefore, roots of eq. 6.186. For instance, assuming that A = /i. eq. 6.188 gives three
m2

real roots -^-:
k'2
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It is clear that in such a case, there is only one root of eq. 6.186,

kR= 1 ̂ 3 + V3ks ~ 1.088 ks (6.189)

and it is the wavennmber of the Raylcigh wave.

Now we are ready to find expressions for components of displacement associated with

the Rayleigh wave. Taking into account eqs. 6.155 and 6.184, we have

uR = -^Helk^x and wR = - ^ K elk*x (6.190)

Here

HMa?'-*-*f^f^ and K = !ij^EK (,191)
-D'(kR,kbks) D'(kR,kbks)

 V '

As follows from eqs. 6.190, the Rayleigh wave, unlike the two others, does not decrease

with distance. Correspondingly, this surface wave plays the dominant role in the far zone.

In accordance with eqs. 6.191,

# = 0.125, ^ = 0.183 if A = M (6.192)

Asymptotic behavior of waves beneath the free surface

By analogy with case z — 0, wTe represent complex amplitudes of potentials in the

form

V=-^-I=-^-(Is + Ii+Ip) (6-193)

and V; = ̂ M = ̂ - (Ms + M, + Mp),
2TT/I 2-Kfi

where

oo oo

m K°e-
m< zel m xdm and M= ^ p e " m * zel m xdm

— oo —oo

(6.194)

Is, Ms, If, Mi, and Ip, Mp arc integrals along the branch lines and poles, respectively.

To begin with, we will derive asymptotic formulas for scalar potential <p associated with

branch points.
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Contribution of branch cuts around point ks, integral Is

From eqs. 6.194 we have

ks+ioo

I,= [ (2m2 - k2) [—^ - — ^ -1 e"m< V m x dm
J K s'[D(mhms) D(mi,-ms)\

ka

or, taking into account eq. 6.121.

ks-\-ioo

f 8 (2m2 - k2) m2nk ms e " m ' zel m x , ,
/ , = / —: j - 1 — dm (6.195)

J (2m2 - fc2)4 - 16m4 m'f m 2

ks

Here integration is done along branch cuts C\ and C2, as is shown in Fig. 6.5a. To

simplify the evaluation of Is, we introduce, as before, the variable

m — kg + it

In the vicinity of branch point ks,

mi = (k2
s - fc2)V2, m, = V2el7T/4 k]'2 t1'2, (2m2 - k2) = k2

and dm = idt, 8m2m, m, = 8 k2
s (k] - k2)1'2 ^2 emIA k]'2 t''2

Thus, integral Is becomes

8t V2 e^/4 ( l - § ) 1/2 e^^ e" V ̂  " fc'2

/ . = ^ '-J-jji U (6.196)

where

0

Therefore

4 * V^ e™/4 (l - j[) V2 elk-x e~Vk2s ~ k'Z

Is = '^—TTo (6-197)
ks(ksxf2
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Thus, the complex amplitude of scalar potential associated with point ks is equal to

It is clear that eq. 6.198 describes the wave propagating along the free boundary with

the velocity of shear waves, cs. This wave exponentially decays with depth z, since

^k*-tf = kaa>l, a=\l--±)

Oscillations with higher frequencies decrease more rapidly. Taking into account that

displacement s is related to the scalar potential as

ET = grad (p,

we conclude that

curl s = 0

This means that propagation of this wave does not cause rotation of elementary volumes

of a medium, also they can experience deformation and translation. Thus, function </?s

characterizes the evanescent longitudinal wave, moving with the shear-wave velocity, c,s.

This wave has another important feature - namely, and unlike the Rayleigh wave, it

cannot exist alone. To demonstrate such dependence on other waves, it, is sufficient to

show that stresses of the wave, ips, do not vanish at the free surface. As an example,

consider the normal stress, TZZ:

rzz = -A k?vs + 2/i - ^ if 2 = 0 (6.199)

Substitution of eq. 6.198 gives

(-A k] + 2/i k2
sa

2) ^ps = (-A k] + 2/i k] - 2fi k'2) ^ps

= - [- (A + 2M) k2 + 2/i k2] vs = (-P u2 + 2p co2) vs # 0,

2since A + 2/i = p cf, ji = p cs
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It turns out that this wave, <ps, accompanies the shear wave.

Contribution of branch lines around branch point ki, integral /;

Since radical m* has different signs at lines C3 and C4, Fig 6.5a, the integral along

them can be written as

k/-\-ioo i-

r , e-mi z
Ii= / (2m2 -k2) —9 (6.200)

J V J {2m2 - k2)2 - 4m2m, m,
h

pTdl Z ' .

—2 e%mxdm
(2m2 — kf) + 4m2m; ms

or

' f°c(2m2 — k2) \4m2mi m, coshmiz — (2m2 — k2) sinhniizl
It = 2 -± , i-eimxdm

J (2m2 - k2)4 - Wm4mf m2

h
(6.201)

Introducing again variable m — ki + i t, we have dm — i d t, and in the vicinity of

branch point ki

m = k,, m2 = kf, ms = (k2 - k2)1/2 = -i (k2 - k2)1/2,

m, = V2 e™lA k\12 t1'2, 2m2 -k\ = 2k] - k2,

4m2m, m, = -U V2 el7r/4 kf k\'2 (k2 - kff'2 t1'2, el mx = el k'x e~xt

Therefore

(k2 \ 1 / 2 • i A

/, = f^~(, e'; toLl - 2; ê  *« x U (6.202)

Here

CO

Lx = f t1/2 cosh (aiVt) e~xtdt (6.203)

o
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and
oo

L2 = / sinh (aiVt) e~x fdt, (6.204)

b

at = y/2k,, z el ^ (6.205)

Both integrals are expressed in terms of elementary functions. For instance, introducing

variable v = \fi, we have

dt
dv = —

2v

and
oo

/

2
wsinh (atv) e~x v dv

o
or

oo

L2 = 2— /cosh (aiv) e~x ^dv
dai J

o

The last integral is tabular:
oo

y cosh (alV) e~x v\lv = ̂ e x p g ) (6.206)
o

and

U = / i- e^lAx (6.207)
V x don

As follows from eqs. 6.203 and 6.204,

Li = ^ or Li = J«*eoZ/4* (6.208)
dai V x' oaf

Now, taking into account eqs. 6.193 and 6.203, we obtain for scalar potential (pt asso-

ciated with branch point k]

s - _ _ ^ A H g ' 1 ) e"r/4 A f«?/4x _ VSi ̂ / t e
 f.M (6 209)

^"a t"[ ( 2 - f )V a°' (2-|)^J
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Each term in brackets contains the exponent, exp (affix). Correspondingly, at the

right side of eq. 6.209, we have the common multiplier

cxpfix + ^ M , (6.210)
V 4xJ

or, using eq. 6.205,

expiki(x + ~j (6.211)

If an observation point is located relatively close to the free surface (z < i ) , then

distance r from the source can be presented as

/ 72 \ 1 / 2 1 72

r=fx
2

 + z
2f2

 = x (l + i . ) ^x + =-- if K < x (6.212)v ' \ x2 J 2 x

Thus, in place of eq. 6.211 we have

ewikl(x+Y^)-elkir (6-213)

This means that we are dealing with a longitudinal wave, ipi, that propagates through

a medium with velocity q. At the boundary z — 0, the wave's fringe is described by

eq. 6.209. Now we make use of the vector potential, which has the y-component only.

Contribution of branch lines around branch point ks, integral Ms

As follows from eq. 6.193, the integral along C\ and C^ is

fcs+ioo r ~\

r P—msz Pmsz
Ms= / 2mm,, -^ - — , eimxdm

or

M = f 16m3 mf ms coshm, z - Am, m4 (2m2 - k2
s) sinhros z j m x ^

J (2m2 - kff - 16m4 m2 m2

Applying the known replacement of the variable

m = ks + it,
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we obtain an approximate expression of Ms

M. = ^ 7 ^ el k°x A'h V s) el k'x M2, (6.215)
k°s' ks

where Mi and M2 are given by eqs. 6.203 and 6.204 and

M! = / £ e°5/4* M2 = / A <&/**
V a; aa j V x Oas

(6.216)

and
a s = A / 2 ^ ^ eJ ̂  (6.217)

From eqs. 6.194 and 6.214-6.216, we have for potential tps :

^ = V ^t-2 (6-218)

, , 2\ 1/2

4 i y 2 [ l _ ^ _ ) e« TT/4

9as ^/¥s das \ J

By analogy with eq. 6.209, we can say that function ips describes the rotational (shear)

wave propagating through a medium with velocity cs, and eq. 6.218 characterizes its

behavior near the free surface (z -C r).

Contribution of branch lines around branch point kh integral M;

Finally, accomplishing integration along the closed path C, we have for the integral

along branch cuts C3 and C4

k[-\-ioc

/

r 1 1 1
2m m ; H e~ms zel m xdm (6.219)

\_D (mi,ms) D (—mi,ms)\
k,

or

"f.,,ll2»,--t;fr"-y»jji
j (2m2 - kj) — 16 m 4m,,mj
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Introducing again the variable m = ki + it and taking into account that

, IU2 L2 _ ,• 11.2 1.2

Y Ki — Ks — ~l y Ks — Ki i

we obtain

. • M M ki'x + \A? - k?z) oo
, r 4 i^2^ el7T/4 e \ V / f 1/2 _ w ,
M; = — 3 / t1/2e xtdt

or

. ,. i f hx + Jk* - kfz)
M, = V , (6.221)

,5 /2 / „ _ « ^ \ 3 / 2

fc; M k2

Therefore,

* ( M' + \/fcs
2 " k?z + ^/4 )

- R / 2 1 1 e V v /

*' = -7V;s7^|y M^ ^222)

It is obvious that the argument of •ip[ remains constant at points of the line

k x + sjk2 -kf z = r (kt sin 0 + ^Jk2 - kf cos 0 J = const, (6.223)

which lies in plane XOZ, Fig 6.5b. Therefore, the phase surface of the wave, eq. 6.222,

is formed by two planes located symmetrically with respect to coordinate plane x = 0.

The two planes represent the lateral surface of the two-dimensional cone, and this is why

this wave is called the conical wave. At points of the line, eq. 6.223, both cylindrical

coordinates r and 6 vary, but the argument (phase) remains the same. Let us choose

angle 9 so that

k = ks sin6> and ^k2 - kf = ks cos 9 (6.224)

Substitution of the latter into eq. 6.223 yields

ki x + \/k2 — kf z = ks r = const (6.225)
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This shows that eq. 6.222 describes a conical shear wave propagating through a medium
with velocity cs, and its direction is defined by the ratio

sin<9= — (6.226)
Q

It is essential that its apparent velocity along the boundary (z = 0) is equal to the veloc-
ity of the longitudinal wave, q, and this coincidence is not occasional. The appearance
of this conical wave can be explained in the following way. When the longitudinal wave,
tfii, moves through a medium, each point of the wavefront can be treated as the source
of an elementary cylindrical wave of the same type (Huygen's principle). Superposition
of these waves produces the resultant P wave, moving away from the origin, where the
external force, Fz, is applied. In addition, as soon as the longitudinal (P) wave reaches
some point of the free surface, it also becomes a source of an elementary shear wave ad-
vancing with velocity cs (Huygen's principle). Certainly, at any instant t the radius
of the elementary shear wave that arises at the coordinate origin is r = cst. However,
with an increase of distance x, this radius becomes smaller and is defined as

r(x) = „(«-£)

We may say that the longitudinal wave plays the role of a moving source of this shear

wave. In particular, the radius of the wavefront of the elementary wave with origin x =

C]t is equal to zero, since the P wave has just arrived at this point. Now again applying

Huygen's principle, we see that the envelope of elementary waves is the plane that forms

angle 9 with the free boundary, eq. 6.226. This approach also shows that the wavefront

of the conical wave, ipt, must be tangential to that of the shear wave, Fig. 6.5b. In

fact, at the initial moment t = 0, both P and S waves arise at origin x = 0, and

the former causes the elementary shear wave. Therefore, shear and conical waves arrive

simultaneously at point P, Fig. 6.5b, where their wavefronts are tangential to each

other. There is some evident similarity between conical and head waves.

In the same manner it is possible to explain the appearance of the evanescent longitu-

dinal wave <ps that moves along the free surface with velocity cs. When the shear wave

propagates, each point of the boundary (z = 0) becomes the source of a longitudinal

elementary wave. The superposition of these elementary waves gives rise to the resultant

P wave, which advances along the free surface with velocity cs. In other words, the

shear wave is the moving source of this P wave. However, unlike in the previous case,

^i, the interference of elementary waves has a destructive character and causes exponen-

tial decay of the wave with depth z. Such behavior also follows from Huygen's principle,
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since an envelope of elementary waves is absent, Fig. 6.5c. This happens because their

velocity, Q, exceeds the velocity of their source moving along the free surface.

Wavefields in the far zone
In evaluating integrals in eqs. 6.193 along branch lines, we were able to distinguish

four waves, namely

1. The longitudinal wave P.

2. The shear wave S.

3. The conical shear wave that accompanies the P wave at the free boundary.

4. The evanescent longitudinal wave that accompanies the S wave at surface 2 = 0.

Integration around the pole, mp = kn allows us to obtain an expression for the

Rayleigh wave in a homogeneous half-space. Unlike points of the free surface, the inte-

grands in eqs. 6.194 contain terms e~mi z and e~rris z. Correspondingly, the complex

amplitudes of scalar and vector potentials of this wave exponentially decay with depth,

— \k2 — k2 z —\k2 — k2 z

and their decrease is proportional to e V R l and e V R s , respectively.

The Rayleigh wave has already been described in detail, so let us focus on the first four

waves, which form two groups.

1. Longitudinal and conical waves Both of these waves, iplr and ipt, move

with the same velocity q along the free surface. Correspondingly, they cannot be

distinguished at these points (z = 0) if time of arrival is measured. However, if we

observe quantities characterizing dilatation

du dw
dx dz

and rotation

du dw
dz dx'

these waves can be separated from each other. As is seen from Fig. 6.5b, the conical

wave arrives after the longitudinal wave at points beneath the free surface. This means

that by measuring the arrival time at these points, each wave can be observed.

Now let us evaluate displacement caused by these waves at the boundary. Performing

differentiations in eq. 6.209, we obtain :
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Here

( J.2 \ V2

-= 7^7^ and B= ^ , a, = V2 * | ' V * / 4 *

Because displacement is studied at the boundary [z — 0), the term in eq. 6.227 pro-

portional to 22 is discarded, and therefore

d ifi Fz i k[ A

dx 4 [i y/ir x'6l2

or

*_£=_2^ ri *m^tr { i ^ l l (6.228)
dx ii V IT (2fcf-fc2)3 (A; ; .T) 'V 2 V '

Also

9 ^ _ Fz k]/2 V2 e* */* c

dz Aii ^/TT .T;3/2

or

dz 2//V7T (2A?-*f) {klXf? (b^>

From eq. 6.222 we have

dih Fz [2. kf eUhx + n/i)

l f e = " 7 V ^ ( ^ F ¥ (WV2 ( }

and

dz~ M V - (2A?-A?)2 (klXf> ( }

Correspondingly, displacement components advancing along the boundary with velocity

c; are

S| = ^ - ^ and ^ = f ^ (6.232)
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Their summation gives the expressions derived earlier. As follows from eqs. 6.228-6.231,

the ratio of displacements caused by longitudinal and conical waves is independent of

distance x and frequency to:

~ (2-
kl)

d^i = chPi 2 8^ d^ \ kj]_
dx dz ( e \ dz dx 2

2. Shear and inhomogeneous longitudinal waves These two waves move
along the free boundary with the same velocity cs. As in the first case, they cannot be

separated from each other if we observe time of arrival of the wave combination. However,

measuring dilatation as well as rotation, it is possible to distinguish them. By analogy

with the first group, it is interesting to evaluate displacement at the boundary caused by

each wave. As follows from eq. 6.198

f^/I^-g)1^'"^4', (,233,
8X fi V 7T V H) (jfc, xf12

d^_2iF1 f2_f _q_\ el jksX + n/4)
^z~-~Vn{ ~¥J {ks ̂  '

and they characterize displacement due to the inhomogeneous longitudinal wave. Per-

forming a differentiation of eq. 6.218 and discarding the term proportional to a2
s. we

obtain

whence

^ FAi p ( kf\ e* (ksX + n/4)

fok_F1 [l 1 / _ Af\1/2 el %X + -K/A)
dz ~ // VTT (jfcgX)3/2 V Vs) (k.xf2
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6.5 Buried linear source

In the previous section we described behavior of waves in the far zone caused by the

linear source located at the boundary. This explains why the direct and secondary

waves were inseparable and only the resultant wave was studied. Next assume that the

source of either the P or the SV wave is placed inside the half-space at depth H

from the boundary, Fig. 6.6a. Our goal is to derive asymptotic formulas that describe

waves in the far zone. Because the linear source is situated beneath the boundary, it

is natural to expect the appearance of different waves - first of all, reflected waves. In

studying acoustic waves (Part II), we demonstrated that the stationary-phase method is

often useful in deriving formulas that characterize reflected waves. At the same time, the

contour deformation allows us to obtain expressions for the other waves. Correspondingly,

we will investigate the asymptotic behavior of these two groups of waves separately,

starting with the reflected waves, which obey Snell's law.

The stationary-phase method

First, let us recall the main features of this method (Part II) and consider the integral

oo

I=j f(m) el a M™) dm (6.235)

—oo

Its integrand is the product of two terms: f(m) and exp [i a h(m)]. The first

term usually changes relatively slowly with m, whereas the exponential term varies

rapidly when parameter a is large. Therefore, in this case the oscillating nature of

the integrand is due to the second term. It may be instructive to treat the integrand

as a sinusoidal wave with wavenumber m. Its amplitude and initial phase, i.e., the

magnitude and argument of f(m), are, in general, functions of rn. From this point

of view, integral / (a) describes the superposition of these waves. As is well known

(Part I), constructive interference takes place within the range of wavenumbers where

the phase (phase function)

a h{m) (6.236)

varies only slightly. Respectively, the sum of these sinusoids may become rather large.

In contrast, outside this range the phase a h(m) can change very quickly, and for this

reason sinusoids cancel each other out (destructive interference). As a result, the sum of

such sinusoids is relatively small. Correspondingly, integral / (a) is mainly defined by
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Figure 6.6: (a) Linear source beneath free surface (b) Reflection of P wave at the
surface (c) S reflected wave (d) P and 5 reflected waves

the first range. Of course, it is impossible to draw the exact boundary between these two
intervals, since in reality there is always a transition range.

This analysis clearly shows that our purpose is to determine the position of the first
range and then evaluate the integral over this interval m. In essence, the stationary-
phase method consists of these two steps. It is natural to characterize the position of the
first interval with the help of point mo, at which the phase change is small. Its location
can be determined from the equation

^ M = o (6.237)
dm

Point mo, satisfying eq. 6.237, is called the stationary point, and it corresponds to
either a maximum or minimum of function h(m). Certainly, the difference

a [h(m) - h(m0)]



334 CHAPTER 6. WAVES IN A LAYERED MEDIUM ...

in the vicinity of TTIQ strongly depends on the value of parameter a. If it is relatively

small, then even sufficiently large deviations from stationary point TOO may cause a weak

change of phase. On the contrary, when parameter a is rather large, an insignificant

difference, Am, may produce a great change of phase. In other words, in this case the

width of the interval at which the phase is almost constant becomes small, and outside

of this interval the phase varies very rapidly.

These two important features of phase function a h(m) allow us to greatly simplify

the integral in eq. 6.235. First, function /(TO) is replaced by its value at the stationary

point,

/(TO) = /(TOO), (6.238)

since its change within the narrow interval is usually rather small. Because the change in

h(m) is also small, we can expand this function in Taylor's series and restrict ourselves

to the first three terms,

h(m) = h(m0) + ti(mo)(m - m0) + ™ (TO - m0)
2 + , (6.239)

because Am —> 0. Taking into account that h'(mQ) = 0, we have

h(m) = h(mo) + ^ ° ) ( m - m0)2, (6.240)

i.e., the phase behaves like a parabolic function inside the interval. Substitution of eqs.

6.238 and 6.240 into eq. 6.235 yields

CC

I = f(mo) el a h (m°) f exp i a ^ A p l (TO _ mQf] dm (6.241)
— oo

Of course, this replacement is based on the assumption that integral I (a) is practically

defined by the interval of integration around stationary point mo- Now let us introduce

a new variable,

2 a | h"(mo)\ .2
v2 = ^ 11 ( m _ mQy

Hence

/ a I h"(mo)\ la\ h"(mo)\v — W — - (TO - m0) and dv — W — - dm,
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that is,

I 2
y a\ h"(mo)\

Therefore, in place of eq. 6.241 we obtain

/ (a) = ̂ r,ela
un( 7 / (m0) / e± l v*dv (6.242)

y/a\ h"(mo)\ J
— oc

The appearance of different signs in the exponent is related to the fact that

h"{mo) = \h"{mo)\ if h"(m0) > 0

and

h"{m0) = - | h"{mo)\ if ti\m0) < 0

Because

oo

— oo

we have
/(0, = / ( m o) ( 1 ±f l^-T i i_5 i , ' « » N

or

/ ( °»^<" '»V^b e ! [ a M "" ) ± i / 4 1 - <6-243»
and the sign in front of TT/4 corresponds to that of the second derivative h"(m0). Thus,
in place of the exact expression, eq. 6.235, we have arrived at the approximate one, and
its accuracy increases with an increase of parameter a. Note again that in deriving eq.
6.243, it is assumed that only the interval around stationary point nio makes the main
contribution. Also, we suppose that the change of magnitude and argument of function
/ (m) is very small inside this interval.
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1. Direct wave P We are now prepared to use this method to derive asymptotic

formulas for reflected waves when the primary source generates a longitudinal wave. In

accordance with formulas obtained in section 6.3, the complex amplitudes of scalar and

vector potentials are

(p — (p0 + ifl an d ib — tpl (6.244)

where

^0 = Co H{
0
1] (kt r) (6.245)

is the scalar potential of the longitudinal direct wave and

Co = ^ rf> (6.246)

Here TTr is the amplitude of normal stress on the surface of a cylindrical source with a

very small radius, r0. As is well known, Hankel's function HQ (kir) can be represented

as the asymptotic series

<'<^ = & t ( A : ' r - l / 4 ) x : < ^ r <6-2«»
provided that kir 3> 1 and that an represents given numbers. In essence, eq. 6.247 is

an example of Debye's series, which characterizes high-frequency wavefields (Part II). In

this case these wavefields result from interference of waves caused by all elements of an

infinitely long source. From eqs. 6.39, 6.40, and 6.44, we have for potentials of secondary

fields that arise due to the presence of the free boundary

oo oo

& = C70 I Bm e"m< z el m xdm and ^ = ^ = Co f Cme~m°z'eimi:dm,
—oo —oo

(6.248)

where

Bm = - J- (^-k^ + ^mimSe_mi H

m, (2m2 - k2
sf - Am2mi m,

and

_4tm (2rrf-kl)e-miHe-m°H

(2m2 — k%) — Am2mi ms
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Before we apply the stationary-phase method it may be useful to note the following.

When an direct wave reaches the interface, at each point P and S elementary reflected

waves arise, and at any point of a medium we observe the result of interference of ele-

mentary waves of the same type. In other words, every point of the free surface is the

source of secondary waves. At the same time, in the far zone superposition of these waves

- except for elementary waves that arise in the vicinity of point xr, Fig. 6.6b - has the

destructive character. Correspondingly, at an observation point, these waves experience

constructive interference. This means that a reflected wave of any type is mainly caused

by secondary sources around point xr, which is different for P and S waves. It is

essential that the angles of incidence and reflection at this point (xr, —H) obey Snell's

law. In general, with a change of the observation point, coordinate xr also varies.

In this light we can say that the stationary-phase method allows us to evaluate both

the dominant spatial frequency of elementary waves and the result of their constructive

interference.

Reflected longitudinal wave From eqs. 6.248 and 6.249 we have

& = -Co 1 - 1 (^ ~ ̂ f + ^ m i ms e_mi i m
J mi (2m2 - k'if - 4m2m, ms

— oo

Here

Z\ = z + 2H

First, we find the position of stationary points located somewhere inside the interval of

integration. To start with, consider the case when m > 0. It is natural to distinguish

two intervals:

m > ki and m < ki

If m > ki the phase, eq. 6.236, is

a h(m) = xm,

where

a = x and h{m) = m

Correspondingly,

dm
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That is, within the interval of integration

ki < m < oo,

stationary points are absent. In the second interval, the radical m,i can be represented
as

nil = —i ykf — m 2 ,

and therefore the phase is

mx + ̂ Jkf - m2 zl (6.252)

This means that

h{m) = TO + ^Jk'j - m? —, (6.253)

and its differentiation gives

^ M = x _ ^ ^ £i (6.254)
9m ^/fcf - TO2 x

The stationary point moi is defined from the equality

or

(a;2 + z[) ' i

Here

n = [x2 + (z + 2F) 2 ] V 2 (6.256)

is the distance between the observation point and point O\, which is a mirror reflection
of the origin O with respect to the boundary. Thus, the stationary point is located
inside the interval

0 < m < kh

and with an increase of x it approaches fe;. In particular, if Z\Jx ^C 1, we have
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As follows from eq. 6.254, if m < 0, the first derivative, h'(rn), differs from zero, and

therefore only one stationary point is given by eq. 6.254. In accordance with eq. 6.253,

ki
him) = ki sin 9t + kt cos 9{ cot 8t = ——, (6.257)

sin 0i

while the phase function is

x h (mot) = - ^ p = k'i r i (6-258)
sm Oi

We see that a geometric approach allows us to determine the point of the free surface xr

that gives rise to the reflected longitudinal wave observed at point (x, z). Next we find

functions h" (mo;) and /(mo;), eq. 6.243. It is clear that

mi — ykf sin2 9% - kf — —i kt cos 9t,

ms = ykf sin2 8{ — A;2 = —i ki I -A — sin2 9i )

From eq. 6.251 we have,

/ , . 2 \ 2 / 2 \ l / 2
.„ 2sin2^-^ -4sin20 icos0 i(^-sin2^]

1 {mol) fc^o^T ^ v 7J v ^ ( }

2 sin2 ( 9 , - 4 + 4 sin2 9t cos 0, 4 - sin2 0t

V c2y \ci 7
Differentiation of eq. 6.254 yields

h" (m) = - ^ ^ — ^ (6.260)
x {kf - m2f2

Respectively

h"(moi) = r^j-
x ki cos-:1 ffi

or

h" (m0l) = - . I —- (6.261)
ki sm 0i cosJ 9i

Since h" (m0;) < 0, the sign in front of TT/4, eq. 6.242, is negative. Substitution of

eqs. 6.258, 6.259, and 6.261 into eq. 6.243 gives

- i C0\/2TT

(A;, r i ) 7
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/ 2 \ 2 / 2 \ 1/2

(2 sin2 Oi-%) 4 sin2 6,t cos 6% ( | - sin2 0<) _
x-i î  ^ '- e ^ ' : ' ' since 7*1 =

(2sin2fl i- J ) 2 + 4 s i n 2 ^ c o s ^ ( | - s i n 2 ^ ) 1 / 2 ' S i n ^

Thus, we have found an expression for the complex amplitude of scalar
potential of the reflected longitudinal wave, and its amplitude is inversely proportional
to the product (ki r\) . This is the cylindrical wave, propagating with velocity Q,
and its fictitious source is located at he point O\, Fig. 6.6b. Speaking strictly, at each
point of the wavefront normal and tangential components of displacement, sT1 and sg,
are shifted in phase with respect to each other. As we know, this indicates that the
vector of displacement has an elliptical orbit. However, with an increase of distance r\_
from Oi, the normal component sri becomes dominant, and we observe nearly linear
polarization. Comparison with eq. 6.241 shows that the stationary-phase method allows
us to obtain the leading term of Debye's series, which is zero approximation. In this case
elastic energy moves along the elementary ray tube and, correspondingly, the flux of the
Poynting vector through tube's lateral surface is absent. This allows us to derive the
same expression for the field differently. For instance, we can calculate the amplitude of
the direct wave at point xr, where the angles of incidence and reflection arc equal to
each other (Snell's law):

Oi = Oi (6.263)

Then, multiplying this amplitude by the reflection coefficient of the P plane wave and
taking into account a change of the cross-sections of the tube at points ( xr, — H) and
( x. z), we again find the amplitude of the reflected wave at the observation point.

Reflected shear waves As follows from eqs. 6.248 and 6.250,

r A i m (2m2 - k2) e~mi H
e~

ms z2 .
4> = Co / ( 4 1 <? m Xdm (6.264)

./ (2m2 - kff - 4m2mj m, l '
— OO

Here

z2 = z + H (6.265)

As before, it is clear that the stationary point is absent, if rn > ks. In fact, in this case

h(m) — m and h'(m) ^ 0
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Next suppose that stationary point mOs is situated within the interval

ki < mo,, < ks

Then the phase function is equal to

m x + \/k2 — m2 Z2 and h(m) = m + \Jk2 — m2 —

Taking the first derivative, we obtain

h'{rn) = 1 —, (6.266)

Vks-mL x

and the condition

k
h' (mOs) = 0 gives mos = s =

As may be seen from Fig. 6.6c,

— = tan #o,
x

where #o is the angle between the a;-axis and radius r-2-

r2 = ^x2 + {z + Hf = ^x2 + z\ (6.267)

Respectively, we have

mOs = kscos 90 (6.268)

Because the minimal value of the stationary point is ki, angle OQ varies within the range

0 < 0O < cos"1 — (6.269)

For the phase we have

a h (rrios) = x ks cos #o + ks z^ sin 9Q

or

a h (mOs) = ksr2 (6.270)
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As follows from eq. 6.266,

ill/ \ Z 2 ft ,s

h (m) = ^
X (jfc2 - m 2 ) 3 / 2

and

/^"(mOs) = - - * = - l (6.271)
2; /cs sin 6Q ks cos t/0

For function /(mos) we have

^ •/-< a ^o 2 a ^ - \/k% cos2 0o-k?H
4-« C o cos 6»o 2 cos 2 6 » o - l ) e V

/ ( ™ o ) = — F —^y (6.272)

ks (2cos26»0-l)
2 + 2 icos^0sm26io (cos2 6>0 - % |

Therefore

- 4 , ^ C o c o s M 2 c o s 2 0 o - l ) e~\/%<x»2h-*?H ei(k.r2 - TT/4)
tf.. = r " 1/2-. (6-273)

(fcsr2)1/2 (2 cos2 (90 - I ) 2 + 2 «cos 6»0 sin 2(9O I cos2 6»0 - ^f
[ \ ci)

The presence of the factor exp ( - -y/fc2 cos2 80 — k2 H) and exp (iksr2) may suggest

that function •01 describes a shear wave that propagates through a medium with velocity

cs and is confined to the portion of the medium described by cq. 6.269. This wave has

two more features, namely, it exponentially decays with an increase of distance between

the real source and the boundary, and it behaves as if its fictitious source were located

at point (0, —H). The appearance of this wave can be imagined in the following way.

When elementary longitudinal and inhomogeneous waves of the primary source reach the

vicinity of point (0, —H), they give rise to homogeneous plane waves of the 5 type.

Their constructive interference produces the shear wave tpis. With an increase of H,

the amplitude of this wave rapidly becomes smaller.

Next we will demonstrate the presence of the second stationary point inside the

interval

0 < m < kt

and study the wave related to this point. If m < ki, the phase function is

a h(m) = m x + ms z2 + mi H (6.274)
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This means that

h(m) = m+ sjtf-rn1— + ̂ k2 - m2 — (6.275)

Its differentiation gives

g ^ ) = 1 ^ _ ^ _ m H
dm ^/k2 - m? x ^/kf - m2 x

The stationary point m§s is then defined from the equality

mOs mOs

x = —, zo H ff (6.277)

Vk
s -

 mL Vkt ~ mos
In order to solve this equation, mos, we apply the geometric approach. As is seen from

Fig. 6.6c,

x = H tan 6i + z2 tan 0s (6.278)

Here 6S is the reflected angle of the shear wave. Comparison of eqs. 6.277 and 6.278

gives

— = tan 9S and — — tan 9j (6.279)
FT7) 9^ rp) ?^ ^ '

Vks - m0s Vkl ~ m0s

From these equations we arrive at Snell's law for plane waves. In fact,

rnOs = ks sin 9S or mOs = kt sin 0,, (6.280)

and therefore
s m ^ = s i n ^ g

Q c,
As a result, the phase function is

xh (mOs) = (mOsxr + ̂ Jkf - mgs Hj (6.282)

+ [mOs (x - xr) + mOs z2] — kiRi + ksR2,

where xT, R\, and R2 are indicated in Fig. 6.6c. Differentiation of eq. 6.276 gives

h»(rn) - -"-1 ti tL h
x (k2 - m2f2 x (k

2 - m2f2
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i.e.,

x h"(mOs) = - Z\ - H (6.283)
ks cos3 9S k[ cos3 0,

or

x h"(mOs) = - \ - R\ (6.284)
kscosz 9S ki cos2 0t

For function / (mOs) we have

4« Cosin0s (2sin2(9 s-l)
/ («o) = —r ^ "--1 —-m (6.285)

ks (2 sin2 6»s - I )2 + 4 i sin2 9S cos (9S (sin2 0s-^j

Therefore

4 i Cov7^sin 9S (2 sin2 6»s - l) /

V- - T ? i A ^ ^ T (6-286)
(2sin26. - I ) 2 + 4isin29Scos 0S ( s i n 2 9 s - % \

jikiRi + ksR2 - TT/4)
y

It is obvious that the vector potential ip describes a cylindrical shear wave propagating

along the radius vector R2 with velocity c,,.

Thus, applying the stationary-phase method we have distinguished two reflected

waves - namely, longitudinal and shear waves - that obey Snell's law of reflection. Of

course, they arise at different points of the free surface, but they arrive at the same

observation point, Fig. 6.6d. Earlier we found out that when the source is located at

the free boundary, various inhomogencous waves, including the Raylcigh wave, appear.

However, this method does not permit us to describe them, and for this reason we will

apply the second approach.

Contour-integration method

As before, we use the path along branch cuts and around poles, Fig. 6.5a, and start

from the scalar potential. In accordance with eq. 6.248, we have

£ = -Co (/, + /, + Ip), (6.287)
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where Ia, It and Ip are integrals around branch cuts and poles, respectively.

Integral /., Integration along path C\ and C2, Fig. 6.5a, gives

** j ' ° ° e -m,* l + 17TIX T ( 2 m 2 _ fc2)2 + 4 m 2 m j ^^ ( 2 m 2 _ fc2)2 _ 4 m 2 m j ^ 1
Js = / 7) 7j dm

J mi (2m2 - £;2)2 - 4m2m( m., (2m2 - fc2)2 + 4m2m, m,s

(6.288)

since the radical mA. has opposite signs on lines C\ and Ci- Thus,

f m2m (2m2 - k2) e~m' zie
tmx

/ s = 16 / s [
 4

 J dm (6.289)
i (2m2 - k2f - 16m4 m2 m2 l '

Replacement of the variable of integration

m = ks + it

gives near branch point ks

m = ks, (2m2 - fcs
2)2 = fc*, m, = sjk2 - A;2, and ms = \/2 e w / 4 klj2 il>2

Because dm = i dt, we obtain an approximate expression of Is :

r 16^2 i eml^e~ V ̂  ~ k* Zl
 ik x 7 1/2 _ ^

7S = —^ ^ elk*x I t1/2e xtdt

kT J
0

Since
oo

ftl/2 e~Xtdt=Vl_
J 2a;3 /2 '
o

we have

/ . = ^ i e ~ k
k \ T l Z l e%{ksx+V4) (6-29o)

and

_ . L.2 _ 1.2

^ = - C o 8 ^ " ^ V
 3/2 ê  ( f e^ + V 4 ) (6.291)

(fcs x) '
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This function represents an inhomogeneous longitudinal wave that propagates along the

boundary with the velocity of the shear wave, cs, and that exponentially decreases with

parameter Z\. We considered this wave in the previous section, where we showed that

its appearance results from the destructive interference of elementary longitudinal waves

that arise at the free surface due to the shear wave. In other words, the shear wave plays

the role of the moving source of this evanescent wave, (ps.

Integral // Integration along paths C3 and C\ can be written as

kl+r i [(2m2 - kff + 16m4m2 m2l cosh m, zj m x

It = 2 / — ± j =! dm (6.292)
J mi (2m2 - k2)4 - 16m4rrvfm2,
k,

ki+ioo
_ 1 6 f m'2ms (2m2 - k2

s) sinhm; zx j m x ^

J (2m2 - fc2)4 - 16m4m2 m2

h

because m; has different signs on C3 and C4. After change of variable

m = ki + it,

we obtain a sum of three integrals,

h = hi + hi + hi, (6.293)

where

_ t V 2 e - " / 4 e - ^ lhx Jcosh(aiyrt)
11 ~ ^1/2 J fl/2

' 0

64 1^2 e^/4 f 1 - § ) °°
I2l = ^ p^- el k< x / t1'2 cosh (aiy/t) e~x f'dt, (6.294)

16 M 1 - p ) ^
and 73, = ^ ^ - el k" x / sinh (atVi) e~x fdt

J«(2-|) •
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Here

at = v^e* 7 1 " / 4 ^ (6.295)

Since
oo

js^ie-xtdt = ^/4Xi (6.296)
b

we have

In = ^ e ' 7 / 4 e"W4 ei h x eai/AX (f. 2 g 7 )
{hx)

and

&, = -Go i-^% e " W 4 ^ *« ̂  e « ? / ^ (6.298)

The same result follows from eq. 6.262 when 0,; —> TT/2 or z,/a; -> 0, since e* ^l x
e
ail^x -

ei ki x ^ _|_ YJ2 (z'f/x2)] RS e* ^ f l . This means that function <pu characterizes the lon-

gitudinal wave reflected from the boundary, and its fictitious source is located at point

Oi, Fig. 6.6b. However, unlike with the stationary-phase method, eq. 6.262, we have

obtained an expression of <p that is valid only very far away from the source and close

to the free surface. Differentiation of eq. 6.296 with respect to ai gives

oo

[Smh(alVt)e-xtdt=*fc-£-e°Z/4x
J V J \ xdat
o

or
oo

f sinh (onVi) e~xtdt = ^ at eai/4x (6.299)

o

and
oo oc

[t1/2cosh(alVi)e^xfdt = ^- /sinh (atVt) e~xtdt
J V > dai J \ J
o o

or
oo

/ 1 ^ cosh ( Q | ^ ) e~*dt = ( l ^ + -^cf) e<t/*° (6.300)
o
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Substitution of eqs. 6.299 and 6.300 into eq. 6.293 shows that functions ip2i and </?3(,

as well as (pn, describe the same reflected wave, including the next term of Debye's

series, which is proportional to 1/ (fc; x) ' . This part of the field does not obey Snell's

law, and elastic energy moves through the lateral surface of the ray tube.

Now we will derive asymptotic formulas for vector potential '</>, which can be also

written as a sum:

ip = Co (Ms + M, + Mp) (6.301)

First, consider the integral along branch cuts Cy and C2.

Integral Ms As follows from eqs. 6.248 and 6.250,

ka+ioo

Ms= j Aim (2m2 - k2
s) e~m^E

e-™'2* em°Z2 1 i m x .

(2m2 - kfj2 - 4rn2rni ms (2m2 - k2)2 + Am2 mt ms\

or

f 32 m3rri[ m8 (2m? — k2) coshm; z2 — 8m (2m2 — k2)' sinhm,; z2

J (2m? - A;2)4 - 16m 4 m 2 m 2

ks

x e " m ' Hel m xdm

Here

z2 = z + H (6.303)

After regular change of variables, we obtain an approximate expression of Ms that is

valid in the far zone:

r • n ( k2\1/2

32>/2eW4(i_|L) ~
Ms = ^ ^ — / t"l\-xi cosh (aaVi) dt (6.304)

ks J
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8 f • , ( r\ , ~\ ks~kfH i k x+ — / sinh [asVt)dt e V s l
 e

l KgX

0

Here

as = s/2 e?7r/4 klj2 z2 (6.305)

Taking into account eqs. 6.299 and 6.300, we obtain

where

( kf\1/2

l^-c'^^J*) (l + g ) e-^^H
 ei(k.x + K/A)ecZ/4x

(6.306)

and ; s2 =
 4 ^ ° ^ c - \f^H J iksx + TT/4) eo?jAx
(ksxf2 x

This shows that the sum

^sl + i'S2

describes the shear wave that may arise due to inhomogeneous elementary waves radiated

by the primary source, as was discussed earlier.

Integral Mi By analogy with eq. 6.302, integration along paths C3 and C4 gives

ki+ioo
f 32m3 mi " i , (2m2 — k2

s) coshniiH — 8m (2m2 — k2) sinhmiH . .
Mi = 1 I -. (6.307)

J (2m2 - A;2)4 - 16m4 m2 m2

h

x e" m » ^ el m xdm

Introducing variable m — ki + i t, we have

32 V2e*W*§ - lY/2 «,
Mi = ^ — 3 - ^ / ti/2 cosh (a,H) e~x tdt (6.308)

tf(2-f) /
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OO /

+ 8 /sinh (e*,ff) e~xtdt e*V *• ~ ^ 2 el k>x

Here

at = V2 emlAk]l2H (6.309)

Substitution of eqs. 6.299 and 6.300 gives

; - c ^ 7 f i f f ( 1 + S + 7 7 % (6'310)

i ( fc(x + i/fc2 - kf z2 + n/A j

x ^ ; 1 _ e«?/4x
(A;,,)3/2

It is obvious that eq. 6.310 describes the shear wave that moves along the free surface
with velocity Q. Its wavefront is the plane defined approximately by the equation

hx + \Jk"l — A;;
2 z — const,

and the velocity of propagation in the direction perpendicular to the wavefront is cs.
Thus, we are dealing with the already familiar conical wave that is generated by a longi-
tudinal wave in the same manner as in the case of the source situated at the free boundary.
Thus, applying the stationary-phase and contour-integration methods, we have learned
that along with the direct wave, the following waves arrive at the observation point:

1. The reflected longitudinal wave, which obeys Snell's law at the free boundary

0i = 9i

2. The reflected shear wave, which appears at a different point of the boundary, and
which has angles of incidence and reflection that satisfy Snell's law:

sin 0i sin 0s

a c
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Note that the stationary-phase method allows us to obtain the leading terms of De-

bye's series, which describe wave amplitude in a zero approximation - that is, in this

approximation, energy flux is preserved inside the ray tube.

3. The inhomogeneous longitudinal wave (ph which propagates along the a:-axis

with the velocity of shear wave cs. It is generated by the shear wave, and the destructive

interference of elementary longitudinal waves plays an important role.

4. The shear conical wave iph which appears as the result of constructive interference

of elementary shear waves and moves along the x-axis with velocity Q. The longitudinal

wrave is the moving source of this wave.

5. The shear wave, which may arise due to the inhomogeneous elementary waves

radiated by the primary source and propagates with velocity cs.

6. In addition, we observe the Rayleigh wave, which is described by integrals Ip and

Mp around the pole m — kR.

Direct SV wave Now we assume that the linear source of the SV wave is located

at depth H below the free surface. As follows from eqs. 6.61, the complex amplitudes

of scalar and vector potentials describing the secondary waves arc

°[ Aim (2m2 - k2
s) e-

m'H e~m*E •
ip = - C i / ^ e mi z e% m xdm (6.311)

J (2m2 - jfe2)2 - 4m 2m, ms '
— OC

oo „

and ^ = -Cl I (2m2 - fc2) + W m , mt e _ 2 m ^ _m, z j m ^
J ms[(2m2 — k2,) — Am2mi ms]

— oo

Here

r 2 0

d = - 5 — ! l . (6-312)
A JJ

and T°r6 is the amplitude of shear stress at the surface of the linear source with a very

small radius. At the same time, in accordance with eqs. 6.248 and 6.250, we have for

the case of the direct P wave

oo ,-,

~ = _c I (2m2 - fc2) + 4m2m; ms _2mH R_mi z { m

J mi[\lml — kj) — Amzmi ms\
— oo
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~ t Aim C?m2 — k2\ P^mlH p — msH
and V = co / " ^o e e "T O

J (2m2 - fef) _ A_m2mi ms
—oo

The similarity between the two cases is obvious.

6.6 Linear source in the presence of the boundary: elastic medium and fluid

Suppose that the linear source of the P wave is situated in the fluid at distance H

above the boundary, Fig. 6.7a. Since shear waves are absent in the fluid, the wavefields

are described only by scalar potential ip^. In contrast, in an elastic medium we need

both scalar and vector potentials, </?2 and t/>2- At the boundary, the normal components

of stress and displacement are continuous functions, whereas shear stress vanishes:

T$=TV>, T%=0 S<P=SW (6.314)

Taking into account results obtained in section 6.1, in place of eq. 6.314 we have

-^=-^+ 2* (#+l i ) -

21% + *k _ *k = o. (6.315)
dx dz dx2 dz2

tip1 = d^1 + d^1 .f z = H

dz dz dx

Here

Ai = c?/91; (A-2 + 2/i2) = cf p2, IJ-2=P2C?
S (6.316)

As usual, the complex amplitudes of potentials can be written in the form

OO I I OO

^ = Ao f e ~ m i | * V m xdm + f Am emvz j m xdm ^ (6_317)

J mi J
— oo —oo

OO OO

V2 = A0 f Bm e " m ' z el m xdm, 02 = Ao f Cm e~m° z el m xdm,
- c o — oo
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Figure 6.7: (a) Linear source in fluid above boundary with elastic medium (b) Illustra-

tion of wave ip2 in far zone (c) Ray of shear transmitted wave ^2(moi) (d) Integration

along branch lines and around poles
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where

mi = yrn'2 — k'f, mi = A/TO2 — kf, ms = \/m2 — k2

From cq. 6.9—6.15, it follows that

A) = 7^r— (6-318)

Substitution of eqs. 6.317 into eqs. 6.315 gives

~Xl^ (e~W~ + A"fi7niH] = "A2 k?B>»e~miH

+ 2M2 (mfBme-miH - im msCme-m'H) ,

-2i TO m, e~miEBm - mlCm e~msH - m]e~m'H'Cm = 0, (6.319)

-e-m^H + miAm em^H = -miBm e'171'11 + imCm e~m»H

The first two equations in set 6.319 can be slightly simplified. For the first we have

A, A-2 I 6 TOl A em^H\ - ,i \(2m2-k2)R e~miH-2imm C e~
m°H]

or

-n k2
s (

(—^J~ + ^ ' ^ i j = (2m2 - k'l) Bm e~miH - 2i m ms Cm e~m-H

(6.320)

Also

2i m mi e~miHBm + (2m2 - k2
s) Cm e " m ^ = 0

(6.321)

_e-miH + myAm (-miH = _mBm e-miH + im Cm e-m,H

(6.322)
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Here

n = — (6.323)

From eq. 6.321 we have

Cm = -^^re-^Hem.H ^ ( 6 .3 2 4 )

(2mz - kj)

Then eq. 6.323 becomes

-m.H _ A miH _ ( _ 2m'2 mi \ B p-m,Hm1Ame -\m, 2n? _ k2J Hm e

or

e-nnH _ A emxH = - k\mi Bm e~m'H (6.325)
2m2 - kj

Also, the right side of eq. 6.320 can be represented as

\(27V2 ,2N 4m'2'mi ms] -m,H]3 _ D
 c-m,HB

where

D = (2m2 - /c2)2 - 4m2mi ms

Thus, we have a system for the determination of Am and Bm:

_n kl (<£^_ + e-miHA) = I> e-miH Bm ( 6 3 2 6 )
V mi I 2m2 - kj

-inri p-miH _ A rniH _ k'J mi -miH R

Solution of the system gives

2n fc2 (2m2 - fe2) e~^H em'H

Dm, = p: (D.OZ/j

Here

£»i = mil? + m; n k\ (6.328)
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Thus

Aim, mm k'j e-
miHem'H

Cm — , (6.329)

and from eqs. 6.326 we have

1 miD -nk\mi -2mAH (R^n\
Am = e ' (6.330)

mi D1

In illustration, consider a case in which the second medium is also a fluid. Then //2 —> 0,

and therefore

cs —T- 0 but ks —> oo

Correspondingly, eqs. 6.327—6.330 give

_ 2n e-m^H em'H _ml-nml 2m,g
nm — ; j ^ m — u i Am — ; e

m\ + mi TI nil + n rrii

Now we will start to derive asymptotic formulas in the far zone, applying the stationary-

phase method and then contour integration. To begin with, assume that distance x

along the boundary is much greater than the wavelengths.

1. The stationary-phase method

First consider waves in a fluid. In accordance with eq. 6.317, the secondary potential is

oo

VU = A0 f l.rntD-nltm, miZ i m x
ls J nil miD + n kj rn4

 y '
— oo

Here

zi = 2H - z > 0

and

D = (2m2 — kf) — 4m2 m; ms

We start from equality 6.243:

I (a) = / f(m) elah ( m W = /(m0) e* a ft (m°) f ^ , ) e± OT/4

J \ah"{mo)J
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Since the stationary point TOO is absent when m > k\, we have for the phase function

x h(m) = m x + y k\ — rri2 z\ (6.332)

and, correspondingly,

h(m) = TO + — y'k'f - TO2 (6.333)

h'(m) = l - ^ / " ° = 0
T / P ^2

Thus

A; x
TO0 = — = fci sin 0i (6.334)

As before, m0 depends on the wavenumber and the angle of incidence 6i. Here

r-i = \Jx2 + (2H - zf (6.335)

is the distance between an observation point and the mirror reflection of the origin, O,

with respect to the interface. Since TOO < k\, the secondary wave is mainly defined by

homogeneous elementary plane waves.

Taking derivatives of h(m), we obtain

ft"(m°) = • Zl
 Sf l = ~ , • } 2a (6-336)

x hi cos3 9i k1 sin 9i cos2 ^
For function /(mo), eq. 6.331, we have:

Ao mi£> -nk\mi iA^ Mx
f(m0) = -— = -—- (6.337

mi niiD + n k^ mi kicosui Ni

Here

" / ,,2\2 / 2\ 1/2 / r2\V2"

M i = c o s 0 i f 2sin2 6>i 1 j -ism26i (sm20i--^) f sin2 6t - - | j

/C2 \V2
- n k4

s - i - sin2 0, and (6.338)

' / r 2 \ 2 / 2 \ 1/2 / 2X 1/2"

N^cosBi ( 2 s i n 2 ^ - | j - 4sin2 6{ ( sin
2 0{ - ± J ( s in 2 ^- ! )
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/ r 2 \ l / 2

Thus, the asymptotic expression for scalar potential in a fluid, (pls, is

£„ = Ao ^ ^ - ^ e ^ / 4 e i ^ i (6.339)
JVi (fcin) '

This characterizes the reflected wave at the observation point, and the direction of its ray

corresponds to Snell's law: 9r = Oi. As is seen from eqs. 6.338, if the angle of incidence

does not exceed the critical angle

sin 0t< -
ci

the amplitude of the reflected wave at the interface is smaller than that of the direct

wave. Beyond the critical angle for the shear wave, the amplitudes of the incident and

reflected waves become equal at these points. However, there is a phase shift between

them. This shows that total internal reflection has taken place.

Scalar potential, (p2, in an elastic medium

From eqs. 6.317 and 6.327 we have

°r (omi _ i-2\ -rriiH -rrii z2 .
^2 = -2n k] Ao / ( 2 m ^ e 1 e* m *dm (6.340)

J m\D + mi n k]
— oo

Here z2 = z - H. Suppose that

Ci < cs < C[ or ki > ks > kt (6.341)

As will be shown, there arc two stationary points. Consider first the contribution of point

moi, which is located within interval

0 < mOi < h (6.342)

Then, the phase function is

x him) — x m + \lk\ — m2H + Jkf — m2 z2

Correspondingly,

h{m) =m+ —\Jk\ - m? + —\Jk'f - m2 (6.343)
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and

h\m) = 1 - g , m - * , m (6.344)

Thus,

v W'm , m°l (aiAK\
x = H— + z2—. 6.345

V Ki ~ m o i V Ki ~ TOoi
As is seen from Fig. 6.7b,

— = tan W, and —, = tan Oi,
/ P ^2^ / P ^2^

V Kl ~ m01 V^i ~ '"'01

whence

moi = A;i sin ^ and moi = A;; sin 9i (6.346)

Here Oi is the angle of refraction of the longitudinal wave, and according to Snell's law,
sin Oi sin Q\

Thus, we have proved the presence of a stationary point at the initial interval of integra-

tion, and, as follows from eqs. 6.342 and 6.346, the angle of incidence does not exceed

the critical angle:

•a k' cisin Oi < — = —

«i ci

Taking into account eqs. 6.343 and 6.346, the phase is equal to

x h (mOi) = ki Xi sin Oi + k\_H cos Oi + h (x — x{) sin Oi + hi z2 cos 0t, (6.347)

and Xi is shown in Fig. 6.7b. Therefore,

ei x h (mOi) _ ei fein ei h r2) (6.348)

where

T, = {IP + XX)112, r^lzl + ix-x,?}112

Eq. 6.348 shows that when the incident wave reaches the point of the boundary (xi, H),

it gives rise to the transmitted longitudinal wave. Correspondingly, the total change of

phase is defined by eq. 6.347. Differentiation of eq. 6.344 yields

h"(m) = * i—- h^—rF2- (6.349)
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and h" lmol) = - - ( — — cos"3 9{ + — cos"3 0, )
ki\xci x J

Finally, for function f (moi) we have

• 2 2 s i n 2 ^ - ^
/ (m01) = - ^ | A -̂A (6.350)

where

/ r 2 \ I/2 f / 2 \ 2 / 2 \ V2"
iV2 = I - i - sin2 6>( j I 2 sin2 6»; - \ \ + sin2 (9, cos 6»( ( - | - sin2 6»( j (6.351)

r2

+ n 4 c o s 0

Thus, the asymptotic expression for a longitudinal wave in an elastic medium is

2 2 sin2 0 , - 4 ,
^2 = 2^27 n % Ao — - ^ e ^ / 4 ^ ^ e? (fciri + fc' r2) ( 6 . 3 5 2 )

cl N2 (kix) '

1
X / TT \ 1 / 2 '

cos"3 0j + — cos"3 6i
V .T ci a; 7

and its amplitude represents a zero approximation of Debye's series. Eq. 6.352 is valid if

0 < 0, < -
c;

In accordance with Snell's law, this means that the transmitted wave, cp2, arrives at

any point of the lower medium, Fig. 6.7b.

