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Introduction

This monograph is the last volume in the series Acoustic and elastic wave fields in geo-
physics. The previous two volumes published by Elsevier (A. Kaufman and A. Levshin,
2000; A. Kaufinan, A. Levshin and K. Larner, 2002) dealt mostly with wave propagation
in liquid media. Here we consider waves in elastic media, and their description is based
mainly on the classical papers of Stokes, Love, Lamb, Rayleigh, Stoncley, and others.

The first chapter is devoted entirely to propagation of longitudinal, torsional, and
bending waves along a thin bar. Several examples illustrate a reflection of these waves
and the deformations they cause. Some attention is paid to the transition from the
dynamic stage to equilibrium. In the second chapter, proceeding from Newton’s laws,
we derive an equation of motion of an elementary volume of the elastic medium. Then,
by means of Hooke’s law, we obtain the equation for a displacement field. To solve it,
we introduce scalar and vector potentials, formulate boundary conditions for wavefields,
and derive wave equations for potentials. By analogy with acoustic waves (Parts I and
IT), the concepts of potential and kinetic energies, as well as the Poynting vector, are
described. Hooke’s law in the Cartesian system of coordinates is described in Chapter
1. Here we derive relationships between stress and strain in any curvilinear orthogonal
system of coordinates.

Behavior of waves in a homogeneous medium for several types of sources is studied
in Chapter 3. First we investigate longitudinal and shear waves caused by elementary
spherical sources in the near, intermediate, and far zones. Then the field generated by
the point force is described in detail. In the last section we consider longitudinal and
shear planc waves, which serves as a preparation for the next chapter.

In the fourth chapter we describe the reflection and transmission of plane waves, start-
ing from an analysis of strains and stresses that accompany them. We discuss in detail
behavior of reflected and transmitted waves caused by different incident plane waves,
including discussion of the dependence of waveficlds on parameters of a medium and the

angle of incidence. In conclusion, recursive expressions for reflection and transmission

X



coeflicients describing plane waves in the n—layered medium are derived.

Chapter b is devoted to surface waves. First, we consider Rayleigh waves in a homoge-
neous half-space. We discuss such topics as the characteristic equation for the velocity of
propagation, the dependence of wave amplitudes on the depth below the free boundary,
and elliptic polarization of particle motion. Then we study Stoneley waves, which may
appear at the interface between fluid and elastic media and between two elastic media.
Further, we describe Love waves, which arise as a result of the constructive interference
of plane SH waves traveling up and down inside a layer of finite thickness overlaying
the half-space with the higher shear velocity. Finally, in the last section, behavior of
Rayleigh waves in this medium is considered.

Chapter 6 is devoted to the study of waves generated by linear and point sources
in a homogeneous half-space, when a source is located either at or beneath the free
boundary. Asymptotic behavior of waves in the far zone is studied using integration in
a complex wavenumber plane. In addition, we investigate reflection and transmission of
waves caused by a linear source in the presence of the boundary between fluid and elastic
media.

Chapter 7 describes waves in the borehole that are generated by an clementary spher-
ical source. Main features of the normal modes, Stoneley waves, and as head waves are
described.

Finally, in the last chapter we focus on plane wave propagation in a transversely
isotropic medium. Influence of the angle of incidence on the velocities of different plane
waves, orientation of rays with respect to the phase surface, and other questions are the
subject of this Chapter.
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Chapter 1

Hooke’s law, Poisson’s relation and

waves along thin bars

Under an action of forces, all real bodies experience deformation, and either their size
or shape or both change. This means that the relative position of hody particles vary,
and this effect becomes more noticcable with an increase of force. Some features of the
dependence of deformation on a force magnitude are qualitatively shown in Fig. 1.1a.
The initial portion of the curve is practically a straight line. Within this range Hooke’s
law is valid, and each element of the stress tensor is a linear function of strains (Appendix
E). In other words, expanding stresses as functions of strains in Taylor’s series, we discard
terms that are relatively small. Thus, in this range we can apply the linear theory of
elasticity to study a deformation. The latter displays two important features, namely

a. Deformation disappears as soon as forces are removed, that is, we ignore any free
vibrations that may arise.

b. The relative change of the position of particles is usually very small.

With further increase of force, the rate of change of deformation becomes greater, and
finally a body is broken. The value of the force magnitude corresponding to the breaking
point varies for different materials. It also depends on the type of force. For example, in
the case of chalk, the breaking force, causing a stretch, is smaller than the twisting one.

There is another interesting feature of deformation. Suppose that a force corresponds
to the bending portion of the curve. Then when we begin to decrease the force a change
of a deformation may occur along the curve, which differs from that shown in Fig. 1.1a,
and the hysteresis effect is observed.

In principle, the process of deformation may take place at different rates. For instance,

if the force varies slowly (quasi-statically), there is sufficient time for heat exchange
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Figure 1.1: (a) Dependence of deformation on force (b) Rectangular bar (c¢) Influence

of the bar length (d) Influence of the bar cross-section

between a body and a surrounding medium, that is, a deformation is isothermal. In such
a casc the influence of vibrations arising in the body is insignificant. In contrast, wave
propagation is accompanied by relatively rapid motions of elementary volumes (particles).
Correspondingly, heat exchange between these volumes of a medium is almost absent,
and the process of deformation is adiabatic (Appendix E). In both cases we use the same
linear theory of elasticity, but there is a very small difference in values of elastic constants
(Appendix E).

1.1 Hooke’s law and Poisson’s relation

Two approaches allow one to establish physical laws of the lincar theory of clasticity. One
of them requires a knowledge of the atomic-molecular lattice of a medium, in particular,
such parameters as mass and the charge of positive and negative ions. Also it is essential
to have an information about internal electromagnetic forces acting between charges,
because it is due to them that elastic waves exist. We will follow the second approach,
which is entirely based on experiments performed by R. Hooke, T. Young, S. Poisson,

and others.

Hooke’s law

In order to derive Hooke’s law, we will proceed from the experimental studies of bar

deformation in an equilibrium, when either stretching or compressional forces are applied.
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Hooke’s experiments  Consider a bar of length [ having the rectangular cross-
section S, and suppose that two extensional forces with equal magnitudes but opposite
directions act on the bar faces, Fig. 1.1b. It is implied that these forces are uniformly
distributed over each face. From the physical point of view, it is obvious that at the
instant when these forces are applied, waves arise inside the bar, and they travel between
faces. However, with an increase of time, the effect of propagation becomes less noticeable
due to attenuation, and finally waves disappear. Then, equilibrium is observed, since
external forces are constants (Part I). For now we pay attention only to this last stage,
but later we will study both propagation and equilibrium, as well as the transition from
one stage to another. Experiments performed by R. Hooke with bars in equilibrium, that
have a different length, I, and the same cross-section demonstrated the following. An

expansion of the bar, 8/, is directly proportional to the force magnitude:
ol ~ F (1.1)

This is the essence of Hooke’s law, and it states that with an increase of force, |F|, an
expansion of the elastic body, 4I, also linearly increases. Of course, such behavior takes
place only when the force magnitude corresponds to the initial portion of the curve in
Fig. 1.1a. It may be appropriate to notice that 4l is a sum of displacements of both
faces of the bar, and Hooke’s law is also valid in the case of compression.

The first generalization of eq. 1.1 is related to a distribution of internal forces arising
duc to deformation. Let us mentally draw the cross-section S at any place on the bar
and consider portion A, Fig. 1.1b. This portion is surrounded by the lateral surface
of the bar, where external forces are absent. The force —F acts on its left face and on
section S. Since the bar is in equilibrium, the resultant force, acting on portion A, has
to be equal to zero. This means that the force applied to the surface S coincides with
F. In contrast, portion A creates the force —F, which acts on portion B. Because
our conclusion is independent of a position of S, we can say that internal forces arce
uniformly distributed inside the bar, and their magnitude is equal to |F| at each of the
bar’s points. In other words, external forces —F and F arc transmitted inside the bar.

Until now we have discussed expansion of the bar. As was already mentioned, the
Hooke’s law, eq. 1.1, is also valid when both forces are directed toward the middle point
O, Fig. 1.1b, and compression takes place. Now we are prepared to demonstrate that
there is a relationship between the displacement ¢/ and the original length of the bar,
[. This task can be solved in two ways. Onc of them is an analysis of mecasurements

of displacements with bars having different lengths. The second approach follows from
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Hooke’s law and the condition of an equilibrium. First, in accordance with experiments,

the bar expansion, 8/, is directly proportional to its original length:
ol ~1 (1.2)

This shows that bars with the same cross-section and different lengths experience different
cxpansions, provided that in all cases the external forces are the same. Morcover, between
them there is a linear relationship, given by eq. 1.2. For instance, if the bar length is 21,
an extension is equal to 24/, and in general, it becomes ndl when the bar length is nl.
In particular, in the limit, an extension of an infinitely long bar also tends to an infinity.
Such dependence between the length [ and an expansion 61 is a remarkable feature of
a deformation, that has an interesting explanation (Part I). As follows from experiments,
the expansion &/ depends on forces F and —F as well as length [. However, the
relative change of the length, §l/l, is defined by the force. Correspondingly, in place of

eq. 1.1 we can write

—~F (1.3)

It is uscful to derive eq. 1.3, using a different approach, which does not require any
measurements. In fact, consider two identical bars of the length [ and cross-section S,
rigidly connected together, Fig. 1.1c. The length of the new bar is 2[, and, as follows
from the condition of an equilibrium, the force, applied to the portion A at points of the
middle section, is equal to F. In accordance with eq. 1.1 an expansion of this portion
of the bar is equal to §/. In the same manner, the stretching of the portion B is &,
too. Thus, the total expansion of the bar with the length 2/ is 24l. By analogy, we
obtain eq. 1.3 for bars of an arbitrary length. It is proper to emphasize that we consider

only cases when expansion or contraction, 4/, is much smaller than the length I
o < (1.4)

Until now we paid attention to a displacement of the bar faces. In order to apply eq.
1.3 to any cross-scction of the bar, consider its portion of the length z, confined by the
middle cross-section and S(x), as well as the lateral surface, Fig. 1.1b. Because of
a symmetry, a pair of forces —F and F does not move the middle section, and the
displacement 6l(z) is directly proportional to the length  of this portion. This gives

8l(x)

x

~F, (1.5)
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where z is the distance from the origin O.

Next, we will make one more step in a generalization of eq. 1.1, which allows us
to transform the relationship 1.3 into the equation. Let us imagine that two identical
bars are connected, as is shown in Fig. 1.1d. As before, the same forces are applied to
faces of each bar. It is clear that the new bar has an extension &/ in spite of the fact
that forces acting on its faces are twice as great. However, areas of the cross-sections
are also increased by two. Therefore, the ratio F/S remains the same for the single
and combined bars. This consideration suggests that the relative extension of the bar is

defined by the force per unit area, that is, a traction (Appendix C), and we can write

6l F
ZoN 1.6
TS (1.6)
The last step is an introduction of the coefficient of proportionality, which gives
F ol
—=E— 1.7
< i (1.7)

Here E is called the Young modulus, (Appendix E). Note that F/S and 61/l describe

normal stress and strain in the bar, respectively.

Poisson’s relation

As we already know, experimental studies performed by R. Hooke allowed others to
obtain eq. 1.7. A series of measurements, carried out much later by S. Poisson discovered
another important relation describing a deformation. Consider the bar with length [ and
cross-section S = hihy that is subjected to an action of external forces, Fig. 1.1b. The
experiments showed that the bar extension, &/, is accompanied by a contraction of the
cross-section. In the opposite case, the bar compression leads to an increase of S. This
phenomenon was studied by S. Poisson, who discovered that
6h éh ol
h—ll = T; =0 (1.8)
The coefficient o is called Poisson’s ratio. For all imaginable materials, ¢ has a positive
value. The sign “—" shows that if 6/ > 0, (cxpansion), then 6h; < 0 and dhy < 0.
On the contrary, in the case of contraction, 6l < 0, we have &by > 0 and dhy > 0.
As follows from eq. 1.8, relative changes of the bar dimensions, normal to the external
force, are the same:
dhy  Ohy

= 1.
hl h2 ( 9)
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At the same time, displacements themselves, §h; and dhy, differ from each other, if
hy # hy. In essence, eq. 1.8, which we will further call Poisson’s relation, describes the
sccond law of clasticity. Both the Hooke’s and Poisson’s relation arc experimental. They
provide the foundation of the linear theory of elasticity and play the same role in the
theory of elasticity as Newton’s laws in classical mechanics and Maxwell’s equations in

electrodynamics.

Differential form of Hooke’s law and Poisson’s relation

It is useful to represent eqs. 1.7 and 1.8 in a different form that allows us to study
deformation in the vicinity of any point of an elastic medium. Let us consider two cross-
sections of the bar, S(z) and S(z + dz), located close to each other, Fig. 1.2a. As a
result, of deformation, they are displaced at distances wu(xz) and u(x+ dz), respectively.
Taking into account that forces applied to each surface are the same, we conclude that
relative displacements are equal, that is

u(z)  wuwlz+ds) F,

T z+des  ES

(1.10)

Here z is the distance from the origin O, which does not move during deformation,
and F, is the scalar component of the force. From the last equality we have

(x + dz) u(z) = z u(z + dx)

Since the distance between two cross-sections is very small, it is natural to assume that
displacements between them change linearly. Then, expanding the function wu(x + dz)

in the Taylor series and discarding all terms except the first two, we obtain

d
x u(x) +dz u(z) =z ulz) + Iédl’

Comparison with eq. 1.10 shows that the relative expansion of the bar is characterized
by the first derivative du/dx. The position of the cross-section S(x) was chosen
arbitrarily, and, correspondingly, du/dx describes a deformation of the bar at each
point. In our case, a value of du/dz is independent of the point coordinates, and we are
dealing with homogeneous deformation. However, in general, this function, du/dz, may
change from point to point, and inhomogencous deformation is observed. By definition,
du/dx is called the strain at a point, or more precisely, the diagonal element of the strain

tensor (Appendix D). Note that if a displacement u is a function of several coordinates,
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Figure 1.2: (a) and (b) Illustration of eqs. 1.10, 1.13 (c) Deformation of an elastic
column (d) Bar extension due to gravitational field

we have to use the partial derivatives, and the strain is written as

~ Ou

¢ Ox ( )
Then, in place of eq. 1.10 we have
1F, F,
%:Ef or sz% (1.12)

As follows from eq. 1.11, the strain e,, characterizes the rate of change of the dis-
placement, as well as a type of deformation. For instance, if du/0x > 0 expansion
occurs, whereas compression is observed when du/dxz < 0. Tt is clear that the strain is
dimensionless.

Next, we perform similar transformations with eq. 1.8 and consider a cross-section

of an elementary parallelepiped of the bar in the plane YOZ, Fig. 1.2b. Taking into
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account that a deformation is homogeneous, we have

6hy _w(y) vy +dy) (1.13)
hl Y y+d7/ ’

where w(y) is the displacement of the cross-section S(y) along the y—axis and y is
the distance from the origin. Again, using the Taylor series, eq. 1.13 gives

oh_ o

hy B oy’
and, by analogy,

oy ow

h/Q o 02’

Here w is the displacement along the z-axis. Respectively, Poisson’s ratio, eq. 1.8, is

written in the form

dv  Ow ou
D 1.14
dy 0Oz J@x ( )

Thus, the rate of change of the corresponding components of the displacement vector
s = ui+vj + wk (1.15)
is the same along the y— and z—axes. By definition,
ov ow

Cyy = 7 and

3 €= 5 (1.16)

arc also the diagonal elements of the strain tensor and, in accordance with eq. 1.8, they

are related to each other,
Cyy = €2z — —O0€yy (1.17)

provided that forces are applied only along the z—axis. By analogy, if they are directed
either along the y or z axes, we have

Caz = €z = —O€yy and €ra = Cyy = —0€,4,

respectively.
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Ratio F,/S and stress

Now let us discuss ratio F,/S in eq. 1.12, which describes the z—component of the
traction t. The latter can be introduced in the following way (Appendix C).

Iy = (X -n) :% (1.18)

Here n is the unit vector normal to the surface S(z) and directed toward the portion of
the bar that creates the surface force. In our case, the vector X has only one component
X,

X =X,i (1.19)

As follows from eq. 1.18,if m =i then X, =F,/S, but X, = —F,/S when n=—i.
Since forces applied to bar faces have opposite directions, the function X, has the same

sign inside the bar. Correspondingly, eqs. 1.12 can be rewritten as
Cox = =Xz or X, =Feg, (1.20)

This shows that in the case of an expansion, (e, > 0), X, is positive, whereas it is
negative if a compression takes place. Note that X, is the diagonal element of the stress

tensor. In the same manner we have

1
Cyy = EYy or Y, = FEey, (1.21)
and 1 Z 0 Z,=FE
11 €z = 42 T 2z = L€zy
FE

when force is oriented either along the y— or z-axis. As is shown in Appendix C,
functions Y, and Z,, as well as X, are the diagonal elements of the stress tensor. At
the beginning we will use these notations, but later, throughout almost all monograph
the notion 7;; is applied. Thus, the differential forms of Hooke’s law and Poisson’s

relation are
X, = Fe,, and Cyy = €1 = —0€qy (1.22)

As was pointed out, this system is used to describe numerous phenomena in an clastic
medium. First, we will study simple cases of homogeneous and inhomogeneous deforma-

tion.
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Example one Consider an elastic column placed on an ideally rigid foundation,
and suppose that force Fy acts on its top surface S;, Fig. 1.2c. Because of this and
the weight, a cross-section of the column S(z) varies, and our goal is to find its value,

provided that the stress is constant inside the body:
Z, = const (1.23)

Since the external force [y is transmitted through the elastic column and its mass
between the top S; and the cross-section S(z) is equal to

the condition 1.23 can be written as
l

Fy pg | K
S02) + S(2) / S(n)dn = 5, (1.24)

2z

where 7 is a variable of integration, [ is column length, and ¢ is gravitational
acceleration. Two terms at the left side of eq. 1.24 describe stresses caused by the
external force and the weight of the column above the cross-section S(z). Multiplication
of this equation by S(z) and then differentiation by z yield

_ dS(2) P95
—p gS(z) = S, ds or InS(z) = ) 2+ C
Since
S,
InS, = —%l +0,
we finally obtain
S(z) = S, exp p]fis‘ (- 2) (1.25)
0

Thus, in approaching the origin, z = 0, the cross-scction of the column exponentially
increases, and it provides a constancy of the stress, eq. 1.23. As follows from eq. 1.25
with a decrease of the density p, the change of the function S(z) also becomes
smaller. In other words, if an influence of the weight would be absent then a homogeneous
deformation takes place with the constant cross-section of the column. From eq. 1.25 we
see that

S(z) = o0 if F,—0 (1.26)



1.1 HOOKE’S LAW AND POISSON’S RELATION 11

This means that the stress caused by a weight cannot be constant along the z—axis. In
accordance with Hooke’s law, the displacement of the surface S5; is

ol = ﬂl

SeE
Taking into account that a deformation is homogeneous, the strain at points of the column
1s constant, and it is equal to
Fy

€rz = St—E7

where Fj is the scalar component of the force and is negative.

(1.27)

Example two Suppose that the bar is suspended, as is shown in Fig. 1.2d. Its
cross-section S, length [, density p, and the Young modulus F are given. Our goal
is to determine a bar extension due to the gravitational field. First, consider a portion
of the bar, bounded by surfaces S(O) and S, located at distance z from origin O.
The force applied to S(z) is equal to the weight of the lower portion of the bar:

F,=gp(l—2)S (1.28)
Since this force is uniformly distributed over the cross-section, the stress is
F,

and it varies linecarly within the range
F
0< f <gpl

It is clear that force F, 1is external with respect to the upper part of the bar and,
correspondingly, eq. 1.28 gives
dw _Z. _gp

=T =%-2 (1.30)

This shows that we are dealing with an inhomogeneous deformation. Integration of eq.
1.30 yiclds

w(z) = %(lz — % +C)
Inasmuch as w(0) =0, we obtain
w(z) = ”22(1 - g) (1.31)

In particular, an extension of the lower end, (z =1), is

90
l =
wit) =20,
that is, it is directly proportional to a square of the original length.

(1.32)
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Superposition of displacements

To this point we have studied deformation caused by a single force. Taking into account
that eqs. 1.12 are linear, we can apply the principle of superposition (Appendix D),
which is formulated in the following way. If a deformation e, corresponds to the force

F,, then the resultant deformation, caused by a sum

is equal to
e=e +e+ ... + e, (1.33)

Note that we have already discovered two kinds of deformation, namely, homogeneous
and inhomogeneous deformations. The first corresponds to the case in which the strain
remains the same inside a body, whereas, the second kind of strain is a function of a
point. Of course, within an elementary volume, deformation is homogeneous (Appendix
D). To illustrate the principle of superposition consider three more examples in which
forces act on different faces of the rectangular body.

Example three Suppose that a body is surrounded by a fluid and the pressure is
equal to P. In such case there are only forces that are normal to the body faces and,
by definition

X,=Y,=Z =P, (1.34)

where P > 0. The presence of the minus sign is related to the fact that the force caused
by a fluid is directed inside a body. Our task is to find displacements of faces along the
coordinate axes caused by all three forces. Applying Hooke’s law and Poisson’s relation
(eq. 1.8), we determine the relative displacement due to each force. Then, using the
principle of superposition, we add them together. First, consider a compression along

the z—axis due to the stress X,. As follows from Hooke’s law,

a’LLl 1 -
- = _EP (1.35)

Because there are forces acting on two other faces of the volume, expansion along
is observed. In accordance with Poisson’s relation and Hooke’s law, we have
Jdus dv o Ous ow o

o2 M _%p o 2 _%p 1.
oz an E and oz “9: " E (1.36)
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Therefore, the total strain, Ou/dz, is

Qu _ du | Ouy | O
dr Oz o o

or
ou 1
— =——(1-20)P 1.37
= (1-20) (137)
In the same manner we obtain
0 1 0 1
o Z(1-2)P and 2 =—Z(1-20)P (1.38)

oy E Dz E

Since a deformation is homogeneous, strains describe a change of the volume size along
coordinate axes, that is
oly 8l bl 1
ll 12 lg E ( ) ( )
Here [y, I, and I3 are the initial lengths. In particular, when the volume is a cube,
displacements of faces are the same.
It is easy to find a relationship between pressure and a relative change of volume

caused by compression. The initial and new volumes are

V= lllzlg
and
a5l ol 5l
Vi=(li + 0l ) (Ia + 0lo) (I3 + 6l3) = Lilals(1 + Tl)(l + TQ)(l + Tg)
1 2 3
Discarding higher-order terms we obtain
sy 6ly 6l
Vi=VI+ 2+ 24+ (1.40)
I Iy I3
or
oV 3(1 — 20)
—=———P 1.41
V E (1.41)
Here 6V/V =© = divs is a dilatation (Appendix D), and, correspondingly,
dv

P =M= =-Mdivs, (1.42)
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where

E
M=_—-_ 1.4
3T 20 (1.43)

is the bulk modulus.

As follows from eq. 1.41 Poisson’s ratio, ¢, cannot exceed 1/2; otherwise, with an
increase of pressure, volume would increase too. Note that the velocity of propagation
in a fluid is defined by the density p and the bulk modulus M (Part I).

Example four Assume that there are forces oriented along the z—axis that produce
a bar extension. There are also forces applied to faces perpendicular to the y-axis, so
that these faces of the bar cannot move in this direction. At the same time, faces normal
to the z-axis are not subjected to an action of forces. Applying again the principle of
superposition, we have

oly 1F, olF,

A 1.44
I, ES, ES, (1.44)

where F, is an unknown force. In order to find it, we take into account that dl, = 0,

and this gives

(512 1 F‘y g Fz

- = = 0
Iy ES, ES,
or
F, Fy .
S—Z = JS—I or Y, =0X, (1.45)
Substituting the latter into eq. 1.44 we have
Ju 1 . E
Crx = a = E(l — 0'2)Xm or )&m = mem = E*em (146)

Here FE, = E/l — 02 is usually called the effective Young modulus.

Example five Unlike in the previous case, the faces of a bar normal to the y and
z—axes cannot move, but force F, produces a deformation along the z-axis. This
means that there are normal stresses at faces S, and S.. Then, for strains e, ey,

and e,,, we can write

1 o o
sz:*Xzfiyyff

2,
E E

o 1
Eyy = fEXI + =Y, —

Z, = 1.4
- =0 (147

o
E
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o] o 1
ey = — =Xy — =Y, +—=27,=10
¢ ECTEYE

This system contains three unknowns: e,,, Y,, and Z,. First of all we find Y.

Eliminating Z, we obtain two equations

1-¢* a(l+o)

Tz = Xy Y,
€rn 7 X 7 Y
and
o(l1+o0) (1—0%)
0 E * E v
The last equation gives
o
Y, = Xz 1.48
Y 1—0o ( )
and, correspondingly,
o*(1+0),X
T — 1— P ) E
¢ [ ¢ 1—-0 ] E
or
X, =FE..e (1.49)
Here
1-0

E,, = (1.50)

(1+0)(1—20)
is another effective Young modulus. As will be shown later this modulus defines the
velocity of the longitudinal waves. By analogy with eq. 1.48 we also have

Z, = —X; 1.51
1—0o ( )

1.2 Longitudinal waves in a thin bar

In the previous section we studied deformation, when a body is in equilibrium, and,
correspondingly, its particles do not move. At the same time, as we know, such a state
does not occur instantly; it is preceded by wave propagation and attenuation. Now
we turn our focus to the wave phenomena and start from the simplest case, when the

longitudinal wave propagates along a slender bar, Fig. 1.3a.
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(@)
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Figure 1.3: (a) Derivation of wave equation (b) Illustration of eq. 1.75 (c) Wave fields
of the step function (d) Superposition of two compressional waves

One-dimensional wave equation

By analogy with acoustic waves (Part T), we first derive the equation describing wave
propagation along a bar. With this purpose in mind consider the bar element, bounded
by two cross-sections, S(z —dz/2) and S(z + dz/2), and the lateral surface, Fig.
1.3a. Suppose that the wave propagates along the z—axis and reaches the cross-section
S(x — dz/2). From this moment we begin to observe deformation of this bar element,
dV = Sdx. With some time delay, the wave arrives at the front face of the volume, S{z+
dz/2). Force F(z,t), which accompanies the wave, has the same direction at both cross-
sections, but may differ in magnitude. For instance, in the case of compression, this force

is directed along the x—axis, whereas it moves in the opposite direction when expansion
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takes place. The force at points of the section S(x + dz/2) acts on a medium located
in front of the bar element. In accordance with Newton’s third law, force F,(x + dz/2),
having the same magnitude and opposite direction, acts on the surface S(z + dz/2) of
the elementary volume. Thus, the resultant force, applied to this bar element at any

instant £, is

d d
F,(z — 7”““ £) + Fo(x + 7”3 )

It is essential that both forces are considered at the same moment and that they always
have opposite directions. In general, their magnitudes are different. In accordance with
Newton’s second law, the equation of motion of the bar element with the mass m = pSdz
is
2 .

m% = F(x — dg,t) + Fo(z + dQ—IJ) (1.52)
Here w(z,t) is the z—component of the displacement of the center of mass, m. Eq.
1.52 contains three unknowns, u(wz,t), F.(z —dz/2,t), and F,(x +dx/2,t). In order
to derive an equation with respect to only one of these functions, we use the concept of
traction, t, and Hooke’s law. As was shown in the previous section and in Appendix

C, the x—component of the traction t is defined as

t,=X-n
Respectively, we have
d/- d/- d/.
Flo— 2 t) =tz — = )8 = X,z — =) S (1.53)
2 2 2
d d d
and  Fy(z + ;Je) =tz + ;,t)s = Xy(a+ ;,t) S
Substitution of eqs. 1.53 into eq. 1.52 yields
O*u(x, t) dx . dx

Here X, is the normal stress at the front and back faces of the volume element. As the
distance dz is very small, we can assume that the stress X, linearly changes between
the volume faces. It allows us to replace the right side of eq. 1.54 as

dx dx OX,(x,1)

Xo(z+ —,t) — Xp(x — —, 1) =

: : p— (1.55)
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and it becomes

Pulz,t)  9Xy(z, 1)
P T o

where derivatives are taken at the same point. The next step involves the use of Hooke’s

(1.56)

law:
. Ju
Xy, =Fey, = EO_x (1.57)
From the last two equations, we obtain
0%u &u Pu 1 0%
—=F— g — === 1.58
P or2 Ox? o dx?  f ot? (1.58)

As we know (Part I), the latter is the wave equation in an one-dimensional case and

Cp = \/% (159)

describes its velocity of propagation. We derive the same equation for strain and stress.
In fact, taking the derivative with respect to = from both sides of e¢q. 1.58, we have

9% ou 1 9% du

523 = @ar o)
or
ey 1 Peyy
Then, the use of Hooke’s law gives
2X. 10°X.
02X 10X (1.61)

Oz2 ¢ ot?

It is natural that all three quantities characterizing wave propagation satisfy the same
wave equation. It is a partial differential equation of the second order, and its general

solution for displacement (Part I) is

w(w,t) = A f a(t g)] + Bgla(t + g)} (1.62)

Here f and ¢ are continuous functions that have first and second derivatives with
respect to both distance = and time ¢. Their behavior is defined by the primary source,

which generates the wave. A and B are some constants, as well as the parameter a.
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Since an argument of any function is dimensionless, this constant is measured in sec” .
Now it may be appropriate to remind ourselves the following.

a. A solution of the wave equation was first obtained by D’Alembert who applied
in essence the trial-and-error method. It does not determine functions f and ¢, but
defines a structure of arguments, that is, a relationship between distance = and time ¢t.

b. In deriving eqs. 1.58-1.61, it was assumed that w(z,t), ey (x,t), and X, (x,t)
are continuous functions. However, it turns out that even a discontinuous function can
be a solution of the wave equation.

c. It is casy to show that wu(x,t), given by cq. 1.62, satisfics the wave cquation. In
fact, performing a differentiation, we have

2 2 2
T AS =) ad Tl - A alt= D)
where derivatives are taken with respect to the argument of the function, which is  a(t—
x/¢r). Tt is clear that
Pf_19f
and the same is valid for the function gla(t + x/c;)].

d. Since with an increase of time the same value of the argument ¢—x/¢; is observed
at greater distances, the function f [a(t — z/¢)] describes the outgoing wave that
is traveling away from the origin, if z > 0. In contrast, the function gla(t + x/¢)]
characterizes the incoming wave, if x > 0, because with a decrease of distance the same
value of the argument ¢+ z/¢; takes place later. It may happen that the wave field is
described by either by the outgoing or incoming waves or by the superposition of them.

Now consider the main properties of these waves in some detail.

Outgoing wave By definition, expressions for the displacement, the particle veloc-

ity, strain, and stress arc

w(z,t) = A fla(t — C%)] w(r,t) = A af'la(t — 2)] (1.63)
carlist) =~ Tol = D) Xalt) = 22 oo - 2]

As we can sce, the last three quantitics have the same dependence on distance and time.
From egs. 1.63 it also follows that

%
ey = ——, 1.64
o= =2 (1.64)
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that is, the ratio of velocities of the particle and wave defines the strain with an accuracy
of a sign. As was mentioned earlier and in Appendix D the strain e,, is usually very
small: (e,, < 1). Therefore, the particle velocity is many orders smaller than the
wave velocity. Tt is clear that in the case of the compressional wave, e,, < 0 and both
velocities have the same direction. Due to this fact, compression takes place. On the
contrary, when they have opposite directions, e, > 0, the extensional wave propagates.
Let us imagine that at the instant ¢ = 0, the wave approaches the left face of some
portion of the bar, which has a length equal to ¢dt. Then during this brief time
interval, &t, the bar end moves at the distance udt, and, correspondingly, the ratio

u/c; describes the strain. As follows from Hooke’s law, eq. 1.64 can written in the form:

1 X X E

Lol or — = ——=—{Ep (1.65)
Cy E

By analogy with electrodynamics, the right side of eq. 1.65 is called the impedance of a

medium for longitudinal waves:

E
Z:C—:\/Ep:clp (1.66)
]

Asis also the case in acoustics, impedance plays an important role in describing reflection
and transmission of waves.

Incoming wave In accordance with eq. 1.62 we have in this case

u(w,t) = Byla(t + CE)L W(z, 1) = Bag'[a(t + cf)] (1.67)
7 I
Ba x R BaFE x
€ao(2,1) = —¢g'la(t + )], Xo(z,1) = gla(t + =]
Cy C C G
u X X
emzl—j and M2 or =z
Cy Cy E U

Since the wave propagates toward the origin, (z > 0), both the wave and particle
velocities have the same direction in places where compression occurs. However, the
directions are opposite to cach other in places where tension occurs. The similarity for

outgoing waves is obvious.
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Displacement field

In accordance with Poisson’s relation
dv  Ow Ju
e ) (1.68)
oy 0z oz

wave propagation along the z—axis is accompanied by motion of particles along all axes.

In the approximation of a thin bar, it is assumed that all functions describing the wave
u(z, t), €4(2, 1), w(x, t), Xz, t)

are the same at all points of any cross-section of the bar. Besides, the strains e, and
€.., caused by the stress X,, are uniformly distributed over each cross-section S.
Because of symmetry, components of the displacement v and w are equal to zero
along the middle line of the bar (z—axis), and then they linearly increase toward the
lateral surface. Because of all these assumptions, we can only approximately describe
the displacement field s. As follows from eq. 1.63, all strains vary synchronously, but the

vector field s:
s = ui+vj+wk (1.69)

can be rather complicated. In order to study its behavior, we use eqs. 1.63 and 1.14.

They give
Ju(x,t) Aa x
= —— t——)|, 1.7
ol 2l - 2)) (1.70)
dv(z,t) Aao, x Jow Aao, x
W o fa(t - c—lﬂ’ % a falt - C—l)]
After integration of the last two equations, we have for the field s
x Aaoc , x
w(z,t) = Af [a(t — =), vz, t) = fllalt —=)] v, (1.71)
cy C €
Aaoc T
, 1) = / +— =
wie,t) = 2 Plalt - 2] =

since v = w = 0 at points of the z—axis. As is seen from set 1.71, the displacements
along the y and z axes are defined by the rate of change of the component wu(z,t).

Taking into account that the bar is thin, we usually have

v u and w <€ U (1.72)
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However, the strains eg,, e,,, and e,, are comparable, eqs. 1.70, and therefore, the
dilatation, O, is equal to

O = divs = —2%(1 — 2 fla(t — 2] (1.73)

G &

As was shown earlier, the dilatation defines the relative change of an elementary volume,
O = AV/V, and wave propagation is accompanied by either compression or expansion
of the volume. At the beginning, we assumed that the displacement u(z,t) is uniformly
distributed over the cross-section. If; in addition, we neglect by components v and w
it is easy to see that curl s = 0. In other words, wave propagation is not accompanied
by rotation of elementary volumes of the bar. At the same time, wave causes a change

of volumes. This is why these waves are called dilatational or irrotational waves.

Reflection and transmission

Now, supposec that the bar consists of two homogencous portions and S is the boundary
between them. In general, they differ in terms of both the Young modulus and density

p:
Ey # Ey and pL# Po

Since at points of the cross-section S, (z = 0), the velocity ¢ is usually a discontinuous
function, we cannot apply the wave equation. Therefore, it has to be replaced on S by
boundary conditions. One of them is a continuity of the displacement u

u1(0,1) = ua(0, £) (1.74)

Here wy(z,t) and wus(z,t) are scalar components of displacement along the z-axis at
each portion of the bar. It is clear that if condition 1.74 is invalid, we would observe
either overlapping of two portions of the bar or a gap between them. In order to derive
the second condition, consider an elementary volume, confined by surfaces S; and Ss,
Fig. 1.3b, which are located at distance dx from each other. In accordance with the

Newton’s second law, we have
82
ma—tj = F,(S)) + F,(S)) (1.75)

Here m is the mass of the volume and F,(S;) and F,(S2) are external forces acting

on its faces. Since F, = (X -n)S, we have

J%u dx dx
Mog = [Y21(7) - Xlz(—T)]S
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or

0u dx . dx
P dﬂfﬁ = Xzz(?) - )&m(*?

) (1.76)
where X,, and X;, are normal stresses at opposite sides of the boundary.

As S; and Sy approach the boundary S, (dz — 0), the left side of eq. 1.76 tends
to zero, since an acceleration cannot be infinitely large. Therefore, the right side also
tends to zero, and we conclude that the normal stress is a continuous function at the

boundary
X1,(0,t) = X5,(0,1) (1.77)
Thus, boundary conditions are
u1(0,t) = u2(0, %) and X1.(0,%) = X5,(0,1) (1.78)

Our goal is to find the wave ficld that satisfics the wave equation at cach regular point
of the bar and boundary conditions, egs. 1.78. Assuming that the primary (incident)
wave propagates along the gz—axis, it is obvious that in the first portion of the bar,
(z < 0), there are two waves — the incident and reflected waves — whereas in the second
portion, (z > 0), we observe the transmitted wave. Respectively, expressions for the

displacements are

wi(z,t) = Affa(t — %)] + Bfla(t + %)] if 2<0 (1.79)
and  w(z,t) =C f [a(t — (’121)] it >0

Here A is known, while B and C have to be determined, and

E E.
oy =] = and ey = | =2 (1.80)
Pr P2

Of course, functions u; and wus satisfy the wave equation at each portion of the bar.
Now it is proper to make a comment. We supposed that the incident, reflected, and
transmitted waves are described by the same function

fla(t+ )]

G
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This is only an assumption. However, if wi(z,¢) and wus(z,t) satisfy boundary con-
ditions, then we can say that this guess is correct. Now, making use of eqs. 1.79 and
Hooke’s law

Ou

s

system 1.78 gives two equations with two unknowns

X, =Fe,, =F

A+B=C and - AZl -+ BZI = *ZQCl (181)

since

ol

:pc

Their solution yields the expressions

L= 2y
i+ 2

27
i+ 2y

B and C (1.82)

which represent the famous Fresnel formulas. Thus, we have demonstrated that wu(x,?)
and wus(x,t) satisfy wave cquations for corresponding parts of the bar and boundary
conditions, provided that B and C are given by eqs. 1.82. This means that all
three waves depend on time and distance in the same manner and that coeflicients of
reflection and transmission, eqs. 1.82, are defined by the ratio of impedances. Certainly,
this important result is always valid, as long as boundary conditions are independent of
time. Fresnel’s coefficients can be also written in the other form:

VB — \/5F -
p= YL VP2, Ty o= 24 (1.83)

= = and
Vo1EL + /o E n+m n+m

where n = ¢;/cy is the refraction coefficient and m = p,/p; is the ratio of densities.

Thus, expressions for displacement u in each part of the bar are

T Zy — Ly T

1) = Afla(t — —)] + A t+ — 1.84
wi(et) = Aflalt = )] + 72 flalt+ ) (184

2Z1 X

d 1) = A fla(t — =

wd  uslot) = 0 A (e~ )
In particular, at the boundary, (z = 0), we have
7 — 7, 27,

ui(0,t) = (1 + VA flat) and  wua(o,t) = ui{o, 1) A f(at) (1.85)

71 + 7, A
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Eq. 1.85 emphasizes that at the boundary, the reflected and incident waves vary syn-
chronously, and this fact plays a fundamental role in migration (Part IT). Of course, the
transmitted wave displays similar behavior. As follows from the first cquation of the

1.84, the strain at the boundary caused by the incident and reflected waves is

aA Zl—ZQ f
=1+ 222 f(at
A1+ P ay

elI

Thus, at the boundary the strain of the incident and reflected waves has the same sign, if
7| < Zo. This means that cither both waves arc compressional or both are extensional.
For instance, at the rigid boundary, Z, — co, the compressional wave gives rise to the
reflected compressional wave. In contrast, if Z; > Z;, the incident and reflected waves
are of different types. This is clearly illustrated in the casc of a free boundary, Zs =0,
when the compressional wave causes the extensional reflected wave.

Now we illustrate wave behavior, considering several examples. In all of them it is
assumed that the external force changes instantly and then remains constant for some
time. Speaking strictly, such behavior is impossible, since a finite time interval is always
needed to generate the constant force. For this reason we treat such wave as the limiting
case when the real force arises very quickly. Behind the wave front the force remains
constant and, of course, all functions — w(z,t), ez(z,¢), and X,(z,¢t) — satisfy the
wave equation.

Example one First, suppose that the incident wave propagates along a homogeneous
bar and the stress, X,, behaves as

xr

X, = A hla(t — c—)]7 (1.86)
1
where A is the step function.
x x x x
hla(t — =)] = if t< = d hla(t— =) =1 if t> =
la( Cl)] 0 i < ‘o an a( Cl)] i > ‘o

Consider an elementary volume of the bar with an infinitely small extension dx. Be-
cause of this, the wave almost instantly reaches the back and front faces of the volume.
Correspondingly, external forces acting on both faces have the same magnitude but op-
posite directions. Therefore, the total force is equal to zero, and this element moves at
a constant velocity. Thus, stress, strain, and particle velocity behave as step-functions,
whereas displacement is a linear function, Fig. 1.3c. In other words, functions, u, e,
and X, remain constant behind the wave front, but the distance of the particle from the
original position changes linearly. We have discussed a compressional wave. Behavior of

these functions in the case of the extensional wave, e, > 0, is similar.
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Second, assume that a semi-infinite bar has a rigid end. When the incident wave
reaches this end, the whole bar is compressed, e, < 0, and it moves at a constant
velocity, % > 0. At this moment the reflected compressional wave arises and, as result,
the strain and stress magnitudes double behind the wave front of the reflected wave.
Since the particle velocities of the incident and reflected waves have opposite directions,
the resultant velocity of the bar is equal to zero between the rigid end and the front of the
reflected wave, Fig. 1.3d. Thus, one portion of the bar does not move, and it is twice as
deformed as the rest of the bar, which moves with the velocity u. If the bar end is free,
then the compressional wave causes the extensional wave. Because of this behind the
wave’s front the particle velocity doubles but deformation vanishes. Unlike the previous
case of the rigid end, both portions of the bar move but with different velocities, and in
one part both the stress and strain are equal to zero. Now we are prepared to consider
several more examples.

Example two Suppose that the bar of length ! is under an action of two constant
forces that are applied at the same moment ¢ = 0, Fig. 1.4a. At this instant, two
compressional waves arise and move in opposite directions. Since they reach the center
of the bar simultaneously, the strain at this point becomes equal to 2e,,, but the
particle velocity is zero. Here e,, is the strain caused by the single wave. At the instant
t = l/¢; extensional waves arise, and they again arrive at the middle point O  at the
same time. Correspondingly, this point is still at rest, but a deformation disappears.
Because reflected waves regularly appear at both ends of the bar, we can say that the
velocity at point O is always equal to zero,

u(0,1) =0, (1.87)

and the center of mass is located at this point. At the same time strain like stress,
is a periodic function, Fig. 1.4b. Of course, condition 1.87 follows from the fact that
the resultant external force is equal to zero, while the wave propagation cxplains how
it happens. The periodic function e,,(0,#) can be represented as a sum of sinusoidal
functions and the constant. Because of attenuation, harmonic functions decay, and in
equilibrium strain becomes constant. Unlike the middle point, other points of the bar
experience motion, which is also described by the periodic function of time. Again due
to attenuation, sinusoidal harmonics disappear and only the constant portion remains.
It turns out that the latter linearly decreases in approaching the middle point O.
Example three As is well known, the essence of Hooke’s law is the fact that a
displacement Al is directly proportional to the bar length Al ~ [.  For instance,
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Figure 1.4: (a) Bar under the action of two forces (b) Strain at the middle point as a
function of time (c¢) Illustration of Hooke’s law (d) Displacement of the low end of the

bar as a function of time

a scmi-infinite bar has an infinite extension, Al — oo. This bchavior of Al poses
the following question. How does the low end of the bar, Fig. 1.4c, “kmow” where the
opposite end is located? In order to find an explanation, consider the motion of the low
end under action of the constant force [}:

F,=0 if t<0 and F, = const if t>0,

provided that the upper end of the bar is fixed. Since the force F} is directed downward,
an extensional wave arises at the instant ¢ = 0 and propagates toward the upper end.
At the same time, the low end moves with constant velocity along the z—axis. Because
of a reflection at the upper end, the extensional wave arises at the instant ¢t =1[/¢ and
travels downward, but the particle motion has an opposite direction. For this reason, the
bar stops to move behind the wave front. At the instant ¢ = 2{/c the wave reaches the

low end, and the whole bar is at rest. However, at the same moment the compressional
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wave appears at the low end and propagates upward. Correspondingly, the direction of
the motion of the low end changes. Thus, its velocity vy remains constant only within
the time interval

0<t< 2

G

When the compressional wave reaches the upper fixed end at ¢ = 31/2¢;, it gives rise
to another compressional wave. The new wave propagates downward and the particle
velocity is directed along the z—axis. In particular, at the instant ¢ = 41/¢; all points of
the bar are at rest. At this moment, the extensional wave starts to move upward. Thus,
we begin to observe the same behavior of the particle velocity as before. It is obvious
that the function wv(¢) is periodic, and its period is equal to

Al
T=— (1.88)
C

Within each period we have
. T . T
v(t) =vy if - 7 < t<0 and w(t)=-v if O<t< 3 (1.89)

Therefore during the first half of the period, the displacement of the low end w(l,?)
linearly increases with time, Fig. 1.4d, and reaches its maximal value

21
U= —uy (1.90)

C
Then, in the other half of the period, the displacement linearly decreases and the low end
returns to the original position at the instant ¢ = 41/¢;. By analogy with the previous

example, it is important to represent the even periodic function u(l,t) as the Fourier

series
(1,1) bo +ib cos 2 L (1.91)
u(l,t) = — n COS 2N —, .
’ 2 — T
where
2l/¢
by = = [ ull, 1) cos 2mn -t (1.92)
n = u(l, t) cos 7mT .
0

In particular, the constant by is equal to

21
21
Cy " Uol b() ’Uol
= =2 - 2= 1.
bo Z’Uo/tdt o or 9 e ( 93)
0
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Thus, the total displacement of the low end of the bar is a sum of the constant displace-
ment and a system of harmonics with different frequencies. It is remarkable that the

constant part of the displacement

Ay ol

1.94
2 Cy <9>

is directly proportional to the original length of the bar. In other words, Al is propor-
tional to the time during which the wave travels from the lower to the upper end. As
follows from eq. 1.94, Al/l = wg/¢;, and this result is not surprising, since the left and
right sides of this equality characterize the strain. Since

Yo Xz

Ct E’

we have

This describes Hooke’s law, provided that Al is half of the maximal displacement
of the low end. In this light it is appropriate to notice the following. Hooke’s law
is based on an experimental fact, namely, that under an action of constant force, the
displacement of the bar end reaches some value and then remains constant. Certainly,
such behavior is different from one prescribed by the function w(l,¢). This discrepancy
is easily explained if we take into account an effect of attenuation. In reality, vibrations
described by harmonics of Fourier’s series (n > 1) decay relatively quickly with time,
since the period T is very small. Correspondingly, observations performed at times
significantly cxceeding T allow us to find Al.  Of course, if the external force F,
varies slowly, the influence of harmonics is strongly reduced even at earlier times. This
analysis shows that the wave “informs” the low end of the bar about its original length
.

Example four: propagation of pulse and Newton’s first law Suppose that at
the instant ¢ = 0 the narrow impulse of the force

N, = F,5t (1.95)

is applied to the left end of the bar, which has a length [ and the cross-section S,
Fig. 1.5a. At this moment, the pulse of the compressional wave arises and moves with
the velocity ¢, We assume that ¢t < I and that a change of the bar length due

to either a compression or extension is extremely small. At the beginning we study a
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Figure 1.5: (a) The bar under action of constant force (b) Velocity of the middle point as
a function of time (c) Displacements of the point p and the center of mass as functions

of time

motion of the middle point p, which is the center of mass at equilibrium o. As we
know, propagation of the compressional pulse is accompanied by particle motion with the
velocity vy, (vg < ¢), in the same direction. For this reason, at the instant ¢ =1/2¢
point p starts to move along the z—axis during the time interval 6¢, and then it
stops. The wave pulse reaches the right free end of the bar at the instant ¢ = [/¢. At
this moment the extensional reflected wave arises and starts to propagate toward the left
end. When it reaches point p, this point begins to move again with velocity vy along
the z—axis, but only during time interval 6¢. Finally, at moment ¢ = 2l/¢; this wave
pulse approaches the left free end, and the compressional reflected wave arises. Thus, we
sce that the velocity v(¢) of the middle point is a periodic function, Fig. 1.5b, and its

period is equal to

T=— 1.96
- (1.96)

Here T is time of wave traveling between the bar ends. Similar behavior of the velocity
v(t) takes place at other points. For instance, at the bar ends, both the period becomes

and the particle velocity double. The latter happens due to superposition of the incident
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and reflected waves. As is seen from Fig. 1.5b, the velocity of the middle point p during
each period is either zero or is equal to vy. On the other hand, in accordance with
Newton’s first law, the velocity of the center of mass is constant, and it is defined from

the equality
mV = N, = F,t, (1.97)

where m is the bar mass m = p IS and p is the density of the bar in equilibrium.
Certainly, there is a difference between the actual velocity wv(¢) at the middle point
p, Fig. 1.5b, and the constant velocity V  of the center of mass o. In order to find
a relationship between them, we introduce an average value of the function wv(t). By

definition we have

T

1 f ot Ot

v = T / v(t)dt or v = Tl = Z—TUO (1.98)
0

Thus, the coefficient of proportionality between v* and v, is the ratio of the width of
the pulse to the bar length. Multiplication by m of both sides of eq. 1.98 gives

0t
m o™ = mCll vg = p ¢S 0t vy (1.99)
As was demonstrated earlier
Cle
Uy =
" ES
Its substitution into eq. 1.99 yields
mu®™ = F,d1 (1.100)

Comparison with eq. 1.97 shows that the constant velocity V' in Newton’s first law
represents an average velocity, v®(¢), of the middle point p. The same is valid for all
other points of the bar. Note that if the width of the wave pulse coincides with the bar
length, then

‘/ = UO

At the same time, if 6§ < T, velocity V is much smaller than particle velocity wg.
Next, consider displacement of the middle point p. It moves relatively quickly, as the
linear function, (sp(t) = vot), in the presence of the pulse. Then point p is at rest
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until arrival of the next pulse. This jerk-like motion is shown in Fig. 1.5¢. Displacement
so(t) of the center of mass is different. During the time interval &¢, when the constant
external force F, is applied, displacement is parabolic. This result directly follows from

Newton’s second law. After it, (¢ > dt), so(t) is a linear function

sot) =Vt i 1>t

So far the effect of attenuation associated with particle vibrations along the z—axis, as
well as in the radial direction, has been ignored. Since w(t) is the periodical function,

it can be represented as the Fourier series

- t
v(t) =V + Z by, cos 27m?

n=1
With an increase of time, sinusoidal functions decay due to attenuation and point p
starts to move with constant velocity V. In such a case all points of the bar begin to
move with the same velocity V, as if it were ideally rigid body. At the same time the
middle point p coincides with the center of mass, and Newton’s first law describes its
motion. We can say that in limiting cases of an elementary particle, (I — 0), or an
ideally rigid body, (¢; — o0), Newton’s first law describes their motion at any time. As
1s seen from Fig. 1.5¢, the center of mass is located either in front of or behind the bar
center. During cach period these points coincide when the wave pulse is located in the
vicinity of the bar center or near its ends. Let us notice that the maximal separation

between these points is usually very small and it is approximately equal to

Uo(st Vi
—_— = — 1.101
2 26[ ( 0 )

Example five Now consider the arising of the reflected wave at the free end of the
bar, when the incident waveform is an arbitrary function, Fig. 1.6a. First of all, it is
useful to represent this wave as a system of narrow pulses, following one after another,
Fig. 1.6a. Each pulse causes a reflected pulse. Correspondingly, the resultant reflected
wave has two important features, namely

a. At the bar end the reflected and incident waves are of different types.

b. The front of the reflected wave is caused by the front of the incident wave.
Superposition of these waves is shown in Fig. 1.6b-g. Suppose that the extensional wave
approaches the free end, Fig. 1.6b. Then, due to a reflection, the compressional wave
appears, Fig. 1.6¢. The thin line corresponds to this wave. Superposition of both waves

shows that at the beginning the resultant wave (thick line) is still extensional. It happens
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Figure 1.6: (a) The incident wave is an arbitrary function of z (b-g) A superposition of
the incident and reflected waves at different instances near the free end. [After Kolsky,
1963)
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because near the bar end, the magnitude of the reflected wave is smaller than that of
the incident wave. With an increase of time, we start to observe an appearance of the
compressional wave, which becomes more and more noticeable, Fig. 1.6¢c. Finally, when
the back of the incident wave reaches the bar end, we see only the compressional reflected
wave.

Example six: wave propagation and Newton’s second law Now assume
that at the instant ¢ = 0 the constant force is applied to the left end of the bar, Fig.
1.5a. Correspondingly, the compressional wave arises and travels at a velocity ¢. In
this case, unlike in example four, a portion of the bar between the wave front and the left
end becomes deformed, and its particles move with the same velocity vy. At the instant
t =1/¢;, the whole bar is compressed and moves with this velocity. Tt is essential that
the reflected extensional wave appears at the right end at this moment and propagates
through the bar. It causes both an expansion of elementary volumes and their movement
with the velocity wvy. Therefore, behind the front of this wave, particles move with the
velocity 2vg, but deformation disappears. For example, at the instant ¢ = 2l/¢; the
bar is not deformed, and each of its particles has the velocity v = 2vg. Also at this
moment the reflected wave of compression arises and propagates toward the right end of
the bar. Because of this, at the instant ¢ = 3l/¢; the whole bar moves with the velocity
v = 3vy, and the reflected wave of tension appears at the right end. It is clear that this
process of reflections repeats itself, and propagation of waves between bar ends causes an
increase of velocity at any point along the body. As illustration, behavior of the velocity
v(t) at the middle point p is shown in Fig. 1.7a. It is evident that the function wv(#)

is similar at other points. As follows from Newton’s second law

F, = ma, (1.102)

behavior of the velocity, V', of the center of mass is completely different, and this velocity

linearly increases with time

F,
V = a,t = =Xt (1.103)
m
Since
c F,
W= Fg and m = plS, (1.104)
eq. 1.103 becomes
V(t) = 2 (1.105)



1.2 LONGITUDINAL WAVES IN A THIN BAR 35

V) (a) 0 (b)

74

6
4V0— 54
3v, 41

3_
2V,
0 51
VO 1A

v w At
2c 2c 2c 2c

Figure 1.7: (a) Velocity of point p and the center of mass as a function of time (b)
Displacement of point p (solid line) and center mass (dashed line) as a function of time

Certainly, the motion of the middle point p and the center of mass differ from each other.
This is especially seen at the beginning of a motion when observation time is comparable
with T. However, with an increase of time motion of point p asyvmptotically approaches
that described by Newton’s second law. In fact, if £ > T, an increase of velocity by vy
at instances

l
th=1(2n—1)—
= ( )5 =
becomes very small with respect to velocity w©(t,). This means that a discontinuous
function v(t) can be practically replaced by the linear function V'(f), given by eq. 1.103.
From the definition of acceleration and egs. 1.103 and 1.104, we can express acceleration
in three ways:

(1.106)

- Uy o Vo oV i Fm
il 5 —
m

The last two formulas characterize the rate of change of the velocity of the center of
mass, and in this case V(f) is a continuous function. However, at all points of the bar,
particularly at the middle point p, a change of velocity occurs abruptly, and the first
equation of the 1.106 may serve as a measure of such behavior. Suppose that there are
several bars and the same force F, is applied to one of their ends. They may differ from
each other by density, length, and cross-section. In general, their motion under an action
of force F, is also different. For instance, if an acceleration, a,., of the center of mass
of some bar is higher than for some other bar, velocity V(t) grows more rapidly, and we
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usually say that inertia of this body is smaller. Also, proceeding from Newton’s second
law, it is conventional to consider mass, m, as the parameter that characterizes inertia.
In other words, mass m defines a time interval during which the center of mass of the
moving bar reaches a certain value of the velocity, if F, = const. For instance, with an
increase of mass acceleration decreases and therefore this time interval increases. It is
natural to raise the following question. Why does the mass m, that is the product [Sp,
define inertia? To answer this question, consider in detail the influence of each factor.
First, with an increase of the bar length, [, the time of the wave traveling between bar
ends, 7, also increases, and in accordance with egs. 1.106,

the rate of velocity change becomes smaller. This linear dependence between length [
and inertia is obvious. An influence of density p manifests itself in two ways. First of

all, with an increase of p the wave velocity becomes smaller, since

1
Cp~ ——

/P

Second, as follows from eq. 1.65, the particle velocity also decreases in the same manner:

1
Vg ~ —=

VP

Thus, the effect of both factors results in a linear relationship between inertia and density.
Finally, with a change of cross-section S, the stress and therefore the particle velocity
vg, changes too. For instance, with an increase of S, the stress X, becomes smaller
and the velocity vy decreases. Respectively, inertia shows itself to be stronger, because
the time interval during which the velocity v(t) reaches a certain value increases. Thus,
as in the cases of length and density, inertia linearly depends on cross-section S. Now
we can say that inertia, as an intrinsic property of a body, is related to the time of wave
propagation between the bar ends and to particle velocity. It seems we have found out
why mass m, as the product plS, characterizes inertia and, certainly, this explanation
is applied to an arbitrary body. Next, let us demonstrate that inertia is independent of
the Young modulus. For instance, with an increase of F, the particle velocity decreases
as, eq. 1.65,

Sl



1.2 LONGITUDINAL WAVES IN A THIN BAR 37

while the wave velocity increases in the same manner. For this reason, these two effects

cancel each other, and inertia does not change. In fact, from eq. 1.64 we have

2 -
X, Xg

=—, 1.107

R (1.107)

CiVy =

and the influence of E vanishes.

Consider, as in example four, a transition from an elastic bar to an ideally rigid one.
As we already know, with an increase of the Young modulus the wave velocity increases,
but the particle velocity becomes smaller. In other words, with an increase of E, both
the particle velocity vy and the time interval T = [/¢;, during which the velocity
v(t) remains constant, decrease. At the same time the product ¢uy is preserved.
Respectively, in the limiting case of an ideally rigid body

G — 00 and vy — 0

the velocity becomes a continuous function V(¢), and it describes the motion of all
points of the bar. Tt is also instructive to study displacement, s(t), of different points
of an elastic bar. For instance, within the time interval

l [

2n—-1)—<t<(2n+1)—

Cy Cy
the velocity v(f) of the middle point is constant, and its displacement s(¢) is a linear
function of time. Besides, in each successive time interval, an increase of the slope of the
line describing the displacement is the same, Fig. 1.7b. At the same time, in accordance
with Newton’s second law, the motion of the center of mass is described by the parabola:
a,t’

2

Comparison of functions s,(t) and so(t), Fig. 1.7b, shows that within each time

so(t) =

interval T, the center of mass is cither in front of or behind the middle point p.  As
in case of the impulse of the force (example four), the separation between these points
is very small. Also it is clear that with an increase of time, (¢ > T), these functions
practically coincide. In conclusion let us make some comments:

1. Newton’s first and second laws describe the motion of the center of mass, and
its relative position changes with time under the action of impulsive or constant applied
force.

2. Because of this, Newton’s second law shows the linear change of velocity V'(¢) of
the center of mass in the case of constant external force. Meanwhile, in reality, particles

move by jerks.
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3. Propagation of reflected waves between bar ends explains the process of a summa-
tion of the particle velocities. In other words, it is understandable why the velocity of
the bar increases with time cven if the external force Fj, is constant.

4. Motion of a body is accompanied by a periodic change of stress and strain at each
of its points.

5. The geometric parameters of the bar and its density define a rate of change of the

particle velocity v(t), that is, inertia of a body.

1.3 Longitudinal sinusoidal waves in a bar

We found out carlier that the solution of the one-dimensional wave cquation has the
form:

u(e, t) = Affa(t — g)] + Bgla(t + 2)} (1.108)

where u(x,t) is the particle displacement of the bar, A and B are constants, and f
and ¢ are practically arbitrary functions of distance and time. Thus, all results obtained
in the previous section are completely applied to the sinusoidal waves. At the same time
it is also useful to consider them separately (Parts I and II), taking into account their
special role in the theory of wave phenomena and numerous practical applications. As is
well known, the convenient use of sinusoidal functions is related to the following factors:

1. Linear operations, such as a summation of sinusoidal waves of the same frequency,
as well as differentiation and integration, do not change the shape of the sinusoidal
(harmonic) function. In other words, their frequency remains the same. This fact greatly
simplifies the study of sinusoidal waves.

2. The shape of transient waves is preserved when they propagate along a bar and
attenuation is absent. However, this factor causes a change in wave shape, i.e., it is
impossible to describe this process by either single function fla(t—2z/¢] or gla(t+2z/¢)],
or by a sum of them. At the same time, even in the presence of attenuation, the sinusoidal
wave as a function of time preserves the same frequency. This is the second reason why
it is very convenient to study wave phenomena using sinusoidal waves even when part of
an elastic energy is transformed into heat.

3. The use of Fourier’s integral allows us to treat an arbitrary transient wave as
superposition of sinusoidal waves (Part T).

4. Finally, in many cases, sources of waves generate sinusoidal oscillations that create

harmonic waves.



1.3 LONGITUDINAL SINUSOIDAL WAVES IN A BAR 39

As before, we will often deal with sinusoidal waves, and so let us recall the basic
features of a sinusoidal wave. Suppose that at some point of the bar that coincides with

the origin of coordinates, (x =0), there is a source of sinusoidal vibrations
u(0,t) = Asinwt (1.109)

Certainly, the sinusoidal wave is generated and propagates away from the source. In
accordance with eq. 1.108 we have:
X
u(z,t) = Asinw(t — =) or u(z,t) = Asin(wt — kx) (1.110)
€]

Here w is an angular frequency and
w
k=— 1.111
(1.111)

is the wave number. By definition, wt — kx  is the phase of the outgoing wave and, in
the same manner, wt 4+ kz is the phase of the incoming wave. The period T, and the

wavclength, A, arc defined as

r=t_?m A=A _2m (1.112)
fi w / w k

The period T and the wavelength A characterize the time and distance intervals during
which the phase changes by 27, and in this sense they are similar. There is an evident
analogy between the angular frequency w, and the wavenumber k, and correspondingly,
the latter is often called the spatial frequency. For instance, with an increase of the wave
number, the wavelength becomes smaller. As follows from eq. 1.111 both frequencies are
related to each other. If the wave velocity ¢ is frequency-independent, then there is a
linear relationship between k£ and w. In a dispersive medium, where the wave velocity
is a function of w, this relation becomes more complicated.

Next let us describe fields that accompany the sinusoidal waves. First of all, they do not

have a beginning or an end. By definition, for the outgoing wave we have

u(z,t) = Asin(wt — kx), vg(x, 1) = A weos(wt — k), (1.113)

ere(,t) = —A k cos(wt — kx), Xo(z,t) = —A kE cos(wt — kx)

Similar formulas describe the incoming sinusoidal wave. Of course, as in a general case

of nonstationary waves, eqs. 1.113 give

vz, t Xz, t Xo(x,t
(Cl ) =— (E ) or vz, t) = —#7 (1.114)
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where Z = pc; is the bar impedance. The reflected and transmitted waves are also
sinusoidal waves with the same frequency as the incident wave, and the reflection and

transmission coefficients

Z] - ZQ 2Zl
— and —
Z] + ZQ Z] + Z2

are independent of a frequency. Both of these features greatly simplify the study of wave
behavior. Now let us consider one example.

Normal modes Suppose that a source is located at one end of the bar of a finite
length [, and it generates a nonstationary wave. As we know, due to a reflection at
both bar ends, the resultant wave consists of the system of waves traveling in opposite
directions. It is convenient to discuss superposition of these waves in terms of sinu-
soidal waves with different frequencies. In fact, in accordance with Fourier’s integral,
the nonstationary wave can be represented as a superposition of sinusoidal waves with
all possible frequencies, and they have infinitely small amplitudes and different phases.
Each of these sinusoidal harmonics gives rise to a system of reflected waves with the same
frequency. Considering their interference for each frequency we can expect that interfer-
ence has either a constructive or destructive character. However, in the presence of the
primary source, the resultant wave contains all frequencies. This happens because the
effect of a destructive interference at some frequencies is compensated by an action of the
primary source which generates waves at such frequencies. Completely different behavior
is observed when this source ceases to act, since only the interference of waves moving
in the opposite directions defines the frequency content of the resultant wave. In other
words, the resultant oscillations are formed only by sinusoidal waves that experience the
constructive interference.

Next, we discuss what determines frequencies corresponding to constructive inter-
ference, and frequencies’ relationship with the bar length, wave velocity, and boundary
conditions. Consider sinusoidal solutions of the wave equation, and as follows from eq.
1.108 they have the form:

u(z,t) = Asin(wt — kz) + Bsin(wt + kx) + C cos(wt — kz) + D cos(wt + kz) (1.115)

It is clear that all four sin{wt+kx) and cos(wt=+kx) functions obey the wave equation.

Making usc of known trigonometric formulas, we obtain

u(x,t) = acos kzsinwt + bsin kx cos wt + ¢ cos kx cos wt + d sin kz sin wi (1.116)
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Each term of this sum can be interpreted as a superposition of two sinusoidal waves with

equal amplitudes traveling in opposite directions. For instance,
a . a . .
3 sin(wt — kx) + 3 sin(wt + kzx) = a cos kx sin wi, (1.117)

and this describes the standing wave because all points of the bar vary synchronously.
Besides, there are points (nodes) at which motion is absent. Such behavior shows that
each term of the sum given by eq. 1.116 describes the standing wave. It is essential that
the terms represent the result of an interference of sinusoidal waves of the same frequency.
It is natural to expect that in the case of destructive interference, amplitudes of these
standing waves are equal to zero. To illustrate a calculation of frequencies corresponding
to the constructive interference consider one example. Suppose that both ends of the bar

do not move, i.e.,
u(0,¢) =0 and u(l,t) =0, (1.118)

and the origin of coordinates coincides with one of the bar ends. As follows from eq.
1.116 at all times

0 =asinwt + ccoswt
Thus, a = ¢ = 0. Correspondingly, eq. 1.116 is simplified and we have
u(z,t) = sinkz (bcoswt + dsinwt) (1.119)
The second boundary condition gives

sinkl =0 or ki

I

— =7n, 1.120
» n, ( )

™ ™ ¢
kp = — or Wy = |

(1.121)

Thus, boundary conditions are satisfied only if frequencies (wavenumbers) obey eq. 1.121.
In other words, constructive interference occurs when frequencies are related to the bar
length in a certain manner. Wave numbers £k, are called eigenvalues, and the corre-

sponding solution wu,(z,t) is written as

un(w, 1) = sinkyx (b, cOS wyt + d, sin wyt) (1.122)
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It represents a sum of two standing waves, which are shifted in time by 7/2. The latter

can be also written in the form
up(x,t) = Ay sin kyz sin(wyt + @) (1.123)

where A, and ¢, are independent of both distance z and time ¢. The function
sin k,z is called the eigenfunction, and w,(x,t) represents the normal mode. As follows
from eq. 1.123 there is an infinite number of normal modes, and therefore the resultant

wave inside the bar is a sum of normal modes:

u(x,t) = Z sinkyx (b, coswy,t + dy, sinwyt) (1.124)

n=1
To determine unknown coefficients b, and d, we have to define the initial conditions:

Aulx,0)

u(z, 0) = up(x) and 5

= vg(x), (1.125)

which describe behavior of the displacement and its velocity at some instant ¢ = 0.
Then, as follows from eq. 1.124,

up(z) = Z by, sin k,x and volz) = Z wpdy, sin kyz (1.126)
n=1 n=1

Thus, the given functions wg(z) and we(z) are represented as the Fourier’s series and,
using the known formulas for its coefficients, both sets of amplitudes, b, and d,,
arc casily determined. The same approach is used in a general case, when the wave
propagates inside an elastic body of an arbitrary shape. This means that as before,
the oscillations of this body result from a superposition of normal modes, which are
characterized by an infinite set of eigenvalues.

1.4 Hooke’s law for shear stresses and torsional waves along a bar

In order to study propagation of waves caused by a bar twist, we first consider shear
stress and shear strain, as well as the relationship between them. Suppose that at some
instant ¢ = 0, one face of a rectangular parallelepiped inside a medium is subjected to
the action of the tangential force F,, Fig. 1.8a. Because of this force, a wave arises and
propagates toward the opposite face. Since the volume is very small, the wave reaches
the back face very quickly and the same force F, acts on a medium behind the volume.
In accordance with Newton’s third law, this medium acts on the back face with the force
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Figure 1.8: (a) Transmission of the shear force (b) Illustration of eqs. 1.128 (c¢) Stresses

inside elementary volume (d) Forces acting on the rectangular parallelepiped a1bie1d;
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—F,. In equilibrium, both forces F, and —F, have equal magnitudes but opposite
directions. Their resultant force is equal to zero, but they form the couple, which tries
to rotate the volume counterclockwise. Such motion causes a deformation of a medium
in the vicinity of the horizontal faces and, correspondingly, the tangential (shear) forces
F. and —F, appear, which act on these faces, Fig. 1.8a. Of course, in equilibrium
the total force and the resultant moment of all four forces are equal to zero. However,
before equilibrium occurred, motion of the elementary volume resulted in a change of its
shape. This means that the angle between intersecting faces varies, and instead of 7/2 it
becomes 7/2—+. First of all we assume that the elementary volume is cubical and that
forces are uniformly distributed over the cube’s faces. Because of this, at equilibrium,
magnitudes of forces F, and F, are equal to each other. For simplicity it is also
supposed that the z-component of forces is zero, F, = 0. Now we introduce shear

stresses T,, and T, in the following way:
F,= 7,d5i and F,= 7,d5] (1.127)

Here dS is the face area and i and j are unit vectors. Since the resultant moment is

equal to zero, we have
Toy = Tya

The notation 7;; indicates that this stress characterizes the force component, directed
along the i-axis and applied to the face, which is normal to the j-axis (Appendix C). In
equilibrium, stress 7,, has the same value at all four faces of the elementary volume.
Next we express the angle of distortion, <y, in terms of the displacement derivatives. As

is seen from Fig. 1.8b, after a deformation the angle between intersecting faces becomes

i m
5_’}/_ 5—(044—6)7
where a+ 3 =+. It is obvious that
0 0
tana = > or a= 22 and tan 3 = oor 4= —u, (1.128)
z ox Y Ay
because « and J are very small. Thus
ou  Ov
= — 4+ — 1.129
"oy or (1.129)
Making use of notations for strain (Appendix D), we have
Ju  Ov

> = € = — _— = 11
€ry = Eyz oy + p Y ( 30)
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Thus, strain ey, is equal to the angle of distortion . In general, angles « and § are
different, and later we will study two special cases: o = and S = 0. Taking into
account that deformations are very small, we have, as in the case of normal stress, the

linear relationship between shear strain and shear stresses
Ty = [ E€qy, (1.131)

where the coefficient of proportionality g is called the modulus of rigidity. In a general

case, when distortion is also observed in plancs XOZ and YOZ we have

Tzz = M €xz, Tyz = H €yz (1132)
where
ou Ow ov Ow
0y = —_— >y = -— 1.133
¢ 0z + Oz v 5, + oy ( )

In essence, eqgs. 1.131 and 1.132 represent Hooke’s law for shear stresses and shear strains.

Earlier we pointed out that at equilibrium,
Tay = Ty (1.134)
In the same manner we obtain
Tor = Tag and Ty: = Tay (1.135)

This clearly demonstrates that stress is a symmetrical tensor (Appendix C). Note that
forces applied to the volume faces are transmitted inside of the elementary volume. Their
distribution is shown in Fig. 1.8c.

In previous sections we considered deformation of an elementary volume due to an
action of normal stresses and found that cquilibrium can be provided by only two forces,
applied to the opposite faces of the volume. As a result its shape does not, change, and
the angle between intersecting faces remains equal to 7/2. In contrast, in the presence
of shear stresses, equilibrium takes place when there are shear stresses at all four faces,
Fig. 1.8a. In describing the longitudinal waves, we used two elastic parameters, Young
modulus E and Poisson’s ratio ¢. Now we will show that the modulus of rigidity u
can be expressed in terms of E and o. In order to demonstrate this important fact,
consider two special cases, when either =08 or g =0.

Case one: pure shear For simplicity we restrict ourselves to the two-dimensional
case when stress 7., is independent of the z-coordinate. Suppose that a rectangular
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parallelepiped abed is simultaneously subjected to the action of forces that produce
extension and compression along the y— and x-axes, respectively (Fig. 1.8d). As a
result, the angle between intersecting faces remains equal to 7/2, but the length of sides
ab and be varies. As follows from Hooke’s law and Poisson’s relation, as well as from
the principle of superposition, we have for strains e,, and e,,:

Tyy i OT g _ Txx OTyy

ey = T and €ex = -~ (1.136)
Since we assume that 7., = — 7y, eq. 1.136 gives
l+o (1+0)
ey = 5 T Car =~ Tuy, (1.137)

that is they differ by a sign only and are constant within abed. Next consider forces
acting on the rectangular parallelepiped a1b;c1d; located inside abed, Fig. 1.8d. Since
this volume is at cquilibrium, the resultant force, acting on cach clement of volume, for
instance obiecy, is equal to zero. Taking into account that the face ob; is parallel to
ab, the stress at its points is equal to 7,5, but at the face oc; it coincides with 7.

Correspondingly, forces applied to these faces are
F,=— 740bi and Fy=— 740c]

because 7., < 0 and 7y, > 0. In order to provide equilibrium, the force acting on the

face byc¢; has to be equal to
F= r,00i+ 17y0cj or F= 1,(G—1ioh (1.138)

As is seen from Fig. 1.9a, the normal component. F;, is cqual to zero, but the tangential

component is
Fy = 7,V 20b,

This means that the tangential strain 7; is equal to

Ft Ob1
Tt — E e Tyy\/iﬂ = Tyy (1139)

It is clear that there is only shear strain at all faces of volume a;1bjcidy  (its exten-
sion along the z-axis is implied). In essence, we applied Cauchy’s formula of stress
transformation for this simple case.

Because of an cxpansion along the y-axis and shortening along the x-axis, the
parallelepiped  a1bc1d; is deformed into a rhombus, Fig. 1.9b, and the angle between
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(@)

Figure 1.9: (a) Normal and tangential forces applied to face bic; (b) Deformation into

rhombus (c) Ilustration of eq. 1.145

intersecting faces slightly changes. The remarkable feature of this deformation is the fact
that an orientation of diagonals ajc; and byd; does not change, ie., a = § = /2.
Such a deformation is called pure shear, and it may occur for different types of waves.

As follows from egs. 1.137
divs = ez + ey =0, (1.140)

since e,, = 0, and therefore volume does not change. In accordance with eqs. 1.128

we see that

dv  Ou
cur, s = — — — =0, 1.141
z or Oy ( )
and rotation is absent.
Now we find a relationship between the shearing strain e;y, i.e., the angle v, and

the stress 7, (7,,). After deformation (Fig. 1.9b) we have

71+ €

= (1.142)
1+ ey

Note that for small -y

_ tanm/4—tanvy/2  1-—9/2
© 1 ttanw/4tany/2 T 14+ y/2

Ty
t _ —
an(4 2)

1_77
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eq. 1.142 becomes

since ey, = — ey, (eq. 1.137), and e,, < 1. Thus
Y = 2€y, (1.143)

Substitution of eq. 1.143 into eq. 1.137 vields

2(1+0) 2(1+0)
V=T T or Cay = — Ty
i.e., the modulus of rigidity u is equal to
E
2(1+0o)’

and we expressed g in terms of the Young modulus and Poisson’s ratio.

= (1.144)

Case two: simple shear Now we study deformation that accompanies propagation
of shear waves, as is shown in Fig. 1.9¢. In this case, face dic; does not move and the
distortion angle v coincides with «. As before, it is assumed that forces producing
a deformation, are parallel to diagonals in their vicinity, and they cause either their
extension or shortening. For instance, as follows from Hooke’s law (eq. 1.137), the
relative change of diagonal D Fig. 1.9c¢, is

ATD -1 ;UT (1.145)
At the same time from the triangle a;dia} we have

tany = L

ard;
Also
ady = D(:os% and §=awa) = ?713/4

Since « issmall, eq. 1.145 gives

AD  2(1+0)

Yo T E T

which gives again the known expression of u. It is clear that deformation does not

change volume, and, correspondingly:

div s =0
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The distortion angle -y characterizes the rate of change of the displacement component

u with respect to y:

7:@7

while dv/0x =0 and w = 0. We conclude that curl s # 0. This suggests that simple
shear is a combination of pure shear and rotation (Appendix D). From the geometric
point of view, this is illustrated by the change of an orientation of the volume diagonals.
Next we apply our knowledge of Hooke’s law for normal and shear stresses to one special

case, which will allow us to understand some features of shear waves.

Torsion of a circular bar with a constant cross-section

Suppose that one end of the bar is fixed, while the shear forces T are applied to the
free end and their action is equivalent to that of a pair of forces with the moment M

(directed along the z-axis), Fig. 1.10a,b. It causes a deformation (twist) of the bar, and

shear stresses arise. The solution of this problem was given by Coulomb at the end of
the cighteenth century and is based on two assumptions:

1. The twist does not change the distance between cross-sections, i.e., displacement
along the bar axis is absent.

2. After deformation, cross-sections remain planar and the radii drawn in these planes
do not bend.

Taking into account these assumptions, we investigate the distribution of the dis-
placement at cach cross-section and demonstrate that this ficld s satisfics the following
conditions: (a) Particles do not move at the fixed end. (b) External forces are absent
on the lateral surface of the bar (c) At the free end, the distribution of stresses is such
that their action is equivalent to the given moment M. In order to solve this problem
it is convenient to first represent the bar as a system of thin coaxial cylindrical shells of
thickness Ar and find stresses and strains for each shell, Fig. 1.10c.

Consider the elementary volume of a shell that has extension Az and thickness
Ar, Fig. 1.10c. Due to deformation, points of lines ab and aib; or c¢d and c¢;d;
remain in the same planes. At the same time, distance d;d exceeds distance aa.
Correspondingly, the angle between faces ab and a;d; becomes equal to w/2—~. It is
essential that the twist of all cross-sections of the bar is characterized by the same angle
~. This deformation gives rise to shear forces acting on four faces of the volume, Fig.

1.10d. However, they are absent on the external and internal lateral faces of the shell
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Figure 1.10: (a,b) Shear stress and moment applied to cylindrical bar (c) Deformation
of the elementary shell of the bar (d) Illustration of eq. 1.160

element. In accordance with eq. 1.132 we have for shear stress
T=uy, (1.146)
where 7 describes the force tangential to the cross-section of the bar. Now we relate

the shear stress 7 to the angular displacement . As is seen from Fig. 1.10c, we have:

tany = hd or v= E, (1.147)
z z

since v is small. Here z is the distance between a cross-section and the fixed end,

(2 =0). In particular, at the free end
rg
= — 1.14
Y= (1.148)

Substitution of eq. 1.147 into eq. 1.146 gives the relationship between the stress 7 and
the angle ¢:

T=ps (1.149)
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Thus, at equilibrium the shear stress 7 is directly proportional to the angle ¢ and the
radius 7 of the shell, and inversely proportional to the distance between a cross-section
S(z) and the fixed end of the bar. Since at n equilibrium 7 =const, we conclude that
the angle ¢ is directly proportional to z and, in particular, it linearly decreases in
approaching the origin, (z = 0). As follows from eq. 1.149 the shear stress 7 varies
at points of a cross-section and disappears at the bar axis, (r =0). This is an example
of an inhomogeneous deformation along r. It is instructive to compare eq. 1.149 with
Hooke’s law describing a longitudinal displacement w(z):

w(z) 0w
z 7E[‘)z

r.=FE (1.150)

Certainly there is a similarity between them, and a displacement along the arc ro(z)
plays the same role as w(z). Note that in both cases the displacements, w(z) or ry,
are directly proportional to distance z. Now we will represent eq. 1.149 in a different
form. Consider two cross-sections of the bar, located at distances z and z+ dz from
the fixed end. Since

o(L)  oz) ez +d2)

L z z+dz

we have
zo(2) +dz p(2) = zp(z + dz)
Applying the Taylor expansion and neglecting higher-order terms, we obtain

20(2) + o(2)dz = zp(2) + 2¢'(2)dz

or
oz) _
—=¢()
Correspondingly, eq. 1.149 becomes
9y
=pur— 1.151
T=pTS (1.151)
or
ol,
= = 1.152
T=py (1.152)

The analogy with Hooke’s law for normal stress, eq. 1.150, is obvious. As follows from
eq. 1.151, at the state of equilibrium the derivative J¢/0z is a constant along the
cylindrical shell.
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Displacement s and stresses in a solid bar

Now we will show that under certain conditions an approximate theory given by Coulomb
represents the exact solution. Let us consider a displacement field s and stresses inside
the solid bar. As is seen in Fig. 1.10b, at any cross-section the @-component of the field
s is

g 9y

Sp =T or Sp =12 = 27T (1.153)

and it is directly proportional to radius r and distance 2z from the fixed end,

(Op/0z =const). Respectively, at the Cartesian system of coordinates we have

dp x Op
= r— = —IZ 1154
820 8z% ( )

= —27 = Yz
0z r azy

while w = 0. Here

Oy o y) _ 0Oy

U and v

s=uit+uv]
By definition
Can = Cyy = €2z =0
and dilatation is equal to zero. As we know, this means that deformation does not cause

a change in volume. At the same time, shear strains in this plane, (z =const), are

Ou dyp ov Oy
T, d — = 1.155
Oy 82" an or 92" ( )
Therefore
dp
s =222z, 1.156
curl, s 5, ( )
and an elementary volume experiences rotation about the z-axis. As follows from Fig.
1.10b and eqs. 1.154

O 0
Txz = _,Ufa_(:ya Tyz = ,Ua_ff (1157)

In order to find other components of the stress tensor, we make use of the principle of

superposition, as well as Hooke’s law and Poisson’s relation. This gives

Teow O o Ty O o T, O o

Crz = - =T — T2z € = — =Tzz — =722 Crz = — 5Taz — 77
E EY g w E E E 7 E E EY
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Since ey = €y = €,, = 0, the system has only zero solution:
Tax = Tyy = T2z = 0, (1158)

that is, normal stresses are equal to zero. Taking into account also the relationships

between shear stresses and strains, we have

Ju v
Toy = ;L(a—y + a) =0

Jw  Ou Op
= u(— = —l—— 1.1
Tzz M( o + 82) H 9z Y ( 59)
Jdv  Ow dp
Tyz = /1,(8—2 + 8_1/) = pg

Thus, at equilibrium all three normal components of stress are zero, and there are only
two compouents of shear stresses. They describe forces acting on an elementary area
normal to the bar axis. Note that the stress components 7., and 7,, were obtained
in two ways. In order to determine stresses on the lateral surface of the bar, consider an
elementary volume near this surface. From the condition of equilibrium (Appendix C),

we obtain
Tar = Tzl + Ty + T4,
Tyr = Tyal + Tyym + Tyon, (1.160)
Tor = Tagl + Toym +T2om
Here
z
l=—, m:g, n=20
r r
Thus
Tor = Tyr = Tzyr = 0, (1161)

and the solution given by eqs. 1.154 satisfies the boundary condition at the lateral
surface, if it is not subjected to an action of external forces. Tt is also clear that the ficld

s obeys the boundary condition at the bar end, since s(0) = 0. Now we focus on the
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free end, z = L, and determine the external forces acting on this cross-section, which

create the displacement field s, given by eqs. 1.154. Directional cosines of the plane are
=0, m =0, n=1
Substitution of eqs. 1.158 and 159 into set 1.160, which also describes stresses at any

cross-section of the bar, gives

3] 0
Tow = —ua—fyy Tys = ua—fx, Te:=0 (1.162)

Therefore, on the free end there are only shear stresses, and they are distributed in the
same manner as in any other cross-section of the bar. Next it is useful to find the sum

of forces acting on a bar cross-section. Performing an integration, we have

/deS = —,ug—f /y dxdy =0
5

5
and

/TyzdS M(’? /:17d:vdy=07

5 s

since across the surface S = and y are odd functions. At the same time, the z-

component of the resultant moment differs from zero, and it is defined as

M, = / (r x T),dS
S

or

dy 0
M, = /(VLTyZ — YTa)dS = ua—i /(.LQ +4%)dS = ,u,a—i /T'Qd:l:dy (1.163)
S S S

Thus, an action of tangential forces uniformly distributed over the cross-section, in par-
ticular on the free end, is equivalent to the torque M, which has only the component
M.:

(1.164)

Here

Iy = /erS (1.165)
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is called the polar moment of inertia of the cross-section. Since dS = 27xrdr, eq. 1.165
becomes

a

4
Io= 27r/7'3d7‘ = % (1.166)
0

and

dp mat mat (L)
M,=p—r — =p—=1" 1.167
o: 2 M2 1 (1.167)

The coefficient, of proportionality between the resultant moment and the torsional angle

M,  pma'

(1.168)

is called torsional stiffness. It is directly proportional to the fourth power of the bar
radius a and inversely proportional to the distance from the fixed end. Note that in
the case of a thin cylindrical shell, we have

I, = 2nr3 Ar

Thus, we have demonstrated that Coulomb’s theory correctly describes the displacement
field s and stresses at an equilibrium, when shear stresses produce the moment at the
free end and external forces are not applied to the lateral surface.

1.5 Torsional waves

Until now we have considered the bar in equilibrium, when the resultant moment M,
(eqs. 1.167)

) ra' dp
Me=r50,
is the same in all cross-sections. Next, suppose that at some instant ¢ =0, shear forces
are applied to the free end, z = L. Because of deformation (twisting), the wave starts
to propagate along the bar, and moment M, becomes a function of time and a position
of the cross-section z. At the same time, particles of the bar move along arcs with the
radius + (0 < r < a), in a direction perpendicular to the z-axis. Let us derive an
cquation of motion of an clementary volume of the bar, bounded by its lateral surface

and cross-sections S(z) and S(z + dz), where z is the distance from the fixed end.
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As we know, wave propagation is accompanied by an appearance of shear forces. They
create moment M,(z+dz) at the face S(z+dz), as well as moment M,(z), acting
on the portion of the bar, located in front of the elementary volume. In accordance with

Newton’s third law, the moment applied to the face S(z) is
M=-M,(2)
Thus, the resultant moment, producing torsion of the volume, is equal to
M, (z+dz) — M,/ (2) =M

Taking into account that dz is small and M, is a continuous function, we have

oM,

M =
Oz

dz (1.169)

Earlier we demonstrated that motion of an clementary volume can be represented as a
superposition of a pure shear and rotation as a rigid body. In accordance with Newton’s
second law, such motion (rotation) is described by the equation (Appendix A):

P

where I is the moment of inertia of the cylindrical element with the length dz, and
0%p/0t? is angular acccleration. Since the polar moment of incrtia Ty, cq. 1.166,
characterizes the moment of inertia of the cylindrical bar with unit density p = 1kg/m?
and length dz = 1m, itiseasy tofind I. In fact, applying the principle of superposition,
we obtain

4

Thus, as in the case of the longitudinal waves, we proceed from Hooke’s and Newton’s
sccond law, applied to the clementary volume. Substitution of ¢q. 1.169 and cq. 1.171
into eq. 1.170 gives

OM, _ ol 0%
0z 2 Tor

Finally, making use of eq. 1.164, we have

& &y Po 1P

H g
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Here

eo= /5 (1.173)

p
is the velocity of propagation of torsional (shear) waves. Tt is clear that eq. 1.173 is
the wave equation, which is similar to that for longitudinal waves. However, waves
satisfying these equations differ from one another by direction of particle motion, type
of deformation, and velocity of propagation. As follows from eq. 1.144, we have

E . E
Cy = ) while ¢ =4/—,
2(1+o)p p

whence
1
o= ———0 (1.174)
2(1+ o)
Since Poisson’s ratio varies within the range
0<o< !
o< =
g — 2’
we always have
cs < ¢y (1.175)

that is, shear waves propagate more slowly than longitudinal waves. In particular, when
o=1/2,

¢ ~ 0.6¢ (1.176)

Comparison of these waves shows that the modulus of rigidity p plays the same role for
shear waves as the Young modulus E plays for longitudinal waves, whereas the angular
displacement ¢ is an analogy of the displacement w along the bar. Note that eq. 1.173
correctly describes the velocity of shear waves in any elastic medium. At the same time,

the expression
=

E
p

is valid for longitudinal waves traveling along the bar, when the lateral surface is not
subjected to action by external forces.



58 CHAPTER 1. HOOKE’S LAW, POISSON’S RELATION AND WAVES...

Boundary conditions

Suppose that the bar consists of two homogeneous portions with different parameters g
and p. Since the wave equation cannot be applied to the interface, we replace eq. 1.172
with boundary conditions. First of all, angles ¢, and ¢, at both sides of the boundary
have to be equal to each other; otherwise the bar would be broken. Thus, we have

v1(2) = @a(2) (1.177)
Consider an elementary volume bounded by cross-sections S(z+Az/2) and S(z—Az/2),
which are located at opposite sides of the interface. The resultant moment

Az Az

M,(z 4+ =0y = M (» — =2,
LG+ 50 - M - )

acting on an infinitely thin cylinder (Az — 0 and I — 0), has to be equal to zero. If it
had a nonzero value, angular acceleration would be infinitely large, which is impossible.

Correspondingly, the second boundary condition is
Ale(Z) = AfQZ(Z) (1178)

It is easy to show that wave equations and boundary conditions for longitudinal and shear
waves are similar. Boundary problems for these waves become identical if we change the

notations in the following way
p—w and pu—F

This allows us to use results obtained for longitudinal waves in the previous sections and

represent angle ¢ as
w(z,t) = Af [afz + ¢4t)] + Bgla(z — ¢4t)] (1.179)

Also in studying reflection and transmission of shear waves, we can use the same coeffi-

cients as in the case of longitudinal waves, provided that the impedance is equal to

1
Zy=cp= p\/g = /up (1.180)

Bearing in mind the analogy with longitudinal waves and the fact that the incident wave

arises at point z = L, we can represent this wave and a reflected wave in the form

o(z,t) = o f [z +eit)] + %%ﬂa(z — ¢t)] (1.181)
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This shows that when the incident wave travels along the part of bar with impedance
7y and Zy > 7y, the reflected wave at the boundary causes a rotation of the bar in the
opposite direction. In particular, at the fixed end the angular displacements due to both
waves are equal by a magnitude but have opposite signs. At the same time, the resultant
moment becomes twice as large. If the second medium has smaller impedance, Z, < 7,
both waves at the boundary cause a twist in the same direction. In the limiting case of
the free end (Z; = 0), the angles, due to the incident and reflected waves, are equal to

each other

o=+, =29,

while the resultant moment at the free boundary vanishes.

Let us also notice that frequencics of normal modes arising in the bar, having cither
free or fixed ends or a combination of them, are defined from the same expressions as in
the case of longitudinal waves. Before we consider an example, it is useful to write down
relationships between the angular and wave velocities, as well as the moment M,. As
follows from eq. 1.179, in the case of the incident wave we have

Oy

¢(2:1) = poflalz + b)), 5, (1) = apf lalz +et)], (1.182)
9p(z,1) / !
wolz, t) = g Yt FMelz +et)],  M(z,0) =p Ly a ¢y f'olz + ct)]

Therefore

wo _M:(50) _ 99 (1.183)
Cs Top 0z
and the expression for the reflected wave differs by a sign only. Certainly, there is a
similarity with the analogous relationships for longitudinal waves.

Example: wave propagation and Hooke’s law for torsion Suppose that at the
instant t =0, the constant moment A, is applied to the free end of the bar, (z = L),
while the opposite end, (z =0), is fixed. As follows from eqgs. 1.183, the free end starts
to rotate with constant velocity wy and the wave propagates along the bar. At the
instant ¢ = L/c,, the reflected wave arises at the fixed end and twists the bar in the
opposite direction. Correspondingly, behind the wave front a deformation disappears.

At the moment ¢ = 2L/c,, the angular displacement of the free end is cqual to

2L
o(L) = we—, (1.184)

Cs
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and the whole bar is not deformed. At this instant, the reflected wave arises and decreases
the angle ¢. Because of this, wave the bar again experiences deformation. When the
wave reaches the fixed end, it gives rise to the reflected wave with rotation in the opposite
direction. Therefore, behind the wave front deformation again vanishes and at the instant
t = 4L/c, the whole bar is not deformed, and the angular displacement at the free end
is equal to zero. In other words, this end returns to the original position. When the
reflected wave arises, we observe the same motion as at the beginning, (¢ = 0). Thus
the function describing the behavior of the angle o(L,t) is periodic, and it coincides
with the function shown in Fig. 1.4d. Expanding ¢(L,t) in Fourier’s series, we see that

the constant part is equal to

T/2 T/2
bo 14 2 LL)()T woL
— === t)dt = = tdt = — =
2 2T,/ wlt)dt = 7o / 4 e
0 0

Because of attenuation of sinusoidal harmonics, the angle ¢ tends to be a constant

corresponding to an equilibrium:

wols wo O
Wy = 0 === 1.185
o Cq g Cs L 0z ( )
that coincides with eq. 1.183. Note that variations of the angle (7, ) take place within
the range
2wol
0<p< =2

s

and due to attenuation, with time ¢ gradually approaches to the average value ;.

1.6 Bending of a bar at equilibrium and bending waves

Until now we have studied two relatively simple types of waves, namely longitudinal
and torsional waves. Fach is characterized by one kind of motion and deformation.
Next we discuss bending waves, where elastic deformation is more complex and wave
propagation changes an elementary volume as well as its rotation. Note that similar
behavior characterizes Rayleigh and Stoneley waves. We will limit ourselves to a one-
dimensional case related to the seismic responses of some constructions, i.e., dams, during
strong earthquakes. It is also worthwhile to mention that the bending waves may also
propagate along elastic plates, for example, ice sheets. As before, in order to derive an
equation describing the bending waves, we have to establish the relationship between

deformation and internal forces at equilibrium.
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(@) (0)

L/A/// // /A/I 77T / //4

Figure 1.11: (a,b) Horizontal beams (c,d,e) Compression and tension of different pottions

of deformed beam (f) Deformation due to two moments M and —M

As in the case of torsion, Coulomb was the first to suggest an approximate theory
of bending. Under certain boundary conditions, this theory correctly describes the dis-
tribution of stress and strain inside thin bar (beam). Let us imagine a horizontal beam
that is either supported at two ends or at one end, as is shown in Fig. 1.11a,b. We
will neglect the effect of its weight. When vertically oriented force is applied, the bar
becomes deformed, Fig. 1.11c,d,e. It is essential that there is always a line (surface)
whose length remains unchanged; it is called the neutral line. Because of deformation,
the bar portion located above this line, Fig. 1.11¢, is shortened and in a state of a com-
pression (C). At the same time, below the neutral line we observe a stretching of lines
that are parallel to the bar axis, and correspondingly, tension (T') takes place. If the
external force is directed upward, Fig. 1.11d, tension and compression occur above and
beneath the neutral line, respectively. The same picture is observed in the case of the
cantilever, Fig. 1.11e. Longitudinal stress is equal to zero at points on the neutral line
and it increases with increased distance from this line. In order to describe qualitatively

a distribution of stresses at equilibrium, let us mentally draw a cross-section S(z) of the
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bar at some point z, Fig. 1.11le. As an example, consider the right portion of the bar,
subjected to the force F, directed downward. Since this beam element is at equilibrium,
the resultant force must be equal to zero. Correspondingly, the left portion of the bar

causes the shear force —F, which is applied to the face S(z) and

> F=0

Besides, the external force F causes deformation, and therefore normal stresses arise.
They have different signs above and beneath the neutral line. As a result, internal forces
associated with these stresses form the moment, which is trying to rotate the beam
counterclockwise. This moment compensates an action of the moment due to external
force F, which has an opposite direction. Thus, the resultant moment is also equal to

zZero:

> M =0

There is one important case, when the internal shear force F is absent. This occurs
if bending is caused by two moments applied to the bar ends, Fig. 1.11f. In other
words, equilibrium takes place when only normal stresses exist. This case was studied
by Coulomb.

Coulomb’s theory of pure bending

As was pointed out, we assume that bending of a thin beam arises due to moments
applied to its cnds, and after deformation cross-sections remain plane. Also it is implied
that the radius of the curvature is the same for all points of the beam, Fig. 1.12a,

R = const (1.186)

By definition, the normal stress 7., is equal to

Az(x)

Ta(x)=F .

(1.187)

It is positive above the neutral line and has an opposite sign below. Here z is the
original length of an elementary volume and Az(x) is its change, which varies over the
cross-section. Thus, we have one more example of an inhomogeneous strain. It is easy

to relate 7., to the radius of curvature R. In fact as is seen from Fig. 1.12b:

z z+ Az Az x
Z_ : - 1.1
R~ Rtz of . TR (1.188)
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1

®p

vE! Ft
Figure 1.12: (a) Bending bar with constant radius of curvature (b) Illustration of eq.
1.188 (c) External force F¢ applied to free end of beam (d) Illustration of eq. 1.199

(e) Replacement of force Ff (I) by a couple and shear force
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and both strain and stress linearly change with increased distance from the neutral line.

Thus, in accordance with eq. 1.187 we have

x Fx
€y = — and Toy = =

R

Correspondingly, the z-component of the force associated with this stress and acting on

(1.189)

the element dS of a cross-section is equal to

dF,(x) = %ds (1.190)

These forces are continuously distributed over area S, and they have opposite directions
above and beneath the neutral line. It is clear that each force dF,(z) forms the moment
with respect to this line:

dM, =z dF,,

and in order to find the resultant moment we have to perform an integration, which gives

M, = / z dF,
S

Making use of eq. 1.190, we obtain

M, = %/x‘zds (1.191)
' S

The integral describes the polar moment of inertia [I:

I= /ﬁds (1.192)
%
Thus, we express the torque caused by forces dF, in terms of the radius of curvature

and the polar moment of inertia

EI EI
M, = — or R =

-2 1.1
YT R M, (1.193)

It is obvious that with an increase of R, bending decreases, and correspondingly the
moment M, decreases. As follows from egs. 1.193 and assuming that the moment A7,
is given, we see that with an increase of the product FEI, the radius R increases too.
This means that FEI plays the role of “the bending stiffness”, since with its increase

the bending lessens. For instance, if more masses are placed away from the neutral line,
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the beam is able to sustain the moment of greater value. As is well known from calculus
(Part I), the curvature 1/R can be approximately represented as
1 dz(2)

- = 1.194
R dz2 "’ (1.194)

provided that bending is sufficiently small. Substitution of eq. 1.194 into eq. 1.193 yields
d*z(z2)

My = EI—

(1.195)

Here z(z) is the displacement of the neutral line with respect to its original position.
As follows from eq. 1.186, at all points of the beam

d*z(2)

5 = const (1.196)

Consider an elementary volume, bounded by the lateral surface of the beam and its cross-
section S(z) and S(z+Az). In accordance with Newton’s third law, moments applied

to these faces have opposite directions but the same magnitude, eq. 1.193:
M, (z) + My(z 4+ Az) =0 (1.197)

Therefore, they provide equilibrium at each element of the bar, and the shear force F;,

is absent:
F,.=0 (1.198)

Equilibrium of a cantilever

For comparison, it is useful to consider a more complicated case which is important for
deriving the wave equation. Supposc that force Fy is applied to the free end of a
cantilever, Fig. 1.12c. Note that the word “cantilever” describes a beam supported in
such a way that both the position and a slope are fixed at one end. As usual, it is assumed
that the length of the beam I is much greater than its cross-section dimensions. Unlike
the previous case, the radius of curvature R varies along the bar and, correspondingly,
the moment Af, becomes a function of z. Our goal is to demonstrate the presence of
shear force F, and also to find the function x(z) when the beam is at equilibrium. Under
action of the external force F? the beam experiences a deformation and, respectively,
normal stresses arise at each cross-section and they depend on the coordinate z. For

this reason, the resultant moment A, also changes along the bar axis. Therefore, in
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order to provide equilibrium of an elementary volume, Fig. 1.12d, we have to assume the
presence of shear force F,. Otherwise, the resultant moment about the y-axis would
not be equal to zero and equilibrium would not take place. As is scen from Fig. 1.12d,

the condition of equilibrium for the moments is

M,
My(z+Az) = My(z) + F,LAz=0 or ol YAz + FoAz=0 (1.199)
2
that is,
oM,
F. =— Y
+(2) 0z

In deriving the latter we discarded the term, proportional to (Az)?, since force F,(z+
Az) ~ Fy(z) + AzFL(z). As follows from eq. 1.199 the shear force, acting on the cross-
section, is defined by the rate of change of the moment M,. Earlier derived egs. 1.193
and 1.195 for the resultant moment 3,, caused by internal forces, remain valid for any
external forces applied to the free end. For instance, taking into account eqs. 1.195 and
1.199 we have

PBPa(z)

F,. = —EI ,
’ dz3

(1.200)

provided that I=const.

Before we continue, let us demonstrate that the shear force F,(z) does not change
along the beam. To do this we mentally apply forces F¢(z) and — Ff(z) at any point
p of the bar, Fig. 1.12e. Certainly, this new system of forces is equivalent to the original
oue, i.e., the force FY is at the free end. These three forces can be treated as the couple
of forces F¢(L) and — F¢(z) and the shear force F2(z) acting at point p. The
moment of the couple is directly proportional to the distance between point p and the
free end, whereas the shear force F? remains constant. In order to provide equilibrium,
a deformation has to produce the couple and the single force with the same behavior as
the external force. Thus,

F, = const.

Next, as illustration, we define function x(z). Consider a cross-section S(z), which
can be treated as the face of the right portion of the beam. In order to provide its
equilibrium, the normal stress 7,, at this face has to create the moment M, about the
line x =0 and 2z =const with the same magnitude as the moment due to the external
force F¥, but acting in the opposite dircction:

M, =F,(L - 2) (1.201)
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Thus, making use of eq. 1.195, we obtain

d?x
Fo(L—2)=EI el
Its integration by z gives
F.L z fF:EZ—2 = Eld—x +C
2 dz
At the fixed end of the beam we assume that
dz(0
z(0) =0 and d(z ) =0

The second boundary condition yields:

22 dx

Integrating again, we have
2 3

FIL% - F% = EI 2(2) + C;

The first equality of set 1.203 gives C5 =0 and

F, L 2

o(2) = 75— %)

It is usecful to notice that displacement of the free end, z =L, is

F, I?
D) =grs

and it increases as a cube of the distance from the fixed end.

Stress and displacement fields for pure bending

67

(1.202)

(1.203)

(1.204)

(1.205)

As we know equilibrium takes place after attenuation of waves and, correspondingly,

distribution of displacements, stresses and strains at this second stage preserves some

important features of these fields, which are carried by bending waves. Now we describe

Coulomb’s solution in detail and also investigate displacement of bar particles. Consider

the beam with the rectangular cross-section and, as before, assume that the origin of the

Cartesian system of coordinates is located at the necutral line at the middle of the beam.

The z-axis is oriented along the beam, the z-axis is directed downward and the y-axis
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is perpendicular to the plane XOZ. We restrict ourselves to the case of pure bending,

when both ends of the beam are subjected to an action of the force couples with moments
M, and - M,

They have the same magnitude but opposite directions. Coulomb assumed that stresses
arising due to the bending are

Tox = Tyy = Tay = Tyz = Tgz = 0, Toz = — (1.206)

where F is the Young modulus.

After a deformation, the z—line is transformed into a circle with radius R. In
other words, R is constant at all points of the beam, and it represents its radius of
curvature. Thus, as follows from Coulomb’s solution, there is only one component of
stress 7,,, and it is the normal stress at elementary areas perpendicular to the beam
axis. This stress is directly proportional to distance xz. Our purpose is to formulate
conditions under which Coulomb’s approximation becomes an exact solution. Since 7,
is independent of z, it is clear that stresses given by eqs. 1.206 provide equilibrium of
an elementary volume, if volume forces are absent.

Next, consider stresses at the lateral surface of the beam, which is formed by four
plane strips. Letting » be the unit vector normal to the lateral surface and making
use of Cauchy’s formulas (Appendix C), we have

Tay = Tagl + TayMm + Toun
Tyw = Tagl + Tyym + Ty.n (1.207)

Tow = Tal + Tyam+ Tom

Since the normal to the lateral surface, v, is perpendicular to the z-axis, (n=0), we
obtain

Tov = Tyw = Ty = 0 (1208)

Thus, the solution given by cgs. 1.206 obeys the boundary conditions at the lateral
surface, if the external forces are absent at its points. Cross-sections of free ends are

parallel to the plane XOY and, correspondingly, directional cosines are

l=m=0, n=1 (1.209)
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Substitution of eqs. 1.206 and 1.209 into set 1.207 yields

E/w
Tay =Ty =0 and 7, = i% (1.210)

Therefore, Coulomb’s formulas satisfy the boundary condition at the free ends, if external
forces have only the normal component, F,, which is distributed over these ends in
accordance with eq. 1.206. As was shown previously the normal stress 7,, produces an
extension above the neutral line but a compression beneath it. Respectively, the resultant
force, acting on a cross-section of the beam, vanishes, but the total moment M, differs

/Tzsz?dy = %/xdxdy =0,
5

S

from zero. In fact, we have

but the scalar component of the moment is

E r
M, = /Tzzxd:z:dy = I / w2dady or M, = —
5 s

and it was derived above.

The displacement field

Now we begin to study the behavior of the function s:
s = ui+ vj + wk,

which characterizes displacement of beam particles. Proceeding from Hooke’s law:

1
Crx = E[T:L‘z — 0 (Tyy + TZZ)]
1
67/?] = E[TUU - U(TII + Tzz)}
1
€y = E[Tzz — 0(Tzz + Tyy)] (1.211)
1 1 1
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and making use of eqs. 1.206, we obtain

Cop = Cyy = 7%722 = 70%, Coy = % = é, Cry = Cpr =€y, =0 (1.212)

Therefore, according to the definition of strains:

ou Ov ox ow =

%_8_3;__?’ %= (1.213)
ou Ov ou Ow ov Ow
8y+3$ 8z+8$ 8z+8y ( )

The set of eqs. 1.213-1.215 permits us to determine all three components of the displace-
ment s, First, integrating the sccond equation of set 1.213, we have

where wq(z,y) is an arbitrary function of x and y. Substitution of the latter into the
last two equations of set 1.214 gives:

ou ow z  Owp ov ow Owyg
u_ 9w _ 2 % gv_ g _ 1.21
0z Ox R 0Oz’ 0z 0y Oy (1.216)
Their integration yields
2
U= g buley) ad v=—:50 () (1.217)

Here wup(z,y) and we(z,y) arc arbitrary functions of z and y. In order to find these
unknown functions, we substitute eqs. 1.217 into eq. 1.213, and it gives
Pwy  ug ox g Ovg ox

_,0We  Oug 0T d _ 9 _ 9T 1.218
¥ Ox? + ox R a ¥ oy? Ay R ( )

These equations are valid for any 2z, and this fact allows us to greatly simplify them.

Correspondingly, in place of this set we have:

82LU0 82(00
=0 =0 1.219
O? ’ Oy? ( )
and
Oug ox Oy or

v __ = 2 =_Z 1.22
Ox R’ Oy R (1.220)
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An integration of eqs. 1.220 yields

oz? oxy

u0:—2—R+f1(y) 1)0:—?4-][2(.%'), (1221)
where fi(y) and fa(x) are arbitrary functions and each of them depends on a single
argument. Next we establish a relationship among functions fi(y), fo(x), and wy(z,y).

