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Conversion Factors

Length

1 millimeter (mm) = 1000 micrometers (um)

1 centimeter (cm) = 10 mm

1 meter (m) = 100 cm

1 m = 39.37 inches (in) [U.S. Survey Foot]

1 kilometer (km) = 1000 m

1 km = 0.62137 miles

1in. = 25.4 mm exactly [International Foot]

1 ft = 304.8 mm exactly [International Foot]

1 mile = 5280 ft

1 nautical mile = 6076.10 ft = 1852 m

1rod = 1 pole = 1 perch = 16.5 ft

1 Gunter’s chain (ch) = 66 ft = 4 rods

1 mile = 80 ch

1 vara = about 33 inches in Mexico and
California and 33-1/3 inches in Texas

1 fathom = 6 ft

Volume

1m’ = 35.31ft°

1yd® =27 = 0.7646 m’

1 litre = 0.264 gal [U.S/]

1 litre = 0.001°

1 gal [U.S.] = 3.785 litres

1 £t = 7.481 gal [U.S.]

1 gal [Imperial] = 4.546 litres = 1.201 gal [U.S.]

Area

1 mm? = 0.00155 in.?

1 m* = 10.76 ft*

1 km®> = 247.1 acres

1 hectare (ha) = 2.471 acres

1 acre = 43,560 ft?

1 acre = 10 ch? i.e., 10 (66 ft X 66 ft)
1 acre = 4046.9 m*

1ft* = 0.09290 m®

1ft* = 144in?

lin? = 6.452 cm?

1 mile? = 640 acres (normal section )

Angles

1 revolution = 360 degrees = 27 radians
1° (degree) = 60’ (minutes)

1" = 60" (seconds)

1° = 0.017453292 radians

1 radian = 57.29577951° = 57°17'44.806"
1 radian = 206,264.8062"

1 revolution = 400 grads (also called gons)
tan 1” = sin 1” = 0.000004848

7 = 3.141592654

Other Conversions

1 gram (g) = 0.035 oz

1 kilogram (kg) = 1000 g = 2.20 Ib
1ton = 2000 1b = 2 kips = 907 kg

1 m/sec = 3.28 ft/sec

1 km/hr = 0911 ft/sec = 0.621 mi/hr

GPS SIGNAL FREQUENCIES

Code Frequency (MHz)
C/A 1.023
P 10.23
L1 1575.42
L2 122760
L5 1176.45

ELLIPSOID PARAMETERS
Ellipsoid Semimajor Axis (a) Semiminor Axis (b)  Flattening (1/f)

Clarke, 1866 6,378,206.4 6,356,583.8 294.97870
GRS80 6,378,137000 6,356,752.314 298.257222101
WGS84 6,378,137000 6,356,752.314 298.257223563




Some Other Important Numbers in Surveying (Geomatics)

Errors and Error Analysis

68.3 = percent of observations that are expected within the limits of one standard deviation
0.6745 = coefficient of standard deviation for 50% error (probable error)

1.6449 = coefficient of standard deviation for 90% error

1.9599 = coefficient of standard deviation for 95% error (two-sigma error)

Electronic Distance Measurement

299,792,458 m/sec = speed of light or electromagnetic energy in a vacuum

1 Hertz (Hz) = 1 cycle per second

1 kilohertz (kHz) = 1000 Hz

1 megahertz (MHz) = 1000 kHz

1 gigahertz (GHz) = 1000 MHz

1.0003 = approximate index of atmospheric refraction (varies from 1.0001 to 1.0005)
760 mm of mercury = standard atmospheric pressure

Taping

0.00000645 = coefficient of expansion of steel tape, per 1°F

0.0000116 = coefficient of expansion of steel tape, per 1°C

29,000,000 Ib/in.2 = 2,000,000 kg/cm®> = Young’s modulus of elasticity for steel

490 1b/ft> = density of steel for tape weight computations

15°F = change in temperature to produce a 0.01 ft length change in a 100 ft steel tape
68°F = 20°C = standard temperature for taping

Leveling

0.574 = coefficient of combined curvature and refraction (ft/miles?)
0.0675 = coefficient of combined curvature and refraction (m/km?)
20.6 m = 68 ft = approximate radius of a level vial having a 20" sensitivity

Miscellaneous

6,371,000 m = 20,902,000 ft = approximate mean radius of the earth

1.15 miles = approximately 1 minute of latitude = approximately 1 nautical mile

69.1 miles = approximately 1 degree of latitude

101 ft = approximately 1 second of latitude

24 hours = 360° of longitude

15° longitude = width of one time zone, i.e., 360°/24 hr

23°26.5" = approximate maximum declination of the sun at the solstaces

23"56™M04.091° = length of sidereal day in mean solar time, which is 3m55.909° of
mean solar time short of one solar day

5,729.578 ft = radius of 1° curve, arc definition

5,729.651 ft = radius of 1° curve, chord definition

100 ft = 1 station, English system

1000 m = 1 station, metric system

6 miles = length and width of a normal township

36 = number of sections in a normal township

10,000 km = distance from equator to pole and original basis for the length of the meter
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This 14th Edition of Elementary Surveying: An Introduction to Geomatics is a
readable text that presents basic concepts and practical material in each of the
areas fundamental to modern surveying (geomatics) practice. It is written pri-
marily for students beginning their study of surveying (geomatics) at the college
level. Although the book is introductry to the practice of surveying, its depth and
breadth also make it ideal for self-study and preparation for licensing examina-
tions. This edition includes more than 400 figures and illustrations to help clarify
discussions, and numerous example problems are worked to illustrate compu-
tational procedures. Recognizing the proliferation of intelligent phones and the
intention of Internet browsing ability in these phones and tablet devices, QR
Codes have been introduced with this edition. These codes indicate that a video
lesson on the material is available from the companion website for this book at
http://www.pearsonhighered.com/ghilani and are accessible using a smart phone
or other device with a QR code reader. See sample QR Code to the right. The
65 videos provide complete, step-by-step solution walkthroughs of representative
problems from the text and proper instrumentation procedures to use when in the
field. These videos also provide additional assistance for students when working
with equipment during homework and field exercises or in preparing for an exam
or quiz. Please note: Users must download a QR code reader to their smartphone or
tablet. Data and roaming charges may also apply.

In keeping with the goal of providing an up-to-date presentation of surveying
equipment and procedures, total stations are stressed as the instruments for making
angle and distance observations. With this in mind, a section on planning a ground-
based laser scanning survey has been introduced in this edition. Additionally, the
LandXML format to exchange mapping files has also been introduced.

Since taping is now limited to distances under one-tape length and since tape
corrections are seldom, if ever, performed in practice, tape correction problems
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have been moved to Appendix A. However, it is still important that the study of
surveying including a complete presentation of taping so that students understand
the proper use of tapes. Thus a discussion of the correction for systematic errors
found in taping are still retained in this edition. Furthermore, transits and theodo-
lites, which are not used in practice, are just briefly introduced in the main body
of the text for historical purposes. For those who still use these instruments, the
reader should refer to previous editions of this book.

As with past editions, this book continues to emphasize the theory of
errors in surveying work. At the end of each chapter, common errors and mis-
takes related to the topic covered are listed so that students will be reminded
to exercise caution in all of their work. Practical suggestions resulting from the
authors’ many years of experience are interjected throughout the text. Many of
the 1000 after-chapter problems have been rewritten so that instructors can cre-
ate new assignments for their students. An Instructor’s Manual is available on
the companion website at http://www.pearsonhighered.com/ghilani for this book
to instructors who adopt the book by contacting their Prentice Hall sales repre-
sentative. Also available on this website are the short videos presenting the solu-
tion of selected example problems in this book.

Updated versions of STATS, WOLFPACK, and MATRIX are available
on the companion website for this book at http://www.pearsonhighered.com/
ghilani. These programs contain options for statistical computations, traverse
computations for polygon, link, and radial traverses; area calculations; astronom-
ical azimuth reduction; two-dimensional coordinate transformations; horizon-
tal and vertical curve computations; and least-squares adjustments. Mathcad®
worksheets and Excel® spreadsheets are included on the companion website
for this book. These programmed computational sheets demonstrate the solu-
tion to many of the example problems discussed herein. For those desiring addi-
tional knowledge in map projections, the Mercator, Albers Equal Area, Oblique
Stereographic, and Oblique Mercator map projections have been included with
these files. Additionally, instructional videos are available on the companion
website demonstrating the solutions of selected problems throughout this book.

WHAT’S NEW

e Video lessons on proper usage of instruments presented in this book.

e Images of new instruments and field book pages that match today’s
instruments.

e Increased discussions on the changes in reference systems.

e Discussion on planning a laser-scanning survey.

e Discussion on the LandXML drawing exchange format.

e Revised discussion on point codes in field-to-finish surveying.

e Extended coverage on errors present in electronic distance measurements.

e Introduction to mobile mapping systems.

e Revised problem sets.

e Seven new instructional videos, demonstrating instrumental procedures
and record keeping.
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H 1.1 DEFINITION OF SURVEYING

Surveying, which is also interchangeably called geomatics (see Section 1.2), has
traditionally been defined as the science, art, and technology of determining the
relative positions of points above, on, or beneath the Earth’s surface, or of estab-
lishing such points. In a more general sense, however, surveying (geomatics) can
be regarded as that discipline that encompasses all methods for measuring and
collecting information about the physical Earth and our environment, process-
ing that information, and disseminating a variety of resulting products to a wide
range of clients. Surveying has been important since the beginning of civilization.
Its earliest applications were in measuring and marking boundaries of property
ownership. Throughout the years its importance has steadily increased with the
growing demand for a variety of maps and other spatially related types of infor-
mation, and with the expanding need for establishing accurate line and grade to
guide construction operations.

Today, the importance of measuring and monitoring our environment is
becoming increasingly critical as our population expands; land values appreciate;
our natural resources dwindle; and human activities continue to stress the quality
of our land, water, and air. Using modern ground, aerial, and satellite technolo-
gies, and computers for data processing, contemporary surveyors are now able
to measure and monitor the Earth and its natural resources on literally a global
basis. Never before has so much information been available for assessing current
conditions, making sound planning decisions, and formulating policy in a host of
land-use, resource development, and environmental preservation applications.

Recognizing the increasing breadth and importance of the practice of
surveying, the International Federation of Surveyors (see Section 1.11) adopted
the following definition:
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A surveyor is a professional person with the academic qualifications and
technical expertise to conduct one, or more, of the following activities;

* to determine, measure and represent the land, three-dimensional objects,
pointfields, and trajectories;

* to assemble and interpret land and geographically related information;

* to use that information for the planning and efficient administration of the
land, the sea and any structures thereon; and

* to conduct research into the above practices and to develop them.

Detailed Functions

The surveyor’s professional tasks may involve one or more of the following
activities, which may occur either on, above, or below the surface of the land
or the sea and may be carried out in association with other professionals.

1. The determination of the size and shape of the earth and the measure-
ments of all data needed to define the size, position, shape and contour
of any part of the earth and monitoring any change therein.

2. The positioning of objects in space and time as well as the positioning
and monitoring of physical features, structures and engineering works
on, above or below the surface of the earth.

3. The development, testing and calibration of sensors, instruments and sys-
tems for the above-mentioned purposes and for other surveying purposes.

4. The acquisition and use of spatial information from close range, aerial
and satellite imagery and the automation of these processes.

5. The determination of the position of the boundaries of public or private
land, including national and international boundaries, and the registra-
tion of those lands with the appropriate authorities.

6. The design, establishment, and administration of geographic informa-
tion systems (GIS), and the collection, storage, analysis, management,
display and dissemination of data.

7. The analysis, interpretation, and integration of spatial objects and phe-
nomena in GIS, including the visualization and communication of such
data in maps, models and mobile digital devices.

8. The study of the natural and social environment, the measurement of
land and marine resources and the use of such data in the planning of
development in urban, rural, and regional areas.

9. The planning, development and redevelopment of property, whether
urban or rural and whether land or buildings.

10. The assessment of value and the management of property, whether
urban or rural and whether land or buildings.

11. The planning, measurement and management of construction works,
including the estimation of costs.

In application of the foregoing activities surveyors take into account
the relevant legal, economic, environmental, and social aspects affecting
each project.



The breadth and diversity of the practice of surveying (geomatics), as well
as its importance in modern civilization, are readily apparent from this definition.

H 1.2 GEOMATICS

As noted in Section 1.1, “geomatics” is a relatively new term that is now com-
monly being applied to encompass the areas of practice formerly identified as
surveying. The principal reason cited for making the name change is that the
manner and scope of practice in surveying have changed dramatically in recent
years. This has occurred in part because of recent technological developments
that have provided surveyors with new tools for measuring and/or collecting
information, for computing, and for displaying and disseminating information.
It has also been driven by increasing concerns about the environment locally,
regionally, and globally, which have greatly exacerbated efforts in monitor-
ing, managing, and regulating the use of our land, water, air, and other natural
resources. These circumstances, and others, have brought about a vast increase
in demands for new spatially related information.

Historically surveyors made their measurements using ground-based meth-
ods, with the transit and ‘[ape1 as their primary instruments. Computations, analy-
ses, and the reports, plats, and maps they delivered to their clients were prepared
(in hard-copy form) through tedious manual processes. Today’s surveyor has an
arsenal of tools for measuring and collecting environmental information that in-
cludes electronic instruments for automatically measuring distances and angles,
satellite surveying systems for quickly obtaining precise positions of widely spaced
points, and modern aerial digital imaging and laser-scanning systems for quickly
mapping and collecting other forms of data about the Earth. In addition, com-
puter systems are available that can process the measured data and automatically
produce plats, maps, and other products at speeds unheard of a few years ago.
Furthermore, these products can be prepared in electronic formats and be trans-
mitted to remote locations via telecommunication systems.

Concurrent with the development of these new data collection and pro-
cessing technologies, geographic information systems (GISs) have emerged and
matured. These computer-based systems enable virtually any type of spatially re-
lated information about the environment to be integrated, analyzed, displayed,
and disseminated.” The key to successfully operating GISs is spatially related data
of high quality, and the collection and processing of this data is placing great new
demands upon the surveying community.

As a result of these new developments noted above, and others, many feel
that the name surveying no longer adequately reflects the expanded and chang-
ing role of their profession. Hence the new term “geomatics” has emerged. In
this text, the terms “surveying” and “geomatics” are both used, although the

These instruments are described in Appendix A and Chapter 6, respectively.

2Geographic information systems are briefly introduced in Section 1.9 and then described in greater
detail in Chapter 28.

1.2 Geomatics 3
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Figure 1.1
Historical surveying
instruments: (a) the
diopter and (b) the
groma.

former is used more frequently. Nevertheless students should understand that
the two terms are synonymous as discussed above.

H 1.3 HISTORY OF SURVEYING

The oldest historical records in existence today that bear directly on the sub-
ject of surveying state that this science began in Egypt. Herodotus recorded that
Sesostris (about 1400 B.c.) divided the land of Egypt into plots for the purpose of
taxation. Annual floods of the Nile River swept away portions of these plots, and
surveyors were appointed to replace the boundaries. These early surveyors were
called rope-stretchers, since their measurements were made with ropes having
markers at unit distances.

As a consequence of this work, early Greek thinkers developed the science
of geometry. Their advance, however, was chiefly along the lines of pure sci-
ence. Heron stands out prominently for applying science to surveying in about
120 B.c. He was the author of several important treatises of interest to surveyors,
including The Dioptra, which related the methods of surveying a field, drawing
a plan, and making related calculations. It also described one of the first pieces
of surveying equipment recorded, the diopter [Figure 1.1(a)]. For many years
Heron’s work was the most authoritative among Greek and Egyptian surveyors.

Significant development in the art of surveying came from the practical-
minded Romans, whose best-known writing on surveying was by Frontinus.
Although the original manuscript disappeared, copied portions of his work have
been preserved. This noted Roman engineer and surveyor, who lived in the first
century, was a pioneer in the field, and his essay remained the standard for many
years. The engineering ability of the Romans was demonstrated by their exten-
sive construction work throughout the empire. Surveying necessary for this con-
struction resulted in the organization of a surveyors’ guild. Ingenious instruments

w1
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\
v
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were developed and used. Among these were the groma [Figure 1.1(b)], used for
sighting; the libella, an A-frame with a plumb bob, for leveling; and the choro-
bates, a horizontal straightedge about 20 ft long with supporting legs and a groove
on top for water to serve as a level.

One of the oldest Latin manuscripts in existence is the Codex Acerianus,
written in about the 6th century. It contains an account of surveying as practiced
by the Romans and includes several pages from Frontinus’s treatise. The manu-
script was found in the 10th century by Gerbert and served as the basis for his
text on geometry, which was largely devoted to surveying.

During the Middle Ages, the Arabs kept Greek and Roman science alive.
Little progress was made in the art of surveying, and the only writings pertaining
to it were called “practical geometry.”

In the 13th century, Von Piso wrote Practica Geometria, which contained
instructions on surveying. He also authored Liber Quadratorum, dealing chiefly
with the quadrans, a square brass frame having a 90° angle and other graduated
scales. A movable pointer was used for sighting. Other instruments of the period
were the astrolabe, a metal circle with a pointer hinged at its center and held by
a ring at the top, and the cross staff, a wooden rod about 4 ft long with an adjust-
able crossarm at right angles to it. The known lengths of the arms of the cross
staff permitted distances to be measured by proportion and angles.

Early civilizations assumed the Earth to be a flat surface, but by noting the
Earth’s circular shadow on the moon during lunar eclipses and watching ships
gradually disappear as they sailed toward the horizon, it was slowly deduced that
the planet actually curved in all directions.

Determining the true size and shape of the Earth has intrigued humans
for centuries. History records that a Greek named Eratosthenes was among the
first to compute its dimensions. His procedure, which occurred about 200 B.c., is
illustrated in Figure 1.2. Eratosthenes had concluded that the Egyptian cities of
Alexandria and Syene were located approximately on the same meridian, and

\ Sun’s rays
N / (assumed parallel)

Alexandria

/

_ \R
\
~N A
N Figure 1.2
a 9 Geometry of the
procedure used
by Eratosthenes
to determine
the Earth’s

circumference.
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he had also observed that at noon on the summer solstice, the sun was directly
overhead at Syene. (This was apparent because at that time of that day, the
image of the sun could be seen reflecting from the bottom of a deep vertical well
there.) He reasoned that at that moment, the sun, Syene, and Alexandria were
in a common meridian plane, and if he could measure the arc length between the
two cities, and the angle it subtended at the Earth’s center, he could compute
the Earth’s circumference. He determined the angle by measuring the length
of the shadow cast at Alexandria from a vertical staff of known length. The arc
length was found from multiplying the number of caravan days between Syene
and Alexandria by the average daily distance traveled. From these measure-
ments, Eratosthenes calculated the Earth’s circumference to be about 25,000 mi.
Subsequent precise geodetic measurements using better instruments, but tech-
niques geometrically similar to Eratosthenes’, have shown his value, though
slightly too large, to be amazingly close to the currently accepted one. (Actually,
as explained in Chapter 19, the Earth approximates an oblate spheroid having
an equatorial radius about 13.5 mi longer than the polar radius.)

In the 18th and 19th centuries, the art of surveying advanced more rapidly.
The need for maps and locations of national boundaries caused England and
France to make extensive surveys requiring accurate triangulation; thus, geodetic
surveying began. The U.S. Coast Survey (now the National Geodetic Survey of
the U.S. Department of Commerce) was established by an act of Congress in
1807. Initially its charge was to perform hydrographic surveys and prepare nauti-
cal charts. Later its activities were expanded to include establishment of reference
monuments of precisely known positions throughout the country.

Increased land values and the importance of precise boundaries, along with
the demand for public improvements in the canal, railroad, and turnpike eras,
brought surveying into a prominent position. More recently, the large volume of
general construction, numerous land subdivisions that require precise records,
and demands posed by the fields of exploration and ecology have entailed an
augmented surveying program. Surveying is still the sign of progress in the devel-
opment, use, and preservation of the Earth’s resources.

In addition to meeting a host of growing civilian needs, surveying has always
played an important role in our nation’s defense activities. World Wars I and II,
the Korean and Vietnam conflicts, and the more recent conflicts in the Middle
East and Europe have created staggering demands for precise measurements and
accurate maps. These military operations also provided the stimulus for improv-
ing instruments and methods to meet these needs. Surveying also contributed to,
and benefited from, the space program where new equipment and systems were
needed to provide precise control for missile alignment, and for mapping and
charting portions of the moon and nearby planets.

Developments in surveying and mapping equipment have now evolved
to the point where the traditional instruments that were used until about the
1960s or 1970s—the transit, theodolite, dumpy level, and steel tape—have
now been almost completely replaced by an array of new “high-tech” instru-
ments. These include electronic fotal station instruments, which can be used to
automatically measure and record horizontal and vertical distances, and hori-
zontal and vertical angles; and Global Navigation Satellite Systems (GNSS)
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Figure 1.3
LEICA TPS 1100
total station
instrument.
(Courtesy Leica
Geosystems AG.)

Figure 1.4

The IP-S2 3D
mobile mapping
system. (Courtesy
Topcon Positioning
Systems.)

such as the Global Positioning Systems (GPS) that can provide precise loca-
tion information for virtually any type of survey. Laser-scanning instruments
combine automatic distance and angle measurements to compute dense grids
of coordinated points. Also new aerial cameras and remote sensing instru-
ments have been developed, which provide images in digital form, and these
images can be processed to obtain spatial information and maps using new
digital photogrammetric restitution instruments (also called softcopy plotters).
Figures 1.3, 1.4, 1.5, and 1.6, respectively, show a total station instrument,
3D mobile mapping system, laser-scanning instrument, and modern softcopy
plotter. The 3D mobile mapping system in Figure 1.4 is an integrated system
consisting of scanners, GNSS receiver, inertial measurement unit, and a high-
quality hemispherical digital camera that can map all items within 100 m of
the vehicle as the vehicle travels at highway speeds. The system can capture



8 INTRODUCTION

Figure 1.5
LEICA HDS 3000

D24 laser scanner.

(Courtesy of
Christopher
Gibbons, Leica
Geosystems AG.)

Figure 1.6
Intergraph Image
Station Z softcopy
plotter. (Courtesy
of Bon DeWitt.)

i
I
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1.3 million data points per second providing the end user with high-quality,
georeferenced coordinates on all items visible in the images.

H 1.4 GEODETIC AND PLANE SURVEYS

Two general classifications of surveys are geodetic and plane. They differ prin-
cipally in the assumptions on which the computations are based, although field
measurements for geodetic surveys are usually performed to a higher order of
accuracy than those for plane surveys.

In geodetic surveying, the curved surface of the Earth is considered by per-
forming the computations on an ellipsoid (curved surface approximating the size
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and shape of the Earth—see Chapter 19). It is now becoming common to do
geodetic computations in a 3D, Earth-Centered, Earth-Fixed (ECEF) Cartesian
coordinate system. The calculations involve solving equations derived from solid
geometry and calculus. Geodetic methods are employed to determine relative
positions of widely spaced monuments and to compute lengths and directions of
the long lines between them. These monuments serve as the basis for referencing
other subordinate surveys of lesser extents.

In early geodetic surveys, painstaking efforts were employed to accurately
observe angles and distances. The angles were measured using precise ground-
based theodolites, and the distances were measured using special tapes made
from metal having a low coefficient of thermal expansion. From these basic
measurements, the relative positions of the monuments were computed. Later,
electronic instruments were used for observing the angles and distances. Although
these latter types of instruments are still sometimes used on geodetic surveys, sat-
ellite positioning has now almost completely replaced other instruments for these
types of surveys. Satellite positioning can provide the needed positions with much
greater accuracy, speed, and economy. GNSS receivers enable ground stations to
be located precisely by observing distances to satellites operating in known posi-
tions along their orbits. GNSS surveys are being used in all forms of surveying
including geodetic, hydrographic, construction, and boundary surveying. When
combined with a real-time network (RTN), GNSS surveys are capable of provid-
ing accuracy within 0.1 ft over a 50-km region with as little as 3 min of data. The
principles of operation of GPS are given in Chapter 13, field and office procedures
used in static GNSS surveys are discussed in Chapter 14, and the methods used in
kinematic GNSS surveys including RTNs are discussed in Chapter 15.

In plane surveying, except for leveling, the reference base for fieldwork and
computations is assumed to be a flat horizontal surface. The direction of a plumb
line (and thus gravity) is considered parallel throughout the survey region, and
all observed angles are presumed to be plane angles. For areas of limited size, the
surface of our vast ellipsoid is actually nearly flat. On a line 5 mi long, the ellipsoid
arc and chord lengths differ by only about 0.02 ft. A plane surface tangent to the
ellipsoid departs only about 0.7 ft at 1 mi from the point of tangency. In a tri-
angle having an area of 75 square miles, the difference between the sum of the
three ellipsoidal angles and three plane angles is only about 1 sec. Therefore, it
is evident that except in surveys covering extensive areas, the Earth’s surface can
be approximated as a plane, thus simplifying computations and techniques. In
general, algebra, plane and analytical geometry, and plane trigonometry are used
in plane-surveying calculations. Even for very large areas, map projections, such
as those described in Chapter 20, allow plane-surveying computations to be used.
This book concentrates primarily on methods of plane surveying, an approach
that satisfies the requirements of most projects.

H 1.5 IMPORTANCE OF SURVEYING

Surveying is one of the world’s oldest and most important arts because, as
noted previously, from the earliest times it has been necessary to mark bound-
aries and divide land. Surveying has now become indispensable to our modern
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way of life. The results of today’s surveys are used to (1) map the Earth above
and below sea level; (2) prepare navigational charts for use in the air, on land,
and at sea; (3) establish property boundaries of private and public lands; (4)
develop data banks of land use and natural resource information that aid in
managing our environment; (5) determine facts on the size, shape, gravity, and
magnetic fields of the Earth; and (6) prepare charts of our moon and planets.

Surveying continues to play an extremely important role in many branches
of engineering. For example, surveys are required to plan, construct, and main-
tain highways, railroads, rapid-transit systems, buildings, bridges, missile ranges,
launching sites, tracking stations, tunnels, canals, irrigation ditches, dams, drainage
works, urban land subdivisions, water supply and sewage systems, pipelines, and
mine shafts. Surveying methods are commonly employed in laying out industrial
assembly lines and jigs.® These methods are also used for guiding the fabrication of
large equipment, such as airplanes and ships, where separate pieces that have been
assembled at different locations must ultimately be connected as a unit. Surveying
is important in many related tasks in agronomy, archeology, astronomy, forestry,
geography, geology, geophysics, landscape architecture, meteorology, paleontol-
ogy, and seismology, but particularly in military and civil engineering.

All engineers must know the limits of accuracy possible in construction,
plant design and layout, and manufacturing processes, even though someone else
may do the actual surveying. In particular, surveyors and civil engineers who are
called on to design and plan surveys must have a thorough understanding of the
methods and instruments used, including their capabilities and limitations. This
knowledge is best obtained by making observations with the kinds of equipment
used in practice to get a true concept of the theory of errors and the small but
recognizable differences that occur in observed quantities.

In addition to stressing the need for reasonable limits of accuracy, surveying
emphasizes the value of significant figures. Surveyors and engineers must know
when to work to hundredths of a foot instead of to tenths or thousandths, or perhaps
the nearest foot, and what precision in field data is necessary to justify carrying out
computations to the desired number of decimal places. With experience, they learn
how available equipment and personnel govern procedures and results.

Engineers who design buildings, bridges, equipment, and so on are fortu-
nate if their estimates of loads to be carried are correct within 5%. Then a factor
of safety of 2 or more is often applied. But except for some topographic work,
only exceedingly small errors can be tolerated in surveying, and there is no factor
of safety. Traditionally, therefore, both manual and computational precision are
stressed in surveying.

H 1.6 SPECIALIZED TYPES OF SURVEYS

Many types of surveys are so specialized that a person proficient in a particular
discipline may have little contact with the other areas. Persons seeking careers
in surveying and mapping, however, should be knowledgeable in every phase,

3See footnote 1.
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since all are closely related in modern practice. Some important classifications
are described briefly here.

Control surveys establish a network of horizontal and vertical monuments
that serve as a reference framework for initiating other surveys. Many control
surveys performed today are done using techniques discussed in Chapters 14
and 15 with GNSS instruments.

Topographic surveys determine locations of natural and artificial features
and elevations used in map making.

Land, boundary, and cadastral surveys establish property lines and prop-
erty corner markers. The term cadastral is now generally applied to surveys of
the public lands systems. There are three major categories: original surveys to
establish new section corners in unsurveyed areas that still exist in Alaska and
several western states; retracement surveys to recover previously established
boundary lines; and subdivision surveys to establish monuments and delineate
new parcels of ownership. Condominium surveys, which provide a legal record of
ownership, are a type of boundary survey.

Hydrographic surveys define shorelines and depths of lakes, streams,
oceans, reservoirs, and other bodies of water. Sea surveying is associated with
port and offshore industries and the marine environment, including measure-
ments and marine investigations made by shipborne personnel.

Alignment surveys are made to plan, design, and construct highways, railroads,
pipelines, and other linear projects. They normally begin at one control point and
progress to another in the most direct manner permitted by field conditions.

Construction surveys provide line, grade, control elevations, horizontal
positions, dimensions, and configurations for construction operations. They also
secure essential data for computing construction pay quantities.

As-built surveys document the precise final locations and layouts of engineer-
ing works, and record any design changes that may have been incorporated into
the construction. These are particularly important when underground facilities are
constructed, so that their locations can be accurately known for maintenance pur-
poses, and unexpected damage to them can be avoided during later installation of
other underground utilities.

Mine surveys are performed above and below ground to guide tunneling
and other operations associated with mining. This classification also includes
geophysical surveys for mineral and energy resource exploration.

Solar surveys map property boundaries, solar easements, obstructions
according to sun angles and meet other requirements of zoning boards and title
insurance companies.

Optical tooling (also referred to as industrial surveying or optical alignment)
is a method of making extremely accurate measurements for manufacturing pro-
cesses where small tolerances are required.

Except for control surveys, most other types described are usually performed
using plane-surveying procedures, but geodetic methods may be employed on the
others if a survey covers an extensive area or requires extreme accuracy.

Ground, aerial, and satellite surveys are broad classifications sometimes used.
Ground surveys utilize measurements made with ground-based equipment such
as automatic levels and total station instruments. Aerial surveys are accomplished
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using either photogrammetry or remote sensing. Photogrammetry uses cameras that
are carried usually in airplanes to obtain images, whereas remote sensing employs
cameras and other types of sensors that can be transported in either aircraft or
satellites. Procedures for analyzing and reducing the image data are described in
Chapter 27. Aerial methods have been used in all the specialized types of surveys
listed, except for optical tooling, and in this area fterrestrial (ground-based) photo-
graphs are often used. Satellite surveys include the determination of ground loca-
tions from measurements made to satellites using GNSS receivers, or the use of
satellite images for mapping and monitoring large regions of the Earth.