Next we will demonstrate the existence of the second stationary point, which is located

within interval

h < m02 < fci,

and evaluate its contribution. Since in this case the radical (m2 — kf) is real, the

phase function is

x h(m) — xm + -i/fc2 — m2 H
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and

h(m) = m + ^k2 - m2 — (6.353)

Hence

ti{m) = 1 - ~ ^ = = ~, (6.354)

\Jk\ - rn2 x
which gives

rriQ2 — fci s in QQ, (6.355)

where 6>o is shown on Fig. 6.7b. As follows from eq. 6.353, at the stationary point the

phase of the integrand in eq. 6.340 is equal to

x h(niQ2) = kix sin6Q + k\Hcos 9$ = fci.Ro (6.356)

Here R$ is the distance between the primary source and the point of the boundary

(x,H) located above the observation point (x,H). In accordance with eq. 6.340, we

have

2 2 sin2 # o - 4 , l~Yn V7~i
f(m02) = -2n A0 % V ^ ^ e~H™ °° " ^ ^ (6.357)

c2 fcj.¥3

Here

'( c2V ( c2V2 f c2\1'2'
N3 = -icos90 f 2sin2 6"0 ^ ] - 4sin2 0O I sin2 90 - -£ j I sin2 90 - ^ )

(c \ 4 / r 2 \ ' / 2

+ " ( - ) fsin2^o-4J (6.358)

Differentiation of eq. 6.354 gives

h"(m02) = v- cos"3 60 (6.359)
X K\

Thus, the complex amplitude of scalar potential associated with mo2 is

-2v^Fn^of-) (2 sin2 0 o - ^ )

^2(m02) = x r xi/2 c (6-360)

(fc l 2:)1 / 2(-cos-30oj N3
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( c 2 \ 1 / 2

x exp —k\Z2 I sin2 90 1 I + i (kiR0 — TT/4)
L v ci i

Since m,m > ki, we ha,ve

sin#0 > —
ci

In other words, the angle of incidence exceeds the critical angle, and function tp2 ("%i)

describes the longitudinal wave, which exponentially decays with distance from the in-

terface. As in the case of plane waves, we observe one of the features of total internal

reflection, namely, the transmitted P wave becomes inhomogeneous. Its velocity of

propagation along the boundary is now the function of x,

c =
sin#o

and it varies within the range c\ < c < c\. From eq. 6.355 it follows that this wavefield

appears at points of the boundary where

X—^r, > - , (6.361)
(x2 + ff2)1/2 V

that is where the angle of incidence is greater the critical angle, Oi > 0c. Therefore,

£2 = ^2 (mOi) (6.362)

if the x-coordinate of an observation point is such that

, x <cx
V x 2 + H2 c,'

and
(p2 = <f2 (TOoi) + ¥>2 (

mo2) (6.363)

provided that x satisfies equality 6.361. In this last case, there is superposition of the

transmitted wave, which obeys Snell's law, and the inhomogeneous wave. Both of them

are caused by the incident wave, but they arise at different points of the boundary.

Vector potential, tp2

From eqs. 6.317 and 6.329, we have

OC TT

f m m, p-niiH -ms Z2 .
^ = 4m k\ Ao / " ^ " ^ e— el m xdm (6.364)V 2 s J miD + nun kj y '

— CXD
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As in the case of scalar potential <p2, there are two stationary points, moi and 777.02-

Consider first the contribution of point m,Oi, which is located inside the interval

0 < rrioi < ks (6.365)

Then the phase function is

x h(m) = mx + ^k2 - m? H + ^k2 - m2 z2 (6.366)

Performing a differentiation, we obtain an equation for the first stationary point:

rr m01 , m01

x = H = + Z'2 = (6.367)
Vfc2 - m2

0l A/A;2 - m2
0i

As is seen from Fig. 6.7c,

mOi = fci sin Oi or mOi = fcssin#s (6.368)

Here 9S is the angle of refraction. It is obvious that eq. 6.368 also describes Snell's law

for the transmitted shear wave, and it allows us to represent the phase function as

x h(rrim) = k-[X-[ sin9i + k-[Hcos Oi + ks (x — Xi) sin6*s + ks z2 cosOs (6.369)

Note that X\ is the coordinate of the boundary point from which this wave arises and

then arrives at the observation point. Of course, in eqs. 6.347 and 6.369, the values of

X\ differ from each other. From eq. 6.369 we have

ei x h (moi) = ei hriei ksr2 (6.370)

Here r\ and r2 are shown in Fig. 6.7c. This means that function V^^oi) describes

the transmitted wave, which obeys Snell's law.

sin 0t sin 0s sin 0t
= = (6.371)

C\ Cs Ci

By analogy with eq. 6.349, we have

h" (mOi) = ~ (— - cos"3 0t + — cos"3 6S) (6.372)

Function / (moi) is equal to

/ c 2 \ 1 / 2

An i Ao sin 6S sin2 6S 1

/ (moi) = ^ C1^— (6.373)
ksM4
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where

/ r2 \V2 I" / 2 \ 1/2"
N4 = -i ( -§ - sin2 6S \ (2 sin2 9S - l) + 4i sin2 0S cos 68 f sin2 05 - - | j

/ r2\V2

+ nfs in 2 6», - - | J (6.374)

Thus,

V;2 (m01) = —-ĵ  (6.375)
(jfc, .T)!/2 A,4 ( ^ .£1 coS-3 fl + £^ c o g -3 g )

V x cs x )

This wave arises at points of the boundary where

sin0i< - ,
cs

and it exists everywhere in an elastic medium.
Now consider the contribution of the second stationary point 77102, which is situated

within interval

ks < mo2 < ki (6.376)

Then the function h(m) is

h(m) = m + — (kf - m2)1/2 ,

which coincides with eq. 6.353. Correspondingly,
TT

fV'02 = k\ s in 6*o, h" {m^) = — cos^3 9Q (6.377)
X K\

and xh (rn02) = kiR0

Also, we have

/ , C2\V2

2 . sin 0O sin2 80 - - | /~Y~n 777
Km*) = 4n A0 [^ ± V ^ ^ e " * 1 V S l n '<• - c?/c? ,2 (fi 37g)
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Here

JV5 = -«COS0 O ( 2 s i n 2 ^ 0 - - i j - 4sin2 60 ( sin2 60 - ± J (sin2 #0 - ^ )

/ r 2 \ 1/2 / x 4

+ n ( s i n 2 f l 0 - ^ j f - M (6.379)

Thus, potential V;2(mo2) is

/ c 2 \ 1 / 2

4i\/2irnA0cl sin (90 I sin2 0O 1 )
^2(m02) = A - °-^- (6.380)

(M-)1 / 2 c 2 ^ ( f cos"3 0o J

-fciA/sin2 6»0 - c2/c.s
2 z2 + i (fcj.Ro - vr/4)

This potential may describe the evanescent shear wave that decays exponentially with

distance from the boundary. As follows from cq. 6.377, velocity of propagation of this

shear wave along the £-axis is

c =
sin 90

and varies within the range cs < c < cv In the same manner as in the case of the

longitudinal wave, we have

^ =V;(m0 1) if — < sin 6»c (6.381)

n

and ip2 = ip2(m0i) + ip2(mo2) if — > sin#c

Comparison of eqs. 6.360 and 6.380 shows that scalar and vector potentials I/?2(TOO2)

and V>2(
TOo2) characterize the wavefields, which produce both deformation and rotation

of elementary volumes of a medium.

We see that the stationary-phase method allows us to describe reflection and trans-

mission of waves obeying Snell's law as well as of inhomogeneous waves. In deriving

asymptotic formulas for reflected and transmitted waves that obey Snell's law, we have

paid attention to large distances along the boundary [k i » 1). However, the same
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formulas are valid when either H or z, or both, exceed the wavelength, but offset x

may be small. In essence, the magnitude of potentials describing these waves does not

depend on x.

Next we will apply the second approximate method for seeing the presence of other

waves.

2. Contour-integration method
In the same manner as earlier, we replace integration along the real axis of m with

integration along branch lines and around poles, Fig. 6.7d. First consider wavefields

associated with branch points in a fluid medium.

Scalar potential, <pu

In accordance with eq. 6.331, we have

Pu =Aj±- "* „:"*!"" e~^ e^dm = M (h + /. + /, + /„)
,/ rrii Tri\D + n k], rrii

— oo

(6.382)

where Ii is an integral along a new path and
£ ) = (2m2 -klf -4:m2mtmS7 zy = 2H - z

Further we use several times the known integrals

o b

oo

/sinh(^)e-^=i-^ae«2/4x,

0

oo

ItW2cosh(aVl)e~xtdt=2^{i+<Qea2/4x

o
Integral Ii Since the radical ni\ changes sign around point k\, integration

along paths C\ and Ci gives
fci+'ioc

J nil \_miD + n k^ rrii m\D — n k\ nil
fci
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or
ki+ioo

h = -2 I Mm\elmxdm (6.384)

Here

Ai(m) = (m\D2 + n2 k8
s mf)sinhmi2i + 2n kA

s n%i mi Dcoshm,iZi
(6.385)

and Bi{m) = ml D2 - n2 k&
s mf

Introducing variable t: m = k\ + it , we have dm = i dt. For small values of t,

m\ = \/2i k\ t1/2, mi = Jk\ — kf, ms = Jk2 - k2
s

Then

7 p \ 2 / p \ 1/2 / p\!/2"

^^-^) -<H) (-1) _•
/ k2\ / \ / k2\

Ax{m) = n2k8
s k2 [I - A-A s i nh (ay/i) a n d B^m) = -n2k8

s k'2[l--^)

(6.386)

Hence
_ iV2 e ~ C T / 4 j klX f sinha^x x t

h - 1/2 « _/ f l / 2
1 o

and

a = \/2i k\ z\

The last integral is tabular and is equal to

j*gfi f.x ,it __ 2 Jsinh (Q,;) e.x ,?dv __ ̂  y/Azt ^
0 0

(6.387)
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Here $ is the probability integral, and for large values of k\, i.e., small wavelengths,
we have

Correspondingly,

j = V^ JTT/4 eh [x + z2/2x)
(k.xf2

Thus the function

£ls (h) = Aoh (6.388)

describes the reflected wave, which was already studied by the stationary- phase method.
Now let us evaluate integral Is along the next two branch lines, C3 and C4, associated
with the point ks.

Integral Is Taking into account that ms changes sign around point ks, we have
ks-\-ioo

/' JL \m\D (mi,ms) -n kj md

J m-[ \_ ni\ D (mi, rns) + n k* mi
k.,

m,D (mt,-m.)-n ffmt1 e-mxzXei m xdm

m\D (mi, —ms) + n k\ m j
or

fcs+2OO

4 I m2mjms e~ T O ^ el m x dm
s J [m\D (mi,ma) + n k* mi] [rriiD (rrii,—ms) +n kA

s mi\

Using the variable t: m = ks + it and considering again only the vicinity of branch
point ks, we obtain

m 2 = k2
s, mi = k2

s (l - | J ] , ms = ^2tk~s i1 /2 , D = k4
s, e~m^ = e^^1 ~ ^ H

Thus

8 1 e^/ 4 nV2 (1 - 4 ) J ksX e V ̂  " ^ "l ~
/s = ^ ^Z tll2e~xtdt

r / 2 \ 1/2 / 2 \ 1/21z /

^ - ( ' - D - (I - 1 ) ] •



6.6 LINEAR SOURCE IN THE PRESENCE OF THE BOUNDARY ... 369

or

/ 2x i ( k s x + Jk2
x - k2

s zx )

'•= r ; X" t* v"V • <c-390)

and the potential related to point A;5 is

£ l s = ̂ o /» (6-391)

Eq. 6.391 characterizes a wave that is quite different from the reflected wave. First, the

exponential function in eq. 6.390 depends on two wavenumbers, k\_ and ks. This

indicates that the wave path is located in a fluid and in an elastic medium, where the

wave propagates with velocities c\ and cs, respectively. Also, as follows from eq.

6.390 the amplitude of the wave decreases as 1/ (ks x)'i'2, that is, more rapidly than

the amplitudes of the incident and reflected waves. Let us represent the exponent

ks x + y k\ - k2
s z1

in the form

Here 6S
C is the critical angle:

s in 9a
c = -

Then we have

ks x + J k ( - k\\ zx = UJ\ H cos 6S
C + — t a n 9S

C

I C, C\ \ C, ) \

= tJ^-(2g-^)tang;+2g-z1
L Cs CiCOS^J

This clearly shows that the wave propagates along path OBCD (Fig. 6.8a). In fact,

the length of the wavepath in the fluid is
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Figure 6.8: (a) Rays of PSP wave (b) Conical zone where PSP wave is absent
(c) Huygen's principle and formation of PSP wave (ci < cs)
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H H - z 2H-z
OB + CD= + — = —,

cos 6C cos 9C cos 9C

which corresponds to the second term in the brackets of eq. 6.392. At the same time,
the path length in the lower medium, BC', is equal to

BC = x - H tan 9S
C-(H- z) tan 6s

c = x-{2H- z) tan 9S
C,

which coincides with the numerator of the first term.
Thus our assumption is correct, and we are dealing with a head wave (Part II) that

is usually called PSP. This name can be easily explained. When the incident P
wave reaches points of the interface where 9i = 6S

C, the shear wave S begins to move
along this boundary, giving rise to the P wave in the upper medium. Thus, we twice
observe a transition from one type of wave to another. In accordance with eq. 6.392,
rays of the head waves are parallel to each other and they form with the 2-axis the
angle equal to 9S

C. Correspondingly, the phase surfaces of this wave are planes. It is
obvious that in the three-dimensional case these surfaces are conical and their apexes are
located at the z-axis. This is why head waves are often called conical waves. Since scalar
potential ip-[s depends on coordinate x, the wavefields vary on each phase surface and
decrease with increased distance from the z-axis. This means that in general, motion of
particles is characterized by elliptical polarization, which occurs in the case of reflected
and transmitted waves. However, with an increase of distance x, this effect becomes
weaker, and nearly linear polarization is observed.

Also, it is clear that the head wave is absent within the volume bounded by two
planes, 9 = 9S

C, Fig. 6.8b. In order to visualize the appearance of this wave, it is useful
to apply Huygen's principle (Part I). When the shear wave moves along the boundary,
each of its points can be treated as the source of the secondary cylindrical P wave in
a fluid. Since velocity cs exceeds Ci, the elementary wavefronts overlap and form the
envelope that represents the front of the head wave. Fig. 6.8c.

At the beginning, we assumed that c\ < cs. Now let us understand what happens
in the opposite case {c\ > cs). As follows from eq. 6.390, the exponential term can be
written in the form

eiksx e-^kl-k\z,

This means that instead of a conical wave in fluid, we observe a evanescent wave that
exponentially decays with distance from the boundary and propagates along the boundary
with velocity cs. In both cases (c\ < cs or c\ > cs), the shear wave in an elastic
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medium is the moving source of the wave, <pls (ks), in fluid. However, in the latter case,

due to destructive interference, an inhomogeneous wave is formed. In other words, the

wavefronts of elementary waves do not have an envelope.

Next consider the contribution of integrals along branch lines C5 and Cg, Fig. 6.7d.

Integral /; In accordance with eq. 6.382, we have

ki+ioo
_ f J_ \rriiD(mi,ms) - nk* mt _ mxD (-mu rns) + nkj rn;l -myZy + imxdm

J mi \_rriiD (mi, ms) + nk^ mi miD (—mi. ms) — nkj m/J
k,

or

ki+ico o

4 f m, (2m2 - k2)2 e~m^ el m x dm
It = -\n k\ \ —, ".' i r T (6.393

J [miD (mi, ms) + nk* mt\ [miD (—mi,ms) — nk\ mi\
k,

Applying the same procedure as before, we have

/k2 \ l / 2

nil = v 2i ki t1/2, dm = idt, m\ = — i ki I —I — 1 I ,
\ki J

(2m2- k2)2 = kf (2 - 'jpj , D(mi,ma)=D(-mi,ma)=kt(2-^\

Thus

= 4nV2ie 1 e (kA }^kx k, z, 1/2 xt

or

^' !(2-|)(|-')UJ

and the scalar potential is

VU (h) = Al It (6.395)
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Comparison of eqs. 6.391 and 6.395 shows that the latter describes the PPP head

wave. By analogy with the case of the PSP head wave, it is easy to show that the wave

path consists of three elements. The first is the ray of the P direct wave with the angle

of incidence equal to the critical angle

0t = 9l= sin"1 -
Q

Second is the path in an elastic medium of the longitudinal wave which advances along

the boundary with velocity q. Third is the ray of the head wave propagating from the

boundary to an observation point: its reflection angle is also equal to the critical angle.

As follows from eq. 6.394, the phase surface of this head wave is a plane, and its equation

is

ki x + Jk\ - kf zx = const (6.396)

The velocity of propagation along the x-axis is equal to Q. This is because the head

wave is caused by a longitudinal wave moving along the boundary. As follows from eq.

6.394, both head waves decrease with distance in the same manner. Since

e{ < 0s
c, (6.397)

the PSP head wave appears at points of the boundary that are located at greater

distances x than the PPP wave. Thus, the stationary-phase method and the contour-

integration method allow us to describe the following secondary waves in fluid:

1. PP reflected wave.

2. PSP head wave, if C] < cs.

3. PPP head wave.

Their paths are shown in Fig. 6.9a. Earlier we demonstrated that if cx > cs, then

instead of a PSP wave, we observe an evanescent wave. This group of waves does not

include the boundary wave associated with the pole, which will be discussed later.

Next, we will derive asymptotic formulas for waves in an clastic medium.

Scalar potential (p2s

As follows from eq. 6.340,

oo rr
r Om2 — h2) p-ITiiH p — mi Z'i .

£2 = -2n*s
2Ai / ( J

n a _ ^ el m Xdm = A, (L, +Ls + Ll + Lp)
J rriiD + 111171 k;

— oo

(6.398)
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Figure 6.9: (a) Secondary waves in fluid (b) Conical shear wave in elastic medium

Here

z2 = z - H > 0

and, as before, we assume that k\ > ks > ki.

Integral L\ Integration along paths C\ and Ci gives

fci+ioo r TT TT ~\

Li = -2nk\ \ (2m2 - k2
s) e-

m^eimx
 2 + 2 dm

s J v s> rriiD + nk^mi mxD - n k* m4
fci L J

(6.399)

Replacement of variable m = kj + it gives

(2-*£) I oc

Ll = l i j i V k"[ ei hx e"Vfci - k? z* f e - x tsinhaiVtdt

• ('"I) /

where

a,i = v 2i k\ H

Taking into account eq. 6.383, we have

/ k,2\
2^iel7r/A / k \ 2 k ' H \ 2 ~ ¥ l 1 iklR2 , / p P _

\l 14)
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and ^2(^1) = ^ l -^i

It is clear that this function characterizes the wavefield that exponentially decays with

distance from the boundary. Only in this sense does it resemble an inhomogeneous

longitudinal wave. This field arises when the angle of incidence of the direct wave exceeds

the critical angle 0l
c.

Integral Ls Along paths C3 and C4 we have

k.,+ioo

Ls = - 2 n k2 I (2m2 - k2) e"m< ̂ -mrfj m x

x r 1 1 1 dm

[niiD (mhms) + n kj md rriiD (mh —ms) + n kj nil

or
ks+ioo

I - _2nk [ mi [D {mi,-ms)-D (ro;,ros)]
s J [miD(mi,ms)+n kj mi][miD (mi,—ms) + n k* mi]

ks

x (2m2 - fc2) e~ m ' z>e-m^Hemxdm

or
ks-\-ioo TT •

_ 2 7 rri2 mi mi m, (2m2 - k2
s) e~m ' ^e-m,Het m xdm

s J \rri\D (rrii, ft.) + n k^ mi] \rn\D (rrii, —rns) + n kj mi\
ka

Applying the variable t: m = ks + it, we obtain

1 6 „ j em A /o j,ksx V s ]
 P V s l 2 r 4-

= _^me V^e e_^ e_^__ / f l / 2 ^_x ^

or

- 8 n iV2^ e i 7 r /4
 e " V ̂  " k< z<2

 ei(ksx+y/i£J$ H)

\f P \ 1 / 2 / P \ 1 / 2 1 2



376 CHAPTER 6. WAVES IN A LAYERED MEDIUM ...

and ^2(fcs) = AOLS (6.402)

This expression describes an evanescent longitudinal wave that exponentially decays with

distance from the boundary. For this reason it recalls the wave ip2{k\). However, there

is a strong difference. First of all, in accordance with eq. 6.402, this wave moves along

the boundary with the velocity of the shear wave, cs. Also, let us introduce coordinate

xcs of the boundary points where the angle of incidence coincides with the critical angle,

6j = 0s
c, and represent the phase function in eq. 6.402 as

ksx + \l k\ — k2 H = ks (x — Xcs) + ksxcs + \lk\ — k2 H

Since

-^ = sin 6S
C and rc = \J x2

s + H2,
k\

we have

ks x + sjk\ - k2 H = ks (x - xcs) + kxrc (6.403)

Thus, appearance of wave ^2(^s) rnay be explained in the following way. When the

direct P wave reaches the vicinity of points where 0j = 6S
C, its phase is equal to kirc,

and it gives rise to the transmitted S wave. The latter moves along the boundary with

velocity c, and, correspondingly, a change of the phase at these points is equal to

ks(x -xcs)

Propagation of the S wave causes vibration of the boundary and, as a result, elementary

longitudinal waves arise in a fluid and in an elastic medium, where their velocities are

C] or ci, respectively. Because C\ < cs, constructive interference of elementary waves

occurs in liquid, and we observe the PSP head wave. In contrast, in an elastic medium

c,[ > cs, and superposition of elementary waves has a destructive character. Because of

this, the evanescent longitudinal wave ^2(^s) appears.

Thus, the transmitted S wave propagating along the boundary is the moving source

of wave described by eq. 6.402.

Integral Li The integrals along paths C5 and Cg are

U = -2n k] I (2m2 - k]) e~m^Hel m x

k,
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p-mi z2 emi z2 1

m\D (mi, ms) + n k* nil m\D (—mi, m,,) — n k\ m;

After changing the variable of integration and performing simplifications, we obtain:

An i k2 eiklX e V * i " k< H 7
U = - s — / e~x hinhatVtdt (6.404)

where

ai = \Ji i ki z2

Then the use of eqs. 6.383 gives

U = 2 ^ ^ ; / 4 (M2 ^ e* - el4^i E^€- (6.405)

and cp2 (ki) = A0Lt

It is useful to represent the phase function in the following form

/ k z2

h xd + Jk\ - kf H + ki (x - xd) + -|—^

Here xci is the coordinate of the boundary points where the angle of incidence of the
direct wave is 9l

c. Assuming that x 3> xc[ and z2/x <€i 1, the phase becomes equal to

hrc + kiri

Here

rc = \/xd + H'2 and rx = yj{x - xdf + z\

Thus, we see that function <p2(,k[) describes the transmitted P wave near the boundary
and that, therefore, its secondary sources are located in the vicinity of points where
9i — 8l

c. Again it is clear that the stationary-phase method allows us to obtain a better
approximation of this wave.
Vector potential ip2
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In accordance with eq. 6.364, we have

V;2 = 4 m ^ 4 0 / ^ ^ - 1 el m xdm = Ao (M1 + M. + M, + Mp)
J m\D + n kj mi

—oo

(6.406)

As before, we start our evaluation of integrals from branch point k\.

Integral My Integrals along paths Cx and C2 give

fci+icw r TT TT -\
r . p—rniH piriiH

M1=4ink2, / m mt e-™'** el m x — ^ + — ^ rfm
J m!iJ + niin k] ni\D — m,[n k\
ki L J

or

l~, °°
Mv = —felKlX e V ! " 2 \ e x T smhaiVf-dt,

o

where

ai = v/2 i fci i /

Thus

( 1 i? 2 \
a; + I

(fc sx)3 / 2 \h)
(6.407)

and ^2(^1) = AoMi

It is obvious that this function characterizes a shear wavefield that exponentially decays

with distance from the boundary and appears provided that 0, > 6S
C.

Integral Ms As follows from eq. 6.406,

Ms = \ink2
s f mmle-rr^Helmx

k.,
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e-ms z-2 e-ms z2 1
\/ fJTY)

niiD {nil, ms) + n k\ rrii rriiD (mi, —ms) + n k^ nil

or
/ k2\ll2 -i i.fh2 h? H

Rn [ ~\ - I P
lKsx

 e V V s oo
M s = ^ •*' —=- / e " ^ sinhas>/t dt,

/ 1.2 \ 1/2 / L2\ 1/2 /

where

ctA. = \/2iksH

Hence

Me = V
 r

 J —, - ^ (6.408)
, [/ h'2\ ' f P \ 1 / 2 1 x

and ipzihs) = Ao Ms

By analogy with function ip2{h), we conclude that eq. 6.408 describes the transmitted
shear wave near the boundary, z2/x <?C 1, and at sufficiently large distance from the
z-axis.

Integral M( The integral along paths C5 and C6 is

fcl+ioo

Mi=Aink2
s j mmle-m^He-m'>z^eimx

k

x r i i i dm

\_rriiD (mi,ms) + n kA
s nil m\D (—mi,ms) — n kj m j

This gives

M = 4 n k'jVWk k, i^jk\ - kf H j k,x e^k2
s - kf z2 7 1/2 ^

1 (kf - k\f2 (2fcf - ktf J
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Therefore,

• i A • i it k2 — k2 H it h2 — h2 7
2 n V 2 v r e " ' / ^ e ' ft'x e v 1 » e V s ' , ~ ,, x

Mi = - — ^ - — - 2 a n d i,2{kl) = AlMl

(6.409)

To understand this wavefield, we represent its phase function in the form

k,xd + sjk2 - kf H + k t { x - xd) + \Jk2 - k'f z,2

As before, xci is the coordinate of the boundary points where 0i > 6l
c. Respectively,

the sum of the two first terms is equal to ki'rc. and it defines the phase of the direct

wave at points (xrj , H) and rc = yjx2
d + H2. The sum of the next terms remains

constant at points of the plane:

ki (x - xd) + ^Jk2
s - kf z2 = const (6.410)

Thus, function ip2{ki) describes a wave with plane phase surfaces that moves through

an elastic medium with the velocity of a shear wave, cs. At the same time, the velocity

of propagation along the boundary is equal to Q. AS follows from the expression for the

phase function, the wavefront and the boundary form angle 9, where

sin 0 = —
ci

The appearance of this wave was discussed earlier. When the longitudinal transmit-

ted wave advances along the boundary, it also produces elementary shear waves. Since

cs < Q, superposition of these waves has a constructive character. As before, applying

Huygen's principle, it is easy to demonstrate that the phase surfaces of this wave are

planes, Fig. 6.9b. We see that the transmitted P wave is the moving source of the

conical wave, ip.2(ki), and it is observed at points of an clastic medium where x > xd.

In summary, let us outline the main features of wavefields in the lower medium:

1. When the direct P wave reaches the boundary, we see the appearance at its

points of the transmitted P and S waves, if 9t < 6l
c. We see only the 5* wave if

9l
c < 9i < 9S

C. Neither wave arises when 9{ > 9S
C. These waves obey SnclFs law and,

correspondingly, they appear at any point of a medium. Their magnitude depends on

frequency and distance as 1/ (kr) ' .
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2. Within the next range of the angle of incidence

e l
c < 9 t < es

c:

besides the transmitted S wave, vibrations of the boundary cause a shear conical wave.

It propagates through a medium with velocity c,. and like the head wave, its magnitude

depends on the wavenumber and distance as 1/ (kr) ' . Certainly, its magnitude is

smaller than the magnitude of the transmitted waves. The phase surface of the conical

wave is a plane that, with the boundary, forms angle 9, where

sin 8 = —
c-i

Since the transmitted P wave generates a conical wave, its velocity of propagation along

the boundary is equal to q. Besides, due to the primary wave, a longitudinal wavefield

arises that exponentially decays the distance from the boundary. Use of the word "wave"

in this case is hardly appropriate. In fact, the phase surface of this field is the vertical

plane x = const, but its velocity continuously changes along the rc-axis. This wavefield

is usually called a "diffusive wave".

3. At points of the boundary where 9i > 9S
C, four wavenelds appear, namely:

a. The shear conical wave.

b. Longitudinal and shear diffusive waves, which exponentially decay with the dis-

tance from the boundary.

c. The inhomogeneous longitudinal wave, which moves along the boundary with the

velocity of the shear wave and also exponentially decreases with depth.

Our description of wavenelds does not include the boundary Stoneley waves that arise

at the interface between the fluid and elastic media. By definition, they are related to

poles of integrands, which describe the scalar and vector potentials. In accordance with

eq. 6.328, poles are roots of the equation

^w? - k\ (2m2 - k])2 - Am2^m2 - kf ^Jw? - k*\ + y 'm2 - kj n h\ = 0 (6.411)

Here n = p1/p2- Letting px = 0, we arrive at the known Rayleigh equation

(2m2 - k2
s)

2 - 4m2yJm?-kjy/Tn?-k* = 0

Applying the same approach as in this last case (px = 0 ) , it is easy to show that for

any parameters of a fluid and an elastic medium there is always one real root, rnp, of

eq. 6.411, which slightly exceeds the maximal value of the wavenumbers:

mv > k\ if ki > ks and mp > ks if ks > k\
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Correspondingly, the surface wave related to pole mp moves along the boundary a

little more slowly than either the longitudinal wave in fluid or the 5* wave in the lower

medium. Since radicals Jrn'p - k\, ^Jrn?v — k2
s, and \ rrij, - kf arc all real and

positive, this wave exponentially decays with an increase of distance from the boundary.

In a fluid, that wave is purely dilatational, whereas in an elastic medium the wave causes

deformation and the rotation of elementary volumes. Of course, above and beneath the

interface these waves advance with the same velocity

cp = —
mp

6.7 Point source of elastic waves in the presence of the free boundary

In the previous sections we assumed that the field is caused by a linear source oriented

parallel to the boundary. Now we extend this study to the three-dimensional case and

consider elastic waves generated by different types of point sources (Chapter 3).

1. Point source of the P wave Suppose that a very small spherical source is

situated at distance d from the free boundary, Fig. 6.10a, and a change of its radius

(pulsations) generates the P wave. As usual, in order to determine the wavefields we

formulate the boundary value problem. Taking into account the axial symmetry of the

direct wave and a medium, it is convenient to choose the cylindrical system of coordinates,

r, f, z, and place its origin at the boundary. By analogy with the two-dimensional case,

we assume that the source generates a sinusoidal wave with frequency UJ. Of course,

the use of Fourier's integral permits us to obtain information about transient waves.

The presence of the boundary creates both longitudinal and shear waves. Therefore it

is natural to formulate the boundary value problem in terms of complex amplitudes of

scalar and vector potentials if and tfj. Respectively, we have

if = ipi + ips and tp = ips (6.412)

Here ^ and <fs are scalar potentials of the primary, ipi, and secondary, ips, wavefields.

At regular points they obey the Helmholtz equations:

V2£ + kf y = 0 and V2T/> + k] xp = 0 (6.413)

At the free surface the tangential, rrz, and normal, TZZ, components of stress vanish,

Trz = 0 and TZZ = 0, if z = 0, (6.414)
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Figure 6.10: (a) Buried point explosive source of P wave (b) Illustration of eq. 6.427

(c) Buried shear wave point source (d) Vertical force

and potentials must also satisfy these two equations. Since

ei h R
% = Q — ^ (6.415)

and potentials of the secondary fields have finite values everywhere, in approaching the

source we have

£ ->• ^ if R^O (6.416)

Here

R = \jr2 + { z - df

It is clear that the amplitude of the spherical wave caused by the source, as well as

amplitudes of secondary waves, decrease with distance, and in the limit they obey the
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condition at infinity

$? -> 0 and V> -> 0 if fl -> oo (6.417)

We have formulated the boundary value problem, and, as follows from the physical point

of view and the theorem of uniqueness, only one field of displacement and stress satisfies

these conditions. Since we have considered Dirichlet's boundary value problem (Part I),

the potentials are also defined uniquely.

Solutions of the Helmholtz equation for scalar potential
First, we find a solution of the equation

V2^ + k?y = 0

Taking into account axial symmetry with respect to the z-axis, i.e., independence on

the azimuthal coordinate, we have in the cylindrical system (Part I)

<92S l d £ 5 2 £ 2 ~
^~T + ~7T + ^~T + ki V = ° (6.418)
or2 r or ozz

Applying the method of separation of variables, potential ip is written in the form

${r,z,w)=T(r) Z (z,w) (6.419)

Substitution of eq. 6.419 into eq. 6.418 and division of both sides by the product TZ

gives

1 d2T 1 dT 1 d2Z , 2 ,

T drz rT dr Z dzz

This equality indicates that the sum of the first two terms and the sum of the last two

terms are constants that differ by sign only. Therefore, in place of eq. 6.420, we can

write

1 d2T 1 dT 2 1 d2Z 2 2 ,
^ T T + ̂ : r = ± m a n d ^ T T + fc? = Tm2, (6.421
T dr1 r T dr Z dz2

where m is an arbitrary number. Thus, instead of a partial differential equation, we

arrive at two ordinary differential equations whose solutions are well known. Selecting

the sign on the right side of eqs. 6.421, we have to take into account the fact that the

wavefield has a finite amplitude everywhere except at the source location. Suppose that

the sign "+" is chosen in the first equation of the set. It gives
d2T 1 dT 2- T + - — - m 2 T = 0
dr1 r dr
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As is well known (Part II), the solution of this equation is expressed in terms of modified

Bessel functions of the zero order

/o (mr) and KQ (mr)

Note that the same functions will be used to study wavefields inside the borehole (Chapter

7). Inasmuch as IQ (mr) increases unlimitcdly when r —> oo, while Ko(mr) becomes

infinitely large at all points of the 2-axis, neither of those functions can describe the

wavefields. For this reason we choose "—" and "+" in the first and second equations

of set 6.421, respectively. Therefore, this system becomes

^• + -—+m2T = 0 and ^ f - (m2 - kf) Z = 0 (6.422)
drz r dr dzz v '

The solutions of the first equation are Bessel functions (Part II),

Jo (mr) and Yo (mr),

or their combinations. Since function Yo (mr) is infinitely large at the 2-axis, it cannot

be used to describe the wavefield. The solutions of the second equation are

exp ±Wm2 — kf z\

Thus, in accordance with eq. 6.419, the partial solution is

£m = ( X e~m' z + Cm em< z) Jo (mr), (6.423)

where

mi — dm'2 — kf

Correspondingly, the general solution of the Helmholtz equation for scalar potential is

oo

£(r, z, LO) = I [Am e-mi z + Cm em'1 z] Jo (mr) dm (6.424)
o

Here Am and Cm are unknown coefficients; they do not depend on coordinates r and

z of the observation point.

Solution of Helmholtz equation for vector potential ip
Taking into account that displacement s has only two components, sr and sz, we

assume that vector potential ip can be described by the azimuthal component

V>= ^ V , (6.425)
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where iv is the unit vector along the ^-coordinate line, and its direction depends on

point position. In order to obtain an equation for scalar component ip, we substitute

eq. 6.425 into the second equation of set 6.413, which gives

V2 (j; v ) + k2
s ̂  iv = 0 or vV2 4> + ^ V \ + k] ̂  \v = 0 (6.426)

As is seen from Fig. 6.10b,

iv = -simp i +cos(p j (6.427)

Here i and j are unit vectors in the Cartesian system, and they are constant vectors.

Since in the cylindrical system of coordinates

V lf = ^ 2 ^ T ( ^ S m ( ^ ! + COS(̂ j),

we have

V\ = - ^ (6.428)

Thus, eq. 6.426 becomes

V2 V; + (k\ - ^ J i> = 0 (6.429)

Applying again the method of separation of variables

i> =TZ,

we obtain as before the same equation for Z', but function T has to obey a different

Bessel equation

dr2 r dr \ r2)

and its solutions are Bessel functions of the first order

J\ (mr) and \\ (rnr)

The latter has to be discarded, since it tends to infinity when r —> 0. Respectively, the

general solution of eq. 6.429 has the form

oo

i>3(r, z,u)=J (Bm e-m* z + Dm em* z ) J, {mr) dm (6.431)
n
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Here

ms = \/m'2 — k'l

Note that functions JQ (V) and J\ (v) are related to each other:

Jl (x) = -4 (x) (6.432)

It is clear that ip and </>, satisfy the corresponding Hclmholtz equations, regardless
of the values of the unknowns. In other words, as in the two-dimensional case, these
equations have an infinite number of solutions. Our goal is to choose such values of
Am,Bm,Cm, and Dm that potentials would also obey the other conditions of the
boundary value problem. In order to accomplish this task, we represent the primary
potential ip{ in the same manner as potentials of secondary waves. This can be done
with the help of the Sommerfeld integral,

C, €-4r- =Q f— e-m< \z ~ d\ Jo (mr) dm, (6.433)
R J mi

o
where

R = \/r2 + (z - df

Then, taking into account the condition at infinity, the potentials are written in the form

00

V = Cif \—er
mi \z-d'\ + Am e-m" z] Jo (mr) dm (6.434)

J [mi J
o

and

oo

^s = Ci I Bm e~ms zJl {mr) dm (6.435)

o

It is obvious that functions ip and I/J given by eqs. 6.434 and 6.435, obey the Helmholtz

equations as well as conditions near the source and at infinity. Now, making use of eqs.

6.414, we will find unknown coefficients Am and Bm.

Stress in the cylindrical system of coordinates and conditions at the free
boundary
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Due to axial symmetry, we can expect that the azimuthal component of displacement.

sv, is equal to zero. Correspondingly, displacement vector s is

s = ,sy ir + sz iz, (6.436)

where ir and iz are unit vectors along coordinate lines. In this case the strains are

dsr sr dsz dsr dsz
e" = "a~> e w = ~> e ^ = ~n~' ev* = °> e" = ~a~ + ^T~ ' erv = ° (6.437)

or r oz oz or

Then, in accordance with Hooke's law, we have

TTT = A div s+2^ err, TVV = A div s+2^i e^, TZZ = A div s+2/x ezz (6.438)

and

rrz = (i erz, (6.439)

while

TVZ =rrv = Q (6.440)

Thus, the boundary conditions, eqs. 6.414, can be written as

A div s+2/x ezz = 0 and erz = 0 if z = 0 (6.441)

Since the boundary value problem is formulated with the help of potentials, it is necessary

to express displacement in terms of functions cp and xjj. By definition

s = grad if + curl ift

Taking into account that

ir r iv iz

, ~ d^ . dp . , ~ i d d d

0 ri> 0

we obtain

~ Of dib ~ dip 1 d / ~\ , .
s r = ^ - ^ , 3z = ^Z + -—{ry) 6.442

ar az oz r or \ /
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Thus, eqs. 6.441 become

-A fc?£ + 2M ^ | + - T^T- (rij) = 0 (6.443)
ozz r or dz \ )

and 2 — ^ - - ^ + — - — r^ = 0 , if z = 0
dr dz dz2 dr [r dr V /J

since

div grad <p = W2f = —kfip and div curl •0 = 0

Further transformations are based on the following equalities:

CO

if I f(m) Jn (mr) dm = 0 then / (m) = 0 (6.444)
•J
o

Here ,/„ (mr) is the Bessel function of the n-order. This result is similar to that for

Fourier's integral. Also

J'(>{v) = -Jl{v) and ^[vJ1(v)}=vJ0(v) (6.445)

Besides, letting v = mr, we have

d 1 ( d \ 2 d 1 d 2

ar r (or J ov v ov

Substitution of eqs. 6.434 and 6.435 into eq. 6.443 and using eqs. 6.444 and 6.445 gives

-A kf (— e"TO' d + Arr)j + 2/i (m mt e~m' d + m\ Am - m msBm} = 0

and

2 (-m2e~mi d + rrnm Am) - (2m2 - k2) Bm = 0

or

- (2m2 - k2) Am + 2m msBm = — e ^ m ' d (2m2 - k2) (6.446)
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and 2m mt Am - (2m2 - k]) Bm = 2m2 e~mi d

Solution of this system is

= _m (2m2 - k'jf + 4m2 m, ms _m d

mi (2m2 - kff - Am2 mt ms

and Bm = ^^f~^ e"m ' d

(2m2 — kf) — Am2 mi ms

Thus, we have found coefficients Am and Bm, that stresses vanish at the free surface.

Therefore, all conditions of the boundary value problem are satisfied. In particular, this

means that the assumption about the azimuthal component of the vector potential was

correct. From eqs. 6.434 and 6.435 we have

J mi (2m2 - kf) ~ 4m2 mt ms

~ ^ f m2 (2m2 - k2) e ~ m ' d
e-

m° z
 T , , ,

and -</> = -AQ / % J, mr dm
J (2m2 - A;2)2 - 4m2 m, ms

The similarity with the two-dimensional case is obvious; for instance, the denominator

of integrands in cqs. 6.448 is again described by the left side of the Raylcigh equation:

(2m2 - A;2)2 - 4m2 mt ms = 0 (6.449)

2. Point source of S wave Suppose that a small spherical source rotates around

the z-axis, Fig. 6.10c. As was shown in Chapter 3, the vector potential of a shear wave

in a homogeneous medium is described by the ^-component only. This potential can be

represented in the form

. 7 p OC

1 = C/-^- = C I — e~m* \z ~ d\ Jo (mr) dm (6.450)
R J m,

o



6.7 THE POINT SO URGE OF ELASTIC WAVES ... 391

Displacement carried out by the incident wave has the (^-component only, and the field

possesses axial symmetry. It is natural to assume that even in the presence of the

horizontal interface, secondary wave s has the same behavior, i.e.,

s = s^ip and — - = 0
dip

Correspondingly, the resultant potential can be written as

CO

^ = CSJ\^ e~m> \z~d\+ Am e~ms zj Jo (mr) dm (6.451)
o

In this case the normal strains are absent:

err = ew = ezz = 0, but evz = ^ , erz = 0, erip = ^ - ^ (6.452)

Thus, at the free boundary we need to satisfy only one condition:

^ = 0 if z = 0 (6.453)

By definition

s = curl i\) = curl [ipiz\ ,

and therefore

sv = ~ (6.454)

From eq. 6.454 we have

oo

~Sit> = c I ( ^ r e~ms |z ~rf|" m Am e~ms z) Jl (mr) rfm' (6'455)
0

and eq. 6.453 becomes

oo

/ (m2
 e~

msd - m ms ,4m) Jx {mr) dm = 0

o

This gives

Am = — e-m°d (6.456)Am = — e-m°d (6.456)
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The vector potential of the secondary field is

oo

; =CS [— e'171* (z + rf) Jo H dm
J rns
o

or

Ws = Ca — = (6.457)
Hi

where

R, = \jr> + {z + df

This shows that the reflected wave is also the shear wave, and its fictitious source is the

mirror reflection of the real source with respect to the boundary. Thus, we have

/ i ksR i ksRi\

^c{-jr + ̂ r)-< (6-458)

and in this case no additional waves are generated at the boundary.

3. Point vertical force Now we will consider a more complicated case, in which the

vertical force per unit area

Z(t) = ZQe-% u l

is applied in the vicinity of some point of the z-axis, Fig. 6.f0d. It is natural to expect

that wavefields generated by such a force produce deformation and rotation of elementary

volumes of a medium. This means that the wavefield is described by both scalar and

vector potentials. In order to find their expressions, suppose first that a medium is

homogeneous and that vertical force Fz is constant within the disc of radius a situated

at plane z = 0 (Fig. 6.10d):

FZ = FZ if z < a and Fz = 0 if z > a (6.459)

Then, as follows from the theory of Bcsscl functions, Fz(r, a) can be represented in the

form

oo
f

Fz = Fza I Jo (mr) Jj (ma) dm (6.460)
•J

o



6.7 THE POINT SOURCE OF ELASTIC WAVES ... 393

In the limit, when the disc radius a tends to zero, we obtain

oo

a2 f
FZ = FZ — m Jo (mr) dm,, (6.461)

o

since

7- / \ m ( 1 T

,7i (ma) —> it ma —» 0

Thus

oo

Fz Fz f
— - = — / m Jo (mr) dm
TTfl,2 27T J

0

or

CO

Fz f
Zo = — \ m Jo (mr) dm, (6.462)

2TT J
o

and it plays the same role as potentials of the incident wave for two other sources. By

analogy with the case, when the source generates a P wave, we assume that the vector

potential of the incident wave has only an azimuthal component. Then, due to axial

symmetry, the potentials of this wave are

oo oo

^ = Cm e~m< z Jo (mr) dm, ^ = j Dm e~m* z Ji (mr) dm, if z > 0

b b
(6.463)

and

oo oo

& = I C'm emi z Jo (mr) dm, ^ = / D'm em° z J1 (mr) dm, if z < 0

o o
(6.464)

In order to determine the unknowns, we take into account that at plane z = 0, normal

and shear stresses are discontinuous and continuous functions, respectively:

rt - T~ = -Z* and rt - T~ = 0 (6.465)
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Here the "+" and " - " signs characterize stresses in the vicinity of plane z — 0 for

positive and negative values of z. As follows from eqs. 6.438 and 6.439,

r« =-Afc,2£ + 2/* J | + I - ^ - ( r ^ ) (6.466)
oz1 r oroz \ I

a n d r r x = 2 — — - —— + — - — lrip)\
oroz ozA or \_r or V /J

Substitution of eqs. 6.462-6.464, and 6.466 into eq. 6.465 gives,

(2m2 - k'2$) {Cm - C'J - 2m ms {Dm + D'J = - ^ - m (6.467)

and 2m m, (Cm + C'J - (2m2 - fc2) (Dm - D'J = 0

Besides, the radial and normal components of displacement are continuous functions

everywhere in a medium, including at all points of plane z — 0. In accordance with eqs.

6.442, we have

T-d^=df-&f- (6-46g)
or oz or oz

dip 1 d ~+ dip 1 d ~-
and — \--—rip = — \--—rip

oz r or oz r or

or

-m (Cm - C'J + ms (Dm + D'J = 0, (6.469)

-mi (Cm + C'J + m (An - D'J = 0

From both sets of equations, we have first

C'm = -Cm, D'm = Dm (6.470)
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and then

(2m2 -k2
s) Cm-2mmsDm = -F£^, -mCm + m,Dm = Q (6.471)

This gives

Cm = - ^ and Dm = Fz m \ 2 (6.472)
4TT/X kj 4nfi ms kj

Let us assume that force is applied at the point of plane z = d and that the z-axis is

still directed downward. Then it is obvious that potentials describing the direct wave are

CO

& = - . Fz
19 I m e - 1 1 1 ' 1 \z~d\ J 0 ( m r ) dm if z<d (6.473)

4nfi kj J
o

oo

and ^ = Fz „ f m e~m' \z ~ d\ Jo (mr) dm if z >d
47T/U k2

s J

o

A l s o
oo

li = - ^ - f ™L e~ms \z ~ d\ Ji (mr) dm (6.474)
4?r/i kl

s J ms
o

Using the Sommerfeld integral, we obtain
Fz d elkiR , ~ Fz 8 eik°R

'•Pi = ~~A n o 5 ~ a n d ^i = ~~A n ^ 5 ~ (6.475)
4?r/x kj OZ R ATTH kj or R

Here

i ? , = [r2 + ( z _ d ) 2 ] 1 / 2

Note that these expressions were derived in Chapter 3, where we considered the waves

in a homogeneous medium.

Potentials of the secondary wave

Taking into account eqs. 6.474 and 6.475, expressions of potentials <ps and tjjs have

the form
oo

V3 = - 7 ^ 7 2 fm Am e " m ' z JQ (mr) dm (6.476)
47T/J, kj J

o
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oo
~ F /'

and ib, = z-^ I mBm e~ms z Jx (mr) dm
47T/i k] J

o

Therefore
oo

$ = -^y2 j m [e~m' \z ~ d\ + Am e~m< z] Jo (mr) dm (6.477)
0

oo

and ^ = —^ I m \— e~m° \z ~ d\ + Bm e~m° z] J, {mr) dm
o

Then, making use of the boundary conditions at the free surface, z = 0, we obtain:

(2m2 - k2
s) Am + 2m msBm = - (2m2 - fc2) e ~ m ' d + 2m2e~ms d (6.478)

and 2m nk Am + (2m2 - k2
s) Bm = 2m m, e " m ' d - — (2m2 - k2) e " m * d

v ' ms
 y '

Solution of this system yields

Am = (2m2-fc2)2 + 4 m 2 r n , m S c _ m ; d + Am2 (2m2 - k2) g_T O s d {Qm)

_ Am mi (2m2 - k2
s) TO; d m (2m2 - fc2)2 + 4m2m;m, TOs d

dllU £3m — t 6
D ms D

where D is the determinant of the system. It is clear that expressions of potentials are

similar to those derived for the two-dimensional source.

Wave behavior

For illustration we derive formulas for displacement components in the far zone,

(&.';/• >> 1), when both the source of the P wave and an observation point arc lo-

cated in the vicinity of the free boundary. Then, letting d = 0 in eqs. 6.448 and using

eqs. 6.442 we obtain

oc

S, = -2k2 Q t r»(2m2-fc2) Jo(mr) ^ {Qm)
J (2m? — k2) — Am?mi m3
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OO

~ 2 /" m2ms Ji (rnr)
and sr = 4k: Ct / ^ dm

J (2m2 - k'l) - 4m2m, ms

From the physical point of view, it is clear that the reflected wave, which obeys SnelPs

law, is absent in this case. This is confirmed by the fact that integrands in eqs. 6.480

do not contain exponential terms and, therefore, the stationary-phase method cannot be

used. Correspondingly, by analogy with the two-dimensional source, we apply contour

integration to find approximate formulas for the wavefields. However, such an approach

requires that the integrand in eqs. 6.480 vanish on the complex plane m, when the

variable of integration tends to infinity (Jordan lemma). In order to meet this condition,

we replace functions Jg and ,J\ by the Hankel functions (Part II). As follows from eqs.

6.480, displacements are expressed in terms of two types of integrals,

OO

f
I = I Fi (m, niims) JQ (mr) dm (6.481)

J
o

f
and L = / F^im, mi?ns) Ji(mr) dm,

J
o

where F\ and F-i are analytical functions on the complex plane m except branch

points and poles.

Integral / At the beginning consider integral / describing displacement sz and

use the equality

Jo (mr) = \ [H™ (mr) + H^ (mr)] (6.482)

Here HQ (mr) and Ho (mr) are Hankel's functions of the zero order and of the first

and second kind. Note that the relationship cq. 6.482 follows from a definition of these

functions of any order v:

H0) ( m r ) = j ^ ( m r ) + iYi/ (mr) and Hf> (mr) = Ju (mr) - iYv (mr) (6.483)

Substitution of eq. 6.482 into integral / gives

OO CO

1 f 1 f
I =- I FT (m) H{Q] (mr) dm + - / FA (m) H{

o
l) (mr) dm (6.484)

o o
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As was pointed out earlier, branch points and poles are located either in the first or in
the third quadrants. Poles are

m ] = ks + i es, m 2 = —ks - i s s , m 3 = h + i eh m A = -kt - i eu ( e « l )

The asymptotic expressions of functions Ho (mr) and HQ ' (mr) are

H™(mr) « A P ^ j (m r ~ ̂ /4) (6.485)
V irrnr

and F<2) (mr) « \P^e~l (m r ~ ^/4) if m r > 1
V vrmr

We see that these functions of the first and second kind decay exponentially with an
increase of rn, if Irnm > 0 and Imm < 0, respectively. Applying the Cauchy
theorem to the first integral in eq. 6.484, we have:

oo

I Fv (m) H{
0
1} (mr) dm = I Fl (m) H{

o
l) (mr) dm (6.486)

c b

+ f F{(m) H{
o

l] (mr) dm + I Fv{m) H{
0

V)(mr)dm

Cl+C2 C3 + C4

0

+ j> F1 (m) H^ (mr) dm + I F{ (m) H{
0
1] (mr) dm = 0

Cp ioo

Here path C is situated in the first quadrant, Fig. 6.11, and singularities of the integrand
are absent in the area surrounded by C. Also, due to the exponential decay of HQ (mr)
for large arguments, the integral along the portion of the path with an infinitely large
radius, Imm —> 00, can be discarded (Jordan lemma). In accordance with eq. 6.486,
integration along the real axis m is replaced by integration along the branch lines,
around poles, and along the imaginary axis m. Since the last integral is unknown, we
have to eliminate it. To do this consider the integral

j Fi (m) H(
0

2) (mr) dm,

Co
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Irnm

*• Rem

Figure 6.11: Contour of integration in eq. 6.486

where Co is located in the fourth quadrant, Fig. 6.11. Taking into account that i<\ (m)

is the analytical function in all points of this quadrant, we have:

oo 0

I F1 (m) H^] (mr) dm = I Fx (TO) H^ (mr) dm + I Fx (TO) H^ (TOT) dm = 0

Co 0 —ZOO

or

oo 0

/

/ •

F1 (m) HJf] (mr) dm = - I FY (TO) H£] (mr) dm (6.487)
•J

0 - too

The use of eqs. 6.484-6.487 gives for integral /

I = - - / Fi (m) H{Q] (mr) dm + / Fx (m) H^1] (mr) dm (6.488)

L Cl+C-2 C3 + C4
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o o

+ I Fi (TO) H^ (mr) dm + I Fx (TO) H^ (mr) dm + I Fx (TO) H^2) (mr) dm

Cp ioo — ioo

Now we will demonstrate that the sum of integrals along the imaginary axis TO vanishes.

Introducing a new variable that differs from TO only by sign, the last integral in eq.

6.488 becomes

o

- F1 (-TO) H^ {-mr) dm

ioo

Since

F1 ( -TO) = -F1 (TO) and H^ {-mr) = -H^ {mr)

we have

o o

- / Fi (-m) H[Q] {-mr) dm, = - f Fl (TO) H^} {mr) dm,
ioo ioo

and eq. 6.488 yields

/ = - 1 f F1 (m) H^1] (mr) dm (6.489)
^ J

+ I Fi (TO) H{
o
l) (mr) dm + j> F1 (TO) H^ (mr) dm

C3+C4 Cp

Thus, as in the case of the two-dimensional source, we have represented the vertical

component of displacement as a sum of integrals along branch lines and around poles

only.

