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All sorts of people are interested in logic. Most are looking for ways to keep their
thoughts straight, hoping for hints about mental hygiene and help with settling
arguments. Only a minority are interested in formal logic, a 20th century devel-
opment which allows you to check a logical claim without considering what the
claim means. This highly abstract idea, once intended to be a sound foundation
for mathematics but thrown out as inadequate, has found a home as an essential
and practical part of computer science.

Mathematicians and philosophers study formal logic and worry at mathe-
matical and philosophical problems: does it correspond to any interesting math-
ematics? does it characterize any interesting patterns of argument? Computer
scientists, on the other hand, use logic as a tool: they make and use formal log-
ical proofs. That alone would make it worth studying in the computer science
curriculum. But there is more: the idea of a formal system — a collection of
rules and axioms which define a universe of logical proofs — is what gives us
programming languages and modern-day programming. All the hard and soft
machinery that drove the information revolution through the second half of the
20th century and on into the 21st stands on the ideas of formal mathematical
logic. Formal logic is that important.

This book concentrates on practical skills: making proofs and disproofs of
particular logical claims. The logic it uses, called Natural Deduction, is very
small and very simple. Working with it helps you see how large mathematical
universes can be built on small foundations. It is a striking example of how it is
possible to build useful things, even apparently meaningful things, on top of a
meaningless formal system. It teaches you how to focus on syntactic reasoning,
and turns you away from the semantic reasoning that dominates mathematics
outside computer science.

If you don’t know anything about logic . . .

. . . then skip the next few paragraphs. You can read them again after you’ve
worked through the book, and they will explain what’s happened to you. Start
reading again where it says ‘Jape’.
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If you already know something about logic . . .

. . . then this book may surprise you. First, it starts with proof (most books start
with truth tables). Second, it focusses on constructive proof (most books stay
strictly classical). Third, it’s practical (most books are foundational).

Those aren’t quixotic decisions. If you want to do stuff with logic, making
proofs is the most important skill, and proof is the obvious place to start. If you
start with proof, constructive proof is easier than classical proof and it makes
at least as much sense. Then the distinction between constructive and classical
proof is subtle, important, understandable and quite, quite unbridgeable. Which
is fun.

You always pay for your fun in the end, though. Classical models (truth
tables) are easier to deal with than constructive models (Kripke trees). But
constructive models are more interesting because they deal with the fun bit, the
gap between constructive and classical logic where the controversial claims lie.
So constructive models are fun too.

Last of all, because this book was devised for computer scientists, it shows
how to use proof in anger. If you can program a bit, and if you wonder, as
I used to, why your programs sometimes loop for ever, sometimes finish without
achieving anything, or sometimes go along quite nicely until they fall splat! off
the end of an array, then Hoare logic is for you. For most people it is a double
eye-opener: first you see how hard it is to get programs right; then you see that
with the aid of logic it is possible to get them right. Now that’s real fun.

Jape
I began to get interested in formal reasoning when I was trying to teach people to
program. I knew that expert programmers could justify and defend their designs,
and I imagined that teaching novices to reason about programs would help them
to learn how to program. After I was forced to recognize that I was wasting
my time — no matter what your approach, people seem to teach themselves to
program or not learn at all — I began to get interested in formal reasoning itself.
Bernard Sufrin and I, two formal reasoning novices, got together and started to
build a proof calculator to explain logic to ourselves. Bernard called the program
Jape and the name stuck.

We always intended Jape to be a teaching and research tool, and it is, but
it’s had most success in teaching. I’ve used it to support this book. You can get
Jape for yourself from the website www.jape.org.uk. There are versions for the
major operating systems (Windows, MacOS X, Linux, Solaris), and you can find
updates, news, and an address to write to if you want to suggest improvements
or just complain.

Jape is a calculator. It deals with logic in the same sort of way that arith-
metic calculators deal with numbers: you choose a button and press it; Jape

www.jape.org.uk
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makes the corresponding calculation step and shows you the result, but it doesn’t
give any advice about choosing steps or criticism about the step you chose. By
trying out steps and then undoing if they don’t work, you can use Jape to search
for logical proof. Once you get good at search, you will find that you have learnt
a proof strategy — a way of tackling problems that more or less guarantees
success — and you can transfer that strategy to blackboard-and-chalk or pencil-
and-paper or musing-on-the-bus proofs.

Even when you are skilled, Jape can be useful in checking a proof idea,
because if Jape says it’s a proof, then it certainly is. At every stage you can
learn about the logic by reading the proofs that Jape helps you to make, and
trying to see whether they justify the claims that they seem to prove (that’s
an example of reflection, which means no more than ‘thinking about what you
know’).

Proof is the first and last third of the book. Disproof — the middle third
— seems to be trickier than proof. But in practice, with Jape to help you, you
can deal with it. Jape can help you calculate disproofs; you can use it to check
if your latest idea is a disproof or not; you can use it to explore attempts and to
explain why they are — or why they’re not — valid disproofs.

Jape has one drawback: it’s too much fun to use. It gives lots of positive
feedback for not very much effort, and like any computer game it reveals to
anybody who enjoys blasting away on the buttons just how easy it is to win.
It is even possible (there’s no secret: if I didn’t tell you you’d find out anyway)
to make proofs without really knowing what you are doing. Sometimes you can
stumble on disproofs in the same way. That’s fun to start with, but in the end
it isn’t enough, just as you can’t live on only sweets, or only beer, or no sleep
at all. So long as blasting the buttons is fun, Jape is probably doing you good.
When you find the game is getting a bit of a drag, it’s probably time to back off
and learn some logic. You might decide to learn by using Jape, even!

Trajectory
This book divides into four parts, one small and three large.

• Part I: basics. Introduction to the idea of formal logic, via a short history
and explanations of some technical words.

• Part II: formal syntactic proof. How to do calculations in a formal system
where you are guided by shapes and never need to think about meaning.
Your experiments are aided by Jape, which can operate as both inquisitor
and oracle.

• Part III: formal semantic disproof. How to construct mathematical counter-
examples to show that proof is impossible. Jape can check the counter-
examples you build.
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• Part IV: program specification and proof. How to apply your logical under-
standing to a real computer science problem, the accurate description and
verification of programs. Jape helps, as far as arithmetic allows.
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This preface is addressed to teachers.
Timid student readers may die of horror. Such persons

should skip to Part I and start reading there.

As I said earlier: sometimes it seems that at university you can’t teach
anybody anything, and they just have to learn for themselves.

Logic is different. This book works (well I would say that, wouldn’t I? —
but it does!). Proof and disproof are practical skills, given Jape to help. An one-
semester introduction-to-logic course can be a largely problem-driven experience
for the student. I lectured Basics and Proof (with the exception of Chapter 4,
which was covered in lab sessions) in three weeks or so, then gave three weeks over
to exercise practice, followed by a test; then a similar but shorter treatment of
Disproof, also with exercise classes and a test; then I showed a bit of Hoare logic
to the keen ones and let the rest revise for a final test. I needed good lab assistants
throughout, and luckily I always had them. (The material in Chapter 4, in
particular, was the idea of Jules Bean and Mike Samuels. Thanks, guys!)

The results were gratifying (non-CS teachers look away now!): over 70%
of an average first-year English university class learnt to do proofs reliably on
paper and on blackboard; well over 50% could do disproofs in the same way. It’s
all helped by the fact that they can run Jape on their own computers, and Jape
is quite fun to play with, so they do use it.

The Hoare logic part of this book is new. I’ve given definedness a central
rôle, instead of sweeping it under the carpet as is sometimes the case. It’s all very
elementary, but (again, given the help of Jape) I believe it will be accessible.

Finally, I had limited aims. I didn’t want to swamp novices with too much
information, so I haven’t tried to be encyclopaedic and I’ve tried not to go off
on too many tangents. My aim is to tempt students into the logical forest; once
they’re in, surely we’ve got them! Someone who can do proof and has a notion of
what a model is ought to be an easy touch for deeper logical ideas. Someone who
can do program proofs might even start to reflect on what computer science is
about. At the very least, somebody who has fun with logical proofs might stick
around to listen. That’s why I left out so much that you may think is essential
to an introductory logic text. I hope this book will help you to have an eager
and receptive audience when you add in all that stuff in later courses.



This page intentionally left blank 



Contents

PART I BASICS

1 A rough history of logic 5

1.1 The Greeks invent the game 5
1.2 Goals galore, but we’re not watching 7
1.3 Frege changes the rules 7
1.4 Russell kicks Frege in the knee 8
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Basics



This page intentionally left blank 



3

‘Formal logic’ is not a phrase that attracts. Everybody, perhaps, would like to be
logical — but not too logical, in case they become unfeeling like Star Trek’s Mr
Spock or antisocial like Viz’s Mr Logic. Hardly anybody wants to be formal: the
word brings up images of stuffed shirts, stiff collars, exclusive people dressed up
for expensive occasions that you and I can’t get into. We’d rather be informal,
casual, easy, and logical only up to a point.

But formal logic is hot stuff, because it is the machinery in the engine room
of computing. Computers do very simple formal logical reasoning, and can’t
do anything else. The programming languages that drive those computers are
formal logics. The protocols that drive the internet and the grid are formal logics
too. Computers do what they do as well as they do because we know quite a lot
about formal logic, and they keep falling over because we don’t yet know quite
enough.

Chapter 1 gives some of the history of formal logic. It’s an easy read and
it’s useful background. Chapter 2 introduces the language we use to talk about
proof, disproof, reasoning and so on. If you skip it you will only have to come
back to it later . . .
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1 A rough history of logic

You don’t need to know history in order to understand modern formal logic, but
a glimpse of history can help you to understand why formal logic is the way it is,
and how it fits with the study of computer science. So I begin with a historical
tale.

I’ve had to simplify the story considerably, and simplifications always dis-
tort. You can learn more from all kinds of sources: there are paperbacks on the
main protagonists, there are online encyclopaedias, there are libraries. But you
won’t be misled if you believe it the way I tell it, even though I do simplify
outrageously, and leave out volumes of interesting and relevant information.

1.1 The Greeks invent the game
The origins of modern formal logic are in Ancient Greek culture. In Athens, more
than two thousand years ago, philosophers and mathematicians struggled with
the problem of defining valid arguments — reasoning that would convince any
rational person who attended to it. Judges wanted to be able to distinguish right
from wrong and to do so reliably: they wanted to hear only valid arguments.

Very early on it was recognized that a persuasive argument falls into three
parts. You start from accepted premises and use plausible steps of reasoning
to reach a convincing conclusion. The ancients realized that if you accept the
premises (I was in Sparta, and the crime was committed in Athens) and you
agree that the steps are watertight (since nobody can be in two places at once,
I wasn’t in Athens; since nobody can commit robbery at a distance, I didn’t do
it) you are forced to accept the conclusion (I didn’t do it!).1

Philosophers recognized that the problem is with the steps which connect
premises to conclusion. They identified certain simple argument-shapes which
never seem to mislead. They called these shapes syllogisms. The most famous
example2 is

1 First outrageous simplification. Ancient Greek courts weren’t like the ones we see in TV
dramas, though they did have regard to truth.

2 Another outrageous simplification: this is a modern syllogism from about a century ago.
Ancient Greek philosophers wouldn’t have recognized it, for various technical reasons.
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All men are mortal;
Socrates is a man;
THEREFORE , Socrates is mortal.

which is an instance of a particular well-understood shape:

Every A is a B;
x is an A;
THEREFORE , x is a B.

This is a single-step argument. The premises — facts we have to agree before
we can start — are on the first two lines; the reasoning is a single step to line 3,
and reaches the conclusion immediately. (We’ll see in Chapter 7 that in modern
logic a similar argument takes more than one step.)

This argument-shape, like the other syllogisms the Greeks invented, appears
to make watertight arguments no matter what we put for its parameters x, A

and B. But it was noticed that even when we use a watertight argument, we
don’t always reach a convincing conclusion. A watertight argument shape will
take us to a convincing conclusion if we start from accepted premises. But it can
lead us far astray if we start from wild premises:

Every Martian is a cabbage;
Richard is a Martian;
THEREFORE , Richard is a cabbage.

Oh no I am not! I deny it! But I’m sure I’m not a Martian, so whether or not
Martians are related to cabbages the argument doesn’t persuade me that I am
a cabbage. Contentious premises don’t inspire confidence in the conclusion.

Weirdly, a watertight argument shape can reach an agreed conclusion from
absurd premises:

Every cabbage is a man;
Richard is a cabbage;
THEREFORE , Richard is a man.

I do accept the conclusion, but I definitely don’t agree with the premises. So am
I a man or not? The premises are nonsense, but I don’t have to reject the con-
clusion on those grounds. The argument shows that the conclusion follows from
the premises, but since the premises don’t correspond to reality, the argument
is simply irrelevant, and it doesn’t persuade me about anything at all.

What the philosophers decided was that a valid argument shape is one which
will always take you from agreed premises to a convincing conclusion — one that
must be accepted, can’t be denied. If the argument shape isn’t valid, or if the
premises aren’t agreed, then all bets are off.
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All logical arguments are knock-down convincing if the place you start from
is a good place to stand, and if the steps you take are good steps. Otherwise
they are flaky and shaky. So to defeat an argument which reaches a conclusion
you would rather not accept, you challenge its premises and/or its steps.

1.2 Goals galore, but we’re not watching
Between ancient Greece and modern times lots of mathematics and philosophy
was invented — if you prefer, discovered — and debated. I’m not going to discuss
any of it, though there is a great deal that could be said. Amongst everything
else, logic was extensively developed in the mediaeval period in Arabia and in
Europe, the idea of the algorithm was invented, and so was the differential
calculus. Lots of good stuff, but not precisely relevant to this history. It was
necessary, though, and useful: we stand on deep foundations.

1.3 Frege changes the rules
Gottlob Frege, a philosopher, began the modern study of logic in the 1870s
CE. He asked an apparently simple question: ‘how do we know the truths of
arithmetic?’ For example, how do we know that when x > 1, x2 > x?

We know what wetness is by experience — i.e. by experiment. We’ve stood
in the rain, we’ve jumped in the bath, and if we need to know if a liquid is
wetting, we can always stick a finger it. We know what green looks like. We have
felt pain and known happiness. We can recognize the taste of a potato, and the
feeling of sun on our face.

By contrast, Frege reasoned, we don’t know arithmetic by experience. We
know it rationally, we have been persuaded of its truth by argument. We can’t
experience all the numbers above 1, so we can’t know by experience that for each
of them, their square is greater than the number itself. But somebody might say:
take the inequality x > 1 and multiply both sides by x — a safe procedure when
x > 0, and therefore safe in our case since x > 1 — and you derive x2 > x.
That’s a rational argument which might persuade you of a particular arithmetic
truth.

But it’s easy to make arguments which are so long and complicated that it’s
difficult to be sure they are valid. Tricksters can show an argument that starts
with sensible premises and derives a nonsense conclusion like 1 = 0, smuggling
in an invalid step such as division by zero without making a fuss about it. If we
are to really, truly know the truths of arithmetic, we must be persuaded of them
by very solid arguments. Solid arguments like those Ancient Greek syllogisms,
which won’t lead us into error. Solid logical arguments.
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The syllogisms which he inherited from the Greeks and the mediaevalists
weren’t enough for Frege. He invented a great deal of mathematics to underpin
his reasoning, mathematics which we now recognize as the predicate calculus, a
version of formal logic.

The word ‘formal’ means ‘by shape’ and I’ve already smuggled the idea of
shape into the discussion of valid arguments above. A valid argument can be
recognized by its shape, its form. Frege intended to prove that arithmetic had
good logical foundations by starting from axioms which are immediately accept-
able forms (for example you might choose A = A as an axiom) and proceeding
with purely formal (shapewise) argument to derive the consequential truths of
arithmetic.

In inventing his calculus, Frege was living Leibniz’s dream. Gottfried Wil-
helm Leibniz, a very great mathematician whose life and achievements I casually
passed over in the previous section, was perhaps the first to suggest that math-
ematical reasoning might one day be reducible to formal calculation (building
in turn on the work of another great mathematician, al-Khwarizmi, who had
invented the notion of formal calculation which every child now learns in pri-
mary school). In the 1660s Leibniz imagined, but couldn’t build, a machinery
of argument which would save mathematics from plausible but faulty reasoning.
He dreamed that the symbols themselves would drive the argument. Frege began
to make those kind of arguments.

He began by using the recently invented set theory. He wanted to use the
mathematics of sets to underpin the mathematics of arithmetic, and to use logic
to underpin the mathematics of sets. That was because arithmetic is largely
based on counting, and set theory might reasonably be supposed to explain
counting. He went along for thirty years or so, making great progress, and many
very important mathematicians jumped on the bandwagon.

1.4 Russell kicks Frege in the knee
In the early 1900s CE Bertrand Russell was one of the philosopher/logicians
working on Frege’s problem. Russell noticed something wrong with set theory.
As used by Frege, it contained a paradox: there were remarks you could make
which were self-contradictory. Some ‘sets’ were so defined that things had to
be both in and out of those sets. That’s paradoxical: when you define a set
you do so by defining the things that are in it, so things that are both in and
out (or, which is the same thing, neither in nor out) break the basic notions of
set theory.

Russell defined his paradox in terms of sets that are not members of them-
selves. Hardy, his colleague, had a neat description of it, which I’ve de-gendered
for modern sensibilities.
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There is a village in which there is a cook.
The cook feeds everybody who does not feed themself,

and only those who do not feed themselves.
Who feeds the cook?

A village is a set of people. Within the village-set there is a cook-fed set,
those people who are fed by the cook. Is the cook in the cook-fed set or not?
The only way to be outside the cook-fed set is to feed yourself. But the cook
can't feed the cook (...only those who do not feed themselves...). So the
cook can't be outside the the cook-fed set and must be inside. But then the
cook would be feeding the cook, so the cook must be outside the cook-fed set
after all. And so on and on, round and round in circles for ever. The village, so
simple to describe, can't exist.

Russell wrote to Frege describing the problem, severely denting his confi-
dence (Frege didn't publish his work till after his retirement). Russell went on to
find a way to alter set theory in order to eliminate his own paradox. What Frege
had been working with began to be described as 'naive' set theory, and Russell's
correction was incorporated into mainstream mathematics. It pops up in com-
puter science as part of the theory of types, and the use of types in programming
languages (classes in Java, for example) owes a lot to it.

For various reasons Russell stopped working on logic. But others carried the
project forward.

1.5 Godel blows up the stadium
It was obvious to all, after Russell's intervention, that it wasn't going to be
easy to show that arithmetic is really and truly founded on just a few obvious
fact-shapes and some obviously valid argument shapes. Then in the 1930s Kurt
Godel showed that it isn't just hard, it's actually impossible.

What he did was to show that if you could make a logic that dealt properly
with arithmetic, then by using arithmetic you would be able to code up logical
claims which refer to the logic itself. Some of the claims could even refer to
themselves. Dangerous paradoxical claims like 'this statement is unprovable'.3

If that claim is true, then the logical language supports at least one claim that
is unprovable. That means the logic is incomplete. Mathematicians don't like
incomplete logics: if one claim is left out, what else is missing? But worse: suppose
the logic is complete. Then you could prove that the claim is unprovable — that
is, you could prove that it is true. But then it's provable, so it doesn't state
the truth. Paradox! — we can prove a false claim, and the logic is inconsistent.
Inconsistency is much, much worse than incompleteness; we must never believe

3 Another outrageous simplification, and not quite a real example. See Godel, Escher, Bach
by Douglas Hofstader for a marvellous treatment of this whole matter.
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something and its opposite at the same time, because if we do, then according
to our logical principles, as we shall see, anything is believable.

Gödel’s proof, that any logic which explains arithmetic must either be in-
complete or inconsistent, seemed to have stopped the game. The project which
Frege began could never be finished. Most mathematicians left the ground right
away, and the crowds have never come back.

1.6 Turing and Church play on
Frege, and those who followed him, had built some wonderful mathematics. If it
couldn’t deal with arithmetic as Frege wished, was it any use? You bet!

What Frege, Russell and the others had produced was a way of defining
a logic as a formal system: a collection of basic axioms (starting points) and
rules of inference (ways of building upwards from the axioms). After Frege and
Russell we talk about logics (there are lots of different ones, each with its own
axioms and rules of inference) and about Logic (the study of logics).

Computer Science was built on these foundations. Turing used the notion
of calculation to describe what a universal computing machine had to be like,
and the marvellous things it could do if it was built. Church developed the λ

calculus as a formal treatment of calculation, and since then every programming
language — Java, C++, Fortran, Prolog, Miranda and all the others — has a
basic collection of axioms (its instructions) and rules for building up programs
from axioms and other programs (choices, loops, methods, blocks, classes, . . . ).
Every programming language is a formal system, a particular special logic, and
every program in that language is an argument in that logic.

What we have to allow, because of what Gödel proved, is that the logics
used in computer science are necessarily incomplete. Early on, Turing proved
that it is impossible to write a computer program which can read any computer
program, look at the input you are going to give it, and decide whether that
program will produce a result when given that input. There are many other
such undecidability results that prove there are questions which you may ask
but which formal calculation cannot answer.

The fact that there are programs you can imagine but can’t ever write
didn’t delay computer science for long. Gödel left behind a very large field —
it’s infinite even though it can never be the whole of mathematics — and we’ve
been playing in it ever since.

1.7 The beautiful game
History shows that we do in computer science is, in a deep and important
sense, logical. Programs are logical things. If they weren’t, we couldn’t build
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unthinking (formal) machines which can execute programs using mechanical
(formal) rules.

Because programs are built up, Frege-formal-system style, from simple pieces
using simple rules, we can ask, and sometimes answer, logical questions about
them. Does this particular program, given that sort of input, always give us the
right kind of answer? This is like Frege’s question about arithmetic: we can’t
discover the answer by experiment, because there are just too many examples
of ‘that sort of input’ and ‘the right kind of answer’. Usually there is an infinite
number of cases to consider.

We have to fall back on logical argument. But how do we say logical things
about programs? How do we describe the input? How do we describe the output
which we hope to see? How do we reason that the program we have before us
actually does the right thing, once we’ve managed to say what it is we want?

The answer is: with some difficulty, but by and large using a logic derived
from Frege’s predicate calculus. Even if you never get round to proving anything
about a program, predicate calculus and set theory can be used to describe what
a program ought to do. Describing what ought to happen is called specification,
part of software engineering, which is very big business indeed. To specify a
program you have to have some experience of logical argument. Even if you
specify in a language which isn’t predicate calculus — if you use UML, say —
you will be appealing to logical argument.

There are more ambitious uses of logic. We can program (with some limita-
tions) in logic itself using a language like Prolog. We can build our programs by
starting with a formal specification and using logical steps to refine an accurate
program, as in Abrial’s B method. We can look for ways to describe the world
and the actions of a robot in logical terms, as in artificial intelligence research.

Even if you aren’t a computer science theoretician; even if you never study
any logic ever again; logic won’t desert you. Did you ever hear a politician
argue, and feel ‘there’s something wrong with that argument’? If so, you need
logic as a nonsense-detector. We’ll get to that quite soon, after I have laid some
foundations.



2 How to speak and read logic

Education is about ideas rather than facts. The ideas of logic, and especially the
ideas of formal logic, will be new and strange to most of my readers. New ideas
need new words, new technical language. Outsiders sometimes call technical
language ‘jargon’ and imagine that experts are hiding something by not sticking
to everyday English. They are wrong: just as you can’t discuss the design of
folding bicycles with the same words that you use to discuss human biology, so
you can’t discuss formal logic without using an appropriate language.

Some of the words we use to discuss logic are common words, but we give
them alternative meanings, or at least alternatively precise meanings. Those
precise meanings really matter. When you talk about logic, you won’t be able
to say what you mean unless you use the right words — technical words, not
everyday English words — and unless you use them carefully. You have to learn
to speak our language.

No matter how hard the lexicographers try, nobody can quite write down
the meaning of a word (try looking up ‘right’ and ‘left’ in a dictionary). Words
have to be understood, their meaning acquired by use and by hearing others
use them. To understand words we must be active — by speaking and writing
— as often as, or more often than, passively listening and reading. This Great
Mystery of Education is another reason to learn to speak our language.

Despite the difficulty of description and definition, I shall try to describe
here some of the more important technical words that are used — and explained
by that use — in later chapters.

2.1 Formal = by shape
The word formal means ‘by shape’, by form, rather than by content or by mean-
ing. Outside logic it is often used as a term of social or political abuse. You can
formally comply with the law by obeying its letter but not its spirit. Dancers at
a formal ball must wear the correct clothes so that their outsides look the part,
however villainous they might be inside. Informality, on the other hand, obeys
no rules and can appeal to a deeper understanding than mere form.

Computing machinery is formal, because it can’t be anything else. People
are naturally informal, but can learn to be quite formal if they try hard.
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2.2 Argument = line of reasoning
To argue, says the dictionary, is to seek to show by reasoning: hence an argument
is a line of reasoning. Lawyers use the word in just this way. Outside logic
and the law an ‘argument’ is a disagreement between people, a heated dispute.
Our arguments, especially our logical arguments, should always be calm and
measured — though if you eavesdropped outside a computer-science researcher’s
office, you wouldn’t always think so.

2.2.1 Parts of an argument. A premise is the starting point of an argument.
It’s often expressed as a hypothesis, a supposition. ‘Suppose that the universe
contained only electrons’ is a premise at the beginning of an argument, the
position from which the conversation can continue.

A conclusion is the finishing point of an argument, what the argument
‘proves’. ‘Then we wouldn’t be here to notice’ might be the conclusion of the
electronic-universe argument, for example.

Notice that the conclusion holds only if (or where or when) the premise
holds. Logical arguments are often about hypothetical — supposed, often imag-
inary — situations. These are the kinds of argument which politicians usually
(and sometimes less than honestly) refuse to entertain.

2.2.2 What to do in an argument. Three words — refute, infer and imply
— are used carefully by logicians but often used inaccurately in the non-logical
world. You refute an argument by showing that it is logically mistaken. People
in trouble, though, sometimes say that they ‘refute’ an accusation when in fact
they are denying it, simply stating that they don’t believe it and that neither
should you. Denial is easier than refutation, but refutation is stronger: refuting
an argument demolishes it; denying is just shouting ‘No!’.

You infer a conclusion by reasoning. Inference is something you can choose
to do: you don’t have to infer from my shifty appearance, the bloodstains on my
coat and my presence at the crime scene that I am the murderer, but you may
decide to do so. Your inference may be correct or incorrect: not every shifty-
looking person is a murderer, not even the bloodstained ones. Maybe I’m just a
particularly dishevelled detective.

You imply a conclusion if you provide evidence for it, but don’t actually
do the work to infer it. Implicit conclusions are the spice of political life. In
the UK political scandals of the mid 1960s journalists had lots of fun with
remarks like ‘there is no truth in the rumour that the minister is a drunk’,
hinting that he might be but evading the libel laws by appearing to assert the
opposite. Implications were sometimes quite subtly expressed, for example when
a newspaper put pictures of prominent figures on the same page as a scandalous
headline, but in a different story.
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Inference can be jumping to conclusions; implication can be innuendo. Fights
can start if somebody thinks your remarks imply an insulting conclusion, and
chooses to infer that you meant it even though you didn’t say it.

2.3 Proof and disproof
A proof is a test which, if passed, is a guarantee of some quality. It’s an old
word: people ‘prove themselves’ in sport or in battle; whisky was ‘proof’ if it
burnt when it was thrown on the fire; the proof of the pudding is in the eating.
We extract a technical meaning: a mathematical or logical proof is an argument
which is so well made that it would persuade any intelligent reader. A formal
proof is a logical argument which convinces by obeying formal (shape-wise)
rules, and which can therefore be read and understood without referring to its
meaning.

2.3.1 Scientific proof and disproof: by demonstration. In science and in ev-
eryday life a proof is a practical demonstration of the truth of a claim. You
point to (demonstrate) something and say ‘there’s the proof’. You might claim,
for example, to be able to run 100 metres in less than 10 seconds: you prove it to
me by actually doing it while I time you. Showing me a piece of paper signed by
an official timekeeper, or even an Olympic medal, isn’t a direct demonstration,
but if I decide to believe you then I can treat it as proof.

Scientific and everyday disproof is also a demonstration, showing that a
claim is false. If you claim that all your apples are good, and I can show you a
bad apple in your box, I’ve disproved your claim. If I claim that nobody can run
100 metres in less than 9 seconds, you can disprove my claim by running very
fast while I watch.

Demonstration is really a scientific notion. By scientific standards, for ex-
ample, it’s well established that there are no wild wolves in England in 2004.
Nobody’s seen any droppings or paw prints or heard any howls for a hundred
years or more. For scientists, and for most of the rest of us, that’s evidence enough
to amount to proof. It isn’t logical, nailed-down dead certain proof, though. Nor
would a disproof be: if you took me to a lonely spot on the moors and showed
me a family of wild wolves, you could be fooling me with painted dogs or wolves
you’d got from a zoo. I’d take a while to be convinced that the wolves have really
come back. (Wild pigs, though: we’ve got them. They escaped from farms and
trot about the woods at night. Really they do!)

Everyday proof and disproof is a demonstration of the truth or falsity of a
claim by showing something real. But we all know how easily we can be deceived
about what’s real — by stage magicians, for example, by faulty measuring in-
struments or by fleeting glimpses. Proof by demonstration — scientific proof —
is a slippery thing. Scientists work hard to find out what is and isn’t true about
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the physical world, and are always sure that they have never quite found it. I’m
equally sure that they are nearer to truth than anybody else could be.

2.4 Mathematical proof and disproof: by argument
Mathematical truths, if they exist, aren’t a matter of experience. Our only ac-
cess to them is through reasoned argument. Even an obvious truth like 3 > 2
has to be demonstrated by appealing to notions of counting and one-to-one cor-
respondence, requiring the audience to abstract from reality and to generalize
from experience. Slightly more subtle truths, like ‘when x < 0 or x > 1, then
x2 > x’ require more subtle argument still.

For mathematicians, therefore, a proof is always a convincing reasoned
argument. A really good proof is one which would convince anybody of its con-
clusion. Sometimes the argument can be really simple: if all that is required is
a demonstration that we can make some sort of mathematical object, then we
just describe how to make one. More often we have to make intricate arguments
with many steps of reasoning.

2.4.1 Proof by the rules. I’ve glibly written, several times so far, about ‘math-
ematical truths’. Mathematical truth is no less slippery a notion than scientific
truth. It’s not clear, as you may be surprised to find out in Chapter 3, that we
ought to rest our ideas of logic on the idea of truth.

Ever since the ancient Greeks laid the foundations of the subject, logic
has tried to define convincing arguments as those conducted according to rules.
Formal proof is argument carried out according to formal rules. It’s possible in
this way to define precisely what we will accept as a convincing argument, at the
cost of leaving out some arguments which we’d rather include, and of embracing
some others which we’d rather exclude. In this book, a proof is an argument
which follows the rules to establish a mathematical claim. You will see what
‘the rules’ are in Part II.

What we really care about in the real world is the usefulness of a proof.
A proof-by-the-rules ought not to lead us astray. So, as well as being easy to
recognize and easy to use, the rules ought to correspond to reality. By the end
of this book you will be able to judge how well mathematicians have succeeded
in that aim.

2.4.2 Disproof by counter-example. Since a proof is an argument which follows
the rules, a mathematical disproof has to be an argument that no proof can
possibly exist — an argument about possible arguments. That sounds as if it
might be rather difficult, and indeed it usually is. But sometimes you can do it
more easily, if all that is needed is a demonstration. A demonstration disproves
a claim by showing an instance which doesn’t fit, as we might disprove the claim
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‘all professors are cabbages’ by pointing to a professor who evidently isn’t a
cabbage.

Instances which don’t fit a general claim are called counter-examples. Just
one counter-example destroys a claim; a hundred examples, or a thousand, or a
million, can’t outweigh it.

If we are going to disprove by counter-example, we need to be able to point
to instances of things which don’t correspond to a logical claim. That means that
even if we rely on the notion of proof-by-the-rules our arguments have somehow
to relate back to reality. Part III presents examples of what mathematicians call
a model of reality that give meaning to proof-by-the-rules. The discussion in
Chapters 3 and 6 appeals to notions of meaning to justify the rules, so proof
and disproof are bound up together from the beginning.

2.5 Proof, truth and knowledge
The rules of a formal logic, for example the ones set out in chapters 3 and 6,
are designed to make it easy to decide whether an argument really is by the
rules or not. You can know when you have a mathematical proof which have
followed the rules, and the existence of the proof then becomes a fact that you
can demonstrate. Do you then know what the proof claims? Philosophers tell us
that knowledge is justified belief: if I have a proof then surely it justifies me in
believing its claim.

It’s in this particular sense that the word ‘know’ is used in this book: I
know X if I have a proof-by-the-rules of the claim X. I sometimes use ‘believe’
to mean that I think a proof is possible but I haven’t made one yet.

If I have a proof of a claim I’m forced to accept the claim, whether I like it
or not. If I want to reject a claim, I’d better have a disproof.

2.5.1 Claim = remark about the world. The remark ‘go home!’ is a command,
not a claim. You obey commands; you can’t prove or disprove them.

On the other hand, nobody can obey the remark ‘it is Thursday’. It’s a
claim about the relationship between the current instant and the calendar. You
accept or reject claims, not obey them. The remark ‘you are a cabbage’ is untrue
and often offensive whenever addressed to a human, but is still a claim.

Claims are declarative remarks — they describe something about the state
of the world or somebody’s understanding of it. Commands are imperative: they
are delivered in the expectation or at least the hope that they will be obeyed.

2.6 Basic logical principles
In the real world people try to use logic to get other people to accept a conclusion,
hoping that they will then act on that acceptance. But logic is a slippery tool if
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what is needed is truth. Lawyers know this very well: they do their best, but all
a court can do is reach is an understanding of who has the best argument. Logic
was invented to help pick out good arguments from bad. It doesn’t always work
perfectly, but it’s the best we can do.

Computers are mathematical machines. They have no choice but to calculate
by rules — that is all they can do. The programming languages in which we
instruct them are based on formal logical principles. So, in the restricted universe
of computer science, logic can be made to work for us perfectly provided we stick
to certain mathematical principles. Some of the principles are straightforward;
others take a bit of getting used to.

2.6.1 Consistency. If you believe something and at the same time you also
believe its opposite, you are surely confused. Mathematicians would say that
your beliefs are inconsistent, and inconsistency is not a good idea. If you accept,
for example, that today is Thursday and at the same time that it is Tuesday,
your head is in a mess. If you really believe it’s Thursday then you believe that
it’s the third day since Monday; if you believe it’s Tuesday then you believe it’s
the first day since Monday. So you believe that n = 3 and at the same time that
n = 1; that means, according to the normal rules of algebra, that you believe
1 = 3 and we can lead you a merry arithmetical dance. You had better sort your
head out before you decide what to do today.
The consistency principle is

Definition 2.1 contr adictions aren t allowe d.

A contradiction is the simultaneous acceptance and rejection of some remark: if
that describes your state of mind then, clearly, you are confused, your thoughts
are inconsistent, and — according to the principles of logic — you can’t reason
properly any more.

2.6.2 Hypothesis. Logical arguments proceed from premises to conclusion by
logical steps: in this book, by steps which follow formal rules. One way of under-
standing the rules is to say that they are about consistent states of mind. Each
rule says: ‘if you accept that claim (or those claims), then to be consistent, you
can/must/should accept this claim’. This leads us to the notion of hypothetical
proofs: arguments not about what is, but ‘what if?’. We aren’t asked to accept
that the conclusions of a hypothetical proof are actually true, only that they are
a logical consequence of the premises.

Just as in the ancient Greece of Chapter 1, if you don’t like the conclusion
of a logical argument you must attack the premises and/or the steps. But you
can’t attack the premises: we aren’t asking you to accept them, just asking you to
consider what it would be like if you did accept them. It follows that our proofs
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have to be attacked on the steps of their arguments — that is, on whether they
follow the rules or not.

2.6.3 Monotonicity. In the world of proof-by-rule, proofs can’t be contradicted.
A proof is a proof because it obeys the rules; the rules never change, so once
you’ve made a proof it’s forever. That’s very unlike our real-life experience of
argument, when new evidence can turn up which makes us change our mind, or
a second, more careful, reading of an argument can overturn it.

Real-life arguments depend on evidence. If I can show that the premises of
a real-life argument contradict reality, then I can dismiss the argument. (I might
not find it so easy to reject the conclusion: a bad argument doesn’t disprove
a true conclusion!) In logic, on the other hand, the argument is the thing: we
suppose the premises and examine only the reasoning.

In real life our arguments are rarely purely logical, particularly because
we must often work from insufficient evidence. We’ll only be sure about global
warming if it actually happens; we may decide that we have to do something
about it even though we can’t be sure it will ever happen. Real life asks us to
judge from uncertainty, logic deals with certainty.
The monotonicity principle is

Definition 2.2 Adding more premises cant invalidate a proof.

You might, for example, persuade me that if I accept A I must logically accept
B. But what if I also accept C, which contradicts B? The monotonicity principle
says that B is still a logical consequence of A, so you must still accept it, no
matter what C says about A or B, even if it directly contradicts them. Once a
proof, always a proof!

2.6.4 So what? Logic is a mathematical abstraction of real-world reasoning.
Abstraction blurs distinctions, ignores some features in favour of others. One
major simplification in logic is in the treatment of evidence. In real life we have
to decide what to do based on what we know now; we always have at the back
of our mind the thought that tomorrow we might find out something which
contradicts the conclusion we’ve reached. We reason scientifically rather than
mathematically, putting evidence above everything else, always ready (if we’re
honest) to change our mind.

Mathematical logic doesn’t work like that: you imagine the evidence, the
reasoning is what matters, and the conclusions once reached can’t be changed.
That makes it unlike everyday reasoning, but that doesn’t mean that everyday
reasoning is right and mathematical logic is wrong, nor vice-versa. It’s just that
abstraction ignores detail. In the case of logic, the messy details of living with
partial and unreliable evidence have been abstracted away.
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Formal logic arose out of the study of language and human reasoning. Out
of formal logic arose computer science. For computer scientists, the connection
between logic and everyday argument is not the point. Monotonicity and consis-
tency are mathematical principles which make logic mathematically tractable.
They aren’t arbitrary principles: they are very old, very well-established, and
most mathematicians would say that you must stick to these principles if you
want to define any kind of mathematical logic. Computer science and computer
programming and computer hardware certainly depend on them. We’ll do the
same.

2.7 Logical rules
A logical or inference rule is an abstraction of a step in an argument. You might
tease a friend or abuse an enemy as follows:

Your bottom is made of rhubarb, and
your head is made of custard, and
you are sitting in a bowl;
therefore you are a pudding.

This argument is not likely to be frequently useful (unless you have a very
peculiar set of friends) but you can still make an argument pattern out of it.

A logical rule of inference shows how to make a larger proof of some claim
out of one or more smaller proofs of related claims. Here, for example, is a rule
abstracted from the argument above:

...
your bottom is

made of rhubarb

...
your head is

made of custard

...
you are sitting

in a bowl

you are a pudding
puddinghood

The claims above the line are the antecedents of the rule, and the claim
below the line is its consequent (‘antecedent’ means ‘going before’; ‘consequent’
means ‘coming after’). The name of the rule is ‘puddinghood’, and it’s written
to the right of the line. The columns of dots above the antecedents show where
you need to plug in sub-proofs that establish the antecedent claims.

Proofs don’t usually take place in a vacuum: they start with premises. A
premise really means ‘suppose we had a proof of . . . ’ and we can call on it as if
it was a proof. Implicitly each of the antecedent sub-proofs relies on the same
premises. A sub-proof can be just a premise: if you assume my head is made of
custard that’s the end of the matter so far as the puddinghood step is concerned.
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2.7.1 Forward and backward reasoning. One way to use the puddinghood rule
is to use proofs or premises that you already have about rhubarb, custard and
bowls to infer what you may think is an amusing pudding-insult. That’s the
downward or forward reading.

The other way to use the rule is to plan how to persuade me that I’m really
a pudding. According to the rule, you can do that if you can find separate proofs
or premises, one about rhubarb, another about custard, a third about a bowl.
That’s the upward or backward reading of the rule.

Forward readings say: if you already accept the stuff above the line then
logically you must accept the stuff below the line. It’s the way we generally read
proofs once they are finished. Backward readings say: if you want somebody —
even yourself — to accept the stuff below the line then logically you need only
persuade them to accept the stuff above the line. It’s often a good way to search
for a proof of a claim.

The puddinghood rule tells us one way to prove that somebody is a pudding;
that doesn’t mean that it’s the only way to do it. There are, for one thing, various
different kinds of puddings. There is the possibility of indirect proof. Rules show
one way that a proof might go, not the way that it must go.

2.7.2 Assumptions. I’d be offended to be thought a pudding, but you might
try to argue that I shouldn’t mind. I find the nice-pudding argument queasily
unconvincing:

‘Suppose you really were a pudding. Everyone would like you! And that
would be nice. So being a pudding is nice, really.’

My problem is the slide from ‘like’ to ‘nice’: it isn’t always nice to be liked, espe-
cially if the consequence is being eaten. But things may be different for puddings,
after all, and in any case it’s a good example of an argument which involves an
assumption, an invitation to consider an alternative state of the world.

The nice-pudding argument is an instance of a general shape: ‘Suppose
A; you would then be pleased; therefore A is pleasing’. It seems to be a valid
argument shape,1 and it can be captured in a rule of inference.

A

you are pleased

A is pleasing
contentment

The three dots in the rule show where you have to put the argument which
connects the assumption A to the sub-proof’s conclusion ‘you are pleased’. The

1 It certainly is: it’s a special case of the → intro step of Chapter 3.
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box restricts the way that the assumption A can be used: it’s valid inside the
box, but not outside. The box isn’t an absolutely tight enclosure, because claims
can leak in: you can use a proof’s overall premises inside the box whenever you
need them. The boxed sub-proof introduces an additional hypothesis, which can
be used inside the box but not outside.

2.8 What does logic mean?
This book is mostly about formal reasoning: reasoning by form, by formula-
shape, without regard to what the formulae mean. That’s a very strange thing
to want to do, except as a mathematical game. It can be worth doing in practice
only when it has a connection to reality and when it turns out to be easier than
reasoning by by appeal to meaning. In the case of formal logic we have both those
conditions. Evidence of the connection to reality is the existence of computing
machinery which makes formal calculations which we find useful. Evidence of
the ease of formal calculation is the speed of computers in coming to their formal
conclusions.

Although they are used as if they are meaningless, in practice formal rules
are invented and justified by appealing to the meaning of formulae. That isn’t
quite so comforting as it sounds, because the meaning we give to formulae is
carefully thought out to fit the formal rules. This sounds like a rope trick, floating
in the air without support: formal rules depend on meaning which is crafted to
fit formal rules which depend on meaning . . .

To break into the mathematical magic circle we must start with our feet
on the ground. When describing rules in Chapters 3 and 6 I give an informal
description of meaning for each formula shape; the description is carefully cho-
sen to make immediate sense and at the same time to correspond as closely as
possible to the more mathematical definition of Part III. Then I use the informal
description to justify some formal rules of inference. Practice helps you under-
stand how the formal rules work; then practice with the mathematical model
closes the circle and you’re flying.

Every logical formula makes a claim. Since this book is largely about proof-
as-argument I give the meaning of a formula by describing the sort of situation
in which an argumentative opponent can force you to accept the formula’s claim.
That isn’t the only way to deal with meaning. I will discuss in Chapter 3 the re-
lationship between meaning-by-argument and meaning-as-truth and what effect
that has on formal reasoning.

2.9 Pronunciation
Something very odd happens when you say something you don’t quite under-
stand. Your mind revolts, as if you didn’t really believe what you were saying,
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as if you were trying to tell a lie. Talking out loud about things you think you
understand often reveals to you that you don’t understand them. That’s why
conversation — tutorials, exercise classes, discussions with your friends — is so
important in education. Sometimes the quickest way of finding out whether you
understand an idea, as every teacher knows, is to try to describe it to somebody
else.

You can use conversation to help you to understand logic, but you must
remember ‘I’ve gotta use words when I talk to you’. Strange logical operators
that were only shapes on a page become real, become more understandable when
you only speak their names. So: speak their names; talk to your friends about
them. It’s the only way!

2.10 Formal notation
This book makes use of some symbols which will be novel to most readers:
the logical connectives ∧ (and), → (implies), ∨ (or) and ¬ (not); the logical
quantifiers ∀ (for all) and ∃ (exists); the symbols � (truth) and ⊥ (contradiction);
the turnstile symbols � (proves), � (models) and � (forces). The meaning of the
connectives and symbols is described in Chapter 3 and their use in arguments is
explored in Chapter 5. The meaning of the quantifiers is described in Chapter 6
and proofs are explored in Chapter 7. Then Part III goes over everything again,
this time with an eye to disproof. Finally, the notation is employed for real in
Part IV.

I use symbolic names to stand for particular kinds of formula: A, B and
C are ‘formula parameters’ in the inference rules of Part II and the definitions
of Part III; E, F and G are simple formulas in examples; i is the name of an
‘individual’ in inference rules and definitions; j and k are names of individuals
in examples; P is a ‘predicate parameter’ in inference rules and definitions; R,
S and T are simple predicates in examples; x, y and z are ‘quantified variables’
in inference rules, definitions and examples.

To put it another way: in inference rules and definitions I use A, B, C, and
P (i); in claims I use E, F , G, j, k, R(. . .), S(. . .) and T (. . .).

In Part IV I change my conventions slightly: a, b, c are array program
variables, and i, j, k are integer program variables.



Part II

Formal proof
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This part of the book is about formal proof in a particular logical system, Ger-
hard Gentzen’s simple and beautiful Natural Deduction, developed in 1935.

As a result of Gentzen’s brilliant work, there isn’t much to know about
Natural Deduction — just a few symbols, each with two or three rules. I divide
the presentation into two chapters: the connectives, which are like the opera-
tors of arithmetic, are described in Chapter 3; the quantifiers, which are like
procedures, functions or methods in programming languages, are described in
Chapter 6. Description is less than half the job: Chapters 4 and 5 show how to
make proofs which involve the connectives, and Chapter 7 does the same for the
quantifiers.

Reading about proof is not the point either: Chapters 5 and 7 show you
how to make your own proofs of example problems.
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3 Connectives

The connectives of logic are used to build larger claims out of smaller claims,
just as the operators of arithmetic — +, −, ×, ÷ and so on — make larger
calculations out of smaller. There are only four connectives used in this book,
shown in Table 3.1.

Table 3.1 Connectives of natural deduction

Connective Simple name Latinate name

∧ And Conjunction

→ Arrow, if-then Implication, conditional

∨ Or Disjunction

¬ Not Negation

For each connective in turn I describe what a formula using the connec-
tive means, and then present inference rules which make those meanings work
in formal proofs. The descriptions of meaning are informal, and based on the
definition of circumstances in which a fair-minded person would feel forced to
accept the claim made by a formula. Part III makes these descriptions more
mathematically precise.

This chapter also introduces two symbols, shown in Table 3.2. Contradiction
(⊥) is powerful and must be used sparingly; its meaning and use is bound up
with the meaning and use of negation. Truth (�) is universal but more or less
useless, although it will get a little run out in Part IV.

Table 3.2 Truth and contradiction symbols

Symbol Simple name Latinate name

� Top Truth

⊥ Bottom Contradiction

3.1 Conjunction/and
Conjunction is used in situations where you accept more than one claim. The
formula A ∧ B is pronounced “A and B”.



28 Connectives

Definition 3.1 When you accept A ∧ B, you are forced to accept both A and B .

That is: accepting A and B together means you must accept them separately.
Vice versa, when you accept them separately it is just as if you accepted them
together.

You can use multiple conjunctions to build up larger collections of claims.
(A ∧ B) ∧ C, for example, says that you are forced to accept A ∧ B and you
are forced to accept C; because of the definition of A ∧ B, it’s clear that you
are forced to accept A and you are forced to accept B and you are forced to
accept C.

Although it doesn’t matter, so far as meaning is concerned, how you bracket
a conjunction — you have to accept each of the separate parts individually in
any case — formal reasoning doesn’t allow any ambiguity. If you write a multiple
conjunction without using brackets then it’s read as if you’d bracketed it to the
left: A ∧ B ∧ C ∧ D, for example, is read as if you’d written ((A ∧ B) ∧ C) ∧ D.

Insistence on the way you position brackets may seem a little silly at first,
but in formal reasoning precise is precise is precise, as you will find when you
begin to play with Jape. You even have to prove that (A ∧ B) ∧ C means the
same thing as A∧ (B ∧C). Chapter 4 goes into more detail about why this kind
of detail matters and even suggests how to pronounce brackets. Chapter 5 shows
you how to make the proofs.

3.1.1 Reasoning with conjunction. Suppose I accept A∧B. You can point out
to me that I’m forced to accept A. Or you can point out that I’m forced to accept
B. That’s how you use my acceptance: A ∧ B, therefore A; A ∧ B, therefore B.

Suppose that I accept A for some reason and simultaneously, for the same
or some other reason, I accept B. Then, since I’m a fair-minded person, I surely
have to recognize that it is just as if I accept A∧B. Logically, then, I can’t deny
A ∧ B. That’s how you persuade me: A, also B, therefore A ∧ B.

This is all so simple it seems that there must be a trick, but there isn’t.
Conjunction is really straightforward. But we still have to be careful. A ∧ B

claims that you are forced to accept A and B separately, if called upon. It
doesn’t claim any more than that. In particular, it doesn’t claim that there is
any association between A and B, other than the fact that for the time being
you accept them together and separately.

3.1.2 Rules for conjunction. Two elimination rules in Table 3.3 — so called
because reading top to bottom they eliminate the ∧ connective from a formula
— capture the use argument. One introduction rule — so called because reading
top to bottom it introduces an ∧ connective into the proof — captures the
persuasion argument. And that’s it for conjunction!
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Table 3.3 Rules for conjunction

...

A ∧ B

A
∧ elim

...

A ∧ B

B
∧ elim

...

A

...

B

A ∧ B
∧ intro

3.2 Implication/conditional/arrow
Implication is used in situations where you are asked to accept an association
between claims. The formula A → B is pronounced “A implies B” or “if A then
B” or, most simply, “A arrow B”. The claim it makes is

Definition 3.2 If you accept A → B, then whenever you accept A you are forced

to accept B.

This definition captures the notion of implication as innuendo: acceptance of

claim, conveys a claim of B without actually saying so. Logical implication also
captures some of the meaning of ‘leads to’ and ‘causes’ — but imperfectly, as
we shall see in Chapter 5.

Brackets matter in implications, unlike conjunctions: (A → B) → C does
not mean the same as A → (B → C). Unbracketed implications bracket to the
right — again, unlike conjunctions — so A → B → C is read as if you’d written
A → (B → C): whenever you accept A, you are forced to accept B → C. From
that you can deduce that whenever you accept both A and B, you are forced to
accept C. This suggests that (A ∧ B) → C ought to be a logical consequence of
A → B → C and indeed it is: you’ll see how to prove it in Chapter 5.