H 1.7 SURVEYING SAFETY

Surveyors (geomatics engineers) generally are involved in both field and office
work. The fieldwork consists in making observations with various types of in-
struments either (a) to determine the relative locations of points or (b) to set
out stakes in accordance with planned locations to guide building and construc-
tion operations. The office work involves (1) conducting research and analysis in
preparing for surveys, (2) computing and processing the data obtained from field
measurements, and (3) preparing maps, plats, charts, reports, and other docu-
ments according to client specifications. Sometimes the fieldwork must be per-
formed in hostile or dangerous environments, and thus it is very important to be
aware of the need to practice safety precautions.

Among the most dangerous of circumstances within which surveyors must
sometimes work are job sites that are either on or near highways or railroads,
or that cross such facilities. Job sites in construction zones where heavy machin-
ery is operating are also hazardous, and the dangers are often exacerbated by
poor hearing conditions from the excessive noise and by poor visibility caused
by obstructions and dust, both of which are created by the construction activity.
In these situations, whenever possible, the surveys should be removed from the
danger areas through careful planning and/or the use of offset lines. If the work
must be done in these hazardous areas, then certain safety precautions should be
followed. Safety vests of fluorescent yellow color should always be worn in these
situations, and flagging materials of the same color can be attached to the survey-
ing equipment to make it more visible. Depending on the circumstances, signs can
be placed in advance of work areas to warn drivers of the presence of a survey party
ahead, cones and/or barricades can be placed to deflect traffic around surveying
activities, and flaggers can be assigned to warn drivers, or to slow or even stop
them, if necessary. The Occupational Safety and Health Administration (OSHA),
of the U.S. Department of Labor,* has developed safety standards and guidelines
that apply to the various conditions and situations that can be encountered.

Besides the hazards described above, depending on the location of the sur-
vey and the time of year, other dangers can also be encountered in conducting

“The mission of OSHA is to save lives, prevent injuries, and protect the health of America’s work-
ers. Its staff establishes protective standards, enforces those standards, and reaches out to employers
and employees through technical assistance and consultation programs. For more information about
OSHA and its safety standards, consult its website http://www.osha.gov.
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field surveys. These include problems related to weather such as frostbite and
overexposure to the sun’s rays, which can cause skin cancers, sunburns, and heat
stroke. To help prevent these problems, plenty of fluids should be drunk, large-
brimmed hats and sunscreen can be worn, and on extremely hot days surveying
should commence at dawn and terminate at midday or early afternoon. Outside
work should not be done on extremely cold days, but if it is necessary, warm
clothing should be worn and skin areas should not be exposed. Other hazards
that can be encountered during field surveys include wild animals, poisonous
snakes, bees, spiders, wood ticks, deer ticks (which can carry Lyme disease), poi-
son ivy, and poison oak. Surveyors should be knowledgeable about the types of
hazards that can be expected in any local area, and always be alert and on the
lookout for them. To help prevent injury from these sources, protective boots
and clothing should be worn and insect sprays used. Certain tools can also be
dangerous, such as chain saws, axes, and machetes that are sometimes necessary
for clearing lines of sight. These must always be handled with care. Also, care
must be exercised in handling certain surveying instruments, such as long-range
poles and level rods, especially when working around overhead wires, to prevent
accidental electrocutions.

Many other hazards, in addition to those cited above, can be encountered
when surveying in the field. Thus, it is essential that surveyors always exercise
caution in their work, and know and follow accepted safety standards. In addition,
a first-aid kit should always accompany a survey party in the field, and it should
include all of the necessary antiseptics, ointments, bandage materials, and other
equipment needed to render first aid for minor accidents. The survey party should
also be equipped with cell phones for more serious situations, and telephone num-
bers to call in emergencies should be written down and readily accessible.

H 1.8 LAND AND GEOGRAPHIC INFORMATION SYSTEMS

Land Information Systems (LISs) and Geographic Information Systems (GISs)
are areas of activity that have rapidly assumed positions of major prominence in
surveying. These computer-based systems enable storing, integrating, manipulat-
ing, analyzing, and displaying virtually any type of spatially related information
about our environment. LISs and GISs are being used at all levels of government,
and by businesses, private industry, and public utilities to assist in management
and decision-making. Specific applications have occurred in many diverse areas
and include natural resource management; facilities siting and management; land
records modernization; demographic and market analysis; emergency response
and fleet operations; infrastructure management; and regional, national, and
global environmental monitoring. Data stored within LISs and GISs may be both
natural and cultural, and be derived from new surveys or from existing sources
such as maps, charts, aerial and satellite photos, tabulated data and statistics, and
other documents. However, in most situations, the needed information either
does not exist or it is unsatisfactory because of age, scale, or other reasons. Thus,
new measurements, maps, photos, or other data must be obtained.

Specific types of information (also called themes or layers of information)
needed for land and GISs may include political boundaries, individual property
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ownership, population distribution, locations of natural resources, transportation
networks, utilities, zoning, hydrography, soil types, land use, vegetation types,
wetlands, and many more. An essential ingredient of all information entered into
LIS and GIS databases is that it is spatially related, that is, located in a common
geographic reference framework. Only then are the different layers of informa-
tion physically relatable so they can be analyzed using computers to support deci-
sion making. This geographic positional requirement will place a heavy demand
upon surveyors (geomatics engineers) in the future, who will play key roles in
designing, implementing, and managing these systems. Surveyors from virtually
all of the specialized areas described in Section 1.6 will be involved in devel-
oping the needed databases. Their work will include establishing the required
basic control framework; conducting boundary surveys and preparing legal de-
scriptions of property ownership; performing topographic and hydrographic
surveys by ground, aerial, and satellite methods; compiling and digitizing maps;
and assembling a variety of other digital data files.The last chapter of this book,
Chapter 28, is devoted to the topic of land and GISs. This subject seems appro-
priately covered at the end, after each of the other types of surveys needed to
support these systems has been discussed.

H 1.9 FEDERAL SURVEYING AND MAPPING AGENCIES

Several U.S. government agencies perform extensive surveying and mapping.
Three of the major ones are:

1. The National Geodetic Survey (NGS), formerly the Coast and Geodetic
Survey, was originally organized to map the coast. Its activities have in-
cluded control surveys to establish a network of reference monuments
throughout the United States that serve as points for originating local sur-
veys, preparation of nautical and aeronautical charts, photogrammetric
surveys, tide and current studies, collection of magnetic data, gravimetric
surveys, and worldwide control survey operations. The NGS now plays a
major role in coordinating and assisting in activities related to upgrading
the national network of reference control monuments, and to the develop-
ment, storage, and dissemination of data used in modern LISs and GISs.

2. The U.S. Geological Survey (USGS), established in 1879, has as its mission
the mapping of our nation and the survey of its resources. It provides a wide
variety of maps, from topographic maps showing the geographic relief and
natural and cultural features, to thematic maps that display the geology and
water resources of the United States, to special maps of the moon and plan-
ets. The National Mapping Division of the USGS has the responsibility of
producing topographic maps. It currently has nearly 70,000 different topo-
graphic maps available, and it distributes approximately 10 million copies
annually. In recent years, the USGS has been engaged in a comprehensive
program to develop a national digital cartographic database, which consists
of map data in computer-readable formats.

3. The Bureau of Land Management (BLM), originally established in 1812
as the General Land Office, is responsible for managing the public lands.
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These lands, which total approximately 264 million acres and comprise
about one eighth of the land in the United States, exist mostly in the west-
ern states and Alaska. The BLM is responsible for surveying the land and
managing its natural resources, which include minerals, timber, fish and
wildlife, historical sites, and other natural heritage areas. Surveys of most
public lands in the conterminous United States have been completed, but
much work remains in Alaska.

In addition to these three federal agencies, units of the U.S. Army Corps
of Engineers have made extensive surveys for emergency and military purposes.
Some of these surveys provide data for engineering projects, such as those con-
nected with flood control. Surveys of wide extent have also been conducted
for special purposes by nearly 40 other federal agencies, including the Forest
Service, National Park Service, International Boundary Commission, Bureau of
Reclamation, Tennessee Valley Authority, Mississippi River Commission, U.S.
Lake Survey, and Department of Transportation.

All states have a surveying and mapping section for purposes of generating
topographic information upon which highways are planned and designed. Likewise,
many counties and cities also have surveying programs, as have various utilities.

H 1.10 THE SURVEYING PROFESSION

The personal qualifications of surveyors are as important as their technical ability
in dealing with the public. They must be patient and tactful with clients and their
sometimes-hostile neighbors. Few people are aware of the painstaking research
of old records required before fieldwork is started. Diligent, time-consuming
effort may be needed to locate corners on nearby tracts for checking purposes as
well as to find corners for the property in question.

Land or boundary surveying is classified as a learned profession because
the modern practitioner needs a wide background of technical training and
experience, and must exercise a considerable amount of independent judgment.
Registered (licensed) professional surveyors must have a thorough knowledge of
mathematics (particularly geometry, trigonometry, calculus, and statistics); compe-
tence with computers; a solid understanding of surveying theory, instruments, and
methods in the areas of geodesy, photogrammetry, remote sensing, and cartogra-
phy; some competence in economics (including office management), geography,
geology, astronomy, and dendrology; and a familiarity with laws pertaining to land
and boundaries. They should be knowledgeable in both field operations and office
computations. Above all, they are governed by a professional code of ethics and
are expected to charge professional-level fees for their work.

Permission to trespass on private property or to cut obstructing tree
branches and shrubbery must be obtained through a proper approach. Such priv-
ileges are not conveyed by a surveying license or by employment in a state high-
way department or other agency (but a court order can be secured if a landowner
objects to necessary surveys).

All 50 states, Guam, and Puerto Rico have registration laws for profes-
sional surveyors and engineers (as do the provinces of Canada). In general, a
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surveyor’s license is required to make property surveys, but not for construction,
topographic, or route work, unless boundary corners are set.

To qualify for registration as either a professional land surveyor (PLS) or
a professional engineer (PE), it is necessary to have an appropriate college de-
gree, although some states allow relevant experience in lieu of formal education.
In addition, candidates must acquire two or more years of mentored practical
experience and must also pass comprehensive written examinations. In most
states, common national examinations covering fundamentals and principles and
practice of surveying are now used. However, usually 2 hr of the principles and
practice exam are devoted to local legal customs and aspects. As a result, transfer
of registration from one state to another has become easier.

Many states also require continuing education units (CEUs) for registra-
tion renewal. Typical state laws require that a licensed land surveyor sign all plats,
assume responsibility for any liability claims, and take an active part in the fieldwork.

H 1.11 PROFESSIONAL SURVEYING ORGANIZATIONS

There are many professional organizations in the United States and worldwide
that serve the interests of surveying and mapping. Generally the objectives of these
organizations are the advancement of knowledge in the field, encouragement of
communication among surveyors, and upgrading of standards and ethics in sur-
veying practice. The National Society of Professional Surveyors (NSPS) represents
boundary and construction surveyors in the United States. The mission of NSPS
is to establish and further common interests, objectives, and political effort that
would help bind the surveying profession into a unified body in the United States.

As noted in the preceding section, all states require persons who perform
boundary surveys to be licensed. Most states also have professional surveyor societies
or organizations with full membership open only to licensed surveyors. These state
societies are generally affiliated with NSPS and offer benefits similar to those of
NSPS, except that they concentrate on matters of state and local concern.

The American Society for Photogrammetry and Remote Sensing (ASPRS) is
an organization also devoted to the advancement of the fields of measurement and
mapping, although its major interests are directed toward the use of aerial and
satellite imagery for achieving these goals. Its monthly journal Photogrammetric
Engineering and Remote Sensing regularly features surveying and mapping articles.

The Geomatics Division of the American Society of Civil Engineers (ASCE)
is also dedicated to professional matters related to surveying and publishes quar-
terly the Journal of Surveying Engineering.

The Surveying and Geomatics Educators Society (SAGES) holds pedagogi-
cal conferences on the instruction of surveying/geomatics in higher educational
institutions. These conferences occur every two years at host institutions through-
out the North American continent.

Another organization in the United States, the Urban and Regional
Information Systems Association (URISA), also supports the profession of
surveying and mapping. This organization uses information technology to solve
problems in planning, public works, the environment, emergency services, and
utilities. Its URISA Journal is published quarterly.
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The Canadian Institute of Geomatics (CIG), formerly the Canadian Institute
of Surveying and Mapping (CISM), is the foremost professional organization in
Canada concerned with surveying. CIG disseminates information to its members
through its CIG Journal.

The International Federation of Surveyors (FIG), founded in 1878, fosters
the exchange of ideas and information among surveyors worldwide. The acronym
FIG stems from its French name, Fédération Internationale des Géométres. F1IG
membership consists of professional surveying organizations from many countries
throughout the world. FIG is organized into nine technical commissions, each
concerned with a specialized area of surveying. The organization sponsors inter-
national conferences, usually at four-year intervals, and its commissions also hold
periodic symposia where delegates gather for the presentation of papers on sub-
jects of international interest.

H 1.12 SURVEYING ON THE INTERNET

The explosion of available information on the Internet has had a significant im-
pact on the field of surveying (geomatics). The Internet enables the instantaneous
electronic transfer of documents to any location where the necessary computer
equipment is available. It brings resources directly into the office or home, where
previously it was necessary to travel to obtain the information or wait for its trans-
fer by mail. Software, educational materials, technical documents, standards,
and much more useful information are available on the Internet. As an example
of how surveyors can take advantage of the Internet, data from a Continuously
Operating Reference Station (CORS) can be downloaded from the NGS website
for use in a GNSS survey (see Section 14.3.5).

Many agencies and institutions maintain websites that provide data free of
charge on the Internet. Additionally, some educational institutions now place
credit and noncredit courses on the Internet so that distance education can be
more easily achieved. With a Web browser, it is possible to research almost any
topic from a convenient location, and names, addresses, and phone numbers of
goods or services providers in a specific area can be identified. For example, if it
was desired to find companies offering mapping services in a certain region, a web
search engine could be used to locate web pages that mention this service. Such a
search may result in over a million pages if a very general term such as “mapping
services” is used to search, but using more specific terms can narrow the search.

Unfortunately, the addresses of particular pages and entire sites, given by
their Uniform Resource Locators (URLs), tend to change with time. However, at
the risk of publishing URLs that may no longer be correct, a short list of impor-
tant websites related to surveying is presented in Table 1.1.

H 1.13 FUTURE CHALLENGES IN SURVEYING

Surveying is currently in the midst of a revolution in the way data are measured,
recorded, processed, stored, retrieved, and shared. This is largely because of
developments in computers and computer-related technologies. Concurrent
with technological advancements, society continues to demand more data, with
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m UNirorm ReESOURCE LOCATOR ADDRESSES FOR SOME SURVEYING RELATED SITES

Uniform Resource Locator Owner of Site
http://www.ngs.noaa.gov National Geodetic Survey
http://www.usgs.gov U.S. Geological Survey
http://www.blm.gov Bureau of Land Management
http://www.navcen.uscg. mil U.S. Coast Guard Navigation Center
http://www.usno.navy.mil U.S. Naval Observatory
http://www.asprs.org American Society for Photogrammetry and

Remote Sensing
http://www.asce.org American Society of Civil Engineers
http://www.geoscholar.com/Sages/  Surveying and Geomatics Educators Society

http://www.pearsonhighered.com/  Companion website for this book
ghilani

increasingly higher standards of accuracy, than ever before. Consequently, in a
few years the demands on surveying engineers (geomatics engineers) will likely
be very different from what they are now.

In the future, the National Spatial Reference System, a network of horizontal
and vertical control points, must be maintained and supplemented to meet require-
ments of increasingly higher-order surveys. New topographic maps with larger scales
as well as digital map products are necessary for better planning. Existing maps of
our rapidly expanding urban areas need revision and updates to reflect changes, and
more and better map products are needed of the older parts of our cities to support
urban renewal programs and infrastructure maintenance and modernization. Large
quantities of data will be needed to plan and design new rapid-transit systems to
connect our major cities, and surveyors will face new challenges in meeting the pre-
cise standards required in staking alignments and grades for these systems.

In the future, assessment of environmental impacts of proposed construction
projects will call for more and better maps and other related data. GISs and LISs
that contain a variety of land-related data such as ownership, location, acreage, soil
types, land uses, and natural resources must be designed, developed, and maintained.
Cadastral surveys of the yet unsurveyed public lands are essential. Monuments set
years ago by the original surveyors have to be recovered and remonumented for
preservation of property boundaries. Appropriate surveys with very demanding
accuracies will be necessary to position drilling rigs as mineral and oil explorations
press further offshore. Other future challenges include making precise deformation
surveys for monitoring existing structures such as dams, bridges, and skyscrapers to
detect imperceptible movements that could be precursors to catastrophes caused by
their failure. Timely measurements and maps of the effects of natural disasters such
as earthquakes, floods, and hurricanes will be needed so that effective relief and as-
sistance efforts can be planned and implemented. In the space program, the desire
for maps of neighboring planets will continue. And we must increase our activities in
measuring and monitoring natural and human-caused global changes (glacial growth
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and retreat, volcanic activity, large-scale deforestation, and so on) that can poten-
tially affect our land, water, atmosphere, energy supply, and even our climate.

These and other opportunities offer professionally rewarding indoor or

outdoor (or both) careers for numerous people with suitable training in various
branches of surveying.

H B § §H §F § ¥ S S S S S S S S S S SR S S EEEEN
PROBLEMS

NOTE: Answers for some of these problems, and some in later chapters, can be obtained
by consulting the bibliographies, later chapters, websites, or professional surveyors.
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115
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1.20

1.21

Develop your personal definition for the practice of surveying.

Explain the difference between geodetic and plane surveys.

Describe some surveying applications in:

(a) Construction (b) Mining (¢) Agriculture

List 10 uses for surveying other than property and construction surveying.

Why is it important to make accurate surveys of underground utilities?

Discuss the uses for topographic surveys.

What are hydrographic surveys, and why are they important?

Print a view of your location using Google Earth.

Briefly explain the procedure used by Eratosthenes in determining the Earth’s
circumference.

Describe the steps a land surveyor would need to do when performing a boundary
survey.

Do laws in your state specify the accuracy required for surveys made to lay out a
subdivision? If so, what limits are set?

What organizations in your state furnish maps and reference data to surveyors and
engineers?

List the legal requirements for registration as a land surveyor in your state.

Briefly describe the European Galileo system and discuss its similarities and differ-
ences with GPS.

List at least five nonsurveying uses for GPS.

Explain how aerial photographs and satellite images can be valuable in surveying.
Search the Internet and define a Very Long Baseline Interferometry (VLBI) station.
Discuss why these stations are important to the surveying community.

Describe how a GIS can be used in flood emergency planning.

Visit one of the surveying websites listed in Table 1.1 and write a brief summary of
its contents. Briefly explain the value of the available information to surveyors.
Read one of the articles cited in the bibliography for this chapter, or another of
your choosing, that describes an application where satellite surveying methods were
used. Write a brief summary of the article.

Same as Problem 1.20, except the article should be on safety as related to surveying.
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H 2.1 INTRODUCTION

Five types of observations, illustrated in Figure 2.1, form the basis of traditional
plane surveying: (1) horizontal angles, (2) horizontal distances, (3) vertical (or
zenith) angles, (4) vertical distances, and (5) slope distances. In the figure, OAB
and ECD are horizontal planes, and OACE and ABDC are vertical planes. Then
as illustrated, horizontal angles, such as angle AOB, and horizontal distances,
OA and OB, are measured in horizontal planes; vertical angles, such as AOC,
are measured in vertical planes; zenith angles, such as EOC, are also measured
in vertical planes; vertical lines, such as AC and BD, are measured vertically (in
the direction of gravity); and slope distances, such as OC, are determined along
inclined planes. By using combinations of these basic observations, it is possible
to compute relative positions between any points. Equipment and procedures for
making each of these basic kinds of observations are described in later chapters
of this book.

H 2.2 UNITS OF MEASUREMENT

Magnitudes of measurements (or of values derived from observations) must be
given in terms of specific units. In surveying, the most commonly employed units
are for length, area, volume, and angle. Two different systems are in use for speci-
fying units of observed quantities, the English and metric systems. Because of
its widespread adoption, the metric system is called the International System of
Units, abbreviated S1.
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Figure 2.1

Kinds of
measurements in
surveying.

The basic unit employed for length measurements in the English system is
the foot, whereas the meter is used in the metric system. In the past, two differ-
ent definitions have been used to relate the foot and meter. Although they differ
slightly, their distinction must be made clear in surveying. In 1893, the United
States officially adopted a standard in which 39.37 in. was exactly equivalent
to 1 m. Under this standard, the foot was approximately equal to 0.3048006 m.
In 1959, a new standard was officially adopted in which the inch was equal to
exactly 2.54 cm. Under this standard, 1 ft equals exactly 0.3048 m. This current
unit, known as the international foot, differs from the previous one by about
1 part in 500,000, or approximately 1 foot per 100 mi. This small difference is
thus important for very precise surveys conducted over long distances, and for
conversions of high elevations or large coordinate values such as those used
in State Plane Coordinate Systems as discussed in Chapter 20. Because of the
vast number of surveys performed prior to 1959, it would have been extremely
difficult and confusing to change all related documents and maps that already
existed. Thus the old standard, now called the U.S. survey foot (sft), is still used.
Individual states have the option of officially adopting either standard. The
National Geodetic Survey uses the meter in its distance measurements; thus, it
is unnecessary to specify the foot unit. However, those making conversions from
metric units must know the adopted standard for their state and use the appro-
priate conversion factor.

Because the English system has long been the officially adopted standard
for measurements in the United States, except for geodetic surveys, the linear
units of feet and decimals of a foot are most commonly used by surveyors. In
construction, feet and inches are often used. Because surveyors perform all types
of surveys including geodetic, and as they also provide measurements for devel-
oping construction plans and guiding building operations, they must understand
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all the various systems of units and be capable of making conversions between
them. Caution must always be exercised to ensure that observations are recorded
in their proper units and conversions are correctly made.

A summary of the length units used in past and present surveys in the
United States includes the following:

1 foot = 12 inches

1 yard = 3 feet

1inch = 2.54 centimeters (basis of international foot)

1 meter = 39.37 inches (basis of U.S. survey foot)

1rod = 1 pole = 1 perch = 16.5 feet

1 vara = approximately 33 inches (old Spanish unit often encountered in
the southwestern United States)

1 Gunter’s chain (ch) = 66 feet = 100 links (Ik) = 4 rods

1 mile = 5280 feet = 80 Gunter’s chains

1 nautical mile = 6076.10 feet (nominal length of a minute of latitude, or of
longitude at the equator)

1 fathom = 6 feet

In the English system, areas are given in square feet or square yards. The
most common unit for large areas is the acre. Ten square chains (Gunter’s) equal
1 acre. Thus an acre contains 43,560 ft2, which is the product of 10 and 662. The
arpent (equal to approximately 0.85 acre, but varying somewhat in different
states) was used in land grants of the French crown. When employed as a linear
term, it refers to the length of a side of 1 square arpent.

Volumes in the English system can be given in cubic feet or cubic yards.
For very large volumes, for example, the quantity of water in a reservoir, the
acre-foot unit is used. It is equivalent to the area of an acre having a depth of 1 ft,
and thus is 43,560 ft’.

The unit of angle used in surveying is the degree, defined as 1/360 of a circle.
One degree (1°) equals 60 min, and 1 min equals 60 sec. Divisions of seconds are
given in tenths, hundredths, and thousandths. Other methods are also used to
subdivide a circle, for example, 400 grad (with 100 centesimal min/grad and 100
centesimal sec/min. Another term, gons, is now used interchangeably with grads.
The military services use mils to subdivide a circle into 6400 units.

Aradianisthe anglesubtended by anarcofacircle havingalengthequal to the
radius of the circle. Therefore, 27 rad = 360°, 1 rad = 57°17'44.8” = 57.2958°,
0.01745rad = 1°,and 1 rad = 206,264.8".

H 2.3 INTERNATIONAL SYSTEM OF UNITS (SI)

As noted previously, the meter is the basic unit for length in the metric or SI sys-
tem. Subdivisions of the meter (m) are the millimeter (mm), centimeter (cm), and
decimeter (dm), equal to 0.001, 0.01, and 0.1 m, respectively. A kilometer (km)
equals 1000 m, which is approximately five eighths of a mile.

Areas in the metric system are specified using the square meter (m?).
Large areas, for example, tracts of land, are given in hectares (ha), where 1 ha
is equivalent to a square having sides of 100 m. Thus, there are 10,000 m?, or

23
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about 2.471 acres/ha. The cubic meter (m?) is used for volumes in the SI system.
Degrees, minutes, and seconds, or the radian, are accepted SI units for angles.
The metric system was originally developed in the 1790s in France. Although
other definitions were suggested at that time, the French Academy of Sciences chose
to define the meter as 1/10,000,000 of the length of the Earth’s meridian through
Paris from the equator to the pole. The actual length that was adopted for the meter
was based on observations that had been made up to that time to determine the
Earth’s size and shape. Although later measurements revealed that the initially
adopted value was approximately 0.2 mm short of its intended definition related to
the meridional quadrant, still the originally adopted length became the standard.
Shortly after the metric system was introduced to the world, Thomas
Jefferson who was the then secretary of state, recommended that the United States
adopt it, but the proposal lost by one vote in the Congress! When the metric sys-
tem was finally legalized for use (but not officially adopted) in the United States
in 1866, a meter was defined as the interval under certain physical conditions be-
tween lines on an international prototype bar made of 90% platinum and 10%
iridium, and accepted as equal to exactly 39.37 in. A copy of this bar was held in
Washington, D.C., and compared periodically with the international standard held
in Paris. In 1960, at the General Conference on Weights and Measures (CGPM),
the United States and 35 other nations agreed to redefine the meter as the length
of 1,650,763.73 waves of the orange-red light produced by burning the element
krypton (Kr-86). That definition permitted industries to make more accurate mea-
surements and to check their own instruments without recourse to the standard
meter-bar in Washington. The wavelength of this light is a true constant, whereas
there is a risk of instability in the metal meter-bar. The CGPM met again in 1983
and established the current definition of the meter as the length of the path trav-
eled by light in a vacuum during a time interval of 1/299,792,458 sec. Obviously,
with this definition, the speed of light in a vacuum becomes exactly 299,792,458
m/sec. The advantage of this latest standard is that the meter is more accurately
defined, since it is in terms of time, the most accurate of our basic measurements.
During the 1960s and 1970s, significant efforts were made toward promot-
ing adoption of SI as the legal system for weights and measures in the United
States. However, costs and frustrations associated with making the change gener-
ated substantial resistance, and the efforts were temporarily stalled. Recognizing
the importance to the United States of using the metric system in order to com-
pete in the rapidly developing global economy, in 1988 the Congress enacted the
Omnibus Trade and Competitiveness Act. It designated the metric system as the
preferred system of weights and measures for U.S. trade and commerce. The Act,
together with a subsequent Executive Order issued in 1991, required all federal
agencies to develop definite metric conversion plans and to use SI standards in
their procurements, grants, and other business-related activities to the extent eco-
nomically feasible. As an example of one agency’s response, the Federal Highway
Administration adopted a plan calling for (1) use of metric units in all publications
and correspondence after September 30, 1992 and (2) use of metric units on all
plans and contracts for federal highways after September 30, 1996. Although the
Act and Executive Order did not mandate states, counties, cities, or industries to
convert to metric, strong incentives were provided, for example, if SI directives
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were not complied with, certain federal matching funds could be withheld. In light
of these developments, it appeared that the metric system would soon become
the official system for use in the United States. However, again much resistance
was encountered, not only from individuals but also from agencies of some state,
county, town, and city governments, as well as from certain businesses. As a re-
sult, the SI still has not been adopted officially in the United States.

Besides the obvious advantage of being better able to compete in the global
economy, another significant advantage that would be realized in adopting the
SI standard would be the elimination of the confusion that exists in making con-
versions between the English System and the SI. The 1999 crash of the Mars
Orbiter underscores costs and frustrations associated with this confusion. This
$125 million satellite was supposed to monitor the Martian atmosphere, but
instead it crashed into the planet because its contractor used English units while
NASA’s Jet Propulsion Laboratory was giving it data in the metric system. For
these reasons and others, such as the decimal simplicity of the metric system,
surveyors who are presently burdened with unit conversions and awkward com-
putations involving yard, foot, and inch units should welcome official adoption
of the SI. However, since this adoption has not yet occurred, this book uses both
English and ST units in discussion and example problems.

H 2.4 SIGNIFICANT FIGURES

In recording observations, an indication of the accuracy attained is the number of
digits (significant figures) recorded. By definition, the number of significant figures
in any observed value includes the positive (certain) digits plus one (only one) digit
that is estimated or rounded off, and therefore questionable. For example, a dis-
tance measured with a tape whose smallest graduation is 0.01 ft, and recorded as
73.52 ft, is said to have four significant figures; in this case the first three digits are
certain, and the last is rounded off and therefore questionable but still significant.

To be consistent with the theory of errors discussed in Chapter 3, it is essential
that data be recorded with the correct number of significant figures. If a significant
figure is dropped in recording a value, the time spent in acquiring certain precision
has been wasted. On the other hand, if data are recorded with more figures than
those that are significant, false precision will be implied. The number of significant
figures is often confused with the number of decimal places. Decimal places may
have to be used to maintain the correct number of significant figures, but in them-
selves they do not indicate significant figures. Some examples follow:

Two significant figures: 24, 2.4, 0.24, 0.0024, 0.020
Three significant figures: 364, 36.4, 0.000364, 0.0240
Four significant figures: 7621, 76.21, 0.0007621, 24.00.

Zeros at the end of an integer value may cause difficulty because they
may or may not be significant. In a value expressed as 2400, for example, it is
not known how many figures are significant; there may be two, three, or four,
and therefore definite rules must be followed to eliminate the ambiguity. The
preferred method of eliminating this uncertainty is to express the value in terms
of powers of 10. The significant figures in the measurement are then written in
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scientific notation as a number between 1 and 10 with the correct number of
zeros and power of 10. As an example, 2400 becomes 2.400 X 10° if both zeros
are significant, 2.40 X 10% if one zero is significant, and 2.4 X 10°if there are only
two significant figures. Alternatively, a bar may be placed over the last significant
figure, as 2400, 2400, and 2400 for 4, 3, and 2 significant figures, respectively.

When observed values are used in the mathematical processes of addition,
subtraction, multiplication, and division, it is imperative that the number of sig-
nificant figures given in answers be consistent with the number of significant fig-
ures in the data used. The following three steps will achieve this for addition or
subtraction: (1) identify the column containing the rightmost significant digit in
each number being added or subtracted, (2) perform the addition or subtraction,
and (3) round the answer so that its rightmost significant digit occurs in the left-
most column identified in step (1). Two examples illustrate the procedure.