Substitution of eqs. 1.217 and 1.221 into the first equation of set 1.214 gives

P 0h_ o ou_,
T ox0y Oy or R

Since the latter is valid for any =z, it can be replaced by the set:

wy Ofily) | 0falz) oy
=0 nd - —
Oxdy an oy * or R

=0 (1.222)

From egs. 1.219 and 1.222, it follows that the function wq(x,y) is linear with respect

to r and y, ie.,
wo(x,y) = Ax + By + C, (1.223)

where A, B, and C are constants. At the same time, from eq. 1.222 we have:

Oh(y) oy Ofs(x)
T e el (1.224)

because functions at the left and right sides depend on different arguments. Integration
of the last cquality gives
) oy? -
fo(z) = —Dz + D, and hHly) = SR Dy + D, (1.225)
Here D, Dy, and D, are constants. Substitution of eqs. 1.224 and 1.225 into eqs. 1.215
and 1.217 and the use of eq. 1.221 give

2 22—y
=—— - —Az+D D 1.22
R Iy z+ Dy + Dy, (1.226)

:—%—Bz—Daz—&—Dl, w:%—l—AI—l—By—I—C,

which contain six unknowns: A, B,C, D, D, and D,. In order to determine them, we
make use of the fact that the origin of coordinates is at the middle of the beam. Because
of symmetry, the cross-section z =0 does not move during bending, i.e.,

w=70 for z=10 (1.227)
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This gives
A=B=C=0 (1.228)
Also due symmetry at the origin 0, (z =y = z =0), we have
u=v=w=20
Therefore
Di=Dy;=0 (1.229)

Finally, consider a linear element of the bar, oriented along the y-axis and passing
through the origin. After deformation, it preserves its orientation. This behavior can
described as

de_ if 0

—_— = 1 T = =2 =

dy Y
Correspondingly, the first equation of set 1.226 gives

D=0 (1.230)

Thus, expressions for the displacement components are

1 : x
u= gl o), v=-T w=2 (1.231)

For instance, points of the neutral line, (x =y = 0), experience displacement

22

“oR

U = v=w =0,

that is, the straight line is transformed into a parabola. Also consider a cross-section of
the beam, 2z = zy. After deformation, its points are situated at the surface:

x
z:zo—|—w:zo(1—|-ﬁ)

The latter also describes the plane; that is, due to pure bending, cross-sections remain
plane. As follows from egs. 1.231, the displacement component along the z-axis is
dirccted toward the ncutral line and it is proportional to the squarc of coordinates. It is
interesting to note that the y-component, v, is independent of the coordinate z, and

its magnitude linearly increases with an increase of = and y, but the sign is defined
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by that of these coordinates. Component w has similar behavior, but it is a function of

z and z. In accordance with eq. 1.213, the divergence of the field s is

1-2 1-2
divs = ( RU) * - ( EU) T2z, (1232)

and it is independent of coordinates y and z.  Thus, bending is accompanied by a

change of elementary volumes, and the normal stress 7,, can be treated as the source
of the field s. Now consider the second important characteristic of the vector field,

namely, curl s:

Ls Jw  Ov Ls Ju  Ow Ls dv  OJu
curl,s =— — —, curl,s =— — —, curl,s =— — —
‘ dy 0z’ O P or Oy
The use of eq. 1.231 gives
2 2
curl,s =0, curl,s = ffz curl,s = 7% (1.233)

This means that bending also causes rotation of an elementary volume as a rigid body.
For this reason, we may say that bending waves differ from both longitudinal and torsional

waves.

Bending waves

Until now we have assumed that a bar is at equilibrium. Next, suppose that
either the force F, or the moment M, or both, are applied at some place on the
bar, for example, at its ends. Due to deformation, internal forces arise and the bending
waves start to propagate. Unlike longitudinal and torsional (shear) waves, bending waves
carry more complicated motion of elementary volumes that includes both translation and
rotation. At the same time, its motion along the bar axis is absent.

To derive an equation describing bending waves, consider an clement of the bar with
an extension Az, Fig. 1.13. Suppose that the wave propagates along the z-axis toward
large values of 2. When it reaches the back face of the element, S(z), this surface
becomes subjected to an action of the moment M, (z) and the shear force F,(z).
Inasmuch as the volume length, Az, is extremely small, the wave almost instantly
reaches the opposite face and acts on a medium located in front of this element. Its
action is characterized by the same direction of the moment and the shear force as at the
back face. Then, in accordance with the Newton’s third law, the front face of the volume
element is subjected to the moment and the force, which have opposite directions. Thus,

the resultant force and the resultant moment applied to the bar element are
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X
A
F(z+Az)
@O My(z-i-Az)
W - -3
// ~
, I I AN
v ! ! ~
R N
z z+Az S~ .

Figure 1.13: Forces and moments acting on an elementary volume

F, = F,(z+ Az) — F(2) (1.234)
and
My = M,(z + Az) — M,(z) (1.235)

The moment M, causes rotation of the element as a rigid body around an axis that is

parallel to the y-axis, and it can be represented as

oM,
My ="

An action of force F, displays in two ways. First of all, it displaces the elementary

Az (1.236)

volume along the z-axis, and in accordance with Newton’s second law we have:

2 2
Fo(z+Az) — Fp(2) = p Az S% or %:pS % (1.237)
Here S is the cross-section of the element, p is its density, and u is a displacement
of the neutral line due to a wave. We assume that this displacement is very small, and,
correspondingly, the length of this line practically remains the same, i.e., its extension

is neglected. It may be proper to note that at equilibrium, the moment M, linearly
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changes between faces and, therefore, forces applied to S(z) and S(z+ Az) are equal by
a magnitude. In other words, they do not cause translation of the bar element. Second,
shear forces give rise to the moment about the axis, which is parallel to the y-axis and

passes through the center of the elementary volume. It is equal to
FL.Az (1.238)

Thus, the total moment causing rotation of this element is

oM,
F)Az 1.239
O+ Rac (1.239)
Applying Newton’s second law for a rotation (Appendix A), we obtain:
Pa  OM, Pa  OM,
IAz— = Y+ F)A : I— = Y+ F, 1.240
pldeGm =G, T de or plge ="+ (1.240)

Here « is an angle of rotation of the element, and 7 is the polar moment of inertia.

Thus, we arrived at two equations:

Pu  OF, o OM,
PSE =g, o rlge =y

which describe simultaneous translation and rotation of an elementary volume bounded

+ Fy, (1.241)

by the lateral surface of the bar and cross-sections S(z) and S(z + Az). This system
contains several unknowns, namely, u(z,t), alz,t), Fy(z,t), and M,(z,t), and our
goal is to obtain one equation with respect to displacement wu(z,t). By definition, «
characterizes a slope of the neutral line with respect to the z-axis at some point z and

the instant ¢. It is obvious that for small values of « we have

ou
a~tana = —

0z
Thus, set 1.241 becomes
Py OF, u OM,
S— == — =Y F, 1.242
o = Bz Poror ~ 8. (1.242)

Differentiation of the last of eqs. 1.242 with respect to z and the use of the first of these

equations allow us to eliminate the unknown force F,. Thus we obtain one equation:

o*u  IOM, *u

[ ——— = — 1.243
Poor 82 "o (1.243)
with two unknowns. Taking into account eq. 1.195
2
M, — 152

022’
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we arrive at the equation with respect to the single unknown, wu(z,t):

J*u 0%y
J Dl v
pE

oty
[———— =
Pl azoe

This is the linear partial differential equation of the fourth order.

one-dimensional wave equation at its conventional form

1 8%u
c2 o2’

du

822

but some solutions of eq. 1.244 describe a wave phenomenon.

Sinusoidal waves

(1.244)

Certainly, it is not

Suppose that external forces are sinusoidal functions of time. Taking into account that

eq. 1.244 is linear, we observe the sinusoidal vibrations of the bar, too. Correspondingly,

the displacement wu(z,t) can be represented in the form

ulz,t) = Re[ti(z)e ™7

(1.245)

Its substitution into eq. 1.244 transforms the latter into an ordinary differential equation

of the fourth order with respect to the complex amplitude u(z), and we obtain:

—p[wa—g:IE(j—ZZ—pSw?ﬂ:O
or
g;” + Qa% b =0,
where
. pw? _ w?Sp
2F’ )

Respectively, a solution of eq. 1.246 has the form:
u(z) = Aleklz + AgekQZ + 443€k3z + A4ek4z
Here k, are roots of the characteristic equation:

E}+2ak2—b=0

(1.246)

(1.247)

(1.248)

(1.249)
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So
k2=—a+Va2+b
or
S\ 172
1 a a
kp=01 | ——=+4/14+ — 1.250
As follows from eq. 1.247,
>  pw’l
b 4ES
Since
. E .
I=r;S and —=q,
p
we have
a*>  w? wird
b AT? A2 ( )

where A is the wavelength of the longitudinal waves and 7 is the so-called the radius
of inertia of the cross-section. In deriving eq. 1.244, we assumed that the normal stress,
T.., linearly increases with a distance from the z—axis. Otherwise, the equality
2
M, =EI %
becomes invalid. This condition implies that the wavelength has to greatly exceed the
bar width. Thus, eq. 1.244 is applied, when an equality

ro < A (1.252)

takes place. Of course, the same relation is valid for the wavelength of bending waves.
This inequality greatly simplifies eq. 1.250, and we have:

9 1/4

or

0 1/4 0 1/4
lﬁ—i<E—rg> w'?, /cg——z'<E—T§> w'?, (1.253)
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P 1/4 P 1/4
ks= -5 w2 ky=—| = 2
3 (mQ o o\eg) T

Therefore, the general solution for the displacement w(z,t) is

u(z,t) = Re{A; expli(kz — wt)] + Az exp[—i(kz + wt)] (1.254)

+Agexp(kz — iwt) + Ay exp(—kz — iwt) }

Here

P 1/4
k:<E_rg> w!/? (1.255)

is the magnitude of wavenumber of a bending wave. It can be also written in the form
w 1/2
() (1.256)
aro

The first two terms in eq. 1.254 describe waves traveling along the bar in the opposite
direction with the phase velocity

ep(w) = Y= (crow)/? or () =Vor (T—O)lﬂ (1.257)
k q A

The latter clearly shows that the velocity of bending waves is less than that of longitudinal
waves, (ro < M), and the difference between them becomes more noticeable with a
decrease of frequency. Unlike with longitudinal and torsional waves, the velocity of
bending waves, ¢,(w), depends on a frequency, and it is directly proportional to the
square root of w. Tt is obvious that due to dispersion, propagation of the bending
wave is accompanied by a change of its shape. As is well known, two factors usually
cause a dispersion. One is a transformation of elastic energy into heat, and the other is
interference of waves, propagating, for example, in a waveguide. The latter occurs when
the wavelength is comparable to or smaller than the distance between interfaces. In our
case, both of these factors are absent. Two more terms in a solution with coefficients
Az and Ay, eq. 1.254, represent periodic oscillations as functions of time, which
exponentially change with distance. Each term varies simultaneously at different points
along the bar. Certainly, they do not characterize wave propagation and have rather a
diffusion behavior. The equation of bending waves describes displacement, wu(z,t), of

the neutral line along the z-axis. At the same time, motion of bar particles is much more
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complicated and results in translation and rotation of an elementary volume. Earlier,

considering an equilibrium, we demonstrated that
curls # 0 and divs # 0 (1.258)

This means that the bending waves belong to a more general type of wave than do
longitudinal and torsional waves, and in this sense they are similar to the Rayleigh

Waves.

Boundary conditions

Since propagation of bending waves is described by a differential equation of the fourth
order, there are more boundary conditions than in the case of longitudinal and shear
waves. First, suppose that the bar consists of two homogeneous portions and the cross-
section S(z) is the boundary between them. It is obvious that at the interface both the

displacement u(z,¢) and its derivative Ou(z,t)/0z have to be continuous functions:

un(2,8) = ual2, ) dulzt) _ &9 (1.259)

Otherwise the bar would be broken. Also the moment A{, and the shear force F, are

continuous, that is, in accordance with eqgs. 1.195 and 1.200:

82’(1,1 82U2 83’L61 83u2
e _pt% gl _pg Yt
" 922 20227 923 028

Discontinuity of one of these functions leads to infinitely large angular or linear acceler-

(1.260)

ation. Thus, eqs. 1.259 and 1.260 describe behavior of bending waves at the interface.
Let us also consider two more boundary conditions, when waves are sinusoidal functions
of time.
Case one The displacement wu and its derivative with respect to z are given
functions at some point zy:
Ou(zg, 1)
0z

In particular, it may happen that a; = b = 0. Note that Ou(zg,t)/0z characterizes

u(zp,t) = ay cos wt, = b, sin wt (1.261)

the bar slope at point zg.
Case two The moment M, and the shear force F, are given at point 2z, This

means that

0*u(zo,t) OBz, t)

9z 02€08 wi, 95 o sinwt (1.262)
2 2
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For instance, at the free end without external forces:
o — bg =0

Of course, one can introduce different boundary conditions. To illustrate the behavior of
bending waves, consider several examples and start from the simplest model of a bar.
Example one: infinite bar Suppose that bending waves are caused by a dis-
placecment at some point z = 0, and the boundary conditions arc given by eq. 1.261.
Inasmuch as the wave field has everywhere a finite value and incoming waves are absent,

the solution of eq. 1.254 can be written as
u(z,t) = Ay cos{wt — kz) + A4e_kz coswt if z>0 (1.263)

For negative values of z the displacement has a similar form. Applying boundary

conditions, we obtain

A+ Ay =ay, kA, — kA = by,

whence
y _ka1+b1 _k’(h*b]
A = 5 Ay = o (1.264)
and the displacement is
kai +b ka; —b
u(z, t) = (1174'1 cos(wt — kz) + %eikz coswt (1.265)

Thus, wu(z,t) represents a superposition of the wave, traveling away from point z = 0,

and vibrations, which exponentially decay with distance. Taking into account that

e~kz = =2 2N (1.266)

we see that the second (diffusion) part of the wave field is noticeable only in the vicinity
of point zy, at distances that are smaller than the wavelength.

Example two: reflection from free end Suppose that the incident wave propa-
gates toward the free end, (z = 0), where the moment M, and shear force F, are
equal to zero

M,(0,t) =0, F,(0,8) =0

or

O?u u
@:0 and ﬁz() at z2=0
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It is natural to expect an appearance of the reflected wave at the free end, as well as

decaying vibrations. Therefore, the displacement can be written as a sum:
Uz, t) = Are TR L g,ethT L pe—hz o p 5 g (1.267)

where A; is given. From the boundary conditions we obtain two equations with two

unknowns
*AQJrB:A]_ *ZAQ*B:*lAl
whence
71— 1 29
As = A B= A 1.268
PTath 14+ " (1.268)

and the displacement field is
u(z,t) = Ay[cos(kz 4+ wt) — sin(kz — wt) + V2 e kz cos(wt — %)] (1.269)
In particular, at the free end

(1.270)

3

u(0,t) = 24, (coswt + sinwt) = 2v/2A, sin(wt + %)

and its amplitude is almost three times that of the incident wave.
Example three: reflection from the fixed end As we already know, at the

fixed end we have

ou(0,t)
u(0,1) =0 =0
w(0, 1) 5
Then, making use of eq. 1.267, these conditions give
142+B:*A1 ZAQ*B:ZAl
Thus
i—1 21
Ay = ——A B=- A 1.271
RN T+ (L.271)

Comparison with egs. 1.268 shows that in both cases, the amplitude and phase of reflected
waves coincide. At the same time the complex amplitudes of vibrations differ by a sign
only. As follows from eq. 1.254,

u(z,t) = Ay[cos(kz + wt) — sin(kz — wt) — V2 cos(wt — %)e_kz} (1.272)
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Of course, at the boundary both u(0,t) and 0u(0,t)/0z vanish.

Example four: normal modes By analogy with longitudinal and torsional
waves, consider a formation of normal modes in a bar of finite length [. In order to
solve this task, it is convenient to take the real part of the complex amplitude of the
displacement and represent it in terms of the sinusoidal and hyperbolic functions:

Ret(z) = Ay coskz + Assinkz + Bicosh kz + Bysinh kz (1.273)

For illustration, suppose that boundary conditions are

u(0, 1) = 0, % —0,  u(l,t)=0, 82332’ ) _y
The first two equations give
A+ By =0, - A+ B =0, ie., Ai=B =0
and
u(z) = Agsinkz + Bysinh kz (1.274)
The sccond set of boundary conditions yields
Agosinkl + Bysinh kil =0 — Aysinkl + Bysinh ki =0 (1.275)
Therefore, this system has a nonzero solution when
By =0 and kl=mn (1.276)
and
u(z,t) = Agsin ?Z coswt, (1.277)
where Ay is an arbitrary constant. As follows from eq. 1.276
L_n
Ao 2

and normal modes arise, provided that the bar length, [, is equal to the integer number
of Ay/2. A similar relationship was observed for other waves. As follows from eq. 1.257,
frequencies of normal modes can be represented as
™
Wy = 0170(7)2 (1.278)
By analogy we can determine frequencies of normal modes for different boundary condi-

tions.



Chapter 2

Basic equations of elastic waves

In this chapter, we will derive an equation that describes the displacement field s. Then
we introduce scalar and vector potentials and derive the wave equations and boundary
conditions that characterize the behavior of these functions. Finally, we will focus on
the relationship between kinetic and potential energies in an elastic medium and on

Poynting’s vector.

2.1 Equations of motion of an elementary volume

Let us consider an elementary cube inside a medium, as is shown in Fig. 2.1a. When
a wave passes through this volume, it becomes deformed, and internal forces arise. As
a result, the medium surrounding the clementary volume, acts on cach face of the cube.
Since the faces are small, it is assumed that the forces are uniformly distributed over
them. Correspondingly, it is natural to introduce the vector t, which characterizes the

force per unit area: F=tdS (2.1)

Here dS = dxdy = dxdz = dydz, and in the Cartesian system of coordinates
t=1ti+t,j+t.k (2.2)

The mutual orientation of forces applied to the cube faces is not arbitrary but obeys
two rules that follow from the physical considerations. First, consider opposite faces, for
example, S(x — Az/2, y, z) and S(z + Ax/2, y, z), that are perpendicular to the
x-axis. When the wave approaches the back face S(x — Axz/2, y, z) at some instant ¢,
the surrounding medium acts on this face with a force that, in general, has the normal

83
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Figure 2.1: (a) Surface forces acting on elementary volume in a medium (b) Behavior
of shear forces (c¢) Translation of elementary volume (d) Compression (expansion) of

clementary volume (¢) Pure shear deformation

and tangential components:

Azx A
Fn(l - %71/7271;) and Ft(x - ;;yyzvt) (23)

After a very small time interval At, the wave reaches face S(z+Ax/2,y, z), and forces
given by egs. 2.3 act on the medium in front of the elementary volume. In accordance
with Newton’s third law, face S(x + Az/2, y, z) is subjected to action of forces:
Az Az

_Fn(m+7>y7zvt) and _Ft(x+7>y7zvt) (24)
Here t; = t+At. During the extremely small time interval (At — 0), forces applied to
the back face may slightly change by a magnitude, but their direction remains the same.
Otherwise, the rate of change of wavefields would be infinitely large. Thus, at opposite

faces perpendicular to the z-axis, the normal components, as well as the tangential ones,
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have opposite directions. It is clear that the same behavior of forces is observed on other
faces of the volume.

In order to formulate the second rule, let us discuss the action of shear forces, and, as
an example, consider faces perpendicular to the z— and y-axes, Fig. 2.1b. In general,
magnitudes of forces applied to opposite faces are not equal to each other, and for this
reason they produce both translation and rotation. In our case, the latter takes place
about the z-axis, Fig. 2.1b, and, as is well known (Appendix A),

M, = Ia, (2.5)

Here M, is the z-component of torque, 7 is the moment of inertia, and «, is the
z-component of angular acceleration. By definition (Appendix A),

M, = Fpdy £ Fydx = (t, £ t,)dzdydz (2.6)
and
I:%(daf + dy?)dadydz (2.7)
Thus, in place of eq. 2.5 we have
t,£t, = %(CL’E2 + dy*)a, (2.8)

Here p is density and ¢, and ¢, are components of traction on faces perpendicular to
the y— and z-axes, respectively. Inasmuch as acceleration, «,, cannot be infinitely

large, we conclude that with a decrease of the volume, ¢, tendsto ¢, and in the limit
Iy = 1y (2.9)

This means that at intersecting faces shear forces are directed toward each other. The

same behavior takes place on other faces of the cube.

Equation of motion

Now we will derive an equation of motion of an elementary volume. We introduce three

vectors — X, Y, and Z - in the following way (Appendix C):
t, =X -n, t,=Y-n, t,=27Z n, (2.10)
Here n is the unit vector normal to the cube faces, and

X=rgi+rpi+rnk, Y=r,i+r,j+r.k Z=1,i+71,j+7..k (211)
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Each scalar component 7,,, 1is a continuous function of z,y, and =z, and all of
them form the stress tensor. It is essential to note that usually vectors X, Y, and Z
can be arbitrarily oriented with respect to the face normal, n. Howcever, as we have
demonstrated, their mutual orientation at different faces obeys certain rules. Our goal is
to use of Newton’s second law and write equations of motion along the coordinate axes.

By definition, we have:

0%u
mﬁ:Zsz, mﬁ Z ks mﬁ Zsz (2.12)

where m is the mass of an elementary volume; wu,v, and w are scalar components of
displacement s; Fyy, Fyp, and Fy are components of the force applied to the k-face
of the volume. First, we add the z-components of forces acting on all faces. It is obvious
that the sum of forces F,; and F,3, applied to two opposite faces perpendicular to the
r-axis, is

lx lx
Fxl +Fz3 =i |:X('I.+ %7?]7'2) 7X($7 (;ayaz):| dde

@a Y, Z) - Ta;:c(x - %7 Y, Z):| dde (213)

or Fo+ Fpyy = [Tm(:r + 5

The presence of the minus sign in front of the second term is related to the fact that at
the back face “3,”, the normal n and the unit vector i have opposite directions. In

the same manner we obtain:

d d
Foo+Fou=3j- [X(J;,y + ?y, z) — X(z,y — Eyz)} dzdz or

Fo+Fpy= |:Txy(x7 Y+ %, 2) — Taylz,y — %, z)} dxdz (2.14)

and Foo+ Fe= {Tmz(l‘, Y,z + %) — T (T, y, 2 — d;)] dxdy

Taking into account that distances between opposite faces are very small, we may assume

that stresses change lincarly inside the volume, and this gives

OT 22 OT 2y OT 2»

Fz1+FI3— O d‘f Fz2+Fz4: aijd‘/} F’L‘3+F1‘6: 9z

dv (2.15)
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Substitution of eqs. 2.15 into the first equation of set 2.12 yields

0%u _ OTpr | OTay n 0T 2,

o 2.16
Porr = "oz " oy oz (2.16)
In the same manner, we have
8% OTys = OTyy  OTy, Pw BT, 0T, 0T,
— = - 0 = : 2.17
"o " x| oy T o2 o " or T oy | o2 (217)

Thus, we have obtained a system of three equations with twelve unknowns — namely, nine
components of stress tensor and three components of displacement. Now it is appropriate
to make several comments.

1. Stress components, T,,,, are considered to exist at faces of an elementary volume.
Since the latter is small, stress components can be treated as linear functions within the
volume. Correspondingly, their derivatives are constants.

2. At opposite faces of the volume, each stress component has the same sign. This
reflects the fact that the whole elementary volume is either expanded or compressed. At
the same time, as was already demonstrated, each component of the force applied to
opposite faces has opposite signs. In equilibrium, magnitudes of the force components
are equal at opposite faces.

3. As follows from eq. 2.9 and similar equalities

and so we have
Toy = Tyas Tor = Taps and Tys = Tays (2.18)

i.e., the stress tensor is symmetrical (Appendix C).
4. Along with surface forces, an elementary volume is subjected to action of the

volume force
F =f{dV, (2.19)

where f is the force per unit volume.
Taking into account cgs. 2.18 and 2.19, system 2.16-2.17 becomes

OTgw  OTyy  OTyu b= E)Z_u
or oy | 9z 1T Pop
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OTyy  OTyy  OTy, P
ar "oy "o T e
075 OTys N 0T, L= 82_11;
or oy 0z P Pop

(2.20)

This system of equations describes both translation and rotation of an elementary volume.

In other words, the cquation of rotation follows from set 2.20. This question is discussed

in detail in Appendix E.

Stress in terms of strains

Our next step is to replace set 2.20 with equations that contain only components of

displacement. To do this, we will use Hooke’s law and the principle of superposition. In

the first chapter, it was shown that normal stresses 7,,, Ty,

Ou/dz, Ov/dy, and dw/dz are related to each other as

ou

EE =Tgp — OTyy — 0Tz,
ov

E% = —O0Tge + Tyy — 0T,z
ow

E—az = —0Tgy — OTyy + Tse

Multiplying eq. 2.22 by ¢ and adding eq. 2.21, we obtain

du ovy 2
E (61; + O'ay> - (1 — 0 )7—1:1: - U<1 + U)TZZ

Again multiplying eq. 2.22 by ¢ but adding eq. 2.23, we have

ov Ow
foll (P AR R 1— 02
<08y+8z) (14 0)Tpe + (1 = 0%)7,,

and 7., and strains

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

Multiplication of eqs. 2.24 and 2.25 by (1—0) and o, respectively, and their summation

gives

ov ow

E(1- o)a—u +FEo—+Eo—=(140)(1—-20)7,,

or oy 0z
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ou ou Ov Ow
or E(l1 —20)— o + Eo <8 ay + 82) =(1+0)(1—20)T4 (2.26)
Thus
E  Ou Eo ou Jv Ow
T = ooz T (1 +o)(1=20) <%+a_y+$> (227)
or
ou ou Ov Ow
_2/18+/\(8 Ty a;;) (2.28)
Here
F Fo
= — = 2.2
P90+ o) and A= U o)1= 20) (2.29)

are Lame constants. In the same manner, we obtain expressions for 7,, and 7., in

terms of strains:
01 v 0
Tew = Q;La—; +Adivs, Ty, = ZMO—Z +Adivs, 71, = 2[La—l;} +Adivs (2.30)

These equalities clearly show that normal stresses are functions of the diagonal elements
of the strain tensor ouly. By definition, shear stresses and shear strains are related as

ou v ow  Ou
Tfr,y - Tym =K (ay + 81) ’ Taz = Tzz = 1 (a%. + az) (231)

ov Ow
and Tys = Tay = Hi §+8—y ,

and they do not contain diagonal elements of strain (Appendix D). Now we are ready to

replace the stresses in eq. 2.20 in terms of displacement. Since

O o Pu D Pu 0 (du 9
_2 -
g Mo gy THg s Ty, (a >”ald”s

and

a0 (00N O a0 (0w
Ay _MayQ e dy 9. Moz THar \ oz

the first equation of the set 2.20 becomes

0 0%u
2 e —
pViu+ (A + /1)%d1v v (2.32)
By analogy we have
lij 0?
pV2 4+ (A + ,u)a—ydiv s = pa—t;} (2.33)

and
8w

3,
2 —di = p—
Y w+(/\+u)azdlvs P

(2.34)
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Equation for displacement s

Multiplication of egs. 2.32 2.34 by unit vectors i, j, and k, respectively, and their
summation yields
d%s

pV?s + (A + p)graddiv s = Pop (2.35)

This equation plays a fundamental role in the theory of elastic waves. It is also useful to
represent eq. 2.35 differently. Taking into account the equality

curleurl s = graddiv s—V?s, (2.36)

in place of eq. 2.35 we have
0%s

curleurl s+(A + 2u)V?s =P 5 (2.37)

Both of these forms are rather complicated equations, and, certainly, they do not corre-
spond to the conventional form of a wave equation. At the same time, in two important
cases, eqs. 2.35 and 2.37 are reduced to two wave equations that describe elastic waves
propagating with different velocities. Before we discuss this subject, it is proper to no-
tice the following. The equation for displacement was derived in the Cartesian system
of coordinates. However, as is well known (Part I), spatial derivatives of the scalar and

vector fields
grad ¢, divM, culM, Vi

are invariants, and, therefore, eqs. 2.35 and 2.37 are valid in any orthogonal system
of coordinates. It has also been demonstrated that every vector field, including s, is
characterized at regular points by a system of two equations

curl s = aW(p) div s = §4(p) (2.38)
Since they are linear differential equations, their solution can be written as a sum:

s(p) = s1(p) + s2(p) (2.39)

In general, these different vector fields are related to each other, and they obey the

systems

curl s; =0 div s;=084(p) (2.40)
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and
curl s, = aW divs; =0 (2.41)

Let us note that if functions s; and sy satisfy eqs. 2.40 and 2.41, respectively, then
the sums s; +s; and s;+s¢ also obey these systems, provided that s, is a solution

of the homogeneous system:
curl s =0 and  divsy=0 (2.42)

Now consider separately three important cases.
1. The wave associated with the field s; Suppose that s; = 0 and the
displacement field is described by eqs. 2.40, i.e.,

s=s; (2.43)
Since curl 81 =0, eq. 2.37 is greatly simplified, and we arrive at the wave equation

s

A+ 20) V2% = p— 2.44
(A +2u)V7s Pop (2.44)
or
1 0%
Vis == —, (2.45)
et ot?
where

P (2.46)
p

is the velocity of waves that cause a displacement ficld s;, egs. 2.40. In accordance
with eqs. 2.29 we have

B El-¢) 1Y
o= [ronsm) 240

and it depends on the density p, as well as the Young modulus and Poisson’s ratio.
Earlier we studied propagation of waves along a thin bar with the velocity

cp = \/E (248)
P
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and called them longitudinal waves. In that case it was assumed that the parameter o
is equal to zero, i.e. the particle displacement in the direction perpendicular to the bar
axis was necglected. Tt is obvious that eq. 2.48 follows from cq. 2.47, if we let ¢ = 0.
At the same time, waves described by eq. 2.44 may cause displacement of particles in

different directions if
curl s =0 (2.49)

By analogy to acoustics fields, they are usually called dilatational waves. This is because,
by definition, the second equation of set 2.40 characterizes a relative change of volume,

i.e., the dilatation:

divs=0= AVE/ =3 5(p) (2.50)

This means that these waves are associated with deformations that change the volume

provided that condition 2.49 is met. Now it is proper to make two comments:
a. The right side of eq. 2.50 can be represented in terms of stress. Performing a

summation of eqs. 2.21-2.23, we obtain

AV  1—20
. o _ =4
divs = vV = F (Tow + Tyy + T22) (2.51)
or
. 1

divs = W(TII + Tyy + Tzz)y (252>

where

E

M= 2.53
1—-20 ( )

is the bulk modulus. This suggests, eq. 2.52, that volume change occurs due to forces
that are normal to the volume faces. Applying the conventional terminology of vector
analysis, we may say that the diagonal elements of the stress tensor are sources of this
field s. Taking into account that div s characterizes the wavefield, it is obvious that

the sum:
Tee T Tyy + Tez

is also an invariant with respect to the coordinate systems.
b. Dilatational waves are also called longitudinal or P waves. Sometimes the term

“irrotational” is used. Now, proceeding from eq. 2.49, we will begin to study the types of
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motion and deformation that accompany longitudinal waves. For simplicity, we restrict

ourselves to two-dimensional cases, where

s = ulz, y)i + v(z, )], w=0 and g—z = % =0 (2.54)
Correspondingly,
i j k
divs = Vf = %(T” +7y) and curls = % (,% % =0 (2.55)
v v 0
As follows from cgs. 2.54 and 2.55,
curl, s = curly, s =0,
and curl, s has to be equal to zero:
g_?lf _ g_; —0 (2.56)

As was described in Appendix A, the motion of an elementary volume as a rigid body is,
in general, a superposition of translation and rotation. At the same time, deformation
of this volume can be represented as a combination of compression (expansion) and pure
shear, which are in general accompanied by both types of motion (Appendix D). First,
consider translation, Fig. 2.1c. This motion takes place when all particles of the volume

have the same displacement, i.e.,
u(x,y) = const and v(z,y) = const (2.57)

Therefore, all derivatives of these components with respect to coordinates are equal to
zero, and condition 2.49 is met.

Next we focus on compression (expansion) of an elementary volume, when displace-
ment components « and v may vary only along the 2 and y coordinates, respectively
(Fig. 2.1d). Then

ou v

dy Or
As follows from eq. 2.56, condition 2.49 is met again. One more deformation also
obeys this equality, and it is called pure shear, Fig. 2.1e (Appendix D). Unlike with

compression, the volume remains the same; ie., div s =0, but the angle between
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intersecting faces slightly changes. Due to such deformation, the angles formed by two

pairs of sides — a;b;,bic; and ad;,dc; — arc equal. Asis scen from Fig. 2.1¢, points

of side ab experience different displacements along the z-axis, u(y), and we have
uy) _ uly +dy)

= = tan-y ~ v,
y Y+ dy T=7

since the angle v is very small. The last cquality gives

d .
yuly) tdyuly) =y uly+dy) =y uly) +vy 3_Z dy or — = = (2.58)

This derivative characterizes a distortion angle. In the same manner, considering dis-

placement of side ad, we obtain

v -
el (2.59)

Therefore, in accordance with eq. 2.56, condition 2.49 is met. We see that translation,
compression (expansion), and pure shear may accompany longitudinal waves. Note that
both translation and pure shear are described by the displacement field, sy, which
satisfies the homogencous system, cgs. 2.42. For this rcason, they may be observed for
both fields s; and sy as well as in the general case, eqs. 2.38. Thus, change in an
clementary volume is a typical property of longitudinal waves. As will be shown later,
the second type of motion (rotation) is absent for these waves.

2. The wave associated with the field s; Next, assume that the displacement
field is described by eqs. 2.41,1.e., s =sy and

divs=0 (2.60)

Then, the equation for displacement, 2.35, becomes

o2 1 0?
s = pa—tj or Vis = > (2.61)

v A
. 2 Ot?

where

Cs =4/~ (2.62)

14
Thus, we have again arrived at a wave equation that characterizes propagation of waves
with velocity ¢;. An example of such a wave is the torsional wave in a thin bar (Chapter

1), and its velocity is still defined by eq. 2.62. These waves are accompanied by rotation
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of elementary volumes, and for this reason they are called rotational or shear waves. The
last term is used because rotation is caused by shear forces. It is obvious that velocities
of longitudinal and shear waves depend on the same clastic parameters, namely F and

o, as well as on density p. Taking into account eq. 2.29, we have

IO
2(1+0)p’

Cs 1-2¢

o= /2(1 2 (2.64)
Cs H 1

== = 2.65
a VAi+2u \/2+)\/u (2.65)

Since A > 0 and p > 0, we see that the velocity of shear waves is always smaller

cs = (2.63)

and the ratio of velocity is

or

than that of longitudinal waves, ¢, < ¢. Because of this, the former are also called
S (secondary) waves, and they arrive after the longitudinal P (primary) waves. As
follows from eq. 2.65,

1
0<¢ < —q (2.66)

V2

Now let us describe types of motion and deformation that can be caused by shear waves,
and, thercfore, obey eq. 2.60. By definition, this wave does not produce compression
or expansion of an elementary volume; i.e., such deformation is impossible for shear
waves. Also translation and a pure shear alone cannot describe the displacement field
of these waves. However, they can contribute to the field s, along with rotation of
an elementary volume (Appendix D). As is clearly seen from Fig. 2.2a, the strains

associated with rotation are

ou v
27— A = 2.
7 y and it (2.67)

The presence of the minus sign in the first equation is related to the fact that angle ~

is positive, but du/0y < 0. By definition, we have

curl s—a—v—a—u—Q
2z _ax ag/_ 77



96 CHAPTER 2. BASIC EQUATIONS OF ELASTIC WAVES

b
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Figure 2.2: (a) Rotation of elementary volume (b,c) Pure shear and translation of
clementary volume (d) Simple shear as superposition of pure shear, translation, and

rotation

while dilatation is equal to zero. Thus, rotation is a characteristic of shear waves, i.e.,
they cannot exist without rotation of elementary volumes of a medium. By analogy
with longitudinal waves it is possible to perform one generalization and represent the

displacement field of shear waves, as
s =8, + Sg (2.68)

Here s, is the displacement field due to rotation, while sy is associated with translation
and pure shear. Of course, one or both of them may be absent. Taking into account eqs.
2.42, we obtain:

curl s = curl s, (2.69)
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We use this equality in order to express curl s, in terms of stresses. Let us consider
a so-called simple shear (Appendix D). In this case, as is illustrated in Fig. 2.2b,c,d,
a shear wave involves an elementary volume in both types of motion (translation and
rotation), as well as deformation of the pure shear. Since the displacement s has only

one component u(y), we have:

ou
l,s=——=— 2.70
curl,s = -7 = =7 (2.70)
On the other hand, in accordance with Hooke’s law
~Ou  Ov 1 Ju

czy_@+%:ﬁ71y:@’ because v =10

Therefore, eq. 2.70 gives
1
curl,s = — — 74y (2.71)
1

It is easy to generalize this result for a three-dimensional case. For instance, if there is

rotation of an elementary volume around the z— and y-axes, we have
1
curl,s = ——7,,, curlys = ——7,, (2.72)
o "
Multiplication of eqs. 2.71 and 2.72 by the corresponding unit vectors and then a sum-

mation yield
curl s = —%(’Tyzi + Ty2J + Tayk) (2.73)
The vector
W =710+ 7.5+ 15k (2.74)

is formed with the help of the nondiagonal elements of the stress tensor, and it can be
treated as the density of vortexes of field s. Thus, the system of equations of the

displacement field s, which accompanics shear waves, has the form
1
curl s = ——W, divs =0 (2.75)
7

3. General case We have demonstrated that in a homogeneous medium, either
longitudinal or shear waves may exist. The more general case is also possible, when the

system of equations for the displacement field s is

1
curl 8 = —;(Tyzi + Ta2J + Tayk) (2.76)



98 CHAPTER 2. BASIC EQUATIONS OF ELASTIC WAVES

and
. 1
divs = W(TM + Tyy + T22) (2.77)

Therefore propagation of a wave associated with this ficld s may cause both types of
motion and deformation, namely: a. translation, b. rotation, c. pure shear, and d.
compression (expansion).

It turns out that the velocity of propagation of these waves is smaller than that of
shear waves. This may be related to the fact that waves produce different types of motion
and deformation. The bending waves considered in Chapter 1, is an example of this type
of wave, as are Rayleigh waves, which will be studied later. Previously, we represented
the total field as a sum: s =s; + 82 + 8¢. In general, s1,s,, and sy are related to each
other and describe one wave, propagating with the same velocity. However, there is one
obvious case in which longitudinal and shear waves exist simultaneously. Of course, these
independent waves travel with different velocities, ¢; and ¢,. Later we will demonstrate
that within some range of distances from the source, the field 8y may also describe some
wave disturbance (Laplace motion).

Boundary conditions

Since eq. 2.35 is valid only at regular points of a medium, at interfaces between media
with different elastic parameters this equation must be replaced by boundary conditions.
They characterize the behavior of forces and displacement s at points of such an
interface. For simplicity, suppose that the latter is the plane XOY, ie., z = 0.
Also, we imply that elastic media are welded at the surface of their contact. Then the
tangential and normal components of displacement have to be continuous functions at

points of the boundary:

sV =5 or

U = Uy, U] = Vg, Wy = Wo at z=0 (2.78)

Besides, the normal and shear stresses acting on each element of the boundary are also

continuous functions:

SO

z zz

7 =7 7 = &) (2.79)

zz) yz yz

These equalities follow from Newton’s second law describing translation and rotation.

If eqs. 2.79 were invalid, either the linear or angular acceleration, or both, would be
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infinitely large, which, of course, is impossible. Taking into account the relationship

between stress and strain, eqs. 2.79 can be also written in the form:

\O, + 2u1% — MOy + 2u2%
0z 0z
(?ul 0’LU1 o OuQ a’UJQ
" (a * ax> = (a o ) (2.80)

ovy N own Ovg n Owy
A —_— = [l - —_—
M\az "oy ) T\ 8 T oy
where © =div s is dilatation. Thus, eqs. 2.78 and 2.80 allow us to formulate boundary
conditions in terms of displacement and its derivatives. It is useful to describe boundary
conditions for three special cases.

Case one: free interface In order to provide continuity of stresses at such a
boundary, they have to be equal to zero at its points:

Toz — 07 Tyez = O, Toy = 0 at z2=0 (281)

Eqs. 2.81 represent boundary conditions at the free surface. However, displacement
components are not defined at this surface. Note that if instead of the solid there is a
fluid, eqgs. 2.79 are simplified and we have

since shear stresses arc absent.
Case two: ideally rigid boundary By definition, particles belonging to this
interface cannot move and, correspondingly, all components of the displacement are equal

to zero:
u =0, v=0, w=0 at z2=0 (2.83)

Case three: boundary between solid and fluid A slippage may occur along
such an interface and, therefore, only the normal component of displacement has to be
continuous. Since shear stresses are absent in the fluid, they are equal to zero at points

of the interface. The normal stress is a continuous function. This gives
W1, = Way, = Télz) =0, 7 =73 (2.84)

As before, index “1” corresponds to an elastic medium.
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Boundary value problem

Boundary conditions, eqs. 2.78 and 2.79, can be treated as a surface analogy of the
differential equation for displacement field s. From the physical point of view, it is
clear that an infinite number of functions satisfy eq. 2.35 and these conditions. In fact,
changing the type of primary source and its position, we obtain different wavefields, but
each of them obeys eq. 2.35 and sets 2.78 and 2.79. In order to remove this ambiguity,
we need additional information, which can be derived from the theorem of uniqueness.
In other words, this allows us to formulate the boundary value problem. By analogy with
the case of an acoustic medium (Part I), it is possible to show that the wave fields are
uniquely defined, provided that they satisfy a certain set of conditions. Let us assume
that the multilayered medium with homogeneous layers is bounded by some surface Sy
and surface S, at infinity. It turns out that a solution of the boundary problem is
unique if it obeys

1. The initial condition.

2. Eq. 2.35 for displacement ficld s at regular points.

3. Boundary conditions at surfaces Sy, and S..

4. Conditions 2.78 and 2.79 at interfaces.

The initial condition implies a knowledge of wavefields at all points of a medium
at some instant ¢t = 0. Usually we assume that the wavefield is absent at the initial
moment. The behavior of a wave at points of surface S, corresponds to the outgoing
spherical wave, so that it satisfies the Sommerfeld condition (Part II). As far as surface
So is concerned, information about wave behavior at its points can be formulated in
different ways. First, suppose that surface Sy surrounds the primary source, and it
is located at its vicinity. In such a case, we usually know stresses at points of S; as
functions of time. Instead of this condition one can imagine that the force F(t) is given
at some point or that several forces arc specified at different points of a medium. In
particular, distribution of external forces is often known at the free surface. Of course,
it is possible to introduce different conditions at surface Sy that also describe strains as
well as the displacement field.

Scalar and vector potentials

In accordance with eqs. 2.39, displacement field s is, in general, a sum of two fields, s;
and 89, which obey egs. 2.40 and 2.41, respectively. By analogy with the acoustic and

electromagnetic fields, we introduce two functions that may often simplify wave studies.



2.1. EQUATIONS OF MOTION OF AN ELEMENTARY VOLUME 101

As usual, we deal with a layered medium. In each layer, longitudinal and shear waves
propagate with constant velocities. Consider again three different cases.

Case one: dilatational waves From the equation curl s; = 0, it follows that
the vector field s; can be described with the help of the scalar potential U only:

sy =grad U (2.85)

In order to obtain the equation for U, we substitute eq. 2.85 into eq. 2.45. This gives

1 02U 1 90°U
rad | VU — 5 —— | =0 or VU-S——=C 2.86
& ( ¢ ot? ) ¢ ot? (2.86)
Here (' is some constant. In accordance with eq. 2.85, there is an infinite number of
functions U that describe the same displacement field s;. Taking this into account,
we choose such U that the constant C is equal to zero. Then, the scalar potential U
also obeys the wave equation
1 02U
VU = 5—— 2.87
e o? (2:87)
Certainly, a transition from the vector field s; to the scalar one may greatly simplify
a wave study, even when displacement has a single component. Knowing the function
U, we can calculate displacement s and then, making use of Hooke’s law, determine
stresses.
Case two: shear waves Taking into account that dilatation for shear waves is
equal to zero (div s, = 0), we have

sy = curl A, (2.88)

where A is the vector potential. It is obvious that there is an infinite number of functions
A that describe the same field s;. Substituting eq. 2.88 into eq. 2.61 and applying the
same approach as in the first case, we obtain

L 5
VA = ——— (2.89)

The use of the vector-potential A instead of s, is not so obvious, because they are both
vectors. However, in some cases it is sufficient to deal only with the single component
of A. Moreover, this component may be directed along the Cartesian axis, which brings

additional simplification. In general, a reflection of the longitudinal waves causes an
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appearance of shear waves and vice versa. For this reason, in order to satisfy boundary
conditions it is necessary to use both potentials.
Case three In general, when displacement s is a sum of s; and s3, we obviously

have
s =grad U + curl A (2.90)

In essence, we have alrcady demonstrated that potentials obey wave equations. The same
result can be derived differently. To show this, we rewrite eq. 2.35 as

. 0?
/va(sl + Sz) + (/\ + /J,)grad diV(Sl + 52) = [)w(sl + SQ)
or
2
uV2(sy + s2) + (A + pgrad div s, = pﬁ(sl + s9) (2.91)

since div s, = 0. Taking into account that curl curl s; = grad div s; — V?s; and

curl s; =0, we have

8251

LT P

02
F Vs — p2 = (2.92)

A+ 24) V2 i
(A+2u)V's 50

This result is trivial, since both fields s; and sy satisfy wave equations. Substitution

of eq. 2.90 into cq. 2.92 gives

. o0*U O*A
grad | (A 4 2u) VU — pﬁ] + curl [MVQA ~ P ] =0 (2.93)

Because there is an infinite number of pair of functions U and A that describe the
same field s, we can always choose the functions U and A that obey wave equations

2.45 and 2.61, respectively. [t is clear that eq. 2.92 is satisfied.

2.2 Kinetic and potential energy and its flux

In studying wave propagation in acoustic media, we demonstrated that the density of

kinetic and potential energy is defined as (Part I):

M
5 div?s, (2.94)

ey = §pv2 and Uy =
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respectively. Here p is density of a medium, v is particle velocity, v = 0s/90t, and
M is the bulk modulus. Therefore, the total mechanical energy in an arbitrary volume

is

W(t) = % /(p v? 4+ M div’s) dV (2.93)
v
In general, three factors cause a change in this energy, namely
1. The presence of external (primary) sources of waves inside volume V.
2. Transformation of mechanical energy W into heat Q).
3. The flux of this energy through a surface surrounding the volume.

Then, in accordance with the principle of conservation of energy, we have

a—W:L—Q—j[N.ds, (2.96)
S

ot
where L is an amount of the kinetic and potential energy produced by external sources
per unit of time and @ is an amount of the mechanical energy that is transformed into

heat, also per unit of time. Finally
% N - dS (2.97)
s

is called the energy flux, and it defines an amount of energy passing through the closed
surface S during one second. Correspondingly, the vector N is the density of the flux,
and it plays the same role as the Poynting vector for electromagnetic fields or the current
density j for electric current. This shows that the magnitude of IN equals the amount
of energy passing through an elementary surface, dS, with unit of area per unit of time.
It is essential that this surface is perpendicular to vector N. In SI units we have

__Jjoule  watt

[N} =

Since vector dS in eq. 2.97 is directed away from the volume, the positive value of the

m2s m2

flux means that energy leaves the volume. In contrast, energy increases inside the volume
if the flux is negative. In general, vector N has a different magnitude and direction at
different points of a closed surface S. For instance, at some points it can be directed
inward, whereas at other points it is directed outward or is parallel to the surface. As

was shown in Part I, in an acoustic medium

N=Pv, (2.98)
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where P is pressure caused by a wave. Thus, vector N is equal to the product of
the additional pressure and the particle velocity. For example, if pressure I’ is positive
(compression), vectors v and N have the same direction. In contrast, at points where
P is negative (expansion), these vectors have opposite directions. Vector N always
shows the direction in which the wave moves. We can say that vector IN allows us to
visualize wave propagation as transmission of energy. For instance, assuming that the
primary sources are absent inside the volume, L = 0, and the process of propagation is
adiabatic, Q@ = 0, eq. 2.96 becomes

A7 *
8;1 = 7{ N -dS (2.99)
5

In this case, any change of energy W can only be caused by its flux.

Elastic potential

By analogy with eq. 2.98, we derive an expression for vector N in an elastic medium.
Since a distribution of forces in this medium is characterized by the stress tensor T,, it
is natural to expect that in eq. 2.98 the additional pressure P has to be replaced by
T,, which gives

N=T.,v

In order to prove this relationship we assume that surface S surrounding volume V
is subjected to action of surface forces. For simplicity, the influence of volume forces
is neglected. Forces applied to surface S can be treated as external, and the work

produced by them is equal to

A= %t(q) -s(q)dS (2.100)

Here ¢ is the point on surface S and s(gq) is its displacement:

s(g) =u(q)i+v(g) j+w(g) k (2.101)
By definition, the traction vector t(g) is the force per unit of arca and

t(g) =t,i+t,j+t.k (2.102)
In the previous section we applied the relations

t, =X n, ty=Y'n, {,=Z-n, (2.103)
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where n is the unit vector normal to the surface element,
n = cos(n, z) i+ cos(n,y) j + cos(n, 2) k, (2.104)
and scalar components of vectors X, Y, and Z are elements of the stress tensor:
X = 7ot 7ayi 7ok, Y =104 7,04m.k 2 =145k (2.105)
Taking into account eq. 2.103, we have

A:?{(Xu—FY v+Z w)-dS (2.106)
s

Therefore, the rate at which the surface forces perform the work is equal to

A ou ov ow
o= f{ <X8t Y5+ Zat> .dS (2.107)
5

Here it is appropriate to make two comments:
1. Taking derivatives with respect to time, we neglected higher-order terms. For
instance
0 ou X
E(XU) =X m + ik
Since u < 1 and 0X/dt < 1, their product is neglected.
2. Tt is obvious that 8A4/0¢ can be treated as a change of the work per unit time,
because
dA = %& if 0t =1s
ot
This work produces a change in kinetic and potential energy inside the volume during the
same time, (6t =1 s). The rate of change of both types of energy can be represented

in terms of volume integrals:

8E . / 860 c?U _ " 8u0

— —dV and — = | —dV 2.108

ot at ot ot ( )
1% v

Here eg(p) and wp(p) are densities of kinetic and potential energy at any point p

inside an elastic medium. The function eg(p) is known, because every elementary

volume moves like a rigid body and, therefore,

1, p[fouN? @2 @2
eg—2pv—2[<at> +(at g (2.109)
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To derive an expression for density ug, which characterizes a deformation, we proceed
from cq. 2.107, which can be written as

dA = dE + dU (2.110)

Note that the work of surface forces produces mechanical energy, which arrives inside the

volume as the flux of vector Y. This means that

dA = — %Y' ds if  6t=1s (2.111)
S

As follows from egs. 2.108 and 2.109,

dE = /p(uu+w+ww)dv, (2.112)
v
where
. Ou and . O%u
U= — an U= —
Y RTE

Next we also represent the work dA in terms of the volume integral. Taking into

account eq. 2.106 and the Gauss formula, we have

. ou . v . ow . o
dA 7/ |:le (XE> + div <Ya) + div (ZE>} dvVif dt=1s (2.113)
Vv

The use of equality

div (pa) = p diva+a-grad ¢ (2.114)
gives
ou . ov . Jw . .
dA = / <E div X + I divY + En div Z> av + (2.115)
7
ou v ow ,
/(X - grad E+Y - grad E_'—Z - grad E) dV

Thus, we expressed the work of surface forces per unit of time as a sum of two volume

integrals. It turns out that the first integral in eq. 2.114 characterizes a change of kinetic
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energy during the same time 6t. In fact, using equations of motion derived in the previous

section,
div X = pu, divY = pv, div Z = pw,
and eq. 2.112, we find that
dE = / (i divX 40 div Y + 1@ divZ) v
v

Thus, eq. 2.115 can be rewritten as

dA—dE:/(X S Vu+Y - VO+Z - vm)dv (2.116)
‘/
Comparison with eq. 2.110 shows that the integrand in this equality can be treated as a

change of potential energy density per unit of time:

dug = %dt and  dt=1s

Correspondingly, we have

. . . du ou ou
duy = (X - Vu+Y - Vo+2Z - Vw)dt— [TM%—I—sza—y—l—Tm%
+7 Ou —I—T 00 +T o +T au+7 O +T 812) dt

Since the stress tensor is symmetrical, we have
dug = Typpdeg, + Tyydeyy + Toode,, + Tyedey, + Tyodey, + Ty dey, (2.117)

This cquation demonstrates that the density of potential energy wp is a function of

strains, and it permits us to represent the right side of eq. 2.117 as

8u0 3u0 8u0 aUO 8’&0 8’&0
dupg = ——dey, + ——de —de,, + ——dey, + ——dey, + ——de,, 2.118
Ho Oe,, + Oey, Cuy T de., + Oey, Cay + dey., Cuz + Oe,, ¢ ( )

From the last two equations, we obtain

8u0 N 8u0 _ aUO

s Tyy = s Tz =
€y W dey, de,,’

(2.119)

Tex =
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o 8u0 - a’LL() - au[)

Toy — Tyz — Tyy =
Ty aexy ) yz aeyz ) xz aexz

Thus, the stresses are expressed in terms of derivatives of the function wug, which is often
called the elastic potential (Appendix E). At the beginning we neglected volume forces.
It is casy to show that our results remain valid in a more general casc when these forces
are taken into account.

Flux density Y

As follows from eqs. 2.107 and 2.111, we have

f(memzw) ~dS:—/N‘dS
S 5

Therefore, it is natural to assume that

N=_ (Xu Yoot zw) = N,i+ N,j+ N.k, (2.120)
where
N, = —Tpptl — Tyzb — T LW, N, = —Tyzit — Tyyij — Tyzw (2.121)
N, = —71.,u — Tyz’i} — TLW

The latter represents the product of the stress tensor and the particle velocity
N=-T,v (2.122)

For illustration, consider three cases. First, supposc that a wave propagates through a

homogeneous fluid. Then
Tazr = Tyy = Tax = — P and Tay = Tge = Tyz = 0
Correspondingly
N,=Pi, N,=Pb,, N,=Pw and N=DPv,
which coincides with eq. 2.98. Second, assume that shear stresses are absent. This gives
N, = —Tm.d, N, = —Tyyz}, N, = —Tzzlb
and

Ny = —Tpui—T1yvj— 1wk, (2.123)
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which describes the flux of energy in the case of longitudinal waves.

Finally, if 7,4, = 7yy = 7., we have
Ny = —Tyav — Tpw, Ny = —Tyv — Ty w, N, = =70 — Tyv

For instance, when torsional waves propagate along the bar, we have 7,, = 0 and
w = 0. Then

N, =N, =0, but N, = —T,,u— Tyzij,
and vector N is directed along the bar axis =z.
2.3 Strain, stress, and Hooke’s law in the curvilinear orthogonal system of
coordinates

As we know, forces applied to an elastic body cause a change in its shape and size, and
in order to determine the changes it is necessary to find the length of every line after
deformation. Our goal is to evaluate the distance between two points located close to
each other and find its expression in different systems of coordinates.

Cartesian coordinates

Consider two arbitrary points in a medium,
P (1‘71/72:) a“nd Q (Ihylazl)z

and suppose that the distance between them, r, is very small, Fig. 2.3. Let us introduce
dircctional cosines, [, m, and n of the line PQ. By dcfinition we have

rp — X

, LI B2 E_y, (2.124)
T r T

Correspondingly, coordinates of point ¢ are
rL =z +Ir, m=y+mr, zn=z+nr (2.125)
After deformation, the particle that was at point P comes to point Pi(z',y,2 ), where

f=z+ulzyz2), y=y+tulzyz) 2 =z+wsyz2) (2.126)
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Figure 2.3: Relative change of line length

and u,v, and w are scalar components of displacement. At the same time the particle
at point @ moves at point @, (z],y,;,2,). Here

Ty =z I+, y, =y +mr + o 2 =24 nr 4w (2.127)

Taking into account that displacement is a continuous function of coordinates, we expand

each scalar component, u;, v, and w,, in the Taylor series. Discarding all of its terms
cxcept the lincar ones, we get

w=u+r 8ul+3um+8un —u+r-grad u
e dxr Oy 0z ) &

ov, Ov v
vp=v+7r <%l+a—ym+%n> =v+r-grad v (2.128)

a—wl—l—a—wm+a—wn =w+r-grad w
ox Jy 0z N &

In deriving this system of equations, we used the fact that coordinates of points P and
@ differ by Ir, mr, and nr, respectively. Thus, coordinates of point @ are

/ Sl tus du . Ju n ou
o, =z+Ilr+u+r|{ —l+—m+—n
! or Oy 0z

: d Qv 0
y=y+mr+uv+r (&:l + a:/m + aZn) (2.129)
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n=z4nr+wtr @Z—F@m—l—@n
te ox Ay dz

For the distance r; between points P, and ();, we have
rn=r(l+e) =z —2)+ @ —y) +(z—2)]" (2.130)

Here e is a relative change in the distance between points P and ). Then substitution
of 2.129 into 2.130 gives

du du  dul® [ 0v A )’
rl—r{[l<1+a—x>+ma—y+n§] —I—[Z%—I—m(l—i——y)—o—n—} (2.131)

Since 24+ m?4+n®>=1 and the terms that contain the product of derivatives are

small, we obtain:

rp=r(1+ epnl’® + eyme +e,,n? + ey + exnl + egylm), (2.132)
where
ou v ow
Cox = 5.0 Cyy = oy €2 = 5,0
8v+8w 8w+8u 8u+8v
€pp = — + —, €y = — + —, Cpy = — + —
VT 0y oyt T On 0 92 oy ox

are components of the strain tensor (Appendix D). In general, they vary from point to

point. As follows from eq. 2.132, a relative change in the distance of the short line is
e=e.l°+ cyme + e,,n® + egunl + CyaMN + Cgylm (2.133)

and it is defined by the strain components. Also, we can treat strains as coefficients of
terms in eq. 2.132 that contain the square of directional cosines or their product. Taking
this fact into account, we find a relationship between r; and r at different systems of

coordinates. This will permit us to determine expressions for strains.



112 CHAPTER 2. BASIQ EQUATIONS OF ELASTIC WAVES

Curvilinear orthogonal system of coordinates

To facilitate our study of strains, it is useful to recall the main features of these systems
(Part T). We start from the simplest Cartesian coordinates, where the position of any

point is defined as
xTr = Cl, y = CQ, z = 03, (2134)

where Cp, C5, and (3 are constants. From the geometric point of view, each of
these equalities describes a plane perpendicular to the corresponding coordinate axis. For
instance, © = | means a plane that is parallel to plane YOZ. Varying C; we arrive at
a family of planes that are all perpendicular to the z-axis. Similarly, equations y = Cy
and z = (3 characterize families of planes that are parallel to planes XOZ and XOY,
respectively. These three families represent coordinate planes that are perpendicular to
each other. By definition, at every coordinate plane one coordinate (z, y, or 2z) is
constant, while other two vary. Note that (a) there are always three coordinate planes
that pass through the same point, and their intersection determines the position of this
point; and (b) planes YOZ, XOZ, and XOY belong to corresponding families of the
coordinate plancs.

There is another approach that allows us to determine the point’s location. Consider
first planes * =« and y = . Their intersection gives a straight line parallel to the
z-axis. Changing « or [ or both of them, we obtain a family of straight lines that
are parallel to each other. In the same manner, the intersection of planes * = o« and
z=r, aswellasof y =/ and z =1, produces two other families of lines, which are
called coordinate lines. It is obvious that three coordinate lines pass through each point
and form direct angles with each other. Along each line, two coordinates — for instance,
y and z — remain constant, but one changes. The axes of coordinates passing through
origin O are examples of these lines. Thus, at each point three coordinate lines, =z, y,
and z, are normal to the corresponding coordinate planes, and the intersection of such
lines defines the position of the point. Because coordinate lines are straight, expressions
of grad, div, curl, and laplacian in the Cartesian system are greatly simplified. First,

elementary displacement along coordinate lines is equal to a change of coordinates:
dl, =dz, dly=dy, dl,=dxz (2.135)

Respectively, elementary areas of coordinate planes that are formed by coordinate lines

are

dS,; = dydz, dSy = dxdz, dS, = dxdy (2.136)
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and the elementary volume surrounded by elements of coordinate planes is
dV =dzx dy dz (2.137)
Also, if the elementary vector ds is arbitrarily oriented, then its magnitude is equal to
|ds| = (dz? + dy® + dz*)"/?,

where dz, dy, and dz are its scalar projections on the coordinate lines. As follows
from the vector analysis (Part I),

1 n [
Ve = Av%apds VM = V‘/Mod& VXMZEE%M-dl (2.138)

Here n is the unit vector showing a direction of vortexes. Then, replacing the integration

in egs. 2.138 by a differentiation and using eqs. 2.135 2.137, we obtain

Jp. Op, Op . oM, oM, OM,
do=2% K div M = v
grad @ = 5. H_@y'] Ep v oz oy | o
ik
o 9 0
M=| 2 2 < 2.1
cur dr Oy Oz |’ (2.139)
M, M, M.
2 2
vip= 0 P00 v g

0x?  Oy? 022

Next, we discuss a more general case in which coordinate surfaces are not usually planes,
and so the coordinate lines can be curvilinear. However, they are still perpendicular to
each other. Suppose that «, 3, and  are coordinates of a point and their relationships

with Cartesian coordinates are

f1(1'7y72) = a, f?(I7ya Z) = ﬂv f3(I7y7Z) =7 (2140)

For instance, the function fi(x,y,z) = a describes the coordinate surface, where one
coordinate, «, is constant, but two others, F and -+, vary. In accordance with eqs.
2.140, we have three families of coordinate surfaces, and their intersection forms three
familics of coordinate lines: I, Ig, and [,. Unlike in the Cartesian system, these lines

are in general curvilinear, but at each point they form direct angles. As before, along
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each coordinate line only one coordinate varies, but two others are constant. This fact
is obvious, since every line is the result of an intersection of two coordinate surfaces —
for instance, (G = const and v = const. It is also convenicent to introduce three
unit vectors, 1,, ,ig, and i,, each of which defines the direction of the coordinate
line. Thus, we have three families of coordinate surfaces, as well as three families of
coordinate lines, and both of these groups equally characterize the position of a point.
By definition, every coordinate surface can be treated as the surface of equal values of
the corresponding coordinate. Therefore, the gradient of the latter is perpendicular to
this surface, i.e., it is directed along the coordinate line. Thus means that

do

Va=|Va| i, = %la;

V3 =|Vp

. dp. B . dy,
15_6”[3157 Vv = |Vy| 17—6”717, (2.141)

where dl,, dlg, and dl, are elementary displacements along coordinate lines. Taking
into account that coordinate lines are usually curvilinear, these displacements do not

coincide with a change of coordinates, and unlike in the Cartesian system, we have
dly, = hoda, dlg = hgdg, dl, = hydy (2.142)

Here h,, hg, and h. are called the metric coeflicients and, as a rule, they are functions
of coordinates of the point. From egs. 2.141 and 2.142, we have

1 da\®  [(0a\?  [0a)®

(o) () (&) 2149
1 (9B\*, [(9B\* [9B\? 1 (N o\, (ov)®
@‘(%)*(@)*(@7 ?z‘(%)*(a@%(%)

It is assumed that within elementary displacements, eqs. 2.142, metric coefficients:  h,,
hg, and h, are constants. Since the angles between unit vectors are equal to 7/2, eqs.
2.141 give

da 0B  Oa 98  Oa 08

o — 4 — =0,

oz Or Oy dy 0Oz 0z

dody Do dy Dady_ 080y 050y 0507 _

0:r8x+0y(?y dz Oz ’ dr oz Oy Oy Oz 82_0

In accordance with eqs. 2.142, elementary areas of coordinate surfaces are

Sy = dlg dl, = hg h, df dv, dSs = dly dl, = h hy da dry, (2.144)
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dSy = dly dlg = hy hg do d,

and the elementary volume formed by coordinate surfaces is equal to
dV = hy hg by do df dy (2.145)

It is obvious that the length of an elementary displacement, ds, arbitrarily oriented

with respect to coordinate lines, is defined as
ds® = dIf, + di} + di’ (2.146)

Ag was demonstrated in Part I, we have:

1 0p, 1 dyp, 1 9y,
Ve = haat T 08" TR oy

. 1 a d 0
div M = hhs %(hﬂhwfwa) + %(hahwﬂffg) + %(llahﬁﬁfy)
heie hgisz hyl,
curl M = ! 0 9 0 and

T hohshy | 8a 83 By
hoMy hsMs h,M,

9 1 0 [ hgh, Op 0 [ heh, Op 0 [ hohg Op
_ o 9oy 9 ad 2.14
V= hahy 00\ he 0) Ta3 \ Ty 98) "oy \hy 0y (2.147)

Usually metric coefficients are derived from the geometry of the coordinate system. For

instance, in the cylindrical system of coordinates r, ¢, and 2z, they are
he =1, he=r and h, =1, (2.148)
whereas in the spherical system R, #, and ¢ we have

hr=1, he =R and h, = Rsin@ (2.149)
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Strain in the curvilinear orthogonal system of coordinates: «, 5, and v

As was pointed out earlier, in order to obtain expressions for strains we have to derive
eq. 2.132 in the system of coordinates «, 5, and ~. Consider two neighboring points,
Pla,3,7v) and Q («+a, B+Db, y+c¢), situated at a small distance r = P@Q} from each
other. Suppose that [, m, and n are directional cosines of vector PQ at point P,

ic.,
dl dl dl
[=—2, m=—2 n=— (2.150)
r r T
Using eqs. 2.142, we also have
he hsb he
] = @ m =5 n=2% (2.151)
r r r
since
da = a, dg =10 dy=c¢
whence
lr mr nr
=i b=— = 2.152
“=- ) by ¢ , (2.152)

The equations above allow us to represent a change of coordinates of point P in terms
of metric coefficients, directional cosines and distance r. Because of deformation, points
P and ) move at points P, and (), respectively, Fig. 2.3. Let us assume that
coordinates of point P arc

a+ ¢, B+, v+€

In order to determine coordinates of point @, we take into account the fact that ¢,
7, and & are functions of «, 3, and . Correspondingly, in the linear approximation,
coordinates of point (J; are equal to

a—l—a—l—(—l—a%—&-b—g—l— % (2.133)
op
on on 877 o€ o€
S+b — +b—+c— — 4+ b—=+c=
Totntagy thagteg Yot EtagZ aﬂJr
Therefore, the difference in corresponding coordinates of points I’ and @ is
3] 7] 9]
(i =a <1+<> H’aé C (2.154)
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an on an 0{ 0¢
=a—+b|1+— — =a— b— 1+ =
i a8a+ ( +88>+ (97 3 + 36+ +8’y

3 . . 1 7
To evaluate the distance ri = I (21, we have to find metric coefficients h, , hg , and

1 . . . . . .
h., at point Py. Again in the linear approximation we have:

8ha 8ha Ohg,

= hy + + :
gt g e
Ohg Ohg _
hy, = h, + CA + , 2.155
8 <] g C ) 377 5 3f ( )
oh oh ~
hy, = h, + ”+
o Py e g

By definition, projections of vector P; Q; on the coordinate lines at point P, are

(r1)a = hla {y, (r)s = h’ﬂ s (r1), = h; & (2.156)

Performing multiplications on the right side of this set, we have to discard from our
approximation terms of the second and higher orders with respect to (, n, and &, as

well as their derivatives. For instance, component (r)), becomes

8ha Ohg Ohg ¢ ¢
(r)e = (h +C ac +7 n +& 7€ >[ (1—}——)—}—1)%—1— —] (2.157)

¢ ¢ ¢ Ohy Ohy
p— 1 _ S -
ah“(+0a>+bh“06+ ha 7JrC +n(9ﬁ a 8“,/

Taking into account that components of vector PPy,
PP, = uqi, + ugig + u, iy,
at point P are related to {, n, and £ as
Ug = hol, ug = hgn, Uy = hy§,

and making use of eqs. 2.152, we have

¢ ¢ Oha 1 Ohy & Ohy he OC h 8(
. — J 1 > 2 _r = Y — =
() = [[ ( + oo h, Ou + he 08 + he O m hg 0f h7 87
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1 dug, ohyt ., Ohy' , _1,-10hg
=r [z <1+— + — b ug o h% +ughy'hy! o5 (2.158)

Y25 P

— - ha ha a _ hOt _
+ u’Yh‘alh"/lh—’y> +m h—[g%(halua) +n h——(halua)]

Finally, we obtain

_, 0u, 1.y Ohyg . Ohy,
(r)a=7 [l (1 + halg + halhﬂlulgﬁ + halhyluw r, > (2.159)
he O he O
Do 9 gy + e Lty
g )+ g o ()|

By analogy,

10U 1,
(r1), =r [m (1 +h'51—85ﬁ —I—hﬂlhw1 g +hy hy U I
hg -1 hs 9 4
h { —(h 2.160
g S 5 )+ 5 05 (2.160)
h h.,
and  (r)y =7 {n/ (1 + h;l—a;; + h;lfglua—aaoj + hglh;luﬁahﬁ/>
hy @ hy —1
+1 . 8O[(hAY Uy) +mhﬁ 8/3(h7 Uy)
Let e be a relative extension of the linear element PQ, i.e.,
(2.161)

ri=r (1 +e)* = (r); + (r)g + ()3
Substituting eqs. 2.159 and 2.160 into eq. 2.161 and discarding squares and products of

Uq, Ug, and u,, we obtain

(1+e)? =1 +m?+n®+20u0 + 2mPegs + 2n°e,, + (2.162)

2mnegy + 2nleqay + 2lmeqs



2.3 STRAIN, STRESS, AND HOOKE’'S LAW IN THE CURVILINEAR...

Here
1 Ou, ug Ohg, Uy

Coa = he 8 hohg OB

e = L0 Ua Ohy s
"= hy 0y hqh, Oa

h, O

Since

hohy 0y

Oy
hsh, OB

_ha 9 (ua) By O (U,
0T oy \ha) hada \R, ) 0T

24 m?+n? =1, after taking a square root cq. 2.162 becomes

119

by LOus w0y Oh
P hg 05 hghy 0y ' hohy 0o
hy 0 (u, hg O [ug
= 2 (1) 2D (1) o
hs 0 he O

e (i)

€= ena I”+ epg M* + €y 1° + €5, MN + €04 nl + €05 ml,

which coincides with eq. 2.133. Coefficients

el)é()( ?

€8s,

€y

€8y:  €yas  €ap

T Ua
hg 08 \ I

(2.164)

are six components of the strain tensor in the curvilinear orthogonal system of coordi-

nates, and they were first derived by Lame.

and spherical system of coordinates. As we already know, in the first system

a=r, =, and =z
Therefore
ou, 10u,  u,
= o ew_r&p—’—
10u, Ou, ou,

€ry =

€pr = — + =
LA ) 0z
In the spherical system R, 8, ¢

ho =1,

we have
1 au;;

0= R on

I
“0 = n\ o9

oL Our  Ouy Uy
"7 Rsing dp ' OR R’

9z

while ho=hy=1 and hg=r
ou,
€22 = 9z
ou, ~ Ou, u, 10u,
or’ e = oy r 1 Op
hg =R, hy = Rsinf,
1 Ouw U UR
2 —cotf+ —
‘¢ = Rsnbd 0p R R
1 8u€
— Uy cot, G) + m%,
Ouy ug 1 0ug

““F9R R R0

As an illustration, consider the cylindrical

(2.165)

(2.166)
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Hooke’s law

In the curvilinear orthogonal system of coordinates, angles between faces of an elementary
volume are equal to w/2, and they can be treated as planar faces. Correspondingly,
relationships between stresses and strains (Hooke’s law), derived in the Cartesian system
of coordinates, remain valid in the general case. Note that a difference of face areas of the
clementary volume is an order of magnitude smaller and in the limit it can be neglected.

As was shown earlier,

Ter = AO+2ue,, Tys = Heys
A O+ 2puey, Tow = M€y

=

<

<
I

A0+ 2ue,, Tay = Hery

<

i

w
I

Here © = div s is invariant. Therefore, we have

Taa = A O+ 200,  Tag=A O +2ue33, T4y =AO+2ue,, (2.167)

Tya = K €ya, Ty = HEBy, Tag = K €ap



Chapter 3

Elastic waves in a homogeneous

medium

We will first consider longitudinal and shear waves caused by spherical sources, and next
we will study waves caused by the action of a single force F(¢). Finally, we will discuss

propagation of planc waves in a homogencous medium.

3.1 Longitudinal spherical waves

First suppose that a longitudinal wave is caused by vibrations of a spherical shell having
a very small radius. Also, it is assumed that each point of the shell surface is subjected

to an action of force that has only the radial component and the same magnitude:
F(i) =74 S i, (3.1)

Here S is the surface area, 7y is the normal stress, and i, is the unit vector normal to
S. Because of stress variations caused by very small changes in the shell radius, a wave
arises and propagates through a homogeneous medium. It is obvious that a distribution
of wavefields that accompany the wave — namely, stresses, strains, displacement and
velocity of particles — possesses spherical symmetry. Taking this into account, we choose
a spherical system of coordinates with the origin at the source center and assume that
all fields depend on the coordinate R only and on time ¢.
Scalar potential

To determine wavefields, we use the scalar potential U related to displacement s

(Chapter 2):

s = grad U (3.2)

121
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U is also a function of 12 and ¢
U=U(R,1) (3.3)

At regular points, U satisfies the wave equation

1 9%°U
ct o’

S (3.5)
o

is the velocity of propagation of longitudinal waves. In addition, we have to describe the

ViU =

where

behavior of the potential on the shell surface and formulate initial conditions. Vibrations
of the source generate the outgoing wave, the magnitude of which decreases with distance
R and in the limit:

U(R,t) =0 if R—ooo (3.6)

This simply means that sources of waves are absent at infinity. The same behavior follows
if we imagine a spherical surface with a radius so large that the wave does not reach it
before or during the time of observation. Suppose that displacement of the shell surface

is the given function of time

sR(t)—{ 0 t<0

3o flat) t>0

Then, as follows from eq. 3.2, the boundary condition for the potential at points of the

shell surface can be represented as

AU { 0 <0 57)

R~ | so flat) t>0

Assume that Ry is the shell radius at rest. The wave was absent at each point of the

medium until the instant ¢ =0, when the source was turned on, that is,

oU

sgr(R,0)=0 or 3R = 0 for t<0 (3.8)

In accordance with Hooke’s law, the second derivative, 0*U(R,0)/0R?, also vanishes.

Note that the initial condition contains information about waves at infinity. Thus, the
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solution of the boundary value problem in terms of scalar potential should satisfy the
following conditions.
1. At regular points of the medium
1 60%°U

2
-2
v c ot?

2. At the surface of the source

aU—{ 0 =<0 if R=Ry+ sp(t)

OR | s flat) t>0
3. At the initial moment, the wavefield is absent inside the medium

OU(R,0)
——— =0 if R> Ry, t=0

OR 0
First, we solve the wave equation, which, in the spherical system of coordinates (Chapter

2), is

T 2
1i<R280)_ 18°U (39

RZOR\" OR) & or
since the potential depends on coordinate R only. To simplify its solution, we introduce
a new function: W = R U. Differentiation and multiplication by R? give

ou ow

20Y
RaR W+R8R

Therefore, eq. 3.9 becomes
PW 10w
OR2 ¢ of2

This equation was already derived in studying the propagation of waves along the bar

(Chapter 1). Its solution consists of two independent functions,

(B )

Correspondingly, for scalar potential we have

U(R,2) = %fl [m (t - g)] + %gl [m (t + C—}m 7 (3.10)



124 CHAPTER 3. ELASTIC WAVES IN A HOMOGENEQOUS MEDIUM

where A and B are constants. The second term at the right side of this equation does
not satisfy the initial condition, since it describes the wave traveling from infinity to the
source. For this recason, we let B =0, which gives

U(R.1) = % fi {al (t _ 5)} (3.11)

&

It is clear that U(R,t) describes the propagation of a wave away from the source at the
origin with the phase velocity ¢; and satisfies the wave equation and eq. 3.6. In order
to determine the unknown coefficient A and function f;, we use condition 3.7, which

is valid at points of the source surface. It follows from eq. 3.2 and eq. 3.11 that

U A R\l Aa R
sr(R,t) = R ﬁfl [(ll <ﬁ—c—l>]—%f1 {(ll (f—c—l>]>

where f' [a1 (t — R/¢;)] is the first derivative of the function with respect to its argument:

a1(t — R/c;). Now we make three assumptions. First, suppose that pulsations of the
source are characterized by very small displacement:

1. [sz(t)] < Ry

For this reason, in satisfying boundary condition 3.7, we approximately define the position
of the shell by the constant coordinate Ry. Correspondingly, displacement of the surface
point becomes:

sof(at) = — R% h [al (t - %)} j;: i [ (t— f—f)] (3.12)

Thus, the determination of unknowns is related to the solution of the differential equation.
To simplify this procedure, we also suppose that the second term on the right side of this

i W o ()

equation is relatively small,

ol (-

and that
R
3.0 t> =2
G
Then, instead of eq. 3.12, we obtain
A t
sof(at) = — 2filat) (3.13)

R
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The latter equality takes place if
ar =a,  filat) = f(at), and A= —R: s

Substitution of eq. 3.13 into eq. 3.11 gives an approximate expression for scalar potential:

U(R, 1) — —@ f {a (t - 5)} (3.14)

¢

It is obvious that the function U(R,¢) satisfics the wave equation and the condition
near the source. Since the function f [a(t — R/¢;)] and its derivatives are equal to zero
when the argument a(t — R/¢;) is negative, scalar potential U also obeys the initial
condition. Therefore, we have solved the boundary value problem. Eq. 3.14 describes
scalar potential in a homogeneous medium, provided that the spherical source has a very
small radius.
Equations for displacement, velocity of particles, and dilatation

Taking into account eq. 3.2, we have for the radial component of displacement spz

and for the velocity of radial displacement vy = sr(R, ¢) the following expressions:

sR(R,t):]Z—gQSOf[a <t—§)} +}i(2;]§0 af’ [a <t—§>] and (3.15)

R2 , IR R s0a® ,, R
7)R(R7t):ﬁ80(], f |:(l <tc—l>:| +Cl—Rf a t*c—l 5

while
59 = 5, =10 and Vg = Uy =

By definition, dilatation is equal to

) 1 0
f=divs= ﬁ@(RQSR) (316)
Performing a differentiation, we have
R a? R
f=—- —"2— "lalt-— 3.17
w2 021

At the same time,

curl s = curl grad U = 0,
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and, as we know, longitudinal waves do not cause rotation of an elementary volume,
regardless of its orientation.

Spherical wave

Let us emphasize again the fact that if the argument « (¢ — R/¢;) is negative, the
function f and its derivatives are equal to zero. Also, it is clear that distribution
of wavefields in space is defined by the single coordinate R. In other words, these
functions remain constant on the spherical surface with the center at the source. This
wave possesses spherical symmetry and, for this reason, it is called a spherical wave. The
displacement and velocity of particles have only the radial component perpendicular to
these surfaces, (R = const), and this fact reflects one of the features of longitudinal
(dilatational), waves. Suppose that the source surface changes its position during time
interval At:

0<t<At,

and we study the wave at some point located at distance R from the source. As follows

from eqs. 3.15, motion of particles is absent if

R

t< =

G
gince the argument is negative. Then, at instant ¢t = R/c¢;, the wave arrives simultane-
ously at all points having the same coordinate R, and we observe the wavefront. Within

the time interval

R R
<t < AL
&} Cy

particles of a medium are involved in motion, and elementary volurnes become deformed.
At instant

R
t=—+ At
a

the rear of the wave passes the point of observation, and the medium is then again at
equilibrium. Thus, regardless of the distance, the duration time of of the wave is equal
to Atf, and the arrival time of the wave increases with R. As an illustration, consider
wave distribution as a function of distance R. First of all, the wave may exist only at

distances R that satisfy the condition

R<Cﬂf
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Let us distinguish two cases, namely
1. At>t and 2. At <t

In the first case, the source still vibrates at instant ¢, and therefore the wave occupies
the spherical volume having a radius equal to R, = ¢t. In the second case, the source
was turned off before the wave arrived at the observation point. Respectively, at instant

t = R/¢;, the rear of the wave reaches points with the coordinate
R= &) (f - AIL)

Thus, we observe the wave within spherical layer having the thickness AR = ¢ Af.
Wavefields

Now we outline some features of wavefields sg and wgr. The work of external
forces of the source is transformed into the mechanical energy of the wave, and its amount
remains the same since the influence of dissipation is neglected. As we know, when time
elapses, the volume of the spherical layer occupied by the wave becomes large, and the
energy density decreases. This shows that with an increase of distance R, wavefields
become smaller, which of course follows from egs. 3.15. In accordance with eq. 3.17, we
see that behavior of dilatation @, regardless of the distance from the source, is defined
by the second derivative of the function f [a(t — R/¢;)]. For instance, in the vicinity

of the source, the first term of the expression for the displacement

)

plays the dominant role, but dilatation cssentially depends on the derivative of the second

R% spa IR
3]

The other important feature of function @ is that its dependence on distance remains

term

the same everywhere. Finally, as follows from eq. 3.17, dilatation of the spherical wave
decreases relatively slowly, (1/R), and it is inversely proportional to phase velocity
¢;. This suggests that a finite value of this velocity is a vital factor in producing a
deformation. For instance, if the wave propagates instantly, (¢; — oo), then the
displacement, sg(R,t), becomes equal to

R3? so

SR(R, t) = R2
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(a) (b)

R

Figure 3.1: (a) The function f({) and its derivatives (b) Zones of compression and tension
(c) Distribution of sp as a function of time

and, therefore, dilatation ©, characterizing a change in an elementary volume, vanishes.
This result is not accidental, and it is true for any wave.

To demonstrate the wavefields, suppose that displacement of the shell surface, (R =
Ry), begins to increase at instant ¢ = 0, then reaches the maximum, and then gradually
approaches zero. In addition, we assume that the first and second derivatives of f(at)
are also equal to zero at the beginning { = 0 and at instant Af. Behavior of those
functions is shown in Fig. 3.1a. As we see, the function f”(at) changes its sign twice.
Let us suppose again that we observe the wave at some point with the coordinate R.
Until the moment ¢ = R/¢;, the wave is absent. Then, during the time interval

R R
— & fd — 4
Ct Ci

there are two subintervals during which dilatation is negative, but between the intervals
it is positive. We assumed that displacement of the source shell is characterized by one
maximum only. In a more general case, the number of time intervals with positive and
negative values of dilatation would increase. The zones of compression and expansion
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carried by the wave always accompany each other within the moving spherical layer, Fig.

3.1b. In order to prove this fact, consider the integral from dilatation

R
/@ dt =0 ‘501, (3.18)
where
R R
th=— —¢, to=—4+ At +¢, e K 1,
(&} Cy

At is the duration of the source action, and

o f o fe(e- 1)) 19

31
Since at instant ¢ =¢; the wave has not yet arrived at the observation point, the scalar

potential U and its derivatives are zero. Therefore, eq. 3.19 becomes

= ro-2)

If we assume that the function f'[a(t2 — R/¢;)] differs from zero, then in accordance
with eqs. 3.15 there must be particle motion behind the wave rear. DBecause this is

impossible, we have to set

t2
! [a <t2 - g)] =0, ie., /@ dt =0 (3.20)
t1

The latter shows that if the source gencrates vibrations during a finite time interval,
then for any function f (at) there are zones of compression and expansion within the
spherical wave. Moreover, distribution of dilatation between the front and rear of the
wave is such that condition 3.20 is met.

In accordance with eqgs. 3.15, the displacement of particles and their velocity are
described by the sum of two terms, and each term has a different dependence on distance
R. For this reason it is natural, as in the case of acoustic waves (Part I), to distinguish
three intervals of distances — the near, intermediate, and far zones.

1. Near =zone If distances from the source are relatively small, the first term of

expressions for s; and vy is dominant, egs. 3.15, and we have

sr(R.1) = R}ijof [ <7‘ _ g)] . wr(Rt) = %f {a <t 5)} (3.21)
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In this zone, functions sp and vg decrease relatively quickly with distance from the
source, and their dependence on time is the same as that for corresponding functions on
the source surface. However, dilatation cannot be derived from the approximate equation
for displacement, eq. 3.21. As was pointed out earlier, in order to obtain the correct
expression of © it is necessary to take into account the second term of the function sg
(R,t), eqs. 3.15.

2. Intermediate zone With an increase of distance from the source, the influence
of the second term at the right side of egs. 3.15 becomes more noticeable. Because of
this, with a change of distance R, the shape of wavefields s (R,t) and wvg (R,t) as
functions of time also varies. An example of such behavior of displacement is shown in
Fig. 3.1c.

3. Far zone As follows from egs. 3.15, at sufficiently large distance we have

sr(R,t) = % a f' [a <t — g)] . wvr(R, 1) = % a® f" [a (t — g)} (3.22)
In this zone, unlike in the previous one, all wavefields decrease with distance relatively
slowly. As in the near zone, wave behavior as a function of time is independent of distance
from the source. With an increase of R, the curvature of the wave surfaces becomes
smaller. This leads to an increase of an area, where the wave can be treated as the plane
one with almost the same magnitude.

If we assume that the wave is sinusoidal, then in accordance with eqs. 3.15 we have

R3 R RZ spw R
R,t) = 2 sgsi t—— 2 S cosw [t —
sr(R,1) R2 SOGmw( Cz>+ R Coqw< Cz)

Correspondingly, the far zone is observed when the distance exceeds the wave length, A;:
R> )\ (323)

It is obvious that behavior of particle displacement s associated with the longitudinal
wave is the same an clastic and acoustic media (Part I).

Strain and stress

Now we focus our attention on forces acting on faces of an elementary volume bounded
by coordinate surfaces. As was shown in Chapter 2

885{ SR

CRR = S0 €0 = Cop = pp (3.24)

and

€y = Cpr = g = 0, sincc sg=35,=0 (3.25)
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Taking into account egs. 3.13, we have

enp = — B 50 [a (t - 5)] _ G sea g [a (t - E)] (3.26)

R3 (&} (&} RQ Cy

R% s0a® , R
- - t— —
a1l

and

R R RZspa R\]
eegmsof[a<tcl>}+ R flalt p = €y,

We can again distinguish the near, intermediate, and far zones. In the first two zones,

both strains epr and egy (e

o) can be comparable, but in the far zone the radial strain

becomes dominant:
ERR > Epo and €RR > €y (327)

Note that the existence of strains does not require the presence of the corresponding
component of the displacement. For instance, particles do not move along the 6 and
@ coordinate lines ( sy = s, = 0), but strains eg and e,, differ from zero. In

accordance with Hooke’s law:
TRE=AO+2uepr, Too=ANO+2ucep, Top=2A0O+2ucey, (3.28)
and
TR — U €ERg, TrRe — M €Ryp, Top = I €gyp (3-29)
Since nondiagonal elements of the strain tensor are equal to zero, we have
TR = TRy = Ty, = 0, (3.30)

and the elementary volume surrounded by coordinate surfaces is subjected to the action
of normal stresses only. As in the case of strains, the behavior of stresses varies depending
on distance from the source. For instance, taking into account eqs. 3.17 and 3.26, stresses
in the wave zone are

R a? R
TRR =\ O + 21 epp = _% & [a (t - C—lﬂ , (3.31)
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while

RQ 2)\ R
Ty = Tpp = AO or  Tgy = *% ! [a <75 - q)} (3.32)

Thus, in the wave zone, stresses decay with distance in the same manner, and the ratio
between them is
To9 A A Top

-2
TRR G

P A+2n Tpe

(3.33)

Certainly, unlike the acoustic wave, forces acting on faces of the elementary volume differ
from each other. In accordance with egs. 3.15, the velocity of particles in the wave zone

is
R? 50 a? R
o (R.t) = —020% e t— = 3.34
or(R1) alt / [a ( CI)} (334
and, therefore,
VR 1 1 VR &
e — == 3.35
TRR ap Z Too A ( )

where Z = ¢;p is the impedance of a medium.

Spherical source with finite radius

Until now we have implied that the radius of the source, Ry, is very small, and
observations are performed at times essentially exceeding Ry/c;. Next we remove
these restrictions and consider sinusoidal waves. Of course, as before we can define the
displacement of the source. However, let us approach it differently and assume that the

stress
Trr(Ro,t) = ReFoe ! (3.36)

is the same at all points of the source surface. As follows from egs. 3.28,

A0 ; OSR
TRR(R7 t) = ﬁﬁ(RZSR) + 2#@
or
83R 2A
Since
ou

SRZﬁv
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we have in the vicinity of the source

92U 2)\ U
Trr(Ro,t) = (A +2p) w05 +

o " Ry OR (3.38)

This allows us to determine the unknown coefficient A in the expression for the potential

U(R,t) = Re (U e~ (3.39)

where

A .
U=" etk Rt (3.40)

is the complex amplitude of the potential and k = w/¢; is the wavenumber. Substitution
of eq. 3.36 and eq. 3.40 into eq. 3.38 gives

(/\+2L)3_2Lw +%iﬁ
Wor\ "R ReOR\ R

Performing differentiations, we obtain

T(]:A

Alw) = (3.41)

* R —iwly/c,
A(w) 0" : (3.42)
p(wg, — w? — 21 hyw)
Here
2c, Cs 7
Wop = 7 hy = wopc—l7 Cs = 5 (3.43)

where ¢, is the velocity of shear waves. Now it is easy to derive an expression for the
potential of a transient wave. Suppose that Trg(Rp,t) is an arbitrary function of time

and 7(w) is its spectrum. Then, applying Fourier’s integral, we obtain

o0

U(R,t) = ﬁ / A (w) e~ th(Ro—R) o—iwt g, (3.44)

-G
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(a) (b)

Figure 3.2: (a) Source of shear wave (b) Displacement s, in the near zone (c) Zones of

a rotation with different directions

3.2 Spherical shear wave in a homogeneous medium

Suppose that a spherical shell or a solid sphere is placed in a homogeneous medium and
that it vibrates around the z-axis, Fig. 3.2a. In order to determine wavefields, it is
convenient to introduce, as before, the spherical system of coordinates originating at the
source center. It is clear that all points of the spherical shell move around the z-axis
at the same angle ¢, which in general varies with time. Correspondingly, the source
displacement has only the @-component. In particular, for points of its external surface,

R =R, , we have:

so(Ro,t) = Rysind f(at) (3.45)
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Thus, maximal displacement occurs at the equatorial plane, (# = w/2), while points
located at the z-axis remain at rest. Such motion of the source causes in its vicinity
deformation of a medium, and therefore the wave arises. To simplify derivations, we make
several assumptions. First, assume that as well as the source, particles of a medium have

only the @-component of displacement, but
SpR=15=0 (3.46)

Then, taking into account the symmetry, (9s,/0p = 0), the expression for divergence
of the field s has the form
1 0 1 Js
— o (R =
R?sinf 0y Rsinf dp

This means that propagation of such a wave is not accompanied by a change in the

div s ie., divs =10 (3.47)

volume, and it suggests that we are dealing with a shear wave.
The potential of the spherical wave
As was demonstrated in the previous chapter, we can represent displacement asso-

ciated with a shear wave in terms of the vector potential :

s = curl ¥, (3.48)
which satisfies the wave equation
1 0%
Vip = ——— 3.49
Here
I
cs =4/ — (3.50)
p

is the velocity of propagation of shear waves. Note that function s also obeys the same
wave cequation. In principle, we can solve this equation, assuming that vector s, depends
on the azimuthal angle @ in the same manner as that of the source, eq. 3.45. However,
it is simpler to proceed from the vector potential ). In accordance with eq. 3.48,
an infinite number of vectors %y describe the same field s. This clearly shows that,
usually, functions 1 do not have any physical meaning. However, it does not exclude
a case in which some vector ) characterizes a certain physical quantity. Bearing in
mind an ambiguity in choosing 1, let us attempt to solve the boundary value problem,

provided that ¢ has a single component along the axis of rotation, Fig. 3.2a, i.e.,

=19k, (3.51)
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and the scalar function 1 depends on time ¢ and coordinate R only. Here k is
the unit vector. Since it has the same direction at all points of a medium, eq. 3.49 is

simplified and we have

2,
Vi) = %% (3.52)
Taking into account our assumptions
oy _ 0y _
a8 Oy ’
eq. 3.52 in the spherical system of coordinates becomes
2
%% <R2%> = é% (3.53)

Eq. 3.53 has exactly the same form as the wave equation for scalar potential that describes
the longitudinal spherical wave. For this reason, again applying the substitution W =

R+, we arrive at the equation

FPW _10*W

OR? 2 O

Therefore, the function 2 characterizing the outgoing shear wave is
A R
W(R, ) = fo f [al(t - —)] (3.54)
4 Cs

The simplicity of eq. 3.54 is due to several assumptions that require justification. Because
of this, our first goal is to demonstrate that the wavefields described by eq. 3.54 satisfy

boundary conditions, provided that constants A, and a;, as well as the function

fi [al(f— E)} ;

5

arc properly chosen. First, we will find an expression for displacement. From eq. 3.48,
it follows that

iR R ig Rsing iyg

1 d 7] 0

S= Resmd| 0B o0 9p | (3.55)

vr Rvy Rsinf g,
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where ig, ig, and i, are unit vectors oriented along coordinate lines. As is seen from
Fig. 3.2a

o o L
Yp=1cosl, Yy=—tsing, ¢,=0

or

A

A R ‘
L/}R:%fl [al(t)} cosl, = R

Cs

i [m (t — f)} sinf, ,=0  (3.56)

<8

Substitution of eq. 3.56 into ¢q. 3.55 gives
sg=0 and 39 =0, (3.57)

which agrees with our assumption about field geometry. Moreover,

1[0 o
S~ R [ﬁ(R’%) - %]

Performing differentiation, we obtain

so(Rt) = Ao {;2 £ [al(t - f)] b gy [al(t - R)] } Sin 6 (3.58)

S v 8 5

It is clear from eq. 3.58 that particle displacement has the same dependence on angle #
as the source. As we did with longitudinal waves, we will determine unknowns from the
condition near the source.

Small spherical source

First, consider a transient wave caused by the spherical source with a relatively small
radius, Ry (Rp — 0). Then, as follows from eq. 3.58, near the source, displacement is
approximately equal to

5,(R,t) = % fi [al(t - CE)] sin @ (3.59)

We suppose that the time of observation greatly exceeds the ratio R/cs:

R A t
t> so that sp(R, 1) = %ﬁal) sin 6, if R~ Ry (3.60)

In the vicinity of the source, particles of a medium move in the same way as the surface

of the source, and therefore

A
So f(at) = R_g fl(fht)
0
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It is obvious that this expression is true at any time, if
a=a, filmt)=f(at), and Ay= R sg (3.61)

Thus, the expression the displacement becomes

Ly [a(zﬁ _ 05)] b f [a(t _ 5)] }sin9 (3.62)

so(R,t) = R} 59 {ﬁ

It is essential that s,(R,t) obeys all conditions of the boundary value problem and,
therefore, in accordance with the theorem of uniqueness, describes the wavefield caused
by the given source. In fact, direct substitution shows that vector s = s.i, satisfies the

wave equation

5 1 8%

2o
at regular points. Also, s,(R,t) vanishes everywhere when ¢ = 0. It tends to zero
with an increase of distance R and coincides with particle displacement of the source
surface if R = Ry. This means that all assumptions were correct and the shear wave
is accompanied by the field s,(R,t), eq. 3.62. Taking a derivative from s,(R,t) with
respect to time, we obtain for particle velocity

v,(R, 1) = RS s {;f’ [a(t — f)] + % I {a(f - R)] } sin @ (3.63)

Comparison of eqs. 3.62 and 3.63 with eqs. 3.15 in the previous section shows that
expressions for displacement and velocity of particles caused by longitudinal and shear
waves, respectively, coincide if ¢; = ¢.

The field s

Now we are ready to describe behavior of the spherical shear wave. For illustration,

suppose that motion of the source is

0 t<0
splat) =sp ¢ flat) 0<t<r (3.64)
0 t>7

Because of source vibrations, the shear wave appears and moves away from the source.
Its phase surface

R
{ — — = const
Cs
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is spherical, and the motion of particles is tangential to this surface. Unlike the longitudi-
nal wave caused by the spherical source, displacement s, varies on the phase surface of
the shear wave as sin#), and it reaches maximal value at the equatorial plane, 0 = 7/2.
Again, as with longitudinal waves, it is natural to distinguish the near, intermediate, and
far zones. In the first zone, particle displacement varies synchronously with the source
and decays relatively quickly with distance. As an example, distribution of the function
5, in the near zone between the wavefront and its rear is shown in Fig. 3.2b. In the
intermediate zone, the field s, is defined by both terms in eq. 3.62, which differently
depend on R. Correspondingly, a wave shape varies with distance. Finally, in the far
zone the field changes rather slowly, and its behavior is controlled by the derivative of
the function f[a(t — R/cs)]. Suppose that the shear wave is sinusoidal. As follows from
eq. 3.62, we have

|1 R R
s, = solRy ﬁsinw(t - c—) + oo, CO8W (t — C—) sin @
- 8§ 8 &

This clearly shows that as with the longitudinal wave, the far zone exists at distances R
exceeding the wavelength A;:

Cs

!

Next consider motion and deformation of an clementary volume of a medium. First

R> M\ =

of all, since div s = 0, the shear wave does not produce a change in the volume.
The elementary volume can experience rotation as well as pure shear and translation
(Appendix E). Because curl s is sensitive only to rotation, it is useful to find its
components. By definition we have

ir Rip Rsinfi,
1 J 0 a

s = —— | — = -~
WS hrsng| 9R 96 Oy
0 0 Rsinf s,
So
1 0, . 1 0
curlg s = Tand %(smﬁ Sp), curly s = & @(R $,), curl,s8=0 (3.65)

Making use of eq. 3.62, we obtain

curlg s = 2R3 s8¢ {[;3 f [a(f - f)] + Toa ¥ |:a(f - f)] } cosf and (3.66)

8
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curly s = R2 50 {%f [av(t - 5)} + R(;c r [a(f - CE)] + %f” {a(t - E)} }sin()

CS 8 5

Thus, the axis of rotation of an elementary volume is located in the plane ¢ = const, and
its orientation changes from point to point. As follows from cqgs. 3.66, the #-component

of curl s prevails in the far zone, and we have

curly s = Rgcgg%a? sing f" [a(t - Ij)} (3.67)
Cousider the integral
late
I = / curly s dt
s

Here t; and t; are arrival times of the front and rear of the wave, respectively, and ¢
is a very small number. By analogy with the similar integral for dilatation carried out
by longitudinal waves, we conclude that

I=0 (3.68)

This means that within the spherical wave, there are intervals of distance R with
opposite directions of rotation, Fig. 3.2c. However, equality 3.68 is an approximate
one, and it becomes more accurate with an increase of R. Taking into account that

displacement related to translation obeys the homogeneous system
curls=0 and divs =0,

we can say that an elementary volume is in general involved in both types of motion:
rotation and translation.

Strain and stress

Deformation related to a shear wave may cause only pure shear; otherwise, div s

would not be equal to zero. Proceeding from equations for strain derived in Chapter 2,

we have
1 /0
€RR = 0, €gp — 0, €pp = 0, €pp = E <a$; — Sy cot 9) N (369)
Js $
o=y~ ere=0
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Let us make some comments:

1. The absence of diagonal elements of the strain tensor indicates that a volume does
not change.

2. Since neither type of motion causes deformation, shear strains characterize a pure
shear, i.e., a change of the angle between neighboring faces of the volume. 3. As we
know (Appendix D), a superposition of two types of motion and pure shear is equivalent
to simple shear. Substitution of eq. 3.62 into set 3.69 yields

oy =0 (3.70)

and
o= —F s, {Rif [au - 5)] by [a(t - 5)} (3.71)

Cs Cs

(]/2 1" R M
+ R_cgf [a(t - c_é)] } sin 0

Thus, only one shear strain, e,r , differs from zero. By definition, this means that the
angle between coordinate lines 12 and ¢ changes, whereas angles formed by lines R
and 6, as well as ¢ and 6, remain equal to 7/2. Of course, if an elementary volume
is arbitrarily oriented, then all angles between faces can be distorted. In accordance with

Hooke’s law, normal stresses are cqual to zero, since
E€RrRR = €99 = €pp = 0 and divs=10
Besides
TR = Tys — 0

There is only shear stress acting on faces of the volume perpendicular to the coordinate
line RR. It defines the surface force oriented along the -line. From eq. 3.71 and the
relationship 7,p = i e,p, We have

S ¢ {a(t - E)] + ;Tisf’ [a(t - 5)} (3.72)

2
ToR — —-R Sol§ 57
4 0 R3 Cs Cs

CL2

" R .
-+ R—sz [a(t Cs):| } sin 8,
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and its behavior varies with distance [2. In particular, in the far zone,

R2 sy 1 a? R
Ton = 7% I [a(t - ‘)} sin ¢ (3.73)

Cy

Ag follows from eq. 3.63, the velocity in this zone is

2 2
vo(R, 1) = R(};—“C“ £ {a(t - 5)] sin 0 (3.74)
Therefore, we have
bt e 1 (3.75)
Tor(R, 1) I Z
Here
p_pc
Z,=—=—=pec, (3.76)
Cs Cs

is the impedance of the shear wave in the far zone. Earlier we demonstrated that the

Poynting vector is defined as
Y=7v

where 7 1is the stress tensor, and in our case

0 0 TRy
Y = 0 0 0 0
TRy 0 0 Ve
Hence
YR = TRL,D ’U(,aa Y9 = 07 )/;o = 0 (377)

and, as we can expect, the energy travels only in the radial direction away from the
source.

The unknown A; In order to determine wavefields for an arbitrarily radius Ry,
we assume at the beginning a sinusoidal dependence on time. Then, as with longitudinal
waves, the complex amplitude of the z-component of the potential ¢ can be written in
the form

~ eths IR
b= A,

where k= d (3.78)
Cs
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In accordance with eq. 3.62, the complex amplitude of displacement s, is equal to

N kR k. s
5(R.ks) = Ao (C — %S eZkSR) sin 0 (3.79)

At the surface of the source we must have an equality:

. oiks Ro
S0.= Ao (i + ik, Ro)
0

Therefore

so RS _ik.R
Ay = 00 —iks TR 3.80
O T kR, (3.80)

Next, suppose that instead of displacement, we know shear stress, 7,r acting at points
of the source surface. As follows from eq. 3.71 and Hooke’s law, the function 7,z(I2,1)

varies as sinf, i.e.,
Tor(Ro,t) = Re Toe_w}t sin (3.81)

Taking into account eq. 3.72, the complex amplitude of 7,5 is

~ 3 3k, K2\ .
Tsz—Boll(ﬁ—F 2 —E> e sl gin g

At the boundary R = R, it has to coincide with 7,g(Ry,t), given by eq. 3.81, whence

we obtain
7o R} e~ ks Ro
 u(3+ 3 ik,Ry — k2 R2)

Now, knowing Ay or By and applying Fourier’s integral, we can find the field associated

By = (3.82)

with transient waves.

3.3 The displacement field s caused by the point force

Prior to a study of wave propagation, it is useful from the mathematical and physical
points of view to consider the case of equilibrium that follows the dynamic stage. Our
goal is to establish a relationship between the displacement field s and the given volume
force F, causing deformation of a medium, i.e., we have to solve the boundary value
problem. In order to solve this task, we use (a) the Helmholtz formula, allowing one to
represent the vector field as a sum of the source and vortex fields; (b) the solution of the
Poisson equation; (c) the condition of equilibrium; and (d) formulas of vector analysis

that relate volume and surface integrals.
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S

S

Figure 3.3: Tllustration of eq. 3.83

Scalar and vector potentials of the force field F

Suppose that within some portion, V4, of a homogeneous medium, Fig. 3.3, constant

forces are applied and their distribution is known:
F(q) = pf(q) aV (3.83)
Here ¢ is the point of volume V5 and f(q) is the force per unit mass
f(q) = fe(@)i+ £y ()i + f2(9)k, (3.84)

and i, j, and k are unit vectors along coordinate axes. As follows from the theory of
fields, two equations,

curl f =W and div f = 0, (3.85)

characterize behavior of the field f(g). By analogy with the field of displacement, we
represent the force f(g) as a sum,

flq) = fi(g) + £(q), (3.86)
where

curl f; =0 div f; = ©(q) (3.87)
and

curl f, = W(q) divf, =0 (3.88)

From the first equation of set 3.87, we have

fi(g) = grad U(q) (3-89)
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The second equation of the system of eq. 3.88 gives

fy(q) = curl A{q) (3.90)
Thus for the total field f(q), we have

f(q) = grad U(q) + curl A(q) (3.91)

Here U(g) and Af(q) are the scalar and vector potentials of the force field f(g).
Certainly there is complete similarity with the displacement field s, which was carlier

represented as
s = grad ¢ + curl @ (3.92)

Next we arrive at equations describing functions U and A. This procedure was discussed

carlier, and substituting eq. 3.89 into the second cquation of the 3.87 we obtain
div grad U = ©(q) or VU =0/(q) (3.93)
From the first equation of system 3.88 and eq. 3.90, we have
curl curl A = W(q) (3.94)
The latter can be presented in a different form. Taking into account the known equality
curl curl A = grad div A—V? A, (3.95)
eq. 3.94 becomes
grad div A—V? A = W(q) (3.96)
Since
curl A =curl (A + grad T)

where T'(g) is an arbitrary scalar function, we conclude that an infinite number of vector
potentials A(q) describe the same force field f2(¢). Among them we choose those

that greatly simplify eq. 3.96. To do this, let us assume that

div A =0, (3.97)
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which is usually called the gauge condition. Correspondingly, eq. 3.96 becomes
VA = -W (3.98)

Note that there is also an infinite number of scalar potentials U(q), but they characterize
the same force field fi(¢) and differ from each other by a constant. Thus, we have arrived
at Poisson’s equations for both potentials

VU =0(;) and V?A=-W(q) (3.99)

Here functions © (¢) and W(g¢) are known, and they are

©(g) = divf= or oy 02 (3.100)
i j K
a a 0
and  W{(q) =curl f = o 3 o
fo Sy [

Here f.(q), f,(¢), and f.(q) are scalar components of the known field f (¢), which
differs from zero in volume V;. As forces f (¢) are absent outside volume V4, both

potentials obey Laplace cquations
V2U(g) =0 and VZA(q)=0 if V£V (3.101)

The Poisson and Laplace equations for scalar potential play a fundamental role in the
theory of potential fields, such as gravitational and electric fields. For example, in the

case of gravitational field g (¢), we have
curl g =0 and divg =—4 7myp

Here + is the gravitational constant and p(g) is the volume density of masses. Corre-

spondingly, the equation for potential, (g =grad U), is
VU = —4 7yp (3.102)
Its fundamental solution is

Ulp) = 7/ %W, (3.103)

Vo
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where Vj is volume occupied by masses, 2 is the distance between points ¢ and p
where p is a point of observation. Substituting eq. 3.103 into eq. 3.102 and performing
differentiation and volume integration, it is possible to prove that U(p) obeys the Poisson
equation. The same result can be obtained differently. From Newton’s law of mass

attraction, it follows that potential due to elementary mass is equal to

plg)dv
R

Then, applying the principle of superposition, we obtain eq. 3.103. Since this equation

dU(p) = v

describes potential of the gravitational field, it has to satisfy eq. 3.102. Note that point
p can be located everywhere — inside volume Vg, at its surface or outside. In the last
case, function U(p) obeys the Laplace equation. At the surface, surrounding V4, the
Poisson equation is not defined. In the same manner as the gravitational field, potential
U(p) differs from zero outside volume V;, and this fact is hardly surprising.

When point p is situated inside V4, the denominator R in eq. 3.103 can tend
to zero. However, this singularity is easily removed because the elementary volume near
point p decreases more rapidly. These results are entirely applied to potential U of the
force field. Comparison of eqs. 3.93 and 3.102 shows that

1 [0O(g) dV
Up)=—— | ——— 3.104
0=-1 [ 2L (3.104)
Vo
Because scalar components of vector potential satisfy the same equations as U:
ViAo = -Wole), VA, =-Wy(e), VA =-W.(g),
we have
1 [ Wa(g) dV 1 [ Wy(q) . 1 / W.(g)
A, p)=— | ————, A =— | 24V, A, (p)=— av
(») 47r_/ R AW 47r/ RV AW = R
) Vo Vo
or
1 [W(g) .. .
A(p)=— | —=dV a1
(p) yp / I dV (3.103)
Vo

Thus, we have expressed both potentials in terms of the given force f (¢) and, in
principle, our first task is solved. However, functions © and W contain derivatives

from scalar components of f, eq. 3.100, and this is certainly a shortcoming of eqgs. 3.104
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and 3.105. It is much more attractive to express integrands in these equations in terms
of fz, fy, and f, themselves, and this is our next task.
Relationship between potentials and components of volume force f

We use two known formulas of vector analysis (Part I):

1 ¢ g f g 1
and
1 ¢ g f g 1
Ecurl f= curlﬁ +f x gradﬁ (3.107)

Here index ¢ means that differentiation is performed with respect to coordinates of

point ¢. Substitution of eq. 3.106 into the integrand of eq. 3.104 gives
Ulp) = 0 le (> dV + —/ grad dV (3.108)
7r

Beyond volume V4, force f is equal to zero. Accounting for this, we can rewrite the

first integral as

i f "9 f
/div %dV = / div %dV, (3.109)
Vo v
where V4 is a portion of V.
Now, applying the Gauss formula (Part I), we have
F e flg) o j[f(q) -ds
div —=dV = ¢ ——— 3.110
/ YR R (3:110)
v %
Here S is the surface surrounding volume V' and dS =dSn. The unit vector n is
directed outside volume V, and ¢ is any point of the volume. Taking into account

that force f(g) is equal to zero at points of the surface S, Fig 3.3, we conclude that

¢ f
/div Ha) gy (3.111)
R
Vo
and therefore
U()—i/f() vl v (3.112)
P) = 47 4 R ’
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It is also convenient to represent this expression in the form

1 P 1
Ulp)=—— | flg) - V= dV, 3.113
(p) 1 | @ V5 dv, ( )
Vo
since
q 1 q ]
V==-V= 3.114

and integration and differentiation are performed with respect to different points. By

definition we have

—i [fz(Q)

Vo

01 d1 01

0_x§+fy(Q)0_yﬁ+fZ(Q)&§ av, (3.115)

Ulp) =
and it represents the relationship between scalar potential U and components of force
f(q). Here z,y, and z are coordinates of point p.