3.2.1 Reasoning with implication. Suppose that I accept A → B. Suppose
that I accept A as well. The definition of A → B tells me that I am then forced
to accept B. That’s how you use my acceptance: A → B, also A, therefore B

(the elim rule in Table 3.4).
I can be persuaded to accept A → B if you can show me that whenever

I accept A I must also accept B. This requires a hypothetical proof: ask me
to suppose for the time being that I accept A, and show me that it would be

Table 3.4 Rules for implication

...

A → B

...

A

B
→ elim

A

...

B

A → B
→ intro

A drags acceptance of B behind it. The A claim, together with the A → B
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Suppose tomatoes cost £50 a kilo. Your name would be Richard then,
wouldn't it?
So you must accept (tomatoes cost £50 a kilo) —> (your name is Richard).

Fig. 3.1 The price of tomatoes

logically necessary, in that supposed situation, to accept B. Since I'm a fair-
minded person, I must now accept that if ever I really did accept A, I would
then also accept B, and that is the same as accepting A —> B. That how you
persuade me to accept A B: if A then B, therefore A —> B (the intro rule in
Table 3.4).

All very well so far, but the definition of A —> B means just what it says
and no more. That economy has some famous consequences, some of which are
disturbing.

3.2.2 One-way implication. If you are outside, then when it rains you get wet:
rain —> wetting. But if you are outside and you're wet, it might not be because
of the rain: you might have been in the pool, or your best friend might have
poured a bucket of water on your head.

The implication arrow is directional: it leads from A to B. If you have
A —> B you won't see A without B, says the definition — but it doesn't rule out
B without A. Although A leads to B, it needn't be the only way to get there.

Reading the implication arrow backwards, seeing causes where there may
be none, is called abduction. Beware of it in logical arguments.

Abduction seems to be essential if you are to guess truths
from insufficient evidence. That is, it's necessary for everyday
life, for science and for invention. It's an inspirational step, in-
ductive rather than deductive, so not logical in our restricted
sense of the word. A necessary step of reasoning which is out-
side logic? No wonder we can be so easily led astray — see
the case of the drowned Major in Chapter 5.

3.2.3 Irrelevant implication: the price of tomatoes. Consider the argument
in Fig. 3.1. It's disturbing. I have accepted for almost all my life that my name
is Richard. I'm sure that my name has nothing to do with the price of tomatoes.
But here is a hypothetical proof which seems to show logically that it does!
I don't like it: the price of tomatoes has no effect on my name, it's strictly
irrelevant.

Irrelevant implications, like the one in the price-of-tomatoes argument, are
a consequence of the monotonicity principle. If I accept B, then when I add
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acceptance of A, by monotonicity I must still accept B. In any situation where I
do accept A I will already accept B, so I can't evade the conclusion that I really
ought to accept A —> B.

Irrelevant implications can't easily be eliminated from logical reasoning and
therefore we shouldn't read the arrow too enthusiastically. All A —> B tells us is
"when we see A, then we see B". That sort of association wouldn't convince a
wise court or a careful scientist that A causes B. When we have a cause, then
we certainly have —>; when we have —>, we may or may not have found a causal
relationship (see the cars and congestion argument in Chapter 5).

3.2.4 Useless implication: the cunning uncle. Suppose that you have a rich
uncle who makes you a promise:

"Every year on your birthday, I shall give you £100.'

The uncle is as good as his word, and each year on your birthday you get the
money. Not a fortune by today's standards, but not to be sniffed at: you can
buy a lot of ice-creams with £100. An uncle who keeps his promises is surely a
kind uncle (similar remarks apply, of course, to aunts and to large donations in
any currency).

An unkind uncle might casually make the same promise, and then break it:
your birthday comes around, but no money. You aren't any worse off than you
would have been without the broken promise, but you feel as if you are. Unkind
uncles are surely the worst.

Or are they? A cunning uncle might say to a young child

"Every 31st April, I shall give you £1,000."

But there never will be such a day, so the cunning uncle never has to pay out.
Is he kind or unkind: that is, has he broken or kept his promise? Well, he hasn't
actually broken it: for him to be able to do that, there would have to be a 31st
April one year, and on that day he would have to fail to pay out, and that day
never happens. Logic takes a very literal legalistic view of these things, and it
says that a promise is kept until it is broken. The cunning uncle gets away with
it, in logical terms.

There's a sense — Chapters 9 and 10 make it precise — in which A —> B
is just a promise: when you see A, I promise that you will see B. If, like the
cunning uncle's impossible payout day, I can never see A, the promise is kept
— because it's impossible to break! The situation which disproves the A —> B
claim can't arise, so the claim is valid. On the other hand the circumstances in
which we could use A —> B can never arise, so the implication is strictly useless.
Logicians call it vacuous implication.
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It’s not easy to build a logic without useless/vacuous implications: they arise
from the consistency principle and the treatment of contradiction (Section 3.6).
They’re another reason why we should not read the arrow too enthusiastically:
the definition means just what it says, and nothing more or less. If you never
see A, then when you see A you see B.

3.3 Disjunction
Disjunction deals with situations in which there is more than one claim which
you can accept. The formula A ∨ B is pronounced “A or B”.

Definition 3.3 When you accept A ∨ B, you are forced to accept at least one of

A and B.

The point of this definition is its uncertainty. It doesn’t say you’re forced to
accept A, and it doesn’t say you’re forced to accept B. It doesn’t say you’re
forced to reject either of them. So you might accept just A, or you might accept
just B, or you might accept both. The only certainty is that you’re not allowed
to reject them both.

Disjunctive uncertainty is expressed by the word ‘or’ in English. “We might
go swimming or we might go to the cinema”, for example.

A subtlety which often trips up novices is that English ‘or’
usually means ‘either/or’. To capture logical disjunction in
English we usually have to say “A or B or both”.

Multiple disjunctions bracket to the left: A ∨ B ∨ C is read as if you’d
written (A ∨ B) ∨ C. That means, according to the definition, ‘you are forced to
accept one of A ∨ B and C’; then because of the definition of A ∨ B, that comes
down, as it should, to ‘you are forced to accept one of A, B and C’. But just
as with conjunction, brackets affect form, not meaning, and you can prove the
equivalence of (A ∨ B) ∨ C and A ∨ (B ∨ C).

3.3.1 Reasoning with disjunction. Suppose I accept A. Then, as a fair-minded
person, I really ought to accept A∨B, because I already accept one of A and B.
That’s a persuasion argument: A, therefore A∨B. It doesn’t matter how absurd
or irrelevant B is, because A ∨ B doesn’t claim that I accept B: A, therefore
A ∨ B, always. It’s exactly the same the other way round: B, therefore A ∨ B.
There’s no uncertainty in the arguments — uncertainty comes in when I tell you
that I accept A ∨ B but I don’t tell you how I was persuaded.
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Suppose I accept A∨B, and I refuse to tell you why. You know, because you
know what A∨B means, that there are three possibilities — or, as philosophers
call them, cases. Either

1. I accept A, or

2. I accept B, or

3. I accept both.

There is no hope of tricking me into revealing which of the three possibilities is
the case, but there is something you can do: you can argue by cases, picking off
the alternatives one by one, showing that each leads to the same conclusion so
that the uncertainty is resolved.

You persuade me first that C is a logical consequence of A, picking what-
ever C suits your purposes. You persuade me next that the same C is also a
consequence of B. Then you have persuaded me that I must accept C in any
case: in case I accept A, then I must accept C; in case I accept B then I must
accept C; in case I accept both, then by the monotonicity principle either the
A-argument or the B-argument already shows that I accept C. So whichever
alternative is the case, when I accept A ∨ B I must logically also accept C —
that is, C is a logical consequence of A ∨ B.

Argument by cases neatly sidesteps the uncertainty hiding in the claim A∨
B, never forcing me to reveal any bias I might have, but forcing me nevertheless
towards a logical conclusion.

The formal rules for disjunction are in Table 3.5. The intro rules are as
straightforward as the persuasion arguments (notice that they look like upside-
down versions of the ∧ elim rules). The elim rule, which captures the use argu-
ment, looks fearsome but (check it!) it really is no more than the argument by
cases.

3.3.2 This is uncertainty? It certainly doesn’t feel like it to me! The elimi-
nation (use) rule is fine: it neatly acknowledges and sidesteps the uncertainty
implicit in A ∨ B. The introduction rules, on the other, use certainty and then
hide it. A particular kind of uncertainty, perhaps, but nothing which captures
the idea that A ∨ B really ought to be established in a situation where I’m sure

Table 3.5 Rules for disjunction

...

A ∨ B

A

...

C

B

...

C

C
∨ elim

...

A

A ∨ B
∨ intro

...

B

A ∨ B
∨ intro
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I accept one or more, but I’m not sure which. That’s trickier than it sounds:
the problem will turn up again in the treatment of ∃ in Chapter 6 and in the
discussion of the universal drunk in Chapters 7 and 10.

3.4 Negation and contradiction
Negation deals with the possibility of a claim being wrong. The formula ¬A is
pronounced “not A”. The claim it makes is something like “when you accept
¬A, you would be wrong to accept A”. Since the only way of being wrong in
logic is to accept a contradiction, ¬A must mean

Definition 3.4 When you accept ¬A, accepting A leads to a contradiction.

Multiple negations are perfectly ok: you can write ¬¬¬¬A, and it is read, as you
would expect, as if you’d written ¬(¬(¬(¬A))).

According to the definition, ¬¬A means “(A leads to a contradiction) leads
to a contradiction”.

Don’t assume that ¬ is like numerical negation, so that ¬¬A

is automatically equivalent to A. This is formal logic, not
Boolean-algebra arithmetic.

3.4.1 Reasoning with negation. The meaning of negation is tangled up with
the meaning of contradiction, and to show how we deal formally with ¬A and
¬¬A and so on, it’s necessary to talk about contradiction.

The contradiction symbol (⊥) is not a connective, it’s a formula. It describes
impossibility, confusion, a situation that can’t happen. The symbol is called
‘bottom’ by mathematically inclined computer scientists.

To persuade me to accept ¬A, show me that if I accept A, then I would
have to accept a contradiction (the intro rule in Table 3.6). To persuade me that
I already accept a contradiction, show me that I accept some claim and at the
same time it would be wrong to accept it (the elim rule in Table 3.6).

Table 3.6 Rules for negation

A

...

⊥
¬A

¬ intro

...

B

...

¬B

⊥ ¬ elim
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If negation depends on contradiction, what does contradiction mean? To
answer that question it’s necessary to take a well-trodden philosophical diversion.

3.5 Is there a ‘law of excluded middle’?
At this point just about everything that’s odd about formal logic is ready to
be exposed, because it’s nearly all bound up with negation and contradiction.
The peculiarities of disjunction and implication (apart from irrelevant/price-of-
tomatoes implications, which are caused by monotonicity) come back to negation
and contradiction and how we use them.

It turns out that there are two ways to proceed from here. Technically it
can all be boiled down to a single choice of rule; philosophically the choice is
complicated and important.

Frege, remember, started his work by asking a philosophical question: “how
do we know the truths of arithmetic?”. For us the question is “what do logical
formulae claim?”. In this book, because I’m interested in making proofs, I’ve
taken the position that a formula A claims “I have a proof of A”. That makes
particular sense in the world of computer programming and computer science.
Most mathematicians outside computer science would take a different position,
and say that A claims “A is true”.

These two positions sound as if they are universes apart and incomparable.
But we can compare them by asking a single technical question: “am I forced to
accept A ∨ ¬A?”. Those who take the truth-claim position call A ∨ ¬A the law
of excluded middle: either a formula is true or it’s false, and there is no other
possibility. Those who take the proof-claim position don’t accept that excluded
middle is a law. The battle is an old one, going back at least a century. You
don’t have to take a position, but you do need to understand the ground.

3.5.1 The constructive position. Constructivists — and this book smiles on
the constructive position for the most part — only accept claims that have been
proved. To make a constructivist accept A ∨ ¬A, using the rules you’ve seen so
far, you either have to show a proof of A, or you have to show a proof of ¬A.
There are lots of As for which you can’t do that.

Science contains lots of undecided questions: must the universe continue
expanding? is there life on Mars? is there a cure for the common cold? As I
write we can’t prove that the answer to any of the questions is “yes” or that it is
“no”, even when we are pretty certain sure that in practice we know the answer.

Everyday life throws up less profound questions too, undecided within the
present instant, but decided if you wait long enough, like “it will rain tomorrow”.
You can’t prove it will rain — not even under a black cloud in the Lake District
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in the winter — and you can't prove it won't — not even in the Sahara desert
in the dry season.1

The world of mathematics, you might imagine, has a firmer grasp on the
issue. For centuries, Fermat's last theorem:

"To resolve a cube into the sum of two cubes, a fourth power into two
fourth powers, or in general any power higher than the second into two
of the same kind, is impossible; of which fact I have found a remarkable
proof. The margin is too small to contain it."

— often summarized as

there are no solutions of the equation an + bn = cn for integers a, b, c >
0 and integer n > 2

— was once everybody's favourite example of a mathematical statement which
surely ought to be true, but which nobody could prove. Now that it seems at
last to have been proved, we can fall back on Goldbach's conjecture

every even integer n > 2 is the sum of two primes

— again, everybody thinks it's true, but nobody has yet proved it. (If Golbach2

is ever proved right, there are plenty more unproved conjectures in the rich
field of prime numbers: this chapter will only need minor changes.) Goldbach V

Goldbach? Who knows, say the constructivists — we neither have a proof, nor
do we know that a proof is impossible.

The mathematical philosophy called intuitionism can be summarized as say-
ing that mathematics is all made up by humans. Intuitionists hold that mathe-
matical 'truth' is only what we've persuaded each other to accept by exchanging
proofs, and they only accept constructive proofs. Intuitionism is often confused
with constructivism but they aren't identical: you don't have to be an intuitionist
to be a constructivist.

3.5.2 The classical position. Most mathematicians don't hold with con-
structivism, still less with intuitionism. Those who take the 'classical' or 'non-
constructive' position accept the law of excluded middle, backed up by the
philosophy called Platonism (named for the Ancient Greek philosopher Plato)
which can be summarized as saying that mathematical truths are real and they

1 So is it wrong to believe it will rain tomorrow? Not really: it's neither right nor wrong;
it's a gamble. It's only wrong to believe that you can prove it will rain tomorrow.

2 Goldbach said every n > 5 and three primes, supposing 1 to be a prime. Euler produced the
version quoted here, but Euler wasn't short of fame so it's still called Goldbach's conjecture.
Sometimes it's stated as n > 4 and two odd primes, but of course that's the same conjecture
because 4 = 2 + 2 and 2 is the only even prime.
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exist whether we know them or not. Our job is to find out truth, not to invent
it. From this point of view the statement “Goldbach’s conjecture holds” is ei-
ther certainly true or certainly false, even though neither you nor anybody else
just now has any way of knowing which it is. Most working mathematicians are
Platonists.

3.5.3 The difference, by argument. Consider the formula (A → B) ∨ (B → A).
It’s classically provable and constructively disprovable because it’s a logical con-
sequence of accepting the law of excluded middle. It seems, at first sight, to
suggest that there’s always a connection between two claims, whatever they are.
To take an extreme example:

either love of fishing leads to hatred of bicycles,
or hatred of bicyles leads to love of fishing

Surely that’s absurd! says the constructivist.
No, says the classicist, it’s not absurd at all. Either you love something or

you hate it already, whether you know it or not. The only way to deny A → B

is to accept A and deny B, so if you deny that your love of fishing leads you
to hate bicycles, you must love fishing and not hate bicycles. But then you love
fishing, so by the price-of-tomatoes trick (ouch!), in your case hatred of bicycles
would lead to love of fishing. And the other way round if you try to deny the
second implication.

Oh yes it is absurd, says the constructivist. A → B means ‘now, and for
always, and whatever happens, when I accept A I will at the same time accept
B’. My feelings about fishing and bicycles aren’t sorted out yet — I’m still
making my mind up. That doesn’t mean I won’t ever make my mind up (that
would mean ¬A and ¬B, and you could play the useless implication trick). But
you can’t say A → B because I may find out, after a couple of cold days in a
boat, that I love fishing, but I might never get on a bicycle and learn to hate it.
And you can’t say B → A for the same reason. Sure, in the future one or other
or both those claims might be valid, but they aren’t valid now.

We can leave them squabbling: each, on their own ground, is certain that
they are right.

3.5.4 The difference, by mathematical example. If you find arguments about
fish and bicycles a little too informal, Fig. 3.2 shows a famous example of a math-
ematical proof that classicists accept but constructivists reject. To understand
the claim you should recall that a rational number is one that can be written as
the ratio of two integers — i.e. as a fraction — and an irrational number, like π

or e or
√

2, is one that can’t be.
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Claim: There are irrational numbers x and y such that xy is rational.

Proof : Premise: (
√

2)
√

2 is either rational or irrational.
Case 1: (

√
2)

√
2 is rational.

Put x = y =
√

2, and we have found an example.
Case 2: (

√
2)

√
2 is irrational.

Put x = (
√

2)
√

2 , y =
√

2;
xy = ((

√
2)

√
2)

√
2 = (

√
2)(

√
2×√

2) = (
√

2)2 = 2;
2 is rational (it’s 2

1 ), and we have found an example.

Fig. 3.2 A classical proof, unacceptable to constructivists

Classicists accept the premise of the proof, because of the law of excluded
middle, and the rest follows (an argument by cases, in effect an instance of ∨
elim).

Constructivists say “show me this number
√

2
√

2
and demonstrate whether

it is rational or not!”, and since we don’t know how to do that (we really don’t!)
they need not accept the premise, and therefore the proof as a whole.

3.5.5 The consequence. If you take the constructivist position then, as you will
see when you experiment with Jape, ¬¬A isn’t identical to A, A ∨ ¬A doesn’t
always hold, (A → B) ∨ (B → A) is similarly doubtful, and so on and on. Jape
has a panel labelled ‘Classical conjectures’ of claims which hold in classical logic,
but not constructively.

On the other hand, classicists accept everything that constructivists do, and
more besides.

The overall situation is summarized in Fig. 3.3. Everything that can be
claimed is inside the box. Everything in the oval is classically provable; nothing
outside it is. Everything in the blob is constructively provable; nothing out-
side it is. Since the blob is part of the oval, there’s a disputed region: some
claims are classically but not constructively provable. Conjectures outside the
oval — most conjectures, in fact — are neither classically nor constructively
provable. Conjectures inside the blob are both classically and constructively
provable.

You can look at this situation in two ways. From the classical point of
view, constructivists are too fussy. There are proofs in the grey region which
classicists can easily make, but constructivists just refuse to accept. So, you
might say, classical logic is just more powerful, more useful. On the other hand,
constructivists have less work to do: the constructive rule for contradiction mean
they have to prove fewer theorems than the classicists do, and there are classical
proofs which seem to support absurd claims, as we shall see. So, you might say,
constructive logic is safer.
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3.5.6 Which way to go? There is a philosophical debate about what mathe-
matics really means, and no important philosophical question ever gets a final
answer. This one will run and run. If you want to join in you can, or you can
just let them get on with it. The good news is that as a user of logic

you don’t have to take sides!

You ought to know, as a user, that there are different logics, because they have
different characteristics and different uses. Logic, for the practising computer
scientist, is a playground: we can play with any ball that we can pick up. This
book deals with three logics (constructive and classical Natural deduction in
Parts II and III, Hoare logic for programs in Part IV), but there are lots more out
there. You pick one to suit your purposes. Constructive logic has a particular link
to formal calculation, and that makes it relevant to reasoning about declarative
programs. Classical logic is usually used to reason about imperative programs
(see Part IV). Horses for courses; different strokes for different folks; it’s all logic.

The presentation in the first two parts of this book leans towards construc-
tive logic, but that’s for pragmatic reasons. Since constructive formal proof is
easier than classical formal proof (it really is!) and since Jape makes that fact
clear to anybody who plays with it, I’ve given definitions of the connectives in
constructive style. Then, despite the fact that constructive disproof is a good
deal trickier than classical, I’ve had to be honest and show the underpinnings
of constructive logic in Part III. Finally, in Part IV, classical logic takes over in
Hoare logic’s treatment of imperative programs.

Fig. 3.3 Proofs, disproofs, and disputed conjectures
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I quite like the ideas of constructivism, but that’s just me. To read this book
you really don’t have to make a commitment. Jape includes both constructive
and classical versions of the contradiction rule. It lets you swing both ways and
build classical proofs and constructive disproofs (see Chapter 9), both at the
same time, of claims that fall in the disputed region of Fig. 3.3. My aim is to
let you know that there’s more than one logic out there, to show you how subtle
the differences between logics can be, and then to turn you loose in the logical
playground.

3.6 Rules for contradiction
Contradiction is a formula. It’s a formula which represents confusion. What can
you do with confusion? Surprisingly, quite a bit.

3.6.1 Constructive reasoning with contradiction. Recall the consistency prin-
ciple: contradictions can’t be allowed. If a contradiction arises in a proof, we are
in an impossible situation. In impossible situations, it doesn’t matter what we
do — because impossible situations can’t happen.

Consider how we should reason if we accept A ∨ B and at the same time
¬B. We know that we accept either A or B or both. But we also know that it
would be wrong to accept B at all, because we already accept ¬B. So the only
reasonable possibility is to accept A. This happens quite a bit when reasoning
by cases: one of the cases is impossible, and need not be taken seriously.

When we translate this into a formal disjunction step, we seem to be stuck:

...
A ∨ B

A
...
A

B

?
A

A
∨ elim (3.1)

It’s obvious that if we accept A we accept A, so the first case can be dealt
with. But how does A follow from B? What follows from B, because we have
the premise ¬B, is a contradiction, which according to the consistency principle
means that the second case is impossible, and ought to be ignored.

The technical way in which Natural Deduction deals with this situation
is to say that in an impossible situation, you can conclude whatever you like
in order to tidy things up. It doesn’t matter what you do, because it doesn’t
matter: that situation will never happen. In short, if you meet a contradiction,
write the subproof off. In an impossible situation, conclude anything you like
(and don’t bother me again!). That’s the constructive contra rule in Table 3.7.
Both constructivists and classicists accept it, and both can use it.
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Table 3.7 Rules for contradiction

...

⊥
A

contra (constructive)

¬A

...

⊥
A

contra (classical)

We can derive any conclusion from a contradiction, then. If we have to show
A from B and ¬B, we don’t really have to worry. A situation in which both B

and ¬B hold will never arise, so we can conclude A if we need to.

...
A ∨ B A

B

¬B

⊥
A

A
∨ elim (3.2)

(This diagram only suggests a proof: the proof proper is shown on page 56 in
Chapter 5.)

What is remarkable is that a technical fix, essential to deal with can’t-
happen cases, fits so well with the rest of the logical machinery, and doesn’t lead
into paradox. It’s all that constructivists need to know.

3.6.2 Classical reasoning with contradiction. Classicists accept the construc-
tivist argument about use of contradiction, but they don’t think it goes far
enough. They accept, remember, that either A is true (whether we can prove it
or not) or else ¬A is true (likewise). For them ¬A is just the opposite of A.

The ¬ intro rule lets us derive ¬A if A leads to a contradiction. Classicists
also do it the other way round, in the classical contra rule of Table 3.7. This
argument-shape is what’s called proof by contradiction. To show that A must
hold, suppose that it doesn’t and show that then there is a contradiction. That
proves it’s impossible that A doesn’t hold — so, for a Platonist, it’s certain that
it does hold.

3.6.3 The classical rule includes the constructive. Classical proof-by-contradi-
ction introduces the assumption ¬A into the argument. Assumptions are re-
sources you can use to reach a conclusion. Proving a contradiction from the
current premises and assumptions is the constructivists’ task; the classicists get
extra help. That is, there will be circumstances in which the classical rule works,
because of the extra assumption, but the constructive rule doesn’t. That’s either
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an advantage (if you’re looking for some way to conclude A) or a disadvantage
(if you are doubtful that you really want to believe in A).

By the monotonicity principle, if you can prove a contradiction from the
premises, you can prove it from the premises plus ¬A. So, given what you know
about logic already, you should be able to understand that:

If you accept the classical treatment of contradiction, you accept the
constructive treatment as well — but not vice-versa.

That means that you can imitate any constructive contra step in classical
logic. Here, for example, is a sketch of the proof that from A ∨ B and ¬B you
can conclude A, using the classical contra rule (the formal proof, is shown on
page 56 in Chapter 5):

...
A ∨ B A

B

¬A

¬B

⊥
A

A
∨ elim (3.3)

The contradiction still comes from the B assumption and ¬B which we as-
sumed already; the extra assumption ¬A is unnecessary, but by the monotonicity
principle it doesn’t get in the way.

3.7 Truth is trivial
After all that fuss about contradiction, it is a relief to find that the treatment
of truth in Natural Deduction is really simple. You can always conclude �
(Table 3.8). That’s it: you don’t need any premises, any antecedents, any sup-
port.

Table 3.8 The truth rule

� truth

Unfortunately that really is it: there is absolutely nothing more to say about
�. It’s a shame to discover that — because there is no other rule which involves
the symbol — you can’t use a proof of � to prove anything (if you could, you
could prove every formula, because � is always available — that’s why it has to
be useless).

Constructivists, who deal in proof, don’t have to think of � as ‘truth’. They
see it as a counterpart of ⊥ (but they still find it useless).
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Table 3.9 Rules for connectives summarized

Introduction (persuasion) Elimination (use)
...

A

...

B

A ∧ B
∧ intro

...

A ∧ B

A
∧ elim

...

A ∧ B

B
∧ elim

A

...

B

A → B
→ intro

...

A → B

...

A

B
→ elim

...

A

A ∨ B
∨ intro

...

B

A ∨ B
∨ intro

...

A ∨ B

A

...

C

B

...

C

C
∨ elim

A

...

⊥
¬A

¬ intro

...

A

...

¬A

⊥ ¬ elim

Table 3.10 Rules for truth and contradiction symbols summarized

� truth

...

⊥
A

contradiction (constructive)

¬A

...

⊥
A

contradiction (classical)

3.8 The logical connectives summarized
Formal logic really is simple. It needs only ten rules for the logical connectives
— Table 3.9 — plus one each for truth and contradiction — Table 3.10. Con-
tradiction comes in two forms; the classical includes the constructive.

The simplicity is real: those rules, plus four more for the quantifiers (see
Table 6.5 on page 95) are all there is to formal proof. Of course you have to
learn how to use the rules . . . which is what the next two chapters are about.
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The inference rules of Natural Deduction are patterns, shapes, schemes which
you can use to make particular proof steps. You use a rule scheme to make
an instance that suits your needs. Verbing the word ‘instance’, we describe the
activity as instantiating the rule.

The names A, B and C are parameters of the rule schemes of Chapter 3.
You make an instance by replacing each of the parameters of a scheme by a
formula that you choose. Of course you must replace every occurrence of A by
a copy of the A-formula, and likewise the Bs must all be replaced by copies of
the B-formula, and so on, but otherwise you have complete freedom: you can
use the same formula for A as for B, or a different one, just as you wish.

The formulae that replace the parameters to make an instance are called
arguments. That would be more than a little confusing in a book which is about
proof and which equates ‘argument’ with ‘piece of reasoning’. But I have to call
them something, and I don’t want to invent a completely new name, so in this
chapter I’ve called them formula arguments. Formula arguments replace scheme
parameters to make instances.

In this book I use A, B and C as parameter names but E, F , G and H in
formula arguments, to make a clear separation between schemes and instances.
So to make an instance of the ∧ intro rule, for example, I can put E → F in place
of each occurrence of A, and F → E in place of each occurrence of B. To make
sure I get the right formula structure and to make it clear what I’m doing in this
example, I bracket each copy of each formula argument: see Fig. 4.1. Everything
that Chapter 3 says about persuasion and use — persuade me to accept A and
separately to accept B, and I can’t refuse to accept A∧B; persuade me to accept
A ∧ B and I must accept A and also B — applies if you read E → F in place of
A, and F → E in place of B. Or indeed any two formulae at all: contradictory,
complementary, identical, it’s all the same. Fig. 4.2 shows some more instances
of the same rule-schema, with brackets round non-atomic insertions.

...
(E → F )

...
(F → E)

(E → F ) ∧ (F → E)
∧ intro

Fig. 4.1 An instance of ∧ intro
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...
E

...
(¬E)

E ∧ (¬E)

...
(F ∨ G)

...
(G ∧ F )

(F ∨ G) ∧ (G ∧ F )

...
E

...
E

E ∧ E

Fig. 4.2 Three instances of ∧ intro

4.1 What counts as a formula?
E, F , G and H are each a formula; so are ⊥ and �. You can make bigger
formulae out of smaller by using connectives: (A ∧ B), (A → B), (A ∨ B), (¬A)
are schemes for making larger formulae out of smaller ones. So, for example,
(¬E) is a formula, and therefore ((¬E) → F ) is a formula. So is (G ∨ ⊥), and
therefore (((¬E) → F ) ∧ (G ∨ ⊥)) is a formula. And so on — we can build up
formulae of any size we like using whatever symbols and connectives we like.

But it seems we must use rather a lot of brackets! I’ll deal with that problem
later.

4.1.1 How to pronounce brackets. Mostly we don’t pronounce brackets:
(A ∧ B) ∧ C is usually read as “A and B” (pause) “and C”. But you have to say
something special to pronounce ¬(¬(¬(¬C))).

It’s ok to say ‘left bracket’ and ‘right bracket’; it’s ok to say ‘open bracket’
and ‘close bracket’; it’s ok to say anything so long as the people who are listening
know what you’re talking about. Some people, picking up on Dirac’s quantum-
mechanical notation, say bra and ket. (Sniggering is not allowed, and those who
have been waiting for an opportunity to insist that we should say ‘parenthesis’
instead of bracket can crawl right back into their holes right now.)

4.2 Shape matching: fitting a formula to a scheme
To make proofs you have to be able to look at a formula and decide which rules
you might apply to it. It’s a matter of matching shapes mechanically, and it
has nothing to do with what the formula means. Formulae fit schemes; schemes
match formulae.

If a formula is fully bracketed — a pair of brackets for each connective —
then it’s easy to see how to take it apart, and that shows what kind of formula
it is. For example, (((¬E) → F ) ∧ (G ∨ H)) is definitely a conjunction. It fits
the (A ∧ B) scheme, and the brackets allow only one reading:

(((¬E)︸ ︷︷ ︸
(¬A′′)

→ F )

︸ ︷︷ ︸
(A′→B′)

∧ (G ∨ H)︸ ︷︷ ︸)
(A′′′∨B′′′)

︸ ︷︷ ︸
(A∧B)
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It doesn’t fit any of the other formula schemes. (A ∨ B) won’t match it, for
example, even though it contains a ∨ connective: you would have to match A

with “((¬E) → F )∧(G” and B with “H)”, and in neither case have you matched
a parameter to a properly made formula, because the brackets don’t balance.

Once you know what formula scheme a formula fits, you immediately know
what rule schemes it fits. A conjunction, for example, fits the conjunction rules.
(((¬E) → F )∧(G∨H)) fits (A∧B) as above — matching A with ((¬E) → F ) and
B with (G ∨ H) — and that tells us how to instantiate each of the conjunction
rule schemes, giving three possible rule-instances and therefore three possible
proof steps.

...
((¬E) → F )

...
(G ∨ H)

(((¬E) → F ) ∧ (G ∨ H))
∧ intro

...
(((¬E) → F ) ∧ (G ∨ H))

((¬E) → F )
∧ elim

...
(((¬E) → F ) ∧ (G ∨ H))

(G ∨ H)
∧ elim

The message is that the shape of a formula shows you what rules you can
use to work on it. Shape-matching is the basis of proof search. Since our business
is proof, we have to understand formula shapes, and that’s what this chapter is
really about.

4.3 Determining the shape of an unbracketed formula
Formal reasoning is reasoning by shape. Brackets in a formula perfectly delineate
its shape, but brackets are serious visual clutter. They make the formula harder
to read, even though they make it easier to explain what it means. In practice
we reduce clutter by obeying a convention that determines the shape of an
unbracketed formula, leaving brackets to be used for emphasis or in exceptional
situations when we don’t want the convention to apply. In essence, the convention
is a means of telling you where the brackets would have to go if you bothered to
put them in.

The convention I use in this book is quite standard, and is based on giving
each connective a binding priority and a binding direction. It’s the mechanism
that Jape uses to recognize the shape of formulae, so it’s worth understanding
it and getting used to it.

4.3.1 Calculating the value of an arithmetic formula. We learn to read arith-
metic formulae in first school, but we are taught to read them as calculations.
We learn calculation slogans: I was taught the ones in Table 4.1.
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Table 4.1 Slogans for arithmetic calculation

• work inside brackets first!

• negations next!

• multiplication and division before addition and subtraction!

• work left to right!

The list of slogans lengthens, and calculation gets more intricate, when you
learn that you can do additions and multiplications in any old order — e.g.
(5 + 2) + 1 gives the same result as 5 + (2 + 1) — but divisions and subtractions
are strictly left-to-right. It gets more intricate still when you learn syntactic
equivalences which convert additions into subtractions — e.g. 5−(2+1) gives the
same result as 5−2−1 — divisions into multiplications, erase double negations,
and so on.

Because of the left-to-right slogan, children read 5 − 2 − 1 as “start with
5; subtract 2; subtract 1”, and thus work out that the result is 2. If we were to
insert brackets to imitate the left-to-right reading — one pair of brackets per
operator — we would write ((5 − 2) − 1). And that’s the only way to do it:
right-to-left bracketing (5 − (2 − 1)) gives the wrong answer — 4 instead of 2.

5 + 2 − 1 is trickier: the left-to-right reading “5; add 2; subtract 1” — i.e.
((5+2)−1) — gets the right answer, of course, but so does “2; subtract 1; add 5”
— i.e. ((2− 1)+5) which, because A+B = B +A, is equivalent to (5+(2− 1)).
Clearly, school-style calculation isn’t entirely straightforward.

When we have mixed operators the slogans tell us which way to work.
Because we do multiplications before additions, 4 + 6 × 7 is always “take 6;
multiply by 7; add 4” — i.e. ((6 × 7) + 4) which is equivalent to (4 + (6 × 7)).
To get the ((4 + 6) × 7) reading you have to put in some brackets first.

Negation is treated as a device for changing the sign of a number: −4+6, for
example, is seen as an addition of the numbers −4 and 6; −(4 + 6) calculates 10
and then changes it into −10. If you were allowed to write −−4+6 the negations
would first change 4 into −4 and then −4 back to 4, so double negations clearly
cancel.

4.3.2 Determining the shape of an arithmetic formula. All of that calculation-
specific knowledge, hammered in so hard and so deep when you were so very
young, has a corresponding treatment in terms of formula shapes. Indeed, it’s al-
most the same treatment. The main difference is the use we make of the shapes:
when classifying a formula we work from the outside inwards; when calculating
we work from the inside outwards.

We determine the shape of a formula by putting brackets round its operators
in order of binding power — roughly, the syntactic ‘strength’ of the operator.
We have to know how to treat apparently overlapping occurrences of similar-
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strength operations, so we give a binding direction: right-to-left for negations,
so −−4 is (−(−4)); left-to-right for the others, so 4×7÷3×6 is (((4×7)÷3)×6).
Table 4.2 gives the list, with the strongest-binding operator first.

Table 4.2 Binding power and binding direction of arithmetic operators

1. negation (right-to-left)

2. multiplication, division (left-to-right)

3. addition, subtraction (left-to-right)

The underlying principle is the same as the calculation slogans. Instead of
“calculate negations first”, we get “bracket negations first”, and so on: no big
deal. There are some surprises, though: we don’t consider syntactic equivalences
— no converting 6 + (−4) into 6 − 4, for example — and the bracketing rules
allow some formulae which first-schoolers might be surprised at, like 64/2/4,
equivalent to ((64/2)/4), or 7 × −4, equivalent to (7 × (−4)). Together with the
principle that you don’t invade bracketed components — (4 + 6) × 7 is 10 × 7,
not 4 + 42, despite the relative strengths of the operators — the table is all you
need.

Consider 3 × 2 − 4 + 6 × 12, for example. Bracket negations first (none
in this example, so nothing to do). Next multiplications and divisions: there
are two multiplications but they don’t overlap, so the binding power doesn’t
matter and we bracket them separately, giving (3 × 2) − 4 + (6 × 12). Last,
additions and subtractions: there is one of each, and they do overlap, so binding
power comes into play. We must bracket left-to-right, taking the subtraction
first, giving ((3 × 2) − 4) + (6 × 12); last of all we bracket the addition, giving
(((3 × 2) − 4) + (6 × 12)).

I can’t remember whether as a child I ever met a formula like −−−17 ×
3 × −(4 + −6), but in any case our rules can deal with it. There are five nega-
tions, three of them overlapping which have to be bracketed right-to-left, giving
(−(−(−17)))× 3× (−(4+ (−6))). Then all that’s left unbracketed is a couple of
multiplications, which are bracketed left-to-right to give (((−(−(−17))) × 3) ×
(−(4 + (−6)))).

Exercise 4.1 Bracket each of the following formulae, using the priority scheme
of Table 4.2.

1. 27 + 3

2. 27 − 5 + 6

3. 27 + 5 − 6

4. 27 × 5 + 6

5. 27 − 5 ÷ 6

6. (27 − 5) × 6
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7. −4

8. −4 × 2

9. −4 × −2

10. −(4 × −2)

11. (−4) × −2

12. (−4) × (−2)

13. −27 + 6 × 5 ÷ 32 − −6

4.3.3 Finding the principal operator. 5 − 2 − 1 is a subtraction because the
outermost operator in the fully bracketed form ((5−2)−1) is a subtraction. That
operator — the rightmost subtraction in the unbracketed form — is the principal
operator of the formula and its operands are 5−2 and 1. In 3×2−4+6×12 the
principal operator is the addition, because it brackets as (((3×2)−4)+(6×12)),
and its operands are 3×2−4 and 6×12. In −−−17×3×−(4+−6) it’s the second
multiplication, because it brackets as (((−(−(−17))) × 3) × (−(4 + (−6)))), and
its operands are −−−17 × 3 and −(4 + −6). In −(4 + −6) it’s the negation and
its operand is (4 + −6).

Once you can spot a principal operator you can fit a formula to a formula
scheme. If the principal operator is a subtraction then it fits A−B; if it’s a multi-
plication then it fits A×B, and so on. In turn, that tells you how to take the for-
mula apart: if the principal operator is a subtraction then it fits A−B, A matches
the stuff to the left of the subtraction (after you’ve stripped away any bracket-
pairs that enclose the whole formula), and B matches the stuff to the right.

Exercise 4.2 In each of the following formulae, circle the principal operator,
using the priorities and binding directions of Table 4.2. Avoid bracketing the
formula if you can.

1. E × F − G ÷ H

2. E × F − (G ÷ H)

3. E × (F − G) ÷ H

4. −E × (F − G ÷ H)

5. −(E × F − G) ÷ H

6. −(E × F − G ÷ H)

7. −E × −F − G ÷ −H

8. −(E ÷ G) × (H − E1 ) ÷ −G1

4.3.4 Finding the principal connective. The good news is that logical formulae
can be treated exactly like arithmetic formulae. Table 4.3 gives the binding pow-
ers of the connectives. There are no surprises, apart from the fact that → binds
right-to-left (i.e. A → B → C brackets as (A → (B → C))).

The ordering of the connectives in the table is arbitrary and the binding
directions, apart from negation which, as a prefix connective, necessarily binds
right-to-left, are arbitrary too. But it’s a pretty simple system, easy to learn
and, because this book uses it and Jape uses it too, you have to learn it.



50 Rule shapes and formula shapes

Table 4.3 Binding power and binding direction of logical connectives

1. ¬ (right-to-left)

2. ∧ (left-to-right)

3. ∨ (left-to-right)

4. → (right-to-left)

Exercise 4.3 Bracket each of the following formulae, using the priorities and
binding directions of Table 4.3.

1. E ∧ (F ∨ G → H)

2. (∨E ∧ F ) ∨ G → H

3. ¬E → F → G → H

4. (E ∧ F ) ∨ (G ∧ H)

5. E ∨ F ∧ (G → H)

6. E ∧ F ∨ G ∨ H

7. ¬E

8. ¬¬E

9. ¬E ∧ ¬F

10. ¬(E ∧ ¬F )

11. (¬E) ∧ ¬F

12. (¬E) ∧ (¬F )

13. ¬E ∨ G ∧ H → E1 ∨ ¬G1

Exercise 4.4 In each of the following formulae, circle the principal connective,
using the priorities and binding directions of Table 4.3. Avoid bracketing the
formula if you can.

1. E ∧ F → G ∨ H

2. E ∧ F → (G ∨ H)

3. E ∧ (F → G) ∨ H

4. ¬E ∧ (F → G ∨ H)

5. ¬(E ∧ F → G) ∨ H

6. ¬(E ∧ F → G ∨ H)

7. ¬E ∧ ¬F → G ∨ ¬H

8. ¬(E ∨ G) ∧ (H → E1 ) ∨ ¬G1

4.4 Instantiating rules
So far I’ve dealt with fitting a formula to a formula scheme: find the principal
operator; that determines the scheme which it matches; read off the way that
the parameters of the scheme match the parts of the formula surrounding the
principal operator.

Rule instantiation needs a bit of care. If you try to instantiate ∧ intro, for
example, putting E ∨ F for A and G → H for B, you do not get

...
E ∨ F

...
G → H

E ∨ F ∧ G → H
(NOT ∧ intro)
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The antecedents are all right, but the consequent is all screwed up. In the rule
scheme the consequent A∧B is a conjunction, but in the ‘instance’ E∨F∧G → H

is an implication, which brackets as (E ∨ (F ∧ G)) → H, and that definitely
doesn’t come apart into an A-part (E ∨ F ) and a B-part (G → H).

The correct technique necessarily uses brackets to ensure that the structure
of the rule’s formula scheme carries across to the rule instance:

...
E ∨ F

...
G → H

(E ∨ F ) ∧ (G → H)
∧ intro

The principle is that when inserting a formula argument into a scheme, bracket
the argument if its operators would affect the structure of the scheme they are
being inserted into. They affect it if they are weaker operators — a → formula
inserted in an A ∧ B scheme, for example — or if they are similar priority but
inserted in a position which violates the binding direction — an ∧ formula for
B in A ∧ B, for example, or an → formula for A in A → B.

4.5 Matching rules to formulae
Mostly we don’t write down rule instances. We don’t really fit formulae to rule
schemes either. What we do instead is fit formulae to formula schemes by finding
their principal operator. Then they fit any rule that depends on that formula
scheme. It’s as simple as that: the conjunction rules depend on A ∧ B, the
implication rules depend on A → B, the disjunction rules depend on A ∨ B and
the negation rules depend on ¬A.

The only exception to this simple procedure is the classical contradiction
rule, and I’ll deal with that problem in the next chapter.



5 Proof with connectives

The target of this part of the book is neither syntax nor semantics nor the
properties of Natural Deduction, it’s formal proof. Proofs which use only the
connectives and the constant symbols are pretty straightforward.

5.1 Stating a claim
Gentzen’s invention of Natural Deduction was a spinoff from his studies of proof
and proof search. One of the legacies of his work is a notation for stating logical
claims. A sequent expresses the claim that you can prove a conclusion C from
some premises A1 , A2 , . . . , An:

A1 , A2 , · · · , An � C

The turnstile symbol �, pronounced proves, is what makes the claim. If there
are no premises we can miss out the turnstile, writing C instead of � C.

Until the sequent’s claim is proved it is a conjecture; once it’s proved it is a
theorem. Theorems can be used as auxiliary rules of inference, as we shall see.

Nowadays Natural Deduction is seen as a classification of those logics which
are defined by intro and elim rules. There are lots of alternative Natural Deduc-
tion systems, distinguished by choice of rules. Even in this book there are two:
the rules of Table 3.9 plus the truth rule and the constructive contradiction rule
from Table 3.10 make a constructive proof system; the same connective rules
plus the truth rule and the classical contradiction rule make a classical proof
system.1 The classical system can prove more theorems than the constructive.
When it matters, I shall point out claims that are provable classically but not
constructively.

5.2 Tree proofs
My description of rules of inference is in the style of a proof tree. Each proof step
uses a rule to make a proof out of one or more subproofs (or, in the case of the
truth rule, no subproofs at all); in doing so it makes a little tree of deductions,

1 If you don’t use the classical contra rule, you have a constructive proof, but just a single
use of classical contra, or a theorem that depends on classical contra, makes it classical.
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with the consequent of the step at the root of the tree, and its antecedents at
the roots of its subtrees. That tree can be plugged as a subproof into another
step to help make a larger tree, and so on. The conclusion of the whole proof is
the root of the whole tree. The leaves of the tree are the premises of the proof:
accept the claims made in the leaves, and the proof shows you how to persuade
yourself, or someone else, to accept the conclusion written at the root.

For example, the two-premise claim

I am a cabbage, my name is Richard
� (I am a cabbage) ∧ (my name is Richard)

(5.1)

has a simple one-step proof. The proof is a valid argument — an instance of ∧
intro — but I disagree with one of the premises, so I don’t have to accept the
conclusion:

I am a cabbage my name is Richard
(I am a cabbage) ∧ (my name is Richard)

∧ intro
(5.2)

Here’s an attempt to expand one of the premises above into something possibly
less contentious. Now the claim has three premises:

I am a Martian, my name is Richard,

(I am a Martian) → (I am a cabbage)
� (I am a cabbage) ∧ (my name is Richard)

(5.3)

Again, the proof is a valid argument, a combination of ∧ intro and → elim, but
I still disagree with one of its premises!(

I am a
Martian

)
→

(
I am a
cabbage

)
I am a
Martian

I am a cabbage
→ elim

my name
is Richard

(I am a cabbage) ∧ (my name is Richard)
∧ intro

(5.4)

This tiny tree, with only two proof steps, barely fits on the page, and careful
reading is necessary to reveal its true shape. Larger tree proofs are wider still
and much harder to read. So although trees are really good for explaining the
rules, they aren’t so good for presenting proofs. Rules that introduce assumptions
make things even worse: the box mechanism isn’t particularly easy to use in tree
proofs, and I’m not going to try to explain it. Luckily, there is an easier way.

5.3 Line proofs
Instead of drawing a two-dimensional tree, we write a sequence of lines. Each
line consists of a logical formula, numbered on the left and justified on the right.
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Each line is either a premise or a deduction from a previous line (or lines).
The justification either says that this line is a premise, or it names the rule
used to make the deduction step and the number(s) of the previous line(s). By
convention premises come first, deductions later, and necessarily the conclusion
comes last. For example, a line proof of (5.1):

1. I am a cabbage premise

2. my name is Richard premise

3. (I am a cabbage) ∧ (my name is Richard) ∧ intro 1, 2
(5.5)

When a proof is presented in this way it is easy to read from the top to check
each step, and that’s the way we usually read proofs. It’s also possible to read
from the bottom and trace out the equivalent proof tree, but we don’t do that
so often. (On the other hand, as you will see, when we make proofs we often
work from the bottom upwards.)

The proof of (5.3) is now much easier to write down and read:

1. I am a Martian premise

2. my name is Richard premise

3. (I am a Martian)→(I am a cabbage) premise

4. I am a cabbage → elim 3, 1

5. (I am a cabbage) ∧ (my name is Richard) ∧ intro 4, 2

(5.6)

5.3.1 The line condition. In a line proof we can refer to premises or, as line 5 of
(5.6) shows, previous deductions. We must not refer to later deductions, because
that can produce a circular argument, one which has no proper support. Here,
for example, is an invalid argument — a non-proof — purporting to show that
I’m a Martian cabbage:

1. (I am a cabbage)→(I am a Martian) premise

2. (I am a Martian)→(I am a cabbage) premise

3. I am a cabbage → elim 2, 4

4. I am a Martian → elim 1, 3

5. (I am a Martian) ∧ (I am a cabbage) ∧ intro 4, 3

(5.7)

Line 3 cheats: it deduces that I’m a cabbage from the conclusion on line 4 that
I’m a Martian, which is deduced from the conclusion that I’m a cabbage, which
. . . and so on and on for ever. It’s impossible to reorder those two lines to remove
the circularity (and, indeed, it’s impossible to prove the conclusion from those
premises, as the methods of Part III show).
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We eliminate that kind of cheating by demanding that deductions can’t look
downwards, in the line condition.

Definition 5.1 In a line proof every line must be justified either as a premise

or by use of a rule appealing to previous lines.

5.4 Box-and-line proofs
When a logical step requires us to make an assumption, we can’t draw a proof
as a sequence of lines. The → intro rule, for example, lets us deduce A → B not
from a proof of B, but from a proof of B given the extra supposition A: that is,
from a whole subproof and not just its conclusion. Just as the proof rule uses
a box, so must the presentation. The components of our proofs can be lines or
boxes, the components of the boxes can be lines or boxes, the components of
those boxes can be lines or boxes, and so on down, as deep as we wish to go.

In line proofs a deduction can refer to a formula on a previous line, but it
can’t refer to part of the formula. In box-and-line proofs, similarly, a deduction
can refer to the whole of a box but not to part of it. We can’t look inside boxes:
they have to be taken all together or not at all. Steps inside the box, however,
can look outside and appeal to earlier boxes and earlier lines.

Here, for example, is an argument justifying my belief that when I get into
a bath I get wet.

1. immersion → (liquid contact) premise

2. (liquid contact) → (I get wet) premise

3. (in the bath) → immersion premise

4. in the bath assumption

5. immersion → elim 3,4

6. liquid contact → elim 1,5

7. I get wet → elim 2,6

8. (in the bath) → (I get wet) → intro 4-7

(5.8)

The proof is a sequence of deductions, some simple, others not. Line 5 uses →
elim: if I’m in the bath then I’m immersed (line 3) and I suppose I am in the
bath (line 4). Line 6 pulls a similar trick with lines 1 and 5 to show that I’m in
contact with liquid, and line 7 uses the definition of wetting (line 2) and line 6.
Then the entire box from lines 4 to 7 is cited in the justification for the deduction
on line 8.

5.4.1 The box-and-line condition. To make our proofs secure we have to avoid
circularities, and we have to make sure that assumptions and lines deduced from
assumptions aren’t used outside their scope. This is the box-and-line condition.
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(a) constructive (b) classical

Fig. 5.1 Constructive and classical proofs of E ∨ F, ¬F � E

Definition 5.2 In a box-and-line proof

1. every line must be justified either as a premise or by use of a rule appealing

to previous lines or boxes;

2. if an appealed-to line is inside a box, then that box must also enclose the

justified line.

The condition can be summarized in the slogans of Table 5.1.

Table 5.1 The box-and-line slogans

• no looking downwards;

• no peeking inside a box.