(a) (b)
46.7418 378.
+ 1.03 —21
+375.0 375.9
422.7718 (answer 376.)
(answer 422.8)

In example (a), the digits 8, 3, and 0 are the rightmost significant ones in the
numbers 46.7418, 1.03, and 375.0, respectively. Of these, the 0 in 375.0 is leftmost
with respect to the decimal. Thus, the answer 422.7718 obtained on adding the
numbers is rounded to 422.8, with its rightmost significant digit occurring in the
same column as the 0 in 375.0. In example (b), the digits 8 and 1 are rightmost,
and of these the 8 is leftmost. Thus, the answer 375.9 is rounded to 376.

In multiplication, the number of significant figures in the answer is equal
to the least number of significant figures in any of the factors. For example,
362.56 X 2.13 = 772.2528 when multiplied but the answer is correctly given as
772. Its three significant figures are governed by the three significant digits in
2.13. Likewise, in division the quotient should be rounded off to contain only as
many significant figures as the least number of significant figures in either the
divisor or the dividend. These rules for significant figures in computations stem
from error propagation theory, which is discussed further in Section 3.17.

On the companion website for this book at http://www.pearsonhighered.
com/ghilani are instructional videos that can be downloaded. The video Significant
Figures discusses the rules applied to significant figures and rounding, which is
covered in the following section.

In surveying, four specific types of problems relating to significant figures
are encountered and must be understood.

1. Field measurements are given to some specific number of significant figures,
thus dictating the number of significant figures in answers derived when the
measurements are used in computations. In an intermediate calculation, it
is a common practice to carry at least one more digit than required, and
then round off the final answer to the correct number of significant figures.
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S =100.32

—_ Figure 2.2
H =100.00 Slope correction.

2. There may be an implied number of significant figures. For instance, the
length of a football field might be specified as 100 yd. But in laying out the
field, such a distance would probably be measured to the nearest hundredth
of a foot, not the nearest half-yard.

3. Each factor may not cause an equal variation. For example, if a steel tape
100.00 ft long is to be corrected for a change in temperature of 15°F, one
of these numbers has five significant figures while the other has only two.
However, a 15° variation in temperature changes the tape length by only
0.01 ft. Therefore, an adjusted tape length to five significant figures is
warranted for this type of data. Another example is the computation of a
slope distance from horizontal and vertical distances, as in Figure 2.2. The
vertical distance V' is given to two significant figures, and the horizontal
distance H is measured to five significant figures. From these data, the
slope distance S can be computed to five significant figures. For small
angles of slope, a considerable change in the vertical distance produces
a relatively small change in the difference between slope and horizontal
distances.

4. Observations are recorded in one system of units but may have to be con-
verted to another. A good rule to follow in making these conversions is to
retain in the answer a number of significant figures equal to those in the ob-
served value. As an example, to convert 178 ft 6-3/8 in. to meters, the num-
ber of significant figures in the measured value would first be determined
by expressing it in its smallest units. In this case, 1/8th in. is the smallest
unit and there are (178 X 12 X 8) + (6 X 8) + 3 = 17,139 of these units
in the value. Thus, the measurement contains five significant figures, and
the answer is 17,139 + (8 X 39.37 in./m) = 54.416 m, properly expressed
with five significant figures. (Note that 39.37 used in the conversion is an
exact constant and does not limit the number of significant figures.)

H 2.5 ROUNDING OFF NUMBERS

Rounding off a number is the process of dropping one or more digits so the answer
contains only those digits that are significant. In rounding off numbers to any re-
quired degree of precision in this text, the following procedures will be observed:

1. When the digit to be dropped is lower than 5, the number is written without
the digit. Thus, 78.374 becomes 78.37. Also 78.3749 rounded to four figures
becomes 78.37.

2. When the digit to be dropped is exactly 5, the nearest even number is
used for the preceding digit. Thus, 78.375 becomes 78.38 and 78.385 is also
rounded to 78.38.

3. When the digit to be dropped is greater than 5, the number is written with
the preceding digit increased by 1. Thus, 78.386 becomes 78.39.
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Procedures 1 and 3 are standard practice. However, when rounding the
value 78.375 in procedure 2, some people always take the next higher hundredth,
whereas others invariably use the next lower hundredth. However, using the
nearest even digit establishes a uniform procedure and produces better-balanced
results in a series of computations. It is an improper procedure to perform two-
stage rounding where, for example, in rounding 78.3749 to four digits it would
be first rounded to five figures, yielding 78.375, and then rounded again to 78.38.
The correct answer in rounding 78.3749 to four figures is 78.37.

It is important to recognize that rounding should only occur with the final
answer. Intermediate computations should be done without rounding to avoid
problems that can be caused by rounding too early. Example (a) of Section 2.4
is repeated below to illustrate this point. The sum of 46.7418, 1.03, and 375.0 is
rounded to 422.8 as shown in the “correct” column. If the individual values are
rounded prior to the addition as shown in the “incorrect” column, the incorrect
result of 422.7 is obtained.

Correct Incorrect
46.7418
+  1.03
+375.0
422.7718
(answer 422.8)

PART Il  FIELD NOTES

B 2.6 FIELD NOTES

Field notes are the records of work done in the field. They typically contain measure-
ments, sketches, descriptions, and many other items of miscellaneous information.
In the past, field notes were prepared exclusively by hand lettering in field books
or special notepads as the work progressed and data were gathered. However, sur-
vey controllers, also known as data collectors and electronic field books, have been
introduced that can interface with many different modern surveying instruments.
As the work progresses, they create computer files containing a record of observed
data. All surveying controllers provide a mapping feature (see Chapter 17). Some
controllers and total stations also provide a camera so that an image of the area
where data is being collected can be captured. When these features are absent, man-
ually prepared sketches and descriptions often supplement the numerical data they
capture. Regardless of the manner or form in which the notes are taken, they are
extremely important.

Whether prepared manually, created by a survey controller, or a combina-
tion of these forms, surveying field notes are the only permanent records of work
done in the field. If the data are incomplete, incorrect, lost, or destroyed, much or
all of the time and money invested in making the measurements and records have
been wasted. Hence, the job of data recording is frequently the most important
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and difficult one in a surveying party. Field books and computer files containing
information gathered over a period of weeks are worth many thousands of dol-
lars because of the costs of maintaining personnel and equipment in the field.

Recorded field data are used in the office to perform computations, make
drawings, or both. The office personnel using the data are usually not the same
people who took the notes in the field. Accordingly, it is essential that without
verbal explanations notes be intelligible to anyone.

Property surveys are subject to court review under some conditions, so field
notes become an important factor in litigation. Also, because they may be used
as references in land transactions for generations, it is necessary to index and
preserve them properly. The salable “goodwill” of a surveyor’s business depends
largely on the office library of field books. Cash receipts may be kept in an un-
locked desk drawer, but field books are stored in a fireproof safe!

H 2.7 GENERAL REQUIREMENTS OF HANDWRITTEN
FIELD NOTES

The following points are considered in appraising a set of field notes:

Accuracy. This is the most important quality in all surveying operations.

Integrity. A single omitted measurement or detail can nullify use of the
notes for computing or plotting. If the project was far from the office, it
is time consuming and expensive to return for a missing measurement.
Notes should be checked carefully for completeness before leaving the
survey site and never “fudged” to improve closures.

Legibility. Notes can be used only if they are legible. A professional-looking
set of notes is likely to be professional in quality.

Arrangement. Note forms appropriate to a particular survey contribute to
accuracy, integrity, and legibility.

Clarity. Advance planning and proper field procedures are necessary to
ensure clarity of sketches and tabulations and to minimize the possibil-
ity of mistakes and omissions. Avoid crowding notes; paper is relatively
cheap. Costly mistakes in computing and drafting are the end results of
ambiguous notes.

Throughout this book and in Appendix B are examples of handwritten field
notes for a variety of surveying operations. Their plate number identifies each.
Other example note forms are given at selected locations within the chapters that
follow. These notes have been prepared keeping the above points in mind.

In addition to the items stressed in the foregoing, certain other guidelines
must be followed to produce acceptable handwritten field notes. The notes should
be lettered with a sharp pencil of at least 3H hardness so that an indentation is
made in the paper. Books so prepared will withstand damp weather in the field (or
even a soaking) and still be legible, whereas graphite from a soft pencil, or ink from
a pen or ballpoint, leaves an undecipherable smudge under such circumstances.

Erasures of recorded data are not permitted in field books. If a number has
been entered incorrectly, a single line is run through it without destroying the num-
ber’s legibility, and the proper value is noted above it (see Figure 5.5). If a partial
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Figure 2.3

Field books.
(Courtesy Topcon
Positioning Systems.)

or entire page is to be deleted, a single diagonal line in red is drawn through op-
posite corners, and VOID is lettered prominently on the page, giving the reasons.

Field notes are presumed to be “original” unless marked otherwise. Original
notes are those taken at the same time the observations are being made. If the origi-
nal notes are copied, they must be so marked (see Figure 5.12). Copied notes may
not be accepted in court because they are open to question concerning possible mis-
takes, such as interchanging numbers, and omissions. The value of a distance or an
angle placed in the field book from memory, 10 min after the observation, is defi-
nitely unreliable. Students are tempted to scribble notes on scrap sheets of paper for
later transfer in a neater form to the field book. This practice may result in the loss
of some or all of the original data and defeats one purpose of a surveying course —to
provide experience in taking notes under actual field conditions. In a real job situa-
tion, a surveyor is not likely to spend any time at night transcribing scribbled notes.
Certainly, an employer will not pay for this evidence of incompetence.

H 2.8 TYPES OF FIELD BOOKS

Since field books contain valuable data, suffer hard wear, and must be permanent
in nature, only the best should be used for practical work. Various kinds of field
books as shown in Figure 2.3 are available, but bound and loose-leaf types are most
common. The bound book—a standard for many years—has a sewed binding,
with a hard cover of leatherette, polyethylene, or covered hardboard, and contains
80 leaves. Its use ensures maximum testimony acceptability for property survey re-
cords in courtrooms. Bound duplicating books enable copies of the original notes
to be made through carbon paper in the field. The alternate duplicate pages are
perforated to enable their easy removal for advance shipment to the office.
Loose-leaf books have come into wide use because of many advantages,
which include (1) assurance of a flat working surface; (2) simplicity of filing
individual project notes; (3) ready transfer of partial sets of notes between field
and office; (4) provision for holding pages of printed tables, diagrams, formu-
las, and sample forms; (5) the possibility of using different rulings in the same
book; and (6) a saving in sheets and thus cost since none are wasted by filing
partially filled books. A disadvantage is the possibility of losing sheets.
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Stapled or spiral-bound books are not suitable for practical work. However,
they may be satisfactory for abbreviated surveying courses that have only a few
field periods, because of limited service required and low cost. Special column
and page rulings provide for particular needs in leveling, angle measurement,
topographic surveying, cross-sectioning, and so on.

A camera is a helpful notekeeping “instrument.” Moderately priced, reli-
able, lightweight cameras can be used to document monuments set or found and
to provide records of other valuable information or admissible field evidence.
Recorded images can become part of the final record of survey. Tape recorders
can also be used in certain circumstances, particularly where lengthy written expla-
nations would be needed to document conditions or provide detailed descriptions.

H 2.9 KINDS OF NOTES

Four types of notes are kept in practice: (1) sketches, (2) tabulations, (3) descrip-
tions, and (4) combinations of these. The most common type is a combination
form, but an experienced recorder selects the version best fitted to the job at
hand. The note forms in Appendix B illustrate some of these types and apply to
field problems described in this text. Other examples are included within the text
at appropriate locations. Sketches and digital images often greatly increase the
efficiency with which notes can be taken. They are especially valuable to persons
in the office who must interpret the notes without the benefit of the notekeeper’s
presence. The proverb about one picture being worth a thousand words might
well have been intended for notekeepers!

For a simple survey, such as measuring the distances between points on a
series of lines, a sketch showing the lengths is sufficient. In measuring the length
of a line forward and backward, a sketch together with tabulations properly
arranged in columns is adequate, as in Plate B.1 in Appendix B. The location of
a reference point may be difficult to identify without a sketch, but often a few
lines of description are enough. Photos may be taken to record the location of
permanent stations and the surrounding locale. The combination of a sketch with
dimensions and photographic images can be invaluable in later station reloca-
tion. Benchmarks are usually briefly described, as in Figure 5.5.

In notekeeping, this axiom is always pertinent: When in doubt about the need
for any information, include it and make a sketch. It is better to have too much data
than not enough.

H 2.10 ARRANGEMENTS OF NOTES

Note styles and arrangements depend on departmental standards and individual
preference. Highway departments, mapping agencies, and other organizations
engaged in surveying furnish their field personnel with sample note forms, simi-
lar to those in Appendix B, to aid in preparing uniform and complete records
that can be checked quickly.

It is desirable for students to have as guides predesigned sample sets of
note forms covering their first fieldwork to set high standards and save time. The
note forms shown in Appendix B are composites of several models. They stress
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the open style, especially helpful for beginners, in which some lines or spaces are
skipped for clarity. Thus, angles observed at a point A (see Plate B.4) are placed
opposite A on the page, but distances observed between A and B on the ground
are recorded on the line between A and B in the field book.

Left- and right-hand pages are practically always used in pairs and therefore
carry the same page number. A complete title should be lettered across the top of
the left page and may be extended over the right one. Titles may be abbreviated
on succeeding pages for the same survey project. Location and type of work are
placed beneath the title. Some surveyors prefer to confine the title on the left page
and keep the top of the right one free for date, party, weather, and other items. This
design is revised if the entire right page has to be reserved for sketches and bench-
mark descriptions. Arrangements shown in Appendix B demonstrate the flexibility
of note forms. The left page is generally ruled in six columns designed for tabula-
tion only. Column headings are placed between the first two horizontal lines at the
top of the page and follow from left to right in the anticipated order of reading and
recording. The upper part of the left or right page must contain the following items:

1. Project name, location, date, time of day (A.M. or P.M.), and starting and finish-
ing times. These entries are necessary to document the notes and furnish a
timetable as well as to correlate different surveys. Precision, troubles encoun-
tered, and other facts may be gleaned from the time required for a survey.

2. Weather. Wind velocity, temperature, and adverse weather conditions such
as rain, snow, sunshine, and fog have a decided effect on accuracy in survey-
ing operations. Surveyors are unlikely to do their best possible work at tem-
peratures of 15°F or with rain pouring down their necks. Hence, weather
details are important in reviewing field notes, in applying corrections to
observations due to temperature variations, and for other purposes.

3. Party. The names and initials of party members and their duties are re-
quired for documentation and future reference. Jobs can be described by
symbols, such as A for instrument operator, ¢ for rod person, and N for
notekeeper. The party chief is generally the notekeeper.

4. Instrument type and number. The type of instrument used (with its make
and serial number) and its degree of adjustment affects the accuracy of a
survey. Identification of the specific equipment employed may aid in isolat-
ing some errors—for example, a particular total station is found to have a
40" indexing error when was used in trigonometric leveling.

To permit ready location of desired data, each field book must have a table
of contents that is kept current daily. In practice, surveyors cross-index their
notes on days when field work is impossible.

H 2.11 SUGGESTIONS FOR RECORDING NOTES

Observing the suggestions given in preceding sections, together with those listed
here, will eliminate some common mistakes in recording notes.

1. Letter the notebook owner’s name and address on the cover and the first in-
side page using permanent ink. Number all field books for record purposes.
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Begin a new day’s work on a new page. For property surveys having com-
plicated sketches, this rule may be waived.

Employ any orderly, standard, familiar note-form type, but, if necessary,
design a special arrangement to fit the project.

Include explanatory statements, details, and additional observations if they
might clarify the notes for field and office personnel.

. Record what is read without performing any mental arithmetic. Write down

what you read!

Run notes down the page, except in route surveys, where they usually prog-
ress upward to conform with sketches made while looking in the forward
direction. (See Plate B.5 in Appendix B.)

Use sketches instead of tabulations when in doubt. Carry a straightedge for
ruling lines and a small protractor to lay off angles.

Make drawings to general proportions rather than to exact scale, and rec-
ognize that the usual preliminary estimate of space required is too small.
Lettering parallel with or perpendicular to the appropriate features,
showing clearly to what they apply.

Exaggerate details on sketches if clarity is thereby improved, or prepare
separate diagrams.

Line up descriptions and drawings with corresponding numerical data. For
example, a benchmark description should be placed on the right-hand page
opposite its elevation, as in Figure 5.5.

Avoid crowding. If it is helpful to do so, use several right-hand pages of
descriptions and sketches for a single left-hand sheet of tabulation. Similarly,
use any number of pages of tabulation for a single drawing. Paper is cheap
compared with the value of time that might be wasted by office personnel in
misinterpreting compressed field notes, or by requiring a party to return to
the field for clarification.

Use explanatory notes when they are pertinent, always keeping in mind the
purpose of the survey and needs of the office personnel. Put these notes in
open spaces to avoid conflict with other parts of the sketch.

Employ conventional symbols and signs for compactness.

A meridian arrow is vital for all sketches. Have north arrow at the top and
on the left side of sketches, if possible.

Keep tabulated figures inside of and off column rulings, with decimal points
and digits in line vertically.

Make a mental estimate of all measurements before receiving and record-
ing them in order to eliminate large mistakes.

Repeat aloud values given for recording. For example, before writing down
a distance of 124.68, call out “one, two, four, point six, eight” for verifica-
tion by the person who submitted the measurement.

Place a zero before the decimal point for numbers smaller than 1; that is,
record 0.37 instead of .37.

Show the precision of observations by means of significant figures. For ex-
ample, record 3.80 instead of 3.8 only if the reading was actually determined
to hundredths.
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20. Do not superimpose one number over another or on lines of sketches, and
do not try to change one figure to another, asa 3 to a 5.

21. Make all possible arithmetic checks on the notes and record them before
leaving the field.

22. Compare all misclosures and error ratios while in the field. On large proj-
ects where daily assignments are made for several parties, completed work
is shown by satisfactory closures.

23. Arrange essential computations made in the field so they can be checked later.

24. Title, index, and cross-reference each new job or continuation of a previous
one by client’s organization, property owner, and description.

25. Sign surname and initials in the lower right-hand corner of the right page
on all original notes. This places responsibility just as signing a check does.

H 2.12 INTRODUCTION TO SURVEY CONTROLLERS

Advances in computer technology have led to the development of sophisticated
automatic data collection systems for taking field notes. These devices are about
the size of a pocket calculator and are produced by a number of different manu-
facturers. They are available with a variety of features and capabilities. Figure 2.4
illustrates three different survey controllers.

Survey controllers can be interfaced with modern surveying instruments,
and when operated in that mode they can automatically receive and store data in
computer compatible files as observations are taken. Control of the measurement
and storage operations is maintained through the survey controller’s keyboard.
For clarification of the notes, the operator inputs point identifiers and other de-
scriptive information along with the measurements as they are being recorded
automatically. When a job is completed or at day’s end, the files can be trans-
ferred directly to a computer for further processing. Where cell coverage is avail-
able, this transfer can be performed using a data modem that is part of the survey
controller.
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Figure 2.4

Various survey control-
lers that are used in the
field: (a) Trimble TSC3
data collector, (b) Carlson
Explorer data collector,
and (c) Topcon Tesla
field controller. (Courtesy
of (a) Trimble Navigation
Ltd., (b) Carlson, and

(c) Topcon Positioning
Systems.)
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In using survey controllers, the usual preliminary information such as date,
party, weather, time, units, datum, and instrument number is entered manually
into the file through the keyboard. For a given type of survey, the survey control-
ler’s internal microprocessor is programmed to follow a specific sequence of steps.
The operator identifies the type of survey to be performed from a menu, and then
follows instructions that appear on the unit’s screen. Step-by-step prompts will
guide the operator to either (1) input “external” data (which may include station
names, descriptions, or other information) or (2) press an icon or key to initiate
the automatic recording of observed values. Because data collectors require users
to follow specific steps, they are typically referred to as survey controllers. Due
to the common usage of both “survey controller” and “data collector” for the
electronic field book, this book will use both names interchangeably throughout.

Survey controllers store information in either binary or ASCII (American
Standard Code for Information Interchange) format. Binary storage is faster
and more compact, but usually the data must be translated to ASCII before they
can be read or edited. Survey controllers enable an operator to scroll through
stored data, displaying them on the screen for review and editing while still at
the job site. They also provide a mapped image of the data that is captured. In
some controllers, this image can be overlaid with the map features to provide
clarity to the user and the office. The organizational structures used by different
data collectors in storing information vary considerably from one manufacturer
to the next. They all follow specific rules, and once they are understood, the
data can be readily interpreted by both field and office personnel. A disadvan-
tage of having varied data structures from different manufacturers is that a new
system must be learned with each instrument of different make. The LandXML
organization has made an effort toward standardizing the data structures. This
structure for surveying data serves a similar function as does the hypertext
markup language (HTML) for the Internet. Another example is the Survey
Data Management System (SDMS), which has been adopted by the American
Association of State Highway and Transportation Officials (AASHTO) and is
recommended for all surveys involving highway work. The example field notes
for a radial survey given in Table 17.1 of Section 17.9 are in the SDMS format.

Most manufacturers of modern surveying equipment have developed survey
controllers specifically to be interfaced with their own instruments, but some are
flexible. The survey controller shown in Figure 2.4(a), for example, can be inter-
faced with instruments from the same company as well as other company’s instru-
ments. In addition to serving as a survey controller, it is able to perform a variety
of timesaving calculations directly in the field. It has a Windows CE operating
system and thus can run a variety of Windows software programs. Additionally,
it has Bluetooth technology so that it can communicate with instruments without
using cables, Wi-Fi capabilities for connecting to the Internet, and universal serial
bus (USB) ports for uploading or downloading data from the unit.

Typically, survey controllers can also be operated as electronic field books.
In the electronic field book mode, the data collector is not interfaced with a
surveying instrument. Instead of handwriting the data in a field book, the note-
keeper enters observations into the survey controller manually by means of key-
board strokes after readings are taken. This has the advantage of enabling field
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Figure 2.5

The Topcon IS-3
series image
station with internal
data collector. This
total station has the
survey controller
built into it and is
capable of scanning
and imaging the
scene being sur-
veyed. (Courtesy
Topcon Positioning
Systems.)

notes to be recorded directly in a computer format ready for further processing,
even though the surveying instruments being used may be older and not compat-
ible for direct interfacing with the survey controller. However, survey controllers
provide the utmost in efficiency when they are interfaced with surveying instru-
ments such as total stations that have automatic readout capabilities.

The touch screen of the data collector shown in Figure 2.4(b) is a so-called
third-party unit; that is, it is made by an independent company to be interfaced
with instruments manufactured by others. It also utilizes a Windows CE operat-
ing system and has Bluetooth and Wi-Fi capabilities, as well as USB ports. It can
be either operated in the electronic field book mode or interfaced with a variety
of instruments for automatic data collection.

The survey controller shown in Figure 2.4(c) is a rugged tablet with Windows
Mobile platform. It can perform cloud networking, allowing data to be transferred
from the field to the office during the survey where Wi-Fi or cell coverage is avail-
able. This controller also has Bluetooth technology, cellular modem, and a USB
port. Additionally it has an internal camera to capture photo notes. Like the other
units in Figure 2.4, it can be operated as an electronic field book and works with
other manufacturers instruments.

Many instrument manufacturers incorporate data collection systems as in-
ternal components directly into their equipment. These incorporate many features
of external data collectors, including the display panel, within the instrument. The
Topcon image station shown in Figure 2.5 is a robotic total station that has the sur-
vey controller software built into its Windows CE operating system. Additionally
it has the capability of collecting a set of overlapping images for the entire scene at
the job site providing a record of the area surveyed for later use by office person-
nel. The unit has slots for USB drives and compact flash (CF) cards.

Survey controllers currently use the Windows operating system. A pen and
pad arrangement enables the user to point on menus and options to run soft-
ware. The units shown in Figures 2.4 through 2.7 have this type of interface. A
code-based GPS antenna can be inserted into a PCMCIA' port of several data

A PCMCIA port conforms to the Personal Computer Memory Card International Association standards.
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collectors to add code-based GPS capabilities to the unit. Most modern survey
controllers have the capability of running advanced computer software in the
field. They can come with a keyboard or, as shown in Figure 2.7, a smaller unit
that comes with a touchpad keyboard. Most have a secure digital (SD) port to
expand their internal memory and many come with internal digital cameras. As
one example of their utility, field crews can check their data before sending it to
the office.

As each new series of survey controllers is developed, more sophisticated
user interfaces are being designed, and the software that accompanies the systems

FC-250

Figure 2.6
Trimble TSC3
with Bluetooth
technology.
(Courtesy Trimble
Navigation Ltd.)

Figure 2.7

The Topcon
FC250 survey
controller.
(Courtesy Topcon
Positioning
Systems.)



38 UNITS, SIGNIFICANT FIGURES, AND FIELD NOTES

is being improved. These systems have resulted in increased efficiency and pro-
ductivity and have provided field personnel with new features, such as the ability
to perform additional field checks. However, the increased complexity of operat-
ing surveying instruments with advanced survey controllers also requires field
personnel with higher levels of education and training.

H 2.13 TRANSFER OF FILES FROM SURVEY CONTROLLERS

At regular intervals, usually at lunchtime and at the end of a day’s work, or when a
survey has been completed, the information stored in files within a data collector
is transferred to another device. This is a safety precaution to avoid accidentally
losing substantial amounts of data. Ultimately, of course, the files are downloaded
to a host computer, which will perform computations or generate maps and plots
from the data. Depending on the peripheral equipment available, different proce-
dures for data transfer can be used. In one method that is particularly convenient
when surveying in remote locations, data can be returned to the home office via
telephony technology using devices called data modems. Some survey controllers
can access the cloud to transfer data. Thus, office personnel can immediately begin
using the data. In areas with cell phone coverage, this operation can be performed
in the field. Another method of data transfer consists in downloading data straight
into a computer by direct hookup via an RS-232 or USB cable. This can be per-
formed in the office, or it can be done in the field if a laptop computer is available.
In areas with wireless Internet, data can be transferred to the office using wireless
connections. Data collectors with WiFi capabilities allow field crews to communi-
cate directly with office personnel, thus allowing data to be transferred, checked,
and verified before the crews leave the field.

Some surveying instruments, for example, the Topcon image station shown
in Figure 2.5, have computers and cameras built into them. These total stations
can capture an image of the work site as evidence. Many survey controllers also
come with cameras built into them to provide the same capabilities. Thus field
crews can capture images of important features such as evidence of boundary
location, monuments occupied, and so on. When a data modem is available these
images along with relevant data can be transferred to an office computer. Office
personnel can analyze field data, or compute additional points to be staked, in
the office, and return the results to the field crews while they are still on the site.

From the preceding discussion, and as illustrated in Figure 2.8, computers
are central components of modern computerized surveying systems. In these
systems, data flow automatically from the field instrument through the survey
controller to the printer, computer, plotter, and other units in the system. The
term “field-to-finish systems” is often applied when this form of instrumenta-
tion and software is utilized in surveying.

H 2.14 DIGITAL DATA FILE MANAGEMENT

Once the observing process is completed in the field, the generated data files
must be transferred (downloaded) from the survey controller to another se-
cure storage device. Typical information downloaded from a survey controller
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Figure 2.8

The computer—a
central component
in the modern office.
(Photos courtesy of:
top row and

bottom left, Topcon
Positioning Systems;
center, © Maksym
Yemelyanov—Fotolia
.com; center right,

© Art Directors &
TRIP/Alamy;

bottom right,

© Serghei Velusceac—
= > Fotolia.com.)

includes a file of computed coordinates and a raw data file. Survey controllers
generally provide the option of exporting these and other types of files. In this
case, the coordinate file consists of computed coordinate values generated using
the observations and any applied field corrections and their field codes. Field
corrections may include a scale factor, offsets, and Earth curvature and refrac-
tion corrections applied to distances. Field crews generally can edit and delete
information from the computed file. However, the raw data file consists of the
original unreduced observations and cannot be altered in the field. The neces-
sity for each type of data file is dependent on the intended use of the survey.
In most surveys, it would be prudent to save both the coordinate and raw files.
As an example, for projects that require specific closures, or that are subject to
legal review, the raw data file is an essential element of the survey. However, in
topographic and GNSS surveys large quantities of data are often generated. In
these types of projects, the raw data file can be eliminated to provide more stor-
age space for coordinate files. In GNSS surveys the raw data files are typically
stored on the GNSS receiver to save storage space on the survey controller for
the coordinates and field codes of the points captured.
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With survey controllers and digital instruments, personnel in modern
surveying offices deal with considerably more data than was customary in the
past. This increased volume inevitably raises new concerns about data reliabil-
ity and safe storage. Many methods can be used to provide backup of digital
data. Some storage options include removable tapes. Since these tend to be
magnetic, there is an inevitable danger that data could be lost due to the pres-
ence of external magnetic devices, or from the failure of the surface material
due to age. Because of this problem, it is wise to keep two copies of the files for
all jobs. Other options to this problem include the use of compact disk (CD)
and digital video disk (DVD) writers. These drives will write an optical image
of a project’s data on a portable disk media. Since CDs and DVDs are small
but have large storage capabilities, entire projects, including drawings, can be
recorded in a small space that is easily archived for future reference. However,
these disks can fail if their surface is scratched. Thus, care must be taken in
their handling and storage.

H 2.15 ADVANTAGES AND DISADVANTAGES
OF SURVEY CONTROLLERS

The major advantages of automatic data collection systems are that (1) mistakes
in reading and manually recording observations in the field are precluded and
(2) the time to process, display, and archive the field notes in the office is re-
duced significantly. Survey controllers can execute some programs in the field,
which adds a significant advantage. As an example, the data for a survey can be
corrected for systematic errors and misclosures computed, so verification that a
survey meets closure requirements is made before the crew leaves a site.

Survey controllers are most useful when large quantities of information
must be recorded, for example, in topographic surveys or cross-sectioning. In
Section 17.9, their use in topographic surveying is described, and an example set
of notes taken for that purpose is presented and discussed.