Next we derive similar expressions for vector potential A. Substitution of eq. 3.107
into eq. 3.105 yields

1 f flq) .. 1 a1
i cur R dV + e (g) x VR dl (3.116)

Vo Vo

A(p)

Applying Stokes’ formula of vector analysis (Part I), the first integral of eq. 3.116 becomes

/% x % v = 74 <n x %) ds (3.117)

As before, S surrounds volume V, and Vj isits portion, Fig 3.3a, whence

¢ f(g)

Vx L agy—yp
/ “ R
Vo

We obtain

or

Ap) = —/vﬁ x £(q) dV (3.118)
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This gives

1 (.01 ,091 .
Agc(p)—g/ (.fzaijyazR> dv, (3.119)

Vo

1 01 01
P —_— —_— /f
Ay(p)_47r,/ <fz82R fzam) v,

Vo

1 01 01 ,
A (p) —E/ <nyE_fza—yE> dv

Vo

After performing differentiation with respect to coordinates of point p, it is easy to
see that potential A(p) obeys the gauge condition, eq. 3.97. Both sets of equations —
3.104 and 3.105 and 3.115 and 3.118 allow us to determine scalar and vector potentials.
However, the second set is more suitable for our purpose, because it does not require a
knowledge of derivatives of force components. Besides, eqs. 3.115 and 3.118 permit us
to study one limiting but important case, when the force is applied at the point.

Point force

Again we start from an analogy with the gravitational field and the known expression
of the potential:

U(p) :7/% (3.120)

/0

Suppose that the field is considered at distances R, which greatly exceed linear dimen-
sions of the volume occupied by masses, V5. This means that the denominator R is
almost constant, and eq. 3.120 becomes

Ut) = [ ol av =17 (3.121)

Vo

where R is the distance from observation point p to any point ¢ of volume Vj, and
m is its mass. Certainly, with an increase of R, eq. 3.121 gives a more accurate value
of the potential. It is essential that in such an approximation U(p) depends on mass
m, but it is independent of distribution of density p(g) and of the size and shape of
the volume, provided that m remains the same. For instance, a decrease of volume V)

and an increase of density p(g¢) do not change the potential, as long as m = const.
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Performing this procedure, (Vo — 0) in the limit we arrive at the point mass, (V5 — 0,
p — o0). Of course, such a mass does not exist, but this concept greatly simplifies
calculations of the field when distances from the real mass are sufficiently large. Exactly
the same approach is used when we introduce the notion of the point force. Suppose
that the force f(g) is applied in volume V; and its magnitude and direction are, in
general, functions of point ¢. Also assume that observation point p is located at a
great distance from V4. Then vector %1/}2 in eqs. 3.113 and 3.118 is practically

constant, and we have

1
- 4 122
/ yav. Vo (3.122)

1
d =i ) dV —
an / X VR

Here R is the distance between point p and any point ¢ of volume V. We see that
in such a case, potentials U and A are independent of a distribution of f(g), but they

are defined by the resultant force f°, which is equal to

£f0= /f(q) dv (3.123)

\
Similarly to the gravitational field we can imagine that volume V; tends to zero, but
f(¢) unlimitedly increases, so that f° remains the same. In the limit we obtain the

point force. Respectively, expressions for potentials, eqs. 3.122 are written in the form:

T —_— 0' -

Ulp) = -1 Vo (3.124)

and
1, r ]
Ap) = - x V= (3.125)

or

L (0L, 001, 401

- g 12
Utp) (f ok ey R aR (8126)

and

At = - (1 B A= (1
(3.127)
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1 d 1 a1
Al == (pll _pll
(®) A7 ( Yor R “8yR)
For illustration, consider several cases.

Case one Assume that the resultant force f° is directed along the x-axis:
£ =(f% 0, 0). Then egs. 3.124 and 3.125 are greatly simplified and it gives

) a1 a1 a1
= Jx T2 a0, Ap) =2 A==l 128
Vo) =-Loe =0 A =g p 40 47 9y R (3.128)
It is clear that
91 wewy 0Ly 01 a-s
grR R YR R 9:R R

Case two If the direction of f° coincides with the y-axis, f° = (0, fJ, 0),

we have

fLa o1 o1

)= - A=l Ay =0, Ap =T (312
Ulp) = —7- wE ) =-1arm LP=0 ) =155 (129

Case three When the force is oriented along the z-axis, f° = (0, 0, f.,°), we

obtain
v 7001 £00 1 a1,
= 212 — z = L——) 7 = —L——. A = 1

Up) =17, b =71 oy R WP)=—arm Ap) =0 (3.130)

Case four Suppose that the point force is applied at the origin of the spherical
system of coordinates, (R, ©, ¢). Taking into account that

p ] R

V-=—— 3.131
R R3 ? ( )
eqs. 3.124 and 3.125 give
f, R fy, xR
=0 Alp) = 132
Ulp) =, s 0) =47 (3.132)
For instance, if the force has only the radial component  fg, we have
Ulp) = I but  A(p) =0 (3.133)
47 R?
On the contrary, when £ = f" i, we have
1
U(p) =0, Ag= A,=0, but Ay=-—2 (3.134)
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The condition of an equilibrium and relationships between potentials of
the force and displacement fields

Earlier we found the linkage between potentials U/ and A and force components,
eqs. 3.115 and 3.119. In order to determine the field of displacement caused by volume
force, we have to establish a relationship between potentials of fields f and s. To do
this, we use the condition of equilibrium (Chapter 2):

pVis+(u+ A graddivs +pf=0 (3.135)

This means that the resultant force, which consists of the surface and volume forces, is

equal to zero. Substitution of egs. 3.91 and 3.92 into eq. 3.135 yields

pV(grad ¢ + curl ¥) + (u + A) grad div(grad ¢ + curl ¥) + p (grad U + curl A) =0

Since we can change an order of differentiation and
div curl ¢» = 0,
we have
pgrad V2 o + pcurl V2 9p 4 (u+ A) grad V? ¢ + p (grad U + curl A) =0
or
grad [(A+2p) Vo +p U] + curl [uV?e +pA] =0 (3.136)

This equality takes place if

A2V +pU=0 and puVY+pA=0 (3.137)
or
Voo _tpu Vip—— 1A (3.138)
QI’ ClQ ? Cz M

Here ¢ and ¢, are the velocity of propagation of longitudinal and shear waves,
respectively. This fact clearly shows that equilibrium occurs as a result of propagation of
both types of waves. Note that scalar and vector potentials of displacement field s are
defined only by corresponding potentials of the force field. Finally, Poisson eqs. 3.138
allow us to find functions ¢ and 1, since U and A are known and

o0 = [ TRV e - [Hl @)

s .
v ;
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Here integration is performed over the whole space because potentials U (¢) and A (q)
differ from zero beyond volume V4. In accordance with eqs. 3.115-3.118, determination
of U and A requires integration over volume V.  Correspondingly, calculation of
potentials of the field s is in general related to double integration, a rather cumbersome
task. This is the main reason why we will pay attention only to the case of the point
force.

Displacement s due to the point force f° To begin with, we find expressions
for the potentials ¢ (p) and 1 (p) and then derive formulas for the displacement field.
Let us assume that force is applied at the origin of coordinates. Taking into account egs.
3.139 and 3.124-3.125, we have:

1

121 1
ep)=——=5 1 [ SV=dV, (p) =

121

- % [ —Vav 14

1672¢ R'R 16722 / RVER (3.140)
Vv

v
Certainly, eqs. 3.140 are much simpler than those in a general case, when it is necessary
to perform a double integration. However, we still need to integrate the vector function
over a whole space, and it is rather a tedious procedure. Because of this, we will solve our
task differently and suppose that force f° is directed along the z—axis: f =(f,,0,0).

This approach was suggested by Stokes, and it greatly simpifies derivations. Then, as
follows from eqgs. 3.128 and 3.138,

0
= I 141
Ve dref dx R (3.141)
Now we usc the relationship, which can be casily checked by differentiation:
‘ 1
V2 (grad R) = 2 grad T (3.142)
or
V28_R :23i7 28_R :22l7 VQ@ :Qgi
or Or R oy oy R 0z 0z R
Respectively, eq. 3.141 becomes
0
2, _ fz 2(97]'_1)
Vie= 87r(:l2v O
Therefore,
0 OR
_ J: O (3.143)
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As follows from the same eqs. 3.128 and 3.138:

A A,
Vsz = 01 V27~F/}y = _C_QZ/’ Vsz = _C_2
or
. . 991 ; 201
V4, =0 Vi, = — o ——, Vi, = -2~ —
o =5 Yy drc2 0z R’ . 42y R
whence
2 OR f° OR
=0 =z b =z 3.144
Ue=0, ¥, (p) Sr 07 ¥, (p) 872 By (3.144)
Now we are finally ready to determine field s. From eq. 3.92, we have:
s = grad ¢ + curl 1,
ie.,
dp O, O, do N dp | IV,
_ 9y 2 _ 7y e A =4 Y 3.145
u(p) Ox + dy o2 " (v) dy Oz’ w(p) Oz + dx (3.145)
Substitution of eqs. 3.143 and 3.144 into eq. 3.145 yields
o fY /1 1)\ PR R
ulp) = 8t \? %) Oa? + 87T(:§v B
Since
) 2
VR= ">
R’
we have
271 1\ &*R o1
=z - T - z‘ -, ].4
u(p) &t \¢f ) 02  4n R’ (3.146)
also
o1 1\ R
. —de - ) 2 3.147
v (p) 8r \ ¢ 2] dzdy’ ( )
and
2l 1\ R
(p) = 2% [ = — — ) 3.148
w(p) 8r \¢? ) dz0z ( )
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We see that the point force fY causes displacement of particles in all directions, and, as
was pointed out earlier, this field arises as a result of superposition of the longitudinal
and shear waves. Tt is also instructive to determine the dilatation and curl of field s.

Performing differentiations, we obtain

R0
ivs = ——
4 Oz R
or
. fi @
divs = —47”:[2@ (3.149)
and
, fi 91 fi 91
curl,s = 0, curl,s = inc? %R curl,s = 747”% 5T1/E
or
fy = fa
curl,s = 0, curl,s = T R curl,s = e (3.150)

Thus, in general, the point force produces both deformation of an clementary volume
and its rotation. It is easy to derive by analogy expressions for field s when the point

force is directed along either the y— or z—axis.

3.4 Propagation of waves caused by the point force

As in the previous section, we assume that force F is applied in the vicinity of the

coordinate origin, and it has the z-component only:
F=(F, 0, 0) (3.151)

Here F, is an arbitrary function of time. To begin with, we will use results derived
from studying the displacement field in equilibrium. First of all, let us introduce the
potentials of the body force f acting on unit mass,

f=grad U +curl A, (3.152)

where all three functions, f, U/, and A, depend on time and coordinates of a point.
Taking a divergence and after it curl from both sides of eq. 3.152, we obtain Poisson’s

equations for both potentials:

VU = div f, VA = —curl f (3.153)
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The last equality is valid, provided that
divA=0

These equations are exactly the same as in the case of equilibrium, and, correspondingly,

for the point force fO at the origin, eq. 3.128, we have

£2(t) Org £.2(t) Org !

J = - = = L 27 > 5

U ((]7 t) dr ox' ’ AI 07 Ay(‘]v t) A7 a4 ’ (31‘)4)
__ Loy

Here 1y is the distance from the origin to an arbitrary point ¢(z’, ', 2’). Note that
potentials U(q,t) and A(q,t) synchronously change with the force applied at the origin
and this happens regardless of the position of point ¢. This fact vividly demonstrates

the auxiliary character of functions U and A.

Scalar and vector potentials of field s

The relationship between the displacement s and its potentials,

s = grad ¢ + curl ¥, (3.155)
is always valid, since it follows from the system of equations

curl s =W and divs=0

Now, as in the case of equilibrium, we establish a linkage between the potential of fields
f(g,t) and s(q,t). With this purpose in mind, we use the equation of motion (Chapter
2):

s

(A + p)grad div s + uV?s +p f = Pop

(3.156)
Substitution of egs. 3.155 and 3.152 into eq. 3.156 yields
(A + p)grad div(grady + curl ) + pV*(grady + curl )

+p(grad U +curl A) =p 0

2
@(gradw + curl ¢)
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or
. ¢ 0?
(A + 2p)gradV%p 4 p grad U + p curl V2 a: a;f
This means that
0% 0%
(A+2M)V»9+0U*,00t2, MV2¢+0A*0W7
that is,
1 0% 1
ZV_C_JQW = _g (3.157)
and
1 8% 1
i A 3.158
i 2 Ot? c? (3:158)

These arc inhomogencous wave cquations, and their right sides arc represented by po-
tentials of the body force. Earlier, we learned that longitudinal and shear waves caused
by the point spherical source obey homogeneous wave equations at regular points. As
we know, the solutions for scalar potential ¢ and a scalar component of 2 have the

f (t— B) and f ( R) ,
C Cs

respectively, whereas coefficients 7 and 5 are determined from the condition near

forms

the source. This procedure is equivalent to solving an inhomogeneous wave equation with

the given right side. Then, applying the principle of superposition, we see that functions

1 1 T P
— | U t——] da' dy dz 1
T / ; (1‘ Cl) de' dy' dz (3.159)
1%

1 1 r
—A(t—— | da' dy d7 1
47rc§/r ( cl> vy as (3.160)
v

obey their corresponding wave equations (egs. 3.157 and 3.158). Here r is the distance

olp,t) =

and

¥(p,t) =

between points ¢ (z/,¢',2’) and p(z,y,z), Fig. 3.4a. First we focus on scalar potential.

In order to perform an integration, we imagine a medium as a system of thin spherical
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(@) (o)

q(x} iz}

Py

R

R>r

(©)

Figure 3.4: Mutual position of points p and ¢ and origin 0

shells having the point p as the center, Fig. 3.4b. Their radius, r, changes from zero
to infinity: 0<r <o

Let r be the radius of one such shell and dr its thickness, while dS is the elementary
surface. Taking into account egs. 3.154 and bearing in mind that the product

Ty (t_£>
T (&}

is constant at points of the shell surface, we can write

x ) o1
o(p 1) = —— /%fx (t— i) ar 20 _gg (3.161)
S

1672¢} al ox'
0

Calculation of the integral I
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First, consider the surface integral

1
arg

[ =
oz’

ds, (3.162)

where
o = (1_12 +y12 _'_Z/Q)I/Q,

as is shown in Fig. 3.4a. The integrand can be written as

ory! z' cos(rp, i)
__r _ _coslro.d) 3.163
oz’ e e ( )
Here
.,L,I
— = cos(rg, 1) (3.164)
To

is the cosine of the angle between the unit vector ry and the z-axis. Therefore

I= 77{ ds = jfcos(ro")ds (3.165)
S

2
T i

8

[ oV}

S

To calculate this integral, we recall the behavior of the gravitational field when a mass
is uniformly distributed over a spherical surface. In accordance with Newton’s law of
attraction and the principle of superposition, the field at the origin of coordinates due to

such a mass is

g(0) = —yp % :ggg ds (3.166)

Here ry is the unit vector directed from the origin to a point of the surface, ¢q. As
follows from eq. 3.166, the z-component of the field the point 0 is

"ro(g) -1 " cos(rg - 1
¢:(0) = —vp j{ %ds :—wjé # d3
s s

0 To
or
2:(0) =p I (3.167)

The integral I characterizes the z-component of the field caused by the spherical mass,

provided that the surface density p is constant.
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It is clear that with an increase of the shell radius r, the origin of coordinates can be
located either outside or inside a shell. Both cases are shown in Fig. 3.4b,c. As has been
pointed out, it is not easy directly find an analytical expression for 7. However, equality
3.167 allows us to solve this task in a very simple manner. In fact, from symmetry it
follows that in the spherical system of coordinates with the origin at point p(z,y, 2),
the field has only the radial component

g = (¢,0, 0)

This means that field g is perpendicular at the coordinate surface r = const. Then,

use of Gauss’s formula
jé g -dS =—4 71y m,
s

where m is mass inside S and dS = dS n, shows that at cach point inside the shell
the field vanishes, since m =0, i.e.,

I=0 if R<r (3.168)

At the same time, outside the shell, the field coincides with that of elementary mass

located at point p. In particular, at the origin of the Cartesian system we have

m

8(0) = 77 Rq (3.169)
Here Ry is the unit vector directed from the origin to point p. Since m = 4mr?p, we
have
, Ry
g(0) = 4mry P
Correspondingly,
) Ry -i
¢:(0) = a(0) -i=dm r* vp —5
or
cos(Ry - i) a
¢ (0) = dmyp T'QT = —4x ypr? %Ro] (3.170)
Comparison with eq. 3.167 gives
OR™!
I =dxr? if r<R (3.171)

oz
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Substituting eqs. 3.168 and 3.171 into eq. 3.161 and introducing a new variable, 7 =

R/¢;, we obtain

R/Cl
1 OR! o
P, t) = = —- /fo (t—7)dr (3.172)
0

In the same manner, components of the vector potential can be represented as

R/cs
, 18R [
P, =0, P, (0, 1) = V- / T2t — 1) dr, (3.173)
0
L ortf
and V. (p,t) = 1 9 / Tt —7) dr
T 0y

0
Displacement components

In deriving expressions for displacement components, we proceed from egs. 3.155 and
3.172-3.173, as well as from the equality

R/c

0 0 R, R 1 0R

%/fo (t—7)dr = cfz (t C) - (3.174)
0

This equality is obtained using the rule of differentiation of integrals with respect to the
upper limit. Since determination of s requires some special effort, let us for illustration

consider the component wu, which is related to potentials as

/
U = 87(,9 + auz — awy
or Oy dz

Performing differentiations, we have

R/¢
dp 1 0°R . 19R'R ., R.OR
R B S Tar= s VAl

0

21 e 1
oy, 1R . 10R'R ., R.OR
== Crydr - T e Ty O 175

Oy 4w Oy? /sz (t=7)dr 4T Oy 2 2 (1 cs) dy’ (3.175)

0
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R/es

oy, 1R 19R'R ., R.OR
/ Tt —T) T+E 9 @ z(t—c—s)g
0

0z 4m 022
Because
R/cs R/¢ R/cs
/ ngco(t —7)dr = / Tfmo(t —7)dr+ / Tf, (t —71)dr, (3.176)
0 0 R/

the sum of terms containing the integral
R/e;
/ rf 2t — 1) dr

is
| (PR PR PR\ T
_ - — = Nl
47r< 52 + o7 + 5.2 > / rflt— 1) dr (3.177)
0
1 1 e
_—— 2— —_ p—
47T<VR)/Tf (t—71)dr =0,
0
since

V31 /R =0 (3.178)

Then, substitution of eq. 3.176 into last two derivatives of set 3.175 yields:

o) — L (OB o, By, 1 aR ol B
) 2 \dzx) ’* 4R 2 e Cs
R/cs

1 AR\ R 1 (R PR\ [

R/Cl

Taking into account eq. 3.178 and the equality

a_R 2_|_ a_R 2_|_ a_R 2—1
Ox Oy oz ) 7
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we finally have

1 ,.(, R 1 (0R
u(p,t) = IR Iz (t(’s) +— (87) (3.180)
2 1R/C'
1./ R\ 1.,/ R 1 R~ /
- = (- — -
Lff"”< cl> Cgfm< cs>}+47r or? rf (=) dr
R/Cl

In a similar manner, we obtain formulas for two other components of displacement:

1 OR OR R R
WP = fRar oy Llfo( c7>__f0( c)]

R/cs
1 &R
+E@x8y / Tt — 1) dT and (3.181)
R/Cl
2 p R/cs
1 OROR [1 R | I R 1 °R- 0
ot =g o ¢ (1-5) ~ 52 (- 0] v [ e
R/¢;

Thus, we have found the field of displacement s caused by the point force at any point
of a homogeneous medium. Correspondingly, it is possible to determine stresses and
strains, as well as the divergence and curl of field s. Now, making use of eqs. 3.180 and

3.181, we represent field s as a sum of three terms,
S =81 + 8y + 83, (3.182)

where s; is displacement along the radius-vector R, sy is located in the plane normal
to R, and s;3 is the vector that can be arbitrarily oriented with respect to R. In
order to find these terms, we use relations between components of any vector M in the

spherical and Cartesian systems of coordinates:

My = M, sinf cosp + My sinfsin p + M, cos 0

My = M cos 0 cos ¢ + My cos@sinp — M, sin0 (3.183)
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M, = —M,sinp + M, cos ¢

We also need to express derivatives dR/dz, OR/Jy, and OR/0z in terms of # and .

Since

x = Rsinf cos g, y = Rsinfsiny, and z= Rcosb,

we have
g_f:%:SmOCOSQD, %:%—Sinesinw, ?9_]::%:(3089 (3.184)

First, collect terms in egs. 3.180 and 3.181 that are proportional to

Ja(cJ (25 )
C;
This gives

S( t)—#fo t_E 8_R a_R+a_R’+8_Rk
1P C4dnR " c ) Ox o | ay'] 0z

It is clear that OR/Jz, OR/0y, and OR/0z are directional cosines of unit vector ig
directed along the radius-vector R. Thus

1 R
si(p,t) = WRE N; (t - (’_1> (3.185)
Here
N, <t _ 5) _y <t - 5) i (3.186)
a ¢ /) Or

is the vector component of the point force in the radial direction.

Next, we find the part of the displacement that is proportional to the function

R
#(-2)

In accordance with cqs. 3.180 and 3.181, we have

1 OR\’|. OR OR . OR OR R
sa(p,t) = W{[l(ax> 1 k}fg <7L>

“or oy ox 02 )

# i_c’)_R 8_Ri+%,+0_Rk 1o -[_E
AT R 2 oxr \ Ox dy J Jz T\ e
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or
1 . OR 0 R
SQ(p, t) — m <1 - 1R> f < (.5> (3187)
As follows from eqs. 3.183, unit vector i in the spherical system of coordinates is
i=sinfcosy ip +cosfcosyp iy —siny i,

Therefore, eq. 3.187 becomes

1 R
t)=———=Ny |t — — 3.188
sip.8) = e (- 7). (3.159)
where
N, <t - E) = f? <t - E) (cosBcos p ig —sin g i,) (3.189)
S Cs

is the vector component of the force in the direction perpendicular to the radius-vector
R. Finally, the sum of terms in eqgs. 3.180 and 3.181 containing the integral is

R/cs

su(pr1) = 1 (0?°R71, n 0’R7, n 0’R / [0 —7)d
P, 47\ Ox? ! dx 3y J 33682 g i
R/Cl

Performing differentiation, we obtain

PR~ - PR - PR k) — K OR™! - OR™! - OR™! K
0x? ox Oy J ox 0z Oz \ Oz Jy J 0z
a1 . ) 1 . 3zig 1 /. T,
:—a—fﬁ(r 1+yJ+zk):—ﬁ i+ T :_ﬁ( SE 1R) (3.190)

)
“RLURT R "
Taking into account eqs. 3.186-3.189, we can represent s;(p,t) as

R/cs

s3(p,t) = 4;33 / TN (£ = 7) = Ny (£ — 7)] dr (3.191)
R/¢
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Behavior of a wavefield associated with displacement

We assume that each term in eq. 3.182 can be interpreted as a wave and consider
its main features. This approach may create an impression that such waves may exist
independently from each other. However, as will be shown later, wavefields associated
with either displacement s; or displacement s; are always accompanied by wave ss.
Because of this, we will also investigate the behavior of the resultant wave in the near,
intermediate, and far zones. Note that sometimes the total wave is represented by the
last term, sz, of eq. 3.182 only.
Wave field s; By definition, eqs. 3.185 and 3.186, we have

1 R
)= —= N [t —— 192
R e () (3.19)
Here
N <t - ?) =f° <t - ?) sin 6 cos ¢ (3.193)
1 1

It is clear that the function s;z(p,?) describes a spherical wave propagating from the
point, force with the velocity of a longitudinal wave, ¢;. As follows from eq. 3.192, the
amplitude of this wave decreases as 1/R, regardless of the distance between the force
and an observation point. In other words, we cannot distinguish the near, intermediate,
and far zones. At each point of the wave surface, R = const, displacement has only the
radial component s1g, which coincides with the direction of propagation. In this sense,
this wave is similar to a longitudinal wave generated by a pulsating sphere. Both waves
travel with the same velocity ¢;. As follows from eq. 3.192, displacement s;p(p,t) is
proportional to the radial component of force f° at instant ¢ — R/c;, which depends
on angles 6 and . The factor sinfcosy in cq. 3.193 defines the radiation pattern
of the point source. The magnitude and direction of vector s; change from point to
point of the wave surface, Fig. 3.5a. As we see, this vector has a very peculiar behavior.
For instance, its magnitude reaches a maximum at the z-axis, and it is equal to zero at
the plane z = 0. Displacement s; and the radius-vector R have the same direction
if x > 0, and they have opposite directions when z < 0. We can say that the wave
behaves either as a compressional (x > 0) or a tensional (z < 0) wave. In order to
determine the type of this wave, eq. 3.191, we evaluate both the divergence and curl of

vector s;. In the spherical system of coordinates, we have

1 . O(sin € sq) Os,
= msmo PP ar TR e TG,

(3.194)
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Figure 3.5: (a) Orientation of s on the wave surface (b) Orientation of sgy on the wave
surface (c) Hlustration of case one (d) Four time intervals in case two (e) Time intervals

in casc three

iR R i9 Rsinf i<p
1 0 0 0
R?sinf | OR 00 Oy
sg Rsy Rsinf s,

and curl s =

Taking into account that sy = s1, =0 and performing differentiation, we obtain

. sinfcosp [ 1, R 1 R
1 — B t——) - — t— — 3.195
av s 47T(212 |:]%2 fI < Cl) R Cy 1 Cy ( )
Also
1 : 19 :
curlgs; = 0, curlgs; = 0 s1r curlgs; = — 0 s1n

Rsinf 0yp ’
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Hence

1 R\ . 1 R
curlgs; = —m 12 (t — (’_z> sin ¢, curl,s; = —m}”g <t - C_l> cosf cos
ie.,

URSS N YA 2 PP

curl 8; = T falt— o [sin ¢ ig + cos @ cos o i, (3.196)

As follows from egs. 3.183, in the spherical system of coordinates the force components

are
o= flsinfcosp, fi = flcosBcosy, [y =—flsing (3.197)

Correspondingly, eq. 3.196 can be represented in the form

1
curl s; = ———— M (t - E) : (3.198)

4rc? R c
where M is the moment of force f0(t — R/¢):
M=Rxf (3.199)

In accordance with eqs. 3.195 and 3.198, this wave is neither dilatational nor rotational,
because both div s; and curl s; differ from zero. It is essential that this feature
displays itself regardless of the distance from the point force. However, in reality this
wave is always accompanied by field sz, and these fields should be interpreted only in
combination.

Wavefield s, From egs. 3.188 and 3.189, we have for the vector component of field

Sg
1 R
)= —— fOolt—— i, 3.200
i) = oy 10 (1= Bt (3.200)
Here
is(p) = cosbcos p iy — sing i, (3.201)

Again, as in the case of field s;, we assume that the function so(p,t) describes a
spherical wave that is moving away from the origin with the velocity of a rotational

(shear) wave, c,. At points of the phase surface, R = const, displacement s, has only
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the tangential component, and in this sense it is similar to a shear wave generated by a
rotating sphere. Note that the orientation of vector s; does not usually coincide with
the orientation of coordinate axes. However, there are two exceptions, corresponding to
the directions ¢ =0 or ¢ =7 and § = /2. The first is shown in Fig. 3.5b for f2 > 0.
In the same manner as for s;, field sy decays with distance as 1/R, provided that
the argument t— R/c; remains constant. Correspondingly, we again cannot distinguish
the near, intermediate, and far zones. From eq. 3.200, it follows that field sy is directly
proportional to projection of the point force on the direction defined by unit vector i,
which is perpendicular to the radius-vector R.

Now, using eq. 3.200, we determine div s; and curl s,. Since

1 R
sop = 0, Sop = T 3 (t — c_5> cos # cos @, (3.202)
1 R\ .
and Sop = = Rff <t — c_9> sin ¢,
we have
div s ! ot l (cos 26 cos ¢ — cos ) (3.203)
VSy=—F——F""T" ), — — 08 SOF8 — COE .
7 4ne® R?sing ° Cs 4 7
1 0 R\ .
= (=)
272 R? sin Hfz ( cs> Sy cosy
or
. 1 R
div Sy = 7@]\6 (t - (’$> 5 (3204)

where N (t — R/¢y) is given by eq. 3.186. By definition

1 O(sin @ s ds 1 9(Rs
curlgsy = Fond ( =0 %) _ a;ﬂ , curlgsy = — O(R 52,) (’“)RQW)’
I'l _ la(R 529)
S = R TOR

Performing differentiation, we obtain

curlzs, =0
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1 : R
curlysy = "R 0 (t - (3) sin ¢ (3.205)
1 : R
and curl,sy = _47TC§R 1 (t - F—g) cos f cos
Correspondingly,
1 ’ R
18y = ——— Yt —— )iy, 3.206
cur sz drc? R fx ( cs> K ( )
where
i, =sinp ip + cosfcos ¢ i, (3.207)

From eq. 3.201, it follows that
i 1y =0,

and, therefore, vector i; is located in the plane perpendicular to the radius-vector R,
and it forms angle 7/2 with i,. Similarly to s;, the wave associated with vector s,
is neither dilatational nor rotational.

Wave field s3 In accordance with cqs. 3.186 and 3.189, in place of cq. 3.191 we

have
R/cs
9 sinfcos i — i,
s3(p, 1) = —— Cj;;;“ = / 7fO(t — 7)dr, (3.208)
R/

where i, is defined by eq. 3.201. Thus, field s3 has, in general, all three components,
and both its orientation and the magnitude depend on point position. In the same
manner as s; and s,, field s3(p,f) can be treated as a wave. In fact, by definition,
the function f2(t —7) is equal to zero when the argument ¢ — 7 is negative. Since the
smallest value of 7 is R/¢;, the integral vanishes, until ¢ = R/¢;.. This time delay
increases with an increase of distance between the origin and an observation point. This
suggests that s3(p,t) describes a wave propagating away from the point force. If the
time of observation, ¢, satisfies the condition
R R

—<t< =,
&} Cg
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then eq. 3.208 can be written as

¢
2sinfcosyp ig —

i, [
s3(p,t) = gy on / Tf 2t — 1) dr (3.209)
R/¢

Such replacement is correct, because for larger values of 7 the argument of the function
1.2t —7) becomes negative. In such a case, 7 varies from R/c¢; to t, and this allows
us to treat wave sz as a superposition of wave impulses propagating with different
velocities. In particular, when t < R/c;, these velocities are in the range between ¢
and c¢,. The coefficient in front of the integral, eq. 3.191, is inversely proportional to
R?, but dependence of the integral on R is defined by several factors. Next, we will
derive expressions of div s3 and curl s3 for three different cases.

Case one Suppose that the point force arises at instant ¢ = 0 and acts at all
times. Then, for any observational point there are two distinct time intervals after a

wave arrival, Fig. 3.5¢c:

oy
oy

; R
—<t< — and t> —
C Cs Cs
During the first one there arc two waveficlds, s; and sz, but during the sccond interval
all three waves, s1, s5, and s3, are present.

Case two Assume that the point force acts only during time interval At:

0 t<0
£ =4 f2r) 0<t< At (3.210)
0 t> At
and
s R (3.211)

Cs C

Consider four time intervals, Fig. 3.5d. During them, displacement is formed as
S = 81 + 83, § =81 + Sy + s3, $S=83+s3, and s=0

Case three Suppose that

At<§—§
Cs Cy
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Then the time interval between the arrival of wave s; and that of the rear of wave s,

is naturally divided into three subintervals (Fig. 3.5e), which are

R R R R R R
— <t < — 4 AL, —+At<t < —, and —<t< —4 AL
¢ C C Cs Cs Cs

Corresponding wavefields are
s =8y + s3, s = s3, and S =Sy +S3

We pay attention only to the last case and derive expressions for divergence and curl of
field s3. As will be demonstrated, these functions change with the time interval. For
instance, it turns out that they are equal to zero when fields s; and sy are absent,
(R/c; + At <t < R/cy). Before we perform differentiation, it is convenient to represent

function s3(p,t) in the form

s3(p,t) = s3r ir + 839 Ip + 83 iy, (3.212)
where
R/ecs
1
S3p = I / At — 1) 7T drsinfcose, (3.213)
R/¢;
R/ecs
1
S30 = ~ 73 / ot —71) 7 drcosfcosy
R/e
Rjcs
1
% = 15 / ot —7) 7 drsing
ﬂ- ' .
R/c;

To perform differentiations, we use equality 3.174:

R/ecs
0 0 1 R 1 R
= L(t—T)dr = R T (e e N (e 214
o [ e =R | 120 =T - 5 fhe- D) (3.214)
R/C[
From eqgs. 3.194, we obtain
. sinfcose [1 R 1 R
=220 gy Ty 0 215
divs =P e D e (3.215)
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Taking into account eq. 3.210, we find three different expressions for divergence:

. sinfcosp g R . R R
divsy = ———— t—— - = .

iv s3 2n 2 Iy ( Cl) if o <t< ” + At (3.216)

R R
divs; =0 if —H A<t < — (3.217)

Cy Cg

and
) schos R ) R

div 83 = 2 R;p fo ( - (»5> if t> C_é (3.218)

In accordance with eqs. 3.216 and 3.217, divergence is directly proportional to the radial
component of force f,0, taken at cither instant ¢ — R/¢; or t— R/c,. As follows from

eqs. 3.194, we have:

curlgss = 0

1 1 1 .

1 1 IR 1
curlys; = —— [—, 0t — =) — — f(t - E)} cos @ cos ¢
¢

s = /2
47 R? | ¢ & 2 Cs

Respectively, we have

1 R
Curleg = O, Curl()sg = m fg(t — gl) sin &, (3220)
1 0 R . R R
curlys; = RS folt— C—l) cosfcosp, if P <t< o + At
and
R
curl s3 =0, it — + At <t < " (3.221)
Cs
while
1 0 R
curlzs; = 0, curlpss = — fo({t = —)sing, (3.222)

2 2 Y% .
4w R? ¢? Cs
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1
fg(t—ﬁ)cosgcosw if E<t<E+At

curl 83 = ————
¢ 4T R2 2 Cs Cs Cs

Thus, in the first and third time intervals wavefield s3; carries out both dilatation and
rotation and overlaps with waves associated with s; and s,. Note that wave s3 is
spherical, and vector s3  is arbitrarily oriented with respect to its phase surface, (R =

const). The times of arrival of its front and rear are equal to

t:E and t:E—J—At,
&} Cs
respectively. Now we are prepared to study field s(p,t) as a function of time and
distance from the point force.
The resultant wave as a function of time
We continue to assume that force f° differs from zero within some time interval

only.
0<t<At

If an observational point is located relatively close to the origin, then an equality

Azt>§—E
Cq Cy

takes place, and “waves” s; and s, can overlap in time. We, however, suppose that
the offset R is sufficiently large, (At < R/¢; — R/¢;), and that such superposition is
absent. Then, as we know, motion in a recciver point can be split into three intervals:

1. Between the front and rear of wave sy,

2. Between the rear of wave s; and the front of wave s5, and

3. Between the front and rear of wave so.

The first interval (R/¢; <t < R/¢c;+ At) For this time interval, we have

s(p, t) = s1(p, 1) +sa(p, t),
and in accordance with eqs. 3.185 and 3.209
~ sinflcosp R 2sinflcosp igp —

t
f i,
) = ———— %t — 2 . : Ot —7)d 22
s(p.1) = S R - i+ RO [ ey (3229)
R/¢

This expression describes a spherical wave traveling away from the point force with

displacement vector s being arbitrarily oriented with respect to the phase surface.
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From eqs. 3.195 and 3.196 and eqs. 3.216 and 3.220, we have

. sinfcosp [ 1 R o R
divs = — " e (e
vy = T g S — e
ls; = ¢ Ry sing i 0s 6 i
curl 8 = —— ZRQ I ( ——)(smgp ig + cos@cosy i)
and
. sinfcosy 4 R
d =" T t— =
v S3 2770[2 R2 f’(‘( Cl)7
1 R
curl s3 = o Ot — (’_1) (sinp i+ cosBcos ¢ iy,)
This gives
. sin 6 cos ¢ 0 R 1 R
divs = ———5— St— =)+ — t—— 3.224
Vs 47T'Cl2 RZ f( cl)+ f ( C[) ( )
and curl s =0

Thus, during the first interval of a motion, we deal with the longitudinal wave, (curl s = 0),
which propagates with velocity ¢;. Elementary volumes of an elastic medium experience
deformation, but rotation is absent. As was mentioned before, the direction of vector s
does not usually coincide with that of wave propagation. When we considered wavefields
sy and s3 separately, we found that each is accompanied by rotation. However, physical
meaning has only the resultant wave, in which this type of motion is absent.

The second interval (R/¢, + At <t < R/¢s) Unlike with the first and last
intervals, the duration of this interval depends on distance R. This interval is absent
near the origin and appears when At = R(1/¢; — 1/¢;). Then it becomes wider with an
increase of R. In the limit, (R — oo0) the time interval also tends to infinity. In the
second interval only, field sz is present, and, correspondingly, it describes the real wave.
As follows from egs. 3.209,

R/cs

1
s(p,t) = o / 7 ot —7) dr (sinfcosp ip — i), (3.225)
R/Cl
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while
curl s =0 and divs=0 (3.226)

Since both divergence and curl are equal to zero, motion in the second phase is not
accompanied by a change of volume and its rotation. Taking curl from both sides of the
first equation in set 3.226, we obtain:

curl curl s = grad div s—V?s =0 or Vis =0 (3.227)

Thus, displacement s obeys the Laplace equation; this is why the motion of particles
during the second interval is called Laplace motion. Substituting eqs. 3.226 and 3.227
into the known differential equation of elastic waves:

pg—ij = (A + ) grad div s—p Vs,
we see that acceleration is equal to zero, and particles move with constant velocity. In
this sense, Laplace motion is similar to the potential motion of the ideal noncompressed

field. Let us also consider the integral in eq. 3.225:

R/.cs
I = / T fot—1)dr (3.228)

R/Cl

Introducing new variable #:
T=t—1t and dr = —dty
we obtain
t—R/¢ t—R/¢
t—R/Cs t—}z/cs

By definition, R/¢; + At < t < R/c¢,, which shows that the upper limit of the integral
is not smaller than Af, but the lower limit is not positive. Thus, integration is always
performed over the time interval during which  f?  differs from zcro. In such a casc,
integrals in eqs. 3.228 are independent of time and of distance FE. They are defined by
the behavior of the force oriented along the z-axis. Applying notations
t—R/e; At
a= [ = [ 2 d (3.230)

t—R/cs 0
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t—Rfe At
and Ay = / t £ (1) dt = / tfot) dt,
t—R/cs 0

we obtain for the displacement of Laplace motion

1
s(p,t) = pPyee (t Ay — Ay) (sinfcosy ig — i,) (3.231)

Therefore, during the sccond phase, particles move along a straight line at a constant
velocity. The value of velocity essentially depends on the function f,° (¢). In particular,
if velocity changes in such a way that an area beneath function f2(¢) is equal to zero,
then the velocity of motion is equal to zero, A; = 0. At the same time, constant
displacement with respect to equilibrium can be observed, and it is defined by A,.
The third interval (R/c, < t < R/es + At)  During this last interval, total

displacement is a sum
S = 8y + 83,

and in accordance with cgs. 3.200 and 3.209, we have

R/cs
2t —R/cs) . 2sinfcosy ip — i
s(p,t) = (47702 ]_/? ) i + ey R Tt —r1)dr (3.232)
t / R/e

Thus, as before, the wave is spherical and it propagates with velocity ¢,. At the same
time, vector s is usually arbitrarily oriented with respect to the phase surface. As
follows from eqs. 3.204, 3.206, and 3.224:

1 R
div sy = _27rcf, B ot - a) sin @ cos ¢,
1 R
curl s, = —ng'(t - g) (sinp ig + cosfcosy i,)
and
. sinfcosg 4 R
d =——— it ——),
s 2mc? R? Ja( cs)
1 R
curl s3 = — 2t - —) (sinp ip + cos @ cos ¢ iy)

Awe? R? Cs
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Performing a summation, we obtain

divs=0 and (3.233)

1 [1,,
dye? ﬁfw(t_

1
curl s = — R)+Ef£'(t—£) (sing ig + cosfcos o i,)

Cs Cs

Thus, due to a superposition of fields s, and s3, dilatation vanishes and the rotational
wave is formed. This wave produces rotation of elementary volumes of a medium, as
well as pure shear and translation. Since the divergence of total field s is equal to zero,
dilatation of fields s; and s3 has no physical meaning.

Thus, considering propagation of wave impulses of dilatational and rotational waves,
we can distinguish the near, intermediate, and far zones. Within the first two zones
the field of both waves changes relatively quickly with distance, and it is described by
all three components, sg, s9, and s,. With an increase of distance, the behavior
of displacement becomes much simpler. In the far zone, dilatational and rotational
waves decay practically inversely proportionally to distance R, and either the radial or
tangential component plays the dominant role. This is the reason they are also called
the longitudinal and shear waves, respectively. In conclusion, let us point out again that
representation of displacement as a sum of three terms — s = 1+ 85 + 83 —is a result
of a solution of the boundary value problem. However, only dilatational and rotational
waves, as well as Laplace motion, have physical meaning.

3.5 Longitudinal and shear plane waves

As in the case of acoustic waves (Part IT), we pay special attention to the behavior of
plane waves in an elastic medium. By definition, the phase surface of such waves is planar,
and at the beginning we assume that at its points the magnitude and direction of particle
displacement s do not change. Of course, the same is valid for other characteristics
of wavefields, and this means that the plane wave is homogeneous. Later we will study
the more complicated inhomogeneous wave, in which displacement, as well as strain and
stress, may change very rapidly along its phase surface. As our main goal is to describe
reflection and transmission of plane waves at the planar interface, let us introduce the
Cartesian system of coordinates, so that the y—axis is parallel to the wave surface.
Later (in the next chapter) we will assume that the boundary between two elastic media
is situated in the plane XOY' | Fig. 3.6a. It is obvious that at each plane perpendicular to

the y—axis, wave behavior is identical. This allows us to study a wave in one such plane,
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(@)

(o) (©)

Figure 3.6: (a) Wave frout N of plane wave (b,c) Different orientations of unit vector n

for instance XOZ, which is usually called the plane of incidence. We distinguish three
possible types of homogeneous plane waves: (1) longitudinal wave P, in which particles
move in the direction of propagation, that is, perpendicular to the phase surface; (2)
shear wave SV, in which particle motion is tangential to the phase surface and occurs
in the plane of incidence; and (3) shear wave SH, in which the vector of displacement
s is tangential to the phase surface but perpendicular to the plane of incidence. In other
words, it is parallel to the y—axis. Now we will demonstrate that planc wave P is
compressional and propagates with the velocity

A+ 2p
=
P

At the same time, plane waves SV and SH are shear waves, and they propagate with

the velocity

Cs
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We will use the system of coordinates x;, %, and z; with unit vectors i, j;, and

ky, Fig. 3.6a, where j=j; and k; =n. By definition, for wave P we have

S:wlkl, ulz’ylzo
and
Owy _ dun _
O0x; B oy
Therefore,
. Jwy
divs=— but curls =0 (3.234)
aZl

This means that wave P is compressional, and it advances with velocity ¢;. The
displacement components of wave SV in the new system of coordinates are

s = wuq iy, since vy =w; =0
Also
8u1 8U1
8.’1/‘1 ayl

It follows from these equalities that
divs =0 and curl s £ 0 (3.233)

Thus, wave SV is a shear wave and propagates with velocity ¢;. Finally, in the case
of wave SH:

s = v ji, up =w; =0
and
Bul . 87)1 _
3:1:1 N 3;/1 N

Again, this gives divs =0 and curl s #£ 0 and, correspondingly, SH is also a shear
wave. Because divergence and curl are invariants with respect to a change of a system
of coordinates, we have proved, that both wave SV and waves SH are rotational,
whereas wave P is compressional. They can be described by vector and scalar potentials
that satisfy the wave equations

1 0%

Vi = T and Vip = ——— (3.236)
2 0t
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where
0? 0?
ox 0z
since the wavefields are independent on the y—coordinate. Note that an infinite number
of functions ¢ and 1t define the same field s, and this fact will be used in choosing

components of vector 0. For any compressional wave, we have
s = grad ¢ (3.237)

In particular, in the case of the plane wave, eq. 3.237 yields

. o
© Ox 9z

Thus, one scalar function ¢ characterizes both components of displacement vector s.

and w (3.238)

For rotational (shear) waves, we have

i j k
o d 0
s =curl ¢ = ™ 8_11 9 |
Ve Uy VU,
and in the case of plane waves we obtain
0 1, v, 0, d p,
U= v= - W=, (3.239)

because derivatives with respect to y vanish. Let us assume that for wave SV ficld
s is described by the single component ,. Correspondingly, in place of eq. 3.239 we

obtain

9, _ 0y
Eya v=0, w=— (3.240)

Suppose that the vector potential for wave SH has the component ), only, and, as a

u=—

result, eqs. 3.239 become

u =0, v = w=0 (3.241)

Thus, due to our assumptions, potentials for all three waves obey wave equations with

respect to scalar functions ¢, ¥,, and v, which greatly simplifies the determination

Yy’
of wavefields. Note that the validity of these assumptions will be confirmed in solving

the boundary value problems.
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Expression for potentials In accordance with eqs. 3.236, functions ¢, ,, and

¥, are solutions of ae wave equation that has the form

U 0*U 19U
—_— - —— 242
Ox? * 022 c Ot 3 )

In order to find the function U, we assume that the plane wave is sinusoidal. Then, U

can be represented as
U(x,z,t) =Re U (w, z, 2) et (3.243)

Its substitution into eq. 3.242 yields

U U
5z T T kKU =0 (3.244)

Here U (w,z,z) is the complex amplitude of U, and

k=

w
3.245

is the wavenumber for either dilatational or rotational waves. Now, applying the method
of separation of variables, we represent the function U (w,z,z) as the product of two

functions:
U (z,2,w) = X(z,w) Z(z,w) (3.246)

Then, eq. 3.244 becomes

d?X d*z 1 &*°X 1d*Z
X2 k2xz=0 o - et
dx? + dz? + of X dz? + Z dz?

Z +k=0 (3.247)

This cquality takes place if the first two terms arc constants, and it gives

1 d&?X
X de? —k*n? and
x

(3.248)

where n, and n, are quantities that are related to each other (Part II). In fact, from

eqgs. 3.247 and 3.248, we obtain an important relationship:
nZ+nd=1 (3.249)
It is obvious that functions

exp (£ i k n,x) and exp (£ ¢ k n,2)
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satisfy eqs. 3.248, respectively. Taking into account eq. 3.246, the function U and,
therefore, the complex amplitudes of potentials ¢, ¢, and ¥, can be written in the

form
U (z,z,w) = Aexp[ i k (n,z +n,2)] (3.250)
Here A is a constant. It is also convenient to use a slightly different form:

A
U (z,z,w) = T &XP tik (ngz+n,z) (3.251)

Since determination of displacement components is related to differentiation with respect

to x and z, the latter form is often more preferable. In general, n, and n, can be

T

arbitrary numbers, satisfying condition 3.249, but we are interested in two cases only,

namely
n, <1, n, <1l and
n, > 1, n,=1tb,,

where b, is a real number.
As follows from eq. 3.231, these cases describe homogeneous and inhomogeneous plane

waves, respectively. In fact, in the first case, the argument
tik (n,x+n,2)
and 1/i characterize the phase of the wave, and since
lexp[£ ik (n,z+n,2)]| =1,

the amplitude, (A/k), remains constant at the phase surface.
We have considered the homogeneous plane wave. The picture is completely different

in the case of the inhomogeneous plane wave, where eq. 3.251 can be written as
A
Uz, z,w) = %eibzz exp (£ i k nyz) (3.252)
1

It is clear that the phase surfaces are perpendicular to the x—axis, and the wave ampli-
tude

A otbez

k
varies at their points. This shows that we are dealing with an inhomogeneous or evanes-
cent plane wave. As was demonstrated in Part II, they may arise in the vicinity of an

interface. There are several types of such waves, some of which are called surface waves.
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In the case of a homogeneous plane wave, numbers n, and n, are directional cosines
of unit vector n, normal to the wavefront. Since the wave travels along line [, Fig.
3.6b,¢, the complex amplitude ¢ can be written in the form

A ikl
U= - et
where |I| is the distance between the origin of coordinates O and phase surface N.
Indeed, from eq. 3.243 it follows that

(3.253)

A1 it — A

Ulx,z,t) = z Re- e’ (wt — k) or Ulx,z,t) = % sin (wt — k)
A

or

Ulz,z,t) = %sin (kl — wt) (3.254)

This equation describes a homogeneous plane wave with amplitude A/k propagating
along the [—line. If [ is positive, then we are dealing with the outgoing wave, which
moves away from the origin. On the contrary, when [ is negative, the wave is incoming,
approaching origin O. We express parameter [ in terms of coordinates of a point,
(x,2), located on the wave surface. From Fig. 3.6b,c, it follows that

n =sinf i+ cosd k, (3.235)
where # is the angle formed by the normal n and the z—axis, and
0<8<m
Inasmuch as [ can be treated as the scalar component of the radius-vector
r=zi+zk

of any point of the wave plane, Fig. 3.6b,c, we have

I=r-n=uzsinf+ zcosb (3.256)
Therefore, eq. 3.257 is written as

A
U (z,z,w) = ﬁexpik (xsinf + z cosh) (3.257)

Comparison with eq. 3.255 shows that

Ny = sinf and n, = cosf , (3.2538)
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and we have solved our task. Of course, condition 3.249 is met. To illustrate eq. 3.257,

consider several examples, Fig. 3.6b,c. In the first quadrant, we have

T
x>0, 2 <0, and 6 > 5

Correspondingly, [ is positive and the wave (N) is outgoing. In the case of N, (the
second quadrant):

z <0, z <0, and 9<g

Thus, ! is negative and the wave is incoming. Tn the third quadrant (N3), we have

T
z <0, z >0, and 9>§,
and, correspondingly, ! < 0, i.e., the wave is incoming, as is indicated by the direction

of the normal n. Finally, for the wave in the fourth quadrant (N,), we have

x>0, z >0, and 0<g

Hence [ > 0 and the wave is outgoing. We demonstrated that the same argument of
complex amplitude, eq. 3.257, characterizes all possible directions of the planc wave.
However, later we will use angles that are always smaller than or equal to 7/2, and for
this reason the sign in front of z will be changed in some cases. Now we are prepared

to study reflection and transmission of plane waves in an elastic medium.



Chapter 4
Plane waves in a layered medium

The main subject of this chapter is the study of reflection and transmission of the lon-
gitudinal and shear plane waves at the planar interface. To solve this boundary value
problem we need to understand how surface forces act in the vicinity of the boundary of
two elastic media. We will begin by discussing the behavior of these forces.

4.1 Strain and stress in plane waves

As was demonstrated in Chapter 2, Hooke’s law in the Cartesian system of coordinates

is
Tor =AO+2Uen, Ty =A0+2uey,, T,=2A04+2ue, (4.1)
and
Tyz = M €yz, Tez = K €z, Tay = M Exy (42)
Here
ou ov ow ou Ov  Ow
T — & Cyy — A s 22 — o, 0=— —_— —_ 4.3
¢ ox Cuy Jdy ¢ 0z ox + dy + 0z (43)
and _8u+av _0u+8w _av+8w
o Coy = Oy = Oz’ “r =8, T o = 5, Dy

Since we are considering wavefields that are independent of the y-axis, eqs. 4.1-4.3
may be slightly simplified, and we have:

ou ow
€aa = 5 eyy =0, €z = 5 (4.4)

187
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L e
e oy R PR, W o
and
ou Ow
0=—4+ — 4.5
ox + 0z (45)
Also
Toe = A O+ 20 €4y, Tyy = A 6, T = AO+2ue,,, (4.6)
and, as in the general case,
Tyz = H €yz, Tpz = H €xzs Tay = M Exy (47>

Note that strain ey, is absent, but the normal stress, 7,,, characterizing the surface
force along the y-axis has a nonzero value if © # 0.

Next we will study strains and stresses for each type of homogeneous plane wave.

Incident P wave

In the case of the P wave, v =0 and therefore

ou Sw Ju  Ow
Crz = a—I, Eyy = 07 €2z = 57 Cyz = 07 Cry = 0: €rz = % + a_l, (48)

Thus, there are two diagonal elements of the strain tensor and one shear strain that

describes a change of the angle in any plane parallel to XOZ. Respectively, stresses are
Tor = A O+ 21 €4y, Tyy = A O, T =AO+2ue,, (4.9)
and
Tyz = Tay =0, Tez = { €z

We see that an elementary volume surrounded by coordinate surfaces is subjected to an
action of three normal stresses and one shear stress. The shear stress characterizes the
force oriented along the z-axis and applied to the face of the volume perpendicular to
the z-axis. All of these forces produce deformation, but rotation is absent, since the P

wave is compressional. In particular, if this wave moves along the z-axis, we have

u=v=20
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and
ow
Erp = €yy =0 and €, = P (4.10)
whereas
€z = €gy = 0 and €y, = 0, (4.11)

because the displacement component w docs not change on the wave surface (z =
const). Therefore, there is only one strain element, e,,, and respectively

Tuw = Tyy = A € and Tee = (A4 20) e, (4.12)

but
Tyr = Taz = Tay = 0 (413)

We see that all shear stresses disappear, and propagation of the longitudinal wave along
the z-axis is accompanied by forces acting in the perpendicular direction, (7., = 74, # 0).
This is the reason why the velocity of the P wave depends on the rigid modulus .

Incident SV wave

Since the displacement is situated in the plane of incidence (v =0) and is tangential
to the wave surface, it has in general two components, u and w. This means that egs.
4.8 and 4.9 describe strains and stresses for the SV wave, too. However, the action
of surface forces in this case is completely different. Because SV is a rotational plane
wave, these forces do not cause deformation of an elementary volume but only produce

its rotation. Suppose that SV wave moves along the z-axis. As follows from eqs. 4.8,

o
T 9z

There is one nondiagonal element of the strain tensor that describes a distortion of angles

(4.14)

Crzx = eyy = €, = O and eyz = (ixy = O’ €rs

in the plane of incidence. This strain also characterizes the rate of change of displacement

u along the z-axis. For stresses, egs. 4.9, we have:

Tow = Tyy = Tzz — 07 Tyz = Tay — 0 and Tgz = Tzz = M €gz (415)

b

Thus, normal stresses are absent, and tangential surface forces directed along the z—
and z-axes are applied to the corresponding faces of the volume.
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Incident SH wave

Because displacement is oriented along the y-axis, i.e.,

u=w =0,
eqs. 4.4 yield
a,
Cow = Cyy = €z, =0 and Cyz = 8—27 €pz = €y =0 (4.16)
For stresses, we have (egs. 4.6 and 4.7)
v
Tew = Tyy =To; =0 and Ty, = /J,E , Tyy = Tgy =0 (4.17)

The simplicity of such a rotational wave is obvious and, regardless of the orientation of

the wavefront, to describe the strain and stress we need only e,, and 7.

4.2 Reflection from the free surface (normal incidence)

Assume that the sinusoidal plane wave moves along the z-axis and approaches the plane
interface between two media having different elastic parameters. Our goal is to describe
the reflected and transmitted waves arising at the boundary. We start from the simplest
case of the free surface (Fig. 4.1a). We assume that elastic parameters of the upper

medium are:
A=p=0 if z<0

This means that waves are absent in that part of the portion of space and that stresses
are equal to zero. Then, taking into account continuity of stresses, we conclude that at
the free boundary, stresses vanish:

Toe =Ty =Tyr =0 on z=0 (4.18)

Respectively, the normal and tangential components of the force applied to any element

of the interface are equal to zero. First, consider the case of the incident P wave.

Incident P wave

As was shown in Chapter 3, the complex amplitude of scalar potential for the incident
P wave can be written in the form

~ A, , .
v, (z,w) = T &XP (—i Ky 2), it z>0 (4.19)
ik
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() ()
N T—
Tx=T=0 n
0 ‘ Al [38)
> X > X
Ao Uy
v \/
z
z
© (d)
Free boundary Free boundary

0

Z

Figure 4.1: (a) Free interface (b) Boundary between elastic media (c¢) Reflection of P

wave from free boundary (d) Reflection of SV wave from free boundary

Here A; is known and k; = w/¢;. Suppose that the reflected wave is also a P wave,
and correspondingly, its potential is

~

Ay
@, (z,w) = T P (i ki z) (4.20)
!

We have changed the sign of the argument because the complex amplitude, ¢,, describes
the outgoing wave. Thus, the wavefield is a superposition of two P waves propagating
in opposite directions:

~

1
¢ (z,w) = T [A;exp (=i k; 2) + Ay exp (¢ Ky 2)] (4.21)
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Here A, is unknown. In the previous section, we demonstrated that on the face of an
elementary volume that is normal to the z-axis, there is only one component of stress,

T... As follows from Hooke’s law, eq. 4.12:

o ow ~ O
To. = (A+2p) 5 or Toe = (A+2p) 5 (4.22)
since
a
s =grad ¢ or w=2¥
dz
Thus, the boundary condition in terms of potential is
0%
3 ;02 =0 on z=0 (4.23)
Substitution of eq. 4.21 into eq. 4.23 gives
A, = —A;, (4.24)

and the boundary condition is met, if both waves are longitudinal and amplitudes of
their potentials are the same. However, their phases differ by «, since —1 = T In
essence, we have confirmed our assumption and proved that the normal incidence of the
P wave does not cause shear plane waves. Note that in the vicinity of the boundary, two

other stresses, 7,, and 7, , are also equal to zero. In fact, as follows from eqgs. 4.12,
~ ~ \ ow \ Y
T = Togey — —_ = P
o v 0z 3 2%’

and, therefore, the stresses vanish on z = 0. From eqs. 4.21 and 4.24, we have for the
complex amplitude of the resultant wave

~ 1

¢ (z,w) = ih [exp (—i b z) —exp (i Ky 2)] (4.25)

Because scalar potential is an auxiliary function, we focus on the physically meaningful
waveficld properties. For instance, displacement has only the z-component, and  w =

8<,N0/c?z. For the complex amplitude of w, it gives

w = —A; [exp (—ik; 2) + exp (ik;2)] (4.26)

or w(z,t) = wilz, ) + we(z,1) = —A; [cos (wt + &y 2) + cos (wt — ky2)]
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and, by definition, the reflection coefficient for displacements is equal to

_w(0,1)
Rep = 0.0 1 (4.27)

It is convenient to represent eq. 4.26 in the form

w(z,t) = —2A; cos k2 cos wt, (4.28)
and this representation clearly demonstrates that the resultant wave, w(z,¢), is the
standing wave with nodes at points

z 1
ki 2 = il 2n+1) or D =-(2n+1), (4.29)
2 A4
where n = 0,1,2,.... It is obvious that at the free surface, as in the case of acoustic
waves, displacement is doubled:
w(0,t) = —24; coswt (4.30)

With an increase of distance z, displacement behaves as a sinusoidal function, which
happens because there is, in general, a phase shift between the two waves. As a result of
their interference, a standing wave is formed. In accordance with eqs. 4.12 and 4.28, we

have

T,,=2(A+2u)k Ajsink, z coswt (4.31)

and Tz = Tyy =20k A;sink; z coswi

Thus, the resultant stresses are also described by the standing wave with nodes at points

z 1
ko2 = LA 4.32
1z =Tn or N 5" (4.32)

We see that at all points of a medium, except nodes
=7, (4.33)
Now let us consider incident and reflected waves separately. For instance, particle velocity

and stress 7, associated with the incident wave are

w(z,t) = % = A; wsin(wt + k;2) (4.34)
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and 7, (2,t) = A; k(A + 2p) sin (wi + kiz)

In studying acoustic waves (Part II), we introduced the concept of acoustic impedance,

From eqs. 4.34, we obtain a similar relationship for the elastic P wave:

k24

T k(A +2p) _ A2 02, (4.35)

w w q

Thus, the impedance of a medium for the plane longitudinal wave is
Zir=v{A+2u)p (4.36)

Z; characterizes resistance to motion caused by P wave.

Incident SV wave

Next, suppose that the plane wave SV propagates along the z-axis toward the free
interface and that XOZ is the plane of incidence. Then, as we already know, wu # 0
but v =w =0, and the wavefield is described by the y-component of vector potential
¥,. Omitting subscript y, the complex amplitude of potential can be written as

B; ‘
Yilz,w) = - exp (—iks2) (4.37)
7

5

Here B; is known, ks = w/e,, and ¢ is the velocity of propagation of the shear wave.
Let us assume that when the incident wave reaches the interface, the reflected wave of

the same type, SV arises, and we have:

~

B, :
P, = T X (iksz) (4.38)

Then the resultant wave is

~

P(z,w) =

[B; exp (—tkgz) + By exp (ikyz)] (4.39)

8
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Propagation of these waves is accompanied by the stress 7,,(z,t) as well as 7

in accordance with eq. 4.15

o ou
TZZ = lua7

In order to determine the unknown B,, we use the boundary condition

195

and,

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

~ du
e =0 or —=0
T 0z
Taking into account that
~ o
U=——
0z’
eq. 4.41 becomes
0%
a—zf =0, on 2z =0,
and an analogy with the case of P wave is obvious. Substitution of eq. 4.39 into eq.
4.43 gives
Br = 7Bia
and, correspondingly,
= B; . .
(z,w) = - - [exp (—iksz) — exp (iks2)]
i ks

(4.45)

Performing a differentiation with respect to 2 (cq. 4.42), we obtain for the complex

amplitude of displacement
u(z,w) = B; [exp (—iky2) + exp (ike?)],
or
u(z,w) = ui(z,w) + up(z,w) = By [cos (w + ksz) + cos (wt — ksz)]

Therefore, the coefficient of reflection is

1, (0, 1)

R =
58 (0, 1)

=1

(4.46)
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Moreover,
u(z,t) = 2B; cos kgz cos wt, (4.47)

which practically coincides with eq. 4.28. As before we ohserve a standing wave, but
the position of nodes is different, since k; # k;. At the free boundary, the tangential

component of displacement, w, is equal to
u(0,¢) = 2B; coswt, (4.48)

i.e., it is twice as big as displacement carried by the incident wave. From eq. 4.40, we

have for shear stress
Tpe(2,8) = =24 ks Bjsin ksz cos wt, (4.49)

and it is also describes a standing wave. Of course, at the free interface 7., and 7.,
vanish. Since the function (z,¢) is a solution of the boundary value problem, our
assumption about the reflected wave is correct. In accordance with eq. 4.37, particle

velocity and stress, caused by the SV incident wave are
u(z,t) = —B; wsin (wt + kyz) , Tea(2,1) = —B; kypsin (wt + k,2)

Hence

Taz kspi M =
Zy=—"—= = =/up (4.50)

U w Cs

Comparison with eq. 4.36 shows that Z; > Z,. This means that if 7,, = 7,,, the
shear wave causes higher particle velocity. The same result is obtained if displacement

has only the component along the y-axis (SH wave): u=w =0 and s = vj.

4.3 Reflection and transmission at the plane boundary of two elastic media

(normal incidence)

In this case, unlike in the previous one, waves cxist in both half-spaces, Fig. 4.1b. That
is, at the interface, the incident wave gives rise to reflected and transmitted waves. As

before, we start with longitudinal waves.
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Incident P wave

Let us assume that if the incident P wave moves along the z-axis, the reflected and trans-
mitted waves are of the same type and also propagate along the z-axis. Correspondingly,

the scalar potential for all of these waves can be represented as

~

A; , ~ A, ‘
oi(z,w) = ——exp (¢ ku 2), @, (z,w)=—exp(—ikyz), (4.51)
2 ku [ ku

~ A )
wy(z,w) = i—k;CXp (1 ko 2)

Here ky = w/cy, ko = w/ey and ey, ¢y are velocities of propagation of the
P waves in each medium. Now we will attempt to satisfy the boundary conditions,
provided that the shear waves SV and SH are absent. As is well known, at the
interface, displacement and stresses are continuous functions. Because the P wave has
only the component w(z,t) and the stress 7,.(z,t) differs from zero (normal incidence),

we have:
w(0,1) = w?(0,1) and 70(0,1) = 72(0, 1) (4.52)

In terms of the complex amplitude of the potential, eqs. 4.52 become

dpy _0py Py _ G
5 = 9, and (A +2 ) 57 = (X242 py) 5,2 (4.53)

where

01 (w,2) = @3 (w,2) + ¢, (W, 2)

Substitution of eqs. 4.51 into eqs. 4.53 gives the system for determining of unknowns
A, and As:

A=A = Ay

()\1 + 2 Ml) kqy (Az +Ar) = (/\2 +2 Mg) ko Ay
or

Ai — Ar = AQ and ZH (AL + 147-) = ZQ[ AQ (454)
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Here Z;; and Zy are impedances for the P waves, hence

Zoy — Zy
4, = LaT fu oy 4.55
Iy + Zy (4:55)
and
272y
Ay = — 22y, 4.56
2T 20t Zy (4.56)

These formulas do not differ from those that describe reflection and transmission of
acoustic waves. It is not surprising, since the latter are also compressional waves (Part
IT). From egs. 4.51, 4.55, and 4.56, we have

A; , Zoy— 7
p1(z,w) = — |exp (i ky 2) + . i

_ —t ki 2 4.57
tky Zoyy+ Zy exp (i ku 2) (4:57)

272y A
Zy+ Zy tky

and Py(z,w) = exp (i ky 2)

For displacement, we obtain

~ ~ Zo— 2y

w (2, w) = wi(z,w) + w,(2,w) = A; |exp (i ky 2) — exp (—1 ky z)|  (4.58)

Za+ Zy
~ 2 7y .
and wolz,w) = —————A;exp (i ko 2
2( ) Zu+ Zy i P( 21 )
Correspondingly, coefficients of reflection and transmission are

A As
Rpp =", Tpp = —
PP =3 PP = 4

Note that these coeflicients change in the following ranges:
71§Rpp§1 and OS TPPSQ

It is easy to derive formulas for limiting cases from eq. 4.58. For instance, when the

lower medium is a free space, we arrive at the known expression
wi(z,w) = A; [exp (i ky 2) +exp (—i ky 2)],
since Zy = 0. On the contrary, if the second medium is ideally rigid, Zy — oo, then

w(z,w) = A; [exp (i ky 2) — exp (—i ky 2)], (4.59)
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while
wy(z,w) =0

This is obvious, because particles in an ideally rigid medium cannot move. As follows
from eq. 4.59, at the boundary

wy(0,w) =0,

and continuity of displacement takes place. Of course, eqs. 4.58 remain valid when we
consider the boundary between an elastic medium and a fluid. In such a case, impedance
7y is replaced by the acoustic impedance Z. For instance, if the upper medium is a

fluid, we write ©, =0 and have

Zy = Ap

Respectively, the parameter A; plays the role of the bulk modulus M, i.e.,
Zu=27=+/Mp (4.60)

Note that superposition of the incident and reflected waves, eqs. 4.58, does not form the
standing wave in the upper half-space. This is because amplitudes of these waves are
different.

Incident SV wave

Suppose that the incident wave is an SV plane wave advancing along the 2z-axis, and
that reflected and transmitted waves are of the same type. Then, the wavefields are
described by the y—component of the vector potential. The complex amplitude of this

component at cach part of a medium is written in the form

¥ (z,w) = T [B; exp (i k15 2) + By exp (—i kis 2)] (4.61)
1s
~ 1 ,
and Yoz, w) = ——Boexp (i kas 2)
? k?s

At the boundary, the component of displacement w and stress 7,, are continuous

functions, and in terms of complex amplitudes, we have

317)1 81752 3217}1 32’5)2
5 = 5 and iy 52~ M2 5. on z=0 (4.62)
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The similarity of egs. 4.53 and 4.62 is obvious. From eqs. 4.61 and 4.62 we obtain

Bi — Br = Bg and le (BZ + Br) = ZQSBQ (463)
Hence
Zys — Zis 2 2y
B, =———7F-D d By=——""7"-0D, 4.64
" ZQs + le o 2 Z25 + le ! ( )

where Z, = /it p is the impedance of a medium to the shear waves. Formulas 4.64
coincide with corresponding expressions of set 4.55-4.56, if B; is replaced by A; and
Zs by Z;. Inasmuch as

u(z,w) = 7817& and Toy = — 8217)
AP == g2
we obtain
~ . Z?s‘ - le .
2,w)=—B; |exp (i ks 2) — ———F— —1 ks
w(z,w) exp (i ks 2) 2.1 7., exp (—i ks 2)
~ 2 Zy, .
and =—-B——— i kos 2 4.65
and  ux(z,w) 7ot 7., exp (7 ks 2) (4.65)

Similarly to the previous case of the incident P wave, the coefficients of reflection and

transmission are

B, B,
R e — , = =
55 = g Tss B,
Moreover,
~(1) . . Z2s - le .
= —iks u B; |e ks — e —1 ks 4.66
T s ikys 1By |exp (i kyg 2) + Zo. 1 7., exp (—i ks 2) (4.66)
~ 2 7, .
and Tfj = —ikoy piy B; K exp (i kos 2)

ZZs + le

For illustration, consider two special cases. First of all, if the lower medium is an ideally
rigid one, Zy, — 0o, we have

~

u{z,w) = =By [exp (i ks 2) — exp (—i ks 2)] (4.67)
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and ;ilz)(aw) = —ikys jiy By [exp (i ks 2) + exp (—i ks 2)]

In particular, at the boundary,

1(0,w) = 0, S ) (4.68)

zz -

Thus, as in the case of the P wave, stress is doubled at the interface, but displacement
is equal to zero.

Next, suppose that the lower medium is a fluid, i.e.,
o =10 or Zos =0

Correspondingly, eq. 4.65 becomes

~

Ul(sz) =—-B; [exp (Z ks Z) + exp (_i K1s Z)}/

while 1wy is not defined since ks — oo. This indicates that the incident wave does
not cause motion of fluid particles. As concerns stresses, we have
7N'(.1) = —ikypq B; [exp (i k1s 2) — exp (—i ky, 2)] and 7o, =0
Tz sH1H 1s 1s 4 )
which is obvious, since shear stresses are absent in fluid.
The case of the incident SH wave is completely analogous to the case of the SV
wave.
Summing up, we state the following:
1. The incident plane wave (P, SV, or SH) generates secondary waves of the same
type.
2. Expressions describing coefficients of reflection (transmission) of secondary waves
are similar for any type of incident wave.
3. Since coeflicients for sinusoidal waves are independent of a frequency, they are the

same for transient waves.

4.4 Reflection from the free surface (oblique incidence)

Now we will study a more general case of oblique incidence of the plane wave at the free

surface, Fig. 4.1c¢, beginning with the incident longitudinal wave.
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Incident P wave

As was shown in Chapter 3, scalar potential of the incident P wave can be written as

~ A;
o, (z,z,w) = z_l; exp [ik; (z sin a; — 2 cos ¢;)] (4.69)

Here «; is the angle of incidence formed by the ray and the z-axis:

O0<ao; <

[N

First assume, as before, that a reflected wave of the same type arises at the interface
only. Correspondingly, the complex amplitude of scalar potential is

~ A,
o, (2, 7,w) = —I; exp [ k; (xsin o + 2 cos )] (4.70)
i ky

where «, is the angle of reflection formed by the z-axis and the ray of the reflected
wave, Fig. 4.1c. Thus, the resultant potential is

~ ~ ~

o1 (2, 2,w0) = ¢, (v, 2,w) + o, (2, 2, w) (4.71)
or
~ 1 , .
0, = ﬁAi exp i ki (xsinay — zcos )] + (4.72)
!

TAT exp [i k; (zsin ;. + z cos &, )]
iRy

Our goal is to find A, and «,, that cause all stresses to disappear at the free boundary
7N—zz (I7 0, w) =0, 7,:a:z ({E, 0, w) =0, ;yz (I’ 0, w) =0 (473)

Since the displacement component © = 0 and the wavefields do not vary along the
y-axis, the last equality is satisfied regardless of the values of A, and «,. Taking into
account Hooke’s law, egs. 4.73 can be written as

Ow ou du  Ow

or, in terms of the complex amplitude of the potential, we have

27 27 27
0% 30 _y a9

(A +2p) 022 Ereh 0rdz
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Substitution of eq. 4.72 into eqs. 4.75 gives two equations with respect to A, and o

iky Ay [(A + 2p) cos® a; + Asin® o] exp (ik; sin o)
+ ik; A, [(A+ 2p) cos” o, + Asin® o, | exp (ikysina,) = 0 (4.76)

and — ik;sin oy cos a; A; exp (ikysin ;) + ik sin a, cos o A, exp (ik;sin ) =0

Since these equalities are valid for any x, we conclude that

kysin o; = Ky sin oy,

ie., o; = a, (4.77)
and in place of eqs. 4.76, we obtain
Ai + ‘47- =0 and - AL + ‘47- =0 (478)

This system does not have a solution, and, therefore, our assumption that the reflected
wave consists only of the P wave is incorrect. This suggests that both longitudinal and
shear reflected waves are generated, and we attempt to satisfy the boundary conditions
with the help of the P and SV waves. In such a case, the total displacement is the

sum of displacements caused by each wave. Therefore, we have:
s =grad ¢ + curl ¥

or

.0~ L0 oy
u_&r 9, v =0, w—az—f—ax, (4.79)

because
Y=,

and wavefields are independent of the y—coordinate. This gives for the complex ampli-
tude of dilatation, © :

~ ou ow 8% 0%
@:@ ow ¢ 3¢:v25:_k,2&) (4.80)

ox + dz 022 + 072
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Also,

ow Py 0 o Ow o Oy 0%

“:= 9, T 82 Towas T 8;  or “or0: 022 072

Therefore, in place of eqs. 4.74, we have

. 825 8% 82 Pd Py

XKk +2 —+—|=0 and 2—+———-——=0 4.81
A 072 * or 0z o O 0z * 0z?  02? (481)
Expressions for potentials are

~ ; , . A, . .
1= o exp [ik; (zsinoy; — z cos o)) + 7, &XP [iky (xsin o + 2 cos )] (4.82)

1K Ry

v _ B : . ,
and Yy = - exp [iks (zsin f, + z cos §,)],

5

where (3, is an angle of reflection of the SV wave. Substituting eqs. 4.82 into set
4.81, we arrive at a system of equations with respect to A,, B,, a,, and .. First
of all, proceeding from the boundary conditions, it is easy to derive Snell’s law for an
elastic medium. In fact, every term in eqs. 4.81 contains either exp (ik;sincy) or
exp (ik;sinc,) or exp (ikssin §,). Since the boundary conditions take place regardless

of z, we conclude that all three arguments are equal to each other:

kysin o, = kysin v, = kgsin G, (4.83)
or
ih 3 in o
=0y and Sy S (4.84)
Cg Cy

This represents Snell’s law of reflection in an elastic medium. Eq. 4.83 shows that the
apparent velocity of three waves along the z-axis is the same. Making use of eqs. 4.83
and performing differentiations, eqs. 4.81 give

ki (A + Ay) (A +2pcos® ;) + 2p ks B, sin 8, cos 3, =0

and 2k sino; cos o (A, — Ay) + ks B, (sin2 8, — cos? /ﬁ) =0
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or
(A; + A) [(A+ 2p) cos® a; + Asin® ;] + 2umB, sin 8, cos 3, = 0 (4.85)
and 2sina; cosa; (A, — A;) +m B, (sin2 8, — cos® /3T) =0
Here
Cl
m=—
Cs

It is convenient to express the left side of these equations in terms of cotea; and cot ,.
This yields

(A + A) [(A+2p) cot® a; + A m + 2 By cot 3, = 0 (4.86)

and  2mecotoy (A, — A;) + B, (1 — cot? ;Br) =0

Whence
2mecot oy (A; — A,)
.= 4.
! 1 — cot? 3, (487)
Substitution of eq. 4.87 into the first equation of set 4.86 gives
(A + A) [(A + 2p) cot® o + A] (1 — cot® B,) + 4 cot o cot 8, (4; — A,) =0
Thus,
A - dpcot o cot B, — [(A + 2p) cot? a; + A] (cot? 3, — 1) Al (4.88)
Dy
_ . 2 .
and B, - dm cot oy [(N + 2p) cot® a; + A A
D,
where

Dy = 4pcot o cot B, + [(A + 2p) cot® a; + A] (cot® B, — 1)
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It is easy to find the relationship between cot?3, and cot?«;, taking into account that

the apparent velocity, ¢, along the z-axis is the same. As can be shown

‘ - ‘
cot? ov; = 5 L or = 012 (1 + cot? az)
G
2 ¢ —a 2 2 2
i S
and  cot” g, = = or ¢ =c; (1 + cot /3T)
S
Whence
i (1+cot?e;) = (14 cot? B,),
i.e.

cot’ B, =m” (1 + cot’ ;) — 1 (4.89)

Thus, we have demonstrated that scalar and vector potentials given by eqs. 4.82 and
4.88 are solutions of the Helmholtz equations

Vo4 k25 =0 and V24 k2 =0,

correspondingly, and they obey the boundary conditions. In other words, our assumptions
were correct, and these functions, ¢ and 1,71 describe the incident and reflected waves
in the presence of the free plane boundary. Besides, we have demonstrated that the SH
wave is absent. As we can see, the incident wave P gives rise to two reflections, namely
longitudinal and shear waves. This fundamental feature of wave behavior is not observed
in a fluid medium (Part IT). As follows from eqs. 4.88, in such a case (u = 0), we have

4m cot oy

A, =—A4,; and B =——75—7—»A4
’ ! " " cot?3, —1 7"
or, taking into account eq. 4.89,

4dmcot o
m2 (1 +cot?a;) — 2

r =

)

Since ¢ —» 0 and m — oo, B, — 0, and the SV wave vanishes. Note that coefficient
Ay, cqs. 4.88, depends on the clastic parameters (A, p), incident angle «;, and
amplitude A;, whereas in fluid, amplitudes of incident and reflected waves are equal to

each other. At the same time, in both media, the geometry of waves obeys Snell’s law.



4.4. REFLECTION FROM THE FREE SURFACE (OBLIQUE INCIDENCE) 207

In accordance with eqs. 4.84, the angles of incidence and reflection of the P waves are
equal to each other, and angle 3, is defined from the relation

. Cs . .
ap = sing, = C—S sin q;, ie, B, <, (4.90)
]

as is shown in Fig. 4.1c. Snell’s law indicates that, regardless of the the value of angle
a;, both secondary waves, P and SV, remain homogeneous.

Reflection coefficients Ag follows from eqs. 4.79 and 4.82, the displacement
vectors of P waves at the boundary are

s; = Ajcos(krsine; —wt) n;  and s, = A, cos(kzsina; — wi) n,,

where n; = sina; i —cosa; k' and n, = sinq; i + cosa; k are the unit vectors of
rays. The reflection coefficient Rpp = A, /A;, and if Rpp is positive, the displacement
vector is directed downward along the reflected P ray. The indices PP and PS mecan
that P and S waves are caused by the P incident wave. The displacement vector of

the reflected SV wave is
s; = B,(—cos B, i+ sin 3, k) cos(ksxsin 5, — wt),

and the unit vector of the reflected S ray is n, =sin 3, i+ cos3; k. It is easy to see
that n, -s, = 0, i.e.,the displacement carried by the reflected SV wave is orthogonal
to the SV ray. The reflection coefficient Rpg = B, /A;, and if Rpg is positive, the

displacement is directed toward the z-axis.

Case A= Formulas 4.88 are essentially simplified when Poisson’s ratio is
o0 =0.25 or A= p, which is often a rather good approximation. Then ¢} = 3¢2, and
instead of eq. 4.89 we have

cot? 8, = 3cot? oy + 2
Its substitution into set 4.88 gives

_ dcotagcot B, — (14 3cot?a;)”

A, = Ry
4 cotay; cot B, + (1 4+ 3cot? o)

(4.91)

and B — — 4m cot v; (1 + 3 cot? at) 4
4 cot av; cot B, + (1 + 3cot? a;)
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Here m = /3. Simplicity of eq. 4.91 allows us to see the following features of waves.

The reflected PP wave vanishes if
dcot o, cot B3, = (1 + 3 cot? ozl-)2
or
2 1/2 2 2
4 cot oy (3 cot” oy + 2) = (1 + 3 cot ai) (4.92)
This equation has two roots:
o = 60° and a; = 77°13

There is some similarity of this case with the reflection at the boundary between two
acoustic media (Brewster’s angle). In both cases, the wave disappears due to the de-
structive interference of elementary spherical waves that arise at the boundary (Huygen’s
principle). Behavior of the P-wave amplitude is similar for different values of m and
o (Fig. 4.2a). First of all, with an increase of «;, amplitude |Rpp| decreases because
of the destructive interference of elementary waves. If m and o are relatively large,
|Rpp(c;)| passes a minimum value and then begins to increase, approaching 1. In such
a case, the reflected wave exists for all values of the incident angle. With a decrease of
these parameters, we observe two values of angle, as in the case A = p, where the P
reflected wave vanishes.

Behavior of the function |Rps(a;)| is completely different. For normal incidence
the amplitude of reflected SV-wave is equal to zero, but with an increase of «; due
to constructive interference, it becomes larger. Depending on the value of m, it reaches
maximum in the range between 35° and 65°. Then it decreases, and for the grazing

angle Rpg becomes equal to zero.

Incident SV wave

Next suppose that the shear incident wave, SV, approaches the free surface and gener-
ates there two plane waves, SV and P. Correspondingly, the complex amplitudes of

potentials are

~ A
o, (z,2,w0) = —]; exp i k; (zsina, + zcosa,)] and (4.93)
i Ky

~

wl (‘Tasz): -

B
exp [t ks (zsin 8, — zcos 3;)] + - 1 EXP [i ks (zsinf, + zcos §,)]

1 ks 1 ks

B;
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To determine the unknowns A,, B,, a,, and f3,, we again use the boundary conditions,
eqs. 4.81. As we know, they can be satisfied if all arguments in eqs. 4.93 are equal to

cach other at the free surface:

ks xsin 3, = ks xsin 8, = kizsin o,

or
sin3;  sin sin a
= b = ! (4.94)
Cs s o
This shows that the incident and reflection angles of the SV wave are equal:
By =B; (4.95)
At the same time, we have
sinf3;, sinco,
— = (4.96)

Cs G
Eqgs. 4.95 and 4.96 represent Snell’s law for the incident SV wave. As follows from eq.
4.96,

sin e, = msin G;, (4.97)

Since m >1 (Fig. 4.1d), o, > 8. If

. Cs
Sin 51, = 0_97
1

then the angle «, becomes equal to 7/2, and the reflected wave P slides along the
free surface. By analogy with acoustic waves, angle 3, is called the critical angle. When
B; > 8., the P wave becomes inhomogeneous.

In order to determine the unknowns, A, and B,, we substitute egs. 4.93 into set
4.81 and obtain

(A +2pcos® o) ki Ay + 2p ky (B, — B;)sin 3, cos §; = 0
and

2k sin oy, cos o A, + kg (B; + B,) (sin® 8; — cos® 3;) = 0
or

(A +2pcos’ o) Ay + 20 m (B, — B;)sin §;cos 3; = 0 (4.98)
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and 2sina, cos . A, + m (B; + B;) (81112 f3; — cos® ﬂi) =0

Using Snell’s law, we obtain

 dpcot oy cot B — [A 4 (A + 2pu) cot” o] (cot? §; — 1)

B, B; 4.99
- (4.99
14 B; (cot® §; — 1
and A — LA cot §; (cot® 3; — 1) B,
m Do
where
Dy = 4pcot o cot B; + [A+ (A + 2p) cot® o] (cot® B, — 1) (4.100)

Reflection coeflicients  The displacement vectors of the incident and reflected

SV waves at the boundary are

s; = Bj(cos 3, i+ sin 8, k) cos(k,z sin §; — wt)

and s, = B,(—cos §; i+ sin §; k) cos(ksz sin 5, — wt),

whereas n; =sing; i —cosf; k and n, =sing, i+ cos 5, k are the unit vectors of
rays. It is evident that n;-s; = n, s, = 0. The reflection coefficient of wave SV is
Rss = B./B;. The indices SS and SP mean that P and S waves arc caused by
the S incident wave. We see that displacement carried by the reflected SV wave is
orthogonal to the ray, and its sign depends on the sign of Rgg. If Rgg is positive, the
displacement is directed toward the z-axis, like the displacement in the incident wave.
At the same time Rgp = A,/B;, and if Rgp is positive, the displacement vector for
the I wave is directed downward along the reflected I’ ray. !

Case A = Then egs. 4.99 and 4.100 are simplified, and we have

_ 4dcota, cot B; — (14 3cot?a,)’

B, = ;
4cot e, cot B; + (1 + 3cot? a,)”

(4.101)

4 cot 3; (1 + 3 cot? o)
m 4cotay cot B; + (1+ 3cot® a,)’?

and A, =

Tt is possible, of course, to present cocfficients Rpp, Rps, Rss, and Rgp in a
slightly different way, using equalities A +2p = ¢?p, u = cp, and Snell’s law (see, for
example, Aki and Richards, 1980).
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The expression for B, shows that the reflected wave SV vanishes when angles obey

the equation

4cota,cot B; = (1 + 3cot’ Ozr)Q ;
which has two roots:

B; =34°76"  and 8; = 30°

Bcehavior of the reflected waves is shown in Fig. 4.2b. For relatively large values of
m and o the amplitude of the reflected SV wave becomes smaller with an increase of
3; and reaches a minimum near 3; = 32°. Then it starts to increase. For smaller values
of m and o, this wave disappears at two angles between 25° and 40°. Amplitudes of
the reflected P wave are equal to zero values for normal incidence, smoothly increase
with increased angle and pass sharp peaks near the critical angle.

Reflected waves beyond the critical angle As we already know, if 5, > 3,
Snell’s law for the reflected P wave becomes invalid (sin o, > 1). Correspondingly,

2 2
c; o R c; o,
cosa, =4/1— —ést B;=ib, and b, = —ést 8, —1
\/ ¢ ¢
s 5

Thercfore, for the potential of the reflected P wave, cgs. 4.93, we have

~ A
o, (1,z,w) = 77“ exp(—kib,z + ikjxsin oy,.), (4.102)
7

where A, is now complex. We see that an evanescent P wave propagates along the
free surface with the velocity ¢ = ¢,/sin3;, which varies with the angle of incidence 3,
within the range ¢; < ¢ < ¢. The amplitude of this wave, A,exp (—kb,2), decays
exponentially with an increase of depth z. The rate of its change depends on the angle of
incidence. In particular, at the critical angle, the parameter b, is equal to zero, and the
reflected I° wave becomes homogeneous. With an increase of (;, the evanescent wave
decays more rapidly. Since k; = w/¢;, the exponential term exp (—k;b,z) depends on
a frequency. Correspondingly, the high frequency harmonics concentrate near a surface.
As follows from equations for displacement components, during each period particles of a
medium move along an ellipse whose parameters change with depth 2. The evanescent
(inhomogencous) P wave is always accompanicd by the reflected homogencous SV
wave, which moves away from the free surface through an elastic medium. Its apparent

velocity along the boundary is the same as that of the inhomogeneous P wave. As is
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seen from eqs. 4.99 and 4.100, the reflection coeflicient Rgg is now complex and may

be presented as a ratio,

- F
Roo = — 4.103
5SS ZE i Fa ( )
where
C bc\?
E= 4@627 cot3; and F'= | A+ (A+2p) ((Z) ] (cot® 8, — 1) (4.104)
Cl /‘Z
It is evident that in this case
E
Rss = exp (—i¥), ¥ =2tan"" ya (4.105)

This means that the reflected SV wave has the same amplitude as the incident SV
wave, but it is shifted in phase. Thus, the resulting total reflected wave consists of two
parts, namely, the evanescent P wave and the homogeneous SV wave. For an observer
at the surface, it is impossible to distinguish them. For instance, the displacement field

of the reflected waves can be represented as
s = grad ¢ + curl 9,

and simultaneously we observe different types of motion and deformation that are typical
for compressional and shear waves. Because a portion of the energy of this reflected
wave moves away from the boundary, with an increase of depth z the reflected wave
SV becomes dominant and, therefore, polarization becomes linear. This analysis shows
that only the superposition of the incident wave and both reflected waves satisfies the
boundary conditions — that is, the normal and shear stresses are equal to zero:

T2 = 0, Tez =0

This means that at each point of the boundary, the wavefield is a result of the superpo-
sition of all waves. Of course, the same is correct when the angle of incidence is smaller
than the critical angle. Thus, we have demonstrated that a plane wave cannot create a
surface wave that satisfies the boundary conditions. The same is true if the boundary
is idcally rigid. Also note that there is a phase shift between the incident and reflected
waves at points of the boundary. Because of this, at every instant part of the energy of
the incident wave is transformed into energy of the reflected SV wave, but the other
part is transformed into cnergy of the evancscent P wave. As was mentioned carlier,

Snell’s law for the reflected SV wave is valid for all values of g;.
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Incident SH wave

Finally, assume that the SH wave is incident and that displacement has the wv-

component only.
v; (2, 2,w) = Ciexp[i k, (xsiny, + zcos,)] (4.106)

Since this wave is accompanied by the single stress component 7,,, let us suppose that

the reflected wave is also an SH wave, and therefore
v (%, 2,w) = Cyexp[i ky (vsiny; + 2cos7,)] + Crexp[i ks (zsiny, — zcosv,)]  (4.107)

Here +, and v, are angles of incidence and reflection, respectively. At the boundary,

we have

o v

By analogy with the two previous cases, we conclude that this equality is satisfied, pro-
vided that

siny, = sin~, or Vi = Vrs (4.108)
and we again arrive at Snell’s law. In the same way as before, we obtain
C,=C;, and Rgg=1 (4.109)
Hence
v (2, 2,w) = Cifexp i k, (xsiny; + zcosv,)] +expli ks (zsiny, — zcosv,)]}  (4.110)

We see that displacement at the free surface is doubled, which happens for any angle of

incidence. The similarity with the behavior of acoustic waves is obvious (Part II). Since
v(z,2z,t) = Re [ v (z,2,w) e_Mt] ,
we have

v (x, 2, t) = Ci{cos [ks (zsiny; + z cosy,) — wit] + cos [k (xsiny; — zcosv;) — wi]}

or

v(z, z,t) = 2C; cos (ksz cosy,;) cos (wt — kszsin 7y,) (4.111)
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Thus, superposition of the incident and reflected waves produces a standing wave along
the z-axis and a wave propagating along the z-axis with the velocity

Cs
= — 4.112
¢ sin -y, ( )

In conclusion note the following. The energy of the incident wave is transformed into
that of the reflected waves. For instance, in the case of the incident SV wave, the
energy is distributed between the reflected SV and P waves. Imagine three elementary
vector tubes with a common point at the interface. Then the amount of energy moving
through the tube of the incident wave is equal to the sum of energies flowing through
the two other tubes during the same time interval. If the angle of incidence exceeds the
critical angle 3, > (., the mean values of the energy of the incident and reflected SV
waves are equal to each other.

4.5 Reflection from the rigid surface (oblique incidence)

Suppose now that plane z = 0 is the interface between an elastic medium and an ideally
rigid medium. To illustrate reflection, consider the incidence of an SV wave and assume
that the reflected P and SV waves arise. Correspondingly, the complex amplitudes

of the scalar potential and the y-component of the vector potential are

~ A, , :
o, (z,z,w) = i exp [¢ k; (xsina, + z cos )] (4.113)

~

and  (z,z,w) =

i

1 ks

-

i ks

exp i ks (zsin 8, — zcos 3;)] + exp [i ks (zsin 8, + zcos 3,)]

By definition, at the boundary all three components of displacement are equal to zero,

ie.,
u(x,0,w) =0, v (x,0,w) =0, w (2,0,w) =0 (4.114)

Our assumptions about waves imply that the component w» is absent everywhere. In

terms of potentials we have

0p oy 05 o ]
= L= and — =0 at z= 4.11
5 9s 0 an P + o 0 at 2=0 ( 3)
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Substitution of eqs. 4.113 into set 4.115 allows us to determine the unknowns A, and
B., and to establish again Snell’s law:
sin sin f3;

B, =B and =

C Cs

The system of equations with respect to A, and B, is

sine, A, + (B; — B,)cos 3, =0, (4.116)

cosa, A, +(B;+ B,)sin§, =0

Hence

cosa, cos 3, —sina, sin 3.

B, = r U S R b 3 (4.117)
€os o €08 B, + sin v, sin f;
_ —25sin j3; cos 3,
and A= - : i
cos o, €os 3, +sina, sin f;

or

208 (o 3, sin 203,
B, = M B; and A, = o Smedy B; (4.118)
cos (o — ;) cos (ar — f3;)
First consider the behavior of reflected waves when the angle of incidence is smaller than

the critical angle:

) ¢
B, < B, =sin ' =
%
For the normal incidence, 3, =0, we obtain
B, =B, and A, =0,

i.e., only the reflected SV wave arises. With an increase of 3;, the amplitude of the
reflected SV wave becomes smaller and the P wave appears. Beyond the critical angle,
(3> 3., the P wave becomes evancscent and exponentially decays with distance from
the boundary. At the boundary, there is a phase shift between the incident wave and the

reflected SV wave, and their amplitudes are equal to each other: |B,.|= B;.
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4.6 Reflection and transmission at the boundary between a fluid and an

elastic medium

As is well known (Appendix D), in the vicinity of the boundary, (z = 0), particles of a
fluid medium and an elastic medium are not rigidly connected to each other. Correspond-
ingly, tangential components of displacement may have different values on each side of
the interface. In other words, in general, they are discontinuous functions on z =0. At
the same time, the normal component of displacement is a continuous function.  Oth-
erwise we would observe either a gap between the two media or their overlapping. We
also take into account that all stresses are continuous functions, and shear stresses are
absent in a fluid. This means that in the vicinity of the boundary, shear stresses in an

elastic medium are also equal to zero. Thus, the boundary conditions are
w=w, and 71, =79 1 =0, Télz) =0 on z=0 (4.119)

Here the index “1”7 shows that displacement and stresses, as well as other wave charac-
teristics, are considered in an elastic medium. Recalling that in a fluid g =0 and using

Hooke’s law, set 4.119 can be represented as

8 y
w = wn, Adivs = desy+mhéﬂ (4.120)
<
Oul (’)wl (’)vl 871)1
and A4 SO =0
a 0z + or ’ 0z + Jy on s

Here wuy, vy, and w; are components of displacement in an elastic medium, while u,
v, and w describe vector s in a fluid. Parameters Ay and gy, along with density p,
define the velocity of propagation of longitudinal and shear waves:

M+ 2u = pyef, = pc (4.121)

Parameter A plays the role of the bulk modulus of the fluid: X = p ¢?. In studying
reflection, our main attention is paid to the case in which the incident plane wave prop-
agates through a fluid and its phase surface is parallel to the y-axis, Fig. 4.3a. In other

words, wavefields are independent of the y-coordinate. In particular,

ou Ov Ow
7 I 4.122
oy dy Oy 0 ( )
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Figure 4.3: Reflection and transmission at the boundary between fluid and solid media.
The incident P wave in fluid: (a) Ray scheme (b) Reflection coefficient |Rpp| as a
function af the angle of incidence and parameters of media (c¢) Transmission coefficient
|T'pp| (d) Transmission coefficient |T'ps|. Numbers near the curves correspond to different
solid media: 1. ¢ = 4.5 km/s, ¢; = 2.81 km/s, p, = 3.0 g/em®; 2. ¢ = 3.0 km/s,
cs = 1.73 km/s, p, = 2.4 g/em®; 3. ¢ = 2.5 km/s, ¢, = 1.25 km/s, p; = 2.1 g/cm®. In
fluid ,e = 1.5 km/s, p = 1.0 g/cm?®.
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At the boundary, the incident wave gives rise to secondary waves, and we assume that
the plane wave P appears in a fluid, whereas in an elastic medium, the plane waves
P and SV arise. This implies that the displacement component along the y-axis is
absent: v = 0. As in previous sections, it is convenient to introduce scalar and vector

potentials:
s = grad ¢ it z<0, (4.123)
and
s1 = grad ¢, + curl 1, where P, =] (4.124)

Then, egs. 4.122 4.124 give

_ 9 _ _ O -

u=go v =0, w= 5 (4.125)
9, Oy _ _ ey 0y
and - uy = Oz 0z’ o =0, YT a2 + Ox

Because we are considering sinusoidal waves, we can also apply eqs. 4.119-4.125 to the
complex amplitudes of displacement and potentials. Then, substituting eqs. 4.125 into
set 4.120 and using equalities
N N ~  Ou  Ow
divs =divgrad p = Vo = — + —
dx 0z
~ ~ ~  Ou  Ow
and div sy = div grad ¢, = V3¢, = — + —L,
1 g ©1 ¥1 87: 82:
we obtain the boundary conditions in terms of potentials

Op _ 9o, 9y,

0z Oz Ox

PG, Oy
022 0x0z

A V2o =\ V3, + 21, (4.126)

P2y, O, 0,
2 _Z8% 2 =0
0x0z + ox? 072 on#
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Note that the last boundary condition of set 4.119, (7, = 0), is met for any field s, as
soon as eqs. 4.122 and 4.125 are valid. As was demonstrated earlier, potentials can be

represented in the form

~ A; Ay . .
¢ (z,y,w) = 1 €XP [ik (zsin oy + zcos a;)] + T €XP [ik (zsin o, — 2 cos )],
i i

~ A
o (z,2,w) = —; exp [ik; (zsinag + zcosas)], (4.127)
ik

2 exp [ik, (28in By + 2 cos (y)]

8

and Y, (z,2,w) =

First of all, substitution of eqs. 4.127 into the boundary conditions, cqs. 4.126, leads us

again to Snell’s laws of reflection and refraction:

sinas  sin oy sin 0 sin oy
oy = @ and = — —_—rr - (4.128)
C c Cs ¢

or

sina;  sinop sin G,

C Cy Cs

Correspondingly, the system of equations for determining of unknowns A,, A, and
Bs, cgs. 4.126, is greatly simplified, and we obtain

cosa; (A; — A,) = cosas Ay +8in 8, By
Ak(A;+A) =) kA + 2 (kl cos® iy Ay + kysin B, cos B, Bg) (4.129)

2 kysin g cos ay Az + ks Bs (sin® 8, — cos® 8,) =0

Introducing notations (Part II)

pc Z*_ P1 G Z*_ P11 Cs

AR = =
L cosay’ ’ cosf,

cosay;’

and making use of an equality

k ()\1 + 24, cos® ag) =k (A +2u,) — Ky 2, sin® aip =



4.6 BOUNDARY OF FLUID AND ELASTIC MEDIUM

2
2 G
s 2

CS

kipyc; — 2kip, c sin? 8, = kyp ¢ cos23,,
set 4.129 becomes

cosey; (A; — A,) = cosaz Ag +sin 3, By

ZFcosa; (A, + A,) = Z) cosag cos 20, Az + Z; sin 20, cos 3,Bs

Z% sin2ag cos By Ay — Z] cos 23, cos apBy = 0
The first two equations give

2Z% cos ;A = (2" + Z} cos2[3,) cos aa Az +

(Z* +2Z} cos® By) sin 3,By = 0

From the last equation of set 4.130, we have

Z7% sin 2 cos [,
2 =
Z} cos 23, cosay

Its substitution into eq. 4.131 gives
277 cos o cosan cos20, Ay =D Ay,
where

D = (Z" + Z} cos 2B,) Z; cos® ay 08 20, + (Z* + 227 cos® 3,) -

Z¥sin 20 sin By cos By = Z* (Z] cos28, cos’ ay + Z;sin20 sin B, cos B,) +

7% cos? 28, cos® iy + Z22 cos® B, sin 23, sin 20 =

COS (xg Sin f3,

27 cos 28, cos® s + -
cos B4 sin g

sin 2a sin 3, cos ,82> +

221

(4.130)

(4.131)

(4.132)

(4.133)
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sin 3, cos ag

ZH(Z] cos® 23, cos® ag + 77

. cos? 3, 8in 23, sin 2a) =

sin as cos B,

Z* 77 cos? oy + Z) cos® ay (Zl* cos® 23, + 77 sin® 2,[32)

Whence
4 oS ov; €OS 2, 2 (4.134)
COS vy (Zl* cos? 20, + Z¥sin” 20, + Z*)
or
1 2Zf cos 203, A;
mony Zfcos?2B, + Zpsin® 283, + Z*
Here
m = 8 and ng = a
P c
From eq. 4.132, we have
1 27*sin 203, A;
B, — _27;sin20, : . (4.135)
mng Zf cos? 28, + Zisin® 283, + Z*
and
Cs
ng = —
c
Substitution of egs. 4.134 and 4.135 into the first equation of set 4.130 yields
2% A;
A'i - A7- = s 5 )
Zfcos?2B, + ZFsin® 203, + Z*
Thus
a7 cos® 23, + Z; sin® 23, — 7 A, (4.136)

7} cos2 28y + Zzsin? 203, + Z*

We have demonstrated that if cocfficients A,., As, and By arc given by cqgs. 4.134—
4.136, boundary conditions are satisfied and, therefore, our assumptions about reflected

and transmitted waves are correct.
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Wave behavior

As follows from Snell’s law, in the simplest case of normal incidence (a; = 0), we have

Oy = ﬁQ = 0,
and, correspondingly:
Zy—Z 27
, =2 i 2= = A B, =0,
Zi+7Z I+ Z
where
Z = PG Zl = PG, Z.s‘ = P1Cs

are impedances for acoustic, longitudinal, and shear waves, respectively. In such a case a
shear wave does not arise, and we again arrive at formulas that correspond to an acoustic
medium.

Also, it is interesting to note that there is an angle of incidence «; when the P wave
is absent in an elastic medium (Fig. 4.3c). In fact, from eq. 4.134 it follows that

Ay=0 if By =m/4
Since
sin 3,  sinay
cs ¢
we have
., cC
a; = sin (4.137)

V2

Certainly, this happens because of the destructive interference of elementary spherical
waves of the P type. As a result, the only wave in an elastic medium is the SV wave,
and egs. 4.134-4.136 give

1 227 A

4y=0, By=—— 20 ad A
2 ’ *Tmn, Zr+ 2% anc

AR A
=2 A 4.138

Zr+ Zx ( )
In analyzing wave behavior, suppose that at the beginning

1. cs < c<q
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From Snell’s law,
. g . . Cs .
sin iy = — sin o, sin f, = — sin q,
¢ c

it is clear that for all angles of incidence an equality sinf8, < 1 takes place and,
therefore, the plane wave SV is homogeneous, regardless of «;. However, the P wave

in an elastic medium is homogeneous only if

sin ; <

¢
&)
At greater angles, it becomes inhomogeneous, and it exponentially decays with distance
from the boundary. In previous sections, we have shown that beyond the critical angle

. 71 ,
Ol (ad = sin c/q) ,
cosae = V1 —sin®as =i b,
Therefore, Z = —i |Z|, and the reflection coefficient A, becomes

 Zrsin®28, — Z* —i |Z}|cos? 26,
" Zrsin? 2B, + Z* — i |Z}| cos? 20,

A; (4.139)

Coeflicient A, is a complex number and, unlike in the case of total internal reflection
in an acoustic medium (Part IT), its magnitude is smaller than unity. This fact is easily
explained, since the part of the energy of the incident wave is transformed into the cnergy
of the shear wave. Thus, if the angle of incidence does not exceed the critical angle «,
both transmitted waves are homogeneous, and at the boundary the incident and reflected
waves are in phase. When «; > ., the shear wave is still homogeneous, but the P
wave in an elastic medium becomes evanescent and propagates along the interface. At
the same time, there is a phase shift between the incident and reflected waves at the

interface points.
2. c<c, <

In the second case, it is convenient to distinguish several ranges of the angle of incidence
a;. If 0 < sine; < ¢/¢, then both transmitted waves are homogeneous, and the
coefficient of reflection is real, (A, < A;). In the second range

¢

& .
— <smou; < —,
Ci Cs
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angle B3, isreal but angle oo is complex. In other words, the P wave is evanescent
and moves along the boundary, whereas the SV wave remains homogeneous. Finally,

when

) ¢
smao; > —,
CS
angles «ay and [, are both complex. This means that the transmitted P and SV
waves are inhomogeneous, and they travel with the same velocity along the boundary.

Correspondingly, Z and Z7 are purely imaginary numbers, and the reflected coefficient

is equal to
i (|2} cos?28, + |ZF|sin®28,) + Z*
A= _(| flcos” 20, & |41 : %) A (4.140)
i (|Zf|cos?2B, + |Zz|sin? 23,) — Z*
Since |A,| = |4, total internal reflection occurs — that is, during a half-period the energy

of the incident wave is transferred to the energies of both evanescent waves, and then it
returns to the fluid. Results of calculation of the secondary fields, eqs. 4.134-4.136, as
functions of the incident angle «; are shown in Fig. 4.3b d. As we know, this parameter
strongly influences on interference of elementary spherical waves, which creates reflected
and refracted waves. For instance, in approaching the critical angle ., = sin"!(c/q),
the amplitude of the reflected P wave rapidly increases, and this is understandable, since
total internal reflection for the P wave is obscerved. At the same time, for slightly larger
values of «;, we see a decrease of the amplitude of this wave accompanied by a sharp
increase of the SV wave. The latter indicates the strong constructive interference of the
SV elementary waves. Finally, near the critical angle .o = sin"'(c/c;), the amplitude
of the SV wave tends to zero, and total internal reflection takes place. Derivation
of formulas describing reflection and transmission when the incident wave propagates
through an elastic medium is similar to the previous case.

In conclusion, let us note the following: When the incident SH wave propagates
through an elastic medium, it is easy to demonstrate that the reflected wave is of the
same type. The sum of these two wavefields satisfies the boundary condition

Ty, =0 on z=20

This means that an incident wave does not gencrate waves in a fluid. Of course, the

geometry of waves obeys Snell’s law

Yr ="
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and at the boundary for the y-component of displacement we have
v (z,0,w) = 20; (z,0,w),

whereas other components (¢ and w) are absent.

4.7 Reflection and transmission at the boundary of two elastic media

Incident P wave

By analogy with the previous case, first suppose that the incident P wave propagates
through the upper medium, Fig. 4.4a, and at the boundary the reflected and transmitted
P and SV waves arise. Thus, the secondary waves include two P and two SV
waves, but the SH wave is absent. Correspondingly, our assumption implies that the

y-component of displacement is equal to zero:
v=>0 (4.141)

Since the waveficlds arc independent on  y-coordinate, stress 7,, vanishes. At the
boundary of two elastic media, both components of displacement, u and w, as well as

stresses, are continuous functions:

U = Uy, w1, = Wy (4142)
= 7@ 7 =72 on z2=0
or, using Hooke’s law, we have
Uy = U2, Wy = Wy
. oun ) owy
A div sy + 2;L1¥ = Ap div sy + Q/LQW, (4.143)
ou, Ow, Ouy  Owy
e —  — ey . B e s ey 0
Ml<82+8x> u2(82+81} on e
where
0" d
divs = o + ad

or 0z
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Figure 4.4: Reflection and transmission at the boundary between two solid media.
(a) Ray scheme for P — SV waves. (b) Reflection coefficient |Rpp| as a function of
the angle of incidence and parameters of media. (¢) Reflection coefficient |Rps|. Num-
bers near the curves correspond to different solid media: 1. ey;/cy = 0.5, py/p, = 0.74.
2. eyfey = 0.62, py/p, = 0.76. 3. cyfcy = 0.75, p,/p, = 0.78. Poisson’ ratio is 0.25 for
all cases. (d) Ray scheme for SH waves.
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Once again we introduce, but in a slightly different form, the complex amplitudes of
potentials

©, = A; exp [iky (zsina; — zcos oy)] + A, exp [iky (2sin o, + 2 cos a,)]
7:/11 = B, exp [ik1; (2 sin 8, + z cos §,)]
0y = Agexp [iky (2 sin oy — 2 cos ay)] (4.144)

1y = By exp [iky, (xsin fy, — 2z cos 35)],
From the equality

s = grad ¢ + curl ¥,

where
Y = 9j,
we have
O v e
T 9z 0z’ T 9z Oz
and
: Po Y
= \V? 2 hiih
Tos = AV 9 2u <8z2 e 8z>
and

A
Tos = # 0xdz = 02 022

Correspondingly, the boundary conditions in terms of complex amplitudes of potentials
are

~

Oor 00y _0py Ot Opy O _ 0y O

Oz 0z O Oz’ 82+8x7(92+8x’

%y, vy
922 9z dz |’

—A kG + 20 = =X kyipy + 21y (4.145)
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P, 4 0y, B Y, _ o, 1y _ 0?1, on

or 0z or? 922 | H2 or 0z o2 022

S
I
o

H

In order to satisfy this system of equations, arguments of all potentials have to be equal,
and we again arrive at Snell’s law:

siney; sine, sinf, sinay  sing,

(4.146)

C1y C1l Cis Col Cos
or

Qp = O

and
sina, sinf, sinay  sinf, (4.147)

C1t Cls Cal C2s
Directions of rays corresponding to the incident and secondary waves are shown in Fig.