Integral L In the same manner, consider the second integral in eq. 6.481,

describing the radial component of displacement. As follows from eqs. 6.483,

Jx (mr) = l- [H[1] (mr) + H[2) (mr)] ,
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and therefore

oo oo

L = - I F2(m) H[l) (mr) dm + I F2 (TO) H[2) (mr) dm (6.490)
2 J J

.o o
Taking into account the asymptotic behavior of Hankel's functions

H^imr) « 7 ^ - 6
i ( m r " 3 V 4 ) and H\2) (mr) « J—e~l (m r " 3lr/4\

V TTTO r V TTTO r

(6.491)

we can again use closed paths C and Co. By analogy with eq. 6.488, we get

-i /• f>

L = — / F2 (m) H[1] (mr) dm + / F2 (m) H[1] (mr) dm
_G1+C2 C3+C4

0 0

F2 (m) H[1] (mr) dm + F2 (m) H[1} (mr) dm + F2 (m) H[2) (mr) dm
J J

Cp too — ioo

(6.492)

By definition, eq. 6.481, F2 (m) = F2 (—TO). Besides, as is well known,

H[2) (-mr) = H[r} (mr).
Replacement of the variable in the last integral yields

o o

F2 (TO) H[2) (mr) dm, = F2 (m) H[1] (mr) dm,

—ioo ioo

and in place of eq. 6.492 we have

L = -\ f F2 (m) H['] (mr) dm (6.493)

+ I F2 (m) H[1} (mr) dm + I F2 (TO) H[1} (mr) dm
c3+c4 Cp
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Now we are prepared to derive asymptotic formulas for displacement.

Vertical component sz

As follows from eqs. 6.480 and 6.489,

s, = -fc s
2Q (/, + /, + /„) (6.494)

Integral Is Integration along branch lines C\ and C-2 yields

Is= f m (2m2 - k2
s)

X 5 - T H01] (mr) dm:

.(2m2 - k2) — 4m2 m( ms (2m2 - k2
s) + Am2mims\

since the radical ms has different signs on C\ and C\. Thus,
fcs-+ioo

/ , = 8 / ^ m< T s ( 2 m 2 ~ ^ H^ (mr) dm (6.495)
7 (2m2 — kj) — 16m4 m/ m2

Introducing a new variable, t : m = A;s + it, and assuming that the integral is defined

by the initial part of an integration, we have

m — ks, dm — i dt, ms — \/2i ks t (6.496)

Because ksr S> 1, we can use the asymptotic expression of Hankel's function, which

gives

HW (mr) = S ^ e 1 (k*r ~ ^l^e^ l (6.497)

V nksr

Substituting eqs. 6.496 and 6.497 into eq. 6.495, we obtain

/ t - 2 \ ! / 2

8 ? : ( 1 ^ ) • *

/,= \ 2 r2 e ' r - (6-498)

since

oo

o
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Correspondingly,

sz (*.) = ^ Y (6.499)
v

Eq. 6.499 describes the component of displacement, sz (ks), related to two waves
propagating along the boundary with velocity cs. One is the shear wave moving
through a medium; the other is the longitudinal wave propagating along the boundary,
also with velocity cs. The longitudinal wave arises in the same manner as in the two-
dimensional case. When the shear wave moves through a medium, vibration of particles of
the boundary gives rise to the evanescent longitudinal wave, which has the same velocity
of propagation, c.,, along the boundary but exponentially decays with depth z.

Integral /( Performing integration along paths C3 and C4, it is evident that
the resultant integral /( has the same integrand as that in eq. 6.495:

ki +200

J, = 8 / mhnt ^(2m2" ^ H® (mr) dm (6.500)
J (2m2 - k2

s) - 16m4m/ m2.
k,

Then, use of variable t, m = ki + it, gives

*v-%) e ir

k2 { 2 - ^ 1 r 2

and

(^ iV /2 -,

1 2 k2 I

This portion of displacement, sz, is also due to two waves. One is the P wave
advancing through a medium with velocity Q; it has a spherical wavefront. The second
is the conical wave; its velocity of propagation is equal to that of the shear wave, cs.
Along the boundary, however, it moves with velocity q. The wavefront of this wave
is the lateral surface of the cone; the apex is located on the z-axis. The appearance of
this conical wave was described earlier when we considered wavefields caused by a linear
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source. Propagation of the longitudinal wave produces vibration of particles of the free

boundary, which becomes the source of elementary shear waves. The conical wave is the

result constructive interference by elementary shear waves. Thus, the sum

s, (ks) + s, (*,)

is associated with waves moving along the boundary with two different velocities, cs

and Q, and each wave is a superposition of longitudinal and shear waves. Of course, this

consideration is directly applied to function sr.

Radial component sr

In accordance with cqs. 6.480 and 6.493,

7sr = -k?aCt (Ls + L[ + Lv) (6.503)

Integral Ls Integration around branch point ks gives

ks+ioo

Ls = 2 [ m2ms \ ^ + ^ 1 ̂ ( 1 ) {mr) dm
J L (2m 2 - fc? ) 2 -4m 2 m,m, (2m2 - Jfc2)2+ 4m 2 m,mJ

or

fca}'°°m2ms (2m2 - k'lf H[l) (mr)
L, = 4 / -.— dm 6.504

J (2m2 - k2
sf - 16m4m2 m2

Ks

Again performing a simple transformation, m = k$ + it, we obtain

_ 4a fc2 VKV21V2 e-'1 3^/4 eik° r ^
s ~ kj ^/nk~r r3/2!

or

4 J ksr
Ls = - — - (6.505)

KS r

and

4 (7, Jks r
sr(ka) = 1—2 (6.506)
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Integral L\ In the same manner, for integrals along branch lines Cz and C4 we

have
ki+ioo

Lt = 2 \ m2m, 7, » Ii\l) (mr) dm
J ' [{2m? - kfj1 - 4m2

mi ms (2m2 - k2
s)

2 + 4m2mims\
h

or
ki+ioo , ,

6 / ">V < ^ ^ ) dm
 (6.507)

J (2m2 - fc2)4 - 16m4 mj m\

This gives

16i k1y/2iki kf (l - !jp) elki rV2^e~l 3^/4

and

( I " l) 16 ̂  rLl = -(7W^ (6-508)
V kf)

T h u s

~s' (fci ) = / ' , 2 x 4 " ^ - (6-509)
(2-^-1
V kf)

Correspondingly, the radial component of displacement associated with branch points is

sr{ks)+ sr(ki)

We have found asymptotic expressions of displacement at the free boundary caused by

waves that propagate with either velocity cs or velocity Q. There is also a surface

wave, and its velocity CR (CR < cs) is defined from the real root of the Rayleigh equation

(eq. 6.449). In order to determine the magnitude of displacement caused by the Rayleigh

wave, we have to calculate the residual at the pole, kn, of the integrands in eq. 6.480.

Since in the far zone ksr ^> 1. asymptotic formulas for Hankel's functions can be used.

This means that displacement components related to the surface wave decay as 1/y/r,

- that is, much more slowly than the same components caused by the other waves.
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Chapter 7

Propagation of elastic waves in

borehole containing a fluid

In this chapter we will study wave propagation in a medium with a cylindrical interface

and mostly at relatively large distances from the source. As in the horizontally layered

medium, our attention is paid to reflected, transmitted, head, and surface waves, as well

as to normal modes.

7.1 Solution of the boundary value problem

Suppose that a cylindrical borehole with radius a is filled by a fluid, and the elementary

spherical source of the sinusoidal P wave is located on its axis, Fig. 7.1a. The sur-

rounding medium is an elastic one, and the density and wave velocity inside and outside

the borehole are pl: C\ and p2, ci, c,,, respectively. Taking into account the geometry

of the model, we have chosen a cylindrical system of coordinates with the origin at point

O, where the source is situated, and the z-axis coinciding with the axis of the cylinder,

Fig. 7.1a. In order to describe the wavefields we again use scalar and vector potentials

that, due to axial symmetry, depend on two coordinates, r and z, only. By definition,

displacement s is related to the potentials as

s = grad (p + curl ifi (7-1)

Correspondingly, vector s has two components, sr and sz, which are independent of

the azimuthal coordinate. Since the borehole is filled by a fluid, the rotational waves are

absent inside of it, and the wavefields are described by scalar potential only.

407
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Figure 7.1: (a) Cylindrical borehole (b) Behavior of modified Bessel function

Next we will derive formulas for potentials inside the borehole and in an clastic

medium, and with this purpose in mind we will formulate, as usual, the boundary value

problem. First, we know that complex amplitudes of potentials obey the Hclmholtz

equations:

V25?! + k\^px = 0 if r <a (7.2)

and

V2£2 + kfp2 = 0, V2V>2 + k2
sip2 = 0, if r > a (7.3)

where

ki = - , k = - , k, = - (7.4)
C\ Ci C,

Of course, eqs. 7.2 and 7.3 are invalid at the origin, where the source of the primary field

is located, as well as at the interface r = a. At points of this boundary between a fluid

and an elastic medium, the tangential component of displacement can be a discontinuous

function. At the same time, the normal component of displacement and normal stress

are continuous functions. Since shear stress is absent in the fluid, it is also equal to zero

at points of the interface. Thus, the boundary conditions are

~(1) ~(2) ~0 ) ~(2) ~(2)
sr = sr , Trr = TrT , rzr = 0 it r = a ('-5)
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It is convenient to represent the scalar potential inside the borehole as the sum

p^r, z,u>) = po(r,z,uj) + ps(r,z,u>), (7.6)

where ipo(r, z, to) is the scalar potential of a direct wave in a homogeneous medium with

parameters p1 and c\. As we know,

ik\R
£o = C - l f - (7.7)

Here C is the constant and R is the distance from the origin:

i ? = ( r 2 + z 2) 1 / 2

Function ps describes secondary waves caused by the presence of the boundary, and

it is finite everywhere. It is clear that on approaching the source, the primary potential

becomes dominant:

ikxR
&->£„ = £ — — if R^O (7.8)

Finally, assuming the presence of attenuation, even it is very small, we can conclude

that at very large distances from the source, wavefields vanish, and we have condition at

infinity:

tp1 —> 0, p2 —> 0, and ip2 —> 0, if R —• oc (7.9)

Thus, we have formulated the boundary value problem, and our goal is to find scalar and

vector potentials that satisfy eqs. 7.2 and 7.3, as well as conditions 7.5, 7.8 and 7.9.

Solution of Helmholtz equation for scalar potential ip
As was shown in the previous chapter, in the cylindrical system of coordinates the

Helmholtz equation is written in the form

d2ip 1 dip 82(p , 9 ~ . .
^ T + - 7 T + ^ T + / c V = 0 7.10
or2 r or ozz

Here

k = k\ if r < a

k — ki if r > a
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Applying again the method of separation of variables, we have

y(r,z,u)=T(r,uj) Z(z) (7.11)

Substitution of eq. 7.11 into eq. 7.10 gives two ordinary differential equations of the

second order,

1 d2T 1 dT , 2 2 , ld2Z 2 .
T 7 i + ̂ T + fc " T m 2 and - — = ±m2, 7.12
T drz rT dr Z dz2

where m is an arbitrary variable of separation. In choosing a sign on the right side of

eqs. 7.12, we assume, by analogy with function ipQ, that the scalar potential in both

media is an even function of coordinate z. Thus it is proper to choose minus sign on

the right side of the second equation of set 7.12, and this gives

d2Z 2—— + m Z — 0
dzz

Its partial solution is sinmz and cosmz with arbitrary constants, and the latter is an

even function of Z. For this reason, cos mz is used to represent the complex amplitude

of potential (p. Correspondingly, the first equation of the set 7.12 becomes

d2T 1 dT
-—- + - - ( m 2 - r ) T = 0, 7.13
dr2 r dr v '

Its partial solutions are modified Bessel functions of the first and second kind,

/o ( \/m2 — k2 r) and KQ f \/m2 — k2 r j ,

but of the zero order. In particular, if the argument is real and positive, the behavior of

these functions is very simple, Fig. 7.1b. For instance, their asymptotic expressions are

I0{x)-fl, Ko(x) -)• -Ina; if x -)• 0 (7.14)

and Io (x) -^ -^ ex, Ko (x) ->• (J^j e~x if x -^ oo

We will also use modified Bessel functions of the first order:

/i (x) and Ki (x)
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Their asymptotic formulas are

/i (x) -> ^ , if, (a;) -> - if i ^ O (7.15)

and /, (x) -» ( 2 ^ ) e*, # , (x) -> ( — j 1 ^ e"21 if x ->• 00

By definition, the sum

Tm (r,cu) = AmI0 (rriir) + BmK0 (rriir) (7-16)

satisfies eq. 7.13, and

m, = TO! = dm2 — k\ if r < a

nii = TO; = dm2 — kf if r > a

Taking into account the assumption about symmetry with respect to plane z = 0 and

eq. 7.11, the partial solution of the Helmholtz equation is

<pm = [AmI0 (rriir) + BmK0 {niir)} cos mz (7.17)

Therefore, for the general solution we obtain

00

if (r, Z,LJ) = / [AmI0 (rriir) + BmK0 (rriir)] cos mz dm (7-18)
0

As was pointed out earlier, secondary waves have finite value everywhere. For this reason,

the secondary scalar potential </?s is written as

00

(ps — / AmI0 (m\r) cos mz dm,, if r < a (7-19)
•J
0

since function Ko (rri\r) is infinitely large at the point of the borehole axis (r = 0). In

approaching the origin (r —> 0, z —> 0), the secondary potential tends to a finite value.

Correspondingly, the function (pl satisfies the condition near the source. Taking into

account that Io (nijr) increases without limit with an increase of r, potential ip2 in

an elastic medium is
00

(p2(r,z,u))= BrnK0 (rriir) cos mz dm (7.20)
J
0
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Thus functions ipx and ip2 satisfy the Helmholtz equation as well as conditions near

the source and at infinity when r —> oc. Note that these functions also vanish with the

increase of \z\. This happens because of the oscillating factor cosm.2 in integrals of

eqs. 7.19 and 7.20.

Solution of Helmholtz equation for vector potential V
We will assume that the vector potential has only an azimuthal component. In this

case the Helmholtz equation becomes

V2V; + U -^\:i = o

Then use of the method of separation of variables

i> = T (r,uj) Z (z)

gives the same equation for Z (z) as before, and its solutions are the trigonometric

functions

sin mz and cos mz

At the same time, function T (r, u) has to obey a different Bessel equation

drz r dr \rz )

where

ms = A/TO2 — ki

Solutions of this equation are modified Bessel functions of the first order: Jj (rnsr) and

Ki{msr). Since Ii(msr) increases without limit with an increase of r, provided that

ms is real, this function cannot describe the potential tp outside the borehole. We will

attempt to satisfy the boundary conditions assuming that the potential solution of the

Helmholtz equation is the odd function of z, i.e.,

tpm (r, z, UJ, TO) = CmR\ (msr) sin mz (7.22)

Then the general solution for the vector potential may be written as

oo

tp (r, z,u>,) = / CmKi (msr) sin mz dm (7.23)
J
o
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It is clear that this function also obeys the condition at infinity for any values of unknown

Boundary conditions and determination of unknowns
By analogy with a horizontally layered medium, we represent the scalar potential of

the direct wave in terms of Bessel and trigonometric functions (Part II):

= — I Ko (niir) cos mz dm (7.24)
R n J

o

Correspondingly, the expressions of potentials satisfying the Helmholtz equations as well

as conditions near the source and at infinity are
oo

2 f
ipx — —C I [Ko (mir) + AmI0 (mir)]cosmz dm if r < a (7.25)

71" J
o

oo
~ 2 f

and ip2 = —C / BmKo {niir) cos mz dm,
^ J

o

~ 2 /*
•02 = —C / CmK\ (msr) sinmz dm if r > a

7T .7
0

In order to determine unknown coefficients Am, Bm, and Cm, we use the boundary

conditions, eqs. 7.5. Since

~ d(p dijj ~ eta 1 9 / ~\ . .
Sr = ^r-^-, sz = 7f + -— [ri,), 7.26

or az oz r or V /

or az or

d'sr
and r r r = A div s + 2u—-. rzr — a ezr,

or '

eqs. 7.15 can be rewritten in terms of complex amplitudes of potentials:

^h - ^h. _ ^2 (797,
ar ar az
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and 2 - ^ - — Y + — -—r^>2 =0 if r = a
oroz ozi or \r or )

Here we use the known equalities

div grad ip — V 2 ^ = —k2(p and div curl tp = 0

Let us recall that Ai is the bulk modulus of the fluid and

Ai = cfo, (X2 + 2fi2)=cfp2, V-2 = c2
sp2 (7.28)

In solving system 7.27, we may apply the equalities

71, 71, 2??,
In ~ -̂ n-1 In, In ~ In+l H In, In

 = In-1 ~ In+1 (7.29)

and -K'n = Kn_v + -Kn, - K'n = Kn+l Kn, Kn = Kn_1 - i^n+1,

where v and n are the argument and order of the modified Bessel functions.

Substitution of eqs. 7.25 into the first equation of set 7.27 yields:

- m\Kx (7riia) + mj-^ (mia) Am — -mi Kx (mia) Bm - rn Kx (msa) Cm

In the same manner, we have for the second equation

-Ai k\ [Ko (mia) + AmI0 (mia)] = -A2 kf Bm Ko (m^a)

—2/z2 m
2BmK[ (mia) - 2/<2m msCmK[ (msa)

Finally,

2m miKx (mia) Bm + m2CmKx (msa) + m2CmKx (msa) = 0,

since

•^-rKL (msr) = ^vKx (v) = Kx (v) + vK[ (v) =•^rKi (msr) = T~vK1 (v) = Kx (v) + vK[ (v) =
or ov



7.1 SOLUTION OF THE BOUNDARY VALUE PROBLEM 415

K, (v) - V ( K O + l-K,\ = -vK0 (v)

and

— -—rKi (v) = -—msK0 (msa) = m2
sKi (msa)

or [r or J or

Thus, the system of equations with respect to unknowns Am, Bm, and Cm is

mxlx (mid) Am + mtKi (niia) Bm + mKl (msa) Cm = mxKi (mid),

-Xikjlo (mid) Am + [\2k?K0 (m4d) + 2/x2 m] K[ (m,a)] Bm (7.30)

+2/i2m msK\ (msa) Cm = Xik^K0 (mid)

and 2m mxKi (mid) Bm + (2m2 - k2) Kx (msa) C'm — 0

Before we continue, it may be appropriate to make two comments:

1. The potentials ip and ip are represented in the form of the Fourier cosine and

sine transforms, respectively. This fact allows us to replace an equality of integrals with

an equality of integrands.

2. At the beginning we assumed that expressions for potentials do not contain terms

with either sinmz or cos mz. However, the same result follows from eqs. 7.27 if we

initially preserve these terms. In other words, our assumptions are justified.

From the last equation of set 7.30 we have

r 2m rniKi (mid) n

(2m2 - k2
s) Ki (m3a)

Its substitution into the first equation of the set gives

mJi (mid) Am
 s ' l l Bm = mxKi (mid) (7.32)

(Zm - KS)

The second equation of the system becomes

-Ai k\ Io (mLd) Am + [A2 kf Ko (mtd) + 2/J,2 m
2K[ (mta) (7.33)

•±/j2m
2mimsK[(msa)Ki(mia) 2
17,—o i2\T' i ^ B m = -^i^i-^o (mia)

(2mA — kj) K] (msd)
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Consider the sum of the first two terms in the square brackets:

A2 k2K0 (rriia) + 2ji2 m
2K[ (mid)

Since

K'1(v) = -K0(v)-±K1(v),

we have

A2 kfK0 (rriia) — 2/z2 m\ \K0 (mid) H K\ (mid) = (A2 kf — 2/i2 rrif) Ko (mid)

-2 /x 2 - ^ - / l ' i (mta) = -fi2 (2m2 - k2) KQ (mid) + —K1 (mid)

Correspondingly, the expression in brackets becomes

[/„ 2 i2\T' t , , 2m; 4m2mimsK[(msa)K1(mta)]
-M2 [(2m - ks) K0 (m,a) + — A . (m,a) + (2ffl2 _ fc2) ̂  K a ) j =

-(2m^k")K1(msa){^m2 " ®'K° M ^ ^ ^

+ ^ ^ (2m2 - k2
s) Ki (m,a) Kx (msa)

-4:m2mims Ko (msa) H K1 (msd) Kx (mid) \ — -^i2Pm,

where

(2mz - kj) Ki(msa) Lv "

—- Ki (mja) Ki (msa) — Am2mi msK0 (msa) Kx (mid)
a J
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It is interesting to note that function Pm contains terms like (2m2 — k2) and 4m2m;

ms, which are also present in the Rayleigh equation (Chapter 6). Thus, in place of eq.

7.33, we have:

b k2
s Io (mia) Am + PmBm = -b k2K0 (mia), (7.36)

because

AiA? = ftl*I = 6 ̂  b=Pl
/*2 Pi C

S ' Pi

Respectively, the system of equations with respect to A.m and Bm is

m,/i (mia) Am
 s ' x ' Bm = mAKA (mAa) (7.37)

[Zm - KS)

and b k] Io (rriia) Am + PmBm = -b k2
s Ko (m-^a)

The solution of this set is

-k] rrn Ki (mt a)
m i A l ( m i f l ) 2n^kl

-k2K0(mia)b Pm
Am = f, (7.38)

and

mill (mia) miKi (mia)

b k2lo (m1a) -b k'2K0 (mia)
Bm = = (7.39)

Dm

t2h (mia) KQ (mia) + Io (m^) Kx (mia) _ b k] 1

Dm a Dj

since

h (v) Ko (v) + Io (v) Ki (v) = ̂  (7.40)

As follows from eqs. 7.37, the determinant is equal to

Dm = rnJi (mia) Pm H v^—2 r ^ (7.41)
(zm — K,s)

The coefficient Cm is defined from eq. 7.31.

We have derived formulas for scalar and vector potentials that can be used to perform

numerical integration. However, they are hardly convenient for obtaining the asymptotic

expressions for these functions. For this reason, we will begin by studying wave behavior

in some special and much simpler cases.
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7.2 Waves in an acoustic medium

We will start by considering a relatively simple case in which a medium surrounding

a borehole, is also an acoustic medium (fi2 = 0). Because shear waves are absent,

wavefields caused by the point source, (Fig. 7.1a), are described by scalar potential only.

Respectively, we have for the complex amplitudes of ip(r,z,ui) inside and outside the

borehole (Part II)

oo

2 /*
tp1 (r, z, ui) — C— I [KQ (m\r) + Am IQ (mir)l cos mz dm if r < a (7-42)

7T J
0

oo

~ 2 /*
a n d ( p 2 ( r , z . u i ) = C— / B m K 0 {m,2r) c o s m z d m i f r > a

7T J

o

where
nil — \ rn2 — k\. m-i — \/m2 — k%, and hi = —, k'2 — —

It is obvious that these functions satisfy the Hclmholtz equations as well as conditions

near the source and at infinity. Unlike in the general case, (/i2 7̂  0), only two equations

at the borehole surface describe continuity of normal stress and the normal component

of displacement:

~W - (2 ) j ~(!) ~(2) -o in , o \

rrr = TTT and sr — sr 11 r = a (7.43)

or

A, %& = A2 ̂ 2 , f1 = f1 (7-44)
Taking into account that A = pc2, eq. 7.44 can be rewritten as

~ ~ Olf-i O(p2

P1V1 = P2^2, -Q^T = -Q^ if r = a (7.45)

Substitution of eqs. 7.42 into eqs. 7.45 gives

pL [Ko (mia) + AmI0 (mia)} = p2BmK0 (m2a) (7.46)

and rrii [—Ko (mia) + AmIi (mia)] — —m,2BmK 1 (n^a)
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Solution of this system gives (Part II)

_ miKf, (m2a) Kx (mia) - m2 b Ko (mxa) Kx (m2a)
m rriiKo (m2a) I\ (mxa) + ni'i b IQ (mxa) K\ (17120)

and

m a[niiK0 (m2a) h (mia) + m2 b Io (mia) K\ (m2a)]

Here

In deriving the latter, eq. 7.48. we have used the equality

/„ (x) K, (x) + h (x) Ko (x) = i (7.49)

Also, it is useful to obtain eqs. 7.47 and 7.48 from formulas derived in the previous

section. Assuming that /i2 = 0, we have cs —»• 0 and ks —> 00. Function Pm (eq.

7.35), then becomes

Pm f» -k2
sK0 (mia)

Therefore, the determinant of the system Dm, eq. 7.39, is equal to

Dm ~ -k2
s [m,/, (nha) Ko (mid) + b m (/0 (m,\a) Kx (mia)}

Thus, coefficient Am, eq. 7.38, coincides with the coefficients for the acoustic medium,

eq. 7.47, if /i2 = 0. In the same manner, we obtain coefficient Bm. It is clear that

coefficient Cm, eq. 7.31, characterizing shear waves, vanishes if \i2 — 0-

Normal modes in the borehole
Next we will discuss wave behavior inside and outside of the borehole beginning with

the normal modes. First, suppose that the primary source generates incident sinusoidal

wave at sufficiently high frequencies that the wavelength is smaller than the borehole

radius a (Ai < a). This means that at each point of the boundary, reflection and

transmission take place, as would also occur on the plane (Part II). At this point, the

direct wave can be treated as a plane wave, and its incident angle increases with an

increase of coordinate z. In order to understand the formation of normal modes we use

axial symmetry and consider any plane that contains borehole axis z. Fig. 7.2a.
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Let us assume that the incident wave reaches some point p of line 1 and forms
angle $i with the normal to the boundary. The elementary reflected wave then appears
and travels upward. It reaches line 2 and causes another reflected wave, which goes
back to line 1. Reflections from both lines give rise to two families of waves, namely,
downgoing and upgoing waves. From Fig. 7.2a we see that each wave of these sets makes
the same angle $i with radius r. At a rather large distance from the source the
resultant wavefield related to the normal modes can be approximately described by a
system of plane waves propagating along the borehole and forming different angles with
the boundary. This picture may suggest that each group of upgoing and downgoing waves
undergoes multiple reflections at different points of the boundary and advances along
the z-axis. The interference of these waves may be either destructive or constructive,
and our goal is to examine the superposition of these waves when they interfere in a
constructive way. Before we discuss this subject in some detail, it is appropriate to make
two comments:

1. The incident wave simultaneously reaches all points of the boundary located at
any plane z = const. The reflected wave also arises at these points at the same instant.
Its rays are located at the lateral surface of the cone and at the wavefronts. For this
reason, these reflected waves are called conical waves.

2. If the incident angle exceeds the critical angle, we observe total internal reflection,
and the energy of these waves remains inside the borehole. However, when the incident
angle is smaller than the critical angle a transmitted wave appears, and some energy
penetrates into the surrounding medium. Thus, after each reflection, the waves inside
the borehole become weaker. This shows that even when constructive interference takes
place, rsulting mode usually rapidly decreases with distance z from the source. Often
such a mode is called the leaking mode. Certainly, at large distances we observe the
result of a constructive superposition of waves with the reflection angle exceeding the
critical 0, > 0c.

We have qualitatively described an appearance of waves that move along the bore-
hole. In other words, it is assumed that under certain conditions there is a constructive
interference between reflected waves. Because of this a superposition of these waves -
called normal modes - may exist in the borehole. From the mathematical point of view
this means that each normal mode can itself satisfy, at some frequency, boundary condi-
tions. It is also obvious that propagation of the normal mode inside the borehole causes
vibration of the borehole surface (r = a), and evanescent motion in the surrounding
medium. Thus, every normal mode is accompanied by waves outside the borehole. As
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Figure 7.2: (a) Reflection of waves on borehole surface (b) Intervals of integration (c)
Path of integration on complex plane
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is well known from the theory of total internal reflection (Part II), the amount of energy

moving into the surrounding medium during each period is equal to zero. This suggests

that such waves are evanescent waves. The independence of each mode from the others

allows us to find the conditions from which they arise, as well as their amplitudes and

phase velocities.

Dispersion equation
In accordance with eqs. 7.42, scalar potentials of normal modes can be represented

as

oo

ip1 = / ArnI0 (rriir) cos mz dm, if r < a (7.50)

o

oo

and ip2 = / BmKo (m2r)cosmz dm if r > a

o

In eqs. 7.42 and in eqs. 7.50 we use the same notations for harmonic amplitudes, Am and

Bm. However, in the eqs. 7.50, they characterize the normal modes only. Substitution

of eqs. 7.50 into set 7.44 gives a system of two homogeneous equations:

PiAmI0 (TOIG) - p2BmK0 (m2a) = 0, (7-51)

rrnAmI\ (mi a) + m2BmKl (m2a) = 0

Existence of the normal modes means that unknowns Am and Bm differ from zero,

which can happen if the determinant of this system is equal to zero:

_ pxlo{mia) -p2K0(m2a)

mill (mia) m2Ki (7712a)

or

b m2lo (mia) Ki (m2a) + mi Ji (mia) Ko (m2a) = 0 (7.52)

Here

777-1 = \/m'i ~ k'l a n d m2 = \ / m n ~ 2̂>
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and mn are roots of eq. 7.52. In order to demonstrate the presence of roots assume

that fci > k2- Correspondingly, three intervals of integration are shown in Fig. 7.2b. In

the first one,

k\ < m < oo,

both radicals mi and m2 are real and positive. Therefore values of the modified Bessel

functions are also positive, Fig. 7.1b. This means that determinant Dm of system 7.46

does not have roots if m > ki. In this light, it may be appropriate to notice that in this

case, integrands in eqs. 7.42 describe elementary cylindrical waves that exponentially

decay with an increase of distance from the boundary. In other words, only harmonics

with rn > k\ may form surface waves. Since roots mn are absent in the first interval,

we conclude that this range of m does not produce normal modes. Within the second

interval

k-2 < rn < ki

the radical m2 still remains real and positive, while m\ can be written as

mi = (mz-k\)112 = -imu (7.53)

where nil is the positive number. Respectively, function Dm has the form

Dm = —imip2li (—imia) KQ (m^a) + m^PiIo l—imiaj K\ (rri2a) (7-54)

Taking into account that

Io H.i) = Jo {-ix), h (-ix) = -iJi (x), (7.55)

we have

Dm = -rhxp2 Ji (rhia) Ko (m2a) + m2p1J0 (rhiaj Kx (m2a) (7.56)

Therefore the denominator becomes equal to zero at points mn, where

mip2 Ji (rriia) Ko (m2a) — rn2pvJo irniaj Kx (m2a) (7-57)

This is called a dispersion equation. Finally, within the last interval, m < k2, we have:

Dm = —mip2 Ji imia) KQ \—im2a\ — im2p^ JQ [niia) Ki (— im,2a) (7.58)
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Here

m2 = v/fcl ~~ ™2

Functions K^i—im^a], and Ki l—irn^aj have complex values, and so function Dm

is also complex. At the same time, the presence of zeros requires that

Re Dm = 0 and Im Dm = 0

As calculations show, the real roots of the dispersion equation

Dm = 0

are absent if rn < k?. Let us assume that the real root mn exists in this interval,

i.e., rn-2 is a purely imaginary number. Taking into account the asymptotic behavior of

function KQ (m^r), we have to conclude that in the surrounding medium there is a wave

propagating away from the borehole. Correspondingly, the energy of the normal modes

decreases, and they must vanish. Thus, we sec again that roots of the determinant Dm

are situated only within the second interval:

k2 < mn < hi if c2 > cx (7.59)

The term cosm.2 in the integrands of eqs. 7.50 characterizes propagation of the normal

mode along the z-axis, and by definition the root mn plays the role of the wavenumber.

Correspondingly, the phase velocity. cpn (to), of the normal mode is

rnn = 1-^ or cm (u>) = — (7.60)

Thus, eq. 7.57 allows us to determine the wavenumber and phase velocity of the normal

modes. In order to determine their amplitude, we apply the same approach as in the

case of a medium with a plane interface.

Deformation of integration path
As usual, let us assume the presence of very small attenuation. Therefore, the singu-

larities of the integrands in eqs. 7.42 are situated either slightly above the real axis of m

in the first quadrant of the m-plane or a little beneath in the third quadrant. First, we

represent the potential of the secondary waves in the borehole in a different way. Since

ei rn z _|_ e—i rn z
cos mz = ,
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we have
oo oc

V, = - [ AmI0 (mir) eimzdm+- f AmI0 {nhr) e~l m z dm
7T J TT J

0 0

Since Am(m) and IQ (mir) are the even functions

Am {-rn) = Am (m) , Io (mir) = Io {-mvr)

the last integral is written as

00 —oo

/ Am (m) Io (mir) e~{ m z dm = - I Am (-m) Io (mir) e{ m z dm
J J
o o

0

= f Am (m) Io (mir) el m z dm
— OO

Thus,
oo

Vs = - A™ M /o (mir) elmz dm (7.61)
71" J

— oo

Applying the Cauchy theorem to the closed path CQ shown in Fig. 7.2c, we have
oo

/ ^ / o (m,r) emz dm = f ^Io (mir) eimz dm + (7.62)
J J-'m J Urn
Co - o o

/ ^ p Jo (mir) eimz dm + Mp + Mb = 0
Coo

Here Mp and M;, are sums of integrals around poles and branch points, respectively,
and

Nm = [m\p2Ko (m2a) K^ (mi a) - m2p1K0 (mi a) /fi (m2a)] (7.63)

Since the integrand contains the exponential term exp(imz), we can use the Jordan
lemma and discard the second integral in eq. 7.62. This gives

oo

1 Am (m) Io (mir) elmz dm = -Mp ~ Mb

— OO
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and hence

V, = ~- (Mp + Mb) (7.64)
7T

In a similar manner the potential <p2 can be described in terms of integrals around poles

and along branch lines. Since the poles mn exceed the wavenumber k?, the radical mi

is positive, and, therefore the function Ko {m-zr) exponentially decays with distance r,

if kir > 1. As was already pointed out, this suggests that outside the borehole, the

wavefields associated with normal modes behave like evanescent waves. They appear due

to total internal reflection when destructive interference produces a rapidly weakening

wave in the surrounding medium.

In accordance with eqs. 7.64 the wavefield in the borehole consists of three parts:

(p1=(p0 + (pp + ^>b (7.65)

We focus now on the second term, <pp, related to the poles. Because roots mn of the

dispersion equation D,m — 0 are poles of the integrands in eqs. 7.42, we can say that

the normal modes are defined by behavior of the potential in the vicinity of the poles.

This fundamental fact allows us to apply theory of the complex variables to determine

the amplitude of the normal modes (Part II). At the same, the phase velocity cp (ui) is

calculated from the dispersion equation. Taking into account the residual theorem, we

have

^p = 2CtJ2^sFne
tm"z, (7.66)

n=l

where

Fn = y p h {m\'r), (7.67)

while Dm and Nm are given by eqs. 7.58 and 7.63, respectively. Taking into account

that

<pp{r,z,u) =Revpe-'tojt,

eq. 7.66 gives

<pp (r, z, co) = RCJ2 Gn e~l ̂  l ~ ™" z) (7.68)
n
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Here

Gn = 2C i RcsFn (7.69)

The latter, eq. 7.69, clearly shows that each term of the sum characterizes a sinusoidal

wave (normal mode) traveling along the borehole with phase velocity cpn, eq. 7.60.

At the same time, function Gn defines the complex amplitude of the normal modes,

which depends on frequency, parameters of the medium, the distance r, and root mn.

From eq. 7.67 it follows that dependence of the normal mode amplitude of distance r

is determined by the function

Jo ( \A? ~ml r) ••

since

h (mir) = Jo (mirj

This means that each mode as a function of r represents a standing wave.

We will begin our study of normal modes with the simplest case, in which the borehole

is surrounded by an ideally rigid medium.

Case 1 When the borehole is surrounded by an ideally rigid medium, function Fn

is greatly simplified, and we have

Fn = -i ^ ? 4 Jo (mir) (7.70)

Ji [m^j

Correspondingly, the dispersion equation is

Jl (mia) = 0, (7.71)

and its first zeros are given below:

n O 1 2 3 4 5 6

rn = mxa 0 3.83 7.02 10.17 13.32 16.47 19.64

Since with an increase of the argument the behavior of Bessel functions has a sinu-

soidal character, the difference between zeros, rn, tends to TT. Letting

rhia = rn, (7.72)
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we obtain for each mode a relationship between wavenumber mn and the frequency:

mn = l(kW-riy/2 (7.73)

As follows from eq. 7.73, for all normal modes except n = 0, there is a nonzero frequency

when

kva = rn or }c = —— (7.74)
lira

This is called the cut-off frequency. In this case, wavenumber mn is equal to zero

and the phase velocity becomes infinitely large, cq. 7.60. With an increase of to the

wavenumber of the normal mode increases, eq. 7.73, and therefore phase velocity cpn,

•*=(*x-V- (7-75)
gradually decreases. In the limit it tends to the wave velocity in the borehole fluid

cpn (ui) —>• c i if u) —> oo (7.76)

As was pointed out earlier, every normal mode is the result of the constructive interference

of waves reflected from the cylindrical boundary. With an increase of frequency, the angle

between the direction of propagation of these waves and the z-axis decreases, and it tends

to zero when ui —> oo. Dispersion curves of phase velocity cpn (w) for the first several

modes are shown in Fig. 7.3a. Unlike with the other modes, the phase velocity of the

normal mode n = 0 is independent of frequency, and it is equal to C\. In fact, since

ro = 0, we have, eq. 7.75

m0 = fci and cp0 = c : (7.77)

Thus, regardless of frequency, this mode propagates along the borehole with constant

velocity, and its cut-off frequency is equal to zero. From eq. 7.75 it follows that with

an increase of the order of the normal mode, the cut-off frequency also increases. Corre-

spondingly, there is a range of relatively low frequencies in which modes except n = 0

are absent. In the second range the first mode appears, so that there are two modes. In

the next interval three modes exist, and so on. Note that the cut-off frequency of any

mode is related to the pole mn = 0. We see from eq. 7.74 that the normal mode arises

when the smallest wavenumber is equal to

ki = — or — = — (7.78)
a A, 2TT V '
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Figure 7.3: (a) Dispersion curves of phase velocity (p2 = oo) (b) Functions f\ (rn)

(solid lines), f2(rn,p) (dashed lines) for different n and p (c) Dispersion curves of

phase velocity (general case) (d) Dispersion curves of group velocity (general case)
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For instance, if n = 1, we have

a
- « 0.6,

and the wavelength is slightly smaller than the borehole diameter. Of course, with an

increase of the mode order, wavelength Ac (Ac = c i / / c ) , decreases. (The normal mode

of the zero order is an exception. The earliest "telephone" was based on air pipes, and

communication took place due to propagation of normal mode n = 0 with constant

velocity C\, regardless of frequency.)

In accordance with eq. 7.70, the residue of function Fn (Part II) is

rriiKi \m-\_a) Jo I ni\T 1
Res Fn = i V ' , (7.79)

mna J[ (TOI«J

since

d (~ \ mna ,(~ \
dm V ) mi ^ '

Taking into account the equality

J[(X) = JO(X)-*M,

in place of eq. 7.79 we obtain

niiKi (mia) Jo (mir)
Res Fn = i v ' (7.80)

Ji (mia)
mna Jo (mia)

v ' mia

Now, making use of the asymptotic behavior of the Bessel functions

Jo (x) -> 1, Ji (x) ->• | , Ki (x) -> - , if x -> 0

we have for the normal mode of the zero order, when mo = k\

Therefore, function Go, eq. 7.69, is

G» = - S <7-81>
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and

^ = - 0 e - < — M ,,82,
Proceeding from the equality

the expression for stress caused by the mode of the zero order is

~ = Aipg» c ^ (wt _ kiz) .f ^ = ^ (7 83)

Thus, stress uniformly distributed over the borehole cross-section and, as we may expect,

is inversely proportional to its area (ira2). Since

dip dtp
sz = — and sr = —,

az or

we have

sr = % e~l ^ ~ M and s r = 0 if m0 = ifci (7.84)

That is, displacement has only the vertical component sz, which is independent of coor-

dinate r.

Next let us discuss the general features of normal modes of the higher order. From

eqs. 7.69 and 7.79, we have

m\K\ ym\a) Jo [m^a]
Gn = -2C , \ ' , (7.85)

mna Jo I mid)

because

(~ AJ\ (vti\a\ = 0

Unlike in case n = 0, functions Gn depend on coordinate r. Since the complex

amplitude of potential is

miA'i (mia) J 0 (mi r ) . , ,
^nP = "2 C \ ^ e" ? (w * " m " z ) , (7.86)

mna ,JQ Iniia)
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formulas for the stress and displacement components are

mvKx [jma) Jo [rriir) . , .
T = 2 CPILO2 \ > e-% (w * - m » *),

mna Jo (mia)

sz = -2Ci j ^ '- e~l (w * " m « z), (7.87)

mlK1 (mia) Jxiniir) ..
\ = 2 C — \ ^ e~l ^ l ~ m" z)

mna JQ I mid)

This clearly shows that with an increase of the order n, the wavefields vary more

rapidly in the radial direction, forming standing waves and, correspondingly, a sequence

of extensional and compressional zones. At each point of the borehole except its axis and

the surface r = a, there are usually two components of displacement, and the phase

shift between them is equal to IT/2. For this reason the vector s is elliptically polarized.

Note that the radial component sr vanishes at the boundary since J\ (mia) = 0. This

is obvious, because the surrounding medium is rigid.

Case 2 Consider the second limiting case, in which p2 = 0, i.e., a cylinder

containing a fluid is surrounded by free space. As follows from cq. 7.67,

Fn = - ^ ^ V Jo (m i r) (7.88)
Jo [rriiaj

Respectively, the dispersion equation is

Jo (rn) = 0, (7.89)

where rn = mia. Values of rn for the first six modes are given below:

n 1 2 3 4 5 6

rn 2.40 5.52 8.65 11.79 14.93 18.07

As in the previous case (p2 —> 00)7 with an increase of the order of a mode, the

difference between neighboring rn approaches vr. The normal mode of the zero order
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is absent. Also, as before (p2 —> oo), at the cut-off frequency phase velocity cpn (UJ)

tends to an infinity, and with an increase of ui approaches c-\_. In both limiting cases

(p2 —> oo and p2 —> 0), the value of rn is independent of frequency. Since rn can be

represented as

rn = J± j - , (7.90)
y ci c

Pn

we conclude that the radical in eq. 7.90 is inversely proportional to LU. In the same

manner as in the first case, we find that the residue of function Fn is

Res Fn = v ' Jo (mir j (7.91)
mna J\ frri\a\

Hence

mir)

^n = -^-c 7 (7.92)

mn a Ji (mia)

and

miATo (nila) Jo (mir) , ,
^ - 2 C i , \ ; erl (<" f - m" *) (7.93)

mna Jj ^TOiaJ
This demonstrates that boundary conditions are satisfied at the borehole surface, i.e.,

the strain is equal to zero at its points. Note that component sz also vanishes if r = a.

As a rule, inside the borehole the vector s is elliptically polarized, and we can also

observe a regular change of the pressure sign in the radial direction (standing wave). As

follows from eq. 7.93, the amplitude of the normal modes is independent of distance z.

It also remains valid when the density of the surrounding medium has a finite nonzero

value if c2 > c\.

General case When both media have nonzero and finite values of density, the

wavenumbers of the normal modes mn (poles of the integrands in eqs. 7.42) are defined

from the dispersion equation 7.57

mi Ji [m-ia\ Ko (m-za) — m2 b Jo (rriia) K\ (7n2a), (7.94)

where

P2
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Introducing notation

rn = m\a or rn = y k\ — m?n a, (7.95)

we have for the wavenumber of the normal modes

m*=*?-(^)2 (7.96)

and, as was pointed out earlier:

[ 1 1 1 1 / 2

rn = u)a\— -

Correspondingly,

m2 a, = v V ~ r?v (7-97)

where

p = pkia and P = I I \\ (7.98)

Thus, eq. 7.94 becomes

Unlike in the case of a medium, where p2 = oo or p2 = 0, the value of rn depends

on frequency. As in the presence of the plane interface, this value is defined numerically

(Part II). The left side of eq. 7.99,

h (rn) = T , , , (7.100)
-'o (rn)

is independent of parameter p; its behavior is shown in Fig. 7.3b. At small values of

rn, the function / , (rn) is positive and decreases in proportion with r\. At greater

values of r, its behavior is dictated by the roots of equations

^o (rn) = 0 and Jx (rn) = 0,

and in the limit we have the periodic function

/i (rn) ->• rn tan (rn - -j-J ->• rn t anr n if rn -^ oo (7.101)
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The right side of eq. 7.99

h (rn,P,b) = by/f^i ) ( (7.102)

for given b depends on two variables: p and rn. Respectively, we can plot a system

of curves describing this function, Fig. 7.3b. An intersection of graphs of / i (rn) and

/ 2 (r) allows us to determine rn and, correspondingly, the root mn of the dispersion

equation for each value of p and b. Inasmuch as functions Ka and K\ have complex

values, if rn > p, eq. 7.99 does not have real roots in this range. Let us assume that

rn=p (7.103)

Then the right side of eq. 7.99 becomes equal to zero, because

Ki (VP^I) -• J - ^ and Ko (y/f^t) -+ oo

Therefore, eq. 7.99 takes place when

•A( r n )=0 (7.104)

The latter equation defines the roots, mn, of the dispersion equation corresponding to

the cut-off frequency. As was already pointed out, at smaller values of pi (frequencies),

the real roots of eq. 7.99 are absent. Note that unlike the in limiting case when p2 —> oc,

eq. 7.104 characterizes the roots for each mode only at the cut-off frequency. From eqs.

7.97 and 7.103, we obtain

mn = k2 (7.105)

Thus, at the cut-off frequency the phase velocity coincides with that of the surrounding

medium

cpn = c2 if / = / c (7.106)

Now suppose that parameter p, i.e., the frequency, tends to infinity and that cpn (oo ) 7̂

Ci. By definition we have

f1 M 1 ' 2 A ('2 2N1/2 fl M
r»=Mb-T a n d (P -rn) =^a I — - - I

\61 cpn/ \cpn c'lJ
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Since

Ko (x) —> Ki (x), if x —> oo

in place of eq. 7.99 we obtain

•h(rn) _ WPn CJ) , 7 i n 7 ,
J0(rn)~ n _ j _ \ ^ ( " W j

Here cpn corresponds to the high-frequency limit. The solution of this equation gives

some finite value of rn, eq. 7.95, and, since UJ tends to infinity, phase velocity cpn

should approach c\.

Cpn —» C\ if W —> OO (7.108)

It is easy to show that eq. 7.99 does not have a solution, if cpn (oo ) = c2- Thus, the

range of change of the phase velocity is

Cl < C^ (w) < C2, (7.109)

regardless of the order of the normal mode. Behavior of this function for several modes

(n = 0,1, ...,4) is shown in Fig. 7.3c. In this case, the fundamental mode exists for all

frequencies.

From eqs. 7.98, it follows that parameter p can be written as

p = kiacosOc, (7.110)

where 9C is the critical angle. As we know, if 9i > 9C total internal reflection takes place

and normal modes are formed that propagate without attenuation along the borehole.

Having solved the dispersion equation, we have found the wavenumbers of the normal

modes and, therefore, their phase velocities cpn (LO). Then, applying the residue theorem,

we can calculate mode amplitudes at any point of the borehole cross-section. From the

physical point of view, as well as eq. 7.67, it is obvious that amplitudes are independent

of the z-coordinate. This is why at large distances from the sources, wavefields related

to the normal modes play the dominant role. Also from eq. 7.67, we see that with

an increase of the order of the normal modes, more modes of the standing wave are

observed between the borehole axis and its surface. In the same manner we can evaluate
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the magnitude of evanescent motion in the surrounding medium that are associated with

normal modes.

Transient modes
By analogy with a horizontally layered medium (Part II), study of the dispersion

curves of cpn (u) allows us to discuss the main features of waves in the borehole.

Suppose that a spectrum of the wave caused by the primary source is a continuous

function of frequency. In illustration, let us consider just one normal mode with index

n. Earlier it was shown that the primary wave with frequency / , which is smaller than

the cut-off frequency (n ^ 0)

/ < fcn,

does not cause the normal mode. The normal mode appears when / = fcn. With

an increase of frequency, the phase velocity cpn decreases, varying between c\ and

C2, eq. 7.109. Since each frequency component in this mode propagates at a different

phase velocity, interference with this system of waves gives rise to different wave groups.

Each group is characterized by a certain value of the dominant frequency and the group

velocity cgn. As is well known (Part II), phase and group velocities are related to each

other in the following way:

_1 = ± _ ^ ^
Cgn Cpn C'pn du

Because the function cpn (u>) is known, the group velocity cgn (u) is easily calculated

and its behavior is shown in Fig. 7.3d (n = 0,1, . . . , 4). At the cut-off frequency, the

group velocity coincides with the physical velocity C2 of the surrounding medium. With

an increase of frequency it becomes smaller, and at some frequency fnA velocity cgn

reaches minimum value &gn. With further increase of frequency, velocity cgn begins to

grow and asymptotically approaches ci. Knowledge of the function cgn(u) permits

us to describe qualitatively the behavior of the transient wave. Suppose that the source

located at the origin is turned on at instant t = 0, and at some distance z the receiver

measures the nth transient mode. During the time interval

0 < t < —,

the wave is absent. At instant t = z/c? the wave group arrives, and its dominant

frequency is equal to the cut-off frequencies, fcn. With increased time, wave groups
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with higher frequencies begin to arrive. Within some frequency range

fail < /l < In,

the dominant frequency of the wave group gradually increases with time. At an instant
slightly greater than the ratio z/c\, two wave groups arrive simultaneously at the
observation point. Their group velocities are equal to each other and almost coincide
with c\. The dominant frequency of the first group equals / i , while the second
is characterized by much higher frequency. Such superposition of two wave groups is
observed within the time interval

z z
— <t<-r,

and with increased time the dominant frequencies of both groups approach each other.
Finally, starting from instant

z
t = ,

cgA

only one wave group exists, and its dominant frequency is equal to fnA- It is customary
to treat this last stage of the transient wave as the Airy phase. All other modes behave
in a similar way. Note that dispersion causes change in the waveform with distance z.
The waveform stretches in time and, in accordance with law of energy conservation, the
amplitudes of the transient modes, unlike in the case of the stationary modes, decrease
with z.

Normal modes and interference of conical waves
Let us represent the integrand in eq. 7.61, which describes the secondary wave inside

the borehole, as

Am Jo (m i r ) e* m z (7.112)

Here

vri\ = \lk\ — m? > 0

We arc interested in the high-frequency spectrum in which

rriir » 1
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In this part of the spectrum, the Bessel function Jo I m\T J is approximately equal to

T (~ \ ( 2 V / 2 (~ M
Jo mxr ~ —-— cos m^r - -

v ' \irmirj v 4/
or

/ -, \ 1/2 / ^ ~ \

Jo (mir) ~ I - 4 r - I ( e-^/4e? : m i r + e ^ / V * m ' r if r ^ 0 (7.113)
^ ' \27rm1r/ V /

This shows that the integrand, eq. 7.112. can be represented as a sum of two conical

waves. One of them is proportional to

^ e x p \—im\r + imz) , (7.114)

and it moves toward the borehole axis. The other is

—= exp (iniir + imz) , (7.115)

and it diverges from this axis. The wave front, i.e., the surface of the equal phase,

coincides with the lateral surface of the cone. Its apex is located at the borehole axis,

Fig. 7.4a, where

77?

t a n 0 = — (7.116)
nil

It is obvious that at each cross-section of the borehole, superposition of conical waves

produces a standing wave.

In order to determine the relationship of borehole radius a, frequency to, and angle

9, when the normal mode can be formed, consider the ray passing through point A of

wave front N'ON, Fig. 7.4b. This ray intersects the borehole axis at point B and,

after reflection at point C of the boundary, it moves toward the axis. It is essential

that the ray remain normal to the phase surface of the convergent wave. At point D,

it intersects the same wave front N'ON. The condition for the existence of a normal

mode requires that the difference between the phase at point A and a change of phase

along the ray must be equal 2TTO. In evaluating this difference, we assume that p2 = oo

and take into account three factors:

a. In accordance with eqs. 7.114 and 7.115, the conical waves propagate with the

velocity of the borehole fluid, cx.

b. The phase shift between the reflected and incident waves at points of the rigid

boundary is equal to zero.
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Figure 7.4: a) Conical wave fronts (b) Illustration of constructive interference, eq. 7.118

c. At each point of the borehole axis, the rays converge, and these points may be

treated as foci. This means that the difference between phases of convergent and divergent

waves in the vicinity of the axis is equal to —TT/2.

Thus, the condition for constructive interference is

kx \ABECD\ - | = 2TTO

To find the ray length, we introduce point A', which is the mirror reflection of point A

with respect to the borehole axis and which is located at the same wave front. It is clear

that

AB = A'B
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and hence

\ABECD\ = \A'BECD\

or

\A'BECD\ = A'B + BE + EC + CD,

where

A'B = BE cos26, CD = EC cos 29. and BE + EC = -?— (7.117)
costf

Note that points E and D are located at different wave fronts. In particular, point E

belongs to the converging wave. Therefore

ABECD = a (1 + cos 29) —'— (7.118)
cost/

and, in place of eq. 7.117, we have

2k\acos9 = —I- 2irn

or

fc1acos6' = - ( 2 n + l ) (7.119)

Thus, permissible values of angle 9, when the normal mode is formed, are defined from

eq. 7.119. The latter also shows that the minimal (cut-off) frequency of the mode occurs

when 9 = 0, and it is equal to

_ C l ( 2 n + l / 2 )
/ n c " Aa

or

(Mmin = \ (2n + 1/2) (7.120)

Regardless of the order of the normal mode (n ^ 0), with an increase of frequency angle

9 also increases: otherwise, constructive interference would not take place. Comparison

of rn (eq. 7.72) with values of {k\a)min follows

n 1 2 3 4 5 6

rn 3.83 7.02 10.17 13.32 16.47 19.64

(fcia)min 3.92 7.06 10.20 13.34 16.49 19.62
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Next assume that the surrounding medium is free space (p2 — 0). Then the phase

shift at the boundary between incident and reflected waves is equal to n, and in place

of cq. 7.119 we obtain

ifciacos0= - ( 2 n - - ) (7.121)
2 \ 2 /

Comparison of (^ia)mjn with values of rn (eq. 7.89) follows:

n 1 2 3 4 5 6

rn 2.40 5.52 8.65 11.79 14.93 18.07

{kia)min 2.35 2.49 8.63 11.80 14.91 18.05

The right sides in cqs. 7.121 and 7.122 define asymptotic values of roots of Bcsscl

functions J\ (rn) and JQ (rn), respectively. As follows from eq. 7.116,

s i n 0 = I ^ = _£>_, (7.122)

i.e., the phase velocity of the normal mode is the apparent velocity of the conical wave

along the borehole axis. Of course, the same result directly follows from Fig. 7.4b.