Although survey controllers have many advantages, they also present some
dangers and problems. There is the slight chance, for example, the files could be
accidentally erased through carelessness or lost because of malfunction or dam-
age to the unit. Some difficulties are also created by the fact that sketches cannot
be entered into the computer. However, this problem can be overcome by sup-
plementing files with sketches made simultaneously with the observations that
include field codes. These field codes can instruct the drafting software to draw a
map of the data complete with lines, curves, and mapping symbols. The process
of collecting field data with field codes that can be interpreted later by software is
known as field-to-finish survey. This greatly reduces the time needed to complete
a project. Field-to-finish mapping surveys are discussed in more detail in Section
17.12. It is important to realize that not all information can be stored in digital
form, and thus it is important to keep a traditional field book to enter sketches,
comments, and additional notes when necessary. Many modern survey control-
lers also contain digital cameras that allow field personnel to capture a digital
image of the survey. No matter, survey controllers should not be used for long-
term storage. Rather the data should be downloaded and immediately saved to
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some permanent storage device, such as a USB drive, CD, or DVD, once the
field collection for a project is complete.

Survey controllers are available from numerous manufacturers. They must
be capable of transferring data through varied hardware in modern surveying
systems such as that illustrated in Figure 2.8. Since equipment varies consider-
ably, it is important when considering the purchase of a survey controller to be
certain it fits the equipment owned or perhaps needed in the future.

Asterisks (*) indicate problems that have partial answers given in Appendix G .

2.1 List the five types of measurements that form the basis of traditional plane surveying.

2.2 Give the basic units that are used in surveying for length, area, volume, and angles in
(a) The English system of units.
(b) The SI system of units.

2.3 The easting coordinate for a point is 632,506.084 m. What is the coordinate using the
(a) Survey foot definition?
(b) International foot definition?
(¢) Why was the survey foot definition maintained in the United States?

2.4 Convert the following distances given in meters to U.S. survey feet:

*(a) 4129.574 m (b) 686.504 m (¢) 5684.237 m
2.5 Convert the following distances given in survey feet to meters:
*(a) 537.52 sft (b) 504,864.39 sft (c) 3874.26 sft

2.6 Compute the lengths in survey feet corresponding to the following distances mea-
sured with a Gunter’s chain:

*(a) 10ch 131k (b) 16 ch21k (¢) 3ch541k
2.7 Express 48,983 sft’ in:
*(a) acres (b) hectares (¢) square Gunter’s chains
2.8 Convert 3.76934 ha to:
(a) square survey feet (b) acres (¢) square Gunter’s chains
2.9 What are the lengths in feet and decimals for the following distances shown on a
building blueprint?
(a) 22 ft 8-1/4in. (b) 40 ft 6-1/2 in.

2.10 What is the area in acres of a rectangular parcel of land measured with a Gunter’s
chain if the recorded sides are as follows:
*(a) 9.17 ch and 10.64 ch (b) 30 ch 61k and 24 ch 98 Ik
2.11 Compute the area in acres of triangular lots shown on a plat having the following
recorded right-angle sides:
(a) 208.94 ft and 232.65ft  (b) 9ch 251k and 6 ch 16 1k
2.12 A distance is expressed as 1908.23 U.S. survey feet. What is the length in
*(a) international feet? (b) meters?
2.13 What are the radian and degree—minute—second equivalents for the following angles
given in grads:
*(a) 136.0000 grads (b) 63.0984 grads (¢) 235.8760 grads
2.14 Give answers to the following problems in the correct number of significant figures:
*(a) sum of 23.15, 0.984, 124, and 12.5
(b) sum of 14.15,7.992, 15.6, and 203.67
(¢) product of 104.56 and 66.8
(d) quotient of 5235.67 divided by 23.04
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2.15 Express the value or answer in powers of 10 to the correct number of significant
figures:
(a) 363.25
(b) 1200
(¢) square of 363.25
(d) sum of (25.675 + 0.48 + 204.69) divided by 10.6
2.16 Convert the angles of a triangle to radians and show a computational check:
*(a) 39°41'54",91°30'16", and 48°47'50"
(b) 82°17'43",29°05'54", and 68°36'23"

2.17 Why should a number 2 pencil not be used in field notekeeping?

2.18 Explain why one number should not be superimposed over another or the lines of
sketches.

2.19 Explain why data should always be entered directly into the field book at the time
measurements are made, rather than on scrap paper for neat transfer to the field
book later.

2.20 Why should the field notes show the precision of the measurements?

2.21 Explain the reason for item 18 in Section 2.11 when recording field notes.

2.22 Explain the reason for item 20 in Section 2.11 when recording field notes.

2.23 Explain the reason for item 12 in Section 2.11 when recording field notes.

2.24 When should sketches be made instead of just recording data?

2.25 Justify the requirement to list in a field book the makes and serial numbers of all
instruments used on a survey.

2.26 Discuss the advantages of survey controllers that can communicate with several dif-
ferent types of instruments.

2.27 Discuss the advantages of survey controllers.

2.28 Search the Internet and find at least two sites related to
(a) Manufacturers of survey controllers.

(b) Manufacturers of total stations.
(¢) Manufacturers of GNSS receivers.

2.29 How can survey controller data be stored?

2.30 What are the dangers involved in using a survey controller?

2.31 Describe what is meant by the phrase “field-to-finish.”

2.32 Why are sketches in field books not usually drawn to scale?
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H 3.1 INTRODUCTION

Making observations (measurements), and subsequent computations and analyses
using them, are fundamental tasks of surveyors. Good observations require a
combination of human skill and mechanical equipment applied with the utmost
judgment. However, no matter how carefully made, observations are never exact
and will always contain errors. Geomatics engineers (surveyors) whose work must
be performed to exacting standards should therefore thoroughly understand the
different kinds of errors, their sources and expected magnitudes under varying
conditions, and their manner of propagation. Only then can they select instru-
ments and procedures necessary to reduce error sizes to within tolerable limits.

Of equal importance, surveyors must be capable of assessing the
magnitudes of errors in their observations so that either their acceptability
can be verified or, if necessary, new ones made. Computers and sophisticated
software are tools now commonly used by surveyors to plan measurement proj-
ects, design measurement systems, investigate, and distribute observational
errors after results have been obtained. Section 3.21 and Chapter 16 discuss the
method of least squares adjustments that is often used to adjust observations in
the modern surveying office.

H 3.2 DIRECT AND INDIRECT OBSERVATIONS

Observations may be made directly or indirectly. Examples of direct observations
are applying a tape to a line, fitting a protractor to an angle, or turning an angle
with a total station instrument.

An indirect observation is secured when it is not possible to apply a measur-
ing instrument directly to the quantity to be observed. The answer is therefore
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determined by its relationship to some other observed value or values. As an
example, we can find the distance across a river by observing the length of a line
on one side of the river and the angle at each end of this line to a point on the
other side, and then computing the distance by one of the standard trigonometric
formulas. Many indirect observations are made in surveying, and since all mea-
surements contain errors, it is inevitable that quantities computed from them will
also contain errors. The manner by which errors in measurements combine to
produce erroneous computed answers is called error propagation. This topic is
discussed further in Section 3.17.

H 3.3 ERRORS IN MEASUREMENTS

By definition, an error is the difference between an observed value for a quantity
and its true value, or

E=X-X (3.1)

where E is the error in an observation, X the observed value, and X its
true value. It can be unconditionally stated that (1) no observation is exact,
(2) every observation contains errors, (3) the true value of an observation is
never known, and, therefore, (4) the exact error present is always unknown.
These facts are demonstrated by the following. When a distance is observed
with a scale divided into tenths of an inch, the distance can be read only
to hundredths (by interpolation). However, if a better scale graduated in
hundredths of an inch was available and read under magnification, the same
distance might be estimated to thousandths of an inch. And with a scale gradu-
ated in thousandths of an inch, a reading to ten-thousandths might be pos-
sible. Obviously, accuracy of observations depends on the scale’s division
size, reliability of equipment used, and human limitations in estimating closer
than about one tenth of a scale division. As better equipment is developed,
observations more closely approach their true values, but they can never be
exact. Note that observations, not counts (of cars, pennies, marbles, or other
objects), are under consideration here.

H 3.4 MISTAKES

These are usually caused by misunderstanding the problem, carelessness,
fatigue, missed communication, or poor judgment. Examples include trans-
position of numbers, such as recording 73.96 instead of the correct value of
79.36; reading an angle counterclockwise, but indicating it as a clockwise angle
in the field notes; sighting the wrong target; or recording a measured distance
as 682.38 instead of 862.38. Large mistakes such as these are not considered
in the succeeding discussion of errors. They must be detected by careful and
systematic checking of all work, and eliminated by repeating some or all of the
measurements. It is very difficult to detect small mistakes because they merge
with errors. When not exposed, these small mistakes will therefore be incor-
rectly treated as errors.
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Errors in observations stem from three sources, and are classified accordingly.

Natural errors are caused by variations in wind, temperature, humidity,
atmospheric pressure, atmospheric refraction, gravity, and magnetic declination.
An example is a steel tape whose length varies with changes in temperature.

Instrumental errors result from any imperfection in the construction or
adjustment of instruments and from the movement of individual parts. For
example, the graduations on a scale may not be perfectly spaced, or the scale
may be warped. The effect of many instrumental errors can be reduced, or even
eliminated, by adopting proper surveying procedures or applying computed
corrections.

Personal errors arise principally from limitations of the human senses of
sight and touch. As an example, a small error occurs in the observed value of
a horizontal angle if the vertical cross hair in a total station instrument is not
aligned perfectly on the target, or if the target is the top of a rod that is being held
slightly out of plumb.

H 3.6 TYPES OF ERRORS

Errors in observations are of two types: systematic and random.

Systematic errors, also known as biases, result from factors that comprise
the “measuring system” and include the environment, instrument, and observer.
So long as system conditions remain constant, the systematic errors will likewise
remain constant. If conditions change, the magnitudes of systematic errors also
change. Because systematic errors tend to accumulate, they are sometimes called
cumulative errors.

Conditions producing systematic errors conform to physical laws that can
be modeled mathematically. Thus, if the conditions are known to exist and can
be observed, a correction can be computed and applied to observed values. An
example of a constant systematic error is the use of a 100-ft steel tape that has
been calibrated and found to be 0.02 ft too long. It introduces a 0.02-ft error
each time it is used, but applying a correction readily eliminates the error. An
example of variable systematic error is the change in length of a steel tape result-
ing from temperature differentials that occur during the period of the tape’s use.
If the temperature changes are observed, length corrections can be computed by
a simple formula, as explained in Chapter 6.

Random errors are those that remain in measured values after mistakes and
systematic errors have been eliminated. They are caused by factors beyond the
control of the observer, obey the laws of probability, and are sometimes called
accidental errors. They are present in all surveying observations.

The magnitudes and algebraic signs of random errors are matters of chance.
There is no absolute way to compute or eliminate them, but they can be esti-
mated using adjustment procedures known as least squares (see Section 3.21 and
Chapter 16). Random errors are also known as compensating errors, since they
tend to partially cancel themselves in a series of observations. For example, a per-
son interpolating to hundredths of a foot on a tape graduated only to tenths, or
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Figure 3.1
Examples of
precision and
accuracy.

(a) Results are
precise but not
accurate.

(b) Results are
neither precise
nor accurate.
(c) Results are
both precise and
accurate.

reading a level rod marked in hundredths, will presumably estimate too high on
some values and too low on others. However, individual personal characteristics
may nullify such partial compensation since some people are inclined to interpo-
late high, others interpolate low, and many favor certain digits—for example, 7
instead of 6 or 8, 3 instead of 2 or 4, and particularly 0 instead of 9 or 1.

H 3.7 PRECISION AND ACCURACY

A discrepancy is the difference between two observed values of the same quantity.
A small discrepancy indicates there are probably no mistakes and random errors
are small. However, small discrepancies do not preclude the presence of systematic
errors.

Precision refers to the degree of refinement or consistency of a group of
observations and is evaluated on the basis of discrepancy size. If multiple ob-
servations are made of the same quantity and small discrepancies result, this
indicates high precision. The degree of precision attainable is dependent on
equipment sensitivity and observer skill.

Accuracy denotes the absolute nearness of observed quantities to their true
values. The difference between precision and accuracy is perhaps best illustrated
with reference to target shooting. In Figure 3.1(a), for example, all five shots exist
in a small group, indicating a precise operation; that is, the shooter was able to re-
peat the procedure with a high degree of consistency. However, the shots are far
from the target’s center and therefore not accurate. This probably results from
misaligned sights. Figure 3.1(b) shows randomly scattered shots that are neither
precise nor accurate. In Figure 3.1(c), the closely spaced grouping, in the target’s
center, represents both precision and accuracy. The shooter who obtained the
results in (a) was perhaps able to produce the shots of (c) after aligning the sights.
In surveying, this would be equivalent to the calibration of observing instruments
or the removal of systematic errors from the observations.

As with the shooting example, a survey can be precise without being accu-
rate. To illustrate, if refined methods are employed and readings taken carefully,
say to 0.001 ft, but there are instrumental errors in the measuring device and
corrections are not made for them, the survey will not be accurate. As a numeri-
cal example, two observations of a distance with a tape assumed to be 100.000 ft
long, that is actually 100.050 ft, might give results of 453.270 and 453.272 ft.
These values are precise, but they are not accurate, since there is a systematic



error of approximately 4.53 X 0.050 = 0.23 ft in each. The precision obtained
would be expressed as (453.272 — 453.270) /453.271 = 1/220,000, which is ex-
cellent, but accuracy of the distance is only 0.23/453.271 = 1 part in 2000. Also,
a survey may appear to be accurate when rough observations have been taken.
For example, the angles of a triangle may be read with a compass to only the
nearest 1/4 degree and yet produce a sum of exactly 180°, or a zero misclosure
error. On good surveys, precision and accuracy are consistent throughout.

H 3.8 ELIMINATING MISTAKES AND SYSTEMATIC ERRORS

All field operations and office computations are governed by a constant effort
to eliminate mistakes and systematic errors. Of course it would be preferable
if mistakes never occurred, but because humans are fallible, this is not possi-
ble. In the field, experienced observers who alertly perform their observations
using standardized repetitive procedures can minimize mistakes. Mistakes that
do occur can be corrected only if discovered. Comparing several observations
of the same quantity is one of the best ways to identify mistakes. Making a com-
mon sense estimate and analysis is another. Assume that five observations of
a line are recorded as follows: 567.91, 576.95, 567.88, 567.90, and 567.93. The
second value disagrees with the others, apparently because of a transposition of
figures in reading or recording. Either casting out the doubtful value or prefer-
ably repeating the observation can eradicate this mistake.

When a mistake is detected, it is usually best to repeat the observation.
However, if a sufficient number of other observations of the quantity are
available and in agreement, as in the foregoing example, the widely divergent
result may be discarded. Serious consideration must be given to the effect on
an average before discarding a value. It is seldom safe to change a recorded
number, even though there appears to be a simple transposition in figures.
Tampering with physical data is always a bad practice and will certainly cause
trouble, even if done infrequently.

Systematic errors can be calculated and proper corrections applied to
the observations. Procedures for making these corrections to all basic survey-
ing observations are described in the chapters that follow. In some instances, it
may be possible to adopt a field procedure that automatically eliminates system-
atic errors. For example, as explained in Chapter 5, a leveling instrument out
of adjustment causes incorrect readings, but if all backsights and foresights are
made the same length, the errors cancel in differential leveling.

H 3.9 PROBABILITY

At one time or another, everyone has had an experience with games of chance,
such as coin flipping, card games, or dice, which involve probability. In basic
mathematics courses, laws of combinations and permutations are introduced. It
is shown that events that happen randomly or by chance are governed by math-
ematical principles referred to as probability.

Probability may be defined as the ratio of the number of times a result
should occur to its total number of possibilities. For example, in the toss of
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a fair die there is a one-sixth probability that a 2 will come up. This simply
means that there are six possibilities, and only one of them is a 2. In general, if
a result may occur in m ways and fail to occur in n ways, then the probability
of its occurrence is m/(m + n). The probability that any result will occur is a
fraction between 0 and 1; 0 indicating impossibility and 1 denoting absolute
certainty. Since any result must either occur or fail, the sum of the probabili-
ties of occurrence and failure is 1. Thus if 1/6 is the probability of throwing a
2 with one toss of a die, then (1 — 1/6), or 5/6 is the probability that a 2 will
not come up.

The theory of probability is applicable in many sociological and scientific
observations. In Section 3.6, it was pointed out that random errors exist in all
surveying work. This can perhaps be better appreciated by considering the mea-
suring process, which generally involves executing several elementary tasks.
Besides instrument selection and calibration, these tasks may include setting up,
centering, aligning, or pointing the equipment; setting, matching, or comparing
index marks; and reading or estimating values from graduated scales, dials, or
gauges. Because of equipment and observer imperfections, exact observations
cannot be made, so they will always contain random errors. The magnitudes of
these errors, and the frequency with which errors of a given size occur, follow
the laws of probability.

For convenience, the term error will be used to mean only random error for
the remainder of this chapter. It will be assumed that all mistakes and systematic
errors have been eliminated before random errors are considered.

H 3.10 MOST PROBABLE VALUE

It has been stated earlier that in physical observations, the true value of any
quantity is never known. However, its most probable value can be calculated if
redundant observations have been made. Redundant observations are measure-
ments in excess of the minimum needed to determine a quantity. For a single
unknown, such as the length of a line that has been directly and independently
observed a number of times using the same equipment and procedures,' the first
observation establishes a value for the quantity and all additional observations
are redundant. The most probable value in this case is simply the arithmetic
mean, or

M= M (3.2)
n

where M is the most probable value of the quantity, M the sum of the indi-
vidual measurements M, and n the total number of observations. Equation (3.2)
can be derived using the principle of least squares, which is based on the theory
of probability.

The significance of using the same equipment and procedures is that observations are of equal reli-
ability or weight. The subject of unequal weights is discussed in Section 3.20.



3.12 Occurrence of Random Errors 49

As discussed in Chapter 16, in more complicated problems, where the
observations are not made with the same instruments and procedures, or if sev-
eral interrelated quantities are being determined through indirect observations,
most probable values are calculated by employing least-squares methods. The
treatment here relates to multiple direct observations of the same quantity using
the same equipment and procedures.

H 3.11 RESIDUALS

Having determined the most probable value of a quantity, it is possible to
calculate residuals. A residual is simply the difference between the most prob-
able value and any observed value of a quantity, which in equation form is

v=M-M (3.3)

where v is the residual in any observation M, and M is the most probable value
for the quantity. Residuals are theoretically identical to errors, with the excep-
tion that residuals can be calculated whereas errors cannot because true values
are never known. Thus, residuals rather than errors are the values actually used
in the analysis and adjustment of survey data.

H 3.12 OCCURRENCE OF RANDOM ERRORS

To analyze the manner in which random errors occur, consider the data of
Table 3.1, which represents 100 repetitions of an angle observation made with
a precise total station instrument (described in Chapter 8). Assume these ob-
servations are free from mistakes and systematic errors. For convenience in
analyzing the data, except for the first value, only the seconds’ portions of the
observations are tabulated. The data have been rearranged in column (1) so
that entries begin with the smallest observed value and are listed in increasing
size. If a certain value was obtained more than once, the number of times it
occurred, or its frequency, is tabulated in column (2).

From Table 3.1, it can be seen that the dispersion (range in observations
from smallest to largest) is 30.8 — 19.5 = 11.3 sec. However, it is difficult to an-
alyze the distribution pattern of the observations by simply scanning the tabular
values; that is, beyond assessing the dispersion and noticing a general trend for
observations toward the middle of the range to occur with greater frequency.
To assist in studying the data, a histogram can be prepared. This is simply a bar
graph showing the sizes of the observations (or their residuals) versus their fre-
quency of occurrence. It gives an immediate visual impression of the distribution
pattern of the observations (or their residuals).

For the data of Table 3.1, a histogram showing the frequency of occur-
rence of the residuals has been developed and is plotted in Figure 3.2. To plot a
histogram of residuals, it is first necessary to compute the most probable value
for the angle observation. This has been done with Equation (3.2). As shown at
the bottom of Table 3.1, its value is 27°43'24.9”. Then using Equation (3.3), re-
siduals for all observed values are computed. These are tabulated in column (3)
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Observed Residual Observed Residual
Value No. (Sec) Value No. (Sec)
(1) (2) (3) (1 Cont.) (2. Cont.) (3 Cont.)
27°43'19.5" 1 54 27°43'25.1" 3 -0.2
20.0 1 4.9 25.2 1 -0.3
20.5 1 4.4 254 1 -0.5
20.8 1 4.1 25.5 2 -0.6
21.2 1 3.7 25.7 3 -0.8
21.3 1 3.6 25.8 4 -0.9
21.5 1 3.4 25.9 2 -1.0
22.1 2 2.8 26.1 1 -1.2
22.3 1 2.6 26.2 2 -1.3
22.4 1 2.5 26.3 1 -14
22.5 2 2.4 26.5 1 -1.6
22.6 1 2.3 26.6 3 -1.7
22.8 2 2.1 26.7 1 -1.8
23.0 1 1.9 26.8 2 -1.9
23.1 2 1.8 26.9 1 -2.0
23.2 2 1.7 27.0 1 -2.1
23.3 3 1.6 27.1 3 2.2
23.6 2 1.3 27 .4 1 -2.5
23.7 2 1.2 27.5 2 2.6
23.8 2 1.1 27.6 1 2.7
23.9 3 1.0 27.7 2 -2.8
24.0 5 0.9 28.0 1 -3.1
24.1 3 0.8 28.6 2 -3.7
24.3 1 0.6 28.7 1 -3.8
24.5 2 0.4 29.0 1 —4.1
24.7 3 0.2 29.4 1 —4.5
24.8 3 0.1 29.7 1 —4.8
24.9 2 0.0 30.8 1 -59
25.0 2 -0.1 3 =24940 3 =100

Mean = 2494.0/100 = 24.9”
Most Probable Value = 27°43'24.9"
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of Table 3.1. The residuals vary from 5.4” to —5.9". (The sum of the absolute
value of these two extremes is the dispersion, or 11.3".)

To obtain a histogram with an appropriate number of bars for portray-
ing the distribution of residuals adequately, the interval of residuals repre-
sented by each bar, or the class interval, was chosen as 0.7". This produced 17
bars on the graph. The range of residuals covered by each interval, and the
number of residuals that occur within each interval, are listed in Table 3.2.
By plotting class intervals on the abscissa against the number (frequency of
occurrence) of residuals in each interval on the ordinate, the histogram of
Figure 3.2 was obtained.

If the adjacent top center points of the histogram bars are connected with
straight lines, the so-called frequency polygon is obtained. The frequency polygon
for the data of Table 3.1 is superimposed as a heavy dashed blue line in Figure 3.2.
It graphically displays essentially the same information as the histogram.

If the number of observations being considered in this analysis were increased
progressively, and accordingly the histogram’s class interval taken smaller and
smaller, ultimately the frequency polygon would approach a smooth continuous
curve, symmetrical about its center like the one shown with the heavy solid blue line
in Figure 3.2. For clarity, this curve is shown separately in Figure 3.3. The curve’s
“bell shape” is characteristic of a normally distributed group of errors, and thus it
is often referred to as the normal distribution curve. Statisticians frequently call it
the normal density curve, since it shows the densities of errors having various sizes.
In surveying, normal or very nearly normal error distributions are expected, and
henceforth in this book that condition is assumed.

In practice, histograms and frequency polygons are seldom used to repre-
sent error distributions. Instead, normal distribution curves that approximate
them are preferred. Note how closely the normal distribution curve superim-
posed on Figure 3.2 agrees with the histogram and the frequency polygon.
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RaNGEs oF CLass INTERVALS AND NUMBER
OF ResIDUALS IN EACH INTERVAL

Number of Residuals

Histogram Interval (Sec) in Interval
-5.9510 —-5.25 1
—5.2510 —4.55 1
—4.5510 —3.85 2
-3.851t0 -3.15 3
-3.1510 —2.45 6
—2.4510 -1.75 8
-1.75t0 —1.05 10
-1.0510 -0.35 11
—-0.3510 +0.35 14
+0.35 to +1.05 12
+1.0510 +1.75 11

+1.75t0 +2.45 8
+2.4510 +3.15 o)
+3.15t0 +3.85 3
+3.85 to +4.55 2
+4.55 to +5.25 1

1

+5.25 to +5.95
> =100

As demonstrated with the data of Table 3.1, the histogram for a set
of observations shows the probability of occurrence of an error of a given
size graphically by bar areas. For example, 14 of the 100 residuals (errors) in
Figure 3.2 are between —0.35” and +0.35”". This represents 14% of the errors,
and the center histogram bar, which corresponds to this interval, is 14% of
the total area of all bars. Likewise, the area between ordinates constructed
at any two abscissas of a normal distribution curve represents the percent
probability that an error of that size exists. Since the area sum of all bars of a
histogram represents all errors, it therefore represents all probabilities, and
thus its sum equals 1. Likewise, the total area beneath a normal distribution
curve is also 1.

If the same observations of the preceding example had been taken using
better equipment and more caution, smaller errors would be expected and the
normal distribution curve would be similar to that in Figure 3.4(a). Compared to
Figure 3.3, this curve is taller and narrower, showing that a greater percentage
of values have smaller errors, and fewer observations contain big ones. For this
comparison, the same ordinate and abscissa scales must be used for both curves.
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Thus, the observations of Figure 3.4(a) are more precise. For readings taken less
precisely, the opposite effect is produced, as illustrated in Figure 3.4(b), which
shows a shorter and wider curve. In all three cases, however, the curve main-
tained its characteristic symmetric bell shape.

From these examples, it is seen that relative precisions of groups of obser-
vations become readily apparent by comparing their normal distribution curves.
The normal distribution curve for a set of observations can be computed using
parameters derived from the residuals, but the procedure is beyond the scope of
this chapter. The reader should refer to the references at the end of this chapter
for further exploration on this topic.

H 3.13 GENERAL LAWS OF PROBABILITY

From an analysis of the data in the preceding section and the curves in
Figures 3.2 through 3.4, some general laws of probability can be stated:

1. Small residuals (errors) occur more often than large ones; that is, they are
more probable.

2. Large errors happen infrequently and are therefore less probable; for nor-
mally distributed errors, unusually large ones may be mistakes rather than
random errors.

3. Positive and negative errors of the same size happen with equal frequency;
that is, they are equally probable. [This enables an intuitive deduction of
Equation (3.2) to be made: that is, the most probable value for a group of
repeated observations, made with the same equipment and procedures, is
the mean.]

Figure 3.3
Normal distribution
curve.
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Figure 3.4

Normal distribution
curves for

(a) increased
precision, and

(b) decreased
precision.

/- Inflection point

Inflection point

H 3.14 MEASURES OF PRECISION

As shown in Figures 3.3 and 3.4, although the curves have similar shapes, there
are significant differences in their dispersions; that is, their abscissa widths dif-
fer. The magnitude of dispersion is an indication of the relative precisions of the
observations. Other statistical terms more commonly used to express precisions
of groups of observations are standard deviation and variance. The equation for
the standard deviation is

Sv?

n—1

o= = (3.4)

where o is the standard deviation of a group of observations of the same quan-
tity, v the residual of an individual observation, 3 the sum of squares of the
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individual residuals, and n the number of observations. Variance is equal to o’
the square of the standard deviation.

Note that in Equation (3.4), the standard deviation has both plus and minus
values. On the normal distribution curve, the numerical value of the standard
deviation is the abscissa at the inflection points (locations where the curvature
changes from concave downward to concave upward). In Figures 3.3 and 3.4,
these inflection points are shown. Note the closer spacing between them for the
more precise observations of Figure 3.4(a) as compared to Figure 3.4(b).

Figure 3.5 is a graph showing the percentage of the total area under a nor-
mal distribution curve that exists between ranges of residuals (errors) having
equal positive and negative values. The abscissa scale is shown in multiples of
the standard deviation. From this curve, the area between residuals of +o and
—o equals approximately 68.3% of the total area under the normal distribution
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curve. Hence, it gives the range of residuals that can be expected to occur 68.3%
of the time. This relation is shown more clearly on the curves in Figures 3.3 and
3.4, where the areas between f o are shown shaded. The percentages shown
in Figure 3.5 apply to all normal distributions; regardless of curve shape or the
numerical value of the standard deviation.

H 3.15 INTERPRETATION OF STANDARD DEVIATION

It has been shown that the standard deviation establishes the limits within which
observations are expected to fall 68.3% of the time. In other words, if an observa-
tion is repeated ten times, it will be expected that about seven of the results will
fall within the limits established by the standard deviation, and conversely about
three of them will fall anywhere outside these limits. Another interpretation is
that one additional observation will have a 68.3% chance of falling within the
limits set by the standard deviation.

When Equation (3.4) is applied to the data of Table 3.1, a standard devia-
tion of +2.19 is obtained. In examining the residuals in the table, 70 of the 100
values, or 70%, are actually smaller than 2.19 sec. This illustrates that the theory
of probability closely approximates reality.

H 3.16 THE 50, 90, AND 95 PERCENT ERRORS

From the data given in Figure 3.5, the probability of an error of any percentage
likelihood can be determined. The general equation is

Ep = CPO' (3-5)

where Ep, is a certain percentage error and Cp, the corresponding numerical fac-
tor taken from Figure 3.5.

By Equation (3.5), after extracting appropriate multipliers from Figure 3.5,
the following are expressions for errors that have a 50%, 90%, and 95% chance

of occurring:
Es5y = 0.67450 (3.6)
Ego = 1.64490 (3.7)
E95 = 195990 (3-8)

The 50% error, or Es, is the so-called probable error. It establishes limits within
which the observations should fall 50% of the time. In other words, an observation
has the same chance of coming within these limits as it has of falling outside of them.

The 90% and 95% errors are commonly used to specify precisions required
on surveying (geomatics) projects. Of these, the 95% error, also frequently called
the two-sigma (20) error, is most often specified. As an example, a particular
project may call for the 95% error to be less than or equal to a certain value for
the work to be acceptable. For the data of Table 3.1, applying Equations (3.7)
and (3.8), the 90% and 95% errors are £3.60 and +4.29 sec respectively. These
errors are shown graphically in Figure 3.3.
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The so-called three-sigma (30°) erroris also often used as a criterion for rejecting
individual observations from sets of data. From Figure 3.5, there is a 99.7% probabil-
ity that an error will be less than this amount. Thus, within a group of observations,
any value whose residual exceeds 3o is considered to be a mistake, and either a new
observation must be taken or the computations based on one less value.

The x-axis is an asymptote of the normal distribution curve, so the 100%
error cannot be evaluated. This means that no matter what size error is found, a
larger one is theoretically possible.

B Example 3.1

To clarify definitions and use the equations given in Sections 3.10 through 3.16,
suppose that a line has been observed 10 times using the same equipment and pro-
cedures. The results are shown in column (1) of the following table. It is assumed
that no mistakes exist, and that the observations have already been corrected for
all systematic errors. Compute the most probable value for the line length, its
standard deviation, and errors having 50%, 90%, and 95% probability.