5.4.2 Justifying lines in box-and-line proofs. There are two kinds of antecedent
in the rules I’ve given in this book. Unboxed antecedents, like those in the ∧
intro rule (see (5.5) and (5.6)), are always an earlier line, and I refer to that line
with its number. Boxed antecedents, which introduce an assumption, like the
one in → intro (see (5.8)), are always an earlier box, and I refer to that box with
two numbers i-j, meaning the box which starts on line i and ends on line j.

It’s that simple. A step which appeals to ∨ elim, the most complicated
connective rule, for example, always refers to three antecedents: a line (A ∨ B)
and two boxes: one with assumption A and last line C; the other with assumption
B and last line C. Fig. 5.1(a), for example, is a formal proof made in Jape of
the claim E ∨ F, ¬F � E which was loosely discussed in Section 3.6.1. The only
oddity is the single-line box on line 3: that’s what a proof of a conclusion from
an identical assumption looks like! The important step is the one on line 5 which
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appeals to lines 4 (assumption F ) and 2 (premise ¬F ) to derive a contradiction,
and hence allows us to dismiss that arm of the ∨ elim proof.

Fig. 5.1(b) is the classical version of the same argument, to illustrate how
it’s always possible to imitate a constructive contradiction step at the cost of
introducing an unnecessary assumption. Note that the extra assumption, on line
5, is not appealed to anywhere.

Justifications of deduced lines must respect the antecedent-
ordering of their corresponding rules. On line 5 of Fig. 5.1(a),
for example, “¬ elim 4, 2” means that line 4 is A, line 2 is
¬A, because that is the order those antecedents appear in the
¬ elim rule (see page 43). “¬ elim 2, 4” wouldn’t make sense
because line 4 isn’t ¬¬F , as it would have to be if it is ¬A

and line 2 is A.

5.5 Real-life proofs with formal rules
Formal logic started as an attempt to distinguish valid from invalid reasoning in
real world disputes. Logic is relevant to real life, but it’s hard to apply it, and
this book isn’t about the fit between logic and everyday reasoning. Nevertheless
it’s worthwhile looking at some real-world examples to get a feel for the way
that logical rules work.

Some of the reasoning which follows is good, and some is bad. I consider
bad reasoning because one way to get a feel for the rules is to see situations in
which they don’t work.

5.5.1 The warm room. I like to be warm. I often squabble with Bernard Sufrin,
the colleague and friend with whom I first developed Jape, because he likes things
to be cooler. I think he’s a polar bear; he thinks I’m a softie. The argument has
been going on for decades. This is the way I see it:

“You say it’s too hot. You know I always fall asleep when it’s too hot.
But I’m awake now, so it can’t be too hot. Please leave the thermostat
alone!”

I prove to my own satisfaction, using a valid argument, that it isn’t too hot. My
argument has premises and uses ¬ intro, → elim and ¬ elim. Relying on the
conclusion of that argument, I shamelessly try to impose my will on Bernard, in
his own room.

When I claim “it can’t be too hot”, I really mean that Bernard can’t rea-
sonably claim that it is too hot: I think I’ve proved it’s impossible for anybody
to agree that it’s too hot — i.e. ¬(too hot). Looking at the rules summarized
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in Table 3.9 on page 43, the ¬ intro rule seems to show a way to prove such a
conclusion: ask the opponent (in this case, Bernard) to suppose that it is too
hot, and try to show a contradiction.

too hot
...
⊥

¬(too hot)
¬ intro

(5.9)

Formal logical arguments start with a statement of premises. Real-world argu-
ments introduce them as and when they are needed. My dispute with Bernard
rests partly on a claim about my weakness: I do tend to fall asleep when I feel
warm. In the argument that premise is the sentence “You know I always fall
asleep when it’s too hot”. I might capture this assertion with the logical claim
(too hot) → (I am asleep). I use this premise together with the assumption in a
step of → elim:

(too hot) → (I am asleep) too hot
I am asleep

→ elim
(5.10)

But then — contradiction! — my other premise is that I’m awake, which I take
to mean ¬(I am asleep):

...
I am asleep

...
¬(I am asleep)

⊥ ¬ elim
(5.11)

I can put all the steps together in a box-and-line proof:

1. (too hot) → (I am asleep) premise

2. I am awake premise

3. too hot assumption

4. I am asleep → elim 1, 3

5. ⊥ ¬ elim 4, 2

6. ¬(too hot) ¬ intro 3-5

(5.12)

This ‘proof’ won’t stop us squabbling. It isn’t true that I always fall asleep when
I’m too warm, so Bernard can attack the premise on line 1. Or perhaps I am not
as awake as line 2 claims. Most effectively, he can point out that I’m equating
“too hot” on line 1 with “too warm for Richard”. All I’ve really proved is that the
room isn’t too warm for me, so our tussles round the thermostat will continue!
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5.5.2 The dead Major. In life we often reason badly because to survive in a
dangerous world we must be prepared to extrapolate from scraps of evidence.
When we hear a rustle in the undergrowth we have to jump to conclusions before
the tiger jumps on us: jumping too soon may be a logical error, but jumping
too late can be fatal. Even our most confident extrapolations don’t amount to
logical proof: we don’t know, for example, that the sun will rise tomorrow —
that is, we have no proof — but we plan our lives as if we do know. Given the
long recorded history of repeated sunrise, we’d be foolish not to. But gambling
is always risky: as Damon Runyon put it, if somebody bets you that he can
make the Jack of diamonds jump up and squirt cider in your ear, don’t take the
bet because for sure if you do, you will get an ear full of cider. (I’d still bet on
sunrise, though.)

Lots of detective thrillers tempt us to jump to a conclusion, perhaps like
this:

“Submersion in water causes drowning; drowning causes death; the
Major was found dead in the lake; the Major was drowned!”

Translated into logical notation, the argument goes as follows:

1. submersion → drowning premise

2. drowning → death premise

3. submersion → death from 1, 2

4. submerged fact

5. dead fact

6. drowned from 4, 5, 1

(5.13)

The Major was drawn dripping wet and obviously dead from the lake. It seems
he must have been drowned, and that looks like a logical conclusion from the
evidence. Unfortunately for our pride in our deductive skills, we are told in the
last chapter that the Major was poisoned by the butler and then thrown in the
lake. He wasn’t drowned at all!

If the conclusion of a logical argument is untrue, there must be something
wrong with the premises, or the reasoning, or both. Perhaps our ‘proof’ is mis-
taken because it doesn’t follow the rules: lines 3 and 6 look like deduction steps,
but aren’t justified by the rules of Chapter 3; lines 4 and 5 aren’t labelled as
premises or the result of deduction steps.

Gaps and slips in reasoning often happen when people are trying to reason
semantically, using meanings instead of formula shapes. We know, or we think
we know, a good deal about the likely causes of death in imaginary 1930s country
houses, and we correspondingly rush to judgement. Semantic reasoning is useful
and sometimes essential in real life (tigers and all that) but formal (shapewise)
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reasoning is more reliable when we can use it. Let’s see if we can make a formal
proof out of what we’ve been given.

First, lines 4 and 5, labelled as ‘fact’, are really two extra premises for
the argument. It’s best to list the claims on which a proof depends as explicit
premises: then we can see what we are relying on, and decide whether we want
to rely on them or not. The proof, if it is a proof, should start:

1. submersion → drowning premise

2. drowning → death premise

3. submerged premise

4. dead premise

5. . . .

(5.14)

Line 3 of (5.13) claims that submersion → death follows from the premises
submersion → drowning and drowning → death. This not a single-step deduc-
tion according to the rules, but it is logically valid.

If I accept E → F and F → G then when I accept E I must accept F ;
then, because I accept F and F → G I must accept G; so if I accept E

I accept G; that is, I accept E → G.

Formal reasoning follows the same track, and here’s a proof made in Jape:

(5.15)

This proof establishes the theorem E → F, F → G � E → G. Because it uses
generic formula-names E, F and G rather than specific formulae like drowning,
submersion and death (ugh!) we can use it, instantiated with particular formulae
— submersion for E, drowning for F , death for G — just as if it was an extra
logical rule:

1. submersion → drowning premise

2. drowning → death premise

3. submerged premise

4. dead premise

5. submersion → death E → F, F → G � E → G 1, 2

6. . . .

(5.16)
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The last step in (5.13) was to conclude that the Major was drowned. That’s
logically ok, as it turns out: submersion causes drowning; the Major was clearly
submerged (look at the corpse! still dripping wet!) so surely he was drowned:

1. submersion → drowning premise

2. submerged premise

3. drowned → elim 1, 2

(5.17)

It turns out that the original argument was far too complicated. Three lines
are all that we need: two premises, one straightforward deduction, a valid and
convincing argument. Although the original argument was padded out with too
many premises and some unnecessary deductions, the conclusion seems to be a
logical necessity. Then we find out that the Major wasn’t drowned: the butler
poisoned him. What went wrong?

If the conclusion of a valid argument contradicts reality — as this one seems
to, provided you believe the detective’s claims about poisoning — there must
be something wrong with the premises. The Major was clearly submerged, so
we can’t attack that premise. But if you submerge a corpse, it doesn’t drown —
you just get a wet corpse! Only live things drown: submersion doesn’t necessarily
cause drowning. The argument should have been stated like this:

1. submersion ∧ (alive when submerged) → drowning premise

2. submerged premise

3. alive when submerged premise

4. submersion ∧ (alive when submerged) ∧ intro 2,3

5. drowned → elim 1, 4

(5.18)

Still we reach an untrue conclusion. But this time we can’t be confounded when
it’s revealed that the butler first killed the Major and then threw him into
the lake: the premise on line 3 isn’t valid, so the reasoning is irrelevant and
we can forget about the conclusion. Instead we can be cross with the author for
misleading us with all that stuff about the detective’s efforts to revive a drowned
man!

5.5.3 Cars and congestion. The UK has too much traffic for its roads, and
most of the traffic is cars. I and several million others live in London, where
the traffic problem is specially acute despite the fact that it has the best public
transport provision in the country. This sparks lots of hot political argument,
with alternative causes constantly being suggested and novel remedies put for-
ward. You’ll be relieved to know that people try to be logical when arguing
about such a controversial issue.
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Sometimes our wish to believe in a particular causal relationship makes us
accept a bad argument if it’s on our side. As a cyclist, I’m a sucker for arguments
that ‘prove’ cars are a Bad Thing, and I fell for the one that follows.2

Some people — call them Greens — think that it is bad for UK children to
be driven to school. Casting about for leverage which might encourage parents
to let their children walk or cycle or take a bus,3 they argue that ‘school run’
traffic adds to congestion in the morning rush-hour. Their argument can be
summarized as follows:

“On normal weekday mornings there is congestion. During the school
holidays, and at half-term breaks, there is much less congestion. Clearly
school-run journeys are causing congestion.”

Most of this summary is evidence: appeal to experience of the outside world,
premises that we can verify by experiment. The logical reasoning is entirely
hidden, and it’s my job to reconstruct it so that we can check it.

Evidence about the relationship between school runs and congestion is non-
controversial. All the traffic authorities and all the disputants agree that it hap-
pens more on school days, just as the Greens claim, so we can’t attack their
argument at that point. If there’s anything wrong it must be to do with other
assumed and unstated premises and/or the logical reasoning which leads to their
conclusion.

To lay bare the logical reasoning, I begin by stating the evidence-claims as
logical implications:

(school day) → congestion ¬(school day) → ¬congestion

These formulae don’t capture the original claims precisely — Greens don’t claim
that there’s no congestion on non-school days — but my version fits the Natural
Deduction rules more easily than the claims they make. If we pretend to accept
the absolute congestion claims we shall reveal the bones of a logical argument,
and we won’t miss anything important.

We haven’t finished with premises yet, because the argument doesn’t explain
how school-run journeys are connected to school days. The Greens assume that
everybody listening to them would realize that school-run journeys take place
only on school days. That tacit knowledge can be revealed in two more premises:

(school day) → (school run) ¬(school day) → ¬(school run)

You might quibble that this too is an over-simplification, because there will
always be a few people who forgetfully make a school run on a non-school day.

2 Bad arguments don’t disprove logical claims. I still think London has too many cars.
3 We don’t have a school bus system in London, so pupils have to ride on the public buses

with everybody else. Some parents don’t like that.
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It’s hard to dance the complexities of reality in the lead boots of logic, but I don’t
think I’m over-simplifying if I equate ‘school-run journeys’ with ‘journeys that
actually transport children to school’. There are lots of journeys of the second
kind on school days, surely none at all on non-school days. A tiny minority of
absent-minded people will do daft things every day, and we can safely ignore
them.

Given those four premises, the Greens might expand their argument as
follows.

“Suppose there’s a school run; then it must be a school day; and there
is congestion on school days; so when there’s a school run there is
congestion.
“Suppose that there is congestion; congestion only happens on school
days, and on school days there will be a school run; so when there is
congestion there is a school run.
“Similarly, when there isn’t a school run there isn’t congestion, and
vice versa.
“Therefore, school runs cause congestion.”

If it is a proof, it looks like it is trying to be a proof by logical argument. So: is it
a valid argument? Well, yes it is, but it’s not yet an argument by the rules, be-
cause there are gaps which have to be filled in. Take the very first step: “suppose
there’s a school run; then it must be a school day”. What’s the logical step? It
isn’t a step of → elim from the premises: we have (school day) → (school run)
and ¬(school day) → ¬(school run), both constructed on the sensible basis
that school days cause school runs; we don’t have a premise (school run) →
(school day).

If we don’t have that premise then perhaps we can prove that it is a conse-
quence of the premises we do have. Perhaps surprisingly, it is! Indeed in general,
when I accept ¬F → ¬E and I also accept F ∨ ¬F , I must accept E → F . The
informal argument goes as follows:

I accept ¬F → ¬E. Suppose for the sake of argument that I accept
E: I can’t also accept ¬F because then by implication I would have
to accept ¬E, and that would be a contradiction with my assumption.
But I do accept F ∨ ¬F , so if I can’t accept ¬F I must accept F .
Summarizing, if I accept E I am forced to accept F : that is, I accept
E → F .

Formal reasoning mimics this argument. Classical reasoners tacitly accept F∨¬F

and build it into their treatment of contradiction. A constructive proof would
demand an extra premise to be sure that either it’s a school day or it isn’t,
which in this case seems a bit unnecessary so, for the sake of simplicity, I’ll
ignore constructivist squirmings. Here’s the formal classical proof, done in Jape:



64 Proof with connectives

(5.19)

The box from line 2 to line 6 shows that if you accept E you must accept F .
It does it by using a subsidiary box to show that if you accept ¬F there’s a
contradiction. Classical reasoning concludes that if you can’t accept ¬F you
must accept F , and that’s the end of it. Overall, the proof establishes a logical
theorem: ¬F → ¬E � E → F , and, instantiating that theorem, we can deduce
(school run) → (school day) from the premise ¬(school day) → ¬(school run).

At this point I draw your attention to something going wrong
with the attempt to prove a cause by logical reasoning. School
runs do not cause school days! A proof that (school run) →
(school day) merely shows persistent association. Association
isn’t cause. Nevertheless, I press on.

With the theorem of (5.19) to aid me, I can make a complete proof that from
agreed facts about the world it follows that (school run) → congestion:

1. (school day) → congestion premise

2. ¬(school day) → ¬(school run) premise

3. school run assumption

4. (school run) → (school day) ¬F → ¬E � E → F 2

5. school day → elim 4,3

6. congestion → elim 1,5

7. (school run) → congestion → intro 3-6

(5.20)

With a little more difficulty, because it means playing around with negation,
you can show that ¬(school run) → ¬(congestion) (I’ll leave the details of the
proof to you) and you can also show the other two logical claims made in the
Greens’ argument.

Given those proofs we have to face the Greens’ final claim. When the ‘cause’
happens the effect happens; when the ‘cause’ stops the effect stops; when the
effect happens the ‘cause’ is operating and when the effect stops the ‘cause’ has
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stopped. Is that enough to prove that the effect is because of the ‘cause’? Aren’t
we now sure that the school run should be outlawed?

Certainly not.

5.5.4 An alternative cause. Proving an implication A → B merely proves a
particular sort of association between A-events and B-events: when A happens,
so does B. Association doesn’t prove cause — hence lots of long-running disputes
about smoking and cancer, soft and hard drug use, vaccination and disease, social
depravity and the collapse of empires, and so on and on.

Logical implication isn’t about causes, but scientific implication is. To prove
a scientific implication you have to demonstrate an association of cause and ef-
fect and describe a convincing mechanism which connects the two. But scientific
proof is contestable if others can show that some of the parts of the mecha-
nism can’t be found, or can propose a simpler mechanism, in which case further
research is needed to find out which mechanism is actually operating.

One attack on the Greens’ argument, then, is to suggest that some cause
that they have overlooked might be causing the observed congestion effects.
Some opponents of the green position press just that point:

“Certainly the school run days are the congestion days, and vice versa.
But the effect is caused by school holidays. Parents go on holiday when
their children are on holiday. There are fewer drivers travelling to work,
and there is therefore less congestion, during the school holidays.”

This is a perfect bit of scientific counter-argument: “your proposed mechanism
can’t be considered a cause until you have disproved this plausible, and appar-
ently simpler, alternative”. Until we can be sure that the alternative mechanism
— school holidays means fewer drivers means less congestion — isn’t the expla-
nation, the green argument won’t get the acceptance that perhaps it deserves.

I don’t know if traffic planners take the school-holiday argument seriously,
but it doesn’t seem as if anybody has yet done the expensive surveys of people
in traffic jams, people at work and people on holiday to find out which of the
proposed causes is operating. So nobody really knows whether the school-holiday
argument is a better explanation for congestion than the school-run argument.

5.5.5 Small cause, small effect? Another attack tries to proceed by a form of
contradiction, arguing that the effect can’t be caused in the way that the Greens
suggest. (This is a real example, straight off the radio, honestly it is!)

“My organization has done a survey. We have found that the school
run can’t be having a large effect on traffic, because less than 10% of
children are driven to school.”
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The principle which seems to be being used in this argument is that small causes
must have small effects. That’s debatable, of course, and in the limit it’s para-
doxical, when the last straw breaks the camel’s back. In road traffic we find
back-breaking straws everywhere,4 but I set that objection aside for the time
being. If a small percentage increase in road traffic has only a small effect on
congestion, and if school-run journeys are a small proportion of all morning
rush-hour journeys, then we would be forced to agree that school-run journeys
can’t be having a large effect on congestion.

But that isn’t the claim that is being made. The claim is that school-run
journeys are a small proportion of travel-to-school journeys. What is the rela-
tionship of school-run journeys to morning rush-hour car journeys? There are
hidden premises here. The presenter of this argument may have thought that it
was obvious that, since children are a minority of the population (agreed) and
since most journeys to work are by car (not agreed — certainly untrue in Lon-
don where public transport takes almost all the strain), travel-to-school journeys
must be a small proportion of rush-hour car-to-work journeys. It seems possible
that in London school-run journeys are a significant proportion of rush-hour car
journeys, and if so the counter-argument would be demolished.

5.5.6 Whose fault is it, then? Despite all the attempts at logical proof, we still
don’t know whether or not the school run has a major or a minor effect on morn-
ing rush-hour traffic congestion. Logical reasoning, however careful, isn’t enough
to expose causes but it can expose the points at which research is worthwhile
and where there can be rational dispute.

5.6 Searching for formal proofs
This book is about formal — shapewise, meaningless — proof, and not about
finding formal correspondences with real-world reasoning. It is about making
proofs, as well as reading them. It’s time to turn our back on semantic reasoning
and the difficulties of sleepy academics, dead Majors and congested streets and
turn to the making of formal proofs.

Formal proofs are quite easy to read, once you understand the logical rules,
but they do look very inventive: when you first see one you wonder how the steps
were chosen and how the assumptions were dreamed up. In practice, because
proofs aren’t found in the way that they are read, making proofs is mostly a kind
of rational search and only rarely a species of invention. The proof calculator

4 The whole of central and east London was once paralysed for several hours because a
single lorry broke down in a river tunnel. The police had to smuggle the lorry driver away
and keep his name and address secret for fear of reprisals. I got home smug and warm and as
quickly as usual on my bike, of course.
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Jape, available on the internet for free (see www.jape.org.uk), is designed to help
you to learn about proof search by playing with real, if small, formal proofs. Once
you’ve learnt proof search strategy by playing around in Jape, you can use it
on paper and on blackboards and in examinations. And the strategy is really,
really, really easy to use.

That strategy is summarized in Table 5.2. Proof search is driven by the
shapes of formulae. It’s pretty straightforward, provided you can overcome what
seems to be an inborn novice prejudice against searching backwards from a
conclusion. There are further slogans about particular connectives and their
rules, but these are the core of what you need to know. Only slogan 8 looks
weird (classical contradiction gets special treatment in Section 5.6.6).

Table 5.2 Slogans for Proof Search

1. Don’t always work forwards.

2. Work on formulae with connectives.

3. Shape-match with formula-schemes in rules.

4. Fit hypothesis formulae to antecedents of elim rules; fit conclusion formulae to con-
sequents of intro rules.

5. Elim steps usually go forward, intro steps nearly always go backward.

6. Prefer rules that generate assumptions.

7. Believe in slogan 1.

8. If all else fails, classical contradiction might be worth a try.

5.6.1 Searching for proofs in Jape. Jape is a proof calculator. That means it
makes proof steps, just as an arithmetic calculator makes arithmetic steps. As
a calculator, it doesn’t give you any help: the step you choose to make may not
be one that leads to a proof. But, unlike an arithmetic calculator, it can undo
a step or several steps, so you can use it to search through the maze of possible
proof developments. And, as a calculator, it guarantees accuracy, so you can use
it to find out just what the effect of a proof step would be. The manual that
comes with Jape tells you how to drive it with the mouse and the keyboard, and
I shan’t repeat that information here.

What makes Jape useful is that it can help you to understand and learn
a strategy for finding proofs. After Chapter 4 you understand how rules fit
formulae; once you’ve learnt a few of the basic moves from the Jape manual, you
can begin to play.

The proofs you’ve seen so far in this book, apart from some bits of proof
about the undrowned Major, have been complete. Jape deals with complete
proofs and also with proof attempts: box-and-line structures in which all the

www.jape.org.uk
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Fig. 5.2 Three sample conjectures as seen in Jape

deductions that have been made are valid logical steps, but which need more
deductions to complete them.

You begin a proof attempt by choosing a conjecture from one of Jape’s
panels, or by typing in one of your own. What you see, as for example in Fig. 5.2,
is immediately a proof attempt, with a line of dots separating the conjecture’s
premises from its conclusion and showing the logical gap which has to be bridged;
even if there are no premises the dots are still there, because there’s still logical
work to be done. To save precious screen space, Jape usually puts as many
premises as it can on a single line. You work forwards from formulae above
the dots — called hypotheses — and/or backwards from a formula immediately
below a line of dots — called an open conclusion.

5.6.2 Proof search with ∧. Consider the formula E ∧F ∧G. The priority rules
of Table 4.3 tell us to read it as ((E ∧ F ) ∧ G), but the meaning of ∧ suggests
that it doesn’t matter how we bracket or order conjunctions. We might hope to
be able to make a formal proof which supports that intuition. Actually we would
need two proofs: one of E ∧ (F ∧ G) � (E ∧ F ) ∧ G and another, the other way
round, of (E ∧ F ) ∧ G � E ∧ (F ∧ G). If you accept one formula you can prove
the other; if you accept the other you can prove the one; so they are equivalent.

Fig. 5.3 shows the stages of a formal proof of half of the equivalence, found
by following the strategy slogans of Table 5.2. Slogan 2 doesn’t direct the first
step, because both the premise on line 1 and the conclusion on line 2 include
connectives. Slogan 3 tells us to shape-match; slogan 4 tells us what formula-
schemes to match. Line 1 fits either of the ∧ elim rules, and line 2 matches the ∧
intro rule: we therefore have a choice of backward or forward step, but since none
of the matching rules generates an assumption, slogan 6 doesn’t apply. Perhaps
we should prefer the backward step, because slogan 1 suggests that forward steps
aren’t always the right thing.

Despite slogan 1, most people would make a forward step in this situation
just because they can, and Fig. 5.3(b) shows the effect of ∧ elim applied to
line 1 of Fig. 5.3(a). I chose the rule which deduces A from A ∧ B: it’s then
reasonable to apply the other elim rule to the same premise (Fig. 5.3(c)). Line
2 of Fig. 5.3(c) is a new hypothesis which includes a connective, and Fig. 5.3(d)
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(a) conjecture

(d) two more ∧ elim (e) one ∧ intro (f) final ∧ intro

(b) first ∧ elim (c) second ∧ elim

Fig. 5.3 A proof using ∧ rules

shows the result of applying two more elim steps to that line. The effect so far
is to have extracted all the component parts of the premise.

Now that the connectives in the hypotheses are used up — all we could
do is produce more copies of the lines we’ve already made — slogan 2 tells us
that there’s nothing for it but to match line 6 of Fig. 5.3(d), the only active
conclusion. An ∧ intro step generates two antecedent conclusions in Fig. 5.3(e):
one (E ∧ F ) is shown as the new line 6, but the other (G) already appears on
line 3, so Jape appeals to it, as it should.

Now line 7 is no longer open, and all there is to work on is the new line
6. Another ∧ intro step links it immediately to lines 5 and 4, and the proof is
complete in Fig. 5.3(f).

It’s all very straightforward if you follow the slogans. If it weren’t for slogans
1 and 5, you might be tempted in Fig. 5.3(e) to try to make E ∧ F from lines
5 and 4, making an intro step forward. That’s possible in Jape but it’s much
harder than working backwards from line 6. That’s what slogans 1 and 7 are
about!

5.6.3 Proof search with →. Implication usually involves backward proof search,
much to the consternation of novices. But sometimes it’s possible to get away
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(c) final → elim

(a) the problem (b) one → elim

Fig. 5.4 Forward proof search with →

(a) the problem

(d) extract E (f) extract F(e) extract F → G

(b) a dead end (c) first step

Fig. 5.5 Mixed proof search with → and ∧

with forward steps only, as in Fig. 5.4. Slogan 4 is the only one we need in this
case.

More often we need a mixture of strategies, as in Fig. 5.5. The timid prover,
tempted to try → elim as a first step, only drives up a dead end (Fig. 5.5(b)).5

The correct first step, guided by slogans 1 and 6, is → intro, which produces
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(a) the problem (b) first step

(c) a dead end

(d) show cases (e) extract E

Fig. 5.6 Proof search with ∨

the box in Fig. 5.5(c). The rest is forward reasoning, first extracting E, then
F → G, then F , and finally G (not shown).

5 Why is it a dead end? Simply, because you can’t prove it’s raining when all you know is
that if it’s raining, then you will get wet: knowing A → B doesn’t tell us A. More on this in
Chapter 8.
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5.6.4 Proof search with ∨. For every novice who finds backward search with
→ intro disturbing, there must be five who think, the first time they try it,
that forward search with ∨ elim is extremely dangerous. Certainly, it makes a
big change in the display, and splits the proof search into two: but that’s what
argument by cases is.

Presented with the problem in Fig. 5.6(a), and fortified by previous expe-
rience with implication, most people can pluck up enough courage to attempt a
backward → intro step, giving 5.6(b). Then the step which produces the least
change in the picture, but which leads to a dead end, is ∨ intro backwards. There
are two versions of the step: Fig. 5.6(c) shows the one which extracts E from
the conclusion; the one which extracts G is just as bad.

The problem is that ∨ intro, in focussing on half the conclusion, throws the
other half away, and that’s usually not a good idea early on in a proof. The rule
has a slogan all of its own.

Table 5.3 ∨ intro slogan

∨ intro resolves uncertainty; use it as
late as possible.

The proof has to involve both sides of the conclusion E ∨G: neither of them
is irrelevant; neither can be thrown away yet. The correct second step, directed
by slogan 6, is ∨ elim forwards, which gives Fig. 5.6(d). The search has been
split into two cases, shown by the two boxes each with its own lines of dots. Now
it’s possible to see how to use ∨ intro properly: in one case we can easily prove
E, in the other G, and we can then resolve the E ∨ G uncertainty differently
in the two different cases. The proof in one case is immediate (Fig. 5.6(e)); the
search in the other case is straightforward but not shown.

5.6.5 Proof search with ¬. Fig. 5.7 shows a proof of E ∨F � ¬(¬E ∧¬F ), half
of one of de Morgan’s Laws, an equivalence familiar to anybody who has studied
Boolean arithmetic or computer hardware design. In Fig. 5.7(a), slogan 6 doesn’t
tell us how to choose between backward ¬ intro and forward ∨ elim, since each
introduces an assumption (or assumptions). Either approach will work, but I’ve
chosen to do the ¬ intro first, since exploration shows that it produces a slightly
shorter proof. Once both those steps are complete (Fig. 5.7(c)) you can see that
E on line 3 contradicts ¬E in line 2: extract ¬E (5.7(d)), make the contradiction
(5.7(e)) and the first case is closed. The second case is similar, and not shown.

Although this proof uses the contradiction symbol, it doesn’t use a contra-
diction rule. It’s therefore definitely inside the blob of Fig. 3.3, a proof which
both constructivists and classicists can happily accept. It’s a straightforward
connective-driven proof.
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(a) the problem (b) first step

(c) show cases

(d) extract ¬ E (e) derive ⊥

Fig. 5.7 Proof search with ¬
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(c) ¬ elim shows contradiction

(d) constructive contra
completes proof

(a) the problem (b) ∨ elim shows cases

Fig. 5.8 Proof search with constructive contradiction

5.6.6 Proof search with ⊥. Contradictions introduced by ¬ intro form the
target of ¬ elim. You usually use ¬ elim to produce a contradiction symbol and
then constructive contradiction gives your conclusion, as illustrated in Fig. 5.8,
but you can do it the other way round if you want to. Constructive contradiction
is really easy to use.
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(a) ignore half the
conclusion?

(c) press on! (d) father into the forest

(b) hope to destory the premise?

(e) father still (f) ... surely a dead end

Fig. 5.9 Constructive logic can’t prove ¬(¬E ∧ ¬F ) � E ∨ F

But easy steps aren’t always enough. Fig. 5.9 shows failed constructive at-
tempts to prove ¬(¬E ∧ ¬F ) � E ∨ F , the other half of the equivalence proved
in Fig. 5.7. In a constructive proof all that you can do with a disjunctive conclu-
sion is to throw half of it away with ∨ intro (5.9(a)) and all you can do with a
negated premise is to derive a contradiction with ¬ elim (5.9(c)). In this example
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reducing uncertainty in the conclusion with V intro doesn't help: the premise has
something to do with both E and F, and the proof can't focus on just one of
the two. Searching for a contradiction in the premise seems absurd: it only says
'suppose you don't have ->E and ->F together'.

If you don't notice the absurdity early enough you can push the symbols
till you reach a point where you are trying to show that from F you can prove
E (5.9(f)). The only hope of a proof would be to prove a contradiction, but it's
certain that you don't have -<F, because you already have ->£ on line 2 and the
premise says you can't have both together. Surely it's obvious that this is a dead
end.

In fact we need a classical proof: De Morgan's Laws are classical equiva-
lences. Classical proof needs the classical contra rule. The principles of using
classical contra are

1. you have to use it backwards like an intro rule;

2. you match an open conclusion to the consequent A of the rule.

Whereas every other intro rule has a consequent which will only match a formula
with an appropriate principal operator, the consequent A of classical contra will
match any conclusion formula at all. That means that you can always make a
classical contradiction step backwards and you never have a clue, either from
the shape of the conclusion you are trying to prove or the hypotheses you are
trying to prove it from, just when to do it. That's enough to prompt a very
condemnatory slogan.

Table 5.4 classical contra slogan

Classical contradiction is hard to deal with; use it
only when you have to.

I don't know any useful rules of thumb about when to use classical contra-
diction, except to say that you use it when you are stuck, but not usually at the
point where you get stuck. Instead, you usually backtrack and try it earlier. As
for how far to backtrack — experience and reflection is the only way to find out.

Fig. 5.10, for example, shows a classical proof of ( E/\ F) EVF. Once
you have explored the impossibility of making a constructive proof it's clear that
there is nothing useful which you can do with the conclusion or the hypothesis.
The only alternative is to start with a classical contradiction (5.10(a)). Then you
have a choice: elim forward can be used on the premise or the new assumption.
Because A is easier to work with in a conclusion than V, I choose the premise,
giving 5.10(b). Backward steps using the slogans get us to 5.10(c), at which point
the only available steps are elim with the premise or the assumption. Trying
the assumption (we already used the premise) gives 5.10(d); then it's obviously
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(a) classical contradiction first

(c) ... follow your nose ...

(e) close with ∨ intro (f) ... and on to completion

(d) ¬ elim with the assumption

(b) ¬ elim with the premise

Fig. 5.10 Classical proof of ¬(¬E ∧ ¬F ) � E ∨ F
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late enough for ∨ intro, closing that arm of the proof and giving 5.10(e). The
other arm works in a similar way. The end result in 5.10(f) is a classical proof
because of the classical contra step on line 13.

The proof looks very surprising if you forget the search process and read
Fig. 5.10(f), as most people would, ‘forwards’, top-to-bottom. What, for example,
inspired the proof designer, apparently from out of nowhere, to assume ¬(E∨F )
on line 2? When you have made the proof search you know that the need for an
assumption arose naturally from the need to make a classical contradiction on
line 13 when nothing else would do, that ¬(E ∨F ) was just the assumption that
the rule threw up, and that despite what the proof listing appears to suggest
line 13 was the first step that was decided on. Imagine how difficult it must
be to make proofs forwards-only, when you have to try to make assumptions
without knowing what assumptions to make! Even deciding when to make an
assumption, in such a cock-eyed scheme, would seem difficult.

By contrast, constructive proof search is straightforward. Even when classi-
cal contradiction has to be used, proof search is still highly rational. You’ll find
proof search with the rules of Chapter 3, up to and including classical contra-
diction, so easy that a few hours practice with Jape and its list of conjectures
will make you an expert.

5.6.7 The law of excluded middle and the classical contra dance. E ∨ ¬E

doesn’t have a constructive proof. The only rule applicable by slogan is ∨ intro,
and that asks us to prove either E or ¬E from no premises at all. I’m sure
you can see that proving E from no premises isn’t possible — ought not to be
possible, surely! — and that the same applies to ¬E.

The ‘law’ is dear to the classical heart, though. We ought to be able to prove
it, and from what you know already you should realize how: start with a classical
contradiction step (Fig. 5.11(a)). The next step just has to be ¬ elim — it’s the
only connective that’s available — and the result, Fig. 5.11(b), shows the weird
classical contradiction dance: if you can’t prove a conclusion, then try proving it
from its own negation! Classical contra wraps the conclusion in a negation and
installs it as an assumption from which you must prove a contradiction; ¬ elim
on the new assumption gives you the conclusion back. Weird, or what?

Now it’s safe to use ∨ intro to throw half the conclusion away, because the
other half is still preserved in the assumption. I keep ¬E (5.11(c)), because it
has a connective and that could be useful. Then ¬ intro gets us back to having
to prove a contradiction (5.11(d)), and all we can do is use ¬ elim again with
the original assumption. The proof closes with ∨ intro.

There are lots of pleasing symmetries in the proof search: for example, ¬
elim followed by throwing away half the conclusion is used twice, once with
each half. Read forward the proof seems quite marvellous, but apart from the
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(a) classical contradiction ...

(c) ∨ intro ...

(c) ¬ elim again (f) completion

(d) ¬ intro

(b) ¬ elim ...

Fig. 5.11 Classical proof of E ∨ ¬E

first step it was an entirely connective-driven business. It was also built almost
entirely backwards, apart from the ¬ elim steps that exploit the assumption of
the classical contradiction step.
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Fig. 5.12 Proof of the price-of-tomatoes principle, with hyp step

5.7 Just one more thing: redirection with hyp

The formal proof in Jape of the price-of-tomatoes argument F � E → F

(Fig. 5.12) uses a proof step that I haven’t described before. We have a proof
of F inside the box because there’s a proof of F outside it. We have to write
F on line 3 as the conclusion of the box because that’s what the → intro step,
which called for the box, demands. We could repeat the proof of F inside the
box (in this case, merely writing “premise” again), but in general it makes sense
to write something next to that conclusion line which says “look, there’s already
a proof over there”. Jape calls this redirection “hyp”, and it’s no more than a
means of avoiding repetition in box-and-line proofs. (It doesn’t have a proof-tree
equivalent because it would turn trees into DAGs — that’s why it doesn’t appear
in Chapter 3.)

Jape puts hyp steps in automatically. On paper and on the blackboard
you have to put them in for yourself. They don’t add anything to the power of
Natural Deduction, but they avoid a little repetition and they do no harm.



6 The logical quantifiers

So far we have been able to deal with logical claims about particular things:
claims about somebody called Richard, claims about the name Richard, claims
about Richard being a cabbage and/or a Martian. We haven’t yet been able to
relate claims about generalities to claims about particulars. From the claims ‘all
those integers are odd’ and ‘integer i is one of them’, for example, we ought to
be able to deduce ‘integer i must be odd’. From the claim ‘there is no Santa
Claus’ we ought to be able to deduce ‘you’re not Santa Claus’. From the claims
‘that is a wild wolf’ and ‘we are somewhere in England’ we ought to be able to
deduce ‘there is at least one wild wolf in England’.

Natural Deduction deals with generalizations, specializations, search for an
example, and all the other ways that a claim can be about a collection of things
or about a thing chosen from a collection, by using quantified formulae. In this
book there are only two quantifiers:

Table 6.1 Quantifiers of Natural Deduction

Quantifier Simple name Latinate name

∀ For all Universal

∃ There exists Existential

Roughly, ∀x(P (x)) — pronounced ‘for all x, P x’ — means “every thing has
property P”, and ∃x(P (x)) — pronounced ‘there exists x such that P x’ —
means “some thing has property P”. But, as you saw with the connectives, logic
isn’t content with rough definitions. In order to reason, we must be precise and
fundamental and, especially with the quantifiers, we have to avoid falling into
paradox-traps.

6.1 A logical universe
To make a generalization we have to say what we are generalizing over: the
streets of your home town, the positive integers less than 1000, all the dogs in
Australia, all the sheep in the world, whatever. The collection we generalize over
is our logical universe, and we can make claims about the whole universe, or
some sub-universe, or about particular individuals in the universe.
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To describe a universe is to point to some collection/pile/group/huddle
of things and say “there are all the individuals that I’m considering”. Names
describe individuals in the universe, but a name is just a label: you can’t deduce
anything from a name. The same individual can even have several names: “2”,
“two”, “the smallest prime” and “the positive square root of 4”, for example,
are all different names of the same number.

To begin with, while I’m setting up the ideas that lie behind the logical
treatment of generalization, specialization and all the rest of it, I’m going to
be vague about the universe I’m considering. It will be just some collection
of things I can name, including abstract ideas, scientific theories, particular
numbers, individual lumps of mud, people, football players, logicians, wolves —
whatever suits my purposes.

If I tried to be precise about such an unconstrained universe I would risk
falling into the set-theoretic hole that Russell pointed out to Frege (see Chapter 1).
When I get more precise I’ll restrict myself to simple well-understood things I
can point to, like babies, wild wolves and finite integers, to avoid that paradox.

6.2 Properties of individuals
Consider the music-stave mnemonic “Every Good Baby Deserves Favour”. Sup-
pose there is some individual in the universe named i (not necessarily a baby:
it might be a lump of mud, or a wild wolf, or Newton’s third law of motion).
I’m going to invent some properties which the individual i might have or might
lack: the property of being a baby, the property of being good, the property of
deserving something. My desk has perhaps one of these properties; each of my
grandchildren has at some time had all three; the logic we are studying has one
of them and so, occasionally, does my wastebasket.

Suppose that Baby(i) — pronounced “Baby i” — means “individual i has
the Baby property”. Individuals that “have the Baby property” are babies, of
course, so Baby(i) is just the way to say that i is a baby. Similarly, Good(i) is
supposed to mean i is good.

Then Baby(i)∧Good(i) — or, equivalently, Good(i)∧Baby(i) — says that i

is a good baby: if you accept it, then you accept that i is both a baby and good;
you can reject it only if i is not a baby or is bad. Suppose that Deserves(x, y)
means “individual x deserves individual y”: then Deserves(i, favour) means that
the i individual deserves the favour individual.

Now that I’ve explained my notation, I can write down a formula which
means “if i is a good baby then i deserves favour”:

Baby(i) ∧ Good(i) → Deserves(i, favour) (6.1)
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It’s easy to see that if there are other individuals in the universe then I can replace
i with their name and produce a similar claim, but with different impact:

Baby(richard) ∧ Good(richard) → Deserves(richard , favour) (6.2)

If I’m the individual richard then this claim doesn’t say that I deserve favour,
because it’s an implication and I’m not a baby: it’s a cunning-uncle promise. It
doesn’t say that I don’t deserve favour either, only that I would certainly deserve
it if I was ever a good baby again.

6.3 Generalization and specialization
I can make a claim about the i individual, stating some of its properties and
its relationship to the favour individual. But the claim I started with was a
generalization, a claim about every good baby and its deserts. I generalize my
claim about the individual i by crossing out the name i wherever it occurs and
replacing it with a variable name x. Then I wrap the result up as a universal
quantification, written ∀x(. . .), and I have a claim which applies to any individual
whose name you write in place of x.

∀x(Baby(x) ∧ Good(x) → Deserves(x, favour)) (6.3)

is pronounced “for all x, if x is a baby and x is good, then x deserves favour”.
It means precisely that every good baby in the universe deserves favour.

The reverse of generalization is specialization. A universal claim applies to
every individual, so we can replace the variable with the name of any individual,
get rid of the quantifier, and there we are. Here are four specializations of (6.3):

Baby(i) ∧ Good(i) → Deserves(i, favour) (6.4)

Baby(j) ∧ Good(j) → Deserves(j, favour) (6.5)

Baby(richard) ∧ Good(richard) → Deserves(richard , favour) (6.6)

Baby(favour) ∧ Good(favour) → Deserves(favour , favour) (6.7)

The first and the third we’ve seen already. The second is just like the first, a
claim about the properties of individual j. The last looks a bit odd: richard was
once a baby, but favour is surely a different kind of thing. Shouldn’t that claim
be outlawed somehow?

The answer’s no: it shouldn’t be outlawed. If favour is an individual in the
universe, as I’m supposing it is, then it can be examined for properties too.
That’s what the left-hand side of the implication does. This claim is just exactly
as vacuous as the one about richard , and for exactly the same reason: whatever
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sort of thing favour is, it isn’t a baby, so the claim is in cunning-uncle territory
and therefore useless.

Universal quantifications are universal claims, claims about every individual
in the universe. You can’t outlaw anybody or anything, once you’ve decided
they’re in the universe to begin with.

6.3.1 Small print. When I generalized (6.1) I crossed out all the is and replaced
them with xs. I didn’t have to do that: it’s enough to cross out and replace some
of the occurrences of a name. ∀x(Baby(x) ∧ Good(i) → Deserves(x, favour)), for
example, says that if i is good then every baby in the universe deserves favour.
I can even cross out none of the occurrences and make a vacuous generalization:
∀x(Baby(i) ∧ Good(i) → Deserves(i, favour)) always specializes to (6.1).

When specializing a universal claim, on the other hand, I can choose the
individual freely but I must replace all the occurrences of the quantified variable
name with the chosen individual’s name.

6.4 Anonymization and nomination
When we are feeling specially sugary, we might accept that i actually is a good
baby who deserves favour (no ifs and no buts — so no implication, just a con-
junction):

Baby(i) ∧ Good(i) ∧ Deserves(i, favour) (6.8)

That is a specific claim, identifying a specific favour-deserving individual named
i. We can anonymize it, make it say that there is some exceptional individual
out there, but avoid naming that individual. As before we replace occurrences
of a name (i) with a variable name x, but this time we wrap up the result
in an existential quantification, written ∃x(. . .). Now we have a claim about a
particular unnamed individual in the universe:

∃x(Baby(x) ∧ Good(x) ∧ Deserves(x, favour)) (6.9)

This is pronounced “there exists an x such that x is a baby and x is good and
x deserves favour”, and it means that there is a good deserving to-be-favoured
baby somewhere out there in the universe. Since we already accept that i is such
a baby, we must accept the anonymized claim.

The reverse of anonymization is nomination. We name a particular individ-
ual as a witness to demonstrate an existence formula. In this case I could use i,
because that is the example I anonymized to begin with. But I don’t have to: if
j is another equally worthy baby then j can be my witness instead.

Baby(j) ∧ good(j) ∧ Deserves(j, favour) (6.10)
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If I were to attempt to nominate the favour individual then I would produce an
unacceptable claim:

Baby(favour) ∧ Good(favour) ∧ Deserves(favour , favour) (6.11)

Not so! There’s no implication, so no chance of a cunning-uncle trick here: favour
is not a baby, so it doesn’t support the existential claim. We can’t nominate any
old individual to witness an existential claim. We have to find one which satisfies
the claim: that is, one that makes the claim provable (in constructive logic) or
true (in classical logic).

6.4.1 More small print. Just as with universal claims in Section 6.3.1, so it is
with existentials. When anonymizing I cross out some or all or even none of the
occurrences of a chosen name (i in the example above); when nominating I must
replace all the occurrences of the quantified variable (x in the example above)
with a chosen name.

6.5 Predicates and relations: formulae with holes
Goodness and babyhood are properties which an individual can have; Good(i)
and Baby(i) are formulae which say that the individual i has those properties.
Abstracting, Good( ) and Baby( ) — the same formulae but with holes in place of
the name i — are templates for constructing remarks about arbitrary individuals,
simple predicates which describe a particular property.

We aren’t restricted to simple predicates: a predicate is, in general, just a
formula with some number of holes in it. Good(i) is a simple claim about an
individual i; Baby(i) ∧ Good(i) a more complicated claim; Baby(i) ∧ Good(i) →
Deserves(i, favour) a more complicated claim still. If we cross out all the is we
get

Baby( ) ∧ Good( ) → Deserves( , favour) (6.12)

This is a composite predicate: more than just a simple name and a single hole,
but a predicate still. If we call this formula BGDfavour( ), then BGDfavour(i) is
the claim I started with in (6.1); BGDfavour(j) is (6.5); BGDfavour(favour) is
(6.7), and so on.

In making a composite predicate you don’t have to be straightforward: you
can play tricks. The composite predicate BGDifavour( ), produced by deleting
the first two occurrences of i but leaving the third, is

Baby( ) ∧ Good( ) → Deserves(i, favour) (6.13)

BGDifavour(j) claims that if j is a good baby then i deserves favour. (Everybody,
at some stage of their life, thinks the world is treating them like j and giving
everything to some i.)
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You can even play the trick of leaving no holes at all. For all sorts of reasons
(see the discussion of zero and the green sheep below) mathematicians don’t want
to make zero a special case. So a predicate formula with no holes is just a very
peculiar predicate: every instance is the same as every other. Such a predicate
is as tricky as a cunning uncle, and just as hard to legislate against.

Composite predicates can be arbitrarily complicated formulae. The claim
that every good baby deserves favour — ∀x(Baby(x) ∧ Good(x) → Deserves
(x, favour)) — can be made into a predicate by crossing out favour . That pro-
duces a composite predicate which is a universal quantification with a hole in
it:

∀x(Baby(x) ∧ Good(x) → Deserves(x, )) (6.14)

This predicate, which we might call EBGD, can now be applied to individuals
to produce claims. EBGD(favour) — the predicate with favour in the hole — is
the claim we’ve been working with. We might want to say EBGD(icecream), a
claim which will gain the approval of most babies but fewer parents.

If you cross out occurrences of more than one name then you produce a
relation, a formula which describes how one individual relates to another. To
keep things straight you have to mark the holes to show which name went where.
EBGDr( 1 , 2), for example, might describe the formula

Baby( 1) ∧ Good( 1) → Deserves( 1 , 2) (6.15)

— the is were in the 1 positions, favour was in the 2 position. EBGDr(i,
favour) expresses the relationship between good baby i and favour in (6.1).
EBGDr(richard , favour) reproduces the vacuous remark of (6.6).

6.5.1 Multiple quantifiers. The specialisation/nomination process I’ve des-
cribed several times — cross out the xs, replace them by is, throw away the
quantifier — works fine, no matter how complicated the composite predicate
might be. In particular, it works even if the composite predicate contains quan-
tifiers. For example, to nominate a witness for ∃y(∀x(Baby(x) ∧ Good(x) →
Deserves(x, y))), you cross out the y, replace it with a witness like icecream,
throw away the ∃, and produce ∀x(Baby(x)∧Good(x) → Deserves(x, icecream)).

Matters get more complicated if a formula contains quantifiers which share
a variable. To avoid difficulty I shall strictly avoid such practices.

6.6 Matching quantified-formula schemes
Chapter 4 dealt with the matching of connective-formula schemes to formu-
lae. Matching A → B to Baby(i) ∧ Good(i) → Deserves(i, favour), for example,
matches A with Baby(i) ∧ Good(i) and B with Deserves(i, favour).
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Table 6.2 Binding power of connectives and quantifiers

1. ∀, ∃ (right-to-left)

2. ¬ (right-to-left)

3. ∧ (left-to-right)

4. ∨ (left-to-right)

5. → (right-to-left)

What happens, though, if we match the quantified-formula scheme ∀y(Q(y))
with ∀x(Baby(x) ∧ Good(x) → Deserves(x, favour))? Clearly y in the scheme
should match x in the formula, and clearly Q(y) has to match Baby(x) ∧
Good(x) → Deserves(x, favour), just because of the way that the brackets fall.
But what matches Q?

The answer is that the scheme predicate Q( ) matches the composite predi-
cate formula Baby( )∧Good( ) → Deserves( , favour) — and then Q(y), because
y matched x, is Baby(x) ∧ Good(x) → Deserves(x, favour). It all fits.

When we don’t have brackets to guide us, we need binding rules. Table 6.2
shows that quantifiers fit in at the highest priority, binding tighter than any
connective. So, for example, ¬∀x(Good(x)) is a negation, equivalent to ¬(∀x

(Good(x))), and ∀x(Good(x)) ∧ ∃y(Baby(y)) is a conjunction, equivalent to
(∀x(Good(x))) ∧ (∃y(Baby(y))).

6.7 Universes, individuals, ‘actual i ’
So far I’ve based my discussion on a universe which was understood as ‘every
thing I can name’. I didn’t consider the possibility that there might be no things
which could be named. The universe of nameable things, simply understood, is
not empty — it’s always got me in it, for one, and you, for another.

There are lots of other non-empty universes: the universe of whole numbers,
the universe of rational numbers, the universe of people who have won Olympic
gold. On the other hand, there are universes that are empty of individuals: the
universe of square primes (empty by definition); the universe of people who have
won a gold medal at twenty successive Olympics (empty now, but who knows
what hyperathlete may emerge?); the universe of wild wolves living in England
(empty in 2004, but I dream that one day England will be fit for their return).