4.4a. Following Sncll’s law, substitution of cqs. 4.144 into sct 4.145 gives

kysine; (A;+ A,) — kiscos 8, B, = kysinay Ag + kog cos 5y By
kycosay (A — A;) + kissin 8, B, = —kg cosay A + kogsin 85 B (4.148)
—A\ik] (A + A) +2p [k cos® oy (A; + A,) + K, sin 8, cos 8, B, ]
= Xy ki Ay + 2p, [k cos® g Ay — k3, sin By cos B4 Ba)
1 [2K7, sin o cos o (A, — A;) + k7, (sin® 8, — cos” B3,) B,]

= 11, [2k3 sin o cos iy Ay + k3, (sin® B, — cos® By) Bs

Thus, we have obtained a system of four linear equations with four unknowns (4,, B,
Ay, and B,). A numerical solution of this system allows us to find all wavefields at

any point in an elastic medium. Reflection coefficients Rpp and Rpg are

A B
Rpp = — Rpg = — 4.149
PP A PS 1, ( )
and transmission coefficients 7pp and Tpg are
Ay By
_ 22 L 2 4.150
7}[” AZ 9 7}"5 Al ( )

As an illustration, the behavior of coeflicients characterizing the reflected P and
SV waves is shown in Fig. 4.4b,c, when the P wave is the incident wave. The case of

the incident SV wave can be treated in a similar way.
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Incident SH wave

Next we assume that the incident SH wave moves through the upper medium, Fig.

4.4d, and that reflected and transmitted SH waves arise at the interface. Since

s = curl ¢ and P =i,
we have
Y
=w=0 nd = — 4.151
u=w an V=g ( )

Taking into account that divs = 0 and that the field is independent of the y-coordinate,

the stresses are

v
T,, =0, Ty = 0, Tyz = 4 9 (4.152)
Therefore the boundary conditions have the form
81)1 8’02 =
v = Uy and vl T on z2=0 (4.153)

Since displacement is described by the single component that obeys the wave equation,
we solve the boundary value problem with respect to the complex amplitude, E(x, z,w),

where

vy, z,w) = Cyexp[i ki, (wsiny, — zcosvy,)] +
Cyexp i kis (zsiny, + zcosy, )] (4.154)

and vo(z, 2,w) = Cyexp[i ko, (z8in7y, — 2cos7,)]

Substitution of eqs. 4.154 into set 4.153 leads us, first of all, to the Snell’s law:

Ve =i and S (4.155)

Cis Cas

Also, we arrive at a system of two simple equations:
C; + C, = (s, ty ks cosy, (C; — Cp) = pg kog cosyy Co (4.156)

Solution of egs. 4.156 gives

L5 C087Y; — Log COS Yo

C, =

= 4.157
215 CO8Y; + Los COS Yy ( )
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2 7,087y,
and Cy Ls CO8 i

 Zyscos Vi T L5 COS Yy

The simplicity of these formulas and their resemblance to formulas for the reflection and
transmission of acoustic plane waves is obvious (Part II). In particular, the reflected
wave vanishes due to destructive interference for some value of angle of incidence -,.
Also, beyond the critical angle (ezs > ¢15), an evanescent wave in a medium with higher
velocity is formed and propagates along the boundary (total internal reflection). In this

case, we have

~

va(x, z,w) = Coexp(—kisb,z) exp(—ikesx sin-y,),

From eq. 4.156 it follows that

B 2 Zscos;
 Zhsc087; + 72,

C = L5 €08y, — 1235h,

= : s, C
Ziscosy; +iZash, " 2

i

where

2, .

CTU siny, — 1
It is easy to see that |C,| = C; and the reflection coefficient Rgg = C,/C; = exp(—i¥),
where

Z3sb;

U =argC, =2tan™ ! ——~
e Y Ziscosy,

(4.158)

In conclusion, let us note the following. If the angles of incidence of the P, SV,
or SH plane waves do not exceed the critical angle, coefficients of reflection and
transmission dcrived for sinusoidal waves are also valid for arbitrary transient waves.
Beyond the critical angle, a phase shift between the incident and reflected waves occurs
at the boundary. This shift is independent of frequency. Because of this, use of the known
cocfficients of reflection and transmission and the Hilbert transform allow us to find in a
relatively simple way a transient reflected wave (Part IT). Since the complex amplitude of
evanescent waves depends on frequency, nonstationary wavefields are defined by Fourier’s

transform.

4.8 Ray tubes and flux of energy

Suppose that a plane wave propagates through a homogeneous medium, and choose the

Cartesian system of coordinates, x1,y1,%1, so that the wavefront coincides with the
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plane z; = const. By definition, a lateral surface of any elementary ray tube is formed
by rays, which are straight lines, and the area of the cross-section of the tube is constant.
First we will demonstrate that the flux of clastic encrgy travels along these tubes. We
will consider this subject separately for compressional and shear plane waves. As was
derived in Appendix D, the vector of the density of flux energy, Y, is the product of

the symmetrical tensor of stress and particle velocity, s:

Teizr Tziyy Taxiz Uy
Y= Tyier Ty Ty v | (4.159)
Tar, Tap Taan wi

where wq, v1, w1 are components of particle velocity in the coordinate system xy, ¥, 21
Now we take into account that derivatives with respect to z; and y; are equal to

zero and find expressions of Y for each type of plane wave.

Incident P wave

Since displacement s has only one component w; that is directed along a ray we have

in accordance with Hooke’s law

ow ow, ow,
TILIL - )\ 821 ) Tylyl - )\TZl7 Tzlzl == ()\ + 2”) azl (4.160)
and Tay = Tarzn = Tyizy = 0
Therefore
Trim 0 0 0
Y =- 0 7yy O 0
0 0 T 221 iul
or
Yy, =0, Y, =0, Y, = —wiT,.,, (4.161)
or
- . (9101
}Zl = — ()\ + 2/1,) wH 8—21 (4162)

We see that elastic energy moves along a ray tube, and the flux through its lateral surface

is equal to zero.
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Incident SV wave

In the case of the SV wave the single component of displacement, u,, is tangential

to the wavefront, and since

divs =0,
the stresses are
3u1 (%1 aw]
=25 — =0, =24 — =0 o =20 — =0 4.163
Taiz1 H By ) Ty H s , Tz H B ( )
aul aul
and Toip = M aTJ;[ =0, Tarzg = M a—Zl’ Ty = 0
Then
0 0 7wz Uy
Y=—| 0 o o 0 |, (4.164)
Tozm 0 0 0
that is,
Y, =0, Y, =0, Y, = —uiTg s (4.165)
or
. 07.61
Yll = 7IU,U|§, (4166)

and again energy flux advances along the ray tube, in spite of the fact that particles in

the medium are moving in a perpendicular direction.

Incident SH wave

In the case of the SH wave, since displacement is oriented along the yj-axis and, as

before, div s =10, we obtain

Toirs = Ty = Tarz = 0 and Torp = Tovm =0, (4.167)

81)1
but Tyrzy — M 6721
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Thus

0 0 0 0

Y=—|0 0 7y, v |, (4.168)

0 7y, O 0

that is,
Yo =Y, =0 and Y, = —v Ty
or
. O
Y, = —/w]a—; (4.169)

It is clear that regardless of the direction of particle motion, energy flux moves along
ray tubes. As an illustration, consider sinusoidal waves. In the case of the P wave, for

example, displacement w; is
wy (21,1) = Asin (wt — kizy) (4.170)
Correspondingly, velocity and stress are equal to

wy (z1,1) = A weos (wt — k1) (4.171)

and  Tu, (21,1) = — (A + 2u) kA cos (wt — kyzp)
Whence
Y, = (A4 2u) w ky A% cos?® (wt — kyz1) (4.172)

As is well known, the mean value of Poynting’s vector is defined from the relationship

=g [ o

and the latter gives
=1 1
Vi =g+ 2wk A? (4.173)
or

w? ‘
Yo = 721 A? (4.174)

21
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Here Z; is the impedance for the P wave. In a similar manner, for SV and SH
waves we have

w2
Y, = 725 A2, (4.175)

and Z; = p ¢, 1s the impedance of shear waves. These results are very useful for under-
standing the nature of the high-frequency spectrum of elastic waves in an inhomogeneous
medium, where the velocity of propagation (¢; or ¢;) varies. By analogy with acoustic
waves (Part II), in such a case we can treat each elastic wave as a plane wave, and its
amplitude, phase, and direction all depend on the observation point. Correspondingly,
wave amplitude can be represented as the asymptotic series with respect to inverse pow-
ers of w (Debye expansion). Its zero approximation describes the wave amplitude when
energy flux propagates along the ray tubes. Inasmuch as the flux inside a tube remains

the same, eqs. 4.174 and 4.175, let us write the equality
Z(p1) A%(p1) S(p1) = Z(p2) A%(p2) S(p2) (4.176)

Here 7 is the impedance of either the compressional or the shear wave, and S(p;) and
S(ps) are two cross-sections of the ray tube. From eq. 4.176 we have

S(py) Z{p1)

A(p2) = Alp1) S(m) Z(po) (4.177)
1
Alps) = JF A(p1), (4.178)
where
F = Z(pQ) S(pQ) (4179)

is the spreading factor (Part II). As in the case of acoustic waves, eq. 4.178 permits us
to determine the change of the displacement amplitude. The direction of rays is defined
by Snell’s law.

The previously outlined general features of reflection and transmission of plane longi-
tudinal and shear waves are important for many applications in exploration seismology.
These coefficients arc used in the ray theory of seismic waves in inhomogencous media
as approximations to the coefficients of reflection and refraction of nonplane waves. The
AVO (amplitude versus offset) technique for determining the lithological properties of
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reflectors is based on knowledge about the behavior of these coefficients as functions of
the angle of incidence and elastic parameters. Because potentials of these waves obey the
wave equation, the principles of migration developed for acoustic waves can be applied
for each elastic wave. In particular, at points of a reflector, the incident and reflected
waves are in phase, provided that the angle of incidence does not exceed the critical
angle. However, there is one important difference — namely, in calculating amplitudes,
it is necessary to take into account the appearance of the P and SV waves at the

boundary, except in the case of the incident SH wave.

4.9 Reflection and transmission of plane waves in a multilayered elastic

medium

Let us consider propagation of stationary plane waves in an elastic medium consisting
of n homogeneous layers between two homogeneous half-spaces (Fig. 4.5). All layers
arc supposcd to be in the welded contact, i.c., displacements and stresses are continuous
across boundaries of layers. Our goal is to find reflection and transmission coefficients
for plane waves I?, SV, and SH incident on the upper boundary of the n-layered
“sandwich”. To do this, we need to construct a recurrent formalism linking displacements

and stresses at boundaries of this medium.

P-SV case

The chosen Cartesian system of coordinates is shown in Fig. 4.5. Let us consider an
arbitrary layer m bounded by the planes z = z, and 2z = 2,41, of thickness H,,,
with elastic parameters A, and u,,, density p,,, and compressional and shear speeds
i = /o + 2, ) [, a1l 4 = /bl

Expressions for potentials of stationary P and SV plane waves of frequency w
propagating in this layer in positive and negative directions away from the z-axis can

be written in the form

1 , » o
Zklm
and T 1 (Cmeiﬁm z +Dme—zﬂmz) J(pr — wi)
Rsm



4.9 PLANE WAVES IN A MULTILAYERED ELASTIC MEDIUM 237

SV
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SVn-I—l
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Figure 4.5: Planc wave in n-laycered medium

Here

klm - u)/Clm; ksm - w/csnu Qy = kl2m - ]727 /Bm =V kfm - p27 (4181)
where p = w/c and ¢ is the phase velocity of the waves along z-direction. As follows
from Snell’s law, this velocity is the same for all waves at each boundary. Values of
Qpm, 3, and the coefficients A,,, By, C, Dy, vary from one layer to another. Now we

will use the known expressions for displacements,

dp oY Oy oY
(m) _ mo_ m (m) _ Z¥m . 4.182
u w0z w oz on (4.182)

velocities of displacements,

(m)

w o= —iwu™ w = —iw w™; (4.183)
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and stresses,

au(m) aw(m) au(m) aw(m)
T m) =\ A 4 20) o (4184
Tz :um ( az + aJ; ) ? T2z m 81 + ( m + :U’m> 82 ( )

Let us now introduce two vectors,

< (m)
U

Am
ﬁ(m) B
Xm(z) = ~(m and N'm = i y (4185)
T( ) C
~(m) D,

k24

where components of X,, are complex amplitudes of displacement velocities and

stresses. We also introduce the matrix @, (2):

el Om 2 0 0 0
0 etmZ g 0
_ . 41
Qn(2) 0 0 oi B 2 0 (4.186)
0 0 0 e iBn2

Using eqs. 4.185 and 4.186 and applying the rules of matrix algebra (Appendix B),
we can relate displacement velocities and stresses in the mth layer with coefficients
Am7 Bm7 Cma Dm:

X (2) = Lin@(2) N (4.187)

Elements m;; of the 4 x4 matrix L,, depend on elastic characteristics of the mth layer

and phase velocity c.

Cim, Cim, —Am dm
9m —9m Csm Csm
Lp=—ip| gy I o, Im o, Jm o, Om (4.188)
s Cs
dm dm

Here
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From eq. 4.187 it follows that
Np, = Q;nl (Zm)L;Lle(Zm) = Q:nl (mel)L;anm(mel)

where @' and L;! arc inverse matrices of Q,, and L, . Now it is possible to
connect expressions for X,, at the top and bottom of the mth layer as

Xn(zm) = LinQm, (Z)Q;ll (mel)[f;nl (zm—1) X (2m-1) (4.189)

:LQO(Hm)Lr_nIXm(szl) = ]\/lmxm(szl)

where M, = L,Q,,(H,)L,}. The elements of matrix M, depend on phase velocity ¢,

frequency w, elastic characteristics, and the thickness H,, of the layer. The conditions
of the welded contact allow us to link vectors X, () and X, (zmi1) at two adjacent

layers at the same boundary z = z,, :
Xn(2m) = Xnr1(2m) (4.190)
As a result we obtain the relation between vectors X, 11(z,) and X, (zm 1)
X1 (2m) = M, Xon(Zm—1) (4.191)

Using eq. 4.191, we can connect vector X;(0) at the top of the layered “sandwich” with
vector X, (z,) at its bottom:

Xo(zn) = M X 1(20) = MMy, 1 X 2(2n 1) = MM, .. . MiY1(0) = SY1(0) (4.192)
Here the matrix

S= 1 M, (4.193)

m=1

is called a propagator, as it “propagates” the wavefield from the top to the bottom of the
layered media. The P and SV waves transmitted in the lower half-space and propagating
in the positive direction of the z-axis may be described by potentials

P = ———— Ay € Onit Zei(pT —wt) (4.194)
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1

/[:ks(n+l)

and Vi1 = Cor et Prtt 2 i(pr — wt)

The corresponding vector X,;1(2,) in the lower half-space is defined by the expression

A4n+ 1

0
Xnt1(2) = Lnt1@Qn41(2) C (4.195)
n+1

0

Incident P wave If the incident wave in the upper half-space is a P wave, the

displacement velocity—stress vector in this part of the medium can be presented as

Ao
By
0
Dy

Xo(z) = LoQo(2) (4.196)

Here coeflicients Ay, By correspond to the incident and reflected P waves, and coeflicient
Dy corresponds to the reflected SV wave. Taking into account equalities

Xo(0) =X1(0),  Qo(0)=E, and  Xu(z) = Xnoi(za) (4.197)

where FE is a unit matrix, we arrive at a system of linear algebraic equations,

Apti Ay Ag
0 ) B Bo B,
- 2L S Lo(0 e , 4.198
Cn+1 Qn+l( ) n+1 0( ) 0 0 ( )
0 Dy Dy

for unknown coefficients By, Dgy, A, 11, Cpo1. Solving this equation, we find the following

expressions for reflection coefficients,

By _ 924 91— 921 Jua Dy ~Gu + 9223531):

RO _ Do : RO — 20 _ 4.199
er Ap G22 gat — G24 Gao £s Ag 924 ( )
and transmission coefficients,
An
T = A—H = (911 + 1R + 914R593q> ; (4.200)
0

" C
7;(>5+1> = % = (931 + 932R5L92> + g34R§L?;) ;
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where g;; are elements of matrix G.
Incident SV wave The single difference with the previous case (incident P

wave) is in expression for the vector Ny :

0
B

No=| ° (4.201)
Co

Dy

Substituting this vector into eq. 4.198 and solving it we obtain recursive expressions for

reflection and transmission coefficients in the case of the incident SV wave:

B — D, R(O)
R(go% _ Do _ 923 Gaa — gn .(J437 73(501)7 _ Do _ g3t gralrgs (4.202)
Co 922 G44 — G24 Gao Coy goa
and
n A
7—S(P+1) — g—ﬂ = (913 + !]12R§31): + !}14R5%) ; (4.203)
0
D) _ Cny1 RO RO
55 = 700 = {933 + g3aflpp + Gaalipg
SH case

If the incident wave in the upper half-space is an S H wave, the single nonzero component

of displacement in the mth layer may be presented as

and the stress component as
dv(m)
(m) _ -
Tyz = Hy dz (4200)

The displacement velocity —stress vector has only two components:

,(L)(m)

Tye

The corresponding matrices @,,, L., and M,, are now

i B, 2 . .
O = e __0 L, = | w ‘ W 7 (4.207)
0 e ! ﬂm “ Z/J'm/jm _Z:umﬂm
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My = LinQu L7t

Vector X, 1 in the lower half-space and vector Xy in the upper half-space are defined
as

Xni1(2) = L1 Qi1 (2) < A,E;l ) and Xg(z2) = Lo ( gz > (4.208)

The resulting equation defining unknown cocflicients By, A,41 is

< An1 ) =G ( Ao > (4.209)
0 By

where, again, 2 x 2 matrix G = Q;}rl(zn)Ln+ 1 IEIIJW,LLO (0).  Correspondingly,
m=
coefficients of reflection and transmission are
B ; A
Rf=""=-2 7= g b R (4.210)
Ay 922 Ay

In conclusion, we should remember that coefficients defining reflected and transmitted
waves in all considered cases are frequency-dependent. Moreover, they may be real (if
the angles of incidence inside all layers are less than critical angles for all involved waves)
or complex (if even one of these angles is above the critical angle). Thus, reflection and
transmission of nonstationary (transient) waves in such a medium should be treated using

Fourier’s transformation.



Chapter 5
Surface waves in an elastic medium

The purpose of this chapter is to describe so-called surface or boundary waves. The
energy carried by these waves concentrates near some surface, such as a free surface or a
boundary between different media. Waves of this type are different from the evanescent
waves discussed in the previous chapter because they are not generated by homogeneous
plane waves coming to this boundary. Two classical examples of such waves are the
Rayleigh wave in a homogeneous half-space with a free surface and the Stoneley wave at
the boundary between two elastic half-spaces or between a fluid and an elastic half-space.
These waves are composed of two evanescent waves of different types propagating along
the boundary with the same speed — one that is less than the intrinsic speeds of body
waves (compressional or shear) in the medium. The speed does not depend on frequency,
l.e., these waves are not dispersive.

We will also consider in this chapter waves of a more complex nature that arise in
layered media as a result of the constructive interference of multiply reflected body waves.
They still propagate horizontally without leakage of energy in a vertical direction. As
examples of interferential waves, we will analyze Love waves in a homogeneous elastic
half-space overlaid by a homogeneous elastic layer and Rayleigh waves in a homogeneous
clastic half-space overlaid by a homogencous liquid layer. The speed of these waves is
frequency-dependent, i.e., the waves are dispersive. They are presented as a suite of
modes, and each mode is characterized by its dispersion curve and depth-depending dis-
tribution of energy. Analogs of such waves propagating in a layered fluid were considered
in Part II. Waves of this kind exist, of course, in more complicated vertically or radi-
ally inhomogeneous media. Depending on the problem at hand, they are considered as
a source of noise to be suppressed or as carriers of important information about the

structure under study.

243
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5.1 Rayleigh wave in a homogeneous half-space with a free boundary

Earlier we demonstrated that the SV incident wave may generate an evanescent P
wave as well as the homogencous reflected SV wave at the free surface. This means that
the sum of these three waves satisfies boundary conditions, and stresses vanish at points
of the free surface. In other words, the evanescent wave cannot exist alone. Moreover,
since all three waves move with the same apparent velocity, it is impossible to distinguish
them.

Now we pose the following question. Is there a surface wave that is similar to evanes-
cent plane waves but that alone obeys boundary conditions at the free surface? This
would imply that such a wave propagates along the boundary and exponentially decays
with the coordinate z. Also, we assume that this wave would not depend on the y-
coordinate, Fig. 5.1a. Let us recall that we have already studied a surface wave in a
fluid, and it displayed all of these features. However, a water wave is caused by the
gravitational field, whereas in the suggested scenario the influence of deformation of a
fluid can be neglected (Part I).

Rayleigh wave velocity

In accordance with our assumptions about a surface wave, the complex amplitudes
of the scalar potential and the y-component of the vector potential are

olr,z,w) = A ek b2k and 17}(1:, zw)=1D e kbszgi b (5.1)

Here k =w/c and ¢ is the velocity of propagation of this wave. A, B, b, and b, are
constants. It is clear that these equations describe a wave in which particle displacement
has only components u and w, with v = 0. If such a surface wave cxists, it has to be
a solution of the Helmholtz equations
27 27 2] 2, ~

%+2—Zf+kﬁ}:0 and M+a—f+k2u>:o (5.2)
This condition allows us to find a relationship between ¢ and parameters b, and b,.
Substitution of eqs. 5.1 into eqs. 5.2 gives

—k 4+ b K+ k=0, B +b P+ k=0

or

b =4/1-= and by =4|1—= (5.3)
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Figure 5.1: Rayleigh wave in a homogeneous half-space: (a) Scheme of wave propagation

(b) Dependence of ¢/¢; and ¢,/¢; on Poisson’s ratio (¢) Dependence of ¢/c¢; on Poisson’s

ratio (d) Dependence of u(0)/w(0) on Poisson’s ratio (e) Dependence of amplitudes of

horizontal and vertical components on z/A;; (f) Particle motion at different depths
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The latter shows that the velocity of propagation ¢ of this wave has to be smaller than

cs, 1.e.,
e << (5.4)

Otherwise, we would not observe the exponential decay of potentials with an increase of
z. Now we have only three unknowns; A4, B, and ¢. Our goal is to prove that such
a surface wave may exist and that its velocity ¢ obeys inequality 5.4. Since we are not
considering how this wave is generated, we are not able to determine both constants A
and B separately; we will leave that for the next chapter. Correspondingly, we focus
on calculating velocity ¢. To find ¢, let us consider boundary conditions at the free

surface:

~ ~

=0 and T, =0 (5.5)

This allows us to derive an equation with respect to c¢. Since

~ ~ 8N = aN 8N
Tzz = )\ le S + 2/~La—1j7 TZZ = M <a_z + 3_1;))
and
s = grad ¢ + curl 17’7
eqs. 5.5 become
o e e
e ) ’% 0 5.6
o2l ot 5o, o
9~ 2/\// 27
and O awfa—w—() at  z=0

+ =
Oxr 0z Oz* 977
Now, substituting eqs. 5.1 into egs. 5.6, we obtain two equations with three un-

knowns:

—AkfA+ 20 b7 K*A — kb 2u B =0 (5.7)

and —2ik* by A— kB —k°b} B=0
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c? , 2\ 1/?
2\ 1/2 2
and 2i<1—c—2> A+<2—C—2>B:0
c 2

If the surface wave cxists, cocfficients A and B differ from zero. Therefore, the

or

determinant of the homogeneous system 5.8 has to be equal to zero. This gives

2 2 2 1/2 2 1/2
(2‘33) ‘4<1‘c—z> (“3) ’ (59)

and we obtain an equation with respect to ¢ that is of great importance. First of all,
eq. 3.9 follows from the boundary conditions. This means that if its solution does not
satisfy inequality 5.4, the surface wave is absent. Before we find the roots of eq. 3.9, let
us note that although system 5.8 does not allow us to determine coefficients A and B,

it establishes a relation between them:

: 2 2\ —1/2
B= —% <2 - ;—2> (1 - Z—2> A (5.10)

In order to calculate velocity ¢, we square both parts of eq. 5.9, which gives

2 4 2 2
(2 — (€> =16 (1 — (%> (1 — (€> or (5.11)

2 {(:6 ct (24 16> ( c?)]
s {16 (1—-=2) =0 (5.12)
2 |8 ct G c

Eq. 5.12 implies that either

or
‘ ‘ ? 2
r3—8r2+8<3—2—;>r—16<1——;):0 (5.14)
G G
where r = (c¢/c,)?. The root of eq. 5.13is ¢ =0, and, correspondingly, the wave is
absent. Moreover, from eqs. 5.8 we have A —iB =0, iA+ B = 0, and its solution is
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A = B = 0. That is, particles of a medium do not move. Therefore, the degenerative
case ¢ =0 is not of interest.

Eq. 53.14 is a cubic equation relative to r. Its left side is negative when =0, (¢ =0)
and it is positive if r =1, (¢ =¢;). Thus, eq. 5.14 has a positive real root within the
interval 0 < r < 1. In other words, velocity ¢ obeys inequality 5.4, which means that
the surface wave described by eqs. 5.1 can exist in a homogeneous half-space with a free
boundary. This wave is a combination of two inhomogeneous plane waves, compressional
and shear, propagating along the free surface with the same velocity ¢, which does not
depend on frequency. Such a surface wave was predicted and theoretically investigated
by Rayleigh, and for this reason it is called the Rayleigh wave. In general, the roots of
eq. 5.14 can be found analytically as solutions of a cubic algebraic equation by means of
the Cardano formula. Also, it is useful to consider two special cases when determination
of roots is rather simple.

Case one Suppose that a medium is not compressible, i.e., deformation is absent.
Then the velocity of the longitudinal waves ¢; tends to infinity, and in place of eq. 5.14

we have

8P+ 247 - 16=0 (5.15)
This cubic equation has one real root:

7~ 0.91275
Therefore, the velocity of the surface wave is approximately equal to

¢ = 0.9553 ¢, (5.16)

The other two roots of eq. 5.15 are complex and do not represent a surface wave.
Case two Next, we assume that Poisson’s ratio o is equal to 1/4,ie, A=pu

and
a=V3c, (5.17)

Respectively, eq. 5.14 becomes

s o 5 36 32
_ = = 1
T 8r+3r 3 0 (5.18)

Its roots are

2

7"1:47 7'2:2+—7 7'3:2— (519)

B
Sl
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Unlike the last root,

r3 &2 0.8453, (5.20)
the first two roots do not satisfy condition 5.4, and from eq. 5.20 we have

¢~ 0.9194 c, (5.21)

Thus, in the case (A = ), the Rayleigh wave moves slightly slower than the shear wave,

but almost twice as slow as the longitudinal wave:
¢ =~ 0.5309 ¢

Results of calculation of functions ¢;/c;, ¢/, and ¢/cs for different values of Poisson’s

ratio are shown in Fig. 5.1b,c. By definition,

\ Eo and E
= an - ——
(1+0)(1-20) h =9 +o)
Hence
(1-0)F ¢ 1— 20
A+ 2 = ) d Y P 5.22
T Ay 0= ™ LT \za=o) (5:22)

and the function ¢,/¢; tends to 0.707, when ¢ — 0. On the contrary, with an increase
of o this ratio approaches zero. The behavior of functions ¢,/¢; and ¢/¢; is similar;
in particular, they are equal to zero when an elastic medium becomes a fluid (o = 0.3).
At the same time, the ratio c¢/¢, gradually increases with ¢ when approaching the limit
at o= 0.5

The field of displacement carried by the Rayleigh wave

To illustrate the distribution of horizontal and vertical components of displacement,
suppose, as before, that o = 1/4. Then

2

2
 ~0.8453 and o
4

and we have

2 2 2 2
162\/16‘:;z0.8475 and 1— < ~0.3933,
¢ ¢
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/ 2
o(z, z,w) = A exp <—k 1- 6—22 + ik l) ) (5.23)
]
~ / 2
Y(z, z,w) = B exp (k 1—%z+ z'k:c)
CS

From eq. 5.10, we have

while

B~ —i1.4679 A
This gives

oz, 2, 1) =~ ¢~ 08475 k2 4 g (kx — wt) (5.24)

and Wz, z,t) & 1.4679 A ¢ 0-3933 k2 gy (kx — wt)

Substitution of egs. 5.24 into the relationships

B A Y
"Tor T o YT T o
gives
u(r,z,t) ~ —k A (6_0’8475 kz 5773 ¢—0-3933 kz) sin (kz — wt) (5.25)

and w(z, z,t) =~ —k A (0.8475 e~ 08475 kz _ 1 4679 ¢—0-3933 k‘z) cos (kxr — wt)

Since there is a phase shift 7/2 between these components, and they differ by an am-
plitude, particle motion is elliptical. At the free surface, the vertical component w is
about 1.5 times of the horizontal one (Fig. 5.1d). Note that at depth z & 0.192 A,
where A = 27/k is the wavelength, the horizontal component vanishes. Below this
point it changes sign. The distribution of both components with depth is shown in Fig.
3.1le. How the shapes of the ellipses are changing with depth is demonstrated in Fig.
3.1f. The major axis of cllipses is directed along the z-axis. Unlike in the case of the
water wave (Part T), motion of particles at the free surface is counterclockwise. The

exponential decay in eqgs. 5.1 is directly proportional to frequency and, correspondingly,
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higher-frequency oscillations decrease more rapidly with z. In contrast, the lower is the
frequency, the deeper the Rayleigh wave penetrates.

Now let us make several comments:

1. Unlike evanescent waves, the Rayleigh wave can exist alone, and it propagates
with velocity ¢, which is less than shear-wave velocity.

2. Later we will show that a real source gives rise to a nonplane Rayleigh wave, which
displays the same features as a plane wave. In other words, its velocity ¢ is still defined
by eq. 5.14, wave potentials exponentially decay with depth, and particles move along
cllipscs.

3. Two other roots of eq. 5.14 correspond to different wavefields that also obey the
Helmholtz equations and boundary conditions at the free surface but do not describe
surface wave motion.

Now let us raise two questions.

Could the Rayleigh wave exist in a homogeneous half-space with an ideally

rigid boundary?

To find an answer, we will proceed from eqs. 5.1 and boundary conditions

u=20 and w=20
or
op o 0p  ov
dr 0z and 0z  Ox (5.26)

Substitution of cgs. 5.1 into egs. 5.26 yiclds

c2 2
1A+ 1*:23:0 and lfpszfiB:() (5.27)
’s -1

Excluding constants A and B, wec obtain

CQ 1/2 C2 1/2
<1 - c2> (1 - C%) =1 (5.28)

It is obvious that roots of eq. 5.28 do not satisfy inequality 5.4 and, therefore, the surface
wave is absent.
Could the SH surface wave exist in a homogeneous half-space with a free
boundary?
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Now we will demonstrate that the SH surface wave cannot exist at the free boundary

of such a medium. By definition, the complex amplitude of the z-component of the vector

~ [, .
w=Cexp (—k 4/1— 2t +1 k), (5.29)

and at the boundary stress 7,, vanishes,

potential is

~
~

~ 3] 0%y
Tys = /La—z =0 or 8—;’; =0, on

™

I
o
—
(21
w
=]
=

Substitution of eq. 5.29 into 5.30 gives

(/‘2
<1_E>C:0

Since ¢/e; should be less than 1, we conclude that C'= 0 and that, indeed, this wave

cannot exist.

5.2 Stoneley wave

We have shown that the Rayleigh wave may propagate along the free surface of a homo-
geneous half-space, but it is absent if the boundary is ideally rigid. Now let us consider
a more general case and demonstrate that under certain conditions, a boundary wave
similar to the Rayleigh wave moves along an interface between fluid and elastic media or
between two elastic media. This wave is usually called the Stoneley wave.

Boundary between fluid and elastic half-spaces

Suppose there is a wave that propagates along the boundary (i.e., the wavefront is
perpendicular to the z-axis), and its amplitude exponentially decays with increased
distance from the boundary, |z|. As in the case of Rayleigh waves, this happens due to
the destructive interference of elementary waves that arise at the interface. Because in a
fluid shear waves are absent and the y-component of displacement v is equal to zero,
expressions for the complex amplitudes of potentials are

P =Ae kbizgika if 2>0 (5.31)

~

and &2:‘426kb21z6ikx’ ¢2:B2ekbgszcik$ if 2 <0
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2\ /2 2\ 172
bl - <1 - —2> 5 le - <1 - /T> 5 (532)
(651 Coy

02 12 w w
bgs = (1 - T) y kl = —, and k= -,
C

Csy cy

Here

where ¢ is the velocity of propagation of the boundary wave. Tt is clear that exponential
decay of potentials in both directions from the boundary takes place if velocity ¢ obeys
inequality

¢ < min (e, cz4) (5.33)

Let us note that due to egs. 5.32, functions g?)], <,N92, 1}2 are solutions of correspond-
ing Hemholtz equations. Applying exactly the same approach we used in studying the
Rayleigh wave, we find such values of ¢ that eq. 5.33 would be met. To do this, we
use known boundary conditions. At the interface between an elastic medium and a fluid,
shear stresses vanish, whereas normal stress and the normal component of displacement

are continuous:

T(zZZ) =Y T Q) =T (ZQZ), W = Wo
or
Ouy  Ow: o
% + % =0, A divsy, = Ap divse + 2;12%, Wy = wsy (5.34)

Since component v is absent and the fields are independent of the y-coordinate, the

2 .
second shear stress, Tgsz), is also equal to zero:

@ =0 (5.35)

yz

In terms of the complex amplitudes of potentials eqs. 5.34, become

Py Yy Py
9 2 _Z 2
0xdz * Ox? 072

PG, 9,
022 0x0z

MK 9= Ao Ky 9y 2 (5.36)
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0py _ 09y Oy

8z 0Oz Jdx on  z=0

Substitution of eqs. 5.31 into eqgs. 5.36 gives a homogeneous system of equations with
respect to Ay, As, Bs:

2 k% by Ay — 2By — k* b2, By = 0
A KE AL = =g KL Ag + 20, K2 (B Ag + i bayBy) (5.37)

*k bl Alzl{?bm A2+ZkB2
Taking into account cqgs. 5.32 and cqualitics
fiz = Py Coy, Ao+ 2415 = py €5, A=p

in place of eq. 5.37 we obtain

2\ 2 2
Co Cay

2 p 2 p 2\ 2
—— A =2 <2 — 2) Ay +2) 22 (1 — 2) B, (5.38)
Cs M C3s 1 C3s

c? 1/2 2 1/2
e Cy

Ag in the case of the Rayleigh wave, the wave propagating along the boundary may exist
if system 5.38 has a nonzero solution. This means that determinant of system 5.38 is

2\ 1/2 2
0 21'(102) (202)
Co1 Cos

2 2 2\ /2
° P2 (2 _ %) 9;P2 <1 _ c_) =0 (5.39)

2
Cos P1 &F P1 Cas

( C2)1/2 (1 C2>l/2 .
- - i
ot &

equal to zero:
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Here p, and p, are densities of a fluid and an elastic medium, respectively. We obtain

an algebraic equation with respect to the velocity of Stoneley waves, and it has the form

(% by + 171) P — 4 by — 4 by (bybay — 1) =0 (5.40)
2
Here r = c¢/co,. Letting p, = 0, we again obtain the equation determining the velocity
of Rayleigh waves. Numerical analysis of eq. 5.40 shows that for any set of parameters
¢1/cas, Corfas, po/p1, there is a real root that obeys inequality 5.33 and does not depend
on frequency. In other words, the wave can propagate along the boundary between a fluid
and an elastic medium, and its potentials exponentially decay with increased distance
from this interface. This special type of Stoneley wave is often called a Scholte wave. Tt is
interesting to note that the velocity of this wave is smaller than that of the Rayleigh wave
in an elastic half-space (Fig. 5.2a). Since displacement s in a fluid is described by one
potential only, both displacement components decrease exponentially at the same rate. In
an elastic medium, due to the existence of two potentials, the displacement components
have a different dependence on z. The exponential decrease of both components with
z is observed only when z exceeds some value. This value is frequency-dependent, and
decreases with increased frequency.

Boundary between two elastic media

In this general case, the wavefields in both media are described by two potentials,
and we have

0, = Ale_k bu z ik = 171] = Ble_k bszika 4,5 (5.41)
and
0, = Ay ek b 2 ik t 17)2 = Bgek bos 2 giko 5, < (5.42)
Here
2\ 12 2\ /2
b = (1 -2 ) \ bps = <1 — (T) , and n=12 (5.43)
“nd ‘ns

At points of the boundary z = 0, stresses and displacement components are continuous
functions. By analogy with cgs. 5.36, we have:

I T T W G
1

O0zdz 0z? 022 | M2 0xdz oz? 022
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Figure 5.2: Stoneley wave along fluid:solid boundary: (a) Velocity as a function of ratio
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5.41 and 5.42 into set 5.44 gives a homogeneous system of four

0z

Substitution of egs.

equations with respect to A, Ay, By, and Bs.

82:91 8217}1
022 0xdz

==X k%l&Q + 2

nd
an o

89,
022

8z  Or

9,
Ox0z |’

(b) Ratio of amplitudes of horizontal and vertical components at the boundary

(5.44)

o 0 ol

0z

In order to obtain a nonzero solution,

the determinant of this system has to be equal to zero, and we obtain:

2P10%5bll

P1 (CQ - 26%5)

—P2 (02 - 2035)

-1

by

2

“1s

_2P1 C%sbls

bls

2

. 2 (o2&
p2 25 2

Cag

it nd, (225

2p2035b25

_b2s

)

=0 (5.45)
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Performing multiplication, we arrive at the equation that allows us to determine the

velocity of s Stoneley wave:

2
r <& — 1) - (& b + bu) (& bos + bls> (5.46)
) P2 P2

2
+ 47 <& % - 1) <& borbas — by by — 2L + 1)

Py Ca P2 )
p & ?
+4 (—1 1 1) (b bys — 1) (by bos — 1) = 0
P2 625

where r = ¢/cos.  Assuming that p; = 0, we again obtain the equation for Rayleigh

waves. In fact, eq. 5.46 becomes
7’4 (1 — bu bls) — 4T2 (1 — bu bls) — 4 (1 — bu bls) (bgl 1)25 — 1) = 0
or

7,,4 o 47n2 + 4 = 4by b2$7

5 2 2\ 1/2 2
(505" 02)
Cas €1y Cls

Next suppose that the upper medium is a fluid. Therefore

that is,

s =10 and bis — 1 00,

and in place of eq. 5.46 we have
I (% bor + bll) — 47‘2bu — 4by, (bgl bos — 1) =0,
2

which coincides with eq. 5.40. Study of eq. 5.46 shows that its solution satisfies the

condition
¢ < min (¢4, €25) (5.47)

if shear velocities ¢1; and ¢y differ only slightly. In illustration, Fig. 5.3 shows two

shaded zones where eq. 5.64 has real roots, obeying inequality 5.47. Outside of these



258 CHAPTER 5. SURFACE WAVES IN AN ELASTIC MEDIUM

10
3
W
5 1.0
A_ 2o
B Mo
___4
03—/
0.1 -
0.1 0.3 1.0 3 10

h 1P,

Figure 5.3: Zones of existence of Stoneley wave at the solid:solid boundary. [After Grant
& West, 1965]

zones, the Stoneley wave cannot exist. It turns out that the velocity of the Stoneley wave
usually falls between the velocities of Rayleigh waves and shear waves in the medium with
greater density. It is important that the velocity of the Stoneley wave, as well as that of

the Rayleigh wave, does not depend on frequency.

Could the boundary SH wave exist?

Finally, we demonstrate that the SH boundary wave is absent at the boundary of
two elastic media. Taking into account that components u and w are equal to zero
and that component v can depend on x and z only, we have for the z-component
of the potential

,;/)lzcl €_k b]szeikl', 17}2202 (ik bgszeik{t (548)

Boundary conditions are

~ ~ ~

v = vy and Tly = ;gyz on z=10 (5.49)
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or

8 v, 9 4 P, b,
azlz azz and 8721: 8,222 on z=0 (5.50)

Substitution of eqs. 5.48 into eqs. 5.50 gives

bls Cl + st CQ =0 and b?s Cl — b%s CQ =0 (551)
Since the determinant of this system differs from zero, we conclude that
Cl - CQ - O

and that, therefore, the boundary SH wave cannot exist in this case.

5.3 Love waves

Now we will study propagation of the simplest interferential waves, named Love waves for
the physicist who proved their existence. To explain how the interference of elementary
plane body waves produces this type of surface wave, we will consider propagation of
the interferential plane SH wave along the x-axis in a two-layered medium with a
free surface, in which ¢, < 95 (Fig. 5.4a). We will suppose that ¢;; < ¢o; and this
wave exponentially decays in the half-space with depth z. The motion of particles is
characterized by linear polarization because displacement has the single component wv.
In order to understand the nature of such a surface wave, imagine that the elementary
planec SH wave moves downward in the layer and

€15 < C24 (052)

At boundary z = 0, this wave will generate reflected and transmitted SH waves. In
accordance with Snell’s law, the critical angle is defined from the equation

7, =sin”h 22 (5.53)
Cas

If the angle of incidence -y, < <., then both the reflected and transmitted SH waves
that arise at the bottom of the layer are homogeneous. The reflected wave has a smaller
amplitude than the incident wave because part of its energy has leaked into the half-
space. The reflected wave propagates upward, and is reflected downward at the free
surface without the loss of energy. Correspondingly, at interface z =0 we again observe

the reflected wave, and so on. Thus, there are two systems of SH plane waves moving
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Figure 5.4: Love waves: (a) Two-layered elastic medium (b) IHlustration of eq. 5.53

(c) Ray paths of the downgoing and upgoing waves

either downward or upward with the same apparent velocity along the surface. Since after
each reflection the amplitudes of these waves decrease, these systems of waves rapidly
decay as x increases.

The situation drastically changes if the incident angle exceeds the critical angle,
¥, > v, In this case, homogeneous transmitted waves are absent, and total inter-
nal reflections take place. Respectively, amplitudes of the incident and reflected waves
are equal to each other at both interfaces, and elastic energy remains unchanged inside
the layer. However, this fact alone does not, guarantee the existence of a wave propagating
inside the layer without attenuation. As was pointed out, the wavefield is a superposi-
tion of two systems of homogeneous plane waves, and their fronts form the same angle
with boundaries. If interference between these two sets of waves is constructive, then
the resultant (interferential) wave moves along the layer without attenuation. On the
contrary, when destructive interference occurs, this wave rapidly decreases with distance
along the layer and finally disappears. It is obvious that as in the case of acoustic waves,

the condition for constructive interference depends on frequency.
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Condition for constructive interference and dispersion equation

Since we assume that v, > v, propagation of the interferential wave inside the
layer is accompanied by an evanescent wave in the half-space (z > 0). This wave
expornentially decays with depth. Wavefields inside and outside the layer constitute one
wave, traveling along the x-axis. Its velocity ¢ can be easily evaluated from Fig. 5.4b,
where the position of the wavefront is shown at two instances. It is clear that

e T (5.54)
At At siny, sinvy, )

Here -+, is the angle of incidence of the homogeneous plane wave, and it varies as
™
Ye < i < 5
Respectively, velocity ¢ changes in the following way:
c1s << ey (5.53)

Let us note that the presence of an evanescent wave in the half-space does not decrease
elastic energy inside the layer. The loss of energy does not happen because during each
half-period, the total energy leaving the layer is equal to zero (Part II). The wavefield
inside and outside the layer is called the Love wave, and ¢ is its velocity. It is another
example of the surface wave propagating in a horizontal direction. However, unlike the
Rayleigh and Stoneley waves, the Love waves require as a necessary condition of existence
the presence of a layer of finite thickness in which constructive interference must take
place. Correspondingly, when the layer thickness tends to zero, the Love waves vanish,
as was proved earlier. The same is correct if the layer thickness becomes infinitely large,
because the set of upgoing plane waves disappears. Also, it is clear that if the half-space
has a lower velocity (c1, > ¢a,), there are always transmitted homogeneous waves, and
the Love waves cannot exist.

By analogy with acoustic waves (Part IT), it is useful to demonstrate that constructive
interference takes place for a certain set of frequencies. Let us consider phase surface N
of the downgoing wave, Fig. 5.4c. As we know, the reflected upgoing and downgoing
waves appear as a result of the action of wave N. If the frequencies are such that the
phase difference between the incident and twice reflected waves is equal to 2an, their
superposition is constructive. Waves with other frequencies have a phase shift different
from 2mn, and they destructively interfere. As a result, they cancel each other out after
a relatively small number of reflections. Note that the phase difference of two upgoing

and downgoing waves is defined by the following factors:
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1. The phase shift between the displacements carried out by incident and reflected
waves at the free surface (¢ = —H) is equal to 0.

2. The phase shift ¥ of the reflected wave at the layer bottom depends on angle vy,
as well as on elastic impedances of both media. This shift is defined by eq. 4.158 in the
previous chapter.

3. The phase delay due to the extra path of the twice reflected wave relative to the
incident wave is defined by the length of this path ABECD and wavelength A, of the

shear wave in the layer. Taking into account that the argument of the sinusoidal wave is

2w

ixls

L,

wt — ki = wt —

the condition for constructive interference can be written as

ki, |ABECD| + ¥ = 2mn
or
27
- (|AB| + |BC| + [CDI) = 2n7 — 0 (5.56)
A1s

Here n is some integer number. By definition Ay, = ¢i5 / f, and certainly the result
of interference depends on frequency. As is seen from Fig. 5.4c, AB = BE cos2vy,,
CD = CFEcos2vy;, and BC = H/cos~,. Substitution of these terms into eq. 5.56 gives

2rH ( cos 2y, 1 47 H cosy,

i cos2y; _drHcosy; o

Ay \ cosy,  cosw, Ay

or wH cos vy, _ 2nm — ¥ (5.57)

C1s 2
In particular, when the underlying medium is ideally rigid, ¥ = 0, in place of eq. 5.57
we have
wpH cosy,
T O8Ti (5.58)
Cis
In such a case, the evanescent wave is absent, and the Love wave is confined inside the
elastic layer.
Taking into account eq. 5.54, it is easy to eliminate cos<v, from eq. 5.57

2\ 1/2 2 1/2 v
~o= 11 s _ Cis c 1 _ Clsbls
cosy, = - =— |5 - ===
¢ ¢ \ ¢, ¢
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and find the relationship between the velocity of the Love wave and frequency. This gives

woH  2nm — 0
c 2

(5.59)

However, this equation contains an unknown phase shift at the layer bottom. This shift
can be found from the expression for the reflection coefficient Rgy at the boundary
between elastic media obtained in Chapter 4. When the angle of incidence v, exceeds
the critical angle +,, this coefficient is complex:

~

fobog

~

,uqbls

Rsg =cxp(—i¥) and ¥ = 2tan !

where

~ 02
b o= 1— — 1/2
wm g

As a result, the dispersion equation for Love waves takes the form

~

1y 015

. .
tan (“Tbls) _ Habas (5.60)

This equation allows us to find the velocity of the Love wave as a function of frequency.
But before we start to investigate solutions of eq. 5.60, we will take a different approach
and derive the same equation from the boundary value problem.

The boundary value problem for Love waves

We represent the complex amplitude of the w-component of displacement as

5(1> = (Clei kb Z—l—Cze*Z‘ kb Z) S <0

and 70 = Cye ki baz ik itz>0 (5.61)

Here again

~ 2 2, 2\ 12
bls:<__1) ) b23:<1_7>
Cis Cos
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Now we use the boundary conditions and find the equation that relates the velocity of
Love waves to ther frequency. As the normal stress at the free surface is equal to 0, we

have

=0 on z=-H

From continuity of displacements and stresses at the lower boundary of the layer, it
follows that

~(1) ~(2)
1)~ and v v o
v =w an = n z=
M] az /’[’2 az

These conditions yield:

Ole_i k bisH CQCi kbiH _

iy by (Cr— Co) = — iy by, C

System 5.62 has a nonzero solution for C, Cy, and Cj3 if the determinant is equal to

Zero:

e—i k blsH _ei k blsH 0
] 1 1 =0 (5.63)

~

i iy (bls)2 =i iy (bls)Q 1o (b2s)2

Performing simple algebra, we can obtain the dispersion equation in a more explicit form.
Of course, the same result directly follows from system 5.62. Excluding €5 in its last

two equations, we have:

g bis — iy b —1 M9 bas

Cy = Ci =exp | —2itan (5.64)

Hy bls +Z/1‘2 b25 My bls

Substituting Cs into the first equation of set 5.62, after simple transformation using

Euler’s formulas, we obtain

_ /1'2 b25 ,u2 b25

or tan(g_ ZlSH) =

tan(kzlsH)
/111 bls ¢ ,u] b 1s

(5.65)

~ ~
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This dispersion equation is exactly the same as eq. 5.60 obtained using the condition of
constructive interference. Eq. 5.65 establishes the relationship between the velocity of
the Love waves ¢ and frequency w, as well as between this velocity and parameters of

the medium. We can rewrite eq. 5.65 in a slightly different, form:

2 1/2 2 —-1/2 9N\ 1/2
tan |kH (% - 1) =Lt (% - 1> (1 - %) (5.66)
Cls By \Cs Cas

Since the left side of this equation is a periodic function, for any fixed value of ¢ inside
the range prescribed by inequality 5.55 there is an infinite number of roots:

wolc), wile), wale), .o, wule), ...

Each value of w, characterizes the frequency of the nth mode of the Love waves
propagating with velocity ¢. The inverse functions c¢,(w) describe phase velocity
dispersion curves of Love waves.

Since the left side of eq. 5.66 is a periodic function, it is convenient to present this

equation in the form
C2 1/2
2\ '
kH (T - 1) = mn+tan! B2 e/ (5.67)

Here n is an integer number.
Now, using eq. 5.67, we will confirm inequality 5.55, beginning with the case when

n =0. Then eq. 5.67 becomes

2 1/2
6D
kﬂ(T_&) a2 G/ (5.68)

Cls

Suppose, first, that the velocity of the Love wave, ¢, approaches coy:
C — Cag

Since the right side of eq. 3.68 vanishes, we have

2 1/2
kH(l) -0 or k—0, ie., w — 00
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On the contrary, when ¢ — ¢y, the right side of eq. 5.71 tends to 7/2, while

2 1/2
(CT - 1) — 0
Cls

To preserve equality 5.68, the wave number has to be infinitely large, that is w — oc.

Thus, in agreement with eq. 5.55, when the ratio A;,/H varies from zero to infinity

0< Aﬁ<oo
H b

the phase velocity of the Love wave changes as ¢; < ¢ < ¢g,. It is easy to show that this
conclusion remains valid for any mode. Howcever, there is a difference which concerns the

range of w. In fact, as follows from eq. 3.70, if ¢ = ¢y and n # 0, we have

CQ 1/2
kH <% - 1> =7n

Cls

or

Ay 2 2 \1/2
. _—< —%) (5.69)

n 5,

In the opposite case, when ¢ = ¢y,, as before Aj;/H — 0. Thus, for any n a change
in the velocity of the Love wave (eq. 5.55) occurs within the frequency range

Als 2 (/’25 12
0<— gﬁ(1—%> (5.70)

We see that with an increase of the order n, the range of frequencies (wavelengths) where

the mode exists, narrows. For instance, if

1/\15 C%s 12
ST

Cos

there is only the fundamental mode, n = 0. However, within the interval

. 1/2 < 1/2
AR U AN
4,) ~ H )

two modes can be observed, n =0 and n = 1. Within the interval

2\ 1/2 2\ 1/2
(-8)" <3 <0-8)”
3 025 H 025
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three modes exist, and so on. The width of such intervals decreases with an increase of

n, and it is equal to

9 2 1/2
<1 _ i) (5.71)

n{n—1) 3,

Dispersion curves for the first five modes are shown in Fig. 5.5a.
Displacement v, (z)
Next consider the displacement of the nth mode as a function of z. From eqs. 5.64

and 5.65, we have

% = exp (—i2bnbinH ),

U

~ — Cl <elkn len ¥4 =+ 6_2“{/‘" lenH e_ikn ;15n2> eZ' kn x

— C, cos [/@,,LZIS,L(z n H)] ek g <2< (5.72)
and v, =C, cos(knglan) e Fnbosnz i kn @ if 2> 0.
Here
~ 2 2, 2 1/2 ~
bron = <7 - 1) L bogn = ( - 7) . and G, = 2C; exp (—zk blmH)
cls CQs

Both by, and by, depend on the mode order. By definition, displacement v, is

v, = D,, cos [knzlsn(z + H)} cos (wt — kpx) if —H<2z<0 (5.73)

and v, = D, cos (anmH) e Fn Dasn 7 g (wt — kpx) if 2>0

As in the case of Rayleigh or Stoneley waves, coefficient D, remains unknowns, since
the primary source is not taken into account. From cqgs. 5.73 we sce that the Love wave
is oscillating wave along the z-axis inside the layer but exponentially decays outside of

it. For instance, if n =0, displacement gradually decreases with depth. For the n =1,
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Figure 5.5: Love waves in a two-layered elastic medium: (a) Dispersion curves of phase
velocities (solid lines) and group velocities (dashed lines) for the first five modes (n =

0,1,...,4) (b) Normalized displacement v as function of z/A;,. Here co5/cis =2
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we observe a change of sign, and correspondingly, there is a nodal plane where vy, = 0.
With an increase of n, the number of such planes also increases, as is seen in Fig. 5.5b.

Transient modes of Love waves

In the case of a nonstationary source, constructive and destructive interference of
sinusoidal harmonics that form each mode occurs. As a result of constructive interfer-
ence, transient modes of Love waves are observed. Their waveforms are defined by the
corresponding group velocity curves (Parts I and II). Behavior of the group velocities ¢y,
as functions of A;,/H for the first five Love modes in a two-layered model is shown in
Fig. 5.5a (dashed lines).

Let us briefly discuss the behavior of any mode presented in a considered frequency
range. Suppose that the observation point has an offset z. Then, as follows from
behavior of function ¢, (w), during time interval x/cos < t < x/c15, we observe
a wave group with relatively low apparent frequencies that increase with time. Then,
at moment ¢ = x/cys, a high-frequency group arrives and interferes with the first
group. The apparent frequency of this group decreases with time. As time increases, the
frequency contents of the two groups become very close, and they finally merge into one
quasi-stationary wavetrain called the Airy phase. The resemblance to propagation along

a waveguide in an acoustic medium is obvious (Part II).

5.4 Rayleigh waves in a two-layered medium

Earlier we demonstrated that in a homogeneous half-space, the velocity of propagation
of Rayleigh waves is independent of frequency. We also found out that in a two-laycred
medium, different modes of Love waves may exist. They demonstrate a dispersive be-
havior — that is, their phase velocities are functions of frequency. Now we will show that
Rayleigh waves in a layered medium may display similar features. For illustration, we
will consider the case in which a layer of fluid overlays a homogeneous elastic half-space
(Fig. 5.6a).

Fluid layer over an elastic half-space

Suppose that the surface wave propagates along the z-axis with phase velocity c,
and, in an elastic medium it decays exponentially with depth 2. Unlike in the case of
Love waves, displacement s is characterized by two components, u and w, while

v = 0. Correspondingly, expressions of complex amplitudes of potentials are

;01: (Al ek b12+Ble—l€ bl Z) e?kl,/ :0‘2:142 e—k’ bmzeik:r7 (574)
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and ;LQ — B2 ﬁ_k b25 z €Z. kx
Here
2\ 1/2 2 1/2 2 1/2
b]:<1> le—(l) , bgs:(l ) , (575)

(.% c%l (’%a
w w w
k= —, ky = » kyy = —
C1 Cal Cos

Boundary conditions at the interface between the elastic medium and a fluid and at the

free surface are

wy = wy, 7= 7@ ;@& 9 on z=0 (5.76)

) T

and =0 on z=-H
Taking into account that
s = grad ¢ + curl ¢

and Hooke’s law, sct 5.76 can be represented in the form

89~91 a‘fNQQ a'lQ o 9~ 82:92 82'&2
N T W - iy 9
0z 0z + or’ 1P 2 Ry + 2y 022 oxr 0z
25, O, O
p 0 (O OWs o L (5.77)

Ox 0z ox? 022

and ¢, =0, on z=-H

since

(

~(1) . on -
T,, = A div sy = MV, = —A1 ki,

Substituting eqs. 5.74 into eqs. 5.77, we obtain a system of equations with respect to
unknowns A, By, Ay, and Bs:

by (A — B)) = —by As +iBs
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—M KT (A4 Bi) = A2 k3 As +2p, k2 (b3, Ay — i bayBo) (5.78)

727/ b2l A2 - (1 —+ bgs) 32 = O7 /‘11 e_k blH + B1 ek blH —_ O

The amplitudes of a surface wave should decrease exponentially in the solid half-space
(z > 0). This implies that by is real, i.e., ¢ < 5. The existence of this surface wave
means that unknowns A;, B, Ay, and B, differ from zero; that is, the determinant of

system 5.78 has to be equal to zero.

b] *bl b21 1
—pc’ —pic? pa(c® = 265)  2pyc5bas
2 =0 (5.79)
0 0 by — =2
Cop
o~k biH kb H 0 0

From this we obtain a dispersion (periodic) equation in the following form:

O oy R N OY LU PP U (5.80)
R W T AT W R 3 '

Let us consider two different cases.
“Hard bottom” ¢ < ¢
Then within the range of possible values of ¢ ¢ < ¢ < ¢s by becomes imaginary,

and instead of eq. 3.80 we have

tan | KH LS —1) =5, = 22 ¢ || 4 byb 2 Y’ (5.81)
n - — =1 =5 s — - .
a ™ p, ¢t byl 2102 a2

This transcendent equation relates phase velocity ¢ (w) to frequency and to the param-

eters of a medium. It is convenient to rewrite eq. 5.81 as

[ 2
ko H (C—%‘ —1=nan+tan"'n, (5.82)

where ¢,(w) is phase velocity of the nth mode and k, = w/c,.

Letting n =0, eq. 5.82 becomes

[ 2
27p Z_Q —1=tan 'n, (5.83)
1
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Figure 5.6: Rayleigh waves in a fluid layer overlaying an elastic half-space: (a) Model of
a medium (b) Dispersion curves of the phase velocities (solid lines) and group velocities

(dashed lines) for the first two modes. py/p, = 2.2, co1/cas = V3, a5/ = 1.333

Here p= H/A; and Ay, is the wavelength in a fluid. With an increase of Ay, the left

side of eq. 5.83 tends to zero, and we have
2

2
C
771:41)2[1)25* <22) =0
Cos
This coincides with the dispersion equation for Rayleigh waves in a homogeneous half-
Respectively, the phase velocity of the fundamental mode approaches that of

space.
In other words, the influence of the upper layer

the Rayleigh wave c¢p when w — 0.
vanishes. As is seen from Fig. 5.6b, the phase velocity of the fundamental mode gradually

decreases with an increase of frequency, and its range of change is
cst < c{w) <eg

where cg; is the velocity of the Stoneley wave at the fluid/solid boundary. Also, this
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numerical analysis shows that the fundamental mode of the Rayleigh waves exists at
any frequency. As in the case of Love waves, we observe the dependence of the phase
velocity on frequency, i.c., dispersion. In particular, the fundamental mode at the lower

frequencies propagates more quickly. By definition

~ O0p N ~ dp O
-, W=+ —,
Jr 0z 0z Oz
and, in accordance with eqs. 5.74, it is easy to see that propagation of the fundamental
mode, as well as of others modes, is accompanied by elliptical polarization of the particle
motion.

Letting now n =1 we define the dispersion equation of the second mode as

[ 2
YH C—Q —l=mn+tan 9 (5.84)
¢ &

As before, at high frequencies, phase velocity approaches ¢;:
c(w) = it p—o oo

To determine the low frequency limit, suppose that ¢ (w) = ¢p5. Then eq. 5.82 becomes

2 2
iH 0_225_1:7'( or 27rp 1—0—21:1 (585)
Cos c] Cos

It turns out that the latter defines the cut-off frequency of this mode, since at lower
frequencies the wavenumber becomes complex. This means that part of the energy moves
from the layer into the elastic medium (z > 0), and the wave rapidly decays. Thus, the

range of change of the phase velocity is
¢ < e(w) < ey, (5.86)

and below the cut-off frequency this mode is absent. Of course, there are also modes of
the higher order, but we will restrict ourselves to the first two modes.

“Soft bottom” €1 > Cog

In this case by is always real as phase velocity ¢ is less than cqs. It is easy to show
that eq. 5.80 has only one root. The range of change of phase velocity ¢(w) is the same

as for fundamental mode n =0 in a previous case.
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Chapter 6

Waves in a layered medium caused

by linear and point sources

We start from a relatively simple two-dimensional case in which the primary source is
linear and stretched for example, along the y-axis, Fig. 6.1a. This means that a
wavefield remains the same in any plane, parallel to the coordinate plane XOZ, and
deformation in the y-direction is absent. There is an evident analogy with plane waves
(Chapter 4), and it is not accidental that waves generated by such a source can be
represented as a superposition of plane waves. One can say that the study of waves due
to a lincar source is a logical intermediate step between the the study of plane waves and
of a more general three-dimensional case. Of course, the linear source is hardly practical,
but all derivations are significantly simpler in this case. It is cssential that lincar and
point sources give rise to the same types of waves. For instance, in a homogeneous
half-space with a free surface, we can observe longitudinal and shear direct and reflected
waves, as well as Rayleigh waves. The appearance of these waves due to either a linear
or the point source can be expected. In fact, their appearance follows from the theory
of plane and surface waves, the ray theory, and the reflection of plane waves. Our goal
is not to discover new waves, but rather to study how these waves are gencrated and
propagate depending on source type and location as well as on elastic parameters of a

medium.

275
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Figure 6.1: (a) Linear source beneath the surface (b) Boundary condition for stresses at
the plane, z =0
6.1

Linear source of P and SV waves in a homogeneous half-space with
a free boundary

In order to formulate the boundary value problem in the presence of a horizontal

interface, it is necessary first of all to derive expressions for potentials that describe the
direct longitudinal or shear waves.

Linear source of the P wave in a homogeneous medium

Suppose that an infinitely long cylinder with a very small radius 7 is oriented along
the y-axis, and it experiences sinusoidal vibrations in the radial direction:

r(t) = ro+ s.(t) (6.1)
Here

5,(t) = spcoswt (6.2)
and

5

20 <1 (6.3)
To

It is clear that such a source generates a direct wave that has only a radial component
of displacement. In the cylindrical system of coordinates

s=s,1, 1le, s =35,=0,
since the source is situated on the y-axis. By definition,

(6.4)

. 10
divs = o (rs,)
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i, rip i,
1l1a a2 a2
and curl s = | or 08 oy

s, 0 0

Because of axial symmetry and the independence of the field on the y-coordinate, we

obtain
curl s =0 (6.6)

Therefore, such a wave is longitudinal and, correspondingly, it is described by scalar

potential only. Its complex amplitude is a solution of the Helmholtz equation
V30 + kioy =0
or, in the cylindrical system of coordinates,
d*py | 1dg,

7z ot kg, =0 (6.7)

This is the Bessel equation, and its solutions are Bessel functions of the first and second

types,
Jo (kyr) and Yo ki),

as well as some combinations of them. Taking into account that the source causes the
outgoing wave and the function e "W describes time dependence, we choose the Hankel

function,
H (k) = Jo (kyr) + 4 Yo (k)

as a solution of eq. 6.7. This choice is related to the fact that at large distances from

the source, its asymptotic expression is

(1) o |2 i(kir—m/4
HY () = [ e ( /4 (6.8)

This allows us to say that the function

SNOO (k) = ArHo (ki r) (6.9)
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characterizes the wave generated by the linear source. Here A;

is unknown, and in

order to determine we assume that the stress 7,, is uniformly distributed on the

source surface and depends on time ¢ as
— 0 .
Ty (TO) = T, COS wt

From Hooke’s law we have

~

N - 0%,
Trr = A div s + 21 i
or
or
. Y
Ter = —A K20y + 21 WO
Since
9
Hél) (kr) — " kv if r— 0,
T

the second term in eq. 6.11 prevails near the source, and we obtain

~ 2M 7 Al
Trr = — 5
s
or
2 5 0
4 = Tl
<11 — ’
2u

because T, = 70 at points along the source. Thus,

rr

~ Tl 1
b0 = Ty ()

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

and our first task is solved, since this function satisfics all conditions of the boundary

problem.

Also it is interesting to consider the strains and stresses that accompany this cylin-

drical wave. As follows from Appendix E,

dsy Sy
Ev €o9 = 73 Cyy = 0

o —
(/TT -

and

€y = €py = Epgp = 0
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Hooke’s law gives

0s,
3

Trr:)\divs—f—Qy,a
7

Tyy = Tee=Adivs, and 79y=7,y=7,=0

Thus, in the cylindrical system of coordinates there are three normal stresses. Now let
us imagine a horizontal plane, § = 0, on which the source is located. Then at points on
this surface the normal stress, 744, differs from zero.

Further we focus our attention on waveficlds in a medium with a horizontal interface.
For this reason it is necessary, as in the case of acoustic waves (Part II), to represent the
potential of the direct wave, gwoo, in terms of functions that depend on coordinates =
and z. There are several integral forms of the Hankel functions; one of them

oQ

1 1 Do
oW L Ll gmox g, 15
o (k) p mle e dm, (6.15)
where
my = /m? — &} (6.16)
Correspondingly,
N 0 2 Ty |2
k — rr ' 0 Tm Zl?d 6.17
@q (kir) % / e m (6.17)
or
- 0 p2 o= |2
o (kir) = T;T/LTO / ¢ o cosma dm, (6.18)

— 00

since sinmgz is the odd function.

Homogeneous half-space with a free boundary

Next we assume that the lincar source of longitudinal waves is located in a homoge-
neous half-space beneath the free surface, Fig. 6.1a. When the direct wave reaches the
boundary, we can expect the appearance of longitudinal and shear reflected waves, as well
as surface waves. The sinusoidal wavefields associated with these waves are described by
complex amplitudes of scalar and vector potentials

~

© =@+ @, and P, (6.19)
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where c,Nos is the complex amplitude of potential characterizing the secondary waves and

1 is the y-component of the vector potential

To determine these unknown functions we have to formulate a boundary value problem
that imposes the following conditions on ¢ and .

1. First of all, they must satisfy the Helmholtz equations
V2 G4 kg =0, V2 4+ k=0 (6.20)
Here

w
&)

k= and k=2
: .

2. Near the source, the scalar potential must tend to potential of the direct wave
¢ = o it o0 (6.21)
3. At infinity

p =0 and 17) — 0, if r—oo (6.22)

and the Sommerfeld condition of radiation has to be met (Part IT).

4. Finally, at the free surface, normal and shear stresses must vanish

7, =0 and 7, =0, if z2=-H (6.23)
We assume that in the Cartesian system of coordinates, displacement s :

s =grad p+ curl 17; (6.24)
is characterized by only two components, u and w,

s=uitwk (6.25)

For this reason we have chosen the y-component of vector potential t,. Correspondingly,

eq. 6.24 gives

. . 8y o

%=L w= -4+ = 6.26
or 0Oz 0z Oz (6:26)
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Then, taking into account Hooke’s law:

F.. = A divs +2u gqf’, ey <gf + gf) 7 (6.27)
ya Z

eqs. 6.23 become

-~ Py 0

By o o
5:0: ot 9z (6.28)

:07

Note that we have already used these boundary conditions studying Rayleigh waves.
Thus, we have formulated the boundary value problem, and in accordance with the
theorem of uniqueness, only one wavefield obeys all four conditions. First, taking into
account that the free surface is a plane, z = —H, it is natural to find a solution of the
Helmholtz equations in the Cartesian system of coordinates. For instance, in the case of
scalar potential, we have

o o~

_6272 + W + kl QY = 0, (629)
which describes the potential at regular points. Applying the method of separation of
variables (Part 1T), we represent the function ¢ as

w=X(z) Z(2) (6.30)

Substitution of eq. 6.30 into eq. 6.29 gives

EX P2
+ XYL LR X Z=0

A
dx? dz?

or

1d*’X 1d°Z

i e Iy 31
Xd:L“Q_'—Zdzz_'—l 0 (6.:31)

The latter is equivalent to one of two sets of the ordinary differential equations

d*X d*Z

-zt m?X =0, T (m*—k})Z=0 (6.32)
or

X d*Z 2 2

—5 A =0, 3 (m*— k) Z =0
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We choose the first system, eqs. 6.32, because one of its solutions corresponds to the
symmetry of the wavefields with respect to plane 2z =0 and because of the behavior of

this solution at infinity, when 2z — oo, In fact, solutions of this system are

¢t 1Mz and ¢ Mz (6.33)

Taking into account the boundary condition at infinity, the general solution for the
potential @, can be written in the form
o0
0, = / B, e M2t M Tagm (6.34)
— 00

Exactly the same approach to the equation

0% P~
yields
17) = / Cre Ms % el M Ty (6.36)
Here
ms =/ m?— k2 (6.37)

~

Thus, functions ¢, and v obey the Helmholtz equations and the condition at infinity.
Since

et ML = cosma + i sinma,

eqs. 6.34 and 6.36 can be written as

o oC
0, = / B e "M% cosmy dn  and ¢ = / Cpe” ™% cosmz dm  (6.38)
o “oo

i.e., these functions are even with respect to =z, which corresponds to the symmetry
of wavefields. Next, making use of eq. 6.17, we obtain the following expressions for

potentials of waves:

@] o0
~ 1 _ im o _ P
5 =G, Loz gimw g, B,, e 7 b L,
my
X —00

(6.39)
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and
1/7 =) /Cm e s 2 GIMT g, (6.40)
Here
Gy = D10 (6.41)
0= o0 .

In order to determine the unknown coefficients B, and C,,, we apply the boundary
conditions. Substitution of eqs. 6.39 and 6.40 into eqs. 6.28 gives two equations with

two unknowns for every value of m:

—my H
MK <e + B, ¢ H) (6.42)
my
+2p(me” ™ 1 +mie™ HBm —im myCp ' H) =0

and 2 (2 me MH iy, m B, ¢™ H) —m2C,eMs H_ m? C,, s H_y

After doing a simple algebra, we obtain

—ny H
(2m2 - kf) el HBm —2i m myCppe™s m__¢ (2m2 — kf) (6.43)
my
and 2i m my el HBm + (2m2 — kf) el HC'm —2ime Tl

Note that the boundary conditions are written for integrands in eqs. 6.39 and 6.40.
This great simplification is based on the main property of Fourier’s transform (Part I).
Solution of system 6.43 gives

1 (2m? — k2)* + 4m2m; m, —om H

B,=—— e 6.44
" my (2m2 — k2)? — dm?m; m, (6.44)

and C. = dim (2m? — k2) e~ Tu H o—ms 1

12
(2m? — k2)" — dm2mymy
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As follows from eqs. 6.44, the functions @, and ¢ do not have singularities. Therefore,
the condition near the source, eq. 6.21, is also met. This means that we have found
potentials caused by the linear source of the compressional waves. In particular, if the

source is located on the free surface we obtain

e~ 2 M T
= —8CY / m?m, mn (6.45)
(2m2 — k2)® — 4m2m; m,

2 2y ,—MegZ M
and _4ZC/m m?— k%) ¢ e dm

(2m2 — k2)* — dm2my m,

Linear source of SV waves in a homogeneous medium
Assume that the linear source experiences a small rotation about the y-axis that is

caused by shear stress:

Tor = T9, COS wt at T =1y (6.46)

This motion gives rise to a shear wave, and particle displacement is characterized by the

single component sg:
S = spig but s =58,=0 (6.47)

Since the wavefield is independent of 8, we have

1
div s = —3
T

50 (rsq) =0,

while

1
curl, s = g (rsg) £ 0

Correspondingly, the wavefield can be described by the single component of the vector

potential

o =0 J (6.48)
which is oriented along the y-axis, and
N
s = curl 9, or 59 = A} (6.49)

or
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Because of axial symmetry and the independence of the coordinate ¥, the complex
amplitude v, satisfies eq. 6.35, and its solution has the same form as in the case of the

P-waves:
o = AsH (kyr) (6.50)

To determine the unknown A,, we use Hooke’s law:
25

N 95, 3 20 1 o
=p|l——-——=—pul|l=-- = 6.51
o = < or r ) P\~ 7 ar (6:51)
As follows from eq. 6.12, near the source
9
HO (k) = ZInkyr, (6.52)
i

and substitution of egs. 6.50 and 6.52 into eq. 6.51 gives

2.0
A, = 0T (6.53)
4p
Therefore,
~ it 0
Yy = *ZTQH(() (kyr) (6.54)
or
. % ‘
vy = Cy / e 2 i m g, (6.55)
Mg
Here
2.0
_ "o T
C, = g (6.56)

Considering elementary volume in the cylindrical system of coordinates, we see that

and
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Homogeneous half-space with a free boundary

Now we assume that the linear source of shear waves is located at distance H from
the free surface, Fig. 6.1a. As before, we may expect that at the boundary both longi-
tudinal and shear reflected waves arise, as well as a surface wave. For this reason, the
waveficlds are described by scalar and vector potentials, and their complex amplitudes

can be written in the form

0 .
N _ imz
b= / Ap e Mze dm (6.57)
—00
o0 oC
o e Ms 2| imzx —mgz imaz
and ¥ = C} — e dm + B, e s e dm
My
— 00 -0

By definition, at regular points functions <,N9 and 27) are solutions of Helmholtz equations,
and they satisfy the condition at infinity (2 — o0). Substitution of eqs. 6.57 into the
boundary conditions described by eqs. 6.28 gives the system for determining unknowns
A, and B,

—\EF A ™ 0, 24 [ml? A, e H i, (efms q_ my B,, e H )] =0, (6.58)

—my H
—2 m my A, e H_ m? <6 + By, €M H ) — <mf B, s H +mge s H ) =0
M
or
(2m? = k) A T _imm, e H B — 9 e H (6.59)

02 .2
and 2 m my e H A+ (2m2 — lff) eMs H B,, = 74(2m kS)e—’ms H
my

Solution of this system gives

A - —4i m (2m? — k%) e~ U H —m, H (6.60)

2
(2m?2 — k2)" — dmPmym
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1 (2m?—k2)* + 4m2m1m56f2m8 H

and B, =—-
" my (2m? — k2)* — 4m?mym,

Thus, the scalar and vector potentials are

N i 4 om2 — k2) e u H o—ms H .
p=—-0 / im ( m‘ 5)26 c e M2t M g (6.61)
(2m? — k2)° — dm?mym
-0
~ 3 1 2 2 k2 2 4 2 .
and Y, = —C / ( m( — 3)2 - m‘ MU =2ms H o=y 2 dm g,
Jms (2m? — k2)T — AmPmymg

Here ¢ =+, and ¢, describes the secondary wavefields.
Linear source of SH wave in a homogeneous half-space
In such a case, we assume that the secondary wave is also an SH wave. Correspond-

ingly, the field is described by the vector potential only:

o0
J} _ 01/ ( 1 e s 12l 4 g ems ) Jdmz g
ms

-0
Since displacement has a single component v, the boundary condition at the free surface

is

a,
Tyz =0 or O_ZZO if z=—-H
This can be represented as
&% .
Fre if z=-—H,
B, = 7i 6—2m5 H
My

The vector potential of the secondary field is

>0
17)3 - _q / 1 e—ms (2+2H) jimxg,
J o Mg
— 00
This vector potential characterizes the shear wave caused by a fictitious source located
at the point having coordinates, (0,—2H). That is, it is a mirror reflection of the real
source with respect to the free surface. Note that the same behavior was observed in an

acoustic medium (Part IT).
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6.2 Waves in a homogeneous medium caused by force F¢ (two-dimensional
case)

Assume that the external force

F: =F,(z,0)cosw ¢ or F¢=F,(z,0)cosw ¢ (6.62)

z

is oriented either along the z-axis or the z-axis, and it acts on a very thin layer coincident
with plane z =0, Fig. 6.1b. In general, F, and F, can be arbitrary functions of z.
We can expect that such sources generate a direct wave, which causes deformation and
the rotation of elementary volumes of a medium. The wavefields are described by both
potentials, and our first goal is to find expressions for the complex amplitudes of these
potentials. It is clear that the boundary value problem for the direct wave requires the
following:

1. The complex amplitudes of the scalar and vector potentials must obey the Helmholtz
equations at regular points.

2. At plane z =0, both components of displacement must be continuous functions:

Uy = 172 and @1 = 17]2 (663)

~

Hereu=u;, w=w, 2<0; u=1y w=wy z2>0: while v =0.

Also, stresses 7,, and 7., at both sides of plane z =0 are related to the external
force Fe°.

3. Finally, the direct wave is outgoing, and the wavefields disappear when |z| tends
to infinity.

Relationship between the external force and stresses

As we see, in order to solve the boundary value problem it is necessary to relate the
external force to stresses in the vicinity of plane z = 0. Let us consider an elementary
cylinder, shown in Fig. 6.1b. It is obvious that a sum of forces acting on the opposite
faces of the volume has to be equal to zero, that is,

(Fe+tM +¢@) dS =0 (6.64)

Otherwise, acceleration of volume would be infinitely large when AV — 0. Here
F¢ is the external force per unit area of the upper face, dS, of the elementary cylinder,
while t" and t® are the vectors of traction, applied to faces. By definition (Appendix

D), the components of the vector t are

ly = TaaNa + TaoyNy + TNz, ty = Tyally + TyyNy + TyNls (6.65)
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and by = Togly + ToyTy + TN

where n,,n,,n, are directional cosines of normals to the cylinder faces and are directed
outward. Since n, = ny, =0, we obtain

t;l) — _Télz)’ téz) = ng) (6.66)
and
tgl) — *Tglz)a tf) = 7(222 (6.67)

Correspondingly, eq. 6.64 becomes

Fe4rd -7 =0 (6.68)
and
Firr® =0 (6.69)
In particular, if the external force is directed either along the z-axis or the z-axis we
have
T - =-F, A= o @ =a), DD =-F (670)

These formulas along with egs. 6.63 allow us to find expressions for potentials of the
direct wave.

Spatial spectrum of the external force

As was demonstrated earlier, the complex amplitudes of potentials satisfying the
Helmholtz equations can be represented in the form

o0 o0

0 = / A, e Zgl m T dm, 17)1 = / B,, €s Zel Tadm, if 2<0 (6.71)
and
Dy = / C,, e~ Zl T Ldm, 17)2 = / D,, e s Zel M Tdm, if z>0 (6.72)
e Zo

~

Here ¢ is the y-component of the vector potential and

my = y/m? — k}, ms = /m? — k2
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It is clear that eqs. 6.71 and 6.72 can be treated as Fourier’s transform of the complex
amplitudes of potentials. In order to determine unknowns in eqs. 6.71 and 6.72, we
use conditions at plane z =0 (eqs. 6.63, 6.70), and also express the force amplitude,

F,(2,0) and F,(z,0), as the Fourier’s integrals:

o0 o0

F, (2,0) = / X(m) e ™ Tdm, F, (z,0) = / Z(m) &' ™ Tam (6.73)
Here
17 : 17 :
X (m) = > / Fo(z,0) e "™ ¥de, Z(m) = 5 / F,(2,0) et ¥y, (6.74)
m iy

Egs. 6.74 allow us to calculate a spatial spectrum for an arbitrary external force. In
illustration, suppose that the force amplitude behaves as the delta function:

F,(x,0)=F, §(x), F, (z,0)=F, 6 (z),
(6.75)
where F, and F, are constants but & (z) is the delta function:

/(5(;L‘—x0)d:1;:1

This means that the sinusoidal force is applied to points of an infinitely thin strip of the
plane 2z = 0, which is oriented along the y-axis. Then, as follows from eqs. 6.74, the

spatial spectrum of these amplitudes is constant and cquals

F, F
X =7 Z =7 .
Therefore, in place of eq. 6.73 we have
Fy tmz F, imx
Fy(x,0)=— e’ " dm and F.(z,0) == € dm (6.77)
2 27

Potentials of the direct wave
Now we can find the unknowns in eqs. 6.71 and 6.72. First assume that the external

force 1s horizontal.
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Case one: (F, =0) Atplane z =0, the complex amplitudes of wavefields obey

the conditions
B () B ) B ) B e
U] = Uy, W) =Wz, T,, = T.py Ty —Tg =—F(2,0)

Taking into account that

5 = grad ¢ + curl 12

and
~ o~ ow ~ ou  ow
TZZ—)\d1V<s—|—2u£, Ty = b <5+%> ,
eqgs. 6.78 can be rewritten as
Doy _ 091 _ Opy _ 00y Oor  Or _ 00y Oy
Oz 0z Oz 0z’ 0z oz 0z Oz’

~

T P Iy Oy

—)\k?':ol +2u = —)\kl?gNOQ + 2u

822 Ox Oz 022 Or 9z |’
9 8%y + by _ &by _ 19 3%, + 9, _ P4y _ _Fz (z,0) for
Or 0z  Ox? 072 Or 0z  0z? 022 2 1

Substitution of eqs. 6.71, 6.72 and 6.77 into set 6.80 gives

7 m(Am - Cm) - ms(Bm + Dm) = 07 ml(Am + Cm) + im(Bm - Dm) - 07
(2m2 — kf) (A — C) + 2t m mg(B,, + Dy,) =0,

and  2i m (A, + Cn) — (2m2 — kf) (B, — Dp) = and

From the first and third equations in set 6.81 we obtain

A =C and By, = —Dy,

(6.78)

(6.79)

(6.80)

(6.81)

(6.82)
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Substitution of the latter into two other equations of set 6.81 gives

m Fy F,
_ o Hn s = 6.83
my 2mpk?’ 27 k2 (6.83)
i  F, F,
d Cp=———" Dy = —
an " my 27 pk?’ " 2 k2
Therefore, potentials of the direct wave are
9o = —i C4 / o=y |z| i m g, (6.84)
my
and
o0
1y = C} / eMsZet M T gm, if z <0, (6.85)
17)0 =-C / e_mszeimzdm, if z>0
where
F
C,=—= 6.86
o R (6.86)
In accordance with cq. 6.15,
1 1 _ 1
Hél) (kyr) = = / — o fzlgim Ldm,
m ) my
—o0
and, correspondingly, scalar potential can be written as
> : 0 L
g =—t 7T Cl%HO (kyr) (6.87)

Case two: (F,=0) Suppose that the external force is directed along the 2-
axis. Then, proceeding from egs. 6.63 and 6.70, we obtain the following system, which
describes the behavior of displacement components and stresses on the z = 0.

im(Ay — Cr) —ms(By + D) =0,  my(Ap + Cp) +im(By, — D) =0,
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- 2y’

(2m2 — kf) (A — Cp) + 2i mnoms (B + D)
2i m my(Ap + Cp) — (2m? — k2) (B — D) =0

The second and fourth equations give

A, =-—Cn and B, =D,,,

and therefore
F,

tm A, —mB,, =0

The solution of system 6.90 is

F imlr’
A==, By =5,
" 2rk2 u " 27k2 poms
C’m - = ) Dm - - ZmF—Z
k2 p 27k2 pomy
Thus,
&0:7(]2/ M 2l TV T gy if 2<0
oc
&0:02/ e T2t T Ly if 2>0,
-
x
and v, =—iCy M=y |2| gt m 2 g,
J o M
Here
F,
C; = -
T 2mp k2

Note that the last integral is expressed in terms of the Hankel function.

(2m® — k7) A + 20 m m By, = 2 k2

293

(6.88)

(6.89)

(6.90)

(6.91)

(6.92)

(6.93)

(6.94)
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(@) (b)
¥ » X
0 I 2 I / A
H
0
\ v
Z z

Figure 6.2: (a) External force acts on free surface (b) External force is applied beneath
free surface, z =10

6.3 Waves in a homogeneous half-space caused by force F¢

Next we will derive formulas of potentials in a homogeneous half-space with a free bound-
ary and distinguish two positions of the plane where the external force F€¢ is applied.
As before, it is assumed that the force behaves as the delta function of x, and therefore

o0 oo
F, . F. i
Fy(z,0) = — | ™ %q, d F(z,0)=— [ ™4 .95
(2, 0) 5 [ e m  an L (z,0) 5 | ¢ m (6.95)
—oo —00
Force F° acts at points of the free surface, Fig. 6.2a Since the z-axis

is directed downward and z > 0, the complex amplitudes of potentials characterizing
these waves can be represented as

00 oo

Q= / Ay e~ Zgt M Z gy and I,Nb = f B, e~ Ms ¢t M Ty (6.96)

oo o0

Eqs. 6.96 describe the resultant waves, including direct and surface waves. It is obvious
that functions ¢ and ;; obey the corresponding Helmholtz equations and the condition
at infinity. Our task is to find such coefficients A,, and B,, that boundary conditions
at the free surface are also met. Consider an elementary cylinder, shown in Fig. 6.2a,
and suppose that its upper face z = 0 is subjected to action by external force F¢. In
the limit, when the cylinder height dz tends to zero, the condition of equilibrium is

written as

(F°+t) dS=0 (6.97)
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In particular, when force F¢ has either z or z components, eq. 6.97 becomes

T =0, Tg=—Fy(x,0) or T = —F,(2,0), To =0 (6.98)

Taking into account egs. 6.95 and 6.96, we obtain two system of equations; either

F,
(2m* — k2) Ay, — 20 m my By, =0, 2im my Ay + (2m® — k2) By, = 5 (6.99)
Ty
or
2 2 . Fz . 9 2
(2m — k:s) Ap — 2t m meB,, = ~5 2t m my A, + (2m — ks) B, =0, (6.100)
Th

and they have the same determinant. Thus, in the case of horizontal force, we obtain

20 m m; (2m?* — k2) F,
smms d B, = " R 101
' 2rpp D an ' 2mu D (6.101)
Here
D = (2m? — k2)* — 4mPmy m,, (6.102)

and it represents the left side of the equation, which defines velocity of Rayleigh waves.
When the external force is oriented along the z-axis, egs. 6.100, coefficients A,, and

B,, arc
(2m? — k2) 2i m m,F,
Ap=———""2F, d B,=——— 6.103
2ru D an 2 D ( )
Thus, expressions for the potentials are
Case one: I, =0
~ iy T om Ms 2 0imz
= —e¢ < d 6.104
v 2 / D ¢ N " ( )

L )

and ¢ =
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Case two: F, =0

O [OmE—k2) s
G=— /( m s)e mpz g max g, (6.105)
27y D
~ F, . 002, , _ .
and 1= 27@/ %e Mg 2,0 M Ty,

Force F¢ acts at points of a plane beneath the free boundary, Fig. 6.2b

Suppose that the origin of coordinates 0 is situated at the plane where force F¢ is
applied, and consider again two cases: F¢ = F,(2,0)i and F¢= F,(z,0) k. Since the
wavefields are formed by direct waves arising at plane z = 0 and secondary waves that
appear at the free boundary z = —H, it is natural to represent the complex amplitude
of potentials of the total wave as a sum:

$=0yt+@, and P =1+, (6.106)

Here <,N00 and 1, are potentials of direct waves given by eqs. 6.84-6.85 and 6.92-6.93.
At the same time, the complex amplitudes of potentials of the secondary waves, which

obey the Helmholtz equation and the condition at an infinity, can be written as

o x
¢, = / Al 7T Z I gy and lé = / Bl ™ Ms 2T gy (6.107)
-0

—o0

Since at the free boundary stresses vanish, the complex amplitudes of potentials must

satisfy two known equations:

. 825 9% 25 0% P
X k%< 2 | — =0 and 2 —— — =90 6.108
Pt 022 + Ox 0z ane Oz 0z + O0z? 022 ( )

Next we obtain expressions of potentials for two orientations of force F¢.
Horizontal external force F,(z,0) In accordance with eqs. 6.84 and 6.85, we
have

[e0]

o=—iC / [ﬂe_ml 2l 4 A e et ™ T g (6.109)
my

—00
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and LN/) =C / [cms “+ B,e s Z} M T it 2<0
Here
F
Cy = =
YT 9y k2

Substitution of eqs. 6.109 into set 6.108 yields

(2m2 — kf) emlHAm + 2m my emsHBm =1L,

and 2m mlemlHAm + (Qm2 — kf) em'ﬁ’HBm = M,
Here
Ly =— (27”2 - kf) ﬁe_ml H + 2m mee s H
my
a.nd JL/[Z = 2/}’n2€_7n1H _ (27”2 _ k?) C_THSH

The solution of system 6.111 is

2m* — k) L, —2m ms My 1 H
e 5

(
Ap =
D

(2m? — k%) M, —2m myL, ol

and B, =
an D

where D is given by eq. 6.102.
Vertical external force F, As follows from egs. 6.92-6.93

[e o]

0 =—C, / (eml T A e Z) LM T g,

~ , m - ; o
and = -1 Cs / (—ems “ 4+ B,e M Z> et ™ Tdm if

297

(6.110)

(6.111)

(6.112)

(6.113)

(6.114)

z2<0
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Here
F,
=% 6.115
T 2mp k? (6.115)
After substitution of eqs. 6.114 into set 6.108, we obtain:
(2m2 - k:?) emlHAm +2m msemsHBm =1L, (6.116)
2m mye™ HAm + (2m2 — kf) eMs HBm =M,
where
L,=—(2m"— k) em Mt gp2e—ms H (6.117)
and M, = —2m mye”™H 4 (2m* — k%) e "M H
From eqs. 6.116 we obtain
o2m? — k2L, —2 s M,
4, = Bk MMy Pz gmstl (6.118)
D
om? — k2) M, — 2m mL, |
and B, = (2m ) m et

D

Note the following:

1. Function D is independent of the position and orientation of force F¢. This is
understandable, because the equation D = 0 defines the velocity of the Rayleigh wave,
which is a function of elastic parameters and density only.

2. In comparison with the previous case — force applied at the free surface — it is
proper to point out that coefficients A,, and B,, in eqs. 6.113 and 6.118 characterize
secondary waves only.

3. As we know, the direct wave carries out both dilatational and rotational motions,
and each of them gives rise to longitudinal and shear reflected waves. This directly follows
from an analysis of functions L and M. Thus, there are four reflected waves and, as
will be discussed later, in the far zone their propagation obeys Snell’s law. Besides, the
denominator of coefficients A,, and B, is described by function D, which indicates

the presence of the Rayleigh wave.
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6.4 Wavefields in the far zone (linear source at the free surface)

As follows from eqs. 6.104 and 6.105, the complex amplitudes of scalar potential and the

y-component of the vector potential describing waves in a homogeneous half-space are

~  iF, [2mmy s
© = ; - %e M 2t ML, (6.119)
T
1; _ QFI / we—mszei mzT g, i F, =0
T .
and
N Foo[2m2—k s
v =-3 / st_ e M 2t T L (6.120)
T
1/7 = ;FZ w e Ml M T gy if F,.=0
mh
Here
D = (2m* — k2)* — 4m*mym, 6.121
S

These formulas were derived provided that elastic energy is not transformed into heat
and, respectively, wavenumbers k; and k, are real. It is convenient and more realistic
to assume that attenuation of waves is very small. Therefore, equations for potentials

have the form

1 &%p dp 1 0% o
V2S0 = 202 + Ela and Vi = 202 + ESW (6.122)
{ s

Here z; and ¢, are small positive numbers characterizing dissipation of mechanical

encrgy. Taking into account the time dependence of waves, G_Mt, we again arrive at

the Helmholtz equations for complex amplitudes of potentials,

Vi §=0 and V24 + k2 = 0,
where
. W wey s w? o we
k=i K= 4 (6.123)
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Of course, eqs. 6.119-6.121 describe sinusoidal waves even in the presence of attenuation.
Note also that if the wavenumbers are real, integrands in egs. 6.119 and 6.120 have
singularities when D(m) = 0, but integrals exist. Taking a square root in eqs. 6.123,

we obtain

w w
k= — +ie, ky = —— — ey, (6.124)
Cy Cy
w . w .
and ky = — +igo, ky = —— —igo,
Cg Cg

where &; and &y are very small positive numbers. It is essential that these roots
are located either slightly above or beneath the real axis of m, Fig. 6.3a. As was
demonstrated in the previous chapter, if Im k&, = Im &, = 0 function D(m) has at
least one real root, and it corresponds to wavenumber kg of the Rayleigh waves. It
is natural to expect that if wavenumbers are complex (eqs. 6.124), roots of function
D(m) are not real, which may greatly simplify numerical integration along the m-axis
(—oo < m < 00).

Proceeding from egs. 6.119 and 6.120, it is easy to derive formulas for particle dis-
placement as well as for normal and shear stresses. Then, carrying out integration, we
can study these wavefields at any point of a homogeneous half-space. However, we will
restrict ourselves to the wave (far) zone, where distance from the primary source greatly
exceeds the wavelength of elastic waves. We pay special attention to this range because
the wave zone in which it is possible to observe different types of waves is of great prac-
tical interest. To derive asymptotic formulas for the far zone, we are going to apply the
methods of stationary phase and of contour integration, based on the Cauchy theorem
(Part II). For instance, use of the first method allowed us to obtain the approximate
formulas for reflected and transmitted acoustic waves in the far zone, including some
evanescent waves (Part IT). To begin with, we apply this method for studying longitudi-
nal and shear waves in an elastic half-space. To do this, it is necessary first to discuss
behavior of radicals, m; and m, in egs. 6.119 and 6.120, as functions of m.

Choice of sign of radicals m; and m;

From the physical point of view, it is obvious that a wavefield is a single-valued function
of the coordinates of an observation point and a frequency. Correspondingly, integration
in eqs. 6.119 and 6.120 has to give one value for scalar as well as vector potentials,
since they are solutions of Dirichlet’s boundary value problem. However, the integrands

contain radicals

my=/m? —k? and ms = /m? — k2,
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and each of them has two different values (Part II). Because of this, the integrals and
related wavefields become multivalued functions. In order to avoid this problem, let us
first recall the concepts of the branch point and branch cut, and consider several functions
of a complex variable.

Example 1 For comparison, we start from the simplest single-valued function
w(m) =m—k, (6.125)

where k% is a real number but m is, in general, complex. In the trigonometric form,

we have

wim) =R et (6.126)
Here

R=|m—kl=|k—m|,
and the positive direction along which angle -~ increases from 0 to 2m is counter-
clockwise, Fig. 6.3b. It is clear that this function is continuous and at each point has a

derivative. In particular, in the vicinity of positive values of m (Im m = 0), we have

the same value of w when angle + is cither 0 or 27, since
R ei 0 _ R ei 2

Moreover, this function is analytical everywhere on complex plane m except infinity
(Part II). This feature of functions of complex variables allows us to use the Cauchy
theorem and perform a deformation of the contour of integration. This procedure is the
foundation of the most powerful methods of deriving asymptotic formulas of wavefields
in the far zone.

Example 2 Suppose that
w=vm-—Fk or w=VR e (6.127)
Taking a square root:

2
w, = VR exp (szm> , n=20,1

we arrive at two functions, which are called branches of function w:

wy = VR é /2 and wy = —VR e /2 (6.128)
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By definition
VR =/Im — k]

is positive, and point % is the branch point. When an expression describing a physical
quantity contains a function such as w(m), we always need additional information that

will permit us to choose one of these branches. For instance, consider the integral
X0
I(k,2) = /f(m) e Vm—kz gy (6.129)
0

where z is positive. As soon as m > k, the function
w=vm-—k (6.130)

becomes real, and in order to provide convergence we have to assume that the radical is
positive. This condition is the additional information we need to choose the necessary

branch at points of the m-axis, when
k<m<oo

Our next step is to determine this branch within the integral
0<m<k

It turns out that such a procedure can be ambiguous. In fact, as is seen from Fig. 6.3¢, a
change of angle ~+ by 7 either counterclockwise or clockwise gives two different values

at the same point, eqs. 6.128:
wq :'élk'—m|l/2 or We = —i\k:—m\l/Q

In other words, we obtain two branches of function w.

Note that in the first example, the same procedure yiclds only one value of the func-
tion. It is essential that such uncertainty in the last case takes place for any line C' on
the complex plane, Fig. 6.3d. In order to overcome this ambiguity and select one branch
of w, we first assume that point & is located slightly above the m-axis and then draw a
contour, shown in Fig. 6.3e. It consists of a very small circle € around branch point %
and two semi-infinite lines (branch cuts) located close to each other. Since the imaginary
part of k is extremely small, we can treat the low line € as the me-axis when m > k.

Next we introduce the rule that a change of complex number m can take place only
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along paths that do not intersect branch cuts. For instance, moving along path Cj, the
argument m — k of the function, eq. 6.130, changes by —2x. Therefore, at the upper
branch line Cy

w=—RY?

We cannot move in the opposite direction, because the path would intersect the branch.

Correspondingly, in order to find the proper branch of function w within the interval
0<m<Ek,
we move a point along path Cj, and it gives
w=—iR"?=—-ivVk-m

Example 3 Consider the integral

(oo}

I= / f(m) eV m? — k%2 dm, (6.131)

where z > (0. Because

w=vVm2—k2=/(m—k)(m+ k),

there are two branch points (k, —k) as well as two branch cuts, shown in Fig. 6.4a. In

the trigonometric form we have
m—k=Re N, m+k=Roe V2 (6.132)

Because z is positive and the integrand in eq. 6.131 has to decrease with an increase of

m, we conclude that at the real axis of m, when m >k (branch line C)
Yy =y =0, (6.133)

and

w=vm?— k2= \/Rle >0
A rotation clockwise about branch point k& gives for the upper branch line Cy

v, = —2m, v, =10 (6.134)
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Since this procedure is not accompanied by rotation around point —#k, it is natural that
at both sides of the branch line (C; and C)), angle -+, is the same. At the same
time, a movement counterclockwise from Cy to €y increases both angles by 7, and

at points of Cy we have
Y= Yo =T (6.135)

This result is important because branch line C, coincides with the interval of integration

when m < —k. In this case

w = \/ Rle_iﬂ—Rgeiﬂ— =y R1R2 > 0,

and the integrand becomes smaller with an increase of |m|. Performing a rotation around
branch point —k, we sece that ~; does not change, but 7, becomes cqual to —,

which is at branch line Cs:

N == (6.136)
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Finally, movement from points of line 5 counterclockwise to points of interval —k <

m < k gives
v, = —m, vy =0 (6.137)
Hence
w =/ RyRoe™ " = —in/R\Ry
or

w = —ivVk?—m? (6.138)

This expression will be used often in deriving asymptotic formulas.
Example 4  In accordance with eqs. 6.119 and 6.120, complex amplitudes of
potentials are described by two integrals:

oo

/ Am (m7 mla ms) e_ml Zei m xdm (6139)
[e e}
and / By, (m,my,myg) e MsZet T Ty

Respectively, there arc four branch points and four branch lines, Fig. 6.4b. Again,
assuming that z > 0, it is appropriate to distinguish three intervals of integration:

m > kq, \/m? — k>0, vm?2—Fk2>0
ke >m > ki, Jm?2 =k >0,  /m?—kI=—ik2-—m? (6.140)
0<m <k, \/mQ—kf: —i\/kf—m?, Vm? — k2= —i\/k2 —m?

Equalities are similar for negative values of m.

Wavefields as a superposition of plane waves

As follows from eqs. 6.119 and 6.120, at each point of a medium, scalar and vector
potentials are represented as an infinite sum (integral) of homogeneous and inhomoge-
neous plane waves. Correspondingly, the complex amplitudes of potentials describing

these elementary waves are

W iR 2mm, .
Dy = ! MMy 21 m Ldm, (6.141)
27 D(m)
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~ F, 2m®> — k2 _ P .
o 2Ry gz ima g, i F =0

Ym = 27 D(m)
and

N F, 2m? — k2 :
= 2 =k e M 2t T Ly (6.142)

m = T orn D(m)

Q,me _ ;7‘?; QD””E:SZ o~ Ms 20 M T g, it F,=0
It is clear that amplitudes of these waves depend on the variable of integration m, and
due to the presence of the term dm, they are infinitely small. Also, we see that with an
increase of m harmonics, ¢, and me as functions of £ and z, change more rapidly
in both horizontal and vertical directions. In contrast, they vary relatively slowly when
m becomes small. This allows us to expect that at sufficiently large distances from the
source, harmonics with small m values play a dominant role. In other words, they
mainly form wavefields in the far zone. Respectively, in deriving asymptotic formulas,
it is natural to focus on the initial interval of integration in eqs. 6.119 and 6.120. At
the same time, near the source and at some moderate distance from it, harmonics with
rather large values of m can make a significant contribution. It may be uscful to note
that integration in egs. 6.119 and 6.120 can be carried out for positive values of m only.

Indeed, taking into account Euler’s formula

etV = cosy + isin vy,

we have
~ Fz i 2m s — A
po=—— M Ms =1 2 i1 ma dim (6.143)
T (m)
0
and Yv=— e Ms Z cosma dm if F,.=0

F, / om? — k2 _,,
0

In the same manner, we can represent complex amplitudes when the external force is
directed along the z-axis. The variable of integration m, which has the dimension
m~1, is usually treated as the wavenumber of clementary planc waves, ¢, and ,,.

By definition, it characterizes the rate of change of these waves in the z and 2z directions.



308 CHAPTER 6. WAVES IN A LAYERED MEDIUM ...

It is useful to distinguish harmonics that describe either inhomogeneous or homogeneous
elementary plane waves. In this light, consider three intervals of integration, Fig. 6.4c.
The first interval: (m > k;) Suppose that m corresponds to the interval in which

m > ks thatis, m; and m, are real and positive numbers:
my=1/m?—kj >0 and ms=+/m?—k2>0 (6.144)

Then harmonics of potentials ¢, and 1, which satisfy this condition (eqs. 6.144),
cexponentially decay along the z-axis, and they characterize waves advancing in the
horizontal direction. Certainly, t is clear that we are dealing with inhomogeneous plane

waves, and their phase velocity

W
c(m) = 6.145
m) = = (6.145)
is defined from the wave argurment
—wt +mx

With an increase of wavenumber m, velocity c¢(m) rapidly decreases and tends to zero,

so that in the first interval
¢s >c(m) >0 (6.146)

As was demonstrated in Chapter 5, the velocity of the Rayleigh wave, cg, is slightly
smaller than that of the shear wave (cr < ¢;). For this reason, we may think that the
harmonics of the initial portion of this integral (m ~ k,) form the Rayleigh wave and
at a great distance from the source they play the dominant role. In fact, as follows from
eqs. 6.143, with an increase of m (m > k,), the amplitudes of harmonics ¢,, and
17)m rapidly decrease. Correspondingly, even at the free surface (z =0), the influence
of inhomogeneous plane waves with large wavenumbers becomes negligible. On the other
hand, when m ~ |k,|, function D (m), eq. 6.121, has a root that is located a little
above the real axis of m. Therefore, amplitudes of these harmonics can be quite large.

The approach used here allows us to see again one interesting feature of the surface

wavefield. As follows from eqgs. 6.119 and 6.120, potentials contain terms

—my z —m, 2

e and e

and at the beginning of the first interval we can approximately write

~ —\/ k% — k2 ~ —\/ kL — k2
G, ~ € R 1 b ~e R 5%

7
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Since

Vi =k >k -k,

with an increase of distance from the free surface, the dilatational part of wave motion
decreases more rapidly. Thus, it turns out that superposition of elementary inhomo-
geneous waves with wavenumbers close to k,, but slightly exceeding it, produces the
Rayleigh wave.

The second interval In this interval of integration, the wavenumber m  varies

within the range
kl S m S ksa

and therefore

my=y/m?—k} >0 and ms = —iy/kZ —m? (6.147)

As with the first interval, the harmonics @, of the scalar potential describe inhomo-
geneous plane waves. Correspondingly, they may also contribute to the longitudinal
evanescent wave in the far zone. At the same time, the product of the exponential terms

of harmonics ,, can be written in the form

i(y/k?—m%—i—m m) "
e i

m < |ks| (6.148)
or
ol ks (zcosfg + xsinfy)
Here
m2\ /2 ,
cosfy = <1 - %) ) sinf, = ;—rj (6.149)

Eqgs. 6.148 and 6.149 show that harmonics v, describe the homogeneous plane wave of
the shear type, which propagates with the velocity of shear waves. The angle of incidence
varies within the range

. C
sin™! =2 <9, <

-
- 6.150
— 5 (6.150)

All of these waves make a strong contribution to the shear wave as well as to the conical

wave in the far zone.
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The third interval Finally, in the initial part of integration
0 S m S k,‘l

both radicals m; and m; are purely imaginary:
my = —iy/ ki —m? and my = —i\/k2 — m?

Therefore, the harmonics of potentials @, and ¢, are homogeneous plane waves
propagating with phase velocities ¢ and ¢;, respectively. The angle of incidence of

elementary longitudinal waves changes as

w
0<6, <=
_1_27

whereas for shear harmonics we have
0<0, <sin ' (6.151)
a
This interval influences both longitudinal and shear waves in the far zone and the conical
shear wave.

To summarize this discussion, note the following:

1. At any point of a medium, wavefields can be represented as an infinite sum of
elementary homogeneous and inhomogeneous plane waves.

2. Within the range integration m > k,, all of these waves are inhomogeneous, and
they move along the boundary with different phase velocities that are smaller than the
velocity of the shear wave. With an increase of m, these harmonics decay more rapidly
with z.

3. In the interval

0<m<k,

the harmonics of potential 17)m are homogeneous plane waves that propagate in different
directions with the velocity of shear wave c¢;. The angle of incidence of these waves
changes from 0 to 7/2.

4. The harmonics of potential gNom are also homogeneous plane waves, if m < ki,
and they move in all directions (0 < 8, < 7/2) with the velocity of longitudinal wave

¢;. At the same time, elementary longitudinal waves in the interval

k< m <k,
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are inhomogeneous. They mainly form the evanescent P wave in the far zone that
accompanies the shear wave.

5. Because of exponential decay along the z-axis and rapid oscillations in the hori-
zontal direction, wavefields at the far zone are mainly due to harmonics with relatively
small wavenumbers, m. For instance, the longitudinal wave is a superposition of har-
monics gNom when m < k;. The same takes place with shear-wave harmonics, provided
that m < k;.

6. The Rayleigh wave is the result of superposition of elementary waves of the dilata-
tional and rotational types, and its wavenumber is almost minimal among inhomogeneous
plane waves.

7. In accordance with eqs. 6.119 and 6.120, regardless of distance from the source, we
can assume that wavefields consist of longitudinal and shear homogeneous waves as well as
different inhomogeneous plane waves including the Rayleigh wave. However, at relatively
small distances the effect of propagation is masked by the presence of inhomogeneous
waves with large values of m. Since their contribution diminishes with increased distance,
it becomes possible to observe the wave phenomenon.

Contour of integration

Now we begin to derive asymptotic formulas for wavefields using an approach based

on the Cauchy theorem (Part I1). As follows from eqs. 6.119 and 6.120, the complex

~

amplitudes of potentials ¢ and ¢ are represented as integrals along the real axis of m.
Applying the Cauchy theorem, it is possible to choose different paths of integration, some
of which are very useful in deriving asymptotic formulas. This procedure implies that
the transition from old to new paths is not accompanied by intersection of singularities
of the integrand. These singularities include the branch points +k; and =k, as well
as poles that are determined from the equation

D= (2m* - k?)Q —4m*m; my, =0 (6.152)

By analogy with the case of acoustic waves (Part IT), we consider integrals along the
closed path C, shown in Fig. 6.5a. Let us denote f(m) as integrands in egs. 6.119
and 6.120. Then, taking into account that its singularitics arc located outside the arca

path C surrounds, we can write:

00 4 .
/ fm)dm +Y / f(m)dm + ny(m)dm + / fm)dm =0 (6.153)
e =14 Cr

The first term of the sum is the original integral along the real axis of m. The second
is the sum of integrals along four branch cuts: C;, C,, C3, and . The third term
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Figure 6.5: (a) Integration along closed path in complex plane m (b) Formation of shear

conical wave (¢) Destructive interference of longitudinal evanescent wave

is a sum of integrals around poles in the clockwise direction. Finally, the last term is the
integral along the semicircle of an infinitely large radius R. Applying Jordan’s lemma
(Part II), it is easy to see that this integral can be neglected if R — oo. The last equality
(eq. 6.153), allows us to replace integration along the real axis of m by integration
along the branch lines and near poles. In general, the advantages of this procedure for
numerical integration are not always obvious. However, as was already mentioned, this
deformation of the integration path permits us to obtain approximate formulas for the
far zone. Further, it is assumed that external force has only the vertical component. The
other case (F, = 0) can be treated similarly. First, we derive asymptotic formulas for

displacement at points of the free boundary.
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313
Components of displacement (z =

— ())
As follows from the definition:

s = grad ¢ + curl 1,

we have for horizontal and vertical components of displacement

.95 .8 o ]
= — and = — 6.154
v anc W= + e (6.154)
Substituting eqs. 6.120 into eqs. 6.154 and letting z = 0, we obtain
w 0P, [ m@m? k- 2mm,)
v /m(m k2 mlm)ezmxdm
2T D

(6.155)
F

£ / B et T,
2T D

w= —

We first obtain the asymptotic formula for the tangential component of displacement
up associated with the branch points.