Length Residual v v

(ft) 1) (ft) (2) 3)
538.57 +0.12 0.0144
538.39 —0.06 0.0036
538.37 —-0.08 0.0064
538.39 —0.06 0.0036
538.48 +0.03 0.0009
538.49 +0.04 0.0016
538.33 —0.12 0.0144
538.46 +0.01 0.0001
538.47 +0.02 0.0004
538.55 +0.10 0.0100
S = 5384.50 S = 0.00 Sv? = 0.0554

Solution
5384.50

By Equation (3.2), M = = 53845t

By Equation (3.3), the residuals are calculated. These are tabulated in column (2)
and their squares listed in column (3). Note that in column (2) the algebraic sum
of residuals is zero. (For observations of equal reliability, except for round off, this
column should always total zero and thus provide a computational check.)

2 0.0554
By Equation (34). o = + 1| — [= g = £0078 = £0.08E
Va1V

By Equation (3.6), Esp = £0.67450 = £0.6745(0.078) = £0.05 ft.
By Equation (3.7), Egy = +1.6449(0.078) = £0.13 ft.
By Equation (3.8), Egs = +1.9599(0.078) = £0.15 ft.
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The following conclusions can be drawn concerning this example.

1. The most probable line length is 538.45 ft.

2. The standard deviation of a single observation is & 0.08 ft. Accordingly, the
normal expectation is that 68 % of the time a recorded length will lie between
538.45 — 0.08 and 538.45 + 0.08 or between 538.37 and 538.53 ft; that is,
about seven values should lie within these limits. (Actually seven of them do.)

3. The probable error (Esq) is £0.05 ft. Therefore, it can be anticipated that
half, or five of the observations, will fall in the interval 538.40 to 538.50 ft.
(Four values do.)

4. The 90% error is =0.13 ft, and thus nine of the observed values can be ex-
pected to be within the range of 538.32 and 538.58 ft.

S. The 95% error is £0.15 ft, so the length can be expected to lie between
538.30 and 538.60, 95% of the time. (Note that all observations indeed are
within the limits of both the 90% and 95% errors.)

H 3.17 ERROR PROPAGATION

It was stated earlier that because all observations contain errors, any quanti-
ties computed from them will likewise contain errors. The process of evaluat-
ing errors in quantities computed from observed values that contain errors is
called error propagation. The propagation of random errors in mathematical
formulas can be computed using the general law of the propagation of vari-
ances. Typically in surveying (geomatics), this formula can be simplified since
the observations are usually mathematically independent. For example, let
a,b,c,...,n be observed values containing errors E,, E,, E,, . .., E,, respec-
tively. Also let Z be a quantity derived by computation using these observed
quantities in a function f, such that

Z = f(a,b,c,...,n) (3.9)

Then assuming that a, b, c, . . ., n are independent observations, the error in the
computed quantity Z is

we) + (n) - (Fe) - ()
E,= =+ —FE + | = F + | —FE + -+ | —F 3.10
z \/<aa “) " ac ¢ on " (3.10)
where the terms df/da, dof/db, of/dc, . .., df/on are the partial derivatives of the
function f with respect to the variables a, b, c, . . ., n. In the subsections that fol-

low, specific cases of error propagation common in surveying are discussed, and
examples are presented.

3.17.1 Error of a Sum

Assume the sum of independently observed observations a, b, ¢, . ..is Z. The
formula for the computed quantity Z is

Z=a+b+cH+- -
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The partial derivatives of Z with respect to each observed quantity are
0Z/da = 9Z/ob = 0Z/oc = --- = 1. Substituting these partial derivatives into
Equation (3.10), the following formula is obtained, which gives the propagated
error in the sum of quantities, each of which contains a different random error:

Egun = *VE>+ E} + E2 + -+ (3.11)

where E represents any specified percentage error (such as o, Esg, Egy, or Eos),
and a, b, and ¢ are the separate, independent observations.

The error of a sum can be used to explain the rules for addition and sub-
traction using significant figures. Recall the addition of 46.7418, 1.03, and 375.0
from Example (a) from Section 2.4. Significant figures indicate that there is
uncertainty in the last digit of each number. Thus, assume estimated errors of
+0.0001, £0.01, and £0.1 respectively for each number. The error in the sum

of these three numbers is\/O.OOOl2 + 0.01*> + 0.1>? = +0.1. The sum of three

numbers is 422.7718, which was rounded, using the rules of significant figures,
to 422.8. Its precision matches the estimated accuracy produced by the error in
the sum of the three numbers. Note how the least accurate number controls the
accuracy in the summation of the three values.

N Example 3.2

Assume that a line is observed in three sections, with the individual parts equal
to (753.81, £0.012), (1238.40, £0.028), and (1062.95, £0.020) ft, respectively.
Determine the line’s total length and its anticipated standard deviation.

Solution

Total length = 753.81 + 1238.40 + 1062.95 = 3055.16 ft.
By Equation (3.11), Eg,n = +V0.0122 + 0.028> + 0.020> = +0.036 ft

3.17.2 Error of a Series

Sometimes a series of similar quantities, such as the angles within a closed poly-
gon, are read with each observation being in error by about the same amount.
The total error in the sum of all observed quantities of such a series is called the
error of the series, designated as Ejg,,;,. If the same error E in each observation is
assumed and Equation (3.11) applied, the series error is

Eseries = i\/E2+ E>’+E>+ .- = i\/}@= +EVn (3.12)

where E represents the error in each individual observation and » the number of
observations.

This equation shows that when the same operation is repeated, random
errors tend to balance out, and the resulting error of a series is proportional
to the square root of the number of observations. This equation has extensive
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use —for instance, to determine the allowable misclosure error for angles of a
traverse, as discussed in Chapter 9.

B Example 3.3

Assume that each of the interior angles in a four-sided traverse has an estimate
error of +3.5". Determine the error in the sum of the four interior angles.

Solution

By Equation (3.12), the error in the sum of the angles is
Egeries = TEVn = £35"V4 = £77

M Example 3.4

The error in sum of the interior angles of a quadrilateral must be within +10".
Determine how accurately each of the four angles must be observed to ensure
that the error will not exceed the permissible limit.

Solution

Since by Equation (3.12), Eg,.s = T EVn and n = 4, the allowable error E in
each angle is

ESeries + 10" _

E=t T Vi~

B Example 3.5

Suppose it is required that the sum the 10 interior angles of a polygon have an
error under +10”. How accurately must each angle be observed?

Solution

Since there are 10 angles, n = 10, and by Equation (3.12), the allowable error E
in each measured angle is

10!/

E= =
V10

= +32"

Analyzing Examples 3.4 and 3.5 shows that the larger the number of possibili-
ties, the greater the chance for the errors to cancel out.
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3.17.3 Error of a Products

The equation for propagation of errors in the product AB, where E, and E,, are
the respective errors in A and B, is

Eyoa = NV AE} + B’E; (3.13)

The physical significance of the error propagation formula for a product
is illustrated in Figure 3.6, where A and B are shown to be observed sides of
a rectangular parcel of land with errors E, and E}, respectively. The product AB
is the parcel area. In Equation (3.13), VA’E} = AE,, represents area within
either of the longer (horizontal) crosshatched bars and is the error caused by
either —E,, or +E,. The term V B’E% = BE, is represented by the area within
the shorter (vertical) crosshatched bars, which is the error resulting from either
—E,or +E,

M Example 3.6

For the rectangular lot illustrated in Figure 3.6, observations of sides A and B
with their 95% errors are (252.46, =0.053) and (605.08, +0.072) ft, respectively.
Calculate the parcel area and the estimated error in the area.

Solution

Area = 252.46 X 605.08 = 152,760 ft>
By Equation (3.13),

o = +V(252.46)2(0.072)* + (605.08)2(0.053)> = +36.9 ft>

Example 3.6 can also be used to demonstrate the validity of one of
the rules of significant figures in computation. The computed area is actu-
ally 152,758.4968 ft>. However, the rule for significant figures in multiplica-
tion (see Section 2.4) states that there cannot be more significant figures in

~— +Ea

T Figure 3.6
+Ep, Error of area.
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the answer than in any of the individual factors used. Accordingly, the area
should be rounded off to 152,760 (five significant figures). From Equation
(3.13), with an error of £36.9 ft* the answer could be 152,758.4968 + 36.9,
or from 152,721.6 to 152,795.4 ft2. Thus, the fifth digit in the answer is seen to
be questionable, and hence the number of significant figures specified by the
rule is verified.

3.17.4 Error of the Mean

Equation (3.2) stated that the most probable value of a group of repeated obser-
vations of equal weight is the arithmetic mean. Since the mean is computed from
individual observed values, each of which contains an error, the mean is also
subject to error. By applying Equation (3.12), it is possible to find the error for
the sum of a series of observations where each one has the same error. Since the
sum divided by the number of observations gives the mean, the error of the mean
is found by the relation

Eseries

E, = "

Substituting Equation (3.12) for Eg,, ;e

£Va | E sas
TN (3.14)

E, =

where E is the specified percentage error of a single observation, E,, the corre-
sponding percentage error of the mean, and n the number of observations.

The error of the mean at any percentage probability can be determined and
applied to all criteria that have been developed. For example, the standard devia-
tion of the mean, (Egg),, Or 0;,, is

2
= = 70- = 4+ 72‘}
(E68)m (™ '\/;1 iLn n(n — 1) (3.150)

and the 90% and 95% errors of the mean are

Eqy 302
= 2 = + [ —
(E90)m \/’; +1.6449 n(n — 1) (3.15b)
Eos Sv?
= — = + -
(E95)m \/’; +£1.9599 l’l(l’l — 1) (3-]5(:)

These equations show that the error of the mean varies inversely as the
square root of the number of repetitions. Thus, to double the accuracy—that
is, to reduce the error by one half—four times as many observations must
be made.
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M Example 3.7

Calculate the standard deviation of the mean and the 90% error of the mean for
the observations of Example 3.1.

Solution

o 0.078
=+ = 40.0251t

Vn V10

Also, by Equation (3.15b), (Ey),, = *1.6449(0.025) = +0.041 ft

By Equation (3.15a), 0, =

These values show the error limits of 68% and 90% probability for the line’s
length. It can be said that the true line length has a 68% chance of being within
10.025 of the mean, and a 90% likelihood of falling not farther than *+0.041 ft
from the mean.

H 3.18 APPLICATIONS

The preceding example problems show that the equations of error probability
are applied in two ways:

1. To analyze observations already made, for comparison with other results or
with specification requirements.

2. To establish procedures and specifications in order that the required results
will be obtained.

The application of the various error probability equations must be tem-
pered with judgment and caution. Recall that they are based on the assumption
that the errors conform to a smooth and continuous normal distribution curve,
which in turn is based on the assumption of a large number of observations.
Frequently in surveying only a few observations—often from two to eight—
are taken. If these conform to a normal distribution, then the answer obtained
using probability equations will be reliable; if they do not, the conclusions
could be misleading. In the absence of knowledge to the contrary, however, an
assumption that the errors are normally distributed is still the best available.

H 3.19 CONDITIONAL ADJUSTMENT OF OBSERVATIONS

In Section 3.3, it was emphasized that the true value of any observed quantity is
never known. However, in some types of problems, the sum of several observa-
tions must equal a fixed value; for example, the sum of the three angles in a plane
triangle has to total 180°. In practice, therefore, the observed angles are adjusted
to make them add to the required amount. Correspondingly, distances—either
horizontal or vertical—must often be adjusted to meet certain conditional
requirements. The methods used will be explained in later chapters, where the
operations are taken up in detail.
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H 3.20 WEIGHTS OF OBSERVATIONS

It is evident that some observations are more precise than others because of
better equipment, improved techniques, and superior field conditions. In mak-
ing adjustments, it is consequently desirable to assign relative weights to indi-
vidual observations. It can logically be concluded that if an observation is very
precise, it will have a small standard deviation or variance, and thus should
be weighted more heavily (held closer to its observed value) in an adjustment
than an observation of lower precision. From this reasoning, it is deduced
that weights of observations should bear an inverse relationship to precision.
In fact, it can be shown that relative weights are inversely proportional to
variances, or

1
W, o ) (3.16)

where W, is the weight of an observation a, which has a variance of o2. Thus,
the higher the precision (the smaller the variance), the larger should be the rela-
tive weight of the observed value being adjusted. In some cases, variances are
unknown originally, and weights must be assigned to observed values based on
estimates of their relative precision. If a quantity is observed repeatedly and the
individual observations have varying weights, the weighted mean can be com-
puted from the expression

. SWM

w = 27 (3.17)

where My is the weighted mean, WM the sum of the individual weights times
their corresponding observations, and %W the sum of the weights.

B Example 3.8

Suppose four observations of a distance are recorded as 482.16, 482.17, 482.20,
and 482.18 and given weights of 1, 2, 2, and 4, respectively, by the surveyor.
Determine the weighted mean.

Solution

By Equation (3.17)

482,16 + 482.17(2) + 482.20(2) + 482.14(4)
My, = = 482.16 ft
1+2+2+4

In computing adjustments involving unequally weighted observations, correc-
tions applied to observed values should be made inversely proportional to the
relative weights.
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M Example 3.9

Assume the observed angles of a certain plane triangle, and their relative weights,
are A = 49°51'15", W, = 1; B = 60°32'08", W, = 2;and C = 69°36'33", W, = 3.
Compute the weighted mean of the angles.

Solution

The sum of the three angles is computed first and found to be 4” less than the
required geometrical condition of exactly 180°. The angles are therefore adjusted
in inverse proportion to their relative weights, as illustrated in the accompanying
tabulation. Angle C with the greatest weight (3) gets the smallest correction, 2x;
B receives 3x; and A, 6x.

Observed Numerical Rounded Adjusted

Angle Wt Correction Corr. Corr. Angle
A 49°51'15" 1 6x +2.18" +2" 49°51'17"
B 60°32'08" 2 3x +1.09" +1” 60°32'09"
C 69°36'33" 3 2x +0.73" +1" 69°36'34"
Sum 179°59'56" 3 =6 11x +4.00" +4" 180°00"00"

11x = 4" and x = +0.36"

It must be emphasized again that adjustment computations based on the theory
of probability are valid only if systematic errors and employing proper proce-
dures, equipment, and calculations eliminates mistakes.

B 3.21 LEAST-SQUARES ADJUSTMENT

As explained in Section 3.19, most surveying observations must conform to
certain geometrical conditions. The amounts by which they fail to meet these
conditions are called misclosures, and they indicate the presence of random er-
rors. In Example 3.9, for example, the misclosure was 4”. Various procedures
are used to distribute these misclosure errors to produce mathematically per-
fect geometrical conditions. Some simply apply corrections of the same size to
all observed values, where each correction equals the total misclosure (with its
algebraic sign changed), divided by the number of observations. Others intro-
duce corrections in proportion to assigned weights. Still others employ rules of
thumb, for example, the “compass rule” described in Chapter 10 for adjusting
closed traverses.

Because random errors in surveying conform to the mathematical laws of
probability and are “normally distributed,” the most appropriate adjustment pro-
cedure should be based upon these laws. Least squares is such a method. It is not
a new procedure, having been applied by the German mathematician Karl Gauss
as early as the latter part of the 18th century. However, until the advent of com-
puters, it was only used sparingly because of the lengthy calculations involved.
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Least squares is suitable for adjusting any of the basic types of surveying
observations described in Section 2.1, and is applicable to all of the commonly
used surveying procedures. The method enforces the condition that the sum of
the weights of the observations times their corresponding squared residuals is
minimized. This fundamental condition, which is developed from the equation
for the normal error distribution curve, provides most probable values for the
adjusted quantities. In addition, it also (1) enables the computation of precisions
of the adjusted values, (2) reveals the presence of mistakes so steps can be taken
to eliminate them, and (3) makes possible the optimum design of survey proce-
dures in the office before going to the field to take observations.

H H § § B 5§ 5 S S S S S S S S S S SR EEEEE®~N
PROBLEMS

Asterisks (*) indicate problems that have answers given in Appendix G.
3.1 Discuss the differences between an error and a residual.
3.2 Give two examples of (a) direct and (b) indirect measurements.
3.3 Define the term systematic error and give two surveying examples of a systematic
error.
3.4 Define the term random error and give two surveying examples of a random error.
3.5 Discuss the difference between accuracy and precision.

A distance AB is observed repeatedly using the same equipment and procedures,
and the results, in meters, are listed in Problems 3.6 through 3.10. Calculate (a) the line’s
most probable length, (b) the standard deviation, and (c) the standard deviation of the
mean for each set of results.

3.6*% 65.401, 65.400, 65.402, 65.396, 65.406, 65.401, 65.396, 65.401, 65.405, and 65.404.
3.7 Same as Problem 3.6, but discard one observation, 65.406.
3.8 Same as Problem 3.6, but discard two observations, 65.405 and 65.406.
3.9 Same as Problem 3.6, but include two additional observations, 65.408 and 65.409.
3.10 Same as Problem 3.6, but include three additional observations, 65.408, 65.409, and
65.410.

In Problems 3.11 through 3.14, determine the range within which observations
should fall (a) 90% of the time and (b) 95% of the time. List the percentage of values that
actually fall within these ranges.

3.11* For the data of Problem 3.6.
3.12 For the data of Problem 3.7.
3.13 For the data of Problem 3.8.
3.14 For the data of Problem 3.9.

In Problems 3.15 through 3.17, an angle is observed repeatedly using the same
equipment and procedures. Calculate (a) the angle’s most probable value, (b) the stan-
dard deviation, and (c¢) the standard deviation of the mean.

3.15% 23°30'00”,23°29'40", 23°30'15”, and 23°29'50".

3.16 Same as Problem 3.15, but with three additional observations, 23°29'40", 23°29'45",
and 23°29'50".

3.17 Same as Problem 3.15, but with two additional observations, 23°30'05”and 23°29'55".



3.18* A field party is capable of making taping observations with a standard deviation of
+0.010 ft per 100-ft tape length. What standard deviation would be expected in a
distance of 200 ft taped by this party?

3.19 Repeat Problem 3.18, except that the standard deviation per 30-m tape length is
+0.005 m and a distance of 90 m is taped. What is the expected 95% error in 90 m?

3.20 A distance of 200 ft must be taped in a manner to ensure a standard deviation
smaller than & 0.05 ft. What must be the standard deviation per 100-ft tape length to
achieve the desired precision?

3.21 Lines of levels were run requiring » instrument setups. If the rod reading for each
backsight and foresight has a standard deviation o, what is the standard deviation in
each of the following level lines?

(@) n=150 = £0.015ft
(b) n =280 = £5mm

3.22 Aline AC was observed in two sections AB and BC, with lengths and standard de-

viations listed below. What is the total length AC, and its standard deviation?
*(a) AB = 60.00 £ 0.015 ft; BC = 86.13 + 0.018 ft
(b) AB = 30.000 = 0.005m; 15.413 = 0.005 m

3.23 Line AD is observed in three sections AB, BC, and CD, with lengths and standard
deviations as listed below. What is the total length AD and its standard deviation?
(a) AB = £236.57 £ 0.01 ft; BC = 608.99 = 0.01 ft; CD = 426.87 + 0.01 ft
(b) AB = 688.980 m * 0.003 m; BC = 1274.865m * 0.003 m;

CD = 2542.373m £ 0.005 m

3.24 A difference in elevation between A and B was observed four times as 29.85, 29.83,
29.88, and 29.79 ft. The observations were given weights of 2, 3, 1, and 2, respectively,
by the observer. *(a) Calculate the weighted mean for distance AB. (b) What differ-
ence results if later judgment revises the weights to 2, 3, 1, and 1, respectively?

3.25 Determine the weighted mean for the following angles:

*(a) 222°12'36", wt 2;222°12'42", wt 1;222°12'34", wt 3
(b) 106°28'54" £1";106°28'46" +3";106°28'56" £ 1"

3.26 Specifications for observing angles of an n-sided polygon limit the total angular mis-
closure to E. How accurately must each angle be observed for the following values
of nand E?

(@ n=8E=¢8"
(b) n =16, FE = 12"
3.27 What is the area of a rectangular field and its estimated error for the following re-
corded values:
*(a) 243.89 £ 0.05 ft, by 208.65 £ 0.04 ft
(b) 72533 £ 0.08 ft by 664.21 *+ 0.06 ft
(¢) 128.526 * 0.005 m, by 180.403 + 0.007 m
3.28 Adjust the angles of triangle ABC for the following angular values and weights:
*(a) A = 49°24'22" wt2; B = 39°02'16", wt 1; C = 91°33'00", wt 3
(b) A = 79°23'55", wt3; B = 56°41'05", wt 2; C = 43°55'33", wt 1

3.29 Determine relative weights and perform a weighted adjustment (to the nearest sec-
ond) for angles A, B, and C of a plane triangle, given the following four observa-
tions for each angle:

Angle A Angle B Angle C
44°28'16" 65°56'13" 69°35'20"
44°28'12" 65°56'10" 69°35'24"
44°28'17" 65°56'06" 69°35'18"

44°28'11" 65°56'08" 69°35'24"

Problems 67
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3.30 A line of levels was run from benchmarks A to B, B to C, and C to D. The elevation
differences obtained between benchmarks, with their standard deviations, are listed
below. What is the difference in elevation from benchmark A to D and the standard
deviation of that elevation difference?

(a) BM A to BM B = +12.68 = 0.10 ft; BM B to BM C = —8.23 * 0.18 ft; and
BM CtoBM D = —14.66 £ 0.06 ft

(b) BMAtoBM B = —15.324 + 0.022m; BM BtoBM C = —10.250 * 0.015 m;
and BM CtoBM D = —16.892 £ 0.008 m

BIBLIOGRAPHY

Alder, K. 2002. The Measure of All Things— The Seven-Year Odyssey and Hidden Error
that Transformed the World. New York: The Free Press.

Bell, J. 2001. “Hands On: TDS for Windows CE On the Ranger.” Professional Surveyor 21
(No. 1): 33.

Buckner, R. B. 1997. “The Nature of Mecasurements: Part I—The Inexactness of
Measurement— Counting vs. Measuring.” Professional Surveyor 17 (No. 2).

.1997. “The Nature of Measurements: Part Il —Mistakes and Errors.” Professional

Surveyor 17 (No. 3).

.1997. “The Nature of Measurements: Part Il — Dealing With Errors.” Professional

Surveyor 17 (No. 4).

. 1997. “The Nature of Measurements: Part IV—Precision and Accuracy.”

Professional Surveyor 17 (No. 5).

. 1997. “The Nature of Measurements: Part V—On Property Corners and

Measurement Science.” Professional Surveyor 17 (No. 6).

. 1997. “The Nature of Measurement: Part VI—Level of Certainty.” Professional

Surveyor 17 (No. 8).

1998. “The Nature of Measurements: Part VII—Significant Figures in

Measurements.” Professional Surveyor 18 (No. 2).

. 1998. “The Nature of Measurements: Part VIII—Basic Statistical Analysis of
Random Errors.” Professional Surveyor 18 (No. 3).

Cummock, M. and G. Wagstaff. 1999. “Part 1: Measurements— A Roll of the Dice.” Point
of Beginning 24 (No. 6): 34.

Foster. R. 2003. “Uncertainty about Positional Uncertainty.” Point of Beginning 28
(No. 11): 40.

Ghilani, C. D. 2003. “Statistics and Adjustments Explained Part 1: Basic Concepts.”
Surveying and Land Information Science 63 (No. 2): 62.

.2003. “Statistics and Adjustments Explained Part 2: Sample Sets and Reliability.”

Surveying and Land Information Science 63 (No. 3): 141.

. 2010. Adjustment Computations: Spatial Data Analysis. New York: Wiley.

Uotila, U. A. 2006. “Useful Statistics for Land Surveyors.” Surveying and Land
Information Science 66 (No. 1): 7.




PART | * LEVELING—THEORY AND METHODS

H 4.1 INTRODUCTION

Leveling is the general term applied to any of the various processes by which
elevations of points or differences in elevation are determined. It is a vital
operation in producing necessary data for mapping, engineering design, and
construction. Leveling results are used to (1) design highways, railroads, canals,
sewers, water supply systems, and other facilities having grade lines that best
conform to existing topography; (2) lay out construction projects according to
planned elevations; (3) calculate volumes of earthwork and other materials;
(4) investigate drainage characteristics of an area; (5) develop maps showing
general ground configurations; and (6) study subsidence and crustal motion of
the Earth.

H 4.2 DEFINITIONS

Basic terms in leveling are defined in this section, some of which are illustrated
in Figure 4.1.

Vertical line. A line that follows the local direction of gravity as indicated
by a plumb line.

Level surface. A curved surface that at every point is perpendicular to the
local plumb line (the direction in which gravity acts). Level surfaces are
approximately spheroidal in shape. A body of still water is the closest
example of a level surface. Within local areas, level surfaces at different
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Figure 4.1
Leveling terms.

heights are considered to be concentric.' Level surfaces are also known
as equipotential surfaces since, for a particular surface, the potential of
gravity is equal at every point on the surface.

Level line. A line in a level surface —therefore, a curved line.

Horizontal plane. A plane perpendicular to the local direction of gravity.
In plane surveying, it is a plane perpendicular to the local vertical line.

Horizontal line. A line in a horizontal plane. In plane surveying, it is a line
perpendicular to the local vertical.

Vertical datum. Any level surface to which elevations are referenced. This
is the surface that is arbitrarily assigned an elevation of zero (see Section
19.6). This level surface is also known as a reference datum since points
using this datum have heights relative to this surface.

Elevation. The distance measured along a vertical line from a vertical
datum to a point or object. If the elevation of point A is 802.46 ft, A is
802.46 ft above the reference datum. The elevation of a point is also
called its height above the datum and orthometric height.

Geoid. A particular level surface that serves as a datum for all elevations
and astronomical observations.

Mean sea level (MSL). This term is no longer applicable to benchmark
elevations in NAVDS88. MSL was defined as the average height for
the surface of the seas for all stages of tide over a 19-year period as
determined by the National Geodetic Vertical Datum of 1929, further
described in Section 4.3. It was derived from readings, usually taken

'Due to flattening of the Earth in the polar direction, level surfaces at different elevations and differ-
ent latitudes are not truly concentric. This topic is discussed in more detail in Chapter 19.
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at hourly intervals, at 26 gaging stations along the Atlantic and Pacific
oceans and the Gulf of Mexico. The elevation of the sea differs from
station to station depending on local influences of the tide; for example,
at two points 0.5 mi apart on opposite sides of an island in the Florida
Keys, it varies by 0.3 ft. MSL was accepted as the vertical datum for
North America for many years. However, the current vertical datum
uses a single benchmark as a reference (see Section 4.3).

Tidal datum. The vertical datum used in coastal areas for establish-
ing property boundaries of lands bordering waters subject to tides.
A tidal datum also provides the basis for locating fishing and oil drilling
rights in tidal waters, and the limits of swamp and overflowed lands.
Various definitions have been used in different areas for a tidal datum,
but the one most commonly employed is the mean high water (MHW)
line. Others applied include mean higher high water (MHHW), mean
low water (MLW), and mean lower low water (MLLW). Interpretations
of a tidal datum, and the methods by which they are determined, have
been, and continue to be, the subject of numerous court cases.

Benchmark (BM). A relatively permanent object, natural or artificial,
having a marked point whose elevation above or below a reference
datum is known or assumed. Common examples are metal disks set in
concrete (see Figure 20.8), reference marks chiseled on large rocks, non-
movable parts of fire hydrants, curbs, and so on.

Leveling. The process of finding elevations of points or their differences in
elevation.

Vertical control. A series of benchmarks or other points of known eleva-
tion established throughout an area, also termed basic control or level
control. The basic vertical control for the United States was derived
from first- and second-order leveling. Less precise third-order leveling
has been used to fill gaps between second-order benchmarks, as well as
for many other specific projects (see Section 19.10). Elevations of bench-
marks, which are part of the National Spatial Reference System, can be
obtained online from the National Geodetic Survey at http://www.ngs.
noaa.gov. The data sheets for vertical control give the (1) approximate
geodetic coordinates for the station, (2) adjusted NAVDS8S8 elevation,
(3) observed or modeled gravity reading at the station, and (4) a descrip-
tion of the station and its location among other things. Software plugins
for an Internet browser exists that will plot these points in Google Earth
to aid in the location of the monuments in the field.

H 4.3 NORTH AMERICAN VERTICAL DATUM

Precise leveling operations to establish a distributed system of reference bench-
marks throughout the United States began in the 1850s. This work was initially
concentrated along the eastern seaboard, but in 1887 the U.S. Coast and Geodetic
Survey (USC&GS) began its first transcontinental leveling across the country’s
midsection. That project was completed in the early 1900s. By 1929, thousands
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of benchmarks had been set. In that year, the USC&GS began a general least-
squares adjustment of all leveling completed in the United States and Canada.
The adjustment involved over 100,000 km of leveling and incorporated long-term
data from the 26 tidal gaging stations; hence it was related to MSL. In fact, that
network of benchmarks with their resulting adjusted elevations defined the MSL
datum. It was called the National Geodetic Vertical Datum of 1929 (NGVD29).
Through the years after 1929, the NGVD29 deteriorated somewhat due
to various causes including changes in sea level and shifting of the Earth’s crust.
Also, more than 625,000 km of additional leveling was completed. To account
for these changes and incorporate the additional leveling, the National Geodetic
Survey (NGS) performed a new general readjustment. Work on this adjustment,
which included more than 1.3 million observed elevation differences, began in
1978. Although not finished until 1991, its planned completion date was 1988, and
thus it has been named the North American Vertical Datum of 1988 (NAVDSS).
Besides the United States and Canada, Mexico was also included in this general
readjustment. This adjustment shifted the position of the reference surface from
the mean of the 26 tidal gage stations to a single tidal gage benchmark known as
Father Point, which is in Rimouski, Quebec, Canada, near the mouth of the St.
Lawrence Seaway. Thus, elevations in NAVDS8S8 are no longer referenced to MSL.
Benchmark elevations that were defined by the NGVD29 datum have changed by
relatively small, but nevertheless significant amounts in the eastern half of the con-
tinental United States (see Figure 19.7). However, the changes are much greater in
the western part of the country and reach 1.5 m in the Rocky Mountain region. It
is therefore imperative that surveyors positively identify the datum to which their
elevations are referred. Listings of the new elevations are available from the NGS.2

H 4.4 CURVATURE AND REFRACTION

From the definitions of a level surface and a horizontal line, it is evident that
the horizontal plane departs from a level surface because of curvature of the
Earth. In Figure 4.2 the deviation DB from a horizontal line through point A is
expressed approximately by the formulas

C; = 0.667M* = 0.0239F> (4.1a)

or
C,, = 0.0785K? (4.1b)
where the departure of a level surface from a horizontal line is Cy in feet or C,,, in

meters, M is the distance AB in miles, F the distance in thousands of feet, and K
the distance in kilometers.