Now we will focus our attention an a different part of the wavefield, namely, head

waves (c2 > Ci).

Head waves in the borehole (c2 > ci)

At the high-frequency spectrum, when the wavelength is smaller than the borehole

radius, we can expect the appearance of the head wave, Fig. 7.5a. It arises at points of

the borehole surface where the incident angle of the direct wave is close to the critical

angle, 0c. In order to find an asymptotic expression of the potential of the head wave,

we evaluate the contribution of the integration along branch lines C\ and C*2, Fig.

7.5b. In this light, it is convenient to represent the potential inside the borehole in the

form (eq. 7.61)

i k R °°
V,=C e^-—- + - I AmI0 (TOlr) el m z dm (7.123)

K 7T J
— cc

Here

R=^/r2 + z2
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Figure 7.5: (a) Rays of head waves (b) Contour of integration along branch lines (c)

Intervals of integration (d) Phase velocities of surface waves (e) Group velocities of surface

waves. Numbers near curves are the values of Poisson's ratio a. [After Biot, 1952]
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and

_ miK0 (m2a) Kl (m^) - m2 b Ko (mia) Kx (m2a) , .
m rriiK0 (rri2a) I\ (mi a) + m2 b IQ {rriia) K\ (rri2a)

To integrate along line C\, we introduce a new variable,

mi = it, (7.125)

where t alters from 0 to oc on one side of the branch line and from —oo to 0 on its

other side, since after passing branch point k\, radical m\ changes sign. The variable

of integration m along contour C\ can be represented as

m = ( m 2 + ^ 2 ) 1 / 2 = ( _ < 2 + fc2)l/2 = l { t 2 _ £ . 2 ) 1 / 2 ( ? ^

and, correspondingly,

dm= "* and m2 = (-t2 + k\ - A|)1/2 (7.127)
(tz — fe,)

Then the integral along branch line C\ becomes

oo

/' R t Ko {m2a) Ki (ita) - m2 b Ko (ita) Kj (m2a) , , , .
J \_ i t KQ (m2a) Ii (ita) + m2 b IQ (ita) Ki (m2a)
o

—i t Ko (m2a) Ki (—ita) — m2 b Ko (—ita) Ki (m2a) . 1
-i t Ko (m2a) h (-ita) + m 2 b Io (-ita,) Kx (m,2a) ° '

 % T'\

it -Jfi-kjz
x — e V dt

(t^-kjf2

Making use of relations
/0 (-ita) = Io (ita) , h (-ita) = ~h (ita) (7.129)

and Ko (—ita) — Ko (ita) + inlo (ita) , Ki (—ita) — —Ki (ita) + VKII (ita),

we perform a transformation in eq. 7.128 and write the second fraction in parentheses

in this equation as

—i t KQ (m2a) [—Ki (ita) + i nil (ita)] — m2bKi (7712a) [KQ (ita) + i TTIQ (ita)]

i tKo (in2a) h (ita) + m2bK\ (ita) IQ (ita)
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i t Ko (rn-20.) K± (ita) — ro2 bK0 (ita) K\ {m2d\
i tK0 (m2a) Ii (ita) + m2 bKx (ita) Io (ita)

The first term on the right side of eq. 7.130 coincides with the first term in parentheses

in eq. 7.128. Therefore, the integral along branch line C\ is equal to

-w / = = = /„ (itr) dt

or

oo _ , / f'2 _ 1-2 7

rte V l

-ir / Jo (tr) dt, (7.131)
J Wt/ - ki
o v

since

h (itr) = Jo (tr)

Taking into account that
• i n oo I

I Kill j- f _ / f2 _ 1.2 7

- l f - = j ^ _ _ e V fti ' Jo (mr) dm, (7.132)

we conclude that

ei kiR
V, (hi) = ~C - i r (7.133)

In other words, inside the borehole the sum of potentials due to the direct wave and to

integration along branch line C\ is equal to zero. Thus, the field in the borehole caused

by the head wave is expressed only through the integral along branch line C2

£ l t (LO, r,z) = - I Am Jo (mir) eL m z dt
71" J

C2

or

ioo

C f
p]b (co, nz) = - / [Am (mi, m2) - Am K , -m 2 ) ] Jo (m^r) el m z dt, (7.134)

7T J
k-2
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and the integral can be written as

ioo
f f m1K0 (m2a) Kx (mia) - ro2 b Ko (mia) Kx (m2a) , .

,/ [ rriiK0 (rr^a) I\ (mia) + m2 b IQ {m\a) K\ (1112a)

_ miKp (-m2a) Kx (mia) + m2 & if0 (m^) /^i (m2a)l , , i m z ,,
rriiK0 (—m,2a) h (mi<z) — m2 & /o (mia) A!"i (—m2a)J

First, consider the numerator of the expression in parentheses, which is equal to

[miKo (m2a) K\ (mia) — m2bK0 (mia) K\ (ni2a)}

x [niiKo {—m2a) I\ (mia) — m^blo (mia) K\ (—m2a)]

— [ITIIKQ (ni2a) Ii (mia) + m2blo (rriia) K\ (m2a)]

= [miK0 (—m2a) Ki (m,\a) + m2 bK0 (m,\a) K\ (-m,2a)]

The use of eqs. 7.129 greatly simplifies the numerator, which becomes

Respectively, in place of eq. 7.134 we obtain

ioo

$lb (r, z, w) = - - ^ j F (m i , m2) Io (rmr) j m z dt (7.137)
k2

Here

F (mi, m2) = [rriiKo (m2a) h (rriid) + rr^blo (jriia) K\ {m2<i)Y (7.138)

x [m\K0 (-ni2a) /] (mia) - m2blo (mia) Ki ( -m 2 a ) ] " :

To evaluate this integral, it is useful to introduce variable q, whic is related to m in

the following way:

m = k2+i- (7.139)
•y
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It is clear that q varies within the range

0 < q < oo and &i m z = &i k2 z e~q (7.140)

This means that the asymptotic value of the integral is determined by the interval of

integration, where q < 1. For such values of q we have

mi w (k\ - fc2 + 2 i k2-) and m2 = (2ik2-) , dm = -dq (7.141)
V z) V z) z

Taking into account the behavior of functions Ko and K\ for small arguments:

x 1

K0(x) - > 7 0 - I n - , ATi(x)->•-,

we have

F (m1,m2) « a2 priifl h (niia) (j0 + In —— j + b Io (mia) (7.142)

x mxa h (mia) ( 7 + In —-^ - J + & Io (m-^a) ,

where 70 = 0.57722 is Euler's constant. Because for small values of q

m n ~ * A-2 P „ _ 4 fl2 p „ J f / 2 a ~ t 01c G Jn / ̂

m2a 1 k2a
2q 1 7r —m2a 1 A;2a20 1 37r

in— ̂ - m ^ . - ^ + i-, ln^«- ln^- - ln2 + l T ,

and

/o (i^/kj^4 a) = Jo Ukf - Hi a} , (7.143)

/1 I 1-1/̂ 1 — /c| a j = « Ji I \jk\ — k\ a I ,

instead of cq. 7.137 we have

Vlb (r,z,u) = ̂  k?z Jo ^kl-14 r) (7.144)
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OO

f e~g dq
XJ ( Mfi] k2qa*\ ( k2qa?\

o I «i + /?! In — — I I a2 + /32 In — — 1

where ai,(3l and a2, fl2 are constants. At large values of z, when

^ « 1 ,

the denominator rapidly varies with q. This fact, does not allow us to take function F

out of the integral. To overcome this difficulty we introduce a new variable, 7:

q = k2 z el (7.145)

whence

dq — k2 z e^ dj and lnq = In k2 z + 7 (7.146)

Then the integral in eq. 7.144 becomes

h z f exp (7 - k2 z el) dj
2 J (a :+2/31lnfc2a + /317)(a2 + 2/32ln/e2a + /327) l ' ;

—00

It is clear that the integrand rapidly decreases when 7 tends to either the upper or lower

limit. In order to evaluate the integral, we use the stationary phase method. Taking the

first derivative from the function

-y-hze-y,

we find that stationary point 7, satisfies the equation

1 + k2 z e7* = 0 or 7S = - Infc22 (7.148)

The main contribution to the integral comes from the vicinity of stationary point j s .

Since 7S < 0 and I7J S> 1, the denominator of the integrand is a slowly varying

function that can be taken out of the integral. This gives

00
1 r.

(a1 + 2/31InJfc2a + ^ l 7 , ) 2 ( l 2 + 2/32Infc2O + /327.) / ^ {l ~ fe * ^ " 7 ( 7 " 1 4 9 )

— CC
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Again introducing variable q, eq. 7.145, we find that the last integral is equal to l/k2z.

Thus, eq. 7.144 becomes

£u = ^ e^z Jo (jk\ - k\ r) (7.150)

1
X («! + 2ft In fc2a + /V/ s) (a2 + 2/?2 In k2a + fJ2js)

The latter represents the leading term of the scalar potential of the head wave. As a

\Jk\ — k2 a) — 0,

and to k2 z when J\ f \jk\ — k2 a) = 0 . The dependence on r is given by Bessel

function Jo ( y/k'f — k\ r\. It is worthy to note that the product

e%k*z Jo (Jk\ - k\ r)

at the right side of eq. 7.150 indicates that if ^/k\ - k\ r > l . the angle between the

rays of the head wave and the borehole radius is equal to the critical angle, 6C.

In our study of the wavefield inside the borehole at large distances from the source,

we have found out that the wavefield consists of normal modes and head waves. The

amplitude of normal modes is dominant, and the influence of the primary wave and of

leaking modes is negligible. Besides, we have noted that normal modes behave as inhomo-

geneous waves in the surrounding medium. Also, outside the borehole, the transmitted

wave propagates away from the boundary with velocity c2. This wave arises at points

of the interface r = a, where the incident angle is smaller than the critical angle. The

interval of integration 0 < m < k2 defines the behavior of this wave.

7.3 Propagation of surface waves along a borehole

Next we will consider a more general model, when a medium surrounding a borehole

is an elastic medium, ( /i2 ^ 0). In this case wave behavior usually becomes more

complicated. In particular, as in the case with the planar boundary, it is natural to

expect the appearance of surface waves. By definition, surface waves have two main

features, namely

a. Propagation along the boundary occurs without the support of other waves, and

b. The amplitude of potentials describing these waves exponentially decreases with

increase of distance from the boundary.
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Our first goal is to demonstrate the existence of such waves. To do this, we will use
results obtained in section 7.1. In accordance with eqs. 7.25, scalar and vector potentials
can be written in the form

oo

ip1 — / ArnI0 (rriir) cos rnz dm if r < a (7.151)

b

and

oo

if 2 — I BmK0 (rnir) cos mz dm, (7.152)

o

oo

f
ip2 — I CmKi (msr) sin rnz dm if r > a

o

Here
nil — dm2 — k'[, mi — Jm2 — kf, ms = \/m2 — k2,

I — w i — u u — u

Hi — , Ki — , Ks — ,
Cl C( Cs

and ci, ci, cs are velocities in the borehole and in an elastic medium. As is well
known, wavcficlds arc such that at the boundary (r = a), the normal components of
displacement and stresses are continuous functions. Since shear stress in fluid vanishes,
we have (eq. 7.5)

~ « ~(2) -(1) ~(2) ~(2) . /7- i rcA

sr — sr , Trr — Trr , Tzr —\J n r — a (7.153)

or, in terms of potentials (eq. 7.27),

9^i dj, _ 9 ^
dr dr dz ' [ '
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<92£2 # t y 2 a n a ~ \
and 2-^- - - ^ + — - — rtJ2 = 0

or 02 oz1 or \ r or )

Substituting eqs. 7.151 and 7.152 into eqs. 7.154 and performing simple algebra with

Bessel functions, we arrive at homogeneous system of equations with respect to Am, Bm,

and Cm:

mill (mid) Am + miKi (mid) Bm + mKi (msa) Cm = 0,

- Ai k\ IQ (mia) Am + [X2kfK0 (mta) + 2/<2 mf K[ (mta)] Bm (7.155)

+2 fi.2 m msK[ (msa) Cm = 0,

2m miKi (mtd) Bm + (2m2 - fc2) K{ (msa) Cm — 0

Taking into account that the right side of this set is equal to zero, the solution of eqs.

7.155 exists only if the determinant of the system, Dm , obeys the equality

Dm = 0 (7.156)

However, the condition 7.156 is not sufficient for existence of surface wave. As was pointed

out earlier, the potentials of these waves must decay exponentially with increased distance

from the borehole surface. Taking into account the asymptotic behavior of the modified

Bessel functions

Io (x) - ^-= and Ko (X) ~ ^ - = , if x > 1 (7.157)

we conclude that the solution of eq. 7.156 must obey the additional requirement

m > max (fc) (7.158)

It is necessary to distinguish two cases: Ci < cs < ci and cs < Ci < Q. In place of eq.

7.158 we have, respectively,

m > fci , m > ks (7.159)

Our main attention will be paid to the existence of surface waves and their phase velocity.

Wave amplitudes will be briefly discussed later.
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The empty borehole
We will begin this study with the simplest case, in which the source of elastic waves

has axial symmetry and is located in an elastic medium in the vicinity of the borehole.

Along with the direct wave radiated by the source reflected P and S waves appear

at points of the boundary when the corresponding incident angles do not exceed the

critical angle. As these waves propagate along the interface, we may observe a conical

shear wave caused by a longitudinal wave. The P evanescent wave appears at points of

the boundary and is generated by the shear wave. By analogy with the plane interface,

we observe a surface wave that causes deformation and rotation of elementary volumes

of a medium. Its behavior is the subject of our study. Since waves are absent inside

the borehole, i.e., the boundary is free, conditions 7.153 are simplified. They require

only that both stresses vanish at points of the borehole surface. Correspondingly, letting

Am = 0, the last two equations of system 7.155 give

[X2kfK0 (mia) + 2 \i,2 m
2 K[ (mia)] Bm + 2 /i2 m msK[ (msa) Cm = 0 (7.160)

and 2m miK\ (mia) Bm + (2m2 — k2) K\ (msa) Cm = 0

Eliminating unknowns Bm and Cm and taking into account that the determinant of

the system must be equal to zero, we obtain

- [A2 kfK0 (mia) + 2 Ma m
2K[ (mta)] (2m2 - k2) Kli™°f (7.161)

L J \ / 2m miKi (mia)

+ 2 yi2 m msK[ (msa) = 0

where

K[(x) = - K0(x)-± Kx{x)

Thus, we have derived an equation with respect to the unknown wavenumber m. As

numerical analysis shows, eq. 7.161 has the root mn (ui), which obeys the condition

mn(uj)>ks (7.162)

First of all, if the frequency is sufficiently high, we can expect the dispersion equation

7.161 to coincide with the Rayleigh equation. This happens because the wavelength
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becomes smaller than the borehole radius (A < a). To demonstrate this transition, we

use eq. 7.157 and equality

K[ (x) ~ - Ko (x) if x > 1

Replacing the modified Bessel functions by their asymptotic expressions, when

niia S> 1 and rnsa >> 1,

in place of cq. 7.161 we obtain the Raylcigh equation

(2m2 - fc2)2 - 4m2m,ms = 0

Therefore, at the high-frequency spectrum, the phase velocity of the surface wave ap-

proaches that of the Rayleigh wave, c#, when the free boundary is planar.

Now we will discuss the behavior of phase velocity cp (u>) at the low-frequency

range. As is seen from Fig. 7.5c, in the first interval of integration, wavenumbers obey

the condition

m > ks = — (7.163)

If the wavenumber is beyond this range (m < ks), the radical ms becomes imaginary

and, correspondingly, the integrand of the vector potential, i\>2i does not demonstrate

exponential decay. This suggests that there is a minimal (cut-off) frequency when the

surface wave is still observed. Its phase velocity at this frequency coincides with that of

the shear wave. In this case (ms —>• 0), cq. 7.161 becomes a relationship between the

cut-off frequency fc or wavelength Ac (Ac = Q / fc) and parameters of the medium.

In fact, since

K0(x) -> -Ina:, K1{x) ^ - ,

for the dispersion equation we have

[A2 kfK0 (mta) + 2/J2 TO2 K[ (rrna)] h —Kx (w4a) = 0 (7.164)

Here

. o,c (I l V / 2
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A graph of the ratio cp (ui) jcs as a function of A;/2a is shown in Fig. 7.5d for different

values of Poisson's ratio, a. Here A; = Q / / is the wavelength of the longitudinal waves.

We sec that with an increase of the wavelength, phase velocity of the surface wave also

gradually increases, and it tends to the same limit cs regardless of the value of Poisson's

ratio, a. For example, when a = 1/4, this asymptotic value is almost reached

when the wavelength exceeds the borehole radius by about three. Note that unlike with

Rayleigh waves, the phase velocity of the surface wave along the empty borehole depends

on frequency, and its range of change is

cR<cp(co)<cs (7.165)

Finally, Fig. 7.5e illustrates the behavior of group velocity cg (UJ) / c , as a function of

parameter 2yra/A;.

As follows from eqs. 7.152, with increased distance from the borehole, as well as

increased frequency, both potentials display exponential decay. Also, because cp (ui) <

cs and Q > cs, vector potential decreases more slowly than scalar potential. Since

displacement s is related to the potentials as

s — grad </? + curl xjj,

we again conclude that propagation of the surface wave is characterized by elliptical

polarization of particle motion.

Next we will consider the behavior of surface waves in a more general case, when the

borehole is filled by a fluid.

Stoneley waves
In Chapter 5, we discussed the behavior of surface waves propagating along the plane

boundary between a fluid and an clastic medium. In fluid this wave is dilatational,

whereas in an elastic medium it is accompanied by deformation and rotation of elementary

volumes. In other words, this wave combines characteristics of dilatational and shear

waves. It is essential that scalar and vector potentials describing the surface wave decrease

with distance from the boundary. The velocity of propagation of this wave, which is

usually called the Stoneley or Scholte wave, is independent of frequency. It is also natural

to expect the appearance of a surface wave propagating along the cylindrical surface of

the borehole. In order to prove the existence of this wave and to outline its main features,

we proceed from the system of homogeneous equations 7.155. Our goal is to find such

wavenumbers m that the determinant of set 7.155 becomes equal to zero. Besides, it is
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assumed that m obeys the inequality

m > max (£4, ks)

Then it is clear that all three radicals - mi,ms, and mi - are positive. Correspondingly,
elementary cylindrical waves

AmIo (rrii'r) cos rnz, BmK0 (rriir) cos rnz , and CmK0 (msr) cos rnz

become smaller with an increase of distance from the boundary (r = a). To begin, we
will consider two limiting cases, ui —> 00 and u ^ O .

The high-frequency spectrum
Suppose that frequencies are so high that the wavelength of longitudinal waves in

an elastic medium is smaller than the borehole radius: A; < a. Correspondingly, this
inequality takes place for the shear wave as well as well as in a fluid. Letting c (w) be
the velocity of propagation of the surface wave, we have

/1 iy / 2 (i iy / 2 (i i\ i /2

m^ = w{-2-^) ' mi = "(*-#) • m- = uj{-2--2)
\ C Cl / \ C Cl / \ C Cs /

At the high-frequency spectrum, these radicals arc large, and the modified Bcsscl func-

tions are described by their asymptotic formulas:

— J ex, K0(x) = K1(x)=(J^ e-x, (7.166)

and K'o (x) -+ -K1 (x) if x > 1

Substitution of eqs. 7.166 into set 7.155 yields

frrh\ ^ ^ a A + ( }i/2 e-mtaB + m (l_\ "" e-msac = Q
V 7T / \msj

x^ (—)1/2 eTrhaA™+»> V2m2 - ̂ + — 1 ( - ) 1 / 2 e~mi (1B™ (7-i6?)
\TrmJ [ a J \miJ

+ 2M2m ms (l + —) (—)' 2 e-m»aCm = 0,
\ msaj \msj
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o m m -mi aR , 2 m ~ fc» -m,ar _ nzm mi e r>m -\ —^—e o m — u

The determinant of this system coincides with that for the case in which the boundary

is a planar boundary. Thus, at sufficiently high frequencies (A; <C a), the surface wave

arises and advances along the boundary of the borehole with a velocity close to that of

the Stonclcy wave at the plane interface. For instance, if

cs , . Pi , 1
— = l .o, — = 1, a = ~A->
c\ Pi 4

we have

^ « 0.92,
Cs

i.e., this velocity is slightly smaller than the velocity of the shear wave. It is obvious

that with an increase of the frequency, the wavefields, such as displacement or stress,

are mainly concentrated in the vicinity of the borehole surface. At the same time, at

sufficiently large distances r away from the borehole surface, wave propagation causes

virtually no motion in the medium. Now consider the second limiting case, the low-

frequency spectrum.

The low-frequency spectrum
Assuming that arguments of the Bessel functions are small, we can use the following

approximations:

Jo (x) -> 1, h (.x) -> ^ , Ko (re) -> - hire, Kx (x) -> - ,

and K\ ->• — - if x < f

After their substitution into set 7.155, we obtain

2 ms

X^l o2Am + 2fi2Bm + 2/i2— Cm = 0, (7.168)

2m2 — h2

0 + 2mBm + s- Cm = 0 if u> - > 0
ms
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The dispersion equation in this case is

m\d2 m

2 ms

XlkW 2M2 ^ = ° (7-169)
rrh

0 2m ^ ^
ma

After doing simple algebra, we obtain

—m\ fi2 + kl\i = 0

Therefore, wavenumbers rn of the Stoneley wave at the low-frequency spectrum are

defined as

m = " = fcl (*I±K»V /2 (7170)
c(w) \ ft /

Respectively, for phase velocity we have

c ( o , ) - > - ^ — ^ if u^O (7.171)

V ^2 /

Eq. 7.171 shows that the asymptotic value of c(ui) depends on the velocity in a fluid

and on the parameter

± = *£, (7.172)

which is the ratio of fluid compressibility Ai to shear modulus /i2- Thus, measurements

of the velocity of the Stoneley's wave inside the borehole, if LO —> 0, allow us to evaluate

the rigidity /i2 of the elastic medium. Note that solution of system 7.155 shows that

the Stoneley's wave does not have a cut-off frequency (cs > C\). In other words, this

wave can be observed at any frequency. As follows from eq. 7.151, the axial and radial

components of displacement corresponding to elementary cylindrical harmonics are

sz(m) = —m AmIo(mir) sinmz and sr(m) = miAmIi(mir) cosmz (7.173)

At the low-frequency range, when the wave is defined by small values of m, we have

sz(m) — —mAmsmmz and sr(m) = -m 1 i m cosmz , (7.174)
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(a)

^ S1 | z+Az_,

1 -<? •

'"'"s'"\"""^-

(b) (c)
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_ 1.08 - [^- - V \
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0.96 I— 1 1 1 1-35 '
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Figure 7.6: (a) Portion of borehole between two cross-sections S\ and S^ (b) Phase

and group velocities when cs > C\ (a = 0.1 m, Q = 4.51 km/s, cs = 2.41 km/s, p{ = 1.2

g/cm3, /92 = 2.3 g/cm3) (c) Phase and group velocities when cs < cy (a — 0.1 m,

Q = 2.70 km/s, cs = 1.20 km/s, /?! = 1.2 g/cm3, p2 = 2.1 g/cm3). [After Paillet &

Cheng, 1991]

i.e., the radial component of displacement linearly increases with r. At the same time,

component sz remains constant at any cross-section of the borehole, although it varies

with time and with coordinate z.

It is instructive to obtain cq. 7.171 in a completely different way. Let us consider a

portion of the borehole bounded by its lateral surface, r = a, and by two cross-sections

S\ and 52, located at distance Az from each other, Fig. 7.6a. Note that

S = Si = S-2 = 7TO2
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The volume of this part

Vi = 7TO2 Az

is not elementary in the axial direction, since it is characterized by a finite length a.

Propagation of a surface wave along the borehole causes vibration of particles in a fluid

and in the surrounding elastic medium. Because of symmetry, this motion is described by

the axial, sz, and radial, sr, components of displacement. The azimuthal component,

sv, is absent:

s = srir + sz'\z

Our main goal is to derive an equation of motion of volume V\ and demonstrate that

under certain conditions the motion equation coincides with the wave equation. Its

solution describes a wave advancing along the borehole with the velocity given by eq.

7.171. In order to solve this task we make several assumptions that arc obvious given

that the fields slowly varying in the radial direction. For instance, in the frequency

domain this means that the wavelength is much greater than the borehole radius. First,

in agreement with eqs. 7.174, suppose that the axial component sz and the additional

pressure p are independent of coordinate r inside volume \\, i.e.,

sz = sz(z,t) and p = p(z,t) (7.175)

This volume moves along the borehole axis due to the external forces

Fz (z + Az, t) and Fz {z, t),

which are caused by fluid located above and beneath volume \\ and, correspondingly,

have opposite directions. For instance, if force Fz(z,t) produces compression and the

additional pressure p (z, t) becomes positive, we have for the resultant force

[-p(z + Az,t)+p(z,t)] S

Therefore, in accordance with Newton's second law, the equation of motion of the volume

is

d2sz 2 dp 2

P-W™ Az = -d-z
na

or
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since it is assumed that the pressure varies linearly within Az and that

-p(z + Az,t)+p(z,t) = - ^ - A z

whereas sz is the axial component of displacement of the middle point of V\. The

equation of motion contains two unknowns, sz and p, and we therefore must find another

relation between them. Since a wave causes very small changes of any elementary volume

V (V < Vi), the principle of mass conservation gives (Part I)

Pi V

Here p and AV arc variations of the original density pl and volume V. Inasmuch

as deformation is also accompanied by small changes of pressure, we have

p = ap, (7.178)

and eq. 7.177 gives

P=-\i^- (7-179)

Here Ai is the bulk modulus of the fluid

Ai = a Pl = c\ Pl (7.180)

and pressure is constant inside volume V. By definition

— = div s,

and eq. 7.179. written as

p = - A , d i v s , (7.181)

describes the relationship between pressure and displacement in equilibrium. For in-

stance, in the cylindrical system of coordinates we have

P=-Ai(^ + ^ + ^ ) , (7-182)
\oz or r )

since sv = 0.

Next consider a change of volume V\, which occurs for two reasons. One reason is

axial motion, which is equal to

2 dsz xira2 — Az,
oz
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because sz(z) and sz(z + Az) are displacements at the opposite faces of volume V\.

The other reason is radial expansion (compression), which is

2TTCI sr Az

Thus

ds
AVi Ka2 —^ Az + Iira sr(a) Az a 2

ir" = TT = 7T + l*r{a) (7.183)
Vi ira2 Az oz a

In accordance with the second equation of set 7.174, the radial component of displacement

is the linear function of r, and it can be represented as

sr(r) = S-^r (7.184)

Its substitution into eq. 7.181 shows again that

AV,
—— = div s

Vi

and, therefore,

-p- + -sr{a) , (7.185)
az a J

where p is pressure at the middle point. Note that eq. 7.185 can be also derived from

the Gauss formula:
/' /
/ div s dVi — <t> s- dS

Vi S

In fact, making use of eq. 7.180 and assuming that p = const, —Z±J_ — Q̂  w e obtain
oz

-XiP V = [sz(z + Az) - sz(z)] no2 + sr(a) 2vra Az,

which coincides with eq. 7.185. Note that eqs. 7.176 and 7.185, derived for volumes that

have different extensions Az, contain three unknowns:

p, sz, sr

For this reason we need one more relationship, for instance, a relationship between p

and sr. Before solving this problem, let us consider a special case when sr inside the
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borehole is equal to zero. In other words, fluid moves only along the z-axis. Then the

system of eqs. 7.176 and 7.185 gives the wave equation

d'2sz _ 1 d'2sz

Ik* ~ 7\W'
which describes a wave moving with the velocity of the longitudinal wave, Ci = (Ai//^)1' .

In reality, because the radial component sT differs from zero, the elastic medium around

the borehole influences wave velocity in the fluid. In establishing the linkage between

sr and p, we take into account the relatively slow change of these functions with time.

This implies that both pressure and the radial component of displacement change almost

synchronously at different points, even at large distances r from the borehole. With

this limiting case in mind, we can expect the same relationship between p and sr as

we would expect in equilibrium. Let us consider now this subject of the static elasticity

in detail.

Thick cylindrical shell
Suppose that a cylindrical shell of an arbitrary thickness is oriented along the z-axis.

Its length is sufficiently large and we can ignore effects near the cylindrical ends. It is

also assumed that the shell is under the action of fluid pressure p, which is uniformly

distributed over the shell's internal surface. At the same time, at the external surface the

pressure vanishes. Thus, we suppose that deformation is symmetrical about the z-axis

and uniform along each generating line. Correspondingly, a cross-section remains plane

after deformation, so that displacement along the z-axis is constant and can be zero.

We can evaluate deformation inside the elastic cylinder as a two-dimensional boundary

problem. It is related to the fact that pressure is distributed uniformly on the lateral

surface of the shell. First of all, as was demonstrated in Chapter 1, the displacement s

has to satisfy the equation

(A2 + fj,2) grad div s+/*2V
2s = 0 (7.186)

This is the condition of equilibrium when volume forces are ignored. Because the normal

component of stress is a continuous function at the borehole surface between a fluid and

an elastic medium, the first boundary condition is

rTr (a) = -p, (7.187)

where p is pressure caused by a fluid. Also, we have at the external surface of the

cylinder

rrr (b) = 0 (7.188)
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In solving eq. 7.186, it is natural to assume that displacement s has only the radial

component

s = sr(r) ir, (7.189)

which is a function of the single coordinate r. By definition,

ir r iv \z

curl s = - d d d ,
dr dip dz
sT 0 0

i.e.,

curl s = 0 (7.190)

Inasmuch as

curlcurl s — graddiv s—V2 s,

cq. 7.186 can be written as

(A2 + 2/x2) V
2s+/x2 curlcurl s = 0

Making use of eq. 7.190, we obtain the Laplace equation for displacement s:

V2s = 0 or i rV
2s r + s rV

2 ir = 0 (7.191)

The laplacian in the cylindrical system of coordinates is

V> = I i ( 4 ) + ^ , (7.192)
r dr \ dr) r1 dip1

because the fields are independent of z. It is clear that

ir = cos ip i + sin <p j

Substituting the latter into eq. 7.192 and taking into account that i and j are constants,

we obtain

V2ir = - \ i r (7.193)
rz
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Correspondingly, eq. 7.191 becomes

^ ( 4 ) ^ = 0 (7.194)
r dr \ dr J rl

Thus, eq. 7.186 is greatly simplified. To determine displacement component sr, we

have to solve an ordinary differential equation. Suppose that its solution has the form

sr(r) = Crm, (7.195)

where C and m are unknowns. Substitution of eq. 7.195 into eq. 7.194 gives

m2 - 1 = 0,

i.e., mi —I and m2 — —1, and the general solution of cq. 7.194 is

sr(r)=Ar+- (7.196)

Here A and B arc unknown constants that arc determined from boundary conditions.

As was shown earlier (Chapter 1), the diagonal elements of the strain tensor in the

cylindrical system of coordinates arc

dsr sr , >
err = —— and evv = —, (7.197)

dr r

while

ezz = 0,

since displacement sz is independent of the 2-coordinate. From eq. 7.196 we have

err = A - — and e w = A + — (7.198)
rZ r-r rz

By definition, in the cylindrical system of coordinates

div s = -—(rsr) =2A, (7.199)
r dr

which shows that at each point of any plane z=const, the relative change in elementary

area is the same. This deformation causes the normal component of stress along the

cylinder axis, and

TZZ = const (7.200)
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In accordance with Hooke's law (Chapter 1),

Trr(r) = A2 div s + 2/z2 err, (7.201)

and using eq. 7.198 we have

Trr(r) = 2[(A2 + / i 2 M - ^ ] (7.202)

The boundary conditions give

B~\ f B l
-p = 2 (A2 + / / 2 ) . 4 - / i 2 - , 0 = 2 (A2 + / i 2 ) A - / i 2 - (7.203)

Solution of this system is

and

- ^
Correspondingly,

which gradually changes with an increase of r. Now in cq. 7.196, letting r — a we

obtain

sr(a) a2p b2 p

a 2 (A2 + /i2) (b2 - a2) + 2/i2 (62 - a2)

or

^ ^ ^ - ( ^

where

M = fe^ + f^-°P (7.208)
/L«2a

2 + (A2 + /i2) ^
2

Thus we have solved our task and established the relationship between radial displace-

ment of an elastic medium at the borehole surface and fluid pressure. Before we continue,

let us note the following. The azimuthal component of stress is defined as

rvv{r) = A2 div s + 2 fj,2 evv (7.209)
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Taking into account eqs. 7.198 and 7.199, we have

rw{r) = 2A2 A + 2 M

or

By definition (Chapter 1),

Eezz = TZZ - a (r r r + r w )

Here E is the Young modulus and a is Poisson' ratio. Inasmuch as strain is absent

along the z-axis, we have

TZZ = c r ( r r r + r w ) , (7.211)

and the use of cqs. 7.206-7.210 gives

Tzz = Jp~^ P = C O n S t (7.212)

Of course, this independence of coordinate r is expected. Also, it is interesting to

mention that with an increase of the external radius r, the stress component TZZ

becomes smaller, and in the limit (r —> oo), it vanishes. Taking into account continuity

of the normal component of displacement sr and substituting eq. 7.207 into eq. 7.185,

we obtain

dszU
or

M,

Then from eq. 7.213 and 7.176 we have

d2sz 1 32sz

dt2 ( \ \ \ dz2 (7.214)
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This is the wave equation with respect to the vertical component of fluid displacement:

d2sz _ 1 32sz

Here

c = 1 (7.215)

or

< = « , \V,2 I 7 ' 2 1 6 '

In accordance with cq. 7.208, with an increase of external radius b, parameter M tends

to the shear modulus

M -> fi2 (7.217)

Respectively, cq. 7.216 coincides with cq. 7.171, which describes the velocity of Stonclcy

waves in the low-frequency spectrum.

It is also useful to consider the case in which radii a and b arc close to each other,

that is, the borehole is surrounded by a thin tube with thickness h:

b — a — h, b + a Ki 2a

Then, in place of eq. 7.208, we have

M ~ 2 M2 ^ 2 + fe) h

(A2 + 2/i2) a

or

" « , 2 / : \ . ( "18)

and the velocity of propagation differs from that in the previous example (M ~ /i2).

Phase and group velocities
We have studied phase velocity of the Stoneley wave in the low- and high-frequency

spectrums. Next let us consider velocity dispersion, i.e., its dependence on frequency.

Earlier it was demonstrated that the wavenumber of the Stoneley wave
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is defined as the root of the characteristic equation 7.156 Dm = 0, provided that

m > max (£4, ks).

As usual, it is convenient to consider the numerical solutions of this equation sepa-

rately for two models of a medium, where cither cs > C\ or cs < C\. In the first case,

Fig. 7.6b, there is small dispersion of the phase and group velocities, and cg is slightly

higher than cp. With an increase of frequency, values of both functions become larger

and in the limit they approach the asymptote, which is a little smaller than wave velocity

c\ in the borehole fluid.

Before we discuss velocity dispersion in the second model (cs < c{), let us use eq.

7.171,

which can also be represented in the form

i i = f 4 + - 1 ' 7 ' or 4 = - + 4 if ^ 0 (7.219)
cs \c( p2j c2 p2 c{

Inasmuch as existence of the Stoneley wave implies that c < cs, it is natural to distinguish

two cases in the second model (cs < Cj):

^ + 4 > 1 and - + 4 < !
P-2 Cl P-2 Cl

An example of functions c (u) and cg (to) in the first case is shown in Fig. 7.6c. Again

there is small dispersion of phase and group velocities, and the latter is slightly smaller

(cg < c). At the low-frequency limit we have, approximately,

-̂ - = ^ 0 . 7 2
Cl Ci

With an increase of frequency phase and group velocities decrease a little and approach

their corresponding asymptotic values. Note that the phase velocity of the Stoneley wave

remains smaller than the shear velocity. In the second case, Fig. 7.7, the ratio csjc\ is

even smaller, which causes peculiar behavior of the Stoneley wave in the low-frequency

spectrum. In accordance with eq. 7.219, we have

cp (u>) > cs, if ui —> 0

which means that a wave propagates in both the axial and radial directions. Because

of this, its movement along the borehole axis is accompanied by attenuation. As is seen
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Figure 7.7: Dispersion curves of phase and group velocities (a — 0.1 m, c; — 2.40 km/s,

c, = 0.90 km/s, /9X = 5.10 g/cm3, p2 = 2.1 g/cm3). [After Cheng & Toksoz, 1981]

from Fig. 7.7, when wavelength Ai is sufficiently large, the phase velocity of the surface

wave exceeds the shear velocity. In this range the wave rapidly decays along the z-axis.

However, with an increase of frequency, velocity cp(w) becomes smaller than cs, and

a Stoneley wave is observed. In other words, in the second case,

Pi q
there is a cut-off frequency at which

cP (fc) = cs

In addition, note the following:

1. The Stoneley wave propagates without attenuation along the borehole, whereas

its wave amplitudes decay monotonically with increased distance r from the boundary,

r — a.

2. At the beginning, this decrease is relatively slow. However, at large distances

from the borehole surface, the amplitudes of displacement, strain, and stress decrease

exponentially.

3. At the low-frequency spectrum, a/Ai < 1, the axial component of displacement sz

is almost constant inside the borehole, but the radial component sr linearly increases as

a function of r. At the borehole axis the latter is equal to zero, regardless of frequency.
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4. As follows from boundary conditions, the component sr is a continuous function

at the borehole surface, but the axial component sz has a discontinuity.

5. Propagation of the sinusoidal Stoneley wave is accompanied by elliptical partical

motion in a fluid and in an elastic medium (elliptical polarization).

6. Wave amplitudes arc defined by integration around the corresponding pole m (to),

where m > max(fci, ks).

7.4 Normal modes, head and transient waves

In the previous section, we studied the behavior of surface (Stoneley) waves propagating

along the borehole. Certainly, this is a very important element of the wavefields that are

caused by the source on the borehole axis.

As we know, scalar and vector potentials describing all of the waves inside and outside

the borehole can be represented in the form:

^ ei kiR i-
ip1 — C — - h / AmI0(niir) cosmz dm if r < a (7.220)

& J
o

oo

~ fand <p2 = / BmKo{mir) cosmz dm,
J
o

oo
~ f

tij,2 = / CmKi(msr) sin mz dm if r > a
•J

o

It is essential that all three functions, Am, Bm, and Cm, have the same poles, which

are roots of eq. 7.156:

Dm = 0 (7.221)

In order to characterize the main features of waves, it is useful, as before, to separately

consider two models of a medium, namely c\ < cs < Q (case 1) and cs < c\ < q (case

2)-
Case 1 Suppose that the ratio of the wavelength to the borehole radius is small

(A; <C a). Correspondingly, the wave behaves nearly in accordance with geometrical

seismic postulates. In other words, we can use the concept of rays for P and S waves,
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as well as Snell's law. Earlier it was demonstrated that surface waves are absent when the

borehole is surrounded by an acoustic medium, but the head wave and normal modes are

present (ci < c^). It is natural to expect the appearance of these waves in the presence

of an elastic medium. In describing wave behavior at the high-frequency approximation,

we proceed from eqs. 7.220 and 7.221 and Fig. 7.8a,b. Energy of the direct wave caused

by the primary source advances along the elementary ray tubes. In the tube oriented

along the z-axis, scalar potential of the primary wave

i k±z
<A) =C

z
decays inversely proportionally to distance z, and it might be observed alone at rather

large distances from the origin.

Next let us consider the reflection and transmission of waves at the borehole surface

using critical angles
sin^ = ^ and sin^ = ^ (7.222)

Inasmuch as Q > c,,, we have

e[. < 6S
C, (7.223)

and the critical angle for longitudinal waves occurs at points of the borehole surface

located relatively closer to the source. The coordinate zi of these points is defined from

the equality

s i n ^ = — ^ L = = ^i (7.224)
y/a2 + zf Q

In the same manner, the place where we observe the critical angle for the shear wave is

sinfl;= r ^ - ^ = - ( 7 - 2 2 5 )

yj z2 + a2 c,

and

zs >Z[ (7.226)

It is convenient to distinguish three intervals at the borehole surface:

they are z < zi, zi < z < zs, z > zs.

In the first range, z < zi, the incident wave gives rise to the longitudinal reflected wave

in the borehole fluid. The reflection angle obeys Snell's law and varies as

0 < 6T < d[
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Figure 7.8: (a) Rays of reflected, transmitted, and head waves (b) Intervals of integration
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At the same time, P and S transmitted waves appear in the elastic medium and move

away from the boundary, r = a. As follows from Snell's law, transmission angles 0l
2

and Q\ obey the equality

EL^ = E l £ (7.227)
ci c,

i.e.,

6'2 > 6S
2 (7.228)

Certainly, the wavefields possess the same axial symmetry. In accordance with eq. 7.224,

iU£L(i-4r,
a c4 \ cfj

and Z[ is usually smaller than the borehole radius. The longitudinal wave inside the

borehole experiences reflections that may occur within the first interval as well as beyond

it. In the case of constructive interference between reflections, modes are formed that

propagate along the borehole. At any cross-section z < Z[, these modes are the standing

waves. However, they rapidly attenuate with distance z, since after each reflection

some part of the energy leaves the borehole and moves into elastic medium. This is why

such waves are often called leaking modes, and with an increase of distance their role

diminishes.

From eqs. 7.220, it follows that the initial interval of integration

m < ki

entirely defines the P transmitted wave and makes a significant contribution to the S

transmitted and reflected waves. In fact, the radicals

•Jm,2 — k'f, \Jm? — k2, and dm? — kf

are imaginary, and we are dealing with waves that propagate along rays (Snell's law).

Note that in this interval the wavenumber of elementary cylindrical waves varies from

zero to k[. Therefore, phase velocity changes as Q < c < oo. When the angle of

incidence 9i of the direct wave approaches the critical angle, 8l
c, the P transmitted

wave starts to move in the vicinity of the borehole along its surface and generates a head

wave in the fluid. This is a conical wave, and angle 0l
c defines the orientation of the

phase surface. At relatively large distances z from the source, the longest path of this
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wave is located outside the borehole, where it moves with velocity Q. Correspondingly,

the P head wave appears as the first arrival.

In the second range, zi < z < zs, we observe total internal reflection for the P wave.

This means that the P evanescent wave appears in an elastic medium, and during each

period energy flux of this wave in the radial direction is equal to zero. At the same time,

the S transmitted wave propagates through the surrounding medium with velocity cs,

and it arises at each point of the second interval. Because of this, the amplitude of the

reflected wave is still smaller than that of the incident wave, and it decreases after each

reflection. Therefore, as with the first range, constructive interference of the reflected

waves can produce only leaking modes. Of course, destructive interference is a second

factor that also results in a decrease of wavefields.

Superposition of elementary cylindrical waves with wavenumbers k\ < rn < ks, i.e.,

the second interval of integration in eqs. 7.220, form leaking modes. At points of the

borehole surface where z\ < z < zs, the following waves appear:

a. The reflected wave inside the borehole,

b. The S transmitted wave in an elastic medium,

c. The P inhomogeneous wave, which rapidly decays with increased distance from

the borehole, and

d. The P head wave, which originates near points of interference with coordinate

zi-

At the end of the second interval, z ~ zs, the incident angle approaches 9S
C, and

the S transmitted wave begins to move along the boundary with the velocity of the

shear wave, cs. This creates the S head wave, which in the far zone comes after the P

head wave, representing the second arrival of the transient wave. Note that the velocity

of propagation of the evanescent wave associated with total internal reflection varies as

C-s < C < C[

Since m > ki in the second interval of integration, Fig. 7.8b, corresponding harmonics

(elementary cylindrical waves) make some contribution to the inhomogeneous wave. Fi-

nally, at points of the borehole surface where z > zs, total internal reflection takes place

for both P and 5* waves. This suggests that a reflected wave inside the borehole is

accompanied by dilatational and rotational wavefields in an elastic medium. Besides, two

head waves are propagating along the boundary with velocities Q and cs, respectively.

Inasmuch as at these points of the boundary ( z > zs) a reflection docs not cause leakage

of energy into the surrounding medium, normal modes are formed, and they propagate
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along the borehole without attenuation. As we know, the same phenomenon takes place

when the surrounding medium is acoustic and c2 > C\.

The harmonics of the third interval (cqs. 7.220),

ks < m < k\,

form normal modes and the corresponding evanescent wavefields. Fortunately, determi-

nation of the wavenumbers of these modes does not require integration of eqs. 7.220,

because the former are roots of the characteristic equation 7.221. In this light, it is

proper to note that wavenumbers of Stoneley's wave are also roots of eq. 7.221, but

they correspond to the fourth interval of integration (TO > £4), provided that ks < ky.

This range of wavenumbers. primarily its initial part, contains information about surface

waves. Thus, the roots of the characteristic equation describing the normal modes are

within the third interval of integration. Correspondingly, their phase velocity changes as

Ci < C < Cs

It may be useful to explain this fact in a different way. Consider the rays of the direct

wave, which reach the borehole surface at points z = zs. By definition, their incident

angle coincides with the critical angle, 9S
C:

sin0£ = -
c,

As follows from Snell's law, the reflected waves arising at these points are characterized

by the same angle, 6S
C, so that they form a conical wave. The latter causes the other

reflected waves, which are still conical, and their reflection angle is still equal to 6S
C. If

frequency is such that their interference is constructive, they form a normal mode that

propagates along the borehole axis. As in the case of the acoustic medium, the phase

velocity of the normal mode is defined from elementary geometry and is equal to

smOc

Next suppose that rays of the direct wave reach the interface at greater distances from

the source, z > zs. It is clear that their incident angle is also greater:

0i{z) > 0s
c

As before, this wave gives rise to a new family of conical reflected waves with the same

angle 9j (z). Assuming that their superposition is constructive, we again observe wave
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propagation in the axial direction. Phase velocity becomes smaller, since 6t (z) > 9S
C,

and

_ ci
C~ sinO{z)

Thus, with an increase in the angle of incidence of the direct wave, phase velocity of the

mode approaches tha t of the fluid

c —> Ci if 8i —> TT/2

Now let us discuss the relationship between wave velocities and frequency.

Dispersion curves of phase and group velocities
The dependencies of velocities cp (LJ) and cg (to) on frequency for the first two

normal modes arc shown in Fig. 7.9. Velocities arc obtained by numerical solution of
the characteristic equation 7.221. As we may expect, the behavior of these functions is
similar to that in the case of an acoustic surrounding medium. First of all, the phase
velocity for each normal mode has the same low-frequency asymptote, which is equal to
the shear velocity, cs. This occurs at the cut-off frequency that becomes higher with an
increase of the mode order. Below these frequencies the normal mode cannot exist. As is
seen from Fig. 7.9, with an increase of frequency phase velocity monotonically becomes
smaller and asymptotically tends to the wave velocity in the fluid, regardless of the mode
order. The behavior of group velocity is different, but its low-frequency asymptote is also
equal to c,,. With an increase of frequency, it rapidly decreases and comes to the Airy
phase, where cg (to) < c\. After passing the Airy phase group velocity approaches the
high-frequency asymptote from below.

cg (LJ) —> c\ i f to —> oo

Thus, the normal modes are highly dispersive, which is a clear indication that they arise
due to the constructive interference of reflected waves. For comparison, phase and group
velocities of Stoneley waves are also shown in Fig. 7.9. These velocities are characterized
by very minimal dispersion and do not have the cut-off frequency (c, > ci). In this
case, both velocities vary within the range

0.90 < — < 0.96

Thus, as in the case of the acoustic surrounding medium, there is an interval of relatively
low frequencies in which normal modes are absent. Within this range only Stoneley and
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Figure 7.9: Phase and group velocities for the first two normal modes (a = 0.1 m,

Q = 4.5 km/s, cs — 2.2 km/s, pj = 1.2 g/cm3. p2
 = 2.1g/cm3, ci = 1.5 km/s). [After

Cheng & Toksoz, 1981]

head waves are present in the borehole (z 3> a). With an increase of frequency, the

first normal mode appears, then the second one, and so on. Thus, with an increase of

frequency, the number of normal modes also increases. We can say that at each frequency,

this part of the wavefield is the superposition of a finite number of normal modes moving

with different phase velocities along the borehole. As is well known, each normal mode

behaves like a standing wave at any cross-section of the borehole. With an increase of

the mode order, the number of nodes, characterizing wave oscillations along the radius

also increases. Applying the residual theorem, the amplitudes of Stoneley waves and

normal modes can be found. One such evaluation is presented in Fig. 7.10. Near the

cut-off frequency of the first normal mode there is a small range of frequencies, at which

the amplitude of the Stoneley wave is greater. With a further increase of frequency, the

field related to the normal modes prevails. Note that the normal modes are often called

pscudo-Raylcigh waves as well as reflected conical waves.

Head waves
The procedure for deriving asymptotic formulas for P and S head waves is similar

to that used in the case of the acoustic surrounding medium (section 7.2). The algebra

related to this task is rather cumbersome, because function Am in eqs. 7.220 is much

more complicated. First of all, we represent the complex amplitude of scalar potential
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Figure 7.10: Amplitudes of normal modes and Stoneley wave

inside the borehole as

£.9 = 2 / Amh{mir) el m z dm
— oo

In the presence of an elastic medium around the borehole, there are three branch points
of the integrand Am,

fci + i£, ks + i£, kd + if,

where £ is a very small and positive number. Integration along branch cuts related to
point ki + if, as in the acoustic case, gives an expression of scalar potential that differs
by sign only from that of the primary source in a uniform medium. This means that
the influence of the primary wave is canceled, and we have to focus on the contribution
of intervals around two other branch points. The asymptotic formulas for S and P
head waves in the far zone are obtained by integration near branch points ks and fc;,
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Figure 7.11: Transient wave at the borehole axis (a) Lowest-frequency part of normal

mode (b) Stoneley wave (c) Airy phase. Here L = 2.44 m, Q = 5.94 km/s, p1 — 1.2

g/cm3, p2 = 2.3g/cm3, a = 10.2 cm. [After Cheng & Toksoz, 1981]

respectively. In both cases, integration along opposite sides of the branch lines gives an

integral with logarithmic singularity, and it has the known form

oo

f e-'mz dm
J (fli + b{ In m) (fl2 + 62 In m)'

- C X D

discussed in section 7.2. Correspondingly, both head waves usually decay cither as

(ksz) In ksz or (kiz) In k[Z. For this reason they are smaller in the far zone than the

normal modes and Stoneley waves.

Transient waves
As an illustration of the transient wave at an observation point located at the borehole

axis, consider the example shown in Fig. 7.11. Note that this theoretical response takes

into account the first normal mode, while the influence of others is discarded. As we

already know, the first arrival is due to the P head wave. The second arrival is caused

by the S head wave. Inasmuch as both of these waves decrease with distance 2, their

magnitudes are sufficiently small. Then we observe portion "a" of the transient wave,
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which corresponds to the low-frequency range of the normal mode. As follows from Fig.

7.9 the group velocity in this range is higher than that of the Stoneley wave. Next is

portion "6", which corresponds to Stoneley wave, and after that there is interval "c",

which is formed by higher frequency normal modes and is called the Airy phase.



Chapter 8

Plane waves in a transversely

isotropic medium

The conventional theory of elasticity assumes that a medium is continuous, that is an
atomic structure of matter is not taken into account. This implies that any elementary
volume contains practically unlimited number of atoms or molecules. From the macro-
scopic point of view this volume of a rock includes crystals, fluid, gas, as well as different
amorphous solids. Crystals always demonstrate some kind of an anisotropy. In other
words, their elastic parameters may vary with a direction. In general, an elementary
volume may contain different kinds of crystals with more or less random orientation. If
they are distributed evenly in a medium and their orientation is completely random, we
may consider formation isotropic. In contrast, if there exists a preferable orientation
along some metamorphic rocks, for instance, display a relatively significant anisotropy.
Also, it can be caused by fracturing. There is another reason for such a behavior. Some
sedimentary formations, and, first of all shales, have cleavage planes that are observed
even inside small volumes, (~ I cm3). At the same time this feature may characterize
a layer of a great thickness and large horizontal extent. Correspondingly, the layer can
be treated as a homogeneous but anisotropic solid.

Finally, the elastic properties of a system of horizontal layers often show symmetry
with respect to a vertical axis, since all horizontal directions are equivalent. If the
thicknesses of all layers are much smaller than the wavelength, then such a medium can
be considered also as a homogeneous anisotropic one, called transversely isotropic. Its
elastic properties are independent of direction in horizontal plane but differ from those
in the vertical direction. Our goal is to investigate the behavior of plane waves in such a
relatively simple medium. With this purpose in mind let us consider its elastic constants.

481
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8.1 Stress-strain relations in a transversely isotropic medium

In general, Hooke's law relates the six independent stress components to six independent

strain component and has form (Appendix E)

Txx = cnexx + cx2eyy + ci3ezz + cueyz + c15exz + cx6exy

Tyy = onexx + c22eyy + c23ezz + c2ieyz + c25exz + c26exy

TZZ = cuexx + c32eyy + c33ezz + c3ieyz + c35exz + c36exy

TVZ = cixexx + ci2eyy + ci3ezz + ciAeyz + ci5exz + ci(iexy, (8.1)

TXZ = c5iexx + c52eyy + c53ezz + c5ieyz + c55exz + c56exy,

Txy = c61exx + Cfi2eyy + c63ezz + cMeyz + c65exz + c66exy,

where cy = cri.