As follows from eq. 6.153, this part of the
displacement can be written in the form

N i,

Uy = _27m (I, +1) (6.156)
Here I, and I; are integrals along corresponding branch lines.
Contribution of branch lines around point k,, , integral I
Movement around branch point ks changes the sign of the radical m,, and
integration along branch cuts C; and €y is made in the opposite directions. Therefore
we have
ks +ico

I . 2m? — k2 — 2my; my, B 2m? — k2 + 2m; my dmay (6.157)
D (ml7 ms) D (ml7 _mi)
ks

Note that the branch lines are parallel to the imaginary axis, Im m, — that is, the real
part of the wavenumber,

m,
have

remains constant along these lines. From eq. 6.121 we
ks+ioco

1 1
/ m (2m2 — k:?) [ 5 —
; (2m? — k2)" — AmPmyms

STV 5 ] e’ dm
(2m? — k2)" + 4m2mym

I.s =

(6.158)
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ks+ioo 1
1 .
-2 m my Mg [ 5 + 5 M g,
; (2m? — k2)" —Am2my ms  (2m2 — k2)" + dm?my m;
or
Rotlool 2 2 2 2)2
I = / 8mim; m, (2m? — ksz —4dm my 7?7,5 (2m* — k2) STy (6.159)
(2m? — k2)" — 16m* mi m?
ks
To evaluate this integral, we introduce a new variable, ¢
m =k, + it (6.160)

Correspondingly, when integration is made along the branch lines, ¢ varics as

0<t< o0
It is clear that
dm =1 dt,

and in the vicinity of branch point ks, where ¢ is small, we have

m ~ kg
Also
ms = /m? — k2 = \[ (ks + it)* — k2 = k2t elm/4
C% 1/2
and ml:\/mQ—kfz\/kf—kl?:ksG—g)
or

2\ V2
my = ka, a—(l—‘—;)

The oscillating term of the integrand becomes

imx _ Ji(ks+it)r _ jiksz, —at

€ €

(6.161)

(6.162)

(6.163)

(6.164)

(6.165)
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The presence of the multiplier exp(—azt) shows that after replacement of a variable, the
integrand in eq. 6.159 starts to decrease rapidly even at sufficiently small values of ¢, if
2 > 1. This mecans that under certain conditions, I; is mainly defined by the initial
part of an integration located near branch point k,, and this fact is used to derive the

asymptotic formulas. From eqs. 6.162-6.164, it follows that

2m? — k? ~ k2, m my me & k> 2aN/2t /4, (6.166)

mPmy; my ~ kY202t em/4, 16m*m? m? g ~ 16k7a’2t i

Substitution of eqgs. 6.161 and 6.166 into eq. 6.159 gives

4 im/4 7 .
= % ks I/tl/Qe ot gy (6.167)
s 0
The last integral is tabular:
/tlﬂe—xtdt = 2‘92 (6.168)
0
Therefore
202w T/ (6.169)
T we™ |

and, making use of eq. 6.156, displacement component u,, related to branch point k,

BB

Contribution of branch lines around point k;, integral I

is

Since the radical m; has opposite signs at lines C3 and 4, Fig. 6.5a, we have

ki+ioco
m my my (2m? —k2) e

(2m? — k2)* — 16m* m2 m?

Tmx

I = 4k? dm

Introducing a variable

m =k +it (6.171)
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we have near branch point £

mak, my= (- k) =i (- k)" and m = k0T (6172)

Also
S ey = 4v3 K2 (52— KV (am? — g2y = 2 (2
| My = e (k; 2) (2m 2) =k P

Then, substitution of eqs. 6.172 into {; yields

, _ 2ver T4 3 2 (k2 — §2)'?

=7 6.173
l (27 — k2) (kyz)*” (6473
Therefore, displacement associated with branch point & is
~ B 2Rk (82— k)i e (ki /d)
ul:_\[l s (B k) Tie - , (6.174)
p Vo k22 (k)

since

(= k)" = =i (k2 - &))"
Next consider the vertical component of displacement, w,, which can be written as, egs.
6.155,

.2
N k2F,
Wy = —

L+ L 6.175
s (Lot L) (6.175)

Contribution of branch lines around point k;, integral L,
As follows from eqs. 6.155, we have

ke+i00
1 1 5o
L. — m _ JAmT g,
¢ ! D (my,ms) D (my, —my)

or

ks+ico

L, =

8m? m? my et M %

(2m? — k2)* — 16m* m? m?

dm (6.176)

5

Introducing again the variable

m =k, + it,
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we obtain an approximate expression of Ly:

; ) /2 4 0
L, = 8i k3 (kS — k) \Zg /4 U2 ks /tme—xtdt
’ 0
or
2 . .
4 (1 - 2@) Var i /4 gikga

k2L, = 5 ‘

s (ksl,)ii/z

Correspondingly, vertical component w, associated with branch point k, is

k‘2
1(1;)
oo _Q_FZ\E B i(ka+ /)
™

L (ko)
In the same manner, integral IL; around branch point k; is

ky+ioco

1 1 ;
L, = ) /’L m .Z'd )
: ./ . |:D ("Lla Wls) * D (_TTle Tns):| ‘ "

ky
or

katico 2 _ g2 imzx
I / 2my (2m* — k) e dm
l pu—

(2m? — k2)* — 4m* m? m?2

ky

After a change of the variable, m = k; + it, we obtain

2k2 \/2 elm/4 etk /z K i k2R /4 ik

(2k7 — k2)* 223/ (2k7 — k2)* (kya)**

Therefore

. 1\/5in B k2 el (ki m/4)
iy

W, = ——
T po(2k2— k2 (ka)®?

Displacement field related to branch points

By definition we have

Up = Ug + Uy and wy, = W, + w,

317

(6.177)

(6.178)

(6.179)

(6.180)
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and in accordance with eqs. 6.170, 6.174, 6.178, and 6.180, complex amplitudes u, and

wy, are
~ F, /2 2\ V2 i (ksx + 7/4)
w = \/j (1 - k_12> 673/2 (6.181)
" T ks (kal)
- \/E L (k2 — K2)"? ¢t (ki +m/4)
Y e B G —_—t ..
oV (k2 = 2k7)° l (ky )"
and

- 2Fz 9 J:2 7 (kél' + 7T/4)
G — \f j (1 _ g) ER (6.152)
12 ™ ks (kél')

i F, 2 KR ol (kyr +m/4)

2 Vow @k k2 ()

+ ..

These formulas represent a sum of two terms, and each of them describes a sort of fringe of
the cylindrical elastic wave, propagating through a medium. The first one moves along
the free boundary with the velocity of the shear wave, but the other advances in the
same direction with the velocity of the longitudinal wave, ¢;. This fact may create the
impression that these terms characterize the shear and longitudinal waves, respectively.
However, as will be shown later, it turns out that cach of them is a combination of both
types of waves. Because the tangential and normal components of displacement for each
wave, eqs. 6.181 and 6.182, have different amplitudes and phases, an orbit of the vector
s, (s=ui+wk)

vertical and horizontal diameters of the ellipse for waves moving with velocities ¢, and

|k 1 [k, 2k AN
s { s s

In particular, if A = pu, these ratios are 1.33 and 0.35, respectively. We see that

is an ellipse, i.e., elliptical polarization takes place. The ratios of

’

Cc; are

in the case of the wave propagating with velocity ¢, along the boundary, the ellipse is
extended in the vertical direction. For the second wave, the major axis of the ellipse is
oriented along the z-axis.

Until now, we have discussed the contribution of integrals along branch lines. Next we

will evaluate integrals around poles. As was demonstrated in Part 11, integration around
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a simple pole gives

]{ Fm)dm = 2ri % (6.184)
where
flm) = % (6.1853)

and m, is the pole of the integrand. The poles are roots of eq. 6.152
D= (2m® - /cf)2 —4m?*m; my =0 (6.186)

and, introducing function D_|

D_=(2m* - kf)2 +4m?* my my, (6.187)
we obtain
DD_ = (2m” — k‘?)4 — 16m*mim? (6.188)
8mn? 2\ mt K2\ m®
_ 18 i 1 _
P e

This is the cubic equation with respect to m?/k%. It was derived when we described
the Rayleigh wave (Chapter 5). For instance, since k2 > k?, there is a real root within
the interval

2

m
1<ﬁ<00

k3
This means that radicals m; and m; real and positive and, correspondingly, function
D_ #0. In other words, m/k; is the root of eq. 6.186, (D =0). Also it is not difficult
to prove that the remaining roots, if they are real, are located within the interval
2 2
m k
0< - <L
k2 k2
If m/ks; belong to this interval m; and m, are negative and imaginary and cannot be,

therefore, roots of eq. 6.186. For instance, assuming that A = p, eq. 6.188 gives three
2

m
real roots —-:
/{'2

'S

(3+\/§)

] =
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It is clear that in such a case, there is only one root of eq. 6.186,

1
kp = 5\/3 +V3k, ~ 1.088 k, (6.189)

and it is the wavenumber of the Rayleigh wave.
Now we are ready to find expressions for components of displacement associated with
the Rayleigh wave. Taking into account eqs. 6.155 and 6.184, we have

up = — 2z gethra and wg = LY L (6.190)
1 7
Here
kR Qk%{—kg—z\/k?—kQ \/k?—kz kz k? _kz
ol RVESE) e EVRR
=D (kR7kl7ks) D’ (kRvklvks)

As follows from eqs. 6.190, the Rayleigh wave, unlike the two others, does not decrease
with distance. Correspondingly, this surface wave plays the dominant role in the far zone.
In accordance with egs. 6.191,

H =0.125, K =0.183 it A=up (6.192)

Asymptotic behavior of waves beneath the free surface
By analogy with case z = 0, we represent complex amplitudes of potentials in the

form
&:—2};;[:—2];;(]5+11+Ip) (6.193)
and = ;;M - 25 = (M o+ My M),
where
I= 7We_m’ 2T gy and M= 7 2y e Ms 2l T Ty
- (6.194)

Iy, Mg, I, M, and I,, M, arc integrals along the branch lines and poles, respectively.
To begin with, we will derive asymptotic formulas for scalar potential ¢ associated with
branch points.
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Contribution of branch cuts around point k,, integral I

From eqs. 6.194 we have

ks+ioo
1 1 o e
1, = / om? — k? [ — e M 2t M Lgy,
? ; ( ) D (my,ms) D (my, —my)

or, taking into account eq. 6.121,

ks+ioo .
8 (2m? — k2) m?my my e U Zet VT
I = / )  m (6.195)
; (2m? — k2)" — 16m* mj m?2

Here integration is done along branch cuts C; and Cs, as is shown in Fig. 6.5a. To

simplify the evaluation of I, we introduce, as before, the variable

m=ke+ it
In the vicinity of branch point ks,
mi= (2R, m= IR A (w2 =R
and dm = idt, 8m*my my, =8 k. (k2 — kl?)l/2 V2 el /4 kL2 41/

Thus, integral I, becomes

1/2
8 V2 em/4 (1 — k_lQ> eikst 7 k2 —k?z
2

I, Zk?’/? L, (6.196)
sivs
where
o0 \/_
_ 12 —xt 5, VT
0
Therefore

. 2N 172 . 2 12
442 /4 <1 — %) kst o k2 — ki z
I, = 3 (Sk x)3/2 (6.197)
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Thus, the complex amplitude of scalar potential associated with point &, is equal to

k2 1/2
-1 :
~ 24 F, [2 ( 2) _ 2 g2 ol (kg m/4)
po ¥mo ok (k)

It is clear that eq. 6.198 describes the wave propagating along the free boundary with

the velocity of shear waves, ¢,. This wave exponentially decays with depth =z, since

k2 1/2
VR =k =ka>1, a:(—#?)

Oscillations with higher frequencies decrease more rapidly. Taking into account that
displacement s s related to the scalar potential as

s =grad ¢,
we conclude that
curl s =0

This means that propagation of this wave does not cause rotation of elementary volumes
of a medium, also they can experience deformation and translation. Thus, function <,N95
characterizes the evanescent longitudinal wave, moving with the shear-wave velocity, c,.
This wave has another important feature — namely, and unlike the Rayleigh wave, it
cannot exist alone. To demonstrate such dependence on other waves, it is sufficient to
show that stresses of the wave, &57 do not vanish at the free surface. As an example,

consider the normal stress, 7..:
g~

Tew = =X K2, + 21 82’;

if =0 (6.199)
Substitution of eq. 6.198 gives

(=N B2+ 20 K202) By = (=X K2+ 20 K2 — 2 K2) B,
= =[O\ F20) K + 20 K]] 9, = (=pw® +2p %) o, #0,

since A4+2u=p 0127 w=p C?
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It turns out that this wave, gNos, accompanies the shear wave.
Contribution of branch lines around branch point k;, integral I,
Since radical my has different signs at lines C3 and Cy, Fig 6.5a, the integral along

them can be written as

ki+ioco —my z
L= / (2m? — k)" - (6.200)
(2m? — k2)" — dm?m; my,
ky
e # imx
— 5 e dm
(2m? — k2)" + dmPmy my
or
I (om?2 — k2) |4m2my my coshmyz — (2m? — k2)” sinh mlz] im
;=2 e dm
: (2m? — k2)* — 16m*m2 m?2
ky
(6.201)

Introducing again variable m = k; + ¢ t, we have dm =i d ¢, and in the vicinity of
branch point k;

m=k,  m =k, my= (k)= i (k)
mp = V2 T R 2 g og? — g2,

AmPmy m, = —4i V2 e’iﬂ'/4 klz kll/2 (kj _ k;z)l/Q t1/27 ei m _ ei kix et

Therefore

. 24 ;
w ol kurp + ki (6.202)
BLANLE 2- 75 | K
k,Z "l klz !

Here

L= /tm cosh (al\/f) e Tt (6.203)
0
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and

o

Ly — / sinh (al\/i) e T gy, (6.204)
0

L o i/

o= \/2k z e (6.205)

Both integrals are expressed in terms of elementary functions. For instance, introducing

variable v = +/t, we have

dt
dv = —
2v
and
T 2
L2:2/vsinh(alv) etV dv
0
or

[ee]
2
L, = 20/cosh (oqv) eV du
8(},’1
0

The last integral is tabular:

20 s ] 5
/cosh () e % Vdo = 5\/§exp (%) (6.206)
0
and
™ 9 of Jax
Ly = — —— %l (6207)
x oy

As follows from eqs. 6.203 and 6.204,
OLZ T 02 062/41’
L, = Li=,/— == e 6.208
Ty or \/: ol c ( )

Now, taking into account eqs. 6.193 and 6.203, we obtain for scalar potential 5, asso-

ciated with branch point £

k2 /2 /4
| v 2
5 . F, 0 <k12 ) ‘ 9 eoz?/élx V2i e /A eik'zx
= — 5 3 5. ¢ - 2y | ¢
V2rzp Oy <2 kf) kls/Q day < ks> 2

(6.209)
ki
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Each term in brackets contains the exponent, exp (a?/4z). Correspondingly, at the

right side of eq. 6.209, we have the common multiplier

a?
; 6.210
CexXp <wc + 4x) ) ( )
or, using eq. 6.205,
122
xpi by |+ =— 6.211
expi k (L‘ + 5 x) ( )

If an observation point is located relatively close to the free surface (z < z), then

distance r from the source can be presented as

2 2y1/2 2\ 122 .
r=(z*+7")" =z 1+P %x—l—%; it < (6.212)

Thus, in place of eq. 6.211 we have

expi k (.L + 15) ~el huT (6.213)
2x
This means that we are dealing with a longitudinal wave, (Zl, that propagates through
a medium with velocity ¢;. At the boundary z =0, the wave’s fringe is described by
eq. 6.209. Now we make use of the vector potential, which has the y-component only.
Contribution of branch lines around branch point k,, integral M,

As follows from eq. 6.193, the integral along C; and (5 is

ks+ioco

o—MsZ oMs? -
M, = / 2m my, — et M Ldm
D (my,ms) D (my, —my)
ks
or
ks+i00 2 .
M. — 16m> m? mgcoshmg 2z —4m my (2m? — k2)"sinhm; z FM g (6.214)

1
(2m? — k2)" — 16m* m} m?2
ks : '

Applying the known replacement of the variable

m = kg + it,
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we obtain an approximate expression of M,

o\ 172

16\/57:(1—@)e”/4. 41(—@) .
A, — K ik g B ik 6.215
My = k?/2 [ M — k—§e 2, ( . )

where M; and M, are given by egs. 6.203 and 6.204 and
T 0% ,2/4 T 0 274
My =T Lo/ M, = |5 L poi/4x
. \/; da? ‘ ’ ? z Oay ‘

and

(6.216)

a, =2k, e T/4 (6.217)

From egs. 6.194 and 6.214-6.216, we have for potential 1, :

oy 1/2
2 F, (1—1“—12) ¢t ks
~ # k%
b= (6.218)

2 2 2
9 k3 9 (eas/4x> _ o0/

o, vk, Do,

2\ /2
4\/5(1—k—’> el /4

X

By analogy with eq. 6.209, we can say that function ’17}5 describes the rotational (shear)
wave propagating through a medium with velocity c¢,, and eq. 6.218 characterizes its
behavior near the free surface (z < r).

Contribution of branch lines around branch point k;, integral M,

Finally, accomplishing integration along the closed path C, we have for the integral
along branch cuts C3 and Cy

kj+ioc
1 1 ;

M, = 2 s 2t VLY 6.219
e / e [D (my, ms) i D (—my,ms) ¢ ¢ " ( )

ky

or
leOOm my (2m? — /@'2)2 e~ Ms 2l M T
My =4 / s dm (6.220)
(2m? — k2)" — 16 m*m?, m?2

kt[
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Introducing again the variable m = k; + it and taking into account that

we obtain
. i(k‘[x—k\/k?—klzz) 0
M, — 4i/2r et /4 e : /tl/ge_xtdt
A k2
P2 =
(a8 °
or
, i kl:zr—l—\/kf—k,?z)
2i2r T/ ¢ < |
My =2V C ‘ e (6.221)
572 s\
(2 5)
Therefore,
i <kll + 1\ k2 —kiz+ 7r/4>
v F, /21 1 e (6.222)
[ K2\ (ky 2) '
k2
[

It is obvious that the argument of ¢, remains constant at points of the line

kpx+\Jk2—kiz=r <kl sin@ + \/k? — ki cos 9) = const, (6.223)

which lies in plane X0Z, Fig 6.5b. Therefore, the phase surface of the wave, eq. 6.222,
is formed by two planes located symmetrically with respect to coordinate plane z = 0.
The two planes represent the lateral surface of the two-dimensional cone, and this is why
this wave is called the conical wave. At points of the line, eq. 6.223, both cylindrical
coordinates r and 6 vary, but the argument (phase) remains the same. Let us choose
angle 6 so that

ky =k, sinf and VK2 =k} = ks cosf (6.224)

Substitution of the latter into eq. 6.223 yields

ki x+ k2 —k} 2=k, r = const (6.225)
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This shows that eq. 6.222 describes a conical shear wave propagating through a medium
with velocity c¢;, and its direction is defined by the ratio
Cs

sinf = — (6.226)
€]

It is essential that its apparent velocity along the boundary (z = 0) is equal to the veloc-
ity of the longitudinal wave, ¢;, and this coincidence is not occasional. The appearance
of this conical wave can be explained in the following way. When the longitudinal wave,
a?),, moves through a medium, each point of the wavefront can be treated as the source
of an elementary cylindrical wave of the same type (Huygen’s principle). Superposition
of these waves produces the resultant P wave, moving away from the origin, where the
external foree, F,, is applied. In addition, as soon as the longitudinal (P) wave reaches
some point of the free surface, it also becomes a source of an elementary shear wave ad-
vancing with velocity ¢; (Huygen’s principle). Certainly, at any instant ¢ the radius
of the elementary shear wave that arises at the coordinate origin is r = ¢,¢. However,

with an increase of distance x, this radius becomes smaller and is defined as

r(1) = ¢4 (t— 2)

We may say that the longitudinal wave plays the role of a moving source of this shear
wave. In particular, the radius of the wavefront of the elementary wave with origin = =
¢t is equal to zero, since the P wave has just arrived at this point. Now again applying
Huygen’s principle, we see that the envelope of elementary waves is the plane that forms
angle 6 with the free boundary, eq. 6.226. This approach also shows that the wavefront
of the conical wave, 7:’)1, must be tangential to that of the shear wave, Fig. 6.5b. In
fact, at the initial moment ¢ =0, both P and S waves arise at origin z = 0, and
the former causes the elementary shear wave. Therefore, shear and conical waves arrive
simultaneously at point P, Fig. 6.5b, where their wavefronts are tangential to each
other. There is some evident similarity between conical and head waves.

In the same manner it is possible to explain the appearance of the evanescent longitu-
dinal wave g?)s that moves along the free surface with velocity ¢,. When the shear wave
propagates, each point of the boundary (z =0) becomes the source of a longitudinal
elementary wave. The superposition of these elementary waves gives rise to the resultant
PP wave, which advances along the free surface with velocity ¢,. In other words, the
shear wave is the moving source of this P wave. However, unlike in the previous case,
17’)1, the interference of clementary waves has a destructive character and causes exponen-

tial decay of the wave with depth z. Such behavior also follows from Huygen’s principle,
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since an envelope of elementary waves is absent, Fig. 6.5¢. This happens because their
velocity, ¢;, exceeds the velocity of their source moving along the free surface.

Wavefields in the far zone

In evaluating integrals in egs. 6.193 along branch lines, we were able to distinguish
four waves, namely

1. The longitudinal wave P.

2. The shear wave S.

3. The conical shear wave that accompanies the I wave at the free boundary.

4. The evanescent longitudinal wave that accompanies the S wave at surface z = 0.

Integration around the pole, m, = kg allows us to obtain an expression for the
Rayleigh wave in a homogeneous half-space. Unlike points of the free surface, the inte-

—_my z —M

grands in eqs. 6.194 contain terms e and e %, Correspondingly, the complex

amplitudes of scalar and vector potentials of this wave exponentially decay with depth,

. . . —\/ k% —k? 2 —\/ k% — k2 2 .
and their decrease is proportional to e R P and e B ¢ 7, respectively.

The Rayleigh wave has already been described in detail, so let us focus on the first four
waves, which form two groups.

1. Longitudinal and conical waves Both of these waves, ‘731 and 1751, move
with the same velocity ¢; along the free surface. Correspondingly, they cannot be
distinguished at these points (z =0) if time of arrival is measured. However, if we

observe quantities characterizing dilatation

ou ou
oxr 0z
and rotation
oz Oz’

these waves can be separated from each other. As is seen from Fig. 6.5b, the conical
wave arrives after the longitudinal wave at points beneath the free surface. This means
that by measuring the arrival time at these points, each wave can be observed.

Now let us evaluate displacement caused by these waves at the boundary. Performing

differentiations in eq. 6.209, we obtain :

- F,

_ o’ [4x i kyx
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21 2 4
and B=_ "' al:ﬂk;/ /4,

k? 332 kf; 2’
(2-3) (2 3)

Because displacement is studied at the boundary (z =0), the term in eq. 6.227 pro-
2

portional to z¢ is discarded, and therefore

0p,  FikA
or 4 p /7 232
or
09 _ _GF [2 KM -R"” (i + 7/4) 6.228
or 4 V= 2 1oy3 ¢ 32 (6.228)
u poVT 2k — k) (ki x)
Also
0 _F k" V2
8z 44 ﬁ 73/2
or
O _F., \/? ko el (ke tw/4) (6229
0z 24 m (2k? — k2) (klll?)3/2 .
From eq. 6.222 we have
817’)17 E, 2 Kt ot (ki +m/4)
or  w N7l 2y 372 (6.230)
v VT (2k7 —k3) (ky)
and
oy _ _F. NERVii L e (hw+ /4 -
Oz 7 T (2K} — kf)Q (klx)fi/? :

Correspondingly, displacement components advancing along the boundary with velocity

¢ are

v 0% g 9 0%

= = 232
! oz 0z i oz 0z (6.232)
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Their summation gives the expressions derived earlier. As follows from eqs. 6.228-6.231,

the ratio of displacements caused by longitudinal and conical waves is independent of

kS
8’1/11 (2 - k_z?)

oz 2

distance x and frequency w:

i
oz

REEEE

Oz k2
9 _ N
(%)

2. Shear and inhomogeneous longitudinal waves These two waves move

Upr| _

and 5 | =

along the free boundary with the same velocity c¢,. As in the first case, they cannot be
separated from each other if we observe time of arrival of the wave combination. However,
measuring dilatation as well as rotation, it is possible to distinguish them. By analogy
with the first group, it is interesting to evaluate displacement at the boundary caused by
each wave. As follows from eq. 6.198

dp, 2F, \/5 LR 12 i (ks +m/4) (6.233)
or  p Vw k? (ks :1:)3/2 ’ )

dp,  2iF. \/5 AN (ko + 7/4)
o VeUTR) e
and they characterize displacement due to the inhomogeneous longitudinal wave. Per-

forming a differentiation of eq. 6.218 and discarding the term proportional to «?, we

obtain
k2 1/2 k2 1/2
F, (1 - k-é) s | 44/2 (1 - k—é) el /4 /
o s s B 1/2 1w /4
v Vi 2R Ak VR
whence

(6.234)

o, EAi |2 R ¢i (ks +m/4)

oz 1 T 2

wa OB L iy e
SR (ks 2"
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6.5 Buried linear source

In the previous section we described behavior of waves in the far zone caused by the
lincar source located at the boundary. This explains why the direct and sccondary
waves were inseparable and only the resultant wave was studied. Next assume that the
source of either the P or the SV wave is placed inside the half-space at depth H
from the boundary, Fig. 6.6a. Our goal is to derive asymptotic formulas that describe
waves in the far zone. Because the linear source is situated beneath the boundary, it
is natural to expect the appearance of different waves — first of all, reflected waves. In
studying acoustic waves (Part 11}, we demonstrated that the stationary-phase method is
often useful in deriving formulas that characterize reflected waves. At the same time, the
contour deformation allows us to obtain expressions for the other waves. Correspondingly,
we will investigate the asymptotic behavior of these two groups of waves separately,
starting with the reflected waves, which obey Snell’s law.

The stationary-phase method

First, let us recall the main features of this method (Part II) and consider the integral

o

I= /f(m) el h(m) g, (6.235)

Its integrand is the product of two terms: f(m) and  exp[i o h{m)]. The first
term usually changes relatively slowly with m, whereas the exponential term varies
rapidly when parameter « is large. Therefore, in this case the oscillating nature of
the integrand is due to the second term. It may be instructive to treat the integrand
as a sinusoidal wave with wavenumber m. Its amplitude and initial phase, i.e., the
magnitude and argument of f(m), are, in general, functions of m. From this point
of view, integral I (a) describes the superposition of these waves. As is well known
(Part 1), constructive interference takes place within the range of wavenumbers where

the phase (phase function)
a h(m) (6.236)

varies only slightly. Respectively, the sum of these sinusoids may become rather large.
In contrast, outside this range the phase « h(m) can change very quickly, and for this
reason sinusoids cancel each other out (destructive interference). As a result, the sum of

such sinusoids is relatively small. Correspondingly, integral I («) is mainly defined by
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Figure 6.6: (a) Lincar source beneath free surface (b) Reflection of P wave at the
surface (¢) S reflected wave (d) P and S reflected waves

the first range. Of course, it is impossible to draw the exact boundary between these two
intervals, since in reality there is always a transition range.

This analysis clearly shows that our purpose is to determine the position of the first
range and then evaluate the integral over this interval m. In cssence, the stationary-
phase method consists of these two steps. It is natural to characterize the position of the
first interval with the help of point myg, at which the phase change is small. Tts location
can be determined from the equation

0 h(m)
om

Point myg, satisfying eq. 6.237, is called the stationary point, and it corresponds to

=0 (6.237)

either a maximum or minimum of function h(m). Certainly, the difference

a [h(m) — h(mg)]
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in the vicinity of my strongly depends on the value of parameter «. If it is relatively
small, then even sufficiently large deviations from stationary point mgy may cause a weak
change of phase. On the contrary, when parameter « is rather large, an insignificant
difference, Am, may produce a great change of phase. In other words, in this case the
width of the interval at which the phase is almost constant becomes small, and outside
of this interval the phase varies very rapidly.

These two important features of phase function « h(m) allow us to greatly simplify
the integral in eq. 6.235. First, function f(m) is replaced by its value at the stationary
point,

f(m) = f(mo), (6.238)

since its change within the narrow interval is usually rather small. Because the change in
h{m) is also small, we can expand this function in Taylor’s series and restrict ourselves

to the first three terms,

B (mqg)

h(m) = h(mg) + B (mg)(m — my) + (m —me)*+ ..., (6.239)

because Am — 0. Taking into account that h'(my) =0, we have

(m — myg)?, (6.240)

i.e., the phase behaves like a parabolic function inside the interval. Substitution of eqs.
6.238 and 6.240 into eq. 6.235 yields

h'(myg)
2

I = f(mg) Lo h (mo) / exp {ia (m —mg)?| dm (6.241)

Of course, this replacement is based on the assumption that integral I(«) is practically
defined by the interval of integration around stationary point mg. Now let us introduce
a new variable,

"
o2 = o h2(m0)| (m — mO)Q

Hence

a| h"(my)|
2

a W)l

(m—mp) and dv= 5 ,

@
Il
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that is,
2
dm=/——— d
"\l ime
Therefore, in place of eq. 6.241 we obtain
/5 ot o h (mg) 7 .9
I(a)= ¢ £ (mo) / et 1V gy (6.242)
a| h''(mo)]

The appearance of different signs in the exponent is related to the fact that

B"(mg) = | K (my)] if h"(mg) > 0
and

R"(mg) = — | K (my)] if h"(mg) < 0
Because

9
/ei“} dv:\/Z (1+4),
we have
. Vs o h
I(a)=f(m) (1%1) | — 0 ¢ @h(mo)

(O/) f(’rn())( 7) Oé| h”(nlo)| €

or
2 .
[(@) = f(mg) | ——T ¢t lah(mo) £ 7/4] (6.243)

a| h"(mg)] ’

and the sign in front of 7/4 corresponds to that of the second derivative h”(mg). Thus,
in place of the exact expression, eq. 6.235, we have arrived at the approximate one, and
its accuracy increases with an increase of parameter «. Note again that in deriving eq.
6.243, it is assumed that only the interval around stationary point mg makes the main
contribution. Also, we supposc that the change of magnitude and argument of function

f(m) is very small inside this interval.
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1. Direct wave P We are now prepared to use this method to derive asymptotic
formulas for reflected waves when the primary source generates a longitudinal wave. In
accordance with formulas obtained in section 6.3, the complex amplitudes of scalar and
vector potentials are

~ ~

P=0o+3 and Y=t (6.244)
where
o= Co Hy (ki 1) (6.245)
1s the scalar potential of the longitudinal direct wave and

wr2 i
Co=-0" 70 6.246
0 2’“ Ty ( )

Here 75-(7).) is the amplitude of normal stress on the surface of a cylindrical source with a
very small radius, ry. Asis well known, Hankel’s function H[()l) (kyr) can be represented

as the asymptotic series

1 2 ihyr — = Qn
HO (k) = /W et (k /4)Z(k, o (6.247)

n=0

provided that k> 1 and that a, represents given numbers. In essence, eq. 6.247 is
an example of Debye’s series, which characterizes high-frequency wavefields (Part IT). In
this case these wavefields result from interference of waves caused by all elements of an
infinitely long source. From eqs. 6.39, 6.40, and 6.44, we have for potentials of secondary

fields that arise due to the presence of the free boundary

0, = Cy / B, e T * M Tdm  and IZ = Tﬂ] =y / Cme_mszeimxdm,
— 00 -0
(6.248)
where
1 (2m? — k2% + 4m?my m, _
B, —_ L (2m 5)2 Amtmy ms o, | (6.249)
my (2m? — k2)° — 4m?my my
and

Cdim (2m? —k2) e Ho—ms H

Cn = 2 _ 12)2 2
(2m? — k2)" — 4m2my mg
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Before we apply the stationary-phase method it may be useful to note the following.
When an direct wave reaches the interface, at each point P and S elementary reflected
waves arise, and at any point of a medium we observe the result of interference of ele-
mentary waves of the same type. In other words, every point of the free surface is the
source of secondary waves. At the same time, in the far zone superposition of these waves
— except for elementary waves that arise in the vicinity of point z,., Fig. 6.6b — has the
destructive character. Correspondingly, at an observation point, these waves experience
constructive interference. This means that a reflected wave of any type is mainly caused
by secondary sources around point z,, which is different for P and S waves. It is
essential that the angles of incidence and reflection at this point (z,, —H) obey Snell’s
law. In general, with a change of the observation point, coordinate =z, also varies.
In this light we can say that the stationary-phase method allows us to evaluate both
the dominant spatial frequency of elementary waves and the result of their constructive
interference.

Reflected longitudinal wave From eqs. 6.248 and 6.249 we have

[e e}
N 1 (2m2 = k2% + 4m2m; m, _ :
%:fco/— (@m” = )+ dmme ms 7, im gy (6.251)
my (2m? — k2)" — 4m®my my
-0

Here
2 =z+2H

First, we find the position of stationary points located somewhere inside the interval of
integration. To start with, consider the case when m > 0. It is natural to distinguish

two intervals:
m >k and m < k;
If m > k; the phase, eq. 6.236, is
a h{m) = xm,
where
=1z and h{m) =m

Correspondingly,

Oh{m)
om

— 140
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That is, within the interval of integration
k <m < o0,

stationary points are absent. In the second interval, the radical m; can be represented

my = —i y/k} —m?,
mx 4+ kF —m? (6.252)
h(m) =m+\/k} —m? %, (6.253)

and its differentiation gives

oh(m) 1 m 2

om VE —m? T

The stationary point myg; is defined from the equality

as

and therefore the phase is

This means that

(6.254)

Moy 21
l=———— —

2 2
Vki—my T

or

— =T sing, 5
mo = 2 4 )P = kysin 6, (6.255)

Here
_ T2 271/2 =
ri = [2° 4+ (z 4+ 2H)’] (6.256)

is the distance between the observation point and point (4, which is a mirror reflection
of the origin O with respect to the boundary. Thus, the stationary point is located
inside the interval

0<m< Ky,

and with an increase of z it approaches k;. In particular, if z;/x <1, we have
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As follows from eq. 6.254, if m < 0, the first derivative, h'(m), differs from zero, and

therefore only one stationary point is given by eq. 6.254. In accordance with eq. 6.253,

k
h{m) = k;sin 8; + k; cos §; cot 6; = ,—l, (6.257)
sin 6;
while the phase function is
k
7 h(my) = — L= k7 (6.258)
sin 6;

We see that a geometric approach allows us to determine the point of the free surface z,
that gives rise to the reflected longitudinal wave observed at point (z,2). Next we find
functions A" (mg) and f(my), eq. 6.243. It is clear that

my = y/kPsin®@; — k} = —i kjcos0;,
k2 1/2
ms = [kPsin®0; — k2= —ik (k; — sin? 0i>
1
From eq. 6.251 we have,

2\ 2 2 1/2
) 2sin?0; — L) —4sin?0,cosb; | - — sin®6;
1y 2 2 .
[ (ma) = Y N2 5 7 (6.259)
<2 sin® @; — —:) + 4sin? 8, cos §; <—[2 — sin? 01-)
c c
8 L
Differentiation of eq. 6.254 yields
AR . S
h'(m) = v 'rrz,2)3/2 (6.260)
Respectively
21
h” S
(mar) z k;cos® 0;
or
1
h" (’H’L()l) = (6261)

kysin @, cos? 6,

Since A" (mg) < 0, the sign in front of 7/4, eq. 6.242, is negative. Substitution of
eqs. 6.258, 6.259, and 6.261 into eq. 6.243 gives
~ —i COV 21

R TR (6.262)
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. 9 2\ ? .9 @ .9 \Y?
2sin“¢; — 5] —4sin®0;cosf; { 5 —sin”0;

Cs

X et (e — 7T/4), since 1, = .x
sin 6;

. 2\ 2 2 1/
(2 sin®; — Z—’Z) + 45sin? 6; cos 8, (i—’z — sin® 91-)

Thus, we have found an expression for the complex amplitude of scalar
potential of the reflected longitudinal wave, and its amplitude is inversely proportional
to the product (& 7'1)1/ . This is the cylindrical wave, propagating with velocity ¢,
and its fictitious source is located at he point Oy, Fig. 6.6b. Speaking strictly, at each
point of the wavefront normal and tangential components of displacement, s,, and sy,
are shifted in phase with respect to each other. As we know, this indicates that the
vector of displacement has an clliptical orbit. However, with an increase of distance 7|
from O;, the normal component s, becomes dominant, and we observe nearly linear
polarization. Comparison with eq. 6.241 shows that the stationary-phase method allows
us to obtain the leading term of Debye’s series, which is zero approximation. In this case
elastic energy moves along the elementary ray tube and, correspondingly, the flux of the
Poynting vector through tube’s lateral surface is absent. This allows us to derive the
same expression for the field differently. For instance, we can calculate the amplitude of
the direct wave at point z,., where the angles of incidence and reflection are equal to
each other (Snell’s law):

0, =0, (6.263)

Then, multiplying this amplitude by the reflection coefficient of the P plane wave and

taking into account a change of the cross-sections of the tube at points ( z,, — H) and

(x, z), we again find the amplitude of the reflected wave at the observation point.
Reflected shear waves As follows from egs. 6.248 and 6.250,

[ee]
~ . —my H_—my .
Vo [AimCmt k)T TN g, (6.264)
- ) (2m? — kf)2 — 4dm?2my; my, )
Here
m=z+H (6.265)

As before, it is clear that the stationary point is absent, if m > k,. In fact, in this case

h(m)=m and h'(m) #0
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Next suppose that stationary point myg, is situated within the interval
ki < mos < ks
Then the phase function is equal to
ma+ k2—m? 2 and h(m) =m+ k2 —m? -

Taking the first derivative, we obtain

Mos 29

2 _ .2 ’
VE:R—mg, T

h'(m)=1-

and the condition

B (mgs) =0 gives Mes =

As may be scen from Fig. 6.6¢,

<2
— = tanf,
x

where 6 is the angle between the z-axis and radius 7s:

Ty = \/x2+(z+H)2 = \/3:2—&—3'%
Respectively, we have

Mos = ks cos By

341

(6.266)

(6.267)

(6.268)

Because the minimal value of the stationary point is k;, angle 6y varies within the range

¢
0<6;<cos ' 2
€]
For the phase we have
a h(mgs) =2 kscos 8+ ky zo8in 6y

or

a h(mg,) = kg

(6.269)

(6.270)
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As follows from eq. 6.266,

zZ9 k2
}Il , - _ = S
12 (UL> T (k? _ 7”2)3/2
and
: 1 1
B (mg,) = —22 - 6.271
(mo,) z kysin 6 kycos 6y ( )
For function f(mgs) we have
—1/k2cos?0y — kP H
44 Cycos fg(2c0os2fg—1) e V7o 70 M
f(me) = i Cocos o (2eosfy — 1) e TE (6.272)
k, l(2 cos? By — 1) + 2 i cos b sin 26, <C082 — C—;) ]
]
Therefore
12 a2 0 2 )
17)15 _ 44 2rCycosby (2cos? by — 1) e g cos® o — kil i(ksra — m/4) (6.273)

CQ

9N 1/2
(Ifsrz)l/2 l(? cos? By — 1)2 + 2 4cos O, sin 26, (6082 Oy — CS) ]
!

The presence of the factor exp (— k2 cos? 0y — k? H) and exp (iksry) may suggest

that function ;’; , describes a shear wave that propagates through a medium with velocity
¢s and is confined to the portion of the medium described by eq. 6.269. This wave has
two more features, namely, it exponentially decays with an increase of distance between
the real source and the boundary, and it behaves as if its fictitious source were located
at point (0, —H). The appearance of this wave can be imagined in the following way.
When elementary longitudinal and inhomogeneous waves of the primary source reach the
vicinity of point (0, —H), they give rise to homogeneous plane waves of the S type.
Their constructive interference produces the shear wave @7} 1s- With an increase of H,
the amplitude of this wave rapidly becomes smaller.

Next we will demonstrate the presence of the second stationary point inside the

interval
0<m<k
and study the wave related to this point. If m < k;, the phase function is

ah(m)y=max+mg 20 +m H (6.274)
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1'his means that

. 2 H
h(m) = m+ \/k? — mQ% VB —m = (6.275)

Its differentiation gives

ohlm) _y__ m = m H (6.276)
om Vk2—m? v kI —-m?% .
The stationary point myg, is then defined from the equality
x (6.277)

L) My
= —2 s > 29 + 72 s > H
V k2 —mg, Vi —mg,
In order to solve this equation, mgs, we apply the geometric approach. As is scen from
Fig. 6.6¢,

r = Htan0; + z,tan6, (6.278)

Here 6, is the reflected angle of the shear wave. Comparison of egs. 6.277 and 6.278

gives

mMos mos
s = tand, and :

2 2 Z_ 2
Vv k2 —mg, ki —mg,

From these equations we arrive at Snell’s law for plane waves. In fact,

= tan¥; (6.279)

mos = ks sin 0, or mos = k;sin §;, (6.280)

and therefore

sinf; _ sinf, (6.281)
C Cs

As a result, the phase function is
xh (mos) = (mom + 4/ k} —mi, H> (6.282)

+ [mgs (x — @) + mos 22] = ky Ry + ks Ra,

where z,, Ry, and R, are indicated in Fig. 6.6¢. Differentiation of eq. 6.276 gives

. 2 2
h/"(m) — =2 ks _ E kl
(k2 — mQ)?’/2 T (k- m2)3/27




344 CHAPTER 6. WAVES IN A LAYERED MEDIUM ...

le.,
Z9 H
2 B (mgg) = — , — . 6.283
v 1 (rmos) kycos® 0,  kjcos® 0, ( )
or
Ry Ry
h'(mes) = — — .284
z W (mos) kycos? 8, kjcos? 6; (6.284)
For function f (mg,) we have
4 Cysinb, (2sin?6, — 1
f{mo) = ( ) TP (6.285)
ks l(2 sin? 6, — 1)2 +4 isin% 6, cos b, (sin2 8, — ;;) 1
7
Therefore

- 40 2 - 952‘-205_1
o i Cov/2msin b, (2sin ) - (6.286)
[(2 sin® @, — 1) + 4isin 0, cos 0, <Sin2 0, — —63) ]

&

ei(lﬂgRl + ksRQ — 7T/4)

1 4 Cy R1 12
c0s?20, ¢, Rscos?l;

X

(k) |

It is obvious that the vector potential JJ describes a cylindrical shear wave propagating
along the radius vector R, with velocity c;.

Thus, applying the stationary-phase method we have distinguished two reflected
waves — namely, longitudinal and shear waves — that obey Snell’s law of reflection. Of
course, they arise at different points of the free surface, but they arrive at the same
observation point, Fig. 6.6d. Earlier we found out that when the source is located at
the free boundary, various inhomogencous waves, including the Rayleigh wave, appear.
However, this method does not permit us to describe them, and for this reason we will
apply the second approach.

Contour-integration method

As before, we use the path along branch cuts and around poles, Fig. 6.5a, and start

from the scalar potential. In accordance with eq. 6.248, we have

o=-Co(I + I +1,), (6.287)



6.5 LINEAR SOURCE BENEATH THE FREE BOUNDARY 345

where I, I; and I, are integrals around branch cuts and poles, respectively.

Integral I; Integration along path C; and C,, Fig. 6.5a, gives

Fodico iz + ima 2 22 2 2 232 2
7= e~ "< (2m? — k3)" + 4m?my m, B (2m? — k2)" — 4m?*my m; im
¢ my (2m? — Iﬁ:f)2 —4m2m; my,  (2m? — lff)2 + 4m?2m; my
ks
(6.288)
since the radical m; has opposite signs on lines 7 and C5. Thus,
kﬁ'iOOQO (2m? — k2)2 e 21 gl
I, =16 / : — dm (6.289)
(2m2 — k2)" — 16m* m? m?2
ks
Replacement of the variable of integration
m =k, + it
gives near branch point k;
m =k, (2m®— k?)Q =k, my=/k2~k}, and m,=V2 elm/4 kL2 4172
Because dm =i dt, we obtain an approximate expression of I :
B Rt VA 7 il T} o0
I = 16v/2 i e”T/ i ! ez’ksx /tl/Ze—IL'fdt
k3
5 0
Since
A2e=2 gy — VT
23/27
0
we have
R V) k? - k;Z 21
[ Vemie . ot (ks + m/4) (6.290)
(ksz)
and
syarie VE K 2
~ T y .
= —Cy ¢t (ks +7/4) (6.291)

Ps
(k/s $)3/2
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This function represents an inhomogeneous longitudinal wave that propagates along the

boundary with the velocity of the shear wave, ¢,, and that exponentially decreases with

parameter z;.

We considered this wave in the previous section, where we showed that

its appearance results from the destructive interference of elementary longitudinal waves

that arise at the free surface due to the shear wave. In other words, the shear wave plays

the role of the moving source of this evanescent wave, Q..
Integral I, Integration along paths C3 and () can be written as

kyico . [(ng _ k§)4 + 16m'm? m?} coshmy z et M T
dm

Ii=2 2 2)4 402009
my (2m? — k2)" — 16m*mim?

ki

o m2my, (2m2 — k2)*sinhmy, 2
s i
—16 / £ e " Tim,

(2m? — k2)" — 16m4m? m?

ky

because m,; has different signs on C3 and (. After change of variable
m = kl =+ it,
we obtain a sum of three integrals,

Iy =1+ I+ Iy,

where
- — 2 _ 1.2 0
W2 6_7/71'/46 ks kl 21 Zklx " cosh (Oél\/g) ey
u= 7z e ——p € dt,
k ¢
! 0
. 2
64 /2 eim/4 (1 _ %) | .
La= 2\ PAPL m/tm cosh (az\/f) e tar,
g2 < _ S> J
] e
o\ 1/2
16 ¢ < — :;) . o0
and Iy = 1 R N (alx/i> o~ by

(6.292)

(6.293)

(6.294)
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Here
Since
% -osh t 2
[eohonVt oty = [Tooi i (6:296)
) t1/2 z
0
we have
—m /4 . .
f= VIR i i o (6.297)
(klx)l/Q
and
N V2T _in/4 ;/A
=G /4 g kT op /A (6.298)

The same result follows from eq. 6.262 when 6; — 7/2 or z /z — 0, since e ¥ T} /AT
et KT (14172 (22/2?)] ~ ! K1 This means that function ,, characterizes the lon-
gitudinal wave reflected from the boundary, and its fictitious source is located at point
O, Fig. 6.6b. However, unlike with the stationary-phase method, eq. 6.262, we have
obtained an expression of @ that is valid only very far away from the source and close
to the free surface. Differentiation of eq. 6.296 with respect to «; gives

oo

o 2
/smh al\/_ —rtgp = \/E—eal /Ax
z day

0
or
/ sinh (/) e = 1% o0 [4x (6.299)
0
and
o0 o
/t1/2 cosh (al\/l_f) ei‘mdt = aial/sinh (alﬁ) eil‘tdt
0 0
or

o ’ 1 )
/tl/2 cosh (anﬂf) e Tt = (— e + VT a?) et /4 (6.300)
0

2 a2 4 gb/?
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Substitution of eqs. 6.299 and 6.300 into eq. 6.293 shows that functions @, and @y,
as well as  ¢,;, describe the same reflected wave, including the next term of Debye’s
series, which is proportional to 1/ (k; .77)3/2. This part of the field does not obey Snell’s
law, and elastic energy moves through the lateral surface of the ray tube.

Now we will derive asymptotic formulas for vector potential 'z,N/), which can be also
written as a sum:

~

b = Co (M, + My + M,) (6.301)

First, consider the integral along branch cuts C; and Cj.
Integral M, As follows from egs. 6.248 and 6.250,

ks+ico
M, = / 4im (2m” — k2) et
ks
—mg 29 ms Zo .
e °* e imzx
3 - 5 e dm
(2m? — k2)" —4m®my ms  (2m? — k2) + 4m? my my

or
5 om? — k?) cosh 8m (2m? — k2) sinh
M, = / m*my ms (2m* — k3) cos Tl 2o — 8m (2m?* — k2)” sinhmy 2 (6.302)
; (2m?2 — k2)" — 16m*m?m2
x e~ Him g,
Here
=zt H (6.303)

After regular change of variables, we obtain an approximate expression of M, that is

valid in the far zone:

) 2\ 1/2
32\/§e”/4<1_%> .
M, = |- : / #1267 cosh (ozs\/z_‘) dt (6.304)
0

g2
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§

¥ _ e g2 )
+ i/sinh (as\/{f) dtl e ks leez kox
k.
0

Here
a, = V2 AT/ 2, (6.305)

Taking into account eqs. 6.299 and 6.300, we obtain

77[)3 = wsl + /lr/}s27

where
\/7 kl2 1/2
16+/27 (1 — —) 9 o 2 .
— ‘ k3 TR R ki —kiH o (ks +7/4) ea?/ﬁlx
8 (ksx)J/Q o2t
(6.306)
and ,,7)52 _ erGhy z e k?— ki H i (ke +m/4) of [Ax

This shows that the sum
wsl + 1/)52
describes the shear wave that may arise due to inhomogeneous elementary waves radiated
by the primary source, as was discussed earlier.
Integral M; By analogy with eq. 6.302, integration along paths 5 and C, gives

kj+ico
M =i l/ 32m* m; my (2m?* — kg) Co‘sh4mlH —8m (2772 — k2)* sinh m H (6.307)
/ (2m? — k2)" — 16m* m? m?
1
w ¢ Ms 22 ei mzg.,
Introducing variable m = k; + 14 t, we have
. 12 1/2
32 /2 elm/4 <k2 = 1)
M, = L / #1/2 cosh (a, H) e 7% Tat (6.308)

E2\?
k) (2 - —f)
{ klz
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8

k’2
kl2—-=
l( k?)

s e g2,
+ /sinh (o H) e~ Ttat| ¢ ke = kiz el kiz
0

Here
o =2 A2 (6.309)

Substitution of eqs. 6.299 and 6.300 gives

2 1/2
~ ! (kz B 1) ? b H
W= Cod/2m | —L £ (1 + O‘—l) + (l— (6.310)

2\ 3
-3
kl
1 k’ﬂf‘i’ k2k222+ﬂ'/4>
i

6(1?/4:1:
(kll')g/Q

X

It is obvious that eq. 6.310 describes the shear wave that moves along the free surface

with velocity ¢;. Its wavefront is the plane defined approximately by the equation

kiw + [ k2 — k? z = const,

and the velocity of propagation in the direction perpendicular to the wavefront is c,.
Thus, we are dealing with the already familiar conical wave that is generated by a longi-
tudinal wave in the same manner as in the case of the source situated at the free boundary.
Thus, applying the stationary-phase and contour-integration methods, we have learned
that along with the direct wave, the following waves arrive at the observation point;:

1. The reflected longitudinal wave, which obeys Snell’s law at the free boundary

2. The reflected shear wave, which appears at a different point of the boundary, and
which has angles of incidence and reflection that satisfy Snell’s law:

sinf; sin#,

Cy Cg
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Note that the stationary-phase method allows us to obtain the leading terms of De-
bye’s series, which describe wave amplitude in a zero approximation — that is, in this
approximation, energy flux is preserved inside the ray tube.

3. The inhomogeneous longitudinal wave ¢,, which propagates along the =z-axis
with the velocity of shear wave ¢,. Tt is generated by the shear wave, and the destructive
interference of elementary longitudinal waves plays an important role.

4. The shear conical wave 17)1, which appears as the result of constructive interference
of elementary shear waves and moves along the x-axis with velocity ¢;. The longitudinal
wave 1s the moving source of this wave.

5. The shear wave, which may arise due to the inhomogeneous elementary waves
radiated by the primary source and propagates with velocity ¢,.

6. In addition, we observe the Rayleigh wave, which is described by integrals 7, and

M, around the pole m = kp.

Direct SV wave Now we assume that the linear source of the SV wave is located
at depth H below the free surface. As follows from egs. 6.61, the complex amplitudes
of scalar and vector potentials describing the secondary waves arc

T 2 2y ,—myH —m.H
o =-C / dim (2m” — ks)ge Ce T s g mag, (6.311)
. (2m? — k2)" — 4m?my m,
and 77) - / B ) + dm’my m, 672m5H e Ms 2 gt T Ty,
my[(2m? — k2)* — 4m2my; m,]
Here
2.0
=107 (6.312)

4p

and 7Y% is the amplitude of shear stress at the surface of the lincar source with a very
small radius. At the same time, in accordance with eqs. 6.248 and 6.250, we have for
the case of the direct P wave

/ (2m? — kQ) + Am2m; my —2mLH K z maTg, (6.313)
my[(2m? — k2)% — 4m2m; m,]
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(L

€

~ 004' 2m2 _ k2 —myH fmsH _
and ’(/):CO/ im (2m f)Qe ‘ c e Ms%
(2m? — k)" — 4m?my m
-0

The similarity between the two cases is obvious.

6.6 Linear source in the presence of the boundary: elastic medium and fluid

Suppose that the linear source of the P wave is situated in the fluid at distance H
above the boundary, Fig. 6.7a. Since shear waves are absent in the fluid, the wavefields
are described only by scalar potential ;. In contrast, in an elastic medium we need
both scalar and vector potentials, ¢, and ,. At the boundary, the normal components

of stress and displacement are continuous functions, whereas shear stress vanishes:

D =72, ¥ =0 s = 5@ (6.314)

Tz

Taking into account results obtained in section 6.1, in place of eq. 6.314 we have

~
~

~ 2~ P, %Y
2y 2 2 2
—Akipr = —Ao ki, + 21 52 oz as |
5y 0y 5y
2 — 2 =0 6.315
Ox 0z  Ox? 022 ’ (6.315)
0%, 9%, 9,
0z Oz oz ! N
Here
M=cp, ot 2m) = py  pr = pyC (6.316)

As usual, the complex amplitudes of potentials can be written in the form

N T e—mlz| ya .
0, = Ao / TeZ M Tam + / A ezt M Tgm 1 (6.317)
1

(o] XD
w0y = Ag / By, e T = ot M T gy 1y = Ap / Cpp e s 2 8T Ty

—0 — 0
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z

Figure 6.7: (a) Linear source in fluid above boundary with elastic medium (b) Hlustra-
tion of wave ¢, in far zone (c) Ray of shear transmitted wave 1,(mg1) (d) Integration

along branch lines and around poles
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myp = y/m? — k3, my = y/m? — k2, ms = /m? — k2

From eq. 6.9—6.15, it follows that

70

e (6.318)

Ay =
0 2p;Inrg

Substitution of egs. 6.317 into eqs. 6.315 gives

< ,_mlH 5 9
_/\lkf (e + AmenhH> = _/\2 klzBme_ran

my

+ 241, (mlzBme_mlH —im msCme_msH) ;
—2im my e_mlHBm - m’C,, e~ MmsH _ mfe_mSHCm =0, (6.319)
i +miAn M _ —my B, efmlH +im Cp e st

The first two equations in set 6.319 can be slightly simplified. For the first we have

my

—m H
—Alk% ( € — A, emlH> = Uy {(sz — k?) B,, e_mlH —2imm, Cp, e_msH

or

—mlH
—n k2 <7e + emlHAm) = (Zm2 — kf) B, e~ MH 9 my Cp e~ msH

s m

(6.320)

Also
2i m my e_mlHBm + (2m2 — kf) Ch e_msH =0
(6.321)

—emmall gy A, el = gm0 el
(6.322)
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Here
n = |
P2
From eq. 6.321 we have
2immy g H m.H
Cm = T a9 1.\ ml M Bm
(2m? — k:?)e ¢

Then eq. 6.323 becomes
_ 2m? _
or

lH _ k? my B e—m[H

—m H - _
2m? — k2 m

e —my A, e

Also, the right side of eq. 6.320 can be represented as

(om? — g2y = T ) i D —milp

mo ms
2m? — k2 2m? — k2
k] k]

where
D= (2m2 — l{:f)2 — 4Am2my; my

Thus, we have a system for the determination of A, and B,:

—mlH D
2 [ € —rmH _ —-myH
‘”’“s( T A’”)‘me o
i H e 5 Em _gH
and e m _ mlAm eﬂll —__s " . (147} Bm
2m? — k2

Solution of the system gives

2n k2 (2m? — k?) e~ g H

B, =
m )

Here

Di=mD+myn k’?

(6.323)

(6.324)

(6.325)

(6.326)

(6.327)

(6.328)
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Thus
co - dim myn /€§D€mli_[emSH7 (6.320)
1
and from egs. 6.326 we have
4= LD n ke o H (6.330)

my D

In illustration, consider a case in which the second medium is also a fluid. Then p, — 0,
and therefore

¢, — 0 but k, — o0

Correspondingly, egs. 6.327—6.330 give

2n efmlH emlH

my—n ny
B7TL_

C o A o —2m1H
» m — 0: m = €
my g n my +nomy

Now we will start to derive asymptotic formulas in the far zone, applying the stationary-
phase method and then contour integration. To begin with, assume that distance =z

along the boundary is much greater than the wavelengths.

1. The stationary-phase method

First consider waves in a fluid. In accordance with eq. 6.317, the secondary potential is

o0

o1, = Ag / %%emlzlei ™ g (6.331)
Here
71=2H—-—2>0
and

D= (2m® — kf)Q —4m? my; m,

We start from cquality 6.243:

oo

o) = /f(m) e @ (M) gy — fmg) F @ B (o) <%)m £ im/4

—oC
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Since the stationary point mgy is absent when m > k;, we have for the phase function

x h(m)=m z+ ki —m? z (6.332)

and, correspondingly,

h{im) =m + —\/ki —m? (6.333)
T
B(m)y=1- 2 ™ _g
k¥ — m}
Thus
kll' .

mo — 1"_ = kl S 01 (6334)

1

As before, mg depends on the wavenumber and the angle of incidence 6;. Here
r = 22+ (2H — 2)° (6.335)

is the distance between an observation point and the mirror reflection of the origin, O,
with respect to the interface. Since mgy < ki, the secondary wave is mainly defined by
homogeneous elementary plane waves.

Taking derivatives of h(m), we obtain

21 1

n’ = — — = — 6.336
(mo) x ki cos? 0, k) sin 0; cos? 0; ( )
For function f(my), eq. 6.331, we have:
e : y
F(me) = Ao muD—nksm _ iAy M (6.337)

mi muD+nkim  kocost; Ny

2\ 2 2\ /2 2\ M2
M, = cosb; [(2 sin 9, — —;) — 4sin% 6, (Sin2 f; — —1) <Sin2 0, — —;) ]
c? & c2

2 1/2
—n k! <(—1 — sin? 6; ) and (6.338)

C2 2 C2 1/2 C2 1/2
Ny =cosb; | [ 2sin?0, — 2| — 4sin?6; | sin®p; — L sin?@; — %
c? ct c?

Here
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2 1/2
+ nk? (—; — sin?6; )
G
Thus, the asymptotic expression for scalar potential in a fluid, ;713, is

~ My 1 in/4  ikyr

V1 =4 —V2n— ¢ e "1 6.339)
! Nl (lel ) 172 (

This characterizes the reflected wave at the observation point, and the direction of its ray

corresponds to Snell’s law: 6, = 6;. As is seen from eqs. 6.338, if the angle of incidence

does not exceed the critical angle

sin8; < a
¢
the amplitude of the reflected wave at the interface is smaller than that of the direct
wave. Bevond the critical angle for the shear wave, the amplitudes of the incident and
reflected waves become equal at these points. However, there is a phase shift between
them. This shows that total internal reflection has taken place.
Scalar potential, QNDQ, in an elastic medium
From egs. 6.317 and 6.327 we have

. ‘ o0 2m? — k?) e~ iH —my 29
,=—2n kA ( : Lty 6.340
2 n Ky o/ D+ K € m ( )
-0
Here z, =2z — H. Suppose that
o < < or k> ke > Ky (6.341)

As will be shown, there are two stationary points. Consider first the contribution of point

mo1, which is located within interval
0< mo < ki (6.342)
Then, the phase function is

z h(m) =z m+ [k —m>H + [k} —m? 2

Correspondingly,

H B zZ2 . .
h = =k —m?2+ =k} — m? 6.343
(m) =+ = = m2 o+ 2k = m (6.343)
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and
H m 29 m
Mim)=1-— - = 6.344
(m) Tk —m? o \Jk} —m? ( )
Thus,
Moy mo1
= S — (6.345)
\/k%_mgl Vle_mgl
As is seen from Fig. 6.7b,
‘mm — = tand, and ML an ;,
k2 —mi, k} —mi,
whence
™Mo = ki sin; and mgr = k;sin 6, (6.346)

Here 0, is the angle of refraction of the longitudinal wave, and according to Snell’s law,

sinf;, sin#,;

(&) Cy
Thus, we have proved the presence of a stationary point at the initial interval of integra-
tion, and, as follows from eqs. 6.342 and 6.346, the angle of incidence does not exceed

the critical angle:
k ¢
sinf; < -2
ki o«

Taking into account eqgs. 6.343 and 6.346, the phase is equal to
x hi{mer) =k xysinb; + k H cos0; + Ky (z — x1) sinb; + ky 23 cos 6y, (6.347)
and zp is shown in Fig. 6.7b. Therefore,

g h (mor) — ik i Ky 2 (6.348)

where
o= (124 a3)? ro= A+ (@ -2

Eq. 6.348 shows that when the incident wave reaches the point of the boundary (z, H),
it gives rise to the transmitted longitudinal wave. Correspondingly, the total change of
phase is defined by eq. 6.347. Differentiation of eq. 6.344 yields
k2 H k? 29

M) = R Y T e

(6.349)
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1 (Hec
and B (mot) = —— <—ﬁ cos 6, + 22 cos™? 01>
k\za T

Finally, for function f (mg;) we have

62
- 2sin® 0, —
2nt g cs

. 2
kl Cs

f(moy) = (6.350)

1

N, ’
where

2 1/2 2\ 2 2 1/2
Ny = <C—12 — gin? 01> [(2 sin 0, — C—g) +sin? 6 cos 6, (C—lz — gin? 01> 1 (6.351)
1

5 8

2
+ 77—12 cos @
‘s

Thus, the asymptotic expression for a longitudinal wave in an elastic medium is

2
2 2sin?6; — C—ZZ ‘ 1 ” L
3y =227 n C—g A N /4 T i (kiry + ki o) (6.352)
o 1
H ” ]/27
(—ﬂ cos™ 0, + Qcos_?’ 61>
T ¢ T

and its amplitude represents a zero approximation of Debye’s series. Eq. 6.352 is valid if

C
0<0, <L
C

In accordance with Snell’s law, this means that the transmitted wave, @,, arrives at
any point of the lower medium, Fig. 6.7b.
Next we will demonstrate the existence of the second stationary point, which is located

within interval
ky < mgg < ky,

and evaluate its contribution. Since in this case the radical (m? — klz)l/ ? s real, the

z h(m)=am+\/k} —m?> H

phase function is
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and

. H
h(m) = m+ /k} — m? — (6.353)

Womy=1- —"_H (6.354)

Vi —m?

Hence

which gives
Tnos = kq sin 6, (6.355)

where 6@y is shown on Fig. 6.7b. As follows from eq. 6.353, at the stationary point the
phase of the integrand in eq. 6.340 is equal to

x h{mgz) = kyzsin by + ki H cos 8y = k1 Rg (6.356)

Here Ry is the distance between the primary source and the point of the boundary
(z, H) located above the observation point (z, H). In accordance with eq. 6.340, we

. c?
2sin% 6, — —l>
2 ( 0 2 _ l 29 972
f(nLOQ) = —2n Ag i NG/ e k1y/sin” 6o Cl/cl 22 (6357)

2 k 1 ]\73

8

have

Here

2\ 2 2\ /2 2\ /2
N3 = —icosty [(2 sin?fy — —;) — 4sin% 6, <sin2 By — —;) (sin2 By — —;) ]
c? c c

{ £

¢ 4 (32 ]/2
+n <—1> (sm2 6o — —;> (6.358)
Cs cl

Differentiation of eq. 6.354 gives
H
R (mgg) = ———cos >0 (6.359)
X kl

Thus, the complex amplitude of scalar potential associated with mge is

.\ 2 2
—2v/2m nAy <&> <2 sin® 0, — %)
~ c c

P2(mg2) = H R (6.360)
(k11’)1/2 <; cos 3 90) N3
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2\ 1/2
X exp [—k‘le <51112 6y — %) +i (k1 Ry — w/4)
7l

Since mgy > k;, we have
02 i

¢
sinfy > -+
G
In other words, the angle of incidence exceeds the critical angle, and function @, (M)
describes the longitudinal wave, which exponentially decays with distance from the in-
terface. As in the case of plane waves, we observe one of the features of total internal
reflection, namely, the transmitted P wave becomes inhomogeneous. Its velocity of

propagation along the boundary is now the function of =z,

]

C= —
sin fg

and it varies within the range ¢; < ¢ < ¢. From eq. 6.355 it follows that this wavefield
appears at points of the boundary where
x c
— - >4 (6.361)
(22 + H2)1/2 ¢

that is where the angle of incidence is greater the critical angle, #; > .. Therefore,
9N92 = ‘22 (mo1) (6.362)

if the z-coordinate of an observation point is such that
x < a
VeI o
and
Po = 3 (mo1) + & (mo2) (6.363)
provided that x satisfies equality 6.361. In this last case, there is superposition of the
transmitted wave, which obeys Snell’s law, and the inhomogeneous wave. Both of them
are caused by the incident wave, but they arise at different points of the boundary.
Vector potential, v,

From eqgs. 6.317 and 6.329, we have

o

1/;2:4mk-§.140/

-

m my e~ H p—ms 2

my D+ myn k2

et ™ Tgm (6.364)
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As in the case of scalar potential gNDQ, there are two stationary points, mg; and mgs.

Consider first the contribution of point mg;, which is located inside the interval
0 < < kg (6.365)
Then the phase function is

xhim)=max+ k2 —m?> H+ Vk2—m? 2 (6.366)

Performing a differentiation, we obtain an equation for the first stationary point:

mo1 mo1

xr=H + 25 - (6.367)
Vk%_m(%l Vkﬁ_m(?n
As is seen from Fig. 6.7c,
Mo = Kk sin 6, or Mg = kesinf, (6.368)

Here @, is the angle of refraction. It is obvious that eq. 6.368 also describes Snell’s law
for the transmitted shear wave, and it allows us to represent the phase function as

x h{mg) = kyzysinf; + ki H cos6; + kg (v — 21) sin 6, + ky 22 cos b (6.369)

Note that xz; is the coordinate of the boundary point from which this wave arises and
then arrives at the observation point. Of course, in eqs. 6.347 and 6.369, the values of

z7 differ from each other. From eq. 6.369 we have

ei z h (mm) _ ei lelei ksro (6.370)

Here 7y and re are shown in Fig. 6.7c. This means that function t,(myg;) describes

the transmitted wave, which obeys Snell’s law.

sinf; sinf, <iné,

= = 6.371
¢ e, e ( )
By analogy with eq. 6.349, we have
1 (H
R (mg) = —— (— D o530, + 2 cos™ 95> (6.372)
ks \ 2z ¢, x
Function f (mg) is equal to
2\ /2
4n i Aysinf, <sin2 0, — —;)
f (mgy) = a (6.373)

kN,
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where

2 1/2 2 1/2
Ny=—i (C; — sin? 95> l(Q sin 0, — 1)2 + 4isin? 0, cos 0, (sin2 6, — (;) ]
1 &
2\ 1/2
22 cs
+n <51n 6, — —2> (6.374)
G

Thus,

4 ni AgV2m e /4 i (ks + kero)

by (mo1) = (6.375)

1/2 a7 H ¢ _3 ) _3 12
(ks )" Ny { ——cos 9i+;cos 0,

T Cq

This wave arises at points of the boundary where

. C1
Sin 02 S —,
Cs

and it exists everywhere in an elastic medium.
Now consider the contribution of the second stationary point myg,, which is situated

within interval
ke < mos < ki (6.376)
Then the function h(m) is
h{m) =m+ g (k7 — 7712)1/2 ,

which coincides with eq. 6.353. Correspondingly,

H
Moz = kl sin 90, h” (mog) = *ﬁ (,'0573 90 (6377)
1

and xh (me) = k1 Ry

Also, we have

‘ 02 1/2
.2 . sinfp (sin2 0o — ;) s o
F(mez) = 4n A, (‘) i TRyt dlG s g g

s
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Here

2\ 2 2\ 172 2\ /2
N5 = —icosby [(2 sin? 0, — —é) — 4sin? 4, (sin2 0y — —é) <sin2 By — —;) ]
cs Cl cs

o\ 1/2 4
tn (sin2 0y — f;) <01> (6.379)

‘1 Cs

Thus, potential 1, (myg2) is
o2 1/2
4i/27n Agc? sin (sin2 B0 — ;)
J c

Uy (moz) = m SIE (6.380)
(k‘lll/')l/Q ¢2 Nj <? cos™? 90)

“ e_kl sin? 0y — /e, 2y +i (ki Ry — 7/4)
This potential may describe the evanescent shear wave that decays exponentially with
distance from the boundary. As follows from eq. 6.377, velocity of propagation of this

shear wave along the z-axis is

C1

C= —
sin 6q

and varies within the range ¢, < ¢ < ¢;. In the same manner as in the case of the

longitudinal wave, we have

by = Po(imon) if 2! <sind, (6.381)
1
~ ~ z
and ¢y = Py(mor) + 13 (mo2) if 7,—1 > sinf,
1

Comparison of eqs. 6.360 and 6.380 shows that scalar and vector potentials &Q(m()g)
and szz(moz) characterize the wavefields, which produce both deformation and rotation
of elementary volumes of a medium.

We see that the stationary-phase method allows us to describe reflection and trans-
mission of waves obeying Snell’s law as well as of inhomogeneous waves. In deriving
asymptotic formulas for reflected and transmitted waves that obey Snell’s law, we have

paid attention to large distances along the boundary (k x> 1). However, the same
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formulas are valid when either H or z, or both, exceed the wavelength, but offset =«
may be small. In essence, the magnitude of potentials describing these waves does not
depend on z.

Next we will apply the second approximate method for seeing the presence of other
waves.
2. Contour-integration method
In the same manner as earlier, we replace integration along the real axis of m with
integration along branch lines and around poles, Fig. 6.7d. First consider wavefields
associated with branch points in a fluid medium.

Scalar potential, &18

In accordance with eq. 6.331, we have

o0
~ 1 myD—nktm _ ;
o0, = A — s TR Mgy — AL+ L+ + T
Y1s ! / my miD +n ko v(h+ L+ D+ 1)

(6.382)
where I; is an integral along a new path and
D= (2m27k§)274m2ml M, 2z =2H — 2z
Further we use several times the known integrals
o.o] o0
12 —x t g, VT cosh (O‘\/E) —zt,, _ T o?/4z
/.q, T ldr= Yo, / aa e Cldr= [ / (6.383)
0 0
sinh (oz\/i) e T g = —ﬁa et /4x7
2 $3/2
0
o0 9 2/,
/tl/z cosh (a\/i) e~ gt = VT 1+ o e /4z
223/2 2
0
Integral I; Since the radical m; changes sign around point k;, integration
along paths C; and C,5 gives
k1+ioco 4 .
L= / i mi D —n ks my oMz mi D +n kg my 7 ei maeg.
my D +n kimy mi D —n ktmy

k1
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or
k1+ioco

Alm) img
I =-2 —_— d 6.384
! my By (m) N " ( )
k1

A (m) = (m2D? +n? k¥ m?) sinhmy 2z, + 2n k* my my D coshm, 2
1 s 1 $
(6.385)

and Bi(m) =m? D* —n? k¥ m?

Introducing variable ¢ m =k + 4t , we have dm =1 dt. For small values of ¢,
my = /20 ky 112, my =/ k¥ — K}, ms =/ k3 — k2

Then

2.8 12 K 2.8 1.2 ki
A(m) =n"k; k7 {1 — — | sinh (a\/Z) and By(m)=-n"k; k7 [1—- =

ki ki
(6.386)
Hence
V2 e i /4 i b o<)sirlll()¢\/5 —rt
[l = W e’ M /T € dit
1 p
and
v = 21 kl 21

The last integral is tabular and is equal to
oC

i o T 2 214
Me xtdtz?/sinh(av)e T gy = T o Mg [ O
/2 T 2/t
0

0 (6.387)
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Here @ is the probability integral, and for large values of ki, i.e., small wavelengths,

we have
o
) =1
()
Correspondingly,
I = V27 REYE I (z + 27 /2z)
(kll’)l/Q

Thus the function

01, (k1) = Aol (6.388)

describes the reflected wave, which was already studied by the stationary- phase method.
Now let us evaluate integral I, along the next two branch lines, C'5 and Cj, associated
with the point k;.

Integral I, Taking into account that m, changes sign around point k,, we have

ks+ioco
s 1 [mlD (my,ms) —n k* my
L= =

ma | mi D (my,mg) +n kdmy

ks

4, .

_ muD (my, —my) —n k; my oMZLi T T g
my D (my, —ms) +n k2 my

or

2,12 )
momy Mg

N ; [maD (my,ms) +n k2 my] [maD (my, —ms) +n k* my)
S

6—7’71,] 21 6’1, mx dm

(6.389)

Using the variable & m = k; + it and considering again only the vicinity of branch

point k,, we obtain

2 g2
m? = k2, m?—k?( —k—l>, my = \/2ik, 1Y%, D =k}, e~ = ¢ b=z

87 k?
Thus
SZEZW/ZLTL\/?(]__(/E) eikszei\/ﬂzl ~
[s = — G . /t1/2 e—x tdt
0

2\ 1/2 2 1/2
-9 G ]
9] 1
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or

, on i By /K2 k2 zl>
4 /A or <1—C—;>e(
G

I, =— 5 (6.390)
3/2 CQ 1/2 C2 1/2
kax)*? n{1— =2 —ql
' |n(1-5) (5 )
and the potential related to point %k, is
Pro= Ao I (6.391)

Eq. 6.391 characterizes a wave that is quite different from the reflected wave. First, the
exponential function in eq. 6.390 depends on two wavenumbers, k; and k,. This
indicates that the wave path is located in a fluid and in an elastic medium, where the
wave propagates with velocities ¢; and c¢,, respectively. Also, as follows from eq.
3/2

6.390 the amplitude of the wave decreases as 1/ (ks z)*', that is, more rapidly than

the amplitudes of the incident and reflected waves. Let us represent the exponent

ke x4+ /K2 — k2 2

in the form

‘ z 2H — =z c? x  2H —z
ks:c+\/kfk§zl—w(+ ;>—w(+ Cosﬁi)
C 1 C Cg Cq

<8

Here 67 is the critical angle:

Then we have
z— (2H — z)tan®® 2H —
ks:r—&—«/k%—kle:w[L ( ?) tan £+ Z(cos@i—kc_ltanOz)}
Cg Cy Cg

[x—(QH—z)tanHi 2H—z]
= W + 5
Cq ¢ cos 6

(6.392)

This clearly shows that the wave propagates along path OBCD (Fig. 6.8a). In fact,
the length of the wavepath in the fluid is
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(@) ()

)
€

Figure 6.8: (a) Rays of PSP wave (b) Conical zone where PSP wave is absent
(¢) Huygen’s principle and formation of PSP wave (¢ < ¢y)
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H H-» 2H-:

OB+CD = = ,
i cos i cos @ cos &,

which corresponds to the second term in the brackets of eq. 6.392. At the same time,
the path length in the lower medium, BC, is equal to

BC=ux—H tanf — (H — 2) tanfi=x — (2H — z) tan@’,

which coincides with the numerator of the first term.

Thus our assumption is correct, and we are dealing with a head wave (Part IT) that
i1s usually called PSP. This name can be easily explained. When the incident P
wave reaches points of the interface where #; = 67, the shear wave S begins to move
along this boundary, giving risc to the P wave in the upper medium. Thus, we twice
observe a transition from one type of wave to another. In accordance with eq. 6.392,
rays of the head waves are parallel to each other and they form with the z-axis the
angle equal to #2. Correspondingly, the phase surfaces of this wave are planes. It is
obvious that in the three-dimensional case these surfaces are conical and their apexes are
located at the z-axis. This is why head waves are often called conical waves. Since scalar
potential :9]5 depends on coordinate x, the wavefields vary on each phase surface and
decrease with increased distance from the z-axis. This means that in general, motion of
particles is characterized by elliptical polarization, which occurs in the case of reflected
and transmitted waves. However, with an increase of distance x, this effect becomes
weaker, and nearly linear polarization is observed.

Also, it is clear that the head wave is absent within the volume bounded by two
planes, 8 =62, Fig. 6.8b. In order to visualize the appearance of this wave, it is useful
to apply Huygen’s principle (Part I). When the shear wave moves along the boundary,
each of its points can be treated as the source of the secondary cylindrical P wave in
a fluid. Since velocity ¢, exceeds c¢p, the elementary wavefronts overlap and form the
envelope that represents the front of the head wave, Fig. 6.8c.

At the beginning, we assumed that ¢; < ¢;. Now let us understand what happens

in the opposite case (c; > ¢,). As follows from eq. 6.390, the exponential term can be

ol ks 7Y k3 — ki 2

This means that instcad of a conical wave in fluid, we obscrve a cvancscent wave that

written in the form

exponentially decays with distance from the boundary and propagates along the boundary

with velocity ¢,. In both cases (¢; < ¢5 or ¢ > ¢), the shear wave in an elastic
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medium is the moving source of the wave, ':915 (ks), in fluid. However, in the latter case,
due to destructive interference, an inhomogeneous wave is formed. In other words, the
wavefronts of elementary waves do not have an envelope.
Next consider the contribution of integrals along branch lines Cs and Cj, Fig. 6.7d.
Integral I, In accordance with eq. 6.382, we have

kj+ioo

I = 1 [mD (my, ms) — nkt my ~mD (—my, mg) + nk* my o~z ima g
my |miD (my,ms) +nk:mg myD (—my,mg) — nk* my

ky

or
Fuico om? — k22 e~ M T g
> _ e 1 1 A
I = —4n k* / m (2m” — F,)” e c m (6.393)
[ma D (my, ms) + nkd my] [my D (—my, mg) — nk? my]

ki

Applying the same procedure as before, we have

/‘62 1/2
Tnl = \/ 27, k’[ t1/2, dnl - Y/dta Tnl = 72 kl (k_; B 1) ’

{

2 2

‘ : k2
(2m2 — kf)2 =k} (2 - k_;> . D (my,m) =D (—my,m,) =k ( — k—;)
l [

Thus
I dny/2 i e’ m/4 gikiz ky N ei\/kf -k} 2 A2 gt g
]{3/2 (2 k?)Q (k’% 1) kl (0
TR \R
or
9 27Tn7;6i7r/4 ks 4 i(klI-F\/k%—kul)
I, = = e (6.394)
3/2 K2\? (k2 k,
wor (2= 52) (1)

and the scalar potential is

o1y (k) = A, (6.395)
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Comparison of eqs. 6.391 and 6.395 shows that the latter describes the PPP head
wave. By analogy with the case of the PSP head wave, it is easy to show that the wave
path consists of three elements. The first is the ray of the P direct wave with the angle
of incidence equal to the critical angle
¢
8;= ch =sin' =
&)
Second is the path in an elastic medium of the longitudinal wave which advances along
the boundary with velocity ¢;. Third is the ray of the head wave propagating from the
boundary to an observation point; its reflection angle is also equal to the critical angle.

As follows from eq. 6.394, the phase surface of this head wave is a plane, and its equation

ki x4+ \/k? — k} 2, = const (6.396)

The velocity of propagation along the z-axis is equal to ¢. This is because the head

is

wave is caused by a longitudinal wave moving along the boundary. As follows from eq.

6.394, both head waves decrease with distance in the same manner. Since
! < 6, (6.397)

the PSP head wave appears at points of the boundary that are located at greater
distances z than the PPP wave. Thus, the stationary-phase method and the contour-
integration method allow us to describe the following secondary waves in fluid:

1. PP reflected wave.

2. PSP head wave, if ¢ < ¢,.

3. PPP head wave.

Their paths are shown in Fig. 6.9a. Earlier we demonstrated that if ¢; > ¢,, then
instead of a PSP wave, we observe an evanescent wave. This group of waves does not
include the boundary wave associated with the pole, which will be discussed later.

Next, we will derive asymptotic formulas for waves in an clastic medium.

Scalar potential .,

As follows from eq. 6.340,

o

—mH, —my #
~ 2 (2m? — k?) e Mille P2 imoa _
Py = —2nkiA / oy prap— e dm=A; (L + Ly + L+ L)

-

(6.398)
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Figure 6.9: (a) Secondary waves in fluid (b) Conical shear wave in elastic medium

Here
Z=2z—H>0

and, as before, we assume that &k >k, > k.
Integral L, Integration along paths €, and C, gives

ke +i00

—rm H f,m.H

g = ; €
L, = —2nk? f Im? — k2) e~ Mz T n =
1 5 ( s) ﬂ11D+ﬂkj-rn; mID—nkjm; o

k1

(6.399)

Replacement of variable m = k; + it gives
2

2 5 oo
4i k (._. .2) i I oo __ L2 2, -
- :fl fl o el kya e \z‘kl ki 2 /e_‘f‘ t sinh a1 Vidt
52 k; .
(1-%) ”

) = \;2'1; k'l H

Taking into account eq. 6.383, we have

2 :
9 /o ; i m/d ) Zklﬂ(z_ﬁa) . .'ﬂ_;‘?_.z
le—z L 1) I L VAR S UE S P VL S (6.400)
(»"f :I:)ZJR‘Z k kg 1/2
s 8 by
(- %)

where
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and &Q(kl) = AlLl

It is clear that this function characterizes the wavefield that exponentially decays with
distance from the boundary. Only in this sense does it resemble an inhomogeneous

longitudinal wave. This field arises when the angle of incidence of the direct wave exceeds

the critical angle ..
Integral L, Along paths C; and C; we have
katioo
Ly=-2nk / (2m? — k2) e ™M zop—mul im

kS

1 1

X — dm
[mlD (my,mg) +n klm;  miD (my,—my)+n klmy

or
k’s+ioo
L, = —2nk my [D (my, —my) — D (my, my)]
s = $ ; [mlD (ml,ms) +n k;l ml] [mlD (ml, _ms) +n k;; ml]
X (2m2 — kz) e~ 22— H jima g
or
ks +i00

(2m? — k%) e~ zgg—m Him g,

2
m* my my ms
Ly=—16nk2 / i i
J [miD (my,mg) +n kdmy] [miD (my, —mg) +n k2 my)

ks

Applying the variable t: m = k, + it, we obtain

16 1 i eiT/A 5 giksr o~V B TR H —JRT K 2 e —at
- ’ - ’ t'? e tay
3/2 k2 12 k? 12)* / ) (
. 4 0
ky (1 — k_f> +n <1 — k_f)

8§

or

‘ /1. 2 ,
—8nivor elm/4 T k= H 2 ot (ksmt/k3—k2 H)

572
. k2 1/2 k2 1/2
s (R

(6.401)
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and @y (k) = AoL, (6.402)
This expression describes an evancscent longitudinal wave that exponentially decays with
distance from the boundary. For this reason it recalls the wave @,(k;). However, there
is a strong difference. First of all, in accordance with eq. 6.402, this wave moves along
the boundary with the velocity of the shear wave, ¢;. Also, let us introduce coordinate
Z.s of the boundary points where the angle of incidence coincides with the critical angle,

0; = 0%, and represent the phase function in eq. 6.402 as

kex +\/k3 — k2 H = ks (x — Xes) + kses + /K3 — k2 H
Since
k.

k—S:sinH‘Z and Te = /22, + H?,

1

we have
ks v+ /K2 — k2 H=1Fks(x — es) + kire (6.403)

Thus, appearance of wave c,NQQ(ks) may be explained in the following way. When the
direct P wave reaches the vicinity of points where 6; = @2, its phase is equal to kr,
and it gives rise to the transmitted S wave. The latter moves along the boundary with
velocity ¢, and, correspondingly, a change of the phase at these points is equal to

ks(x — xe)

Propagation of the S wave causes vibration of the boundary and, as a result, elementary
longitudinal waves arise in a fluid and in an elastic medium, where their velocities are
¢y or ¢, respectively. Because ¢ < ¢, constructive interference of clementary waves
occurs in liquid, and we observe the PSP head wave. In contrast, in an elastic medium
¢; > ¢g, and superposition of elementary waves has a destructive character. Because of
this, the evanescent longitudinal wave @,(k,) appears.

Thus, the transmitted S wave propagating along the boundary is the moving source
of wave described by eq. 6.402.

Integral I, The integrals along paths C5 and Cjg are

koo

Li=-2nk (2m* — k2) e im
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C_ml Z2 eml 29

X dm

my D (my, ms) +n k2 my B miD (—my,mg) —n ki my
After changing the variable of integration and performing simplifications, we obtain:

ki—k} H =
/ e~ T ginh ayv/tdt (6.404)

4n i k2 ethiz ¢

k3 L k'_% 1/2 ~ k_g
E i

;= QiklZQ

;=

where

Then the use of eqs. 6.383 gives

. . ) Zk)l 22

;- 22 in el m/4 ks ’ 2 ik xRk H (6.405)

1= (k I)1/2 ky x ‘ ‘ 7 o
J

and (52 (kl> = floLl

It is useful to represent the phase function in the following form

2
kl Zg

ki xog+ /K3 —k} H+k(z—xq)+ o
Here =z, 1is the coordinate of the boundary points where the angle of incidence of the

direct wave is 92. Assuming that = > x4 and zo/x < 1, the phase becomes equal to
kire + kirq

Here

re = \/W and r=\(r—za)’ + 3

Thus, we see that function @,(k;) describes the transmitted P wave near the boundary
and that, therefore, its secondary sources are located in the vicinity of points where
0; = 92. Again it is clear that the stationary-phase method allows us to obtain a better
approximation of this wave.

Vector potential 1,
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In accordance with eq. 6.364, we have

o
—m H

m my e —m 29

€

Wy = dink? A el M Tigm = Ay (My + M, + M, + M,)

mD +n ki my

(6.406)
As before, we start our evaluation of integrals from branch point k.
Integral A/,  Integrals along paths C; and €5 give
2 o Ms2zy LM T e~ H emH
My=4ink T2 ¢ d
! L R / e ¢ mlD—f—mmk;*_'_mlD—mmk;1 m
k1
or
o

ki — k2 — k2 — .
M, = %elklx e =k Z2/€ Tt ginh ay Vidt,

s 0
where

] =/ 21 k]l H

Thus

V2w el /4 1/2 i k ( +1H2>

42 LT k 7\/—27;2 TR\ T -

M, = — 7T€32 (ki H) <_1> € ks e 2z

(ks fU)E/ ks

(6.407)

and :J}Z(kl) = /-10[‘/[1

It is obvious that this function characterizes a shear wavefield that exponentially decays
with distance from the boundary and appears provided that 6; > 62.
Integral M,  As follows from eq. 6.406,
ks+ioo
M, = dink? m my e~ im x

ks
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e—T/ls z9 e—ms z9
8 my D (my, mg) +n komy D (my, —mg) +n kX my
or
o\ /2 c /12 12
8n (1 — klz) ks o =k H 0
q "s —xt N
M, = 2 72 ; 72 / e sinh ay V't dt,
() ()
where
a, =21 kH
Hence
kg 22
. 2\ /2 )12 g2 it
4 /27T627T/4 (1 _ k_12> elksgj 67/ kl ks HeZ 2w
i — s 29
" e (RN AN B o4
(ks x) <1 - ﬁ) +n ( - ﬁ)
and bolhy) = Ay M,

By analogy with function 4(k;), we conclude that eq. 6.408 describes the transmitted
shear wave near the boundary, z/r < 1, and at sufficiently large distance from the
Z-axis.

Integral M The integral along paths C; and Cj is

k1+ico
M, =4in k’f / m my e_mlHe_ms 72 VT
ki
1 1
X + dm
miD (my,my)+nkimy mD (—my,mg) —n k*my

This gives

o AnKNVIRR KR H e KK [ aty,
LT k- )P 2k — k)

0
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Therefore,

im/4i ki ei\//f? -k Hei\/ki — ki 2
3 K2\ K2\

k) (1% 22

(1 ¥

To understand this wavefield, we represent its phase function in the form

kixg + ki —k} H+k(x —za)+\ k2 =k} 2,

As before, x. is the coordinate of the boundary points where 6; > 02. Respectively,

B 2ny/2me

My and 1712(kl) = Alj\/fl

(6.409)

the sum of the two first terms is equal to ki7r., and it defines the phase of the direct
wave at points (g ,H) and r. = \/2% + H?. The sum of the next terms remains
constant at points of the plane:

kj(x — xq) + /kZ — k? z, = const (6.410)

Thus, function 17)2(k1) describes a wave with plane phase surfaces that moves through
an elastic medium with the velocity of a shear wave, ¢,. At the same time, the velocity
of propagation along the houndary is equal to ¢;. As follows from the expression for the
phasec function, the wavefront and the boundary form angle 6, where

sinf = &

&

The appearance of this wave was discussed earlier. When the longitudinal transmit-
ted wave advances along the boundary, it also produces elementary shear waves. Since
¢y < ¢, superposition of these waves has a constructive character. As before, applying
Huygen’s principle, it is easy to demonstrate that the phase surfaces of this wave are
planes, Fig. 6.9b. We see that the transmitted P wave is the moving source of the
conical wave, 1712(kl), and it is observed at points of an clastic medium where = > x4.

In summary, let us outline the main features of wavefields in the lower medium:

1. When the direct P wave reaches the boundary, we see the appearance at its
points of the transmitted P and S waves, if 0; < 02 We see only the S wave if
0., < 0; < 5. Neither wave arises when  6; > 5. These waves obey Snell’s law and,
correspondingly, they appear at any point of a medium. Their magnitude depends on

frequency and distance as 1/ (kr)"/2.
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2. Within the next range of the angle of incidence
0. < 0; < 02,

besides the transmitted S wave, vibrations of the boundary cause a shear conical wave.
It propagates through a medinm with velocity ¢,, and like the head wave, its magnitude
depends on the wavenumber and distance as 1/ (/fr)3/ ®. Certainly, its magnitude is
smaller than the magnitude of the transmitted waves. The phase surface of the conical
wave is a plane that, with the boundary, forms angle 6, where

. C,
sinf = =
C

Since the transmitted P wave generates a conical wave, its velocity of propagation along
the boundary is equal to ¢;. Besides, due to the primary wave, a longitudinal wavefield
arises that exponentially decays the distance from the boundary. Use of the word “wave”
in this case is hardly appropriate. In fact, the phase surface of this field is the vertical
plane z = const, but its velocity continuously changes along the z-axis. This wavefield
is usually called a “diffusive wave”.

3. At points of the boundary where ¢; > 07, four wavefields appear, namely:

a. The shear conical wave.

b. Longitudinal and shear diffusive waves, which exponentially decay with the dis-
tance from the boundary.

c. The inhomogeneous longitudinal wave, which moves along the boundary with the
velocity of the shear wave and also exponentially decreases with depth.

Our description of wavefields does not include the boundary Stoneley waves that arise
at the interface between the fluid and elastic media. By definition, they are related to
poles of integrands, which describe the scalar and vector potentials. In accordance with

eq. 6.328, poles are roots of the equation

\/m? —k? {(QmQ —k3)2 —4Am?y/m? — k2 \/m? — k?] +/m2—kPnki=0 (6.411)

Here n = p,/p,. Letting p, =0, we arrive at the known Rayleigh equation

(2m* — k’f)2 —Am?\/m? — k2 \/m? — k2 =0

Applying the same approach as in this last case (p; =0), it is easy to show that for
any parameters of a fluid and an elastic medium there is always one real root, m,, of

eq. 6.411, which slightly exceeds the maximal value of the wavenumbers:

my >k it k> kg and my > kg if ke >k
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Correspondingly, the surface wave related to pole m, moves along the boundary a
little more slowly than either the longitudinal wave in fluid or the S wave in the lower
medium.  Since radicals y/m2 — k%, /m2— k2%, and /m2—k? arc all rcal and
positive, this wave exponentially decays with an increase of distance from the boundary.
In a fluid, that wave is purely dilatational, whereas in an elastic medium the wave causes
deformation and the rotation of elementary volumes. Of course, above and beneath the
interface these waves advance with the same velocity

Cp =
my

6.7 Point source of elastic waves in the presence of the free boundary

In the previous scctions we assumed that the field is caused by a lincar source oriented
parallel to the boundary. Now we extend this study to the three-dimensional case and

consider elastic waves generated by different types of point sources (Chapter 3).

1. Point source of the P wave Suppose that a very small spherical source is
situated at distance d from the free boundary, Fig. 6.10a, and a change of its radius
(pulsations) generates the P wave. As usual, in order to determine the wavefields we
formulate the boundary value problem. Taking into account the axial symmetry of the
direct wave and a medium, it is convenient to choose the cylindrical system of coordinates,
r,, 2, and place its origin at the boundary. By analogy with the two-dimensional case,
we assume that the source generates a sinusoidal wave with frequency w. Of course,
the use of Fouricr’s integral permits us to obtain information about transient waves.
The presence of the boundary creates both longitudinal and shear waves. Therefore it
is natural to formulate the boundary value problem in terms of complex amplitudes of
scalar and vector potentials o and 1Nb Respectively, we have

g= 9+ ¢, and = g, (6.412)

Here ¢, and @, are scalar potentials of the primary, ¢;, and secondary, ¢,, wavefields.
At regular points they obey the Helmholtz equations:

V+ ko =0 and Vi¢+ k¢ =0 (6.413)
At the free surface the tangential, 7,,, and normal, 7,,, components of stress vanish,

Tre =0 and 7., =0, if 2=0, (6.414)
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Figure 6.10: (a) Buried point explosive source of P wave (b) Illustration of eq. 6.427

(¢) Buried shear wave point source (d) Vertical force

and potentials must also satisfy these two equations. Since
ol ki R
6.415

and potentials of the secondary fields have finite values everywhere, in approaching the

QN%‘:CI

source we have
(6.416)

Here
R=1/r24 (z —d)’

It is clear that the amplitude of the spherical wave caused by the source, as well as
amplitudes of secondary waves, decrease with distance, and in the limit they obey the
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condition at infinity
© =0 and sz —0 if R—oo (6.417)

We have formulated the boundary value problem, and, as follows from the physical point
of view and the theorem of uniqueness, only one field of displacement and stress satisfies
these conditions. Since we have considered Dirichlet’s boundary value problem (Part I),
the potentials are also defined uniquely.

Solutions of the Helmholtz equation for scalar potential

First, we find a solution of the equation

Vig+ ko =0

Taking into account axial symmetry with respect to the z-axis, i.e., independence on
the azimuthal coordinate, we have in the cylindrical system (Part I)
0 10p Py ~
— +-Z+—+klp =0 6.418
or:  ror  92° A ( )
Applying the method of separation of variables, potential ¢ is written in the form
o (r,z,w) =T (r) Z(z,w) (6.419)

Substitution of eq. 6.419 into eq. 6.418 and division of both sides by the product T'Z
gives

2 2

%%+%%+%%+k}2:0 (6.420)

This equality indicates that the sum of the first two terms and the sum of the last two

terms are constants that differ by sign only. Therefore, in place of eq. 6.420, we can
write

1d*T 1 dT 9 1 d*Z

TaztrTar " ™ Za=

where m is an arbitrary number. Thus, instead of a partial differential equation, we

+ kf = Fm?, (6.421)

arrive at two ordinary differential equations whose solutions are well known. Selecting
the sign on the right side of egs. 6.421, we have to take into account the fact that the
wavefield has a finite amplitude everywhere except at the source location. Suppose that
the sign “+” is chosen in the first equation of the set. It gives

d*T 1dT

Y T =0
dr? + r dr m
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As is well known (Part IT), the solution of this equation is expressed in terms of modified

Bessel functions of the zero order
Iy(mr) and K (mr)

Note that the same functions will be used to study wavefields inside the borehole (Chapter
7). Inasmuch as Iy (mr) increases unlimitedly when 7 — oo, while Ky (mr) becomes
infinitely large at all points of the z-axis, neither of those functions can describe the
wavefields. For this reason we choose “—” and “+” in the first and second equations
of set 6.421, respectively. Therefore, this system becomes
2 2
% + %% +m?T =0 and (cllzf

The solutions of the first equation are Bessel functions (Part II)

—(m*—k)Z=0 (6.422)
Jo(mr) and Y (mr),

or their combinations. Since function Y, (mr) is infinitely large at the z-axis, it cannot

be used to describe the wavefield. The solutions of the second equation are

exp {:l:\/m? —k? z}

Thus, in accordance with eq. 6.419, the partial solution is

~

- (Am R oL Z) Jo (mr), (6.423)

my = /m? —k?

Correspondingly, the general solution of the Helmholtz equation for scalar potential is

where

00
o(r, z,w) = / [Am e M2 4, e Z} Jo (mr) dm (6.424)
0
Here A,, and C,, are unknown coeflicients; they do not depend on coordinates r and
z of the observation point.
Solution of Helmholtz equation for vector potential sz
Taking into account that disglacement s has only two components, s, and s,, we

assume that vector potential 1 can be described by the azimuthal component

b= i, (6.425)
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where i, is the unit vector along the ¢-coordinate line, and its direction depends on

~

point position. In order to obtain an equation for scalar component 1, we substitute
eq. 6.425 into the second equation of set 6.413, which gives

V(0ig) 4B i, =0 or VR4 OV, R Ui, =0 (6.426)
As is seen from Fig. 6.10b,
i, =—singi+cosepj (6.427)

Here i and j are unit vectors in the Cartesian system, and they are constant vectors.

Since in the cylindrical system of coordinates

2. 1o o .

Vi, = ﬁa—(p?(—sm@ i+cosyj),

we have
V2, = —;—‘; (6.428)
Thus, eq. 6.426 becomes
~ 1 ~
V2 o+ (kf - 2) Y =0 (6.429)
r

Applying again the method of separation of variables

v =TZ
we obtain as before the same equation for Z, but function 7 has to obey a different
Bessel equation

T 1dT+(/ .

1
- - VT = A
dr? ~ rdr ' 7"2) 0 (6.430)

and its solutions are Bessel functions of the first order
Jy (mr) and Y1 (mr)

The latter has to be discarded, since it tends to infinity when r — 0. Respectively, the
general solution of eq. 6.429 has the form

[}

~

Y (r, z,w) = / (Bm e s D, s Z) Jy (mr) dm (6.431)
0
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Here

ms = \/m? — k2
Note that functions Jy (v) and J; (v) are related to each other:

Ji(z) = —Jy (x) (6.432)

It is clear that ¢ and 1715 satisfy the corresponding Helmholtz equations, regardless
of the values of the unknowns. In other words, as in the two-dimensional case, these
equations have an infinite number of solutions. Our goal is to choose such values of
Ay B, Cra, and D, that potentials would also obey the other conditions of the
boundary value problem. In order to accomplish this task, we represent the primary
potential <,N91 in the same manner as potentials of secondary waves. This can be done

with the help of the Sommerfeld integral,

Gk R

C 7

:q/ﬂ e~ 2 =dl o mr) dm, (6.433)
my
0

where

R=\/r?+ (z—d)’

Then, taking into account the condition at infinity, the potentials are written in the form

© = C;/ [ﬂeml |2 —d| + A, e ™ Z] Jo {mr) dm (6.434)
m
) !
and
17;3 = Cl/Bm e s 2 (mr) dm (6.435)

0

It is obvious that functions ¢ and @N/) given by egs. 6.434 and 6.435, obey the Helmholtz
equations as well as conditions near the source and at infinity. Now, making use of egs.
6.414, we will find unknown coefficients A,, and B,,.

Stress in the cylindrical system of coordinates and conditions at the free
boundary
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Due to axial symmetry, we can expect that the azimuthal component of displacement,

5., 1s equal to zero. Correspondingly, displacement vector s is
S =5, i, + 8, i, (6.436)

where i, and i, are unit vectors along coordinate lines. In this case the strains are

0s, Sy Js, Js, Os,
= = = +

err—ar; 64’9@_7"7 ezz_aza 699220761"2:82 r

, €y =0 (6.437)
Then, in accordance with Hooke’s law, we have
Trr = AV 8+20 e, Ty = A divs+2pe,,, 7., =Adivst+2pe,, (6.438)
and
Trz = M €rz, (6.439)
while
Ty =Trp =0 (6.440)
Thus, the boundary conditions, eqs. 6.414, can be written as
Adivs+2ue,, =0 and €, =0 if z=20 (6.441)

Since the boundary value problem is formulated with the help of potentials, it is necessary
to express displacement in terms of functions ¢ and 1. By definition

s =grad @+ curl

Taking into account that

. . 0p . ‘ R S B
grad ¢ = ar i, + 2 i, and curl ¢ = o ap 8z |0
0 b 0
we obtain
. 8y B .9 10~
_Op W O L A P 442
T T 9z T8, T ror (7"1/) (6.442)
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Thus, eqs. 6.441 become

e Po 1 0P ~
)\ k2 Iy | =L+ —— = 44
et 022 * r Or 0z (Tl‘b)] 0 (6.443)
and 82:9 —@—Fﬁ lg (TN’> =0 it z2=0
oroz 02 or|ror V'Y T o
since
div grad ¢ = V?p = _k?& and div curl fp =0

Further transformations are based on the following equalities:
if /f(m) Jp (mr) dm =0 then f{(m)=20 (6.444)
0

Here J, (mr) is the Bessel function of the n-order. This result is similar to that for

Fourier’s integral. Also

Jy(v) = =J1 (v) and % [vdy (v)] = vy (v) (6.445)

Besides, letting v = mr, we have
g 1[0 0190
- {87" [r Jy (mr)]} =m’_ v 0 [y (v)] = —m*J; (v)

Substitution of egs. 6.434 and 6.435 into eq. 6.443 and using egs. 6.444 and 6.445 gives

A K2 (ﬁ emmud Am> 2 (om0t Ay —mom B, ) =0
my

and
2 <7m26_m’ d m;m Am) —(2m?—k?) B, =0

or

— (2m = K2) An+2mm,By = e "7 (2m? — ) (6.446)
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and 2m my A, — (2m2 — kf) B,, = 2m? ¢l d

Solution of this system is

2
A = ~m o (2m® = k2)” + 4m® my o= d
my (2m2 — k2)° — 4m? my m,

(6.447)

Am® (2m* — k) e~ d

and B, =— 3
(2m? — k2)” — 4m? my my

Thus, we have found coefficients A,, and B,,, that stresses vanish at the free surface.
Therefore, all conditions of the boundary value problem are satisfied. In particular, this
means that the assumption about the azimuthal component of the vector potential was
correct. From egs. 6.434 and 6.435 we have

o

N 2m? — k2)® + 4m? .
s = —Cl/m o 5)2 T sy (2 d) Jo (mr) dm (6.448)
my (2m? — k2)" — 4m? my my

(2m? — kQ —my d,—ms 2
and = —4C, / m? (2m” ) Ji (mr) dm
(2m? — —4m? my my

The similarity with the two-dimensional case is obvious; for instance, the denominator

of integrands in cgs. 6.448 is again described by the left side of the Rayleigh equation:

(2m? — k?)2 —4m* mymy =0 (6.449)

2. Point source of S wave Suppose that a small spherical source rotates around
the z-axis, Fig. 6.10c. As was shown in Chapter 3, the vector potential of a shear wave
in a homogeneous medium is described by the z-component only. This potential can be

represented in the form

1,7),.:0 —c, ﬂ e~ 12 =dl 1 onr) am (6.450)
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Displacement carried out by the incident wave has the ¢-component only, and the field

possesses axial symmetry. It is natural to assume that even in the presence of the

horizontal interface, secondary wave s has the same behavior, i.e.,

95y

(9(,0:0

S = Spip and

Correspondingly, the resultant potential can be written as
o
~ m  _ _ _
W, = C’s/ {— e~Ms |2 = d| + Ay, e M 2L Ty (mr) dm
My
0

In this case the normal strains are absent:

~ ~ ~ ~ Js ~ ~ s 5
© © @
Err = €pp =€, =0, but e, = 5, e, =0, ep=—F-——

or r
Thus, at the free boundary we need to satisfy only one condition:

s,

92 =0 if z=0

By definition

and therefore

. o

S, = ———
4 or

From eq. 6.454 we have

and eq. 6.453 becomes

o

/ (m2 e Msd _ oy ms Am) Ji(mr) dm =0

0

This gives

(6.453)

(6.455)
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The vector potential of the secondary field is

~

¢, =C, / M =ms (z+d) Jo () dm
my
0

or

“ ot kR
¢
by=C—¢

(6.457)
where
Ri=\/r2+ (2 +d)*

This shows that the reflected wave is also the shear wave, and its fictitious source is the
mirror reflection of the real source with respect to the boundary. Thus, we have

N Gk i kTR
b= C 6.458
ks R m ) (6.458)

and in this case no additional waves are generated at the boundary.

3. Point vertical force Now we will consider a more complicated case, in which the

vertical force per unit area
Z(t) = Zye tW 1

is applied in the vicinity of some point of the z-axis, Fig. 6.10d. It is natural to expect
that wavefields generated by such a force produce deformation and rotation of elementary
volumes of a medium. This means that the wavefield is described by both scalar and
vector potentials. In order to find their expressions, supposce first that a medium is
homogeneous and that vertical force F, is constant within the disc of radius a situated
at plane z =0 (Fig. 6.10d):

F,=F, if z<a and F,=0 if z2>a (6.459)

Then, as follows from the theory of Bessel functions, F,(r,a) can be represented in the

form

o
I
=
]

/ Jo (mr) Ji (ma) dm (6.460)
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In the limit, when the disc radius a tends to zero, we obtain

- %/ Jo (mr) dm, (6.461)
0
since
Ji (ma) — % it ma—0
Thus
5 = /m Jo (mr)
Ta
or
o
Zy Q/m Jo (mr) dm, (6.462)
27 0 '
0

and it plays the same role as potentials of the incident wave for two other sources. By
analogy with the case, when the source generates a P wave, we assume that the vector
potential of the incident wave has only an azimuthal component. Then, due to axial

symmetry, the potentials of this wave are

0; = /Cm e~ ME Iy (mr) dm, qzl = /Dm e M2 gy (mr) dm, if 2>0
J .

(6.463)

0; = /C;n ™= Jy (mr) dm, zNLZ = / D eMsZ ] (mr)dm, if 2<0

(6.464)

In order to determine the unknowns, we take into account that at plane z = 0, normal

and shear stresses are discontinuous and continuous functions, respectively:

~4 ~— ~4 ~—

Tow— Ty =—2, and To,— Ty =0 (6.465)

k24 2z Tz Tz
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Here the “+” and “—" signs characterize stresses in the vicinity of plane 2z =0 for

positive and negative values of z. As follows from eqgs. 6.438 and 6.439,

N N 82;5 1 &? ~
Toe = —AkfQ + 2 552 + 31z (m’))] (6.466)

PP PP 010 [~
and T =2 o Yy [_a_ (W)]

Substitution of eqs. 6.462-6.464, and 6.466 into eq. 6.465 gives,

(2m* — k2) (Cp—C),) —2m my (D + D;,) = “orp ™ (6.467)
T

and 2m my (Cy, + C) — (2m2 - k?) (D — D) =0

Besides, the radial and normal components of displacement are continuous functions
everywhere in a medium, including at all points of plane z = 0. In accordance with eqs.
6.442, we have

~t ~+ ~— ~-
dyp _81/1 Oy _01/1

or oz  Or Oz (6.468)
9" 19 ~+  9p 19 ~
and o tra T e tra
or
—m(Cp — CL) +my (D, + D)) =0, (6.469)

—my (Com + Cp,) +m (D — D)) =0
From both sets of equations, we have first

C! = —Cp, D! =D, (6.470)
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and then
9 9 Fom
(2m* — k2) Cp —2m m,D,, = o —mCy, +msD,, =0 (6.471)
This gives
F,om F, m?
Cpp = — d D, =—"—— 6.472
™ Ay k2 an " dmpom, k2 ( )

Let us assume that force is applied at the point of plane z = d and that the z-axis is
still directed downward. Then it is obvious that potentials describing the direct wave are

[o.©]

~ E
¥i =7 ZkQ /m e~ |z —d| Jo (mr) dm if z<d (6.473)
T
KR .,
-~ FE T
and Y= 47”;/{? /m e |2 —d| Jo (mr) dm it z>d
0
Also
F. [m
" c T emmslz—dl g () dm (6.474)

drp k2 f my
0

Using the Sommerfeld integral, we obtain

~ F, o ethiR ~ F, o etksR

R < d o =— g
v drp k2 0z R and vy AT k2 Or R

(6.475)

Here
‘ 1/2
R=[?+(z—d?"
Note that these expressions were derived in Chapter 3, where we considered the waves
in a homogeneous medium.
Potentials of the secondary wave
Taking into account eqs. 6.474 and 6.475, expressions of potentials , and ), have
the form

- Fo _
Q, = e /m Ay e TE Ty (mr) dm (6.476)
s s
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~ F T _
and @, = ‘ /mBm e Ms % J (mr) dm
0

J= / m [emmele = dly g o] g ) dm (6.477)

Then, making use of the boundary conditions at the free surface, z =0, we obtain:

(2m* — k2) An+2m m,B, = — (2m> —k2) ¢ d 4 op2e=ms d (6.478)

and 2m my Ap + (2m* — k2) By, =2m my e” ™ d_ T (2m? —k2) e ™Ms d
my

Solution of this system yields

o\ 2 .
B (2m? — k2)” 4 4m” my Ms —myd Am? (2m* — k3) s d

Am =
D D

(6.479)

and B - 4m my (2m? — k2) o d M (2m? — k2)* + 4m2mym, o d
" D Mg D

where D is the determinant of the system. It is clear that expressions of potentials are
similar to those derived for the two-dimensional source.