"Descriptions and NAVDSS elevations of benchmarks can be obtained from the National Geodetic
Information Center at their website address http://www.ngs.noaa.gov/cgi-bin/datasheet.prl. Information
can also be obtained by email at info_center@ngs.noaa.gov, or by writing to the National Geodetic
Information Center, NOAA, National Geodetic Survey, 1315 East West Highway, Silver Spring, MD
20910; telephone: (301) 713-3242.
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4.4 Curvature and Refraction

H (Line of sight A Horizontal line p
=

o

R

Since points A and B are on a level line, they have the same elevation. If
a graduated rod was held vertically at B and a reading was taken on it by means
of a telescope with its line of sight AD horizontal, the Earth’s curvature would
cause the reading to be read too high by length BD.

Light rays passing through the Earth’s atmosphere are bent or refracted
toward the Earth’s surface, as shown in Figure 4.3. Thus a theoretically horizon-
tal line of sight, like AH in Figure 4.2, is bent to the curved form AR. Hence the
reading on a rod held at R is diminished by length RH.

The effects of refraction in making objects appear higher than they really
are (and therefore rod readings too small) can be remembered by noting what
happens when the sun is on the horizon, as in Figure 4.3. At the moment when
the sun has just passed below the horizon, it is seen just above the horizon.
The sun’s diameter of approximately 32 min is roughly equal to the average
refraction on a horizontal sight. Since the red wavelength of light bends the
least, it is not uncommon to see a red sun in a clear sky at dusk and dawn.

Displacement resulting from refraction is variable. It depends on atmo-
spheric conditions, length of line, and the angle a sight line makes with the
vertical. For a horizontal sight, refraction Ry in feet or R,, in meters is expressed
approximately by the formulas

Ry = 0.093 M* = 0.0033 F* (4.2q)

Star

Apparent vertical angle
Sun as seen because

Horizon O of refraction
A () Actual position
6‘9/7/71 of sun
5
2
%

Figure 4.2
Curvature and
refraction.

Figure 4.3
Refraction.
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or
R, = 0.011K? (4.2b)
This is about one seventh the effect of curvature of the Earth, but in the opposite
direction.
The combined effect of curvature and refraction, 4 in Figure 4.2, is
approximately
hy = 0.574 M* = 0.0206 F* (4.3q)
or
h,, = 0.0675 K> (4.3b)

where Ay is in feet and h,,, is in meters.

For sights of 100, 200, and 300 ft, h; = 0.00021, 0.00082, and 0.0019 ft,
respectively, or 0.00068 m for a 100 m length. It will be explained in Section 5.4
that, although the combined effects of curvature and refraction produce rod read-
ings that are slightly too large, proper field procedures in differential leveling can
practically eliminate the error due to these causes. However, this is not true for
trigonometric leveling (see Section 4.5.4) where this uncompensated systematic
error can result in erroneous elevation determinations. This is one of several rea-
sons why trigonometric leveling has never been used in geodetic surveys.

H 4.5 METHODS FOR DETERMINING DIFFERENCES
IN ELEVATION

Differences in elevation have traditionally been determined by taping, differ-
ential leveling, barometric leveling, and indirectly by trigonometric leveling.
A newer method involves measuring vertical distances electronically. Brief de-
scriptions of these methods follow. Other new techniques, described in Chapters 13,
14, and 15, utilize satellite systems. Elevation differences can also be determined
using photogrammetry, as discussed in Chapter 27.

4.5.1 Measuring Vertical Distances by Taping
or Electronic Methods

Application of a tape to a vertical line between two points is sometimes possible.
This method is used to measure depths of mine shafts, to determine floor eleva-
tions in condominium surveys, and in the layout and construction of multistory
buildings, pipelines, etc. When water or sewer lines are being laid, a graduated
pole or rod may replace the tape (see Section 23.4). In certain situations, espe-
cially on construction projects, reflectorless electronic distance measurement
(EDM) devices (see Section 6.22) are replacing the tape for measuring vertical
distances on construction sites. This concept is illustrated in Figures 4.4 and 23.4.

4.5.2 Differential Leveling

In this most commonly employed method, a telescope with suitable magnification
is used to read graduated rods held on fixed points. A horizontal line of sight within
the telescope is established by means of a level vial or automatic compensator.
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N

The basic procedure is illustrated in Figure 4.5. An instrument is set up
approximately halfway between BM Rock and point X. 3 Assume the elevation of
BM Rock is known to be 820.00 ft. After leveling the instrument, a plus sight taken
on a rod held on the BM gives a reading of 8.42 ft. A plus sight (+S), also termed
backsight (BS), is the reading on a rod held on a point of known or assumed eleva-
tion. This reading is used to compute the height of instrument (HI), defined as the
vertical distance from datum to the instrument line of sight. Direction of the sight—
whether forward, backward, or sideways—is not important. The term “plus sight”
is preferable to “backsight,” but both are used. Adding the plus sight 8.42 ft to the
elevation of BM Rock, 820.00, gives an HI of 828.42 ft.

,,-1 .20 ft

/\

8.42 ft

BM Rock

Datum elev 0.00

3As noted in Section 4.4, the combination of Earth’s curvature and atmospheric refraction causes
rod readings to be too large. However, for any setup, if the backsight and foresight lengths are made
equal (which is accomplished with the midpoint setup) the error from these sources is eliminated, as
described in Section 5.4.

Figure 4.4
Reflectorless
EDMs are being
used to mea-
sure elevation
differences in
construction
applications.
(Courtesy Leica
Geosystems.)

Figure 4.5
Differential
leveling.
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Figure 4.6
Surveying altimeter.

If the telescope is then turned to bring into view a rod held on point X,
a minus sight (—S), also called foresight (FS), is obtained. In this example, it is
1.20 ft. A minus sight is defined as the rod reading on a point whose elevation is
desired. The term minus sight is preferable to foresight. Subtracting the minus
sight, 1.20 ft, from the HI, 828.42, gives the elevation of point X as 827.22 ft.

Differential leveling theory and applications can thus be expressed by two
equations, which are repeated over and over

HI = elev + BS (4.4)
and
elev = HI — FS (4.5)

Since differential leveling is by far the most commonly used method to determine
differences in elevation, it will be discussed in detail in Chapter 5.

4.5.3 Barometric Leveling

The barometer, an instrument that measures air pressure, can be used to find rel-
ative elevations of points on the Earth’s surface since a change of approximately
1000 ft in elevation will correspond to a change of about 1 in. of mercury (Hg)
in atmospheric pressure. Figure 4.6 shows a surveying altimeter. Calibration of
the scale on different models is in multiples of 1 or 2 ft, 0.5 or 1 m. Air pressures
are affected by circumstances other than difference in elevation, such as sudden
shifts in temperature and changing weather conditions due to storms. Also, dur-
ing each day a normal variation in barometric pressure amounting to perhaps a
100-ft difference in elevation occurs. This variation is known as the diurnal range.

In barometric leveling, various techniques can be used to obtain correct
elevation differences in spite of pressure changes that result from weather varia-
tions. In one of these, a control barometer remains on a benchmark (base) while




4.5 Methods for Determining Differences in Elevation 77

a roving instrument is taken to points whose elevations are desired. Readings
are made on the base at stated intervals of time, perhaps every 10 min, and
the elevations recorded along with temperature and time. Elevation, tempera-
ture, and time readings with the roving barometer are taken at critical points
and adjusted later in accordance with changes observed at the control point.
Methods of making field surveys using a barometer have been developed in
which one, two, or three bases may be used. Other methods employ leapfrog
or semi-leapfrog techniques. In stable weather conditions, and by using several
barometers, elevations correct to within *2 to 3 ft are possible.

Barometers have been used in the past for work in rough country where
extensive areas had to be covered but a high order of accuracy was not required.
However, they are seldom used today having given way to other more modern
and accurate equipment.

4.5.4 Trigonometric Leveling

The difference in elevation between two points can be determined by measuring
(1) the inclined or horizontal distance between them and (2) the zenith angle
or the altitude angle to one point from the other. (Zenith and altitude angles,
described in more detail in Section 8.13, are measured in vertical planes. Zenith
angles are observed downward from vertical, and altitude angles are observed up
or down from horizontal.) Thus, in Figure 4.7 if slope distance S and zenith angle
z or altitude angle « between C and D are observed, then V, the elevation differ-
ence between C and D, is

V =S8cosz (4.6)
or

V = Ssin« (4.7)
Alternatively, if horizontal distance H between C and D is measured, then V'is

V =Hcotz (4.8)
or
V = Htan « (4.9)

The difference in elevation (Aelev) between points A and B in Figure 4.7 is given by
Aelev =hi+V —r (4.10)

where hi is the height of the instrument above point A and r the reading on the
rod held at B when zenith angle z or altitude angle « is read. If r is made equal to
hi, then these two values cancel in Equation (4.10) and simplify the computations.

Note the distinction in this chapter between HI and hi. Although both are
called height of instrument, the term HI is the elevation of the instrument above
datum, as described in Section 4.5.2, while hi is the height of the instrument
above an occupied point, as discussed here.

For short lines (up to about 1000 ft in length) elevation differences ob-
tained in trigonometric leveling are appropriately depicted by Figure 4.7 and
properly computed using Equations (4.6) through (4.10). However, for longer
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Figure 4.7
Trigonometric
leveling—short
lines.

A elev

Horizontal E

lines Earth curvature and refraction become factors that must be considered.
Figure 4.8 illustrates the situation. Here an instrument is set up at C over point A.
Sight D is made on a rod held at point B, and zenith angle z,,, or altitude angle
a,,, is observed. The true difference in elevation (Aelev) between A and B is
vertical distance HB between level lines through A and B, which is equal to
HG + GF + V — ED — r. Since HG is the instrument height hi, GF is Earth’s
curvature C [see Equations (4.1)], and ED is refraction R [see Equations (4.2)],
the elevation difference can be written as

Aelev = hi + V + heg — 7 (4.11)

The value of V in Equation (4.11) is obtained using one of Equations (4.6)
through (4.9), depending on the quantities being observed. Again if 7 is made equal
to hi, these values cancel. Also, the term /Ay is given by Equations (4.3). Thus,
except for the addition of the curvature and refraction correction, long and short
sights may be treated the same in trigonometric leveling computations. Note that
in developing Equation (4.11), angle F in triangle CFE was assumed to be 90°. Of
course as lines become extremely long, this assumption does not hold. However,
for lengths within a practical range, errors caused by this assumption are negligible.

The hiused in Equation (4.11) can be obtained by simply observing the vertical
distance from the occupied point up to the instrument’s horizontal axis (axis about
which the telescope rotates) using a graduated rule or rod. An alternate method
can be used to determine the elevation of a point that produces accurate results
and does not require measurement of the 4i. In this procedure, which is especially
convenient if a total station instrument is used, the instrument is set up at a location
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Earth

curvature
Level line
—
\ Level line
hi S

where it is approximately equidistant from a point of known elevation (benchmark)
and the one whose elevation is to be determined. The slope distance and zenith
(or vertical) angle are measured to each point. Because the distances from the two
points are approximately equal, curvature and refraction errors cancel. Also, since
the same instrument setup applies to both readings, the /i values cancel, and if the
same rod reading r is sighted when making both angle readings, they cancel. Thus
the elevation of the unknown point is simply the benchmark elevation, minus V'
calculated for the benchmark, plus V computed for the unknown point, where the V'
values are obtained using either Equation (4.6) or (4.7).

N Example 4.1

The slope distance and zenith angle between points A and B were observed with
a total station instrument as 9585.26 ft and 81°42'20", respectively. The Ai and rod
reading r were equal. If the elevation of A is 1238.42 ft, compute the elevation of B.

Solution

By Equation (4.3a), the curvature and refraction correction is

9585.26 sin 81°42'20"
1000

2

Figure 4.8
Trigonometric
leveling—long
lines.
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(Theoretically, the horizontal distance should be used in computing curvature
and refraction. In practice, multiplying the slope distance by the sine of the zenith
angle approximates it.)

By Equations (4.6) and (4.11), the elevation difference is (note that 4i and r
cancel)

V = 9585.26 cos 81°42'20" = 1382.77 ft
Aelev = 1382.77 + 1.85 = 1384.62 ft

Finally, the elevation of B is
elevg = 1238.42 + 1384.62 = 2623.04 ft

Note that if curvature and refraction had been ignored, an error of 1.85 ft
would have resulted in the elevation for B in this calculation. Although Equation
(4.11) was derived for an uphill sight, it is also applicable to downhill sights. In
that case, the algebraic sign of V obtained in Equations (4.6) through (4.9) will
be negative because the vertical angles, « or z, will cause the trigonometric func-
tions to return a negative value.

For uphill sights curvature and refraction is added to a positive V to increase
the elevation difference. For downhill sights, it is again added, but to a negative
V, which decreases the elevation difference. Therefore, if “reciprocal” zenith (or
altitude) angles are read (simultaneously observing the angles from both ends
of a line), and V is computed for each and averaged, the effects of curvature
and refraction cancel. Alternatively, the curvature and refraction correction can
be completely ignored if one calculation of V is made using the average of the
reciprocal angles. This assumes atmospheric conditions remain constant, so that
refraction is equal for both angles. Hence they should be observed within as short
a time period as possible. This method is preferred to reading the zenith (or alti-
tude) angle from one end of the line and correcting for curvature and refraction,
as in Example 4.1. The reason is that Equations (4.3) assume a standard atmo-
sphere, which may not actually exist at the time of observations.

M Example 4.2

For Example 4.1, assume that at B the slope distance was observed again as
9585.26 ft and the zenith angle was read as 98°19'06". The instrument height
and r were equal. Compute (a) the elevation difference from this end of the line
and (b) the elevation difference using the mean of reciprocal angles.

Solution

(a) By Equation (4.3a), hicg = 1.85 (the same as for Example 4.1).
By Equations (4.6) and (4.11) (note that A4i and r cancel),

Aelev = 9585.26 cos 98°19'06” + 1.85 = —1384.88 ft

Note that this disagrees with the value of Example 4.1 by 0.26 ft. (The sight
from B to A was downhill, hence the negative sign.) The difference of 0.26 ft is
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most probably due partly to observational errors and partly to refraction changes

that occurred during the time interval between vertical angle observations. The

average elevation difference for observations made from the two ends is 1384.75 ft.
81°42'20" + (180° — 98°19'06")

(b) The average zenith angle is > = 81°41'37"

By Equation (4.10), Aelev = 9585.26 cos 81°41'37" = 1384.75 ft

Note that this checks the average value obtained using the curvature and
refraction correction.

With the advent of total station instruments, trigonometric leveling has
become an increasingly common method for rapid and convenient observation
of elevation differences because slope distances and vertical angles are quickly
and easily observed from a single setup. Trigonometric leveling is used for
topographic mapping, construction stakeout, control surveys, and other tasks. It is
particularly valuable in rugged terrain. In trigonometric leveling, accurate vertical
angle observations are critical. For precise work, a 1” to 3” total station instrument
is recommended and angles should be read direct and reversed from both ends
of a line. Also, errors caused by uncertainties in refraction are mitigated if sight
lengths are limited to about 1000 ft.

PART Il » EQUIPMENT FOR DIFFERENTIAL LEVELING

B 4.6 CATEGORIES OF LEVELS

Instruments used for differential leveling can be classified into four categories:
dumpy levels, tilting levels, automatic levels, and digital levels. Although each differs
somewhat in design, all have two common components: (1) a telescope to create a
line of sight and enable a reading to be taken on a graduated rod and (2) a system
to orient the line of sight in a horizontal plane. Dumpy and tilting levels use level
vials to orient their lines of sight, while automatic levels employ automatic com-
pensators. Digital levels also employ automatic compensators, but use bar-coded
rods for automated digital readings. Automatic levels are the type most commonly
employed today, although tilting levels are still used especially on projects requiring
very precise work. Digital levels have gained prominence due to their ability to be
interfaced with a survey controller (see Section 2.12) and their ease of use. These
three types of levels are described in the sections that follow. Dumpy levels are
rarely used today, having been replaced by these other newer types. Hand levels,
although not commonly used for differential leveling, have many special uses where
rough elevation differences over short distances are needed. They are also discussed
in this chapter. Total station instruments can also be used for differential leveling.
These instruments and their uses are described in Section 8.18.

Electronic laser levels that transmit beams of either visible laser or invisible
infrared light are another category of leveling instruments. They are not com-
monly employed in differential leveling, but are used extensively for establishing
elevations on construction projects. They are described in Chapter 23.
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Figure 4.9

Parts of an
automatic level.
(Courtesy Leica
Geosystems AG.)

B 4.7 TELESCOPES

The telescopes of leveling instruments define the line of sight and magnify the
view of a graduated rod against a reference reticle, thereby enabling accurate
readings to be obtained. The components of a telescope are mounted in a cylindri-
cal tube. Its four main components are the objective lens, negative lens, reticle,
and eyepiece. Two of these parts, the objective lens and eyepiece, are external
to the instrument, and are shown on the automatic level illustrated in Figure 4.9.

Objective Lens. This compound lens, securely mounted in the tube’s object
end, has its optical axis reasonably concentric with the tube axis. Its main
function is to gather incoming light rays and direct them toward the neg-
ative focusing lens.

Negative Lens. The negative lens is located between the objective lens
and reticle, and mounted so its optical axis coincides with that of the
objective lens. Its function is to focus rays of light that pass through
the objective lens onto the reticle plane. During focusing, the negative
lens slides back and forth along the axis of the tube.

Reticle. The reticle consists in a pair of perpendicular reference lines (usu-
ally called cross hairs) mounted at the principal focus of the objective
optical system. The point of intersection of the cross hairs, together with
the optical center of the objective system, forms the so-called line of
sight, also sometimes called the line of collimation. The cross hairs were
originally created by stretching the hairs of a horse, which was read-
ily available at the time, between two screws. Today they are fine lines
etched on a thin round glass plate. The glass plate is held in place in the
main cylindrical tube by two pairs of opposing screws, which are located
at right angles to each other to facilitate adjusting the line of sight. Two
additional lines parallel to and equidistant from the primary lines are
commonly added to reticles for special purposes such as for three-wire
leveling (see Section 5.8) and for stadia (see Section 5.4). The reticle is

Circular level
bubble Sight

Objective lens
focus

Eyepiece focus

= — Objective lens

Horizontal motion
screw

Capstan screws

Leveling screws
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mounted within the main telescope tube with the lines placed in a hori-
zontal-vertical orientation.

Eyepiece. The eyepiece is a microscope (usually with magnification from
about 25 to 45 power) for viewing the image.

Focusing is an important required function when using a telescope. The process is
governed by the fundamental principle of lenses stated in the following formula:

L, 1.1 (4.12)
h o f

where fi is the distance from the lens to the image at the reticle plane, f, the
distance from the lens to the object, and f the lens focal length. The focal length
of any lens is a function of the radii of the ground spherical surfaces of the lens,
and of the index of refraction of the glass from which it is made. It is a constant
for any particular single or compound lens. To focus for each varying f, distance,
fi must be changed to maintain the equality of Equation (4.12).

Focusing the telescope of a level is a two-stage process. First the eyepiece lens
must be focused. Since the position of the reticle in the telescope tube remains fixed,
the distance between it and the eyepiece lens must be adjusted to suit the eye of an
individual observer. This is done by bringing the cross hairs to a clear focus; that
is, making them appear as black as possible when sighting at the sky or a distant,
light-colored object. Once this has been accomplished, the adjustment need not be
changed for the same observer, regardless of sight length, unless the eye fatigues.

The second stage of focusing occurs after the eyepiece has been adjusted.
Objects at varying distances from the telescope are brought to sharp focus at the
plane of the cross hairs by turning the focusing knob. This moves the negative
focusing lens to change f; and create the equality in Equation (4.12) for varying
£, distances.

After focusing, if the cross hairs appear to travel over the object sighted
when the eye is shifted slightly in any direction, parallax exists. The objective lens,
the eyepiece, or both must be refocused to eliminate this effect if accurate work
is to be done. The video Removing Parallax, which is available on the companion
website for this book, demonstrates how to remove parallax in an instrument.

Opd0
=]
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H 4.8 LEVEL VIALS

Level vials are used to orient many different surveying instruments with respect to
the direction of gravity. There are two basic types: the tube vial and the circular or
so-called “bull’s-eye” version. Tube vials are used on tilting levels (and also on the
older dumpy levels) to precisely orient the line of sight horizontal prior to making
rod readings. Circular vials are also used on tilting levels, and on automatic levels
for quick, rough leveling, after which precise final leveling occurs. The principles
of both types of vials are identical.

A tube level is a glass tube manufactured so that its upper inside surface
precisely conforms to an arc of a given radius (see Figure 4.10). The tube is sealed
at both ends, and except for a small air bubble, it is filled with a sensitive liquid.
The liquid must be nonfreezing, quick acting, and maintain a bubble of relatively
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H‘ ‘H 2 mm Axis of level vial
(tangent at midpoint)
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. *J‘ «—20” sensitivity angle
Figure 4.10 \|

Tube-type level vial. L

~—Radius of curvature

stable length for normal temperature variations. Purified synthetic alcohol is gen-
erally used. As the tube is tilted, the bubble moves, always to the highest point
in the tube because air is lighter than the liquid. Uniformly spaced graduations
etched on the tube’s exterior surface, and spaced 2 mm apart, locate the bubble’s
relative position. The axis of the level vial is an imaginary longitudinal line tangent
to the upper inside surface at its midpoint. When the bubble is centered in its run,
the axis should be a horizontal line, as in Figure 4.10. For a leveling instrument
that uses a level vial, if it is in proper adjustment, its line of sight is parallel to its
level vial axis. Thus by centering the bubble, the line of sight is made horizontal.

Its radius of curvature, established in manufacture, determines the sensi-
tivity of a level vial; the larger the radius, the more sensitive a bubble. A highly
sensitive bubble, necessary for precise work, may be a handicap in rough surveys
because more time is required to center it.

A properly designed level has a vial sensitivity correlated with the resolving
power (resolution) of its telescope. A slight movement of the bubble should be
accompanied by a small but discernible change in the observed rod reading at a
distance of about 200 ft. Sensitivity of a level vial is expressed in two ways: (1) the
angle, in seconds, subtended by one division on the scale and (2) the radius of the
tube’s curvature. If one division subtends an angle of 20" at the center, it is called
a 20" bubble. A 20" bubble on a vial with 2-mm division spacings has a radius of
approximately 68 ft.* The sensitivity of level vials on most tilting levels (and the
older dumpy levels) ranges from approximately 20" to 40".

“The relationship between sensitivity and radius is readily determined. In radian measure, an angle 0
subtended by an arc whose radius and length are R and S, respectively, is given as

Thus for a 20” bubble with 2-mm vial divisions, by substitution

20" _ 2mm
206,265"/rad R

Solving for R
R_ 2 mm(206,265" /rad)
- 20"

= 20,625 mm = 20.6 m = 68 ft (approx.)



Figure 4.11 illustrates the coincidence-type tube level vial used on precise
equipment. A prism splits the image of the bubble and makes the two ends visible
simultaneously. Bringing the two ends together to form a smooth curve centers the
bubble. This arrangement enables bubble centering to be done more accurately.

Circular level vials are spherical in shape (see Figure 4.12), the inside sur-
face of the sphere being precisely manufactured to a specific radius. Like the
tube version, except for an air bubble, circular vials are filled with liquid. The
vial may be graduated with concentric circles having 2-mm spacings. Its axis is
actually a plane tangent to the radius point of the graduated concentric circles.
When the bubble is centered in the smallest circle, the axis should be horizontal.
Besides their use for rough leveling of tilting and automatic levels, circular vials
are also used on total station instruments, tribrachs, rod levels, prism poles, and
many other surveying instruments. Their sensitivity is much lower than that of
tube vials—generally, in the range from 2’ to 25’ per 2-mm division but they
allow someone to quickly obtain an approximate level of the instrument.

H 4.9 TILTING LEVELS

Tilting levels were used for the most precise work. With these instruments, an
example of which is shown in Figure 4.13, quick approximate leveling is achieved
using a circular vial and the leveling screws. On some tilting levels, a ball-and-
socket arrangement (with no leveling screws) permits the head to be tilted and
quickly locked nearly level. Precise level in preparation for readings is then ob-
tained by carefully centering a telescope bubble. This is done for each sight, after
aiming at the rod, by tilting or rotating the telescope slightly in a vertical plane
about a fulcrum at the vertical axis of the instrument. A micrometer screw under
the eyepiece controls this movement.

The tilting feature saves time and increases accuracy, since only one screw
need be manipulated to keep the line of sight horizontal as the telescope is turned
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Figure 4.11
Coincidence-type
level vial correctly
set in left view;
twice the deviation
of the bubble shown
in the right view.

Figure 4.12
Bull’s-eye level
vial.
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Figure 4.13
Parts of a precise
tilting level.

Figure 4.14
Automatic level
with micrometer.
(Courtesy Topcon
Positioning
Systems.)
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about a vertical axis. The telescope bubble is viewed through a system of prisms
from the observer’s normal position behind the eyepiece. A prism arrangement
splits the bubble image into two parts. Centering the bubble is accomplished by
making the images of the two ends coincide, as in Figure 4.11.

The tilting level shown in Figure 4.13 has a three-screw leveling head, 42X
magnification, and sensitivity of the level vial equal to 10”/2 mm.

H 4.10 AUTOMATIC LEVELS

Automatic levels of the type pictured in Figure 4.14 incorporate a self-leveling
feature. Most of these instruments have a three-screw leveling head, which is used
to quickly center a circular bubble, although some models have a ball-and-socket
arrangement for this purpose. After the circular bubble is centered manually, an
automatic compensator takes over, levels the line of sight, and keeps it level.

The operating principle of one type of automatic compensator used in
automatic levels is shown schematically in Figure 4.15. The system consists of
prisms suspended from wires to create a pendulum. The wire lengths, support
locations, and nature of the prisms are such that only horizontal rays reach
the intersection of cross hairs. Thus, a horizontal line of sight is achieved even
though the telescope itself may be slightly tilted away from horizontal. Damping
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When telescope tilts down, compensator swings forward.

devices shorten the time for the pendulum to come to rest, so the operator does
not have to wait.

Automatic levels have become popular for general use because of the ease
and rapidity of their operation. Some are precise enough for high-order work if
a parallel-plate micrometer is attached to the telescope front as an accessory, as
with the instrument shown in Figure 4.14. When the micrometer plate is tilted,
the line of sight is displaced parallel to itself, and decimal parts of rod gradua-
tions can be read by means of a graduated dial.

Under certain conditions, the damping devices of an automatic level
compensator can stick. To check, with the instrument leveled and focused, read
the rod held on a stable point, lightly tap the instrument, and after it vibrates,
determine whether the same reading is obtained. Also, some unique compen-
sator problems, such as residual stresses in the flexible links, can introduce
systematic errors if not corrected by an appropriate observational routine on
first-order work. Another problem is that some automatic compensators are
affected by magnetic fields, which can result in systematic errors in rod read-
ings. The sizes of the errors are azimuth-dependent, maximum for lines run
north and south, and can exceed 1 mm/km. Thus, it is of concern for high-order
control leveling only.

Figure 4.15
Compensator of
self-leveling level.
(Courtesy Keuffel &
Esser Company.)
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Bl 4.11 DIGITAL LEVELS

The newest type of automatic level, the electronic digital level, is pictured in
Figure 4.16(a). It is classified in the automatic category because it uses a pendulum
compensator to level itself, after an operator accomplishes rough leveling with a
circular bubble. With its telescope and cross hairs, the instrument could be used
to obtain readings manually, just like any of the automatic levels. However, this
instrument is designed to operate by employing electronic digital image processing.
After leveling the instrument, its telescope is turned toward a special bar-coded
rod [Figure 4.16(b)] and focused. At the press of a button, the image of bar codes
in the telescope’s field of view is captured and processed. This processing consists
of an onboard computer comparing the captured image to the rod’s entire pattern,
which is stored in memory. When a match is found, the rod reading is displayed
digitally. It can be recorded manually or automatically stored in a survey controller.

The length of rod appearing within the telescope’s field of view is a function
of the distance from the rod. Thus as a part of its image processing, the instru-
ment is also able to automatically compute the sight length, a feature convenient
for balancing backsight and foresight lengths (see Section 5.4). The instrument’s
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Figure 4.16 (a) Electronic digital level and (b) associated level rod. (Courtesy Topcon Positioning Systems.)



maximum range is approximately 100 m, and its accuracy in rod readings is
1 0.5 mm. The bar-coded rods can be obtained with English or metric gradua-
tions on the side opposite the bar code. The graduated side of the rod can be used
by the operator to manually read the rod in situations that prohibit the instru-
ment from reading the bar codes such as when the rod is in heavy brush.

N 4.12 TRIPODS

Leveling instruments, whether tilting, automatic, or digital, are all mounted on
tripods. A sturdy tripod in good condition is essential to obtain accurate results.
Several types are available. The legs can be made of wood, fiberglass, or metal, may
be fixed or adjustable in length, and solid or split. All models are shod with metallic
conical points and hinged at the top, where they connect to a metal head. An adjust-
able-leg tripod is advantageous for setups in rough terrain or in a shop, but the type
with a fixed-length leg may be slightly more rigid. The split-leg model is lighter than
the solid type, but less rugged. (Adjustment of tripods is covered in Section 8.19.2.)

H 4.13 HAND LEVEL

The hand level (Figure 4.17) is a handheld instrument used on low-precision work,
or to obtain quick checks on more precise work. It consists of a brass tube approxi-
mately 6 in. long, having a plain glass objective and peep-sight eyepiece. A small
level vial mounted above a slot in the tube is viewed through the eyepiece by means
of a prism or 45° angle mirror. A horizontal line extends across the tube’s center.
As shown in Figure 4.18, the prism or mirror occupies only one half of the
tube, and the other part is open to provide a clear sight through the objective
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Figure 4.17

Hand level.
(Courtesy Topcon
Positioning
Systems.)

Figure 4.18
View of level
rod through

a hand level.
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lens. Thus the rod being sighted, and the reflected image of the bubble, is visible
beside each other with the horizontal cross line superimposed.

The instrument is held in one hand and leveled by raising or lowering the
objective end until the cross line bisects the bubble. Resting the level against a
rod or staff provides stability and increases accuracy. This instrument is espe-
cially valuable in quickly checking proposed locations for instrument setups in
differential leveling.

Bl 4.14 LEVEL RODS

A variety of level rods are available, some of which are shown in Figure 4.19.
They are made of wood, fiberglass, or metal and have graduations in feet and
decimals, or meters and decimals.

The Philadelphia rod, shown in Figure 4.19(a) and (b), is the type most
commonly used in college surveying classes. It consists of two sliding sections
graduated in hundredths of a foot and joined by brass sleeves a and b. The
rear section can be locked in position by a clamp screw c to provide any length
from a short rod for readings of 7 ft or less to a long rod (high rod) for readings
up to 13 ft. When the high rod is needed, it must be extended fully, otherwise a
serious mistake will result in its reading. Graduations on the front faces of the
two sections read continuously from zero at the base to 13 ft at the top for the
high-rod setting.