As was demonstrated in the Appendix E only five coefficients Cy differ from zero in the

transversely isotropic medium and the matrix of elastic constants is

C\\ Cyi C13 0 0 0

C-12 Cn C13 0 0 0

Cl3 C13 C33 0 0 0

0 0 0 c44 0 0 (8-2)

0 0 0 0 c44 0

0 0 0 0 0 ^ ^

Thus, unlike isotropic media, which are defined by just two parameters:

C12 = C13 = A a n d c4 4 = /1,

with

fin =c33 = X + 2/x,

for transversely isotropic media, the five independent coefficients:

C l l , C12, C13, C33, C44

describe the Hooke's law. Correspondingly, cqs. 8.1 reduce to

TXX — cnexx + ci2eyy + ci3ezz
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Figure 8.1: (a) Model of laminated medium (b) Orientation of of plane wavefront. [After

Postma, 1952]

Tyy = cv2exx + cneyy + cnezz

TZZ = cizexx + c13eyy + c33ezz (8.3)

_ _ _ C n — C12
7~yz — C44Cyz: 7~zx — ^AA^-zxj ^~xy — ~ ^xy

Laminated solids
As an example of the transversely isotropic medium consider a periodic system of thin

horizontal layers. Each of its element consists of two homogeneous isotropic layers with

elastic parameters Ai, fii and A2, /i2, respectively. Their thicknesses are d\ and c^. As

is seen in Fig. 8.1a, the x— and y—axes are parallel to the layer boundaries. Consider

a parallelepiped with faces parallel to the coordinate planes and vertical and horizontal

dimensions n(d\+d2), a, and b, where n is some large integer number. We assume

that the wave length is much greater than the thickness of the elementary layers and by

averaging replace this medium by a transversely isotropic one. First, suppose that the

volume is subjected to normal stresses only. For instance, stress TZZ acts on the faces

perpendicular to the z—axis. At the same time, the normal stresses TXX\ and rXX2

are applied to the faces of elementary layers normal to the a;—axis. By analogy, stresses

Tyyi and Tyy2 act on the faces perpendicular to the y—axis. Under the action of these

stresses each elementary layer, with the thickness d\ or d\, experiences deformation.
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Inasmuch as equilibrium is considered, normal stress TZZ has the same value throughout

the medium, that, is,

TZZ1 = Tzz2 = TZZ (8.4)

It is essential that a change of the length in any horizontal direction also has to be the

same in both layers. Otherwise, we would observe a discontinuity of the corresponding

components of the displacement. This means that strain elements exx and eyy have to

satisfy the condition

e-xxi = eXX2 = exx, eyyX = eeyy2 = eyy (8.5)

Strains ezzi and ezz2 however, may differ. Applying Hooke's law to the first isotropic

layer we have:

TXX\ = (A, +2/z 1)e r a + Aiera +Aie^i

Tyyi = \iexx + (Ai + 2 ^ ) eyy + Xxezzl (8.6)

TZZ = \\exx + Xieyy + (Ai + 2/it) ezzX

In the same manner the use of the Hooke's law for the second layer gives

T, ,2 = (A2 + 2/i2) exx + X2eyy + A2 ezz2

Tyyi = A2era + (A2 + 2/i2) eyy + A2 ezz2 (8.7)

TZZ = \iexx + A2era + (A2 + 2/i2) ezz2

Now we perform an averaging of stresses weighted by the relative thickness of two types

of layer. The mean stresses, acting on the faces perpendicular to the x— and y—axes,

are

dl TXX\ + (l2 TXx2 dX Tyyl + 6,2 Tyy2 . .
Txx = T~^7l a I l d T™ = rl -L. A ( 8-8 )

di + a2 di + a2

In fact, the latter describe a replacement of two parallel forces by the resultant one. At

the same time, as was pointed out earlier, the stress TZZ has the same value at each
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layer and, therefore, its average value is equal to TZZ. Making use of Hooke's law, eqs.

8.6 and 8.7, we find the relationship between the mean values of stresses and strains:

{di + d2) TXX = exx [di (Ai + 2/iJ + d2 (A2 + 2/J2)}

+eyy (Airfi + X2d2) + ezzi\idi + ezz2 \2 d2,

(di + d2) Tyy — exx (Xidi + X2 d2) (8.9)

+eyy[di (Ai + 2fiL) + d2 (A2 + 2//2)] + ezzl\ldl + ezz2 A2 d2,

(rfi + d2) TZZ = exx (Airfi + A2 d2) + eyy (Xidi + X2d2)

+ezzl di (Ai + 2/x,) + eM2 c?2 (A2 + 2fj,2)

In order to accomplish this process of averaging we introduce the mean strain ezz as

(rfi + d2) ezz = dx ezzl + d2 ezz2 (8.10)

Here ezz is the average strain of the volume, which contains equal and large number of

elementary layers with thicknesses d\ and d2. From the last equations of sets 8.6 and

8.7, we can express ezz\ and ezz2 in terms of the mean strains, giving

_ (di + d2) (A2 + 2//2) ezz - (Ai - A2) (exx + eyy) d2
6zzl ~ di (A2 + 2/i2) + d,2 (Xi + 2fh)

 ( • '

_ (di + d2) (Ai + 2iJ>j)ezz + (Ai - A2) (exx + eyy) dx
a l K C " 2 ~ rI1(A2 + 2/i2) + ri2(A1+2/i1)

Finally, substitution of cqs. 8.11 into the set 8.9 establishes the relationship between the

mean normal stresses and strains:

(dj + d2f {Xj + 2/i:) (A2 + 2M2) + djd2{[(Xj + 2Ml) - (A2 + 2/x2)]
2 - (A, - A2)

2}
T xx — &xx p.

A,A2 (d, + d2f + 2 (Aidi + X2d2) (p2d{ + /x^a)
+ evv D
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(di + d2) [Aidj (A2 + 2/22) + X2d.2 (Ai + 2/xx)]
+ e " D

Aj A2 (di + d2)2 + 2 (Aidi + A2d2) {n2dx + md2) , ^
Tyy = exx (8.12)

_, (di + d2f (Ai + 2Ml) (A2 + 2M2) + ^^{ [ (A: + 2/jJ - (A2 + 2M2)]2 - (At - A2)
2}

+tyy D

, (di + d2)'
2 [Aidj (A2 + 2M2) + A2o;2 (A: + 2Ml)]

(rfx + rf2) [Xjdj (A2 + 2/i2) + A2d2 (Aj + 2/iJ]
-7- [ p _L *3 1 z' zz — \cxx ̂  tyy I JJ

{dl + d2f (Ax + 2/iJ (A2 + 2M2)
+ e - D '

where

D=(di + d2) [di (A2 + 2/i2) + <i2 (Ai + 2/Xj)] (8.13)

Next assume that the volume is subjected to the action of shear stresses. First, consider

the stress ryz acting on the faces perpendicular to the z—axis. Correspondingly, the

deformation is characterized by the strains eyz\ and eyz2, with their average value

(di + d2) eyz — dieyzi + d2eyz2 (8-14)

Here

Lheyz\ = Tyz = lHe-yz1 (8.15)

The last two equations give

/ N (d\ do\ (di + d2) «i«o , .
(di + d2)eyz = [ — + — ) ryz, or ryz =

 y-j ~_'jeyz 8.16
\ft ft/ d\iJ,2 + d2ij,i

In the same manner we find the relation between TXZ and exz:

(di + d2) HiH2

Txz = —; —; exz (8-17)
din2 + d2fii
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Suppose that the shear forces Tx\a d\ and TX2<I d\ are applied to the faces normal to

the y-axis of the layers with the thickness d\ and d2, respectively. Continuity of the

displacement requires

exyi = exy2 = exy (8.18)

Therefore,

Txyi=^exy and rxy2 = \i2exy, (8.19)

and, for the average shear stress rxy, we have

Txy (di + d2) = Txyidi + rxy2d2

or

rxy (di + d2) = exy (/i^di + fj,2d2) (8.20)

Thus

rxy = ^ ^ e X y , (8.21)
CL\ -f- Cl2

We have thus established the relationships between the average values of the stresses and

strains (Hooke's law).

Comparison of eqs. 8.12, 8.17, and 8.21 with eqs. 8.3 gives

^1 = J^{(di + d2f (Ai + 2lh) (A2 + 2/i2) + 4did2 (lh - /i2) [(Ax + fh) - (A2 + /i2)]}

C12 = -p{(di + rf2)
2 AXA2 + 2 (Aid! + X2d2) (/i^ + /J^)}

cis = ^ { ( d i + d2) [Aidi (A2 + 2/x2) + A2d2 {X1 + 2^)]} (8.22)

C33 = ^ (di + rf2)
2 (Ai + 2/iJ (A2 + 2/i2)

(di + d2) ̂ ^ jildi + d2n2
C44 = —; — ; c66 = — - — —
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Here

C66 = ~ \fi.l6)

These formulas give the linkage between the five parameters of the transversely isotropic

medium and the Lame constants of two elementary isotropic layers: Ai, /i : and A2, fi2,

and their thicknesses di and d2. Applying algebra, we find that the elastic constants

obey some inequalities. First, they are positive if A > 0 and fi > 0. Also,

en > c44, en > c66, c33 > c44 (8.24)

In conclusion note that any laminated medium can be represented by a much more

complicated periodic system of layers with different Lame constants and thicknesses.

Equations of a motion
As in an isotropic medium suppose that an elementary volume

dV = dx dy dz

is subjected to an action of the surface forces. Then, in accordance with the second

Newton's law its motion is described by the following system (Chapter 1):

9TXX drxv drxz d2u
1 H = p ,

dx dy dz dt2

dryx dryy dryz _ d2v
dx dy dz dt2

drzx drzv drzz d2w
1 H = p

dx dy dz dt2

Here

s — ui + vj + wk (8.26)

is the displacement of the center of mass of an elementary volume, and, for the laminated

medium, 8.1a,

= ftdi+Wfr ( 8 . 2 7 )

d\ +d2
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Next, substitution of eqs. 8.3 into the set 8.25 and taking into account that

du dv dw
dx JJ dy dz

du dv du dw dv dw

xy dy dx' xz dz dx' yz dz dy'

gives a system of equations with respect to the displacement components:

d2u d2u d2u d2v d2w d2u
C11"H~? + C66^~^ + C44^-y + (Cn - Cm) + (C13 + C44J— — = p —-r-,

dx2 dy2 dz2 dxdy dx dz dt2

d2u d2v d2v d2v d2iu d2v
(cn - c66) + c66-— + cn—-- + cAA—— + (ci3 + C44)——- = p —— (8.28)

dx dy dxA dyz dz2 dydz dt/

d'2u d'2v d'2w d'2w d'2w d'2w
(C13 + C44J- — + (C13 + CAi)- — + C44^-— + C44^-y + C 3 3 ^ - ^ = P -^W

dx dz dy dz dx2 dy2 dz2 dt?
The counterpart for the equation in the isotropic medium is

(92s
li V2s + (A + /i) grad div s = p ——

at1

8.2 Propagation of plane waves in a transversely isotropic medium

Now we demonstrate that the plane waves propagating through the transversely isotropic

medium have velocities that relate in a certain manner to elastic constants and orientation

of the phase surfaces. Let the axis of symmetry for the transversely isotropic medium be

the z-axis. Suppose, with no loss of generality, that the Cartesian system of coordinates

is such that the phase surfaces of these waves are parallel to the y—axis, that is the

particle displacement is independent on the y—coordinate. Assuming that a plane wave

exists, we can represent the components of the particle displacement as

u — uo I (x cos 9 + z sin 9 — ct)

v = Vo f [x cos 0 + z sin 0 - ct) (8.29)

w = WQ f (x cos 0 + z sin 0 — ct),
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with the angle 8 is shown in Fig. 8.1b. Inasmuch as the derivatives with respect to y

are equal to zero, the system of equations 8.28 simply to

d2u d2u d2w d2u
Cn^T + cu^r^ + (ci3 + c44)—-- = p —-r

ox1 ozz oxoz at1

d2v d2v d2v
C^dX-2+^^=PW (8-30)

d2u d2w d2w d2w
(Cl3 + C44) „ o + c44^-y + C33—-r- = p -—-

oxoz ox/ ozz otz

Substitution of eq. 8.29 for the displacement into eqs. 8.30 gives:

(en cos2 9 + C44 sin2 9) UQ + (C13 + C44) sin 8 cos 8 WQ — p C2UQ

(c66 cos2 8 + c44 sin2 9) v0 = p c2v0 (8.31)

(C13 + C44) sin 6 cos 8 uo+ (c44 cos2 61 + c33 sin2 6) w0 = p c2w0

Note that the system 8.31 does not contain the function

/ (xcosd + zsin8 - ct),

so our results can be applied to any function of time; that is, independent of a frequency.

Also, coefficients UQ and WQ, characterizing motion in the plane y—const, are present

in only the first and third equations of set 8.31. We thus have simple system of the

homogeneous linear equations with respect to unknowns UQ, VQ, WQ, and c. Therefore,

these parameters of the plane waves, (UQ.VO, and WQ), cannot be uniquely determined.

From the physical point of view this follows, because the primary source of the plane

wave is not specified. However, existence of a plane wave in such a medium implies that

these unknowns differ from zero. This is possible when the determinant of the system of

homogeneous equations, 8.31, is equal to zero. This condition allows us, as with Rayleigh

and Stoneley waves, to determine the velocity of propagation of the plane waves. This

procedure is greatly simplified because the second equation of the set contains only the

unknown VQ, and the first and third equations contain only u0 and WQ. Thus, in

place of this system we obtain two groups of equations, namely

(c66 cos2 6» + c44 sin2 9 - p c2) v0 = 0, (8.32)
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and

(en cos2 0 + c44 sin2 9 - p c2) u0 + (c i3 + c44) sin # cos 9 w0 = 0, (8.33)

(en + c44) sin 0 cos 0 -«0 + {cu cos2 0 + c33 sin2 9 — p c2) u;0 = 0

These sets describe different types of the plane waves and we begin their study from the

simplest case.

1. Propagation along the z—axis (symmetry-axis direction)

Letting 9 = TT/2, eqs. 8.32-8.33 become

(c44 - p c2) v0 = 0, (c44 - p c2) u0 = 0, and (c33 - p c2) w0 = 0 (8.34)

Their solutions are the wave speeds

[C33 , /Cu , .
ci — A — and cs — A — , (8.3o)

V P V p

Therefore, in this direction we may observe the pure dilatational wave,

w (z, t) = iu0 f ( z - c t t ) , (8.36)

and pure shear waves,

u (z, t) = uo / (z - cst) and v {z, t) = v0 f (z - cst) (8.37)

From the last inequality of set 8.24 it follows that

ci > cs (8.38)

Moreover, the particle displacement associated with each wave, is either normal or tan-

gential to the phase surface which is defined as

z — C\t = const or z — cst = const (8.39)

Inasmuch as

dw , dw dw
— =wof'(z- ctt), — = — = 0,
oz ox ay

this wave causes compression (extension) only; for this reason it is called the pure dilata-

tional wave. In contrast,

dv dv

dy dx
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while

^ = vof'(z- cst)

Correspondingly, the wave v (z, t) produces simple shear, which includes rotation, but

no compression (extension). Thus,

v{z,t)=vof'{z-c.t)

is a pure shear wave, and likewise for u(z, t). Because of the axial symmetry, both shear

waves, u (z, t) and v (z, t) move with the same velocity.

2. Propagation along the x—axis

Suppose that plane waves may advance in the x—direction, orthogonal to the symmetry-

axis direction. Then, taking into account that 9 = 0, eqs. 8.32 and 8.33 give

(c66 - p c2) v0 = 0, (en - p c2) w0 = 0 (8.40)

and (C44 — p c2) WQ = 0

Three plane waves, with velocities

[C(i6 feu fen ,o ..x
CSH = J—, csv = \ — , ci = J — , (8.41)

V p V p V p
can propagate along the a:—axis. They are

u {x, t) = u0 / (x - cdt), v (x, t) = v0 f (x - cSHt), (8.42)

w (x, t) = wo f { x - c S v t )

Certainly, the same waves can be observed in any plane containing the z—axis. System

8.42 includes one pure dilatational and two pure shear waves. Since

c n > c66 and cu > c44,

the velocity of the dilatational wave exceeds those of the shear ones:

Q > CSH and Q > csv (8.43)

Comparison of eqs. 8.35 and 8.41 shows that

cs = csv (8.44)
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3. Propagation of the shear wave SH
Now we assume that 9 is an arbitrary angle between the x—axis and the normal to

the phase surface of the plane wave, Fig. 8.1b, and the wave has the single component

v:

v (x, z, t) = v0 f (x cos 9 + z sin 9 - cSH t) (8.45)

In accordance with eq. 8.32, such a wave exists only if

c66 cos2 9 + cAA sin2 9 - p c2
SH = 0, (8.46)

or which gives the expression for the velocity of propagation:

/ c66 cos2 9 + c44 sin2 9 \ 1/2

cSH = ( I (8.47)

Thus, the wave speed CSH is a function of the angle 9, and varies within the range

CSH(^)<CSH{0)<CSH{0), for cu < cm (8.48)

As follows from eq. 8.45,

£ = »•
dy

but
—— = VQ COS 9 f ' (X COS 6 + z sin 9 — c$n t)
ox

dv
and —— = vo sin 9 f ' (x cos 9 + z sin 9 — CSH i)

oz

Therefore, for the displacement field

s = vj,

we have

curl^ s = — — = —VQ sin 9 f ' (x cos 9 + z sin 9 - cSu t),

curly s = 0,

curl2 s = ^-=«o cos 9 f ' (x cos 9 + z sin 9 - cSH t)
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This means that the plane SH wave, regardless of the angle 9, is a pure shear wave,

causing only the simple shear of an elementary volume around the y—axis.

4. Propagation of quasi-P and quasi-.? waves
Next assume that the plane waves in general have particle displacement with two

components:

s = u i + w k, (8.49)

while dispacements along the y—axis are absent. In accordance with system 8.33 such

waves can exist only if the determinant of this system is equal to zero; that is,

en cos20 + c44sin20 - p c2 (c i3 + c44) sin 0 cos 0

(C13 + c44) sin (9 cos (9 c44 cos2 9 + C33 sin2 9 — p c2

Performing some algebra and introducing the notation

r — pc2,

we have

2 / , c n + C33 . cn ^ 3̂3 \
r-rlcM-\ 1 cos29j+ (8.50)

C44 (^±^1 + °J1_^1 c o s 2 ^ + I [ ( c u - C44)(C33 - C44) - (Cl3 + C44)2] s in2 0 = 0

Making use of eq, 8.22 it is possible to show that

^ c'n + c33 cn - c33

C44 < 2 ' 2 C ° S

the roots vary within the following limits:

, , cn + C33 c\\ — C33
c44 < r2 < r-! < + cos 20,

and they are distinct. Correspondingly, there can be two plane waves, propagating with

the velocities C\ and C2, {c\ > C2). We can write in the form.

Ui = «oi / {x cos 9 + z sin 0 — c^t), W\ = Woi / (x c o s 0 + z s m 0 ~ cit), (8.51)

u-z — UQ2 f {x cos 9 + z sin 6 — C2 t), W2 — W02 / (x cos 0 + 2: sin 0 — C2 i) (8.52)
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For both waves, the two displacement components change synchronously and, therefore,

vibrations of particles occur along a line (linear polarization). To illustrate the behavior

of velocities cy and c2 as functions of angle 9, consider an example of a laminated

medium with parameters:

Pl = 2.7 • 103 kg/m3, ,ui = 2.5 • 1010 N/m2, Xy = 3.0 • 1010 N/m2,

p2 = 2.3 • 103 kg/m3, /x2 = 0.6 • 1010 N/m2, A2 = 0.8 • 1010 N/m2

Correspondingly,

cn = 5.40 km/sec, csl = 3.04 km/sec,

Q2 = 2.95 km/sec, cs2 = 1-62 km/sec

Also assume that

^ = 3

Then the elastic constants, c^, in units of N/m 2 are

cyy = 3.36-1010, c33 = 2.46-1010,

cV2 = 1.21-1010, C44 = 0.74 • 1010,

ci3 = 0.97-1010, c66 = 1.08-1010,

and the average value of the density is p = 2.4 • 103 kg/m3. Dependence of the wave

speeds cy, c2, and C.SH, as functions of the angle 9 is shown in Fig. 8.2. Note,

that both plane waves, ( ity, Wy) and ( u2, w2), become pure longitudinal and pure shear

waves, respectively, when the angle 9 is equal to TT/2. Since cy (vr/2) > c2 (TT/2) , these

waves arc often called the quasi-P and quasi-5 waves. Because of axial symmetry ,

CSH (TT/2) = c2 (TT/2)

As seen from Fig. 8.2, for 0 = 0 at the beginning with an increase of the angle 9

CSH > c-2- Then they become equal and, after that, c2 > CSH- Finally, for propagation

along the z—axis these velocities coincide. The values of the longitudinal and shear

velocities in each of the two elementary layers define a range of variation for Cy, c2 and

CSH- We have:

ci2 < ci{Q) < Qi> cs2 < C2(@), CSH{0) < Csi, f° r all values of 0.
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The variation of wave speed with angle 9 for each wave type is an important feature of

a wave propagation in an anisotropic medium.

Direction of particle motion

In general, the line of the particle vibrations for both waves, {u\,w\ and U2,W2),

do not coincide with the normal to the phase surface. To demonstrate this, we make use

of cqs. 8.33, which give

wo _ P Cj - cn cos2 9 - c44 sin2 9
«o (C13 + C44) sin ̂  cos ^
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or

wo _ (ci3 + c44) sinff cos 0

Wo p C2 — C44 c o s 2 t/ — C33 s i n t/

Inasmuch as the determinant of this system is equal to zero, eqs. 8.53-8.54 give the same

result. From eqs. 8.51-8.52 it follows that

w 1 (c13 + c44)sin20
t a n a = — = - -— 8.55

u 2 (c44 cos2 9 + c33 sin2 6 - p c2) v '

where a is the angle between the z—axis and the line of vibrations. It is different for

the quasi-P and S waves and varies with the angle 9. A propagation of these waves

is accompanied by a compression, (expansion) and a rotation of elementary volumes of

a medium. In other words, the quasi-P or S waves arc neither the dilatational or

shear ones. In the case of quasi-P wave the vector of displacement is usually oriented

close to the normal of the phase surface, whereas for the quasi-SV wave the vector of

displacement is almost tangential to the phase surface. When quasi-SV wave propagates

along the z—axis these waves become, respectively, pure dilatational and pure shear

waves. To study this behavior in some detail let us compute the divergence and curl of

the displacement. Since

u — UQ f (x cos 9 + z sin 9 — ct),

w = WQ f (x cos 6 + z sin 9 — ct),

we have

div s = («o cos 0 + WQ sin 9) / ' (x cos 9 + z sin 9 — ct)

or

div s = sn f ' (x cos 9 + z sin 9 — ct) (8.56)

Here

sn = uocos 9 + wo sin 9 (8.57)

characterizes the displacement component, normal to the phase surface.

Again only the y—component of the curl s differs from zero:

du dw
curl, s =— - — ,

oz ox
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and rotation takes place about the y—axis. Therefore we have:

curly s =st f ' (x cos 6 + z sin 6 - ct), (8.58)

where

st = u0 sin 9 — iv0 cos 6 (8.59)

defines the displacement component, tangential to the phase surface of the plane wave.

The ratio

iv0

which show the relative roles of compression (extension) and rotation, depends on the

angle 91 as well as on the type of the plane wave.

8.3 Rays and an energy flow

A ray may be considered to represent an elementary tube along which elastic energy

flows. Correspondingly, in order to describe ray geometry, it is natural to proceed from

the Poynting vector (Part I), the vector of flux density (Appendix E):

Y = - r - s , (8.61)

tangential to the ray. Here r is the stress tensor:

( T~ T T \

'xx ' xy ' xz \

TyX Tyy TyZ

Tzx Tzy Tzz )

and

s = ui + vj + wk

is the particle velocity. In matrix notation, eq. 8.61 becomes

/ rxx Txy rxz \ I u \
Y = TyX Tyy TyZ ^

\ Tzx Tzy Tzz ) \W )
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or

Yx = -TXXU - TxyV - TXZW

Yy = -TXyU - TyyV ~ TyZW (8.62)

Yz = ~TXZU - TyzV - TZZW,

since

7~xy 7~yX1 7' xz TZXJ 7~yZ 7~zy

Taking into account that any element of the ray,

d\ — dx i + dy j + dz k,

and the vector Y have the same directional cosines

dx Yx dy Yy dz Yz

~dl~Y} ~dl~Y} ~dl~ V'
the equation of a ray in the Cartesian system of coordinates is

1 x -1 y x z

Making use of the Hooke's law and eqs. 8.62 and 8.63, we consider several cases that
illustrate ray behavior.

Case one. Plane SH wave in an isotropic medium Suppose that the plane
wave moves away from the origin, with its phase surfaces are parallel to the y—axis.
Then, the displacement

s = v j

is tangential to these surfaces, and for the single scalar component v we have

v = v0 f (x cos 6 + z sin 0 - cs t) (8.64)

Thus, the strains are

Sxx = £yy = &zz = 0, (8.65)
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dv
and exv = —— = VQ COS 6 f (x cos 9 + z sin 9 — cst),

ox

dv
eyz = — = v0 sin 9 f (x cos 9 + z sin 9 - cst), e^ = 0 (8.66)

This means that the normal stresses:

T~XX — Adiv s + 2/i e r a , r r a = Adiv s + 2// e ra, rZ2 = Adiv s + 2/x ezz (8.67)

vanish, but the shear stresses are

Ta;!/ = /•* exy = A* w0 c o s $ / ', rj/2 — A* e!/z = A* 'y0 s m ^ / ', T M — 0 (8.68)

Before we continue, note that any phase surface of a wavefront of the plane wave is

defined by the equation

x cos 9 + z sin 9 - cst = const; (8.69)

i.e., the phase is the same at all points where the wave arrives simultaneously. In accor-

dance with eqs. 8.62

Yx = -Txyv, Yy = 0, Yz = -ryzv (8.70)

or

Yx = fi vocs cos 9 ( / ' ) 2 , Yz = fj, v0 c, sin 9 {f'f , (8.71)

Substitution of eqs. 8.71 into eq. 8.63 gives:

dx dz dz , .
a = —Q

 o r ^ - = t a n 0 8.72
cos 9 sm 9 dx

This demonstrates the known fact that rays arc normal to the phase surface in an isotropic

medium.

Case two. Plane P wave in an isotropic medium Next consider propagation

of a longitudinal wave with displacement

s — sof (x cos 9 + z sin 9 — Q t) n

perpendicular to the phase surface. Correspondingly, components of the vector s along

the coordinate axes are

u — s0 cos 9 f (x cos 9 + z sin 9 - ct t), (8.73)
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w — s0 sin 0 f (x cos 0 + z sin 0 - ct t)

Hence

exx = So cos2 0 / ' , eyy = 0, ezz = s0 sin2 0f, (8.74)

ê y = 0, eyz = 0 and exz = —- + —- = 2s0 sin 0 cos 9 / ' ,
dz dx

while

div s =s 0 / '

The stresses are equal to

TXX = (A + 2/i cos2 (9) s0 / ' , r r a = A s0 / ' , r « = (A + 2/j, sin2 6») s0 / ' , (8.75)

and

r^j, = 0, ryz = 0, TXZ = M sin2 6> s0 / ' (8.76)

From cq. 8.62 we obtain

Yx = -TXXII - rxzw. Yy = 0, Yz = —TXZ u— TZZW (8.77)

Inasmuch as

u — — cis0cos9 / ' , w — -cisQsm9f,

eqs. 8.77 give

Yx = ct s
2 cos 9 (A + 2M) (ff , Yz = c« s2 sin 0 (A + 2//) (f'f (8.78)

Thus

— C; ps0 (_/ J n, (^o.iyj

because

n = cos 0 i+ sin 9 k, (A + 2/i) = p cf.

and the ray is normal to the phase surface.
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Case three. The plane SH wave in a transversely isotropic medium Again,

as in the first, case, the displacement has only the single component

v = Vo f [x cos 9 + z sin 6 - cSH t) (8.80)

Therefore

and

exy = vocos # / ' {x c o s 8 + z sin 6 — C,SH t),

eyz = v0 sin 6 f (x cos 6 + z sin 9 - cSH t), (8.81)

exz = 0

Taking into account Hooke's law, eqs. 8.3:

rxx = 0, Tyy = 0, TZZ = 0, (8.82)

Tyz = cu v0 sin 9 / ' , TXZ = 0, rxy = c66 v0 cos 9 / ' ,

and eqs. 8.62 become

Yx = cm vl CSH cos 9 {xff Yy = 0, (8.83)

Yz= cuv>csHsm8(f)2

Correspondingly, the ray equation is

C66 cos 9 C44 sin 9'

showing that the rays of the SH wave are still the straight lines in transversely isotropic

media, but they are no longer normal to the phase surface, except when 9 = 0 and

9 = TT/2. The angle formed by the ray and the x—axis is equal to

dz c44tan ip = — = tan 9
dx c66
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For instance, in the example considered above:

c44 = 0.74 • 1010N/m2, c66 = 1.08 • 1010N/m2,

and we have

tamp = 0.69 tan 6,

that is the angle <p between the ray and the x—axis is smaller than 8.

Case four. Ray orientation for quasi-P and quasi-5 waves These waves
cause particle displacement that has two components:

u = u0 f (x cos 8 + z sin 8 — c t), w = wQ f (x cos 8 + z sin 8 - c t) (8.85)

Here c is the either c\ or 02- Correspondingly, the strains are

f'xx = «o cos 8f, eyy = 0, ezz = w0 sin Of, exy = 0, eyz = 0,

exz = («o sin 9 + w0 cos 8) f (8.86)

and div s = (u0 cos 8 + WQ sin 6*) / '

This gives for stresses

TXX = (cn "0 cos 8 + ci3 w0 sin 6») / ' ,

Tyy = (ci2 '«o cos 6> + c i3 w0 sin 0) / ' , (8.87)

T « = (C13 "o cos 8 + c33 w0 sin 8) f ,

and Tyx = 0, Txy = 0, TXZ = c44 (u0 cos 0 + w0 sin 0) / '

Then, in accordance with eqs. 8.62, components of the Poynting vector are:

Yx = \{c\ 1 w,o cos 8 + C13W0 sin 0) u,0 + C44 (UQ sin ^ + WQ COS 0) Wo] c ( / ' ) ,

r y = 0 , (8.88)

and Yz = [cu(uosm8 + w0cos8) u0 + (cViu0cos8 + c33w0sin8) w0] c( / ' )

Clearly the angle between the normal n to the phase surface and the ray direction is

nonzero. Since the ratio UQ/WQ depends on the velocity of propagation, the rays of the

quasi-P and quasi-5 waves are oriented differently.
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8.4 Phase and ray surfaces

By definition, the phase surface of the plane wave moves along its normal n with the
velocity cp, which differs for SH and quasi-P and S waves. At the same time an
elastic energy propagates along rays. Because their orientation is characterized by the
unit vector r0, which generally does not coincide with n, it can be expected that the
energy (ray) velocity cr differs from cp. In order to determine the former consider an
elementary volume oriented along the ray, as shown in Fig. 8.3a. It has cross-section dS
and length

dl = crdt (8.89)

Here dt is a small time interval, and cT is the energy velocity along the ray. Corre-
spondingly, the amount of this energy inside the volume is

dW = edS ^dt, (8.90)

where e is the density of the elastic energy. During the time interval dt all energy of
the volume crosses dS, so it can be represented as

dW = Y dS dt (8.91)

Here Y is the magnitude of the Poynting vector. Thus, we have:

e dS crdt = Y dS dt, or cr = - ; (8.92)
e

i.e., the ray velocity is equal to a relative change of the density per unit time. Consider
quasi-P and S waves: As was shown earlier,

Yx = —TXXU — TXZW and Yz = —TXZU — TZZW

Also,

y = VYFTY? (8.93)

Inasmuch as the densities of the potential and kinetic energies are equal to each other in
the plane wave, and the latter is

1 (.2 . 2 \
-p[u +w I ,
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Figure 8.3: (a) Illustration of eq. 8.92 (b) Phase and ray surfaces (c) Interference

of elementary waves in an isotropic medium (d) Interference of two plane waves in an

anisotropic medium (c) Formation of ray surface by a system of plane waves in an

anisotropic medium



506 CHAPTER 8. PLANE WAVES IN A TRANSVERSELY ISOTROPIC MEDIUM

the density of the elastic energy is equal to

(.2 . 2 \
e = plu +w I (8.94)

where

du • dw
u = ^ - and w = —

at at

arc scalar components of the particle velocity. Thus

JY2 + Y2

p\u + w 1

The unit vector ro, which defines a ray orientation, forms with the z—axis the angle <p

w
T —I— T~

•\r ' XX 1̂  ' XZ .

tan ip = -^ = ^ (8.96)
*z u

rxz +TZZ —
w

In transversely isotropic medium, as well as in more general cases, it is proper to distin-

guish the particle, phase, and ray velocities because they usually differ from each other

by magnitude and direction.

In order to emphasize the difference between the phase and ray velocities we introduce,

along with the phase (normal) surface, the concept of the wave or ray surface. Suppose

that a source of an elastic wave is located at some point O of the transversely isotropic

medium, and it starts to generate the wave at the instant t = 0. Let us plot along any

straight line, drawn from O, a segment that is proportional to the phase velocity cp (6)

in this direction:

lP(0)=cp(9)t,

where 9 is the angle between the line and the x—axis. Connecting terminal points of

the linear element, we obtain a position of the normal surface at the instant t. The

shape of phase surfaces formed in this way is non-spherical and is independent of time;

it is defined by parameters of the anisotropic medium. Similarly, we plot the segment

along the same line that s proportional to the ray velocity

iT(e) = cr(p)t,
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Its terminal points generate the wave (ray) surface, as seen in Fig. 8.3b. From the

physical point of view, such a surface at the moment t is the boundary between the

portion of a medium distorted by a wave and the portion that is still at rest. In other

words, this surface is formed by points, where an energy arrives at the instant t, and,

correspondingly, it plays the role of the wavefront. In an isotropic medium the ray and

phase surfaces coincide and are spherical. There is a relationship between these surfaces.

In order to describe this relationship, consider a wave that is a sinusoidal function of

time. As is known, it is possible to represent a wave caused by a point source, as a

superposition of an infinite number of plane harmonic waves, each of them with infinitely

small amplitude. These elementary waves depend on time and distance from the source

as

sin \ut - — (xcos0 + zsin(?) or sin f ut - — r • n ) , (8.97)
L cp J V cp )

where r is the radius-vector of any point, located on the plane phase surface:

r —x\\ + z'i2, while n = cos 0 ii + sin 0 i2

is the unit normal to this plane, such that | n| = 1. In place of expression 8.97 we can

write

sin (uit-k- r) (8.98)

Here the wavenumber vector

k =—n (8.99)
cp

has a direction of the normal to the phase plane, with components

kx = — cos 9, kz = — sin 6 (8.100)
Cp Cp

The vector

s = - (8.101)
cp

is called the slowness vector, and, correspondingly

k =ws (8.102)
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Now, consider a group of plane waves of the same frequency, with slightly different

directions of propagation. One can imagine that unit normals n of these waves are

inside a small cone with the apex O, characterized by a "mean wave vector n0", as

depicted in Fig. 8.3c. Assume that constructive interference takes place between only

those elementary waves whose normals are close to n0. By definition, at the instant t = 0

all these waves are in the phase in the vicinity of the source; i.e., the wave disturbance is

maximal at the point O. Now we trace propagation of this maximum motion through

the medium and focus on those wavefronts whose normals differs only slightly from n0.

First, consider a simple case.

Isotropic medium
Since the velocity of propagation is independent of direction, at the instant t these

plane waves advance at the same distance cpt, as in Fig. 8.3c:

OQX = OQ2 = OQ:i = OQ4

The wavefronts of elementary plane waves arc perpendicular to the corresponding direc-

tions of propagation. The phase of each wave at points of its the wavefront is the same

as that at the initial instant t = 0 at the origin O. In other words, all wavefronts,

Ni, N%, N% and JV4, shown in Fig. 8.3c, have the same phase. A summation of wave-

fields at those points of the space where these wavefronts intersect each other thus has a

constructive character. With a decrease of the angle between directions of propagation

such points belong the envelope of the wavefronts, as illustrated in Fig. 8.3c. In isotropic

media, for which dcp/d9 = 0, the latter is the arc of the circle, or a spherical segment

in three dimensions. In this light let us make two comments:

1. In the presence of the dispersion, the radii of the wavefronts are functions of

frequency, and arc equal to cv (ui) t. The constructive interference between them leads

to the formation of the wave groups, propagating with the group velocity cg. The locus

of points, where this interference occurs at time t is the arc of the circle, with radius

Cgt.

2. The direction of propagation of each plane wave coincides with the direction of

propagation of the energy of the wave group and is defined by the normal of the wavefront.

Anisotropic medium
First, consider only two plane waves with the same frequency, propagating in direc-

tions ri! and n2, as shown in Fig. 8.3d. Correspondingly, their phase velocities are

equal to

cp (0) and cp (6 + d6)
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As before, at the initial moment t — 0, their phases are equal at the origin O and

constructive interference is observed. During the time interval t, the wavefronts of the

two waves advance in the directions of their normals at distances

hp = cp (fi) t and liv = cp(9 + dff) t,

respectively. The phases of these waves are the same at points A and B. Since these

points are situated at different places, a superposition of waves with the same phase

occurs at the point P, where wavefronts intersect, Fig. 8.3d. Thus, the interference

maximum of the wave field, located at O when t = 0, moves to the point P during

the time interval t. The distance OP is equal to crt, where cr is the ray velocity

along OP, and its direction is characterized by the unit vector ro. Along this ray

energy propagates with its maximum at the point P, at time t. By analogy with the

previous case consider a superposition of an infinite number of plane waves, moving in

different directions. All of them have the same phase at the instant t = 0 at point O.

Let us focus of those waves, whose normals are close to n0, as depicted in Fig. 8.3e.

After the time interval t, the wavefront N, propagating in the direction n, reaches a

position N-[, so that the perpendicular, drawn from O to this plane wavefront is equal

to cpt. The amplitude of the group of these neighboring waves is largest provided that

they reinforce each other (constructive interference). This happens where the wavefronts

of the plane waves intersect; this defines a region in the vicinity of the envelope of these

planes. Its position is characterized by the point P, where the energy arrives. The

straight line between the points O and P is the ray along which energy travels with

the velocity cr. Different groups of elementary plane waves give rise to different points

of the wave (ray) surface. A relationship exists between the point of the normal surface

with the radius-vector cp t n and the point of the wave surface characterized by the

radius-vector cr t no. Because intersection of the phase planes, having almost the

same orientation, defines the position of the point P of the wave surface where the

constructive interference occurs, the coordinates of the point P can be derived from

the condition that the first derivative of the phase of the plane waves with respect to the

wavenumber k is zero. That is, any point of the wave surface is a stationary one. Taking

into account that propagation of energy along the ray is accompanied by constructive

interference of plane waves, the velocity cr must coincide with the group velocity

c9 = | (8.103)

This important result can be proved by different ways. For example, we can make use of



510 CHAPTER 8. PLANE WAVES IN A TRANSVERSELY ISOTROPIC MEDIUM

eq. 8.103, which can be represented in the form

c9 = ^ (kcp) (8.104)

Correspondingly, its components along the x and z coordinate axes are

cgx = ^ - (fccp), cgz = — (fecp) (8.105)

Since the phase velocity cp (9), as well as components of the wavenumber, are known, one

can determine the group velocity and confirm that it coincides with cr. By definition:

cg = Cgx'ij. + cgzi2

or

cg = grad (kcp), (8.106)

where derivatives are taken with respect to kx and kz. The gradient is perpendicular

to the level surface

const
kcp = const or k = (8.107)

cp

At the same time the plane slowness surface is defined from the condition

— = const (8.108)
cp

Thus, assuming that cp (9) is known, determination of values k, corresponding to the

level surface, is equivalent to finding points of the slowness surface. This means that the

vector of the group (ray) velocity is perpendicular to this surface. Taking into account

that the wave surface is an envelope of the wavefronts of the plane waves, we can derive

an equation of the ray surface. This task can be performed applying the conventional

method of calculus (Part II). For instance, in the meridian section XOZ the wavefronts

are straight lines and described by the equation

x cos 9 + z sin 9 = cp (9) t for constant t (8.109)

Here x and z are coordinates of any point of the line perpendicular to OQ in Fig.

8.3b, and 9 is the angle between OQ and the re—axis. Taking the derivative with

respect to 9 we have

-xsm9 + zcos6= dCp^\ (8.110)
o9
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Combining eqs. 8.109 and 8.110 to eliminate 9 we obtain the equation of the envelope

that describes the wave surface, which is tangential to PQ at the point P. Squaring

and then adding eqs. 8.109 and 8.110 gives

/2 _ 2 , 2 _ 2 , (^A f2 (8 1111

Here lr is the ray length, which is numerically equal to /,. = crt. In this light, note

also that, from the triangle OPQ in Fig. 8.3b that

cp (9) = cr{x,z) cos <p (8.112)

This shows that the ray velocity along OP exceeds the phase velocity along the corre-

sponding line OQ. Combining eqs. .8.111 and 8.112 shows that

tan¥>=-%, (8.113)
cp an

where the if characterizes the angle between the ray OP and the line OQ normal to

the corresponding plane. Thus, knowledge of the angle ip and the distance lr allows

us to determine a position of a point P of the wave surface. Usually with an increase

of the angle 9 the ray OP approaches to the z—axis; i.e.,

> + .)>o

However, it may happen that this derivative changes a sign, i.e. the angle 9 + if begins

to decrease. In such a case the wave surface has a cusp. The condition for its appearance

is

> + ̂ ) = o,

or, taking into account eq. 8.113,

d (ldcp\ _ (ldcpV

d9\7p-d9)--l-\7p-d9) ( 8 ' 1 1 4 )

The wave surface of the quasi-P wave has no such cusps.
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Appendix A

Equations of motion of a rigid body

Resultant force and resultant torque

In order to find relationships between the motion of a rigid body and forces acting on it,
we have to perform some transformations with forces. First, suppose that the external
force Fe is applied to the body at some point p, Fig. A.la. Then, imagine that two
forces, Fe and — Fe, also act at a different point q. It is obvious that they cancel each
other and, correspondingly, the system of three forces, Fe(p), Fe(q) and —Fe(q), is
equivalent to the single force Fe(p). As is well known, a combination of forces Fe(p) and
—Fe(q) represents the couple with some torque r

r = [r(p) - r(q)] x Fe(p) (A-l)

Since the point of application of this vector is not important, assume that it acts at the
point q. Let us also recall that the torque r coincides with the moment of the force
Fe(p) with respect to the point q. Thus we described the rule, which allows us to replace
the force Fe(p) by the same force Fe(q), but acting at different point, and the couple
with the torque given by eq. A-l. If we have a distribution of external forces, applied at
various points of the rigid body, the same procedure for each of them leads to two sums.
The first one is the sum of external forces, the other is the sum of torques. It is essential
that all these forces and torques act at the same point q, Fig. A.lb. Applying the known
rule of a summation of vectors, we obtain the resultant force Fr(q) and the resultant
torque r{q).

F(g) = ]TFn(g), T = Y,Tn(q) (A-2)

513
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(a) (b)

Figure A.I: (a) Replacement of the single force by the couple and the same force, applied
at different point, (b) Superposition of forces and torques, (c) Rotation of an elementary
mass (d) Torque of the force Fg

Of course, in the case of a continuous distribution of forces, a summation has to be
replaced by an integration. Note that a choice of the point q makes an influence on the
resultant torque r , but the resultant force F remains the same. Without any doubts,
eqs. A-2 are of a great importance, because they suggest that any motion of a rigid body
can be represented as the sum of two different types of motion. One of them is caused
by the resultant force, while the other is due to the action of the couple of forces.

Further it is assumed that the point q coincided with the center of mass o, and,
correspondingly, this motion is a superposition of a translation of the point o and a
rotation around it. As is well known, (Part I), the motion of the center of mass with
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radius-vector r0 is described by the equation:

« ^ = F (A-3)

It clearly demonstrates that the center of mass moves as if it where a particle with mass

M, subjected to the resultant force, F. Certainly, this is the remarkable feature of the

center of mass. The last equation contains only one unknown, i"o(£), and its solution

allows us to find a path of this point. Suppose that at the beginning of the motion the

rigid body is at rest and then we apply the system of external forces, so that

^ F e = F = 0

In accordance with eq. A-3 the center of mass does not move, while the other parts of

the body can be involved in a motion.

Next we obtain an equation of a rotation due to the resultant torque r . This motion

takes place about the axis of rotation and, by definition, all points do not move, including

the center of mass. At the same time other particles move along circles with centers

located on the axis of rotation. In general, the latter may change its orientation with

time. As in the case of translation we begin from the simplest case of a rotation of an

elementary mass about the fixed axis.

Example one Assume that the axis of rotation of mass m coincides with the

z-axis, Fig. A.lc, and the origin of the cylindrical system is located at the point O. In

accordance with eq. A.3, we have

mr§ = F. (A-4)

For our purpose it is convenient to imagine that the mass and the axis are connected

with a help of a massless rod. Bearing in mind that a rotation is caused by the torque,

it is proper to transform eq. A-4 in such a way that instead of the force Fe we would

have its moment. After a multiplication of both sides of this equation by r we obtain

mr2% = rF° (A"5)
Its right hand side is the magnitude of the moment of the force r with respect to the

origin O, defined by

r = r x F
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The force F has usually two components:

F =FT i r + Fg ig, and r =r \T

By definition

r x F | =rFe (A-6)

It is obvious that r is directed along the axis of rotation, that is

r =rFe iz (A-7)

The left hand side of eq. A-5 can be written in the form

<•»>% = > > <A-8>

Here

/ = mr1 (A-9)

is called the moment of inertia of mass with respect to the axis of rotation and

* = | (A-10,

is the magnitude of the angular velocity, which characterizes a rate of a change of the

angle 8, that is a turn of the mass m. The angular velocity, as the torque, is a vector,

and it shows an orientation of the axis of rotation:

u = uiz (A-ll)

Note that all particles of a rotating rigid body have the same angular velocity u>, that

emphasizes an importance of this vector quantity. From Fig. A.lc we see that magnitudes

of the linear and angular velocities are related as

ve = ruj

and in the vector form

v = u> x r (A-12)

This is the definition of the angular velocity. Also the product

L =Ja; (A-13)
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is called the angular momentum of a motion, and in this example vector L and u> have
the same direction.

Since each side of cq. A-5 represents the ^-component of vectors dL/dt and r ,
respectively, it can be rewritten as

£=-
Thus, the torque is equal to the rate of change with time of the angular momentum,
L. In this simplest case only its magnitude varies. In other words, the torque results
in a change of the angular momentum. In particular, if r =0, the vector L remains
constant. It is useful to note that eq. A-14 is also valid in the general case of a rigid
body.

Let us compare eq. A-14 with Newton's second law:

m a = F and I a — r (A-15)

We took into account that the axis of rotation is fixed (the moment of inertia does not
change with time), and

is the angular acceleration. The analogy between these two equations of motion is ob-
vious. The moment of inertia plays the same role as mass, while the linear and angular
accelerations define a rate of a change of corresponding velocities. Both the force and
torque cause a motion. Also there is some essential difference between m and /. The
first one is independent of a position of the particle, while the moment of inertia rapidly
varies with r. For instance, with an increase of the distance from the axis, it is more
difficult to change the angular velocity u>.

Here it may be appropriate to make several comments:
1. In the Cartesian system of coordinates the moment of inertia, given by eq. A-9,

has the form

/ = m,(x
2 + y2) (A-17)

2. Rotation of mass around point O, Fig. A.lc, is always accompanied by the
presence of the radial component of force F r , and its physical meaning depends on the
problem. For instance, it can be the gravitational, electrical or magnetic force. Also it
may arise due to a deformation of the elastic rod, connecting the mass with the axis of
rotation.
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3. Since this centripetal force, F r , and the radius-vector r are opposite to each other,
its torque is equal to zero:

r x F r = 0

4. As was mentioned above, we may treat the particle with mass TO and massless
rod, connecting it with the axis, as the rigid body. Then, forces F r and F#, acting on
the mass TO, can be replaced by the resultant force, F, applied at the point O, and
the torque of the couple of forces, shown in Fig. A.Id. The action of the force F r is
compensated by the axis of rotation. Therefore, the motion occurs due to the couple of
forces ¥$ and — F# with the level r.

Example two Again consider a motion of an elementary mass in the plane around
the z-axis, but, unlike the previous case, assume that the origin O is not located at the
same plane, Fig. A.2a. This generalization is desirable, because it will help to take into
account the fact that particles of the rotating rigid body move in different planes. We
will proceed from Newton's second law

d2r

Its vector multiplication by r gives

r x m — = r x F = r (A-18)

The right hand side is the torque about the point O, and it has both normal and tangential
components with respect to the plane of motion. In approaching the point O to this plane
the tangential component of r tends to zero, provided that F2 = 0.

Now we demonstrate that cq. A-18 has the same form as A-14. With this purpose in
mind consider the left hand side of eq. A-18, which can be written as:

oPr d , drs , , N
r X m ^ = Jt{VXmJt] (A"19)

In fact, performing a differentiation, we obtain

d, dr. dr dv d2r d2r ,k nn.
— r x m— — -r x m~r + rxm—— = rxm-— (A-20)
dt dtJ dt dt dt2 dt2 K '

since vectors dr/dt and m (dr/dt) have the same direction. Thus, eq. A-18 becomes

d , dr. dli ,, .
— r x m— = — = T A-21)
dV dt' dt v '
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Figure A.2: (a) Illustration of eq. A-19. (b) Orientation of r and dL/dt, when
Fg = 0. (c) Illustration of eq. A-27 (d,e,f) Calculations of Izz of the bar, rectangular,
parallelepiped and the ring.
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The expression in brackets is called the angular momentum L, and it has several equiv-

alent forms:

L=rxm^ (A-22)

or

L = rx mv, (A-23)

where v is the particle velocity.

Taking into account eq. A-12, we also have

L = rxm(w x r) (A-24)

It is useful to express the angular momentum in terms of the momentum P = mv,

and it gives

L = r x P (A-25)

Suppose that the origin O is situated at the plane of motion. Then both vectors r and

dv/dt are located in this plane, and they are perpendicular to each other. As follows

from eq. A-24 the magnitude of the angular momentum is equal to

mrv = mr2oj = Iui,

and L is directed along the z-axis. In the same manner we see that the torque T has
the component TZ only and equals rFg . Correspondingly, eq. A-21 is greatly simplified,
and it is transformed into eq. A-5. Returning to the general case we see from eq. A-22,
that the angular momentum L is perpendicular to the plane, formed by vectors r and
v. Therefore, as the torque r , the vector L has normal and tangential components
with respect to the plane of motion. During a rotation of the mass this vector forms
the conical surface. Let us first assume that the component Fg is equal to zero and,
correspondingly, the mass moves with the constant velocity. In this case the centripetal
force gives rise to the torque:

r = r x F r

which is located in the horizontal plane. At the same time the end of the vector L moves
along the circle, located in the horizontal plane too, Fig. A.2b, since the magnitude of
L remains the same. For this reason the rate of a change of the angular momentum,
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dL/dt, as well as the torque, does not have a normal component, and it is tangential to

the circle, shown in Fig. A.2b. From the geometry it is a simple matter to see that

^ = w x L (A-26)
at

In approaching the point O to the plane of motion the torque r becomes smaller and in

the limit it disappears. In the presence of the component F# the normal component of

T differs from zero, and the velocity of the particle varies. Because of this the magnitude

of L also changes, and the end of vector moves along a more complicated path. It is not

located in the horizontal plane, so that both L and r have the normal and tangential

components. In particular, cq. A-21 can be separately written for each component.

Example three Suppose that two masses, m,i and rri2, move around the z-axis,

and the distance between them does not change, Fig. A.2c. Applying eq. A-21 for each

mass we have

— (ri x m r i ) = r i x Fi and — (r2 x m r2) = r2 x F2 (A-27)

Forces Fi and F 2 , acting on the masses, in general, consist of external and internal

forces:

Fx = F l c + F12 , F2 = F2 e + F2 1 (A-28)

Since internal forces, F1 2 and F21 , are unknown, eqs. A-27 cannot be solved with respect

to i"i(i) and r2(t). By analogy with a translation (Part I), we make use of Newton's

third law:

F1 2 = - F 2 1 (A-29)

In fact, F1 2 is the force, caused by mass m2 and it acts on mi, while F2 1 is applied to

m2, and it is generated by mi. Now performing summation of eqs. A-27 we obtain

, 2 2

- (L!+L 2 ) = 5^r n x Fne + (n x F12 - r2 x F12) = £ V n e + ( r i - r 2 ) x F12 (A-30)
n=l n=l

As is seen from Fig. A.2c, vectors

ri— r2 and F1 2

have the same direction and therefore

( r i - r 2 ) x F 1 2 = O.
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Hence,

where

L = L : +L 2

is the sum of angular moments of this system of masses and

Te = T l c + T2e (A-32)

is the sum of torques, caused by external forces only. An importance of eq. A-31 is

obvious, since it does not contain the unknown internal forces. We are now ready to

discuss a general case.

Equation of rotation of a rigid body

To slightly simplify a derivation, we choose the center of mass as the origin of coordinates

and assume that the resultant external force equals zero. In other words, this point is at

rest and, therefore, it belongs to the axis of rotation. Let us represent the rigid body as

a system of TV elementary masses, and for each of them we have

N

VL — T — r v F 1 -4- r v \ p \ h -L n ( A 3 ^
— ' n — A n ^ x en * L n ^ / A kn nj -f- it \ '~>*J}

Here Ln is the angular momentum of mass mn, rn is the radius-vector of this particle,

F e n is the external force acting on rnn, and finally

fc=i

is the total internal force at this point. Similarly, for an arbitrary mass mm

( N \

rmx^2 Fkm k ^ rn (A-34)
it=i /

Sums in these equations contain terms

r n xF n m and r m xF m n

respectively.
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By analogy with the previous example consider the sum of these terms. The use of

the Newton's third law gives

rnXr nm + YmXr mn = [Tn rm j X r nm = U,

since both vectors have the same direction. Performing a summation of cqs. A.60, written

for all elementary masses, we eliminate an influence of internal forces on the torque, and

this procedure gives again:

§ - r., (A-35)
at

where

N

L = ^ r * ; x mkvk=^2rkxmk(u; x rfc) (A-36)
k=l

is the total angular momentum of the rigid body and

Te = Y,-rek (A-37)

is the resultant torque due to the external forces only. Of course, in the limit, when

elementary masses tend to zero, a summation is replaced by an integration and it yields

L= [' rxpvdV (A-38)

v

Here p is the density of the rigid body, and, in general, it may vary.