If the universe of quantification is populated then certain consequences fol-
low. Suppose, for example, I accept ∀x(Good(x)) and the universe isn’t empty:
then there must be at least one good individual in it. As a logical consequence of
∀x(Good(x)) I must accept ∃x(Good(x)) — some particular individual is good,
whether or not I know its name.
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But what happens if the universe of quantification is empty? What can we
say, for example, if we choose the universe of wild English wolves? There are no
wild wolves in England, so we can’t say ∃x(Good(x)), because we can’t point to
a good wild English wolf. But we also can’t say ∃x(¬Good(x)), for an exactly
similar reason.

You might suppose that we couldn’t say anything definite about the in-
habitants of an empty universe, but you’d be wrong, as we shall very soon see.
Just like zero, the most famous kind of useful Nothing, empty universes aren’t
devoid of properties. In fact we can conclude ∀x(Good(x)) of the universe of wild
English wolves! But then ∃x(Good(x)) can’t be a logical consequence if our logic
is to avoid nonsense.

So we could be misled in our reasoning if we assumed that every logical
universe is populated. Logicians deal with this difficulty in various ways. I shall
use a version of Natural Deduction in which you must always take special care
to point to evidence about presence when specializing or nominating. A special
kind of presence marker — actual i, actual j, and so on — will be used in the
formal rules as this kind of evidence.

6.8 Reasoning with ∀
Conjunction can be used to string together a collection of assertions A ∧ B ∧
C ∧ . . . , to say that we accept every single one of the assertions in the collection.
If we want to make a conjunctive claim about every individual in a very large
collection — P (C1)∧P (C2)∧. . . — it is often best to make a general claim about
the collection as a universe of quantification. In this way we can deal even with
infinite collections: for example, Goldbach’s conjecture says something about
every even number larger than 2.
The claim ∀x(P (x)) is pronounced “for all x, P x”.

Definition 6.1 ∀x(P (x)) claims that every individual in the universe satisfies
predicate P ( ).

The definition doesn’t say that you will ever meet an individual which sat-
isfies predicate P ( ), because the universe might be empty. Like the definition of
implication, it’s about what would happen if you did meet anybody. The predi-
cate P ( ) can be composite, so that P ( ) is, in general, just a formula with some
holes in it (or even no holes at all, if you want an irrelevant quantification).

Suppose that I accept ∀x(P (x)), and I accept also that there is an individual
in the universe called i. Then I must accept that the individual i, since it is in
the universe, has the property P . That is, I must accept P (i). This is the step
of specialization, captured by the ∀ elim rule in Table 6.3. You cross out all the
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Table 6.3 Rules for universal quantification

...

∀x(P (x))

...

actual i

P (i)
∀ elim

actual i

...

P (i)




(private i)

∀x(P (x))
∀ intro

xs in P (x), exposing the predicate P ( ) as a formula with holes, and then write
i in each of the holes, creating P (i).

How might I be persuaded to accept ∀x(P (x))? In very small universes you
might take me round to meet all the individuals in turn, showing me that each
has property P . By showing me all of them, you force me to accept ∀x(P (x)).

But in many cases, and in most of the interesting cases, the universe isn’t
small at all. For example, how could you prove that in the infinite universe of
integers, ∀x(x > 1 → x2 > x)? In such a case you have to make a generalized
proof which would apply to any individual in the universe, no matter how I pick
it out.

You begin by asking me to suppose that I’ve picked something from the
universe. It mustn’t matter which individual I pick: for example, if I’m picking
from a universe of integers, it mustn’t matter if it’s positive, negative, zero, non-
zero, prime, non-prime, a power of 2, a cube, . . . whatever. I don’t really pick
anything (this isn’t the magician’s trick “think of a number”), I just imagine that
I’ve picked something. ‘For the purposes of argument’ we name this imaginary
individual i (or j or k or any other pseudo-name which isn’t the real name of
anything in the universe). We capture the imagination step with the presence
marker ‘actual i’ (or actual j, or actual k, any other pseudo-name you choose);
that means “suppose that there is some individual i (or j or k or . . . ) in the
universe”.

Now you must prove that the imagined individual must necessarily have
property P — that is, from the assumption actual i, plus any premises and any
stuff you have already proved from the premises, you must show me that I must
accept P (i). To mimic the notion that i is an arbitrary choice I have to be sure
that you haven’t already persuaded me to accept something about the individual
i elsewhere, in some other part of the proof. We impose a special side condition
that the name i must be private to the argument. It isn’t a hard condition to
meet — if you’ve used the name i before in your proof, just choose a different
name like j or k or foodle that you haven’t used. The privacy condition makes
it impossible for you to smuggle in any extra assumptions about i from outside
the ‘i must have property P ’ argument, because you can’t mention i anywhere
outside that argument.
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If you can prove, under conditions of privacy, that the assumption that i

is an individual means that it must have property P , then you have reached a
marvellous conclusion. Your argument, which seemed to be about an particular
individual i was, because of its abstraction and its isolation, about an arbitrary
individual.1 If I now point to a real individual — favour or richard or icecream
or whoever — the proof must apply to that real individual, because that might
have been the one I chose. The same applies to every individual, so the proof
applies to any individual in the universe: any individual I might meet will have
property P . I must accept ∀x(P (x))!

Notice that the generalized proof strategy which is captured by ∀ intro
doesn’t require that the universe really does contains any individuals. You prove
that if you meet an individual, then that individual will have property P . Even
if you can separately prove that there are no individuals to meet, the proof of
∀x(P (x)) still stands. We’ll see the consequences of that oddity very soon.

The generalized proof technique is captured in the ∀ intro rule in Table 6.3.
The privacy condition is absolute. You can’t mention i outside the antecedent
proof at all. In particular, you can’t mention it anywhere in the predicate P ( )
— which is, remember, just P (x) with the xs crossed out.

Since universal quantification is a generalization of conjunction, the ∀ elim
rule is a generalization of ∧ elim: we pick something from the long, possibly
infinite conjunction P (C1) ∧ P (C2) ∧ . . ., just as ∧ elim picked one from a pair.

Similarly, the ∀ intro rule is a generalization of ∧ intro. The generalized proof
stands for a sequence of individual proofs P (C1), P (C2), . . . and the consequence
wraps up the whole sequence into a single short claim.

6.9 Reasoning with ∃
Disjunction can be used to string together a collection of assertions A∨B∨C∨. . .,
to say that we accept one or more of the assertions in the collection. If we
want to make a disjunctive claim about the individuals in a large collection —
P (C1) ∨ P (C2) ∨ . . . — it is often best to make an existence claim about the
collection. In this way we can talk even about infinite collections, as for example
in the proof of Fig. 3.2 on page 38, where it was asserted that irrational numbers
x and y exist such that xy is rational.
The claim ∃x(P (x)) is pronounced “there exists x such that P x”.

Definition 6.2 ∃x(P (x)) claims that I can point to an individual which satisfies
predicate P ( ).

1 Often referred to as an arbitrary fixed individual, because it is arbitrarily selected but
that selection is fixed during the argument.
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The definition doesn’t force me to point to any individual: like the definition
of disjunction, I’m allowed to leave the question uncertain. As usual P ( ) can be
a composite predicate, in general just a formula with some holes in it, or (if you
want an irrelevant quantification) even no holes at all.

∃ is a generalization of ∨, so we’d expect to use an acceptance of ∃x(P (x)) in
a generalized argument by cases. Suppose that I accept ∃x(P (x)) : how can you
persuade me that I must accept some consequence C? You know that I accept
that there is some individual which has the property P , but you know that I
won’t say which. The ∨ elim rule solves the problem by dealing with each case of
the disjunction separately, but you can’t really expect to deal with all the cases
in the generalized disjunction, unless the universe is finite and rather small.

So you ask me to suppose that there is something called i which actually
has property P , and then show me that in those circumstances I must accept
C. Just as in the case of ∀ intro, provided that you don’t make any prior as-
sumptions about the individual I imagine, your proof applies to any individual
which happens to have property P . If there really is an individual out there
with property P — which is what my acceptance of ∃x(P (x)) means — I must
accept C. You have done your job without forcing me to reveal any individual
that really has property P .

That anonymized proof strategy is captured in the ∃ elim rule of Table 6.4.
Once again, the privacy condition is absolute: in particular i can’t appear in the
conclusion C (because C appears outside as well as inside the private proof) or
in the predicate P ( ).

How might I be persuaded to accept ∃x(P (x)), if I don’t accept it already?
That’s easy: point to an individual which actually has property P , and use it
as a witness to the existence assertion. That’s captured in the ∃ intro rule of
Table 6.4.

Existential quantification is a generalization of disjunction, so ∃ elim is a
generalization of ∨ intro: the general proof stands for all the separate little proofs
P (C1), P (C2), . . .

Table 6.4 Rules for existential quantification

...

∃x(P (x))

actual i, P (i)
...

C




(private i)

C
∃ elim

...

P (i)

...

actual i

∃x(P (x))
∃ intro
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Similarly, ∃ intro is a generalization of ∨ intro: show that I must accept
one of the components of the large, possibly infinite, disjunction and the whole
claim follows.

6.10 Quantifier idioms
The connectives of Chapter 3 are as simple to use as the familiar operators of
arithmetic. Quantifiers are a little more subtle.

6.10.1 ∀x(P (x) → Q(x)). At the beginning of this chapter I said I would deal
with a universe that includes everything you can name. But the claim ‘every
good baby deserves favour’ sounds like a quantification over a universe of good
babies: any individual in that universe, it seems to say, deserves favour. If I
had said that I would quantify over the good-baby universe, then all I would
have had to say is ∀x(Deserves(x, favour)). Instead I quantified over a universe
that included many individuals that aren’t good or aren’t babies or both, and
produced the formula ∀x(Good(x) ∧ Baby(x) → Deserves(x, favour)).

The idiom ∀x(P (x) → Q(x)) is a nested promise: it promises that if you
meet an individual, then: if that individual has property P , then it will also have
property Q. That neatly picks out the sub-universe of individuals with property
P , and says that they all have property Q.

6.10.2 ∃x(P (x) ∧ Q(x)). In the good-baby universe, the claim that some good
baby out there really deserves an ice cream is just ∃x(Deserves(x, icecream)). In
the everything-you-can-name universe the same claim is ∃x(Good(x)∧Baby(x)∧
Deserves(x, icecream)). The more complicated formula makes the claim that I can
point to an individual which is, because of the conjunction, both a good baby
and deserving of an ice cream. That’s an individual which is in the universe of
good babies and in the universe of those who deserve an ice cream.

The formula ∃x(P (x) ∧ Q(x)) is a pointing claim — I can point to an
individual which has property P and property Q. You can read either P or
Q as defining a universe, since conjunctions are symmetrical. So the claim
∃x(Good(x) ∧ Baby(x) ∧ Deserves(x, icecream)) captures each of the claims that
there is somebody in the good-baby universe who deserves an ice cream, or that
there is somebody in the deserves-an-ice-cream universe who is a good baby,
or that there is an individual in the good universe who is a baby deserving an
ice cream, or that there is somebody in the baby universe who is good and
ice-cream-deserving.

Usually the idiom ∃x(P (x)∧Q(x)) is read from left to right, expressing the
claim that P defines a sub-universe of individuals, one or more of whom has
property Q.
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6.11 Universal quantification and the empty universe
Zero was once a revolutionary idea. First of all it was just a brilliant wheeze:
accountants and the like saw the need for a mark which means Nothing. Better
to make a mark than to leave no mark, because absence is ambiguous: it might
mean there is Nothing here, or it might mean there is nothing here. Once you
have a mark which means Nothing, absence of a mark is distinct from a mark
of absence.

The idea of a name which means ‘nothing’ is easily mocked. Lewis Carroll,
a 19th century logician, did that in Through the Looking Glass:

“Look down the road and tell me who you can see”, said the King.
“I can see nobody on the road”, said Alice.
“What good eyesight you have!”, exclaimed the King. “To see Nobody
at such a distance! I have never seen him at all!”

The Babylonians knew something about zero, but the Greeks and Romans ap-
parently did not. Our use of zero derives from Indian astronomers, who seem to
have picked it up in about 400 CE from Hindu accountants in North India, who
inherited or re-invented it in about 100 CE. Muhammad ibn Musa al-Khwarizmi
(c. 800 CE), whose name was corrupted into Latin as ‘Algoritmi’ and thus gave
us the word ‘algorithm’, learnt of the idea and incorporated it into his wonderful
system for doing arithmetic, which every schoolchild nowadays learns (see Chap-
ter 14). Europeans were slower off the mark — at first they called al-Khwarizmi’s
notation ‘the nine signs’, despite the obvious fact that there are ten signs includ-
ing zero — but they caught up eventually and abandoned Roman stick-counting
for what they still call Arabic numerals.

The properties of zero were developed over time as mathematicians incor-
porated it into their thinking. It isn’t a counting number (you can see one sheep
or two sheep, but you can’t actually see zero sheep . . . ) so most of the world
thinks of zero as a special case, different from other numbers if it’s a number
at all. Mathematicians, who love to generalize, try to make zero just another
number, albeit a remarkable one.

For example: what is the value of
∑〈 〉, the sum of an zero-length (empty)

sequence? Well, counting upwards we know that
∑〈a0〉 = a0 ,

∑〈a0 , a1〉 = a0 +
a1 = (

∑〈a0〉) + a1 . Generalizing, we expect that∑
〈a0 , a1 , . . . , an−1 , an〉 =

(∑
〈a0 , a1 , . . . , an−1〉

)
+ an

If the zero-length sequence is to fit the generalization, we must have∑
〈a0〉 =

(∑
〈 〉
)

+ a0

and since we already know
∑〈a0〉 = a0 , that tells us that

∑〈 〉 = 0. The only
answer that fits is that the sum of a zero-length sequence, one in which there
are no elements, is zero. Not undefined, not a stupid question, but zero.
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Similar reasoning tells us that the value of the product of an empty sequence∏〈 〉 = 1 — surely even more surprising! — and that x0 = 1, and so on and
on. Zero isn’t a ludicrous nothing-with-a-name, it’s a number. Of course it’s an
unusual number: for one thing, it has as a factor any other number at all; for
another, it can sometimes bite, as when x ÷ 0 is infinite (and infinity is another
remarkable number, but outside this discussion).

Only the most naive schoolchild would nowadays think zero is just a trick,
or not really a number. It is a number, and you can meaningfully do calculations
with it which can have surprising results.

Unfortunately, schoolchildren don’t have much experience with the empty
set, which is another kind of nothing. If they did, novice logicians wouldn’t have
so much trouble with the field of green sheep, the room of drunken circus ele-
phants, the class of attentive students (only joking!) or the pack of wild English
wolves.

6.11.1 The field of green sheep. Suppose that I rig up a huge green light filter
above a field of sheep, so that anybody who looks into the field will see green
sheep. Taking the animals in that field as our universe, you’d surely agree that
∀x(Green(x)) is a reasonable claim, provided that you’re prepared to accept for
the sake of argument that everything that looks green is green.

Now I send in a sheepdog with instructions to drive the sheep into an-
other field. We no longer have ∀x(Green(x)), because the dog looks black-and-
green, but surely ∀x(Sheep(x) → Green(x)) holds. Then, as each sheep leaves the
animals-in-that-field universe, all the sheep that are left behind are still green.
At the end, with only the dog in the field, do we have ∀x(Sheep(x) → Green(x))?
Well, the way that I built it, I think that we do: if you meet a sheep there, then
it will seem to be green.

Then I turn the light off. It’s still true that if you meet a sheep in this field
it will seem to be green, because the dog is keeping them all out. I close the
gate and call the dog off: now the field is completely empty and has no funny
lighting but we still have ∀x(Sheep(x) → Green(x)). All the sheep in an empty
field are green (also red, blue, purple and polka-dot), and so are the dogs. The
empty universe is a peculiar place.

We don’t need an empty field to hold the green sheep: let me take you to
the pen where I keep my puppy dogs. They aren’t very well trained yet, and
they make such a racket that all sheep keep well clear. In this universe, then,
∀x(¬Sheep(x)). But here too we have ∀x(Sheep(x) → Green(x)): there are pup-
pies but no sheep, so if you met a sheep then I can say it would be green, and you
can’t show me one that isn’t. The argument is by vacuous implication, just like
the cunning uncle of Chapter 3, and the formal argument is shown in Fig. 7.14
on page 115. The empty sub-universe is just as weird as the empty universe.

It turns out that the empty universe can be regarded as the root of any
universe you like. I am fairly sure that in the room you are in, all the circus
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elephants are drunk; in England, as I write, all the wild wolves are good and
at the same time all bad, all the female wolves are called Demelza, and all the
males can whistle Beethoven’s Ode to Joy in three-part harmony.

You can reject these kind of arguments if you wish, but you will be taking
a position just like that of the mediaeval Europeans faced with the idea of
zero, cutting yourself off from all sorts of useful reasoning. If you accept them
then you can move forward, realizing that the empty universe is an interesting
and surprising place, the zero of quantification, just as useful and dangerous as
the number zero. No wonder we need presence markers in our rules to protect
ourselves against it.

6.12 Quantifier rules summarized
Table 6.5 shows all the quantifier rules. There are only four of them. Together
with the ten rules of Table 3.9 and two rules from Table 3.10, they make up the
whole of the system of Natural Deduction. Add the hyp step of Section 5.7, and
you have all that you need to make formal proofs in Jape. Sixteen rules, the
whole caboodle. Hardly more than a page. Truly this is a simple formal system.

6.12.1 That’s it! No more rules. Nothing more to be said. Connectives and
quantifiers — done the lot.

6.12.2 Oh no it isn’t! Of course there is more. What comes next is use, practice
and reflection. Jape will help you to make formal proofs with quantifiers and
connectives in any combination. It’s tricky at first to use the rules with perfect
accuracy; Jape does the accuracy bit, so you can concentrate on the steering.

Table 6.5 The quantifier rules

...

∀x(P (x))

...

actual i

P (i)
∀ elim

actual i

...

P (i)




(private i)

∀x(P (x))
∀ intro

...

∃x(P (x))

actual i, P (i)
...

C




(private i)

C
∃ elim

...

P (i)

...

actual i

∃x(P (x))
∃ intro
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That’s how you get practice. Reflection means turning over what you think you
know to see if you understand it. Once you get some practice in, there will be
plenty to think about!

And then, once you are a skilled prover, comes disproof in Part III and
program proof in Part IV.



7 Proofs with quantifiers

Now that we have quantifiers, we can examine more interesting proofs. As in
Chapter 5, I begin with some informal examples to give a feel of how the rules
work.

7.1 The man in the dock
A man is on trial for murder. He’s a minor gangster and between you, me and
the judge, we think he did it. But English justice, like constructive logic, doesn’t
search for truth. Court cases are decided by argument; the law is about proof
and disproof. (An oversimplification: for the rest of this chapter let’s pretend.)

To get off, all our man has to do is to undermine the prosecution’s argument,
to raise a reasonable doubt in the mind of the court that he might be guilty.
In order to do that, he and his lawyer have to show that there is a gap in
the reasoning that leads from the prosecution’s evidence to a guilty judgement
and/or that their evidence is self-contradictory and/or that it contradicts reality.
Because he once did a course on logic, he’s going full tilt for contradiction.
Because he didn’t study very hard, he is on shaky ground.

7.1.1 The prosecution case. The prosecution brings a single witness — call
him enemy — who testifies that he actually saw our man — call him accused
— kill the victim. He identifies our man in court. You’ve seen the TV dramas;
you can imagine the scene.

In earlier sessions, beyond the scope of this discussion, the court has heard
evidence of the death, and is convinced that a death took place — in our notation,
‘actual killing ’. The defence doesn’t dispute this: certainly somebody died. But
it doesn’t admit that our man committed murder.

What has the prosecution proved? Ignoring the problem of veracity —
enemy might be lying or mistaken, which is one of our man’s potential de-
fences — it has shown somebody who says they saw the killing, and the court
heard that person identify our man as the killer. The claims of the evidence
can be boiled down to Saw(enemy , killing) — the enemy saw the killing — and
Identifies(enemy , accused) — the enemy pointed to our man as the one he saw
doing it. (Actually this is a long way from proof of murder. In English law, a
crime requires a guilty mind. If you kill somebody accidentally, it may be a crime
but it isn’t murder. Still, let’s pretend.)
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Table 7.1 The ‘legal axiom’

∀x


Person(x) →

∀y

{
Crime(y) →

∃z 〈Person(z) ∧ Saw(z, y) ∧ Identifies(z, x)〉 → Guilty(x, y)

}

1. actual enemy we can see him

2. Person(enemy) we can see that too

3. Saw(enemy , killing) enemy claims

4. Identifies(enemy , accused) enemy claims

5. Person(enemy) ∧ Saw(enemy , killing) ∧ intro 2,3

6.
(

Person(enemy) ∧ Saw(enemy , killing) ∧
Identifies(enemy , accused)

)
∧ intro 5,4

7. ∃z
(

Person(z) ∧ Saw(z, killing) ∧ Identifies(z, accused)
)

∃ intro 6,1

Fig. 7.1 Somebody says he did it

To find our man guilty, the court has to be persuaded that he fits into the
framework of the legal axiom of Table 7.1, which I write with three different
kinds of brackets so that you can more easily see its structure (don’t forget that
→ binds right-to-left, so that A → B → C means A → (B → C)). To find any
person x guilty of crime y, we must hear another person z state that he/she saw
the crime and identifies x as the perpetrator; and if that happens, we must find
x guilty. (Another oversimplification. Keep pretending.)

It certainly looks as if the prosecution has a case. The court can reasonably
deduce an instance of the existence part of the legal axiom (Fig. 7.1). Then it can
go on to specialize the axiom itself, and extract a guilty judgement (Fig. 7.2). It
seems that our man will be convicted this time. But he’s been in more difficult
corners. He’s confident that his defence team will get him off.

7.1.2 He couldn’t see me do it! The first part of enemy ’s evidence was Saw
(enemy , killing). But, says our man, it was a specially dark night: no moon, no
street lights, and it was raining. He knows an expert who will testify that when
it’s that dark, nobody can see anything clearly at all. The expert will testify
that VeryDark → ∀x(∀y(¬Saw(x, y))), and he will bring evidence to establish
VeryDark on the night in question.

Suppose he does this: is there a contradiction? Our man hopes to estab-
lish ¬Saw(enemy , killing), and that directly contradicts enemy ’s evidence. That
may introduce doubt in the court’s mind. Indeed he can do more: his evidence
seems to show that ¬∃z(Saw(z, killing)), which would contradict any number of
prosecution witnesses who might be lined up ready to testify. The reasoning is
shown in Fig. 7.3. That looks like a good defence. If only the ‘expert’ didn’t look
like his twin brother . . .
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1. actual accused we can see him

2. Person(accused) we can see that

3. actual killing previously agreed

4. Crime(killing) we suppose

5.




Person(accused) →

∀y




Crime(y) →
∃z

〈
Person(z) ∧ Saw(z, y) ∧
Identifies(z, accused)

〉
→

Guilty(accused , y)





 ∀ elim (legal axiom),1

6. ∀y




Crime(y) →
∃z

〈
Person(z) ∧ Saw(z, y) ∧
Identifies(z, accused)

〉
→

Guilty(accused , y)


 → elim 5,2

7.




Crime(killing) →
∃z

〈
Person(z) ∧ Saw(z, killing) ∧
Identifies(z, accused)

〉
→

Guilty(accused , killing)


 ∀ elim 6,3

8.


 ∃z

〈
Person(z) ∧ Saw(z, killing) ∧
Identifies(z, accused)

〉
→

Guilty(accused , killing)


 → elim 7,4

9. Guilty(accused , killing) → elim 8,(Fig. 7.1)

Fig. 7.2 The prosecution case

1. actual killing not disputed

2. ∃z(Saw(z, killing)) assumption

3. actual i, Saw(i, killing) assumptions

4. VeryDark his friends will testify

5. VeryDark → ∀x(∀y(¬Saw(x, y))) the expert will testify

6. ∀x(∀y(¬Saw(x, y))) → elim 5,4

7. ∀y(¬Saw(i, y)) ∀ elim 6,3.1

8. ¬Saw(i, killing) ∀ elim 7,1

9. ⊥ ¬ elim 3.2,8

10. ⊥ ∃ elim 2,3-9

11. ¬∃z(Saw(z, killing)) ¬ intro 2-10

Fig. 7.3 The darkness defence
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1. actual friend evidently

2. ¬Saw(friend , killing) so friend says

3. ∃z(¬Saw(z, killing)) ∃ intro 2,1

Fig. 7.4 The non-witness defence

7.1.3 My friends didn’t see me do it! If the defence of darkness won’t work,
perhaps there’s another way to contradict the damning evidence that our man
was seen doing the deed. In the words of the old joke:

A man is accused of murder. The prosecution brings two witnesses who
saw him do it. He brings five who didn’t see him do it.

There is no defence in numbers. Just one plausible witness for the prosecution
will outweigh any number of non-witnesses. That’s because bringing a witness
who didn’t see him do it — ¬Saw(friend , killing) — isn’t a direct contradiction
of Saw(enemy , killing).

Even if you turn friend ’s evidence into an existential (Fig. 7.4) it does you
no good. ∃x(¬P (x)) doesn’t contradict ∃x(P (x)). The negation’s in the wrong
place: you need ¬∃x(P (x)), as in Fig. 7.3. A not-white swan contradicts the
notion that all swans are white; it doesn’t contradict the notion that some swans
are white. This is a hopeless defence, and our man would be well advised not to
try it.

7.1.4 It wasn’t me! He did it himself! A gangster’s friends respond to pressure
to give helpful testimony. So long as the court doesn’t recognize them and recall
their past exploits, they may even be believed. Suppose a particularly helpful
friend is prepared to say that he saw enemy doing the killing. Then surely there
will be a contradiction.

Not quite: the defence first needs to persuade the court that only one person
did the evil deed. It should have been careful to establish this when re-examining
enemy . If it agrees that only one person did the killing, the court must accept
an identity theorem:

∀x(∀y(Guilty(x, killing) ∧ Guilty(y, killing) → x = y))

Given that theorem the defence can argue that sightings of two killers are in fact
sightings of the same killer. You know the sort of argument: he saw the man in
the black hat do it; she saw the man in the white cowboy boots do it; only one
person did it; so the man in the hat and the man in the cowboy boots must be
the same person.
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1. actual accused visible in the dock

2. actual enemy visible in court

3. Guilty(accused , killing) from enemy’s evidence

4. Guilty(enemy , killing) from friend ’s evidence

5. ∀x(∀y(Guilty(x, killing) ∧ Guilty(y, killing) → x = y)) both sides agree

6. ∀y

(
Guilty(accused , killing) ∧ Guilty(y, killing) →

accused = y

)
∀ elim 5,1

7.
Guilty(accused , killing) ∧ Guilty(enemy , killing) →

accused = enemy
∀ elim 6,2

8. Guilty(accused , killing) ∧ Guilty(enemy , killing) ∧ intro 3,4

9. accused = enemy → elim 7,8

Fig. 7.5 The third man defence

By reasoning similar to the prosecution’s, friend ’s testimony leads to the
conclusion Guilty(enemy , killing) (gasps in court!). Then two steps of ∀ elim and
a little juggling with connectives and we can derive accused = enemy (Fig. 7.5).
But the court can see accused �= enemy : one is in the dock, the other is in the
public gallery; contradiction! Contradictions are to be expected when gangsters
fall out. Maybe that defence will work.

7.1.5 Will he get off? I hope not. He’s a pretty unsavoury character, and he’s
got away with too much in the past. I hope he tries all three of his defences: the
first and the third contradict each other, and the second is patently ludicrous.
But his lawyer may be persuasive enough to make him stick to one defence, and
clever enough to find one that I haven’t thought of. The English court tradition
doesn’t seek truth, it seeks proof and often has to confront contradiction. But
at least it is used to dealing with rich liars; maybe this time they will get him
bang to rights.

On the other hand, perhaps he’s innocent after all. Let’s not be prejudiced;
let’s not rush to condemn. One day it might be you in the dock, and you will
want to face an unbiased court.

7.2 Examples and counter-examples
The science of cryptozoology is about creatures that are hard to find, creatures
that may or may not exist. Cryptozoologists follow trails, collect droppings,
study habitats, consult local experts, but they convince the public only when
they show live examples or really good photographs of ‘lost’ animals. The proofs
of the existence of the coelecanth and the okapi, for example, were simple and
utterly convincing: they showed us dead bodies and photographs and eventually,
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after more search, live animals. A capture of the Loch Ness monster would prove
its existence; disproof, on the other hand, will require some amazing imaging
equipment capable of illuminating every drop of water in the loch all at once.
Even then it won’t convince everybody — perhaps Nessie was on holiday in
Norway on the day that we looked.

In general it is easy to persuade me to accept an existential ∃x(P (x)) if
you can point to an example,1 an individual i which has property P . Logically,
that’s a single-step proof with ∃ intro. If there are several examples, no problem:
just point to any one you like. To persuade me to reject an existential, though,
you have to prove its negation, using ∃ elim to make a schematic hypothetical
proof that ends with contradiction, as for example in Fig. 7.3. That’s hard: the
audience tends to get lost, or lose interest, or withdraw belief before you get to
the punchline. It’s much easier to prove an existential than to disprove it.

With universals it’s the other way round. To disprove a universal ∀x(P (x))
you only need to point to a single counter-example, an individual i which doesn’t
have property P . A step of ∀ elim then shows that i ought to have the property;
we have a contradiction; and the public does seem to understand that argument!
To prove a universal, on the other hand, needs a schematic hypothetical proof
using ∀ intro; the public is generally unhappy about the subtlety of those proofs
and in particular the level of abstract generalization. So it’s much easier to
disprove a universal than to prove it.

Goldbach’s conjecture, for example, (every even integer n > 2 is the sum of
two primes) would be completely, finally and convincingly disproved if a rogue
integer could be found. A proof, if it ever comes, will probably be as distant
from public comprehension as Wiles’s proof of Fermat’s last theorem.

7.2.1 Must we be agnostic about unproved claims? There have been many
attempts to use logic to prove the existence or non-existence of God (the problem
inspired George Boole to invent his logical algebra, for example). No-one has yet
succeeded in settling the argument either way, in the sense of producing a proof
which is universally, or even widely, accepted.

In this book I do not inquire into the substantive question, because I’m
concerned with argument rather than reality. I’m aware that even looking at an
argument may raise eyebrows, because it is a sensitive area for many people.
Nevertheless I think it is possible to consider, without causing offence, one his-
torical dispute where neither party supposed that the question was at issue, and
the dispute was about the status of logical argument.

Bertrand Russell (the one who showed Frege the paradox in Chapter 1)
was an atheist. He was challenged on this point. The challenger said, in short,

1 Usually we would say witness but in this chapter that could be confused with witnesses
at a trial.



Proofs with quantifiers 103

that since Russell could not prove the non-existence of God, he ought to be an
agnostic.

We may take it that the challenger couldn’t prove the existence of God to
Russell’s satisfaction. We can be sure that Russell accepted that he could not
prove the non-existence of God to his own or anybody else’s satisfaction. In
principle the challenge is “I can’t prove E, you can’t prove ¬E; you must admit
that you simply don’t know about E”. This seems an unassailable position.
Agnostic means ‘not knowing’: surely Russell should declare himself unsure and
not pretend to be certain.

Russell was not only a logician, he was a savage wit. His reply, as short
as the challenge and intentionally offensive, was that neither could he prove
the non-existence of Santa Claus. To understand its logical content we must
analyse Russell’s reply. To see the feeling that it conveys, we must look at its
implications.

First, we have to accept that it is very easy to prove the existence, at a
particular point in history, of a particular live individual: for example, Richard
Bornat (me). You simply point to him (me!), and everybody present will agree
that he exists. You can produce him (me!) as an exhibit in a courtroom, if his
existence is disputed. You can prove ∃x(RichardBornat(x)) just by pointing at
him (me!). The same goes for any of us, and the same goes for Santa Claus,
if he exists: just bring him into the room and show him to us. That is, if it is
possible to prove ∃x(SantaClaus(x)) at all, it will be by pointing.2 His physical
presence would be a knock-down argument for his existence and a knock-down
counter-example against the claim that he doesn’t exist.

But how could I disprove the existence of somebody, like Santa Claus, who
nobody has ever seen and who most of us believe doesn’t exist? With great dif-
ficulty: I would have to look everywhere and fail to find him anywhere. I would
have to look everywhere all at once, because he might flit from place to place,
evading my search. But even if I discount flitting — after all, he is supposed
to sleep most of the year — we haven’t yet looked everywhere (under the floor-
boards? in the cavity wall? on the dark side of the moon? behind that cat over
there? inside the cat?), and in practice we never could. So we can’t in practice
disprove the existence of Santa Claus. Putting it as a logical formula, we can’t in
practice prove ¬∃x(SantaClaus(x)) or the equivalent claim ∀x(¬SantaClaus(x)).

Russell’s response is scientifically sound: we can’t effectively disprove the
existence of Santa Claus. But how is it a reply to the challenge? It implicitly
admits (using ‘neither’) that Russell can’t disprove the existence of God, and
doesn’t care, and then implies that belief in God is on a par with belief in Santa
Claus.

2 I wouldn’t accept sleigh tracks and reindeer droppings as evidence for the existence of
Santa Claus. Would you?
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That insult is what Russell really intended, I’m sure. But his reply implies
a question: does the challenger expect Russell to be agnostic about the existence
of Santa Claus? Clearly he expects the challenger to answer “no” because, like
most adults, he actively disbelieves in Santa Claus. If that is the answer Russell
receives, he could then observe that the challenger accepts that it is sometimes
reasonable to take a definite position on questions that cannot be decided scien-
tifically. He might add that we all do this sort of thing all of the time, that it’s
a necessary point of mental hygiene not to agonize over absurd but undecidable
questions.

The dispute could go no further. Fundamentally, what the challenger and
Russell disagreed about was the importance of the original question. The chal-
lenger, I suspect, believed that the existence of God was too important a question
to be decided on inconclusive evidence; Russell, I am certain, did not.

7.2.2 You’re in the dock. “It is impossible to prove a negative”, says the
maxim. Actually it isn’t impossible in general, but in certain cases. . .

Suppose that, like the gangster in the early part of this chapter, you are
on trial. The prosecution brings no witnesses, but challenges you to prove your
innocence.

If you can show that nobody could have committed the crime, by display-
ing an internal contradiction — perhaps the ‘victim’ is still alive, perhaps the
evidence requires you to be in two places at once — then you can get off, as in
Fig. 7.3, by showing that the assumption that somebody did the crime leads to
a contradiction. You might get off if you can prove that somebody else did it, as
in Fig. 7.5, if the assumption that you did it as well introduces a contradiction.

Otherwise you are in trouble. You are in very deep trouble indeed if the
prosecution won’t say what you accused of. You are reduced to the absurdity of
the gangster’s second defence: none of your friends saw you commit a crime. But
then Russell’s Santa Claus argument rises up against you: your friends don’t
watch over you 24 hours a day. You have to prove a universal, that there is
no crime you have committed, ever. There could never be enough evidence to
make such a proof, because it would mean examining every minute of your life
so far.

This is the stuff of nightmares, of Kafka’s The Trial. It’s terrifying. It’s
the reason why most jurists agree that prosecutions ought not to be able to
require you to prove your innocence. Unfortunately it does happen sometimes.
It’s happening now, in 2005. You might like to think how you could defend
yourself if you were in court accused of a terrorist offence, with no right to know
the nature of the offence nor any detail of the evidence against you. Perhaps the
law really ought to be based on logic.
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7.3 Is humankind necessarily condemned to misery?
Malthus, in An Essay on the Principle of Population, first published in 1798
CE, makes an argument which reaches the conclusion that most people in the
world will always be starving, and there is nothing we can do about it. That’s
a conclusion which I and many others don’t wish to believe but, like it or not,
it’s a powerful argument and it rumbles on to this day. I’ve therefore chosen to
analyse Malthus’s original summary of his position. All the text is original, but
I’ve truncated it a little.

0. I think I may fairly make two postulata.
1. First, That food is necessary to the existence of man.
2. Secondly, That the passion between the sexes is necessary and will remain

nearly in its present state.
3. These two laws, ever since we have had any knowledge of mankind, appear

to have been fixed laws of our nature. . .
4. Assuming then my postulata as granted, I say, that the power of pop-

ulation is indefinitely greater than the power in the earth to produce
subsistence for man.

5. Population, when unchecked, increases in a geometrical ratio. Subsistence
increases only in an arithmetical ratio. A slight acquaintance with numbers
will shew the immensity of the first power in comparison of the second.

6. By that law of our nature which makes food necessary to the life of man,
the effects of these two unequal powers must be kept equal.

7. This implies a strong and constantly operating check on population from
the difficulty of subsistence. This difficulty must fall somewhere and must
necessarily be severely felt by a large portion of mankind.

8. Through the animal and vegetable kingdoms, nature has scattered the
seeds of life abroad with the most profuse and liberal hand. She has been
comparatively sparing in the room and the nourishment necessary to rear
them. The germs of existence contained in this spot of earth, with ample
food, and ample room to expand in, would fill millions of worlds in the
course of a few thousand years. Necessity, that imperious all pervading
law of nature, restrains them within the prescribed bounds. The race of
plants and the race of animals shrink under this great restrictive law. And
the race of man cannot, by any efforts of reason, escape from it. Among
plants and animals its effects are waste of seed, sickness, and premature
death. Among mankind, misery. . . [Misery] is an absolutely necessary con-
sequence. . .

9. This natural inequality of the two powers of population and of produc-
tion in the earth, and that great law of our nature which must constantly
keep their effects equal, form the great difficulty that to me appears in-
surmountable in the way to the perfectibility of society. . . . No fancied
equality, no agrarian regulations in their utmost extent, could remove the
pressure of it even for a single century. And it appears, therefore, to be de-
cisive against the possible existence of a society, all the members of which
should live in ease, happiness, and comparative leisure; and feel no anxiety
about providing the means of subsistence for themselves and families.
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Malthus isn’t using modern language, but he is reasoning in a way that we
can recognize. He isn’t calling on authority or precedent. He is trying to be
scientific, and is appealing to a readership which understands ‘numbers’ (I would
say arithmetic; school students might say algebra). He uses more premises than
he seems to but, as we’ve already seen in the school-run example of Chapter 5,
that’s not unusual when rational argument is summarized.

Let’s examine his argument step by step.
Para 1: food is necessary to the existence of humans. Hard to disagree with

that.
Para 2: Malthus is claiming there is a desire within all people to produce

children. Most people in England up to Malthus’s day had indeed produced lots
of children. Malthus ascribes this (as might a modern biologist) to an innate
reproductive drive.

Para 3 points to evidence for the premises: history is on my side, says
Malthus; life has always been like this.

Para 4 is pre-summarizing the argument to be made in the next few para-
graphs.

Para 5 introduces new premises in its first two sentences; Malthus is stating
them as if they were axioms. Population increases geometrically, he supposes;
subsistence linearly. Population goes upwards in an geometric curve; food pro-
duction goes up in a straight line. Then there is an arithmetic axiom: no matter
how steeply the line is angled, no matter how shallowly the curve is angled to
start with or how gently it is curved, “a slight acquaintance with numbers” (an
appeal to arithmetic — your maths knowledge ought to be sufficient for you to
check that he’s right) will show that the population curve will grow more and
more steeply, eventually more steeply than the food production line, and will
get steeper and steeper for ever unless something intervenes to stop it. If it were
possible, the population line would overtake the food production line, and the
gap between them would widen ever faster as population growth accelerated.

So Malthus has stated three premises: we need food to survive; human
population expands geometrically; food production can only expand linearly.
He has derived from the last two, plus an axiomatic arithmetic principle about
geometric and arithmetic series, the conclusion that population increase has the
potential to overtake food production.

Para 6: contradiction! Population can’t overtake food production, because
of the first premise.

Para 7 is another pre-summary, claiming that some force is operating at
the end of the 18th century CE to keep population within the bounds of food
production, and that its effect is not pleasant.

Para 8 argues that the restraint proclaimed in para 7 is a force of nature,
external to human society, acting just as natural forces keep animal and plant
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populations down. We observe, says Malthus, that animal and plant populations
are kept within the limits of space and food resources by nasty means (not every
seed can germinate, not every plant/pup can grow, disease or predators or simple
starvation do the damage).3 A similar force is stopping people exceeding the
carrying capacity of the world, he claims, and we can observe it most clearly in
the visible and widespread misery of the mass of the population.

The observed late-18th/early-19th century misery amongst the mass of the
English population is not accidental, concludes Malthus. It’s necessary (para 8),
unavoidable and permanent (para 9). The rest of the book expands on his ar-
gument, and troubles those of us who hope that it might be possible to sustain
a society in which everybody could live in ‘ease, happiness, and comparative
leisure’.

I’m not going to debate whether Malthus’s conclusion — that most people
will always live in misery — is true or false: this book is about argument, not
truth. Conditions have improved beyond recognition in rural England, certainly,
but to judge his conclusion nowadays we would have to consider the world as
a whole, where misery is still widespread. Neither am I going to argue with
his premises as stated so far, though I observe that population growth and
agricultural production are still central political controversies. I’m concerned
instead with his argument. Has he established his conclusion, given his premises?

I think the first part of his argument can be expressed as in Fig. 7.6. I haven’t
shown the reasoning which leads from line 1 to line 4, but I think the step is valid.
So far so good for Malthus: human population is limited, given his premises. He
has used classical contradiction to reach line 9, because he believes that either
human population is limited or it isn’t; quite unexceptionable in 1798, and I
don’t think that even now I would want to erect a constructivist objection to it.

Fig. 7.7 is a first attempt to summarize the next part of his argument. The
summary, unfortunately, isn’t valid. The step from box 10–13 to line 14 is the
problem (never mind if you accept line 14 without argument — we aren’t de-
bating truth). You can’t generalize from a particular example, or even a large
number of examples, to a universal claim. You have to generalize from an ab-
stracted example; instead, the deduction on lines 10–12 has appealed to our
knowledge of animal and plant populations.

But perhaps I haven’t summarized Malthus properly. He’s making an argu-
ment by analogy. We can see what happens to those animals over there; well,

3 When I was a child, textbooks used to contain illustrations which claimed that the off-
spring of a single North Sea codfish, if they all lived to maturity, would in three years or so fill
the English Channel from top to bottom, side to side and end to end with no room for water.
That didn’t happen, of course: even in natural circumstances, only a few offspring survive
each year. Now, because of overfishing, North Sea codfish are an endangered species. I expect
Malthus would see that as evidence for his argument.
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1. Humans need food to survive premise

2.
(

Unconstrained, population would
increase geometrically

)
premise

3. At best, food production can increase linearly premise

4.
(

Human population cannot exceed the limit
defined by available food

)
from 1

5. Suppose human population size is unlimited assumption

6.
(

Geometric expansion eventually
overtakes linear expansion

)
arithmetic

7. Human population must overtake food production from 5,2,3,6
8. ⊥ ¬ elim 7, 4

9. Human population size is limited contra (classical) 5-8

Fig. 7.6 Human population size is limited, claims Malthus

10.
(

When animal or plant populations
are constrained by nature

)
assumption

11.
(

they are restricted by sickness,
premature death, &c

)
observation

12. which is pretty miserable for them definition of misery

13.
(

For animal and plant populations,
(natural constraints) → misery

)
→ intro, 10-12

14.
(

For every population,
(natural constraints) → misery

)
∀ intro, 10-13

Fig. 7.7 A faulty attempt to show that natural constraints always cause misery

those animals aren’t special: so the same thing happens to any animals, even
us. He almost says this: “and the race of man. . . cannot escape from it”. He’s
saying, perhaps, that we are animals too: a truism for a modern biologist but
advanced thought for his time!

Fig. 7.8 is a second attempt to summarize the same part of his argument,
this time recognizing the appeal to animality. This presentation is more accept-
able, and I believe that it captures what Malthus intended. It needs yet another
premise, on line 16, which we haven’t seen before.

To complete his argument Malthus appears to claim that in his time, human
population was under natural (resource-limited) constraint, that it was already
up to the carrying capacity of the land and nothing much can be done about
it (“No fancied equality, no agrarian regulations . . . , could remove the pressure
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10. Consider any animal or plant population p assumption

11. When p is constrained by nature assumption

12.
(

its size is restricted by sickness,
premature death, &c

)
observation

13. which is miserable for members of p definition of misery

14.
(

(p is constrained by nature) →
(p’s members are miserable)

)
→ intro, 10-13

15.
(

For any animal or plant population,
(natural constraints) → misery

)
∀ intro, 10-14

16. Humans are animals premise

17.
(

For humans,
(natural constraints) → misery

)
∀ elim, 15, 16

Fig. 7.8 Natural constraints affect humans and cause misery, claims Malthus

18.
(

Natural constraints are operating
on human population

)
premise

19. Most humans shall be miserable → elim, 18, 17

Fig. 7.9 Misery is inevitable, claims Malthus

of it even for a single century”). The completion of his argument, including this
premise, is in Fig. 7.9.

Now, says Malthus: I’ve proved that humans must be miserable as a con-
sequence of natural laws. It’s easy to observe (in 1798) that they are in fact
mostly pretty miserable, but I’ve done something different: starting from incon-
trovertible axioms, well-attested observations and reasoned generalizations, I’ve
deduced that misery is unavoidable. You cannot fight the laws of numbers, Jim!
Nor can you fight natural laws. They (he wouldn’t say ‘we’, because Malthus
wasn’t one of the miserable many although he was by no means rich) are doomed
to be miserable for ever. So don’t hope for a better world, ever.

This argument is more than a historical curiosity. It informed political ac-
tion. If misery is inevitable, then trying to alleviate it is pointless. Malthus’s
book helped inspire the oppressive Poor Laws which forced the indigent poor
to work for starvation rations in workhouses, split up families and attempted
to dissuade people from moving around the country to look for work. The laws
themselves lasted until the 20th century, and many of the workhouse buildings
still survive, taken over for use as hospitals (there’s one just behind Queen Mary
College in London, where I was working when I started to write this book). His
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argument may even have helped inspire the catastrophic work-for-food response
to the Irish Famine of the mid-19th century.

We must accept, once Malthus has pointed it out, that human population
would eventually be constrained by natural forces, with miserable results, if
it continued to expand geometrically and food production couldn’t keep pace.
Natural constraints apply to us: we can’t deny that; we are part of the natural
world. But where’s the evidence for Malthus’s claim that the constraint was
actually operating in 1798? Can we even be sure it is operating now?

Just like the school-run argument of Chapter 5, Malthus’s argument is sus-
ceptible to attack on the basis that he hasn’t proved a cause. Historically line
18 was the first point at which Malthus’s argument was attacked: socialists and
others argued that misery was a consequence of unfair economics, not natural
constraints. It is still a point at which argument rages: some people claim, for
example, that there is enough food production in the world today, that modern-
day famine is caused by inadequate food distribution, and that we haven’t yet
reached the limits of growth.

Others attack Malthusian gloom at line 2: we need not expand population
to the point of misery, they say.

The argument rumbles on. Ever since 1798 it has been a political, arith-
metical, logical and sometimes even religious hot potato.

7.4 Proof search with quantifiers
Just as with connectives, formal proof with quantifiers is a lot easier than infor-
mal proof, not least because politics, religion and Santa Claus don’t get a look
in and I can stop trying to tell lawyer jokes.

The slogans of Table 5.2 on page 67 work well for quantifiers. In particular,
you should notice that ∀ intro (backwards) and ∃ elim (forwards) should be used
early, because they introduce extra assumptions, and extra individual names,
into a proof. ∀ elim (forwards) and ∃ intro (backwards) use already-introduced
individual names, and can safely be left till later if necessary.

In the rules of Chapter 6 I used P to stand for any predicate; that is, any
formula with name-shaped holes in it. In examples I use R, S and T as predicate
names, and I build up complex predicates using connectives and quantifiers as
necessary. Just as in Chapter 5 I use E, F , G and H as simple formulae. The
binding rules of Table 6.2 on page 86 show that quantifiers bind more strongly
than anything.

7.4.1 Infection, subversion, transmission. Consider the claim ∀x(R(x) →
S(x)),∀y(S(y) → T (y)) � ∀z(R(z) → T (z)). Anybody who has property R
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(a) ∀ intro

(c) ∀ elim

(b) → intro

Fig. 7.10 Transmission of properties

has property S; anybody who has property S has property T ; therefore any-
body who has property R must have property T . It surely ought to be valid,
and it’s a splendidly hypothetical claim: it doesn’t depend on the properties of
any individual; it doesn’t even require that there are any individuals. It’s a pure
claim about transmission of properties; if you’re a policeman you can also read
it as a claim about the infective properties of subversive ideas.

The proof in Jape is straightforward and the first three steps are shown in
Fig. 7.10. The first step, according to slogan 6 of Table 5.2 — create assumptions
early — must be ∀ intro backwards. The second step, according to the same
slogan, must be → intro backwards. Then we’ve exhausted the conclusion, and
have to start working forwards. The most attractive step to take next, because
it involves R, is ∀ elim using line 1 and line 3 to derive an implication. The
rest of the proof is straightforward: a step of → elim extracts S(i), a second
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step of ∀ elim extracts an implication from line 2 and line 3, and a final → elim
closes.

7.4.2 Universal and existence. Consider the claim actual j,∀x(R(x)) � ∃y

(R(y)): if there is somebody in the universe, and if everybody has property
R, then there is somebody who has property R. It’s pretty obvious that it ought
to hold; the proof is absolutely straightforward and shown in Fig. 7.11 (I show ∀
forward, then ∃ backward, but you can do those steps in the other order if you
wish). Notice that you couldn’t make the proof in an empty universe because
you have to appeal to the premise actual j in each of the proof steps.

The claim ∃x(R(x)) � ∀y(R(y)), on the other hand, is absurd. The premise
denies the possibility that the universe is empty (if I can point to something with
property R, then there is something in the universe), but in any proof attempt
the privacy conditions of the ∃ elim and ∀ intro rules make a proof impossible
(Fig. 7.12): you have to reason about two different individuals which you can’t
make the same; R(i) never proves R(i1 ), nor vice versa.

Of course, the fact that I can’t prove a claim isn’t enough to show that
there can’t be a proof. In this case there can’t be, though: in Chapter 11 I will
show how to deduce from the stuck attempts in Fig. 7.12 that no proof attempt
could ever succeed.

7.4.3 Green sheep in an empty field. Chapter 6 offered two arguments which
showed all the sheep in an empty field could be green. In one argument everything
in the field looks green —

∀x(Green(x)) � ∀y(Sheep(y) → Green(y))

— proved in Fig. 7.13 by using the irrelevant-implication / price-of-tomatoes
trick. Note that there is no appeal to the existence of a green sheep in this proof:
actual i only appears as a hypothetical assumption.

(a) the problem (b) ∀ elim (c) ∃ intro

Fig. 7.11 Universal proves existence in a non-empty universe
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(a) ∃ elim then ∀ intro (b) ∀ intro then ∃ elim

Fig. 7.12 Existence doesn’t prove universal

In the other argument the sheep can be any colour they like except green
but are kept out of the puppies’ pen —

∀x(¬Green(x)),∀y(¬Sheep(y)) � ∀z(Sheep(z) → Green(z))

— proved in Fig. 7.14 by using the vacuous-implication / cunning-uncle trick.
This case is even worse: we require there are no sheep, but all the ones you meet
are still green. (Premise ∀x(¬Green(x)) isn’t needed in the proof, but I put it in
to emphasize that the sheep outside the pen don’t need to be green.)