Wave behavior

For illustration we derive formulas for displacement components in the far zone,
(k;r > 1), when both the source of the P wave and an obscrvation point are lo-
cated in the vicinity of the free boundary. Then, letting d = 0 in eqs. 6.448 and using
eqs. 6.442 we obtain

oc

S o2 / m (2m? — k%) Jo (mr)
‘ o / (2m2 — k2)* — 4m2m; m,

(6.480)
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[o.¢]

and Sy = 4k ¢y /
' J (2m?

2, J -
m?*ms Jy (mr) dm

PN .
— k2)* — 4m2my mg

From the physical point of view, it is clear that the reflected wave, which obeys Snell’s
law, is absent in this case. This is confirmed by the fact that integrands in eqs. 6.480
do not contain exponential terms and, therefore, the stationary-phase method cannot be
used. Correspondingly, by analogy with the two-dimensional source, we apply contour
integration to find approximate formulas for the wavefields. However, such an approach
requires that the integrand in egs. 6.480 vanish on the complex plane m, when the
variable of integration tends to infinity (Jordan lemma). In order to meet this condition,
we replace functions Jy and J; by the Hankel functions (Part II). As follows from egs.
6.480, displacements are expressed in terms of two types of integrals,

e ¢]

I= /Fl (m,myms) Jo(mr) dm (6.481)
0
and L= /FQ m,mymg) Ji (mr) dm,

0

where F7; and F, are analytical functions on the complex plane m except branch
points and poles.
Integral I At the beginning consider integral [ describing displacement s, and

use the equality
1
Jo (rnr) = 3 {Hél) (mr) + Héz) (mr) (6.482)

Here Hél) (mr) and Hé2) (mr) are Hankel’s functions of the zero order and of the first
and sccond kind. Note that the relationship eq. 6.482 follows from a definition of these

functions of any order v:
HS]) (mr) = J, (mr)+iY, (mr) and HEQ) (mr) = J, (mr) —iY, (mr) (6.483)

Substitution of eq. 6.482 into integral [ gives

(o9}

/F1 Y (mr) dm + = 5 /Fl (m) Héz) (mr) dm (6.484)
0 0

l\.’J|>—‘
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As was pointed out earlier, branch points and poles are located either in the first or in

the third quadrants. Poles are

my=kstic,, mo=—ky—icy,, my=k +icg, mi=—k—ig, (el

The asymptotic expressions of functions Hél) (mr) and HSZ) (mr) are

2 Stmor—
HO (mr) ~ weL(mr 7/4) (6.485)

2 _
and H? (mr) ~ e~tmr —m/4) it mr>1
Tmr

We see that these functions of the first and second kind decay exponentially with an
increase of m, if Imm > 0 and Imwm < 0, respectively. Applying the Cauchy
theorem to the first integral in eq. 6.484, we have:

7{ Fy (m) HY (mr)dm = / Fy (m) HY (mr)dm (6.486)

+ / Fy (m) Hé”(m’r) dm + / Fy (m) Hé])(m’r) dm

C1'+(72 C'3'+C4
_ 0
+ 7{ Fy (m) Hél) (mr)dm + /Fl (m) H(()U (mr)ydm =0
Gy ioo

Here path C' is situated in the first quadrant, Fig. 6.11, and singularities of the integrand
are absent in the area surrounded by C. Also, due to the exponential decay of Hél> (mr)
for large arguments, the integral along the portion of the path with an infinitely large
radins, Imm — oo, can be discarded (Jordan lemma). In accordance with eq. 6.486,
integration along the real axis m is replaced by integration along the branch lines,
around poles, and along the imaginary axis m. Since the last integral is unknown, we

have to eliminate it. To do this consider the integral

fFl (m) HSQ) (mr)}dm,

Co
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Imm
A

» Rem

Figure 6.11: Contour of integration in eq. 6.486

where Cj is located in the fourth quadrant, Fig. 6.11. Taking into account that Fy (m)
is the analytical function in all points of this quadrant, we have:

0 0
f Fy(m) HSQ) () dm = /F1 () H(()Q) (mr)dm + / Fy (m) HSQ) (mr)dm =10
Co 0 oo
or

/ F (m) HO(Q) (mrydm = — / Fy (m) HSQ) (mr)dm (6.487)

0 —100

The use of egs. 6.484-6.487 gives for integral [

[=_-= / Fi (m) Hél) (mr)ydm+ / Fi (m) Hél) (mr)dm (6.488)

C1+4-C2 Cs+Cq
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0 0
+ 7{F1 (m) Hél) (mr)dm + / Fy (m) Hé” (mr)dm + / Fy (m) Hé2) (mr)dm
é’p i00 —i00

Now we will demonstrate that the sum of integrals along the imaginary axis m vanishes.
Introducing a new variable that differs from m only by sign, the last integral in eq.
6.488 becomes

—/F1 (—m) HSQ) (—mr) dm

1

Since
—m) = — () _ _ _g®
F(—m)=—-F(m) and Hy” (—mr) = —Hy" (mr)
we have
0 0
- / Fy (—m) H(§2> (—=mr)dm = — / F (m) Hél) (mr)dm,

and eq. 6.488 yields

I= f% / Fy (m) H (mr)dm (6.489)

C1+C

+ / F (m) Hél) (mr) dm + f Fy (m) H(gl) (mr)dm

C3+Cy Cp

Thus, as in the case of the two-dimensional source, we have represented the vertical
component of displacement as a sum of integrals along branch lines and around poles
only.

Integral L In the same manner, consider the second integral in eq. 6.481,

describing the radial component of displacement. As follows from eqs. 6.483,

1
Ji (mr) = 3 Hfm (mr) + Hf2> (mr)|,
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and therefore

1 o.¢] <
=3 /FZ H(l) (mr) dm + / Fy(m H(2) (mr)dm (6.490)
0 0

Taking into account the asymptotic behavior of Hankel’s functions

Hl(l) (mr) ~ 2 Jgmr=3r/4) .4 HfQ) (mr) ~ 2 e—t(mr— 37r/4)7

mr mr
(6.491)
we can again use closed paths €' and . By analogy with eq. 6.488, we get
ST R M, : D (o
L 5 Fy (m) Hy” (mr)dm + Fy (m) Hy (mr)dm
1 +C O3+0y
0 0
+ ]{ F, (m) H%l) (mr)ydm + / Fy (m) Hl(l) (mrydm + / Fy (m) H1(2> (mr) dm
Cp 100 —100
(6.492)
By definition, eq. 6.481, Fy(m) = F, (—m). Besides, as is well known,
H](Q) (—mr) = H](]) (mr).
Replacement, of the variable in the last integral yields
Oa O.
/ Fy (m) H1(2) (mr)dm = — / Fy (m) an (mr) dm,
and in place of eq. 6.492 we have
1
L= -5 / Fy (m) HY (mr) dm (6.493)

C1+Cy

+ / F(m) Hl(l) (mr)dm + j{Fg (m) Hl(l) (mr)dm

CUg+Cyq Cyp



402 CHAPTER 6. WAVES IN A LAYERED MEDIUM ...

Now we are prepared to derive asymptotic formulas for displacement.
Vertical component s,
As follows from eqs. 6.480 and 6.489,

S, ==k C (I, + I+ 1) (6.494)

Integral I, Integration along branch lines C; and C, yields
ks+ioo
I, = / m(2m2—k§)
ks
1 1

1
2 2)2 2 N 2 2)2 2 HO( ) (mr) dm,
(2m?2 — k2)" —4m? myms;  (2m? — k2)" + dmPmym

since the radical mg has different signs on C; and Cj. Thus,

ks+ioo
I, =8

m* my m, (2m? — k2)

4 5
(2m? — k2)" — 16m* m? m?

HY (mr) dm (6.495)

s

Introducing a new variable, ¢: m =k, +4¢, and assuming that the integral is defined
by the initial part of an integration, we have

m = ks, dm =1 dt, ms = /20 kst (6.496)
Because kg > 1, we can use the asymptotic expression of Hankel’s function, which
gives
2 _ _
H (mr) = ¢l (hsr —m[4) =1t (6.497)
whkyr

Substituting egs. 6.496 and 6.497 into eq. 6.495, we obtain

s = B2 2 ) (6.498)
since
1/2 =1t ﬁ
/t e dt = 532
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Correspondingly,

2N /2
8C, i (1 - Zg) kst
5. (k) = — = (6.499)

Eq. 6.499 describes the component of displacement, s, (ks), related to two waves
propagating along the boundary with velocity ¢;. Oune is the shear wave moving
through a medium; the other is the longitudinal wave propagating along the boundary,
also with velocity ¢;. The longitudinal wave arises in the same manner as in the two-
dimensional case. When the shear wave moves through a medium, vibration of particles of
the boundary gives rise to the evanescent longitudinal wave, which has the same velocity
of propagation, ¢,, along the boundary but exponentially decays with depth z.

Integral I; Performing integration along paths C; and (4, it is evident that
the resultant integral I; has the same integrand as that in eq. 6.495:

kl+ioo

mim; my (2m? — k?) 1
=8 / e o HEY (mr) dm (6.500)
(2m? — k2)" — 16m*m} m?

ki

Then, use of variable t, m = k; + it, gives

o 1/2
8 <1 - k:f) ethir
) e
L= ks (6.501)

= 5 3 ,
k2< > r?
l kl2

and

k2 1/2
CRNPLY

k 2
Sz (kl) = —SCl (k—j> kQ 3 7‘2
2 5)

This portion of displacement, s,, 1is also due to two waves. One is the P wave

(6.502)

advancing through a medium with velocity ¢; it has a spherical wavefront. The second
is the conical wave; its velocity of propagation is equal to that of the shear wave, c,.
Along the boundary, however, it moves with velocity ¢;. The wavefront of this wave
is the lateral surface of the cone; the apex is located on the z-axis. The appearance of

this conical wave was described earlier when we considered wavefields caused by a linear
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source. Propagation of the longitudinal wave produces vibration of particles of the free
boundary, which becomes the source of elementary shear waves. The conical wave is the

result constructive interference by elementary shear waves. Thus, the sum
S, (ks)+ sz (k)

is associated with waves moving along the boundary with two different velocitics, ¢
and ¢, and each wave is a superposition of longitudinal and shear waves. Of course, this
consideration is directly applied to function s,.

Radial component s,

In accordance with cqgs. 6.480 and 6.493,
Sp = —k2C (L + Ly + Ly) (6.503)

Integral L, Integration around branch point k, gives

ks+ico
_ 2
L, =2 / M msg [

ks

1 1

1
PR 5 + Y 5 aY (mr) dm
(2m? — k2)" — dmPmyms  (2m? — k2)° + 4AmPmym

or

ks+i00

I -4 m?m, (2m? — k2)° HY (mr)

PEETETY. 5 5 dm (6.504)
(2m? — k2)" — 16m*m; m?

s

Again performing a simple transformation, m = k, + if, we obtain

;iR VEVIE e 3[4 giks T /7
T k* /mkg T r3/2 2

or
4 ot kst
and
N 4.y eths T
5 (hy) = ——15 (6.506)
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Integral L; In the same manner, for integrals along branch lines C; and Cj we

have
ky+ico
9 1 1 M
L=2 mem 3 - 3 Hi” (mr)dm
/ (2m? —k2)" —4m?my my  (2m? — k2)" + dmPmymy
{
or
ky+ico 4 9 H(U ( ) J
m*mym? Hy (mr) dm
L, =16 = 6.507
l / (2m? — k2)* — 16m* m2 m?2 ( )
1
This gives
k? ; ;
16 k! /2% Fy k? <1 - —2> ki /3 frei 31/4
L= i
2\ 4
ke k} (2 — %) 2 r3/2
]
and
k,?
(k—; — 1) 16 eikl r
L, — Ak g (6.508)
S
)
Thus
k,'2
i 16C, (k2 - 1) ik
5, (k) = L (6.509)

AN
_ s
< k?)
Correspondingly, the radial component of displacement associated with branch points is
sr (ks) + 5 (k)

We have found asymptotic expressions of displacement at the free boundary caused by
waves that propagate with either velocity ¢; or velocity ¢. There is also a surface
wave, and its velocity cr (cr < ¢;) is defined from the real root of the Rayleigh equation
(eq. 6.449). In order to determine the magnitude of displacement caused by the Rayleigh
wave, we have to calculate the residual at the pole, kg, of the integrands in eq. 6.480.
Since in the far zone kv > 1, asymptotic formulas for Hankel’s functions can be used.
This means that displacement components related to the surface wave decay as 1//7,

— that is, much more slowly than the same components caused by the other waves.
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Chapter 7

Propagation of elastic waves in

borehole containing a fluid

In this chapter we will study wave propagation in a medium with a cylindrical interface
and mostly at relatively large distances from the source. As in the horizontally layered
medium, our attention is paid to reflected, transmitted, head, and surface waves, as well

as to normal modes.

7.1 Solution of the boundary value problem

Suppose that a cylindrical borehole with radius a is filled by a fluid, and the elementary
spherical source of the sinusoidal P wave is located on its axis, Fig. 7.1a. The sur-
rounding medium is an elastic one, and the density and wave velocity inside and outside
the borehole are p;, ¢; and p,, ¢, ¢5, respectively. Taking into account the geometry
of the model, we have chosen a cylindrical system of coordinates with the origin at point
O, where the source is situated, and the z-axis coinciding with the axis of the cylinder,
Fig. 7.1a. In order to describe the wavefields we again use scalar and vector potentials
that, due to axial symmetry, depend on two coordinates, r and z, only. By definition,

displacement s is related to the potentials as

s = grad ¢ + curl ¢ (7.1)

Correspondingly, vector s has two components, s, and s,, which are independent of
the azimuthal coordinate. Since the borehole is filled by a fluid, the rotational waves are
absent inside of it, and the wavefields are described by scalar potential only.

407
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Figure 7.1: (a) Cylindrical borehole (b) Behavior of modified Bessel function

Next we will derive formulas for potentials inside the borchole and in an elastic

medium, and with this purpose in mind we will formulate, as usual, the boundary value

problem. First, we know that complex amplitudes of potentials obey the Helmholtz

equations:
Vi, + k2o, =0 if r<a (7.2)
and
V2, + k2P, =0, Vi, +k¥p, =0, if r>a (7.3)
where
=2 b=, k=2 (7.4)
C1 @] Cs

Of course, eqs. 7.2 and 7.3 are invalid at the origin, where the source of the primary field
is located, as well as at the interface r = a. At points of this boundary between a fluid
and an elastic medium, the tangential component of displacement can be a discontinuous
function. At the same time, the normal component of displacement and normal stress
are continuous functions. Since shear stress is absent in the fluid, it is also equal to zero
at points of the interface. Thus, the boundary conditions are

~(1 2 ~(1 ~{(2 ~
I I R (7.5)

@
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It is convenient to represent the scalar potential inside the borehole as the sum

~ ~ ~

o (r, z,w) = wolr, z,w) + @ (r, z,w), (7.6)
where @,(r, z,w) is the scalar potential of a direct wave in a homogeneous medium with
parameters p; and ¢;. As we know,
ok R

R

~

0y =0C

(7.7)

Here C' is the constant and R is the distance from the origin:

k= (r2+z2)1/2

Function c}s describes secondary waves caused by the presence of the boundary, and

it is finite everywhere. It is clear that on approaching the source, the primary potential

becomes dominant:

et R
R

O, o =C if R0 (7.8)
Finally, assuming the presence of attenuation, even it is very small, we can conclude
that at very large distances from the source, wavefields vanish, and we have condition at

infinity:
5,0,  $y—0, and 0,0, if Rooc (7.9)

Thus, we have formulated the boundary value problem, and our goal is to find scalar and
vector potentials that satisfy eqgs. 7.2 and 7.3, as well as conditions 7.5, 7.8 and 7.9.

Solution of Helmholtz equation for scalar potential ¢
As was shown in the previous chapter, in the cylindrical system of coordinates the
Helmholtz equation is written in the form
Py 1o ¢

z k25 = 1
Oor? + r Or + 022 the =0 (7.10)

Here

k= ki if r<a
kL = Kk if r>a
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Applying again the method of separation of variables, we have
p(r,z,w) =T (rw) Z(2) (7.11)

Substitution of eq. 7.11 into eq. 7.10 gives two ordinary differential equations of the
second order,

1 d&*T 1 dT 1d*Z

— —— 4+ — — 4+ kP =Tm? and ——= = 4m? 7.12

T dr?  rT dr + Z dz? ( )
where m 1is an arbitrary variable of separation. In choosing a sign on the right side of
eqs. 7.12, we assume, by analogy with function (/NDO, that the scalar potential in both
media is an even function of coordinate z. Thus it is proper to choose minus sign on

the right side of the second equation of set 7.12, and this gives

d*Z

W—FWQZ:O

Its partial solution is sinmz and cosmz with arbitrary constants, and the latter is an
cven function of Z. For this reason, cosmz is used to represent the complex amplitude
of potential . Correspondingly, the first equation of the set 7.12 becomes

d*T 14T )
z _ — T = 7.1
dr? 7 dr (m ) 0, (7.13)

Its partial solutions are modified Bessel functions of the first and second kind,
Iy <\/m2 — k2 r) and K, (\/m2 — k2 r) ,

but of the zero order. In particular, if the argument is real and positive, the behavior of

these functions is very simple, Fig. 7.1b. For instance, their asymptotic expressions are

Iy (z) = 1, Ko(z) = —Inz it =0 (7.14)
1 T2 _ )
and Iy(z) — 2n2)1" et Ko(r) — (%> e it - o0

We will also use modified Bessel functions of the first order:

I (z) and K| ()
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Their asymptotic formulas are

: 1
I(z) — % K(@)—= = if 2—0 (7.15)
T
1\ T N 1/2
; — g K (z (—) - i g
and I (z) — <27m¢> el () — 5 e if o0
By definition, the sum
T (T7w) = Andy (mir) + B K (mir) (7.16)
satisfies eq. 7.13, and
m; = my=+/m?—k? if r<a
m; = my=/m?—k? if r>a

Taking into account the assumption about symmetry with respect to plane z =0 and

eq. 7.11, the partial solution of the Helmholtz equation is
O = [AmIo (mir) + B Ko (mygr)] cos mz (7.17)

Therefore, for the general solution we obtain

oo

~

@ (r,z,w) = / [Am Lo (myr) + By Ko (mr)] cosmz dm (7.18)
0
As was pointed out earlier, secondary waves have finite value everywhere. For this reason,
the secondary scalar potential 9775 is written as
by

0, = / Apdy (myr) cosmz dm, if r<a (7.19)

0
since function Kj (rny7) is infinitely large at the point of the borehole axis (r =0). In
approaching the origin (r — 0, z — 0), the secondary potential tends to a finite value.
Correspondingly, the function ¢, satisfies the condition near the source. Taking into
account that Iy (myr) increases without limit with an increase of r, potential ¢, in
an elastic medium is

Po (1, 2,w) = / B Ky (myr) cosmz dm (7.20)
0
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Thus functions gwol and :92 satisfy the Helmholtz equation as well as conditions near
the source and at infinity when r — oc. Note that these functions also vanish with the
increase of |z|. This happens becaunse of the oscillating factor cosmz in integrals of
eqs. 7.19 and 7.20.

Solution of Helmholtz equation for vector potential
We will assume that the vector potential has only an azimuthal component. In this

case the Helmholtz equation becomes
9" ) 1 ~
VY + ks——2 P =0
7
Then use of the method of separation of variables

171 =T (rw) Z (2)

gives the same equation for Z (z) as before, and its solutions are the trigonometric

functions
sin mz and cosmz

At the same time, function T (r,w) has to obey a different Bessel equation

ST 1dT (1,

where

ms = /m? — k2

Solutions of this equation are modified Bessel functions of the first order: I (m,r) and
K (mgr). Since I (myr) increases without limit with an increase of 7, provided that
m, is real, this function cannot describe the potential 179 outside the borehole. We will
attempt to satisfy the boundary conditions assuming that the potential solution of the

Helmholtz equation is the odd function of z, i.e.,

17)m (r, z,w,m) = Cpp Ky (myr) sinmz (7.22)

Then the general solution for the vector potential may be written as

~

¥ (r,z,w,) = / Cr K1 () sinmz dm (7.23)
0
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It is clear that this function also obeys the condition at infinity for any values of unknown
Ch-

Boundary conditions and determination of unknowns
By analogy with a horizontally layered medium, we represent the scalar potential of
the direct wave in terms of Bessel and trigonometric functions (Part IT):
e’i klR 2 7
=— / Ky (myr)cosmz dm
R T
0

(7.24)

Correspondingly, the expressions of potentials satisfying the Helmholtz equations as well
as conditions near the source and at infinity are

oo}

C/ [Ko (mur) + Ay Iy (myr)] cosmz dm if r<a (7.25)
0

o0
~ 2
and @, = —C/BmKo (myr) cosmz dm,
ﬂ- *
0

~ 2 3
Py =—=C /CmK1 (mgr)sinmz dm it r>a
T .
0

In order to determine unknown coefficients A,,, B,,, and C,,, we use the boundary
conditions, egs. 7.5. Since

. 85 -85 18 ( ~

_ 9 _ _ 9 (). 7.96
S P %7 52 + 7 Or 7"1,0) ’ (7.26)

., .,k

rroT 87’ bl rz T az ar b

~ ~ d5, ~ ~

and Trr = A div 8 + 2u i , Top = M €4y
or

eqs. 7.15 can be rewritten in terms of complex amplitudes of potentials:

or or 0z’

(7.27)
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~ o 82:0 821’2
2 — 27 2 r2
)\1]@] L= )\le P9 + 2,[,1,2 ’)“2 — 02

if r=ua

25 0%y, 8 (18 ~
and 2 ooz 02 | or <;E rw2> =0

Here we use the known equalities

divgrad p = V23 = —k*% and  diveurlep =0

Let us recall that A; is the bulk modulus of the fluid and

A= C?Plv (A2 +2p) = Clgpfzv Ho = Cf P2 (7.28)
In solving system 7.27, we may apply the equalities
n n 2n
]'I{L =11 — I, ]711 = Ipy1 + =1y, — L, =1~ I (729)
v v v
2
and  — K\ = Kooy 4+~ Ky, = Kl = Kypy = 2Ky, = Ky = Ky = Ky,
v v v

where v and n are the argument and order of the modified Bessel functions.
Substitution of egs. 7.25 into the first equation of set 7.27 yields:

—m Ky (mya) +m I (mya) A, = —my K, (mya) By, — m K| (mga) C,,

In the same manner, we have for the second equation

*)\1 k% [](0 (mla) —+ AmIO (mla)] = *)\2 1{'12 Bm K() (m,[(l,)

—2py M} By K| (mya) — 2pym m,C, K| (mya)
Finally,

2m m K, (mya) B,, + m*C,, K, (mga) + m*C,, K, (msa) = 0,

since

0 0
ETKI (myr) = a—UvKl (v) = K, (v) + vK] (v) =



7.1 SOLUTION OF THE BOUNDARY VALUE PROBLEM 415

K (v) v (KO 4 1K1> — uK (0)

and
o[12o

_ 0 _ 2
o [;ETKI (v)] = —EmsKo (msa) = miK; (mga)

Thus, the system of equations with respect to unknowns A, , B,,, and C,, is

my I, (mia) A, + K, (ma) B, + mK, (ma) C,, = m K, (mia),
“AMkiTy (mia) A, + [Aoki Ko (mya) + 2y m} K| (mya)] By, (7.30)
+2u5m mg K (mga) C,, = MkiKy (mia)

and 2m my K, (mya) B, + (2m”® — k2) K; (mya) C,, = 0

Before we continue, it may be appropriate to make two comments:

1. The potentials ¢ and 17; are represented in the form of the Fourier cosine and
sine transforms, respectively. This fact allows us to replace an equality of integrals with
an equality of integrands.

2. At the beginning we assumed that expressions for potentials do not contain terms
with either sinmz or cosmz. However, the same result follows from eqs. 7.27 if we
initially preserve these terms. In other words, our assumptions are justified.

From the last equation of set 7.30 we have

2m my Ky (mya)
= — B 31
Com (2m? — k2) K, (mea) " (7.31)

Its substitution into the first equation of the set gives

k2 my Ky (mya)

m1]1 (mla) Am (27n2 — k‘?) Bm = mlf(l (mla) (732)
The second equation of the system becomes
—\ kI Iy (mya) A, + X kP Ko (mya) + 2p, miK| (mya) (7.33)

Apy mPmy m KT (mga) Ko (mya)
(2m? — k2) K, (m;a)

] B = MK K (mya)
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Consider the sum of the first two terms in the square brackets:
Ao 2Ky (mya) + 2, miK| (mya)
Since
, 1
Ki(v)=—Ky(v) — ;Kl (v),
we have

. 1
Ay K2 Ko (mya) — 24, m? [Ko (rmya) + mKl (mla)] = (X2 K} — 211, m7) Ko (mya)
a

2
my

2m
—2p4 K, (mla) = —ly |:(2m2 — kf) Ky (mla) + TlKl (mla)]

mp a

Correspondingly, the expression in brackets becomes

‘ : 2m 4m?*m; m,K! (m,a) K1 (mya
R (sz_kj)KO(mla)+TlK1(mza)+ Lol (mya) K l)}

(2m? — k2) K1 (msa)

T (2m? - kg;ﬁ (msa) {(2m2 = )" Ko (mua) K (ms0) (7.34)

2/
+ (2m® — k2) K (mya) K1 (ma)
a

—Am2mym, {Ko (msa) + mlsaKl (msa)} K (mza)} = — (P,
where
P, = @m? kfl) Ky (maa) [(2m2 _ k?)z Ko (mya) K, (mga) (7.35)
_ 2my k2

K, (mya) Ky (mya) — 4m*m; m,Ky (mya) K (ma)
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It is interesting to note that function P,, contains terms like (2m? — kf)2 and 4m?my
m,, which are also present in the Rayleigh equation (Chapter 6). Thus, in place of eq.
7.33, we have:

b k2 Iy (mia) A+ PpBy = —b k2K (mia), (7.36)
because
Ha P2 C P2
Respectively, the system of equations with respect to A, and B, is
B2y K, (mya
maly (mya) Ay, — WBW =m K (ma) (7.37)
and b k2 Iy (mya) Ay, + PpBp = —b k2 Ko (mya)
The solution of this set is
. —k%my Ky (my a)
mlhl (mla) om2 _ k'§
—k2Ky (mya)b P,
A = o - (7.38)
and
midy (mya)  my Ky (mya)
b k2l (mia) —b k?Ky(mya)
B, = D = (7.39)
b i I (mya) Ko (mya) + Iy (mya) Ky (mya) bk? 1
—m ) = — i
s Dy, a Dy ’
since
1
I (v) Ko (v) + Iy (v) Ky (v) = " (7.40)
As follows from eqs. 7.37, the determinant is equal to
bkt 1 K
Dy, = miIy (mya) P+ —2 mfo (ma) K, (mya) (7.41)

(2m? — k2)
The coefficient C,, is defined from eq. 7.31.

We have derived formulas for scalar and vector potentials that can be used to perform
numerical integration. However, they are hardly convenient for obtaining the asymptotic
expressions for these functions. For this reason, we will begin by studying wave behavior

in some special and much simpler cases.
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7.2 Waves in an acoustic medium

We will start by considering a relatively simple case in which a medium surrounding
a borehole, is also an acoustic medium (p, = 0). Because shear waves are absent,
wavefields caused by the point source, (Fig. 7.1a), are described by scalar potential only.
Respectively, we have for the complex amplitudes of ¢ (7, z,w) inside and outside the
borehole (Part II)

~

o (rz,w)=C

ENEN

o0
/ Ko (mur) + A, I (mar)]cosmz dm if r<a (7.42)
0

o

~

2
and @y (1, 2,w) = C= /BmKo (maer)cosmzdm if r>a
m
0

where

w w
my = y/m? — ki, my = \/m? — k2, and k= —, ko = —
C1 Co

It is obvious that these functions satisfy the Helmholtz cquations as well as conditions
near the source and at infinity. Unlike in the general case, (u, # 0), only two equations
at the borehole surface describe continuity of normal stress and the normal component

of displacement:

U5 e W= 39 if r=a (7.43)
or
0p, _ 09
A kEor = Ao K50y, o= o (7.44)

Taking into account that A = pc?, eq. 7.44 can be rewritten as

~ ~ dp 0y ”
PLP1 = PaPa; o= o if r=a (7.45)

Substitution of eqs. 7.42 into eqs. 7.45 gives

o1 [Ko (mya) + ALy (maa)] = pa B Ko (mea) (7.46)

and my [~ Ko (mia) + Anl (mya)] = —me B, K| (maa)
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Solution of this system gives (Part II)

_ Ko (mga) Ki(mia) —mg b Ky (mya) K (mga)

7.47
my Ko (moa) I (mya) +mg b Iy (mya) K7 (mea) (7.47)
and
B = b (7.48)
™ almi Ko (maa) I (mya) +ma b Iy (mya) K (maa)] ’
Here
p=12
P2
In deriving the latter, eq. 7.48, we have used the equality
1

Also, it is useful to obtain egs. 7.47 and 7.48 from formulas derived in the previous
section. Assuming that p, =0, we have ¢; - 0 and k; — oo. Function P, (eq.
7.35), then becomes

Py =~ —k2Ky (mya)
Therefore, the determinant of the system D,,, eq. 7.39, is equal to
Dy, = —k2[mi I (mya) Ko (mga) + b myly (maa) K, (mya)]

Thus, coefficient A4,,, eq. 7.38, coincides with the coefficients for the acoustic medium,
eq. 7.47,if p, = 0. In the same manner, we obtain coefficient B,. It is clear that
coefficient C,, eq. 7.31, characterizing shear waves, vanishes if u, = 0.

Normal modes in the borehole

Next we will discuss wave behavior inside and outside of the borehole beginning with
the normal modes. First, suppose that the primary source generates incident sinusoidal
wave at sufficiently high frequencies that the wavelength is smaller than the borehole
radius @ (A < a). This means that at each point of the boundary, reflection and
transmission take place, as would also occur on the plane (Part II). At this point, the
direct wave can be treated as a plane wave, and its incident angle increases with an
increase of coordinate z. In order to understand the formation of normal modes we use

axial symmetry and consider any plane that contains borehole axis z, Fig. 7.2a.
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Let us assume that the incident wave reaches some point p of line 1 and forms
angle 0; with the normal to the boundary. The clementary reflected wave then appears
and travels upward. It reaches line 2 and causes another reflected wave, which goes
back to line 1. Reflections from both lines give rise to two families of waves, namely,
downgoing and upgoing waves. From Fig. 7.2a we see that each wave of these sets makes
the same angle 6; with radius . At a rather large distance from the source the
resultant wavefield related to the normal modes can be approximately described by a
system of plane waves propagating along the borehole and forming different angles with
the boundary. This picture may suggest that each group of upgoing and downgoing waves
undergoes multiple reflections at different points of the boundary and advances along
the z-axis. The interference of these waves may be either destructive or constructive,
and our goal is to examine the superposition of these waves when they interfere in a
constructive way. Before we discuss this subject in some detail, it is appropriate to make

two comments:

1. The incident wave simultaneously reaches all points of the boundary located at
any plane z = const. The reflected wave also arises at these points at the same instant.
Its rays are located at the lateral surface of the cone and at the wavefronts. For this

reason, these reflected waves are called conical waves.

2. If the incident angle exceeds the critical angle, we observe total internal reflection,
and the energy of these waves remains inside the borehole. However, when the incident
angle is smaller than the critical angle a transmitted wave appears, and some energy
penetrates into the surrounding medium. Thus, after each reflection, the waves inside
the borehole become weaker. This shows that even when constructive interference takes
place, rsulting mode nsually rapidly decreases with distance z from the source. Often
such a mode is called the leaking mode. Certainly, at large distances we observe the
result of a constructive superposition of waves with the reflection angle exceeding the
critical 6; > 0.

We have qualitatively described an appcarance of waves that move along the bore-
hole. In other words, it is assumed that under certain conditions there is a constructive
interference between reflected waves. Because of this a superposition of these waves —
called normal modes — may exist in the borehole. From the mathematical point of view
this means that each normal mode can itself satisfy, at some frequency, boundary condi-
tions. It is also obvious that propagation of the normal mode inside the borehole causes
vibration of the borehole surface (r =a), and evanescent motion in the surrounding

medium. Thus, every normal mode is accompanied by waves outside the borehole. As
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Path of integration on complex plane
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is well known from the theory of total internal reflection (Part IT), the amount of energy
moving into the surrounding medium during cach period is cqual to zero. This suggests
that such waves are evanescent waves. The independence of each mode from the others
allows us to find the conditions from which they arise, as well as their amplitudes and

phase velocities.

Dispersion equation

In accordance with eqs. 7.42, scalar potentials of normal modes can be represented

as
0, = / Apdy (mir) cosmz dm if r<a (7.50)
0
and i / B, Ky (mar) cosmz dm if r>a

0
In egs. 7.42 and in eqs. 7.50 we use the same notations for harmonic amplitudes, A,, and

B,,. However, in the eqs. 7.50, they characterize the normal modes only. Substitution

of egs. 7.50 into set 7.44 gives a system of two homogeneous equations:

p1AmIy (mia) — py B Ky (maa) = 0, (7.51)

mi Ay (mia) + maBp, Ky (mea) =0

Existence of the normal modes means that unknowns A,, and B, differ from zero,

which can happen if the determinant of this system is equal to zero:

prlo (maa)  —py Ko (maa)

D,, =
mily (mia)  moeK; (mea)

- 0
or
b mQI() (mla) Kl (mzd) + mlll (mla) K() (mga) =0 (752)

Here

my = y/m2 — ki and my = \/m2 — k2,
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and m, are roots of eq. 7.52. In order to demonstrate the presence of roots assume
that k1 > ky. Correspondingly, three intervals of integration are shown in Fig. 7.2b. In

the first one,
ki<m < oo,

both radicals m; and ms, are real and positive. Therefore values of the modified Bessel
functions are also positive, Fig. 7.1b. This means that determinant D,, of system 7.46
does not have roots if m > k;. In this light, it may be appropriate to notice that in this
case, integrands in egs. 7.42 describe elementary cylindrical waves that exponentially
decay with an increase of distance from the boundary. In other words, only harmonics
with m > ki may form surface waves. Since roots m, are absent in the first interval,
we conclude that this range of m does not produce normal modes. Within the second

interval
ky <m <k
the radical ms still remains real and positive, while m; can be written as
my = (m? — k)% = —imy, (7.53)
where m, is the positive number. Respectively, function D,, has the form
Dy = — it pyl; (—z‘ﬁm> Ko (m30) + mapyIo ( —iina) Ky (msa) (7.54)

Taking into account that

Iy (—ix) = Jy (—iz), @I (—ix) = —iJy (x), (7.55)
we have
D?n = —ﬁ?lp2 J1 (%1@) K() (mga) + m2p1J0 (T?Ll(l) Kl (mga) (756)

Therefore the denominator becomes equal to zero at points m,, where
mypy Jy (771@1) Ky (mgza) = map,Jo (ﬁzla) K (msa) (7.57)
This is called a dispersion cquation. Finally, within the last interval, m < k9, we have:

Dy = —iinpy () Ko (~ifna) — ifnopy o (na) Ky (—isia) — (7.58)



424 CHAPTER 7. PROPAGATION OF ELASTIC WAVES IN A BOREHOLE

Here

~

my = \/ k2 —m?

Functions K, (—imm), and K; (—imga) have complex values, and so function D,,

is also complex. At the same time, the presence of zeros requires that
ReD, =0 and ImD,=0
As calculations show, the real roots of the dispersion equation
D, =0

are absent if m < ko. Let us assume that the real root m, exists in this interval,
i.e., mo is a purely imaginary number. Taking into account the asymptotic behavior of
function Kj (mar), we have to conclude that in the surrounding medium there is a wave
propagating away from the borehole. Correspondingly, the energy of the normal modes
decreases, and they must vanish. Thus, we sce again that roots of the determinant D,

are situated only within the second interval:
]{,'2 <mp < ]{,']_ if Co > (1 (759)

The term cosmz in the integrands of eqs. 7.50 characterizes propagation of the normal
mode along the z-axis, and by definition the root m,, plays the role of the wavenumber.
Correspondingly, the phase velocity, ¢,, (w), of the normal mode is
W w
My = ——— or Cpn (W) = — (7.60)
Cpn (W) s
Thus, eq. 7.57 allows us to determine the wavenumber and phase velocity of the normal
modes. In order to determine their amplitude, we apply the same approach as in the

case of a medium with a plane interface.

Deformation of integration path

As usual, let us assume the presence of very small attenuation. Therefore, the singu-
larities of the integrands in eqs. 7.42 are situated either slightly above the real axis of m
in the first quadrant of the m-plane or a little beneath in the third quadrant. First, we
represent the potential of the secondary waves in the borehole in a different way. Since

e’L m z + 6—’L m z

cosmz = 5 ,
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we have

_C

m

/4 Iy (myr) M g, +—/A Iy (myr) et M2 g,
0

Since A,,(m) and I (myr) are the even functions
Ap (=m) = A, (m), Iy (myr) = Iy (—myr)

the last integral is written as

/A'm (’rn) [0 (Tan') e_i m z dm = — / AWL (—777,) ]0 (7TL1T) ei m z dm
0 0
0]
= [ A ) Ty mar) 2 i
Thus,
C im z
—_ Am IO mlr) e dm (7.61)
i

Applying the Cauchy theorem to the closed path Cjy shown in Fig. 7.2c, we have

o0

Np ; Np,
"Iy (myr) "% dm = / —1Iy (myr) M qm (7.62)
-Dm ‘Dm
Co —00
A 1mz I _
D "Iy (mar) e dm+ M, + M, =0
COO m

Here A, and M, are sums of integrals around poles and branch points, respectively,
and

Ny = [mi1p Ko (maa) Ky (maa) — map, Ko (mia) Ky (mga)] (7.63)

Since the integrand contains the exponential term exp (imz), we can use the Jordan
lemma and discard the second integral in eq. 7.62. This gives

00

/ A (m) Iy (rmyr) eMZ gy = —-M, - M,

-
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and hence

~

C
Po= == (My+ M) (7.64)

In a similar manner the potential ¢, can be described in terms of integrals around poles
and along branch lines. Since the poles m,, cxceed the wavenumber ko, the radical mg
is positive, and, therefore the function Ky (myr) exponentially decays with distance r,
if kor > 1. As was already pointed out, this suggests that outside the borehole, the
wavefields associated with normal modes behave like evanescent waves. They appear due
to total internal reflection when destructive interference produces a rapidly weakening
wave in the surrounding medium.

In accordance with egs. 7.64 the wavefield in the borehole consists of three parts:
9N91 = </N90 + 9N9p + 9N9b (7-65)

We focus now on the second term, g}p, related to the poles. Because roots i, of the
dispersion equation D, = 0 are poles of the integrands in eqs. 7.42, we can say that
the normal modes are defined by behavior of the potential in the vicinity of the poles.
This fundamental fact allows us to apply theory of the complex variables to determine
the amplitude of the normal modes (Part II). At the same, the phase velocity ¢, (w) is

calculated from the dispersion equation. Taking into account the residual theorem, we

have
@, = 2C Z Res F), ¢! M Z (7.66)
n=1
where
F, = g: Iy (mar), (7.67)

while D,, and N, are given by eqs. 7.58 and 7.63, respectively. Taking into account
that

@, (r,z,w) = Re 95176_’5 w t,
eq. 7.66 gives

o, (r,2,w) = RcZGn eiw t —my 2) (7.68)
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Here
G, =2C i ResF, (7.69)

The latter, eq. 7.69, clearly shows that cach term of the sum characterizes a sinusoidal
wave (normal mode) traveling along the borehole with phase velocity ¢,,, eq. 7.60.
At the same time, function G, defines the complex amplitude of the normal modes,
which depends on frequency, parameters of the medium, the distance r, and root m,,.

From eq. 7.67 it follows that dependence of the normal mode amplitude of distance r

Jo (\/kf —m2 r) ,

is determined by the function

since
Io (mﬂ”) = J() (77117")

This means that each mode as a function of r represents a standing wave.

We will begin our study of normal modes with the simplest case, in which the borchole
is surrounded by an ideally rigid medium.

Case 1 When the borchole is surrounded by an ideally rigid medium, function F,
is greatly simplified, and we have

K ~
F,=—i M Jo (mlr) (7.70)

Ji (mla)
Correspondingly, the dispersion equation is

Ji (ﬁzla) =0, (7.71)

and its first zeros are given below:

n 0 1 2 3 4 3 6

T, =maa | 0] 3.83|7.02|10.17 | 13.32 | 16.47 | 19.64

Since with an increase of the argument the behavior of Bessel functions has a sinu-

soidal character, the difference between zeros, r,, tends to 7. Letting

mia = ry, (7.72)



428 CHAPTER 7. PROPAGATION OF ELASTIC WAVES IN A BOREHOLE

we obtain for each mode a relationship between wavenumber m, and the frequency:

1
my = = (kia® —r2) 2 (7.73)
a
As follows from eq. 7.73, for all normal modes except n = 0, there is a nonzero frequency
when
. Tn C1
ko =1y = 7.74
a=r or fo=5 0 (7.74)

This is called the cut-off frequency. In this case, wavenumber m, is equal to zero
and the phase velocity becomes infinitely large, eq. 7.60. With an increase of w the

wavenumber of the normal mode increases, eq. 7.73, and therefore phase velocity ¢,

w a
T (kia? — 7“2)1/2, (779)

gradually decrcases. In the limit it tends to the wave velocity in the borcehole fluid
Cpn (W) = €1 it w—ooo (7.76)

As was pointed out earlier, every normal mode is the result of the constructive interference
of waves reflected from the cylindrical boundary. With an increase of frequency, the angle
between the direction of propagation of these waves and the z-axis decreases, and it tends
to zero when w — co. Dispersion curves of phase velocity ¢, (w) for the first several
modes are shown in Fig. 7.3a. Unlike with the other modes, the phase velocity of the
normal mode n = 0 is independent of frequency, and it is equal to ¢;. In fact, since

ro = 0, we have, eq. 7.7
my = ky and Cpo = 1 (7.77)

Thus, regardless of frequency, this mode propagates along the borehole with constant
velocity, and its cut-off frequency is equal to zero. From eq. 7.75 it follows that with
an increase of the order of the normal mode, the cut-off frequency also increases. Corre-
spondingly, there is a range of relatively low frequencies in which modes except n = 0
are absent. In the second range the first mode appears, so that there are two modes. In
the next interval three modes exist, and so on. Note that the cut-off frequency of any
mode is related to the pole m, = 0. We see from eq. 7.74 that the normal mode arises

when the smallest wavenumber is equal to

_ ™ : & _ T
b= or N (7.78)
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For instance, if n =1, we have

a
/\—1 22 0.6,

and the wavelength is slightly smaller than the borehole diameter. Of course, with an
increase of the mode order, wavelength A, (A. = ¢/f.), decreases. (The normal mode
of the zero order is an exception. The carliest “telephone” was based on air pipes, and
communication took place due to propagation of normal mode n = 0 with constant
velocity ¢, regardless of frequency.)

In accordance with eq. 7.70, the residue of function F, (Part II) is

m K1 (mya) Jo (7%17’)

Res F,, =i — , (7.79)
mua Jj (mla)
since
d ~ n ~
— J] (mla) = fni ¢ J (mla)
om m
Taking into account the equality
J;
T (@) = () - 2,
z
in place of eq. 7.79 we obtain
7%1.[(1 (mla) JO (ﬁlﬂ’)
Res F,, =i — (7.80)
N Ji (mla>
mpa | Jy (mla) -
mya
Now, making use of the asymptotic behavior of the Bessel functions
z 1 .
Jo (z) = 1, gy (:U)—>§7 K (z) — -, if z—0
x
we have for the normal mode of the zero order, when mgy = k;
2
RGS Fn = —W
Therefore, function Gy, eq. 7.69, is
4iC
Go= (7.81)

leLQ
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and

9907) = —m € 7(w 12) (782)

Proceeding from the equality

~ o~ o~ g
Tee ™= Tpr = -\ kl(pOp = =MW Py

the expression for stress caused by the mode of the zero order is

7 = “Z# O et = ki2) it mo =k (7.83)
Thus, stress uniformly distributed over the borehole cross-section and, as we may expect,
is inversely proportional to its area (wa?). Since
_ % v %

= and s
2 0z

o’

8
we have

~ 1C _; _ I ~ .
$,=—5 ¢ Hwt—hz) g 5, =0 if myg=k (7.84)
a
That is, displacement has only the vertical component 527 which is independent of coor-
dinate 7.
Next let us discuss the general features of normal modes of the higher order. From

eqs. 7.69 and 7.79, we have
ﬁllKl (mla) JO (T?Lla)

mya Jo (ml a)

G, =-2C : (7.85)

because

Ji (na) =0
Unlike in case n = 0, functions &, depend on coordinate r. Since the complex
amplitude of potential is
mi K, (mya) Jo (77117’)

6_2 (w t— my, Z)’ (786)
mpa Jy (7711@>

Ppp=—2C
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formulas for the stress and displacement components are

) mi Ky (mia) Jo (77”1") ot (wt—my 2)

?

myua Jy (ﬁlm)

S (7.87)

ﬁbllﬁrl (mla) J() (ﬁll’)")

a Jy (mla

~2 ~
m Ky (mya) Jy (mﬂ')

i (Wt —my 2)
mya Jy <mla>

s =2C

This clearly shows that with an increase of the order n, the wavefields vary more
rapidly in the radial direction, forming standing waves and, correspondingly, a sequence
of extensional and compressional zones. At each point of the borehole except its axis and
the surface r = a, there are usually two components of displacement, and the phase
shift between them is equal to 7/2. For this reason the vector s is elliptically polarized.
Note that the radial component s, vanishes at the boundary since J; (TNTL1(L> = 0. This
is obvious, because the surrounding medium is rigid.

Case 2  Consider the second limiting case, in which p, = 0, 1i.e., a cylinder
containing a fluid is surrounded by free space. As follows from cq. 7.67,

Ky (maa .
g o= Kolma) (mﬁ") (7.88)

Jo (7% la)
Respectively, the dispersion equation is

Jo (ra) =0, (7.89)

where 7, = mya. Values of r, for the first six modes arc given below:

3 4 ) 6
8.65 | 11.79 | 14.93 | 18.07

n 1
T | 2.40 | 3.

o | N
[\)

As in the previous case  (p, — 00), with an increase of the order of a mode, the

difference between neighboring r, approaches 7. The normal mode of the zero order
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is absent. Also, as before (p, = 00), at the cut-off frequency phase velocity ¢, (w)

tends to an infinity, and with an increase of w approaches ¢;. In both limiting cases

(py — o0 and p, — 0), the value of r, is independent of frequency. Since r, can be

1 1
o= w5 (7.90)
&1 Cpn

we conclude that the radical in eq. 7.90 is inversely proportional to w. In the same

represented as

manner as in the first case, we find that the residue of function F,, is

mi K, N
Res F,, = —w% (77117“) (7.91)
mya Jp (mla)
Hence
T?Zl.[(() (mla) J(] (7%17’)
G,=-2C1i — (7.92)
My a Ji (mla)
and
N my Ko (mya) Jo (myr "
Ppp=—2Ci ( ) e twt —my 2) (7.93)

mpa Jq (ml a)

This demonstrates that boundary conditions are satisfied at the borehole surface, i.e.,
the strain is equal to zero at its points. Note that component s, also vanishes if r = a.
As a rule, inside the borehole the vector s is elliptically polarized, and we can also
observe a regular change of the pressure sign in the radial direction (standing wave). As
follows from eq. 7.93, the amplitude of the normal modes is independent of distance z.
It also remains valid when the density of the surrounding medium has a finite nonzero
value if ¢; > ¢;.

General case When both media have nonzero and finite values of density, the
wavenumbers of the normal modes m,, (poles of the integrands in eqs. 7.42) are defined

from the dispersion equation 7.57
ﬁ’LlJ] (ﬁlla) KO (mga) = My b J() (ﬁlla) Kl (mga), (794)

where

Pi
P2

b:
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Introducing notation
Tp = MM10 or rp = 4/ k% —m2 a, (7.95)
we have for the wavenumber of the normal modes

m? =k — (%)2 (7.96)

and, as was pointed out earlier:

B 1 1 1/2
R T 2 W)

pn
Correspondingly,
ma a = /p*> —12, (7.97)
where
2\ /2
p = fkia and 8= < - —;) (7.98)
&

Thus, eq. 7.94 becomes

i (r) by/p? —r2 K, (\/p2 — 7,%)

Jo (7n) K, ( 2 — 7,2)

n

(7.99)

Unlike in the case of a medium, where p, =00 or p, =0, the value of 7, depends
on frequency. As in the presence of the plane interface, this value is defined numerically
(Part IT). The left side of eq. 7.99,

Tn Jl (rn)
J() (Tn)

is independent of parameter p; its behavior is shown in Fig. 7.3b. At small values of

filra) = (7.100)

Tn, the function fi (r,) is positive and decreases in proportion with r2. At greater

values of r, its behavior is dictated by the roots of equations
Jo(r,) =0 and Ji (r,) =0,
and in the limit we have the periodic function

fi(ry) — rptan (rn — %) — rptanry, if r, > o0 (7.101)
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The right side of eq. 7.99

5 (VP 7)
fa (1, p,0) = b\/p —rnm (7.102)

for given b depends on two variables: p and 7,. Respectively, we can plot a system
of curves describing this function, Fig. 7.3b. An intersection of graphs of fi (r,) and
f2 (r) allows us to determine 7, and, correspondingly, the root m, of the dispersion
equation for each value of p and b. Inasmuch as functions K, and K; have complex

values, if r, > p, eq. 7.99 does not have real roots in this range. Let us assume that
Th =D (7.103)

Then the right side of eq. 7.99 becomes equal to zero, because

K (VI 72) L ad K (VP 72) = o

-
Therefore, eq. 7.99 takes place when
Ji(r,) =0 (7.104)

The latter equation defines the roots, m,,, of the dispersion equation corresponding to
the cut-off frequency. As was already pointed out, at smaller values of p; (frequencies),
the real roots of eq. 7.99 are absent. Note that unlike the in limiting case when p, — oo,
eq. 7.104 characterizes the roots for each mode only at the cut-off frequency. From egs.
7.97 and 7.103, we obtain

My, = ko (7.105)

Thus, at the cut-off frequency the phase velocity coincides with that of the surrounding
medium

Cpn = C2 if f=1r (7.106)

Now suppose that parameter p, i.e., the frequency, tends to infinity and that ¢, (oo ) #

co. By definition we have

1 1)\ s on1f2 11
Tn = WaQ <—2 — (‘T> and (p*—r2)"" =wa (CT — —2>

S ‘pny N =]



436 CHAPTER 7. PROPAGATION OF ELASTIC WAVES IN A BOREHOLE
Since
Ky (z) — K, (2), if z—o0

in place of eq. 7.99 we obtain

= : (7.107)

Here ¢,, corresponds to the high-frequency limit. The solution of this equation gives
some finite value of r,, eq. 7.95, and, since w tends to infinity, phase velocity c,,

should approach ¢;:
Con = €1 it w—oo (7.108)

It is easy to show that eq. 7.99 does not have a solution, if ¢, (00 ) = ¢o. Thus, the

range of change of the phase velocity is
€1 < (W) < e, (7.109)

regardless of the order of the normal mode. Behavior of this function for several modes
(n=0,1,...,4) is shown in Fig. 7.3c. In this case, the fundamental mode exists for all
frequencies.

From egs. 7.98, it follows that parameter p can be written as
p = kyacosf,, (7.110)

where 0, is the critical angle. As we know, if @; > 0, total internal reflection takes place
and normal modes are formed that propagate without attenuation along the borehole.
Having solved the dispersion equation, we have found the wavenumbers of the normal
modes and, therefore, their phase velocities ¢y, (w). Then, applying the residue theorem,
we can calculate mode amplitudes at any point of the borehole cross-section. From the
physical point of view, as well as eq. 7.67, it is obvious that amplitudes are independent
of the z-coordinate. This is why at large distances from the sources, wavefields related
to the normal modes play the dominant role. Also from eq. 7.67, we see that with
an increase of the order of the normal modes, more modes of the standing wave are

observed between the borehole axis and its surface. In the same manner we can evaluate
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the magnitude of evanescent motion in the surrounding medium that are associated with

normal modes.

Transient modes

By analogy with a horizontally layered medium (Part II), study of the dispersion
curves of ¢, (w) allows us to discuss the main features of waves in the borehole.
Suppose that a spectrum of the wave caused by the primary source is a continuous
function of frequency. In illustration, let us consider just one normal mode with index
n. Barlier it was shown that the primary wave with frequency f, which is smaller than
the cut-off frequency (n # 0)

f < fC'VU

does not cause the normal mode. The normal mode appears when f = f.,. With
an increase of frequency, the phase velocity c,, decreases, varying between ¢; and
Cy, eq. 7.109. Since each frequency component in this mode propagates at a different
phase velocity, interference with this system of waves gives rise to different wave groups.
Each group is characterized by a certain value of the dominant frequency and the group
velocity ¢4,,. As is well known (Part II), phase and group velocities are related to each

other in the following way:

11 W dey
R (7.111)

2
Cogn Cpn G dw

Because the function ¢, (w) is known, the group velocity ¢4, (w) is easily calculated
and its behavior is shown in Fig. 7.3d (n = 0,1,...,4). At the cut-off frequency, the
group velocity coincides with the physical velocity co of the surrounding medium. With

an increase of frequency it becomes smaller, and at some frequency f,4 velocity cg,

11
gn’

grow and asymptotically approaches ¢;. Knowledge of the function ¢y, (w) permits

reaches minimum value c;,,. With further increase of frequency, velocity cg4, begins to
us to describe qualitatively the behavior of the transient wave. Suppose that the source
located at the origin is turned on at instant ¢ = 0, and at some distance z the receiver
measures the nth transient mode. During the time interval

z

0D<t< =,

Co

the wave is absent. At instant ¢ = z/e¢; the wave group arrives, and its dominant

frequency is equal to the cut-off frequencies, f.,. With increased time, wave groups
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with higher frequencies begin to arrive. Within some frequency range

.fcnl < fl < fm

the dominant frequency of the wave group gradually increases with time. At an instant
slightly greater than the ratio z/c;, two wave groups arrive simultaneously at the
observation point. Their group velocities are equal to each other and almost coincide
with ¢;. The dominant frequency of the first group equals f;, while the second
is characterized by much higher frequency. Such superposition of two wave groups is
observed within the time interval

f i< 2

Cq gln7

and with increased time the dominant frequencies of both groups approach each other.

Finally, starting from instant

only one wave group exists, and its dominant frequency is equal to f,4. It is customary
to treat this last stage of the transient wave as the Airy phase. All other modes behave
in a similar way. Note that dispersion causes change in the waveform with distance z.
The waveform stretches in time and, in accordance with law of energy conservation, the
amplitudes of the transient modes, unlike in the case of the stationary modes, decrease

with z.

Normal modes and interference of conical waves
Let us represent the integrand in eq. 7.61, which describes the secondary wave inside

the borehole, as
A Jo (ﬁm) el M2 (7.112)
Here
my = /E? —m2>0
We arce interested in the high-frequency spectrum in which

T7l17’>>1
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In this part of the spectrum, the Bessel function Jy (ﬁllr) is approximately equal to

~ 2 12 ~ s
Jo (mﬂ") ~ < — ) Cos (mﬂ' - —)
Tmyr 4

or

~ 1 172 g S ; Y A

Jo (mlr) ~ < - > <e 7/7T/4€7/ mr em/4e ¢ mn‘) if r#0 (7.113)
2mmar

This shows that the integrand, eq. 7.112, can be represented as a sum of two conical

waves. One of them is proportional to

1 L~ .
—exp (—mm‘ + zmz) ; (7.114)

N/
and it moves toward the borehole axis. The other is
1

s <inN11r + zmz) , (7.115)

and it diverges from this axis. The wave front, i.c., the surface of the equal phase,

coincides with the lateral surface of the cone. Its apex is located at the borehole axis,

Fig. 7.4a, where

tanf = - (7.116)
my

It is obvious that at each cross-section of the borehole, superposition of conical waves
produces a standing wave.

In order to determine the relationship of borehole radius a, frequency w, and angle
f, when the normal mode can be formed, consider the ray passing through point A of
wave front N'ON, Fig. 7.4b. This ray intersects the borehole axis at point B and,
after reflection at point C of the boundary, it moves toward the axis. Tt is cssential
that the ray remain normal to the phase surface of the convergent wave. At point D,
it intersects the same wave front N'ON. The condition for the existence of a normal
mode requires that the difference between the phase at point A and a change of phase
along the ray must be equal 27n. In evaluating this difference, we assume that p, = oo
and take into account three factors:

a. In accordance with egs. 7.114 and 7.115, the conical waves propagate with the
velocity of the borehole fluid, ¢;.

b. The phase shift between the reflected and incident waves at points of the rigid

boundary is equal to zero.
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Figure 7.4: a) Conical wave fronts (b) Illustration of constructive interference, eq. 7.118

c. At each point of the borehole axis, the rays converge, and these points may be
treated as foci. This means that the difference between phases of convergent and divergent
waves in the vicinity of the axis is equal to —m/2.

Thus, the condition for constructive interference is
m

To find the ray length, we introduce point A’, which is the mirror reflection of point A
with respect to the borehole axis and which is located at the same wave front. It is clear
that

AB=A'B
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and hence
|ABECD| = |A'BECD)|
or
|ABECD|=A'B+ BE + EC + CD,
where
A'B=BEcos2, CD=ECcos2, and BE+ EC = é (7.117)

Note that points £ and D are located at different wave fronts. In particular, point £

belongs to the converging wave. Therefore

ABECD = a (1 + cos 20) (7.118)
cos
and, in place of eq. 7.117, we have
T
2kiacosf = 5 + 27n
or
-
kiacos® = — (2n+1) (7.119)

Thus, permissible values of angle #, when the normal mode is formed, are defined from
eq. 7.119. The latter also shows that the minimal (cut-off) frequency of the mode occurs
when # =0, and it is equal to

a(@2n+1/2)

fne = 1
or
(kra);, = g (2n +1/2) (7.120)

Regardless of the order of the normal mode (n # 0), with an increase of frequency angle
0 also increases; otherwise, constructive interference would not take place. Comparison
of r, (eq. 7.72) with values of (kia)_; follows

min

n 1 2 3 4 5 6
Th 3.83 | 7.02 | 10.17 | 13.32 | 16.47 | 19.64
(k1a) | 392 | 7.06 | 10.20 | 13.34 | 16.49 | 19.62
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Next assume that the surrounding medium is free space (p, =0). Then the phase
shift at the boundary between incident and reflected waves is equal to m, and in place

of ¢q. 7.119 we obtain

T 1
kiacosf = B) <2n - 5) (7.121)

Comparison of (kia),;, with values of r, (eq. 7.89) follows:

n 1] 2] 3] 4 5 6
ra | 240552865 11.79 | 14.93 | 18.07
(k1a);, | 235 | 2.49 [ 8.63 [ 11.80 | 14.91 | 18.05

The right sides in eqs. 7.121 and 7.122 define asymptotic values of roots of Besscl
functions Jj (r,) and Jy(r,), respectively. As follows from eq. 7.116,

i.e., the phase velocity of the normal mode is the apparent velocity of the conical wave
along the borehole axis. Of course, the same result directly follows from Fig. 7.4b.
Now we will focus our attention an a different part of the wavefield, namely, head

waves (cz > ¢1).

Head waves in the borehole (cy > ¢1)

At the high-frequency spectrum, when the wavelength is smaller than the borehole
radius, we can expect the appearance of the head wave, Fig. 7.5a. Tt arises at points of
the borehole surface where the incident angle of the direct wave is close to the critical
angle, .. In order to find an asymptotic expression of the potential of the head wave,
we evaluate the contribution of the integration along branch lines C; and C,, Fig.
7.5b. In this light, it is convenient to represent the potential inside the borehole in the
form (eq. 7.61)

JdER o 1 .
I + . Ap Iy (myr) ™% dm (7.123)

—0C

9~91ZC

Here

R=+vr2+4+22
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Figure 7.5: (a) Rays of head waves (b) Contour of integration along branch lines (c)

Intervals of integration (d) Phase velocities of surface waves (e) Group velocities of surface

waves. Numbers near curves are the values of Poisson’s ratio . [After Biot, 1952]
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and

4 - mi Ky (mea) Ky (mye) —me b Ky (mia) Ky (maa) (7.124)
m m1Ky (mea) I (mya) +ms b Iy (mya) K (mea) )

To integrate along line Cj, we introduce a new variable,
my = it, (7.125)

where ¢ alters from 0 to oc on one side of the branch line and from —oo to 0 on its
other side, since after passing branch point ki, radical m; changes sign. The variable

of integration m along contour €4 can be represented as

m=(m2+ k)" = (=2 + 1) =i (- )" (7.126)
and, correspondingly,
_ it dt _ 9 9 2\ 1/2
1 = m and my = (—YL + kl — I{Q) (7127)
Then the integral along branch line C; becomes
[e.¢]
it K Ky (ita) —ms b Ky (ita) K
/ it Ko (mea) K, (z a) — mo 0 (z a) K (mga) I (itr) (7.128)
it Ko(moa) I, (ita) +my b Iy (ita) K| (maa)
it K (mea) Ky (—ita) — may b Ky (—ita) K (mga)I (—itr)
—i t Ko (mga) I (—ita) +ma b Iy (—ita) K (maa) 0
: a2
o it . V2 —kiz dt
(2 = k)"
Making use of relations
Iy (—ita) = Iy (ita), I (—ita) = =1 (ita) (7.129)

and Ky (—ita) = Ky (ita) +inly (ita), Ky (—ita) = — K (ita) +in 1| (ita) ,

we perform a transformation in eq. 7.128 and write the second fraction in parentheses
in this equation as

—1t Ko (mea) [-K (ita) + ¢ 711 (ita)] — mebK, (maa) [K (ita) + ¢ w1 (ita)]

7.130
i tKo (mea) I (ita) + mebK, (ita) I (ita) ( )
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it Ko (mga) K (ita) —my bK, (ita) K, (mea)
i tKy (mea) T (ita) + my bK, (ita) T (ita)

The first term on the right side of eq. 7.130 coincides with the first term in parentheses
in eq. 7.128. Therefore, the integral along branch line C; is equal to

o /12— k%2
te !
—77/ — Iy (itr) dt
J 12 — ki
or
0o 2k
te 1
— Rl
0
since

I() (ZfT’) — J() (t’l")

Taking into account that

dkl oy —\/ 2 — k%2
= > ; dm, 7.132
7 / o e Jo (mr) dm, ( )
we conclude that
R ol bR
Bolh) = —C (7.133)

In other words, inside the borehole the sum of potentials due to the direct wave and to
integration along branch line C) is equal to zero. Thus, the field in the borehole caused

by the head wave is expressed only through the integral along branch line C,

~ C ;
P1b (w,r, Z) = ;/Am Iy (mlT) eZ m dt
C2

or

. C 100 .
o (w,m12) = ;/[Am (ma,ma) — A (my, —ma)] Ip (mayr) ' ™ 7 dt, (7.134)
k2
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and the integral can be written as

/ leO (mga) K1 (mla) — My b K(J (mla) [(1 (mga) (7 135)
my Ko (mga) Iy (mya) + ma b Iy (mya) Ky (maa) ’

k2

my Ko (—maa) Ky (mya) + may b Ko (mya) K (maa) To ()
- myr) e
leo (*mga) Il (mla) — M2 b ]0 (mla) Kl (*mga) 0 !

tm z dt
First, consider the numerator of the expression in parentheses, which is equal to
[le() (mga) Kl (mla) — meK() (mla) Kl (mza)]
x [m1 Ky (—maa) It (mya) — mably (mqa) Ky (—maa)]

— [m1 Ko (maa) I (mya) + mably (mya) Ky (maa)]

= [m1 Ko (—maa) Ky (mya) + ma bKy (mia) Ky (—mea)]

The use of eqs. 7.129 greatly simplifies the numerator, which becomes

—b i
2

. (7.136)

Respectively, in place of eq. 7.134 we obtain

Cibd
a2

100
O (1, 2,w) = — / F (mqy,ms) I (mar) et M gy (7.137)

k2

Here

F (my, my) = [my Ky (mga) Ty (mya) + mably (mya) Ky (maa)] ™ (7.138)

x [my Ko (—maa) I (mya) — mably (mya) Ky (—mea)] ™

To evaluate this integral, it is useful to introduce variable ¢, whic is related to m in
the following way:

m=ly+il (7.139)

Z
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It is clear that ¢ varies within the range
0<g <o and Mz ke 2 —q (7.140)

This means that the asymptotic value of the integral is determined by the interval of
integration, where ¢ < 1. For such values of ¢ we have

1/2 1/2 ;
m ~ <k§ 42 k%) and mg = (ng) . dm= gdq (7.141)

Taking into account the behavior of functions K, and K for small arguments:

1
Ko(l')—>’)/0—hl£7 Kl(x) — =
2 z
we have
f -1
F (my,my) =~ a® [mla I (mqa) (70 +1n %) +b1 (mla)} (7.142)

—MmMoa

-1
X {mla I (mqa) <ﬂ/ +1In ) +b 1 (mla)] ,

where 7, = 0.57722 is Euler’s constant. Because for small values of ¢

. 2
mia ~ A k3 —k¥a=/k¥—-Fkia 627/2, mea & \/21{2@— em/47
2

.[0 (Z\/kf - kﬁ a> = J() (\/I‘J% - kﬁ CL) s (7143)
_[1 (Z\/k%—k% a) =1 Jl (\/k%—k% a) ,

instead of eq. 7.137 we have

~ Ch
P (r,2,0) = ——¢ ka2 g, <\/k% — k3 r) (7.144)
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e
8 / kogqa? ) kaqa®
0 (oq + 8, In > (az + 551n >
z z
where a4, 3, and a9, 3, are constants. At large values of z, when

]fg(l?

< 1,

the denominator rapidly varies with ¢. This fact does not allow us to take function F

out of the integral. To overcome this difficulty we introduce a new variable, -:
qg=rFky z e (7.145)
whence
dqg=ky 2 eV dy and Ing=1Inky z+7~ (7.146)

Then the integral in eq. 7.144 becomes

o0

exp (v — ko z eV dy
ky 2 / 7.147
’ (o1 + 28, Inksa + B17) (a2 + 26, Inksa + B,7) (7.147)

—0o0

It is clear that the integrand rapidly decreases when ~ tends to either the upper or lower
limit. In order to evaluate the integral, we use the stationary phase method. Taking the
first derivative from the function

—ky 2 €7,
we find that stationary point <, satisfies the equation
l+kyzels =0 or v, = —Inkoz (7.148)

The main contribution to the integral comes from the vicinity of stationary point -,.
Since v, < 0 and |vy,] > 1, the denominator of the integrand is a slowly varying

function that can be taken out of the integral. This gives

o]

kQ z
—kyzel) dy  (7.149
(o + 261 Inksa + B17,) (ao + 285 In kaa + 357,) / exp (1= ks 2 el) dy )




7.3 PROPAGATION OF SURFACE WAVES ALONG A BOREHOLE 449

Again introducing variable ¢, eq. 7.145, we find that the last integral is equal to 1/ksz.
Thus, eq. 7.144 becomes

~Cb g
B = — ka2 gy (y/k% — k2 7") (7.150)

<

1
X
(Oél + 2[31 In k’ga + ﬁle) (Oéz + 2/32 In k’QCZ + ﬂQ'YS)

The latter represents the leading term of the scalar potential of the head wave. As a
function of z, :01,,7 it is inversely proportional to koz In?ksz unless J; (\/k? — k3 a) =0,

and to ko z when J; (\/ k? — k2 a) = (. The dependence on 7 is given by Bessel
function Jy (\/kf — k3 r). It is worthy to note that the product

eth2z J <\/kf — k2 r>

at the right side of eq. 7.150 indicates that if \/m r > 1, the angle between the
rays of the head wave and the borehole radius is equal to the critical angle, 8.

In our study of the wavefield inside the borehole at large distances from the source,
we have found out that the wavefield consists of normal modes and head waves. The
amplitude of normal modes is dominant, and the influence of the primary wave and of
leaking modes is negligible. Besides, we have noted that normal modes behave as inhomo-
geneous waves in the surrounding medium. Also, outside the borehole, the transmitted
wave propagates away from the boundary with velocity ¢,. This wave arises at points
of the interface r = a, where the incident angle is smaller than the critical angle. The

interval of integration 0 < m < ko defines the behavior of this wave.

7.3 Propagation of surface waves along a borehole

Next we will consider a more general model, when a medium surrounding a borehole
is an elastic medium, ( py # 0). In this case wave behavior usually becomes more
complicated. In particular, as in the case with the planar boundary, it is natural to
expect the appearance of surface waves. By definition, surface waves have two main
features, namely
a. Propagation along the boundary occurs without the support of other waves, and
b. The amplitude of potentials describing these waves exponentially decreases with

increase of distance from the boundary.
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Our first goal is to demonstrate the existence of such waves. To do this, we will use
results obtained in section 7.1. In accordance with eqs. 7.25, scalar and vector potentials

can be written in the form

= / Ay (myr)cosmz dm it r<a (7.151)
0
and
[o.¢]
0y = /BmKo (myr) cosmz dm, (7.152)
0
122 = /CmKl (msr)sinmz dm if r>a
0
Here

my = y/m?2 — k%, my = \/m? — ki, my = \/m? — k2,

w w w
k1:47 kl:—7 kS:47
C1 ] Cs

and ¢, ¢, ¢s are velocities in the borehole and in an elastic medium. As is well
known, waveficlds arc such that at the boundary (r =a), the normal components of
displacement and stresses are continuous functions. Since shear stress in fluid vanishes,

we have (eq. 7.5)

2 ~(2)

~1) 2 ~1) o~
SE“ : = Si )7 Tir) = Trr> Tor = 0 if r=a (7153)
or, in terms of potentials (eq. 7.27),
05, 0, Ov
o1 Oey Oy (7.154)

or  or oz’

Py Py

or2  9roz |’

—Aikio) = =X k30, + 241,
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and 2

Ordz 022 + or

7 i,

825, 0%, 8(18 ~>
- =0
ror

Substituting eqs. 7.151 and 7.152 into eqs. 7.154 and performing simple algebra with
Bessel functions, we arrive at homogeneous system of equations with respect to A4,,, By,
and C:

mily (mya) A, + m Ky (mya) By, + mK; (mga) Cp,, = 0,
— A K2 Io (mya) Am + [Nk Ko (mua) + 2, mi K (mya)] Bn, (7.155)
+2 py m ms Ky (msa) Cp, = 0,

2m my K (mya) By, + (Qm2 — k?) Ky (msa)Cp, =0

Taking into account that the right side of this set is equal to zero, the solution of eqs.
7.155 exists only if the determinant of the system, D,,, obeys the equality

D=0 (7.156)

However, the condition 7.156 is not sufficient for existence of surface wave. As was pointed
out earlier, the potentials of these waves must decay exponentially with increased distance
from the borehole surface. Taking into account the asymptotic behavior of the modified
Bessel functions

o —x

we conclude that the solution of eq. 7.156 must obey the additional requirement

m > max (k) (7.158)

It is necessary to distinguish two cases: ¢; < ¢; < ¢ and ¢, < ¢; < ¢;. In place of eq.

7.158 we have, respectively,
m >k, m > k, (7.159)

Our main attention will be paid to the existence of surface waves and their phase velocity.
Wave amplitudes will be briefly discussed later.
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The empty borehole

We will begin this study with the simplest case, in which the source of elastic waves
has axial symmetry and is located in an clastic medium in the vicinity of the borchole.
Along with the direct wave radiated by the source reflected P and S waves appear
at points of the boundary when the corresponding incident angles do not exceed the
critical angle. As these waves propagate along the interface, we may observe a conical
shear wave caused by a longitudinal wave. The P evanescent wave appears at points of
the boundary and is generated by the shear wave. By analogy with the plane interface,
we observe a surface wave that causes deformation and rotation of elementary volumes
of & medium. Its behavior is the subject of our study. Since waves are absent inside
the borehole, i.e., the boundary is free, conditions 7.153 are simplified. They require
only that both stresses vanish at points of the borehole surface. Correspondingly, letting
A, = 0, the last two equations of system 7.155 give

[(Aak} Ko (mya) + 2y, mj K| (mya)] By + 2 py m mK| (msa) Cpr, = 0 (7.160)
and 2m myKy (mya) By, + (2m° — k2) K1 (mya) Cp, = 0

Eliminating unknowns B, and C,, and taking into account that the determinant of
the system must be equal to zero, we obtain

K (mga)

— [A2 kP Ko (mya) + 2 py miKy (mya)] (2m® — k2) S kK (mya)

(7.161)

+ 2 py m msK] (mga) =0
where
, 1
K (r)=— Ky(x)— - K (x)

Thus, we have derived an cquation with respect to the unknown wavenumber m. As

numerical analysis shows, eq. 7.161 has the root m,, (w), which obeys the condition
my, (W) > ks (7.162)

First of all, if the frequency is sufficiently high, we can expect the dispersion equation
7.161 to coincide with the Rayleigh equation. This happens because the wavelength
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becomes smaller than the borehole radius (A < a). To demonstrate this transition, we
use eq. 7.157 and equality

K (z) ~ — Ky () if z>1
Replacing the modified Bessel functions by their asymptotic expressions, when
mya > 1 and mea > 1,
in place of eq. 7.161 we obtain the Rayleigh equation
(21712 — kf)2 —dm*mym, =0

Thercfore, at the high-frequency spectrum, the phase velocity of the surface wave ap-
proaches that of the Rayleigh wave, cg, when the free boundary is planar.

Now we will discuss the behavior of phase velocity ¢, (w) at the low-frequency
range. As is seen from Fig. 7.5¢, in the first interval of integration, wavenumbers obey

the condition

m> k=2 (7.163)
Cs

If the wavenumber is beyond this range (m < k,), the radical m, becomes imaginary
and, correspondingly, the integrand of the vector potential, 17)2, does not demonstrate
exponential decay. This suggests that there is a minimal (cut-off) frequency when the
surface wave is still observed. Its phase velocity at this frequency coincides with that of
the shear wave. In this case (m; — 0), cq. 7.161 becomes a relationship between the
cut-off frequency f. or wavelength A. (A.=¢ / f.) and parameters of the medium.
In fact, since

Ky(z) > —Inz, K (z)—

?

1
z

for the dispersion equation we have

1 2444

(A2 k] Ko (mya) + 2uy mj K7 (mya)] Dy + T“Kl (ma) =0 (7.164)
!
Here
we 1 1\
k’l:—; mp=Wel| -5 — =5
¢ 2 G
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A graph of the ratio ¢, (w) /¢, as a function of A;/2a is shown in Fig. 7.5d for different
values of Poisson’s ratio, o. Here A, = ¢;/f is the wavelength of the longitudinal waves.
We see that with an increase of the wavelength, phase velocity of the surface wave also
gradually increases, and it tends to the same limit ¢; regardless of the value of Poisson’s
ratio, o. For example, when o = 1/4, this asymptotic value is almost reached
when the wavelength exceeds the borehole radius by about three. Note that unlike with
Rayleigh waves, the phase velocity of the surface wave along the empty borehole depends

on frequency, and its range of change is
cr < ¢ (W) < ¢4 (7.165)

Finally, Fig. 7.5e illustrates the behavior of group velocity ¢, (w) /c; as a function of
parameter 27a/A;.

As follows from eqs. 7.152, with increased distance from the borehole, as well as
increased frequency, both potentials display exponential decay. Also, because ¢, (w) <
¢, and ¢ > ¢y, vector potential decreases more slowly than scalar potential. Since

displacement s is related to the potentials as
s = grad ¢ + curl ¥,

we again conclude that propagation of the surface wave is characterized by elliptical
polarization of particle motion.

Next we will consider the behavior of surface waves in a more general case, when the
borehole is filled by a fluid.

Stoneley waves

In Chapter 5, we discussed the behavior of surface waves propagating along the plane
boundary between a fluid and an clastic medium. In fluid this wave is dilatational,
whereas in an elastic medium it is accompanied by deformation and rotation of elementary
volumes. In other words, this wave combines characteristics of dilatational and shear
waves. [t is essential that scalar and vector potentials describing the surface wave decrease
with distance from the boundary. The velocity of propagation of this wave, which is
usually called the Stoneley or Scholte wave, is independent of frequency. It is also natural
to expect the appearance of a surface wave propagating along the cylindrical surface of
the borehole. In order to prove the existence of this wave and to outline its main features,
we proceed from the system of homogeneous equations 7.155. Our goal is to find such

wavenumbers m that the determinant of set 7.155 becomes equal to zero. Besides, it is
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2]

assumed that m obeys the inequality
m > max (ky, k)

Then it is clear that all three radicals — m,, m,, and m; — are positive. Correspondingly,

elementary cylindrical waves
Ao (myr) cosmez, B, Ky (myr)cosmz , and Cp Ko (mgr) cosmz

become smaller with an increase of distance from the boundary (r = a). To begin, we
will consider two limiting cases, w — oo and w — 0.
The high-frequency spectrum
Suppose that frequencies are so high that the wavelength of longitudinal waves in
an elastic medium is smaller than the borehole radius: A\, < a. Correspondingly, this
inequality takes place for the shear wave as well as well as in a fluid. Letting ¢ (w) be

the velocity of propagation of the surface wave, we have

1 1\V2 1 1\V2 1 1\2
m=wl=-- m=w|=—-= : ms=w|=—-=
! 2 ’ ! I ’ : ¢

At the high-frequency spectrum, these radicals are large, and the modified Bessel func-
tions are described by their asymptotic formulas:

Io(z) =1 () = (%)W U Ko(o) =K, (x) = (%)I/Qe*ﬂ“, (7.166)
and Ky () > —K; (2) it z>»1

Substitution of eqs. 7.166 into set 7.155 yields

o ( 1/2
(@) ALY (mm)l/z e”UaB 4+ m <7T) e MsAC,, =0,
T M

. 1 \Y? . . 2my T\ _
ki <—> eMCAL + [(ZmZ — k) + —] (—) e”™MAep, (7.167)
T, a my

1 A\ _,
+ 2pgm my (1 + ) <—> e M4 =0,

msa My
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om? — k2

om m; 2e " AR, + s MsAC =0

m,/2
The determinant of this system coincides with that for the case in which the boundary
is a planar boundary. Thus, at sufficiently high frequencies (A, < a), the surface wave
arises and advances along the boundary of the borehole with a velocity close to that of
the Stoncley wave at the plane interface. For instance, if

: ‘ 1
&1, P2 1, o=z,
c1 I 4
we have
c(0) 0.92,
Cs

i.c., this velocity is slightly smaller than the velocity of the shear wave. It is obvious
that with an increase of the frequency, the wavefields, such as displacement or stress,
are mainly concentrated in the vicinity of the borehole surface. At the same time, at
sufficiently large distances r away from the borehole surface, wave propagation causes
virtually no motion in the medium. Now consider the second limiting case, the low-
frequency spectrum.

The low-frequency spectrum

Assuming that arguments of the Bessel functions are small, we can use the following

approximations:
z 1
Li(z)—1, Ii(z)—> 3 Ky(z) > —Inz, K (z)— =
/ 1 -
and Ky = —— if r<1
x

After their substitution into set 7.155, we obtain

e B ™ e~
2 My
2 2 m
ME2 a® A + 241,Bm + 2ty Chy = 0, (7.168)
my
o2m? — k2
0+2mB,, + L "% o — T

ms
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The dispersion equation in this case is

m%dz 1 m
2 My
211 _
)\lk]QaQ 2,”2 ,U’Zm —0 (7169)
gns ]{72
2 _
0 m amm = Ry
My

After doing simple algebra, we obtain
—m? iy + kA =0

Therefore, wavenumbers m of the Stoneley wave at the low-frequency spectrum are
defined as

, A\ 1/2
m= - =k <1+“2> (7.170)
c(w) Ho

Respectively, for phase velocity we have

if  w—0 (7.171)

Eq. 7.171 shows that the asymptotic value of ¢(w) depends on the velocity in a fluid
and on the parameter
ﬁ _ M ct

?

Ho Ho

(7.172)

which is the ratio of fluid compressibility A; to shecar modulus w,. Thus, mecasurements
of the velocity of the Stoneley’s wave inside the borehole, if w — 0, allow us to evaluate
the rigidity p, of the elastic medium. Note that solution of system 7.155 shows that
the Stoneley’s wave does not have a cut-off frequency (¢, > ¢1). In other words, this
wave can be observed at any frequency. As follows from eq. 7.151, the axial and radial

components of displacement corresponding to elementary cylindrical harmonics are

@2

Jm) = —m Aply(myr)sinmz  and s, (m) = myA, I (myr) cos mz (7.173)

At the low-frequency range, when the wave is defined by small values of m, we have

5.(m) = —mA,, sinmz and Sp(m) = %mfAm cosmz, (7.174)
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Figure 7.6: (a) Portion of borehole between two cross-sections S; and S» (b) Phase
and group velocities when ¢, > ¢; (2 =0.1 m, ¢, = 4.51 km/s, ¢, = 2.41 km/s, p; = 1.2

g/em® p, = 2.3 g/cm®) (c) Phase and group velocitics when ¢, < ¢ (a = 0.1 m,

¢ = 2.70 km/s, ¢, = 1.20 km/s, p, = 1.2 g/em?®, p, = 2.1 g/cm?). [After Paillet &
Cheng, 1991]

i.e., the radial component of displacement linearly increases with r. At the same time,

component s, remains constant at any cross-section of the borchole, although it varies
with time and with coordinate z.

It is instructive to obtain ¢q. 7.171 in a completely different way. Let us consider a
portion of the borehole bounded by its lateral surface, » = a, and by two cross-sections
Sy and Sy, located at distance Az from cach other, Fig. 7.6a. Note that

S = Slz 52:71'(1,2
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The volume of this part
Vi = md® Az

is not elementary in the axial direction, since it is characterized by a finite length a.
Propagation of a surface wave along the borehole causes vibration of particles in a fluid
and in the surrounding elastic medium. Because of symmetry, this motion is described by
the axial, s,, and radial, s,, components of displacement. The azimuthal component,

S, is absent:
S = Spi, + S.i,

Our main goal is to derive an equation of motion of volume V; and demonstrate that
under certain conditions the motion equation coincides with the wave equation. Its
solution describes a wave advancing along the borehole with the velocity given by eq.
7.171. In order to solve this task we make scveral assumptions that are obvious given
that the fields slowly varying in the radial direction. For instance, in the frequency
domain this means that the wavelength is much greater than the borchole radius. First,
in agreement with egs. 7.174, suppose that the axial component s, and the additional

pressure p are independent of coordinate r inside volume Vi, i.e.,
S, =8, (2,1) and p=p(z1t) (7.175)
This volume moves along the borehole axis due to the external forces
F,(z+ Az, t) and F,(z,t),

which are caused by fluid located above and beneath volume V7 and, correspondingly,
have opposite directions. For instance, if force  F, (z,¢) produces compression and the
additional pressure p(z,t) becomes positive, we have for the resultant force

[-p(z+ Az, ) +p(z,1)] S

Therefore, in accordance with Newton’s second law, the equation of motion of the volume

is
2 0
2 4 9
0 —— Ta- Az = ———— Ta
P o 9z
or
s,  Op

P am = e (7.176)
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since it is assumed that the pressure varies linearly within Az and that

—p(z+ Az t)+p(zt)= —ap—(t)Az
0z

whereas s, is the axial component of displacement of the middle point of Vj. The
equation of motion contains two unknowns, s, and p, and we therefore must find another
relation between them. Since a wave causes very small changes of any elementary volume
V (V < V), the principle of mass conservation gives (Part I

p AV

1 B Vv

(7.177)

Here p and AV are variations of the original density p; and volume V. Inasmuch

as deformation is also accompanied by small changes of pressure, we have
p=anp, (7.178)

and eq. 7.177 gives
AV
p=—)\ v (7.179)

Here ), is the bulk modulus of the fluid
M =ap =cp (7.180)

and pressure is constant inside volume V. By definition

AV
— =div s,
v
and eq. 7.179, written as
p = —Adiv s, (7.181)

describes the relationship between pressure and displacement in equilibrium. For in-

stance, in the cylindrical system of coordinates we have

ds, O0s, s,
= —A — 182
b 1(82+8r+r)’ (7.182)

since s, = 0.
Next consider a change of volume Vi, which occurs for two reasons. One reason is
axial motion, which is equal to

5 08,
0z

Ta Az,
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because s,(z) and s,(z + Az) are displacements at the opposite faces of volume V.

The other reason is radial expansion (compression), which is

2na s, Az
Thus
ma? 0s: Az + 27a s.(a) Az
AV r ds, 2
L 0z == %5 ) (7.183)
i ra? Az Jz a

In accordance with the second equation of set 7.174, the radial component of displacement

is the linear function of r, and it can be represented as

o () = 2, (7.184)

[ts substitution into eq. 7.181 shows again that

AV

1

=div s

and, therefore,

ds, 2
p__)‘l|:s :|7

2, + EST((L) (7.185)

where p is pressure at the middle point. Note that eq. 7.185 can be also derived from

/divs dV; :7{5' dS

Vi S

the Gauss formula:

ds,(a)
0z

In fact, making use of eq. 7.180 and assuming that p = const, = (), we obtain

~MpV = [s,(z+Az2) — s.(2)] ma® + s,(a) 27a Az,

which coincides with eq. 7.185. Note that eqs. 7.176 and 7.185, derived for volumes that

have different extensions Az, contain three unknowns:

p7 5z7 ST

For this rcason we nced one more relationship, for instance, a relationship between p

and s,. Before solving this problem, let us consider a special case when s, inside the
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borehole is equal to zero. In other words, fluid moves only along the z-axis. Then the
system of cqgs. 7.176 and 7.185 gives the wave equation

8%s, 1 0%,

PN

which describes a wave moving with the velocity of the longitudinal wave, ¢; = (A,/p)""%

In reality, because the radial component s, differs from zero, the elastic medium around
the borehole influences wave velocity in the fluid. In establishing the linkage between
sy and p, we take into account the relatively slow change of these functions with time.
This implies that both pressure and the radial component of displacement change almost
synchronously at different points, even at large distances = from the borehole. With
this limiting case in mind, we can expect the same relationship between p and s, as
we would expect in equilibrium. Let us consider now this subject of the static elasticity
in detail.

Thick cylindrical shell

Suppose that a cylindrical shell of an arbitrary thickness is oriented along the z-axis.
Its length is sufficiently large and we can ignore effects near the cylindrical ends. It is
also assumed that the shell is under the action of fluid pressure p, which is uniformly
distributed over the shell’s internal surface. At the same time, at the external surface the
pressure vanishes. Thus, we suppose that deformation is symmetrical about the z-axis
and uniform along cach generating line. Correspondingly, a cross-section remains planc
after deformation, so that displacement along the z-axis is constant and can be zero.
We can evaluate deformation inside the elastic cylinder as a two-dimensional boundary
problem. Tt is related to the fact that pressure is distributed uniformly on the lateral
surface of the shell. First of all, as was demonstrated in Chapter 1, the displacement s

has to satisty the cquation
(Ay + 1) grad div s+, V?s = 0 (7.186)

This is the condition of equilibrium when volume forces are ignored. Because the normal
component of stress is a continuous function at the borehole surface between a fluid and
an elastic medium, the first boundary condition is

T (@) = —p, (7.187)

where p is pressure caused by a fluid. Also, we have at the external surface of the

cylinder

Tor (b) =0 (7.188)
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In solving eq. 7.186, it is natural to assume that displacement s has only the radial

component
s = s,(r) 1, (7.189)
which is a function of the single coordinate r. By definition,
i ri, i,
curl s = % o 9 0
or 0Oy 0z
Sy 0 0
le.,
curl s =0 (7.190)
Inasmuch as
curleurl s = graddiv s—V? s,
eq. 7.186 can be written as
(A2 + 2415) Vst 1, curleurl s = 0
Making use of eq. 7.190, we obtain the Laplace equation for displacement s:
Vs =0 or i, Vs, + 5V*i, =0 (7.191)

The laplacian in the cylindrical system of coordinates is

1d d 1 d?
21 14 192
v rdr (Tdr> T dp?’ (7.192)

because the fields are independent of z. It is clear that
i, =cospi+singj

Substituting the latter into eq. 7.192 and taking into account that 1 and j are constants,

we obtain

— i, (7.193)
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Correspondingly, eq. 7.191 becomes

1d (,dsr) 5y (7.194)

- 7
rdr dr 72

Thus, eq. 7.186 is greatly simplified. To determine displacement component s,, we

have to solve an ordinary differential equation. Suppose that its solution has the form
sp(r)=Cr™, (7.195)

where C' and m are unknowns. Substitution of eq. 7.195 into eq. 7.194 gives

m?—1=0,
ic., my =1 and my = —1, and the gencral solution of eq. 7.194 is
B
sp(r) = Ar + - (7.196)

Here A and B arc unknown constants that arc determined from boundary conditions.
As was shown earlier (Chapter 1), the diagonal elements of the strain tensor in the

3

cylindrical system of coordinates are

dsy
=% and Cpp = —, (7.197)

Crr
dr r

while
€2z — 07

since displacement s, is independent of the z-coordinate. From eq. 7.196 we have

e = A — rE? and €pp = A+ g (7.198)
By definition, in the cylindrical system of coordinates
divs— L9 (rs) = 24, (7.199)
7 dr
which shows that at each point of any plane z=const, the relative change in elementary
area is the same. This deformation causes the normal component of stress along the

cylinder axis, and

T, = cOnst (7.200)
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In accordance with Hooke’s law (Chapter 1),
Trr(T) = Ao div 8 + 249 €4y, (7.201)

and using eq. 7.198 we have
B
o) =2 O ) 4 - 5 (7202
The boundary conditions give
B B
—p=2(Ag+ py) A — oy | 0=2 Ao+ ) A— Happ (7.203)

Solution of this system is

a’p

A= 7.204
20 1) (7 — ) (7204
and
a’b?p
B 7.205
241y (* — a?) ( )
Correspondingly,
2 2 2
pa’(r’—b)
Tre(r) = r2 (b2 — a?) (7.206)

which gradually changes with an incrcase of r. Now in cq. 7.196, letting r = o we

obtain
sr(a) a’p N v p
a 20t p) (0*—a?)  2p, (0 —a?)
or
sr(a) D
_ P 2
a 2M’ (7.207)
where
2 _ 2
17\/[ _ Ho ()\2 + N“Q) (b a ) (7.208)

pot? + (A9 + o) b?
Thus we have solved our task and established the relationship between radial displace-

ment of an elastic medium at the borehole surface and fluid pressure. Before we continue,

let us note the following. The azimuthal component of stress is defined as

Top(r) = Ao div s +2 p, ey (7.209)
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Taking into account eqs. 7.198 and 7.199, we have

B
Top(r) =22 A+2 py <A + F)

or

_@(r+b)
Top(r) = 20— a?) p (7.210)

By definition (Chapter 1),
Fe,,=7T,, —0(Ty+ Typp)

Here FE is the Young modulus and o is Poisson’ ratio. Inasmuch as strain is absent

along the z-axis, we have
Tar =0 (Trr + Tpp) (7.211)

and the use of cgs. 7.206-7.210 gives

2 2
% p = const (7.212)

Tez =

Of course, this independence of coordinate r is expected. Also, it is interesting to
mention that with an increase of the external radius r, the stress component 7,
becomes smaller, and in the limit (r — oo), it vanishes. Taking into account continuity

of the normal component of displacement s, and substituting eq. 7.207 into eq. 7.185,

we obtain
ds, p
e —)\ e
P ! (az * M)
or
1 s,
_ 95, 7.213
P TN o (7.213)
M
Then from eq. 7.213 and 7.176 we have
d%s, 1 0%s,
o > (7.214)

Por T 1 1Y o7
MM
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This is the wave equation with respect to the vertical component of fluid displacement:

s, 13,
922 2 o2
Here
1 _
. — (7.215)
1 N 1
PN T M
or
1
= (7.216)

Al 1/2
1
( +M)

In accordance with eq. 7.208, with an increase of external radius b, paramcter M tends
to the shear modulus

M = (7.217)

Respectively, eq. 7.216 coincides with eq. 7.171, which describes the velocity of Stoneley
waves in the low-frequency spectrum.

It is also uscful to consider the case in which radii ¢ and b are close to cach other,
that is, the borehole is surrounded by a thin tube with thickness h:

b—a=h, b+a=2a

Then, in place of eq. 7.208, we have
M~ 2 py (A2 + piy) B
(A2 +2py) a
or
2 puy h

Ha 7
1+ Q
( )\2“‘#2)

and the velocity of propagation differs from that in the previous example (M ~ p,).

M~ (7.218)

Phase and group velocities

We have studied phase velocity of the Stoneley wave in the low- and high-frequency
spectrums. Next let us consider velocity dispersion, i.c., its dependence on frequency.
Earlier it was demonstrated that the wavenumber of the Stoneley wave

w

¢(w)

m(w) =
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is defined as the root of the characteristic equation 7.156 D,, = 0, provided that
m > max (ki, k).

Ag usual, it is convenient to consider the numerical solutions of this equation sepa-
rately for two models of a medium, where cither ¢, > ¢; or ¢, < ¢;. In the first case,
Fig. 7.6b, there is small dispersion of the phase and group velocities, and ¢, is slightly
higher than ¢,. With an increase of frequency, values of both functions become larger
and in the limit they approach the asymptote, which is a little smaller than wave velocity
¢ in the borehole fluid.

Before we discuss velocity dispersion in the second model (¢, < ¢p), let us use eq.
7.171,

Cy .
C= ——5 if w—0

1/2
/’LZ

which can also be represented in the form

. 2 -1/2 2 2
L:<%+ﬂ) or %:ﬁ+%. if w—0 (7.219)
Cs 1 P ¢« P A

Inasmuch as existence of the Stoneley wave implies that ¢ < ¢, it is natural to distinguish

two cases in the second model (¢, < ¢;):

2 2
&+—§>1 and &+—§<1
Py €Y P2 G

An example of functions ¢(w) and ¢4 (w) in the first case is shown in Fig. 7.6c. Again
there is small dispersion of phase and group velocities, and the latter is slightly smaller
(¢q < ¢). At the low-frequency limit we have, approximately,

L% o

g o
With an increase of frequency phase and group velocities decrease a little and approach
their corresponding asymptotic values. Note that the phase velocity of the Stoneley wave
remains smaller than the shear velocity. In the second case, Fig. 7.7, the ratio ¢;/c; is
even smaller, which causes peculiar behavior of the Stoneley wave in the low-frequency

spectrum. In accordance with eq. 7.219, we have
¢ (W) > ¢, if w—0

which mecans that a wave propagates in both the axial and radial directions. Because

of this, its movement along the borehole axis is accompanied by attenuation. As is seen
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Figure 7.7: Dispersion curves of phase and group velocitics (¢ = 0.1 m, ¢ = 2.40 km/s,
¢ =0.90 km/s, p; =5.10 g/em?3, p, = 2.1 g/cm?). [After Cheng & Toksdz, 1981]

from Fig. 7.7, when wavelength A; s sufficiently large, the phase velocity of the surface
wave exceeds the shear velocity. In this range the wave rapidly decays along the z-axis.
However, with an increase of frequency, velocity ¢, (w) becomes smaller than ¢,, and

a Stoneley wave is observed. In other words, in the second case,

2

[
&+(‘—;>1 s
P2 1

there is a cut-off frequency at which

Cp (fc) = Cs

In addition, note the following:

1. The Stoneley wave propagates without attenuation along the borehole, whereas
its wave amplitudes decay monotonically with increased distance r from the boundary,
r=a.

2. At the beginning, this decrease is relatively slow. However, at large distances
from the borehole surface, the amplitudes of displacement, strain, and stress decrease
exponentially.

3. At the low-frequency spectrum, a/A; < 1, the axial component of displacement s,
is almost constant inside the borehole, but the radial component s, linearly increases as

a function of r. At the borehole axis the latter is equal to zero, regardless of frequency.
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4. As follows from boundary conditions, the component s, is a continuous function
at the borchole surface, but the axial component s, has a discontinuity.

3. Propagation of the sinusoidal Stoneley wave is accompanied by elliptical partical
motion in a fluid and in an elastic medium (elliptical polarization).

6. Wave amplitudes arc defined by integration around the corresponding pole m (w)

where m > max(ky, k).

7.4 Normal modes, head and transient waves

In the previous section, we studied the behavior of surface (Stoneley) waves propagating
along the borehole. Certainly, this is a very important element of the wavefields that are
caused by the source on the borehole axis.

As we know, scalar and vector potentials describing all of the waves inside and outside

the borchole can be represented in the form:

d kR T

g, =C 7 +/Am[0(m17') cosmz dm if r<a (7.220)
0
and Dy = /BmKo(mlr) cosmz dm,
0
e ¢]
Py = /C’mKl(ms’r) sinmz dm if r>a
0

It is essential that all three functions, A,,, B,,, and C,,, have the same poles, which

are roots of eq. 7.156:
D=0 (7.221)

In order to characterize the main features of waves, it is useful, as before, to separately
consider two models of a medium, namely ¢; < ¢; < ¢ (case 1) and ¢; < ¢; < ¢ (case
2).

Case 1 Suppose that the ratio of the wavelength to the borehole radius is small
(A < a). Correspondingly, the wave behaves nearly in accordance with geometrical
seismic postulates. In other words, we can use the concept of rays for P and S waves,
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as well as Snell’s law. Earlier it was demonstrated that surface waves are absent when the
borehole is surrounded by an acoustic medium, but the head wave and normal modes are
present (¢; < ¢g). It is natural to expect the appearance of these waves in the presence
of an elastic medium. In describing wave behavior at the high-frequency approximation,
we proceed from eqs. 7.220 and 7.221 and Fig. 7.8a,b. Energy of the direct wave caused
by the primary source advances along the elementary ray tubes. In the tube oriented

along the z-axis, scalar potential of the primary wave

ol kiz

SON():C

decays inversely proportionally to distance z, and it might be observed alone at rather
large distances from the origin.
Next let us consider the reflection and transmission of waves at the borehole surface
using critical angles
sin ), = “ and sin @7 = a (7.222)
e Cs

Inasmuch as ¢; > ¢, we have
6. < 85, (7.223)

and the critical angle for longitudinal waves occurs at points of the borehole surface
located relatively closer to the source. The coordinate z of these points is defined from
the equality

2 e

Vai+ zp o a

In the same manner, the place where we observe the critical angle for the shear wave is

sinf!, = (7.224)

Zs )

sinf) = ——— = (7.223)
i \/ Zz + a? Cs
and
Zs > 2 (7.226)

It is convenient to distinguish three intervals at the borehole surface:
they are 2z <z, z <2<z, 2>z
In the first range, z < z;, the incident wave gives rise to the longitudinal reflected wave

in the borehole fluid. The reflection angle obeys Snell’s law and varies as

0<6, <6,
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Figure 7.8: (a) Rays of reflected, transmitted, and head waves  (b) Intervals of integration
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At the same time, P and S transmitted waves appear in the elastic medium and move
away from the boundary, r = a. As follows from Snell’s law, transmission angles 6
and @ obey the cquality
sin@,  sin@?
— 222 (7.227)
&) Cs

Le.,
0, > 03 (7.228)

Certainly, the wavefields possess the same axial symmetry. In accordance with eq. 7.224,

and z; is usually smaller than the borehole radius. The longitudinal wave inside the
borehole experiences reflections that may occur within the first interval as well as beyond
it. In the case of constructive interference between reflections, modes are formed that
propagate along the borehole. At any cross-section z < z;, these modes are the standing
waves. However, they rapidly attenuate with distance z, since after each reflection
some part of the energy leaves the borehole and moves into elastic medium. This is why
such waves are often called leaking modes, and with an increase of distance their role
diminishes.

From eqgs. 7.220, it follows that the initial interval of integration
m < k;

entirely defines the P transmitted wave and makes a significant contribution to the S

transmitted and reflected waves. In fact, the radicals

\/m?— k2, vm?— k2, and \/m?— k}

are imaginary, and we are dealing with waves that propagate along rays (Snell’s law).
Note that in this interval the wavenumber of elementary cylindrical waves varies from
zero to k;. Therefore, phase velocity changes as ¢ < ¢ < oco. When the angle of
the P transmitted
wave starts to move in the vicinity of the borehole along its surface and generates a head

incidence 6; of the direct wave approaches the critical angle, Qlc,

wave in the fluid. This is a conical wave, and angle @ defines the orientation of the

phase surface. At relatively large distances z from the source, the longest path of this
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wave is located outside the borehole, where it moves with velocity ¢;. Correspondingly,
the P head wave appears as the first arrival.

In the second range, z; < z < z;, we observe total internal reflection for the P wave.
This means that the P evanescent wave appears in an elastic medium, and during each
period energy flux of this wave in the radial direction is equal to zero. At the same time,
the S transmitted wave propagates through the surrounding medium with velocity c;,
and it arises at each point of the second interval. Because of this, the amplitude of the
reflected wave is still smaller than that of the incident wave, and it decreases after each
reflection. Therefore, as with the first range, constructive interference of the reflected
waves can produce only leaking modes. Of course, destructive interference is a second
factor that also results in a decrease of wavefields.

Superposition of elementary cylindrical waves with wavenumbers &k < m < k,, i.e.,
the second interval of integration in eqs. 7.220, form leaking modes. At points of the
borehole surface where 2z < z < zg, the following waves appear:

a. The reflected wave inside the borehole,

b. The S transmitted wave in an elastic medium,

¢. The P inhomogeneous wave, which rapidly decays with increased distance from
the borehole, and

d. The P head wave, which originates near points of interference with coordinate
2.

At the end of the second interval, z ~ z,, the incident angle approaches @7, and
the S transmitted wave begins to move along the boundary with the velocity of the
shear wave, ¢,. This creates the S head wave, which in the far zone comes after the P
head wave, representing the second arrival of the transient wave. Note that the velocity
of propagation of the evanescent wave associated with total internal reflection varies as

s <c<qg

Since m > k; in the second interval of integration, Fig. 7.8b, corresponding harmonics
(elementary cylindrical waves) make some contribution to the inhomogeneous wave. Fi-
nally, at points of the borehole surface where z > 2,, total internal reflection takes place
for both PP and S waves. This suggests that a reflected wave inside the borehole is
accompanied by dilatational and rotational wavefields in an elastic medium. Besides, two
head waves are propagating along the boundary with velocities ¢; and ¢;, respectively.
Inasmuch as at these points of the boundary ( z > z5) areflection does not cause leakage

of energy into the surrounding medium, normal modes are formed, and they propagate
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along the borehole without attenuation. As we know, the same phenomenon takes place
when the surrounding medium is acoustic and ¢ > ¢;.
The harmonics of the third interval (eqs. 7.220),

ke <m < ky,

form normal modes and the corresponding evanescent wavefields. Fortunately, determi-
nation of the wavenumbers of these modes does not require integration of eqs. 7.220,
because the former are roots of the characteristic equation 7.221. In this light, it is
proper to note that wavenumbers of Stoneley’s wave are also roots of eq. 7.221, but
they correspond to the fourth interval of integration (m > k), provided that kg < k).
This range of wavenumbers, primarily its initial part, contains information about surface
waves. Thus, the roots of the characteristic equation describing the normal modes are

within the third interval of integration. Correspondingly, their phase velocity changes as
€1 < e< ¢

It may be useful to explain this fact in a different way. Consider the rays of the direct
wave, which reach the borehole surface at points z = z,. By definition, their incident

angle coincides with the critical angle, 6%:

. C1
sing; = —
Cs

Ag follows from Snell’s law, the reflected waves arising at these points are characterized
by the same angle, %, so that they form a conical wave. The latter causes the other
reflected waves, which are still conical, and their reflection angle is still equal to 7. TIf
frequency is such that their interference is constructive, they form a normal mode that
propagates along the borehole axis. As in the case of the acoustic medium, the phase
velocity of the normal mode is defined from elementary geometry and is equal to
C1

c= m =

Next suppose that rays of the direct wave reach the interface at greater distances from

the source, z > z;. It is clear that their incident angle is also greater:
9Z<Z> > 9153

As before, this wave gives rise to a new family of conical reflected waves with the same

angle #,;(z). Assuming that their superposition is constructive, we again observe wave
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propagation in the axial direction. Phase velocity becomes smaller, since 0, (z) > 67,

and

C1
cC= ——m
sin 6 (z)
Thus, with an increase in the angle of incidence of the direct wave, phase velocity of the
mode approaches that of the fluid

c—= e if 6, — /2

Now let us discuss the relationship between wave velocities and frequency.

Dispersion curves of phase and group velocities

The dependencies of velocities ¢, (w) and ¢y (w) on frequency for the first two
normal modes arc shown in Fig. 7.9. Velocities arc obtained by numerical solution of
the characteristic equation 7.221. As we may expect, the behavior of these functions is
similar to that in the case of an acoustic surrounding medium. First of all, the phase
velocity for each normal mode has the same low-frequency asymptote, which is equal to
the shear velocity, ¢;. This occurs at the cut-off frequency that becomes higher with an
increase of the mode order. Below these frequencies the normal mode cannot exist. As is
seen from Fig. 7.9, with an increase of frequency phase velocity monotonically becomes
smaller and asymptotically tends to the wave velocity in the fluid, regardless of the mode
order. The behavior of group velocity is different, but its low-frequency asymptote is also
equal to ¢,. With an increase of frequency, it rapidly decreases and comes to the Airy
phase, where ¢, (w) < ¢;. After passing the Airy phase group velocity approaches the
high-frequency asymptote from below.

¢ (W) = 1 if w — 00

Thus, the normal modes are highly dispersive, which is a clear indication that they arise
due to the constructive interference of reflected waves. For comparison, phase and group
velocities of Stoneley waves are also shown in Fig. 7.9. These velocities are characterized
by very minimal dispersion and do not have the cut-off frequency (¢ > ¢;). In this

case, both velocities vary within the range

0.90 < = < 0.96
C1

Thus, as in the case of the acoustic surrounding medium, there is an interval of relatively

low frequencies in which normal modes are absent. Within this range only Stoneley and
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Figure 7.9: Phase and group velocities for the first two normal modes (¢ = 0.1 m,
a=45km/s, ¢, =22km/s, p; =1.2g/cm® p,=21g/cm? ¢ =1.5km/s). [After
Cheng & Toksoz, 1981]

head waves are present in the borehole (z > a). With an increase of frequency, the
first normal mode appcars, then the second one, and so on. Thus, with an increase of
frequency, the number of normal modes also increases. We can say that at each frequency,
this part of the wavefield is the superposition of a finite number of normal modes moving
with different phase velocities along the borehole. As is well known, each normal mode
behaves like a standing wave at any cross-section of the borehole. With an increase of
the mode order, the number of nodes, characterizing wave oscillations along the radius
also increases. Applying the residual theorem, the amplitudes of Stoneley waves and
normal modes can be found. One such evaluation is presented in Fig. 7.10. Near the
cut-off frequency of the first normal mode there is a small range of frequencies, at which
the amplitude of the Stoneley wave is greater. With a further increase of frequency, the
field related to the normal modes prevails. Note that the normal modes are often called
pscudo-Rayleigh waves as well as reflected conical waves.