Moment of inertia

Inasmuch as the angular momentum L is defined as the double-cross-product, eq. A-36,

it is natural to represent this vector in terms of components in the Cartesian system of

coordinates. First, by definition:

i j k

v = u> x r = ujx ojy LOZ

x y z

or

vx — ujyZ — wzy, vy — LJZX — OJXZ, vz — u>xy — uiyx
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Correspondingly

i j k

rk x mkyk = mk xk yk zk

vxk vyk vzk

whence

N N

Lx = ^2mk(ykVZk - zkvyk) = ^2mk[yk(u}xyk - u)yxk) - zk(uzxk - u)xzk)\
k=i k=i

N N N

= 2 ^ mkKVk + zk)u)x - 2 ^ mkXkVkUy - 2_^ mkxkzkuiz

fc=i fc=i fc=i

or

LX = IXX^'X + IxyU)y + IXZUJZ (A-39)

In the same manner we obtain

Ly = IyxU)x + IyyUJy + 1'y ZU1 z (A"40)

Lz = IZXUJX + LyUJy + Izzcoz, (A-41)

where

Ixx = ^2 mk (yk + Zk)> Jxy = -^2 mkXkVk, hz = - Yl mkxkZk (A-42)

and

V = ~ X I mkVkXk, lyy = ^ mk(Xl + Zl)' 1V* = ~ ^2 mk'fJkZk,

hx = ~ Y mkzkxk, Izy = ~'^2 mkzkVk, hz = ^ mk {x\ + yk)

The set of these nine quantities is called the moment of inertia and it represent the

symmetrical tensor, (Appendix B):

/ hx hy hz \

I = Iyx lyy Iyz , (A-43)

V Izx Ly hz I
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where

Ia[) = Ipa (A-44)

and a, [1 are any two indices x, y, z. Taking into account the rule of multiplication of

a tensor by a vector (Appendix B), eqs. A-38-A-40 can be written as

La = ^2lafiu)fi, (A-45)
fi

where a, ,8 = x, y, z.

The right hand side is called a "tensor product" of the tensor / and the vector

UJ, and this operat ion gives the vector L. The diagonal components , Ixx, Iyy. Izz of

the tensor are often called the "moments of inert ia", while nondiagonal components:

Ixy — lyxi lyz = Izy, hx = Ixz a r e "p roduc ts of inert ia". It is clear t ha t / depends on

the dimensions and shape of the rigid body, as well as its density. Moreover, / varies

with a change of the axis of rotat ion. It is also useful to represent eq. A-45 in the form

( Lx \ / Ixx Ixy Ixz \ / w z \

Ly = IyX Iyy lyz 0Jy (A-46)

Lz ) V hx hy Izz / \ UJZ /

As an example suppose that the axis of rotation coincides with the z-axis, that is

w, = uiy = 0 and u> —LOZ k,

Then, in place of eqs. A-39-A-4I, we obtain

Lx — IXZLOZ, Ly — Iyzioz, Lz — Izzuiz (A-47)

and, as we already know, this indicates that the vector of the angular momentum is not

usually directed along the axis of rotation.

In accordance with eq. A.42 the diagonal term of the tensor Izz is positive
Izz= I p (x2 + y2)dxdydz (A-48)

v

Correspondingly, the vector L has the component Lz along the axis of rotation. However,

nondiagonal terms, that is "products of inertia" may be equal to zero. For example, it
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happens in the case of a homogeneous rigid body, which is symmetrical with respect to

the axis of rotation, (a; =wzk). In fact, the "products of inertia"

f f
Ixz = —p I xz dxdydz, Iyz = —p / yz dxdydz

V V

vanish, because there are always pairs of masses with the same coordinate z, while the

other coordinate, x or y, differ by sign only. Then, instead of eq. A-47, we have

Lz = IZZLOZ or L = IUJ

For illustration let us derive an expression for Izz in several simple cases. As follows

from eq. A-48, we have to perform an integration of masses, which are multiplied by the

square of their distance, x2 + y2, from the axis of rotation.

Example one Consider the rod with a very small cross-section, which rotates

around the z-axis through one end, Fig. A.2d. Then we have

i

T f 2j j j , , / 2 j P dVdz I3

hz = P x dxdydz = p dydz I x ax =
J J 3

o
Thus

M I2

h* = ^f- (A-49)

The moment of inertia is directly proportional to the rod mass M, and the square of its

length, /. If the axis of rotation passes through the center of mass, we obtain

1/2

/

Adi
x2dx = (A-50)

12
-1/2

Correspondingly, the moment of inertia becomes four times smaller.

Example two Next, we take the rectangular parallelepiped with sides, a, b7 c,

which rotates about the z-axis, Fig. A.2e. From eq. A-48 we have
c/2 a/2 6/2

Izz = p I dz I dx I (x2 + y2)dy (A-51)

-c/2 -a/2 -b/'l

7 . ( 2, b3\ , « 3 b3 M . 2 ,2,
= pc J dx \x2b + — j = p cb— + pea— = — (a2 + b2)

— n i l
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In particular, when a = b

hz = ̂ f- (A-52)

Example three Consider a ring with radii r\ and r2, which rotates around the

z-axis, Fig. A.2f. Introducing the angle <j>

x — r cos </>, y — r sin (̂>,

we have for the elementary volume in the cylindrical system of coordinates

dV = rdrdzdcf)

Therefore

h/2 2TT r2

h*=P I dzjd^jridr^2^phr-^^^2^{rl-rl){rl + r\)
-h/2 0 ri

Inasmuch as the volume of this body is equal to

r r r 2 _ 2
V = h dt rdr = 2nh^ ±,

0 n

we obtain

/„ = M ( r ^ r | ) (A-53)

For instance if f2 ~ r^:

hz = Afr2, (A-54)

where

_ rx +r2
T ~ 2

Some of these expressions of the moment of inertia will be used in deriving the wave

equation for several special cases.
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Equations of motion of a rigid body

Now we return to eq. A-35, which can be written as

jt(I")= T, (A-55)

If the axis of rotation does not change its orientation, then the tensor of inertia / remains

constant, and, therefore, eq. A-55 becomes

I a = re (A-56)

As was pointed out earlier, there is a complete analogy with the equation, describing a

translation of the rigid body:

M ^ = Fe (A-57)

where r0 is the radius-vector of the center of mass with respect to the origin of the fixed

system of coordinates. For instance, knowing the total mass and the resultant force, we

can determine a position of the center mass as a function of time, provided that the

initial location and velocity at this point are given. In the same manner we can solve

eq. A-55, when the direction of the rotation axis is fixed. In such a case, the tensor of

inertia is defined by integration, and it allows us to determine components of the angular

acceleration, as well as other kinematic parameters of motion. On the other hand, if the

axis of rotation changes its orientation with time, an analogy with eq. A-55 ceases, since

the moment of inertia varies with time too. Then, eq. A-55 can be written as

where both coefficients / and dl/dt are unknowns. Thus, we have shown a motion of

the rigid body consists of a translation of the center of mass and a rotation around it.

Respectively, there are two equations

M ^ = F - !<*•'>='•.• <A-5 9»

or, in the Cartesian system of coordinates:

and

-jjilxxUx + IxyUy + I'xz^z) = Tex
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— (lyXUJX + lyyLOy + Iy ZU) Z) = Tgy (A"60)

-TAIZX^X + hyUy + hz^z) = Tez

As the special case, assume that both the resultant force and torque are equal to zero.

Then we have

M<^f = 0, Iu =const (A-61)

They are conditions of equilibrium of the rigid body, when it is either at rest or moves

with a constant velocity.
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Appendix B

Matrix Algebra and Tensors

B.I Matrix Algebra

Before we introduce the concept of matrices, it may be useful to discuss transformation

of vectors in the simplest case when they are situated on a plane. Further, it is assumed

that operations with determinants and methods of solving systems of linear equations

are known.

Transformation of two-dimensional vectors

Suppose that a is an operator which transforms a two-dimensional vector u into another

vector v. This transformation can be written as

a u = v (B-l)

It is called unique if such operation produces only one vector v. The operator a is called

regular when it transforms different vectors u into different v, that is if

Ui 7̂  u 2 ,

then

a Ui ^ au2

If the equalities

a(cu) — c(au) and a(u + v) = a u + a v (B-2)

take place, the transformation ex is called linear. Here c is an arbitrary constant. We

restrict ourselves to linear transformations only. In general, the operator a acting on

531
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vector u produces a change of both its magnitude and direction. Consider one special

case when the resulting vector v has the same direction as that of u. In other words,

the transformation a changes only the magnitude of the vector u. This property can be

written in the form

a u = A u (B-3)

Here A is a number which characterizes the change in the vector length. Usually, A is

called a eigenvalue of the transformation ex.

Summation of two operators

Suppose that two operators a and (3 are applied to the same vector u. By definition,

each of them produces new vector

a u = Vi and (3 u = V2 (B-4)

Then, the sum

Q U + / 3 U = V 1 + V 2 = V3

is denoted as

(a + (3) u (B-5)

The operator a + (3, that transforms the vector u into v3, is called the sum of operators

a and (3.

Product of two operators

Consider vector u and assume that it is subjected to two transformations, a and (3,

which follow one another. The one operator gives the vector v^

(3 u = v : (B-6)

Then, the second transformation, applied to Vi, produces the vector V2:

a v j =a( /3u) = v2 (B-7)

If it is possible to obtain the vector V2 directly from u using a single operator 7, the

latter is called the product of operators a and (3:

7u = a(/3u) (B-8)
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Respectively, we have

7 = a (3 and 711 = V2 (B-9)

It is essential to notice that usually the operators a/3 and (3a are different, because the
order in which the transformations are performed is important. The difference

a(3 (3a

is often called the commutator of operators a and (3. If the commutator of two operators
is equal to zero, such transformations are commutative, that is,

a (3 = 13 a (B-10)

Representation of transformations in terms of matrices

The operator a. in eq. B-l plays a rather symbolic role because it does not show explicitly
the operations with u that produce the vector v. In order to overcome this problem, we
introduce the rectangular coordinate system with the unit vectors ii, \2 and consider the
components of both vectors u and v:

u = '«i ii + '«2 12 1 v = v\ ii + V'i h (B-ll)

Let us express the components of the vector v as a linear combinations of components
of the vector u. Then we arrive at two equalities

Vi = Qn Ml + «i2 U2

V'i = a 2 l Ul + "22 «2 (B-12)

Here a^ are some numbers. Thus, the operator of transformation a, eq. B-l, is charac-
terized by a table of coefficients

a = [ au ai2 1 , (B-13)
"21 "22 J

which is called the matrix of transformation a. It is clear that knowing the matrix and
using eqs. B-12 allows us to determine the vector v. For illustration, consider three
matrices.

Case one Suppose that the matrix a is

an 0
a =

0 a2 2
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Figure B.I: Transformations of vectors.

Then, eqs. B-12 are greatly simplified and become

Vi — au u\ and v-i = a22it2

In particular, when

au = a22 = a , (B-f 4)

the matrix has the form

a 0
a. =

0 a

and both vectors u and v have the same direction, Fig. B.la.

Case two Consider the matrix

1 0
a —

0 - 1

As follows from eqs. B-12, the relationships between components of both vectors are

vi — Ui and V2 — — «2 (B-15)

Therefore, the matrix a produces the vector v which is a mirror reflection of u with

respect to the horizontal coordinate axis, Fig. B.lb.

Case three Now we assume that due to the transformation the unit vector u was

rotated counter-clockwise by the angle <j>, so the vector v is also the unit vector, Fig.

B.lc. From the definition of the directional cosines we have

u = cos a ii + cos/? i2 (B-f 6)



Bl. MATRIX ALGEBRA 535

and

v = cos(a + 4>) ii + cos(/3 + <j>) i2 (B-17)

Therefore,

Mi = cos a , U'2 = cos 3 ,

(B-18)

Vi — cos(a + (j>), t'2 = cos(/? + ^ ) ,

whence

v\ = cos (/> cos a — sin 0 sin a

and

-6'2 = cos <f> cos,(? — sin cj> sin /?

Since

0=2-°'

and taking into account eqs. B-18, we obtain

Vi — cos <j> u\ — sin <j> U2

and

vi — sin (/>'«! + cos <f> -«2

Comparison with eqs. B-12 shows that the transformation matr ix is

cos 6 — sin <f>
a =

sin (j) cos 4>

Now we discuss some operations with matrices.

Summation of two matrices

Consider two transformations a and j3, which are applied to the same vector u. As a
result, they give the vectors v and w, respectively. The relationships between the vectors
are

Vl = an -«! + a,V2 u2 , (B-19)
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v2 = a2i Mi + a22 u2

and

W! = 0n Ul + /312 u2 , (B-20)

w2 — 021 ui + [322 u2

Summation of the corresponding components yields

vi + w1 = (an + /3n) Mi + (ai2 + /312) w2,

(B-21)

V2 + W2 = (a2l + /32l) "1 + ("22 + ^22) M2

Therefore, in order to obtain the sum

v + w ,

we can apply a single transformation, represented by the matrix 7, with elements that

are the sums of the corresponding elements in the matrices a: and (3.

The matrix 7 is called the sum of matrices a and (3:

7 = a + f3 and v + w — 7 u (B-22)

For example,

1 2 1 I" 1 - 2 1 _ I" 2 0
4 5 3 - 6 ~ 7 - 1

Note that the rule of summation of matrices is the same as that for vectors, and this

relation remains valid for several other operations.

Summation of matrices and multiplications by a number

Until now, we have considered a summation of two matrices. It is obvious that the same

approach is applicable in the general case, when the number of matrices is arbitrary.

Then, any jkth element of the matrix

7 = <*! + a 2 + a 3 + . . . + an (B-23)
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is also a sum of the jfcth elements of the matrices on. In particular, if all the matrices

are equal, ati — at, we have

7 = na, (B-24)

For instance,

1 - 1 _ 7 - 7

2 0 ~ 14 0

Multiplication of two matrices

Suppose we perform two transformations characterized by the matrices

a=\an ar2 1 and (3 = \ A l ^
"21 «22 J |_ /?21 /^22

Applying the transformation (3 to the vector u, we obtain the vector v:

v = /3u (B-25)

Then, making use of the second transformation, we arrive at the vector w:

w = av = a(/3u) (B-26)

Now, let us determine the matrix 7, which transforms the vector u into w directly.

By definition,

Vi — 0n Ui + /J12 U2 ,

(B-27)

V2 = fill Ul + /̂ 22 M2

a n d

wi = an vi + a.12 v2 ,

(B-28)

w2 = a21 vi + a22 v2

Substitution of eqs. B-27 into eqs. B-28 yields

wi = (an Pu + a i 2 fi2l) u-L + (au f312 + a12 l322) u2 ,

(B-29)

W'z = («2i /?n + «22 B2i) ui + (a21 f3i2 + a22 /322) u2
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Thus, the matrix of the transformation

w = 7 u (B-30)

is defined as

7n 7i2 _ a i i /? i i+"12^21 an /3 1 2 + a12/322 (B 31)
721 722 a21 fin + a22 /?21 °'21 fl\2 + a22 $22

The matrix 7 is called the product of two matrices a and (3.

It is easy to recognize here the rule of formation of elements of the product of two

determinants. To illustrate this operation, consider the following example:

' 1 °1 A a \ ° 1 '
a = and a =

[ 0 -1 J [ - 1 0
The product 7 = a /3 is

l - 0 + 0 - ( - l ) 1-1 + 0-0 _ 0 1
7 ~ 0-0 + ( - l ) - ( - l ) 0 - l + ( - l ) - 0 ~ 1 0

but

0 -1 + 1-0 0-0 + l - ( - l ) _ 0 - 1
( - 1 ) - 1 + 0-0 ( - 1 ) - 0 + 0 - ( - 1 ) - 1 0 '

that is, the operators a j3 and (3 a are not equal to each other.

From eq. B-31 it is a simple matter to derive a rule for obtaining the product a (3.

Every clement of the row of the matrix a is multiplied by the clement of the column of

the matrix /3, and those products are summed together. For instance, the element j 1 2 of

the product is located on the intersection of the first row and the second column. It is

the sum of products of the first element of the first row of the matrix a times the first

element of the second column of/3, and the second element of the same row of a times the

second element of the second column of j3, eq. B-31. We have considered the summation

or subtraction and the multiplication of matrices, describing linear transformations of a

plane.

Equality of two matrices

Two matrices a and (3 are equal to each other if the transformation, defined by them

and applied to an arbitrary vector u, gives the same result. By definition, we have

an Ui + aV2 u2 — fin ui + P\2 u'i



Bl. MATRIX ALGEBRA 539

and

&21 ul + ^22 U2 = /32i U\ + (322
 U2

Since the vector u is arbitrary, it is natural to conclude that two matrices coincide if
their corresponding elements are equal.

Matrix representation for a vector

It is convenient to write the vector u in the form of matrix

Ul (B-32)
u2

Certainly, the latter can be now treated as an operator. For instance, the summation of
two vectors can be represented as

H + h W w i + H (B-33)
Ui V2 «2 + V2

that is, the components of the total vector are sums of the corresponding components of
u and v.

Also a transformation of the vector u by the matrix a can be written as the product
of two matrices

an a12 1 U 1 = U 1 (B34)

« 2 1 C*22 V-2 V2

Applying the rule of multiplication of matrices, we obtain again

^1 = a l l ul + al2 U2

V2 = O.2i Ui + tt22 W'2

Matrices in n-dimensional space

Our study of operations with matrices in the two-dimensional case is easily generalized
to n-dimensional space. Suppose there is a vector u with components

Ui, U2, . . . , Un
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Then, a group of linear relationships

v% = ^2 a*k uk , (B-35)
k

where i = 1. 2, . . . , n, describes the transformation from vector u to the new vector v.

The matrix of transformation has the form

au . . . aln

; ; (B-36)

. otn\ ... ann _

For instance, the vector u can be also written as the matrix which consists of one column

'«!

U'l

Un-l
Un

We denote the matrix with elements an- as

[Oiik]

and also use a simplified notation a.

Equality of two matrices

As before, from the equality

Vi = w, or ^ aik uk = ^2 @ik Uk (B-37)
k k

it follows that

aik = Shk

In other words, two matrices are equal,

[<**} = [0ik] , (B-38)

if they define the transformations that produce the same vector.
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Summation of two matrices

Now we assume that the n-component vector u is independently subjected to two trans-

formations. Correspondingly, the components of new vectors v and w are

Vi = 2_. aik Uk or v = a u (B-39)
k

and

<"< = £ & * " * or w = /3u (B"4°)
k

Their summation gives

Vi + Wi = ^2{a.lk + Pik) uk = ^2 j i k uk ,
k k

where

7ifc = alk + ,8lk (B-41)

or

v + w = 7U (B-42)

Thus, the sum of vectors v and w can be obtained by one transformation, which is

characterized by the matrix [jik], and its elements are the sums of proper elements of the

matrices a and (3, eq. B-41. This procedure is defined only for matrices that have the

same number of rows and columns. For example,

1 2 3 ] [ l - 2 ° 1 _ [ 2 ° 3"
4 5 6 + 3 - 6 - 1 0 ~ 7 - 1 - 4

Summation of an arbitrary number of matrices is performed in the same manner. In

particular, if there are I equal matrices a, then, the result of their summation is the

matrix 7 such that

Tlk = £atk or 1 = la (B-43)
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Multiplication of two matrices

Consider two sequential transformations of the vector u. By definition, we have

vi = y j Pik uk a nd Wj = VJ aji vi (B-44)
k I

Now with the help of the transformation, defined by the matrix 7, we obtain the vector

w directly from u.

Combining equations of the set B-44 yields

^ = E(E^^) M * (B"45)

k \ I )
Comparison with the relationship

k

allows us to establish the rule of multiplication of two matrices:

or, in the shortened form,

7 = a (3 (B-48)

Therefore, the elements of the matrix 7 located at the intersection of the row j and the

column k is obtained in the following way. We multiply the first term of the row j of

the matrix a by the first term of the column k of matrix /3, add the similar products of

the second terms, then, the third ones and so on, as schematically shown in Fig. B.2.

We see that the rule of multiplication of matrices describing linear transformations has

a general character.

It may be proper to notice that applying the rule of multiplication of matrices, the

transformation

v = ecu

can be written as

vi an «i2 • • • aXn Ul

. = '. '. (B"49)

_vn \ I anl an2 ... ann J |_ Un .
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As follows from eq. B-48 the determinant of the matrix product is equal to the product

of determinants, that is, if

a/3 = j ,

then,

\a\ |/3| = | 7 | (B-50)

Of course, the latter has meaning only in the case of square matrices.

It is obvious that one can form a product of two matrices if they are square or have

just one row and one column. Also, this operation is possible for rectangular matrices,

provided that the number of columns of the first matrix is equal to the number of rows

of the second one.

Consider several types of matrices.

Symmetric and antisymmetric matrices

Suppose that the matrix a is square:

on au . . . a.ik ••• o,in

a = att ai2 . . . aik ... ain

ani an2 • • • ank . . . ann

Its clement a^ is situated on the intersection of the row i and the column k. The elements

a n , «22, • • •, a%«, located along the downgoing diagonal from the left to right, form the
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main diagonal of the matrix a. If the elements, situated symmetrically with respect to

the main diagonal, arc equal to each other,

aik — aki, (B-51)

the matrix is called symmetric. When such elements have the same magnitudes but the

opposite signs,

aik — -ati, (B-52)

the matrix is antisymmetric. All its diagonal elements then are equal to zero.

Diagonal matrices

A matrix with all off-diagonal elements equal to zero

a l k = 0 i f i ^ k (B-53)

is called diagonal. It is easy to see that the product of two diagonal matrices is also a

diagonal matrix.

Identity and zero matrices

The identity matrix [1] is a special case of diagonal matrices whose diagonal elements

are all equal to one. It plays the same role in matrix algebra as the number 1 in algebra

of numbers. The identity matrix transforms any vector into itself

[1] u = u (B-54)

The zero matrix [0] is such that all its elements are zeros. It is equivalent to the number

0 in algebra.

Order and rank of matrix

Suppose a square matrix has n rows and columns. Then, n is called the order of this

matrix. A minor is a determinant obtained by removing from the matrix the same

number of rows and columns. Consider the case, when all minors of the order higher

than r, which can be formed from the matrix, are equal to zero. At the same time, there

is at least one minor of the order r which differs from zero. Then the number r is called
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the rank of this matrix. In other words, the rank of the matrix is equal to the highest
order of its minors (determinants) which are not equal to zero.

Let us notice that the matrix is called singular when its determinant is zero. For
instance, the matrix

" 3 2 1 - 1 "
9 6 3 - 3

- 6 - 4 -2 2
. 0 0 0 0 .

is singular. Its order is 4 but the rank is equal to 1.

Transposed matrix

Let us replace the rows of the matrix a with its columns. Then, the new matrix a,
where

aik = aki (B-55)

is called the transposed of a. For example, the matrix

" 2 3 7 "
a = 4 2 4

5 8 1

is the transpos of the matrix

" 2 4 5 "
a = 3 2 8

7 4 1

It is easy to see that the matrix, transposed to the product a (3, is equal to the product
of the transposed matrices a and /3 taken in the opposite order

(a/3) = /3 a (B-56)

In fact, the matrix (a (3) is obtained first by multiplication of row elements of a by
column elements of j3 and then by replacement of its rows by columns. The same result
follows if we multiply the column elements of/3, that is, the rows of /3 by the row elements
of a, that is, the columns of a. The same rule is also applied to a product of any number
of matrices

(a/37T.LJ)=U . . . J3a (B-57)
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Dot product of two vectors

Consider two vectors

u = «i ii + u2 h + • • • + un in

and

v = vA i, + v2 i2 + • • • + vn in

Then, by definition of the dot product, we have

u • v — U\ V\ + u-2 v-2 + • • • + un vn (B-58)

If these vectors are given in the form of matrices

Ml Vi

u2 v2

and ,

_un \ [ vn _

the dot product can be written as

v2
U • V = [ i l l U2 . . . Un]

. Vn .

or

u • v — uv (B-59)

In particular, the square of the magnitude of the vector u is equal to

uj + u2
2 + ... + ul = uu (B-60)

Inverse matrix

Suppose that the matrix a transforms the vector u into vector v

v = ecu
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This means that there are n linear relationships

vl = ^2,alkuk (B-61)
k

Here i — 1, 2, . . . , n.

Let us find the matrix ft that determines the inverse transformation from the vector

v to the original one

u = /3v (B-62)

In other words, we want to find the table of coefficients /?j7 for the linear relationships

•«7 = E / V < (B-63)
k

and .7 = 1 , 2 , . . . , n. The matrix j3 is called the inverse of a and is denoted as a^1. The

coefficients 0-( can be obtained from the system B-61, solving it with respect to U\, «2,

. . . , un. For instance, they can be found using the formula

known as the Cramer rule. Here A is the determinant of the matrix a and Ay is the

algebraic addition of the element ay. In other words, A/j is the determinant obtained

by removing the row / and the column j from the matrix a. Besides, this determinant

is multiplied by the term (—1);+J. Calculation of the matrix a l usually may consist of

the following steps.

1. Matrix a, transposed to a , is written down.

2. Every element of a is replaced by the determinant, which is obtained by removing

the row and column where the given element is situated.

3. The sign of this determinant is changed to the opposite if the sum of indexes j + I

is odd.

4. The last matrix is divided by A.

As an example, consider the matrix

" 1 2 3 "

a = 4 5 6

2 8 9

The transposed matrix is

" 1 4 2 "

a= 2 5 8

3 6 9
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Next we replace each element with the determinant obtained by removing the corre-
sponding row and column. This gives

" - 3 - 6 - 3 "

24 3 - 6

22 4 - 3

Then we change the signs of the elements with the odd sums of indexes and obtain

- 3 6 - 3 "

- 2 4 3 6

22 - 4 - 3

Finally, the division of the last matrix by A = 15 produces the inverse matrix

-1/5 2/5 -1/5 "
a"1 = -8 /5 1/5 2/5

22/15 -4/15 -1/5

Calculating the inverse matrix, we assume the original matrix is not singular and, corre-
spondingly, the determinant A differs from zero. In the opposite case the inverse matrix
does not exist. For instance, this happens if the matrix a is not square. In fact, such a
matrix can be made square by adding a certain number of zeros but then its determinant
also becomes zero.

As follows from the Cramer rule, the inverse of a diagonal matrix is also diagonal
with the elements which are reciprocal to the elements of the given matrix. For instance,
the inverse of

" a 0 0 0 "
0 6 0 0

a =
0 0 c 0

. 0 0 0 d _

is

" I/a 0 0 0

_! _ 0 1/6 0 0
0 0 1/c 0

. 0 0 0 1/d .

By definition, we have

v = a u and u = a1 v,
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whence

v = (a a"1) v , (B-65)

that is, the product of a matrix and its inverse is always equal to the identity matrix

aa-1 = [l] (B-66)

Comparison of operations with matrices and determinants

As was shown earlier, the rule of multiplication of matrices is the same as that for the
determinants. However, this is the only case when the rules coincide. In particular, the
rules of multiplication by a number and summation of matrices and determinants arc
different. In fact,

<i\ by c\ £cii ib\ £c\

£ 0,2 62 C-1 = C'0,2 Ibi lei

as h c3 \ |_ £a3 £b3 £c3 _

whereas

ai 61 c\ £a,\ b\ C\
£ 0,2 62 C2 — £(li &2 C2

a3 b3 c3 £a3 b3 c3

Also

ay by ci a[ b\ C\ ay + a\ 2 by 2cy

0,2 62 c-2 + ol2 &2 c-i — 0,2 + ol2 2 62 2 C2

. a-i h c3 J [ a'3 h c3 \ [ a3 + a'3 2b3 2 c3 _

but

ay by Cy a[ by Cy ay + a[ by Cy

02 &2 C2 + a'2 &2 C'i — 0,2 + a'2 62 C'z

a3 b3 c3 a'3 b3 c3 a3 + a'3 b3 c3

Application of matrices for solving the systems of linear equations

We mentioned earlier that systems of linear equations can be solved by applying the
Cramer rule. It turns out that the matrix notation allows us to write the system in
compact form and, correspondingly, it becomes more convenient to deal with the set
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of equations. For instance, this approach facilitates determination of some group of

unknowns, while calculation of others can be avoided. Consider a system of equations

2/i = anXi + ... + alnxn

i (B-67)

Vn = ani xi + ... + ann xn

Introducing the notation

2/i 1 f x-i

y — : a n d x = [ ,

. Vn \ L Xn .

in place of the set B-67 we have

y = a x , (B-68)

where a is the matrix of coefficients. Suppose that we want to solve this system only

with respect to the first k unknowns x\, x-^, • • •, x^. The matrix a can be written as

"11 • • • «lfc al,fc+l • • • aln

ctfci • • • akk ak,k+-i • • • o>kn

a =
CKA+1,1 • • • &k+L,k Otk+l,k+l • • • (*k+l,n

&nl • • • ank Oin,k+1 • • • ®kn

Aj. A2

= (B-69)
A 3 A 4
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The latter represents the combination of four block matrices Ai, A2, A$ and A4. Similar

approach is applied to matrices y and x:

2/i xi

2/2 x2

Vk \ Y\ 1 . xk \ Xi
y = = and x = =

2/fc+i Y2 x^+i X2
Vk+2 Xk+2

Vn J L Xn

Therefore, the system B-67 is written in the form

'Yl] = \Al A 2 ] \ X l ] (B-70)
Formulae of matrix multiplication show that the matrices A\, A2, A%. A±, X±, X2, Y\

and Y2 can be considered as the elements of matrices in eq. B-70 and, therefore, the last

system consists of two equations

Y\ = A1X1 + A2 X2

Y2 = AsX1 + AiX2 (B-71)

Let us eliminate one group of unknowns, X2, from this system. The second equation

gives

A4 X2 = Y2- As Xi,

whence

X2 = Ai1{Y2-A3X1) (B-72)

Substitution of the latter into the first equation of the set B-71 yields

Y1 = A1X1 + A2A^(Y2-A3X1)

Finally,

Yi - A2 A41 Y2 = (Ai - A2 Af AA) Xx (B-73)
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This is a group of linear equations

Y = a X

which does not contain x^+i, Xk+2i7 • • •, xn.

Also it may be proper to notice that formally the system B-67 can be solved very

quickly. In matrix notation, Y = a X, therefore,

X = a XY,

and the calculations are reduced to the determination of the inverse matrix a"1, which

can be found using Cramer rule.

Until now we have studied matrices with real elements. Next generalization is related

to the case when the matrix elements are complex numbers. In other words, the vectors

are considered in the n-dimeiisioiial complex space, where their components are complex.

This space essentially differs from the complex plane, used in the theory of complex

numbers, where the real numbers, representing a complex number were plotted along the

x- and y-axes.

It is useful to define two new types of matrices.

Hermitian matrices

The matrix a is called Hermitian if its elements, located symmetrically with respect to

the main diagonal are complex conjugate numbers:

akj = a*jk (B-74)

For instance, the matrix

2 2 + 3'i i~

2 - 3 z 4 3

-i 3 I

is the Hermitian. The elements on the main diagonal of such a matrix are always real.

In particular, a real Hermitian matrix is symmetric.

Hermitian conjugate matrices

This new matrix is obtained from the Hermitian one in two steps. First, the transposed

matrix a is constructed. Then, its elements are replaced with their complex conjugate.

This matrix is denoted as a+, and by definition we have

"at = a,** (B-75)
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Eigenvalues, eigenvectors and characteristic equation

Suppose that the matrix a = [a^] and the nonzero vector u are given. The latter can

be also described by the matrix [v,i\. If the vector u is such that the transformation

produced by a causes only a change of its length, |u|, it is called an eigenvector. The

coefficient A, characterizing the change of its length, is named the eigenvalue. Considering

transformations in two dimensions, we already mentioned those concepts. By definition,

we have

a u = Au

or

2 J aki Ui = A uk (B-76)
i

Here k = 1, 2, . . . , n. The set of equations B-76 can be also written as

(an - A) -«! + a12 u2 + ... + aln un = 0

a2i Mi + (a22 - X)u2 + ... + a2n un — 0

i (B-77)

ani'«! + an2 u2 + ... + (ann - A) un = 0

Inasmuch as at least one component of the vector u differs from zero, the determinant

of this system of linear equations is equal to zero:

«n - A a12 . . . aln

A(A) : : = 0 (B-78)

an\ Ck'n2 • • • {ann ~ A)

This gives the so-called characteristic equation of the matrix a for calculating the eigen-

values A. The root A, substituted into the system of equations B-76, allows us to deter-

mine the direction of eigenvector, which corresponds to this particular root.

Example Consider the matrix

11 - 6 2 "

- 6 10 - 4

2 - 4 6
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Its characteristic equation is

1 1 - A - 6 2

_6 1 0 - A - 4 = - A 3 + 27 A 2 - 1 8 0 A+ 324 = 0

2 - 4 6 - A

The solution of this equation gives three roots

Ai = 18, A2 = 6 , A3 = 3

First, we determine the eigenvector corresponding to A3. Substitution of A3 into the

system B-76 gives

8 Ui - 6 u2 + 2 u3 = 0 ,

- 6 «! + 7 «2 - 4 «3 = 0 ,

2 -«! - 4 u2 + 3 w3 = 0

The determinant of this system is zero. This means that the equations arc linearly

dependent. For this reason, we can, for example, discard the last equation and solve the

first two equations with respect to two unknowns. Letting u\ = c3, we have

\ -6u2 + 2 u3 = - 8 c 3

I 7 u2 - 4 u3 = 6 c3

The latter gives the vector

" 1 "

u(3) = c3 2 or u(3) = c3 ij + 2 c3 i2 + 2 c3 i3 ,

2

which defines the direction of the eigenvector. In the same manner we find the eigenvec-

tors for A2 = 6 and Ai = 18:

2 1 I" 2 "
u ( 2 ) = c2 1 and u ( 1 ) = cx - 2

- 2 1
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B.2 Tensors

At the beginning we introduced the matrix a as the operator, which transforms one
vector into another, and this transformation is linear one. For instance, if the matrix a
is applied to the vector u with components Ui, u2, u3, then we arrive at the new
vector v with components vi, v2 and v^ in the same system of coordinates. It is
essential that each component of v is a linear function of u. Now consider a behavior
of the matrix a, when the system of coordinates is changed. First, suppose that there
are two vectors: u and v and the relationship between them is

au = v, (B-79)

where components of vectors are given in the Cartesian system of coordinates x, y, z
and a is the matrix with elements:

( an a12 a13 \

a-2i «22 a 2 3 (B-80)

CH31 a-32 0:33 J
Applying the rule of multiplication of the matrix by the vector, in place of eq. B-79 we
can write

anui + ai2u2 + ai3U3 — v\

a2\Ui + a22u2 + a23u3 — v2 (B-81)

a3iui + a32u2 + a33u3 = v3

This clearly shows that a performs the linear transformation of u into v.
Next assume that there is another system of coordinates, x', y', z' with the same

origin. Certainly, in this system the magnitude and direction of vectors u and v
remain the same, but their components vary. By definition, if in the new system of
coordinates, obtained by a rotation of the old one, we arrive at the system, like eq. B-81,
then the matrix a is called the tensor. In other words, in such the case the linearity of
transformation is preserved. Let us notice that often the physical considerations allow
us to conclude that the matrix represents the tensor.

Since components of vectors u and v are different in the new system we can expect
that elements of the tensor a also change. Our goal is to find the relationship between
its elements in both system, and preliminary it is useful to consider two topics.
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Figure B.3: Transformation of coordinates

Transformation of scalars and vectors

As is well known, there are two groups of scalars. One of them consists of scalars, which
change with a rotation of the Cartesian system of coordinates, and they are called the
variant scalars. Components of vector and coordinates of the point are examples of such
scalars. At the same time scalars, like temperature, pressure and density of sources are
independent of the orientation of coordinate axis, and they represent invariant scalars.
Naturally, we are interested in variant quantities and, first, study the simplest case, when
scalars are coordinates of a point. Consider the Cartesian system of coordinates, X with
unit vectors ii, i2 and i3, and the origin at the point O, Fig. B.3. The radius-vector
r, characterizing a position of some point p is

r =zi ii + x2 i2 + xz is (B-82)

Here xi, x-2 and X3 are coordinates of the point p. It is convenient to introduce the
notation

Sjk = l if j = k (B-83)

5jk = 0 if j 7̂  k

Since

ij • ifc = 5jk, (B-84)
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the coordinate of the point in the system x is

xk = r • ifc (B-85)

Next assume that we also have the new Cartesian system X'', which is obtained from

the old one by a rotation of its coordinate axis about the origin, and i[, i2, i3 are

unit vectors of the system X'. It is clear that the vector r remains the same in both

systems, that is

xi ii + x2 h + %3 13 = x\ i[ + x'2 i'2 + x'3 i'3 (B-86)

The latter allows us to find a relationship between coordinates in system X and X'.

Multiplying both sides of eq. B-86 by unit vector î  and taking into account eq. B-85

we obtain

x'j = r • i'j = xi ii • i'j + x2i2 • i'j + x3i3 • i'j (B-87)

Here j = 1, 2, 3. Thus, every coordinate of the system X' is the linear function of

coordinates of the system X. Coefficients

Ijk = ij • h (B-88)

are directional cosines of the angles, formed by the axis î  and ifc. For example, 712

is the directional cosine of the angle between the coordinate axis x' and y.

We sec that a rotation of the Cartesian system leads to a change of coordinates of

the point, and it is described by the linear transformation

3

4 = Ev^ (B-89)
fc=i

or

X'l = 711^1 + 712^2 + 713^3

x'2 = 721xi + 722x2 + 723x3 (B-90)

4 = 731a;l + 732^2 + 733^3
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The matrix

( 7n 7i2 7i3 \

722 7 2 3 7 2 3 (B-91)

731 732 733 /

consists of nine elements and each of them is the directional cosine of the angle, formed

by axis of systems X and X'. It is a simple matter to see that these elements are

related to each other. In other words, they obey the certain condition, which follows from

the fact that the distance from the origin O to the point p, that is |r|, is independent

on the direction of coordinate axis:

J » 2 = I>;)2 (B-92)

Before we use this equality, let us determine the relationship between ^ik.

First, suppose that the vector r coincides with the unit vector ii. Then its

components in the old system are

#1 = 1, X-2 = 0 , X\i = 0 ,

where

xi — x, X2 = y, X3 — z

In accordance with eqs. B-90 components of the unit vector i in the new system of

coordinates are

x\ = 7n , A = 721, x'3 = 731 (B-93)

Therefore, in this system the vector ii can be expressed as

ii = 7n i', + 721 i'2 + 73i i3 (B-94)

Now suppose that the vector r coincides with the second unit vector i2 and after it

with i,3. By analogy we have

i2 = 712 i'i + 722 i2 + 732 i'3! h = 7i3 i'i + 723 ^2 + 733 ^ (B-95)

From eqs. B-94-B-95 we see that columns of the matrix 7 is composed of components

of the unit vectors ii, 12 and i3 in the new system of coordinates. Inasmuch as
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these vectors, as well as i'1; i2, i'3, are orthogonal to each other, the matrix 7 has

several important features. First, forming the dot product of eqs. B.94-95 we find that

7ll7l2 + 721722 + 731732 = °

7l27l3 + 722723 + 732733 = 0 (B-96)

7l37ll + 723721 + 733731 = °

This indicates that columns of 7 are orthogonal to each other. Next, forming the dot

product of ii- ii, i2- i2 and i3- i,3 we obtain

7n + 721 + 731 = !

7̂ 2 + 722 + 732 = 1 (B-97)

7l3 + 723 + 733 = 1

It turns out that rows of the matrix are also orthogonal and their magnitude is equal to

unit. Such matrixes are called orthogonal ones. To illustrate last properties consider the

two dimensional case. As it seen from Fig. B.3.

7 U — cos 9 721 — — sinO 712 = sin9 722 = cos 9

Correspondingly, the matrix 7 has the form

7 = ( C°S* S h l M > (B-98)
V — sin 9 cos 9 I

and the orthogonality of its columns and rows is obvious. Of course, the determinant is

equal to unity. Also this figure shows that rows of the matrix are formed by components

of unit vectors i[ and i'2 in the old system of coordinates:

i[ = cos 9 ii + sin 9 i2 and

i'2 = — sin 9 ii + cos 9 i2

The latter clearly demonstrates that rows of the matrix are also orthogonal. It is useful

to replace six equations, given by eqs. B-96-B-97, by one. As an example, consider the

equality

7ll 712+721 722 +731 732 = 0
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which can be represented as

3

5>>V^ = ° if i ± k (B-99)
i=i

Here i and k arc cither 1 or 2, or 3. It is obvious that cq. B-99 describes two other

equations of the set B-96. Moreover, in place of eq. B-97 we have

3

] T 7 j , 7 j f c = l if i = k (B-100)

Thus, combining the last two equations and making use of notations of eq. B-83, we

obtain

^ 7*77* = <*<*= \ > %~ (B-101)
^ J J \ 0 % ± k

which expresses the condition of orthogonality in the compact form. The same result

follows from eq. B-92. In fact, we have

3 3 / 3 \ / 3 \ 3 3 3

j=l j=l \i=l / \*;=1 / i = l fc=l j = l

Since the latter is equal to r2 we again arrive at eq. B-101.

Bearing in mind that the determinant of the matrix a is not equal to zero, the

coordinates Xk can be expressed in term of x'k. and, by analogy with eq. B-89, we

have

3

•̂  = E ^ (B-102)

Next suppose that M is an arbitrary vector

3 3

M = ] T Mk ik = ^2 M'k i'k (B-103)
A,—1 fc=l

Any component M^ of this vector in the system X' is given by the equation

3 3

M'j = M-i'j = Y, Mk i* " ̂  = E 7;fcMfc (B-104)
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Thus, components of the vector are transformed as coordinates of the point, when
the Cartesian system of coordinates is rotated. As we know, every vector is characterized
by three scalar components. However, it does not mean that any three scalars, Mi, Mi
and M3 can be treated as the vector components. It happens, if they are transformed
as coordinates of the point.

Finally, let us represent eqs. B-81 in the compact form:

3

Vj = Y, V-k (B-105)

Assuming that the transformation is invariant with respect to the rotation, i.e. a is the
tensor, we have to obtain:

3

v[ = Y,ot'a u\ (B-106)
i=i

Here i = 1, 2, 3. Multiplication of eq. B-105 by 7^ and a summation by the index j
gives

3 3 3

Yl "lii VJ=J2J2 "Iii a3kUk (B"107)
1=1 J = l fc=l

On the other hand

3 3

j=i 1=1

Therefore, eq. B-106 is written as

3 / 3 3 \ 3

< = E E E ^ i*a* )< = E a'n u'i> ( B - 1 0 9 )
(=1 \j=i *;=i / 1=1

where

3 3
a'a = YlY,1in«<<xa, (B-110)

j=i k=i

and we found the relationship between tensor elements in both system of coordinates.
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Appendix C

Stress tensor

Volume and surface forces in an ideal fluid

In studying propagation of acoustic waves in an ideal fluid, it was shown that there are

two types of forces: volume forces and surface forces. The classical example of the former

is the gravitational force. For instance, in the case of an elementary volume AV this

force is equal to

F(p) = f (p)AV = p(p)g(p)AV, (C-l)

where f (p) is the vector, characterizing the density of volume forces,

i(P) = p(p) g(p) (C-2)

Here p(p) is the mass density and g(p) is the gravitational field, caused by all masses,

except Arn{p):

Am(p) = p(p)AV (C-3)

Of course, masses of the Earth are main sources of the gravitational field.

The surface forces may arise differently. Consider an elementary plane surface, da(p),

inside an ideal fluid, Fig. C.la. A medium, situated at the right side of da{p) and at

its vicinity, acts on the medium, located at the left side of this elements, with the force

F(p) = t(p)da (C-4)

The vector t is the density of surface forces, and in an ideal fluid it is normal to the

surface da:

t = Pn (C-5)
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Figure C.I: (a) Orientation of surface forces inside an ideal fluid (b) Orientation of
surface forces inside an elastic medium (c) Traction vector t (d) Arbitrary volume of
elastic medium (e) Tractions at opposite sides of a disk

where n is the unit vector, normal to the surface, and P is the pressure. The
first remarkable feature of surface forces is the fact that they act only in the direction
perpendicular to the surface. In other words, the tangential components of these forces
arc absent. This means that an action (pull or push) in the direction, tangential to the
element da, does not have any influence on the ideal fluid, located on the other side of
this surface. In accordance with Newton's third law a medium, situated at the left side
of da, also exerts a force across this clement, and it is equal to

F = - t (p) da (C-6)

Thus, in the vicinity of any point p of the surface element there are two surface forces
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with equal magnitude and opposite directions. They are applied at two points, located
at different sides of the surface and infinitely close to each other. The second outstanding
feature of these forces is independence of their magnitude on an orientation of the surface
da. A change of the direction of the unit vector n does not make an influence on |F .
As is well known, this allows us to characterize a force distribution in the ideal fluid by
the single scalar function only, which is called the pressure.

Surface forces inside an elastic medium

Completely different behavior of surface forces is observed in an elastic medium. First
of all, both the normal and tangential components of the force are transmitted through
the surface. This means that, in general, the force F, acting on some clement da, can
be arbitrary oriented with respect to the normal n, Fig. C.lb. As in the case of an
ideal fluid, media located at both sides of the surface act on each other with forces F(p)
and — F(p), respectively. The second feature of these forces in an elastic medium is
the fact that a change of an orientation of the element da results in a change of the
force, exerted across it. We can imagine infinite number of orientations of the element
da and, correspondingly, an unlimited number of different forces, acting at the same
point of an elastic medium. Because of this the following question arises. How can
we characterize such a distribution of forces? We attempt to find one quantity, which
will allow us to determine the force density, t, acting on the element da, regardless
of its orientation. We have already performed a similar task then we studied studying
scalar fields, (Part I). In principle, at each point there is always an infinite number of
the directional derivatives of such field, and, in order to calculate them, the gradient of
the scalar field was introduced. It turns out that a behavior of forces t as a function
of an orientation of the elementary surface at the same point is also described by single
quantity, which is called the stress tensor. Before we demonstrate this fact, let us make
some comments about volume and surface forces.

a. In the absence of external forces a body is not deformed and its atoms are in a
stable equilibrium. Correspondingly, forces of interaction are equal to zero. Because of a
deformation a relative position of atoms changes and the internal forces arise. They try
to return atoms to their original position.

b. The volume force, acting on elementary mass, Arn(p), is caused by masses inside
and outside an elastic body. Also these forces may have electric or magnetic origin.
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The traction vector t

Let us take a small element of the surface da inside an elastic body. We consider the
force, transmitted through the element da and caused by a medium, which is situated
at a certain side of da. In order to specify this portion of the body, we draw the normal
n toward it, (da = da n). In other words, a direction of n defines a medium, which
produces the surface force. As in the case of an ideal fluid, the density of the surface
force is defined by eq. C-4

_ F

da'

and it implies that the force F is uniformly distributed over the element da. The vector
t is called the traction across this surface at the point p, Fig. C.lc. The dimension of
t is

[t] = kg m^1 sec~2,

and, by definition, t components along the Cartesian coordinate axes are

tx = t i = icos(t,i), ty = t -j = tcos(tj), tz = t -k = icos(t,k) (C-7)

Here cos(t,i), cos(t,j), cos(t,k) are directional cosines of the vector t.
It is a simple matter to find the normal and tangential components of the traction

with respect to the plane element da. For instance, the scalar component along the
normal n is

tn(p) = t(p) • n = t(p) cos(t, n), (C-8)

where t is the traction magnitude. If tn(p) is negative, it is called the pressure. In
the opposite case, tn > 0, this component is called the tension. For instance, when the
fluid is at rest, directions of the vector t and the normal n are exactly opposite to
each other. In an elastic medium the traction can be at any angle to the normal n, Fig.
C.lc.

Equations of equilibrium in integral form

In order to understand a distribution of internal forces it is very useful to consider the
case when an elastic body is in a state of static equilibrium. The latter is provided by a
system of external forces. This means that all particles of the body are at rest and, in



APPENDIX C. STRESS TENSOR 567

particular, wave propagation is absent. Consider an arbitrary volume V of the elastic
medium, surrounded by the surface S, Fig. C.ld. Since the body is in equilibrium the
resultant external force, F, and the resultant torque, M, have to be equal to zero,
(Appendix A):

F = 0 and M = 0 (C-9)

Earlier we pointed out that the force F consists of the external surface and volume
forces. For instance, the former is caused by elements of the medium, located at the
external side of the surface 5*. They act on the neighboring elements near the internal
side of S. As in the case of the ideal fluid we will use the concept of the density of
volume forces, f, and the traction, t. Therefore, the elementary volume, dV, and
the elementary surface, da, are subjected to the action of forces:

dF = idV and dF = tda (C-10)

As we already know, such presentation means that the volume and surface forces are
uniformly distributed over dV and da, respectively. Now we are prepared to write
down conditions of an equilibrium when both translation and rotation are absent. Making
use of eqs. C-9 and the principle of superposition we obtain

[ tdV+ itda^O (C-ll)
v s

and

f ( r x f) dV + <j){r x t) da = 0 (C-f2)
v s

Here r is the radius-vector drawn from an arbitrary chosen origin to any element of the
volume V or the surface 5 (Appendix A). The first equality shows that the volume V
does not experience translation, while the second one guarantees that this body is not
involved in rotation. In both cases it is assumed that at the initial instant the body was
at rest. The two equations represent conditions of equilibrium in integral form, since the
volume V may have arbitrary dimensions.

Because our purpose is to find out relationships between surface forces on the vicinity
of any point p inside an clastic body, we replace cqs. C-ll-C-12 by their differential
form. This task can be solved at least by two ways, related to each other. The first
approach is based on an assumption that the volume V is very small. Correspondingly,
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points of the surface S are close to the point p. located at the middle of the volume

V. This allows us to expand components of the traction t at points of the surface in the

Taylor series around the point p. Also we assume that these components linearly change

within the volume V. For this reason, terms of the series, which contain the second and

higher order derivatives, are discarded. Then it turns out that after an integration over

S, eq. C-ll, it becomes possible to express the first condition of an equilibrium in terms

of the traction t and the density of volume forces f, at the point p.

The same equation of an equilibrium with respect to a translation can be obtained

slightly differently, and the second approach follows from the Gauss divergence theorem,

(Part I):

/ div M dV = IM • da

v s

where da =da n, and n is the unit vector, directed outward the volume V. This

orientation is in agreement with a direction of the traction t. It emphasizes the fact

that a medium, surrounding the volume, generates a force, acting on V. In other words,

these forces are external. In the Cartesian system of coordinates we have

n = nx\ + nyj + n2k (C-13)

and nx, ny and nz are directional cosines of the normal n with respect to coordinate

axes.

Vectors X, Y, Z

In order to obtain the differential form of eq. C-ll it is very useful to introduce three

vectors: X, Y and Z. By definition

X = Xxi + X,J+Xzk, Y = Yxi + Yyj + Yzk, Z = Zxi + Zyj + Zzk (C-14)

There vectors obey the following rule. The dot product of each vector and the normal

n of the elementary surface da gives the corresponding component of the traction t

on the coordinate axes

tx = X • n, ty = Y • n, tz = Z • n (C-15)

For instance, the dot product X • n defines the projection of the vector X on the

normal n, and it is equal to the x-component of the traction. As follows from eq. C-15

t = (X • n) i + (Y • n) j + (Z • n) k
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or

t = Xni + Ynj + Znk, (C-16)

where Xn, Yn and Zn are projections of vectors X, Y and Z on the normal n.
Respectively, the normal component of the traction can be written as

tn = t • n

or

tn — Xnnx + Ynny + Yznz (C-17)

Let us rewrite eqs. C-15 in the form

tx — Xxnx + Xyny + Xznz, ty — Yxnx + Yyny + Yznz, tz — Zxnx + Zyny + Zznz

(C-18)

or in the compact form

( XX Xy XZ \

Yx Yy Yz n (C-19)7 7 7 )ZJX Zjy ZJZ I

Here tx, ty and tz are the Cartesian components of the traction, acting on the plane
element with the normal n.

Equations C-18 or C-19 can be treated as a transformation of the normal n into the
vector t. However, they have much more important meaning and in order to understand
it we consider three special orientations of the elementary surface, da, at the point p.
First, suppose that this element is perpendicular to the x-axis, (n = i), that is

nx = 1, riy = nz = 0

Then, as follows from eq. C-18

tx(p) = Xx(p), ty(p) = Yx(j>), tz(p)=Zx(p) (C-20)

Comparison with eq. C-19 shows that the first column of the matrix characterizes the
traction t(p), when the element da is normal to the x-axis. At the same time, Xx,
Yx, Zx are components of the vector t:

t = X s i+ Y J + Zxk
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In the second case the element da(p) is normal to the y-axis, and correspondingly

nx = 0, ny = 1, nz = 0

Then we have

i — Y t — Y i — 7
bx — yy y — ?/' £ — y

and

t(P)=Xyi+ Yyj+ Zyk

We see that the second column of the matrix defines the traction t at the same point,
when the element da is perpendicular to the y-axis. In a similar manner we find that
the last column represents the vector t, if the element da(p) is normal to the z-axis
and

t(p) = Xzi+ Y2j+ Zzk

Cauchy formulas

Thus, the matrix, (eq. C-19), contains information about the traction t for three
mutually perpendicular positions of the element, da(p). It is essential, that each time
the normal n and one of the unit vectors of the Cartesian system coincide. Assume
that components of vectors X, Y and Z are given. In other words, we know the
vector t for three orientations of the element da, corresponding to the coordinate
planes, (Part I). Then, an importance of cqs. C-15 or C-18 becomes clear. In fact, they
allow us to calculate the traction t at the same point for any orientation of the element
da(p) and these relationships are called Cauchy formulas. One can say that we have
solved our main task and found out that the matrix, given by cq. C-19, is the desired
quantity, which completely describes the traction t for an arbitrary orientation of the
surface element da.

The first condition of an equilibrium in the differential form

To understand better some properties of this matrix we should return to conditions of
an equilibrium and obtain their differential form. It is natural to start from eq. C-ll.
First, consider this equation for the a;-component of vectors f and t. It is clear that

I fxdV + j> txda = 0 (C-21)
v 's
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Substitution of the first equality of the set. C-15 into eq. C-21 yields

/ IxdV +lx-nda = 0 (C-22)

v s

The integrand of the surface integral is represented as the flux of the vector X through

the element da, and, therefore, we can make use of the Gauss theorem. As was al-

ready mentioned, this was one of the reasons for introduction of vectors X, Y, Z.

Correspondingly, in place of eq. C-22 we obtain

/ fxdV + I divX dV = 0

v v

or

f\fx + divX) dV = 0
v

Since this equality takes place regardless of dimensions and shape of the volume V, we

conclude that the integrand is also equal to zero

fx + divX = 0 (C-23)

By analogy, applying the same approach to components fy, ty and fz, tz, we have

fy + divY = 0, fz + divZ = 0 (C-24)

Thus, eqs. C-23-C-24 represent the differential form of eq. C-ll, and they show that an

elementary volume around some point p does not experience a translation. It is obvious

that the left hand side of these equations describe the resultant force, acting on the unit

volume. Also it may be proper to notice the following. By definition, the divergence is a

sum of the first derivatives, for instance

dXx dXy dXzdiv X =—— + — ^ + ——
ox ay oz

or

divX = h m & ^ A V - . 0

Respectively, a calculation of divergence implies that the elementary volume AV has

to be so small that functions X, Y and Z change almost linearly inside of it. At the
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same time the density of volume forces remains the same. Of course, with a decrease of

the volume a variation of each component of these vectors also tends to zero. As we know

(Part I), an equilibrium docs not take place instantly and it is always preceded by the

dynamic stage. Suppose that at some instant the constant external forces are applied

to the surface S, surrounding an elastic body. At the same moment a wave begins

to propagate through the volume and ultimately it provides an equilibrium of each its

portion. For illustration consider two examples of an elementary volume inside a body.