Formally and informally, all the sheep in an empty field are green! (Also
blue, purple, red, drunk, sober, microscopic, gargantuan, omniscient, ignorant, . . . )

7.5 The universal drunk (a classical claim)
Consider the claim actual j, actual k � ∃x(R(x) → R(j) ∧ R(k)). According to
the meanings of the connectives and quantifiers given in Chapters 3 and 6, it
appears to say that if we pick any two individuals j and k from the universe,
then we can point to an individual — not necessarily either j or k, and not
necessarily neither — which, when it has property R, guarantees that j and k

also have property R.
That doesn’t sound controversial; indeed, it’s hard at first to put it into

any real-world context. But the section heading should have given you a clue. It
seems to claim that there is somebody in the world who, when they are drunk,
guarantees that you and I are both drunk too. Since I’m a very sober individual
and I’m sure you are too, this is a very shocking claim.

Of course no such individual can exist! If you try to prove the claim con-
structively, not using classical contradiction anywhere, you get stuck in the sort
of dead end illustrated in Fig. 7.15.
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(a) ∀ intro

(c) ∀ intro

(b) → intro

Fig. 7.13 When everything is green, so are the sheep

Disproof by dead-end isn’t conclusive — just because I can’t prove it doesn’t
mean it can’t be proved — but in Part III it is shown that the universal drunk
claim has a constructive disproof, and so there can’t be a constructive proof. It
would seem that there is no universal drunk after all.

But there is a classical proof — see Fig. 7.16. You start by supposing that
there isn’t a universal drunk, and show that this leads to a contradiction. At
first the proof seem to be in the same dead end that caught the constructivists
(7.16(a)) but a second contradiction step springs the trap — I used a constructive
contradiction, but either kind will do — and then completion is straightforward.

Who’s the drunk? Do classicists believe in a universal drunk? Certainly not!
Their objection, despite the proof in Fig. 7.16, rests on the interpretation of
∃. The definition I gave in Chapter 6 starts “I can point to . . . ” in order to
explain what it means to have a proof of ∃x(P (x)). Notice: “I can”, not “I
will”. Classicists read it as “it is possible to point to . . . ”, and ask us to accept
∃x(P (x)) when we know there must be a witness but we don’t know who it is.
(This is in line with the classical position that a formula is either true or false,
whether we know it or not, and in opposition to the constructive position that
we can only know whether we can prove it or disprove it.)
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(a) ∀ intro, →intro

(b) ∀ elim

(c) ¬ elim, contradiction

Fig. 7.14 When all sheep are absent, all present sheep are green
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Fig. 7.15 Constructivists can’t find the universal drunk

Consider, for example, a classicist might say,4 the radio on my desk. It
runs on electricity. It contains a fuse, a little bit of especially thin wire which is
intended to ‘blow’ (melt) if too much electrical current enters the set. If it blows
quickly enough then the sensitive electronics inside the radio won’t be damaged.
In England the plugs which go into the mains socket on the wall each have their
own fuse; there is one in the distribution board which connects the sockets to the
meter; there is another one still which stops too much current flowing from the
electricity company’s cable into the meter; and I know there are lots more in
the chain that connects me, eventually, to the generation station. Some of these
‘fuses’ are mechanical trip-switches, but the principle is the same. Most of them
are intended to stop fires in faulty cables; only the little one in the radio is there
to protect sensitive and expensive electronics.

Suppose that something goes wrong somewhere in the supply chain, and
somehow my electricity supply voltage doubles. Voltage is a kind of electrical
pressure: press harder and more current flows. Double voltage will give me far
too much current: something is going to blow. If I’m lucky it’s a fuse; if I’m
unlucky it’s my radio. I don’t know what exactly will go, says the classicist, but
I’m absolutely certain that something’s on the way out. So I can claim

∃x((Fuse(x) ∨ Radio(x)) ∧ Blow(x))

— even though neither you nor I can say in advance which component it will
be. Sit back and watch the fireworks!

Back to the universal drunk. Consider those two idiots j and k, next Sat-
urday night, says the classicist. There are actually only four possibilities:

(a) they are both drunk, in which case (price of tomatoes, choose a tomato)
Drunk(j) → Drunk(j) ∧ Drunk(k) or Drunk(k) → Drunk(j) ∧ Drunk(k);

(b) j is sober but k is drunk, in which case (cunning uncle) Drunk(j) →
Drunk(j) ∧ Drunk(k);

4 Thanks to Thomas Forster for this example.
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(a) not a dead end

(b) the proof complete

Fig. 7.16 A classical universal drunk

(c) k is sober and j is drunk, in which case (the other uncle) Drunk(k) →
Drunk(j) ∧ Drunk(k);

(d) they are both sober, in which case (pick an uncle) Drunk(j) → Drunk(j) ∧
Drunk(k) or Drunk(k) → R(j) ∧ R(k).
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So no matter what they do there will be somebody to blame, somebody to
put on the left of the implication. For a classicist, the claim isn’t that there
is a particular universal drunk, rather that something always turns up. It’s a
consequence of the classical treatment of implications and existentials, which is
discussed in more detail in Chapter 10.

An eternal abstainer? Of course there can’t be a universal drunk. There might,
however, be a person who is never drunk — ∃x(¬Drunk(x)). We could then say
(cunning aunties and uncles that we are) that if that saintly person is ever drunk,
so are the rest of us. If that were added as a premise, then constructivists would
have no difficulty proving the conclusion. That version of the claim is in Jape’s
Conjectures panel, so you can try it for yourself.

So what? Luckily for us, logic isn’t nonsense. Even classical logic doesn’t de-
mand that we believe in a universal drunk. But there is a lesson to be learnt;
it’s more than an academic dispute.

If logic is about proof, then you can claim less — support fewer claims —
than you can if it is about truth. Programmers, it seems to me, have to rest their
claims on proof. When we produce a piece of software we need to know that it
works, and so far all the ways that we can do that require us to show why it
works — that is, provide a proof. If we can’t prove it, all we have is statistics
based on testing. Any user of commercial software in the first decade of the 21st
century knows how awful a prospect that is.

Proof matters, which is why so much of this book is about proof.



Part III

Disproof
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Formal logical proof is a mathematical puzzle game: “here is a logical claim;
there are some formal rules; can you prove the claim using the rules?”. The game
can be fun, and it’s the game you have to play when you are programming a
computer. But if that’s all there was to logic, it wouldn’t be much.

Logic is more than a game because logical proofs mirror practical, useful
reasoning. It says something about the way we reason and it’s a game which
machines can play. It’s only useful to make machines play the game because of
its connection to valid reasoning.

We can challenge a logical claim in two different ways. “Can you prove it?”
is the puzzle game of Part II. “Is that so?” is the real world view explained in
this part. If logic is to mirror our world then every claim that’s logically provable
must be real-world undeniable, and vice-versa. If there are gaps or disagreements
then either the logic is not as logical as it should be or we don’t understand the
world as well as we think we do.

You can deny a logical claim if you are in a situation in which the claim
obviously doesn’t hold. The claim “it’s Tuesday”, for example, is deniable six
days every week. More abstractly, the claim E is deniable in a situation where
there can be no proof of E. We don’t have to think of concrete Es; we don’t
have to live in such a situation, only be able to imagine it without generating
a contradiction. That particular imaginary situation, or possible world, is a
counter-example to the absurd claim that E holds always and everywhere, and
therefore ought to be provable. On the contrary, we can show that it doesn’t
always hold, so it ought not to be provable!

The method of counter-examples turns out to be the easiest and most con-
vincing way to disprove an invalid logical claim. Consequently, this part of the
book is about disproof by counter-example. Proof by logical argument; disproof
by counter-example. That’s how it’s done.

Our counter-examples, to be utterly convincing, have to be precise and
unanswerable; for our purposes that means they must be mathematical. Chapter
8 explains how the mathematics of disproof fits with the mathematics of proof.
Chapters 9 and 10 describe the kind of arguments which count as mathematical
descriptions of situations in our two kinds of logic — constructive and classical,
respectively — and thus serve as examples of or counter-examples to logical
claims. Chapter 11 shows various ways in which you can generate disproofs of
unprovable claims.
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8 Disproof in a mathematical
model

Fig. 8.1 shows a Jape proof attempt which is in trouble. A raw novice, afraid to
use a backwards step from line 4, has made an → elim step from E → F on line
1 to F on line 3.1 Jape has loyally made the step, but the → elim rule demands
a proof of E on line 2. If you ever wander into this logical blind alley you will
find no way out but Undo or Quit.

The gap between lines 1 and 2 asks the impossible: nobody has ever shown
and nobody will ever show, using the rules of Natural Deduction, that E is a
logical consequence of E → F . It isn’t a matter of debate; there isn’t a possibility
that anybody might invent an ingenious solution tomorrow. Great mathemati-
cians have shown us that it’s impossible, in a sense that will be made clear below.

It would be nice to be able to distinguish dead ends and their Great Math-
ematical Obstacles from paths which are just rather more difficult than we ex-
pected. Searching for counter-examples can help: if we know we’re stuck we can
stop banging our heads on a brick wall, back out and look for another way
through.

8.1 Counter-examples
Chapter 3 says that E → F means “whenever you accept E, you are forced to
accept F”. To disprove the claim E → F � E, which is what lines 1 and 2 of
Fig. 8.1 amount to, we must show situations in which any reasonable person
would accept E → F , but need not at the same time accept E.

8.1.1 Informal counter-examples. One way to disprove the E → F � E claim
is to think of real-world Es and F s for which the claim doesn’t hold, as for
example in Table 8.1. Each of the situations in the table shows that I need not
always accept that every E is a consequence of E → F . Since it doesn’t hold
in some cases, it doesn’t hold in general. I’d be a fool to look for a proof that
E → F � E, and a bigger fool to believe anybody who said they’d found one.

1 Half-forward, half-backward steps like the one in Fig. 8.1 can confuse the novice. They’re
made difficult in Jape, because they can be confusing, but they’re allowed, because they are
sometimes convenient and occasionally essential.
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Fig. 8.1 A stuck proof

Table 8.1 Informal counter-examples to E → F � E

1. Suppose I accept that when it rains, I get wet. I need not therefore accept
that it is raining now (even if I’m soaking wet).

2. Suppose I accept that if it is Thursday, then this must be Paris. I need not
therefore accept that it is Thursday now (wherever I am).

3. Suppose I accept that if I ever met a grizzly bear I should be eaten. I
need not therefore accept that you’re a bear (whether or not I’m being
nibbled).

8.1.2 Mathematical counter-examples. Counter-examples in English aren’t
quite convincing. Abstract counter-examples which don’t mention rain, or Paris,
or bears would be better. Better still if we can use diagrams.

We might be able to do it it with a diagram which mentions only E and F ,
because there are no other identifiers in the E → F � E claim. Fig. 8.2 shows all
the possible worlds which contain E, or F , or both, or neither. If even a single
one of these worlds is a counter-example, the logical claim surely ought to be
denied.

• In 8.2(a) we have both E and F , so we can hardly deny E → F . And we
have E, so we have both premise and conclusion. The claim holds in this
world: i.e. it’s an example.

• In 8.2(b) we can deny E → F because we have E but not F . The world is
irrelevant to the claim; it’s neither example nor counter-example.

• In 8.2(c), by the price-of-tomatoes argument, it is the case that “whenever
you accept E, you are forced to accept F”, i.e. E → F . It would certainly
be the case that if there were a proof of E you would accept F , because
you already have a proof of F . But it’s certainly not the case that you must
accept E in that world: it’s a counter-example.

• Figure 8.2(d) is another counter-example, this time by the cunning-uncle
argument. You will never come across a proof of E, so the E → F promise
will never be broken: i.e. E → F . And, because E isn’t shown, the conclusion
doesn’t hold: we aren’t forced to accept E.
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(b) just E(a) both (c) just F (d) neither

Fig. 8.2 Possible E, F worlds

(a) just F (b) neither

Fig. 8.3 Some possible E, F universes

So there are at least two imaginable situations in which you can’t deny
E → F , but you can deny E. It’s not the case, by demonstration, that one
always leads to the other; we’ve disproved the claim by counter-example. But
the demonstration isn’t very satisfying: the counter-examples each rest on the
oddities of implication, not its straightforward meaning. The nonsense of E →
F � E was more convincingly exposed by the sentences in Table 8.1.

If we imagine a universe of possible worlds, with transport between them,
then we can construct more convincing abstract disproofs. Fig. 8.3 shows two
such. In each universe it’s very clear that “whenever you accept E, you are
forced to accept F” because the worlds that contain E also contain F , but each
universe also contains a world which doesn’t mention E. These diagrams show
that in a universe in which we are forced to accept E → F , it’s not the case
that every world forces us to accept E. Figure 8.3(a) can be read like the rain
example from Table 8.1: I’m wet now (middle right) and it is true that when it
rains I get wet (top left) but it’s not raining now (perhaps I just got out of the
bath). Fig. 8.3(b) could be the bear example: I never meet any bears (bottom
left); I nervously expect (top right) that if I met one I’d be eaten; but I’m not
in danger right now.

Chapter 9 explains how to write and read multi-world diagrams like those of
Fig. 8.3, and how to use them as counter-examples. I find them more convincing
counter-examples to E → F � E than the single worlds of Figs. 8.2(c) and
8.2(d) but — beware! — they are constructive, not classical, counter-examples.
Classicists use only single-world diagrams; by considering multi-world universes,
constructivists can disprove more claims. The difference is precisely the dual
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of the fact that classical contradiction allows more proofs than the construc-
tive version: the extra claims you can prove are just the ones that multi-world
diagrams can disprove. As you will see!

8.2 Mathematical models
Reality is what we live in. It’s what’s out there, what is, what happens: the
stubbed toe, the rain in your face, the view from your window. Logic is a kind
of mathematics, and making it correspond to lived reality isn’t a trivial matter.
That’s why Aristotle and his Ancient Greek colleagues are so rightly celebrated:
they built a bit of mathematics which corresponded to sound reasoning. Philoso-
phers and logicians have been refining and polishing their efforts ever since.

But ‘reality’ is at least as slippery a notion as ‘truth’. Philosophers and sci-
entists have endless fun with it. The best we can expect is a bit of mathematics
— called a model — that describes a view of reality, plus an assurance that
if reality is like the model, then the logic won’t lead you astray. For classical
Natural Deduction we imagine that formulae are ‘really’ either true or false,
the mathematical model is discussed in Chapter 10, and the logic is what was
discussed in Part II, using the classical contradiction rule. For constructive Nat-
ural Deduction we imagine that proofs are ‘real’, the mathematical model is in
Chapter 9, and the logic uses constructive contradiction.

8.3 Syntactic and semantic claims
In the illustrations above I made fast and loose with notation. I said that I’d
disproved the sequent E → F � E. Indeed I had, but only indirectly. What the
counter-examples, either words or diagrams, actually disprove is E → F |= E,
the corresponding semantic sequent. A syntactic sequent using � makes a claim
that there is a proof; its semantic counterpart using |= claims that there are no
counter-examples. The turnstiles even sound different: � is pronounced “proves”,
and |= is pronounced “models”.

• The syntactic sequent A1 , A2 , . . . , An � B claims that there is a formal proof
which connects premise formulae A1 , A2 , . . . , An to conclusion formulae B.
It’s a formal claim to go with a formal proof.

• The semantic sequent A1 , A2 , . . . , An |= B claims that in every situation
in which I’m forced to accept all of the premise claims A1 , A2 , . . . , An, I
will also be forced to accept the conclusion claim B. Just what a ‘situation’
is, and just what ‘forced to accept’ means, varies between mathematical
models.

Syntactic and semantic sequents which are identical apart from their turn-
stiles are clearly related, although they claim different things. If model and logic
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are related as they should be, the two sequents make the same claim in different
ways. From now on, I’ll just say “claim” and let the context distinguish.

8.4 Situations as examples and counter-examples
A positive demonstration — a situation in which I am forced to accept premises
A1 , A2 , . . . , An and at the same time forced to accept conclusion B — is an ex-
ample of a claim, but an example doesn’t amount to proof. A negative demon-
stration — a situation in which I’m not forced to accept conclusion B even
though I am forced to accept premises A1 , A2 , . . . , An — is a counter-example,
a demonstration that the connection isn’t universally valid in the model, and
therefore a disproof .

Examples can be illuminating, and some claims can even be proved by ex-
haustively listing possible situations. I am confident as I write this, for example,
that every person listed under the name Bornat in any telephone directory in the
UK is a direct descendant of my father. By restricting the claim to a particular
finite collection of data I’ve made sure that there is only a finite collection of
situations, and by pointing to printed directories I’ve made sure that the facts
won’t change while you examine them. But most interesting claims refer to more
situations than you would have time to consider, sometimes even infinite num-
bers of situations, and then Russell’s Santa Claus analogy explains why it would
be futile to try to prove them by exhaustion.

On the other hand, any number — even an infinite number — of examples
can be overthrown by a single counter-example. So far as this book is concerned,
the purpose of a mathematical model is to allow us to demonstrate disproofs
— to show, for example, that the proof attempt of Fig. 8.1 is not temporarily
stuck, it’s permanently done for.

8.5 Soundness and completeness
We can prove claims in a formal logic using rules; we can disprove claims in a
mathematical model by demonstrating counter-example situations. What’s the
connection?

Suppose we have a formal logic and a mathematical model. A claim is valid
if it’s impossible to generate a counter-example situation in the model. A claim is
provable if we can show a proof in the logic. The logic is sound if every provable
claim is valid; it’s complete if every valid claim is provable. Soundness means
you can’t prove anything you ought not to be able to; completeness means you
can prove everything you ought to be able to.

Suppose you used a logic in which there were no axioms and no rules of
inference at all. There would then be no proofs; in effect the logic would always
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(a) sound but incomplete

(c) unsound and incomplete (d) sound and complete

(b) complete but unsound

Fig. 8.4 Soundness, unsoundness, completeness and incompleteness

say “no!”. It would be a sound logic, too, because it would never allow any proofs
at all, and therefore there could never be a proof of an invalid claim. But, of
course, it would be useless.

On the other hand, suppose you used a logic with only one axiom/rule: no
matter what the claim, accept it without ado. Every claim would be provable;
in effect the logic would always say “yes!”. It would be a complete logic, because
every claim would have a proof, and therefore every valid claim would have a
proof. And it, too, would be useless.

The “no!” logic is useless because it misses all the proofs; the “yes!” logic
is useless because it doesn’t notice any of the disproofs. Neither system is to be
trusted.

Clearly we should generate more proofs than the “no!” logic and fewer than
the “yes!” logic. The ideal is that our logic should be sound and complete: then it
will says “yes!” whenever it should (because it is complete) and “no!” whenever
it should (because it is sound). A sound and complete logic will correspond
exactly to its model. Natural Deduction is such a logic, when we give it the
models illustrated in this chapter and explained in detail in Chapters 9 and 10.

In Fig. 8.4 I depict the universe of semantic claims and their relation to
proofs. The dark oval represents valid claims and the white square all claims; so
the area of the white square outside the dark oval represents invalid claims. If all
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provable claims, shown by a cloud with lots of ‘proof’ words inside it, fall inside
the dark oval then the logic is sound; if all the dark oval falls inside the proof
cloud then the logic is complete. Only when the proof cloud and the validity oval
coincide, as in Fig. 8.4(d), does the logic have both properties at once.

The way that the sound/complete distinction is phrased treats the model
as primary, and the logic as secondary. That is, indeed, the way Platonists see
it: eternal truth was surely around long before we began to try to trap it in
logic. On the other hand, constructive logic was invented before Kripke gave it
a mathematical model, so perhaps his model should be judged rather than the
logic. But in the end constructivists and classicists want exactly the same thing
— a formal logic and a mathematical model that exactly correspond. Soundness
and completeness describe the perfect fit.

8.6 Natural Deduction is sound and complete
Constructive and classical Natural Deduction each have a mathematical model.
Each is sound and complete relative to its model. In each logic there is a proof
of a claim if and only if there are no counter-examples, and conversely there is
a counter-example to a claim if and only if there is no proof. The models are
discussed in chapters 9 and 10. Proofs of soundness and completeness are not
discussed (we leave that up to the mathematicians).

8.7 Does the exception prove the rule?
— You are always late.

— Not so! I was early yesterday.

— Ah, but the exception proves the rule!

“Counter-examples destroy claims” runs the argument in this chapter. But “the
exception proves the rule” seems to contradict that. It sounds as if a counter-
example strengthens a claim, clinches it, rather than undermining it.

Actually that’s a misunderstanding. The proverb refers to an ancient le-
gal principle about tacit (hidden, silent, implicit) agreements which has been
known and used as far back as the Roman Empire. The principle is that evi-
dence of special permission for (or prohibition of) an activity is also evidence
for an implicit general rule to the contrary. If I give you permission to pick an
apple from my tree then I tacitly claim, and by asking permission you implicitly
acknowledge, that I have the right to refuse you. If my best argument is that I
wasn’t late yesterday, I implicitly acknowledge that in general I do arrive late.
If there’s a notice on only one of a university’s lawns saying ‘keep off the grass’
then implicitly I am allowed to walk on the others.
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An exception has to be a special case that breaks a rule. It’s the acknowl-
edgement that it’s an exception that proves the rule exists. Counter-examples
don’t strengthen arguments after all. Logic is safe.

8.8 No smoke without fire?
The lady protests too much, methinks.

Gertrude to Hamlet, of the Player Queen.

Why a hundred? One would have been enough.
Albert Einstein, of the pamphlet 100 authors against Einstein.

In life we are suspicious of too much disproof. It smells of bluster, cover-up,
a dishonest guilty mind. We’d prefer an unemotional denial and let that be the
end of it.

In logic, emotion isn’t involved and we neither count nor weigh arguments.
We don’t count examples at all, and as we shall see in the next chapter there can
be provable claims with no witness examples in the model. All we care about
is counter-examples, and the number doesn’t matter. Show one, a hundred, an
infinity — it’s all the same. A valid claim will have no counter-examples and an
invalid claim will have at least one. Beyond that, who’s counting?
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This chapter introduces the mathematical model which lies behind constructive
Natural Deduction. It’s built around a simple and beautiful reading of negation
and implication. Best of all, it uses diagrams.

The model itself is due to Saul Kripke, and it relates formal proof to real-
world reasoning in very much the way that programming relates to reality: there
are things we can do (claims we can prove), things we can’t do (claims we can
disprove) and things we’re still trying to do (claims we can only speculate about).
Inventing the model was brilliant work; the mathematics which showed that the
logic is sound and complete was a work of genius, and Kripke was awarded the
Fields Medal for it. This book doesn’t investigate Kripke’s proofs, but we can
exploit his results.

Kripke’s work didn’t end with his model of constructive proof. He’s now
a very distinguished philosopher, extending his ideas into theories of semantics
more generally.

9.1 Proofs are central
In this book the semantic sequent A1 , A2 , . . . , An |= B is read as a claim that in
any situation in which I’m forced to accept hypotheses A1 , A2 , . . . , An, I’m also
forced to accept conclusion B. It’s up to the mathematical model to define what
a ‘situation’ is and what ‘forced to accept’ means. When we investigate claims
we imagine situations in which we are forced to accept the premises and see if
we are then forced to accept the conclusion as well.

From the constructive point of view, we are forced to accept those things of
which we have proof, and that is the starting point of the model. We can then
be forced to accept composites of which we don’t necessarily have proof — for
example, we’re forced to accept E ∧ F if we have separate proofs of E and F .
The model defines how to treat each of the connectives and quantifiers, building
up from atomic formulae.

In the model there are three different possibilities for a particular formula
in a particular situation: there may be a proof; there may be no proof; it may
be possible to show that there could never be a proof. The same extends to
composite formulae: we may be forced to accept; we may not be forced to accept;
we may be able to say that we could never be forced to accept.
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Goldbach

(a) no proof ever (b) a proof is coming (c) maybe, maybe not

Goldbach

Fig. 9.1 Possible developments with Goldbach’s conjecture

Don’t suppose that you could use different values — 1, 1
2

and 0, say — to recognize these different possibilities. That
wouldn’t capture the subtleties of constructive proof at all.
This isn’t a three-valued logic.

The model captures the distinction between “no proof yet”, which is how novel
claims begin, and “no proof ever”, which is the fate of invalid claims. Because
constructive Natural Deduction is sound and complete in this model, every claim
is either provable or disprovable — no middle ground.

Fig. 9.1 shows an example of the subtlety which multi-world diagrams give
to constructive semantics. There are many ways of depicting the fact that Gold-
bach’s conjecture — “every even integer n > 2 is the sum of two primes” —
currently has no proof. Figure 9.1(a) illustrates the gloomy possibility that there
might never be a proof, either because nobody ever finds one, or because some-
body finds a disproof. Figure 9.1(b) shows what everybody hopes is the case:
we don’t have a proof now, but one day we will. Figure 9.1(c) hedges its bets,
setting out alternative possibilities of failure and success.

The three different situations have different content, as you’d expect. In
none of them are we forced to accept Goldbach (definitions 9.1, 9.2); only in
9.1(a) are we forced to accept ¬Goldbach (Definitions 9.5, 9.6); in 9.1(b) and
9.1(c) we have neither Goldbach nor ¬Goldbach, and these are each constructive
counter-examples to Goldbach ∨ ¬Goldbach (Definition 9.4).

9.1.1 Positive and negative evidence. Consider F → E. This isn’t a claim
which is valid in general: there are lots of F s and Es I can think of which aren’t
connected in that way. Rainfall → unhappiness, for example, isn’t always so. It
would hold on a camping holiday in a leaky tent; it wouldn’t hold if you were
farming a field in a drought. Clearly, F → E is acceptable in some situations
and not in others. In the model, if E always turns up when F does, then you
certainly ought to accept F → E; if F sometimes turns up on its own, you
certainly shouldn’t. Figure 8.3(b) on page 125 shows a situation in which it’s
right to accept F → E, and Fig. 8.3(a) shows another in which it would be
wrong. As in real life, it depends on the situation.
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A model of Natural Deduction has to capture all its peculiarities. Recall
F � E → F (the price-of-tomatoes argument) and ¬E � E → F (the cunning-
uncle argument). Those two oddities influence the whole model. In particular
you are forced to accept A → B unless you can find evidence to the contrary,
which the model defines to be a world in which you are forced to accept A

but not forced to accept B. This is called a negative definition — forcing in the
absence of contrary evidence. Negation (¬) and universal quantification (∀) have
negative definitions too.

Don’t suppose that the peculiarities of implication are just to
do with constructive semantics — they’re shared with classi-
cal logic and lots of other logics. Devising a useful logic which
is useful, sound and complete and doesn’t have those peculiar-
ities is a challenge. Both the versions of Natural Deduction in
this book have difficulties with implication (but the construc-
tive version does rub your nose in it).

Negative definitions may seem peculiar at first, but they give the model the
odour of disproof, which is just what we need. We are as often seeking evidence
that we are not forced to accept some formula as the other way round. Negative
definitions often suit our purposes.

9.1.2 Diehards beware! Because Kripke’s model allows us to describe and
investigate situations in which we may not immediately know everything there
is to know, it does more than classical logic needs. It covers classical concerns
in the sense that it includes the classical model: the discussion on page 116
around Fig. 8.2 and the E → F |= E claim, for example, is just like a classical
treatment using truth tables (see Chapter 10). But in talking about change and
the development of knowledge, the constructive model goes further than a Pla-
tonist would wish, and it allows disproofs of many Platonist claims, including
E ∨ ¬E.

If you are used to classical logic, perhaps as applied to computer hardware
design via Boolean algebra, Kripke’s treatment may seem perplexing at first.
Hold on to your hat and keep your hands inside the car: it’s an exciting ride and
you’ll learn a lot.

9.2 What counts as a situation?
We begin with the intuition that proofs have to be discovered, so that a proof
collection builds up over time. A situation is a possible world — that is, a
collection of proofs — plus all the worlds which you decide to allow it to develop
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(a) a situation and two 
subsituations

(b) three more subsituations

Fig. 9.2 A situation and its subsituations

into. You need not allow all development possibilities: by making particular
choices you present a particular challenge to a claim which ought to hold in
every situation. “What”, you say, “if the world was like this and developed like
so?”. If the claim is universally valid then it will withstand any challenge you
invent. On the other hand, if you can imagine a situation where the claim falls
down, then it’s not universal after all — which means, so far as logic is concerned,
that it’s an invalid claim.

We show our imagined situations using diagrams. In principle a diagram is
just a collection of possible worlds — blobs with associated collections of proofs
— and lines between them, but there are restrictions.

9.2.1 Restricted connections. The lines in a situation are directional: they
point from one world to another. They are intended to show possible develop-
ment of proofs: you can draw a line from w to w′ only if w′ has the same proofs as
w, or more proofs than w. This is the monotonicity condition. (There’s no point
having a line back from w′ to w, because that would mean that the two worlds
would have to have the same proofs, and then you could amalgamate them.)

Since we only need connections in one direction, we can avoid drawing
arrows on the lines; instead we arrange our diagrams so that all connections
point upwards. Each world in a diagram is then the root of a situation which
consists of that world plus all the other worlds you can reach from it by making
one or more upward moves.

In a diagram there are clearly as many situations as there are worlds. Sit-
uations may overlap, as illustrated in Fig. 9.2, if a world has more than one
parent.1

1 In general our diagrams are DAGs — Directed Acyclic Graphs. But in most cases worlds
have single parents, situations don’t overlap, and then they are merely Rooted Directed Trees.
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9.2.2 Restricted claims. The formulae we write next to a world are those which
we imagine have proofs in that world. We restrict the kind of formulae that we
allow — no �, no ⊥, no connectives, no quantifiers, just simple identifiers like
E and F , individual instances of named predicates like R(i) and S(j), named
relations like T (i, j, k) and Deserves(richard , favour), and presence markers like
actual i and actual j. Calculations about composite claims — formulae which
include connectives or quantifiers — happen off-diagram. Unfortunately this
means that a lot of the action has to happen in your head, on paper or on a
blackboard. We’ll see how to deal with that after we’ve got past the basics (but
don’t fret: Jape can help).

9.2.3 This is what counts. There are just four conditions, summarized in
Table 9.1.

Table 9.1 Requirements for a situation diagram

rooted one root world, at the bottom;

atomicity no composite claims, no �, no ⊥;

direction only move upwards;

monotonicity child worlds must include all their parents’ claims.

9.2.4 Is monotonicity believable? The monotonicity principle in the construc-
tive model — proofs are never withdrawn, never contradicted, never go out of
date — is the first point at which you might raise an objection. In the real world
proofs are contested, revised, withdrawn and can be refuted. In Proofs and Refu-
tations, for example, Lakatos famously described the history of a conjecture of
Euler’s about solid objects. What counted as a proof in one century wasn’t ac-
cepted in the next. Proofs had to evolve to keep up with changing notions of
what counts as a solid object, as the conjecture was tested against concave solids
and solids with worm-holes.

The underpinnings of a real-world proof aren’t fixed either: real-world log-
ics are disputed, modified and updated. Computer programming languages in
particular are modified and re-modified over and over. When a new version of
Caml or Java comes out, for example, I have to tinker with the innards of Jape
to keep it running. But in the constructive model, proofs are forever: how can
this be?

There isn’t really a disagreement. The multi-world diagrams of this chapter
describe how we can reasonably interpret particular fixed claims in a partic-
ular fixed logic. Claims like that aren’t contested even in our world, provided
they obey the logic’s rules. Instead, people dispute that a particular problem
formulation captures the matter to be proved, or they argue that a logic isn’t
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adequate to distinguish the nuances of meaning that it should, or they don’t use
a formal logic at all. So “new proofs” are really of new claims and/or in new
logics and/or not formal at all. I may call the various versions of Jape by the
same name; strictly they are different programs in different logics.

The monotonicity condition makes sense once you realize that we are only
talking about what it is like to deal with proofs of particular fixed formula
shapes in a particular fixed logic, and that we aren’t pretending to describe the
meta-logical development of conjectures and reasoning in the real world.

9.2.5 Forced to accept now? In the real world we live in a continuous present.
It’s always “now”; we can know what happened in the past, more or less, but all
we know about the future is that we don’t know. We don’t know what’s going
to happen in the next instant, let alone next week or next year. It’s one thing
to say that I’m forced to accept E ∧ F if I have proofs of E and F to hand, and
not otherwise; it’s quite another thing to say that in some possible world, as for
example in Fig. 8.3(b) on page 125, I can be forced to accept E → F if in future
worlds I will always find F whenever I find E, even though currently I have a
proof of neither. That feels as if facts about the future are acting on knowledge
of the present, and that is surely wrong.

In the model we draw pictures of things as they might be. An example
situation supporting E → F does no more than confirm that for some choices of
E and some choices of F the claim holds — i.e. it isn’t self-contradictory. But
you knew that already: there are some Es and F s for which E → F is provable,
and in those cases the future must be like an example diagram in the model.

An example situation for E → F does no more than ask “what if E and
F were chosen so that E → F holds, like this?”. That’s not letting the future
influence the present: it’s just drawing one possible future. I come back to the
notion that a valid claim is a kind of promise: no matter what the future, it will
always hold. Proof settles that matter in one direction, disproof in the other.
For disproof, you have to display a contrary situation: that means a diagram of
a possible future. That’s all.

9.3 Notation
9.3.1 Atomic formulae and presence markers. An atomic formula is either an
identifier, a predicate instance or a relation instance.

An identifier is a single formula name — E, F , G or Goldbach, for example.
A predicate instance is a single predicate name with individual-name argu-

ments — R(i) or Good(j), for example.
A relation instance is a single relation name with individual-name argu-

ments — T (i, j, k) or Deserves(i, favour), for example.
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A presence marker is “actual” followed by an individual name — actual i

or actual j, for example.

9.3.2 Worlds and situations. A world is a blob in a diagram, plus all the atomic
formulae and presence markers written next to it.

A situation is a world plus any worlds you can reach from it by moving
upwards along lines in the diagram, in one or more steps.

The monotonicity condition is that when there is a line from world w leading
upwards to w′, w′ must include at least all the atomic formulae and presence
markers of w.

9.3.3 Forcing.

s � A

(pronounced “s forces A”) claims that in situation s you are forced to accept
formula A. As in Part II, A stands for any formula at all, atomic or composite.

Note that it’s s � A, not w � A. Situations force claims, not worlds, even
though single worlds with no children are situations, and even though in some
cases you can get away with looking at only the root world or a single tip world
of s to decide whether or not s � A.

9.3.4 Sub-situations.

s′ < s

states that s′ is a situation you can reach by moving upwards in one or more
steps from the root world of s;

s′ ≤ s

states that either s′ is s itself, or s′ < s (i.e. you get to s′ in zero or more steps
upwards from the root world of s).

In Fig. 9.2, for example, if s is the entire diagram there are six situations
≤ s, and five < s.

9.3.5 If and only if. The symbol ‘ iff ’ is pronounced ‘if and only if ’.

A iff B

means that when A holds, so does B, and vice versa. It’s a kind of logical equality.
The force of iff in a definition A iff def is that when you have def you

have A — because of ‘if’ — and when you don’t have def you don’t have A —
because of ‘only if’.

9.3.6 Truth everywhere. � is forced in every situation, so we don’t write it on
the diagrams (else we’d have to write it everywhere).
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9.3.7 Contradiction nowhere. We aren’t allowed to write contradiction on a
diagram, so it can’t be forced directly, and it’s a property of the model that it
is then impossible to describe a world at which a contradiction — E ∧ ¬E, for
example — is forced.

9.3.8 Atomic formulae

Definition 9.1 When A is an atomic formula, s � A iff A is written at every
world of s.

Because of the monotonicity condition, if an atomic formula is written at
the root world of a situation it must be written at every child world, at every
grandchild world, and so on — that is, at every world of the whole situation. So
Definition 9.1 is equivalent to

Definition 9.2 When A is an atomic formula, s � A iff A is written at the root
world of s.

Definition 9.2 is easier to use: we only have to inspect the root world to
check forcing of atomic claims.

None of the situations in Fig. 9.1 force you to accept the atomic claim
Goldbach, though two of them contain sub-situations that do. In Fig. 8.3(a) on
page 125 you are forced to accept the atomic claim F , but not in Fig. 8.3(b).
In Fig. 9.2 four sub-situations force E, four force F , one forces G, one forces H,
and one (the whole) forces no atomic claims at all.

9.4 Connectives definitions
In formal proofs each step of an argument is written down and justified in
full. In Kripke diagrams only the atomic formulae are written down, and not
the composite formulae we deduce from them. You have to deduce what the
diagram forces by using semantic definitions, and the definitions, like the rules
of the logic, cover arbitrarily complicated cases.

You won’t be seriously misled if you read the definitions thinking, at first,
of atomic formulae — Es and F s in place of the As and Bs. We’ll deal with
composite examples later: the mathematics works perfectly for them too.

In Part II the inference rules for ∧ and → were relatively straightforward,
whereas those for ∨ and ¬ were more subtle. In semantics ∧ and ∨ have straight-
forward positive definitions, while ¬ and → have trickier negative definitions.
To use a positive definition you look for supporting evidence; to use a negative
definition you look for a lack of opposing evidence.

9.4.1 Conjunction (∧)

Definition 9.3 s � A ∧ B iff s � A and also s � B.
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A ∧ B means both A and B, right here, right now. To discover if s forces A ∧ B,
check to see if it forces A and check again to see if it forces B.

9.4.2 Disjunction (∨)

Definition 9.4 s � A ∨ B iff s � A or s � B or both.

A ∨ B means one or the other of A or B, right here, right now. To discover if s

forces A ∨ B, check to see if it forces one or more of A and B.

9.4.3 Negation (¬)

Definition 9.5 s � ¬A iff for every s′ ≤ s, s′ �� A.

s � ¬A means that A never happens anywhere in s. To discover if s forces ¬A,
therefore, you have to look everywhere in s and fail to come across A. Stating
the same thing negatively:

Definition 9.6 s �� ¬A iff there is an s′ ≤ s such that s′ � A.

Whichever definition we use, negation is a negative connective, one where
we search for contrary evidence and are forced to accept only if we can’t find
any. You have to scan all the sub-situations, including the whole, looking for a
rogue which forces A. In the nature of negative search, you can stop as soon as
you find a rogue, but otherwise you have to keep looking until you’ve looked
everywhere.

In Fig. 9.2, for example, you have to look everywhere to be sure it forces
¬Goldbach (it does). In the same figure you can stop partway through if you
are looking to see if it forces ¬F (it doesn’t: there are four sub-situations which
force F , and you can stop as soon as you find one).

Local absence isn’t enough s �� A means ‘we don’t have A in this situation’. That
isn’t the same as s � ¬A, which means ‘we don’t have A in this situation or in
any sub-situation’. In Fig. 9.1(b), for example, s ��Goldbach, because Goldbach
is an atomic claim which isn’t written at the root world. At the same time we
have s �� ¬Goldbach, because there is opposing evidence, a sub-situation which
forces Goldbach. That situation, therefore, is a counter-example to the classical
claim Goldbach ∨ ¬ Goldbach: neither of the disjuncts is forced.

9.4.4 Implication (→). In Chapter 3 I described the oddities of proof with the
→ connective: irrelevant price-of-tomatoes implications (B, therefore A → B)
and useless cunning-uncle implications (¬A, therefore A → B). To preserve
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soundness, the model has to be consistent with all the oddities of formal proof,
and it is.

Definition 9.7 s � A → B iff for every s′ ≤ s, if s′ � A, then s′ � B.

A → B claims that everywhere A is forced, B is forced too. To discover if s

forces A → B, you have to look everywhere in s and fail to find A without B.
Stating that negatively:

Definition 9.8 s �� A → B iff there is an s′ ≤ s such that s′ � A and s′ �� B.

What if you can’t find an s′ that forces A? This is cunning-uncle territory: then
you won’t find an s′ that forces A but doesn’t force B. There’s an absence of
opposing evidence, and A → B is forced.

What if B is forced everywhere? This is price-of-tomatoes territory: you
certainly won’t be able to find a sub-situation in which A is forced and B isn’t.
There’s an absence of opposing evidence, and A → B is forced.

9.5 Positively upwards, negatively downwards
The diagrams we draw are monotonic in atomic formulae: if a world includes E

then so must its children, and their children, and so on. They’re also monotonic in
composite formulae: if s forces a composite formula A, then so do its children, and
their children, and so on, up to the tips of the diagram. That simplifies checking:
if you’ve found something forced in a situation, it’s forced in every sub-situation,
i.e. at every point inside that situation. Positive evidence spreads upwards.

Negative evidence also spreads, but it spreads downwards. If s doesn’t force
A then, just because of monotonicity, neither can any parent situation, or grand-
parent, or great-grandparent, and so on, down to the root.

When you are checking a positive connective like s � A∧B you have to check
two pieces of evidence: s � A and s � B. When you are checking s � A → B,
by contrast, you have at least to check s′ � A at every s′ ≤ s; every time you
find s′ � A you have then to check s′ �� B. Unless there is only one world in s

that makes much more work than the positive case.
Because negative evidence propagates downwards, it’s often best to work

that way. If you can find one sub-situation s′ ≤ s which doesn’t force A → B,
then you know that s �� A → B. That sub-situation can be anywhere within s,
and finding it stops the search. So, for negative connectives, you can start at
the smallest and richest sub-situations — the tips of the diagram — and work
downwards. If you don’t find any negative evidence you haven’t lost anything —
you had to check everywhere anyway — but if you do, you know that the same
negativity holds in all the ancestry of that sub-situation, and that’s enough to
stop the search.
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Fig. 9.3 An empty world is not an empty situation

9.6 Empty worlds are tricky
Figures 8.2(c), 8.2(d), 8.3(a) and 8.3(b) on page 125 provide counter-examples
to E → F |= E and therefore, by soundness, to E → F � E, the claim necessary
to complete the stuck proof of Fig. 8.1. In each of the counter-examples the root
world doesn’t mention the conclusion E, because absence is the only way to
avoid forcing an atomic claim. In each case the situation forces E → F because
of a lack of negative evidence: in 8.2(c) and 8.2(d) E is never mentioned at all;
in 8.3(a) and 8.3(b) every place which includes E also includes F .

The case of Fig. 8.2(d) shows that the single isolated empty world situation
— a world with no formulae and no children — is a tricky customer. It forces
E → F because (cunning uncle) it doesn’t force E, and that’s the whole of the
story because there are no other sub-situations. Indeed it forces A → B for any
atomic A and any B at all, so for example it forces E → F → G. But it doesn’t
force every implication: it doesn’t force (E → F ) → G, for example, just because
it does force E → F but not G.

The single isolated empty world forces ¬A for any atomic A, for obvious
reasons (and then, for the same reasons, it doesn’t force ¬¬A).

The single isolated empty world doesn’t only force negative formulae: it
forces the disjunction (E → F ) ∧ ¬G ∨ H, for example. It’s obvious, though,
that it can’t force any formula which doesn’t contain a negative connective (or
quantifier) somewhere.

But — beware! — empty worlds which have children aren’t isolated. The
isolated empty world forces E → F and doesn’t force (E → F ) → G, for
example. Add a world which forces only E (Fig. 9.3) and the picture turns
around. Now E → F is denied everywhere, because we can always reach contrary
evidence, and therefore (E → F ) → G is forced everywhere, even though the
situation as a whole still has an empty root world.

9.7 Checking and disproving
There are three distinct activities which are part of disproof:

1. Checking a situation to see if a formula is forced or not.
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2. Checking a situation to see if a sequent is exemplified (premises and conclu-
sion forced), countered (premises forced, conclusion not forced), or neither.

3. Disproving a sequent by inventing a situation in which its premises are forced
and its conclusion isn’t.

Chapter 11 deals with the disproof task; I’ll concentrate here on checking.

9.7.1 Training wheels for checking. To make the mathematics work, we must
only write down atomic claims at a world. That’s all fine and minimal, but if we
don’t write anything else and try to do the calculation in our heads, we can get
muddled up. On the other hand, if we do write anything else on the diagram,
we have to rub it all out and re-calculate if we change the diagram a bit. Jape
is good at that kind of careful book-keeping; humans aren’t.

When simply checking a fixed formula against a fixed situation, it’s safe to
make notes on the diagram. In the examples in this chapter I circle and shade
sub-situations to illustrate forcing and to record calculations. You may find it
convenient to do the same.

9.7.2 Jape’s training wheels. Once you’ve got a sequent into Jape’s disproof
pane, you can build situations and Jape will evaluate the claim. If you select a
formula in the sequent or text-select a sub-formula, Jape will show you more: it
will colour worlds in the diagram violet if your selection is forced there, black if
it isn’t. You will be able to see for yourself that violet worlds always have violet
children, and black worlds always have black parents.

9.8 Checking a propositional formula
Which of the situations in Fig. 9.4 force E? Only 9.4(b) and 9.4(d). Other
situations have E, but in the wrong place: an atomic formula is forced only if it
is written at the root world of the situation (definition 9.2).

F

E F

E

(a) (b) (c) (d)

(e) (f) (g)

Fig. 9.4 various example situations
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Which of the situations in Fig. 9.4 force E∧F (Definition 9.3)? Only 9.4(d).
Which force E ∨ F (Definition 9.4)? 9.4(b), 9.4(c) and 9.4(d).
Positive-only examples are too easy. Which situations force E → F? (Def-

inition 9.8 tells us to look for worlds which force E without F and rule out all
enclosing situations.) All of them, except for 9.4(b), 9.4(e) and 9.4(f).

Which of them force E → (F → G)? More difficult, this: look for worlds
which force E without F → G, and rule out all enclosing situations. That means
worlds which include E but which can’t reach a world that forces F without
G. 9.4(f) fails the test at its left-hand and top worlds; 9.4(g) fails it at the top
world; all the others pass the test.

Which of them force (E → F ) → G? More difficult still: look for worlds
which force E → F without G, and rule out all enclosing situations. That rules
out 9.4(a) and 9.4(c) straight away. 9.4(f), though it doesn’t force E → F overall,
has two worlds that do (right-hand and top), and neither mentions G, so it’s
ruled out. 9.4(g) is ruled out too, because it has three worlds that fail the test.

Which of them force (E → F ) → F → G? Look for worlds that force E → F

without F → G, and rule out all enclosing situations. 9.4(c) fails; so do 9.4(f)
(right, top) and 9.4(g) (everywhere).

9.8.1 Tip: work inside-out in formulae. Complicated formulae make com-
plicated calculations. Semantic definitions, just like proof rules, are expressed
outside-in: start with the principal connective and consider its subformulae;
look for their principal connective in turn and their subformulae; and so on
until eventually you have broken the whole formula down to its atomic parts.

Checking is more efficient if you go the other way round. Information about
atomic formulae is written on the diagram. You can use that information to
calculate forcing for simple composites, then information about those to make
more complicated composites, and eventually arrive at the whole formula. When
you get more skilled, you can make short-cuts, but to begin it’s better to work
systematically from the inside of the formula outwards.

9.8.2 Tip: back your way out of negatives. Nowhere is it more important to
work inside-out than when dealing with negative connectives. There is a great
deal of experimental evidence that people aren’t very good at dealing with nega-
tive evidence and contrary reasoning. Looking for counter-evidence for a negative
formula can be very confusing, unless you tackle it the right way.

Consider, for example, whether the situation in Fig. 9.5 forces ¬¬(E ∧ G).
According to the definition we must check that every sub-situation s′ ≤ s is
such that s′ �� ¬(E ∧ G). That condition contains two negations ( �� and ¬). If
we translate it into a search for contrary evidence — check that there is no
sub-situation s′ ≤ s such that s′ � ¬(E ∧ G) — there are still two negations
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Fig. 9.5 A complicated example situation

(‘no’ and ¬). Even to check s′ � ¬(E ∧ G), which contains only one negation,
we have to look at every s′′ ≤ s and make sure that s′′ �� E ∧ G. But what if we
do find a sub-situation where s′′ � E ∧ G? Is that evidence or counter-evidence
for s � ¬¬(E ∧ G)? What if we don’t find such an s′′? Is that evidence, or
counter-evidence? I think we are lost in a maze of twisty negations, all alike!

Working inside-out it isn’t so hard. Which parts of the diagram force E∧G?
We look everywhere, and find that there’s only one place, the tip that forces E, F

and G. No situation below that tip can force ¬(E ∧G); only the leftmost tip and
the three-world group top right aren’t actually below it, so they must be the only
subsituations that force ¬(E ∧ G). That information is summarized in Fig. 9.6.
Now we can ask the overall question: does the whole situation force ¬¬(E ∧G)?
Certainly not: there’s contrary evidence top left and top right. Job done!

9.8.3 Tip: start negative searches at the tips. The search for evidence against
¬(E ∧ G) above — a search for a place that does force E ∧ G — covered the
whole diagram. The contrary evidence was found at a tip. Tips are indeed the
most likely place to find contrary evidence, because they have more atomic
formulae, but there’s an even better reason to start negative searches at the tips:
negative evidence expands downwards. If a tip doesn’t force A, then neither can
its parents nor their parents nor any node below it, all the way to the root of
the situation.

Does the situation in Fig. 9.5, for example, force (G → H) → E? Working
inside-outwards, we look at G → H, and the definition tells us to look for places
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Fig. 9.6 Expanding evidence contrary to ¬(E ∧ G)

Fig. 9.7 Expanding evidence contrary to G → H

which force G but not H. The two top-left tips (see Fig. 9.7) don’t force G → H

(they force G but not H), and that means all the sub-situations on the left side
of the diagram, plus the whole situation itself, can’t force G → H either (there
is more contrary evidence on that side of the diagram, but we don’t need it: the
tips are enough).There are no Gs on the right of the diagram, so no possibility
of evidence against G → H, so it’s forced there, as shown in Fig. 9.7. Now
the overall question: does the whole situation force (G → H) → E? The only
possible contrary evidence would be in places that do force G → H — the triple
of worlds top right — and there E is forced too. There’s no evidence against
(G → H) → E, so it’s forced. Job done!
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9.9 Connectives exercises — propositional formulae
Exercise 9.1 Check each of the following formulae against each of the following
situations (12 formulae, 9 situations, 108 problems). In each case say whether
the formula is forced ( � ) or not ( �� ) at the root world of the situation:

a. E → F

b. E → F → G

c. (E → F ) → G

d. ¬E → F

e. ¬(E → F )

f. E → ¬F

g. E ∧ F

h. E ∧ F ∧ G

i. E ∨ F

j. ¬E ∨ F

k. E ∨ ¬F

l. E ∧ F → G

E

E  F G

E G

E F

F

E F G

E F

E FE

F

E F

E

1.

2.

3.

4. 6.

9.

5.

7. 8.