Rod graduations are accurately painted, alternate black and white spaces
0.01 ft wide. Spurs extending the black painting emphasize the 0.1- and 0.05-ft
marks. Tenths are designated by black figures, and footmarks by red numbers,
all straddling the proper graduation. Rodpersons should keep their hands off
the painted markings, particularly in the 3- to 5-ft section, where a worn face
will make the rod unfit for use. A Philadelphia rod can be read accurately with
a level at distances up to about 250 ft. The video Reading a Level Rod, which is
available on the companion website for this book, demonstrates how a leveling
rod graduated to one-hundredth of a foot is read.

A wide choice of patterns, colors, and graduations on single-piece, two-piece,
three-section, and four-section leveling rods is available. The various types, usu-
ally named for cities or states, include the Philadelphia, New York, Boston, Troy,
Chicago, San Francisco, and Florida rods.

Philadelphia rods can be equipped with targets [d in Figure 4.19(a) and (b)]
for use on long sights. When employed, the rodperson sets the target at the in-
strument’s line-of-sight height according to communications or hand signals from
the instrument operator. It is fixed using clamp e, then read and recorded by the
rodperson. The vernier at f, can be used to obtain readings to the nearest 0.001 ft
if desired.

A vernier is a short auxiliary scale set parallel to and beside a primary scale.
It enables reading fractional parts of the smallest main-scale divisions without in-
terpolation. Figure 4.20 shows a vernier scale. The vernier is constructed so that
10 of its divisions cover 9 divisions on the main scale. The difference between the
length of one main-scale division and one vernier division is therefore 0.1 of the
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main-scale division. This is the so-called least count of this vernier. In general, the
least count of a vernier is given by

least count = d/n (4.13)

where d is the value of the smallest main-scale division, and n the number of vernier
divisions that span (n — 1) main-scale units. By Equation (4.13), the least count of
the vernier of Figure 4.201is 0.1/10 = 0.01. This verifies the intuitive determination
given above. An observer cannot make readings using a vernier without first
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Figure 4.19

(a) Philadelphia
rod (front).

(b) Philadelphia
rod (rear).

(c) Double-faced
leveling rod with
metric graduations.
(d) Lenker
direct-reading
rod. (Courtesy
of (c) Leica, Inc.,
(d) Lenker
Manufacturing
Company.)
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Figure 4.20
Reading a vernier
scale

Vernier
0 ! 10

8 9

determining its least count. In Figure 4.20, the first two digits are read where using
the last digit on the main scale across from the 0 mark on the vernier scale; in this
instance, the reading is 8.1. The final digit is the read from the vernier scale where
there is alignment with the main-scale division; in this instance, the 3 on the vernier
scale aligns with a division on the main scale. Thus Figure 4.20 is read as 8.13.

The Chicago rod, consisting of independent sections (usually three) that fit
together but can be disassembled, is widely used on construction surveys. The
San Francisco model has separate sections that slide past each other to extend or
compress its length, and is generally employed on control, land, and other surveys.
Both are conveniently transported in vehicles.

The direct-reading Lenker level rod [Figure 4.19(d)] has numbers in reverse
order on an endless graduated steel-band strip that can be revolved on the rod’s
end rollers. Figures run down the rod and can be brought to a desired reading — for
example, the elevation of a benchmark. Rod readings are preset for the backsight,
and then, due to the reverse order of numbers, foresight readings give elevations
directly without manually adding backsights and subtracting foresights.

A rod consisting of a wooden, or fiberglass, frame and an Invar strip to elimi-
nate the effects of humidity and temperature changes is used on precise work. The
Invar strip, attached at its ends only is free to slide in grooves on each side of the
wooden frame. Rods for precise work are usually graduated in meters and often
have dual scales. Readings of both scales are compared to eliminate mistakes.

As described in Section 1.8, safety in traffic and near heavy equipment is
an important consideration. The Quad-pod, an adjustable stand that clamps to
any leveling rod, can help to reduce traffic hazards, and in some cases also lower
labor costs.

H 4.15 TESTING AND ADJUSTING LEVELS

Through normal use and wear, all leveling instruments will likely become malad-
justed from time to time. The need for some adjustments may be noticed during
use, for example, level vials on tilting levels. Others may not be so obvious, and
therefore it is important that instruments be checked periodically to determine
their state of adjustment. If the tests reveal conditions that should be adjusted,
depending on the particular instrument, and the knowledge and experience of its
operator, some or all of the adjustments can be made immediately in the field.
However, if the parts needing adjustment are not readily accessible, or if the
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operator is inexperienced in making the adjustments, it is best to send the instru-
ments away for adjustment by qualified technicians.

4.15.1 Requirements for Testing and Adjusting Instruments

Before testing and adjusting instruments, care should be exercised to ensure that
any apparent lack of adjustment is actually caused by the instrument’s condition
and not by test deficiencies. To properly test and adjust leveling instruments in
the field, the following rules should be followed:

1. Choose terrain that permits solid setups in a nearly level area enabling
sights of at least 200 ft to be made in opposite directions.

2. Perform adjustments when good atmospheric conditions prevail, prefer-

ably on cloudy days free of heat waves. No sight line should pass through

alternate sun and shadow, or be directed into the sun.

Place the instrument in shade, or shield it from direct rays of the sun.

4. Make sure the tripod shoes are tight and the instrument is screwed onto the
tripod firmly. Spread the tripod legs well apart and position them so that
the tripod plate is nearly level. Press the shoes into the ground firmly.

w

Standard methods and a prescribed order must be followed in adjusting
surveying instruments. Loosening or tightening the proper adjusting nuts and
screws with special tools and pins attains correct positioning of parts. Time is
wasted if each adjustment is perfected on the first trial, since some adjustments
affect others. The complete series of tests may have to be repeated several times
if an instrument is badly off. A final check of all adjustments should be made to
ensure that all have been completed satisfactorily.

Tools and adjusting pins that fit the capstans and screws should be used,
and the capstans and screws should be handled with care to avoid damaging the
soft metal. Adjustment screws are properly set when an instrument is shipped
from the factory. Tightening them too much (or not enough) nullifies otherwise
correct adjustment procedures and may leave the instrument in worse condition
than it was before adjusting.

4.15.2 Adjusting for Parallax

The parallax adjustment is extremely important, and must be kept in mind at
all times when using a leveling instrument, but especially during the testing and
adjustment process. The adjustment is done by carefully focusing the objective lens
and eyepiece so that the cross hairs appear clear and distinct, and so that the cross
hairs do not appear to move against a background object when the eye is shifted
slightly in position while viewing through the eyepiece. The video Removing
Parallax is available on the companion website for this book, which demonstrates
the correct procedures to ensure that parallax is removed from your sights.

oflo
=

4.15.3 Testing and Adjusting Level Vials

For leveling instruments that employ a level vial, the axis of the level vial should
be perpendicular to the vertical axis of the instrument (axis about which the in-
strument rotates in azimuth). Then once the bubble is centered, the instrument
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can be turned about its vertical axis in any azimuth and the bubble will remain
centered. Centering the bubble and revolving the telescope 180° about the ver-
tical axis can quickly check this condition. The distance the bubble moves off
the central position is twice the error. To correct any maladjustment, turn the
capstan nuts at one end of the level vial to move the bubble halfway back to the
centered position. Level the instrument using the leveling screws. Repeat the test
until the bubble remains centered during a complete revolution of the telescope.
The video Leveling an Instrument, which is available on the companion website
for this book, demonstrates how to level an instrument and correct for a bubble
that is out of adjustment.

4.15.4 Preliminary Adjustment of the Horizontal Cross Hair

Although it is good practice to always sight an object at the center of the cross
hairs, if this is not done and the horizontal cross hair is not truly horizontal when
the instrument is leveled, an error will result. To test for this condition, sight a
sharply defined point with one end of the horizontal cross hair. Turn the tele-
scope slowly on its vertical axis so that the cross hair moves across the point.
If the cross hair does not remain on the point for its full length, it is out of
adjustment. To correct any maladjustment, loosen the four capstan screws hold-
ing the reticle. Rotate the reticle in the telescope tube until the horizontal hair
remains on the point as the telescope is turned. The screws should then be care-
fully tightened in their final position. The video Checking the Cross Hairs, which
is available on the companion website for this book, demonstrates how to check
the horizontal cross hairs of an instrument.

4.15.5 Testing and Adjusting the Line of Sight

For tilting levels, described in Section 4.9, when the bubble of the level vial is
centered, the line of sight should be horizontal. In other words, for this type of
instrument to be in perfect adjustment, the axis of the level vial and the line of
sight must be parallel. If they are not, a collimation error exists. For the auto-
matic levels, described in Section 4.10, after rough leveling by centering the cir-
cular bubble, the automatic compensator must define a horizontal line of sight if
it is in proper adjustment. If it does not, the compensator is out of adjustment,
and again a collimation error exists. The collimation error will not cause errors
in differential leveling as long as backsight and foresight distances are balanced.
However, it will cause errors when backsights and foresights are not balanced,
which sometimes occurs in differential leveling, and cannot be avoided in profile
leveling (see Section 5.9), and construction staking (see Chapter 23).

One method of testing a level for collimation error is to stake out four points
spaced equally, each about 100 ft apart on approximately level ground as shown in
Figure 4.21. The level is then set up at point 1, leveled, and rod readings (r,) at A4,
and (Rp) at B are taken. Next the instrument is moved to point 2 and releveled.
Readings R, at A, and rp at B are then taken. As illustrated in the figure, assume
that a collimation error ¢ exists in the rod readings of the two shorter sights. Then the
error caused by this source would be 2e in the longer sights because their length is
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Line of sight
______________ —\— Horizontal
A/ N\ 2e
1 A = g
First setup

Line of sight
Horizontal - ———4 —————— — | (= ——==—==— m
1 A B 2
Second setup Figure 4.21
Horizontal
1 100 ft 1 100 ft | 100 ft | collimation test.

double that of the shorter ones. Whether or not there is a collimation error, the dif-
ference between the rod readings at 1 should equal the difference of the two readings
at 2. Expressing this equality, with the collimation error included, gives

(Rg —2&) — (ry —€) = (rg — &) — (R4 — 2¢) (4.14)
Solving for ¢ in Equation (4.13) yields

Rg—ry—rg+R
g = -2 AzB A (4.15)

The corrected reading for the level rod at point A while the instrument is still
setup at point 2 would be R4, — 2¢ and at point B would be R — &. If an adjust-
ment is necessary, it is done by loosening the top (or bottom) screw holding the
reticle, and tightening the bottom (or top) screw to move the horizontal hair up
or down until the required reading is obtained on the rod at A. This changes the
orientation of the line of sight. Several trials may be necessary to achieve the
exact setting. If the reticle is not accessible, or the operator is unqualified, then
the instrument should be serviced by a qualified technician.

As discussed in Section 19.13, it is recommended that the level instrument be
tested before the observation process when performing precise differential level-
ing. A correction for the error in the line of sight is then applied to all field observa-
tions using the sight distances obtained by reading the stadia wires (see Section 5.4).
The error in the line of sight is expressed in terms of & per unit sight distance.
For example, the collimation error C is unitless and expressed as 0.00005 ft/ft or
0.00005 m/m. Using the sight distances obtained in the leveling process this error
can be mathematically eliminated. The video Determining the Collimation Error of
a Level, which is available on the companion website for this book, demonstrates
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the procedure of determining the collimation factor of a level. However, for most
common leveling work, this error is removed by simply keeping minus and plus
sight distances approximately equal between benchmarks.

N Example 4.3

A horizontal collimation test is performed on an automatic level following the pro-
cedures just described. With the instrument setup at point 1, the rod reading at A
was 5.630 ft, and to B was 5.900 ft. After moving and leveling the instrument at
point 2, the rod reading to A was determined to be 5.310 ft and to B to be 5.560 ft.
As shown in Figure 4.21, the distance between the points was 100 ft. What is the
collimation error of the instrument, and the corrected reading to A from point 2?

Solution

Substituting the appropriate values into Equation (4.15), the collimation error is

~ 5900 — 5.630 — 5.560 + 5.310
2

= 0.010 ft

€

Thus the corrected reading to A from point 2 is
R = 5.310 — 2(0.010) = 5.290 ft

As noted above, if a collimation error exists but the instrument is not adjusted,
accurate differential leveling can still be achieved when the plus sight and
minus sight distances are balanced. In situations where these distances cannot
be balanced, correct rod readings can still be obtained by applying collimation
corrections to the rod readings. This procedure is described in Section 5.12.1.

B Example 4.4

The instrument in Example 4.3 was used in a survey between two benchmarks
before the instrument was adjusted where the sight distance could not be
balanced due to the physical conditions. The sum of the plus sights was 900 ft
while the sum of the minus sights was 1300 ft between the two benchmarks. The
observed elevation difference was 120.64 ft. What is the corrected elevation
difference between the two benchmarks?

Solution

In Example 4.3, the error € was determined to be 0.01 ft/100 ft. Thus the collima-
tion error Cis —0.0001 ft/ft, and the orrected elevation difference is

Aelev = 120.64 — 0.0001(900 — 1300) = 120.68 ft
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Asterisks (*) indicate problems that have answers given in Appendix G .
4.1 Define the following leveling terms: (a) vertical control (b) elevation, and
(¢) vertical datum.
4.2* How far will a horizontal line depart from the Earth’s surface in 1 km? 5 km? 10 km?
(Apply both curvature and refraction.)
4.3 Visit the website of the National Geodetic Survey at http://www.ngs.noaa.gov, and
obtain a data sheet description of a benchmark in your local area.
4.4 Create plot of the curvature and refraction corrections for sight lines going from O ft
to 5000 ft in 500-ft increments.
4.5 Create a plot of curvature and refraction corrections for sight lines going from 0 m
to 5000 m in 500-m increments.
4.6 Why is it important for a benchmark to be a stable, relatively permanent object?
4.7% On a large lake without waves, how far from shore is a sailboat when the top of its
30-ft mast disappears from the view of a person lying at the water’s edge?
4.8 Similar to Problem 4.7, except for a 10-m mast and a person whose eye height is 1.5
m above the water’s edge.
4.9 Readings on a line of differential levels are taken to the nearest 2 mm. For what
maximum distance can the Earth’s curvature and refraction be neglected?
4.10 Similar to Problem 4.9 except readings are to the 0.02 ft.
4.11 Describe how readings are determined in a digital level when using a bar-coded rod.

Successive plus and minus sights taken on a downhill line of levels are listed in
Problems 4.12 and 4.13. The values represent the horizontal distances between the instru-
ment and either the plus or minus sights. What error results from curvature and refraction?

4.12* 20, 225; 50, 195; 40, 135; 30, 250 ft.

4.13 30, 55; 30, 50; 25, 45; 55, 60 m.

4.14 What error results if the curvature and refraction correction is neglected in trigono-
metric leveling for sights: (a) 2000 ft long (b) 1000 m long (¢) 3000 ft long?

4.15* The slope distance and zenith angle observed from point P to point Q were 2013.875
m and 95°13'04", respectively. The instrument and rod target heights were equal. If
the elevation of point P is 188.988 m, above datum, what is the elevation of point Q?

4.16 The slope distance and zenith angle observed from point X to point Y were 1501.85
ft and 86°27'15". The instrument and rod target heights were equal. If the elevation
of point X is 102.09 ft above datum, what is the elevation of point Y?

4.17 Similar to Problem 4.15, except the slope distance was 606.430 m, the zenith angle
was 95°14'44", and the elevation of point P was 908.884 m above datum.

4.18 In trigonometric leveling from point A to point B, the slope distance and zenith
angle measured at A were 7929.464 m and 88°42'50". At B these measurements
were 7929.473m and 91°17'16", respectively. If the instrument and rod target
heights were equal, calculate the difference in elevation from A to B.

4.19 Describe how parallax in the viewing system of a level can be detected and removed.

4.20 What is the sensitivity of a level vial with 2-mm divisions for (a) a radius of 40.4 m
(b) a radius of 20.6 m?

4.21* An observer fails to check the bubble, and it is off two divisions on a 500-ft sight.
What error in elevation difference results with a 10-sec bubble?

4.22 An observer fails to check the bubble, and it is off two divisions on a 200-m sight.
What error results for a 10-sec bubble?

4.23 Similar to Problem 4.21, except a 20-sec bubble is off three divisions on a 300-ft sight.
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4.24 With the bubble centered, a 100-m-length sight gives a reading of 1.352 m. After
moving the bubble four divisions off center, the reading is 1.410 m. For 2-mm vial
divisions, what is (a) the vial radius of curvature in meters, and (b) the angle in sec-
onds subtended by one division?

4.25 Similar to Problem 4.24, except the sight length was 300 ft, the initial reading was
5.132 ft, and the final reading was 5.250 ft.

4.26 Sunshine on the forward end of a 20”/2 mm level vial bubble draws it off 1-1/2 divisions,
giving a plus sight reading of 4.63 ft on a 200-ft sight. Compute the correct reading.

4.27 List in tabular form, for comparison, the advantages and disadvantages of an auto-
matic level versus a digital level.

4.28* If a plus sight of 3.54 ft is taken on BM A, elevation 850.48 ft, and a minus sight of
7.84 ft is read on point X, calculate the HI and the elevation of point X.

4.29 If a plus sight of 1.097 m is taken on BM A, elevation 305.348 m, and a minus sight
of 0.832 m is read on point X, calculate the HI and the elevation of point X.

4.30 Similar to Problem 4.28, except a plus sight of 3.36 ft is taken on BM A, elevation
1265.58 ft, and a minus sight of 6.32 ft read on point X.

4.31 Describe the procedure used to test if the level vial is perpendicular to the vertical
axis of the instrument.

4.32 A horizontal collimation test is performed on an automatic level following the pro-
cedures described in Section 4.15.5. With the instrument setup at point 1, the rod
reading at A was 3.886 ft, and to B it was 3.907 ft. After moving and leveling the
instrument at point 2, the rod reading to A was 4.094 ft and to B was 4.107 ft. What is
the collimation error of the instrument and the corrected reading to A from point 2?

4.33 The instrument tested in Problem 4.32 was used in a survey immediately before the
test where the observed elevation difference between two benchmarks was +23.78 ft.
The sum of the plus sight distances between the benchmarks was 560 ft and the sum
of the minus sight distances was 1210 ft. What is the corrected elevation difference
between the two benchmarks?

4.34 Similar to Problem 4.32 except that the rod readings are 1.894 and 1.923 m to A and B,
respectively, from point 1, and 1.083 and 1.100 m to A and B, respectively, from
point 2. The distance between the points in the test was 100 m.

4.35 The instrument tested in Problem 4.34 was used in a survey immediately before
the test where the observed elevation difference between two benchmarks was
—13.068 m. The sum of the plus sight distances between the benchmarks was 1540 m
and the sum of the minus sight distances was 545 m. What is the corrected elevation
difference between the two benchmarks?
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H 5.1 INTRODUCTION

Chapter 4 covered the basic theory of leveling, briefly described the different
procedures used in determining elevations, and showed examples of most types
of leveling equipment. This chapter concentrates on differential leveling, and dis-
cusses handling the equipment, running and adjusting simple leveling loops, and
performing some project surveys to obtain data for field and office use. Some
special variations of differential leveling, useful or necessary in certain situations,
are presented. Profile leveling, to determine the configuration of the ground
surface along some established reference line, is described in Section 5.9. Finally,
errors in leveling are discussed. Leveling procedures for construction and other
surveys, along with those of higher order to establish the nationwide vertical con-
trol network, will be covered in later chapters.

H 5.2 CARRYING AND SETTING UP A LEVEL

The safest way to transport a leveling instrument in a vehicle is to leave it in its
case. The case closes properly only when the instrument is set correctly in the
padded supports. Whenever possible, a level should be removed from its con-
tainer by lifting from the base, not by grasping the telescope. The head must be
screwed snugly on the tripod. If the head is too loose, the instrument is unstable;
if too tight, it may “freeze.” Once the instrument is removed from the case, the
case should be once again closed to prevent dirt and moisture from entering it.

The legs of a tripod must be tightened correctly. If each leg falls slowly of
its own weight after being placed in a horizontal position, it is adjusted properly.
Clamping them too tightly strains the plate and screws. If the legs are loose, unstable
setups result. The video Checking the Tripod, which is available on the companion
website, describes the procedures for checking and adjusting the tripod.
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Figure 5.1
Use of leveling
screws on a
three-screw
instrument.

Except for a few instruments that employ a ball-and-socket arrangement, all
modern levels use a three-screw leveling head for initial rough leveling. Note that
each of the levels illustrated in Chapter 4 (see Figures 4.9, 4.13, 4.14, and 4.16) has
this type of arrangement. In leveling a three-screw head, the telescope is rotated
until it is over two screws as in the direction A B of Figure 5.1. Using the thumb and
first finger of each hand to adjust simultaneously the opposite screws approximately
centers the bubble. This procedure is repeated with the telescope rotated 90° so
thatitis over C, the remaining single screw. Time is wasted by centering the bubble
exactly on the first try, since it can be thrown off during the cross-leveling process.
Working with the same screws in succession about three times should complete
the job. A simple but useful rule in centering a bubble, illustrated in Figure 5.1, is:
A bubble follows the left thumb when turning the screws. A circular bubble is
centered by alternately turning one screw and then the other two. The telescope
need not be rotated during the process. The video Leveling an Instrument, which
is available on the companion website for this book, demonstrates the process of
leveling an instrument.

It is generally unnecessary to set up a level over any particular point.
Therefore, it is inexcusable to have the base plate badly out of level before using
the leveling screws. On sidehill setups, placing one leg on the uphill side and
two on the downhill slope eases the problem. On very steep slopes, some instru-
ment operators prefer two legs uphill and one downhill for stability. The most
convenient height of setup is one that enables the observer to sight through the
telescope without stooping or stretching.

Inexperienced instrument operators running levels up or down steep hill-
sides are likely to find, after completing the leveling process, that the telescope
is too low for sighting the higher turning point (TP) or benchmark (BM). To
avoid this, a hand level can be used to check for proper height of the setup before
leveling the instrument precisely. As another alternative, the instrument can be
quickly set up without attempting to level it carefully. Then the rod is sighted

Left thumb Right thumb
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making sure the bubble is somewhat back of center. If it is visible for this place-
ment, it obviously will also be seen when the instrument is leveled.

Bl 5.3 DUTIES OF A RODPERSON

The duties of a rodperson are relatively simple. However, a careless rodperson
can nullify the best efforts of an observer by failing to follow a few basic rules.

A level rod must be held plumb on the correct monument or turning point
to give the correct reading. In Figure 5.2, point A is below the line of sight by ver-
tical distance AB. If the rod is tilted to position AD, an erroneous reading AE is
obtained. It can be seen that the smallest reading possible, AB, is the correct one
and is secured only when the rod is plumb.

A rod level of the type shown in Figure 5.3 ensures fast and correct rod
plumbing. Its L-shape is designed to fit the rear and side faces of a rod, while the
circular bubble is centered to plumb the rod in both directions. However, if a rod
level is not available, one of the following procedures can be used to plumb the rod.

Waving the rod is one procedure used to ensure that the rod is plumb when
a reading is taken. The process consists of slowly tilting the rod top, first perhaps a

p ¢
n
\\\\ Plumb rod
\
\
\
Horizontal line E\ ||B

Figure 5.2
Plumbing a level
rod.

Figure 5.3
Rod level.
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foot or two toward the instrument and then just slightly away from it. The observer
watches the readings increase and decrease alternately, and then selects the mini-
mum value, the correct one. Beginners tend to swing the rod too fast or too slow and
through too long an arc. It is also important that the rod swing an arc through the
vertical. Small errors can be introduced in the process if the bottom of the rod is rest-
ing on a flat surface. A rounded-top monument, steel spike, or thin edge makes an
excellent benchmark or intermediate point for leveling when this procedure is used.
On still days, the rod can be plumbed by letting it balance of its own weight
while lightly supported by the fingertips. An observer makes certain the rod is
plumb in the lateral direction by checking its coincidence with the vertical wire
and signals for any adjustment necessary. The rodperson can save time by sight-
ing along the side of the rod to line it up with a telephone pole, tree, or side of
a building. Plumbing along the line toward the instrument is more difficult, but
holding the rod against the toes, stomach, and nose will bring it close to a plumb
position. A plumb bob suspended alongside the rod can also be used, and in this
procedure the rod is adjusted in position until its edge is parallel with the string.

N Example 5.1

In Figure 5.2, what error results if the rod is held in position AD, and if AE = 10 ft
and EB = 6in.?

Solution

Using the Pythagorean theorem, the vertical rod is

AB = V10> — 0.5 = 9.987 ft

Thus the error is 10.00 — 9.987 = 0.013 ft, or 0.01 ft.

Errors of the magnitude of Example 5.1 are serious, whether the results are
carried out to hundredths or thousandths. They make careful plumbing necessary,
particularly for high-rod readings.

B 5.4 DIFFERENTIAL LEVELING

Figure 5.4 illustrates the procedure followed in differential leveling. In the figure,
the elevation of new BM Oak is to be determined by originating a leveling cir-
cuit at established BM Mil. In running this circuit, the first reading, a plus sight,
is taken on the established benchmark. From it, the height of instrument (HI)
can be computed using Equation (4.4). Then a minus sight is taken on the first
intermediate point (called a turning point, and labeled TP1 in the figure), and
by Equation (4.5) its elevation is obtained. The process of taking a plus sight,
followed by a minus sight, is repeated over and over until a circuit is completed.
The video Differential Leveling, which is available on the companion site for this
book, demonstrates the process of differential leveling and notekeeping.

As shown in the example of Figure 5.4, four instrument setups were required
to complete half of the circuit (the run from BM Mil to BM Oak). Field notes for
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1.33

BM Mil
Elev 2053.18

Mean sea level

the example of Figure 5.4 are given in Figure 5.5. As illustrated in this figure, a
tabular form of field notes is used for differential leveling, and the addition and
subtraction to compute HIs and elevations is done directly in the notes at the time
the data is collected, and should never be saved for later. These notes also show
the data for the return run from BM Oak back to BM Mil to complete the circuit.
It is important in differential leveling to run closed circuits so that the accuracy of
the work can be checked, as will be discussed later. The video Differential Leveling
Field Notes, which is on the companion site for this book, explains the procedure
for writing differential leveling notes using a middle-wire reading.

As noted, the intermediate points upon which the rod is held in running a dif-
ferential leveling circuit are called turning points. Two rod readings are taken on each,
a minus sight followed by a plus sight. Turning points should be solid objects with a
definite high point. Careful selection of stable turning points is essential to achieve
accurate results. Steel turning pins and railroad spikes driven into firm ground make
excellent turning points when permanent objects are not conveniently available.

In differential leveling, horizontal lengths for the plus and minus sights
should be made about equal. This can be done by pacing, by stadia measure-
ments, by counting rail lengths or pavement joints if working along a track or
roadway, or by any other convenient method. Stadia readings are the most pre-
cise of these methods and will be discussed in detail.

Stadia was once commonly used for mapping. The stadia method deter-
mines the horizontal distance to points through the use of readings on the upper
and lower (stadia) wires on the reticle. The method is based on the principle that
in similar triangles, corresponding sides are proportional. In Figure 5.6, which
depicts a telescope with a simple lens, light rays from points A and B pass through

Figure 5.4
Differential leveling.
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Differential leveling notes for Figure 5.4.

the lens center and form a pair of similar triangles AmB and amb. Here AB = [ is
the rod intercept (stadia interval), and ab = i is the spacing between stadia wires.

Standard symbols used in stadia observations and their definitions are as
follows (refer to Figure 5.6):

f = focal length of lens (a constant for any particular compound objective
lens)
i = spacing between stadia wires (ab in Figure 5.6)
f/i = stadia interval factor usually 100 and denoted by K
1 = rod intercept (AB in Figure 5.6), also called stadia interval
¢ = distance from instrument center (vertical axis) to objective lens
center (varies slightly when focusing the objective lens for different
sight lengths but is generally considered to be a constant)
C = stadia constant = ¢ + f
d = distance from the focal point F in front of telescope to face of rod
D = distance from instrument center to rod face = C + d
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From similar triangles of Figure 5.6

Thus
D=KI+C (5.1)

The geometry illustrated in Figure 5.6 pertains to a simplified type of
external focusing telescope. It has been used because an uncomplicated draw-
ing correctly shows the relationships and aids in deriving the stadia equation.
These telescopes are now obsolete in surveying instruments. The objective lens
of an internal focusing telescope (the type now used in surveying instruments)
remains fixed in position, while a movable negative-focusing lens between the
objective lens and the plane of the cross hairs changes directions of the light
rays. As a result, the stadia constant, (C), is so small that it can be assumed
equal to zero and drops out of Equation (5.1). Thus the equation for distance
on a horizontal stadia sight reduces to

D = KI (5.2)

Fixed stadia lines in theodolites, transits, levels, and alidades are generally
spaced by instrument manufacturers to make the stadia interval factor f/i = K
equal to 100. It should be determined the first time an instrument is used,
although the manufacturer’s specific value posted inside the carrying case will
not change unless the cross hairs, reticle, or lenses are replaced or adjusted.

To determine the stadia interval factor K, rod intercept I for a horizontal
sight of known distance D is read. Then in an alternate form of Equation (5.2),
the stadia interval factor is K = D/I. As an example, at a measured distance of
300.0 ft, a rod interval of 3.01 was read. Then K = 300.0/3.01 = 99.7. Accuracy
in determining K is increased by averaging values from several lines whose
observed lengths vary from about 100 to 500 ft by 100-ft increments.

Figure 5.6
Principle of stadia.
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Figure 5.7
Balancing plus
and minus sight
distances to cancel
errors caused by
curvature and
refraction.

It should be realized by the reader that in differential leveling, the actual
sight distances to the rod are not important. All one needs to balance is the rod
intervals on the plus and minus sights between benchmarks to ensure that the
sight distances are balanced.

Balancing plus and minus sight distances will eliminate errors due to instru-
ment maladjustment (most important) and the combined effects of the Earth’s
curvature and refraction, as shown in Figure 5.6. Here e; and e, are the combined
curvature and refraction errors for the plus and minus sights, respectively. If Dy
and D, are made equal, e; and e, are also equal. In calculations, e is added and e,
subtracted; thus they cancel each other. The procedure for reading all three wires
of the instrument is known as three-wire leveling, which is discussed in Section 5.8.