Example one Suppose that a volume is a very thin disk with elementary surfaces

da(pi) and da(p2),

da(p\) — da{p2) = da

Its lateral surface is so small that one can neglect the forces acting on it. At the same

time, we assume that forces, exerted on surfaces da(pi) and dal'p^) are distributed

uniformly over them. Therefore, a distribution of these forces is characterized by the

tractions t(pi) and t(p2). Suppose that the wave approaches to the face da(pi) of

the disk and produces its expansion. Then, the traction t(pi) is directed towards the

surrounding medium, as well as the normal n(pi). In accordance with Newton's third

law the traction t(p2) has the opposite direction on this volume, Fig. C.le. This means

that vector components of t(pi) and t(p2) in the direction, which is either normal or

tangential to the disk, are also opposite to each other.

In particular, in the state of an equilibrium

t(pi) = - t(p2),

provided that we can neglect the volume forces. If the wave produces a compression of an

elementary disk, a direction of tractions is given in Fig. C.lf. It is essential that such an

orientation of the traction at opposite faces of an elementary volume is always observed.

Example two Now consider an elementary parallelepiped, shown in Fig. C.2a.

The sides of this volume arc equal to Ax, Ay and Az, and the middle point p has

coordinates x, y, z. As in the first example, because of the wave, the volume, AV,

is subjected to an action of forces, caused by a deformation of the surrounding medium.

These surface forces are uniformly distributed over each face of AV, but they may have

different magnitudes and directions at different faces. First assume that the wave moves

along the x-axis and produces a compression. Therefore, the vector component of the

traction

Ax
tx(x- —, y,z)
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Figure C.2: (a,b) Tractions on faces of an elementary parallelepiped (c) Derivation of
Cauchy formulas

is directed along the z-axis. When this wave reaches the opposite face, the force acts
on a medium, which is in front of the volume, AV. As follows from Newton's third law,
the traction, caused by this medium,

Ax

has an opposite direction. If the wave is accompanied by tangential components of the
traction, ty and tzi then, applying the same law, we find that

Ax Ax
*y{x-—,y,z), ty(x + —,y,z)
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and

Ax Ax
*>z(x- — , y,z) and tz(x + — , y, z)

also have opposite directions. The same behavior of vector components of the traction

is observed at other faces of the volume V, Fig. C.2a. At the same time each scalar

component of vectors X, Y and Z has the same sign at the opposite faces. In fact,

by definition, we have

AT AT AT
tx{x-—, y,z)=X-n=-i-X{x- —, y,z) = -Xx(x - —, y,z) (C-25)

For instance, in the case of the compressional wave, the scalar component tx(x — 4p, y,

z) is positive. Therefore, we conclude that

Ax
Xx(x-—, y,z) < 0

In the opposite face we have

tx(x + —, y,z) = i- X(x + — , y, z) = Xx{x + —, y, z) (C-26)

In accordance with Newton's third law, the component tx is negative. Correspondingly,

as on the back face:

Ax
Xx(x + —, y,z)<0

It is a simple matter to demonstrate that all other scalar components of vectors X, Y

and Z do not change sign at opposite faces of the elementary volume.

Flux of the vector X

Next we derive again eq. C-23 in more explicit way. With this purpose let us calculate

the flux of the vector X through the closed surface, surrounding the volume AV, Fig.

C.2a. Our goal is to simplify eq. C-22, when this volume is very small. It is clear that

the flux through both faces, perpendicular to the x-axis, is

UxOr+^, y,z)-Xx(x--^-, y,z)\AyAz

or

dX*(*>V>z) Ax A , Az = ^AV
ox ox
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The pair of faces, normal to the y-axis, gives

\xy(x, y+^jL,z)- Xy(x, y-^-, z)] Ax Az

or

d-^AxAyAz = d-^AV
oy oy

Finally the flux through opposite faces, normal to the z-axis, is equal to

Az Az
X2[Xx(x, y, z+—)- Xz{x, y,z- —)}AxAy

or

TT al'
az

Thus, the total flux is
<f . (dXx , dXy dXz\<f>X-nda= — h - ^ + -7— AV

J \ Ox Oy dz j
As before, assuming that the density of volume forces is constant inside AV, we again

obtain eq. C-23. The same approach gives the flux of vectors Y and Z:

/-•"*= (§ + f + f ) -
and

/ , (dZx dZv dZz\ A
* Z • n da = — ^ + —«- + —± AT/,
J \ ox oy oz )

and, correspondingly, eqs. C-24. Now it is appropriate to make several comments.

1. The last three equations allow us to express the flux through a surface, surrounding

an elementary volume, in terms of the first derivatives of scalar components of X, Y

and Z at the middle point p. In other words, eqs. C-23-C-24 establish relationships

between these components and the density of the volume force around the same point p.

2. We use values of functions at all faces of an elementary volume, but in the limit

obtain formulas, which characterize a behavior of vectors X, Y, Z and f at one

point, p.

3. As was mentioned earlier we assume that each component of these vectors linearly

changes between opposite faces. This implies that a difference between values of any

component at the middle point and at a face is directly proportional to the distance,

(Ax/2, Ay/2 or Az/2), i.e., values of each scalar component, for instance, Xy, differ

only slightly at the opposite faces. However, corresponding vector components have

opposite directions.
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The second condition of an equilibrium

We continue a study of vectors X, Y and Z, and with this purpose in mind consider

eq. C-12. Its left hand side describes the resultant moment, and in order to provide an

equilibrium, it has to be equal to zero. Respectively, each its component also vanishes.

For instance, in the case of the i-component we have

J(yfz - zfy)dV + j(ytz - zty)da = 0 (C-27)
V S

To obtain its differential form we make use of eqs. C-15, and it gives

J(yfz - zfy)dV + I(y Z-zY)-nda = 0 (C-28)
V S

Applying again the Gauss's theorem we replace the surface integral by a volume integral,

and eq. C-28 becomes

flyfz - zfs + div(y Z-zY)} dV = 0 (C-29)
v

By analogy with the first condition of an equilibrium, we take into account that eq. C-29

is valid for an arbitrary volume. This means that integrand is equal to zero, too:

yfz - zfy + div(y Z - z Y) = 0 (C-30)

This is the differential form of eq. C-28, and it shows that the ^-component of the

torque is zero. It is a relationship between components fy, fz and vectors Y and

Z in the vicinity of any point. This equality contains extremely important information

about scalar components of vectors Y and Z. To describe these new features we

perform some simplifications in eq. C-30 As is well known from vector analysis,

div (y Z) = Z grad y + y div Z and div (zY) = Y grad z + z div Y (C-31)

Since grad y = j and grad z = k, instead of eq. C-30 we have

yfz ~ zfy + Z • j + y div Z - Y k - z div Y = 0

or

Ufz - zfy + Zy- Yz + y div Z - z div Y = 0
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Now, making use of the first condition of an equilibrium, eqs. C-23-C-24, we discover

that

Zy = Yz (C-32)

In the same manner, considering the y and z components of the resultant torque:

J{z fx ~ x fz)dV + j(z tx - x tz)da = 0
V S

a n d

/ (xfy - yfx)dV + d>(x ty-y tx)da = 0,
J <J
V S

we see that

Zx = Xz and Yx = Xy (C-33)

In essence cqs. C-32-C-33 represent the second condition of an equilibrium of an ele-

mentary volume when its dimensions tend to zero. Thus, from both conditions of an

equilibrium we found out that some elements of the matrix, eq. C-19, are equal to each

other:

Xy(p) = Yx(p), Xz(p) = Zx(p), Yz(p) = Zy(p) (C-34)

Taking into account an importance of these equalities, let us discuss them in some

details. With this purpose consider an elementary cube, (Ax = Ay = Az) and its cross-

section in the plane XOY, Fig. C.2b. First, we pay attention to tangential components

of vectors X and Y, which act on faces 1-2 and 2-3. Applying again the Taylor series

we have

Xy(X,V + %,z)=Xy(P) + ™$>%-... (C-35)

and Yx(x + ^y,z) = Yx(p) +
 d Y ^ ^ - . . .

The traction components tx and ty, associated with Xy and Yx, try to rotate the

cube in opposite directions. As follows from eqs. C-35, in the limit, when the volume
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becomes infinitely small, their resultant torque vanishes, if Xy(p) = Yx(p). However, at

faces 1-2 and 2-3 of the elementary volume, we may have:

Aw Ax
Xy(x, y+—,z)^ Yx(x + — ,y, z)

The same components at the opposite faces of the cube, 1-4 and 4-3, also form torques.

As before, they have opposite directions and in the limit, when A.r ^ 0 we again obtain

that Xv(p) is equal to Yx(p). Similarly, studying all tangential components of vectors

X, Y and Z, we again arrive at eqs. C-34. This consideration also shows that in a

state of an equilibrium these components are not usually equal at opposite faces. For

example,

Az Az
Xz(x, y,z + —) ^ Xz{x, y.z- —)

Now it is proper to make several comments.

1. The set of equalities C-34 describes relationships between tangential components

of a traction at point p. They act on elements of coordinate planes, which arc equal to

dax = dydz, day = dxdz, daz = dxdy

2. As was demonstrated, eqs. C-34 remain valid, regardless of the volume force

density, f.

3. If we assume at the beginning that eqs. C-34 take place, then the second condition

of an equilibrium is not independent and it follows from the first one. This approach is

very useful, and it will be used later in deriving equations of motion.

4. In general, an equilibrium of an elementary volume depends on both the volume

and surface forces. For instance, if the former can be neglected, the first condition is

greatly simplified and we obtain

divX = 0, divY = 0, divZ = 0 (C-36)

Stress tensor

As was already pointed out the matrix

/ xx xy xz \
Yx Yy Yz (C-37)

V zx zy zz )
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transforms the unit vector n of an arbitrary surface element into the traction, t(p) ,
eq. C-19. This matrix is the tensor, and the relationship between t and n remains
linear in new system of Cartesian coordinates, obtained by a rotation from the old one.
Correspondingly, elements of the tensor in the new system can be calculated, applying
formulas, derived in the previous Appendix B. By definition, nine scalar elements of the
tensor, eq. C-37, are called stresses, and they allow us to find forces, acting on any
element da. Its diagonal elements

Xx, Yy and Zz

are called the normal stresses, since they characterize forces, which arc perpendicular
to corresponding coordinate planes. The other elements are shear stresses, and it is
understandable, because they define tangential components of forces, exerted on the
same coordinate planes.

In accordance with eqs. C-34 the stress tensor is symmetrical, and, therefore, it is
defined by six elements only. There are different notations for tensor elements and one
of them is given above, eq. C-37. It clearly shows the meaning of each element. For
instance, Xy describes the force at the point p, directed along the x-axis and applied
to the surface clement da(p), which is perpendicular to the j/-axis.

The second notation uses one letter only for all elements, and it has a form

Xx = Tn Xy = T12 Xz = 7i3

Yx = T2i Yy = T22 YZ = T23 (C-38)

and in place of eq. C-37 we have

/ Tn T12 T13 \

T2i T22 T23 (C-39)

V T31 T32 T33 /

Respectively, the first index defines the component of the force, while the second char-
acterizes a direction of the normal to the surface element. For instance, T32 describes
the z-component of the traction, which acts on the surface element, perpendicular to
the y-axis. It is obvious that

T21=TU, T13=T31 and TA2 = T23
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Also the stress tensor is sometimes written as

( Pxx Pxy Vxz \

Pyx Pyy Pyz (C"40)

Pzx Pzy Pzz /

Comparison with eq. C-37 easily defines the meaning of each element. Finally, in order
to emphasize a difference between the normal and shear stresses the following notations
are used, too:

Pxx = ox, pyy = ay, pzz = az

and pxy = rxy, pxz = TXZ, PyZ = ryz

Therefore, the stress tensor is

( ® x 7~xy 7~xz \

Tyx cry Tyz (C-41)

Tzx Tzy Oz )

In general, the latter is a function of a point and represents the example of a tensor field.

Cauchy formulas and an equilibrium

Earlier we obtained Cauchy formulas by simply introducing vectors X, Y and Z, cqs.
C-15. It is also very fruitful to derive them, eqs. C-18, proceeding from the integral form
of the first condition of an equilibrium. In other words, we again demonstrate, that the
stress tensor, given at some point p, allows us to determine the traction, t(p), acting
on the elementary surface, da(p), arbitrary oriented with respect to coordinate planes.
Solving this task it is convenient to deal with two different elementary volumes.

Case one: two-dimensional model Consider an elementary volume inside an
elastic medium, which has a shape of the wedge, Fig. C.2c. Before we use the first
condition of an equilibrium it is proper to notice the following. With a decrease of the
wedge volume the surface forces decrease proportional to the area of its faces, that is
as a square of linear dimensions. At the same time the volume force, for instance, the
gravitational one, decays more rapidly; as a cube, since it is directly proportional to
mass. For this reason we can neglect this force, that is

\f\dV<€. \t\da (C-42)
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Also we assume that the volume width, Ay, is very small, and forces, acting on two

faces, perpendicular to the y-axis, cancel each other. This simplifies the first condition

of an equilibrium, too, eq. C-ll, and it can be written as

t(ps)AyAl + t(p2)AyAz + t{Pl)AxAy = 0, (C-43)

where

AJ = ^/(Axf + (Az)2

Respectively, for the x and ^-components we have

txn(ps)Al + tx{p2)Az + tx{Pl)Ax = 0 (C-44)

and tzn(p3)Al + tz(p2)Az + tz{pi)Ax = 0

By definition,

irc(p1) = - X ( P l ) - k = -X 2 (F l )

and tx(p2) = -X(p2) • i = -Xx{p2),

since at both faces the normal has a direction, opposite to the corresponding unit vector.

Then, the first equation of the set C-44 becomes

Az Ax
txn(pz) = Xx{p2)-^ + Xz(p2) —

As is seen from Fig. C.2d

Az Ax
— = cos /? = nx, — = cos a = nz

are directional cosines of the normal n. Thus, we have

txnfa) = Xx{p2)nx + Xz{Pl)nz (C-45)

It is clear that

tz{Pl) = -Z(Pl)-k=-Zz(Pl)

and tz(p2) = -Z(p2) • i = -Zz(p2)
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Therefore, the second equation of the set C-44 gives

tzn(p3) = Zx(p2)nx+Zz{Pl)nz (C-46)

Here txn(ps) and tzn(pz) arc the z- and the ^-components of the traction t(pz) at

the elementary plane with the normal n.

As follows from eqs. C-45-C-46, they describe relationships between stresses at dif-

ferent points pi, P2 and pz- However, with a decrease of the wedge volume, all faces

approach to the same point p. In the limit these stresses characterize forces, exerted

on three elementary surfaces, which have a common point p. Comparison with Cauchy

formulas, cqs. C-18, shows that cqs. C-45-C-46 represent their special case, when an

influence of forces, acting on faces, perpendicular to the y-axis, can be neglected.

Until now we found the Cartesian components, txn and tzn , in terms of the stress

tensor:

( Xx Xz \

\zx zz )
It is also a simple matter to determine the normal and shear components of the traction

t at the same point p^. As is seen from Fig. C.2d

tnniPi) = txn COS t6 + tzn COS a, tsn(p3) = -txn COS a + tzn COS (3

or

tnntPi) = txnnx + tznnz, tsn(p3) = -txnnz + tznnx (C-47)

Here tnn and tsn are the normal and shear components of the traction at the point

p$. Substitution of eqs. C-45-C-46 into the set C-47 yields

tnn(p3) = nx(Xxnx + Xznz) + nz(Zxnx + Zznz)

or

tnn {Ps) = n\Xx + nxnzXz + nxnzZx + n\Zz (C-48)

Similarly, for the shear component we have

tsn{Pi) — nx{Zxnx + Zznz) — nz(Xxnx + Xznz)
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or

tsn{P3) = n2
xZx + nxnzZz - nxnzXx - n\Xz (C-49)

As we know, from the second condition of an equilibrium it follows that Zx = Xz.
Assume that the system of coordinates, x and z, is rotated about the y-axis, and
the new axis x' is directed along the normal n, while the z' axis is tangential to
the elementary surface around p3. Then, tnn{pz) and tsn{p$) represent the stress
elements, Xxi{p%) and Zx\p^) in the new system of coordinates. Therefore, eqs.
C-48-C-49 perform a transformation of two elements of the stress tensor, caused by a
rotation of the coordinate system. Considering the surface element, normal to the old
one, (Ay.Al), we can determine the stress Zzi. As concerns Xz>, it is equal to Zx>. It
is proper to notice that the same result, eqs. C-48-C-49, follows from expressions derived
in the Appendix B.

Case two: three-dimensional model Next we study an equilibrium of a
tetrahedron, shown in Fig. C.3a. Three of its faces coincide with corresponding elements
of the coordinate planes. The areas of all plane faces of this body arc related to each
other in the following way:

daxy — da cos (k. n), daxz — da cos (j n)

and

dayz = dacos(i, n)

Here da is the area of the face with the normal n.
Our goal is to determine Cartesian components of the traction t at this oblique

element of the closed surface. Applying again the first condition of an equilibrium in the
integral form, we see that

t da + t(p1)dayz + t(p2)daxz + t(p3)daxy — 0 (C-50)

Considering the Cartesian components of this equality and making use of the set C-15,
we again arrive at the Cauchy formulas, eqs. C-18. At the same time, eq. C-50 does
not relate to each other tensor elements, but it establishes a relationship between the
traction t at an oblique surface element and the stress tensor. In addition note the
following:

a. Earlier we derived Cauchy formulas without the use of the condition of an equilib-
rium, and, therefore, the volume forces.
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Figure C.3: (a) Cauchy formula for three dimensional cases (b) Equilibrium of bar (c)
Illustration of eq. C-54

b. As was demonstrated in the first case, Cauchy formulas permit us to find elements
of the stress tensor in the new Cartesian system of coordinates. Certainly, the same is
correct in the three-dimensional case, (Appendix B)

Stress behavior and an equilibrium

Next we proceed from Cauchy formulas and illustrate a behavior of the traction compo-
nents in an elastic medium. With this purpose in mind consider two examples, assuming
that a body is in an equilibrium.

Example one Suppose that the stress tensor at some point of a medium is

Xx = Yy = ZZ = -P and Yz = Zx = Xy = 0 (C-51)
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By definition, for an arbitrary oriented element da with the normal n we have

tx = X • n — —P cos(i, n) = —P nx

ty = Y • n = -Pcos(j,n) = -P ny

tz = Z • n = -P cos(k, n) = -P nz

Respectively, the traction t, acting on this surface element, is

t = -P n, (C-52)

that is the vector t has a direction, which is opposite to the normal n. Its magnitude
is equal to the pressure P. As we know, such a behavior is observed in the ideal fluid
when an equilibrium takes place.

Example two Consider an elastic bar, oriented along the x-axis, and assume
that two forces, F and F, applied at bar ends, provide an equilibrium, Fig. C.3b.
Because of these forces an extension occurs and internal forces arise. In order to find their
distribution we mentally draw a cross- section S in any place of the bar. Its portions, A
and B, are located at both sides of this surface. Inasmuch as the bar is an equilibrium,
parts A and B are at rest, too. Therefore, the internal force, acting on S and caused
by the portion A, is equal to F. In other words, the resultant force, exerted on B, is
equal to zero. Otherwise, it would be in a state of motion. Changing a position of the
cross-section S and bearing in mind that the force is distributed uniformly over it, we
conclude that F is the same at all points of the bar. Besides, this force is perpendicular
to the section S, that is the traction has only the normal component, equal to

tx = Xx = ^ (C-53)

As was shown, this stress element provides an equilibrium, while the others are equal to
zero:

/ ax 0 0 \
T = 0 0 0

\ 0 0 0 /

Here it is proper to note that an influence of volume forces is ignored, and only surface
forces are able to sustain this state of the bar. In the same manner we can consider the
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internal force, acting on the boundary S of the portion A. It is clear that this force

differs from F by a sign only (Newton's third law).

Now we take an arbitrary oriented surface clement inside the bar, Fig. C.3b. In

accordance with Cauchy formulas, eq. C-18, the traction has only the component along

the .i-axis, and it is equal to

tx = Xx cos(n, i), (C-54)

while ty = f,z = 0 at all points of the bar. In particular, if the normal n is perpendicular

to the a;-axis, the traction is equal to zero. In general, there are both the normal and

tangential components of the traction. Indeed, as is seen from Fig. C.3c

(„„ = tx cos fi — Xx cos2fi = Xxnx (C-55)

and tsn = —tx sin fi = —Xx sin fi cos fi

Thus, the component tnn gradually decreases with an increase of the angle fi, while

the shear component has a maximum, when fi = TT/4, and it is equal to

tsn = ^ (C-56)

Stress equations of motion

As is well known, a motion of an elastic body can be represented as a superposition of

a translation and a rotation around its center of mass (Appendix A). Of course, there

is also a deformation, and this phenomenon will be studied later. Equation describing

translation is

Ma0 = F, (C-57)

Here M is the total mass of the body, ao is an acceleration of the center of mass, and

F is the resultant of external forces. By definition, we have

Ma0 = f padV and F = I f dV + 11 dS
•J iJ J
V V S

Correspondingly, the first equation of motion in the integral form is

I p a dV = I { dV+ I tdS, (C-58)
v v 's
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where a is the acceleration of an elementary mass, p dV. To obtain the differential

form of this equation, consider, as in the case of an equilibrium, any component of this

equality. For instance, the ^-component is equal to:

I p axdV = I fx dV + I X • n dS (C-59)
V V S

Replacing the last integral by the volume one, we have

f(pax-fx-divX)dV = O (C-60)

v

Inasmuch as eq. C-60 is valid for any arbitrary volume, we conclude that the integrand

is equal to zero, too:

P ax = fx + div X (C-61)

By analogy we obtain

p ay = /„ + div Y (C-62)

and

paz = fz + div Z (C-63)

The last three equations arc the differential form of cq. C-58. For example, cq. C-62

shows that an acceleration of an elementary volume, AV, along the y-axis is defined

by the volume force fy dV and the resultant of surface forces:

divY dV

In fact, by a definition of the divergence, this product can be replaced as

^Y-dS,

s

and the integral describes the total surface force caused by a surrounding medium.

In most cases, discussed in this monograph, an influence of volume forces can be

neglected. Therefore, in place of eq. C-58 we have

I p adV = I tdS (C-64)
v s
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As follows from eqs. C-61-C-63 in the Cartesian system of coordinates

dXx dXy dXz

ox ay oz

dZx dZy dZz
pa^/z + ^ + ^ + T-ox ay oz

Here

d2sx d2sy d'2sz
ax = ~WJ Gy = ~W! a* = ~d¥

and

s —sxi+syj+szk

is the displacement of the center of mass which in general takes place due to a translation
of the volume, as a rigid body, and its deformation. Usually the set C-65 is called the
stress equations. It may be proper to notice that they contain too many unknowns and
this shortcoming will be removed later. Now we consider several examples, illustrating a
stress behavior of a moving body.

Example one Suppose that at some instant t = 0 the constant force is applied to
one end of the bar and it is directed along the rc-axis, Fig. C.4a. As is well known, (Part
I), at the beginning we observe waves, propagating between bar ends, and its different
elements move with different velocities. It is essential that within this time interval a
deformation changes. Then, after some time an influence of waves becomes negligible,
and it happens due to an attenuation. Correspondingly, each elementary mass starts to
move with the same acceleration, and we can apply the second Newton's law to any part
of the bar. It is obvious that with a decrease of its length the first time interval becomes
smaller and in the limit it tends to zero. Let us mentally draw the cross-section S of the
bar and consider a portion A, Fig. C.4a. Since it moves with the same acceleration as
the whole bar, the internal force, Fi, acting at points of S is defined from the equality

- ^ = - J ^ or Ft =
 l-fF (C-66)

P I b p lAb I
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Figure C.4: (a) Distribution of internal forces in the bar when F =const (b) Rotation of

the bar with the constant acceleration (c) Translation of elementary volume (d) Rotation

of elementary volume

Thus, the internal force linearly decreases towards the front end of bar. Applying the

principle of superposition we can determine a distribution of the internal forces, when

both ends of the bar are under action of forces.

Example two Consider a bar rotating around its end with the constant acceleration

a, Fig. C.4b. As follows from the second equation of motion the force, normal to the

bar, is defined as

r x Ft=I a, (C-67)

Here / is the moment of inertia and r is the distance from an elementary mass, Am,

to the axis of rotation. In this case, eq. C-67 is simplified and we obtain

Ft r = Am r2a or Ft = Am ra (C-68)
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Thus, the shearing force linearly decreases with the distance r. Of course, there is also

the centripetal force, directed along the bar.

Example three. Translation of an elementary volume Consider an elementary

volume of an elastic medium and assume that the wave propagates along the rc-axis,

Fig. C.4c. In addition, we suppose that the force, associated with wave, has only the

component Fx . As soon as the wave reached the face with the coordinate: x — Az/2,

the left portion of the volume starts to move, while the other part remains at rest. Of

course, during this motion we also observe a deformation. When the wave approaches

the front face, x + ̂ S.x/2, the force Fx begins to act on a medium in front of the volume.

In accordance with the third Newton's law, the force, caused by the surrounding medium

and acting on this face:

, Ax .
Tx(x + —,y,z,t)

has the same magnitude but opposite direction.

Thus, the total force, exerted on the opposite faces of the volume, is

Fx(x-^,y,z,t) + Fx(x + ^,y,z,t) (C-69)

Inasmuch as the ^-component of the traction is related to the vector X as

tx = X • n,

the sum in C-69 can be represented in the form

f AT AT 1
\xx(x + —, y, z, t) - Xx(x ~-^,y, z, t)\ AyAz i (C-70)

Here Xx is the normal stress. Now it is appropriate to point out that at the opposite

faces the forces have opposite directions but stress values differ only slightly from each

other. Because of this we assume that the function Xx changes linearly between these

faces, the difference in C-70 is written as

* ^ W ? i, (C-71)

where Xx is the stress value at the middle point of the volume. The total force also

includes the volume one

dXx 92sx

ox ot2
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Geometry of the wave, propagating along the .T-axis, allows us to assume that vectors
Y and Z are absent. At the same time stresses Xy and Xz at opposite faces,
perpendicular to the Y and Z-axcs, arc the same

dXy = dXz_ = Q

dy dz

In such a case the set of equations of motion, C-65, is reduced to the single equation. If
at each instant of time

Ax A.T
XAX ^-,V,z,t)=Xx(x + -^,y,z,t) and fx = 0,

then a deformation of the volume docs not change, and it experiences a translation with
the constant velocity. In a more general case, when these stresses are different, the
volume is involved in a more complicated motion, including a vibration around its center
of mass.

Example four. Rotation of elementary volume Now we investigate rotation
of an elementary volume and, for simplicity, assume that it has a shape of the cube, Fig.
C.4d. Its sides are equal to h. Since we are interested in rotation, an influence of normal
stresses are not considered. As before, assume that the wave propagates along the a;-axis,
but unlike the first example, it produces the force, perpendicular to the rc-axis. At the
beginning, consider an action of its vector component Fy. At points of the back face of
the cube we have

Fy(x-^,y,z,t)=tvh
2i = (Y-n)h2i

or

Fy(x - 1, y, z, t) = -Yx(x - ^, y, z, t)h'2j (C-72)

As soon as the wave front passes this face, the left portion of the volume begins to move
along the y-axis, but the other portion is at rest. Such motion causes a deformation of
the volume. Besides the normal and tangential components of the force appear at faces,
perpendicular to the y-axis. When the wave approaches the face, x + h/2, the medium
in front of the volume acts with the force

Fy =ty(x + -,y,z,t)h2j

or

Fy = Yx(x + ̂ ,y,z,t)h2i (C-73)
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It is essential that forces, given by eqs. C-72-C-73, have opposite directions, but their

magnitudes differ only slightly from each other.

Forces, acting on faces, normal to the y-axis, display the same behavior, and we have:

Fx(x,y + -, z,t) = Xy{x, y + -, z, t)h2 i (C-74)

and Fx(x,y- ^,z,t) = -Xy(x,y - -,z,t)h2 i

It is clear that all four forces may cause a rotation of the volume about the z-axis, and

it is described by the equation

Mz = Iotz (C-75)

Here Mz is the z-component of the torque, / is moment of inertia and az is the

component of the angular acceleration.

As is seen from Fig. C.4d, the forces, acting at opposite faces of the volume, produce

the torques in the same direction. For this reason, evaluating the total torque, we have to

add their magnitudes. It is important to emphasize that torques due to forces, oriented

along the x and y axes, have opposite directions. Otherwise we would not be able to

observe an equilibrium. As follows from eqs. C-72-C-73 the magnitude of the first pair

of torques is equal to

Mx = ^Yx(x + \., y, z, t) + Yx(x - ^, y, z, *)] y , (C-76)

since the level arm is h/2.

In the same manner the torque magnitude of the second pair is

M2 = \xv{x + \, z, t) + Xy(x, V-\,z,t)] y (C-77)

Next we expand stresses at each face of the cube in the Taylor series around the middle

point of the volume, p(x, y, z). Discarding terms of the order h3 and higher, we obtain

M1=[YxM + ^ ^ - ^ (C-78)

and M2 = \xy(p, t) + d2X^t)]f] h3 if ft -^ 0
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It is proper to notice that the Taylor series of the magnitude of each torque contains the

term with the first derivatives. However, fortunately they are absent in expressions for

Mi and Mi- As follows from eqs. C-78 the magnitude of the resultant torque around

the z-axis is

M = Ml - M, = [or. - X.) + ( 0 - * £ ) £ ] H> (C-79)
In accordance with eq. A-51 the moment of inertia of the cube is equal to

that is it has the same order with respect to h, as the second term in eq. C-79.

Substitution of eqs. C-77-C-80 into eq. C-75 yields

>•<»<> -*•<»'>+ ( 0 - ^ ) T = £ * ( C - 8 1 >
Here Yx and Xy and their derivatives are taken at the point p. Since the acceleration

can not be infinitely large, we conclude that

Xy(p,t) = Yx(p,t) (C-82)

By analogy, considering a rotation about the x and y axes it follows that

Xz = Zx and Yz = Zy (C-83)

The set of equations C-82-C-83 is very important result, because it shows that, as in

the case of an equilibrium, the stress tensor is also symmetrical in the dynamic stage.

Besides from cq. C-81 it follows that the acceleration az is defined by the difference

of second derivatives of stress components and naturally, it is independent on h. In fact,

we have

_ 3 (d2Yx d^Xy\

In the same manner, considering a rotation of the volume around two other axes, we can

obtain expressions for ax and ay.

Let us make some comments.

a. During a propagation of the wave through a given elementary volume, eq. C-75 is

applied to its portion, located behind the wave front

b. If the shearing forces are such that

&YX ^ d2Xy

3x2 dy2 '

the elementary volume rotates around the z-axis with the constant velocity to, (h —> 0).
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Relationship between the second and first equations of motion

Next we pay attention to the second equation of motion, which describes rotation. As is

well known, (Appendix A), this equation has the form

f = M ^
Here M is the resultant torque, caused by the external forces and, by definition, it is

equal to

M = / ( r x f ) d V + IrxtdS (C-86)

v

and r is the radius-vector, characterizing a position of the point of a volume with respect

to the center of mass. The left hand side of eq. C-85 describes the rate of a change of

the total angular momentum L,

L — / r x p v dV
J

v

Respectively

- ^ = [ v x padV, (C-87)
ox j

V

since

— ( r x / 9 v ) = v x p v + r x / o a = r x p a

Thus, the second equation of motion in the integral form is

Ip r x a dV = / r x f dV + IT X t dS (C-88)
V V S

It turns out that this equation is not independent, but it follows from the first equation

of a motion. To demonstrate this very important fact, we consider at the beginning the

.T-component of eq. C-85, which is equal to

/ p(y az-z av)dV = f(yfz - zfy)dV + l{ytz-z ty)dS (C-89)
V V S
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It is proper to notice that the same approach was used in the case of an equilibrium.

Taking into account eqs. C-61-C-63 in place of eq. C-89 we have

j [y(f2 + div Z) - z(fy + div Y)]dV = J{yfz - zfy)dV + j y(Z • n)dS - j z(Y • n)dS
v v 's 's

or

f{y div Z - z div Y)dV = f div(yZ)dV - f div(zY)dV (C-90)

V S S

As was shown earlier

div ;</Z = y div Z + Zy and div zY = z div Y + Yz

Therefore, eq. C-89 is greatly simplified, and we obtain

f {Zy - Yz)dV = 0 (C-9I)

v

Considering two other components of cq. C-85, we have

[{Xz-Zx)dV = 0 and / {Xy - Yx)dV = 0 (C-92)
Jv J

V

These equalities can be interpreted in two different ways. First of all, we earlier proved

that the stress tensor is symmetrical and, therefore, the left hand side of eqs. C-91-C-92

is equal to zero. This means that the second equation of motion follows from the first

one. In other words, all information about both types of motion contains in eqs. C-61

C63. Certainly, it is important result, which greatly simplifies a study of wave fields. At

the same time in some cases, when a translation is absent, the use of eq. C-85 can be

more preferable. Also, eqs. C-91 C-92 may serve as another proof of the stress tensor

symmetry. This follows from the fact that these equalities are valid for any volume, and,

correspondingly, integrands are also equal to zero, that is

Zy = Yz, Xz = Zx, Xy = Yx
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Appendix D

Deformation and strain tensor

The surface and volume forces applied to an ideally rigid body cause a motion, which
can be in general described as a superposition of a translation, when all particles of a
body have the same displacement, and a rotation about the center of mass. In both
cases a distance between any two points of the body does not change. Since in reality
every medium is an elastic one, we also observe a change of a relative position of different
portions of the body. As a result its shape changes, as well as distance between points,
and this phenomenon is called a deformation, Fig. D.la. For instance, a straight line (1)
of an arbitrary length becomes after a deformation a rather complicated line (2), Fig.
D.lb. This suggests that under an action of different forces the same straight line can be
transformed in unlimited number of lines of different shapes. Certainly, such a behavior
makes a study of a deformation a very difficult task. For this reason the conventional
approach considers a displacement, vector of an elementary segment of a curve, which
can be treated as a straight line. In other words, we are going to study a change of a
relative position of terminal points of this line, located close to each other. Thus, as
was first established by Helmholtz, a motion of an elementary volume, in particular, the
linear segment, can be represented as a sum of three components, namely
a. translation, b. rotation, c. deformation.
Our goal is to describe main features of a displacement, caused by a deformation.

Displacement and relative displacement

Consider some point p of the body. Its position with respect to the origin O is
characterized by the radius-vector r. Under an action of forces the medium around
this point is moved, and after a deformation it is located around the point p' with the

597



598 APPENDIX D. DEFORMATION AND STRAIN TENSOR

Figure D.I: (a) Deformation of an elementary volume (b) Change of a line due to defor-
mation (c) Illustration of eqs. D-l-D-6 (d) Deformation of segment MN, parallel to
the x—axis (e) Deformation of segment AIP, parallel to the y—axis

radius-vector r', Fig. D.lc. Write

r' = r + s (D-l)

where s is the displacement of the point p, and, in general, it depends on coordinates
of this point. Further we imply that the function s(r) is a continuous. Next, we
take a neighboring point pi with the radius-vector iv A deformation causes also a
displacement of a medium around this point to the point p[, and, as is seen from Fig.
D.lc:

r': = n + Sl (D-2)
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It is usually Si 7̂  s. From eqs. D-l and D-2 it follows that

Sr' = Sr + Ss (D-3)

where

6T = T1-T and Sr' = r[ - r' (D-4)

characterize a relative position of two points (p and pi) before and after a deformation.

At the same time

6s = s(ri) — s(r)

or

Ss = s(r + Sr) - s(r) (D-5)

By definition, eq. D-3,

6s = Sr' - Sr, (D-6)

and it describes a change of a relative position of points p and pi, Fig. D.lc. In other

words, the vector 5s is a measure of a deformation around some point p. As is seen

from Fig. D.lc, vectors 6r' and Sr usually differ from each other by a magnitude

and a direction. In particular, it may happen that the length of both vectors, 5r'

and <Sr, remains the same, that is in such a case a displacement is not accompanied

by a deformation. This indicates that the vector Ss does not necessarily describe only

a deformation, and this question will be studied in detail. Bearing in mind that Ss

represents a difference of the vector field s(r) at two neighboring points, it is natural to

express this vector, <Ss, in terms of the partial derivatives of the field s(r). Introducing

the curvilinear orthogonal system of coordinates, xi, x-2 and £3, we have

s(r) = u(r) ii + u(r) i2 + w(r) i3 (D-7)

Here il5 i2 and i3 are unit vectors along coordinate lines, and w(r), v(r) and w(r)

are scalar components of the vector s. Therefore, components of the vector <Ss are

5u = u(r+5r)—u(r)

5v = v(r+Sr)-v(r) (D-8)
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5w — iv(r+8r)—w(r),

First, consider the component U(T) of the displacement s(r). which can be treated as
a scalar field. Then its directional derivative at the point p is written as

1W) =l grad u (D"9)

where i is the unit vector directed along ST. Respectively, a change of the function u

between points p and p\ is equal to

Su — Sr — grad u • 5v (D-10)
o{or)

By analogy, a change of two other components of the vector Ss is

$v = , (5r = grad v • Sr and Sw = „ Sr = grad w • 5r (D-ll)
o(or) o(or)

As was demonstrated in Part I the operator of gradient has a form
r\ r\ r\

grad = ———ii + 7-75—12+7-^—13 (D-12)
hidxi h-iOX'i h?,ox?,

Here hi, I12 and h$ are metric coefficients. Taking into account that

ST —dxi ii + dx2 h + dx3 i3 (D-13)

a change of scalar components of the field s, eqs. D-10-D-11, can be represented in the

form:

1 du 1 du 1 du
Su — —-—ax 1 + — -—dx2 + -r~ ̂ —dx3hi ox 1 h-2 0x2 n3 ox3

1 dv 1 dv 1 dv
Sv = —-^—dxi + —^—dx2 + —-^—dx3 (D-14)

hi ox 1 h2 0x2 h3 ox3

r f dw , 1 dw , 1 9«J ,
dw = -r-^dxi + — —- dx2 + T-^—dx?,

hi ox 1 h2 ox2 h3 dx3

Before we study this set of equations let us perform some operations. Multiplication
of eqs. D-f 0 D-ll by corresponding unit vectors and then a summation yields

Ss = (i1 grad u + i2 grad v + i3 grad w) • Sr
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or

6s = (Sr- grad) s (D-15)

For instance, the latter gives

5u= (6T- grad)w (D-16)

or

1 du 1 d u 1 du
OU = ———dXi + —1r—dX2 + —T—dXy,,

hi ox\ hi oxi h3 0x3

that coincides with the first equation of the set D-14

Tensor of deformation

It is convenient to represent eq. D-14 as

Ss =SSr (D-17)

Here

/ 1 du 1 du 1 du \

hi dxi h-2 dx-2 hi dx%

S= - — - — - — (D-18)
/ii 9xi h2 dx-2 h3 dx3

1 dw 1 dw 1 dw
\ hi dxi h2 dx2 h3 dx3 )

is the matrix which transforms the vector <5r into the vector Ss. As was shown in

the Appendix B this means that S is the tensor. Its nine elements are derivatives of

scalar components of the field s with respect to displacements along the coordinate

lines. In accordance with eq. D-17, if the tensor S is given, then we can determine a

change of the relative position of two neighboring points, Ss, (eq. D-6), regardless of an

orientation of dr. It may be appropriate to notice that the tensor S plays the similar

role, as the stress tensor, which allows us to find the traction t, acting on arbitrary

surface element. Let us make several comments:

a. The matrix S is an example of the tensor field, since its elements usually depend

on coordinates of a point.

b. By definition of S, derivatives of the displacement s allow us to study a

deformation, which can be caused by a motion of particles of a medium.
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c. In principle, performing an integration of the tensor elements it is possible to

determine the vector field s itself. The system of eqs. D-14 implies that we deal with

very small displacements; for instance, the scalar component u at the point pi, Fig.

D.lc, is

u(r+dr) or u(x + dx, y + dy, z + dz)

Expanding this function in the Taylor's series around the point p, we have

< _ . , . du , du , du , 1 d2u, , . , , .
u(r+5r) =u(r) +—dx + —dy + —dz + --^{dxY + ... (D-19)

ox oy az 2 ox1

Comparison with the first equation of the set D-8 clearly shows that eqs. D-14 are based

on an assumption that terms of the series of the second and higher orders are neglected.

In other words, the field s changes linearly within an elementary volume, where both

vectors, 5r and Sr', Fig. D.lc, are situated. Because of this a study of a deformation

is greatly simplified.

Homogeneous deformation

Earlier we introduced dx\, dx% and dx% as relative coordinates of one point with

respect to the other, while Su, Sv and Sw characterize its relative displacement.

To emphasize this fact let us choose the Cartesian system of coordinates and change

notations in the set D-14 in the following way

dx\ —)> x, dx2 —> y, dx^ —> z

and

du —s> u, Sv —> v, Sw —> w

Then we have

u — anx + ai2y + auz

V = (l2\X + Cl22y + 0,23^ (D-20)

W = (I31X + (l32y + 0-33-2
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Here a^ are elements of the tensor

since in the Cartesian system of coordinates

(D-22)

Thus, in our approximation the relative displacements, (u, v, w), are linear functions of
coordinates. Such a deformation is called the homogeneous one, and it may be observed
in a volume of an arbitrary size. At the same time, a deformation of an elementary volume
is always homogeneous because its dimensions are small. This follows from the fact that
terms of Taylor's scries, proportional to (dx)k

7 {dy)k and (dz)k, arc negligible, if
k > 1.

It is convenient to assume that the point p, Fig. D.lc, coincides with the origin of
coordinates and its displacement is equal to zero. Correspondingly, u, v and w are
scalar components of the displacement of the point p\ with coordinates: x, y, z.
Comparison with eq. D-6 shows that in this case

Sr —x i+y j+z k and Ss — s(pi)—u i+v j+w k (D-23)

and both vectors, Sr and Ss, have the common point p.

As was mentioned earlier the homogeneous deformation may take place also in a vol-
ume of finite dimensions, when components of the displacement, s, are linear functions
of a point inside a volume. In other words, derivatives of these components of the second
and higher order vanish, and elements of the tensor S are independent of coordinates of
a point. Considering an elementary volume we demonstrated that a small deformation
transforms the straight segment, Sr, also into the straight clement, Ss. It turns out
that it is one of properties of the linear transformation, given by the set D-20. After
these comments we describe the main features of the homogeneous deformation.

/ du du du \
dx dy dz

S= £ ^ ^ , (D-21)
ox ay ay
div dw dw

\ dx dy dz )

hi = h2 = h3 = l
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Transformation of a plane

Let us imagine a plane inside a volume. As is well known, its equation can be written in

the form:

Ax + By + C z + D = 0 (D-24)

Here x, y, z are coordinates of any point, situated on the plane, while A, B, C are

scalar components of the vector N, perpendicular to the plane:

N = / l i + B j + C k (D-25)

and, finally, D is constant.

Under an action of external forces the volume becomes deformed. Correspondingly,

each point of the plane experiences a displacement, and as a result, new surface is formed.

In order to obtain its equation, we have to perform in eq. D-24 the following replacements

x —> x + u, y —>• y + v, z —> z + w

Making use of the set D-20, we obtain

A (x + a,nx + auy + a13z) + B (y + a2\X + a22y + 023z)

+C (z + a-ax + a32y + (I33Z) + D — 0

or

(.4 + auA + Ba2] + Ca3^)x + (D-26)

(B + a,22B + a,l2A + a,32C)y + (C + a33C + al3A + a23B)z + D = 0

This is the equation of a plane, and, therefore, the homogeneous deformation transforms

the plane into a plane. This is the first important feature of such a deformation.

Next, consider two parallel planes. Their equations are

Ayx + BlV + C1z + Dl=0 and A2x + B2y + C2z + D2 = 0 (D-27)

Inasmuch as vectors Ni and N2, eq. D-25, are parallel to each other too we have

£=!=!='• (D-28)
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where k is a constant. Substitution of eq. D-28 into the second equation of the set D-27

yields

k(AlX + BlV + Gxz) + D2 = 0

or

Ayx + BlV + dz + D3 = 0 (D-29)

Comparison with the first equation of the set D-27 shows that both planes are character-

ized by the same vector N1; which is perpendicular to both planes. Thus, two parallel

planes remain parallel to each other and this is the second feature of the homogeneous

deformation. As illustration consider a rectangular parallelepiped. It is clear that after

a small deformation the opposite faces are still parallel, and a new volume has in general

a shape of an oblique parallelepiped.

Transformation of a straight line

It is convenient to treat the straight line as an intersection of two planes. As was shown,

the latter remain plane after a deformation. Correspondingly, the line of their intersection

is the straight one. Thus, the set D-20 transforms the straight line into the straight one

too, and this is another feature of the homogeneous deformation. Applying the same

approach as in the case of planes, one can show that if two straight lines are parallel to

each other, then they remain parallel in the strained volume. For instance, after a small

deformation opposite sides of a parallelogram are still parallel.

Transformation of a sphere

Consider the spherical surface:

X 2 + y 2 + Z 2 = r 2

Because of the deformation its points arc shifted and a new surface is described by the

equation

(x + u)2 + (y + v)2 + (z + w)2 = r2

After a substitution of displacements, eqs. D-20, we arrive at the equation

bu x2 + 622 V
2 + b33 z

2 + 2&i2 xy + 2bl3 x z + 2b23 y z - b = 0, (D-30)

which describes the surface of the second order. In general, it is ellipsoid, and this is also

an important feature of such a deformation. Let us notice that there are cases when a

sphere is transformed into a hyperboloid.
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Components of strain tensor

Next we study a geometrical meaning of the tensor components, eq. D-21, provided that

the rate of a change of the displacement, s, is very small. As was pointed out we deal

with the small deformation only. With this purpose in mind it is convenient to rewrite

eqs. D-14 in the Cartesian system of coordinates. This gives

du du du
Ui = u+ — ax + — ay + — dz

dx dy dz

Vl=v+^- dx+^- dy + ^- dz (D-31)
ox ay oz

dw dw dw
Wi — w + —— ax + —— dy + —— dz

ox dy oz

where

u = u(x,y,z), v = v(x,y,z), w = w(x,y, z)

and

Mi = u(x + dx, y + dy, z + dz),

Vi = v(x + dx, y + dy, z + dz),

Wi = w(x + dx, y + dy, z + dz)

du dv dw
Diagonal elements: — , - - , ——

ox oy oz

First, suppose that the linear segment MN is initially parallel to the rc-axis. Due to

the small deformation a medium around points M and N is moved, and we obtain a

new straight line, MiNi. In general it differs from MN by a length arid an orientation,

Fig. D.ld. As follows from eqs. D-13, we have

MN = dx and dy = dz = 0

or

MN =dx i (D-32)
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and

du dv dw
du = -^— dx, ov = ^— ax, out = -^—- ax

ox ox ox

or
rj r\ r\

5s = -^dx i + -^-dx j + -^-dx k (D-33)
ox ox ox

By definition, Fig. D.lc,

MxNj = MN + <5s

or

M1N1 =(l + ^] dx i + ^ dx j + ^ dx k (D-34)
\ ox J ox ox

Unlike MN, the vector M1N1 may have all three components, and its length is defined

from the equality:

"•*=™[(i+!H£)'+(tf)T" (D->
Inasmuch as we are interested by small deformation only, terms: (dv/dx)2, (dw/dx)2,

as well as (du/dx)2, can be neglected. In particular, it implies that the length of

MiTVi does not change when the point N\ slightly moves in parallel to either the y

or z-axes, Fig. D.ld. Thus, eq. D-35 gives

MiM = (1 + ^ \ MN (D-36)

or

du M,N, - MN
e*x = Tx = —Wi—> (D"37)

and it describes the relative change of the length of MN. By analogy, two other diagonal

elements:

dv , dw
eyy = Wy and ezz = —

characterize a relative change of the length of the straight segments, which are parallel

to either the y or z-axes. It is essential that the diagonal elements of the tensor T

differ from zero only in those cases when there is a change of the distance between points

of a medium. In other words, they describe so called the pure deformation.
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Nondiagonal elements

Suppose that at the beginning the linear segment MN is oriented along the x-axis,

but after a deformation it is transformed into the linear segment MiTVj, Fig. D.ld.

They form the angle a, which in general differ from zero and characterizes a turn of

MTV during a deformation:

s i n a = ^ ^ (D-38)
iWliVx

By definition, TVXTV2 is the difference of displacements at points M and TV along the

y-axis. As follows from the second equation of the set D-31 we have

3v
TViTV2 = vl- v = —dx (D-39)

Substitution of eqs. D-36 and D-39 into eq. D-38 gives

dv

s i n Q , = ^ _

dx

Since a and du/dx are very small, the latter is greatly simplified, and we obtain

a = ^ (D-40)
ox

Thus, the first element in the second row of the tensor T defines an orientation change

of the linear segment, MTV, which was initially parallel to the x-axis.

It is interesting to derive the same result differently. Making use of the dot product

of vectors MN and M| Ni the same angle between them is defined as

MN-MxN:
0 0 8 a = MNMlNl

 ( D " 4 1 )

From eqs. D-32 and D-36 it follows that

du

cos a = ^ j - (D-42)

because w = 0.
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In spite of the fact, that the term (dv/dx)2 is very small, it has to be presented.
Expanding the left and right hand side of eq. D-42 in a series and discarding all terms,
except the first two, we have

f-V
1-^ = 1-1 W 2 (D-43)

or

dv
<9.r

that coincides with eq. D-40. Certainly the geometrical approach in deriving this angle
is simple.

Next assume that the linear segment MP is initially parallel to the y-axis, and
due to a deformation it becomes MyNy. The distortion angle /? is defined from the
triangle MyP2Py, Fig. D.le

sM=-0^- (D-44)
MyPy

The numerator is a difference of the displacement of points M and N along the rr-axis:

du
PyP2 =Uy-U= —dy

dy

Whence

P=£, (D-45)
dy

since sin f3 ~ j3.
Therefore, the second element of the first row of the tensor T characterizes a change

of the direction of the vector MN, oriented at the y-axis. In the same manner the
tensor elements

du dw dw dv
—- and ——. as well as —— and —
az ox ay az

describe the distortion angles in planes XOZ and YOZ, respectively. It is obvious
that each element of the tensor of a deformation, T, can be either positive or negative
or equal to zero. If we introduce a notation
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Figure D.2: Relationship between the distortion angles and nondiagonal elements of the
strain tensor

gs.
then the nondiagonal element —?- is positive when the component s,- increases with

dxk
an increase of xk- Thus, all nondiagonal elements of T characterize a change of a
direction of the straight segments, oriented initially along the coordinate axes.

In general, the distortion angle may arise for two reasons, namely, a pure deformation
and a rotation. In order to study the first factor consider the right angle between the
linear segments MN and MP, having the common point M, Fig. D.2a. Before a
deformation they are parallel to the x- and j/-axes, respectively. As follows from eqs.
D-40 and D-45, after a deformation this angle decreases by a sum of angles

dv du
ax ay

This quantity is called the shearing strain, and it is denoted as

dv du
ox dy

In the same manner we can observe a decrease of the right angle in the XOZ plane:

dw du
dx dz

as well as in the YOZ plane

dw dv
ay dz
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Thus, we obtain six quantities, which are formed by elements of the tensor T, and they
are

1.Three unit elongations:

du dv dw
exx = -7T-, eyy = —, ezz = — (D-46)

ox dy dz
They describe a relative change of the length of the linear segments, which were initially
parallel to the coordinate axes.

2.Three shearing strains
dv du dw du dw dv

xy dx dy' xz dx dz' yz dy dz'

characterizing a decrease of the right angle between the linear segments, oriented along
coordinate axes before a deformation. These quantities, eqs. D.46-D.47, are called
components of a small deformation, and as will be shown later, they describe only the
pure deformation.

Influence of translation and rotation on tensor T

At the beginning we pointed out that in general the small displacement, s(x,y,z), can
be represented as a sum of three displacements, caused by a translation, a rotation and
the pure deformation. In the last case the distance between points usually varies. Of
course, it is very useful to know how elements of the tensor T (eq. D-21) are sensitive to
every type of motion. It is natural to start from the simplest case, that is a translation,
when all particles have the same displacement

u(x,y,z)=Ci, v(x,y,z) = C2, w(x,y,z) = C3,

where C1? C2 and C3 are constants. Since derivatives of these functions with respect
to coordinates are equal to zero, we make an obvious conclusion: translation does not
make any influence on the tensor T.