Exercise 9.2 Check each of the following formulae against each of the situations
from exercise 9.1 (12 formulae, 9 situations, 108 problems):

a. (E → F ) ∧ (F → G)

b. (E → F ) ∨ (F → G)

c. E ∨ ¬E

d. ¬¬E

e. E ∧ ¬¬E

f. ¬¬E → E

g. E ∨ ¬¬E

h. E ∧ ¬(E → F )

i. (E → F ) ∨ ¬(F → E)

j. ¬E ∨ F → E → F

k. ¬¬¬¬¬¬E (6 negations)

l. ¬¬(E → F ) → (E → F )
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9.10 Checking a sequent
It’s pretty easy to check a sequent, once you can check formulae.

• Are all the premises forced? (If there are no premises then — guess what?
— they’re all forced!)

• Is the conclusion forced?

If the answers are “yes, yes”, then the situation is an example; if they’re “yes,
no”, then the situation is a counter-example; “no” to the first question means
neither example nor counter-example.

9.10.1 Tip: check the easy bits of a sequent first. Suppose you have a lengthy
sequent; suppose that some of the premises are pretty complicated, and others
look pretty easy to check. Check the easy ones first: if even one of them isn’t
forced, then there’s no need to go further.

Suppose you have a lengthy sequent, a large collection of alternative situa-
tions, and you are asked to check which of the situations are counter-examples.
Suppose the conclusion looks easier to check than the premises: well then, check
it first in each new situation. If it’s forced, you don’t have to check the premises
at all. (The same sort of thing if you are looking for examples, but this time an
unforced conclusion resolves the question.)

Exercise 9.3 Check each of the following sequents against each of the situations
from Exercise 9.1, saying which (if any) of those situations are counter-examples
to the sequent’s claim.

a. ¬E → F |= ¬F → E

b. ¬E → ¬F |= F → E

c. E → F |= ¬E ∨ F

d. E → ¬F |= ¬E ∨ ¬F

e. ¬E → F |= E ∨ F

f. ¬E → ¬F |= E ∨ ¬F

g. ¬(E ∧ ¬F ) |= E → F

h. ¬(¬E ∧ ¬F ) |= ¬E → F

i. ¬(E → F ) |= E ∧ ¬F

j. ¬(E → ¬F ) |= E ∧ F

k. ¬(¬E → ¬F ) |= ¬E ∧ F

l. ¬(E ∨ ¬F ) |= ¬E ∧ F

m. ¬(¬E ∨ F ) |= E ∧ ¬F

n. ¬(¬E ∨ ¬F ) |= E ∧ F

o. ¬(E ∧ F ) |= ¬E ∨ ¬F

p. ¬(E ∧ ¬F ) |= ¬E ∨ F

q. ¬(¬E ∧ F ) |= E ∨ ¬F

r. ¬(¬E ∧ ¬F ) |= E ∨ F

s. ¬¬(E ∨ F ) |= ¬¬E ∨ ¬¬F

t. |= E ∨ ¬E

u. |= ¬¬E → E

v. |= ((E → F ) → E) → E

w. |= (E → F ) ∨ (F → E)

x. |= E → (F ∧ G) |= (E → F ) ∨ (E → G)

y. ¬¬E → E |= E ∨ ¬E

z. |= ¬E ∨ ¬¬E
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Exercise 9.4 Repeat Exercise 9.3, this time saying which situations are examples.

9.11 Quantifier definitions
To define the meaning of quantified formulae in the model, we have to consider
population, the universe of quantification, named individuals. That’s why the
individual-presence markers like ‘actual i’ can be included in diagrams.

In formal proof the ∀ quantifier has simpler inference rules. In the semantics
∃ is easier, because it has a positive definition.

You won’t go very far wrong if you think at first of atomic predicates when-
ever you see P in these definitions. Later you can deal with the fact that P

stands for any predicate — any formula whatsoever, which may have one or
more name-shaped gaps in it.

9.11.1 Individual presence

Definition 9.9 i@s iff actual i is written at the root world of s.

(Pronounce i@s as “i at s” or “i is at s”.) Because of the monotonicity condition,
just as with atomic formulae, if actual i is written at the root world of a situation,
it is written at all its worlds.

9.11.2 The meaning of ∃
Definition 9.10 s � ∃x(P (x)) iff there is an i such that i@s and s � P (i).

∃x(P (x)) means that you can point to an individual with property P . The
constructive definition requires you to point, and can be read as “find an actual i

written at the root world of s for which s � P (i)”.
To avoid forcing an existential formula — s �� ∃x(P (x)) — there must be

no individual which has property P . That’s often very easy: the isolated empty
world has no individuals, so it fails to force ∃x(P (x)) for any P at all, atomic or
not, negative or positive.

9.11.3 The meaning of ∀
Definition 9.11 s � ∀x(P (x)) iff for every s′ ≤ s and for every i@s′, s′ � P (i).

Universal quantification is the most semantically negative operator of all. You
have to look everywhere, and at every individual you find there, to see if there
is opposing evidence; only if you find nothing to the contrary can you conclude
∀x(P (x)). It isn’t enough even to check the individuals one at a time: you have to
check them in every sub-situation in which they occur. Stating that negatively:

Definition 9.12 s �� ∀x(P (x)) iff there is an s′ ≤ s and an i@s′ such that
s′ �� P (i).
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This means what it says: look at every sub-situation; check every individual
at the sub-situation’s root to see if it is forced to have property P there; stop if
you find an individual that doesn’t pass the test, but otherwise keep going.

The isolated empty world is as bizarre as ever: it forces ∀x(P (x)) for any
P , because when there are no individuals there isn’t any opposing evidence.
That same minimal situation is a counter-example to ∀x(R(x)) |= ∃y(R(y)): the
premise is trivially forced, but the conclusion isn’t because there is no individual
to witness R.

9.12 Checking a quantifier examples
Once you’ve mastered implication, quantifiers hold no terrors. Existential quan-
tification is as local as disjunction; universal quantification is just like a grand
kind of implication. Checking is pretty straightforward.

Exercise 9.5 Check each of the following formulae against each of the following
situations (4 formulae, 8 situations, 32 problems). In each case say whether the
formula is forced ( � ) or not ( �� ) at the root world of the situation.

a. ∃x(R(x) ∧ S(x))

b. ∀x(R(x) ∧ S(x))

c. ∀x(R(x)) → ∃y(S(y))

d. ∀x(R(x)) ∧ ∀y(S(y)) → ∃z(T (z))

actual j

actual j, R(j)

actual j
R(j)

actual k
S(k)

actual j, R(j),
actual k

actual j, R(j),
actual k, S(k)

1.

2.

3.

6.

4.

5.

7.

8.

actual j

actual j
R(j)

actual k, T(k)
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Exercise 9.6 Check each of the following formulae against each of the situations
from Exercise 9.5 (32 problems). In each case say whether the formula is forced
( � ) or not ( �� ) at the root world of the situation.

a. R(j) → ∃x(S(x))

b. ∃x(R(x)) ∨ ∀y(S(y) → T (y))

c. ∃x(R(x)) → ∀y(S(y) ∨ ¬T (y))

d. ¬¬¬∀x(R(x))

9.13 The classical single isolated world
Recall from Chapter 3 that in classical logic a formula makes a claim which
is either true or false whether we know it or not. From that point of view it’s
natural to say that A ∨ ¬A is true of any logical formula A. Constructivists, on
the other hand, read logical formulae as claims about proof: from their point of
view A∨¬A is disprovable. Kripke’s forcing semantics is designed to explain the
constructivist view.

But if we consider only a single world with no descendants, Kripke’s mecha-
nism mirrors classical logic. In every situation s either s � A or s �� A, no matter
what the form of A; in a single-isolated-world situation, with no sub-situations
other than the whole, s �� A is exactly the same as s � ¬A. Excluded middle
holds! We have A ∨ ¬A! The single isolated world describes classical semantics.

If a logical claim has no classical proof it will have a classical disproof —
i.e. a single-isolated-world counter-example. If it has a classical proof but no
constructive proof — i.e. if it’s a claim in the disputed region of Fig. 3.3 on
page 39 — then it can’t have a classical disproof, so it will need more than one
world to disprove it constructively. Fig. 9.3, for example, is the simplest possible
counter-example to the law of excluded middle. The interesting disproofs are the
disputed disproofs, all of which need more than one world.

Chapter 11 describes how to find all kinds of disproof, including the inter-
esting ones.

9.14 Contradictory uncle sheep
Contradiction, in logical terms, is a description of confusion. Our formal logic
can’t live with contradictions: if you could prove A and at the same time ¬A for
even one A, you could use ¬ intro and either of the contradiction rules to derive
any conclusion you like. Since the model and the formal logic ought to precisely
correspond, the model must not allow us to describe a situation in which we can
be forced to accept A and at the same time forced to accept ¬A.

It’s clear that the model doesn’t support contradiction: if s � A then s �� ¬A,
just by the definition of negation. But that means we can’t diagram claims that
depend on contradiction. It’s completely impossible, for example, to construct
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any situations which either illustrate or disprove E, ¬E |= F . The correspond-
ing syntactic sequent is provable, certainly (one step of contradiction, one of ¬
elimination), so we should expect to find no disproof. But . . . no examples? Can
we believe a claim which apparently has no support? Can the model be said to
support it?

The cunning uncle of Chapter 3 and the green sheep of Chapter 6 come to
our aid. The claim E, ¬E |= F states that when I’m forced to accept E and ¬E

at the same time, then I’m forced to accept F : that’s a cunning uncle promise if I
ever saw one. To prove a claim we must find that every situation which supports
the premises supports the conclusion: the green sheep say that since there are no
situations which support the premises, all the available situations support the
conclusion. (The sheep would be just as happy to work for the prosecution —
every available situation is a counter-example, after all — but their accusatory
efforts would be in vain, because to make a disproof they’d have to point to a
counter-example, and they can’t.)
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In Part II you saw that constructive proof was easier than classical proof. In
Chapter 9 you saw the subtlety of constructive semantics. I dealt with construc-
tive semantics first for two reasons: I wanted to show you that even easy-to-use
logic can be weird; and I wanted to prepare you to take a sceptical view of the
claim that classical semantics is the only model of logic. (I presumed that you
would be naturally sceptical of similar claims about constructive semantics: if
you aren’t, please start doubting now.)

Classical semantics has at least one big advantage over the constructive
alternative, and at least two disadvantages. The advantage is that the method
of truth tables makes calculation with propositional (connectives-only) claims
very straightforward, and allows proof in the model. The disadvantages are that
its explanation of implication is very weak, and, because truth tables only work
properly with connectives, many people think that useful and interesting logic
stops there. (You already know better.)

You shouldn’t be surprised to be told in advance that classical logic is
weird too.

10.1 Classical logic and computer science
Computers are machines that deal with very easily decidable questions. A signal,
entering or leaving a logic gate, is read as either on or off, 1 or 0, true or false,
with no possibility of indecision allowed (it’s easier to make hardware if it is only
asked to distinguish between two alternatives). Logic gates are then arranged to
imitate classical truth-table calculations with 1s and 0s, and combinations of
gates imitate the algorithms of al-Khwarizmi applied to binary numerals.

Hardware memory cells become the variables of our programming languages.
So long as we restrict ourselves to remarks about variables and other memory-
supported data structures, everything remains decidable. No need to make any
proofs to decide if i is or is not 0 — just go and look in the memory cell! — so
its quite unexceptionable to insist on excluded middle, and i = 0 ∨ i �= 0 really
is just true.

Not everything is so classically simple. If a proof of a program depends on
a proof that a procedure (Java method, C function) does its job, then a proof
is what’s needed. Excluded middle — “it crashes or it doesn’t” — hardly seems
relevant.
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Still, classical semantics works well for hardware, and for very many ques-
tions that we want to ask about our programs. Part IV depends on it. I have to
give it a fair crack of the whip.

10.2 Simplicities
In the classical Platonist view, every logical formula is either true or false, inde-
pendent of our knowledge or our ability to prove or disprove it. The semantics
of classical logic, then, has no need of extensions and travel between worlds:
everything happens in one place. We can still think of possible worlds — one
in which E holds and another in which ¬E holds, say — but we can cover all
the possible models of a non-quantified formula with a fixed number of isolated
worlds.

If a formula mentions only E there are only two possible worlds: either E

is true or it’s false.
E

false
true

If it mentions both E and F , there are four:

E F

false false
false true
true false
true true

If it mentions E, F and G there are eight:

E F G

false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

And so on: in general, for a formula which includes n atomic identifiers and
no quantifiers there are 2n possible worlds. When we’ve considered them all,
we’ve dealt with all the possible valuations of the formula.
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Since we only have to consider a fixed number of isolated worlds, we can
easily tabulate the logical connectives, treating them as functions on true/false
(1/0) values. For example, the classical tabulations (‘truth tables’) of ∧, ∨ and ¬:

A B A ∧ B A ∨ B ¬A

false false false false true
false true false true true
true false false true false
true true true true false

Each row of this table is a A, B situation: in technical language a valuation.
All possible valuations can be described in just four rows. This makes calcula-
tions very simple. In particular, negation, whose semantics is subtle in the rules
of Chapter 3 and the definitions of Chapter 9, is just a simple inversion. This
is clearly a useful simplification, but it’s not a pure advantage: there is a price
to pay.

10.3 What’s the truth table for implication?
Chapter 3 gave the meaning of A → B as “whenever you accept A, you are
forced to accept B”. In classical terms that means “whenever A is true, so must
B be true”. It isn’t clear how this translates into a truth table, but we can find
out by looking at all the possible truth tables for connectives.

In a tabulated A, B situation there are four rows. Each column is an ar-
rangement of four values, each of which is either true or false. Obviously, there
are only 16 — 24 — possible columns.

Table 10.1 shows every valuation of every possible binary (two-place), unary
(one-place) and 0-ary (constant) classical connective, displayed in a sort of nu-
merical order, reading the columns as binary numerals from bottom to top
(0=false, 1=true). I’ve labelled the columns where possible with conjunction,
disjunction, negation and equivalence (≡, same as iff ) connectives.

The two halves of the table — columns 0–7 above, 8–15 below — are negated
mirror-images of each other: 0 is the opposite of 15, 1 of 14, and so on, and
vice versa. Most of the columns have obvious meanings, especially when you
recognize NOR ( � ∨), NAND ( �∧) and XOR ( �≡) from the hardware designer’s
handbook. Only four columns — 2 and 4 in the negative section, 11 and 13 in
the positive — are unassigned. The truth table for implication must be one of
those four, unless it’s to be equivalent to some other connective, which would be
very unsatisfactory.

Classical implication requires that “whenever A is true, so must B be true”:
the bottom two rows of the table are the only ones where A is true, and only
in the bottom row is B true as well. That rules out the entire first half of the
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Table 10.1 Truth table of all connectives and symbols

A B ⊥ A 
 ∨ B ?2 ¬A ?4 ¬B A 
≡ B A 
∧ B

false false false true false true false true false true

false true false false true true false false true true

true false false false false false true true true true

true true false false false false false false false false

A B A ∧ B A ≡ B B ?11 A ?13 A ∨ B �

false false false true false true false true false true

false true false false true true false false true true

true false false false false false true true true true

true true true true true true true true true true

table, every column of which has false in the bottom row; all the columns in the
second half have true there, so implication clearly fits in the second half of the
table. In the next-to-bottom row A is true and B is false, and that contradicts
“whenever A is true, so must B be true”: we need false in the next-to-bottom
row. Only column 11, of the unassigned columns, passes both the tests.

Now we can fill in all the labels: column 11 is implication (→); column 13
is reverse implication (←); column 4 is negated implication ( �→); and column 2
negated reverse implication ( �←).

10.4 Is classical implication weird, or what?
Column 11 of Table 10.1 is the only possible truth table for classical implication,
and it reads

A B A → B

false false true
false true true
true false false
true true true

(10.1)

The true values in the first two rows give novices a lot of trouble. After reading
Chapter 9, you should recognize what’s going on: this is a negative definition!
A → B, in classical as well as constructive semantics, holds unless there is
contrary evidence — and the only possible contrary evidence is A true, B false
on the third line.

The classical model of implication is just as weird as the constructive ver-
sion, and in just the same way.
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10.5 Checking formulae with truth tables
When you consider formulae which don’t use quantifiers, classical truth-table
semantics has a marvellous property. You can write down every possible valua-
tion of a formula as a truth table, and you can discover whether it’s valid or not
without making a formal proof. In constructive logic, by contrast, you can only
show disproof in the model: in the other direction it’s usually impossible to be
sure that you’ve covered every possibility, so proof has to be in the formal logic.

A tautology is a formula which is provable without any assumptions —
that is, an A for which � A is provable. Since Natural Deduction is sound and
complete with respect to the classical model, a tautology must be true in ev-
ery possible valuation, an A for which |= A holds. In the case of propositional
formulae — formulae which involve only connectives — we can write down ev-
ery possible valuation, so we can decide whether a propositional formula is a
tautology without needing to prove it formally.

(E → F ) ∨ (F → E), for example, is a classical tautology:

E F E → F F → E (E → F ) ∨ (F → E)
false false true true true
false true true false true
true false false true true
true true true true true

Even though, by soundness, we don’t need to make a formal proof, by
completeness there must be one. Fig. 10.1 shows a proof made in Jape, and it’s
the shortest one I know (there’s an alternative proof which appeals to a proof of
E ∨ ¬E, but, surprisingly, it’s longer). Clearly, proof-by-valuation is sometimes
easier than proof-by-the-rules.

10.6 Absurdities
Once you know its truth table, classical implication can be read as a combination
of negation and disjunction. The truth table for ¬A ∨ B is exactly the same as
the one for A → B:

A B ¬A ¬A ∨ B

false false true true
false true true true
true false false false
true true false true

(10.2)

That always seems a shame to me: it is as if implication, which is an attempt to
explain an important kind of reasoning, is thrown away.

Looked at another way, it’s just the other side of the absurdities that I’ve
been banging on about ever since Chapter 3: the price-of-tomatoes absurdity
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Fig. 10.1 A classical proof of E → F ∨ F → E

Fig. 10.2 A constructive disproof of E → F |= ¬E ∨ F

is B � A → B and the cunning uncle is ¬A � A → B. Constructivists and
classicists agree that ¬A ∨ B � A → B. The classical model provides, symmet-
rically, that A → B � ¬A ∨ B and then, by soundness, it follows that classically
A → B � ¬A ∨ B. Constructivists don’t agree: see the disproof in Fig. 10.2.

Hardware designers don’t build logic gates that mimic implication. That’s
because it’s not a good basis for making other truth tables, unlike � ∨ or �∧. Most
programmers don’t even know that implication exists, let alone what its truth
table is. That must tell us something about classical implication: simplicity of
definition isn’t everything.

So classical implication is simple but boring. Constructive implication is a
bit more subtle but also a bit tricker. They are both more than a little absurd.
All the stuff about promises in Chapter 3 is about the way that the mathematical
semantics reflect those subtle absurdities.
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You should realize by now that the absurdities of implication aren’t a side
issue, they are an important part of the semantic definition of Natural Deduction.
It isn’t easy to unpick the tangle and remove the absurdities or make them
less prominent. Logicians have tried to build formal systems in which you can
prove E → F only if the proof somehow calls upon E. They haven’t had much
mainstream success, though modern developments like linear logic and BI are
blazing a trail in computer science circles at least. The phenomenon of the green
sheep of Chapter 6 suggest that the cunning uncle will be even harder to banish.

10.6.1 Isn’t it better to keep it simple? From the previous discussion you
might be tempted to conclude that the semantic differences between constructive
and classical logic are a bit overdone. Perhaps it’s six of one and half a dozen
of the other. Perhaps, in the matter of implication, constructivists swallow an
absurd tree-shaped camel and then strain at a silly negation-sized gnat. And
surely classical semantics is just simpler: no uncles making promises, no possible
worlds, just truth tables and useful algebraic equivalences like ¬¬E ≡ E, which
constructivists over-fastidiously disdain.

There is a sense in which we can all agree with this argument. In circum-
stances in which we can reasonably argue that E is either true or false, 1 or 0, on
or off, classical logic and its truth tables are just the right thing to do. Hardware
logic is a prime example.

There is also a sense in which we ought to disagree. Constructive logic
has a famous correspondence with the logic of program-typing, and it gives
just the right meaning to calculations in so-called declarative languages, which
do without assignment altogether, avoiding just those deductions which, like
A ∨ ¬A, don’t appeal to evidence.

Horses for courses, then. In the end the justification for considering con-
structive logic as well as the classical version is that it gives you a glimpse of a
world of mathematics beyond the trivial. It introduces you to the difficulties of
precise definition. It doesn’t let you suppose that everything is cut and dried; it
doesn’t leave → out on a limb; nor does it let you think that ∀ and ∃ are impos-
sibly difficult. In my own work, in program proving, my colleagues and I invent
logics and their models rather often: we have to be prepared to be classical on
Monday and constructive on Friday, most weeks.

10.7 Truth tables for quantifiers?
If (E → F ) ∨ (F → E) is a classical tautology, then surely so must ∀x((R(x) →
S(x))∨(S(x) → R(x))) be. The proof is just a matter of introducing an individual
j, specializing to (R(j) → S(j)) ∨ (S(j) → R(j)), and then following the steps
of Fig. 10.1. That mimics the way the ∀ introduction step works.
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Fig. 10.3 Proof of ∀x(R(x) → ∃y(R(y)))

Existentials aren’t so easy to deal with. ∀x(R(x) → ∃y(R(y))), for example,
is an obvious tautology: every time you find an individual i with property R, you
can be sure that there really is some individual with property R (it’s i!). The
proof is trivial, shown in Fig. 10.3. R(i) → ∃y(R(y)) is an obvious tautology, in
a universe which includes i, but if we treat the existential like a universal we go
wrong: R(i) → R(j) is not a tautology at all. The point is that existentials are
about choice, and we can’t make the choice in advance by inventing an individual:
the individuals have to be there first, as the ∃ introduction rule makes clear.

The solution to the truth-tables-for-existentials problem is beyond the scope
of this book, but if you study logic programming or mechanical theorem proving
you will be sure to encounter Skolem functions and discover that the quantifier-
free form of ∀x(R(x) → ∃y(R(y))) is R(i) → R(f(i)). Explanation is beyond the
scope of this book — but I don’t need to explain, because we already have a
proof, and in a sound and complete logic that’s quite enough.

In classical semantics negated universals are equivalent to existentials, and
therefore just as tricky, and it’s not easy to deal with universals on the left of
implications. A few quantified formulae fit the truth table method, but most
don’t. I shan’t go further into the complexities here. In any case, Chapter 11
shows how to deal with this problem far more directly and convincingly.

10.7.1 Classical semantics of quantification. The classical semantics of uni-
versal quantification are just what Chapter 6 say they are: each individual you
encounter must have the described property. The method of choosing identifiers
and building a truth table imitates the ∀ introduction rule: find an individual
which is private to the proof of the quantification, and prove the property for
that individual; if you can do that then the proof applies to any individual at all.

The classical semantics of existential quantification are also as described in
Chapter 6: you must be able to find an individual with the described property.
The need to choose rather than to invent is what makes the ∃ introduction rule
difficult to imitate, and what scuppers the truth table ‘method’ for existentials.
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There is a subtlety in the semantics of the existential. Chapter 6, in dis-
cussing the universal drunk example, explains an essential difference between the
classical and constructive treatments: classically it is enough that there should
be an individual with the quantified property; constructively it is essential to
point to that individual, to show the witness. This mimics the distinction be-
tween the models: classically a formula is true or false whether we know it or
not; an existential can be true, even provably true, but we need not say exactly
why, nor do we even need to know; constructively, you have to show me.

10.8 Summary
Propositional formulae — formulae made up of identifiers and connectives only
— are a pushover for classical semantics. The truth table method eats them up,
and can even substitute for formal proof. Add quantification, though, and the
picture changes: truth tables stop working and we have to resort to the kind of
methods discussed in Chapter 11. The classical treatment of propositional logic
is simple and useful, but that doesn’t extend to quantifiers.

The cost of the simplicity of classical propositional calculation is great vio-
lence done to the meaning of implication, a model so stifling that, in my opinion,
it snuffs out the beauty of the corresponding inference rules. The classical exis-
tential is simply mysterious, and I don’t like that either.

But never mind the aesthetics: classical logic sometimes has its advantages,
as the method of truth tables shows in the next chapter, and as Part IV will
underline. The sophisticated point of view is that there are many logics, and
when we need a logic we pick one to suit our needs. I hope to make you wonder
about the use and meaning of logic and perhaps, with Part IV, to tempt some of
you into the program-proving woods with me for some midnight logic-bending.
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The proof strategy of Part II is almost a mechanical procedure, in which the dis-
covery of a proof is driven by the shape of the formulae and some simple slogans.
Disproof, especially constructive disproof, doesn’t seem to be so straightforward.
But in fact disproofs can often be calculated.

There are three ways to do it. The first and most mechanical, when it works,
is to draw a truth table and read off disproofs by finding rows in which all the
premise formulae are forced (are true) and the conclusion formula isn’t forced
(is false). If there’s a classical disproof, and if it’s possible to draw a truth table,
you’ll find it that way.

The second way is to try to make a proof, and fail. A stuck proof has
gaps which we don’t know how to bridge. If we’ve used up all the premises and
assumptions, worked on each and every connective and quantifier so that they
are reduced to atomic formulae, and we’ve done the same to the conclusions,
then we may be able to build a disproof by drawing a diagram which forces the
atomic hypotheses we’ve deduced and doesn’t force any atomic conclusions. It
isn’t quite that simple, and it doesn’t always work, but it’s very helpful when it
does.1

After a little practice you will come to the third way: thinking of what you
need to force a formula and what you need to deny it. It’s tricky, and you at
first you may need pencil and lots of paper, or a big blackboard, or a very long
reflective ride on the bus, but it’s ultimately the most satisfying.

11.1 Simple classical calculations
If a propositional claim (one with no quantifiers) has a classical disproof, then
it can be found by truth table, and that’s often the easiest way to find it.

11.1.1 E ∨ F |= E ∧ F . The claim is obvious nonsense — having one or the
other of E and F doesn’t mean you have both. A two-row truth table is easy
to build, as shown in Fig. 11.1. We’re looking for a line on which all of the
premises are forced (are true) and the conclusion isn’t forced (is false). Either
line 2 or line 3 will do as a counter-example; line 4 is an example; and line 1 is

1 This means of searching for disproofs is related to the method of semantic tableaux.
The presentation in this book doesn’t do justice to that elegant method.
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E F E ∨ F E ∧ F

false false false false
false true true false
true false true false
true true true true

Fig. 11.1 A truth table which shows that E ∨ F � � E ∧ F

E F

Fig. 11.2 Situations which disprove E ∨ F |= E ∧ F

irrelevant because the premise isn’t forced. Translating lines 2 and 3, I can draw
the counter-example diagrams in Fig. 11.2.

We don’t really need the tables to point us to the diagrams. We need to build
a situation which forces the premise and denies (doesn’t force) the conclusion.
To deny E ∧ F one or both of E or F must be missing; to support E ∨ F one
or both of E or F must be present. It’s immediately obvious that the worlds of
Fig. 11.1 are counter-examples.

It’s possible to read the same counter-examples in the stuck proof attempt of
Fig. 11.3. There are two gaps in the proof: one asks us to prove from hypotheses
E ∨ F and E the conclusion F ; the other asks us to prove E from E ∨ F and
F . The worlds of Fig. 11.1 are made by listing the atomic hypotheses at one
of the sticking points and not listing the corresponding atomic conclusion — E

without F at line 3 and F without E at line 7.

Fig. 11.3 A stuck proof of E ∨ F � E ∧ F
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11.1.2 E → F → G |= (E → F ) → G. The claim is not, perhaps, obvious
nonsense, especially because in the opposite direction it’s easily proved. It isn’t
valid, though, and the truth table in Fig. 11.4 shows why. In an empty world
(line 1) we have E → F because we don’t have E; but we don’t have G, so
the conclusion is denied; the premise is forced, on the other hand, just because
we don’t have E. The other counter-example world (line 3) forces just F : we
therefore have E → F ; we don’t have G, so the conclusion is denied; we don’t
have E, so the premise is forced. (Those are the only counter-examples in the
table: on line 7 the conclusion isn’t forced, but neither is the premise, so it’s
neither example nor counter-example.)

The proof attempt of Fig. 11.5(a) hints at the same counter-examples. Don’t
force G; do force the hypotheses, both of which are trivially forced if we don’t
force E. But the proof isn’t completely stuck yet: it’s possible to push it as far as
Fig. 11.5(b), which makes it clear that you mustn’t force E, so the only choice
you have is whether to force F or not.

E F G E → F F → G E → F → G (E → F ) → G

false false false true true true false
false false true true true true true
false true false true false true false
false true true true true true true
true false false false true true true
true false true false true true true
true true false true false false false
true true true true true true true
Fig. 11.4 A truth table which shows that E → F → G � � (E → F ) → G

(a) no G (b) and no E either

Fig. 11.5 Stuck proofs of E → F → G � (E → F ) → G
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Without attempting a proof you can reason to the same point. The only way
to deny the conclusion is to force E → F but not force G. There are several ways
of forcing E → F : not forcing E is one, and that immediately forces the premise,
so it’s a counter-example. Forcing F is another, but then, since you aren’t forcing
G, you will fail to force F → G, so to force the premise E → F → G you must
again fail to force E.

11.1.3 (E → F ) → G |= E. This one’s obvious: force G, then you have the
premise no matter what else; don’t force E, and you’ve avoided the conclusion;
F is optional. The truth table is part of Fig. 11.4: lines 2 and 4 are the counter-
examples.

In this example the stuck-proof technique doesn’t seem so helpful. The
statement of the problem tells us immediately not to force E. The obvious first
step (Fig. 11.6(a)) suggests that we should force G but not E, but the next step
(Fig. 11.6(b)) is pretty hard to read.

(a) G, no E, perhaps

(c) classicaly: G, no E,

(b) confusion

Fig. 11.6 Stuck proofs of (E → F ) → G � E
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Classically, though, not forcing E is just forcing ¬E, and Fig. 11.6(c) is a
totally stuck classical proof with a first step of classical contradiction. It does
hint at G without E, but it’s a lot of work to find that out given that it was
obvious in the first place.

11.2 Classical examples with quantifiers
Quantifiers mess up truth tables, as Chapter 10 explains. Stuck proofs can help,
though.

11.2.1 actual j,∃x(R(x)) |= R(j). This one’s nonsense, but it might catch you
out. It seems to say that in a universe with only one individual, and a guarantee
that some individual has property R, then the named individual must be the
one. That particular situation is indeed an example of the claim, but it isn’t the
claim. The claim is that in any universe which includes j and in which somebody
has property R, j certainly has it. That’s clearly nonsense: all we have to do is
to postulate a second individual k who has property R, letting j off the hook as
in Fig. 11.7: j@s holds; there’s a witness k@s to the existential; j doesn’t have
property R.

Classically, Fig. 11.7 simply shows ¬R(j) ∧ R(k). You could even draw a
two-row truth table, as in Fig. 11.8. But truth tables for quantifiers come after
we’ve found the secret of the disproof. How do we come up with the idea of
including R(k)?

Stuck proofs are the answer. Fig. 11.9 shows an attempt made in Jape: as
soon as we use ∃ elim a new individual pops up. Fig. 11.7 uses k rather than i:
apart from that, it’s a straightforward readout from the presence markers and
atomic formulae of lines 1, 2 and 3 of the stuck proof.

11.2.2 ∃x(R(x)) |= ∀y(R(y)). Fig. 7.12 on page 113 shows two stuck proofs of
this claim. They each tell us the same thing: include two individuals; give one

actual j
actual k
R(k)

Fig. 11.7 A counter-example to actual j, ∃x(R(x)) |= R(j)

R(k) ∃x(R(x)) R(j)
false false false
true true false
false true true
true true true

Fig. 11.8 A truth table for R(j), R(k) and ∃(R(x))
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Fig. 11.9 A stuck proof of actual j, ∃x(R(x)) � R(j)

property R, but not the other. So Fig. 11.7 is a counter-example. A world with
j, k and R(j) but not R(k) would do just as well.

11.2.3 ∀x(R(x)) |= ∃y(R(y)). A constructive proof of this example can’t even
begin because there are no individuals to use in ∀ elim or ∃ intro. You can get
started with classical contra, but then you have to show that ∀x(R(x)),¬∃y(R(y))
� ⊥, and you can’t.

There are no presence markers and no atomic formulae, so the counter-
example is the isolated empty world. Everyone you could possibly meet there
has property R; but there is nobody to point to who actually has it.

11.3 Constructive disproof
Classical disproof via truth tables is tedious with large tables, and it’s limited
as a method. Constructive disproof is more fun, even if you don’t want to be a
constructivist, because you can examine the edgy claims that classicists accept
but constructivists don’t.

The only new thing to note is that you have to read stuck proofs differently:
boxes can correspond to child worlds. If you always make a child world for each
box you may make more than you strictly need, but usually it won’t matter very
much.

11.3.1 |= ((E → F ) → E) → E. This is Peirce’s law, beloved of classicists
and incomprehensible to constructivists. It’s a classical tautology (Fig. 11.10) so
it can’t have a single-world disproof. All constructive attempts to prove it gets
stuck as in Fig. 11.11. The stuck proof at first seems to suggest that a world

E F E → F (E → F ) → E ((E → F ) → E) → E

false false true false true
false true true false true
true false false true true
true true true true true
Fig. 11.10 A truth table for Peirce’s law, ((E → F ) → E) → E
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(a)  intro

(a)  intro

(b)  elim

Fig. 11.11 A constructive attempt to prove Peirce’s law

E

Fig. 11.12 A constructive disproof of Peirce’s law and excluded middle

which forces E but not F will be a disproof, but that’s not so (Fig. 11.10, line
3). What it actually tells us is to make a child world which forces E and not
F , as in Fig. 11.12. E → F isn’t forced anywhere; so (E → F ) → E is forced
everywhere; but we don’t have E at the root world, so ((E → F ) → E) → E

isn’t forced there. The proof first tells us not to force E; later it says that we
must force E, but “inside a box”, i.e. in another world. Disproof! Magic!

We don’t really need the stuck proof. To deny ((E → F ) → E) → E we
must force (E → F ) → E but not E. Clearly, we must fail to force E → F ,
because that’s the only way that we can force (E → F ) → E without E. And
the only way to fail to force E → F , as we well know and as the third stage of
the proof attempt tells us explicitly, is to have a world that forces E but not
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(a) no E at the root (b) E at a child world

Fig. 11.13 Constructivists can’t prove excluded middle

F . Since we mustn’t force E at the root, we must force it in a child world. Job
done; same answer — reflection wins again!

11.3.2 |= E ∨ ¬E. The law of excluded middle is immediate classically (a
two-row truth table — draw it yourself!) but isn’t provable constructively. A
constructive attempt gets stuck either trying to prove E from no assumptions
(Fig. 11.13(a)) or a contradiction from assumption E (Fig. 11.13(b)).

We must show that neither of those proofs is possible: to block a disjunction
we have to block both sides. The first attempt tells us that we mustn’t force E at
the root world; the second tells us to have a child world which forces E and make
sure we don’t get a contradiction (that’s easy: we can’t make a contradiction
in the model anyway). That means that Fig. 11.12 is a constructive counter-
example to the law of excluded middle as well as Peirce’s law. E isn’t forced,
and we don’t have ¬E either, because we can reach a world which forces E.

11.3.3 |= (E → F ) ∨ (F → E). To disprove a disjunction you have to be able
to deny each side separately. We have to find a situation which disproves E → F

and at the same time disproves F → E. To deny E → F we need a world with
E but not F ; to deny F → E we need one with F but not E (we could find that
out from stuck proofs, but surely we don’t need the crutch). Nothing could be
easier: Fig. 11.14 is exactly what’s needed. E → F isn’t forced, because there’s
a reachable world with E and not F ; F → E isn’t forced either, for similar
reasons.

11.3.4 actual j, actual k |= ∃x(R(x) → R(j) ∧ R(k)). Our old friend the uni-
versal drunk has no disjunction, but still has a split disproof. That shouldn’t be
a surprise: the split is generated by ∃ intro, which is after all a generalized form
of ∨ intro.
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FE

Fig. 11.14 Constructive disproof of |= (E → F ) ∨ (F → E)

actual j
actual k

actual j, actual k
R( j)

actual j, actual k
R(k)

Fig. 11.15 Constructive disproof of the universal drunk

Fig. 7.15 (page 116) shows a stuck proof in which the first step was to
specialize the existential using actual j. The proof attempt tells us to make a
child world which has R(j) but not R(k). If the first step had used actual k,
we’d be told to make a world with R(k) but not R(j). The counter-example,
Fig. 11.15, includes both those worlds. Neither j nor k will do as a witness for
the conclusion, because each occurs in a sub-situation where R(j) ∧ R(k) isn’t
forced.

11.4 It isn’t always so easy
It might seem that constructive disproof is a breeze, that all you have to do is
press the buttons on Jape and read off the answer. Not so!

11.4.1 |= ¬E∨¬¬E. In classical logic ¬¬E is equivalent to E, so classicists read
this claim as just another version of excluded middle. Constructively it’s quite
different, and it doesn’t even have the same counter-example as the excluded
middle claim.

There’s a choice in how to treat the disjunction, and each choice gets stuck,
as shown in Fig. 11.16. The left choice tells us to build a world with E in it; the
right choice tells us to build a world without E. Fig. 11.17 is the corresponding
diagram, and it is the simplest counter-example. ¬E is denied because we can
reach a world (top left) that forces E. ¬¬E is denied because we can reach a
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(a) the left arm (b) the right arm

Fig. 11.16 Constructive attempts to prove ¬E ∨ ¬¬E

E

Fig. 11.17 A counter-example to |= ¬E ∨ ¬¬E

world (top right) that forces ¬E. Fig. 11.12 is enough for excluded middle, but
not for this claim.

Adding more negations doesn’t make much difference: Fig. 11.17 is a counter-
example to |= ¬¬E∨¬¬¬E. Not all combinations are so complicated: |= E∨¬¬E

has a simple classical counter-example, as does |= ¬E ∨ ¬¬¬E.

11.4.2 |= (¬¬E → E) ∨ ¬E ∨ ¬¬E. Never mind what this monster means: I
think it was created especially to bamboozle constructivists. It has a classical
proof (try it! build the truth table! only two rows and four columns!) so no
single-world disproof. But it has a wonderful constructive disproof.

Constructive proof attempts get stuck in three different ways, as shown in
Fig. 11.18. If we read those stuck proofs literally, taking a box as a command to
build a child world, and atomic assumptions as the formulae we must force at
that world, we’d build a trifurcated diagram like Fig. 11.19(a). That is, indeed, a
counter-example. But so is Fig. 11.19(b), made by observing that to deny ¬E all
you need is a reachable world which forces E, and there’s already one in the left
arm, so the middle arm is redundant. Fig. 11.19(b) is simpler. Indeed it is the
simplest possible counter-example to the monster claim — which is perplexing
because it doesn’t look simple.

If we are to deny ¬¬E, there must be a reachable world which forces ¬E:
that’s what the empty leaf world is for. If we are to deny ¬E, there must be a
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(a) the left arm

(b) the middle arm (c) the right arm

Fig. 11.18 Constructive attempts on a monster

E

E E

(a) from the stuck 
proof

(b) a minimal version

Fig. 11.19 Counter-examples to |= (¬¬E → E) ∨ ¬E ∨ ¬¬E
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reachable world which forces E: that’s what the other leaf world is for. We still
need to deny ¬¬E → E: since ¬¬E is denied at the root and the rightmost tip,
and E is forced at the leftmost tip, ¬¬E → E would be trivially forced with
just those three worlds. We need a world where ¬¬E is forced and yet E is not:
that’s what the intermediate empty world is for.



Part IV

Proof of programs
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Logic which merely has a mathematical meaning can seem very dry, almost
as pointless as logic without meaning. Logic was invented originally to classify
real-world legal arguments, to distinguish good arguments from bad, to provide
reasoning with a point. Computer scientists want to be able to write computer
programs that work. For us, logic would have a very sharp point indeed if it
could help us to program.

This part is about Hoare logic, a treatment of computer programs which
wraps classical logic up in yet more logical rules about program statements. The
result is remarkable: a logic in which we can claim properties of programs and
prove that those properties hold. In particular, we can write programs where
the loops do terminate, the array bounds are always respected and the required
result is always achieved.

As ever, nothing comes for free. Program proof is tricky and expensive, and
most software producers think it’s beyond their means. It isn’t just a dream,
though: it’s already one of the ways that the most important safety-critical
programs, especially the ones which fly planes and drive trains, are checked
before they are used. It remains a dream to extend the range of logic to cover
more kinds of program properties, to deal with larger programs, and to make the
whole activity easier and more automatic so that everybody can use it. We’re
working on our dream.

WARNING: the Jape proofs in this part of the book, espe-
cially those in Chapters 14 and 15, are large and long. You
may be able to comprehend some of them on the page, but
you will often find it best to reconstruct them in Jape as you
follow the discussion.
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12 Specification and verification

The connection between logic and computer science runs through computer pro-
gramming. Computer programming languages are formal systems — that is,
specialized logics. It ought to be possible to exploit that connection and make
programs with proven logical properties, programs which don’t go wrong or crash
as often as programs do today. It’s a tempting prospect, and there are at least
the following approaches under active development:

• construct a model of the program, and reason within that model (model
checking and abstract interpretation);

• write a specification of the program as a logical claim, and infer the program
using logical rules (refinement);

• use languages in which program execution is similar to a search for a logical
proof (logic programming);

• use languages in which program execution is similar to arithmetic calcu-
lation, and use equality substitution to reason about program properties
(functional programming);

• check that an existing program corresponds to a given specification (ver-
ification).

In this book I discuss only the verification of programs written in imperative
programming languages like Java, C, C++ and the like, because I think it’s the
most relevant to most of my readers’ programming lives.

I would be dishonest if I didn’t admit that precise reasoning about programs
and their specifications — often called formal methods — has been controversial
ever since it was first proposed. All sorts of objections are raised against it:

• are programmers clever enough to make proofs?1

• what if you get the specification wrong?2

1 This question seems to be posed most often in Anglo-Saxon countries. In England, for
example, most schoolchildren learn hardly any mathematics, and it’s still acceptable to boast
of ignorance of simple algebra. In such an atmosphere, skill with mathematical logic seems
almost unnatural.

2 See Section 14.8. With or without logical intervention, inappropriate specifications are,
many researchers believe, the source of a large proportion of bugs in programs. Others think
that all specifications eventually become inappropriate, because users’ needs change over time.
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for (c1=buf, c2=s; (*c1++ = *c2++)!=0; );

Fig. 12.1 A particularly sharp chisel

• what if the proof machinery is defective?3

• what about the programs you can’t describe in your logic?4

• why is the technique so far used only with safety-critical software (in France,
on underground trains and passenger jets)?5

This isn’t the place to confront those issues. It’s enough to say that in a book on
logic it’s appropriate to look at what logic might have to do with programming.

12.1 A 21st-century embarrassment
Ever since computing became a mass sport, it’s been plagued by criminals,
vandals and the kind of tricksters who think it’s amusing to throw stones at
other people’s windows. The newspapers call them ‘hackers’, but since that’s
a programmers’ term of approval, I’d rather call them crackers. Crackers find
ways round the information protection mechanisms of computers on the internet,
mostly for fun but sometimes to vandalize or worse. Even without malicious
intent they can do a lot of damage by laying cracked computers open to attack
from less casual intruders. What was once just a bit of a nuisance has grown to
be a severe pain in the bum.

One of the easiest ways past your computer’s defences is via what’s called a
buffer overflow. Fig. 12.1 shows the kind of program which lets in the crackers,
written in C with maximum economy and minimum protection to run as fast as
possible. What it does is to copy a string s into an array buf, called a buffer,
stopping when it reaches the zero byte which always ends a C string. A similar
but less concise way to blow a hole in your own defences is shown in Fig. 12.2,
using the notation introduced in Chapters 13, 14 and 15.

3 This one has an answer. Use a ‘proof checker’ — a simple program which checks the proofs
you prepare. Proof checking is much easier than proof search. Use two checkers, if you don’t
trust the first one or three, or more.

4 There are lots of things about mathematics, and particularly (but not especially) the
mathematics of computing, that aren’t understood yet. If you don’t understand something,
you can’t deal with it logically, or mathematically, or at all. Like everybody else, we find it
difficult to deal with floating-point (approximate) arithmetic, with network protocols, and
with many other things. We persevere with the things we can do and wait for science to
overtake the things we can’t.

5 Well now! See footnote 1.
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i := 0;
while s[i] �= 0 do buf [i] := s[i]; i := i + 1 od;
buf [i] := 0

Fig. 12.2 A sharp-enough chisel

The problem — it’s the same in either example — is that the string being
copied might be too large for the buffer which is supposed to receive it. In those
circumstances the C program at least will first fill the buffer and then carry on
copying the rest of the string into whatever memory space lies next to that buffer.
In carefully researched situations a cracker can arrange the size and contents of
the string so that program-control information in memory is overwritten. Choose
the right program, the right buffer overflow, the right string, and the cracker is
through the defences and in control.

Buffer overflows are only one of our problems. There are lots of other things
we need to do to stop crackers, some of them more immediate than the remedies
discussed here, but those of us who care about programming have to clean our
own house. People are getting in because we are writing programs that don’t
work as they should.6 It can’t go on.

12.1.1 Should we use blunter tools? C, the language of Fig. 12.1, is danger-
ous to use because its execution model is very close to that of the underlying
hardware. The language level — the logic — describes structures and arrays
and strings. In the execution model — the semantics — those linguistic enti-
ties correspond to numerical addresses of memory locations, and using address
arithmetic (see Chapter 15) a program can do anything it likes with any of those
addresses. In practice a C program won’t necessarily obey the restrictions which
might seem to be explicit in the logic — for example, keeping within the bounds
of a buffer array.

Policing execution is one way round the problem. We might require, for ex-
ample, that the execution checks every indexed access to memory — in Fig. 12.1
*c1 and *c2; in Fig. 12.2 buf [i] and s[i] — to make sure that they stay within
the limits of a program-declared array or structure. That’s achievable, but it has
a cost, because policed programs execute more slowly. Computers nowadays are
very fast, though, and almost all of them spend almost all of their time waiting
for us to click the mouse or tap the keyboard, so perhaps we can afford the
protection.

6 As I wrote, a buffer overflow exploit was discovered in rtf2latex2e, an open-source pro-
gram that I worked on in order to produce this book. Oh, calamity! (It wasn’t in the bit I
worked on, though. Phew!)
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On the other hand there’s a strong sense in which C and other unpoliced
programming languages are wrongly accused. First, some programs do have to
run as fast as possible: device drivers, network handlers, operating systems in
general, programs which draw stuff on the screen, and so on through a very long
list of examples. Second, if it is used in the right circumstances — that is, when
the buffer actually is large enough — Fig. 12.1 behaves perfectly as well as speed-
ily. The behaviour of the program is described by an implication: if the array
buf is large enough then the string s will be correctly copied into it. You might
wish for more, but a contextual promise is all that any program can live up to.

12.2 Specification as implication
A specification says what an artefact — a building, a washing machine, a pro-
gram, an insurance company — ought to do; the artefact does what it actually
does. The problem is to bring the two together. Usually, the specification is seen
as primary, and the problem is to check that the artefact meets, fulfils, satisfies
its specification. In the case of a computer program, the problem is to bring
an action in programming-language logic in line with a claim in a specification
logic.

A specification can be seen as a contract or a promise: if you provide my
program with such and such an input, I guarantee that it will produce such and
such an output. That’s very like a maker’s guarantee. When you buy a washing
machine, for example, the maker promises that the machine will wash effectively
if you

1. plumb it into the water supply and a drain;

2. plug it into an electrical outlet;

3. load not too many clothes;

4. add the right amount of detergent;

5. close the door;

6. press start.

To benefit from the guarantee you have to keep within the bounds of the
promise. Miss any steps or make them in the wrong order, and the machine
might not start, or it might start but not wash properly.

Often a machine will be capable of more than the manufacturer guarantees.
A washing machine will often work quite well, for example, if you use only half
the amount of detergent that the maker recommends, and it will wash after a
fashion even if you put in none at all. You may find that your cat enjoys sleeping
on top of your machine while it’s running, or that the leaps and bounds of an
overloaded drum crack the floor and reveal an ancient hoard of gold coins.
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All of this is very reminiscent of the meaning of implication. Washing ma-
chines which work with no detergent replay the price-of-tomatoes argument.
Those which are guaranteed to work only if you use one special difficult-to-
obtain washing powder run close to the cunning-uncle position.

12.3 Hoare triples
Our program specifications have three parts and are named for C.A.R. Hoare,
who invented them. We say

precondition: in what circumstances our program is guaranteed to work;
postcondition: what effect it will have in those circumstances;
program: what program it is that we guarantee.

The Hoare triple

{A} prog {B}
claims “program prog , given circumstances satisfying precondition A, is guaran-
teed to finish in circumstances satisfying postcondition B”. Just what a program
is, just what it means to satisfy a postcondition and a precondition, we shall see.

It’s only a logical guarantee, of course: if the precondition is ⊥ no circum-
stances can satisfy it and the specification is cunning-uncle useless. Most of the
time, though, a Hoare-triple’s promise is worth having: if prog is guaranteed to
finish, it’s guaranteed not to crash and not to loop for ever.

12.3.1 More backward reasoning. Proofs in Natural Deduction are often dis-
covered backwards but afterwards read forwards, and it’s the same with pro-
grams and Hoare triples. We have a program, we know the effect that we want
it to have — i.e. its postcondition — and from that we can often calculate a pre-
condition. If the implication you construct — given this program and that
precondition, these are the effects you can rely on — isn’t what you want then
you have to rebuild the program and/or the postcondition and try again. That’s
programming — but in this book I’m only concerned with calculation and de-
duction.

12.3.2 Memory states. Because we are dealing with imperative programs, which
work by making changes to data held in a computer’s memory, it’s natural that
our specifications will describe changes in memory content. Given a suitable
configuration of the memory to start with — for example

n is greater than 0, the array a contains n integers already sorted into
order, and j contains an integer that you choose
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— you might promise that your program will produce the configuration

n, a and j will be unchanged, and i will point to the item in a whose
value is closest to j

That is, you’re selling a search program.
Or you might promise that given a memory configuration

n is at least 0 and array a contains an n-integer sequence Ka that you
choose

your program will produce the configuration

n will be unchanged and a will contain a rearrangement of Ka in non-
descending order.

That is, you’ve written a sorting program.
Computer memories are huge things. The humblest laptop’s memory nowa-

days contains hundreds of millions of memory components. To have to specify
the state of the whole memory to describe the smallest program would be absurd.
In practice, our programs each work on a small section of memory: we’ll specify
what should be in that section when they start, and what will be in the same
section when they’ve finished. We shall do so using formulae like i = 3, j < 7,
u × v ≥ 2n−1 , using program variables and conventional number-algebraic con-
nectives.7 We’ll combine those number-algebraic components into larger claims
using the logic-algebra connectives and quantifiers of Natural Deduction: ∧, ∨,
¬, →, ∀ and ∃.