Head waves

The procedure for deriving asymptotic formulas for I and S head waves is similar
to that used in the case of the acoustic surrounding medium (section 7.2). The algebra
related to this task is rather cumbersome, because function A, in eqs. 7.220 is much

more complicated. First of all, we represent the complex amplitude of scalar potential
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Figure 7.10: Amplitudes of normal modes and Stoneley wave

inside the borehole as

O, = / A do(mar) el ™2 g
(o 9]

1
2,

In the presence of an elastic medium around the borehole, there are three branch points
of the integrand A,,,

kl + 7‘55 ]{75 + 7’55 kl + 7’67

where £ is a very small and positive number. Integration along branch cuts related to
point ki + i€, as in the acoustic case, gives an expression of scalar potential that differs
by sign only from that of the primary source in a uniform medium. This means that
the influence of the primary wave is canceled, and we have to focus on the contribution
of intervals around two other branch points. The asymptotic formulas for S and P

head waves in the far zone are obtained by integration near branch points k&, and ki,
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Figure 7.11: Transient wave at the borehole axis (a) Lowest-frequency part of normal
mode (b) Stoneley wave (c) Airy phase. Here L =244 m, ¢ =594 km/s, p; =1.2
g/cm?®, p, =2.3g/cm? a =102 cm. [After Cheng & Toksdz, 1981]

respectively. In both cases, integration along opposite sides of the branch lines gives an
integral with logarithmic singularity, and it has the known form

[e e}

Mz dm
/ (a1 + b Inm) (ag + by Inm)’

—00
discussed in section 7.2. Correspondingly, both head waves usually decay cither as
(ksz)Inksz or (kiz)Inkjz. For this reason they are smaller in the far zone than the
normal modes and Stoneley waves.

Transient waves

As an illustration of the transient wave at an observation point located at the borehole
axis, consider the example shown in Fig. 7.11. Note that this theoretical response takes
into account the first normal mode, while the influence of others is discarded. As we
already know, the first arrival is due to the P head wave. The second arrival is caused
by the S head wave. Inasmuch as both of these waves decrease with distance z, their

magnitudes are sufficiently small. Then we observe portion “a” of the transient wave,
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which corresponds to the low-frequency range of the normal mode. As follows from Fig.
7.9 the group velocity in this range is higher than that of the Stoneley wave. Next is
portion “b", which corresponds to Stoneley wave, and after that there is interval “¢”,

which is formed by higher frequency normal modes and is called the Airy phase.



Chapter 8

Plane waves in a transversely

isotropic medium

The conventional theory of clasticity assumes that a medium is continuous, that is an
atomic structure of matter is not taken into account. This implies that any elementary
volume contains practically unlimited number of atoms or molecules. From the macro-
scopic point of view this volume of a rock includes crystals, fluid, gas, as well as different
amorphous solids. Crystals always demonstrate some kind of an anisotropy. In other
words, their elastic parameters may vary with a direction. In general, an elementary
volume may contain different kinds of crystals with more or less random orientation. If
they are distributed evenly in a medium and their orientation is completely random, we
may consider formation isotropic. In contrast, if there exists a preferable orientation
along some metamorphic rocks, for instance, display a relatively significant anisotropy.
Also, it can be caused by fracturing. There is another reason for such a behavior. Some
sedimentary formations, and, first of all shales, have cleavage planes that are observed
even inside small volumes, (~ 1 cm?®). At the same time this feature may characterize
a layer of a great thickness and large horizontal extent. Correspondingly, the layer can
be treated as a homogencous but anisotropic solid.

Finally, the elastic properties of a system of horizontal layers often show symmetry
with respect to a vertical axis, since all horizontal directions are equivalent. If the
thicknesses of all layers are much smaller than the wavelength, then such a medium can
be considered also as a homogeneous anisotropic one, called transversely isotropic. Its
elastic properties are independent of direction in horizontal plane but differ from those
in the vertical direction. Our goal is to investigate the behavior of plane waves in such a
relatively simple medium. With this purpose in mind let us consider its elastic constants.

481
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8.1 Stress-strain relations in a transversely isotropic medium

In general, Hooke’s law relates the six independent stress components to six independent

strain component and has form (Appendix E)

Tew = Cl1€gg T C12€yy + ci3e,, + C14€y, + c15€y, + C16€yy
Tyy = C21€zg + C20€yy + C23€4; + C2u4€yy + C25€5; + Co6Cay
Tz = C31€g5 + C32€yy + ¢33€,, + C34€y, + c35€,, + C36€xy
Ty =  C41€pp + Ca2€yy + Ca3€y; + Caa€y, + Cy5€4, + Caglry, (8.1)
Tzz = C51€z¢ T C52€yy + C53€.. + C54€y2 + Cs5€5, + C36€zy,
Tey = Co1€xx + Co2€yy + Cgz€y + Co4€yz + Co5€yy + Ce6€xy,

where ¢;; = ¢ji.
As was demonstrated in the Appendix E only five coefficients ¢;; differ from zero in the

transversely isotropic medium and the matrix of elastic constants is

ci1 ¢z ¢y 0

cip cn1 ez O

ciz ci3 ca3 O
0 0 0 C44
0 0 0 0 Cq4 0

00000%

Thus, unlike isotropic media, which are defined by just two parameters:

S O o O
o o o O

Clo=Ci3= A and Cyy = I,
with
C11 = €33 = A+ 24,
for transversely isotropic media, the five independent coefficients:
C11, C12, C13, C33, C44
describe the Hooke’s law. Correspondingly, egs. 8.1 reduce to

Tzz = C11Cxz + C12€Cyy + C13€.,
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jd] n(d, + dy)
Y >y n
a wave front
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b | X

Figure 8.1: (a) Model of laminated medium (b) Orientation of of plane wavefront. [After
Postma, 1952]

Tyy = C19€zz + Cl1€yy + C13€;;

Tay = C13€xe + Clgeyy + C33€,, (83)

Tyz = C44Cyz, T2z = C44Czz, Tey = %ezy

Laminated solids

As an example of the transversely isotropic medium consider a periodic system of thin
horizontal layers. Each of its element consists of two homogeneous isotropic layers with
elastic parameters Aj, i; and Ag, o, respectively. Their thicknesses are d; and ds. As
is scen in Fig. 8.1a, the z— and y—axcs arc parallel to the layer boundarics. Consider
a parallelepiped with faces parallel to the coordinate planes and vertical and horizontal
dimensions n(d; +ds), a, and b, where n is some large integer number. We assume
that the wave length is much greater than the thickness of the elementary layers and by
averaging replace this medium by a transversely isotropic one. First, suppose that the
volume is subjected to normal stresses only. For instance, stress 7., acts on the faces
perpendicular to the z—axis. At the same time, the normal stresses 7., and T,
are applied to the faces of elementary layers normal to the z—axis. By analogy, stresses
Tyy1 and 7y act on the faces perpendicular to the y—axis. Under the action of these

stresses each elementary layer, with the thickness d; or di, experiences deformation.
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Inasmuch as equilibrium is considered, normal stress 7,, has the same value throughout

the medium, that is,
Tazl = Tzz2 = Tyz (84)

It is essential that a change of the length in any horizontal direction also has to be the
same in both layers. Otherwise, we would observe a discontinuity of the corresponding
components of the displacement. This means that strain elements e, and e, have to

satisfy the condition
Crxl = €xz2 = Epg, Eyyl = Ceyy2 = Cyy (85)

Strains e,,; and e,,» however, may differ. Applying Hooke’s law to the first isotropic

layer we have:

Trxl = ()\] =+ 2,ul) Crax —+ )\1€yy —+ )\lezzl

Tyyl = )\1611 + ()\1 + 2/,[,1) Eyy + )\lezzl (86)

Tzz = )\161'1 + )\167/3/ + (/\1 + 2/111) €221
In the same manner the use of the Hooke’s law for the second layer gives

Tra2 = (/\2 + 2#2) €y T /\26yy + Ag €50

Tyyg = )\Qem + ()\2 + 2/12) eyy -+ )\2 €2 (87)

Too = Aoz + Aoeyy + (A2 + 20y) €22

Now we perform an averaging of stresses weighted by the relative thickness of two types
of layer. The mean stresses, acting on the faces perpendicular to the z— and y—axes,

are

_ dl Tee1l + d2 T a2 and _ dl Tyyl + d2 Tyy2

- = 8.8
e di + ds o b+ d; 58

In fact, the latter describe a replacement of two parallel forces by the resultant one. At

the same time, as was pointed out earlier, the stress 7., has the same value at each



8.1 STRESS-STRAIN RELATIONS ... 485

layer and, therefore, its average value is equal to 7,,. Making use of Hooke’s law, eqs.

8.6 and 8.7, we find the relationship between the mean values of stresses and strains:

(di + do) Tow = €ga [di (M1 + 211) + da (N2 + 2,)]

+€yy (/\1d1 + )\2d2) + ezzl)\ldl + €,.0 )\2 dg,

(dl + dz) Tyy = €zz (/\1d1 + Ay dg) (89)

Feyy[di (AL 4 20y) + do (A2 + 2p0)] + €21 hidy + €200 Ay do,

(d1 -+ dg) Tre = €Exg (/\ldl + AQ dg) + eyy (Aldl + /\ng)

+epn di (A 4 20) + €z do (Ao + 2p5)
In order to accomplish this process of averaging we introduce the mean strain e,, as
(dl + d?) €rz = dl €221 T d2 €222 (810)

Here e,, is the average strain of the volume, which contains equal and large number of
elementary layers with thicknesses d; and d,. From the last equations of sets 8.6 and

8.7, we can express e€,,; and e,,» in terms of the mean strains, giving

(dl + dQ) (/\2 + 2/L2) €y — (/\1 — )\2) (ezm + €yy) dQ
di (A2 + 2p5) + d2 (A1 + 2p1)

(8.11)

€221 =

(dl + dg) ()\1 + 2/11) €y, + (/\1 - /\2) (em + eyy) d1
dl ()\2 + 2/1,2) —+ (12 ()\1 + 2/1,1)

and €00 =

Finally, substitution of cgs. 8.11 into the sct 8.9 establishes the relationship between the

mean normal stresses and strains:

o, (di +d2)® (A1 +200) Qo+ 2p15) + dida{[(M + 20) — Qo+ 21)2 — (M — X)*}
rxr — T D

Mg (dy 4 do)” + 2 (Ardy + Mads) (pod) + po,da)
D

+ eyy
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(di + do) [Aidy (A2 + 2p5) + Doda (A1 + 2411
D

+€:z

/\1A2 (dl + d2)2 + 2 ()\ldl + )\ng) (M2d1 + /lldg)

Tyy = €z

(8.12)

(dy + d2)” (M1 + 2m) (o + 2010) + dudo{[(M1 + 2) — (o +215)]* — (M = Ao)°)
D
(dy + dy)” [Mady (A2 + 2pt) + Aada (M1 + 2411)]
D

teyy

+e,,

(di + dy) [Midy (A2 + 2p15) + Aoy (M1 + 2p1y)]
D

Tz = (e:cx + eyy)

te (di +da)? (A1 + 2117) (Vo + 241,)
ZZ D b

where
D= (d1 + dg) [dl ()\2 + 2[1/2) + dg ()\1 + 2,[11)] (813)

Next assume that the volume is subjected to the action of shear stresses. First, consider
the stress 7,, acting on the faces perpendicular to the z—axis. Correspondingly, the

deformation is characterized by the strains ey,; and ey,., with their average value
(dl + d?) €yz = dleyzl + d2€yz2 (814)

Here

Pr€yz1 = Tys = o€y (8.15)

The last two equations give

di+d
d, d2> Ty OT Ty = (di + da) ey 1y (8.16)

di+dy)e,=—+— 2
(e ) ey (:U’l Ho dipy +dops;

In the same manner we find the relation between 7., and e,,:

_ (dl + d?) /‘l’llj‘QerZ (817)
dypiy + dapiy

Tz
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Suppose that the shear forces 7,a di and 7,00 dy are applied to the faces normal to
the y—axis of the layers with the thickness d; and ds, respectively. Continuity of the

displacement requires

€yl = Eay2 = Cay (8.18)
Therefore,

Toyl = fh€ay  and Ty = flgeqy, (8.19)
and, for the average shear stress 7,,, we have

Ty (d1 + d2) = Tundy + Tayads
or

Tay (di + da) = egy (pt1dr + pyds) (8.20)

Thus

C pigdy - jaady

xy — 71 . 1 Czys 821
T CY d1 4 d2 €; Y ( )

We have thus established the relationships between the average values of the stresses and

strains (Hooke’s law).

Comparison of egs. 8.12, 8.17, and 8.21 with eqs. 8.3 gives

1
e = 5{(d1 +do)” (A1 + 200) (Mg + 201y) + dedady (1 — 115) [(01 + 1) — (N2 + )]}

1
Cio2 = 5{(d1 + dg)Q )\1/\2 + 2 ()\1d1 + /\ng) (Mzdl + ,Uldg)}
1
Cig3 — B{(dl + dg) [A'ldl (/\2 + 2/L2) + )\QdQ ()\1 + 2#1)}} (822)

1
ez = 5 (di + do)* (M1 =+ 2p1) (Ao + 2p15)

(di + do) iy fydi + dapu

Caq = Cee =
4 dl,U,Q—‘rdg,U,l 66 di + ds
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Here

€11 — C12

5 (8.23)

Cep —

These formulas give the linkage between the five parameters of the transversely isotropic
medium and the Lame constants of two elementary isotropic layers: A, p; and Ag, pis,
and their thicknesses d; and dy. Applying algebra, we find that the elastic constants
obey some inequalities. First, they are positive if A > 0 and p > 0. Also,

€11 > Cy4, €11 > Cop, C33 > Cu4 (8.24)

In conclusion note that any laminated medium can be represented by a much more
complicated periodic system of layers with different Lame constants and thicknesses.
Equations of a motion

As in an isotropic medium suppose that an elementary volume
dV =dz dy dz

is subjected to an action of the surface forces. Then, in accordance with the second
Newton’s law its motion is described by the following system (Chapter 1):

OT 22 N OTay | OTgr Ju

O Oy o

2
OTyz N Oryy  OTy. 00

ox Oy o P o (8:25)
0Tz 0Ty  OT 82711)
or | oy | 0z  Poe
Here
s = ui+ vj + wk (8.26)

is the displacement of the center of mass of an elementary volume, and, for the laminated
medium, 8.1a,
_ prdy+ pody

e 8.27
P 4 d (8.27)
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Next, substitution of eqgs. 8.3 into the set 8.25 and taking into account that

T Y T
9y W oy’ =92
ou Ov _Ou | Ow _Ov  Ow

4 :_+_7 ‘Tz — o a “yr T o a0
Cay dy Oz “: = 5, - ox = 5 + dy

gives a system of equations with respect to the displacement components:

0%u N 0*u N 0?u o ) 0% T (ers + en) w 0?u

c c ci— + (e11 — o) =—— + (¢ —=p =,
Wage TG T Mg a TR TG gy T BTG g, TP g
0u 0% 5% 0% 0%w 0%

. , gw _,%" 8.28
(c11 — cos) oz Oy +a €66 5.2 + Cuay + Gy + (13 + C44)8y82: P o (8.28)
(exs + €a1) &u (e + en) 22 &% e 0w e 8w e 0w &%w

¢ c c c = —=p =

BT )G g, TN g, T Mg TG T30 TP

The counterpart for the equation in the isotropic medium is
9 . d%s
pVis+(A+p) graddlvs:pw

8.2 Propagation of plane waves in a transversely isotropic medium

Now we demonstrate that the plane waves propagating through the transversely isotropic
medium have velocities that relate in a certain manner to elastic constants and orientation
of the phase surfaces. Let the axis of symmetry for the transversely isotropic medium be
the z-axis. Suppose, with no loss of generality, that the Cartesian system of coordinates
is such that the phase surfaces of these waves are parallel to the y—axis, that is the
particle displacement is independent on the y—coordinate. Assuming that a plane wave
exists, we can represent the components of the particle displacement as

u=1ug f(zcosf+ zsinf — ct)

v=uwp f(xcosf+ zsinf — ct) (8.29)

w=wp f(rcosf+ zsinf — ct),
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with the angle 6 is shown in Fig. 8.1b. Inasmuch as the derivatives with respect to y

are equal to zero, the system of equations 8.28 simply to

. J%u e d%u 4 (e + ea) FPw @
Mgz T Mgz T T 500, ~ P o
v d%v J%v
€66 55 + Caapy 5 =P 5 (8.30)
(C +c )—BQU +c @—i—c @— @
BT 562 g2 B2 P ot?

Substitution of eq. 8.29 for the displacement into egs. 8.30 gives:

(cu cos? 0 + cq4 5in® 9) g + (c13 + c44) sin @ cos B wy = p up
(ces COS® 0 + 44 8in” B) vy = p vy (8.31)

(c13 + Caa) sin @ cos B ug + (caa cos® 0 + caz8in’ 0) wo = p Fwy
Note that the system 8.31 does not contain the function
f(xcosf+ zsinf — et),

so our results can be applied to any function of time; that is, independent of a frequency.
Also, coeficients uy and wg, characterizing motion in the plane y—const, are present
in only the first and third equations of set 8.31. We thus have simple system of the
homogeneous linear equations with respect to unknowns wug, vy, wg, and ¢. Therefore,
these parameters of the plane waves, (ug,vo, and wy), cannot be uniquely determined.
From the physical point of view this follows, because the primary source of the plane
wave is not specified. However, existence of a plane wave in such a medium implies that
these unknowns differ from zero. This is possible when the determinant of the system of
homogeneous equations, 8.31, is equal to zero. This condition allows us, as with Rayleigh
and Stoneley waves, to determine the velocity of propagation of the plane waves. This
procedure is greatly simplified because the second equation of the set contains only the
unknown vy, and the first and third equations contain only wug and wgy. Thus, in

place of this system we obtain two groups of equations, namely

(066 cos? 0 + cyy5in? 8 — p cz) vg = 0, (8.32)
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and

(cu cos® 0 + cyysin® 6 — p 02) ug + (13 + c4q) Sin G cos @ wy = 0, (8.33)

(€11 + ¢aq) sin B cos O ug + (044 cos? 0 + ¢33 8in? 6 — p (:2) we =0

These sets describe different types of the plane waves and we begin their study from the
simplest case.

1. Propagation along the z—axis (symmetry-axis direction)

Letting # = 7/2, eqs. 8.32-8.33 become

(cia—pc)vo=0, (caa—pc®) ug=0, and (c33—pc’)wo=0 (8.34)

Their solutions are the wave speeds

¢ = /<3 and Cs = aﬁ, (8.35)
P P

Therefore, in this direction we may observe the pure dilatational wave,
w(z, t)=wy f (z—qt), (8.36)
and pure shear waves,
u(z,t) =ug f (2 — cst) and v(z,t) =wvo [ (2 — cst) (8.37)
From the last inequality of set 8.24 it follows that
> Cq (8.38)

Moreover, the particle displacement associated with each wave, is either normal or tan-
gential to the phase surface which is defined as

z—ct=rconst or 2z — ¢t = const (8.39)
Inasmuch as
ow - ow Ow
= — oit) . —_——— = O
g, = W flz—at), o =y

this wave causes compression (extension) only; for this reason it is called the pure dilata-

tional wave. In contrast,

ov  Ov

oy ox
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while

9
a—ZZUOf'(z—cst)

Correspondingly, the wave wv(z,t) produces simple shear, which includes rotation, but
no compression (extension). Thus,

v(z,t)=vy [ (2 —ct)

is a pure shear wave, and likewise for wu(z,¢). Because of the axial symmetry, both shear
waves, u(z,t) and v (z,t) move with the same velocity.

2. Propagation along the z—axis

Suppose that plane waves may advance in the x—direction, orthogonal to the symmetry-
axis direction. Then, taking into account that # =0, egs. 8.32 and 8.33 give

((:66 —p 02) vy =0, (cu —p 62) ug = 0 (8.40)

and (c44 —p 02) wy =0

Three plane waves, with velocities

C C C
Csg = \/Ea Csy = ﬁa = ia (841)
Iz p P

can propagate along the z—axis. They are

u(z,ty=ug f(x—qt), v(zt)=uv f({x—csyt), (8.42)

w(x,t) =wo f(x — csyt)

Certainly, the same waves can be observed in any plane containing the z—axis. System

8.42 includes one pure dilatational and two pure shear waves. Since

c11 > Cep and C11 > Cad,
the velocity of the dilatational wave exceeds those of the shear ones:

¢ > Ccsy and ¢ > csy (8.43)
Comparison of egs. 8.35 and 8.41 shows that

Cs = Csv (8.44)
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3. Propagation of the shear wave SH
Now we assume that 6 is an arbitrary angle between the z—axis and the normal to
the phase surface of the plane wave, Fig. 8.1b, and the wave has the single component

v
v(z,2,t) =vy [ (xcosb+ zsinh — cgy 1) (8.45)

In accordance with eq. 8.32, such a wave exists only if
Co6 €082 0 + cpqsin®f — p iy =0, (8.46)

or which gives the expression for the velocity of propagation:

(8.47)

Ce6 COS2 0+ Cq4 SiIl2 0 /2
CSH = P

Thus, the wave speed cgy is a function of the angle #, and varies within the range
T
CSH (5> <cesu(0) < esu(0), for  cyy < o6 (8.48)

As follows from eq. 8.45,

ov
ay
but
Ov - .
— =g cosf f'(zcosh+ zsinf — csyr t)
ox
v . - .
and 5 =g sin® f'(zxcosh+ zsinb — cgy 1)
z

Therefore, for the displacement field

s = vj,
we have
v . - .
curl, s = 5 = —vg sinf f ' (zcosh + zsin — cgyy 1),
z
curl, s = 0,
Ov , .
curl, s = ——=w cosf f'(vcosf + zsinf — cyy 1)

0z
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This means that the plane SH wave, regardless of the angle #, is a pure shear wave,
causing only the simple shear of an elementary volume around the y—axis.

4. Propagation of quasi-P and quasi-S waves

Next assume that the plane waves in general have particle displacement with two

components:

s=uituwk (8.49)

3

while dispacements along the y—axis are absent. In accordance with system 8.33 such

waves can exist only if the determinant of this system is equal to zero; that is,

11 €082 0 + cqqsin@ — p 2 (ci3+ cuq) sinfcos b 0

(€13 + cq4) sin B cos 6 120820 + ca3sin®0 —p 2 |

Performing some algebra and introducing the notation
r = pc,
we have
2 €1 +C33 €11 — C33
e —r e+ 5 + 5 o8 20) + (8.50)
c11 + cs: ciy — ¢ 1 .
Cq4 < L 5 33 + 1 2 3 CcOS 29) =+ Z [(CM — 644)(633 — C44) — ((313 + 644)2] sm29 =0

Making use of eq, 8.22 it is possible to show that

€11 +C33 €11 — C33

cos 20,
2 2

Caq

the roots vary within the following limits:

crp ¢33 €1 —C3
2 2

and they are distinct. Correspondingly, there can be two plane waves, propagating with

2 cos 26,

g Sra <1 <

the velocities ¢; and ¢z, (¢1 > ¢2). We can write in the form,

uy = ugy f(xcosf+zsind —eit), w; = wo f(rcosh+ zsind — ¢it), (8.51)

us = gy f(xcosl+zsinf —cot), wy=wge f(xcosd+ zsind —cy t) (8.52)
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For both waves, the two displacement components change synchronously and, therefore,
vibrations of particles occur along a line (linear polarization). To illustrate the behavior
of velocities ¢; and ¢, as functions of angle 6, consider an example of a laminated

medium with parameters:

pp = 2.7-10°kg/m®,  p, =25-10"° N/m? A\ =3.0-10" N/m?
Py = 23-10°kg/m®  p, =0.6-10" N/m? Ay = 0.8-10"° N/m?

Correspondingly,
¢n = 5.40 km/sec, ¢s1 = 3.04 km/sec,
¢ = 2.95 km/sec, csa = 1.62 km/sec
Also assume that
ds
R
dy

Then the elastic constants, ¢;;, in units of N/m 2 are

1 = 3.36-10', €33 = 2.46 - 109,
cry = 1.21-10%, cyq = 0.74- 10",
ci3 = 0.97-10%, cee = 1.08 - 100,

and the average value of the density is p = 2.4 - 10 kg/m3. Dependence of the wave
speeds ¢, ¢o, and cgg, as functions of the angle # is shown in Fig. 8.2. Note,
that both plane waves, ((uy,w;) and ( ug,ws), become pure longitudinal and pure shear
waves, respectively, when the angle 6 isequal to 7/2. Since ¢ (7/2) > ¢ (7/2), these
waves arc often called the quasi-P and quasi-S waves. Because of axial symmietry |

CsHg (71'/2) = C2 (7’(/2)

As seen from Fig. 8.2, for # = 0 at the beginning with an increase of the angle 0
¢sg > ¢2. Then they become equal and, after that, ¢; > ¢gg. Finally, for propagation
along the z—axis these velocities coincide. The values of the longitudinal and shear
velocities in each of the two elementary layers define a range of variation for ¢, ¢o and

c¢sg. We have:

o < e1(f) < e, Cs2 < co(B), csg(f) < c¢51, for all values of 6.
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Figure 8.2: Velocities of propagation as functions of the angle &

The variation of wave speed with angle 6 for each wave type is an important feature of

a wave propagation in an anisotropic medium.
Direction of particle motion

In general, the line of the particle vibrations for both waves, (uj,w; and usg, ws),
do not coincide with the normal to the phase surface. To demonstrate this, we make use

of egs. 8.33, which give

wg  pej— ¢y cos? O — cyysin® 0

= 8.53
U (c13 + c44) sin G cos ( )
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or

w C13 + C44) sinf cos 8
LR R ) — (8.54)
Ug P Cy — Cyq COS2 6 — 338107 0

Inasmuch as the determinant of this system is equal to zero, eqgs. 8.53-8.54 give the same
result. From egs. 8.51-8.52 it follows that

w1 (c13 + €44) 8in 26
tana = — = — ) )
u 2 (caacos®f + czzsin® b — p ?)

(8.55)

where « is the angle between the z—axis and the line of vibrations. It is different for
the quasi-P and S waves and varies with the angle 6. A propagation of these waves
is accompanied by a compression, (expansion) and a rotation of elementary volumes of
a medium. In other words, the quasi-P or S waves arc neither the dilatational or
shear ones. In the case of quasi-P wave the vector of displacement is usually oriented
close to the normal of the phase surface, whereas for the quasi-SV wave the vector of
displacement is almost tangential to the phase surface. When quasi-SV wave propagates
along the z—axis these waves become, respectively, pure dilatational and pure shear
waves. To study this behavior in some detail let us compute the divergence and curl of
the displacement. Since

u = ug f(zcosf+ zsind — ct),
w = w f(xcosh+ zsind — ct),
we have
div s = (ugcos + wpsind) f' (zcosf + zsinf — ct)
or
divs=s, f'(zcosf+ zsinf — ct) (8.56)
Here
S, = g cos O + wysin (8.57)

characterizes the displacement component, normal to the phase surface.

Again only the y—component of the curl s differs from zero:

ou_ow
0z Oz’

curl, s =
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and rotation takes place about the y—axis. Therefore we have:

curly s =s; f ' (zcosf + zsinb — ct) (8.58)

where
S = Ugsin f — wg cos § (8.59)

defines the displacement component, tangential to the phase surface of the plane wave.
The ratio

Yo + tan 8
Vs _ _w (8.60)
IVy sl 20 ang—1
Wo

which show the relative roles of compression (extension) and rotation, depends on the

angle 6, as well as on the type of the plane wave.

8.3 Rays and an energy flow

A ray may be considered to represent an elementary tube along which elastic energy
flows. Correspondingly, in order to describe ray geometry, it is natural to proceed from
the Poynting vector (Part T), the vector of flux density (Appendix E):

Y =-7-5, (8.61)
tangential to the ray. Here 7 is the stress tensor:

Tex Tzy Taz
T = Tyz Tyy Tyz

Teze Tzy Taz

and
s = ui+ vj + wk
is the particle velocity. In matrix notation, eq. 8.61 becomes

Tex Tazy Tzz U
Y=—| 7y Ty Ty v

Ter Tzy Tzz w
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or
Yo = —Taplh — ToyV — Tppw
L s - .
Y, = 7oyt — Ty v — 1w (8.62)
L . . .
Sz = —TgU — Tyzv — Tz W,
since
Toy = Tyx Tzz = Tzx Tyz = Tzy

Taking into account that any element of the ray,
dl=dri+dyj+dzk,

and the vector Y have the same directional cosines

de Y, dy Y, dz Y,

da vy’

a -y’ Ay’
the equation of a ray in the Cartesian system of coordinates is

dr dy dz
o 8.63
Y. Y, Y, (8.63)

Making use of the Hooke’s law and egs. 8.62 and 8.63, we consider several cases that
illustrate ray behavior.

Case one. Plane SH wave in an isotropic medium Supposc that the planc
wave moves away from the origin, with its phase surfaces are parallel to the y—axis.

Then, the displacement
S=vj
is tangential to these surfaces, and for the single scalar component v we have
v=1 f(xcosh+zsinf —c, t) (8.64)
Thus, the strains are

Cog = €yy = €, =0, (8.65)
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ov " .
and Cay = e =vgcosf f'(xcosO+ zsind — c,t),
T
_Ov

Cvs 0z

This means that the normal stresses:

=wpsind f'(zcosf+ zsinh —ct), €, =0 (8.66)

Teg = AV S+ 20 €ppy,  Tyy = Adivs+2u ey, 7.,=Adivs+2ue,, (8.67)
vanish, but the shear stresses are
Tay = b €xy = p Vg cosf [, Ty = b €y = ftvosiné f ', Ter = 0 (8.68)

Before we continue, note that any phase surface of a wavefront of the plane wave is
defined by the equation

x cosf + zsinf — ¢t = const; (8.69)

i.e., the phase is the same at all points where the wave arrives simultaneously. In accor-
dance with egs. 8.62

Y, = —Tmyz}, Y, =0, Y, = —Tyzi) (8.70)

or

Y, = g vges cosf ()7 Y, =p vy cesind (f)°, (8.71)

Substitution of eqs. 8.71 into eq. 8.63 gives:

dz dz dz
o5~ Sind or i tand (8.72)

This demonstrates the known fact that rays are normal to the phase surface in an isotropic

medium.
Case two. Plane P wave in an isotropic medium Next consider propagation

of a longitudinal wave with displacement
s=38¢f (xcosf +zsinf —¢ 1) n

perpendicular to the phase surface. Correspondingly, components of the vector s along
the coordinate axes are

u=sgcos88 f(rcosf+zsinf —¢ t), (8.73)
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w=so8inf f(rcosh+ zsinf —¢ t)

Hence
_ 2 9 ! =0 _ i 02 0 !
€y = Spcos” 0 [, Cyy = U, €z = S SN I
ou Jw )
ery =0, ey, =0 and €y = - + — = 25psin@cos @ f,
dz  Ox
while

div s =s4 f'
The stresses are equal to
Tor = (/\ +2u cos? 9) so fls Ty =Aso [, Ta= ()\ + 2u sin? 9) so f,
and
Tay = 0, Ty = 0, Ter =t SIn 80 5o f'
From eq. 8.62 we obtain
Y, = —Typll — Ty, Y, =0, YV, = Ty, h— T,w
Inasmuch as
u = —¢sgcosl [, w= —¢;5sin b f’,
eqs. 8.77 give
Ye=a sjeosf (A+2u) (f)°,  Y.=aq sisin® (A+2p) (f)°
Thus
Y = dpst ()"
because
n = cos 0 i+sinf k, (A +2u) = p e,

and the ray is normal to the phase surface.
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(8.74)

(8.78)

(8.79)
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Case three. The plane SH wave in a transversely isotropic medium Again,

as in the first case, the displacement has only the single component

v=uwy f(xcos@+ zsinh — cgy t) (8.80)
Therefore

€z = Cyy = €z, = 0
and

€py = vocosl f'(xcosb+ zsinb — coy 1),
ey. = vosinb f'(zxcosf + zsinf — copy t), (8.81)

€., =0
Taking into account Hooke’s law, eqs. 8.3:

Tew = 0, Tyy =0, T,, =0, (8.82)

Tys = Cag Vpsing f', 71, =0, Tuy = Cgs VocosO f
and eqs. 8.62 become

Y, = cgq 02 csgcos (zf)? Y, =0, (8.83)

Y, = ¢y vg coysind ( f’)2

Correspondingly, the ray equation is

dx dz
Cop COS O caasing’

(8.84)

showing that the rays of the SH wave are still the straight lines in transversely isotropic
media, but they are no longer normal to the phase surface, except when 6 = 0 and

0 = m/2. The angle formed by the ray and the z—axis is equal to

dz ¢
tang = — = —= tan 6
dx Cge
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For instance, in the example considered above:
cag = 0.74-10"N/m? g6 = 1.08 - 10'°N/m?,
and we have
tan ¢ = 0.69tanf,

that is the angle ¢ between the ray and the x—axis is smaller than 6.
Case four. Ray orientation for quasi-P and quasi-S waves These waves
cause particle displacement that has two components:

u=1ug f (xcosf+zsinf—ct), w=wyf (rcosh+zsinb —ct) (8.85)

Here ¢ is the either ¢; or ¢;. Correspondingly, the strains are

€re = UgcosBf', e, =0, €,, = wosinff’, €ny =0, ey, =0,
ey, = (upsind + woycos ) f' (8.86)
and div s = (ugcos@ + wysinf) f’

This gives for stresses

Tye = (€11 g oSO + 13 wysinh) [/,
Tyy = (€12 UpCOS O + 13 wosind) f, (8.87)
Toe = (€13 upcos8 + c33 wgsin @) f
and Tyz =0, Tay = 0, Tur = Caq (g c080 + wosind) f'
Then, in accordance with eqs. 8.62, components of the Poynting vector are:
Ve = [(er1ug cosf + cizwosin®) wg + caq (ugsin® + wy cos ) wg] ¢ ( f’)2 ,
Y, =0, (8.88)
and Y, = [caa (uosin® + wpcos ) uy + (cr3ug cos b + ezzwpsin ) we) ¢ ( m?
Clearly the angle between the normal n to the phase surface and the ray direction is

nonzero. Since the ratio wug/wy depends on the velocity of propagation, the rays of the
quasi-P and quasi-S waves are oriented differently.
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8.4 Phase and ray surfaces

By definition, the phase surface of the plane wave moves along its normal n with the
velocity ¢,, which differs for SH and quasi-P and S waves. At the same time an
elastic energy propagates along rays. Because their orientation is characterized by the
unit vector ry, which generally does not coincide with n, it can be expected that the
energy (ray) velocity ¢, differs from ¢,. In order to determine the former consider an
elementary volume oriented along the ray, as shown in Fig. 8.3a. It has cross-section dS

and length
dl = c,.dt (8.89)

Here dt is a small time interval, and ¢, is the energy velocity along the ray. Corre-

spondingly, the amount of this energy inside the volume is
dW =e dS e, dt, (8.90)

where e is the density of the elastic energy. During the time interval dt all energy of
the volume crosses dS, so it can be represented as

dW =Y dS dt (8.91)
Here Y is the magnitude of the Poynting vector. Thus, we have:
}/

edSedt=Y dSdt, or ¢ =—; (8.92)
e

i.e., the ray velocity is equal to a relative change of the density per unit time. Consider

quasi-P and S waves: As was shown earlier,
Y, = —Tpt — Tew  and Y, = —T,u— T,,w
Also,
Y= VY2 Y2 (8.93)

Inasmuch as the densities of the potential and kinetic energies are equal to each other in

the plane wave, and the latter is

1 .2 .2
5'0 u +w |,
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Figure 8.3: (a) Illustration of eq. 8.92 (b) Phase and ray surfaces (c) Interference
of elementary waves in an isotropic medium (d) Interference of two plane waves in an
anisotropic medium (¢) Formation of ray surface by a system of plane waves in an

anisotropic medium



306 CHAPTER 8. PLANE WAVES IN A TRANSVERSELY ISOTROPIC MEDIUM

the density of the elastic energy is equal to

c=p (ff + uﬁ) (8.94)

where

-7@ d .78;w
u—at an w—at

are scalar components of the particle velocity. Thus
/Y'2 + Y2
z - (8.95)

(¥+%)
plu +w

The unit vector rg, which defines a ray orientation, forms with the z—axis the angle ¢

¢ =

w
Y. Tax + Tz
tanp = — = Y (8.96)
Y, U
Tz + Tez ™
w

In transversely isotropic medium, as well as in more general cases, it is proper to distin-
guish the particle, phase, and ray velocities because they usually differ from each other
by magnitude and direction.

In order to emphasize the difference between the phase and ray velocities we introduce,
along with the phase (normal) surface, the concept of the wave or ray surface. Suppose
that a source of an elastic wave is located at some point O of the transversely isotropic
medium, and it starts to generate the wave at the instant ¢ = 0. Let us plot along any
straight line, drawn from O, a segment that is proportional to the phase velocity ¢, (#)
in this direction:

where 6 is the angle between the line and the z—axis. Connecting terminal points of
the linear element, we obtain a position of the normal surface at the instant ¢. The
shape of phase surfaces formed in this way is non-spherical and is independent of time;
it is defined by parameters of the anisotropic medium. Similarly, we plot the segment

along the same line that s proportional to the ray velocity

1(0) = ¢, (O)1,
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Its terminal points generate the wave (ray) surface, as seen in Fig. 8.3b. From the
physical point of view, such a surface at the moment ¢ is the boundary between the
portion of a medium distorted by a wave and the portion that is still at rest. In other
words, this surface is formed by points, where an energy arrives at the instant ¢, and,
correspondingly, it plays the role of the wavefront. In an isotropic medium the ray and
phase surfaces coincide and are spherical. There is a relationship between these surfaces.
In order to describe this relationship, consider a wave that is a sinusoidal function of
time. As is known, it is possible to represent a wave caused by a point source, as a
superposition of an infinite number of plane harmonic waves, each of them with infinitely
small amplitude. These elementary waves depend on time and distance from the source
as

sin |wt — 2 (zcosf + zsin 9)] or  sin (wt A n) . (8.97)
p Cp

where r is the radius-vector of any point, located on the plane phase surface:
r =ziy + ziz,  while n =cosf iy +sinf i
is the unit normal to this plane, such that | n| = 1. In place of expression 8.97 we can
write
sin{wt —k - r) (8.98)

Here the wavenumber vector

k="n (8.99)

Cp
has a direction of the normal to the phase plane, with components

ky = Y cos 9, k, = “ sin@ (8.100)
Cp Cp

The vector

s = (8.101)

n
Cp
is called the slowness vector, and, correspondingly

k —ws (8.102)



308 CHAPTER 8. PLANE WAVES IN A TRANSVERSELY ISOTROPIC MEDIUM

Now, consider a group of plane waves of the same frequency, with slightly different
directions of propagation. One can imagine that unit normals n of these waves are
inside a small cone with the apex O, characterized by a “mecan wave vector ng”, as
depicted in Fig. 8.3c. Assume that constructive interference takes place between only
those elementary waves whose normals are close to ny. By definition, at the instant ¢ =0
all these waves are in the phase in the vicinity of the source; i.e., the wave disturbance is
maximal at the point O. Now we trace propagation of this maximum motion through
the medium and focus on those wavefronts whose normals differs only slightly from ny.
First, consider a simple case.

Isotropic medium

Since the velocity of propagation is independent of direction, at the instant ¢ these
plane waves advance at the same distance c,t, asin Fig. 8.3c:

OQl = OQz = OQ3 = OQ4

The wavefronts of clementary plane waves are perpendicular to the corresponding direc-
tions of propagation. The phase of each wave at points of its the wavefront is the same
as that at the initial instant ¢ = 0 at the origin . In other words, all wavefronts,
Ni, Ny, N3 and Ny, shown in Fig. 8.3c, have the same phase. A summation of wave-
fields at those points of the space where these wavefronts intersect each other thus has a
constructive character. With a decrease of the angle between directions of propagation
such points belong the envelope of the wavefronts, as illustrated in Fig. 8.3c. In isotropic
media, for which 0Jec,/00 = 0, the latter is the arc of the circle, or a spherical segment
in three dimensions. In this light let us make two comments:

1. In the presence of the dispersion, the radii of the wavefronts are functions of
frequency, and are cqual to ¢, (w) ¢t. The constructive interference between them leads
to the formation of the wave groups, propagating with the group velocity c¢,. The locus
of points, where this interference occurs at time ¢ is the arc of the circle, with radius
cgt.

2. The direction of propagation of each plane wave coincides with the direction of
propagation of the energy of the wave group and is defined by the normal of the wavefront.

Anisotropic medium

First, consider only two plane waves with the same frequency, propagating in direc-
tions n; and n,, as shown in Fig. 8.3d. Correspondingly, their phase velocities are

equal to

¢ (0) and ¢, (0 +db)
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As before, at the initial moment ¢ = 0, their phases are equal at the origin O and
constructive interference is observed. During the time interval ¢, the wavefronts of the

two waves advance in the directions of their normals at distances
hy=c,(0) t and Iy =c¢, (6 +db) t,

respectively. The phases of these waves are the same at points A and B. Since these
points are situated at different places, a superposition of waves with the same phase
occurs at the point P, where wavefronts intersect, Fig. 8.3d. Thus, the interference
maximum of the wave field, located at O when ¢ =0, moves to the point P during
the time interval ¢. The distance OP is equal to ¢, f, where ¢, is the ray velocity
along OP, and its direction is characterized by the unit vector ry. Along this ray
energy propagates with its maximum at the point P, at time ¢. By analogy with the
previous case consider a superposition of an infinite number of plane waves, moving in
different directions. All of them have the same phase at the instant ¢ =0 at point O.
Let us focus of those waves, whose normals are close to ng, as depicted in Fig. 8.3e.
After the time interval #, the wavefront N, propagating in the direction n, reaches a
position Ny, so that the perpendicular, drawn from O to this plane wavefront is equal
to ¢pt. The amplitude of the group of these neighboring waves is largest provided that
they reinforce each other (constructive interference). This happens where the wavefronts
of the plane waves intersect; this defines a region in the vicinity of the envelope of these
plancs. Its position is characterized by the point P, where the cnergy arrives. The
straight line between the points O and P is the ray along which energy travels with
the velocity c¢.. Different groups of elementary plane waves give rise to different points
of the wave (ray) surface. A relationship exists between the point of the normal surface
with the radius-vector ¢, ¢ n and the point of the wave surface characterized by the
radius-vector ¢, t ng. DBecause intersection of the phase planes, having almost the
same orientation, defines the position of the point P of the wave surface where the
constructive interference occurs, the coordinates of the point P can be derived from
the condition that the first derivative of the phase of the plane waves with respect to the
wavenumber k is zero. 'L'hat is, any point of the wave surface is a stationary one. 'l'aking
into account that propagation of energy along the ray is accompanied by constructive
interference of plane waves, the velocity ¢, must coincide with the group velocity

_ Ow
- Ok

This important result can be proved by different ways. For example, we can make use of

¢ (8.103)
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eq. 8.103, which can be represented in the form

d
¢ = ok (kep) (8.104)
Correspondingly, its components along the z and 2z coordinate axes are
d d
cg]) = aT (ka) 5 ng - 87 (k(ﬁp) (8105)

Since the phase velocity ¢, (0), as well as components of the wavenumber, are known, one

can determine the group velocity and confirm that it coincides with ¢,. By definition:
Cy = Copiy + Cyaia

or
cg = grad (kep), (8.106)

where derivatives are taken with respect to k, and k.. The gradient is perpendicular
to the level surface
__const

ke, = const or k= (8.107)
G

At the same time the plane slowness surface is defined from the condition

1
— = const (8.108)

Cp

Thus, assuming that ¢, () is known, determination of values k, corresponding to the
level surface, is equivalent to finding points of the slowness surface. This means that the
vector of the group (ray) velocity is perpendicular to this surface. Taking into account
that the wave surface is an envelope of the wavefronts of the plane waves, we can derive
an equation of the ray surface. This task can be performed applying the conventional
method of calculus (Part IT). For instance, in the meridian section XOZ the wavefronts
are straight lines and described by the equation

xcosf+ zsinf = ¢, (0)t for constant ¢ (8.109)

Here z and z are coordinates of any point of the line perpendicular to O¢ in Fig.
8.3b, and 6 is the angle between (O and the z—axis. Taking the derivative with
respect to 8 we have

—wsinf + zcosf = acgée) t (8.110)
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Combining eqs. 8.109 and 8.110 to eliminate # we obtain the equation of the envelope
that describes the wave surface, which is tangential to P() at the point P. Squaring
and then adding eqgs. 8.109 and 8.110 gives

2 deyp ? 2
a+{a) |t (8.111)

Here [, is the ray length, which is numerically cqual to [, = ¢,t. In this light, note
also that, from the triangle OPQ in Fig. 8.3b that

P=a"+2=

¢, (0) = ¢ (z,2) cos (8.112)

This shows that the ray velocity along OP exceeds the phase velocity along the corre-
sponding line O@). Combining eqs. .8.111 and 8.112 shows that
1 de
tangp = ——2, 8.113
v = (8.113)
where the ¢ characterizes the angle between the ray OP and the line OQ normal to
the corresponding plane. Thus, knowledge of the angle ¢ and the distance [, allows
us to determine a position of a point P of the wave surface. Usually with an increase
of the angle 6 the ray OP approaches to the z—axis; i.e.,

d

However, it may happen that this derivative changes a sign, i.e. the angle 8+ ¢ begins
to decrease. In such a case the wave surface has a cusp. The condition for its appearance
is

d

L0+ =0
d9(+»9) ,

or, taking into account eq. 8.113,

d (10dc, 1 9c,\°
29\ _ (L% 114
de (cp 89) <cp 80) (8.114)

The wave surface of the quasi-P wave has no such cusps.
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Appendix A

Equations of motion of a rigid body

Resultant force and resultant torque

In order to find relationships between the motion of a rigid body and forces acting on it,
we have to perform some transformations with forces. First, suppose that the external
force F, is applied to the body at some point p, Fig. A.la. Then, imagine that two
forces, F, and — F,, also act at a different point ¢. It is obvious that they cancel each
other and, correspondingly, the system of three forces, F.(p), F.(q) and —F.(q), is
equivalent to the single force F.(p). As is well known, a combination of forces F.(p) and
—F.(q) represents the couple with some torque 7

T = [r(p) — ()] x Fe(p) (A1)

Since the point of application of this vector is not important, assume that it acts at the
point ¢. Let us also recall that the torque T coincides with the moment of the force
F.(p) with respect to the point ¢. Thus we described the rule, which allows us to replace
the force F.(p) by the same force F.(g), but acting at different point, and the couple
with the torque given by eq. A-1. If we have a distribution of external forces, applied at
various points of the rigid body, the same procedure for each of them leads to two sums.
The first one is the sum of external forces, the other is the sum of torques. It is essential
that all these forces and torques act at the same point ¢, Fig. A.1b. Applying the known
rule of a summation of vectors, we obtain the resultant force F,(¢) and the resultant
torque 7(q).

F(g)=> F.(g), =Y 7.(q) (A-2)
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Figure A.1: (a) Replacement of the single force by the couple and the same force, applied
at different point. (b) Superposition of forces and torques. (c¢) Rotation of an elementary
mass (d) Torque of the force Fy

Of course, in the case of a continuous distribution of forces, a summation has to be
replaced by an integration. Note that a choice of the point ¢ makes an influence on the
resultant torque 7, but the resultant force F remains the same. Without any doubts,
eqs. A-2 are of a great importance, because they suggest that any motion of a rigid body
can be represented as the sum of two different types of motion. One of them is caused

by the resultant force, while the other is due to the action of the couple of forces.

Further it is assumed that the point ¢ coincided with the center of mass o, and,
correspondingly, this motion is a superposition of a translation of the point o and a
rotation around it. As is well known, (Part I), the motion of the center of mass with
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radius-vector rg is described by the equation:

d2 Iy
M
dt?

=F (A-3)

It clearly demonstrates that the center of mass moves as if it where a particle with mass
M, subjected to the resultant force, F. Certainly, this is the remarkable feature of the
center of mass. The last equation contains only one unknown, ry(¢), and its solution
allows us to find a path of this point. Suppose that at the beginning of the motion the
rigid body is at rest and then we apply the system of external forces, so that

ZFQ:on

In accordance with eq. A-3 the center of mass does not move, while the other parts of
the body can be involved in a motion.

Next we obtain an equation of a rotation due to the resultant torque 7. This motion
takes place about the axis of rotation and, by definition, all points do not move, including
the center of mass. At the same time other particles move along circles with centers
located on the axis of rotation. In general, the latter may change its orientation with
time. As in the case of translation we begin from the simplest case of a rotation of an
elementary mass about the fixed axis.

Example one Assume that the axis of rotation of mass m coincides with the
z-axis, Fig. A.lc, and the origin of the cylindrical system is located at the point O. In
accordance with eq. A.3, we have

d%9

— = F A4
mros pi (A-4)

For our purpose it is convenient to imagine that the mass and the axis are connected
with a help of a massless rod. Bearing in mind that a rotation is caused by the torque,
it is proper to transform eq. A-4 in such a way that instead of the force Fy we would
have its moment. After a multiplication of both sides of this equation by r we obtain

mrt—— =rFy (A-B)

Its right hand side is the magnitude of the moment of the force T with respect to the

origin O, defined by

T=rxF
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The force F has usually two components:
F =F,. i, + Fy iy, and r=ri,
By definition
It x F| =rF, (A-6)
It is obvious that 7 is directed along the axis of rotation, that is
T=rkyi, (A-7)

The left hand side of eq. A-3 can be written in the form

d%9 d
2076 a4 }
mrt = dt( ) (A-8)
Here
I=mr (A-9)

is called the moment of inertia of mass with respect to the axis of rotation and

_d
T odt

is the magnitude of the angular velocity, which characterizes a rate of a change of the

(A-10)

W

angle f, that is a turn of the mass m. The angular velocity, as the torque, is a vector,

and it shows an orientation of the axis of rotation:
w = wi, (A-11)

Note that all particles of a rotating rigid body have the same angular velocity w, that
emphasizes an importance of this vector quantity. From Fig. A.1c we see that magnitudes

of the linear and angular velocities are related as

g =TWw
and in the vector form

V=wXr (A-12)
This is the definition of the angular velocity. Also the product

L=lw (A-13)
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is called the angular momentum of a motion, and in this example vector L and w have
the same direction.
Since cach side of eq. A-5 represents the z-component of vectors dL/dt  and T,
respectively, it can be rewritten as
dL
=T

Thus, the torque is equal to the rate of change with time of the angular momentum,

(A-14)

L. In this simplest case only its magnitude varies. In other words, the torque results
in a change of the angular momentum. In particular, if 7 =0, the vector L remains
constant. It is useful to note that eq. A-14 is also valid in the general case of a rigid
body.

Let us compare eq. A-14 with Newton’s second law:

ma=F and la=rT (A-15)
We took into account that the axis of rotation is fixed (the moment of inertia does not

change with time), and

dw
dt

is the angular acceleration. The analogy between these two equations of motion is ob-

=« (A-16)

vious. The moment of inertia plays the same role as mass, while the linear and angular
accelerations define a rate of a change of corresponding velocities. Both the force and
torque cause a motion. Also there is some essential difference between m and I. The
first one is independent of a position of the particle, while the moment of inertia rapidly
varies with r. For instance, with an increase of the distance from the axis, it is more
difficult to change the angular velocity w.

Here it may be appropriate to make several comments:

1. In the Cartesian system of coordinates the moment of inertia, given by eq. A-9,
has the form

I =m(2* +y?) (A-17)

2. Rotation of mass around point O, Fig. A.lc, is always accompanied by the
presence of the radial component of force F,, and its physical meaning depends on the
problem. For instance, it can be the gravitational, clectrical or magnetic force. Also it
may arise due to a deformation of the elastic rod, connecting the mass with the axis of

rotation.
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3. Since this centripetal force, F,., and the radius-vector r are opposite to each other,

its torque is equal to zero:
rxF,=0

4. As was mentioned above, we may treat the particle with mass m and massless
rod, connecting it with the axis, as the rigid body. Then, forces F, and Fy, acting on
the mass m, can be replaced by the resultant force, F, applied at the point O, and
the torque of the couple of forces, shown in Fig. A.1d. The action of the force F, is
compensated by the axis of rotation. Therefore, the motion occurs due to the couple of
forces Fy and —Fy with the level r.

Example two Again consider a motion of an elementary mass in the plane around
the z-axis, but, unlike the previous case, assume that the origin O is not located at the
same plane, Fig. A.2a. This generalization is desirable, because it will help to take into
account the fact that particles of the rotating rigid body move in different planes. We
will proceed from Newton’s second law

d’r
. _—F
e
Its vector multiplication by r gives
d2
rxm%; =rxF=r (A-18)

The right hand side is the torque about the point O, and it has both normal and tangential
components with respect to the plane of motion. In approaching the point O to this plane
the tangential component of T tends to zero, provided that F, = 0.

Now we demonstrate that eq. A-18 has the same form as A-14. With this purpose in
mind consider the left hand side of eq. A-18, which can be written as:

d*r  d dr
I‘><7nﬁ = E(rxm%) (;A-lg)

In fact, performing a differentiation, we obtain

d dr. dr dr d’r d’r
%(r X mE) = % X mE —+ I‘me = rxmw (AA-QO)
since vectors dr/dt and m(dr/dt) have the same direction. Thus, eq. A-18 becomes
dr, dL

(rx mE) (A-21)

dt a7
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Figure A.2: (a) Ilustration of eq. A-19. (b) Orientation of 7 and dL/dt, when
Fy = 0. (c) Nustration of eq. A-27 (d,e,f) Calculations of I,, of the bar, rectangular,
parallelepiped and the ring.
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The expression in brackets is called the angular momentum L; and it has several equiv-

alent forms:

dr
L= — A-22
XX mo ( )
or
L=rx mv, (A-23)

where v is the particle velocity.

Taking into account eq. A-12, we also have
L=rxm(w xr) (A-24)

It is useful to express the angular momentum in terms of the momentum P = mv,

and it gives
L=rxP (A-25)

Suppose that the origin O is situated at the plane of motion. Then both vectors r and
dr/dt are located in this plane, and they are perpendicular to each other. As follows

from eq. A-24 the magnitude of the angular momentum is equal to
mrv = mriw = Iw,

and L is directed along the z-axis. In the same manner we see that the torque 7 has
the component 7, only and equals rFy . Correspondingly, eq. A-21 is greatly simplified,
and it is transformed into eq. A-5. Returning to the general case we see from eq. A-22,
that the angular momentum L is perpendicular to the plane, formed by vectors r and
v. Therefore, as the torque 7, the vector I has normal and tangential components
with respect to the plane of motion. During a rotation of the mass this vector forms
the conical surface. Let us first assume that the component Fy is equal to zero and,
correspondingly, the mass moves with the constant velocity. In this case the centripetal
force gives rise to the torque:

T=rxF,

which is located in the horizontal plane. At the same time the end of the vector L moves
along the circle, located in the horizontal plane too, Fig. A.2b, since the magnitude of
L remains the same. For this reason the rate of a change of the angular momentum,
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dL/dt, as well as the torque, does not have a normal component, and it is tangential to
the circle, shown in Fig. A.2b. From the geometry it is a simple matter to see that
WX L (A-26)
In approaching the point O to the plane of motion the torque = becomes smaller and in
the limit it disappears. In the presence of the component Fy the normal component of
7 differs from zero, and the velocity of the particle varies. Because of this the magnitude
of L also changes, and the end of vector moves along a more complicated path. It is not
located in the horizontal plane, so that both L. and 7 have the normal and tangential
components. In particular, ¢q. A-21 can be separately written for cach component.
Example three Suppose that two masses, m; and m,, move around the z-axis,
and the distance between them does not change, Fig. A.2¢c. Applying eq. A-21 for each
mass we have

%(rl xmry) =1 x Fy and %(rg X mry) =re X Fy (A-27)

Forces F, and F,, acting on the masses, in general, consist of external and internal
forces:

Fl = Fle + Flg, F2 - F2e + F2l (A'28)

Since internal forces, Fi5 and Fq;, are unknown, egs. A-27 cannot be solved with respect
to ri(t) and re(t). By analogy with a translation (Part I), we make use of Newton’s
third law:

Fip=-Fay (A-29)

In fact, F1o 1is the force, caused by mass ms and it acts on m;, while Fy; is applied to
My, and it is generated by m;. Now performing summation of eqs. A-27 we obtain

d 2 2
%(LI—FLQ) = Zrn X Fne + (r1 X F12 — Iy X Fl?) :ZTne + (rl—rg) X F12 (‘A-?)O)

n=1 n=1
As is scen from Fig. A.2c, vectors
I —Ts and F
have the same direction and therefore

(I'ler) X F12 =0.
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Hence,
dL
— =T, A-31
i (A-31)
where
L - L1+L2

is the sum of angular moments of this system of masses and
Te=Tie+ T2 (A—32)

is the sum of torques, caused by external forces only. An importance of eq. A-31 is
obvious, since it does not contain the unknown internal forces. We are now ready to

discuss a general casc.

Equation of rotation of a rigid body

To slightly simplify a derivation, we choose the center of mass as the origin of coordinates
and assume that the resultant external force equals zero. In other words, this point is at
rest and, therefore, it belongs to the axis of rotation. Let us represent the rigid body as
a system of N elementary masses, and for each of them we have

N

=7y =1,XFon + 10 X Y Fiy k#n (A-33)
k=1

dL,
dt

Here L,, is the angular momentum of mass m,,, r,, is the radius-vector of this particle,
F., is the external force acting on m,, and finally

> Fin k#n
k=1

is the total internal force at this point. Similarly, for an arbitrary mass m,,

dL al
- = T XF o+ (rm X ; ka) k#£m (A-34)

Sums in these equations contain terms
r'!L X an a‘nd rm X FT"LTL

respectively.



APPENDIX A. EQUATIONS OF MOTION OF A RIGID BODY 523

By analogy with the previous example consider the sum of these terms. The use of

the Newton’s third law gives
rnXan + I'mXan - (rn - rm) X an - 07

since both vectors have the same direction. Performing a summation of egqs. A.60, written
for all elementary masses, we eliminate an influence of internal forces on the torque, and

this procedure gives again:

dL
— =T, A-35
a (A-85)
where
AT
L :Zrk X My V= Zrkxmk(w X T,) (A-36)

k=1

is the total angular momentum of the rigid body and

T, = Z Tek (A-37)

is the resultant torque due to the external forces only. Of course, in the limit, when

elementary masses tend to zero, a summation is replaced by an integration and it yields
L= / rxpvdV (A-38)
v

Here p is the density of the rigid body, and, in general, it may vary.

Moment of inertia

Inasmuch as the angular momentum L is defined as the double-cross-product, eq. A-36,
it is natural to represent this vector in terms of components in the Cartesian system of
coordinates. First, by definition:

i j k
V=WXT=|w, W W,
x Yy oz

or

Up = WyZ — WY, Uy = WX — Wy 2, Uy = Wal — Wyl
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Correspondingly
i j k
Py X MV =My | T Yr 2k
Uzk Uyt Uzk
whence
N N
Ly = mu(ysvar — 2kvyp) = Y milye(Wate — wyte) — 25 (woy — wozp)]
k=1 k=1
N N N
- ka(yi + zi)w, - kaxkykwy — Z ML W,
k=1 k=1 k=1
or
Ly = Lyw, + Ixyw'y + [pw, (A‘Sg)
In the same manner we obtain
L, =I,w, + Lyw, + 1w, (A-40)
L, =L wy + Lywy + 1w, (A-41)
where
[mm = Z rnk(ylf + Z;ﬁ)v [zy = - Z MELEYks [a:z = - Z MEpTE 2y (A‘42)
and

. _ 2 2 _ 11
I, =— E MEYel, Ly = E me(ey, + 25), Ly = — E T Yk 2k

sz = - kazkxkv Izy = - Z Mg ZEYk, Izz = ka(l'i + y]i)

The set of these nine quantities is called the moment of inertia and it represent the

symmetrical tensor, (Appendix B):

I= [yr Iyy Iyz s (A——i?))
L, Ly IL.
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where
Lop = I3a (A_44)

and a, 8 are any two indices z, y, 2. Taking into account the rule of multiplication of

a tensor by a vector (Appendix B), eqs. A-38-A-40 can be written as

Lo =Y Iapwp, (A-45)
B

where o, 8 =z, y, 2.

The right hand side is called a "tensor product” of the tensor I and the vector
w, and this operation gives the vector L. The diagonal components, I;, Iy, 1., of
the tensor are often called the "moments of inertia”, while nondiagonal components:
Iy =1y, Iy, = 1.y, I, = I, are "products of inertia”. It is clear that / depends on
the dimensions and shape of the rigid body, as well as its density. Moreover, I varies

with a change of the axis of rotation. It is also useful to represent eq. A-45 in the form

L.’I? I’I"I‘ [Ty [TZ w’(‘
L, | =\ L. L, I. wy (A-46)

As an example suppose that the axis of rotation coincides with the z-axis, that is
Wy =wy =10 and w =w, k,
Then, in place of eqs. A-39-A-41, we obtain
L,=1,w,, Ly =1,w., L,=1,,w, (A-47)

and, as we already know, this indicates that the vector of the angular momentum is not
usually directed along the axis of rotation.

In accordance with eq. A.42 the diagonal term of the tensor I,, is positive
I, = /p (z® 4+ y*)dadydz (A-48)
v

Correspondingly, the vector L has the component L, along the axis of rotation. However,

nondiagonal terms, that is "products of inertia” may be equal to zero. For example, it



526 APPENDIX A. EQUATIONS OF MOTION OF A RIGID BODY

happens in the case of a homogeneous rigid body, which is symmetrical with respect to

the axis of rotation, (w =w_ k). In fact, the "products of inertia”

I, = —p/xz drdydz, I,=—p /yz drdydz
v v
vanish, because there are always pairs of masses with the same coordinate z, while the
other coordinate, z or y, differ by sign only. Then, instead of eq. A-47, we have

L,=1,w, or L=1vw

For illustration let us derive an expression for I,, in several simple cases. As follows
from eq. A-48, we have to perform an integration of masses, which are multiplied by the
square of their distance, 22 4+ 2, from the axis of rotation.

Example one  Consider the rod with a very small cross-section, which rotates

around the z-axis through one end, Fig. A.2d. Then we have
1
dydz I
I,= p/.?iQdLL‘d’de =p dydz/xde = %
0
Thus
M [
I, = (A-49)
3
The moment of inertia is directly proportional to the rod mass M, and the square of its

length, [. If the axis of rotation passes through the center of mass, we obtain

12
' M2
L, = p dydz / wtdr = 11—2 (A-50)
_12

Correspondingly, the moment of inertia becomes four times smaller.
Example two  Next, we take the rectangular parallelepiped with sides, a, b, ¢,

which rotates about the z-axis, Fig. A.2e. From eq. A-48 we have

c/2 a/“Z b/‘2
IL.,=p / dz / dx / (z* + y*)dy (A-51)
/2 a2 b2
o/2 3 3 3
b a BOM
—pe | de(a®r D) =peb v peal = (a4 B2
p(’/ T<T +12) pebyg ey = e+

—a/2
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In particular, when a = b

I, = (A-52)

Example three Consider a ring with radii 7, and r,, which rotates around the
z-axis, Fig. A.2f. Introducing the angle ¢

T = rCos ¢, Yy = rsin ¢,

we have for the elementary volume in the cylindrical system of coordinates

dV = rdrdzde
Therefore
h/2 o o .
: 27 ph
L.=p [ da/dqﬁ/ iy = 2mp AL 2P ey
—h/2 0

Inasmuch as the volume of this body is equal to

27 T2

— g2
V= h/d¢/rdr—27rh 5

we obtain
(A-53)

For instance if 7, ~ ry:

where

T+ Ty
2

Some of these expressions of the moment of inertia will be used in deriving the wave

equation for several special cases.
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Equations of motion of a rigid body

Now we return to eq. A-35, which can be written as

d

—w)="T A-55
(1w)= . (4-55)
If the axis of rotation does not change its orientation, then the tensor of inertia I remains

constant, and, therefore, eq. A-53 becomes

Ta=71, (A-56)

As was pointed out earlier, there is a complete analogy with the equation, describing a
translation of the rigid body:

d2r0

dt?

where ry is the radius-vector of the center of mass with respect to the origin of the fixed

M= =F, (A-57)

system of coordinates. For instance, knowing the total mass and the resultant force, we
can determine a position of the center mass as a function of time, provided that the
initial location and velocity at this point are given. In the same manner we can solve
eq. A-55, when the direction of the rotation axis is fixed. In such a case, the tensor of
inertia is defined by integration, and it allows us to determine components of the angular
acceleration, as well as other kinematic parameters of motion. On the other hand, if the
axis of rotation changes its orientation with time, an analogy with eq. A-55 ceases, since

the moment of inertia varies with time too. Then, eq. A-55 can be written as

d dl

a(IW) :Ew+1 Q= Te, (A_58)
where both coefficients I and dI/dt are unknowns. Thus, we have shown a motion of
the rigid body consists of a translation of the center of mass and a rotation around it.

Respectively, there are two equations

d2r0 d

MZ2_p, Lw) =1, A-59
e ) = (4-59)
or, in the Cartesian system of coordinates:
d*xg d*yo d?z
M =F., M =F,, M——=F,,
dt? dt? Y dt?

and

d
_(Imcw:c + I:cywy + Iaczwz) = Tex

dt
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d
E([ywww + Ly + Lypw;) = Tey (A-60)

d
a(‘[zlwx + Izywy + Izzwz) = Tezx

As the special case, assume that both the resultant force and torque are equal to zero.
Then we have
d2r0
M—— =0, Iw =const A-61
e (A-61)
They are conditions of equilibrium of the rigid body, when it is either at rest or moves

with a constant velocity.
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Appendix B

Matrix Algebra and Tensors

B.1 Matrix Algebra

Before we introduce the concept of matrices, it may be useful to discuss transformation
of vectors in the simplest case when they are situated on a plane. Further, it is assumed
that opcrations with determinants and methods of solving systems of lincar equations
are known.

Transformation of two-dimensional vectors

Suppose that « is an operator which transforms a two-dimensional vector u into another

vector v. This transformation can be written as
au=v (B-1)

It is called unique if such operation produces only one vector v. The operator « is called

regular when it transforms different vectors u into different v, that is if
u; £ uy,
then
au; £ auy
If the equalities
alcu)=c(au) and afu+v)=autav (B-2)

take place, the transformation «v is called lincar. Here ¢ is an arbitrary constant. We

restrict ourselves to linear transformations only. In general, the operator e acting on

931
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vector u produces a change of both its magnitude and direction. Consider one special
case when the resulting vector v has the same direction as that of u. In other words,
the transformation a changes only the magnitude of the vector u. This property can be

written in the form

au=\u (B-3)
Here A is a number which characterizes the change in the vector length. Usually, A is
called a eigenvalue of the transformation c.
Summation of two operators

Suppose that two operators e and 3 are applied to the same vector u. By definition,

each of them produces new vector

au=v; and Bu=vwv, (B-4)
Then, the sum

au+fu=v;+vy=vs
is denoted as

(@+B)u (B-5)

The operator a + 3, that transforms the vector u into v, is called the sum of operators
a and 3.
Product of two operators

Consider vector u and assume that it is subjected to two transformations, & and 3,
which follow one another. The one operator gives the vector vy:

ﬂ u=vy (B-G)
Then, the second transformation, applied to vy, produces the vector v,:
av;=a(fu) =vy (B-7)

If it is possible to obtain the vector vy directly from u using a single operator -, the

latter is called the product of operators e« and 3:

yu=a(Bu) (B-8)
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Respectively, we have
y=af and yu=vy (B-9)

It is essential to notice that usually the operators a3 and B« are different, because the

order in which the transformations are performed is important. The difference
af—-Ba

is often called the commutator of operators v and 8. If the commutator of two operators

is equal to zero, such transformations are commutative, that is,
afB=0a (B-10)

Representation of transformations in terms of matrices

The operator «r in eq. B-1 plays a rather symbolic role because it does not show explicitly
the operations with u that produce the vector v. In order to overcome this problem, we
introduce the rectangular coordinate system with the unit vectors iy, iy and consider the

components of both vectors u and v:
u = U il+’U,2 i2, V = il + U9 i2 (B-ll)

Let us express the components of the vector v as a linear combinations of components

of the vector u. Then we arrive at two equalities

V1 = Qg1 U1 + Qo Ug

Vo = Qg1 U1 + Qoo U (B-12)

Here «a;;, are some numbers. Thus, the operator of transformation «, eq. B-1, is charac-

terized by a table of coeflicients

o= [ a1 G2 ] 7 (B-13)

21 (a2

which is called the matrix of transformation e. It is clear that knowing the matrix and
using eqs. B-12 allows us to determine the vector v. For illustration, consider three
matrices.

Case one Suppose that the matrix a is
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a b c

VLo

Y

Figure B.1: Transformations of vectors.

Then, eqs. B-12 are greatly simplified and become
vy =anu; and vy = agguy

In particular, when
Gy = e = a, (B-14)

the matrix has the form

and both vectors u and v have the same direction, Fig. B.1a.

<o 4

As follows from eqgs. B-12, the relationships between components of both vectors are

Case two Consider the matrix

vp=u; and v = —us (B-15)

Therefore, the matrix a produces the vector v which is a mirror reflection of u with
respect to the horizontal coordinate axis, Fig. B.1b.

Case three Now we assume that due to the transformation the unit vector u was
rotated counter-clockwise by the angle ¢, so the vector v is also the unit vector, Fig.

B.1e. From the definition of the directional cosines we have

u=cosai + cos fiy (B-16)
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and
v = cos{a + @) 1) + cos(B + ¢) iy (B-17)
Therefore,
U] = Cos Uy = cos 3,
(B-18)
vy =cos(a+ ), vy =cos(f+¢),
whence
U1 = COS ¢ cosa — sin ¢ sin o
and
vy = cOs ¢ cos 3 — sin ¢ sin 5
Since

B=5-a
and taking into account eqs. B-18, we obtain
U1 = COS QU — Sin @ us
and
79 = Sin @ uy + cos P uy
Comparison with eqgs. B-12 shows that the transformation matrix is

[cos¢ —sin¢1

sing  cos¢

Now we discuss some operations with matrices.

Summation of two matrices

Consider two transformations e and 3, which are applied to the same vector u. As a
result, they give the vectors v and w, respectively. The relationships between the vectors

are

U] = QU+ Qs (B—lg)
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Uy = Qo1 Uy + Qiog Uy
and

w12511u1+ﬂ12u2, (B—QO)

Wo = Boy Uy + Boy Us
Summation of the corresponding components yields

v+ w; = (0511 -+ ﬁ]l) u + (Oén + ﬂlg) U,
(B-21)
vy + Wy = (a1 + B1) Ur + (2 + Pop) Un

Therefore, in order to obtain the sum
vV+w,

we can apply a single transformation, represented by the matrix 4, with elements that
are the sums of the corresponding elements in the matrices a and 3.

The matrix - is called the sum of matrices & and 3:

y=a+8 and v+w=~u (B-22)

FHERHEEN

Note that the rule of summation of matrices is the same as that for vectors, and this

For example,

relation remains valid for several other operations.

Summation of matrices and multiplications by a number

Until now, we have considered a summation of two matrices. It is obvious that the same
approach is applicable in the general case, when the number of matrices is arbitrary.

Then, any jkth element of the matrix

Y=o toaztazt+...+a, (B-23)
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is also a sum of the jkth elements of the matrices ay. In particular, if all the matrices

are equal, a; = o, we have

Yy=neo, (B-24)

Lol

Multiplication of two matrices

For instance,

Suppose we perform two transformations characterized by the matrices

a_lan 012] and ﬁ_[ﬂu [312]

Qg1 Qg ,521 [322

Applying the transformation 3 to the vector u, we obtain the vector v:
v=p3u (B-25)
Then, making use of the sccond transformation, we arrive at the vector w:
w=av=ca(Bu) (B-26)

Now, let us determine the matrix -y, which transforms the vector u into w directly.
By definition,

vy = By ur + Bip ug,

(B-27)
Vg = B 1 + By Un
and
wy = an v+ a2,
(B-28)
Wy = (g1 U1 + Qg2 Vg
Substitution of egs. B-27 into eqs. B-28 yields
wy = (a1 By + g Bor) ur + (@ By + oz Ba) us
(B-29)

wy = (o1 B11 + s Bg1) w1 + (o1 Brg + i Bg) sy
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Thus, the matrix of the transformation
w="vu (B-30)

is defined as

Jo (B—31)
Yo1 V22 a1 By + a2 By Qa1 By + (22 Bay

[ Y11 Y12 ] _ [ an By +ons By o1 B1g + @12 Boy ]

The matrix 4 is called the product of two matrices a and 3.
It is easy to recognize here the rule of formation of elements of the product of two
determinants. To illustrate this operation, consider the following example:

10 01
az[o —1] and B:[qo]

The product v = a8 is

| 1-0+4+0-(=1) 1-1+0-0 | |01
7= 0-0+(—=1)-(=1) 0-1+(=D-0| |10

but

ﬁo‘_l 0-1+1-0 0-0+1-(=1) ]_l_(lJ —(1)]

(=1)-1+40-0  (=1)-0+0-(=1)

that is, the operators a3 and 3 « are not equal to each other.

From eq. B-31 it is a simple matter to derive a rule for obtaining the product « 3.
Every clement of the row of the matrix o is multiplied by the clement of the column of
the matrix 3, and those products are summed together. For instance, the element v, of
the product is located on the intersection of the first row and the second column. It is
the sum of products of the first element of the first row of the matrix o« times the first
element of the second column of 3, and the second element of the same row of « times the
second element of the second column of 3, eq. B-31. We have considered the summation
or subtraction and the multiplication of matrices, describing linear transformations of a

planc.

Equality of two matrices

Two matrices « and 3 are equal to each other if the transformation, defined by them

and applied to an arbitrary vector u, gives the same result. By definition, we have

o Uy gty = By uy + By uo
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and

Qg1 Uy + Qigg Ug = By Uy + Bog Uz
Since the vector u is arbitrary, it is natural to conclude that two matrices coincide if
their corresponding elements are equal.
Matrix representation for a vector

It is convenient to write the vector u in the form of matrix

[ o ] (B-32)

Ug

Certainly, the latter can be now treated as an operator. For instance, the summation of
two vectors can be represented as

Uy U1
U )

that is, the components of the total vector are sums of the corresponding components of

u1 + vy

+ 7 (B-33)

Uy + Vo

u and v.

Also a transformation of the vector u by the matrix « can be written as the product

ap; e 31 _ U1 (B—34)
Qg1 Qg Usg U2

Applying the rule of multiplication of matrices, we obtain again

of two matrices

VU1 = Q1 U1 + Qo Ug

U9 = (g1 U] + (¥og Uy

Matrices in n-dimensional space

Our study of operations with matrices in the two-dimensional case is easily generalized

to n-dimensional space. Suppose there is a vector u with components

Ury Ugy - ooy Uy
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Then, a group of linear relationships
Ui = Z Qg Uk (B-35)
k

where i = 1, 2, ..., n, describes the transformation from vector u to the new vector v.

The matrix of transformation has the form

an e Gy
(B-36)

Qln1 AN Qpn

For instance, the vector u can be also written as the matrix which consists of one column

Uy

Uy

Up—1
Un

We denote the matrix with elements o, as
[cvik]
and also use a simplified notation a.

Equality of two matrices

As before, from the equality
v, =w; oOr Z Ol Up, = Z B, Uk (B-37)
k k
it follows that
ik = Big
In other words, two matrices are equal,
[vin] = [Bir] , (B-38)

if they define the transformations that produce the same vector.
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Summation of two matrices

Now we assume that the n-component vector u is independently subjected to two trans-

formations. Correspondingly, the components of new vectors v and w are

v; = Zai’“ u, Oor v=aoau (B-39)
k
and
w; = Zﬂik u, or w=p0u (B-40)
k

Their summation gives

v +w; = Z(mk + B i = Z Vik Uk »

k k

where
Ve = ik + B (B-41)
or
viw=vu (B-42)

Thus, the sum of vectors v and w can be obtained by one transformation, which is
characterized by the matrix [7,,], and its elements are the sums of proper elements of the
matrices a and 3, eq. B-41. This procedure is defined only for matrices that have the

same number of rows and columns. For example,

123+172 o |2 0o 3
45 6 3 6 10| |7 -1 -4

Summation of an arbitrary number of matrices is performed in the same manner. In
particular, if there are £ equal matrices «, then, the result of their summation is the
matrix «y such that

ve = Lo or y=la (B-43)



542 APPENDIX B. MATRIX ALGEBRA AND TENSORS

Multiplication of two matrices

Consider two sequential transformations of the vector u. By definition, we have
v = Z Bypue and w; = Z i v (B-44)
k I

Now with the help of the transformation, defined by the matrix 4, we obtain the vector
w directly from u.

Combining equations of the sct B-44 yields

wy = Z (Z Qi /311@> U (B-45)

Comparison with the relationship

wj = Z Yk Uk (B-46)
k
allows us to establish the rule of multiplication of two matrices:
Yik = Z a1 O, (B-47)
!
or, in the shortened form,
y=aB (B-18)

Therefore, the elements of the matrix « located at the intersection of the row j and the
column £ is obtained in the following way. We multiply the first term of the row j of
the matrix « by the first term of the column % of matrix 3, add the similar products of
the second terms, then, the third ones and so on, as schematically shown in Fig. B.2.
We see that the rule of multiplication of matrices describing linear transformations has
a general character.

It may be proper to notice that applying the rule of multiplication of matrices, the

transformation

can be written as
Uy aqy 2 e Q1p Uy

v : : U
e j ; (B-49)

Un, (7%} (8 7%} . (0779 Up,
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_ o o B o Y _
o o
. ® .
row j (00 0 0 0 o " _ | ° | row j
®
°
Lt L
) o column k : i column k )

Figure B.2: Multiplication of matrices.

As follows from eq. B-48 the determinant of the matrix product is equal to the product

of determinants, that is, if

afB =1y,

then,

laf |B] = | (B-50)

Of course, the latter has meaning only in the case of square matrices.

It is obvious that one can form a product of two matrices if they are square or have
just one row and one column. Also, this operation is possible for rectangular matrices,
provided that the number of columns of the first matrix is equal to the number of rows
of the second one.

Consider several types of matrices.

Symmetric and antisymmetric matrices

Suppose that the matrix e is square:

2551 12 s Qg cee Qyp
= | aj Qg e Qij; o Qip,
G Qipg s Gk e pp

Its element ey is situated on the intersection of the row @ and the column k. The clements
(11, Oy, ..., Opy, located along the downgoing diagonal from the left to right, form the
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main diagonal of the matrix a. If the elements, situated symmetrically with respect to
the main diagonal, arc cqual to cach other,

Qifp = Qg s (B-51)

the matrix is called symmetric. When such elements have the same magnitudes but the

opposite signs,
Qi = — Qi (B-52)

the matrix is antisymmetric. All its diagonal elements then are equal to zero.

Diagonal matrices

A matrix with all off-diagonal elements equal to zero
=0 if i#£k (B-33)

is called diagonal. Tt is easy to see that the product of two diagonal matrices is also a

diagonal matrix.

Identity and zero matrices

The identity matrix [1] is a special case of diagonal matrices whose diagonal elements
are all equal to one. It plays the same role in matrix algebra as the number 1 in algebra

of numbers. The identity matrix transforms any vector into itself
[1Ju=u (B-54)

The zero matrix [0] is such that all its elements are zeros. It is equivalent to the number

0 in algebra.

Order and rank of matrix

Suppose a square matrix has n rows and columns. Then, n is called the order of this
matrix. A minor is a determinant obtained by removing from the matrix the same
number of rows and columns. Consider the case, when all minors of the order higher
than r, which can be formed from the matrix, are equal to zero. At the same time, there
is at least one minor of the order r which differs from zero. Then the number r is called
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the rank of this matrix. In other words, the rank of the matrix is equal to the highest
order of its minors (determinants) which are not equal to zero.
Let us notice that the matrix is called singular when its determinant is zero. For

instance, the matrix

3 2 1 -1
9 6 3 -3
-6 -4 -2 2
0 o0 0 0

is singular. Its order is 4 but the rank is equal to 1.

Transposed matrix

Let us replace the rows of the matrix « with its columns. Then, the new matrix &,

where
Qi = Ol (B-55)

is called the transposed of . For example, the matrix

2 37
a=1]4 2 4
o 8 1

is the transpos of the matrix

2 45
a=|3 2
7 4 1

It is easy to see that the matrix, transposed to the product a3, is equal to the product
of the transposed matrices & and B taken in the opposite order

(aB)=pBa& (B-56)
In fact, the matrix (&.\B) is obtained first by multiplication of row elements of « by
column elements of 3 and then by replacement of its rows by columns. The same result
follows if we multiply the column elements of 3, that is, the rows of ﬁ by the row elements

of a, that is, the columns of &. The same rule is also applied to a product of any number

of matrices

(@B..w)=& ... B& (B-57)
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Dot product of two vectors

Consider two vectors
u=wu i +usis+...+u,i,
and
Vv=u i+ vy + ... +u,l,
Then, by definition of the dot product, we have
UV =U VU + U Vg + ...+ Uy Uy (B-38)

If these vectors are given in the form of matrices

Uy U1

Uy U2
and ],

u’ﬂ UTL

the dot product can be written as

v
U2
wev=[uy Uy ... Uy
Up,
or
u-v=1av (B-59)

In particular, the square of the magnitude of the vector u is equal to

ul+us+... +ud=1du (B-60)

Inverse matrix

Suppose that the matrix e transforms the vector u into vector v

v=«u
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This means that there are n linear relationships
vV = Z QG U (B—Gl)
k

Herei=1,2,...,n.
Let us find the matrix 3 that determines the inverse transformation from the vector

v to the original one

u=pgv (B-62)
In other words, we want to find the table of coeflicients 5}, for the linear relationships
U; = Z ﬁjl Uy (B—63)
k
and j =1, 2, ..., n. The matrix B is called the inverse of o and is denoted as o~ '. The

coefficients 3, can be obtained from the system B-61, solving it with respect to uy, us,
.., Uy. For instance, they can be found using the formula
Ay
Pu=T%
known as the Cramer rule. Here A is the determinant of the matrix o and A;; is the

(B-64)

algebraic addition of the element cy;. In other words, A;; is the determinant obtained
by removing the row [ and the column j from the matrix e. Besides, this determinant
is multiplied by the term (—1)"*7. Calculation of the matrix o~ usually may consist of
the following steps.

1. Matrix &, transposed to «, is written down.

2. Every element of & is replaced by the determinant, which is obtained by removing
the row and column where the given element is situated.

3. The sign of this determinant is changed to the opposite if the sum of indexes j + [
is odd.

4. The last matrix is divided by A.

As an example, consider the matrix

1 3
o= 6
L 9 .
The transposed matrix is
a = 5
| 3 6 9 |
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Next we replace each element with the determinant obtained by removing the corre-
sponding row and column. This gives

-3 —6 =3
24 3 -6
22 4 =3

Then we change the signs of the elements with the odd sums of indexes and obtain

-3 6 -3
-24 3 6
22 -4 -3

Finally, the division of the last matrix by A = 15 produces the inverse matrix

-1/5  2/5 —1/5
a'=| -85 1/5 2/5
22/15 —4/15 —1/5

Calculating the inverse matrix, we assume the original matrix is not singular and, corre-
spondingly, the determinant A differs from zero. In the opposite case the inverse matrix
does not exist. For instance, this happens if the matrix & is not square. In fact, such a
matrix can be made square by adding a certain number of zeros but then its determinant
also becomes zero.

As follows from the Cramer rule, the inverse of a diagonal matrix is also diagonal
with the elements which are reciprocal to the elements of the given matrix. For instance,

the inverse of

a 0 0

0 0 0
o =

00 ¢ 0

0 00d

is

0 0 1/c 0
0 0 0 1/d

By definition, we have

v=au and u=alv,
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whence
v=(aa)v, (B-65)
that is, the product of a matrix and its inverse is always equal to the identity matrix

aa !t =11] (B-66)

Comparison of operations with matrices and determinants

As was shown earlier, the rule of multiplication of matrices is the same as that for the
determinants. However, this is the only case when the rules coincide. In particular, the
rules of multiplication by a number and summation of matrices and determinants are
different. In fact,

aq b1 4] Zal gbl 601
/ Qo bg Co == 6(1,2 gbg 6(52
as b3 C3 fag gbg 603
whereas
ay bl C1 Eal bl C1
y4 Qo b2 Cy | = EG/Q bg Co
as b3 C3 6(13 bd C3
Also
a b ¢ ay oo ap +ay 20y 2¢
(65} bQ Co + CLI2 b2 Co - (¢5] +(IIQ 2b2 262
as b3 C3 ag b5 C3 a5+ag 2b5 263
but
a bl Cy a’l bl Cy a1+all bl C1
as bg co |+ CL/2 bQ Cy | = CL2+CL{2 bg Co
as b3 C3 (lg b3 C3 Cl3+CLI3 b3 C3

Application of matrices for solving the systems of linear equations

We mentioned earlier that systems of linear equations can be solved by applying the
Cramer rule. It turns out that the matrix notation allows us to write the system in

compact form and, correspondingly, it becomes more convenient to deal with the set
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of equations. For instance, this approach facilitates determination of some group of

unknowns, while calculation of others can be avoided. Consider a system of equations

Y =11 ¥ ... T,

(B-67)

Yn = Q1 T1 + .o o+ Oy Ty

Introducing the notation

y = : and X = : ,

in place of the set B-67 we have
y=ax, (B-68)

where « is the matrix of coefficients. Suppose that we want to solve this system only

with respect to the first £ unknowns x{, o, ..., zx. The matrix « can be written as

11 N (63T} QY k+1 N (6377

273 e Ak O k-1 iy 8779

O =

Oyl - Okylk A1+l -+ OQgiyln
(6781 N Cnk On k41 N Clpn

Al | A

= (B-69)

Az | Ay
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The latter represents the combination of four block matrices A;, A5, A3 and A,. Similar
approach is applied to matrices y and x:

[ n | [ =z 1 |
Yo Ta
Y ) T Xy
y = - = | — and X = =
Yk+1 Yy Tht1 Xo
Yk+2 Th+2
L Un | L Tn

Therefore, the system B-67 is written in the form

Y

Ys

A Ay
As Ay

X4

B-70
X, (B-70)

Formulae of matrix multiplication show that the matrices A;, A,, A3, Ay, Xq, Xo, V)
and Y5 can be considered as the elements of matrices in eq. B-70 and, therefore, the last

system consists of two equations

Y= A X+ A X,
Yo = As Xy + A X, (B-71)

Let us eliminate one group of unknowns, X,, from this system. The second equation

gives
Ay Xo =Y, — A3 X
whence
Xy = A7 (Ya - 43 X)) (B-72)
Substitution of the latter into the first equation of the set B-71 yields
=4 X+ A AT (V) — A3 X))
Finally,

Yi— Ay A7 Yo = (A; — Ay A7V A3) Xy (B-73)
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This is a group of linear equations
Y=aX

which does not contain z;,1, Teyo1, - .., Zn.
Also it may be proper to notice that formally the system B-67 can be solved very
quickly. In matrix notation, Y = a X, therefore,

X=a'Y,

and the calculations are reduced to the determination of the inverse matrix o', which
can be found using Cramer rule.

Until now we have studied matrices with real elements. Next generalization is related
to the case when the matrix elements are complex numbers. In other words, the vectors
are considered in the n-dimensional complex space, where their components are complex.
This space essentially differs from the complex plane, used in the theory of complex
numbers, where the real numbers, representing a complex number were plotted along the
- and y-axes.

It is useful to define two new types of matrices.

Hermitian matrices

The matrix a is called Hermitian if its elements, located symmetrically with respect to

the main diagonal are complex conjugate numbers:

Qkj = (B-74)
For instance, the matrix
2 2437 1
2—31 4 3
—1 3 1

is the Hermitian. The elements on the main diagonal of such a matrix are always real.

In particular, a real Hermitian matrix is symmetric.

Hermitian conjugate matrices

This new matrix is obtained from the Hermitian one in two steps. First, the transposed
matrix & is constructed. Then, its elements are replaced with their complex conjugate.
This matrix is denoted as a™, and by definition we have

o = Ay (B-75)
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(@31
(&3]
(U8

Eigenvalues, eigenvectors and characteristic equation

Suppose that the matrix e = o] and the nonzero vector u are given. The latter can
be also described by the matrix [u;]. If the vector u is such that the transformation
produced by « causes only a change of its length, |u|, it is called an eigenvector. The
coefficient A, characterizing the change of its length, is named the eigenvalue. Considering

transformations in two dimensions, we already mentioned those concepts. By definition,

we have
au=J\u
or
Z Qs Uy = A Ug (B-76)
Here k =1, 2, ..., n. The set of equations B-76 can be also written as

(o1 — N ug +appus+ ...+ ag,u, =0
o U + ((XQQ — )\)’ZL2+...+(,¥2”’LL” =0
(B-77)

Oty + Qo s + .o+ (G — A) u, =0

Inasmuch as at least one component of the vector u differs from zero, the determinant

of this system of linear equations is equal to zero:

11 — A Q1o ... M1p
AQN) = : : =0 (B-78)

Onl g oo (Opp — A)

This gives the so-called characteristic equation of the matrix « for calculating the eigen-
values A. The root A, substituted into the system of equations B-76, allows us to deter-
mine the direction of eigenvector, which corresponds to this particular root.

Example Consider the matrix

11 -6 2
-6 10 —4
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Its characteristic equation is

11—\ -6 2
6 10—X —4|==X4+27TX2-1801+324=0
2 —4 66—\

The solution of this equation gives three roots
)\1:187 /\2:6, /\‘;:3

First, we determine the eigenvector corresponding to Az. Substitution of Az into the
system B-76 gives

8U1 *6U2+2U3:0,
—6u;+T7us—4uz3 =20,
2U1—4U2+3U3:0

The determinant of this system is zero. This mecans that the equations are lincarly
dependent. For this reason, we can, for example, discard the last equation and solve the
first two equations with respect to two unknowns. Letting w; = ¢3, we have

—6U2 + 211,3 = —803
771,2 — 471,3 = 6(,’3
The latter gives the vector

=c3 | 2 or u(S):c3i1+203i2+203i3,

which defines the direction of the eigenvector. In the same manner we find the eigenvec-
tors for Ay =6 and A} = 18:

u? =g, 1 and u =¢ | -2
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B.2 Tensors

At the beginning we introduced the matrix « as the operator, which transforms one
vector into another, and this transformation is linear one. For instance, if the matrix «
is applied to the vector u with components w;, u9, wus, then we arrive at the new
vector v with components wv;, vs and wy in the same system of coordinates. It is
essential that each component of v 1is a linear function of u. Now consider a behavior
of the matrix «, when the system of coordinates is changed. First, suppose that there

are two vectors: u and v and the relationship between them is
au=v, (B-79)

where components of vectors are given in the Cartesian system of coordinates z, y, z

and « 1is the matrix with elements:

Q11 G (g3
o = Q1 Qg gy (B'SO)

Q31 Q32 (33

Applying the rule of multiplication of the matrix by the vector, in place of eq. B-79 we

can write

Q11U + Qiols + 3y = Uy
Qa1 U1 + Oipptln + Qa3 = V2 (B-81)

(31U + QuzoUs + Quzz3Us = Uz

This clearly shows that « performs the linear transformation of u into wv.

Next assume that there is another system of coordinates, z', %', 2/ with the same
origin. Certainly, in this system the magnitude and direction of vectors u and v
remain the same, but their components vary. By definition, if in the new system of
coordinates, obtained by a rotation of the old one, we arrive at the system, like eq. B-81,
then the matrix « is called the tensor. In other words, in such the case the linearity of
transformation is preserved. Let us notice that often the physical considerations allow
us to conclude that the matrix represents the tensor.

Since components of vectors u and v are different in the new system we can expect
that elements of the tensor « also change. Our goal is to find the relationship between

its elements in both system, and preliminary it is useful to consider two topics.
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y

\ %
=

Figure B.3: Transformation of coordinates

Transformation of scalars and vectors

As is well known, there are two groups of scalars. One of them consists of scalars, which
change with a rotation of the Cartesian system of coordinates, and they are called the
variant scalars. Components of vector and coordinates of the point are examples of such
scalars. At the same time scalars, like temperature, pressure and density of sources are
independent of the orientation of coordinate axis, and they represent invariant scalars.
Naturally, we are interested in variant quantities and, first, study the simplest case, when
scalars are coordinates of a point. Consider the Cartesian system of coordinates, X with
unit vectors iy, i and iz, and the origin at the point O, Fig. B.3. The radius-vector

r, characterizing a position of some point p is
r = i1 + 22 i2 + X3 i3 (B-82)

Here zy, z» and z3 are coordinates of the point p. It is convenient to introduce the

notation

Sm=1 if j=k (B-83)

Since
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the coordinate of the point in the system x is
T =1- ik (B-85)

Next assume that we also have the new Cartesian system X', which is obtained from
the old one by a rotation of its coordinate axis about the origin, and i}, i,, i} are
unit vectors of the system X'. It is clear that the vector r remains the same in both

systems, that is
1 PO P Y . Y Y B
11+ 29 1o+ X3 13 = I 11+.L2 12+.L3 13 ( -86)

The latter allows us to find a relationship between coordinates in system X and X’.
Multiplying both sides of eq. B-86 by unit vector i; and taking into account eq. B-85

we obtain
P .-I_”-.o/ .../ ).../ B
LR I VI 1B VRS VIR S U VR P ¥ (B-87)

Here j =1, 2, 3. Thus, every coordinate of the system X' is the linear function of

coordinates of the system X. Coefficients

Vik = i;' S (B-88)

7
J
is the directional cosine of the angle between the coordinate axis z' and y.

are directional cosines of the angles, formed by the axis i, and i,. For example, v,

We sce that a rotation of the Cartesian system leads to a change of coordinates of
the point, and it is described by the linear transformation

3
2= Vi, (B-89)
k=1

or

T = YT+ Y%z + V13T
Ty = Y1+ Va2 + Y2303 (B-90)

g
T3 = V3121 + V32%2 + V333
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The matrix

/

Y1 Y12 Vi3
Y= Y2 Yoz Va3 (B-91)
Y31 Va2 Va3
consists of nine elements and each of them is the directional cosine of the angle, formed
by axis of systems X and X’. It is a simple matter to see that these elements are
related to each other. In other words, they obey the certain condition, which follows from
the fact that the distance from the origin O to the point p, thatis |r|, is independent
on the direction of coordinate axis:

3 3

D (@)= () (B-92)

j=1 j=1

Before we use this cquality, let us determine the relationship between ;.
First, suppose that the vector r coincides with the unit vector i;. Then its

components in the old system are
71 =1 x9 =10, 23 =10,
where
=, To =Y, I3 =2z

In accordance with eqs. B-90 components of the unit vector i in the new system of

coordinates are
Y=Y A=Y, Ty =V (B-93)
Therefore, in this system the vector 1i; can be expressed as
L=y 1)+ 9 1)+ 15 (B-94)

Now suppose that the vector r coincides with the second unit vector i, and after it

with i3. By analogy we have
. o o o . of o of
Iy = Yo Iy + Va9 15 + V3o 13, I3 = Y3 1 T Yoz Iy + 733 13 (B-95)

From egs. B-94-B-95 we see that columns of the matrix « is composed of components

of the unit vectors 1i;, i, and 13 in the new system of coordinates. Inasmuch as
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these vectors, as well as 1}, i}, i}, are orthogonal to each other, the matrix ~ has
several important features. First, forming the dot product of eqs. B.94-95 we find that

Y1112 T Vo1 Vee T V31732 =0
Y12Y13 + Y227Y23 + Va2 Vas = 0 (B-96)

Y13V T Y2sVor + ¥33¥s1 = 0
This indicates that columns of ~ are orthogonal to each other. Next, forming the dot
product of i;- 1y, iy-i and 13- i3 we obtain
T+ Y +75 =1

Vip + Yoo + V32 =1 (B-97)

Vs + Va3 + 733 =1

It turns out that rows of the matrix are also orthogonal and their magnitude is equal to
unit. Such matrixes are called orthogonal ones. To illustrate last properties consider the
two dimensional case. As it seen from Fig. B.3.

v, = cosf Vg, = —sinf V1o = sinf Yo = cost

Correspondingly, the matrix -« has the form

Y= ( cosf sinf ) 7 (B-98)

—sinf cosf

and the orthogonality of its columns and rows is obvious. Of course, the determinant is
equal to unity. Also this figure shows that rows of the matrix are formed by components

of unit vectors i} and i, in the old system of coordinates:

if, = cosfij+sinfi, and

i, = —sinf i +cosh iy

The latter clearly demonstrates that rows of the matrix are also orthogonal. It is useful
to replace six equations, given by eqs. B-96-B-97, by one. As an example, consider the
cquality

Y11Y12 T Vo1 Va2 + V31 Yae =0
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which can be represented as

3

> ¥ =0 it itk (B-99)

=1

Here ¢ and k arc cither 1 or 2, or 3. Tt is obvious that cq. B-99 describes two other

equations of the set B-96. Moreover, in place of eq. B-97 we have
3
S v =1 if  i=k (B-100)
j=1

Thus, combining the last two equations and making use of notations of eq. B-83, we

obtain

i 1 i=k
Z’Y,ﬂxk =0y, = { ; . (B-101)
po e 0 ik

which expresses the condition of orthogonality in the compact form. The same result

follows from eq. B-92. In fact, we have

3 3 3 3 3 3 3
Z(x;)Z - Z (Z A’/ﬂxi> <Z ijm’“) = inmk Z’Yjﬂ’jk
J=1 Jj=1 k=1 i=1 j=1

i=1 k=1

2

Since the latter is equal to r® we again arrive at eq. B-101.

Bearing in mind that the determinant of the matrix « is not equal to zero, the
coordinates ) can be expressed in term of z}, and, by analogy with eq. B-89, we

have
3
T = Z VKT (B-102)
j=1

Next suppose that M is an arbitrary vector

3

3
M= Mg ir=> Mi, (B-103)
k=1 k=1

Any component M of this vector in the system X' is given by the equation

3 3
Mi=M-i;=> M ig-i} =Y v, M, (B-104)
k=1 k=1
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Thus, components of the vector are transformed as coordinates of the point, when
the Cartesian system of coordinates is rotated. As we know, every vector is characterized
by three scalar components. However, it does not mean that any three scalars, M;, M,
and Mj; can be treated as the vector components. It happens, if they are transformed
as coordinates of the point.

Finally, let us represent eqs. B-81 in the compact form:

3
v = Z O Uk (B-105)
k=1

Assuming that the transformation is invariant with respect to the rotation, i.e. « is the

tensor, we have to obtain:

3
v = Z oy Uy (B-106)
=1

Here ¢ =1, 2, 3. Multiplication of eq. B-105 by 7,; and a summation by the index j

gives

3 33
Z’Yij vy = ZZ’Y@‘ Ok (B-107)
=1

j=1 k=1

On the other hand

3
v =3 v up =Y Vi (B-108)
=1

3 3
v = Z (Z Z%‘j Vik ajk) uy = Za;z s (B-109)
; =1

where

3 3
afy = Z Z%‘j Yue @it (B-110)

and we found the relationship between tensor elements in both system of coordinates.
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Appendix C

Stress tensor

Volume and surface forces in an ideal fluid

In studying propagation of acoustic waves in an ideal fluid, it was shown that there are
two types of forces: volume forces and surface forces. The classical example of the former
is the gravitational force. For instance, in the case of an elementary volume AV  this

force is equal to

F(p) = f(p)AV = p(p)g(p)AV, (C-1)

where f(p) is the vector, characterizing the density of volume forces,

f(p) = p(p) &(p) (C-2)
Here p(p) is the mass density and g(p) is the gravitational field, caused by all masses,
except Am(p):
Am(p) = p(p)AV (C-3)
Of course, masses of the Earth are main sources of the gravitational field.
The surface forces may arise differently. Consider an elementary plane surface, da(p),

inside an ideal fluid, Fig. C.1a. A medium, situated at the right side of da(p) and at

its vicinity, acts on the medium, located at the left side of this elements, with the force
F(p) = t(p)da (C-4)

The vector t is the density of surface forces, and in an ideal fluid it is normal to the

surface da:

t="n (C-5)

263
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(@) ()

F

n

Figure C.1: (a) Oricentation of surface forces inside an ideal fluid (b) Orientation of
surface forces inside an elastic medium (c) Traction vector t (d) Arbitrary volume of

elastic medium (e) Tractions at opposite sides of a disk

where n is the unit vector, normal to the surface, and P is the pressure. The
first remarkable feature of surface forces is the fact that they act only in the direction
perpendicular to the surface. In other words, the tangential components of these forces
arc absent. This means that an action (pull or push) in the direction, tangential to the
element da, does not have any influence on the ideal fluid, located on the other side of
this surface. In accordance with Newton’s third law a medium, situated at the left side

of da, also exerts a force across this clement, and it is equal to
F=—t(p)da (C-6)

Thus, in the vicinity of any point p of the surface element there are two surface forces
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with equal magnitude and opposite directions. They are applied at two points, located
at different sides of the surface and infinitely close to each other. The second outstanding
feature of these forces is independence of their magnitude on an orientation of the surface
da. A change of the direction of the unit vector n does not make an influence on |F|.
As is well known, this allows us to characterize a force distribution in the ideal fluid by

the single scalar function only, which is called the pressure.

Surface forces inside an elastic medium

Completely different behavior of surface forces is observed in an elastic medium. First
of all, both the normal and tangential components of the force are transmitted through
the surface. This means that, in general, the force F, acting on some clement da, can
be arbitrary oriented with respect to the normal n, Fig. C.1b. As in the case of an
ideal fluid, media located at both sides of the surface act on each other with forces F(p)
and — F(p), respectively. The second feature of these forces in an elastic medium is
the fact that a change of an orientation of the element da results in a change of the
force, exerted across it. We can imagine infinite number of orientations of the element
da and, correspondingly, an unlimited number of different forces, acting at the same
point of an elastic medium. Because of this the following question arises. How can
we characterize such a distribution of forces? We attempt to find one quantity, which
will allow us to determine the force density, t, acting on the element da, regardless
of its orientation. We have already performed a similar task then we studied studying
scalar fields, (Part I). In principle, at each point there is always an infinite number of
the directional derivatives of such field, and, in order to calculate them, the gradient of
the scalar field was introduced. It turns out that a behavior of forces t as a function
of an orientation of the elementary surface at the same point is also described by single
quantity, which is called the stress tensor. Before we demonstrate this fact, let us make

some comments about volume and surface forces.

a. In the absence of external forces a body is not deformed and its atoms are in a
stable equilibrium. Correspondingly, forces of interaction are equal to zero. Because of a
deformation a relative position of atoms changes and the internal forces arise. They try

to return atoms to their original position.

b. The volume force, acting on elementary mass, Am(p), is caused by masses inside

and outside an elastic body. Also these forces may have electric or magnetic origin.
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The traction vector t

Let us take a small element of the surface da inside an elastic body. We consider the
force, transmitted through the element da and caused by a medium, which is situated
at a certain side of da. In order to specify this portion of the body, we draw the normal
n toward it, (da = da n). In other words, a direction of n defines a medium, which
produces the surface force. As in the case of an idcal fluid, the density of the surface
force is defined by eq. C-4

¢ - F
 da’

and it implies that the force F is uniformly distributed over the element da. The vector
t is called the traction across this surface at the point p, Fig. C.lc. The dimension of

t 18

[t] = kg m ! sec?,

and, by definition, t components along the Cartesian coordinate axes are
t, =t-i=tcos(t,i), t,=t-j=tcos(t,j), ¢, =t -k=1tcos(t k) (C-7)

Here cos(t,1), cos(t,j), cos(t,k) are directional cosines of the vector t.
It is a simple matter to find the normal and tangential components of the traction
with respect to the plane element da. For instance, the scalar component along the

normal n is

to(p) = t(p) - n = t(p) cos(t, n), (C-8)

where t is the traction magnitude. If #,(p) is negative, it is called the pressure. In
the opposite case, t, > 0, this component is called the tension. For instance, when the
fluid is at rest, directions of the vector t and the normal n are exactly opposite to
each other. In an elastic medium the traction can be at any angle to the normal n, Fig.
C.lc.

Equations of equilibrium in integral form

In order to understand a distribution of internal forces it is very useful to consider the
case when an elastic body is in a state of static equilibrium. The latter is provided by a

system of external forces. This means that all particles of the body are at rest and, in
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particular, wave propagation is absent. Consider an arbitrary volume V of the elastic
medium, surrounded by the surface S, Fig. C.1d. Since the body is in equilibrium the
resultant external force, F, and the resultant torque, M, have to be cqual to zcero,
(Appendix A):

F=0 and M=0 (C-9)

Earlier we pointed out that the force F consists of the external surface and volume
forces. For instance, the former is caused by elements of the medium, located at the
external side of the surface S. They act on the neighboring elements near the internal
side of §. As in the case of the ideal fluid we will use the concept of the density of
volume forces, f, and the traction, t. Therefore, the elementary volume, dV, and

the elementary surface, da, are subjected to the action of forces:
dF = fdV and dF = tda (C-10)

As we already know, such presentation means that the volume and surface forces are
uniformly distributed over dV and da, respectively. Now we are prepared to write
down conditions of an equilibrium when both translation and rotation are absent. Making

use of eqs. C-9 and the principle of superposition we obtain
/de + ]{ tda=0 (C-11)
v s

and

/(rxf ) dV + Y{rxt =0 (C-12)
v 5
Here r isthe radius—vector drawn from an arbitrary chosen origin to any element of the
volume V' or the surface S (Appendix A). The first equality shows that the volume V
does not experience translation, while the second one guarantees that this body is not
involved in rotation. In both cases it is assumed that at the initial instant the body was
at rest. The two equations represent conditions of equilibrium in integral form, since the
volume V may have arbitrary dimensions.

Because our purpose is to find out relationships between surface forces on the vicinity
of any point p inside an clastic body, we replace egs. C-11-C-12 by their differential
form. This task can be solved at least by two ways, related to each other. The first

approach is based on an assumption that the volume V' is very small. Correspondingly,
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points of the surface S are close to the point p, located at the middle of the volume
V. This allows us to expand components of the traction t at points of the surface in the
Taylor series around the point p. Also we assume that these components linearly change
within the volume V. For this reason, terms of the series, which contain the second and
higher order derivatives, are discarded. Then it turns out that after an integration over
S, eq. C-11, it becomes possible to express the first condition of an equilibrium in terms
of the traction t and the density of volume forces f, at the point p.

The same equation of an equilibrium with respect to a translation can be obtained

slightly differently, and the second approach follows from the Gauss divergence theorem,

(Part 1):
/diVMdV:%M-da
7

e
where da =da n, and n is the unit vector, directed outward the volume V. This
orientation is in agrecment with a dircction of the traction t. It emphasizes the fact
that a medium, surrounding the volume, generates a force, acting on V. In other words,

these forces are external. In the Cartesian system of coordinates we have
n=mni+nj+nk (C-13)

and n,, n, and n, are directional cosines of the normal n with respect to coordinate

axes.

Vectors X, Y, Z

In order to obtain the differential form of eq. C-11 it is very useful to introduce three
vectors: X, Y and Z. By definition

X=X,i+X,j+Xk Y=Vi+Vj+Vk Z=LZi+Zj+2Zk (C-14)

There vectors obey the following rule. The dot product of each vector and the normal
n of the clementary surface da gives the corresponding component of the traction t
on the coordinate axes

t, =X - n, ty, =Y n, t,=7Z-n (C-15)

For instance, the dot product X -n defines the projection of the vector X on the
normal n, and it is equal to the x—component of the traction. As follows from eq. C-15

t=(X-n)i+ (Y -n)j+(Z-n)k
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or
t = X,i+ Yoj+ Zok, (C-16)

where X,, Y, and 7, are projections of vectors X, Y and Z on the normal n.

Respectively, the normal component of the traction can be written as
t,=t-n
or
tn = Xpng + Yony + Yon, (C-17)
Let us rewrite eqs. C-15 in the form

tr = Xgng + Xynyg + Xon,, Gy =Yena +Y,n, +Yon,, .= Zmn.+ Zyny+Z.n,

(C-18)
or in the compact form
X Xy X
t=| Y, Y, Y, |n (C-19)
Zy Zy 4,

Here t,, t, and t, are the Cartesian components of the traction, acting on the plane
element with the normal n.

Equations C-18 or C-19 can be treated as a transformation of the normal n into the
vector t. However, they have much more important meaning and in order to understand
it we consider three special orientations of the elementary surface, da, at the point p.

First, suppose that this element is perpendicular to the z—axis, (n=1i), that is
ng =1, ny=n, =10
Then, as follows from eq. C-18
te(p) = Xa(p),  ty(p) = Ya(p), t-(p) = Z2(p) (C-20)

Comparison with eq. C-19 shows that the first column of the matrix characterizes the
traction t(p), when the element da is normal to the z—axis. At the same time, X,

Y,, Z. are components of the vector t:

t=X,it Y.j+ Z.k
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In the second case the element da(p) is normal to the y-axis, and correspondingly
n, =0, ny, = 1, n, =10

Then we have

and
tp) = X,i+ Y,j+ Zk

We see that the second column of the matrix defines the traction t at the same point,
when the element da is perpendicular to the y—axis. In a similar manner we find that
the last column represents the vector t, if the element da(p) is normal to the z—axis

and

t(p) = X,i+ Y,j+ Z.k

Cauchy formulas

Thus, the matrix, (eq. C-19), contains information about the traction t for three
mutually perpendicular positions of the element, da(p). It is essential, that each time
the normal n and one of the unit vectors of the Cartesian system coincide. Assume
that components of vectors X, Y and Z are given. In other words, we know the
vector t for three orientations of the element da, corresponding to the coordinate
plancs, (Part I). Then, an importance of cgs. C-15 or C-18 becomes clear. In fact, they
allow us to calculate the traction t at the same point for any orientation of the element
da(p) and these relationships are called Cauchy formulas. One can say that we have
solved our main task and found out that the matrix, given by eq. C-19, is the desired
quantity, which completely describes the traction t for an arbitrary orientation of the

surface element da.