Next, suppose that an elementary volume of a medium is involved in a rotation only,
and M(r) and N{v\) are two its arbitrary points. As before, r and ri are radius-
vectors, characterizing a position of these points with respect to the origin O, located
inside the volume. After a rotation the linear segment MN = ST is transformed into
the element MiNi = Sri, and in accordance with eq. D-3

MiNl = MN + 5s or 6r' = 6r+5s (D-48)
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Here

Ss = s(i"i)—s(r)

First of all, it is useful to show that a small rotation is not accompanied by a change of
the length of MN. To demonstrate this important fact, we recall that at each instant
of time a rotation is a motion about some axis. In other words, the displacement s is
located in the plane, perpendicular to this axis. Moreover, the magnitude of the vector
s is proportional to the distance from the axis of rotation, (Appendix A). Because of
this it is proper to represent the vector s as

s(ri)= b x ri and s(r)= b x r, (D-49)

where b is the vector, directed along the axis of rotation. Therefore, for the vector Ss
we have

(5s = b x r ! - b x r = bX(5r (D-50)

Substituting into eq. D-48 and taking the square from both its sides we have

{5r')2= (5r+5s)2 = (Sr + bx 8r)2 = {5r)2 + 2(bx Sr)- ST, (D-51)

since the term (Ss)2 is very small and it can be neglected. Because

(bx(Sr)-(Sr = b-((5rx<5r) =0,

eq. D-51 gives

|«Jr'| = |<Jr| (D-52)

Thus, a small rotation does not change a length of the linear segment. In particular, it
can be initially oriented along coordinate axes, Fig. D.ld,e, that is

MijVi = MN and MPl = MP (D-53)

This means that if only a rotation takes place, the diagonal elements of the deformation
tensor are equal to zero:

du dv dw . .
7T = 7T = I T = ° D"54

ox ay oz
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Suppose again that there is only a rotation and determine a relationship between the
vector b and nondiagonal elements of the tensor T. First, we rewrite eq. D-50 in the
form

i j k
5u i + Sv j + 5w k = bx by bz (D-55)

dx dy dz

Making use of eqs. D-31 and eq. D-55 we have

du , du , , ,
~^~dy + ~Erdz = bvdz - bzdy
dy dz

dv dv
—dx + —dz = bzdx - bxdz (D-56)
ox dz

9ai , dw , , , , ,
—dx- + —dy = bxdy - bydx
dx dy y

Inasmuch as dx, dy and dz are independent and arbitrary quantities, coefficients in
front of each of them should be equal, that is

du du dv dv dw dw
°y = -7r- oz = - — , bz = — bx = - — , bx = —- by = -—- (D-57)

dz dy dx dz dy dx

or

b* = 4 = 7T (D"58)
dz dy

» = % = -% «D-5 9»

'" = - 5 = 1 (D-60>
These equalities have very simple geometrical meaning. In fact, each derivative shows
a change of an orientation of the linear segment, which was initially parallel to one of
coordinate axes. For illustration, consider a rotation about the z axis, Fig. D.2b. As
we already know the distortion angle of the segment MP is equal to du/dy, while
the same angle of the segment MN is defined as —dv/dx. The minus is related to
the fact that the scalar component of the displacement, v, is negative. As is seen from
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Fig. D.2b in the case of a rotation the distortion angles are equal to each other and.
correspondingly, derivatives du/dy and dv/dx have the same magnitude but differ
by a sign, eq. D-60. In other words, the right angle, formed by linear segments MP
and MN, which are parallel to the coordinate axes, remains unchanged. Certainly, this
result is easily expected. In the similar manner, eqs. D-58-D-59 describe a rotation
about the x- and j/-axes.

Bearing in mind that during a rotation the right angle between the linear segments
is preserved, we conclude that in this case the shearing strains are equal to zero. Also it
follows from eqs. D-58-D-60, which give

dv dw du dw dv du
eyz = -K- + -K- = 0, exz = — + — = 0, eyx = — + — = 0

oz oy az ox ox ay

Thus, we found out that neither the unit elongations, nor shearing strains are sensitive
to a small rotation.

Now we present the vector of rotation, b, in the form, which allows us to treat the
tensor of deformation as a sum of two tensors, describing either the pure deformation or
a rotation. In order to solve this task, let us first make use of the set D-57. Performing
a summation of equalities for the same component of the vector b, we obtain

1 (dw dv\ l(0u dw\ 1 (dv du\
2 \dy dzj " 2 \dz dx) 2 \dx dy)

or

b = - curl s (D-62)

Correspondingly, any change of the displacement, caused by a small rotation, eq. D-50,
can be written in the form

6s = - (curlsxdr) (D-63)

The latter can be treated as a transformation of the vector 6r. By definition, it can be
also done with a help of some tensor B:

<5s =D Sr, (D-64)

where

( hi h2 &13 \

621 b22 b2i (D-65)

631 h'Z &33 I
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Since

bx<5r —B Sr,

we have

bydz — bzdy = bn dx + 612 dy + bvi dz

bzdx — bxdz = b'zi dx + 622 dy + 623 dz

bxdy — bydx — 631 dx + 632 dy + 633 dz

Its solution is

&11 = 0 612 = -bz &13 = 6y

&21 = ^ 622 = 0 6 2 3 = -bx ( D - 6 6 )

&31 = - ^ ^32 = -bx b:i:i = 0

Therefore, we conclude that the small rotation can be described by the antisymmetric
tensor:

/ 0 612 613 \

B = - bV2 0 623 (D-67)

V - 6 1 3 - 6 2 3 0 /

In accordance with eqs. D-61-D-66

1 , du dv. , 1 . du dw. , 1 . dv dw. /T̂
612 = 2 ^ " ^ ' 6l3 = 2 f e " ^ ' * » = 2 % - ^ (D"68)

Certainly, the vector b and tensor B both allow us equally to describe a small rotation
of an elementary volume.
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Tensor of pure deformation, E

By analogy with the tensor of rotation, B. we introduce the tensor E, which charac-

terizes the pure deformation only:

( £11 £12 £13 \

£21 £22 £23 , (D-69)

£31 £32 £33 /

where its diagonal elements

du dv dw
£11 = ^ - , £22 = ^ - , £33 = ~^- (D-70)

dx dy dz

are unit elongations, while the nondiagonal elements are two times smaller than the

corresponding shearing strains:
1 (du dv\

£l2 = £21 = - T. 1" "7T~ 7
2 \dy dx J
1 ( du dw\

£13 = £31 = r U - + ^~ , D-71)
2 \oz ox J

1 (dv dw\
£23 — £32 — - 3 ^ "o~

2 \ az ay J

As follows from eqs. D-58-D-60, this tensor is not subjected to an influence of a rotation,

as well as a translation. Comparison of tensors, T, E and B, clearly shows that T

can be represented as a sum of tensors:

T = E + B (D-72)

As was pointed out earlier, one of them, E, characterizes only the pure deformation,

while the other, B, gives information about the angle of turn of an elementary volume,

as a rigid body, with respect to coordinate axes

Superposition of small deformations

By definition, a homogeneous deformation is described by a linear transformation of

the straight segment with terminal points, located close to each other. Because of this

linearity we can expect that a sum of small deformations is also the homogeneous one. In
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particular, it may suggest that an arbitrary homogeneous deformation can be represented
as a superposition of simpler deformations. Certainly, this fact may greatly simplify a
study of small deformations. As we know, a deformation is defined by a relative change
of a position of one point, N, with respect to the other point M. It is essential
that coordinates of the latter do not participate in equations, describing a deformation.
This allows us to place the origin of coordinates at the point M, which moves during
a deformation. In other words, coordinates of the point M remain equal to zero. It is
convenient to introduce the following notations:

a. x, y, z and X\, y\ z\ are coordinates of the point N before and after a
deformation, respectively.

b. u, v, and w are scalar components of the displacement s of the point N, that
is

Xi — x + u, Hi—y + v, zi = z + w

Therefore, eqs. D-31 can be written in the form:

du du du
u = xi - x = —x + —y + —z

ox ay oz

dv dv dv
v = yi-y = -T^-X + —y + — z (D-73)

ox oy oz

dw diu dw
w = zi- z = —x + —y + —z

ox oy oz

Now we are ready to consider a superposition of two small deformations, following one
after another. Due to the first deformation a medium around the point N is moved,
and it is located in the vicinity of point Ni. Its coordinates are defined by eqs. D-73

/ du \ du du

dx \ dyj dz

dw dw ( dw\
z\ = ~^-x + ~^-y + 1 + ^ - \zox oy \ oz J
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After the second deformation a particle in the vicinity of the point Ni is situated around

some point JV2 with coordinates X2, 2/2 and Z2-

( du\\ dux du-i
%2= 1 + ^— hri + -— yi + -—zx\ dxij dyi dzi

dyi (-, dvi\ dvi
1/2 = -K— X1 + 1 + 7— h/i + —ZX D-75

dxl \ dyj dzi

dw\ dw\ ( dwi \
Z2 = ^ Xl + — 2/1 + 1 + -r Zl

dxi dyx V dzi )

Substitution of xi, y\, Z\ from eqs. D-74 into eqs. D-75 gives us relationships between

coordinates of points N2 and N. First equation of this set yields

( du\ \ ( du du du \
1 + 7̂— [00 + —x + —y + —z

ax\ j \ ox oy oz J
du\ f dv dv dv \ du\ f dw dw dw \
dyi \ dx dy dz J dz\ \ dx dy dz J

Performing a multiplication and discarding terms with a product of derivatives we obtain

( du dui\ Idu du\\ Idu du,\\ , .

dx dxi J \dydyij \ dz dzx)

In the same manner we have

fdv dvi\ / dv dvi\ Idv dvi\ /x^ „„.»»=U + ^ ) I + ( 1 + * + d ' y + ( ^ + ^ ) = (D-77)
/dw dw\ \ /dw dw\ \ ( dw dw\ \

Thus, a superposition of small deformations is a result of a summation of unit elongations

as well as that of the distortion angles, corresponding to each small deformation. In

other words, small homogeneous strains obey the principle of superposition. As was

mentioned earlier this means that a complicated but a small deformation can be treated

as a combination of rather simple strains, and their summation can be carried out in

any order. We illustrated the principle of superposition in the case of two subsequent

deformations. Of course, it is valid for any number of strains.



Appendix E

Relationship between stress and

strain

Hooke's law

As was demonstrated in two previous appendices a distribution of surface forces at each

point of an elastic medium is characterized by six elements of the symmetrical ten-

sor:

( Til T12 T13 \

T21 T22 T2 3 (E-l)

T31 T32 T33 /

Also they can be written in the form:

Xx, Yy, Zz, Y2, Zx, Xy (E-2)

where

-X-x = Txxy ly = Tyyi ^z ~ Tzzi -^-y ~ Txyi -^-z = Txzi +z = Tyz \^J~'^)

At the same time, a deformation is also defined by six elements of the symmetrical tensor

( \
£ l l C!2 C13 \

£21 C22 C23 (E-4)
£31 C32 c3 3 I

Often different notations are used:

£xx = ^11 • £yy = £22i £zz = £33j £yz = ^23, ^xz = £l3> exy = ^12 (E-5)

619
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Here

xx ~ dx ' Cyv ~ dy ' " ~ dz [ '

and

ldsvdsz 1 ds ds 1 ds dsy
c - = 2 ( ^ + a ^ ' ^ = 2 ( ^ + ^ } ' £ - = 2 ( a ^ + 9 ^ ) (E"7)

and the particle displacement s is

s = sxi+syj+szk (E-8)

Since due to a deformation the internal surface forces arise, it is natural to assume that

there is a relationship between stress and strains. This dependence can be written as

^-x J lv -Ex; ^yy> ^-zz? £zyi £zx> ^xy)

* y J2\£xxi ^yy? ^zzj ^zyi ^zx: ^xy)

^ z J3\^xx' ^yyi ^zzi ^zyj ^-zxi cxy)

X z — JA\£xxi ^yyi &zz-> &zy> &zx-> &xy) K*-2'^)

^x — J5\^xx: ^yy: ^-zzi ^zyi ^zx- ^xy)

^-y J6\~xxi ^yy> ^zzi ^-zyy ^zxi ^xy)

Suppose that if a medium is not deformed, stresses are absent, that is

/i(0,0,0,0,0,0) = 0 (i = l,2,3...6) (E-10)

We also imply that these functions are continuous and have first derivatives. Then

expanding j'i in Maclaurin series and discarding all terms except the first one we obtain

Xx = cnexx + Ci2£yy + c^ezz + cuezy + ci5szx + cieexy

Yy = C2iExx + C22£yy + C23£zz + C24£zy + C25^zx + C2Q,£xy
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Zz — CnSxx + C^Syy + C33SZZ + C3iSzy + C3-aE zx + C36£xy

Yz — CiiExx + C42£yy + Ci3ezz + Cu£Zy + Cio£zx + Ci6£Xy (E"H)

Zx = CrASxx + C^-iEyy + Cryi£zz + Cs4£zy + C-ftSzx + CoQ£xy

Xy = CQICXX + CQ2£yy + C(,3EZZ + C^E zy + CQ5CZX + C^Exy

These linear functions with respect to strains are called Hooke's law and they describe
a relationship between stresses and strains. By definition, each coefficient Cy defines
the first derivative of the stress tensor element with respect to a corresponding strain.
Speaking strictly, the derivative is calculated when this element of the strain tensor is
equal to zero. For instance

C34 = TT^- if Ezy - > 0
U- Zy

In accordance with cq. E-ll the Hooke's law contains 36 coefficients. However, we
will demonstrate that some of them are equal to each other, and in general, this law
is described by 21 independent parameters. Propagation of elastic waves is usually ac-
companied by a deformation with extremely small strains, which has order 10~6 and
much smaller. This fact allows us to neglect terms of the second and higher orders in the
Maclaurin series, eq. E-ll. At the same time elastic constants, c^ could be very large,
and their dimension is the same as stresses, since ey are dimensionless. Let us also
notice that the linear theory of elasticity is based on Hooke's law, while eqs. E-9 are a
foundation of the nonlinear theory. In order to study elastic constants in different types
of a medium it is useful to derive expressions of the work, performed by stresses, as well
as the potential energy of a deformed medium and the elastic potential. In particular,
this approach allows us to show that the number of coefficients c.y does not exceed 21.

The work of forces and potential energy of a deformed body

Consider some volume V of an elastic body, subjected to an action of the surface and
volume forces. They cause a change in a relative position of particles of a body and a
deformation takes place. Let us pay attention to a very small time interval during which
these forces remain constant. Variation of the work, performed by them, is equal to

8A = I f • <5s dV + 11 • Ss dS (E-12)
v s
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Here f is the density of volume forces, t is a traction, and Ss is a change of the
displacement of particles, S is the surface, surrounding the volume V. Now we carry
out some transformatious, which permit us to express this work 5A in terms of stresses
and strains at points inside the volume only. With this purpose in mind consider the
surface integral in eq. E-12. As was shown in Appendix C the traction t can be
represented in the form

t = (X • n) i + (Y • n) j + (Z • n) k, (E-13)

where n is the unit vector normal to the surface S and directed outward. Therefore

t • Ss =8sx X • n+S,Sy Y • n+6sz Z • n (E-14)

Applying Gauss theorem

IM • dS = [ div M dV
J J

s v
we obtain

it-8sdS= I [Ssx X • dS+5sy Y • dS+5sz Z • dS] (E-15)
s s

f
= / div (X 8sx + Y 8sy + Z 8sz)dV

v

Correspondingly, eq. E-12 becomes

SA= [fx5sx + fy5sy + fz6sz + div (X 5sx + Y Ssy + Z 8sz)]dV (E-16)

v

The integrand can be greatly simplified by making use of the identities

div (X8sx) = Ssx div X + X-grad Ssx

div (Y5sy) = 8sy div Y + Y-grad 5sy (E-17)

div (7i8sz) — 5sz div Z + Z-grad 5sz
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Note that this type of equalities was already used to obtain equations of a motion and
an equilibrium, (Appendix C). In deriving an expression of the work we distinguish two
cases.

Case one First, assume that a displacement of particles takes place very slowly, that
is their velocity is negligible, and it is possible to neglect a change of kinetic energy. This
allows us to apply a relation between the surface and volume forces for an equilibrium.
As was demonstrated in Appendix C in this case

div X + fx = 0, div Y + fy = 0, div Z + fz = 0 (E-18)

Substitution of eqs. E-17-E-18 into eq. E-16 yields

5A = f(X • grad Ssx + Y • grad 5sy + Z • grad Ssz)dV (E-19)
v

The integrand is a sum of three terms, and it can be written as
i-\ i-j Q

Xx-^-Ssx + Xy—Ssx + Xz—5sxox oy dz

+Yx-H-6sy + Yy^-Ssy + Yz ̂ -6 Sy (E-20)
ax ay az

r\ r\ r\

+Zx—-8sz + Zy—6sz + Zz—8szdx " dy dz

Taking into account that Xy = Yx, XZ = ZX, Yz = Zy and the derivative of a difference
is equal to a difference of derivatives, the last sum is equal to

Xx 5exx + Yy 6eyy + Zz 6ezz + Yz 5eyz + Zx 5exz + Xy Sexy (E-21)

Here

dsx dsy dsz ,

and

_ _ds}L ds^ _ _dsx_ ds^ _ _ dsx dsy
y y oz oy oz ox oy dz
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Thus, in place of eq. E-19 we have

6A = / (Xx 5exx + Yy Seyy + Zz 5ezz + Yz 5eyz + Zx 5exz + Xy 6exy)dV, (E-23)

v

and the work, performed by external forces during a short interval of time, is expressed in

terms of stresses inside a volume, as well as a change of strains. In deriving eq. E-23 we

neglected variations of the kinetic energy. Moreover, let us assume that the heat remains

the same, that is no heat is gained or lost by any element of the body. Such adiabatic

change can be expected, since particles of a medium are usually involved in rapid and

small vibrations. Under these conditions the work 5A results in only an increase of

the potential (intrinsic) energy, U. In a fact, the external forces produce a work and a

elastic body becomes deformed. If the body is allowed to return to its unstrained state, it

gives back all the work, performed by external forces. Correspondingly, this work can be

treated as an energy, stored in a body and is called the strain (potential) energy. Then,

eq. E-23 can be rewritten as

SA = SU= I Su0 dV, (E-24)

where SUQ is a change of the density of the potential energy, while SU is a change of

this energy of the deformed body. From a comparison of eqs. E-23 and E-24 we conclude

that

5UQ — Xx Sexx + Yy 5eyy + Zz 5ezz + Yz Seyz + Zx Sexz + Xy Sexy (E-25)

This clearly shows that during a very small time interval, St, a change of the density of

the strain energy is defined by a product of stresses and a variation of the corresponding

strains.

Case two Next we demonstrate that cq. E-25 is still valid even when there arc

variations of the kinetic energy. With this purpose in mind eq. E-25 will be derived in

a slightly different way. In accordance with the principle of conservation of energy, the

work, performed by external forces during a unit time, results in a change of the kinetic

and potential energy, as well as heat, 5Q. This can be written as

6 A = 5K + 5U + 5Q

or

dt dt dt dt



where ax = dvx/dt, ay = dvy/dt, az = dvz/dt are components of an acceleration.
As is seen from eq. E-12 the rate, at which the work is done, is equal to

or
dA f f
-%:= UxVx + fyVy + fzVz)dV + j (txVx + tyVy + tzVz)dS

v 's

Making use of E-15, we obtain

dA I"
-^=1 \SxVx + fsvy + fzvz + div (X vx + Y Vy + Z Vz)]dV (E-30)

v

It almost coincides with eq. E-16 and can be represented as
— = J [(fx + div X)vx + (/„ + div Y)vy + (fz + div ZK (E-31)

v
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that is the total mechanical energy

SU + 6K

is not in general equal to the work, SA, done by external forces.
As was shown in Appendix A, the kinetic energy of an elementary volume is defined

as

\p{vl+vl + v% (E-27)

provided that displacements are small. Here vx, vy, and vz are components of the
particle velocity along the coordinate axes. Respectively, the kinetic energy of a deformed
body is

K = JP-(vl + vl + v*)dV\ (E-28)
v

and its rate of a change with time is

— = / p(vxax + vyay + vzaz)dV (E-29)
v

— = f f • v dV + 11 • v dS
dt J J

V S
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+ X • grad vx + Y • grad vy + Z • grad vz]dV

In Appendix C we demonstrated that

fx + div X —p ax, fy + div Y =p ay, fz + div Z —p az (E-32)

Substitution of eqs. E-32 into eq. E-31 gives

dA f
~E7 — P{ax'Vx + ayvy + azvz)dV (E-33)

+ — / (X • grad sx + Y • grad sy + Z • grad s2)]dV^

y

Taking into account eqs. E-29 and E-33, in place of eq. E-26 we have
[p{axvx + dyVy + azvz) + — / (X • grad sx + Y • grad sy + Z • grad sz)]dV

ot J
V V

f , ^ n, dU dQ
= / P{vx ax + vy ay + vz az)dV + — + —

v

or

— / (X • grad sx + Y • grad sy + Z • grad sz)]dV = ——h -^-, (E-34)
v

or

/ (X • grad 5sx + Y • grad 5sy + Z • grad 5sz)]dV = 5U + SQ (E-35)

Assuming that a change is adiabatic, SQ = 0, we again arrive at eq. E-25. In this
light it may be appropriate to notice that an adiabatic compression of a gas increases
its temperature. Also if a metal is adiabatically compressed, there is an increase of a
temperature too, but it is quite small. In principle it is possible to remove a portion of
heat and restore an original temperature. Such procedure slightly changes a strain, that
is a difference between the adiabatic and isothermal elastic parameters is very small and
it is usually much less than one percentage. As follows from eqs. E-24-E-25, the work,
causing an elementary change of strains in the unit volume, is equal to

dAs — Xxdexx + Yydeyy + Zzdezz + Yzdeyz + Zxdexz + Xydexy (E-36)

Since the work is transformed into the internal energy small variations of strains are
replaced by the full differentials. Let us note that considering the work we did not make
any assumptions about a relationship between the stress and strain.
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Figure E.I: Illustration of Eq. E-38

The work of stresses and Hooke's law

Now suppose that Hooke's law is valid and find an expression for the work As. By

definition, we have
f

As = (Xxdexx + Yydeyy + Zzdezz + Yzdeyz + Zxdexz + Xydexy) (E-37)
•J

At the beginning consider the first integral
e-xx

I Xx dexx

b

Its evaluation is illustrated in Fig. E.I. Since the stress Xx linearly depends on the

strain, exx (Hooke's law), this relation is described by the straight line OA. Corre-

spondingly, the area of the triangle OAB defines the integral, that is

/ Xx(exx)dexx = -Xxexx, (E-38)

o

where Xx is the function of the final value of the strain.

Applying the same approach to other integrals in eq. E-37 we arrive at the expression

of the work

Aa = - {Xxexx + Yyeyy + Zzezz + Yzeyz + Zxexz + Xyexy) (E-39)
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For illustration consider an elementary volume of an elastic medium.
Example one Assume that each element of the stress tensor is the same at the

opposite faces of the volume. In other words, the derivatives of stresses with respect to
coordinates are equal to zero. We first calculate the work, performed by the force, related
to the stress Xx. Introduce the following notation: dsx(x,y,z) is the displacement of the
middle point of the volume along the x-axis. Then dsx(x — dx/2, y, z) and dsx(x+dx/2,
y, z) are displacements of the back and front faces of the volume, respectively.

As was demonstrated in Appendix C. the rr-components of forces, acting on these
faces, are equal to

dx
Fx(x , y, z) = txdydz = (X • ni)dydz = —Xxdydz

and

Fx{x + —, y, z) = txdydz = (X • n2)dydz = Xxdydz,

since Xx =const and n2 = —ni = i. Therefore, the work of these forces, is

Xxd Lx(x + y , y, z) - sx(x - y , y, z)] dydz (E-40)

Expanding sx in the Taylor's series and discarding all terms, except the first and second
ones, eq. E-40 becomes

Xxd I —- j dV = XxdexxdV

Its integration within the interval: 0 — exx gives the first term of eq. E-39, if dV — 1.
In the same manner, we derive expressions of the work, which is done by two other

normal stresses and they are | Yy eyy dV and | Zz ezz dV. Next, consider a contribution
of tangential components of forces, directed along the rc-axis and acting on faces of the
volume, perpendicular to the z-axis. As a result, these faces experience displacements:
dsx(x, y,z + dz/2) and dsx(x, y, z — dz/2). Since

Fx(x, j / , z + y ) = (X • n2)dxdy = Xz(x, y, z)dxdy

and

dz
Fx(x, y, z - —) = (X • nx)dxdy = -Xz(x, y, z)dxdy
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and

112 = —ni = k.

the work, performed by these forces, is

Xzd\sx{x,y,z + Y)-sx(x,y,z-Y) dxdy = Xzd-^dV (E-41)

By analogy, the work of the forces, directed along the z-axis and acting on faces, normal

to the x-axis, is equal to

\ . dx dx 1
Zxd sz(x + —,y,z)- sz(x - —,y, z) dydz

or

m^V (E-42,

Hence Xz = Zx a sum of works, given by eqs. E-41-E-42. is

/<9s <9s \
Zxd(—^ + —^) dV = ZxdexzdV (E-43)

\ox ox /

Here dexz is an elementary change of the strain exz.

After an integration of eq. E-43 from 0 to exz we obtain the corresponding term of

eq. E-39. Similarly, considering the work of other shearing forces, all terms of the sum

in eq. E-39 can be found.

Example two Next consider a more complicated case, when the volume forces are

present and stresses vary linearly inside the volume dV. Making use of results, derived

in the first example, it is clear that the elementary work of the force Fx, acting on faces,

normal to the x-axis, is equal to

-,r , dx , 7 . dx . ^ , dx , , , dx ,~\ , ,xx(x + y , V, z)dsx(x + —, y, z) - Xx(x - —, y, z)dsx(x - —, y, z) dydz

or

— (Xxdsx)dV (E-44)

In the same manner the elementary work, associated with forces Fx, acting on faces,

perpendicular to the y- and z-axes, is

— (Xydsx)dV and —{Xzdsx)dV (E-45)
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Thus, the total elementary work, caused by the surface forces Fx becomes

\^Xxdsx) + ̂ (Xydsx) + ^(Xzdsx)\ dV

or

[ . . ,dsT „ 8sT , r ,dsr , ,dXr dXv dXz,~\ , i rXxd-^ + Xyd—^- + Xzd-^ + dsx(—^ + ̂  + - ^ ) dV
dx dy dz dx dy dz J

The latter can be also written as

Xxd—^ + Xyd—^ + Xzd—^ + dsx div X dV (E-46)

ox dy dz ' j

The elementary work due to the ^-component of the volume force fx is

fxdsxdV (E-47)

Adding eqs. E-45-E-46 we obtain

\xxd^ + Xvd
d-^ + Xzd^ + (div X+fx)dsx] dV

[ dx dy dz J

Taking into account the first equation of the set E-18, the elementary work, related to the

x component of the surface and volume forces, is defined, as in the previous example, by

the sum

Xxd— 1- Xyd— 1- Xzd—— d\

\ ox dy dz J

By analogy, the y- and z-component of the forces produce the work:

(^jdSy d.Sy dSy\
yxd—^- + yyd—± + Yzd—± dV

\ dx dy dz J
and

(Zxd—^exz + Zvd—^eyz + Zzd—^)dV
dx dy dz

After a summation of all these elementary work and an integration, we again obtain eq.

E-39.
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Strain potential and Hooke's law

In accordance with eq. E-25 a change of the density of the potential energy is

dv,Q = Xxdexx + Xydeyy + Zzdezz + Yzdeyz + Zxdexz + Xydexy

Correspondingly, the density u is defined as

f
u0 = (Xxdexx + Xydeyy + Zzdezz + Yzdeyz + Zxdexz + Xydexy), (E-48)

and it represents the potential energy, stored in the unit volume, due to a deformation.

The function u is called the elastic (strain) potential or strain energy function. From

the physical point of view it is obvious that the density u$ is a function of strains, that

is

"o = «o (exx, eyy, ezz, eyz, exz, exy) (E-49)

For this reason, its small variation, du, can be represented in terms of small changes of

strains. With this purpose in mind we expand the function u$ in the power series and

preserve only terms with the first derivatives. Since

MO(O, 0,0,0,0,0) = 0,

we have

du0 du0 du0 9u0 du0 9u0
du0 = -—dexx + -—deyy + -—dezz + -—deyz + -—dexz + -—dexy (E-50)

(J^-xx v^yy O&zz (J^yz oexz ueXy

Thus, we obtain two expressions of the same function, duo, which characterize a change

of the elastic potential, eqs. E-25 and E-50. Their comparison gives Green's formulas

dexx deyy dezz

and Yz = - — , Zx = - — , Xy = - —
deyz dexz " dexy

It is a very important result, because it allows us to express components of the stress

tensor as derivatives of the elastic potential with respect to strains. Thus, the function

u contains an information about surface forces and strains. It is essential that with a

help of the potential UQ we can demonstrate that some elastic constants in the Hooke's

law are equal to each other. Later, considering some special types of a medium, it will
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be shown that certain elastic constants vanish. At the beginning we take the first two

equations of the set E-l l . Making use of eqs. E-51 and relationships between e and e,

these equations can be written as

Xx = ^ — = cnexx + c12eyy + c13ezz + —ezy + — ezx + —exy (E-52)

A V du0 C2 4 C 2 5 C2 6
and Kj, = - — = c21exx + c22eyy + c23ezz + —ezy + —ezx + —exy

CfCyy A L L

Since strains arc independent arguments of stresses Xx, we have

dXx d2uQ dYy d2uQ

7i— = ~Fi—7)— = Cl2 7) = f>—f>— = C21 (E-53)

The principle of conservation of energy requires that the work cannot depend on an

order in which forces are applied, but only on their final magnitudes. Otherwise, it is

possible to gain energy when a deformation has a complete cycle and a body returns to

the original state. Correspondingly, we obtain

d2uo _ d"uo (F u]

oexxdeyy deyydexx

that is c-21 = c12. Considering all pairs of stresses we find

(kj = Cji (E-55)

where i,j = 1,2, 3...6. Thus, in general, the Hooke's law is defined by 21 elastic

constants, shown below:

Cll C12 C13 Cu Ci5 Ci6

C22 C23 C24 C25 C26

^33 ^34 C35 fi36 /r, r « N

(E-56)
C44 C45 C46

C55 C56

C66

Elastic potential in terms of strains and elastic constants

Earlier we represented UQ, as the integral, eq. E-48. In order to perform an integration

we make use of the Hooke's law and eq. E-55. Substitution of eqs. E-ll into eq. E-48
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and on integration gives

1 2
«o = ^cnexx + cl2exxeyy + c13exxezz + cuexxeyz + cVoexxexz + c16exxexy + cl3exxezz

1 2

+ -c22eyy + c23eyyezz + c2ieyyeyz + c25eyyezx + omeyyexy

+ 2C^elz + C34ezzezy + cyoezzezx + c36ezzexy (E-57)

1 ,
+ ^C'UC'Zy + ('Ah?-zye-zx + c46ezyexy

1 2 ! 2

+^C55eza, + c^ezxexy + —Cf&exy

This shows that the elastic potential, UQ, is a function of the second order with respect

to strains. As was pointed out the potential u is very useful to study elastic constants

in the Hooke's law for the isotropic and anisotropic media. With this purpose in mind

consider a change of strains with a rotation of coordinate axes.

Transformation of strain elements

Earlier in the Appendix B we briefly discussed a transformation of the tensor elements

when a direction of coordinate axes of the Cartesian system changes. Now we consider

this question in some detail. Suppose that six components of the strain tensor are known

at the original system x, y, z. Then our goal is to find these elements in the new system

x',y',z'. The position of this system with respect to the original one is denned by nine

cosines, given in the table

x y z

x! l-[ m,\ n,\

y' l2 m2 n2

z' l3 m3 n3

For instance / 1 =cos( i 1 , i ) is the cosine of the angle, formed by the x and x' axes,

but m3 — cos(k1, j) and so on. Now we use the following notations for the displacement

components in both systems

U V W

u' v' w'
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By definition, components of the strain in the new system of coordinates are

du' dw' dv'
Cx'x' = d*1 6y'z' = W + ^>

dv' du' dw' ^ o,
ev'v' = IT, e*'*' = IT! + 7T7 E"58

ay' oz' ox'

_ dw' _ (V dv!_
Bz'z' ~ Jz1 ex>v' ~M+W

In order to determine relationships between strains in the new and old systems we, first,

make use of simple formulas, which relate components of the displacement. Since the

new and old systems have the same origin we can write for the displacement vector

ui + vj + wk — u'ii + v'ji + w/ki

Its multiplication by unit vectors of the new system gives three important equations

v! — u l\ + v mi + w ni, v' = u I2 + v m^ + w n^, w' = u I3 + v ray, + w 123 (E-59)

The next useful relation was derived in Part I and it can be written as

-^- = grad ip is (E-60)
as

Here <p is an arbitrary function and dtp/ds is the directional derivative along the line

which unit vector is is. By definition:

is=cos(is,i) i + cos(is,j) j + cos(is,k) k (E-61)

In particular, the vector is may coincide with unit vectors of the new system of coordi-

nates. Bearing in mind that

dip . dip . dip
gracty = -^ i+^f j+^f k,

dx dy dz

it is convenient to rewrite eq. E-60 in the form

^ 0 = ^ 0 cos(s, x) + —{) cos(s, y) + fo() cos(s, z) (E-62)

Here ( ) means any function ip.
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First, suppose that s = x' and <p = u' = l\U + m\V + n\W. Then eq. E-62 becomes

du' , d d d . n

e*v = Q^,= (hfa + m!— + »,! — )(/!«, + mxv + rhw)

lOdu 9dv ?dw ,dw dv. .du dw. , ,dv dusi

dx dy dz dy dz dz dx dx dy

whence

e-x'x' — l\eXx + m1eyy + n\ezz + mirije^ + n\lxezx + l\m,\exy (E-63)

Now assuming that s — y' and cp = v' or s — z! and yj = w' we arrive at the

following equations:

ey>y> = l\ exx + m2
2 eyy + n\ ezz + m2n2eyz + n2l2ezx + l2m2 exy (E-64)

and ezizi = t\ exx + ml eyy + n% ezz + mzn3eyz + ri3l3ezx + IZTUA exy

The last three equations describe a transformation of the diagonal elements of the strain

tensor. Applying the same approach we have

dw' d v ' d d d . n
e-v'z' = -^-r + ^-7 = {h-^- + rn,2— + n2 — )[hu + m3v + n^w)

dy' dz' dx dy dz

., d d 9 du n dv dw
+ (<3^- + m 3 ^ - + n3—)(l2u + m2v + n2w) = 2l2l3— + 2m2m3— + 2n2n3 —

dx dy dz dx dy dz

.dw dv,, du dw.,, dv du.n , .
+ \-g~ + ^-)(TO2«3 + m3n2) + ("a" + -g-){n2h + n3l2) + (— + — )(<2™3 + hm2)

or

ey'z> = 2{kh exx + m2m3 eyy + n2n3 ezz) + eyz(m2n3 + m3n2) (E-65)

+ezx(n2l3 + n3l2) + exy(l2m3 + l3m2)



636 APPENDIX E. RELATIONSHIP BETWEEN STRESS AND STRAIN

By analogy we have

ez>xi = 2{lll3 exx + mim3 eyy + nin3 ezz) + eyz{m,3nx + mi»3)

+eZx{n3li + nil3) + exy(l3ml + m3li) and (E-66)

exiyi = 2(IJ2 exx + mYm2 eyy + nxn2ezz) + e!/z(m1n2 + m2rii)

+ezx(riil2 + n2h) + exy{lxm2 + l2mx)

Thus, our task is solved and we can determine strain elements in the new system of

coordinates, as soon as directional cosines are known. Formulas of strain transformation

have different applications. Consider one of them, which allows us to find relationships

between strains and stresses in an isotropic medium. Adding eqs. E-63-E-64 we obtain

exfx> + ey,y, + eziz> = exx{t\ + l\ + l\) + eyy{rn\ + ni\ + m\) + ezz(n
2
x +n\ + n\)

+eyz(m1n1 + m2n2 + m3n3) + ezx{nih + n2l2 + n3l3) + exy(l1m,i + l2m2 + l3m3)

Taking into account the known relations of directional cosines:

l\ + l\ + l\ — 1 myUy + m2n2 + m3n3 — 0

m\ + ml + ml = 1 n-J,\ + n2l2 + n3l3 = 0

r?x + nl + n\ — 1 mill + m2l2 + m3l3 = 0,

we have

ex'x< + ey,,y + eztz, = exx + eyy + ezz (E-67)

The latter is the first invariant of this transformation. This result is obvious, since the

relative volume extension, (dilatation)

div s = 9 = exx + eyy + ezz

is independent of the system of coordinates. Simple but cumbersome algebra shows that

there are two more invariants, which are

eyyezz + ezzexx + exxeyy - -{eyz + e2
zx + e2

xy) (E-68)

and &xx?-yy&zz i 'l\C'yz^zx^xy ~ C'XxC'yz ^-yy^zx ~ ^zz^xy)

Now we are ready to find expressions for the Hooke's law at different media and start

from the simplest but very important case.
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Isotopic medium

In such a medium all physical parameters do not depend on a direction along which they

are considered. It is natural that it is also applied to the strain tensor. This means that

its elements remain the same, regardless of an orientation of coordinate axes. Inasmuch

as the elastic potential, u, is a function of strains, we conclude that it is an invariant

with respect to a rotation of coordinate axes too. In order to observe such behavior

the right hand side of eq. E-57 should be represented as a combination of the strain

invariants, eqs. E-67-E-68. Bearing in mind that the strain potential is a homogeneous

function of the second order but the last invariant is of the third order, we make use of

the first two invariants. This allows us to write UQ as

u0 = -z[a{exx + eyy + ezzf + b(e2
yz + e2

zx + e2
xy - \eyyezz - 4ezzexx - 4exxeyy)], (E-69)

where a and b are elastic parameters of a medium.

In other words, elastic constants Cy are related to each other so that the potential

«o is described by only two parameters. It is conventional in place of a and b to use

Lame constants, A and /i, which are introduced in the following way

a = A + 2/i and b = /i (E-70)

Respectively, we have

"0 = —2—(Rxx + eyy+ e"^2 + \^2yz + *%*+ e ^ ~ 4 era e« ~ 4 e « e ^ - 4eXxera)

(E-71)

Now, making use of Green's formulas, eqs. E-51, it is easy to determine components of

the stress tensor. Performing a differentiation of the potential u with respect to strains

we obtain

Xx = AG + 2fiexx, Yz = [i eyz

Yy = XQ + 2fj,eyy, Xz = ii exz (E-72)

Zz = XQ + 2fj,ezz, Xy = fiexy,

where Q — exx + eyy + ezz is the dilatation. These equations establish a relationship

between stresses and strains. It is interesting to notice that the normal stresses are related
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to the diagonal elements of the strain tensor only and depend on two elastic parameters

A and /i. At the same time, the shearing stresses are functions of the corresponding

strain and the single parameter fi, which is usually called rigidity. Formulas, given by the

set E-72, represent the Hooke's law when a medium is isotropic, and they were derived

by Cauchy.

Relationships between elastic moduli of an isotropic medium

By definition elastic parameters, A and //, are independent of a distribution of stresses.

For this reason, it is very useful to consider the simplest case when

Xx ± 0, Yy = ZZ = Yz = Xz =Xy = 0 (E-73)

For instance, if a thin bar experiences an extension we have

XX = E exx (E-74)

Here E is the Young modulus, and it always has a very large value. Taking into account

the condition E-73 the set E-72 becomes

A0 + 2/i exx = Xx, A0 + 2/i evy = 0, A0 + 2/i ezz = 0 (E-75)

Adding eqs. F-75 we obtain

(3\ + 2fi)e = Xx (E-76)

The latter allows us to express the relationship between Xx and exx in terms of A

and ii. In fact, we have

and its substitution into the first equation of the set E-75 yields

3A + 2/iX* + 2M 6xx = Xx

or

M(3A + 2M)
Xx = — exx (E-78J

A + fi
Comparison with eq. E-74 gives for Young modulus

E=»^ + M, (E-79)
X + fj,
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and it depends on both Lame parameters. In order to find the relation between the
Poisson ratio, a, and Lame parameters consider the last two equations of the set E-75,
which give

_ A 6
eyy - ezz - - —

Taking into account eq. E-76, we obtain

A Xx
eyy-e"~ 2M(3A + 2M)

or, making use of E-78, the latter gives

e,m — ezz = — -exx (E-80)
yy 2(A + /x) V ;

By definition eyy = ezz = —<jexx. Whence the Poisson ratio can be represented as

" 2 O T r t <E-81)

Thus, pair of elastic parameters, E and a, are expressed in terms of Lame constants.
Now, let us resolve eqs. E-79 and E-81 with respect to A and \i. The first equation
can be written in the form:

fi(2X + 2fi) , n\
E = h = 2/j + n 2CT

X + fj, X + fi

Therefore

» = W^) ( E - 8 2 »
Its substitution into cq. E-81 yields

" W <E-83)
It is instructive to consider the case when the normal stresses are equal to each other,
but the shearing stresses are absent:

Xx = Yy = Zz = -P Xy = Xz = Yz = 0 (E-84)

Respectively, the set E-72 becomes

A8 + 2/i exx = -P, A6 + 2/i eyy = -P, XQ + 2/J, ezz = -P (E-85)
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and

£yz ('xz (*xy ^

Summation of eqs. E-85 gives

(3A + 2/i)0 = -3P

Therefore, the relationship between the pressure, P, and dilatation is

P = - ( A + ^ / i )9 (E-86)

As was shown in Part I

P = -MO, (E-87)

where M is the bulk modulus, which characterizes a compression or an expansion of an
elementary volume. Comparison of eqs. E-86 and E-87 gives

M = \ + l ii (E-88)
o

Replacing A and \i by E and a we obtain

Ea E
(1 + CT)(1-2CT) + 3(1 + CT)

or

Anisotropic medium

As was pointed out earlier the strain-energy-function, eq. E-57, and, therefore, the
Hookc's law is in general defined by 21 clastic constants. Now we consider several models
of an anisotropic medium, where the number of these constants is greatly reduced.

Case one Suppose that a medium is such that at each point there is a plane
of symmetry with respect to elastic properties. This means that two forces with equal
magnitudes but opposite direction, normal to the plane, cause the same strain. Let us
assume that the plane of symmetry coincides with the coordinate plane XOY. Then the
elastic potential has to remain the same, when a direction of the z-axis, perpendicular
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to the plane of symmetry, changes. Correspondingly, a sign of z and wz changes, too,
as well as that of strains

d w d u d w d v
ox oz oy oz

Because of symmetry, terms containing ezx and ezy in the first power have to vanish.
At the same time, terms with the product ezxeyz remain. This gives

Cl4 = Ci5 = C24 = C25 = C34 = C3S = C46 = C56 = 0, (E-90)

and the number of different elastic constants becomes 13.
Case two Assume that at each point of an elastic medium there are three mu-

tually perpendicular planes of symmetry. It is convenient to treat them as coordinate
planes. Therefore, an expression of an elastic potential, eq. E-57, does not change, if
an orientation of coordinate axes becomes opposite. Since this transformation changes
signs of exy, exz, eyz, terms of the sum in eq. E-57, which contain exy,exz,eyz in the
first degree, should be equal to zero. It happens, if along with the condition E-90, we
also have

Cl6 = C26 = C36 = C45 = 0 (E-91)

The number of elastic constants is reduced to 9, and they usually characterize a defor-
mation of an elementary volume, which is crystallized as the rectangular parallelepiped.

Case three In this medium, as before, at each point there are three mutually
perpendicular planes of symmetry and, moreover, elastic properties are the same with
respect to each of them. This means that the potential u does not change, if the .T-axis
is replaced by either the y or z-one. Therefore, the expression of the strain potential
remains unchanged, if mutual replacement of the following quantities takes place:

&xxj€-yy,Czz Or €-xyi &xz} £'-yz

It happens if

e n = c2 2 = c3 3 , c4 4 = c 3 5 = c6 6 , c23 = C12 = C13, (E-92)

provided that conditions E-90-E-91 are met. Then, the potential u0 can be written as

"o = ̂ ( e L + 4v + e ^) + cMevvezz + ezzexx + exxeyy) + ^y (e^ + e2
zx + e2

xy), (E-93)
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and it is characterized by three elastic constants. Such a deformation usually occurs in

a medium with the cubical crystals.

Case four Now we assume that a medium is isotropic and derive again an expression

for the strain potential. It is clear that this function has to be the same for any orientation

of coordinate axes. For simplicity let us turn the original system, (x, y, z) by a small

angle ip around the z-axis. This gives a new system, (x',y',z'), and, in accordance

with Table 1, their directional cosines, are

l\ = 1 m\ = cp «i = 0

h = -<p m 2 = 1 n2 = 0 (E-94)

3̂ = 0 rriz = 0 n.3 = 1

Here we used the fact, tha t ip is very small and

<P2

sin ip — tp, cos <p — 1 ~ 1

Applying formulas of the strain transformation, eqs. E-63-E-66 and discarding small

terms with ip2, we obtain components of the strain in new system of coordinates:

ex'x' =exx + cp exy, ey>yl = eyy - <p exy, ez,z, = ezz, (E-95)

and ey>z, = eyz - <p ezx, ez>x< = ezx + (p ezy, ex,y, = exy + 2ip(eyy - exx)

It is clear that any plane in an isotropic medium is a plane of symmetry and elastic

properties are independent on a direction. For this reason, we can use eq. E-93, which

can be written in new system of coordinates:

Mi = - y ( e £ v + eylyl + e'fv) + cl2{ey>y<ezlzl + ezVex-x/ + e ^ e ^ y ) (E-96)

Now we represent u\ as a sum of UQ and terms, depending on (p in the first power.

Substituting cqs. E-95 into cq. E-96 and preserving terms with <p of the first power we

obtain:

«i = u + <p(eyy - exx){2cAA + c12 - c u ) eXJ/ (E-97)
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Since u\ — UQ we conclude that elastic constants are related to each other and it gives

2c44 + c12 - cu = 0 or c n = 2cu + c12 (E-98)

Correspondingly eq. E-93 becomes:

2M = c12(exx + eOT + eM)2 + 2c44(exx + e^ + e\z) + cu(eyz + e^x + exy),

that coincides with eq. E-71, if we let C44 = \i and Cyi = A

Case five Next consider a transversely isotropic medium, which is of a great

importance in a seismology. Suppose that a distribution of elastic parameters possesses

axial symmetry around the 2-axis. Correspondingly, any plane with this line is the

plane of symmetry. In order to find the elastic potential in such a medium we undertake

several steps. First, let us consider the plane XOZ. Since a change of the direction of

the rc-axis does not make an influence on the potential, eq. E-57, we obtain, as in the

first example:

Cl5 = Ci6 — C25 — C26 = C35 — C36 — C45 = C46 — 0

Now we choose the second plane of symmetry, YOZ. For the same reason its symmetry

gives:

Cli = Cifi = C 2 4 = C 2 6 = C34 = C 3 6 = C45 = C 5 6 = 0

Because of two last conditions, eq. E-57 becomes

Mo = 2 C n e L + ci2exxeyy + c13exxezz + - c 2 2 e^ + c23eyyezz (E-99)

+ 2C33eL + 2Cuely + 2C55eL + -c6ee2
xy

Thus, a number of elastic constants is already reduced from 21 to 9. Next simplification is

related to the axial symmetry of a medium. For this reason we can perform a replacement

of the following strains: exx,eyy and exz,eyz. This means that cn = C22, C13 = C23,

c44 — C55, and eq. E-99 can be written as

"o = 2 C n( e L + ely) + ci2exxeyy + c13(exx + eyy)ezz + - c 3 3 e^ (E-100)

+ ^A{ely + e2
zx) + -cme2

xy
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At this stage we expressed the strain potential with help of six elastic constants. It turns

out that only five of them are independent. To demonstrate this fact suppose, as in the

case of an isotropic medium, that a system of coordinates, x, y7 z, is turned by a small

angle ip about the z-axis. Then, in the new system, x', y', z' eq. E-100 becomes

"o = -cn(e^ x , + e2
ly,) + c12ex,x,ey,y, + c13(ex,x, + eyly,)ez,z, (E-101)

+ 2C33eL' + 2C44(4y' + el'x>) + 2C(i6 ex'v'

In the same manner as in the previous example, we substitute eqs. E-95 into eq. E-101

and discard terms with ip in the power exceeding one. This gives

u1=un + <p[cn(exx - eyy)exy + cr2{eyy - exx)exy + 2c6fi(eyy - exx)exy]

or

'«: = M0 + <p(-cn + c12 + 2c66)(era - exx)exy (E-102)

Since ux = u0, we arrive at one more condition for elastic constants:

Cll = C\2 + 2C66

Thus, in place of eq. E-100 we have

2w0 = (C12 + 2c 6 6 ) ( e^ + e2
yy) + 2c12 exxeyy + 2c13(exx + eyy)ezz + c33 e2

zz

(E-103)

+cu{e% + e2
zx) + c66 exy = cu(exx + eyyf + 2^3(6^ + eyy) ezz + c33 e

2
zz

+cu(e
2
zy + e2

zx) + cm(e2
xy + 2e2

xx + 2e2
yy),

and the potential UQ is defined by five parameters.
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Index

acceleration, 23, 35, 58

angular, 56, 79, 85, 98, 517

linear, 35, 36, 79, 98

Airy phase, 269, 438

angle

of reflection, 202, 204

of refraction, 359

anisotropic medium, 481, 508, 608

attenuation, 15, 29

Bessel function, 387, 389, 392, 410

boundary

conditions, 53, 58, 79, 98, 122, 136

value problem, 100, 135, 182, 263

branch lines, 305, 306, 312, 332

branch point, 303-305

Brewster's angle, 208

bulk modulus, 14, 92

Cauchy's

formulas, 46, 48

theorem, 300, 302, 398, 425, 475

characteristic equation, 76, 468, 553

center of mass, 35

compression, 3, 16

conservation of energy, 105

critical angle, 210, 212, 376, 471, 475

cut-off frequency, 273, 428, 435, 441

Debye's series, 235, 336, 340

deformation

homogeneous, 6, 8-10, 12, 602

inhomogeiieous, 6, 7, 12, 62

diffusive waves, 80

dilatation, 13, 96, 99, 125, 128

Dirichle's boundary value problem, 300, 384

dispersion relation, 422, 423, 426, 433

displacement

angular, 50, 57, 59

field, 21, 67, 69, 143

elastic medium, 83, 186, 358, 381

elliptical polarization, 250, 273, 318, 371

energy

flux, 102, 103

kinetic, 102, 103, 625

potential, 102, 103, 621

equilibrium, 3, 15, 53, 143

equation of equilibrium, 154, 570

equation of motion, 85, 158, 528

Euler's

constant, 447

formula, 264, 307

evanescent wave, 184, 213, 312, 371
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expansion. 9, 12

far zone, 130, 139, 167

force

external, 3, 4, 10, 54, 65, 288, 289

internal, 3, 62, 73

point, 143, 150, 154, 156, 296

Fourier's

integral, 38

series, 28, 29, 32, 60

transform, 38, 133, 143, 415

free boundary, 25, 99, 191, 320, 382

Gauss formula, 106, 148, 161

Green's formula, 631, 637

group velocity, 268, 269, 272, 437, 443

Hankel function, 277, 336, 387

Helmholtz

equation, 277, 294, 384, 409, 418

formula, 143

Hilbcrt transform, 231

formula, 143

Hooke's law, 2, 12, 17, 26, 42, 187, 288, 482

Huygen's principle, 208, 328, 370, 371

impedance, 20, 133, 142

impulse, 29, 37

initial condition, 42, 100, 122, 125

interference

constructive, 40, 41, 420, 441, 473

destructive, 40, 41, 208, 223, 420

Jordan lemma, 312, 397, 398, 425

Lame constants, 89, 488

laminated medium, 483, 488

Laplace equation, 146, 177, 463

Laplace motion, 98, 177

leaking modes, 420, 473

matrix

antisymmetric, 533, 544

diagonal, 544

Hermitian, 552

inverse, 546, 547

symmetric, 543, 544

transposed, 545

metric coefficients, 114, 115, 117-119

moment of inertia, 56, 85, 516

multiple reflections, 420

near zone, 129, 167

Newton's first law, 29, 31, 32

Newton's second law, 17, 22, 31, 34

normal incidence, 190, 196

normal modes, 40, 82, 419, 427, 430, 438

oblique incidence, 201, 215

particle motion, 27, 30, 57, 129, 496

phase

shift, 193, 213, 224, 250, 262, 263

surface, 505, 506

velocity, 453, 467, 473, 505

plane wave

homogeneous, 179, 180, 261, 300, 308

inhomogeneous, 179, 180, 248, 300

polar moment of inertia, 55, 56

potential

scalar, 83, 100, 300, 366, 373

vector, 83, 100, 101, 300

Poisson relation, 2, 5, 12, 21, 42, 91

Poisson's ratio, 5, 8, 14, 45, 91, 639
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Poynting vector, 103, 233, 234, 340, 504

pressure, 12, 13, 104, 460, 462

pure bending, 62, 67, 72

ray

behavior, 498, 503

tube, 231-234, 498

reflection coefficient, 195, 207, 211, 224, 227

recursive expressions, 241

refraction coefficient, 24

resultant torque, 66, 75

rigid boundary, 25, 99

rigidity modulus, 45, 48, 57

shear

pure, 45, 93, 95, 139, 140

simple, 48, 97

slowness, 507

Snell's law, 204, 210, 337, 340, 350, 360, 473

Sommerfeld

condition, 100, 280

integral, 387, 395

source

fictitious, 287, 340, 392

linear, 275, 278, 284, 287, 299, 332

point, 167, 275, 382, 390

spherical, 121, 125, 132, 137

spreading factor, 235

stationary-phase method, 332, 356

Stokes' formula, 149

strain tensor, 45, 111, 597

stress

tensor, 6, 9, 141, 563, 578

normal, 17

shear, 42, 45

Taylor series, 6, 8, 51, 334

theorem of uniqueness, 100, 138

torque, 54

torsional stiffness, 55

traction, 5, 9, 17, 564, 566

transmission coefficient, 218, 227, 229

transversely isotropic medium, 483, 502

velocity of

bending wave, 78

longitudinal wave, 95, 329

Love wave, 259-261, 263, 265, 268

propagation, 489

Raylcigh wave, 244-251, 269, 275

of shear wave, 57,95, 133, 135, 493

Stoneley wave, 255-258, 272, 456

wave

acoustic, 16, 129, 132

bending, 60, 73, 78

boundary, 252, 253, 258, 373

compressional, 16, 20, 27, 28, 30

conical, 329, 371, 373

cylindrical, 278, 340, 455, 473, 474

dilatational, 92, 101, 491, 492

direct, 290, 336, 351

elastic, 121

equation, 16, 18, 19, 83, 90, 122

evanescent, 184, 373, 376, 420

extensional, 20, 27, 28, 30

head, 371, 373, 442, 477, 478

incident, 23, 25, 80, 188, 189

incoming, 19, 20

ininhomogencous, 179, 184, 372

longitudinal, 15, 58, 78, 94, 121

Love, 243, 259-269
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wave

outgoing, 19, 40, 122, 136, 191

quasi P-, 494, 495, 498

quasi S-, 494, 495, 498

Rayleigh, 60, 334

reflected, 23, 25, 31, 32, 191, 337, 340

Scholte, 454

SH, 180, 181

shear, 95, 101, 121, 170, 179

spherical, 121, 126

Stoneley, 60, 454, 469, 470, 499

surface, 179, 449

SV, 180, 181

torsional, 42, 55, 57, 78, 94, 109

transmitted, 23, 25, 362, 376, 474

transient, 470, 474, 479

zone, 131, 300

wavefront, 34, 126, 127, 372

wavefields, 121, 127, 136, 167, 299

waveguide, 78, 269

Young modulus 5, 11, 14, 15, 22, 57, 91, 638