12.3.3 We use classical logic. Program variables are very simple containers of
value. To check that i = 3 you look into the variable i and see what it contains.
It ought to be the binary bitstring 0. . . 011 (all zeros except for two final ones).
If that is what you see, then i = 3. If not, not. It always is or is not the case
that i = 3: we can never be in doubt because of lack of proof or disproof. We
know, furthermore, a version of excluded middle: i = 3 is exactly the negation
of i �= 3, and one of the two will always hold. Similarly, i < 3 ∨ i = 3 ∨ i > 3: in
every situation exactly one of those tests will succeed and the others will fail.

Don’t suppose that these classical properties are obvious and beyond debate.
Given arbitrary formulae A and B describing arbitrary calculations it can be
impossible to prove A = B or A �= B, and the same objection to excluded
middle that was raised in Chapter 3 rears its head. But, if we restrict ourselves

7 If you’re used to programming in Java, or C, or Fortran, you will need to be reminded that
the symbol ‘=’, pronounced ‘equals’, is the number-algebra sign for equality. See Chapter 13
for more about the oddity of languages which have it otherwise.
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to questions about the contents of variables that we can look into, then the
objection doesn’t arise, and we can use classical arithmetic and classical logic.

Most of the time the classical / constructive distinction won’t be an issue,
but when it’s necessary to say that the memory is either like this or it isn’t, then
we can call on excluded middle without a shadow of doubt. With the exception
of some difficulties with finite-width arithmetic (see Section 13.1.6), this makes
Hoare-logic reasoning relatively simple (though we won’t have much use for truth
tables, so not that simple).

12.3.4 Vagueness of specification: sets of states. Our specifications wouldn’t
often be useful if each specification could only describe a single memory state.
Useful computer programs, like useful washing machines, work in a variety of
circumstances and produce results according the situation. You are already used
to some vagueness in logical formulae: E ∨ F can be forced in more than one
way, as can E → F , and so on. The number-algebra parts of a specification bring
even more vagueness: j < 7 can be satisfied in, and thus describes, an infinite
number of states, because there are an infinite number of integers less than 7.

This gives a way of reading a formula like 0 ≤ i < 17 ∧ a[i] ≥ 0. We can
see if a particular computer’s state at a particular instant satisfies (forces) this
formula by looking inside its memory — but that’s only checking an example.
We read the formula as a claim that the variable i has one of the values 0, 1,
2, . . . , 16 and, whatever one of those values it has, the corresponding element of
array a is non-negative. That describes a set of states: all those which satisfy the
specification, with all the different possible values of i and a[i]. The set is larger
than you think, because you have to allow for the values of other variables as
well. There’s an infinite set of states in which i = 1 and a[1] = 30, for example:
one in which j = 1, one in which j = 2, and so on for ever, never mind the value
of a[i − 1] or the contents of an entirely separate array b.

A nice consequence of this reading is that implication becomes set inclusion
(subset, ⊆), and then A → B means that the set of states which satisfy A is
included in the set which satisfy B.

There’s also a nasty consequence: we can avoid stating all the things that
our programs do. Washing-machine manufacturers, to go back to my earlier
example, are usually careful to state in the small print but not to emphasize
the drawbacks of using their machinery. Washers use electrical energy (costs
money), water and soap (ditto), make a noise (degrades the environment) and
slowly wear out your clothes. Those costs are really part of the guarantee. Most
of us, on balance, prefer to pay the small-print costs because of the benefits of
the rest of the deal.

Hoare logic needs its own small print. Unfortunately, a Hoare triple can’t
say “and that’s all”. You might guarantee, for example, only that your program
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Walk along looking at the ground. Each time
you see a dollar bill, pick it up. Stop when
you have a million of them.

Fig. 12.3 McCarthy’s make-a-million program

doesn’t change a variable j. A program which increments the value in variable i

and does nothing else fits that specification — it doesn’t change j, after all! The
“i doesn’t change” specification logically fits any program that doesn’t change
i, and that’s surely misleading. A program that starts a nuclear war would fit
it, provided only that it doesn’t mess around with j. Weaselly mis-specifications
like that can seriously mislead.

We can stay honest if our specifications always mention all the variables
a program depends on, and certainly all the ones that it changes. A copper-
bottomed solution seems to call for a resource logic, which is my current line of
research and far beyond the scope of this book.

12.4 Termination
Because the relationship between specification and program is an implication,
there is a particular issue which we have to address.

Computer programs, as any programmer knows, sometimes crash, attempt-
ing an action which is outside the execution model of the programming language.
They sometimes infinitely loop, apparently doing some internal calculation but
producing no visible effects. Programs which don’t crash and which don’t in-
finitely loop must eventually come to an orderly halt delivering a result. They
are then said to have terminated, as a rail journey terminates when the train
comes safely to rest at its destination. Hoare triples, in this book, are about
programs which terminate.

Some specifications can be written in terms of what is called partial cor-
rectness, statements about the effect of a program if it ever terminates. For my
purposes that’s an implication too far. John McCarthy, the great 20th-century
computer scientist, invented a joke illustration, a version of which is shown in
Fig. 12.3. This program, he pointed out, will make you a millionaire if it ever
terminates. But even those of us who are running the program (I’m better at
finding money in the street than anyone I know!) realize that it’s very unlikely
ever to make us rich. Partially correct programs can flatter to deceive.
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On the other hand, some programs — operating systems, for example —
are designed to loop for ever and never terminate. It is possible to treat such
programs logically, but I don’t address that problem in this book.

12.5 Only an introduction
Computer science has enormous achievements to its credit, but it’s still a very
young subject. It’s still small enough for a novice to be taken very quickly very
close to the frontiers of knowledge. The problems of specifying and verifying
programs are active areas of research and will be controversial for the foreseeable
future. There are all sorts of things that can be done, but there are far more
things that can’t. I’d be dishonest if I didn’t emphasize that point right up front.

I’d feel just as dishonest if I didn’t try to convey some of the excitement
that I and others feel about the development of this field, and show you some
of the ground that you may one day decide to explore. I’ll even point out the
potholes, so you’ll know where you are when you fall into one.



13 A simple programming language

Real-world programming languages are complicated, partly because they are
designed to support much more than the basic description of machine activity.
Modern languages ease the task of maintaining programs, using libraries, ex-
plaining programs to managers, and lots more. They have features — variable
typing, for example — which are designed to help you avoid simple programming
mistakes.

All of that's jolly fine and really useful, but it complicates reasoning. I
simplify my task by concentrating on the core of an imperative programming
language, the engine room that does the business. I shall leave out a lot of useful
features: in particular, I won't be dealing with declarations or types, because all
the variables I need will always be around for me to use, and I'll be working only
with integers and Booleans. I'll ignore arrays until Chapter 15, and I won't be
dealing with procedures (aka functions, methods) at all.

13.1 Basics
The language I describe is an abstraction from imperative programming lan-
guages: those which, like Java, C, C++. Fortran, Ada and so on, work by test-
ing and altering values stored in a computer's memory. It isn't a declarative
programming language like Miranda or Haskell; it isn't a logic-programming
language like Prolog. Those other kinds of languages have their particular forms
of reasoning. I choose to deal with an imperative language with Hoare logic
because I think it's closer to most of my readers' programming experience.

The whole language is shown in Table 13.1. Most of it is defined in this chap-
ter but loops (while . . . ) are defined in Chapter 14 and array element assignment
(a[E] :=...) in Chapter 15. Apart from some minor notational variations, it is

Table 13.1 A little programming language

Instruction Effect

Skip Null action (a kind of zero)

x := E Assignment to a variable

a[E] := E' Assignment to an array element

prog 1; prog2 Sequence of actions

if E then prog 1 else prog 2 fi Conditional choice of action

while E do prog od Conditional repetition of action (loop)
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the language to which Hoare logic is normally applied. But it isn’t exactly like
any language in current use, and that fact demands an explanation.

13.1.1 A squabble about assignment notation. The symbol ‘=’, pronounced
‘equals’, has a long history in school arithmetic and algebra. It’s conventionally
used for comparison (x = 3: is x equal to 3?), specification (x = 3: x is equal to
3), and definition (f(x, y) = x×y+7: f is the multiply-and-add-seven function).

But then, in the early development of programming languages, the designers
of Fortran hijacked the equals sign and used it for assignment. Assignment is
the command “store this value there!”, a memory-changing command and the
reason that imperative languages are called imperative. Because equals had been
hijacked by assignment, Fortran programmers had to use ‘.EQ.’ for the normal
purpose of testing equality. This was hardly satisfactory: Fortran was a Formula
translator, and here it was breaking the basic formula rules.

The designers of Algol 60, five or six years later, avoided the problem by us-
ing ‘:=’ for the novel operation of assignment and reserving ‘=’ for the traditional
notion of equality, calming the situation more than somewhat. Programming life
was then fine for about 15 years till the designers of C went back to the Fortran
well, choosing ‘=’ for ‘becomes’ and ‘==’ for ‘equals’. This has been a nuisance
ever since, especially because, unlike Fortran, C’s ‘=’ and ‘==’ are algebraic
operators. In C you can write ‘=’ where you mean ‘equals’, and ‘==’ where you
mean ‘becomes’, the compiler won’t complain, and you can muddle yourself up
pretty well.1 It was a very very very deplorable decision for which the designers
of C — and those of C++ and Java who followed them — should surely do
penance.

I’ve had to take a position in this dispute, and I’ve gone for the algebraic
choice, using ‘:=’ for ‘becomes’ and the standard number-algebra sign ‘=’ for
‘equals’.

13.1.2 Types. To simplify things, I’ve ignored variable typing. My programs
manipulate integers, and there is no data structuring beyond arrays (which must
wait till Chapter 15). But already that makes two different kinds of value which
a name might refer to, and there has to be a third, because the choice-formulae
in if and while commands must evaluate to � or ⊥, what most programming
languages call Boolean values after George Boole who invented Boolean algebra
in the 19th century.

So there really are two basic value types — Booleans and integers — plus
arrays which can make structures. But I’ll be dealing with very small programs,
I’ll be using helpful conventions (i, j, k for integer variables and a, b, c for arrays)
and it’ll be easy to get by without explicit typing.

1 Don’t spot the problem? Try reading that sentence aloud.
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13.1.3 Punctuation. Semicolon (;) is a separator in English punctuation. The
designers of Algol 60 used it as such. C’s designers converted it to a kind of
terminator (another penance called for, perhaps?).

Most programming languages have some sort of bracketing: for example,
Algol’s begin, C and Java’s {. . . }. Brackets are needed because of language
constructs which include opening brackets without a matching closing bracket,
most often in loop and choice commands. This notational choice makes programs
harder to read.

In my language semicolon is a separator in a sequence of commands; con-
ditionals always have two branches; conditionals and loops have opening and
closing brackets.

13.1.4 Value-formula notation. Formulae (E, F ) in the language can use con-
ventional number-algebra notation and the ∧, ∨ and ¬ connectives of Natural
Deduction. I use � and ⊥ where conventional languages use true and false, for
compatibility with the logic of parts II and III.

13.1.5 An action-zero. You’ve been battered by earlier chapters to accept that
the empty universe of quantification is, like arithmetic zero, a worthwhile case
to consider. In programming the null action is a kind of zero. Most program-
ming languages, unfortunately, indicate it by an absence (there are two such
absences in Fig. 12.1, for example). That’s like numerical notation before the
Hindus intervened. My language has skip as a mark for null action, the zero of
programming.

13.1.6 Finite-width-numeral arithmetic. A well-known way to crash a pro-
gram is to ask for division by zero: the calculation j ÷ 0, for example, doesn’t
terminate in most execution systems (division by zero would require an infinite
loop, and the machine couldn’t represent the answer anyway, so both the cal-
culation and the program that called for it have to be abandoned). Another
program-crashing trick is to exceed the range of values that can be held in an
integer variable: i := i + 1, for example, can’t terminate if i already contains
MAXINT .2

In arithmetic reasoning, outside the computer, j÷0 is perfectly well defined
— it’s infinite, the particular infinity called ℵ0 — and i + 1 is always defined no
matter how large i might be. On the other hand, allowing infinity into arithmetic
makes strange things happen: i = i + 1 = i − 1, for example, if i is infinite. We

2 MAXINT is 263 −1 in most imperative programming languages on a present-day desktop
PC — a big number but not out of reach. If i := i + 1 were to terminate when i already
contains MAXINT it couldn’t possibly have the right effect. Let’s hope it doesn’t terminate
on your machine: let’s hope it crashes instead.
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ought perhaps to be a little frightened of infinity. We definitely should be very
frightened of trying to formalize arithmetic, because of Gödel’s proof that it’s
impossible to do it properly.

But my concern is to specify and verify what programs actually do, not
to capture all of arithmetic. Finite-width-numeral arithmetic, which is what
machines do and therefore all that an imperative-language programmer can rely
on, is so limited that we needn’t be frightened of infinity or of Gödel’s tricks.
If we take the judgement ‘E computes’ to mean that E can be calculated in
finite-width-numeral arithmetic, it’s easy to generate a system of rules such as

...
A computes

...
B computes

...
MININT ≤ A + B ≤ MAXINT

A + B computes

and

...
A computes

...
B computes

...
B �= 0

A ÷ B computes

In an industrial-strength theorem-prover that’s more or less how it’s done.
In a book like this one, designed to help you learn how logics work and to show
you the intellectual difficulties of proof, it would be tedious and distracting to
have to demonstrate finite-width-numeral computability at every step of every
proof.

Finite-width arithmetic problems are an example of the problem of de-
finedness. The other example which I highlight (see Chapter 15) is array bounds
checking. To simplify things I’ve taken the position that most presentations
adopt and pretended that arithmetic overflow — breaking MININT , MAXINT
limits — isn’t a problem. I have, however, taken notice of division by zero, re-
maindering by zero, and array-bound errors. That enables me to illustrate the
treatment of the problem without drowning in its details.

In informal proofs we usually treat definedness casually, not mentioning
it unless it’s a problem. Jape can’t be casual, though it does try to deal with
definedness in the background and hide the details from you whenever it can.
It’s quite good at that, but its powers are limited because the issue is quite
subtle. To deduce A < B + 1 from A ≤ B, for example, might seem irrefutable,
but in the case that A = B we need to know that both A and B are finite. In
an informal proof we can look for evidence that A or B is finite or that A �= B.
But that’s a bit much for a simple tool like Jape to handle automatically, so I
didn’t encode that particular deduction, or the others like it, and you have to
rely on the ‘obviously’ step (see page 193) more than you might expect.



190 A simple programming language

13.2 What the language means
Programs are specified by Hoare triples (Section 12.3). The meaning of the
programming language is given in inference rules using Hoare triples: axioms for
skip and assignment, rules with antecedents for everything else. Rules for loops
and array-element assignment are given in later chapters.

Definition 13.1 {A} skip {A}
skip does nothing, immediately and instantaneously, and always terminates. It
has no effect at all (just like adding zero in arithmetic).

Definition 13.2

...
{A} prog1 {B}

...
{B} prog2 {C}

{A} prog1 ; prog2 {C} sequence

Semicolon-separated sequences have the effect of the first part of the sequence,
then the effect of the second part. When we’re being extremely formal, semicolon
is left-binding — i.e. A; B; C is read as (A; B); C — but it’s provably associative
so it doesn’t really matter.

Definition 13.3

...
{A} prog1 {B}

...
{B} prog2 {C}

{A} prog1 {B} prog2 {C} Ntuple

Because it’s sometimes convenient to define the intermediate formula B in a
sequence, I allow a notational variant of the sequence rule in which the interme-
diate assertion is explicit in the conclusion.

13.3 Rules of consequence
Sometimes it is necessary to prove that a program is more generous or more pre-
cise than its specification. The need arises frequently, as examples will demon-
strate. The consequence rules use implication to describe relaxation of a pre- or
post-condition.

Definition 13.4

...
A → B

...
{B} prog {C}

{A} prog {C} consequence (L)

If a state which satisfies A must logically satisfy B, and a program started
in B must reach C, then clearly a program started in A must reach C. The
program is more capable than it needs to be: it works in states — inside the
B-set of states but outside A — that the specification {A} prog {C} doesn’t
require it to.
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Definition 13.5

...
{A} prog {B}

...
B → C

{A} prog {C} consequence (R)

If a program started in a state which satisfies A must reach a state which satisfies
B, and B logically guarantees C, then clearly a program started in A must reach
C. The program is more precise than it needs to be: it always hits a particular
part of the C-set target, even though the {A} prog {C} specification would let
it hit any part.

13.4 The marvellous definition of assignment
Hoare’s definition of the effect of the assignment program is startling, marvel-
lous, amazing, wonderful. It may be the most surprising thing a programmer
ever learns. It captures effortlessly the way that an assignment changes a state.
And it works in quite the opposite direction than you might have imagined:
right-to-left from final state to starting state, even though execution goes the
other way.

First a bit of notation: if A is a formula which may contain occurrences of
the name x, then Ax

E is the same formula in which every occurrence of x has
been replaced by the formula E.3 For example, (i > 5)i

i+1 is i + 1 > 5 which, as
any fule kno,4 is the same as i > 4.

Definition 13.6 {(E computes) ∧ Ax
E} x := E {A}

If you want an assignment to terminate in a state satisfying a postcondition A,
you have to start it in a state which is ready for the assignment. We can describe
that starting state using a copy of A in which claims about x have been replaced
by claims about E — that is, Ax

E . After the assignment, we can refer to the
assigned value using the name x; before the assignment, we have to call that
value E; in either situation the same conditions must apply to it. Because the
assignment affects only x, nothing else in the formula has to change.

The startling thing about Hoare’s variable-assignment axiom is that it works
backwards, right-to-left, although assignment executions work forwards, left-to-
right. The beauty of it is that it replaces complicated questions about memory
states with a simple formal calculation, an easy substitution of a formula for a
name. The problem of talking about the pre-assignment value of x, which would

3 Strictly, every free occurrence of x, but I shall be able to avoid that technical complication
by using x, y, z as quantified variables and i, j, k as program variables, so I’m not going to
explain it here.

4 A Nigel Molesworth phrase, a perfect description of handwaving. See “Down with Skool”
(Whillans and Searle) for more gems of 1950s UK prep-school comedy.
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be necessary in an axiom that worked left-to-right, has been magicked away.
Superb!

Actually there is one slight difficulty. The axiom needs a side-condition, a no
aliasing condition on x, explained in Section 13.5 below. In variable assignment
it isn’t much of a problem, so I can defer it until you’ve seen some examples,
but it will menace us again in Chapter 15.

13.4.1 You already know about substitution. You can think of the variable-
assignment axiom as

{(E computes) ∧ P (E)} x := E {P (x)}

— provided that you make sure there are no xs lurking in P . That is, the axiom
is doing nothing you didn’t already understand from the discussion of predicates
and quantifiers in Chapter 6. But since what you actually have to do is cross
out all the xs and replace them with Es, the Ax

E notation is clearer and more
direct.

13.5 Some examples of assignment
13.5.1 Increase the value of a variable. You know, and I know, and every
programmer knows that i := i + 1 is a program which increases by one the
integer value stored in variable i. You know, and I know, and every programmer
knows that if we want this program to finish in a state in which i = 3, then we
have to start in a state in which i = 2, just because 2 + 1 = 3. You know, and I
know, and every programmer knows that no other value of i will do.

The assignment axiom confirms what we knew: {(i=3)i
i+1 } i := i+1 {i=3},

and (i = 3)i
i+1 is i + 1 = 3 which, at the wave of a hand, simplifies to i = 2.

13.5.2 Verification conditions. Jape doesn’t have hands to wave. If you set it
the {i = 2} i := i + 1 {i = 3} problem and try to apply the variable-assignment
axiom you get the result shown in Fig. 13.1. Jape has automatically and helpfully
inserted a consequence(L) step because the specified precondition i = 2 isn’t
exactly the i + 1 = 3 that the axiom calculates. The result is the implication on
line 1, an extra proof obligation that you might not have expected.

Fig. 13.1 Consequence and variable-assignment generate a verification condition
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Fig. 13.2 Resolution of a verification condition

Implications generated automatically by use of the program logic rules are called
verification conditions. Proving verification conditions is the real business of
proving programs, because the program logic steps are mechanical and mindless.
The business you have to do, as in this case, is more often arithmetical than
logical even though it’s expressed as a logical claim.

Jape doesn’t do arithmetic,5 but the Hoare-logic encoding can use equality
substitution — replacement of equals by equals — to reduce line 1 to the point
where it’s really obvious: see lines 3 and 2 of Fig. 13.2.

Equality substitution as an inference rule is

...
A = B

...
P (B)

P (A)

It’s a feature of my encoding of Hoare logic for Jape, since so much of what has
to be proved has to do with equality.

To close the proof on line 2 I used an ‘obviously’ step, a mechanism which
I included in Jape’s version of Hoare logic just to deal with arithmetic claims
which are obviously true but difficult or impossible to establish with the rest of
the encoding. An ‘obviously’ step will accept any conclusion and any hypotheses
that you ask it to. Of course such a powerful proof cannon makes it easy to
cheat, but of course I won’t do that! (I do think I might have been justified in
saying that line 1 of Fig. 13.1 was obvious, though.)

In this example there’s no sign of the (i + 1 computes) definedness condi-
tion of the variable-assignment axiom. That’s because it’s dismissed behind the
scenes: i is a variable, 1 is a constant and Jape ignores the possibility of overflow
in addition.

5 At the time of writing (September 2004) I haven’t hitched Jape to any of the available
‘arithmetic oracle’ programs which it could use to solve this kind of problem mechanically. By
the time you read this it might have been done, and then I wouldn’t need to apologize. But I
wouldn’t apologize anyway: arithmetic isn’t the game I want to play.
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Fig. 13.3 ‘Unknown’ pre- and post-conditions in a sequence of assignments

13.5.3 Take an increased value from another variable. What is the state in
which we must start the program i := j + 1, if finally we must have i = 3?
Surely it is (i = 3)i

j+1 , which is j + 1 = 3, which is j = 2. The precondition
j = 2 doesn’t mention i, because the initial value of i doesn’t matter: it’s going
to be overwritten. The postcondition i = 3 doesn’t mention j, because it doesn’t
matter where the value came from.

If we change the postcondition to i = 3∧j = 2 then the variable-assignment
axiom calculates the precondition (i = 3 ∧ j = 2)i

j+1 , which simplifies to j +1 =
3 ∧ j = 2, and that’s provably equivalent to j = 2. The longer postcondition
could still be useful, because it emphasizes that the assignment changes only i.

If we make the postcondition i = 3∧ j = 3 the axiom calculates the precon-
dition (i = 3 ∧ j = 3)i

j+1 , which is j + 1 = 3 ∧ j = 3, which implies j = j + 1,
which is an arithmetical contradiction. That tells us that there is no state from
which the program i := j + 1 will establish i = 3 ∧ j = 3.

13.5.4 Exchange the values of two variables. We’d like to be sure that the
famous three-step variable-value-exchange program using an extra variable t

really does work: i.e.

{i = Ki ∧ j = Kj} t := i; i := j; j := t {i = Kj ∧ j = Ki}
Here Ki and Kj are parameters of the problem describing the initial values of
the variables; you can think of them either as constants or as formulae which
don’t mention i or j, so that substitution for i or for j has no effect on them.
Notice that the pre- and postcondition say nothing about t: it doesn’t matter
what its initial value is, and we don’t care about its final value — sometimes
it’s ok to hide in Hoare logic’s small print and not to say everything that might
be said.

Using the sequence rule, the assignment axiom and one of the rules of con-
sequence we can work backwards from the desired final state. It’s a simple,
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Fig. 13.4 One intermediate formula calculated

mechanical and mindless calculation working backwards from the sequence and
then backwards through the assignments, but the way it happens in Jape is quite
revealing.

Fig. 13.3 shows the first step, reducing the sequence to its components and
exposing the individual assignments. (The sequence rule deals with two-element
sequences; for convenience I’ve made Jape deal with longer sequences in a single
step.) The precondition of the sequence is the precondition of line 1, and the
postcondition of the sequence is the postcondition of line 3. Inside the sequence
the postcondition of line 1 is the precondition of line 2 and the postcondition of
line 2 is the precondition of line 3. The intermediate formulae (B in the sequence
rule) haven’t been calculated yet, so Jape has used unknowns, in this case B4

and B2, to stand in for them. Unknowns look surprising at first, but they are
no more than placeholders for formulae that you haven’t yet decided on. They
are easy to recognize: they are the only identifiers that start with an underscore.

The assignment axiom works backwards, so line 3 is the one to solve first
(Jape will let you do the assignment steps in any order, but this is the easy
way!). If you apply the variable-assignment axiom to that line Jape calculates
what B2 must be, replacing instances of j by t in the postcondition as the axiom
requires and rewriting lines 2 and 3 to give Fig. 13.4 (it hides the ‘t computes’
part of the precondition because variables always compute). Fig. 13.5 shows
the result of applying the variable-assignment axiom again, this time to line
2. Finally, the same axiom plus consequence(L) gives Fig. 13.6. Proof of the
verification condition is straightforward, using → intro, ∧ intro and ∧ elim, and
not shown.

13.5.5 Anti-aliasing. In each of the Figs. 13.3, 13.3, 13.5 and 13.6 there’s a
proviso line — DISTINCT i,j,t — at the bottom of the proof. This is Jape’s
way of applying the variable-assignment axiom’s no aliasing side condition, and
it’s time to explain what is going on.
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Fig. 13.5 Both intermediate formulae calculated

Fig. 13.6 Verification condition emerges

Hoare’s assignment axiom works only if there is no other name for the
program variable called x. If x and y name the same variable, for example, then
necessarily x = y and therefore necessarily x �= y + 1. But Definition 13.6 seems
to say that

{(x = y + 1)x
y+1 } x := y + 1 {x = y + 1}

and, as any fule will tell you, (x = y + 1)x
y+1 simplifies to y + 1 = y + 1, which

is �. So the assignment axiom seems to tell us that

{�}x := y + 1 {x = y + 1}

We know that � holds in any state, and because x and y name the same variable
we know that x = y+1 can’t hold in any state. It seems that with the assignment
axiom we can establish ⊥ any time we like. That’s a paradox!

Aliasing in programs, where the same variable has more than one name, hap-
pens more often than you might expect: it’s a real problem with array elements,
as we’ll see in Chapter 15; it occurs all the time in object-oriented programs (if
i and j are references to the same object, then i.x and j.x are aliases); in some
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languages, notably Pascal and C++, different procedure parameters can name
the same argument-variable.

The problem isn’t really with the assignment axiom, it’s with substitution,
and the solution is to be more careful when replacing a variable name with a
formula. We ought to say that Ax

E means “replace each occurrence of x or an
alias of x with a copy of E”. So if x and y are aliases, as in the example above,
(x = y + 1)x

y+1 should be y + 1 = (y + 1) + 1, which is y + 1 = y + 2, which is
⊥; the precondition is as impossible as the postcondition, and the paradox has
gone.

In practice, though, alias-sensitive substitution is too difficult to use in infor-
mal paper or blackboard proofs. So the assignment axiom has a side-condition:
there must be no aliases for x in A. Then we can read Ax

E as “cross out the xs
and insert Es instead”, and it all works properly.

Most Hoare logic presentations don’t make a fuss about aliasing, and in
informal proofs we usually skate over the problem. Jape has to be more careful.
In Fig. 13.6, so far as Jape is concerned, we are proving a general theorem about
a program in which the variable names i, j and t are parameters of the proof,
and only those instances of the theorem in which the three variables are distinct
are valid. If you break that distinctness condition you don’t get a valid result:
k := i; i := k; k := k, for example, in which I’ve put k in place of both j and t,
and thus broken the distinctness condition, doesn’t do a variable exchange.

Jape is built to do substitution very carefully. Without the distinctness
proviso it couldn’t simplify the substitutions Ax

E generated by the variable-
assignment axiom. Fig. 13.7 shows the effect of trying a variable-assignment
step without a proviso to help. Jape can’t be sure on line 3 whether ijt should
be i (i and j distinct) or t (i and j aliases), so it leaves the matter undecided. It
looks horrid, it is horrid, and it gets worse if you carry on, because the conjec-
ture simply isn’t valid without the proviso, and therefore, by soundness, can’t
be proved. That’s why I use distinctness provisos in my examples.

13.5.6 A touch of informality. The proof in Fig. 13.6 is repetitive: there are
twelve instances of only five formulae in pre and postconditions and in the
verification condition. On paper and on the blackboard we try to cut down that

Fig. 13.7 The signs of aliasing
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repetition. We deal with sequences of assignments as a matter of calculation,
and hide the proof structure entirely if we can. That is, we work backwards to
see what pre-condition A′ is required by considering only the post-condition B

in {A} prog {B}, and then we see if A → A′. We do the same calculations as in
Fig. 13.6, but we don’t mention the proof structure because it’s straightforward
and absolutely standard.

The calculation so far as variable assignment is concerned can be laid
out vertically as an Ntuple, where each step is an application of the variable-
assignment axiom:

{j = Kj ∧ i = Ki}
t := i

{j = Kj ∧ t = Ki}
i := j

{i = Kj ∧ t = Ki}
j := t

{i = Kj ∧ j = Ki}

The structure that’s being hidden here is the sequence rule, which glues
together the intermediate specifications.

The consequence step can be added at the head of the proof, if it needs to
be included — but we don’t make more fuss about it than we absolutely must.

{i = Ki ∧ j = Kj} ∴
{j = Kj ∧ i = Ki}

t := i

{j = Kj ∧ t = Ki}
i := j

{i = Kj ∧ t = Ki}
j := t

{i = Kj ∧ j = Ki}

(13.1)

Calculation (13.1) conveys to an expert the same information as the proof
in Fig. 13.6, but far more succinctly. It can stand in for the proof provided that
you realize it’s hiding uses of the sequence rule, and waving its hands over the
implication in the consequence step. That’s usually ok in practice, because we
are more interested in the calculations than the rules.

In this book I’ve taken the position that you can learn to be informal once
you realize what’s going on formally. (13.1) isn’t completely formal, because it
doesn’t say what rules it’s using and it hides some steps, but it’s what I’d write
on paper or on a blackboard if asked. I’ve made Jape show the formal proof
structure because that is what I want you to understand before you move on to
informality.
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13.5.7 A non-example. Novices often get the variable-exchange program wrong.
Not realizing the destructive power of assignment, they hope that i := j; j := i

will do the job. Of course it won’t — at least, not often:

{i = Ki ∧ j = Kj} ∴ ??
{j = Kj ∧ j = Ki}

i := j

{i = Kj ∧ i = Ki}
j := i

{i = Kj ∧ j = Ki}
To prove that i = Ki ∧ j = Kj → j = Kj ∧ j = Ki you need Ki = Kj or

i = j. So, like a broken watch which shows the time correctly twice a day, the
non-exchange program works, but only when there’s no need for it.

13.6 The definition of choice
The variable-assignment axiom makes it possible to calculate a precondition
from a stated postcondition. I’ve chosen a definition of choice which has the
same property. It’s reminiscent of the ∨ elim rule of Chapter 3.

Definition 13.7

...
{A} prog1 {C}

...
{B} prog2 {C}

{(E computes) ∧ (E → A) ∧ (¬E → B)} if E then prog1 else prog2 fi {C} choice

A choice program executes prog1 when E evaluates to �, prog2 when E

evaluates to ⊥ (and, of course, ¬� ≡ ⊥ and ¬⊥ ≡ �). The precondition which
guarantees that a choice will reach a state C is that E can be safely evaluated,
that when E holds so does the precondition for prog1 to reach C, and that on
the other hand when ¬E holds so does the precondition for prog2 to reach just
the same state C.

13.7 An example with choice
Assignment proofs, even of sequences of assignments, are pretty straightforward.
Choice proofs are a bit more complicated, and since negation is part of the choice
rule they usually involve contradiction steps.

Realizing that many of my readers will be university students, I’ve chosen
an example which may be close to their hearts, a program which associates a
pass/fail grade with a numerical mark. In many UK universities, 40 is the pass
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Fig. 13.8 The choice rule appears to make a mess

mark and 70 or 80 is the best that a genius can hope for; 80 is very much more
than twice as good as 40, of course.6

{i = Ki}
if i ≥ 40 then r := pass else r := fail fi

{i = Ki ∧ (i < 40 → r = fail) ∧ (i ≥ 40 → r = pass)}
(13.2)

The precondition states a starting value for i. The postcondition states that the
value of i doesn’t change, and gives conditional formulae to describe what the
final value of r must be. It looks like the natural specification, and it looks very
straightforward.

Fig. 13.8 shows the effect of applying the choice rule to this problem in Jape.
Just as in Fig. 13.3, Jape’s used unknowns (in this case A5 and B6) in place
of the intermediate formulae A and B of the rule. Just as in several previous
examples it’s generated a verification condition using consequence(L) because
the specified precondition i = Ki looks nothing like the precondition the rule
generates. Just as before, the unknowns are resolved by use of the assignment
axiom, and the result is Fig. 13.9.

The verification condition on line 1 looks absolutely ferocious. Laying it out
a bit better than Jape can manage, it reads

i = Ki →




(
i ≥ 40 → i = Ki ∧

(
(i < 40 → pass = fail) ∧
(i ≥ 40 → pass = pass)

) )
∧

(
¬(i ≥ 40) → i = Ki ∧

(
(i < 40 → fail = fail) ∧
(i ≥ 40 → fail = pass)

) )




(13.3)
6 That’s not the only daft marking idea. What’s the average of A and D?
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Fig. 13.9 The mess resolved by the variable-assignment axiom

Fig. 13.10 A partly dismantled verification condition
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Fig. 13.11 A half-conquered verification condition

This formula looks completely stupid — it has pass = fail and fail = pass inside
it, for example — and it’s awfully long. But it is what the rule calculates, so I
press on.

Making a lemma of the verification condition and taking the obvious back-
wards steps in Jape I arrive at Fig. 13.10. The problem isn’t so hard after all!
The implication on line 4 is trivial price-of-tomatoes stuff, and the one on line 3
is, of course, cunning-uncle business because i ≥ 40 ∧ i < 40 is a contradiction.
That much of the proof is shown in Fig. 13.11; the other half proceeds very
similarly.

It’s pleasing, I think, to see that those at first peculiar and now familiar rules
of implication and negation mesh so well with calculation, so that it’s possible
to define real programming problems in logical notation and work them through
to a conclusion.
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Most interesting programs use loops (or recursion, which is just a super kind
of loop). Hoare logic’s treatment of loops is by the method of invariants, and
it takes some swallowing. Once swallowed, though, never forgotten . . . and it
definitely is worth the effort.

14.1 How to specify the effect of a loop
To begin, look at a picture of the execution of while E do prog od, drawn as a
flowchart in Fig. 14.1. Action follows the arrowed lines, starting at the top and
exiting, if the loop ever terminates, at middle right. The diamond indicates that
the formula E is evaluated; the labelled lines show that if E fails, action follows
the horizontal line and the loop terminates; if E holds, action follows the vertical
line. This shows that when a loop terminates, we can be sure that ¬E is satisfied.

The box indicates execution of prog . Because execution of the box follows
a successful test, whenever prog is executed E must hold. The line leading out
of the prog-box shows that after prog is executed, action moves to evaluation of
E again. It’s a straightforward picture of while E do prog od, repeatedly testing
E and executing prog until eventually the test fails.

14.1.1 A loop with a precondition. Suppose we start a loop in a state which
satisfies a formula A. Fig. 14.2 shows what must happen on the first execution.
If the E-test fails, the loop exits immediately — and then we know that the
state satisfies A ∧ ¬E. If the E-test succeeds, then prog is executed, in a state
which satisfies A ∧ E. After prog finishes, the state will satisfy some formula or
other — call it B. Then the next execution would follow the same analysis, but
starting with B rather than A, and ending up with C, . . . and so on.

That is all very well, but it doesn’t cut the mustard. By using A, then B,
then C, and so on, it makes reasoning about each execution of the loop different
from every other. They are indeed different executions, but if we have to treat
them differently we will never get anywhere: reasoning has to overcome the loop
problem, not reproduce it. It doesn’t deal with the fact that reasoning about
prog often has to go backwards from B to A ∧ E — which means that we would
need to know B to start with. And the labelling of the flowchart is wrong: two
lines join at the top, one labelled A, the other B. It’s all a bit of a mess.
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E?

prog

{¬E}

{E}

Fig. 14.1 Flowchart of while E do prog od

14.1.2 Invariant formulae. There’s only one known way to solve these prob-
lems. Surprisingly, we make A and B the same formula! Calling them both I for
invariant, the flowchart looks like Fig. 14.3. Now every execution of the loop is
the same as every other, so far as formulae are concerned. Each starts in a state
described by I and either executes prog in a state described by I∧E, or exits in a
state described by I ∧¬E. It all works perfectly, provided that {I ∧E} prog {I}.

14.1.3 No, it isn’t a stupid idea. The invariant I is a formula, not a value.
A specification formula can depend on program variables, and an invariant will

E?

prog

{A}

{A∧E}

{A∧¬E}

{B}

Fig. 14.2 Annotated flowchart of a loop with precondition A
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E?

{I}

{I E}

{I ◊E}

{I}

prog

Fig. 14.3 A loop with invariant formula I

necessarily depend on them. If the values of the variables change, you would ex-
pect the value of the formula to change too. But what if I expresses a relationship
between the values of program variables, rather than a precise description? Then
there can be very many states in which make the invariant hold, and the job of
the loop is to steer a path through those states to a point where the values of
the variables make the E-test fail, and the loop has gone far enough.

But it’s still a surprising idea. Its best defence is that it works. Time for
some examples!

14.2 An aside on integer division and remaindering
The examples I can show you at this stage depend on arithmetic. The ones I’ve
chosen involve integer division and remaindering, so I have to remind you of stuff
you may have forgotten, from the time you first met division and long before
you encountered fractions.

In our first school we deal with problems like

“Johnny has nineteen apples. He shares them between his three horses,
a donkey and a cow. How many does each of them get? How many are
left over?”

The answer, of course, is three each and four left over, provided you don’t let the
animals get too close to the left-over pile. Integer division is an operation which
delivers two results: a quotient A÷B — in Johnny’s problem, the quotient 19÷5
is 3 — and a remainder A mod B — for Johnny, the remainder 19 mod 5 is 4.

When later we learn about fractional arithmetic it’s easy to jump to the
conclusion that integer division is a fairy-tale told to children, and fractions
are the real thing. For one thing, fractional multiplication and division cancel —
(19/5)×5 = 19 — whereas the integer versions don’t seem to — (19÷5)×5 = 15.
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Fractional arithmetic seems to be more accurate, to follow rules more carefully,
to be more formal than what we were first taught.

Of course that’s a misunderstanding. Integer multiplication and division do
cancel perfectly, provided you don’t forget the remainder. (A÷B)×B +A mod
B = A, every time (provided, of course, that B isn’t zero — but then fractional
arithmetic has the same problem). Integer division is nicely defined even for
negative numbers (by convention 0 ≤ A mod B < |B| — i.e. the remainder is
never negative).

One use of remaindering is to test when one integer is a multiple of another:
A mod B = 0 just when A is a multiple of B, i.e. when B exactly divides A.
Another use is to select part of a number: A mod 10, for example, is the last
digit of the decimal representation of A, and A ÷ 10 is the value of the numeral
to the left of the last digit, or zero if there’s nothing there — 456 mod 10 = 6
and 456 ÷ 10 = 45, for example.

In computing, working with binary numerals, we often deal with ÷2 (same as
a single-bit right shift) and mod 2 (same as selecting the last bit). It’s essential
in those circumstances to recall what integer division really means and not to
pretend that we’re working with fractions.

14.3 A loop example
Consider the problem of finding if an integer n is prime or not — that is, whether
it has any factors other than itself and 1. The algorithm I used when I was a
boy searched for a factor, and went like this:

• does n divide exactly by 2?

• if so, then I’ve found a factor and n isn’t prime;

• if not, does n divide by 3?

• if so, then I’ve found a factor and n isn’t prime;

• if not, does n divide by 4?

• . . .

. . . and so on, until I had either found a factor or reached n itself, at which point
I could conclude that n had no factors other than itself and 1 and was therefore
prime. Later on I realized that I need only consider prime divisors (i.e. I could
ignore composites 4, 6, 8, 9, 10, 12 and so on); later still it was pointed out to me
that I could stop at

√
n rather than n. I’m going to ignore those sophisticated

enhancements, and investigate the naive technique.
Fig. 14.4 shows a formal version of the algorithm, which sets the variable

prime to � or ⊥ according to whether or not n is a prime integer. It works
provided that n ≥ 2: the invariant of the loop is that i is somewhere in the range

Loops
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i := 2;
while n mod i �= 0 do i := i + 1 od;
prime := (i = n)

Fig. 14.4 A naive primacy checker

2..n, that we have tested every number from 2 up to but not including i, and
we’ve found that none of them is a factor of n.

I : 2 ≤ i ≤ n ∧ ∀x(2 ≤ x < i → n mod x �= 0) (14.1)

Before I show the rule which defines the meaning of loops, I’m going to
illustrate its use by giving an informal argument that this program does what
we think it should. Then I shall be in a position to show you the rule, and give
a more formal proof.

The program in Fig. 14.4 is concise, and doesn’t include any
tests to ensure that it’s being used safely. The loop guard, for
example, doesn’t include a test that i ≤ n, so the program will
loop forever if n < 2. That’s a characteristic of programs which
are formally verified: you can afford to program dangerously if
you can prove you have made no mistakes and you can require
that the program will only be used carefully.

14.3.1 Step 1: the invariant holds before the loop starts. The program is
only expected to do its work when n ≥ 2. After the first assignment i = 2,
and those two facts together give us the first part of the invariant: 2 ≤ i ≤ n.
The quantification in the invariant then contains a vacuous implication, because
there are no xs such that 2 ≤ x < 2. So we have I on entry to the loop, as
Fig. 14.3 requires.

14.3.2 Step 2: the loop guard doesn’t crash. We can’t ignore definedness
when analysing this program. The calculation n mod i �= 0 will crash if i = 0, and
if that crashes the loop will crash and take the program with it. But according
to Fig. 14.3 we can be sure of two things:

• when we reach the loop, the invariant I holds;

• each time round the loop, when we test the loop guard, I still holds.

So the loop won’t crash if when I holds, n mod i �= 0 is defined: that is,
because comparison with 0 isn’t dangerous, if I → (n mod i computes). And
that is so, because I guarantees i ≥ 2, which means i �= 0, which means n mod i

won’t crash.
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14.3.3 Step 3: the invariant is preserved by the loop. Just before the loop
test we know I; inside the loop, after a successful test, we know I ∧n mod i �= 0.
I tells us that no number in the range 2..i−1 divides n; n mod i �= 0 tells us that
i doesn’t divide n either. So we know that no number in the range 2..i divides
n, and it’s safe to increase i by 1.

It’s also possible, though a little more difficult, to argue that i + 1 won’t
exceed n. Here goes: n mod i �= 0 → n �= i (by contradiction because if n = i

then n mod i = 0). From I we know that i ≤ n; from n mod i �= 0 we realize
that i �= n; therefore i < n; therefore i + 1 ≤ n. It is safe to increase i by 1.

14.3.4 Will it ever stop? Step 3 shows that {I∧E} i := i+1 {I}. From Fig. 14.3
we can see that if the loop exits, we are guaranteed I ∧¬E. We seem to have all
that we need to conclude that the program works. But we already know from
McCarthy’s millionaire joke (Fig. 12.3, page 184) that we haven’t done enough.
Every programmer knows that some innocent-looking loops buzz round for ever.
We still have to prove that the loop really does exit.

Some loops are bound to exit given the right circumstances. Here’s an al-
gorithm for descending a finite staircase:

while ¬(on the ground floor) do
take one step down

od

The algorithm doesn’t terminate if you start in the basement (because you’d
be walking in the wrong direction); it doesn’t terminate if there is a gap in the
staircase (you’d fall through); it doesn’t terminate if the staircase is infinite (it
would take too long to come down); but otherwise — start at or above the
ground floor on a finite staircase with no holes in it — it’s guaranteed to finish
at the ground floor. That’s because each execution subtracts one from the finite
non-negative number of steps to be descended, and you can’t do that for ever
without reaching zero.

The principle of counting downwards to zero lies behind the Hoare-logic
treatment of the termination of loops (and behind the closely related principle
of mathematical induction). We need an estimate, called a variant or a measure,
of the number of times a loop will execute, expressed as an integer formula M .
The estimate must never be optimistic (too small), but it can be as pessimistic
as may be (as large as you like). We can even take great jumps provided that we
don’t let the measure go negative: that is, provided we never take a step down
the basement staircase.

If we can show that each execution of the loop body reduces the measure,
our loop is safely counting down; if we can show that it never executes the body
when the measure is negative, it won’t miss the target and count down for ever.
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14.3.5 Step 4: find a measure. To show that a loop will exit we pick a formula
M and prove two things about it:

1. I ∧ E → M > 0 (if we are about to make a step, we haven’t already missed
the ground floor);

2. {I ∧ E ∧ M = m} prog {M < m} (we count downwards on every step).

(Here M , I and E are formulae whereas m is an arbitrary fixed constant, like
the i of the ∀ intro and ∃ elim rules.)

In the naive prime-finding algorithm of Fig. 14.4 a measure of the number
of executions still left to do is n−i. The loop may finish early by finding a factor,
in which case it won’t have to do as many as n − i tests, or it may go on all
the way to discover that n is prime, in which case it will have to reduce n − i to
zero, and then is certain to stop because n mod n=0.

14.3.6 Step 5: we don’t go past the exit. Each time we are about to take a
step, we have I ∧ E. To show we never start walking down to the basement, we
have only to show I ∧ E → n − i > 0. I ∧ E tells us that i < n (see step 3);
therefore 0 < n − i; therefore n − i > 0.

14.3.7 Step 6: we always move downwards. It’s obvious that the program
i := i + 1 reduces n − i, because it increases i.

14.3.8 Step 7: we have the postcondition we need. The while loop will ter-
minate, according to Fig. 14.3, with I ∧ ¬E. We want to know that we have the
precondition for the assignment prime := n = i to tell us whether we have a
prime number or not.

A number is prime if and only if it has no positive factors other than itself
and 1. The postcondition of the program is

prime ⇐⇒ ∀x(2 ≤ x < n → n mod x �= 0)

— that is, prime should be set to � if and only if n is actually a prime number.
The assignment axiom, using the final assignment prime := n = i, trans-

forms this postcondition into n = i ⇐⇒ ∀x(2 ≤ x < n → n mod x �= 0). The
consequence(L) rule tells us that we must prove

I ∧ n mod i = 0 → (
n = i ⇐⇒ ∀x

(
2 ≤ x < n → n mod x �= 0

) )
The hand-waving gets a little furious here. To prove logical equivalence

( ⇐⇒ ) we have to prove an implication in either direction. It’s obvious that
when we have the quantification ∀x(2 ≤ x < i → n mod x �= 0) from the
invariant and we have n = i from the left-hand side of the equivalence then we
have the quantification on the right (substitute n for i).
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Going in the other direction is trickier, and needs an argument by contra-
diction. If i is in the range 2..n, as the invariant says it is, and if n mod i = 0,
and we have Vx(2 < x < n —> n mod x ^ 0), and n ^ i, then there's a contra-
diction — i is in the range of the right-hand quantification, and so we should
have n mod i ^ 0. Reasoning classically, we must have n = i, and the logical
equivalence is proved.

14.4 The while rule

Definition 14.1

I -> (E computes) {I A E} prog {/} I A E -» M > 0
while

{/} while E do prog od {I A -.E}

Provided that

• we start in a state satisfying invariant /; and

• / guarantees that the test formula E can be safely calculated; and

• / and E together guarantee that the loop body preserves the invariant; and

• / and E together guarantee that the measure M is strictly positive; and

• / and E together guarantee that the loop body reduces the measure: then

• we can be sure that the loop will terminate in a state satisfying I A -^E.

That doesn't sound much, but it's actually a great deal. It's the best handle
on loops that there is. It tells us that the loop will terminate, and it describes
the state it will terminate in.

To use the while rule you have to invent an invariant formula / and a
measure formula M; they don't automatically emerge from the program itself.
It isn't always easy to discover the right formulae, and the proofs aren't always
easy even when you have discovered them. But loops are hard to write, go wrong
often, and are the major cause of difficult programming bugs, so you should
expect that to prove that a loop is built correctly will require intelligence, sharp
tools, and a good deal of heavy lifting.

To prove {A} while E do prog od {B} for arbitrary A and B — i.e. when
A isn't / and/or B isn't / A -<E — we use the consequence rules, and prove
separately A —> I and / A -<E —* B.

integer m

{ I A £ A M = m} '(Private m)

prog

{M <m}



Loops 211

14.5 A formal treatment of the primacy algorithm
The primacy algorithm isn’t that interesting, but it is interesting enough to make
a good formal proof example. The proof is in several parts, each of them quite
intricate.

You may wonder why it’s necessary to make a formal proof at all given that
we already have a convincing informal argument. One answer is that formal
proofs keep you honest: it’s easy to make a slip in an informal argument whilst
gliding over what looks like irrelevant details. But the real answer is that making
formal proofs gives you experience that you can use to make and understand
informal arguments.

I repeat the warning given in the introduction to this part of
the book: the proofs which follow are quite large and the proof
searches are not given in detail. It may be best to reproduce
them in Jape for yourself as you follow the discussion.

14.5.1 Verification conditions. To save space on the page I’ve separated off
the last line of the program, the assignment to prime, leaving the initialization
and the while loop. The first two steps in Jape (sequence, while) produce the
effect shown in Fig. 14.5. Almost all the Hoare-logic work is already done: we
only have to generate verification conditions from the assignments on lines 3 and
6, use Jape’s Unify command to tell it that M should be n − i, and that’s it.
The rest of the work — and it’s most of the work — is a formal slog through
the verification conditions.

There’s a consequence step (line 9) in the proof already. This time it’s
consequence(R) because the postcondition on the while (line 7) is not exactly
the same as the one we need to prove on line 10. There are two verification
conditions already on lines 2 and 4, and the assignments on lines 1, 3 and 6 will
generate three more. The verification condition on line 2 is the remains of the
definedness condition I → (E computes).

The box on lines 5–6 comes from the right-hand antecedent of the rule. It’s
there to remind us that Km in the proof (m in the rule) is really private to that
sub-proof, to prevent cheating when arguing that the measure decreases.

As usual, there’s an anti-aliasing proviso at the bottom of the proof. There
are only two variables in the program (Km is both private and a constant, so
can be ignored on two counts), but they still have to be distinct.

The presence marker on line 5 is ‘integer Km’ where you might have ex-
pected ‘actual Km’. Hoare logic quantifies only over integers, and I’ve tweaked
the treatment of presence and quantification to match: you’ll see that in several
of the proofs.
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Fig. 14.5 The beginning of a proof of the primacy checker

14.5.2 Establishing the invariant. Line 1 of Fig. 14.5 states that the assign-
ment i := 2, given precondition n ≥ 2, establishes the invariant we need for the
loop on line 7. The standard phrase is “the initialization establishes the invari-
ant”. A proof of the verification condition it generates is shown in Fig. 14.6.