The first condition of an equilibrium in the differential form

To understand better some properties of this matrix we should return to conditions of
an equilibrium and obtain their differential form. It is natural to start from eq. C-11.
First, consider this equation for the z—component of vectors f and t. It is clear that

/ fodV + %tzda =0 (C-21)
v s
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Substitution of the first equality of the set. C-15 into eq. C-21 yields

/ £dV + 7! X -nda=0 (C-22)
% 5

The integrand of the surface integral is represented as the flux of the vector X through
the element da, and, therefore, we can make use of the Gauss theorem. As was al-
ready mentioned, this was one of the reasons for introduction of vectors X, Y, Z.
Correspondingly, in place of eq. C-22 we obtain

/ FodV + / divX dV = 0

or

/fT—I—leX ydV =0
1%

Since this equality takes place regardless of dimensions and shape of the volume V, we

conclude that the integrand is also equal to zero
fe+divX =0 (C-23)
By analogy, applying the same approach to components f,, £, and f,, ?,, we have
fy +divY =0, f+divZ =0 (C-24)

Thus, eqs. C-23-C-24 represent the differential form of eq. C-11, and they show that an
elementary volume around some point p does not experience a translation. It is obvious
that the left hand side of these equations describe the resultant force, acting on the unit
volume. Also it may be proper to notice the following. By definition, the divergence is a
sum of the first derivatives, for instance

X, 0X, 0OX,
+ 2y

VX =
div Ox Ay 0z
or
] . $X-nda
X =lims+—F—— AV
div im NG V=0

Respectively, a calculation of divergence implies that the elementary volume AV has
to be so small that functions X, Y and Z change almost linearly inside of it. At the
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same time the density of volume forces remains the same. Of course, with a decrease of
the volume a variation of each component of these vectors also tends to zero. As we know
(Part 1), an cquilibrium does not take place instantly and it is always preceded by the
dynamic stage. Suppose that at some instant the constant external forces are applied
to the surface S, surrounding an elastic body. At the same moment a wave begins
to propagate through the volume and ultimately it provides an equilibrium of each its
portion. For illustration consider two examples of an elementary volume inside a body.

Example one Suppose that a volume is a very thin disk with elementary surfaces
da(pr) and da(ps),

da(p1) = da(pz) = da

Its lateral surface is so small that one can neglect the forces acting on it. At the same
time, we assume that forces, exerted on surfaces da(p;) and da(ps) are distributed
uniformly over them. Therefore, a distribution of these forces is characterized by the
tractions t(p;) and t(ps). Suppose that the wave approaches to the face da(p;) of
the disk and produces its expansion. Then, the traction t(p;) is directed towards the
surrounding medium, as well as the normal n(p;). In accordance with Newton’s third
law the traction t(p;) has the opposite direction on this volume, Fig. C.le. This means
that vector components of t(p;) and t(p2) in the direction, which is either normal or
tangential to the disk, are also opposite to each other.

In particular, in the state of an equilibrium

t(Pl) = - t(P2)7

provided that we can neglect the volume forces. If the wave produces a compression of an
elementary disk, a direction of tractions is given in Fig. C.1f. It is essential that such an
orientation of the traction at opposite faces of an elementary volume is always observed.

Example two Now consider an elementary parallelepiped, shown in Fig. C.2a.
The sides of this volume are cqual to Az, Ay and Az, and the middle point p has
coordinates z, y, z. As in the first example, because of the wave, the volume, AV
is subjected to an action of forces, caused by a deformation of the surrounding medium.
These surface forces are uniformly distributed over each face of AV, but they may have
different magnitudes and directions at different faces. First assume that the wave moves
along the x—axis and produces a compression. Therefore, the vector component of the

traction



APPENDIX C. STRESS TENSOR 573

(@) ()
y
z t "t ¥y y
t. A
f\
| 1 2
: | —T >t
{ Xy
: pe Y,
S Py.2)
//_ 7 Y\
,' / 1
L X
| It 4 3
t;/ t
2] X o » X
(© (d)
z z

Figure C.2: (a,b) Tractions on faces of an elementary parallelepiped (c¢) Derivation of

Cauchy formulas

is directed along the z—axis. When this wave reaches the opposite face, the force acts
on a medium, which is in front of the volume, AV. As follows from Newton’s third law,
the traction, caused by this medium,

Az
te(r + —

5 Y, z)

has an opposite direction. If the wave is accompanied by tangential components of the
traction, t, and t,, then, applying the same law, we find that

Az

Az
ty(QS'*T? Y, %), ty(erTy Y, %)
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and
Az

A
t,(r — > Y z) and  t.(x + TI, Y, %)

also have opposite directions. The same behavior of vector components of the traction
is observed at other faces of the volume V, Fig. C.2a. At the same time each scalar
component of vectors X, Y and Z has the same sign at the opposite faces. In fact,
by definition, we have

Az A Az
ty(x — 71, y,z) =X -n=-i-X(z — Tm, y,2) = —X,(x — 717 Y, 2) (C-25)

For instance, in the case of the compressional wave, the scalar component ¢, (x — %, Y,

z) is positive. Therefore, we conclude that

A
X'K(‘T - Txa y,Z) <0
In the opposite face we have
A Az A

In accordance with Newton’s third law, the component ¢, is negative. Correspondingly,
as on the back face:

A
Xz + =

5 , Y,2) <0

It is a simple matter to demonstrate that all other scalar components of vectors X, Y

and Z do not change sign at opposite faces of the elementary volume.

Flux of the vector X

Next we derive again eq. C-23 in more explicit way. With this purpose let us calculate
the flux of the vector X through the closed surface, surrounding the volume AV, Fig.
C.2a. Our goal is to simplify eq. C-22, when this volume is very small. It is clear that

the flux through both faces, perpendicular to the z—axis, is

Az Ag
Xr(‘/r + %7 Y, Z) - X?t(x - TJ/, y,z) AyAz
or
78)%(%’3/’2) Az Ay Az = 0Xs AV
Ox ox
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The pair of faces, normal to the y—axis, gives

A A
Xylz,y + 7y, z2) — Xy(z,y — Ty,z) Az Az
or
X X
0 YAzAyAz = 0 YAV
dy Ay

Finally the flux through opposite faces, normal to the z—axis, is equal to
Az Az
Xz[Xm(I7 Y, 2+ 7) - ‘Yz('r7 Y,z — 7)]A$Ay
or
0X,

AV
0z

Thus, the total flux is

- [0X, 0X, 0X, i
onnda—<ax + By + aZ>A1

As before, assuming that the density of volume forces is constant inside AV, we again

obtain eq. C-23. The same approach gives the flux of vectors Y and Z:

g Yy, oY, oY,
fY-nda*<ax + By + 8Z>A‘/

and

0z, 0z, 0Z
7. _ v 9%y O} Ay
j{ n da <3x+8y+8z> V,

and, correspondingly, eqs. C-24. Now it is appropriate to make several comments.

1. The last three equations allow us to express the flux through a surface, surrounding
an elementary volume, in terms of the first derivatives of scalar components of X, Y
and Z at the middle point p. In other words, egs. C-23—-C-24 establish relationships
between these components and the density of the volume force around the same point p.

2. We use values of functions at all faces of an elementary volume, but in the limit
obtain formulas, which characterize a behavior of vectors X, Y, Z and f at one
point, p.

3. As was mentioned earlier we assume that each component of these vectors linearly
changes between opposite faces. This implies that a difference between values of any
component at the middle point and at a face is directly proportional to the distance,
(Ax/2,Ay/2 or Az/2)
only slightly at the opposite faces. However, corresponding vector components have

i.e., values of each scalar component, for instance, X,, differ

opposite directions.
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The second condition of an equilibrium

We continue a study of vectors X, Y and Z, and with this purpose in mind consider
eq. C-12. Tts left hand side describes the resultant moment, and in order to provide an
equilibrium, it has to be equal to zero. Respectively, each its component also vanishes.

For instance, in the case of the z—component we have

/ (Wf. — 2fy)dV + f (yt, — zt,)da =0 (C-27)

v s
To obtain its differential form we make use of eqs. C-15, and it gives
/(yfz — z2fy)dV + f(y Z—2Y) -nda=0 (C-28)
v 5

Applying again the Gauss’s theorem we replace the surface integral by a volume integral,
and eq. C-28 becomes

/ [yf. —2f, +diviy Z — 2 Y)] dV =0 (C-29)

1%

By analogy with the first condition of an equilibrium, we take into account that eq. C-29

is valid for an arbitrary volume. This means that integrand is equal to zero, too:
yf:—z2fy+diviyZ—-—2Y)=0 (C-30)

This is the differential form of eq. C-28, and it shows that the z—component of the
torque is zero. It is a relationship between components f,, f, and vectors Y and
Z in the vicinity of any point. This equality contains extremely important information
about scalar components of vectors Y and Z. To describe these new features we

perform some simplifications in eq. C-30 As is well known from vector analysis,
div(y Z) =Z grad y+y div Z and div (2Y)=Y grad z+2divY (C-31)
Since grad y =j and grad z =k, instead of eq. C-30 we have
yf—2fy+Z-j+ydivZ-Yk—-2divY =0
or

yfe —2fy+ 2y =Y, +tydivZ —zdivY =0
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Now, making use of the first condition of an equilibrium, eqs. C-23-C-24, we discover
that

Z, =Y, (C-32)

In the same manner, considering the y and z components of the resultant torque:
/(z fo—z f)dV + ‘7{(2 ty —x t,)da =10
1% 5
and
/(m,fy —yfy)dV + %(az t, —y t,)da =0,
v g

we see that
Z, =X, and Y, =X, (C-33)

In essence cqs. C-32-C-33 represent the sccond condition of an equilibrium of an ele-
mentary volume when its dimensions tend to zero. Thus, from both conditions of an
equilibrium we found out that some elements of the matrix, eq. C-19, are equal to each
other:

Xy(p) = Ya(p), X.(p) = Z.(p), Y.(p) = Z,(p) (C-34)

Taking into account an importance of these cqualitics, let us discuss them in some
details. With this purpose consider an elementary cube, (Ax = Ay = Az) and its cross-
section in the plane XOY, Fig. C.2b. First, we pay attention to tangential components
of vectors X and Y, which act on faces 1-2 and 2-3. Applying again the Taylor series

we have
Ay 0X,(p) Ay g
X, (z,y+ - z) = X,(p) + 8—27 — .. (C-35)
i Az o oY, (p) Az
and }w(x+7,y,z) =Y,(p) + e 2

The traction components ¢, and ¢%,, associated with X, and Y, try to rotate the
cube in opposite directions. As follows from eqs. C-35, in the limit, when the volume



378 APPENDIX C. STRESS TENSOR

becomes infinitely small, their resultant torque vanishes, if X,(p) = Y,(p). However, at

faces 1-2 and 2-3 of the elementary volume, we may have:

A A
‘Yy(%7y + Tyvz) 7£ Yra:(x + 71.7y: Z)

The same components at the opposite faces of the cube, 1-4 and 4-3, also form torques.
As before, they have opposite directions and in the limit, when Az — 0 we again obtain
that X, (p) iscqual to Y,(p). Similarly, studying all tangential components of veetors
X, Y and Z, we again arrive at eqs. C-34. This consideration also shows that in a
state of an equilibrium these components are not usually equal at opposite faces. For

example,

A A
XZ(I7y7Z + TZ) 7& ‘XZ(I7y7 <= TZ)

Now it is proper to make several comments.
1. The set of equalities C-34 describes relationships between tangential components
of a traction at point p. They act on clements of coordinate plancs, which are equal to

da, = dydz, da, = dxdz, da, = dzdy

2. As was demonstrated, eqs. (C-34 remain valid, regardless of the volume force
density, f.

3. If we assume at the beginning that eqs. C-34 take place, then the second condition
of an equilibrium is not independent and it follows from the first one. This approach is
very useful, and it will be used later in deriving equations of motion.

4. In general, an equilibrium of an elementary volume depends on both the volume
and surface forces. For instance, if the former can be neglected, the first condition is

greatly simplified and we obtain

divX =0, div¥ =0, divZ =0 (C-36)

Stress tensor

As was already pointed out the matrix

YV, Y, V. (C-37)
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transforms the unit vector n of an arbitrary surface element into the traction, t(p) ,
eq. C-19. This matrix is the tensor, and the relationship between t and n remains
linear in new system of Cartesian coordinates, obtained by a rotation from the old one.
Correspondingly, elements of the tensor in the new system can be calculated, applying
formulas, derived in the previous Appendix B. By definition, nine scalar elements of the
tensor, eq. C-37, are called stresses, and they allow us to find forces, acting on any
element da. Its diagonal elements

X,, Y, and Z,

arc called the normal stresses, since they characterize forces, which are perpendicular
to corresponding coordinate planes. The other elements are shear stresses, and it is
understandable, because they define tangential components of forces, cxerted on the
same coordinate planes.

In accordance with eqs. C-34 the stress tensor is symmetrical, and, therefore, it is
defined by six elements only. There are different notations for tensor elements and one
of them is given above, eq. C-37. It clearly shows the meaning of each element. For
instance, X, describes the force at the point p, directed along the z—axis and applied
to the surface clement da(p), which is perpendicular to the y—axis.

The second notation uses one letter only for all elements, and it has a form

X, =Tn Xy =T X, =13
Y. =Tu Y}; =Ty Y, =T (0'38)

Zy =Ty Zy =T Z, =Tz

and in place of eq. C-37 we have

Tn Ty T
Ty Ty T3 (C-39)
Ty Ty T3

Respectively, the first index defines the component of the force, while the second char-
acterizes a direction of the normal to the surface element. For instance, T3y describes
the z—component of the traction, which acts on the surface element, perpendicular to

the y—axis. It is obvious that

T = Tho, T3 =Ty and T3y = T3
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Also the stress tensor is sometimes written as

Pzz Pzy Pz
Dyx  Pyy Pyz (C-40)
Pzz Dzy Pz

Comparison with eq. C-37 easily defines the meaning of each element. Finally, in order
to emphasize a difference between the normal and shear stresses the following notations
are used, too:

Pzz = O, Pyy = Oy, D2z = 02

and Pay = Tuay Pz = Taz,y Pyz = Tyz
Therefore, the stress tensor is

Oz Ty Tzz
Tys Oy Tyz (C-41)

Tex Tazy Oz

In general, the latter is a function of a point and represents the example of a tensor field.

Cauchy formulas and an equilibrium

Earlier we obtained Cauchy formulas by simply introducing vectors X, Y and Z, cgs.
C-15. Tt is also very fruitful to derive them, eqs. C-18, proceeding from the integral form
of the first condition of an equilibrium. In other words, we again demonstrate, that the
stress tensor, given at some point p, allows us to determine the traction, t(p), acting
on the elementary surface, da(p), arbitrary oriented with respect to coordinate planes.
Solving this task it is convenient to deal with two different elementary volumes.

Case one: two-dimensional model Consider an elementary volume inside an
elastic medium, which has a shape of the wedge, Fig. C.2c. Before we use the first
condition of an equilibrium it is proper to notice the following. With a decrease of the
wedge volume the surface forces decrease proportional to the arca of its faces, that is
as a square of linear dimensions. At the same time the volume force, for instance, the
gravitational one, decays more rapidly; as a cube, since it is directly proportional to

mass. For this reason we can neglect this force, that is

If|dV < |t|da (C-42)
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Also we assume that the volume width, Ay, is very small, and forces, acting on two
faces, perpendicular to the y—axis, cancel each other. This simplifies the first condition

of an equilibrium, too, eq. C-11, and it can be written as
t(p3) AYyAL + t(p2) AyAz + t(p ) AzAy = 0, (C-43)
where
Al = /(Ax)? + (Az)?
Respectively, for the  and z—components we have

ten(P3) AL+t (p2) Az + t,(p1) Az =0 (C-44)

and  t,,(p3) AL+ 1. (p2) Az + L. (p1)Az =0
By definition,

te(p1) = —X(p1) - k = = X.(p1)

and  {y(p2) = —X(p2) - i = —Xu(p2),
since at both faces the normal has a direction, opposite to the corresponding unit vector.
Then, the first equation of the set C-44 becomes

Az Azx

ten(ps) = X'r(pz)ﬂ + JYz(pZ)T

As is scen from Fig. C.2d

Az AT osa—
Al AZ—COSOZ—TLZ

are directional cosines of the normal n. Thus, we have

=cos 3 =ny,

ten(p3) = Xo(p2)ne + Xz (p1)n, (C-45)

It is clear that

t.(p) = ~Z(p1) k= —Z.(p1)

and  t,(p2) = —Z(p2) -i= —Z.(p2)
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Therefore, the second equation of the set C-44 gives

tzn(pii) - Zz(pQ)nm+Zz(pl)nz (0'46)

Here tyn(ps) and ¢,,(p3) arc the z— and the z—components of the traction t(p3) at
the elementary plane with the normal n.

As follows from eqs. C-45-C-46, they describe relationships between stresses at dif-
ferent points p;, p; and p3. However, with a decrease of the wedge volume, all faces
approach to the same point p. In the limit these stresses characterize forces, exerted
on three elementary surfaces, which have a common point p. Comparison with Cauchy
formulas, e¢gs. C-18, shows that cqs. C-45—-C-46 represent their special case, when an
influence of forces, acting on faces, perpendicular to the y—axis, can be neglected.

Until now we found the Cartesian components, ¢,, and t,, , in terms of the stress

X, X,
7z, 7.

It is also a simple matter to determine the normal and shear components of the traction

tensor:

t at the same point p3. As is seen from Fig. C.2d
tn(P3) = tun COS B+t cos v,  tg,(p3) = —ten COS @ + Ty, cOS 5
or
tun(P3) = tanna + tanhs, tsn(P3) = —tenny + tonniy (C-47)

Here t,, and t,, are the normal and shear components of the traction at the point
p3. Substitution of eqs. C-45-C-46 into the set C-47 yields

tan(D3) = np(Xomne + Xon,) +n.(Zpn, + Z,m,)
or

tun(p3) = P2 X, +nen, X, + nen.Z, + 022, (C-48)
Similarly, for the shear component we have
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or
tsn(p3) = ’I”Lin + navnzZz - nxanw - nZXz (C_49)

As we know, from the second condition of an equilibrium it follows that Z, = X,.
Assume that the system of coordinates, x and =z, is rotated about the y—axis, and
the new axis ' is directed along the normal n, while the 2’ axis is tangential to
the elementary surface around p;. Then, #,,(p3) and ¢5,(ps3) represent the stress
elements, X, (p3) and Z,.(ps) in the new system of coordinates. Therefore, egs.
(C-48-C-49 perform a transformation of two elements of the stress tensor, caused by a
rotation of the coordinate system. Considering the surface element, normal to the old
one, (Ay, Al), we can determine the stress Z,. Asconcerns X, it isequal to Z,. It
is proper to notice that the same result, eqs. C-48—C-49, follows from expressions derived
in the Appendix B.

Case two: three-dimensional model Next we study an cquilibrium of a
tetrahedron, shown in Fig. C.3a. Three of its faces coincide with corresponding elements
of the coordinate plancs. The arcas of all planc faces of this body are related to cach

other in the following way:
dagy = dacos(k, n), day, = dacos(j n)
and
da,, = dacos(i, n)

Here da is the area of the face with the normal n.

Our goal is to determine Cartesian components of the traction t at this oblique
element of the closed surface. Applying again the first condition of an equilibrium in the
integral form, we see that

t da + t(p1)day, + t(p2)das. + t(ps)daz, =0 (C-50)

Considering the Cartesian components of this equality and making use of the set C-15,
we again arrive at the Cauchy formulas, eqs. C-18. At the same time, eq. C-50 does
not relate to each other tensor elements, but it establishes a relationship between the
traction t at an oblique surface element and the stress tensor. In addition note the
following:

a. Earlier we derived Cauchy formulas without the use of the condition of an equilib-

rium, and, therefore, the volume forces.
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Figure C.3: (a) Cauchy formula for three dimensional cases (b) Equilibrium of bar (c)
Mlustration of eq. C-5H4

b. As was demonstrated in the first case, Cauchy formulas permit us to find elements
of the stress tensor in the new Cartesian system of coordinates. Certainly, the same is

correct in the three-dimensional case, (Appendix B)

Stress behavior and an equilibrium

Next we proceed from Cauchy formulas and illustrate a behavior of the traction compo-
nents in an elastic medium. With this purpose in mind consider two examples, assuming
that a body is in an equilibrium.

Example one Suppose that the stress tensor at some point of a medium is



APPENDIX C. STRESS TENSOR 585

By definition, for an arbitrary oriented element da with the normal n we have

t, =X -n=—Pcos(i,n) = —P n,

t,=Y -n=—Pcos(jn) =—P n,

t,=Z-n=—Pcos(k,n)=—P n,
Respectively, the traction t, acting on this surface element, is
t=—-Pn, (C-52)

that is the vector t has a direction, which is opposite to the normal n. Its magnitude
is equal to the pressure P. As we know, such a behavior is observed in the ideal fluid
when an equilibrium takes place.

Example two  Consider an elastic bar, oriented along the x-axis, and assume
that two forces, F and —F, applied at bar ends, provide an equilibrium, Fig. C.3b.
Because of these forces an extension occurs and internal forces arise. In order to find their
distribution we mentally draw a cross- section S in any place of the bar. Its portions, A
and DB, are located at both sides of this surface. Inasmuch as the bar is an equilibrium,
parts A and B are at rest, too. Therefore, the internal force, acting on S and caused
by the portion A, is equal to F. In other words, the resultant force, exerted on B, is
equal to zero. Otherwise, it would be in a state of motion. Changing a position of the
cross-section S and bearing in mind that the force is distributed uniformly over it, we
conclude that F is the same at all points of the bar. Besides, this force is perpendicular

to the section S, that is the traction has only the normal component, equal to

F
te =X, = — C-53
- (C-53)

As was shown, this stress element provides an equilibrium, while the others are equal to

ZeT10:
o, 0 0
T = 0 00
0 0O

Here it is proper to note that an influence of volume forces is ignored, and only surface
forces are able to sustain this state of the bar. In the same manner we can consider the
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internal force, acting on the boundary S of the portion A. It is clear that this force
differs from F by a sign only (Newton’s third law).

Now we take an arbitrary oriented surface clement inside the bar, Fig. C.3b. In
accordance with Cauchy formulas, eq. C-18, the traction has only the component along

the z—axis, and it is equal to
tm = XT COS(IL 1)7 (C_54)

while ¢, =¢, =0 at all points of the bar. In particular, if the normal n is perpendicular
to the z—axis, the traction is equal to zero. In general, there are both the normal and

tangential components of the traction. Indeed, as is seen from Fig. C.3¢

tan = tz 08 3 = X, cos? B = X n? (C-55)

and ten = —tysin = —X,sinfFcos 3

Thus, the component t,, gradually decreases with an increase of the angle (3, while

the shear component has a maximum, when 8= x/4, and it is equal to

ton = (C-56)

Stress equations of motion

As is well known, a motion of an elastic body can be represented as a superposition of
a translation and a rotation around its center of mass (Appendix A). Of course, there
is also a deformation, and this phenomenon will be studied later. Equation describing

translation is
May, =F, (C-57)

Here M is the total mass of the body, ay is an acceleration of the center of mass, and

F is the resultant of external forces. By definition, we have
J\Jaozfpad\/’ and F:jédenL/tdS
v v s
Correspondingly, the first equation of motion in the integral form is

/padV: /de+ /t ds, (C-58)

v 14 S
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where a is the acceleration of an elementary mass, p dV. To obtain the differential
form of this equation, consider, as in the case of an equilibrium, any component of this

equality. For instance, the z-component is equal to:

/ p a,dV = / fodV + ]4 X -ndS (C-59)
Vv S

v

Replacing the last integral by the volume one, we have

/(p a, — fp —div X)dV =0 (C-60)
1%
Inasmuch as eq. C-60 is valid for any arbitrary volume, we conclude that the integrand

is equal to zero, too:

pa,=fr+divX (C-61)
By analogy we obtain

pay=f,+divY (C-62)
and

pa,=f,+divZ (C-63)

The last three equations are the differential form of ¢q. C-58. For ecxample, eq. C-62
shows that an acceleration of an elementary volume, AV, along the y-axis is defined

by the volume force f, dV and the resultant of surface forces:
divY dV

In fact, by a definition of the divergence, this product can be replaced as

%Yds,
J

and the integral describes the total surface force caused by a surrounding medium.
In most cases, discussed in this monograph, an influence of volume forces can be

neglected. Therefore, in place of eq. C-38 we have

/ padV = ?{ tdS (C-64)

14 S
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As follows from eqs. C-61-C-63 in the Cartesian system of coordinates

0X, 09X, 0X,
+ =24

ox Oy 0z

paz:fw+

oy, oy, v,

a, = f +6Z“+%+8ZZ
paz=J: ox ay 0z
Here
s, sy s,
“@=p T g T gp
and

S =5,i+s,j+5.k

is the displacement of the center of mass which in general takes place due to a translation
of the volume, as a rigid body, and its deformation. Usually the set C-65 is called the
stress equations. It may be proper to notice that they contain too many unknowns and
this shortcoming will be removed later. Now we consider several examples, illustrating a
stress behavior of a moving body.

Example one Suppose that at some instant ¢ = 0 the constant force is applied to
one end of the bar and it is directed along the z-axis, Fig. C.4a. As is well known, (Part
I), at the beginning we observe waves, propagating between bar ends, and its different
elements move with different velocities. It is essential that within this time interval a
deformation changes. Then, after some time an influence of waves becomes negligible,
and it happens due to an attenuation. Correspondingly, each elementary mass starts to
move with the same acceleration, and we can apply the second Newton’s law to any part
of the bar. It is obvious that with a decrease of its length the first time interval becomes
smaller and in the limit it tends to zero. Let us mentally draw the cross-section S of the
bar and consider a portion A, Fig. C.4a. Since it moves with the same acceleration as

the whole bar, the internal force, F;, acting at points of S is defined from the equality

F Fz lA
_— = i E = — -
515 2Ls or 7 (C-66)
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) )

Am | 4—F,

Figure C.4: (a) Distribution of internal forces in the bar when F =const (b) Rotation of
the bar with the constant acceleration (¢) Translation of elementary volume (d) Rotation

of elementary volume

Thus, the internal force lincarly decreases towards the front end of bar. Applying the
principle of superposition we can determine a distribution of the internal forces, when
both ends of the bar are under action of forces.

Example two Consider a bar rotating around its end with the constant acceleration
a, Fig. CA4b. As follows from the second equation of motion the force, normal to the

bar, is defined as
rx F=I a, (C-67)

Here [ is the moment of inertia and r is the distance from an elementary mass, Am,

to the axis of rotation. In this case, eq. C-67 is simplified and we obtain

F, r=Am ra or F, = Am ra (C-68)
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Thus, the shearing force linearly decreases with the distance r. Of course, there is also
the centripetal force, directed along the bar.

Example three. Translation of an elementary volume Consider an elementary
volume of an elastic medium and assume that the wave propagates along the z-axis,
Fig. C.4c. In addition, we suppose that the force, associated with wave, has only the
component F,. As soon as the wave reached the face with the coordinate: x — Az/2,
the left portion of the volume starts to move, while the other part remains at rest. Of
course, during this motion we also observe a deformation. When the wave approaches
the front face, z+Ax/2, the force F, begins to act on a medium in front of the volume.
In accordance with the third Newton’s law, the force, caused by the surrounding medium
and acting on this face:

A
Fr(T + TJjaZJ,Z,t)

has the same magnitude but opposite direction.

Thus, the total force, exerted on the opposite faces of the volume, is
F.(z— %,y,z,t)+Fm(x+%,y,z,t) (C-69)
Inasmuch as the z-component of the traction is related to the vector X as
t, =X -n,
the sum in C-69 can be represented in the form
X (x+ %, y, 2, 1) — Xp(z — %,y, z, )| AyAz i (C-70)

Here X, is the normal stress. Now it is appropriate to point out that at the opposite
faces the forces have opposite directions but stress values differ only slightly from each
other. Because of this we assume that the function X, changes linearly between these

faces, the difference in C-70 is written as

0X,(z,y,2,1)
oz

where X, is the stress value at the middle point of the volume. The total force also

ArAyAz i, (C-71)

includes the volume one

0X, = s,
or = p ot?
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Geometry of the wave, propagating along the z-axis, allows us to assume that vectors
Y and Z are absent. At the same time stresses X, and X, at opposite faces,
perpendicular to the ¥V and Z-axcs, are the same

0X, 0X, 0

oy 0z

In such a case the set of equations of motion, C-65, is reduced to the single equation. If
at each instant of time

Xw(:r—%,y,z,t):)@(x—l—%,y,z,t) and f==0,
then a deformation of the volume does not change, and it experiences a translation with
the constant velocity. In a more general case, when these stresses are different, the
volume is involved in a more complicated motion, including a vibration around its center
of mass.

Example four. Rotation of elementary volume Now we investigate rotation
of an elementary volume and, for simplicity, assume that it has a shape of the cube, Fig.
C.4d. Its sides are equal to h. Since we are interested in rotation, an influence of normal
stresses are not considered. As before, assume that the wave propagates along the z-axis,
but unlike the first example, it produces the force, perpendicular to the z-axis. At the
beginning, consider an action of its vector component F,. At points of the back face of
the cube we have

F,(z — g, Y, z,t) = tyhzj = (Y - n)h?%j
or

F,(z — g,y,z,t) =-Y,(z— g,y, 2, t)h%j (C-72)
As soon as the wave front passes this face, the left portion of the volume begins to move
along the y-axis, but the other portion is at rest. Such motion causes a deformation of
the volume. Besides the normal and tangential components of the force appear at faces,
perpendicular to the y-axis. When the wave approaches the face, x+ h/2, the medium

in front of the volume acts with the force

h
F,=t,(z+ 5 Y z, t)h%j

or

h
F?J = Y;(.Z' + 5’ Y, z, t)th (C_73>
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It is essential that forces, given by eqs. C-T2-C-73, have opposite directions, but their
magnitudes differ only slightly from each other.
Forces, acting on faces, normal to the y-axis, display the same behavior, and we have:

F.(x,y + g, z,t) = Xylz,y + g, z,)h* i (C-74)

h h
and  Fy(x,y— 5% t) =—-X,(z,y — > z, t)h? i

It is clear that all four forces may cause a rotation of the volume about the z-axis, and
it is described by the equation

M, = Ia, (C-75)

Here M, 1is the z-component of the torque, I is moment of inertia and «, is the
component of the angular acceleration.

Ag is seen from Fig. C.4d, the forces, acting at opposite faces of the volume, produce
the torques in the same direction. For this reason, evaluating the total torque, we have to
add their magnitudes. It is important to emphasize that torques due to forces, oriented
along the z and y axes, have opposite directions. Otherwise we would not be able to
observe an equilibrium. As follows from eqs. C-72—C-73 the magnitude of the first pair

of torques is equal to
h h h3
A/[l - |:}/z(l+2bly727t)+}fz(r éaya th):| év (C'76)

since the level arm is h/2.

In the same manner the torque magnitude of the second pair is

0

: (C-77)

h h
M, = [Xu(x + §’Z’t) + Xy(2,y — 2,z,t)]

Next we expand stresses at each face of the cube in the Taylor series around the middle

point of the volume, p(z,y,z). Discarding terms of the order h* and higher, we obtain

2Y' 2
M, = [Ym(p7 t) + M(Z)’t)h} h3

0z 8 (C-78)

2\ 2
a%@ﬁh]m it h—0

and M, = {Xy(p, t) + T@
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It is proper to notice that the Taylor series of the magnitude of each torque contains the
term with the first derivatives. However, fortunately they are absent in expressions for
M; and M;. As follows from eqs. C-78 the magnitude of the resultant torque around

the z-axisis

Y, 0%X,\ h?
M=M -M=|(Y,- X — - L) —| A -
In accordance with eq. A-51 the moment of inertia of the cube is equal to
Mh? h°
=22 P (C-80)

6 6
that is it has the same order with respect to h, as the second term in eq. C-79.
Substitution of eqs. C-77-C-80 into eq. C-75 yields

0%Y, 0°X,\ h® ph?
Yiip.t) — X ( At N e _81
=(p; 1) y(p,t) + ( o2 3y ) & (C-81)

8 6
Here Y, and X, and their derivatives are taken at the point p. Since the acceleration

can not be infinitely large, we conclude that
Xy(0,t) = Ya(p, 1) (C-82)
By analogy, considering a rotation about the z and y axes it follows that
X, =27, and Y,=2, (C-83)

The set of equations C-82—C-83 is very important result, because it shows that, as in
the case of an equilibrium, the stress tensor is also symmetrical in the dynamic stage.
Besides from eq. C-81 it follows that the acceleration «, is defined by the difference

of second derivatives of stress components and naturally, it is independent on h. In fact,

3 (0%, X,
o= ( . 0y;> (C-84)

In the same manner, considering a rotation of the volume around two other axes, we can

we have

obtain expressions for o, and ay.
Let us make some comments.
a. During a propagation of the wave through a given elementary volume, eq. C-75 is
applied to its portion, located behind the wave front
b. If the shearing forces are such that
Y, 90X,
Oz? oy?’

the elementary volume rotates around the z-axis with the constant velocity w, (h — 0).
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Relationship between the second and first equations of motion

Next we pay attention to the second equation of motion, which describes rotation. As is

well known, (Appendix A), this equation has the form

oL
— =M -
o (C-85)

Here M is the resultant torque, caused by the external forces and, by definition, it is
equal to

M = /(r x £)dV + %r x t dS (C-86)
v '

and r is the radius-vector, characterizing a position of the point of a volume with respect
to the center of mass. The left hand side of cq. C-85 describes the rate of a change of

the total angular momentum L,

L:/rxpvdV

Respectively

9L _ /r X pa dV, (C-87)

since
0
§(rxpv):vxpv+rxpa:rxpa

Thus, the sccond cquation of motion in the integral form is
/prxadV:/rxde—&—frxtdS (C-88)
v v 5

It turns out that this equation is not independent, but it follows from the first equation
of a motion. To demonstrate this very important fact, we consider at the beginning the

x-component, of eq. C-85, which is equal to

/. ply a, — 2z ay)dV = /(yfz — z2fy)dV + %(y t, — z t,)dS (C-89)

Vv \% S
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It is proper to notice that the same approach was used in the case of an equilibrium.
Taking into account eqs. C-61-C-63 in place of eq. C-89 we have

/[?J(fz +div Z) — 2(f, + div Y)|dV = /(Z/fz —zfy)dV + %y(Z ‘n)dS — %Z(Y -n)dS

v v 5 5

or
/(y divZ — z div Y)dV = /div(yZ)dV - /div(zY)dV (C-90)
v s 3

As was shown earlier
divyZ =y divZ+ Z, and div2Y = 2divY +Y,

Therefore, eq. C-89 is greatly simplified, and we obtain

/ (Z, - Y,)dV =0 (C-91)

v

Considering two other components of eq. C-85, we have

/V (X.— Z)dV =0  and / (X, — V,)dV =0 (C-92)

These equalities can be interpreted in two different ways. First of all, we earlier proved
that the stress tensor is symmetrical and, therefore, the left hand side of eqs. C-91-C-92
is equal to zero. This means that the second equation of motion follows from the first
one. In other words, all information about both types of motion contains in egs. C-61
(C63. Certainly, it is important result, which greatly simplifies a study of wave fields. At
the same time in some cases, when a translation is absent, the use of eq. C-85 can be
more preferable. Also, eqs. C-91 C-92 may serve as another proof of the stress tensor
symmetry. This follows from the fact that these equalities are valid for any volume, and,
correspondingly, integrands are also equal to zero, that is

Z, =Y., X, = 7, X, =Y,
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Appendix D

Deformation and strain tensor

The surface and volume forces applied to an ideally rigid body cause a motion, which
can be in gencral described as a superposition of a translation, when all particles of a
body have the same displacement, and a rotation about the center of mass. In both
cases a distance between any two points of the body does not change. Since in reality
every medium is an elastic one, we also observe a change of a relative position of different
portions of the body. As a result its shape changes, as well as distance between points,
and this phenomenon is called a deformation, Fig. D.1a. For instance, a straight line (1)
of an arbitrary length becomes after a deformation a rather complicated line (2), Fig.
D.1b. This suggests that under an action of different forces the same straight line can be
transformed in unlimited number of lines of different shapes. Certainly, such a behavior
makes a study of a deformation a very difficult task. For this reason the conventional
approach considers a displacement, vector of an elementary segment of a curve, which
can be treated as a straight line. In other words, we are going to study a change of a
relative position of terminal points of this line, located close to each other. Thus, as
was first established by Helmholtz, a motion of an elementary volume, in particular, the
linear segment, can be represented as a sum of three components, namely

a. translation, b. rotation, c. deformation.

Our goal is to describe main features of a displacement, caused by a deformation.

Displacement and relative displacement

Consider some point p of the body. Its position with respect to the origin O is
characterized by the radius-vector r. Under an action of forces the medium around

this point is moved, and after a deformation it is located around the point p’ with the

297
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(@ (o) ()

E) ()

Figure D.1: (a) Deformation of an elementary volume (b) Change of a line due to defor-
mation (c) Illustration of eqs. D-1-D-6 (d) Deformation of segment AN, parallel to

the z—axis (e) Deformation of segment M P, parallel to the y—axis

radius-vector '/, Fig. D.lc. Write
r'=r+s (D-1)

where s is the displacement of the point p, and, in general, it depends on coordinates
of this point. Further we imply that the function s(r) is a continuous. Next, we
take a neighboring point p; with the radius-vector r;. A deformation causes also a
displacement of a medium around this point to the point p), and, as is seen from Fig.
D.1lc:

ri=r;+8; (D-2)
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It is usually s; #£ s. From eqgs. D-1 and D-2 it follows that
or' = ér + ds (D-3)
where
dfr=r —r and o' =1 -1 (D-4)

characterize a relative position of two points (p and p;) before and after a deformation.

At the same time
ds = s(ry) — s(r)
or
ds = s(r + or) — s(r) (D-5)
By definition, eq. D-3,
ds = ér’ — dr, (D-6)

and it describes a change of a relative position of points p and p;, Fig. D.1c. In other
words, the vector ds is a measure of a deformation around some point p. As is seen
from Fig. D.lc, vectors dr' and dr usually differ from each other by a magnitude
and a direction. In particular, it may happen that the length of both vectors, — dr'
and dr, remains the same, that is in such a case a displacement is not accompanied
by a deformation. This indicates that the vector ds does not necessarily describe only
a deformation, and this question will be studied in detail. Bearing in mind that Js
represents a difference of the vector field s(r) at two neighboring points, it is natural to
express this vector, ds, in terms of the partial derivatives of the field s(r). Introducing

the curvilinear orthogonal system of coordinates, z;, z» and 3, we have
s(r) = u(r) iy + v(r) iz + w(r) i3 (D-7)

Here i3, i and i3 are unit vectors along coordinate lines, and wu(r), v(r} and w(r)

are scalar components of the vector s. Therefore, components of the vector ds are

du = u(r+dr)—u(r)

dv = v(r+dr)—uv(r) (D-8)
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dw = w(r+dor)—w(r),

First, consider the component u(r) of the displacement s(r), which can be treated as

a scalar field. Then its directional derivative at the point p is written as

du
(o)

=i grad u (D-9)

where i is the unit vector directed along dér. Respectively, a change of the function «

between points p and p; is equal to

du = %& = grad u - dr (D-10)
By analogy, a change of two other components of the vector ds is
0 0
dv = T(;")(ST =grad v-dr and dw= WEUT)(ST = grad w - dr (D-11)

As was demonstrated in Part I the operator of gradient has a form

g . a . 0

rad = i, + I+ 1 D-12
& h18I1 ! hgaxz 2 hgaxfg 3 ( )

Here hy, hy and hs; are metric coefficients. Taking into account that
or :d’ll i1 + dl‘z i2 + (lf[fg i3 (D—l?))

a change of scalar components of the field s, eqs. D-10-D-11, can be represented in the

form:
1 ou 1 Ou 1 Ou
ou=——d —dxy —dx;
v hl 8351 Tt hz axg s hg 81'3
1 ov 1 dv 1 ov
ov=——d dxs 1 D-14
v= hlaxl L1+h28 o +h3813(1/3 ( )
1 0 1 ow 1
dw = ——aw dx; + ——alb dry + ——aw dxs

hl 33:1 ! hQ 3:62 2 h3 (9.%'3

Before we study this set of equations let us perform some operations. Multiplication

of eqs. D-10 D-11 by corresponding unit vectors and then a summation yields

ds = (i, grad u + iz grad v + i3 grad w) - or
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or

ds = (dr- grad) s (D-15)
For instance, the latter gives

du= (dr- grad)u (D-16)
or

ou = %g—;dm + h%aa—;?dxg + h%%dxg,
that coincides with the first equation of the set D-14
Tensor of deformation
It is convenient to represent eq. D-14 as
ds =Sér (D-17)

Here
1 u 1 Ou 1 Ou
hy Oxy hy Oz hsOzs
1 v 1 Jv 1 Ov
hy Oz hy Oxy by Ous
1 ow 1 ow 1 ow
hy Oz hy Oxy hy Oy

(D-18)

is the matrix which transforms the vector dr into the vector ds. As was shown in
the Appendix B this means that S is the tensor. Its nine elements are derivatives of
scalar components of the ficld s with respect to displacements along the coordinate
lines. In accordance with eq. D-17, if the tensor S is given, then we can determine a
change of the relative position of two neighboring points, ds, (eq. D-6), regardless of an
orientation of dr. It may be appropriate to notice that the tensor S plays the similar
role, as the stress tensor, which allows us to find the traction t, acting on arbitrary
surface element. Let us make several comments:

a. The matrix S is an example of the tensor field, since its elements usually depend
on coordinates of a point.

b. By definition of S, derivatives of the displacement s allow us to study a

deformation, which can be caused by a motion of particles of a medium.
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c. In principle, performing an integration of the tensor elements it is possible to
determine the vector field s itself. The system of eqs. D-14 implies that we deal with
very small displacements; for instance, the scalar component u at the point p,, Fig.
D.1c, is

u(r+dr)  or  u(zx+dr, y+dy, 2+ dz)

Expanding this function in the Taylor’s series around the point p, we have

, 2
u(r+or) :u(r)+%d1¢ + 8—udy + @dz + L0

—_——_— 2 -
Oz dy 0z 2 0?2 (dz)”+ ... (D-19)

Comparison with the first equation of the set D-8 clearly shows that eqs. D-14 are based
on an assumption that terms of the series of the second and higher orders are neglected.
In other words, the field s changes linearly within an elementary volume, where both
vectors, dr and dr', Fig. D.lc, are situated. Because of this a study of a deformation

is greatly simplified.

Homogeneous deformation

Earlier we introduced dx;, dzs and dzs as relative coordinates of one point with
respect to the other, while déu, dv and Jw characterize its relative displacement.
To emphasize this fact let us choose the Cartesian system of coordinates and change

notations in the set D-14 in the following way

dr; =, dxe — vy, dxs — z
and

du — u, v — v, dw — w
Then we have

U =anx + a1y + ay132
U= anT + Aoy + G932 (D—?O)

W = (31T + a3y + a332
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Here a;; are elements of the tensor

Or Jdy 0Oz
ov Ov Ov
_| v ov Ov D-21
s Oz Oy 0Oy |’ ( )
or Oy 0Oz
since in the Cartesian system of coordinates
h,l = }7/2 = ]7,5 =1 (D—22)

Thus, in our approximation the relative displacements, (v, v, w), are linear functions of
coordinates. Such a deformation is called the homogeneous one, and it may be observed
in a volume of an arbitrary size. At the same time, a deformation of an elementary volume
is always homogeneous because its dimensions are small. This follows from the fact that
terms of Taylor’s scrics, proportional to (dz)¥, (dy)* and (dz)*, arc ncgligible, if
k> 1.

It is convenient to assume that the point p, Fig. D.lc, coincides with the origin of
coordinates and its displacement is equal to zero. Correspondingly, u, v and w are
scalar components of the displacement of the point p; with coordinates: z, y, =z.

Comparison with eq. D-6 shows that in this case
or = ity j+z k and  ds=s(p)=uitv jfw k (D-23)

and both vectors, ér and s, have the common point p.

As was mentioned earlier the homogeneous deformation may take place also in a vol-
ume of finite dimensions, when components of the displacement, s, are linear functions
of a point inside a volume. In other words, derivatives of these components of the second
and higher order vanish, and elements of the tensor S are independent of coordinates of
a point. Considering an elementary volume we demonstrated that a small deformation
transforms the straight segment, Jr, also into the straight clement, ds. It turns out
that it is one of properties of the linear transformation, given by the set D-20. After

these comments we describe the main features of the homogeneous deformation.
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Transformation of a plane

Let us imagine a plane inside a volume. As is well known, its equation can be written in

the form:
Az+By+Cz+D=0 (D-24)

Here z, y, z are coordinates of any point, situated on the plane, while A, B, C are

scalar components of the vector N, perpendicular to the plane:
N=A4i+Bj+Ck (D-25)

and, finally, D is constant.
Under an action of external forces the volume becomes deformed. Correspondingly,
each point of the plane experiences a displacement, and as a result, new surface is formed.

In order to obtain its equation, we have to perform in eq. D-24 the following replacements
T — T+ u, y—yt+u, zZ—=rzt+w
Making use of the set D-20, we obtain

A (.L +and + apy + CL132) + B (y + a1 + a2y + CLQE}Z)

+C (2 + a3z + azgey +aszz) + D=0
or

(44 + a]]A + BCLQ] + CCLg] )Zl' + (D—26)

(B + (leB -+ (],]_QA + (1,320)2/ + (C + (1330 + (1,13/4 —+ (ngB)Z + D = 0

This is the equation of a plane, and, therefore, the homogeneous deformation transforms
the plane into a plane. This is the first important feature of such a deformation.

Next, consider two parallel planes. Their equations are
Aix+By+Ciz+ D, =0 and  Asx + Boy+Coz+ Dy =0 (D-27)

Inasmuch as vectors N; and Ns, eq. D-25, are parallel to each other too we have

AQ B2 CQ
D222 D-28
/—11 B1 Cl ’ ( )



APPENDIX D. DEFORMATION AND STRAIN TENSOR 605

where k is a constant. Substitution of eq. D-28 into the second equation of the set D-27

yields
k(Aiz+ By +Ci2)+ Dy =0
or
Az +Biy+Ciz+D3=0 (D-29)

Comparison with the first equation of the set D-27 shows that both planes are character-
ized by the same vector N, which is perpendicular to both planes. Thus, two parallel
planes remain parallel to each other and this is the second feature of the homogeneous
deformation. As illustration consider a rectangular parallelepiped. It is clear that after
a small deformation the opposite faces are still parallel, and a new volume has in general

a shape of an oblique parallelepiped.

Transformation of a straight line

It is convenient to treat the straight line as an intersection of two planes. As was shown,
the latter remain plane after a deformation. Correspondingly, the line of their intersection
is the straight one. Thus, the set D-20 transforms the straight line into the straight one
too, and this is another feature of the homogeneous deformation. Applying the same
approach as in the case of planes, one can show that if two straight lines are parallel to
each other, then they remain parallel in the strained volume. For instance, after a small
deformation opposite sides of a parallelogram are still parallel.

Transformation of a sphere

Consider the spherical surface:
2% + y2 + 2% =72
Because of the deformation its points are shifted and a new surface is described by the
equation
(z+ul+(y+v)+E+w)?=r
After a substitution of displacements, eqs. D-20, we arrive at the equation

bll 1'2 + bgg y2 + b33 2’2 -+ 2b12 T y—+ 2()13 T z+ 2b23 Yy z— b= 07 (D—30)

which describes the surface of the second order. In general, it is ellipsoid, and this is also
an important feature of such a deformation. Let us notice that there are cases when a
sphere is transformed into a hyperboloid.
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Components of strain tensor

Next we study a geometrical meaning of the tensor components, eq. D-21, provided that
the rate of a change of the displacement, s, is very small. As was pointed out we deal
with the small deformation only. With this purpose in mind it is convenient to rewrite

eqs. D-14 in the Cartesian system of coordinates. This gives

u1:u+0_ud$+0_udy+0_udz

Ox oy 0z
ov ov dv
n=vd o det oo dy+ o dz D-31
(2] U+3.77 I—I—ay y+az > ( )
0 o 9
wy :er% dm+% dy + 82) dz
where
u=u(z,y,2), v=v(x,y2), w=w(zy?)
and

U1 :’U(I]J+dl', y+dya Z+d2),
v =v(r+de, y+dy, z+dz),

wy =w(x +dz, y+dy, z+dz)

Ju Jdv Ow

or’ 8y’ 0z

First, suppose that the linear segment MN is initially parallel to the z-axis. Due to
the small deformation a medium around points M and N is moved, and we obtain a
new straight line, M;N;. In general it differs from M N by a length and an orientation,
Fig. D.1d. As follows from eqs. D-13, we have

Diagonal elements:

MN =dx and dy=dz=0

or

MN =dz i (D-32)
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and
. Ou v ow
Ouf%d:v, 61)*%@5, 5wf%dx
or
ou ., . Ov ow
s adi i+ Ed i+ gdl' k (D-33)

By definition, Fig. D.1c,
M1N1 = MN + os
or
ou . Ov . Ow

Unlike MIN, the vector M;N; may have all three components, and its length is defined

from the equality:

(120 (32 + (32)] (0-15

Inasmuch as we are interested by small deformation only, terms: (9v/dx)?, (dw/0z)?,

M{N, =MN

as well as (Ou/0z)?, can be neglected. In particular, it implies that the length of
MiN; does not change when the point N; slightly moves in parallel to either the y
or z—axes, Fig. D.1d. Thus, eq. D-35 gives

a,
MN, = (1 + —“) MN (D-36)
ox
or
Ju M{Ny — MN
o _ €—_—— = — D_
o = o MN (D-37)
and it describes the relative change of the length of M N. By analogy, two other diagonal
elements:
Eyy = @ and €z = 8_11)
oy 0z

characterize a relative change of the length of the straight segments, which are parallel
to either the y or z-axes. It is essential that the diagonal elements of the tensor T
differ from zero only in those cases when there is a change of the distance between points

of a medium. In other words, they describe so called the pure deformation.
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Nondiagonal elements

Suppose that at the beginning the linear segment AMN is oriented along the z-axis,
but after a deformation it is transformed into the linear segment M;N;, Fig. D.1d.
They form the angle «, which in general differ from zero and characterizes a turn of

MN during a deformation:

N1 Ny
My N,

sino = (D-38)
By definition, N; N5 is the difference of displacements at points M and N along the
y—axis. As follows from the sccond equation of the set D-31 we have

ov

N1[V2 =V — U= %dl (D—Sg)

Substitution of eqs. D-36 and D-39 into eq. D-38 gives

@
oz
ou

14 9%
+8.r

sina =

Since « and du/0z are very small, the latter is greatly simplified, and we obtain

_Ov

- (D-40)

(&7

Thus, the first element in the second row of the tensor T defines an orientation change
of the linear segment, M N, which was initially parallel to the z—axis.
It is interesting to derive the same result differently. Making use of the dot product

of vectors MIN and M;N; the same angle between them is defined as

MN - M, N;
oS = T D-41
COSC=TNIN M, (D-41)

From eqs. D-32 and D-36 it follows that

cos o = Oz (D-42)

@
or

1
v 2 9

U+ + (5

)

because w = 0.
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In spite of the fact, that the term (0v/0x)? is very small, it has to be presented.
Expanding the left and right hand side of eq. D-42 in a series and discarding all terms,

except the first two, we have

(5)
2
1 % =1- % 8‘”8“ ; (D-43)
or
v
Q= %,

that coincides with eq. D-40. Certainly the geometrical approach in deriving this angle
is simple.

Next assume that the linear segment M P is initially parallel to the y—axis, and
due to a deformation it becomes Af;N;. The distortion angle 3 is defined from the
triangle M; PP, Fig. D.le

. PP

= D-44

sin 3 Az ( )

The numerator is a difference of the displacement of points M and N along the z—axis:

P1P2:u1—u:a—udy
dy
Whence
Ju
= — D-45
B= 5 (D-45)

since sin g ~ f.

Therefore, the second element of the first row of the tensor T characterizes a change
of the direction of the vector MN, oriented at the y—axis. In the same manner the
tensor elements

ou ow ow v

— and —, aswellas — and —

0z oz’ dy 0z
describe the distortion angles in planes XOZ and YOZ, respectively. It is obvious
that each element of the tensor of a deformation, 7', can be either positive or negative

or equal to zero. If we introduce a notation

S = E S514,
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Figure D.2: Relationship between the distortion angles and nondiagonal elements of the
strain tensor

then the nondiagonal element gﬁ is positive when the component s; increases with
an increase of zp. Thus, all m‘ifdiagc}nal elements of 1" characterize a change of a
direction of the straight segments, oriented initially along the coordinate axes.

In general, the distortion angle may arise for two reasons, namely, a pure deformation
and a rotation. In order to study the first factor consider the right angle between the
linear segments MN and MP, having the common point A, Fig. D.2a. Before a
deformation theyv are parallel to the z— and y-axes, respectively. As follows from eqs.
D-40 and D-45, after a deformation this angle decreases by a sum of angles

a+f= @ + E)_u
YT o Ay
This quantity is called the shearing strain, and it is denoted as
dv  Jdu

€qy = I + a_y
In the same manner we can observe a decrease of the right angle in the XOZ plane:
dw Jdu
Caz = a o+ &
as well as in the YOZ planc
dw dv
oy "o

Cyz —
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Thus, we obtain six quantities, which are formed by elements of the tensor T, and they
are

1.Three unit clongations:

ou ov _Ow

== = = D-4
€az = 5 €yy o €ox = 5 (D-46)

They describe a relative change of the length of the linear segments, which were initially
parallel to the coordinate axes.

2. Three shearing strains

_Ov  Ou _Ow  Ou _ Ow @

= e + dy’ “or = or + 9z’ b = dy N 0z’ (D-47)

characterizing a decrease of the right angle between the linear segments, oriented along
coordinate axes before a deformation. These quantities, egs. D.46-D.47, are called
componcnts of a small deformation, and as will be shown later, they describe only the

pure deformation.

Influence of translation and rotation on tensor T

At the beginning we pointed out that in general the small displacement, s(z,y,z), can
be represented as a sum of three displacements, caused by a translation, a rotation and
the pure deformation. In the last case the distance between points usually varics. Of
course, it is very useful to know how elements of the tensor T' (eq. D-21) are sensitive to
every type of motion. It is natural to start from the simplest case, that is a translation,
when all particles have the same displacement

U(I,y, Z) :Cl7 ’U(I,y,Z) :C27 w(:(:,y, Z) :C37

where C;, Cy and (3 are constants. Since derivatives of these functions with respect
to coordinates are equal to zero, we make an obvious conclusion: translation does not
make any influence on the tensor T.

Next, suppose that an elementary volume of a medium is involved in a rotation only,
and M(r) and N(r;) are two its arbitrary points. As before, r and r; are radius-
vectors, characterizing a position of these points with respect to the origin O, located
inside the volume. After a rotation the linear segment MN = dr is transformed into

the element MM;N; = ér;, and in accordance with eq. D-3

M N, = MN + ds or  or' =dér+ds (D-48)
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Here
ds = s(ry)—s(r)

First of all, it is useful to show that a small rotation is not accompanied by a change of
the length of MN. To demonstrate this important fact, we recall that at each instant
of time a rotation is a motion about some axis. In other words, the displacement s is
located in the plane, perpendicular to this axis. Moreover, the magnitude of the vector
s is proportional to the distance from the axis of rotation, (Appendix A). Because of
this it is proper to represent the vector s as

s(ri)=b xr; and s(r)=b xr, (D-49)

where b is the vector, directed along the axis of rotation. Therefore, for the vector ds

we have
fds=bxr, — bxr=bxdr (D-50)
Substituting into eq. D-48 and taking the square from both its sides we have
(0r')?= (0r+ds)” = (6r + b x or)> = (6r)2 + 2(bx ér)- dr, (D-51)
since the term ((SS)2 is very small and it can be neglected. Because
(bxér)-0r = b-(drxdr) =0,
eq. D-51 gives
|61’ = |or| (D-52)

Thus, a small rotation does not change a length of the linear segment. In particular, it
can be initially oriented along coordinate axes, Fig. D.1d,e, that is

M N, = MN and  MP, = MP (D-53)

This means that if only a rotation takes place, the diagonal elements of the deformation

tensor are equal to zero:

ou Ov Ow
—_— = — = D— 4
ox Oy 0Oz 0 (D-54)
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Suppose again that there is only a rotation and determine a relationship between the

vector b and nondiagonal elements of the tensor T. First, we rewrite eq. D-50 in the

form
i j k
duitdvj+owk=|b, b, b, (D-55)
dr dy dz
Making use of eqs. D-31 and eq. D-55 we have
ou ou
—dy+ —dz = bydz — b,d
dy v+ B, T R T
v ov .
%dl + adz = b,dr — b,dz (D-56)
Jw w
%dx + 8_ydy = bydy — bydx

Inasmuch as dz, dy and dz are independent and arbitrary quantities, coefficients in

front of cach of them should be cqual, that is

du b ou ~Ov v ow ow

by = = : — T A 2 — o _ bz:—*-/ bxzi by = ——— D-57
Y 0z oy ox 0z Jy v Ox (D-57)
or
dv  Ow
= = — D—
by 9~ oy (D-58)
Jdu ow
by, = %~ Ba (D-59)
ou Ov
, = —— = — D_
=5 = o (D-60)

These equalities have very simple geometrical meaning. In fact, each derivative shows
a change of an orientation of the linear segment, which was initially parallel to one of
coordinate axes. For illustration, consider a rotation about the z axis, Fig. D.2b. As
we already know the distortion angle of the segment MP is cqual to du/8y, while
the same angle of the segment MN is defined as —dv/dx. The minus is related to

the fact that the scalar component of the displacement, », is negative. As is seen from
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Fig. D.2b in the case of a rotation the distortion angles are equal to each other and,
correspondingly, derivatives du/dy and 0Jv/0x have the same magnitude but differ
by a sign, eq. D-60. In other words, the right angle, formed by linear segments M P
and M N, which are parallel to the coordinate axes, remains unchanged. Certainly, this
result is easily expected. In the similar manner, eqs. D-58-D-59 describe a rotation
about the z— and y-axes.

Bearing in mind that during a rotation the right angle between the linear segments
is preserved, we conclude that in this case the shearing strains are equal to zero. Also it
follows from egs. D-58-D-60, which give

Jv  Ow Ou  Ow dv  Ou

=0, =0, Cyzr —

oz "oy
Thus, we found out that neither the unit elongations, nor shearing strains are sensitive
to a small rotation.

Now we present the vector of rotation, b, in the form, which allows us to treat the
tensor of deformation as a sum of two tensors, describing either the pure deformation or
a rotation. In order to solve this task, let us first make use of the set D-57. Performing

a summation of equalities for the same component of the vector b, we obtain
1 /0w Ov 1 /0u Ow 1 /0v Ou
by=-|—+— — , b,=- -, b= D-61
2 <8y 82:) Y2 <az (935) 2 (8:c 8y> ( )

1
b= B curl s (D-62)

or

Correspondingly, any change of the displacement, caused by a small rotation, eq. D-50,

can be written in the form
1 .
ds = 3 (curl sxdr) (D-63)

The latter can be treated as a transformation of the vector dr. DBy definition, it can be

also done with a help of some tensor B:

s =D or, (D—64)
where
biy bz bis
B = bat by bog (D'65)

b31 b32 633
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Since
bxdér =B Jr,

we have

bde — bzdy = b11 dx + b12 dy + b13 dz

bzdll? — deZ = b21 dx + b22 dy + b23 dz

Its solution is

b =0 bip = —b, b1z = by

bgl — bz bgg - O b23 - *bx (D—66)

by = —by bso = —b, bss =0

Therefore, we conclude that the small rotation can be described by the antisymmetric
tensor:

0 big  bis
B = — by 0 b3 (D-67)
bz —by 0
In accordance with eqs. D-61-D-66
1 ou Ov 1,0u Ow 1 ov oOw

b = (D-68)

2oy " T T wm) i)

Certainly, the vector b and tensor B both allow us equally to describe a small rotation
of an elementary volume.
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Tensor of pure deformation, F
By analogy with the tensor of rotation, B, we introduce the tensor F, which charac-

terizes the pure deformation only:

€11 €12 f13
E= E2) €22 £23 s (D'69)
€31 £32 £33
where its diagonal elements

ou ov ow

_— Hoy — —— nn — —— D_
o’ €92 ay’ €33 a2 ( 70)

& =

are unit elongations, while the nondiagonal elements are two times smaller than the

corresponding shearing strains:
1 [ ou n Ov
E19 = &« _ — _— _— y
12 =5 oy " ox

1 /0u Ow
f13 =8 =5 ( + —> ) (D-71)

1/ov Ow
€23 =32 = 5 &-Fa—y

As follows from eqs. D-58-D-60, this tensor is not subjected to an influence of a rotation,

as well as a translation. Comparison of tensors, T, E and B, clearly shows that T

can be represented as a sum of tensors:
T=F+B (D-72)

As was pointed out earlier, one of them, E, characterizes only the pure deformation,
while the other, B, gives information about the angle of turn of an elementary volume,
as a rigid body, with respect to coordinate axcs

Superposition of small deformations

By dcfinition, a homogencous deformation is described by a lincar transformation of
the straight segment with terminal points, located close to each other. Because of this

linearity we can expect that a sum of small deformations is also the homogeneous one. In
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particular, it may suggest that an arbitrary homogeneous deformation can be represented
as a superposition of simpler deformations. Certainly, this fact may greatly simplify a
study of small deformations. As we know, a deformation is defined by a relative change
of a position of one point, N, with respect to the other point M. It is essential
that coordinates of the latter do not participate in equations, describing a deformation.
This allows us to place the origin of coordinates at the point A, which moves during
a deformation. In other words, coordinates of the point M remain equal to zero. It is
convenient to introduce the following notations:

a. x, y, z and =z, Yy =z are coordinates of the point N before and after a
deformation, respectively.

b. u, v, and w are scalar components of the displacement s of the point N, that

€r =+ u, Y =y -+, 21 =zZ+w

Therefore, eqs. D-31 can be written in the form:

Lt ou o
=TI E e ayy 92"

ov ov ov
=y —y =20 , . D-
V=1 — Y 81;J + 8yy+ 0z7 (D-73)

Ow . ow ow
W=z —2=—I+— —z
! oz oy’ T 82
Now we are ready to consider a superposition of two small deformations, following one
after another. Due to the first deformation a medium around the point N is moved,

and it is located in the vicinity of point Nj. Its coordinates are defined by eqs. D-73

< 8u> du ou
rnn=1+— 2+ —y+—=

Ox Jy 0z
0 0 0
Yy = ET::T + (1 + 82) Y+ a—jz (D-74)

z —a—wl‘—i—a—w + 1+8_w z
Y o E)yy 0z



618 APPENDIX D. DEFORMATION AND STRAIN TENSOR

After the second deformation a particle in the vicinity of the point N; is situated around

some point N, with coordinates x», y» and zo:

O O Oy
To= |1+ s— o+ s+ 5=

aﬂ?l (9?/1 821
. 31}1 avl (9’01
Yo = a—xlld + (1 + 8_y1> Y+ 8_2121 (D-75)

ow, ow ow,
=——n+—nt+tl{l+—)=an
0z, o

Substitution of zy, ¥y, z1 from eqs. D-74 into eqs. D-75 gives us relationships between
coordinates of points N, and N. First cquation of this set yiclds

Lo = 1+% :L"—I—a—u:z;—l—a—u —l—auz
2T Jxq ox ayy 0z

+% @x—i- +@ —l—@z —l—% a—wx—i—a—w +a—wz+z
oy1 \ Oz Y ayy az 0z \ Ox Byy 0z

Performing a multiplication and discarding terms with a product of derivatives we obtain

B Ou  Oup\ ou  Ouy ou  Ouy
x2_<1+8x+8x1>l+<8y+8yl)y+<az+(’)zl)z (D-76)
In the same manner we have
dv  Ou dv  Ovy dv Oy
oo — [ 2 YY1 1422 2 RIS IV D-
Y2 (8x+8$1>x+< +3y+6yl>y+(8z+8zl>7 (D-77)
(e ow (0w w) (0w ow
2=\ bz ) ’ oy Oy y 0z Oz *

Thus, a superposition of small deformations is a result of a summation of unit elongations
as well as that of the distortion angles, corresponding to each small deformation. In
other words, small homogeneous strains obey the principle of superposition. As was
mentioned earlier this means that a complicated but a small deformation can be treated
as a combination of rather simple strains, and their summation can be carried out in
any order. We illustrated the principle of superposition in the case of two subsequent

deformations. Of course, it is valid for any number of strains.
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Relationship between stress and

strain

Hooke’s law

As was demonstrated in two previous appendices a distribution of surface forces at each
point of an elastic medium is characterized by six elements of the symmetrical ten-

Sor:

T1n Ti2 T3
T=| 70 T2 T (E-1)

T31 T32 T33

Also they can be written in the form:
Xey Yy Z, Y. Z X, (E-2)
where
Xo =Tuwy Yy=Tyy Z,=7u, X,=Tu, X =Tpe, Yo=7y (E-3)

At the same time, a deformation is also defined by six elements of the symmetrical tensor
E= €21 E22 £93 (E'4)

Often different notations are used:

E11, Eyy = €22, &zzx = E33, Eyy = €23, Ezz =E13, Egy = €12 (E-5)

619
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Here
Exx = a_"f’ Eyy = a—yy’ E22 = 92 (E‘G)

and

1,0s, 0Os, 1 0s, Os, 1,05, = 0sy
Ey: = Sl 53 ) zz T 5 ) zy T 5 o E-
w3l Ty TG ) Gty ED
and the particle displacement s is

s = szi+s,j+s.k (E-8)

Since due to a deformation the internal surface forces arise, it is natural to assume that

there is a relationship between stress and strains. This dependence can be written as

Xy = fl(gzma Eyyy €zzy Ezys Eaas gmy)
Y;/ = f2(€zm Eyya €225 Eayy Ezas Ezy)
Zz = f3(EII7 Eyyr €220 Ezys Ezas Ezy>
Y, = f4<€xx7 Eyyr €zzv Ezys Ezms 511})
ZT = fS(gzwa Eyys €zz5 Ezys Ezx, gzy)
Xy = f6(5.'t.t7 8yy, €z gzya Ezes 5.7:y)

Suppose that if a medium is not deformed, stresses are absent, that is

£(0,0,0,0,0,0) =0 (i=1,2,3..6)

We also imply that these functions are continuous and have first derivatives.

(E-9)

(E-10)

Then

expanding f; in Maclaurin series and discarding all terms except the first one we obtain

Xa: = C11E55 + C12Eyy + €136, + C14E 2y + C15€z0 + C16€zy

VA
)y = C21E42 + C‘225,1;,11 + €23, + C24€ 2y + Co5€2 + 626517;
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2, = C31E3z + C32Eyy T €336 5 + C34E.y + €358z + C36E2y

Y. = C41€22 + Cao€yy + Ca3E52 + Caa€oy + Ca5€ 20 + Cas€ay (E-11)
Ly = 51600 t C528yy T 53822 + 542y + 35820 T C36E0y

Xy = Cg1Eqx T Ce2Eyy + C3€ 2, + Co4E 2y + Ce5€ 40 + Ce6Exy

These linear functions with respect to strains are called Hooke’s law and they describe

a relationship between stresses and strains. By definition, each coefficient c¢;; defines

the first derivative of the stress tensor element with respect to a corresponding strain.

Speaking strictly, the derivative is calculated when this element of the strain tensor is
equal to zero. For instance

0z,

C34 = 852y

In accordance with e¢q. E-11 the Hooke’s law contains 36 cocflicients. However, we

if e,y =0

will demonstrate that some of them are equal to each other, and in general, this law
is described by 21 independent parameters. Propagation of elastic waves is usually ac-
companied by a deformation with extremely small strains, which has order 107% and
much smaller. This fact allows us to neglect terms of the second and higher orders in the
Maclaurin series, eq. E-11. At the same time elastic constants, ¢;; could be very large,
and their dimension is the same as stresses, since ¢;; are dimensionless. Let us also
notice that the linear theory of elasticity is based on Hooke’s law, while eqs. E-9 are a
foundation of the nonlinear theory. In order to study elastic constants in different types
of a medium it is useful to derive expressions of the work, performed by stresses, as well
as the potential energy of a deformed medium and the elastic potential. In particular,

this approach allows us to show that the number of coefficients ¢;; does not exceed 21.

The work of forces and potential energy of a deformed body

Consider some volume V' of an elastic body, subjected to an action of the surface and
volume forces. They cause a change in a relative position of particles of a body and a
deformation takes place. Let us pay attention to a very small time interval during which

these forces remain constant. Variation of the work, performed by them, is equal to

6A:/f~6sdv+j1{t-6sd5 (E-12)

14 S
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Here f is the density of volume forces, t is a traction, and &s is a change of the
displacement of particles, S is the surface, surrounding the volume V. Now we carry
out some transformatious, which permit us to express this work dA in terms of stresses
and strains at points inside the volume only. With this purpose in mind consider the
surface integral in eq. E-12. As was shown in Appendix C the traction t can be

represented in the form
t=X-n)i+ (Y -n)j+(Z n)k, (E-13)
where n is the unit vector normal to the surface S and directed outward. Therefore
t-0s =05, X -n+ds, Y -n+ds, Z-n (E-14)

Applying Gauss theorem

%M -ds :/div M dV
s v
we obtain
j{t -0s dS = 7{[5,9% X -dS+ds, Y -dS+és, Z - dS] (E-15)
5 5

= /div (X 0sy +Y 05y + Z 0s,)dV
7

Correspondingly, eq. E-12 becomes

6A = /[fzésx + fy0sy + fo0s, +div (X ds, +Y ds, + Z és,)]dV (E-16)
v

The integrand can be greatly simplified by making use of the identities

div (Xds,) = ds, div X + X-grad ds,
div (Yds,) = 0s, div Y + Y-grad ds, (E-17)

div (Zds,) = ds, div Z + Z-grad ds,
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Note that this type of equalities was already used to obtain equations of a motion and
an equilibrium, (Appendix C). In deriving an expression of the work we distinguish two
cases.

Case one First, assume that a displacement of particles takes place very slowly, that
is their velocity is negligible, and it is possible to neglect a change of kinetic energy. This
allows us to apply a relation between the surface and volume forces for an equilibrium.

As was demonstrated in Appendix C in this case
divX+ f, =0, divY+f,=0 divZ+f, =0 (E-18)
Substitution of eqs. E-17-E-18 into eq. E-16 yields

SA = /(X -grad ds, +Y - grad 0s, + Z - grad ds,)dV (E-19)

v
The integrand is a sum of three terms, and it can be written as

3] 3] 0
Xo— X, X, —
z@wdsz + yayész + Zazész

0 08y + ngésy (E-20)

d
Y,—ds, + Y, —
+Y, =05y + oy 92

or

a . 0 . 0 .
Zp=—08, + Zy—10s8, + Z,—0s,
+ o S, + yay S, + g 5

Taking into account that X, =Y, X, =Z2,;, ¥, = Z, and the derivative of a difference

is equal to a difference of derivatives, the last sum is equal to

Xy 0o + Yy deyy + 7, 8¢, + Y, bey. + Zy Seg. + Xy Sy (E-21)
Here
05, Os 0s,
oz =&ax = 55 Gy T Eyy = 87; €z = €22 = o (E-22)
and
a 3 a Z a T a z a z 8 2
Cyz = 2692 = Sy + ° Cop = 28,0 = S + o Caxy = QETy = Sz + %y

0z Oy’ 9z ox’
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Thus, in place of eq. E-19 we have

6A = /(XdL Sepe +Y, deyy + Z, e, + Y, ey, + Z,, dey, + X, deyy)dV, (E-23)
v

and the work, performed by external forces during a short interval of time, is expressed in
terms of stresses inside a volume, as well as a change of strains. In deriving eq. E-23 we
neglected variations of the kinetic energy. Moreover, let us assume that the heat remains
the same, that is no heat is gained or lost by any element of the body. Such adiabatic
change can be expected, since particles of a medium are usually involved in rapid and
small vibrations. Under these conditions the work dA results in only an increase of
the potential (intrinsic) energy, U. In a fact, the external forces produce a work and a
clastic body becomes deformed. If the body is allowed to return to its unstrained state, it
gives back all the work, performed by external forces. Correspondingly, this work can be
treated as an energy, stored in a body and is called the strain (potential) energy. Then,

eq. E-23 can be rewritten as
0A =46U = / dup dV, (E-24)

where dugp is a change of the density of the potential energy, while 8U is a change of
this energy of the deformed body. From a comparison of egs. E-23 and E-24 we conclude
that

dug = X, degy + Y, ey + Z, de,, + Y, 06y, + Z, ey, + X, Oeyy (E-25)

This clearly shows that during a very small time interval, 0¢, a change of the density of
the strain energy is defined by a product of stresses and a variation of the corresponding
strains.

Case two Next we demonstrate that cq. E-25 is still valid even when there are
variations of the kinetic energy. With this purpose in mind eq. E-25 will be derived in
a slightly different way. In accordance with the principle of conservation of energy, the
work, performed by external forces during a unit time, results in a change of the kinetic

and potential energy, as well as heat, §¢. This can be written as
0A =0K + 46U +6Q)

or
9A 0K U 9Q

o Tt (E-26)
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that is the total mechanical energy
oU + 0K

is not in general equal to the work, dA, done by external forces.
As was shown in Appendix A, the kinetic energy of an clementary volume is defined

as
1 2 2 2
§p (’U:L‘ + Uy + Uz)? (E_27)

provided that displacements are small. Here wv,, v,, and v, are components of the

y?
particle velocity along the coordinate axes. Respectively, the kinetic energy of a deformed

body is
K = / B(’UZ + UZ +v3)dV, (E-28)
‘/7

and its rate of a change with time is

oK
5= p(vgag + vyay + va,)dV (E-29)
"/
where a, = 0v,/0t, a, = 0v,/0t, a,=0v,/0t are components of an acceleration.

As is seen from eq. E-12 the rate, at which the work is done, is equal to

0A i
E_/f-vdl/—kj{t-vds

v 5
or
0A . . . -
5= (fave + fyvy + fov2)dV + @ (tpv, + tyv, +t0,)dS
v s
Making use of E-15, we obtain

0A

= et Sy 4 F b Qi (Ko 4 Y ozl (E30)

v

It almost coincides with eq. E-16 and can be represented as
0A . . .

= [(fe + div X)v, + (f, +div Y)u, + (f, + div Z)v, (E-31)

14
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+X - grad v, +Y - grad v, + Z - grad v,]dV

In Appendix C we demonstrated that

fo+divX=pa, f+divY=pa, f,+divZi=pa, (E-32)
Substitution of eqs. E-32 into eq. E-31 gives
0A '
i / plazvg + ayvy + av,)dV (E-33)
1%
8

Ot /(X grad s, +Y - grad s, + Z - grad s,)]dV

Taking into account egs. F-29 and E-33, in place of eq. E-26 we have

/[p(axvm + ayuy + a,v,) + e /(X grad s, +Y - grad s, + Z - grad s,)]dV

1%

' oU  0Q
:Q/P(Ux Gy + vy ay + U, az)dV+E+§
1%

or
d _oU0Q
En /(X grad s, +Y - grad s, + Z - grad s,)]dV = e + a (E-34)
or
/(X -grad 0s, +Y - grad s, + Z - grad ds,)|dV = 06U + 0Q) (E-35)

1%

Assuming that a change is adiabatic, 6Q) = 0, we again arrive at eq. E-25. In this
light it may be appropriate to notice that an adiabatic compression of a gas increases
its temperature. Also if a metal is adiabatically compressed, there is an increase of a
temperature too, but it is quite small. In principle it is possible to remove a portion of
heat and restore an original temperature. Such procedure slightly changes a strain, that
is a difference between the adiabatic and isothermal elastic parameters is very small and
it is usually much less than one percentage. As follows from eqs. E-24-E-25, the work,

causing an clementary change of strains in the unit volume, is equal to
dA, = Xpdeyy + Yydey, + Zode,, + Yodey, + Zpdey, + Xydeg, (E-36)
Since the work is transformed into the internal energy small variations of strains are

replaced by the full differentials. Let us note that considering the work we did not make

any assumptions about a relationship between the stress and strain.
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>8xx

Figure E.1: Tllustration of Eq. E-38

The work of stresses and Hooke’s law

Now suppose that Hooke’s law is valid and find an expression for the work A,. By

definition, we have

A, = /(deem + Y,dey, + Z.de,, + Y.de,. + Z de,, + X,des,) (E-37)
At the beginning consider the first integral
/ )(z dezz
0

Its evaluation is illustrated in Fig. E.1. Since the stress X, linearly depends on the
strain, e, (Hooke’s law), this relation is described by the straight line OQA. Corre-
spondingly, the area of the triangle OAB defines the integral, that is

1

Erx
0

where X, is the function of the final value of the strain.
Applying the same approach to other integrals in eq. E-37 we arrive at the expression

of the work

1
A, = i(Xxem +Yyey + Z.e. 4+ Yiey + Zyeg, + Xyeyy) (E-39)
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For illustration consider an elementary volume of an elastic medium.

Example one Assume that each element of the stress tensor is the same at the
opposite faces of the volume. In other words, the derivatives of stresses with respect to
coordinates are equal to zero. We first calculate the work, performed by the force, related
to the stress X,. Introduce the following notation: ds,(x,y, z) is the displacement of the
middle point of the volume along the r—axis. Then ds,(z—dz/2,y, z) and ds,(z+dz/2,
y, z) are displacements of the back and front faces of the volume, respectively.

As was demonstrated in Appendix C, the z—components of forces, acting on these

faces, are equal to

d
F(z— Ex, y,2) = tpdydz = (X - ny)dydz = — X, dydz
and
dzx
Fy(z + PRL z) = tpdydz = (X - ny)dydz = X, dydz,
since X, =const and ny = —n; =1i. Therefore, the work of these forces, is
d d
X.d [SZ(L + ;, Y, 2) — sy(a — ;,y, z) | dydz (E-40)

Expanding s, in the Taylor’s series and discarding all terms, except the first and second
ones, eq. E-40 becomes

0s
X.d ( 7c> dV = X,de  dV
Ox

Its integration within the interval: 0 —e,, gives the first term of eq. E-39. if dV =1.

In the same manner, we derive expressions of the work, which is done by two other
normal stresses and they are % Y, ey, dV and % Z,e,, dV. Next, consider a contribution
of tangential components of forces, directed along the z—axis and acting on faces of the
volume, perpendicular to the z—axis. As a result, these faces experience displacements:
dsy(z,y,2+dz/2) and ds,(x,y,z —dz/2). Since

dz

Fo(x,y,z+ 5) = (X - ny)dzdy = X,(2,y, 2)dzdy

and

d
Fm(.T,y,Z o ;) = (X ’ nl)d'Ldy = 7XZ(.’L',y,Z)d.Tdy
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and
No = —Ny = k,

the work, performed by these forces, is

ds,
dz

dz dz
X.d {sz(x,ghz + 77) — Sp(x,y,2 — 27

)} dedy = X,d—2dV (E-41)

By analogy, the work of the forces, directed along the z—axis and acting on faces, normal
to the z—axis, is equal to

dx d
Zyd l:éz(L + —l, Y, z) — $,(x — —x, Y, z)} dydz

2 2
or
0s
Zpyd | =2 ) dV E-42
(%) (B-42)
Hence X, = Z, a sum of works, given by eqs. E-41-E-42, is
0s, 0s, a
Zd ’ dV = Z,de,,dV E-43
' <8x * 8:1:) “ ( )

Here de,, is an elementary change of the strain e,,.

After an integration of eq. E-43 from 0 to e;, we obtain the corresponding term of
eq. E-39. Similarly, considering the work of other shearing forces, all terms of the sum
in eq. E-39 can be found.

Example two Next consider a more complicated case, when the volume forces are
present and stresses vary linearly inside the volume dV. Making use of results, derived
in the first example, it is clear that the elementary work of the force F, acting on faces,
normal to the z—axis, is equal to

dx d d dx

or

%(desz)dv (E-44)

In the same manner the elementary work, associated with forces F,, acting on faces,

perpendicular to the y— and z—axes, is

. 0
—(Xydsz)dV  and g(

X.dsg)dV E-45
5 » (E-45)
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Thus, the total elementary work, caused by the surface forces F, becomes

7] a ., . J . i
[%(Xxdsgc) + a—y()&ydsz) + a(ﬁzdsx)} dv
or
Bsy .. 05, sy 0X, 00X, 0X,] ..
[ da +)sday+Xia +d91(aT+ay+az)]dL

The latter can be also written as

aa% +x,d%% 4 x.0%% 4 as, div X} av (E-46)

X,
[ =@ dy 0z

The elementary work due to the xz—component of the volume force f, is
Sfads,dV (E-47)

Adding eqs. E-45-E-46 we obtain

Xyd—+ X, d— + X
[ =d oz +Xyd Ay T Xed 0z

+ (div X+ fz)dsgc] dv

Taking into account the first equation of the set E-18, the elementary work, related to the
2 component of the surface and volume forces, is defined, as in the previous example, by

the sum

9s, . 0, 955\
(Xda +Aday+Xda )dx

By analogy, the y— and z—component of the forces produce the work:

(Y 0% 4y, a5y deasy) dv

ox oy 0z
and
852 a 852

After a summation of all these elementary work and an integration, we again obtain eq.
E-39.
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Strain potential and Hooke’s law

In accordance with eq. E-25 a change of the density of the potential energy is
duy = Xpdey, + Xydey, + Zode,, + Yodey, + Zpdey, + Xydeg,
Correspondingly, the density « is defined as

Uy = /(Xxdem + Xydey, + Z,de,, + Y,dey, + Zyde,, + Xydeyy), (E-48)

and it represents the potential energy, stored in the unit volume, due to a deformation.
The function u is called the elastic (strain) potential or strain energy function. From
the physical point of view it is obvious that the density wup is a function of strains, that

1S

Uy = Ug (emca Cyys  €zzy  Eyzy, Eazs ewy) (E'49)

For this reason, its small variation, du, can be represented in terms of small changes of
strains. With this purpose in mind we expand the function wg in the power series and

preserve only terms with the first derivatives. Since
10(0,0,0,0,0,0) = 0,

we have

a’lL() 8U0 Ouo OUO OUO 811,0
d = —d T —d/u —d/zz —dﬁz —d TZ —d Ty E-5
Ug de.. €rr + Beyy Eyy + Be.. €., + e, €ys + De.. €ps + Doy ay (E-50)

Thus, we obtain two expressions of the same function, dug, which characterize a change

of the elastic potential, eqs. E-25 and E-50. Their comparison gives Green’s formulas

871,0 871,[) 8’11,0
S — i }7 — . ZZ = R E—5 1
T Degs Y dey,’ de,, ( )
O g g
d Y, = , Ty = , X, =
an dey,’ Oey, y Oegy

It is a very important result, because it allows us to express components of the stress
tensor as derivatives of the elastic potential with respect to strains. Thus, the function
u contains an information about surface forces and strains. Tt is essential that with a
help of the potential vy we can demonstrate that some elastic constants in the Hooke’s

law are equal to each other. Later, considering some special types of a medium, it will
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be shown that certain elastic constants vanish. At the beginning we take the first two
equations of the set E-11. Making use of eqs. E-51 and relationships between ¢ and e,

these cquations can be written as

Oy Cl4 Ci5 Ci6
T — = C11€gz t+ Cl2eyy + c13€, + 76zy + —Cu t+ 7613} (E'52)
Oy 2 2 2
Oug €24 €25 C26
and Yy = o = cmepn + ey o3+ €+ € T €y
ey, 2 2 2

Since strains arc independent arguments of stresses X, we have

8X;D - 62’&0
Deyy o OeyyOegy

a}fy - 827.60
Oty Oegg0ey,

= C12 and = C91 (E-53)

The principle of conservation of energy requires that the work cannot depend on an
order in which forces are applied, but only on their final magnitudes. Otherwise, it is
possible to gain energy when a deformation has a complete cycle and a body returns to

the original state. Correspondingly, we obtain

d%u 0%u
2 - ¢ 5 (E_54>
OegeOeyy  OeyyOegy
that is  ¢g) = ¢15. Considering all pairs of stresses we find
Cij = cji (E-55)

where 4,7 = 1,2,3...6. Thus, in general, the Hooke’s law is defined by 21 elastic

constants, shown below:

Ci1 €12 C13 €14 Ci5 Cig
Cyg Co3 Co4 Co5 Cop
C33 C34 C35 C36

Cag C45 Cyp

Cs5  Cs6

Cee

Elastic potential in terms of strains and elastic constants

Earlier we represented wug, as the integral, eq. E-48. In order to perform an integration

we make use of the Hooke’s law and eq. E-55. Substitution of eqs. E-11 into eq. E-48
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and on integration gives
1

2
Uy = §cuew + C12€,,6yy + C13€22€,, + C14€,, €y, + C15€42€,, + C16€,,€2y + C13€12€,,

1
2 : .
T 50206, T €238, €., T+ Co4€yy€,, + Ca5€y €z T+ CopCyye

2

ry

1
+5033632 T+ C34€,,€.y T C35€2,€,, 1 C36€,,€0y (E-57)

1
2
+§C44€Zy T C45€,, €20 T Ca6€.y€4,

1
2 2
+§C55€zm -+ CsGszezy -+ §C656$y

This shows that the elastic potential, ug, is a function of the second order with respect
to strains. As was pointed out the potential wu is very useful to study elastic constants
in the Hooke’s law for the isotropic and anisotropic media. With this purpose in mind

consider a change of strains with a rotation of coordinate axes.

Transformation of strain elements

Earlier in the Appendix B we briefly discussed a transformation of the tensor elements
when a direction of coordinate axes of the Cartesian system changes. Now we consider
this question in some detail. Suppose that six components of the strain tensor are known
at the original system z,y,2. Then our goal is to find these elements in the new system
2,y 2. The position of this system with respect to the original one is defined by nine
cosines, given in the table

EIFEES

| my |

'
y |l | mo | ne

Z l3 ms | N3

For instance [y = cos(iy,i) is the cosine of the angle, formed by the z and 2z’ axes,
but ms = cos(ki,j) and so on. Now we use the following notations for the displacement
components in both systems
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By definition, components of the strain in the new system of coordinates are

o’ ow' o'

= o VI oy o
ov' ou  ouw’

N By e = 9 T o (E-58)
o' o ou

= o “ = o oy

In order to determine relationships between strains in the new and old systems we, first,
make use of simple formulas, which relate components of the displacement. Since the

new and old systems have the same origin we can write for the displacement vector
vi+vj+wk=1i +05 +uv'k
Its multiplication by unit vectors of the new system gives three important equations
v=ulij+vmitwng, V=ulbtvmetwny, w=ulz+vmst+wns (E-59)
The next useful relation was derived in Part I and it can be written as
% = grad ¢ iy (E-60)

Here ¢ is an arbitrary function and 9¢/ds is the directional derivative along the line

which unit vector is i;. By definition:
i;=cos(is, 1) 1+ cos(is, j) j + cos(is, k) k (E-61)

In particular, the vector iy, may coincide with unit vectors of the new system of coordi-

nates. Bearing in mind that

it is convenient to rewrite eq. E-60 in the form

%( )= %( )cos(s, z) + (%( )cos(s,y) + %( ) cos(s, z) (E-62)

Here () means any function ¢.
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First, suppose that s =2’ and ¢ =« = lju+miv+nyw. Then eq. E-62 becomes

e ou = (I 0 +m 0 +n a)(lerm v+ nyw)
oy = 1~ )l U L U

o Yo gy M 1 1

ou v ow Ow Ov ou  dw dv  Ou
=1 H 7 1 — l —+ —)hm

ar Ty T, TGy T amm G, 1 g mh G g )hm

whence
xrw = U€py +Miey, +nie,, +min e, +nilie.. +Lhmes, (E-63)

Now assuming that s = ¢ and ¢ = v or s =2 and ¢ = w' we arrive at the

following cquations:

2 2 2
Cyry = by Cop T M5 Eyy + N5 €op + Mgy, + Nolyle + lamy €5y (E-64)
2 2 2
and €ry =13 Cpp + M5 €yy + N3 €y + Mangey, + Nalye + l3ms ey

The last three equations describe a transformation of the diagonal elements of the strain

tensor. Applying the same approach we have

ow’ N o' ( d N ) N d Yo n )
ey = — 4+ — = (lag= 4+ Mo— + no—) (lsu + msv + nzw
v oy 07 *or oy | Car ’ ?

0 ou ov 0
Y(lou + mav + now) = 2ol 39, + QQOSa + 2nong E;i]

0
+(l3— P

or

+ m3— +n3—

y

ow  Ov ou  Ow P
+(E)_z/ + 8«)(m2n3 + man,) + (8f + e — ) (nals + nsly) + (% + ay)(l2m3 + I3myy)

or

ey = 2(lal3 eyp + Mamsg €y, + Nong €,5) + €y, (Mong + many) (E-65)

+e.o(naly + nsly) + ez (lomg + [3msy)
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By analogy we have
ey = 2(l1l3 €gq +myms eyy + ning e,,) + ey, (mang + myng)
+e.o(nsly + mals) + egy(lsmy + mgly) and (E-66)
exry = 2(l1ly egp + mMumy ey + minse,.) + ey (min, + mong)

+e o (mly + noly) + ey (limy + lomy)

Thus, our task is solved and we can determine strain elements in the new system of
coordinates, as soon as directional cosines are known. Formulas of strain transformation
have different applications. Consider one of them, which allows us to find relationships

between strains and stresses in an isotropic medium. Adding eqs. E-63-F-64 we obtain

Crgt + €y + €y = e (IZ + 15+ l%) + eyy(m? +m3 + mg) +e.,(n? +ni+ né)

+ey. (ming +mony + mang) + e, (n1ly + naly + nsls) + €4y (limy + lomy + I3mg)

Taking into account the known relations of directional cosines:

l%+l§+l§:1 miny + many +mgng =0
mi +ms+mj; =1 n1ly + nely + 13l =0
n? + ng + n% =1 mily + maly +mgls =0,
we have
€t + Eyry F €t = €y + €y F €5 (E-67)

The latter is the first invariant of this transformation. This result is obvious, since the

relative volume extension, (dilatation)
divs =0 =eu + ey + €.

is independent of the system of coordinates. Simple but cumbersome algebra shows that

there are two more invariants, which are

1. . . .
€yyCrz + €12€ay + €1yCyy — Z(eéz +e2, + eiy) (E-68)

1
2 2 2
and €13Cyy€sz + Z(eyzezwewy — €z, — CyyChy — C2zCiy)

Now we are ready to find expressions for the Hooke’s law at different media and start

from the simplest but very important case.
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Isotopic medium

In such a medium all physical parameters do not depend on a direction along which they
are considered. It is natural that it is also applied to the strain tensor. This means that
its elements remain the same, regardless of an orientation of coordinate axes. Inasmuch
as the elastic potential, w, is a function of strains, we conclude that it is an invariant
with respect to a rotation of coordinate axes too. In order to observe such behavior
the right hand side of eq. E-57 should be represented as a combination of the strain
invariants, eqs. E-67-E-68. Bearing in mind that the strain potential is a homogeneous
function of the second order but the last invariant is of the third order, we make use of
the first two invariants. This allows us to write wug as

Uy = §[a(em + ey + €)% + b(ejz +e? + eiy —deyye,, — de, 60, — degpey,)],  (E-69)

where a and b are elastic parameters of a medium.
In other words, elastic constants c¢;; are related to each other so that the potential
ug is described by only two parameters. It is conventional in place of a and b to use

Lamé constants, A and p, which are introduced in the following way
a=\+2u and b=u (E-70)

Respectively, we have

A+ 2u
2

i
(Ear + ey +€:2)° + =

2 2 2
5 (e, +er, i, — deyye,, —de, 00, — degreyy)

(E-71)

Uy =

Now, making use of Green’s formulas, eqs. E-51, it is easy to determine components of

the stress tensor. Performing a differentiation of the potential u with respect to strains

we obtain
Y, = 20 4 2uey,, X, =pue,, (E-72)
Z, = A0 + 2ue,,, Xy = [t egy,

where © = e, + ey, + €. is the dilatation. These equations establish a relationship

between stresses and strains. It is interesting to notice that the normal stresses are related
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to the diagonal elements of the strain tensor only and depend on two elastic parameters
A and p. At the same time, the shearing stresses are functions of the corresponding
strain and the single paramcter p, which is usually called rigidity. Formulas, given by the
set E-72, represent the Hooke’s law when a medium is isotropic, and they were derived
by Cauchy.

Relationships between elastic moduli of an isotropic medium

By definition elastic parameters, A and g, are independent of a distribution of stresses.

For this reason, it is very useful to consider the simplest case when
X, #0, Y,=Z,=Y.=X,=X,=0 (E-73)
For instance, if a thin bar experiences an extension we have
X, =F ey (E-74)

Here E is the Young modulus, and it always has a very large value. Taking into account
the condition E-73 the set E-72 becomes

AO + 2 e = Xy, AO + 2/ ey = 0, MO +2ue,, =0 (E-75)
Adding eqs. F-75 we obtain
(3 +21)0 = X, (E-76)

The latter allows us to express the relationship between X, and e, in terms of A
and p. In fact, we have
0= Xa
3A+ 2

(E-77)
and its substitution into the first equation of the set E-75 yields
—— X, +2u e, = X,
3A+2u teme

or

9
x, = AT (3A + 24) € (E-78)
A4

Comparison with eq. E-74 gives for Young modulus

5o #(3A+ 2u)

, E-79
Sy (E-79)
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and it depends on both Lamé parameters. In order to find the relation between the
Poisson ratio, ¢, and Lamé parameters consider the last two equations of the set E-75,

which give

A6
Cyy = €2z = _W
Taking into account eq. E-76, we obtain
A X,

W B )

or, making use of E-78, the latter gives

A
eyy = €y, = —mem (E—SO)
By definition e, =e,, = —0e,,;. Whence the Poisson ratio can be represented as
A
= — E-81
7 2(A + ) ( )

Thus, pair of elastic parameters, F and o, are expressed in terms of Lamé constants.
Now, let us resolve eqs. E-79 and E-81 with respect to A and u. The first equation

can be written in the form:

(2N + 2p) LA
E= =2 2
A +)ﬁ—u ptp o

Therefore
E
= —_— E-82
=50+ o) (E-82)
Its substitution into cq. E-81 yieclds
E
Q. — (E-83)

(I1+0)(1-20)

It is instructive to consider the case when the normal stresses are equal to each other,

but the shearing stresses are absent:
X, =Y, =2,=-P Xy=X.=Y,=0 (E-84)
Respectively, the set E-72 becomes

AO +2u ey, = —P, AO 424 ey = —P, AO+2ue,,=—P (E-85)
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and

Cys = Cgz = €y =0
Summation of eqs. E-85 gives

(3N +24)0 = =3P

Therefore, the relationship between the pressure, P, and dilatation is

2
P=—(\+ §“> © (E-86)
As was shown in Part |
P=-MO, (E-87)

where M is the bulk modulus, which characterizes a compression or an expansion of an

elementary volume. Comparison of eqs. E-86 and E-87 gives
2
M=X+ 3 H (E-88)

Replacing A and ¢ by E and o we obtain

M= o S
C(1+0)(1—-20) 3(1+0)
or
FE
M=——- E-
3(1—20) (E-89)

Anisotropic medium

As was pointed out earlier the strain-energy-function, eq. E-57, and, therefore, the
Hooke’s law is in general defined by 21 clastic constants. Now we consider several models
of an anisotropic medium, where the number of these constants is greatly reduced.
Case one Suppose that a medium is such that at each point there is a plane
of symmetry with respect to elastic properties. This means that two forces with equal
magnitudes but opposite direction, normal to the plane, cause the same strain. Let us
assume that the plane of symmetry coincides with the coordinate plane XOY. Then the

elastic potential has to remain the same, when a direction of the z-axis, perpendicular



APPENDIX E. RELATIONSHIP BETWEEN STRESS AND STRAIN 641

to the plane of symmetry, changes. Correspondingly, a sign of z and w, changes, too,

as well as that of strains

_% o u dw Owv

€z = + , Cyy = + —
0 0z gy 0z
Because of symmetry, terms containing e,, and e,, in the first power have to vanish.

At the same time, terms with the product e,,e,, remain. This gives
Cly = C15 = Coq = Co5 = C34 = C35 = C45 = Cs6 = U, (E-90)

and the number of different elastic constants becomes 13.

Case two Assume that at each point of an elastic medium there are three mu-
tually perpendicular planes of symmetry. It is convenient to treat them as coordinate
planes. Therefore, an expression of an elastic potential, eq. F-57, does not change, if
an orientation of coordinate axes becomes opposite. Since this transformation changes
signs of ey, €z, €,,, terms of the sum in eq. E-57, which contain ey, e;,,€,, in the
first degree, should be equal to zero. It happens, if along with the condition E-90, we

also have
Clg = C26 = C36 = Ca5 = 0 (E-91)

The number of elastic constants is reduced to 9, and they usually characterize a defor-
mation of an clementary volume, which is crystallized as the rectangular parallelepiped.

Case three In this medium, as before, at each point there are three mutually
perpendicular planes of symmetry and, moreover, elastic properties are the same with
respect to each of them. This means that the potential % does not change, if the r—axis
is replaced by either the 3 or z-one. Therefore, the expression of the strain potential

remains unchanged, if mutual replacement of the following quantities takes place:
€x3> Cyy» 2z or €y, Exz, Cyz
It happens if
C11 = C92 = (33, C44 = C35 = Cg6, C23 = C12 = C13, (E-92)
provided that conditions E-90-E-91 are met. Then, the potential u, can be written as
CL( 2

. C44
5 (6as + er, +€2) + craleyyess + €rnbap + €xabyy) + — (€2, + €2, +¢2,), (E-93)

Ug = 9 yz
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and it is characterized by three elastic constants. Such a deformation usually occurs in
a medium with the cubical crystals.

Case four Now wc assume that a medium is isotropic and derive again an expression
for the strain potential. It is clear that this function has to be the same for any orientation
of coordinate axes. For simplicity let us turn the original system, (r,y,z) by a small
angle ¢ around the z—axis. This gives a new system, (z',v/,2'), and, in accordance

with Table 1, their directional cosines, are

=1 my = n =0
ly=—yp me =1 no =0 (E-94)
l3 =0 ms3 = 0 ng = 1

Here we used the fact, that ¢ is very small and

o?
sin @ = @, cosga:l—?%l

Applying formulas of the strain transformation, eqs. E-63-E-66 and discarding small

terms with ¢?, we obtain components of the strain in new system of coordinates:

Cyry = gz T @ Cay, Cy'y = Cyy — P Cqy, Crizt = Czzs (E‘95)

and €yt = €yr — P Epa, €z = €xz T P Ezy, Eqry = €zy + 2(19(eyy - ezm)

It is clear that any plane in an isotropic medium is a plane of symmetry and elastic
properties are independent on a direction. For this reason, we can use eq. E-93, which
can be written in new system of coordinates:

C11

2

2 2 2
(aror T €y T €5) F Croleyyeurs + epepy + eppeyy) (E-96)

Uy =

G440 o 2 2
+?(cy,2, eyt epny)

Now we represent u; as a sum of wug and terms, depending on ¢ in the first power.
Substituting cqs. E-95 into ¢q. E-96 and preserving terms with ¢ of the first power we

obtain:

up =u+ (e, — e, (201 +c12 —cn) ey (E-97)
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Since wu; = ug we conclude that elastic constants are related to each other and it gives
2044 + €19 — 11 =0 or c11 = 2¢44 + €19 (E-98)
Correspondingly eq. E-93 becomes:
20 = cra(e,, + e, +e,,) + 2culey, + e, +et.) +cule), + e, +eh,),

that coincides with eq. E-71, if we let ¢4y = ¢ and ¢ = A

Case five Next consider a transversely isotropic medium, which is of a great
importance in a seismology. Suppose that a distribution of elastic parameters possesses
axial symmetry around the z—axis. Correspondingly, any planc with this line is the
plane of symmetry. In order to find the elastic potential in such a medium we undertake
several steps. First, let us consider the plane XOZ. Since a change of the direction of
the z—axis does not make an influence on the potential, eq. E-57, we obtain, as in the

first example:

C15 = Clg = Cg5 = C26 = C35 = C36 = C45 = Ca6 — 0
Now we choose the second plane of symmetry, YOZ. For the same reason its symmetry
gives:

Cl4 = C16 = Coq = Cgg = C34 = C36 = C45 = C56 = 0

Because of two last conditions, eq. E-57 becomes

1 1
— 2 2
U0 = 5ON € T ClaCugCyy + C13CaeCar T S8y T C23€y € (E-99)

1 2 1 2
+ =C55€,, + —cCgg€

2 1 2
+—633622 + —cCy4€ 5 Ty

2 27 2
Thus, a number of elastic constants is already reduced from 21 to 9. Next simplification is

related to the axial symmetry of a medium. For this reason we can perform a replacement

of the following strains: € Eyy and e,,,e,,. This means that c); = a2, 13 = cg3,
cy = C55, and eq. E-99 can be written as
— Len(eh el e (€ ) + sorse’ (E-100)
Up = 2011 €z T Cyy + C12€47Cyy + ci3(€y, + €yy)Czz + 2033622 -

1 1 .
+§C44 (GZy + eiz) + 50666;1}
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At this stage we expressed the strain potential with help of six elastic constants. It turns
out that only five of them are independent. To demonstrate this fact suppose, as in the
case of an isotropic medium, that a system of coordinates, x,y, 2, is turned by a small

angle ¢ about the z-axis. Then, in the new system, 2’,¢/, 2" eq. E-100 becomes

1
2 2
Uy = 5611(ex/x/ + ey/y/) + Cl‘zezlﬁrey/y/ + 613(6;1;/3;/ + ey/y/)ez/z/ (E—l()l)
1 1
2 2 2 2
+50336Z/Z/ + 5044(6,2'3/ + ezlm/) + 5066 Eyty

In the same manner as in the previous example, we substitute eqs. E-95 into eq. E-101

and discard terms with ¢ in the power exceeding one. This gives
ur =t + leri(eg, — €yy)en, + c1aley, — €xp)eq, + 2cs(ey, — €)e;,]

or

up = ug + @(—c11 + 1z + 2¢66) (€, — €4y (E-102)
Since wu; = ugy, we arrive at one more condition for elastic constants:

c11 = €12 + 2¢e6
Thus, in place of eq. E-100 we have
2ug = (e12 + 2¢46) (€2, + eiy) +2c12 €€, + 2c13(€,, +€,)€,, + C33 e,
(E-103)

2 2 2 2 ) 2
+cas(es, + €5,) + Cos €5y = Craley, +e,,)" +2ci3(e,, tey,) e, e e,

TCaq (BZy + €Zz) + Co6 (eiy + 2821‘ + 2632/3/)7

and the potential wg is defined by five parameters.
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center of mass, 35
compression, 3, 16
conservation of energy, 105
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cut-off frequency, 273, 428, 435, 441
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diffusive waves, 80
dilatation, 13, 96, 99, 125, 128

Dirichle’s boundary value problem, 300, 384

dispersion relation, 422, 423, 426, 433
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elastic medium, 83, 186, 358, 381
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energy
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force
external, 3, 4, 10, 54, 65, 288, 289
internal, 3, 62, 73
point, 143, 150, 154, 156, 296
Fourier’s
integral, 38
series, 28, 29, 32, 60
transform, 38, 133, 143, 415
free boundary, 25, 99, 191, 320, 382

Gauss formula, 106, 148, 161
Green’s formula, 631, 637
group velocity, 268, 269, 272, 437, 443

Hankel function, 277, 336, 387
Helmholtz
equation, 277, 294, 384, 409, 418
formula, 143
Hilbert transform, 231
formula, 143
Hooke’s law, 2, 12, 17, 26, 42, 187, 288, 482
Huygen’s principle, 208, 328, 370, 371

impedance, 20, 133, 142
impulse, 29, 37
initial condition, 42, 100, 122, 125
interference
constructive, 40, 41, 420, 441, 473
destructive, 40, 41, 208, 223, 420

Jordan lemma, 312, 397, 398, 425
Lame constants, 89, 488
laminated medium, 483, 488

Index

Laplace equation, 146, 177, 463
Laplace motion, 98, 177
leaking modes, 420, 473
matrix
antisymmetric, 533, 544
diagonal, 544
Hermitian, 552
inverse, 546, 547
symmetric, 543, 544
transposed, 545
metric coefficients, 114, 115, 117-119
moment of inertia, 56, 85, 516
multiple reflections, 420

near zone, 129, 167

Newton’s first law, 29, 31, 32

Newton’s second law, 17, 22, 31, 34
normal incidence, 190, 196

normal modes, 40, 82, 419, 427, 430, 438

oblique incidence, 201, 215

particle motion, 27, 30, 57, 129, 496
phase
shift, 193, 213, 224, 250, 262, 263
surface, 505, 506
velocity, 453, 467, 473, 505
plane wave
homogeneous, 179, 180, 261, 300, 308
inhomogeneous, 179, 180, 248, 300
polar moment of inertia, 55, 56
potential
scalar, 83, 100, 300, 366, 373
vector, 83, 100, 101, 300
Poisson relation, 2, 5, 12, 21, 42, 91
Poisson’s ratio, 5, 8, 14, 45, 91, 639



Index

Poynting vector, 103, 233, 234, 340, 504
pressure, 12, 13, 104, 460, 462
pure bending, 62, 67, 72

ray
behavior, 498, 503
tube, 231-234, 498

reflection coefficient, 195, 207, 211, 224, 227
recursive expressions, 241

refraction coefficient, 24

resultant torque, 66, 75

rigid boundary, 25, 99

rigidity modulus, 45, 48, 57

shear
pure, 45, 93, 95, 139, 140
simple, 48, 97
slowness, 507
Snell’s law, 204, 210, 337, 340, 350, 360, 473
Sommerfeld
condition, 100, 280
integral, 387, 395
source
fictitious, 287, 340, 392
linear, 275, 278, 284, 287, 299, 332
point, 167, 275, 382, 390
spherical, 121, 125, 132, 137
spreading factor, 235
stationary-phase method, 332, 356
Stokes’ formula, 149
strain tensor, 45, 111, 597
stress
tensor, 6, 9, 141, 563, 578
normal, 17
shear, 42, 45

Taylor series, 6, 8, 51, 334

theorem of uniqueness, 100, 138
torque, 54

torsional stiffness, 55

traction, 5, 9, 17, 564, 566
transmission coefficient, 218, 227, 229

transversely isotropic medium, 483, 502

velocity of
bending wave, 78
longitudinal wave, 95, 329
Love wave, 259-261, 263, 265, 268
propagation, 489
Rayleigh wave, 244-251, 269, 275
of shear wave, 57,95, 133, 135, 493
Stoneley wave, 255-258, 272, 456

wave
acoustic, 16, 129, 132
bending, 60, 73, 78
boundary, 252, 253, 258, 373
compressional, 16, 20, 27, 28, 30
conical, 329, 371, 373
cylindrical, 278, 340, 455, 473, 474
dilatational, 92, 101, 491, 492
direct, 290, 336, 351
elastic, 121
equation, 16, 18, 19, 83, 90, 122
evanescent, 184, 373, 376, 420
extensional, 20, 27, 28, 30
head, 371, 373, 442, 477, 478
incident, 23, 25, 80, 188, 189
incoming, 19, 20
ininhomogeneous, 179, 184, 372
longitudinal, 15, 38, 78, 94, 121
Love, 243, 259-269
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wave
outgoing, 19, 40, 122, 136, 191
quasi P-, 494, 495, 498
quasi S-, 494, 495, 498
Rayleigh, 60, 334
reflected, 23, 25, 31, 32, 191, 337, 340
Scholte, 454
SH, 180, 181
shear, 95, 101, 121, 170, 179
spherical, 121, 126
Stoneley, 60, 454, 469, 470, 499
surface, 179, 449
SV, 180, 181
torsional, 42, 55, 57, 78, 94, 109
transmitted, 23, 25, 362, 376, 474
transient, 470, 474, 479
zone, 131, 300
wavefront, 34, 126, 127, 372
wavefields, 121, 127, 136, 167, 299
waveguide, 78, 269

Young modulus 5, 11, 14, 15, 22, 57, 91, 638