The formal proof follows the same track as the informal argument in Sec-
tion 14.3.1. The basic logical rules bring it home. You don’t need to know more
about implication and quantification than the introduction and elimination rules
of Chapter 3 and Chapter 6, tweaked slightly to recognize that we quantify only
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Fig. 14.6 Precondition to invariant

Fig. 14.7 Remaindering won’t crash

over integers (in fact the assumption on line 6 is never used, but we still need
the privacy condition, of course). Once you spot the contradiction inherent in
line 7 it’s only a matter of pummelling the inequalities into shape. It doesn’t
even need an ‘obviously’ step.

14.5.3 The loop guard won’t crash. The definedness antecedent of the while
rule is I → (E computes), and the loop guard formula E in the primacy example
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Fig. 14.8 Measure isn’t exhausted

is n mod i = 0. In the interpretation of finite-width-numeral arithmetic encoded
in this version of Hoare logic, that formula will evaluate correctly provided i �= 0.
Jape hides all the deductions that lead to the proof obligation on line 2 of
Fig. 14.5. The proof of the obligation is trivial, and shown in Fig. 14.7. (Hoare-
logic Jape is set up to do ∧ elim and ∧ intro without fuss, so it hides the steps
which extract line 2 of Fig. 14.7 from line 1.)

14.5.4 The measure is greater than zero on every execution. Line 4 of
Fig. 14.5 is generated directly from line 7 by the while rule. It requires that
when we have the invariant and the guard — i.e. at the start of every execution
of the loop body — the measure is greater than zero. In more careful language
“the invariant and the guard together imply that the measure isn’t exhausted”.

The problem, once I’ve unified M with n−i, is stated on line 13 of Fig. 14.8.
The matter is very arithmetical. On the left-hand side we have i ≤ n, which is
equivalent to i < n ∨ i = n. But we also have n mod i �= 0, which tells us — this
is the insight we need — that n �= i (by contradiction: if n = i, the remainder
on division would certainly be zero). So we can be sure that i < n, which after
some simple manipulation is surely the same thing as 0 < n − i, which is the
right-hand side written the other way round.

Jape manages most of that argument. It shows how the contradiction works,
where the clever bit of arithmetic reasoning is appealed to, and where the arith-
metic manipulations that it can’t do ought to go.
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Fig. 14.9 Measure reduces at each step

Fig. 14.10 Termination gives postcondition

14.5.5 The measure reduces. Line 6 in Fig. 14.5 requires that i := i + 1, the
body of the loop, reduces M : if it starts equal to some arbitrary but fixed integer
Km, it must finish up less than Km (Km is private to the box containing line 6,
so we can’t cheat by defining it outside). In careful language “the invariant and
the guard together imply that the loop body reduces the measure” — though in
this example the invariant and the guard don’t need to come into it. It’s pretty
easy to prove: if n − i = Km then the right-hand side of the implication can be
rewritten, replacing Km with its equivalent, as n − (i + 1) < n − i. After a bit
of algebraic manipulation that would reduce to 0 < 1, but it’s pretty close to
obvious as it stands.

The Jape proof, shown in Fig. 14.9, is an exercise in button-pushing.

14.5.6 We have the right postcondition. In stating the postcondition of the
program (see line 10 of Fig. 14.5) I wrote n mod i = 0; the while rule, on
the other hand, requires the negation of the loop condition, ¬(n mod i �= 0).
Classically the two formulae are equivalent, but they aren’t identical: therefore
Jape introduces the consequence step on line 9 and the verification condition on
line 8. Formally we have to prove that “the invariant and the negation of the
guard imply the postcondition”: in this case it’s a trivial matter, a single-step
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Fig. 14.11 Invariant is preserved

equality-substitution of a single formula followed by a trivial → intro, shown in
Fig. 14.10.

14.5.7 The invariant is preserved. This is the big one. Line 4 of Fig. 14.5
expresses the condition that “the invariant and the guard together imply that
the loop body preserves the invariant”. The verification condition it generates
is line 18 of Fig. 14.11.

Most of the proof is straightforward arithmetic. Line 11 needs insight, but
we’ve already spotted it in the measure proof (Fig. 14.8). Line 16 is deduced
from lines 5 and 6 via an instance of a loop-rolling theorem, whose proof is
shown in Fig. 14.12. (The distinctness provisos on the theorem require that A

and B are loop-bounds formulae independent of x, which is clearly the case in
this example.)
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Fig. 14.12 Adding an instance to a range

14.5.8 And finally! We know that the program does terminate (Figs. 14.8 and
14.9), provided we have n ≥ 2 to start with (Fig. 14.6); we know that when it
terminates 2 ≤ i ≤ n (Figs. 14.11 and 14.10), i.e. i really is a number in the
range 2..n; we know also that ∀x(2 ≤ x < i → n mod i �= 0), i.e. no number in
the range 2..i − 1 is a factor of n; we know that n mod i = 0, i.e. i is a factor
of n.

If the program terminates with i = n then no number in the range 2..n − 1
is a factor of n, and that’s a pretty fair approximation to the notion of ‘prime
number’. If on the other hand i �= n then we’ve found a number in the range
2..n−1 which is a factor of n. The instruction prime := (i = n) will surely assign
the correct Boolean value to prime; it seems to me, waving my hands, that I
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Fig. 14.13 Prime numbers really are detected
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have proved that the naive algorithm really does assess the primacy of integers
2 and above.

But we can do better than hand-waving. The formal definition of primacy
is ¬∃x(2 ≤ x < n ∧ n mod x = 0), which is classically equivalent to ∀x(2 ≤ x <

n → n mod x �= 0). A formal proof that prime := (i = n) is adequate is shown
in Fig. 14.13. Not an ‘obviously’ step in it, and lines 11 to 16 explain just why
you can’t have both i < n and also n prime.

14.5.9 Is it worth it? Five arithmetical proofs to show that the loop in the
prime-finding program terminates provided that it doesn’t crash; one to show
that it doesn’t crash; one more to show that we always get just the result we
asked for. It’s not a formal argument, because there are six ‘obviously’ steps. So:
does semi-formalism pay off?

I think it does. The proofs are imperfect, but imperfection has been chased
into their farthest corners. They reinforce and illuminate our informal under-
standing. Formality helps informality survive and keeps it honest. It is worth it.

14.5.10 These proofs are classical. Although the proofs don’t use classical
contradiction steps, they are resolutely classical in their treatment of arithmetic.
In several places, for example, they derive A = B from ¬A �= B. A constructivist
would object that we might be sure we can’t prove A �= B, without necessarily
being able to prove A = B.

In the places where non-constructive steps used, though, we are making
decidable comparisons between the values of variables and constants, or com-
putable combinations of such values, so the objection doesn’t have much force. A
constructivist could provide a proof of the same conclusions following the same
course, just with rather a lot of extra fuss. I would say that these proofs don’t
raise any constructivist hackles. Nevertheless, in terms of the steps that they
use, they are classical.

14.6 Yet more arithmetic
We’re all brainwashed in first school to slavishly follow the methods of Abu
Ja’far Muhammad ibn Musa al-Khwarizmi, the celebrated eponymous inventor
of the algorithms they teach us to use for addition, subtraction, multiplication
and division. His inventions are indeed marvellous, and he deserves all of his
enduring fame (he’s really worth looking up in the library or on the internet),
but they aren’t the last word.

It’s easy to forget, after such an education, that multiplication is no more
than repeated addition and that integer division is counted repeated subtrac-
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Fig. 14.14 The beginning of a proof of repeated-addition multiplication

tion. Once you remember, you can write computer programs that exploit those
meanings, and prove that they work.

For example, multiplication. Start with 0; add j exactly i times; you must
finish up with i × j.

{i = Ki ∧ j = Kj ∧ i ≥ 0}
k := 0;

{i ≥ 0 ∧ k + i × j = Ki × Kj}
while i �= 0 do k := k + j; i := i − 1 od

{k = Ki × Kj}

(14.2)

The proof starts as shown in Fig. 14.14. The loop measure is i. The proof
obligations are really easy to prove formally, modulo a bit of cancellation in
number-algebra formulae that Jape isn’t really up to.

For another example, division. Start with i; keep subtracting j until the
next subtraction would go negative; the quotient is the number of subtractions
you managed to do, and the remainder is the number you decided not to reduce
further.
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{i = Ki ∧ j = Kj ∧ i ≥ 0 ∧ j > 0}
kq := 0; kr := i;

{j = Kj ∧ j > 0 ∧ kr ≥ 0 ∧ kq × j + kr = Ki}
while kr ≥ j do kr := kr − j; kq := kq + 1 od

{kq × Kj + kr = Ki ∧ 0 ≤ kr < Kj}

(14.3)

This time the measure is kr , the number being reduced towards the remainder.
It reduces on each step provided that j > 0 (that shows why you can’t divide
by zero: you’d have to loop for ever).

14.7 Can we improve on al-Khwarizmi?
We can’t all be geniuses at his level, but we can adapt al-Khwarizmi’s digit-by-
digit method to modern programming. Every lazy schoolchild knows that next
to multiplying by zero, multiplying by ten and dividing by ten are the easiest
operations to apply to a decimal numeral. Add a trailing zero is (×10), cross
out the last digit is (÷10). You should now realize that (mod10) is just as easy:
simply pick out the last digit.

Then it’s possible to see that the schoolroom multiplication algorithm is
based on the identity (A ÷ 10) × 10 + A mod 10 = A:

A × B = ((A ÷ 10) × 10 + A mod 10) × B

= ((A ÷ 10) × B) × 10 + (A mod 10) × B
(14.4)

— multiply B by the right-hand digit; add that to the result of multiplying the
previous digits by B, shifted one place left. Here’s an example.1

4 9 7 2
× 6 8 3

2 9 8 3 2
3 9 7 7 6

1 4 9 1 6
3 3 9 5 8 7 6

(14.5)

14916 is 4972 × 3; the two lines above it are 4972 × 68, shifted one place left
(i.e., multiplied by 10). 39776 is 4972 × 8; the line above it is 4972 × 6, shifted
a further place left. Add up all the single-digit multiplications and you get the
right answer.

I don’t know whether al-Khwarizmi recognized the possibility of numeral-
bases other than 10. Whether he did or not, we can exploit them. Computer hard-
ware works with binary numerals nowadays, and that means that (÷2), (mod2)

1 You may have been taught to put dots or zeros where I’ve put spaces at the end of the
third and fourth lines. The difference is immaterial.
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and (×2) are very simple and fast operations on non-negative numerals: shift
right is (÷2), mask with 1 is (mod2), and shift left is (×2). The old digit-by-
digit trickery works better than ever, because single-digit multiplication is so
easy: (A mod 2) × B is if A mod 2 = 1 then B else 0 fi. After a bit of thought,
it’s easy to program the whole mechanism:

{i = Ki ∧ j = Kj ∧ i ≥ 0}
k := 0;

{i ≥ 0 ∧ k + i × j = Ki × Kj}
while i �= 0 do

if i mod 2 = 1 then k := k + j else skip fi;
i := i ÷ 2; j := j × 2

od
{k = Ki × Kj}

(14.6)

The proof works with i as a measure, but that’s a massive over-estimate. This is
fast integer multiplication: the number of times round the loop is the length of the
binary numeral which represents i (by contrast, (14.2) takes time proportional
to the value of i, which is usually much, much larger). But never mind: the while
rule is happy to use an overestimating measure.

The proof is still tricky, though, because you have to be careful to notice
that i ÷ 2 < i only when i > 0. (It’s very easy to miss that point, which
illustrates why programming is so darned difficult and why the crackers will
continue to find ways round our defences at least until we find ways of plugging
them formally.)

Fast integer division — I was taught it as ‘long division’ — is more intricate.
If q ×B + r = A÷ 10, then q ×B × 10+ r × 10 = (A÷ 10)× 10 = A−A mod 10,
and (q × 10) × B + r × 10 + A mod 10 = A. So:

• if A < B, quotient is 0, remainder is A;

• otherwise, divide A ÷ 10 by B; multiply quotient and remainder by 10; add
A mod 10 to the remainder; subtract B as many times as you can from the
new remainder, adding 1 to the quotient each time.

Al-Khwarizmi understood that, though he might have put it differently.2 I’ve
relied on a similar mechanism, using 2 instead of 10 and manipulating B rather
than A:

• if A < B, quotient is 0, remainder is A;

• otherwise, divide A by B × 2; multiply quotient by 2; subtract B as many
times as you can from the remainder, adding 1 to the quotient each time.

2 The only surviving version of his work is a book in mediaeval Latin. I have to confess that
I haven’t read it.
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The program starts with a repeated shift left (i.e. repeated ×2) which is ac-
counted for in variable kc, followed by a repeated shift right (repeated ÷2) of
exactly the same amount.

{i = Ki ∧ j = Kj ∧ i ≥ 0 ∧ j > 0}
kq := 0; kr := i; kc := 0;

{j = Kj × 2kc ∧ j > 0 ∧ kq × j + kr = Ki ∧ 0 ≤ kr}
while j ≤ kr do j := j × 2; kc := kc + 1 od;

{j = Kj × 2kc ∧ j > 0 ∧ kq × j + kr = Ki ∧ 0 ≤ kr < j}
while kc �= 0 do

j := j ÷ 2; kc := kc − 1; kq := kq × 2;
if j ≥ kr then kr := kr − j; kq := kq + 1 else skip fi

od
{kq × Kj + kr = Ki ∧ 0 ≤ kr < Kj}

(14.7)

This problem is also available in Jape. As usual the proof depends on the precon-
dition j > 0: I’ll leave you to spot where it’s needed. I’ll also leave you to struggle
with the problem of showing why, when kr < j and j = Kj × 2kc ∧ kc > 0, it
follows that kr − j ÷ 2 < j ÷ 2.

14.8 None of these programs has been tested
It’s traditional, in Hoare-logic presentations, to boast that your examples have
been proved but have never been tested on a machine. That’s the safest way to
program, but programming remains programming and you can still fall flat on
your face. If the pre- and post-condition formulae don’t exactly capture what
you want the program to do, it will do what you proved instead of what you
wanted. If the bits of unformalized arithmetic you waved your hands over are
not quite as obvious as you hoped, nasties can happen. But if you are careful,
you’ll make fewer of those kinds of mistakes than you would make mistakes in
‘normal’ programming.

In the end, though, all you can prove is a meta-implication: if the spec-
ification describes what you want, then the program will do what you want.
Mis-specification doesn’t get you the program you hoped for. The gap between
the world we live in and the logical worlds we invent, formal or informal, is as
wide as ever.
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The proof of the primacy checker in Chapter 14 is fun in a daft sort of way, but
it’s a bit too much about arithmetic. The arithmetic algorithms are more fun and
even a bit useful, but they are completely about arithmetic. Although arithmetic
lies in wait in the depths of every Hoare-logic proof, we needn’t provoke it so.
Programs which use arrays — for searching, sorting, and so on — are challenges
with are both more realistic and less obstinately arithmetical.

15.1 Two extra formulae and an extra instruction
Programs in the language of Chapters 13 and 14 include formulae made up of
integer and Boolean constants, integer and Boolean variable names, and integer
and Boolean operators.

In this chapter I add array variables to that mix: I use a, b and c in my
examples. I allow array-element formulae of the form a[E], where a is a an array
variable and E is an integer-valued formula, naming the Eth element of the
sequence contained in variable a.

There’s an extra instruction as well: a[E] := F replaces the Eth element of
the a-sequence with the value of formula F . You can write simple assignments
like a[2] := 17 and horrendously complicated ones like a[a[i]] := i+a[a[j−1]+1].

Because definedness matters so much when accessing arrays, there’s also
a formula describing the size of an array: length(a) describes the length of the
sequence stored in variable a. You can’t extend or reduce that length by assign-
ment.

As before, I shan’t be bothering with typing or declarations. I shall use
names i, j and k for integer variables, a, b and c for array variables, and the
kinds of sequences stored in arrays will be evident from context.

Pronunciation a[E] is pronounced “a sub E” to reflect its mathematical her-
itage. Mathematicians use subscripting (writing below) as, for example, in Vi

which describes the ith element of a vector V or Mi,j which picks out an ele-
ment of a matrix M . Computer scientists, using paper tape and punched cards
long before they had keyboards, colour screens and multifont GUIs, had to use
square brackets instead of writing below the line, but they hung on to the math-
ematical nomenclature.
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For that reason E in a[E] is often called a subscript expression, and the
operation of selecting an element subscripting. Because I’m interested in the
calculation which underpin programming (and because I’m proud that I once
worked for the University of Manchester) I shall call the formula the index and
the operation indexing.

15.2 Address arithmetic and the array-bounds problem
Arrays, inside a modern computer, are contiguous sequences of memory locations
— i.e. contiguous sequences of variables. Array-element formulae, like a[3], pick
out one of the variables by using simple integer arithmetic: take the address of
the first element in the sequence and add the index. Thus, for example, a[3]
names the variable at address a + 3 — reading a just as a simple address.1 In
C it works just like that, and in other languages — even Java — it’s hardly
different.

It’s a neat trick, but it gives us a problem. Given an array (i.e. an address)
a you can pick an index E which makes a[E] refer to any location in memory
that you want it to, including even a location outside the array a itself. That
might sound relatively harmless, but it follows that the assignment a[E] :=
N can, by using a carefully selected index E, write any N that you like into
whatever location you choose. That is, you can do arbitrary changes to the
memory, sometimes including the memory that holds your program, just by
using array-element indexing — and the machine won’t stop you.

This is the array-bounds problem, and at present it’s the most frequently
used loop-hole used by the crackers who wriggle into other people’s computers
without permission. Some programming languages — for example, C — allow
their users to do their own address arithmetic, so you can play addressing tricks
on yourself and drill your own bigger loop-holes to let the crackers in more easily.
More constrained languages, like the one used in this book, hide the address
arithmetic that make arrays work, and their programs check every indexing
a[E] to make sure that the index formula keeps within the bounds of the array,
crashing if ever it strays.

15.3 A formal treatment of array-element assignment
15.3.1 Definedness. If programs that use arrays are to terminate, defined-
ness of a[E] is an important issue. E must compute in finite-width-numeral

1 Actually it’s slightly more complicated than that. Modern computers divide their store
into ‘bytes’ or ‘octets’ of 8 bits each, and integer variables are short sequences of bytes: 2 or 4
or 8 bytes, usually. So an array of integer variables is actually an array of 2-byte or 4-byte or
8-byte sequences, and a[3] is at address a+6 or a+12 or a+24 accordingly. But the principle
is the same: simple, fast integer arithmetic gives us array indexing.
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arithmetic, and its value must be within the indexing bounds of the sequence
identified by a.

Definition 15.1

...
E computes

...
0 ≤ E < length(a)

a[E] computes

15.3.2 Aliasing. The proofs in chapters 13 and 14 needed provisos to ensure
that you couldn’t prove nonsense. You can prove the theorem {j =2} i :=1 {j =2},
for example, for arbitrary distinct variables i and j — but you can’t prove
{k = 2} k := 1 {k = 2}, even though it looks like an instance of the theorem
produced by replacing both i and j by k. The statement of the theorem has to
prohibit that sort of nonsense, and hence the proviso DISTINCT i, j in the Jape
theorem and proof.

This is a sight of the famous problem of aliasing in Hoare logic. It’s quite
possible in many programming languages to arrange that two variable names
refer to the same memory location (and when it isn’t possible, you can usually
do something just as horrible by messing about with pointers or references). It’s
confusing when it happens, and it stops the variable-assignment axiom working
unless you hit it on the head with a device like Jape’s DISTINCT proviso.

Substitution doesn’t work unless you can tell what is an alias and what is
not. Array-element aliasing is a consequence of address arithmetic. The element
formulae a[E] and a[E′] are aliases — i.e. they refer to the same array element,
the same memory location — just when E = E′: which is to say, rather easily
and rather often. Aliasing, which I hit on the head with a distinctness proviso
in Chapter 13, has popped up again like a fairground whack-a-mole. But array-
element aliasing, unlike variable aliasing, isn’t a rare occurrence that we can
easily stun. If we tried to mimic the variable-assignment axiom directly, reading
a[E] := F as an instruction to substitute F for a[E] to make a precondition,
aliasing would too often make nonsense of the result. We need another approach.

15.3.3 Arrays as single-variable sequences. The solution — the only possible
solution in Hoare logic — is to treat arrays as if they were single variables. Instead
of seeing an array as a collection of separate variables, we imagine that an array
variable contains a single sequence value, just as an integer variable contains a
single integer value. If a contains the five-element sequence 〈3, 5, 17,−6, 32〉, for
example, a[3] = −6. Then the effect of a[3] := 42 is to assign to variable a the
modified sequence 〈3, 5, 17, 42, 32〉.

I number sequences starting with 0 — like Java, C and C++,
but unlike Pascal, Algol and Fortran. An n-element sequence
can be indexed by any integer from 0 to n − 1.
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This idea is a reasonable extension of the treatment of integer variables. The
program i := i + 1, for example, must pick up a number from integer variable
i, add 1 to that number, and write back the result. In just the same way the
program a[3] := 42 must pick up a sequence from array variable a, modify it so
that its fourth element is 42, and write back the result.

It isn’t necessarily an inefficient idea either. A computer can cut corners by
only picking up the bit of the sequence it needs to modify or by overwriting part
of the sequence in memory without picking up anything at all. Since the effect
is the same in either case as if there was a variable containing the sequence, the
implementation of arrays can continue to be exactly what it always was. But our
formal treatment of arrays has to deal with them as if they were single variables
— a plausible and useful fiction in the examples I shall consider.

15.3.4 Updatable-sequence notation. What’s the effect of a[3] := 42 in gen-
eral: not on some particular sequence but supposing that a contains an arbitrary
fixed sequence Ka? The answer is: provided that Ka has at least four elements,
put a sequence into a which is exactly like Ka except that at position 3 it has
42. We write that sequence as Ka ⊕ 3 �→ 42.

These updatable-sequence formulae can be indexed. You would expect that
(Ka ⊕ 3 �→ 42)[3] must be 42, and it is. (Ka ⊕ 3 �→ 42)[2], on the other hand,
doesn’t care what’s at index 3 and therefore reduces to Ka[2].

To index an updatable-sequence formula A ⊕ E �→ F you always have to
prove an equality or an inequality.

Definition 15.2

...
E = E′

(A ⊕ E �→ F )[E′] = F
array-indexing(R)

Definition 15.3

...
E �= E′

(A ⊕ E �→ F )[E′] = A[E′]
array-indexing(L)

15.3.5 The array-element assignment axiom.

Definition 15.4{
(a[E] computes) ∧ (F computes) ∧ Ba

a⊕E �→F

}
a[E] := F {B}

Don’t be scared of the formulae in this axiom: Ba
a⊕E �→F simply means “a

copy of B in which every occurrence of a has been replaced by a ⊕ E �→ F”. Al-
though the replacement formula is more ferocious, and the definedness conditions
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more demanding, it just describes a single-variable assignment to a, so it’s
nothing more than a specialized version of the variable-assignment axiom.

15.3.6 Definedness: cooling down. The condition “a[E] computes” means no
more than (E computes) ∧ 0 ≤ E < length(a). A precondition must imply this
definedness condition if a[E] := F is not to crash while calculating the index
value or when using it to point to an element of array a. That means you can’t
expect to prove {�} a[i] := 0 {a[i] = 0}: � holds in any state; so it holds when
i = −1, in particular; but in that state the program crashes. We have a counter-
example: there can’t be a proof.

What about {a[i] = 3} a[i] := 0 {a[i] = 0}? Necessarily, if a[i] = 3, i must
be within the indexing range of a, because a[i] isn’t defined outside that range.
We know that a[i] = 3 → (a[i] computes); the assignment won’t crash.

We’re considering implications here, and implications always muddy the
waters. What about a precondition a[i] = i ÷ 0? Program variables and array
elements can only hold finite values, so if it’s true then I’m a banana — but
that just lets the cunning uncle in as usual, and we’re forced to agree that
a[i] = i ÷ 0 → (a[i] computes).

It’s all rather subtle. a[E] = 3 implies 0 ≤ E < length(a) — E is within
index bounds — but it doesn’t imply E computes, because that claim is about
finite-width-numeral computability, and E might be more complicated than that.
It could contain some infinity-naughtiness: a[if i ÷ 0 �= 3 then 0 else − 1 fi], for
example, is always a[0], therefore always in bounds unless a holds the empty
sequence — but you can’t calculate the index value using finite arithmetic. The
element may be ok even when the index formula is not.

Jape tries its best to keep up with all this. To reduce noise in your proof
it minimizes the number of occurrences of 0 ≤ E and E < length(a) in a
precondition, it exploits the fact that length(A ⊕ E �→ F ) = length(A), and
it lets you deduce the definedness of array elements which appear in hypothesis
equalities and inequalities.

15.3.7 Definedness: not so fast! It’s nice to be able to deduce that i is in
indexing bounds from a[i] = 2, but there’s a downside to this meta-arithmetic.
If A = A is an axiom then we always have a[E] = a[E], from which we can
deduce 0 ≤ E < length(a) for no matter what a and what E. That’s absurd: we
can pick −1 as our E, for example, and deduce 0 ≤ −1 and from there we can
find a contradiction, because it’s surely axiomatic that −1 < 0.

So: if A = A is an axiom, we can deduce a contradiction and our logic is
unsound. On the other hand, we do want to conclude A = A quite often, if for
nothing else than to simplify updatable-sequence formulae using Definition 15.2.
No problem! If it can’t be an axiom we can still have a rule:
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Fig. 15.1 Incrementing an array element: verification condition extracted

Definition 15.5

...
A defined

A = A
arithmetic identity

‘A defined’ means no more than ‘A doesn’t contain any out-of-bounds array
accesses’. That’s the sort of thing that a proof tool like Jape can deal with. (It’s
also the sort of verification condition that it’s easy to miss in an informal proof!)

If we do have a[−1] = a[−1] — if it’s a premise, for example — then we’re
in cunning-uncle territory. We can deduce a contradiction, and therefore any
conclusion we like. But, of course, such a cunning proof will be useless for all
the usual reasons.

A similar difficulty arises with A < B ∨ A = B ∨ A > B, which needs both
(A defined) and (B defined) as antecedents.

15.4 Simple array element assignment examples
15.4.1 Incrementing an element of a sequence. Incrementing an integer array
element can’t be harder than incrementing an integer variable, surely? Well . . . a
little bit harder, because you have to be sure you don’t go outside the array
bounds.

Consider, for example, {a[i] = 2} a[i] := a[i] + 1 {a[i] = 3}. This one’s valid:
the business end of the precondition calculated by the array-element assignment
axiom is (a[i] = 3)a

(a⊕i �→a[i]+1) , which is (a⊕ i �→ a[i]+1)[i] = 3, which simplifies
immediately (Definition 15.2) to a[i] + 1 = 3, which is surely the same as a[i] =
2. And we can forget about the definedness preconditions, because certainly i

computes and from a[i] = 2 we know that a[i] and therefore a[i] + 1 compute.
Jape goes at it a little more slowly. In particular, the definedness conditions

are out in the open. Fig. 15.1 shows its first step: as usual, it’s had to insert
a consequence(L) step; as usual, there’s a variable-distinctness proviso at the
bottom; as usual, it’s tried to calculate the definedness conditions out of sight,
but this time there is something to be seen. The precondition on line 2 requires
0 ≤ i < length(a), the relict of (a[i] computes) ∧ (a[i] + 1 computes).
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Fig. 15.2 Incrementing an array element: verification condition solved

{∃x(0 ≤ x < length(a) ∧ a[x] = 0)}
i := 0

{0 ≤ i < length(a) ∧ ∃x(i ≤ x < length(a) ∧ a[x] = 0)}
while a[i] �= 0 do i := i + 1 od

{a[i] = 0}
Fig. 15.3 Searching for a zero element

The steps required to establish the verification condition, shown in Fig. 15.2,
correspond to the informal argument: the boundedness condition is extracted on
line 2; the element-value problem is simplified on line 6 and reduced to the
obvious on line 5; the rest is just straightforward application of the relevant
rules. It all works!

15.4.2 Finding a zero element. Suppose there is a zero element in an array a:
that is,

∃x(0 ≤ x < length(a) ∧ a[x] = 0)

Can we write a program to find it? Of course we can! Fig. 15.3 is that program.
And it’s provable: Fig. 15.4 shows how the proof begins. Line 1 (invariant is
established) looks fairly easy; line 2 (loop guard doesn’t crash) is trivial; lines 4
and 6 (measure checks) are standard, once I filled in the measure, length(a) − i,
in place of Jape’s unknown. The only difficult-looking bit is line 3 (invariant is
maintained).
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Fig. 15.4 Searching for zero: verification conditions

Even that bit isn’t very hard, given that you have a proof calculator and a
bit of experience. The formal proof is shown in Fig. 15.5. The only tricky bit is
the argument by contradiction (lines 18–22) which shows that the position i1 at
which the zero occurs must be beyond the position i because a[i] �= 0. The rest
of the proof is straightforward, though there are some ‘obviously’ steps that a
more arithmetically capable tool might deal with. Once more it’s gratifying that
all that logical machinery really works in practice.

Actually line 1 of Fig. 15.4 isn’t completely obvious. It boils down to the
claim that if there is an x in the range 0..length(a) − 1 such that a[x] = 0, then
length(a) must be greater than zero. That makes sense informally, and it works
out logically and arithmetically too. You might like to try to prove it.
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Fig. 15.5 Searching for zero: invariant is maintained
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{∃x(0 ≤ x < length(s) ∧ s[x] = 0 ∧ x < length(buf ))}
i := 0


0 ≤ i < length(buf ) ∧
∃x(i ≤ x < length(s) ∧ s[x] = 0 ∧ x < length(buf )) ∧
∀y(0 ≤ y < i → buf [y] = s[y])




while s[i] �= 0 do buf [i] := s[i]; i := i + 1 od
{0 ≤ i < length(buf ) ∧ s[i] = 0 ∧ ∀y(0 ≤ y < i → buf [y] = s[y])}

buf [i] := 0
{s[i] = 0 ∧ ∀y(0 ≤ y ≤ i → buf [y] = s[y])}

Fig. 15.6 A sharp chisel doing its work

15.4.3 Buffer overflow vanquished? The buffer overflow program of Fig. 12.2
is repeated in Fig. 15.6, this time with precondition, postcondition and an in-
variant. The measure of the loop is length(buf ) − i. The annotations could say
more about initial and final values (s is unchanged, for example), which would
make the proof longer but not any harder. It all works provided that there is
a zero in s at a position which is within the bounds of buf (the array s can be
bigger than buf and all will be well, just provided the zero is not too far along!).

This problem is now within range. It needs no more proof effort than search-
ing for zero does. One buffer overflow problem is overthrown, at least. The crack-
ers can begin to pack their bags.

15.4.4 Oh no it isn’t! Buffer overflows are not so easy to squash. A proof of
Fig. 15.6 is straightforward, the sort of thing that a compiler could knock up
given a few sensible hints about the arithmetical joints. If it was that easy to
block the crackers, it would have happened years ago.

The precondition of Fig. 15.6 — the assumption we rely on — is that the zero
is in place and in a position which won’t overflow buf . Given that precondition,
the program won’t bite you; without it, all bets are off. But how can we know
that it’s true? In most real-world situations we’d need another loop to find the
zero’s position and check it’s within the index limits of buf . That would push the
cost of the whole enterprise close to that of running a policed loop in which each
index is checked before it’s used, and it would add the complication of having to
decide what to do when the zero’s position is out of range. Real Programmers
won’t use policed loops, even though they understand them, and on the whole
they don’t understand program logic. Imagine trying to persuade them both to
pay the cost of policing and also to rely on proof!

Hoare logic is not a ready-made solution to buffer overflow. We need other
approaches which persuade Real Programmers to take fewer risks. Maybe.
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{
0 ≤ m < n ≤ length(a) ∧ ∃x(m ≤ x < n ∧ a[x] = p)

}
i := m; j := n; done := ⊥;
while ¬done do

while a[i] < p do i := i + 1 od;
while a[j − 1] > p do j := j − 1 od;
if i + 1 < j then

j := j − 1;
t := a[i]; a[i] := a[j]; a[j] := t;
i := i + 1

else
done := �

fi
od


0 ≤ m ≤ i ≤ j ≤ n ≤ length(a) ∧ i < n ∧ m < j ∧
∀xl(m ≤ xl < i → a[xl ] ≤ p) ∧ ∀xh(j ≤ xh < n → a[xh] ≥ p) ∧
(i = j ∨ (i + 1 = j ∧ a[i] = p))




Fig. 15.7 An efficient partition program

15.5 Programs people actually write
If program logic is to make an impact on programmers’ lives, it has to be built
into programming language systems and it has to work with the kind of programs
that people actually write. Programmers pull all kinds of tricks to make their
programs faster, smaller or sometimes just more obscure, as in the splendid
annual Obfuscated C contest. Programmers are often rather clever, and their
programs often work even though it seems they might be too dangerous to use.

Fig. 15.7 is an example of a program that doesn’t look as if it should work
but does.2 It’s a version of the partition phase of Hoare’s Quicksort, one of the
fastest sorting algorithms known. Given a pivot value p, its job is to rearrange
an array segment a[m..n−1] so that about half the elements, those (≤ p), are
in the lower part of the segment, and the other part is filled with values (≥ p).
Its most important feature is that it doesn’t do unnecessary tests in while loop
guards. In particular, there’s only one bounds check per execution of the loop:
i + 1 < j in the choice command.

The precondition for this marvel requires only a non-empty input segment
which contains p. The postcondition claims that i hasn’t overtaken j (i ≤ j), that
neither of the partitions m..i − 1 and j..n − 1 occupies the whole input segment
(i < n ∧ m < j), that the two segments do contain (≤ p) and (≥ p) values

2 Sharp-eyed Java, C and C++ programmers will spot that this is a translation from an
original which used while (true) {...} and a break command in place of done := �. It
would be possible to design a program logic for that kind of program but it doesn’t matter:
the burden of proof would be almost identical.
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respectively (the xl and xh quantifications) and that either the partitions touch
(i = j) or they are separated by a single occurrence of p (i + 1 = j ∧ a[i] = p).
All that being so, it’s safe after the partition step to sort the two partitions
separately: that’s done with a couple of recursive calls which we needn’t discuss.
(There is also an important omission: I haven’t attempted to specify that a

always contains a permutation of its input value. That’s essential when specifying
a sorting algorithm, and it’s obviously true in this example because all it does
is exchange elements of a, but I wanted to concentrate on the bounds checks.)

I expect the program looks as dangerous to you as it once did to me. The
internal while loops look as if they might run off the end of the array; the
exchange looks as if it might not always put things in the right places. It’s all
written for speed. (It would be faster still if it didn’t use j − 1 as an index quite
so often, but for simplicity I’ve ignored that wrinkle.)

Fig. 15.8 shows invariants and some intermediate assertions. I’ve inserted
a skip to make the body of the loop an Ntuple, so that I can include an initial
assertion before the first internal while . The invariant requires

∃yl(m ≤ yl < j ∧ a[yl ] ≤ p) ∧ ∃yh(i ≤ yh < n ∧ a[yh] ≥ p)

— there is an element in the segment below j which will stop the j := j −1 loop,
and one at or above i which will stop the i := i+1 loop. Proofs that the internal
loops don’t run off the end of the segment are then just like the zero-searching
example (Fig. 15.3), and at the same time it would seem easy to prove that they
maintain the partitioning quantifications

∀xl(m ≤ xl < i → a[xl ] ≤ p) ∧ ∀xh(j ≤ xh < n → a[xh] ≥ p)

The hardest bit of the proof is to show that the interchange program which
swaps a[i] and a[j − 1] preserves the invariant, setting things up for the next
time round. The verification condition part of that proof is shown in Fig. 15.5,
produced by applying the choice rule to the invariant and pushing backwards
through all the assignments. It contains several occurrences of the updatable-
sequence formula

(a ⊕ i �→ a[j − 1] ⊕ j − 1 �→ a[i]) (15.1)

so it seems to have done the right exchange.
Lines 3, 4 and 5 are pretty straightforward. Line 6 requires us to pick an

element of the updated sequence which is (≤ p); we know (line 1.3) that a[j−1] ≤
p, so obviously the index to pick for the updated sequence is i. An ∃ intro step,
a couple of applications of the indexing rules, plus the fact (i + 1 < j) that
i �= j − 1 and it’s done. Line 7 is similar, this time picking j − 1 as the index.
Line 8 requires the loop-rolling theorem (Fig. 14.12 page 215), then ∀ intro, and
finally an unpicking of the indexing formula given that xl < i. Line 9 is similar.
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{
0 ≤ m < n ≤ length(a) ∧ ∃x(m ≤ x < n ∧ a[x] = p)

}
(i := m; j := n; done := ⊥)


0 ≤ m ≤ i ≤ j ≤ n ≤ length(a) ∧
∃yl(m ≤ yl < j ∧ a[yl ] ≤ p) ∧ ∃yh(i ≤ yh < n ∧ a[yh] ≥ p) ∧
∀xl(m ≤ xl < i → a[xl ] ≤ p) ∧ ∀xh(j ≤ xh < n → a[xh] ≥ p) ∧
(done → i = j ∨ (i + 1 = j ∧ a[i] = p))




while ¬done do
skip


0 ≤ m ≤ i ≤ j ≤ n ∧ n ≤ length(a) ∧
∃yl(m ≤ yl < j ∧ a[yl ] ≤ p) ∧ ∃yh(i ≤ yh < n ∧ a[yh] ≥ p) ∧
∀xl(m ≤ xl < i → a[xl ] ≤ p) ∧ ∀xh(j ≤ xh < n → a[xh] ≥ p) ∧
¬done




while a[i] < p do i := i + 1 od


0 ≤ m ≤ i ≤ j ≤ n ∧ n ≤ length(a) ∧
∃yl(m ≤ yl < j ∧ a[yl ] ≤ p) ∧
∀xl(m ≤ xl < i → a[xl ] ≤ p) ∧ ∀xh(j ≤ xh < n → a[xh] ≥ p) ∧
¬done ∧ a[i] ≥ p




while a[j − 1] > p do j := j − 1 od


0 ≤ m ≤ i ≤ j ≤ n ∧ n ≤ length(a) ∧
∀xl(m ≤ xl < i → a[xl ] ≤ p) ∧ ∀xh(j ≤ xh < n → a[xh] ≥ p) ∧
¬done ∧ a[i] ≥ p ∧ a[j − 1] ≤ p




if i + 1 < j then
j := j − 1;
t := a[i]; a[i] := a[j]; a[j] := t;
i := i + 1

else
done := �

fi
od


0 ≤ m ≤ i ≤ j ≤ n ≤ length(a) ∧ i < n ∧ m < j ∧
∀xl(m ≤ xl < i → a[xl ] ≤ p) ∧ ∀xh(j ≤ xh < n → a[xh] ≥ p) ∧
(i = j ∨ (i + 1 = j ∧ a[i] = p))




Fig. 15.8 Annotated partition program

Lines 11 and 12 come from premise 1.2 and ∧ elim; lines 13 and 14 from premise
1.3.

So it can be done, and the most important observation to make is that it
would take no particular ingenuity to make the proof. A mechanical search could
do it. Maybe the Verifying Compiler, that vision of a program processor which
checks logical claims the way that present-day compilers check typing claims, is
not so far off after all.
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Fig. 15.9 Treating the verification condition for the interchange section
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15.6 Do verified programs run faster?
Novice programmers are rightly terrified of programs like Fig. 15.7: they already
know that array-indexing loops can overrun their bounds, and those internal
whiles don’t test for that possibility. In my youth I wouldn’t have dared to
run the program, let alone write it. But now I know that under very easily
established circumstances — a non-empty input segment and an assignment like
p := a[(m + n) ÷ 2] — it works perfectly and those loops don’t need to test the
array bounds. The program is safe without the checks and it’s faster too. Safe
programs which are also faster: we can have the cake and keep the penny! Maybe
that will persuade Real Tough Programmers to listen.

Maybe not. Don’t forget the buffer overflow example: we don’t have a
panacea. Arithmetic reasoning is still a problem: we can automate lots of it
but we’d have to ask programmers to give us hints to help us past the hard bits,
and those hints would be another source of mistakes. So we’re not there yet, not
by a long way.

The dream, though, is to automate this stuff, build it into compilers and
such, and find a way to make the arithmetic hinting job something that ordinary
mortals can deal with. That work is going on (and, in fact, we have justified
ambitions way beyond anything in this book). It will probably last your lifetime
if you want to join in. Careless use of dangerous programs is hurting us right now.
We have to help the Real Tough Programmers with their Real Tough Problems.
I believe we’re beginning to succeed.

15.7 There are lots more examples
Whether or not we win the RTPs’ RTP battle for them, program proof is still
fun. There are more array-program examples in Jape: try them.



Index

∧, 27
binding power, 50
model

classical, 155
constructive, 138

proof search, 68–69
rules, 27–28

→, 27
absurdities

irrelevant, 30–31
vacuous, 31–32

binding power, 50
model

classical, 154–157
constructive, 140

proof search, 69–71
rules, 29–32
scientific, 65

∨, 27
binding power, 50
model

classical, 155
constructive, 139

proof search, 72
rules, 32–33

¬, 27
binding power, 50
model

classical, 155
constructive, 139

proof search, 72
rules, 34–35

⊥, 27, 188
classical reasoning, 41–42

dance, 78
constructive reasoning, 40–41
model

classical, 155
constructive, 138

proof search, 72–79
classical, 76–78

rules, 40–43
�, 27, 188

model
classical, 155
constructive, 137

rule, 42–43
∀, 81

binding power, 87

idiom, 92
model

classical, 159
constructive, 148

rules, 88–90
∃, 81

binding power, 87
idiom, 92
model

classical, 159–160
constructive, 148

rules, 90–92
�, 52, 126
�, 126, 131
�, 137
< (situations), 137
≤ (situations), 137
:=, 186

array elements, 224, 225–229
of variables, 191–192

= as assignment operator, 187
; as command separator, 186, 188, 190
÷, 205

by zero, 7, 188–189
[ ] pronunciation, 224
( ), 45–51

pronounciation, 45

abduction, 30
Abrial, Jean-Raymond, 11
abstract interpretation, 177
actual i, 87, 135

model, constructive, 148
address arithmetic, 179, 226
al-Khwarizmi, Muhammad ibn Musa, 8, 93,

152, 219, 221–223
Algol, 187, 188
algorithm, 7, 93, 219
aliasing, 195–197

array elements, 226
proviso, 211

Alice, 93
ancient Greece, 5
and, see ∧
anonymisation, 84–85, 91

small print, 85
antecedent, 56
argument, 13

by cases, 33



240 Index

argument (cont.)
parts, 5, 13
valid, 5

array variables, 224
array-bounds problem, 189, 225
array-element

assignment, see :=
formula, 224

arrow, see —>
assumption, 20-21
axioms, 8

backward reasoning, 67
bicyles, 37
binding direction, 48
binding power, 47
Boole, George, 102, 187
box-and-line proof, 55—57
buffer overflow, 178-180, 233

C, 177, 182, 187, 188
C++, 177, 187
cabbage, 53
Carroll, Lewis, 93
cars, see congestion
checking, 141, 142

sequent, 147
choice command, see if then else fi
Church, Alonzo, 10
claim, 16, 52

semantic, 126-127
classical logic, 36-40
classical semantics, 150, 152-160
completeness, 127-129
computable, 219
conclusion, 5, 13

in Jape, 68
conditional connective, see —>
congestion, 61-66
conjecture, 52
conjunction, see A
connectives, 25, 27

binding power, 46, 49-50
model

classical, 155
constructive, 138-140

rules, 43
consequence rules, 190-191, 210
consistency, principle of, 17
constructive arithmetic, 182-183
constructive logic, 35-40
constructive semantics, 131-151
contradiction, 34, 40

symbol, see _L
counter-example, 15-16, 101-104, 121,

123-127
informal, 123-124
mathematical, 123-126

crackers, 178, 233

crash, 184
cryptozoology, 101
cunning uncle, 31, 83, 113, 133, 139, 151,

157, 181, 202
custard, 19

daft idea, see = as assignment operator
dark night, 99
dead Major, 59-61
decidability, 152
decidable, 219
declarative, 16
definedness, 189, 213

array elements, 225, 228-229
deny, 13
disjunction, see V
disproof, 14-19, 103, 121, 127

by counter-example, 15
calculation, 141-142
constructive, 166-169

division, see —

elimination rule, 28
empty world, 141
equality substitution, 193
Euler, Leonhard, 36
Every Good Baby Deserves Favour, 82
example, 127
exception proves rule, 129-130
excluded middle, 35-40, 152

classical proof, 78-79
constructive disproof, 168

exists, see 3

Fermat's last theorem, 36
finite-width arithmetic, 188-189
fishing, 37
flowchart, 203-204
for all, see V
forced to accept, 131-132, 136-137
forces, see Ih
form, 8
formal, 8, 12
formal logic, 3

origins, 5
formal methods, 177
formula

arithmetic
calculating value of, 46-47
finding shape of, 47-49
slogans, 47

atomic, 136 138
with holes, 85

formula fitting, 45-46
quantifiers, 86
to rules, 51

Fortran, 182, 187
forward reasoning, 67



Index 241

Frege, Gottlob, 7-9, 11, 35
functional programming, 177

Godel, Kurt, 9-10, 189
generalisation, 83—84

proof, 89-90
small print, 84

Gentzen, Gerhard, 25
Goldbach's conjecture, 36, 132
good babies, 82-83
green sheep, 94, 112, 151, 158
grizzly bear, 124

hackers, 178
Hoare triples, 181-184
Hoare, Tony, 181
hyp step, 80
hypothesis, 13, 17

in Jape, 68

ice cream, 86, 92
identifier, 136
identity theorem, 100
if then else fi, 186, 199
if-then connective, see —>
iff, 137
imperative, 16
imperative programming, 177, 186
implication, see —>
imply, 13
incompleteness, 10
individual, 81, 87
infer, 13
inference rule, 19
infinite loop, 188
initialization, 212
inside-out, 143, 144
instance, 44
instantiate, 44, 50—51
introduction rule, 28
intuitionism, 36
invariant, 204-205, 210, 216
irrational number, 38
isolated empty world, 141, 148, 149

Jape, 95
proof search

connectives, 66-80
quantifiers, 110-113

where to get it, 7
Java, 9, 177, 182, 187, 188

knowledge, 16
Kripke, Saul, 131, 133

last straw, 66
legal axiom, 98
Leibniz, 8

length(a), 224
line condition, 54
line proof, 53-55
Loch Ness monster, 102
logic programming, 177
logical universe, see universe
loop command, see while do od
loop-rolling theorem, 216, 217

Malthus, Thomas Robert, 105-110
Martian, 53
MAXINT, 188-189
McCarthy, John, 184
meaning, 21
measure, 208, 210, 214
millionaire program, 184
MININT, 188-189
misery, 105
mod, 205

by zero, 189
model, 126
model checking, 177
models, see =
monotonicity, 18, 33, 134-137, 140
multi-world diagrams, 125, 132
multiplication algorithm, 221
murder trial, 97

Natural Deduction, 25
natural laws, 109
negation, see
negative connectives, 143
negative definition, 133, 138-140, 148, 155
negative evidence, 132-133, 140, 143
negative formulae, 141
negative search, 144
Nobody, 93
nomination, 84-85

small print, 85
not, see
notation, 22
Ntuple, 190

'obviously' step, 189, 193
operand, 49
operator

binding power, 48
or, see V

parameter, 6, 44
Paris, 124
partial correctness, 184
Peirce's law, 166, 167
penance, see = as assignment operator
planes, 178
Platonism, 36, 153
Platonist, 129, 133
policed execution, 179



242 Index

Poor Laws, 109
population, 105
positive definition, 138
positive evidence, 132-133, 140
possible universe, 121
possible world, 121, 124, 134
postcondition, 181
precondition, 181
predicate, 85-86

composite, 85
instance, 136

predicate calculus, 8, 11
premise, 5, 13
presence marker, 88, 135—137
price of tomatoes, 30-31, 80, 112, 133,

139, 156, 181, 202
primes, 206-207
principal connective, 49-50
principal operator, 49
privacy, 89-90
Prolog, 11
pronounciation, 21—22
proof, 14-19

attempt, 67
by the rules, 15
formal, 14
logical, 14
mathematical, 15-16
scientific, 14-15

proof search
connectives, 66-79
quantifiers, 110-118
slogans, 67

proof strategy, 67
proof tree, 52-53
propositional formulae, 152
proves, see
pudding, 19, 20

quantifiers, 25, 81
model

classical, 158-160
constructive, 148-149

multiple, 86
proof search, 110-118
rules, 95

Quicksort partition, 234
quotient, 205

rational number, 38
Real Programmers, 233, 238
reasoning, 5

backward, 20
forward, 20

refinement, 11, 177
reflection, 95

in disproof, 161, 168
refute, 13

relation, 85-86
instance, 136
with holes, 86

remainder, see mod
rhubarb, 19
root world, 134
rule matching, 51
rule of inference, see inference rule
Russell's paradox, 82
Russell, Bertrand

and Santa Glaus, 102-104
paradox, 8-9

Santa Glaus, 103-104, 110
satisfaction, 85
scheme, 44, 45, 86
school holiday, 65
school run, see congestion
semantic reasoning, 59
Semantic tableaux, 161
semicolon, see ;
sequence as value of array, 226-227
sequence of actions, 186
set theory, 8
shape matching, 45-46
side condition, 89
situation, 121, 127, 133-134, 137
skip, 186, 188, 190
Socrates, 6
soundness, 127-129
specialisation, 83-84

small print, 84
specialization, 88
specification, 177, 180-181
staircase, 208
state, 181-182
stuck proof, 161

in disproof, 165-166
sub-situation, 137
subsistence, 105
Sufrin, Bernard

in a warm room, 57-58
syllogisms, 5
symbols, 27

rules, 43

tautology, 156
termination, 184-185
theorem, 52
tomatoes, see price of tomatoes
trains, 178
truth symbol, see
truth table, 152, 156, 161

in disproof, 161-165
Turing, Alan, 10
turnstile, see , = and

uncertainty, 33
uncle, see cunning uncle



Index 243

universal drunk, 113—118
classical proof, 52
constructive disproof, 168-169

universe, 81-82
empty, 93-95, 188

unknown, 195, 200
unsoundness, 128
updatable-sequence, 227

indexing, 227

vagueness of specification, 183-184
valuation, 153-154
variable assignment, see :=
variable types, 187

verification, 177
verification conditions, 193,

211
village cook, 9

warm room, 57-58
while do od, 186, 210
white swans, 100
wild wolves, 14, 87, 95
witness, 91
workhouses, 109
world, 137

zero, 88, 93-95, 188