Figure 5.7 can also be used to illustrate the importance of balancing sight
lengths if a collimation error exists in the instrument’s line of sight. This condi-
tion exists, if after leveling the instrument, its line of sight is not horizontal. For
example, suppose in Figure 5.7 because the line of sight is systematically directed
below horizontal, an error e; results in the plus sight. But if D; and D, are made
equal, an error e, (equal to e;) will result on the minus sight and the two will
cancel, thus eliminating the effect of the instrumental error. On slopes it may
be somewhat difficult to balance lengths of plus and minus sights, but following
a zigzag path can do it usually. It should be remembered that Earth curvature,
refraction, and collimation errors are systematic and will accumulate in long lev-
eling lines if care is not taken to balance the plus and minus sight distances.

A benchmark is described in the field book the first time used, and thereafter
by noting the page number on which it was recorded. Descriptions begin with the
general location, and must include enough details to enable a person unfamiliar
with the area to find the mark readily (see the field notes of Figures 5.5 and 5.12).
A benchmark is usually named for some prominent object it is on or near, to aid
in describing its location; one word is preferable. Examples are BM River, BM
Tower, BM Corner, and BM Bridge. On extensive surveys, benchmarks are often
numbered consecutively. Although advantageous in identifying relative positions
along a line, this method is more subject to mistakes in field marking or recording.
Digital images of the benchmark with one showing a close up of the monument
and another showing the horizon of the benchmark with the leveling rod located
on the monument can often help in later recovery of the monument.

Turning points are also numbered consecutively but not described in detail,
since they are merely a means to an end and usually will not have to be relocated.
However, if possible, it is advisable to select turning points that can be relocated, so

Line of sight
Level line \
Minus sight

D,
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if reruns on long lines are necessary because of mistakes, fieldwork can be reduced.
Before a party leaves the field, all possible note checks must be made to detect
any mistakes in arithmetic and verify achievement of an acceptable closure. The
algebraic sum of the plus and minus sights applied to the first elevation should give
the last elevation. This computation checks the addition and subtraction for all HIs
and turning points unless compensating mistakes have been made. When carried
out for each left-hand page of tabulations, it is termed the page check. In Figure 5.5,
for example, note that the page check is secured by adding the sum of backsights,
40.24, to the starting elevation 2053.18, and then subtracting the sum of foresights;
40.21, to obtain 2053.21, which checks the last elevation.

As previously noted, leveling should always be checked by running closed
circuits or loops. This can be done either by returning to the starting benchmark,
as demonstrated with the field notes in Figure 5.5, or by ending the circuit at
another benchmark of equal or higher reliability. The final elevation should agree
with the starting elevation if returning to the initial benchmark. The amount by
which they differ is the loop misclosure. Note that in Figure 5.5, a loop misclosure
of 0.03 ft was obtained.

If closure is made to another benchmark, the section misclosure is the difference
between the closing benchmark’s given elevation and its elevation obtained after lev-
eling through the section. Specifications, or purpose of the survey, fix permissible
misclosures (see Section 5.5). If the allowable misclosure is exceeded, one or more
additional runs must be made. When acceptable misclosure is achieved, final eleva-
tions are obtained by making an adjustment (see Section 5.6 and Section 16.6).

Note that in running a level circuit between benchmarks, a new instru-
ment setup has to be made before starting the return run to get a complete check.
In Figure 5.5, for example, a minus sight of 8.71 was read on BM Oak to finish
the run out, and a plus sight of 11.95 was recorded to start back, showing that a
new setup had been made. Otherwise, an error in reading the final minus sight
would be accepted for the first plus sight on the run back. An even better check
is secured by tying the run to a different benchmark.

If the elevation above a particular vertical datum (i.e., NAVDSS) is available
for the starting benchmark, elevations then determined for all intermediate points
along the circuit will also be referenced to the same datum. However, if the start-
ing benchmark’s elevation above datum is not known, an assumed value may be
used and all elevations converted to the datum later by applying a constant. Until
a correct starting elevation is obtained, elevation differences between benchmarks
can be obtained from the work. In some cases, this is all that is necessary.

A lake or pond undisturbed by wind, inflow, or outflow can serve as an
extended turning point. Stakes driven flush with the water, or rocks whose high
points are at this level, should be used. However, this water level as a turning
point should be used with caution since bodies of water generally flow to an out-
let and thus may have differences in elevations along their surfaces.

Double-rodded lines of levels are sometimes used on important work. In
this procedure, plus and minus sights are taken on two turning points, using two
rods from each setup, and the readings carried in separate note form columns.
A check on each instrument setup is obtained if the HI agrees for both lines. This
same result can be accomplished using just one set of turning points, and reading
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both sides of a single rod that has two faces; that is, one side in feet and the other
in meters. These rods are often used in precise leveling.

On the companion website for this book at http://www.pearsonhighered.com/
ghilani are instructional videos that can be downloaded. The video Differential
Leveling Field Notes discusses the process of differential leveling, entering readings
into your field book, and adjusting a simple differential leveling loop.

H 5.5 PRECISION

Precision in leveling is increased by repeating observations, making frequent
ties to established benchmarks, using high-quality equipment, keeping it in good
adjustment, and performing the measurement process carefully. However, no
matter how carefully the work is executed, errors will exist and will be evident
in the form of misclosures, as discussed in Section 5.4. To determine whether
or not work is acceptable, misclosures are compared with permissible values on
the basis of either number of setups or distance covered. Various organizations
set precision standards based on their project requirements. For example, on a
simple construction survey, an allowable misclosure of C = 0.02 ft\/n might be
used, where # is the number of setups. Note that this criterion was applied for the
level circuit in the field notes of Figure 5.5.

The Federal Geodetic Control Subcommittee (FGCS) recommends the fol-
lowing formula to compute allowable misclosures:!

C = mVK (5.3)

where C is the allowable loop or section? misclosure, in millimeters; m is a con-
stant; and K the total length leveled, in kilometers. For “loops” (circuits that
begin and end on the same benchmark), K is the total perimeter distance, and
the FGCS specifies constants of 4, 5, 6, 8, and 12 mm for the five classes of level-
ing, designated, respectively, as (1) first-order class I, (2) first-order class II,
(3) second-order class I, (4) second-order class II, and (5) third order. For “sections”
the constants are the same, except that 3 mm applies for first-order class I and 4
mm applies to first-order class II. The particular order of accuracy recommended
for a given type of project is discussed in Section 19.8.

B Example 5.2

A differential leveling loop is run from an established BM A to a point 2 mi away
and back, with a misclosure of 0.056 ft. What order leveling does this satisfy?

The FGCS was formerly the FGCC (Federal Geodetic Control Committee). Their complete speci-
fications for leveling are available in a booklet entitled “Standards and Specifications for Geodetic
Control Networks” (September 1984). Information on how to obtain this and other related publica-
tions can be obtained at the following website: http://www.ngs.noaa.gov. Inquiries can also be made
by e-mail at info_center@ngs.noaa.gov, or by writing to the National Geodetic Information Center,
NOAA, National Geodetic Survey, 1315 East West Highway, Station 9202, Silver Spring, MD 20910;
telephone: (301) 713-3242.

2A section consists of a line of levels that begins on one benchmark and closes on another.


http://www.pearsonhighered.com/ghilani
http://www.pearsonhighered.com/ghilani
http://www.ngs.noaa.gov

5.5 Precision 109

Solution

0.056 ft

- = 1
0.00328 ft/mm /MM

K= (2mi+ 2mi) X 1.61 km/mi = 6.4 km

C 17

VK ea 7

By a rearranged form of Equation (5.3), m =

This leveling meets the allowable 8-mm tolerance level for second-order class 11
work, but does not quite meet the 6-mm level for second-order class I, and if that
standard had been specified, the work would have to be repeated. It should be
pointed out that even though this survey met the closure tolerance for a second-
order class II as specified in the FGCS Standards and Specifications for Geodetic
Control Networks, other requirements must be met before the survey can be certi-
fied to meet any level in the standards.

Since distance leveled is proportional to number of instrument setups, the mis-
closure criteria can be specified using that variable. As an example, if sights of 200
ft are taken, thereby spacing instrument setups at about 400 ft, approximately 8.2
setups/km will be made. For second-order class II leveling, the allowable misclosure
will then be again by Equation (5.1)

8
C=5 Vn = 28Vn
where C is the allowable misclosure, in millimeters; and »n the number of times
the instrument is set up.

It is important to point out that meeting FGCS misclosure criterion® alone
does not guarantee that a certain order of accuracy has been met. Because of com-
pensating errors, it is possible, for example, that crude instruments and low-order
techniques can produce small misclosures, yet intermediate elevations along the
circuit may contain large errors. To help ensure that a given level of accuracy has
indeed been met, besides stating allowable misclosures, the FGCS also specifies
equipment and procedures that must be used to achieve a given order of accuracy.
These specifications identify calibration requirements for leveling instruments
(including rods), and they also outline required field procedures that must be used.
Then if the misclosure specified for a given order of accuracy has been met, while
employing appropriate instruments and procedures, it can be reasonably expected
that all intermediate elevations along the circuit are established to that order.

Field procedures specified by the FGCS include minimum ground clear-
ances for the line of sight, allowable differences between the lengths of pairs

3A complete listing of the specifications for performing geodetic control leveling can be obtained at
http://www.ngs.noaa.gov/FGCS/tech_pub/1984-stds-specs-geodetic-control-networks.htm.
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Figure 5.8
Adjustment of level
circuit based on
lengths of lines.

of backsight and foresight distances, and maximum sight lengths. For example,
sight lengths of not more than 50 m are permitted for first-order class I, while
lengths up to 90 m are allowed for third order. As noted in Sections 5.4 and 5.8,
the stadia method is convenient for measuring the lengths of backsights and
foresights to verify their acceptance. The reader should refer to the references
listed at the end of this chapter for more information on the requirements speci-
fied in the standards.

H 5.6 ADJUSTMENTS OF SIMPLE LEVEL CIRCUITS

Since permissible misclosures are based on the lengths of lines leveled, or num-
ber of setups, it is logical to adjust elevations in proportion to these values.
Observed elevation differences d and lengths of sections L are shown for a
circuit in Figure 5.8. The misclosure found by algebraic summation of the eleva-
tion differences is +0.24 ft. Adding lengths of the sections yields a total circuit
length of 3.0 mi. Elevation adjustments are then (0.24 ft/3.0) multiplied by the
corresponding lengths, giving corrections of —0.08, —0.06, —0.06, and —0.04 ft
(shown in the figure). The adjusted elevation differences (shown in black)
are used to get the final elevations of benchmarks (also shown in black in the
figure). Any misclosure that fails to meet tolerances may require reruns instead
of adjustment. In Figure 5.5, adjustment for misclosure was made based on the
number of instrument setups. Thus after verifying that the misclosure of 0.03 ft
was within tolerance, the correction per setup was 0.03 /7 = 0.004 ft. Since errors
in leveling accumulate, the first point receives a correction of 1 X 0.004, the
second 2 X 0.004, and so on. The corrections are shown in parenthesis above
each unadjusted elevation in Figure 5.5. However, the corrected elevations are
rounded off to the nearest hundredth of a foot. Level circuits with different
lengths and routes are sometimes run from scattered reference points to obtain
the elevation of a given benchmark. The most probable value for a benchmark
elevation can then be computed from a weighted mean of the observations, the
weights varying inversely with line lengths.

In running level circuits, especially long ones, it is recommended that
some turning points or benchmarks used in the first part of the circuit be
included again on the return run. This creates a multiloop circuit, and if a

o 10735 d=-841
-0.
~8.53
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blunder or large error exists, its location can be isolated to one of the smaller
loops. This saves time because only the smaller loop containing the blunder
or error needs to be rerun.

Although the least-squares method (see Section 16.6) is the best method
for adjusting circuits that contain two or more loops, an approximate procedure
can also be employed. In this method, each loop is adjusted separately, beginning
with the one farthest from the closing benchmark.

B 5.7 RECIPROCAL LEVELING

Sometimes in leveling across topographic features such as rivers, lakes, and can-
yons, it is difficult or impossible to keep plus and minus sights short and equal.
Reciprocal leveling may be utilized at such locations.

As shown in Figure 5.9, a level is set up on one side of a river at X, near A,
and rod readings are taken on points A and B. Since XB is very long, several read-
ings are taken for averaging. This is done by reading, turning the leveling screws
to throw the instrument out of level, releveling, and reading again. The process is
repeated two, three, four, or more times. Then the instrument is moved close to Y
and the same procedure followed.

The two differences in elevation between A and B, determined with an
instrument first at X and then at Y, will not agree normally because of curvature,
refraction, and personal and instrumental errors. However, in the procedure just
outlined, the long foresight from X to B is balanced by the long backsight from
Y to A. Thus the average of the two elevation differences cancels the effects of
curvature, refraction, and instrumental errors, so the result is accepted as the
correct value if the precision of the two differences appears satisfactory. Delays
at X and Y should be minimized because refraction varies with changing atmo-
spheric conditions.

Figure 5.9
Reciprocal leveling.
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Figure 5.10
Sample field notes
for three-wire
leveling.

Bl 5.8 THREE-WIRE LEVELING

As implied by its name, three-wire leveling consists in making rod readings on the
upper, middle, and lower cross hairs. Formerly, it was used mainly for precise work,
but it can be used on projects requiring only ordinary precision. The method has
the advantages of (1) providing checks against rod reading blunders, (2) producing
greater accuracy because averages of three readings are available, and (3) furnish-
ing stadia measurements of sight lengths to assist in balancing backsight and fore-
sight distances. In the three-wire procedure, the difference between the upper and
middle readings is compared with that between the middle and lower values. They
must agree within one or two of the smallest units being recorded (usually 0.1 or 0.2
of the least count of the rod graduations); otherwise, the readings are repeated. An
average of the three readings is used as a computational check against the middle
wire. As noted in Section 5.4, the difference between the upper and lower readings
multiplied by the instrument stadia interval factor gives the sight distances. In level-
ing, the distances are often not important. What is important is that the sum of the

" THREE-WIRE LEVELING
TAYLOR LAKE ROAD

Sta. | Sight | Stadia | Sight | Stadia| Elev.
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plus sights is about equal to the sum of the minus sights, which eliminates errors due
to curvature, refraction, and collimation errors.

A sample set of field notes for the three-wire method is presented in
Figure 5.10. Backsight readings on BM A of 0.718, 0.633, and 0.550 m taken
on the upper, middle, and lower wires, respectively, give upper and lower
differences (multiplied by 100) of 8.5 and 8.3 m, which agree within accept-
able tolerance. Stadia measurement of the backsight length (the sum of the
upper and lower differences) is 16.8 m. The average of the three backsight
readings on BM A, 0.6337 m, agrees within 0.0007 m of the middle reading.
The stadia foresight length of 15.9 m at this setup is within 0.9 m of the back-
sight length, and is satisfactory. The HI (104.4769 m) for the first setup is
found by adding the backsight reading to the elevation of BM A. Subtracting
the foresight reading on TP1 gives its elevation (103.4256 m). This process
is repeated for each setup. The video Precise Leveling, which is available on
the companion website for this book, demonstrates the reading of a precise
leveling rod with a parallel-plate micrometer and the creation of three-wire
leveling notes.

H 5.9 PROFILE LEVELING

Before engineers can properly design linear facilities such as highways, railroads,
transmission lines, aqueducts, canals, sewers, and water mains, they need accu-
rate information about the topography along the proposed routes. Profile level-
ing, which yields elevations at definite points along a reference line, provides
the needed data. The subsections that follow discuss topics pertinent to profile
leveling and include staking and stationing the reference line, field procedures
for profile leveling, and drawing and using the profile.

5.9.1 Staking and Stationing the Reference Line

Depending on the particular project, the reference line may be a single straight
segment, as in the case of a short sewer line; a series of connected straight seg-
ments, which change direction at angle points, as with transmission lines; or
straight segments joined by curves, which occur with highways and railroads. The
required alignment for any proposed facility will normally have been selected as
the result of a preliminary design, which is usually based on a study of existing
maps and aerial photos. The reference alignment will most often be the proposed
construction centerline, although frequently offset reference lines are used.

To stake the proposed reference line, key points such as the starting and end-
ing points and angle points will be set first. Then intermediate stakes will be placed
on line, usually at 100-ft intervals if the English system of units is used, but sometimes
at closer spacing. If the metric system is used, stakes are usually placed at 10-, 20-,
30-, or 40-m spacing, depending on conditions. Distances for staking can be taped, or
measured using the electronic distance measuring (EDM) component of a total sta-
tion instrument operating in its tracking mode (see Sections 8.2 and 23.9).

In route surveying, a system called stationing is used to specify the relative
horizontal position of any point along the reference line. The starting point is

5.9 Profile Leveling
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Figure 5.11
Profile leveling.

usually designated with some arbitrary value, for example, in the English system
of units, 10 + 00 or 100 + 00, although 0 + 00 can be used. If the beginning point
was 10 + 00, a stake 100 ft along the line from it would be designated 11 + 00, the
one 200 ft along the line 12 + 00, etc. The term full station is applied to each of
these points set at 100-ft increments. This is the usual increment staked in rural areas.
A point located between two full stations, say 84.90 ft beyond station 17 + 00, would
be designated 17 + 84.90. Thus, locations of intermediate points are specified by
their nearest preceding full station and their so-called plus. For station 17 + 84.90,
the plus is 84.90. If the metric system is used, full stations are 1 km (1000 m) apart.
The starting point of a reference line might be arbitrarily designated as 1 + 000 or
10 + 000, but again 0 + 000 could be used. In rural areas, intermediate points are
normally set at 30- or 40-m increments along the line, and are again designated by
their pluses. If the beginning point was 1 + 000, and stakes were being set at 40-m
intervals, then 1 + 040, 1 + 080, 1 + 120, etc. would be set.

In rugged terrain and in urban situations, stakes are normally set closer
together, for example, at half stations (50-ft increments) or even quarter stations
(25-ft increments) in the English system of units. In the metric system, 20-, 10-, or
even 5-m increments may be staked.

Stationing not only provides a convenient unambiguous method for specify-
ing positions of points along the reference line, it also gives the distances between
points. For example, in the English system stations 24 + 18.3 and 17 + 84.9 are
(2418.3 — 1784.9), or 633.4 ft, apart, and in the metric system stations 1 + 120
and 2 + 040 are 920 m apart.

5.9.2 Field Procedures for Profile Leveling

Profile leveling consists simply of differential leveling with the addition of inter-
mediate minus sights (foresights) taken at required points along the reference
line. Figure 5.11 illustrates an example of the field procedure, and the notes
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I } } } } } } } } -
0 1 2 3 4 5 6 7 8 9 9+43.2

Stations



5.9 Profile Leveling 115
in Figure 5.12 relate to this example. Stationing for the example is in feet. As
shown in the figure, the leveling instrument is initially set up at a convenient
location and a plus sight of 10.15 ft taken on the benchmark. Adding this to the
benchmark elevation yields a HI of 370.63 ft. Then intermediate minus sights
are taken on points along the profile at stations as 0 + 00,0 + 20,1 + 00, etc.
(If the reference line’s beginning is far removed from the benchmark, differen-
tial levels running through several turning points may be necessary to get the
instrument into position to begin taking intermediate minus sights on the profile
line.) Notice that the note form for profile leveling contains all the same col-
umn headings as differential leveling, but is modified to include another column
labeled “Intermediate Sight.”
When distances to intermediate sights become too long, or if terrain varia-
tions or vegetation obstruct rod readings ahead, the leveling instrument must be
moved. Establishing a turning point, as TP1 in Figure 5.11, does this. After read-
ing a minus sight on the turning point, the instrument is moved ahead to a good
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vantage point both for reading the backsight on the turning point, as well as to
take additional rod readings along the profile line ahead. The instrument is lev-
eled, the plus sight taken on TP1, the new HI computed, and further intermedi-
ate sights taken. This procedure is repeated until the profile is completed.

Whether the stationing is in feet or meters, intermediate sights are usually
taken at all full stations. If stationing is in feet and the survey area is in rugged
terrain or in an urban area, the specifications may require that readings also be
taken at half or even quarter stations. If stationing is in meters, depending on
conditions, intermediate sights may be taken at 40-, 30-, 20-, or 10-m increments.
In any case, sights are also taken at high and low points along the alignment, as
well as at changes in slope.

Intermediate sights should always be taken on “critical” points such as rail-
road tracks, highway centerlines, gutters, and drainage ditches. As presented in
Figure 5.12, rod readings are normally only taken to the nearest 0.1 ft (English
system) or nearest cm (metric system) where the rod is held on the ground,
but on critical points, and for all plus and minus sights taken on turning points
and benchmarks, the readings are recorded to the nearest hundredth of a foot
(English) or the nearest mm (metric).

In profile leveling, lengths of intermediate minus sights vary, and in gen-
eral they will not equal the plus sight length. Thus errors due to an inclined
line of sight and to curvature and refraction will occur. Because errors from
these sources increase with increasing sight lengths, on important work the in-
strument’s condition of adjustment should be checked (see Section 4.15), and
excessively long intermediate foresight distances should be avoided.

Instrument heights (HIs) and elevations of all turning points are com-
puted immediately after each plus sight and minus sight. However, elevations
for intermediate minus sights are not computed until after the circuit is closed
on either the initial benchmark or another. Then the circuit misclosure is com-
puted, and if acceptable, an adjustment is made and elevations of intermediate
points are calculated. The procedure is described in the following subsection.

As in differential leveling, the page check should be made for each left-
hand sheet. However, in profile leveling, intermediate minus sights play no part
in this computation. As illustrated in Figure 5.12, the page check is made by add-
ing the algebraic sum of the column of plus sights and the column of minus sights
to the beginning elevation. This should equal the last elevation tabulated on the
page for either a turning point or the ending benchmark if that is the case, as it is
in the example of Figure 5.12.

5.9.3 Drawing and Using the Profile

Prior to drawing the profile, it is first necessary to compute elevations along
the reference line from the field notes. However, this cannot be done until an
adjustment has been made to distribute any misclosure in the level circuit. In
the adjustment process, HIs are adjusted, because they will affect computed pro-
file elevations. The adjustment is made progressively in proportion to the total
number of HIs in the circuit. The procedure is illustrated in Figure 5.12, where
the misclosure was 0.03 ft. Since there were three HlIs, the correction applied
to each is —0.03/3 = —0.01 ft per HI. Thus a correction of 0.01 was applied to



the first HI, —0.02 ft to the second, and —0.03 ft to the third. Adjusted HIs are
shown in Figure 5.12 in parentheses above their unadjusted values. It is unneces-
sary to correct turning point elevations since they are of no consequence. After
adjusting the HIs, profile elevations are computed by subtracting intermediate
minus sights from their corresponding adjusted Hls. The profile is then drawn
by plotting elevations on the ordinate versus their corresponding stations on the
abscissa. By connecting adjacent plotted points, the profile is realized.

Until recently, profiles were manually plotted, usually on special paper
such as the type shown in Figure 5.13. Now with computer-aided drafting and
design (CADD) systems (see Section 18.14), it is only necessary to enter the sta-
tions and elevations into the computer, and this special software will plot and
display the profile on the screen. Hard copies, if desired, may be obtained from
plotters interfaced with a computer. Often, these profiles are generated auto-
matically from the CADD software using only the alignment of the structure and
an overlaying topographic map.

In drawing profiles, the vertical scale is generally exaggerated with respect to
the horizontal scale to make differences in elevation more pronounced. A ratio of
10:1 is frequently used, but flatness or roughness of the terrain determines the de-
sirable proportions. Thus, for a horizontal scale of 1 in. = 100 ft, the vertical scale
might be 1in. = 10 ft. The scale actually employed should be plainly marked.
Plotted profiles are used for many purposes, such as (1) determining depth of cut
or fill on proposed highways, railroads, and airports; (2) studying grade-crossing
problems; and (3) investigating and selecting the most economical grade, location,
and depth for sewers, pipelines, tunnels, irrigation ditches, and other projects.

The rate of grade (or gradient or percent grade) is the rise or fall in feet
per 100 ft, or in meters per 100 m. Thus a grade of 2.5% means a 2.5-ft differ-
ence in elevation per 100 ft horizontally. Ascending grades are plus; descend-
ing grades, minus. A grade line of —0.15%, chosen to approximately equalize
cuts and fills, is shown in Figure 5.13. Along this grade line, elevations drop
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Figure 5.13
Plot of profile.
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at the rate of 0.15 ft per 100 ft. The grade begins at station 0 + 00 where it
approximately meets existing ground at elevation 363.0 ft, and ends at sta-
tion 9 + 43 and elevation 361.6 ft where again it approximately meets existing
ground. The process of staking grades is described in Chapter 23.

The term grade is also used to denote the elevation of the finished surface
on an engineering project.

H 5.10 GRID, CROSS-SECTION, OR BORROW-PIT LEVELING

Grid leveling is a method for locating contours (see Section 17.9.3). It is
accomplished by staking an area in squares of 10, 20, 50, 100, or more feet (or
comparable meter lengths) and determining the corner elevations by differen-
tial leveling. Rectangular blocks, say 50 by 100 ft or 20 by 30 m, that have the
longer sides roughly parallel with the direction of most contour lines may be
preferable on steep slopes. The grid size chosen depends on the project extent,
ground roughness, and accuracy required.

The same process, termed borrow-pit leveling, is employed on construction
jobs to ascertain quantities of Earth, gravel, rock, or other material to be exca-
vated or filled. The procedure is covered in Section 26.10 and Plate B.2.

Bl 5.11 USE OF THE HAND LEVEL

A hand level can be used for some types of leveling when a low order of accuracy
is sufficient. The instrument operator takes a plus and minus sight while stand-
ing in one position, and then moves ahead to repeat the process. A hand level is
useful, for example, in cross-sectioning to obtain a few additional rod readings on
sloping terrain where a turning point would otherwise be required.

H 5.12 SOURCES OF ERROR IN LEVELING

All leveling measurements are subject to three sources of error: (1) instrumental,
(2) natural, and (3) personal. These are summarized in the subsections that follow.

5.12.1 Instrumental Errors

Line of Sight. As described in Section 4.15, a properly adjusted leveling
instrument that employs a level vial should have its line of sight and level
vial axis parallel. Then, with the bubble centered, a horizontal plane,
rather than a conical surface, is generated as the telescope is revolved.
Also, if the compensators of automatic levels are operating properly,
they should always produce a truly horizontal line of sight. If these
conditions are not met, a line of sight (or collimation) error exists, and
serious errors in rod readings can result. These errors are systematic,
but they are canceled in differential leveling if the horizontal lengths of
plus and minus sights are kept equal. The error may be serious in going
up or down a steep hill where all plus sights are longer or shorter than
all minus sights, unless care is taken to run a zigzag line. The size of the
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collimation error, g, can be determined in a simple field procedure [see
Equation (4.14) and Section 4.15.5]. If backsights and foresights cannot
be balanced, a correction for this error can be made.

To apply the collimation correction, the value of ¢ from Equation
(4.14) is divided by the length of the spaces between adjacent stakes in
Figure 4.20.This yields the collimation correction factor in units of feet per
foot, or meters per meter. Then for any backsight or foresight, the correc-
tion to be subtracted from the rod reading is obtained by multiplying the
length of the sight by this correction factor. As an example, suppose that
the distance between stakes in Example 4.3 was 100 ft. Then the collima-
tion correction factor is 0.010/100 = 0.0001 ft/ft. Suppose that a reading
of 5.29 ft was obtained on a backsight of 200-ft length with this instrument.
The corrected rod reading would then be 5.29 — 200(0.00010) = 5.27.
As discussed in Section 19.13, when the three-wire leveling procedure
is used the rod interval determined by the difference in the upper and
lower wires can be used to determine the collimation correction factor.
The video Determining the Collimation Factor of a Level, which is on
the companion website for this book, demonstrates the procedures as
discussed in Section 19.13.

Cross Hair Not Exactly Horizontal. Reading the rod near the center of
the horizontal cross hair will eliminate or minimize this potential error.
The video Checking the Cross Hairs, which is available on the compan-
ion website for this book, demonstrates the procedure for checking the
horizontal wire.

Rod Not Correct Length. Inaccurate divisions on a rod cause errors in
observed elevation differences similar to those resulting from incor-
rect markings on a measuring tape. Uniform wearing of the rod bottom
makes HI values too large, but the effect is canceled when included in
both plus and minus sights. Rod graduations should be checked by com-
paring them with those on a standardized tape.

Tripod Legs Loose. Tripod leg bolts that are too loose or too tight allow
movement or strain that affects the instrument head. Loose metal tripod
shoes cause unstable setups. The video Checking the Tripod, which is
available on the companion website, discusses what to consider when
checking your tripod.

5.12.2 Natural Errors

Curvature of the Earth. As noted in Section 4.4, a level surface curves away
from a horizontal plane at the rate of 0.667 M* or 0.0785 K2, which is
about 0.7 ft/mi or 8 cm/km. The effect of curvature of the Earth is to
increase the rod reading. Equalizing lengths of plus and minus sights in
differential leveling cancels the error due to this cause.

Refraction. Light rays coming from an object to the telescope are bent,
making the line of sight a curve concave to the Earth’s surface, which
thereby decreases rod readings. Balancing the lengths of plus and minus
sights usually eliminates errors due to refraction. However, large and
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sudden changes in atmospheric refraction may be important in precise
work. Although, errors due to refraction tend to be random over a long
period of time, they could be systematic on one day’s run. Additionally,
due to the microclimate near surfaces, it is best to maintain a sight line
that does not come within 1.5 ft or 0.5 m of any surface.

Temperature Variations. Heat causes leveling rods to expand, but the effect
is not important in ordinary leveling. If the level vial of a tilting level is
heated, the liquid expands and the bubble shortens. This does not pro-
duce an error (although it may be inconvenient), unless one end of the
tube is warmed more than the other, and the bubble therefore moves.
Other parts of the instrument warp because of uneven heating, and this
distortion affects the adjustment. Shading the level by means of a cover
when carrying it, and by an umbrella when it is set up, will reduce or
eliminate heat effects. These precautions are followed in precise leveling.

Air boiling or heat waves near the ground surface or adjacent
to heated objects make the rod appear to wave and prevent accurate
sighting. Raising the line of sight by high tripod setups, taking shorter
sights, avoiding any that pass close to heat sources (such as buildings and
stacks), and using the lower magnification of a variable-power eyepiece
reduce the effect.

Wind. Strong wind causes the instrument to vibrate and makes the rod un-
steady. Precise leveling should not be attempted on excessively windy days.

Settlement of the Instrument. Settlement of the instrument during the time
between a plus sight reading and a minus sight makes the latter too small
and, therefore, the recorded elevation of the next point too high. The
error is cumulative in a series of setups on soft material. Therefore, set-
ups on spongy ground, blacktop, or ice should be avoided if possible,
but if they are necessary, unusual care is required to reduce the resulting
errors. This can include taking readings in quick order, using two rods
and two observers to preclude walking around the instrument, and alter-
nating the order of taking plus and minus sights. Additionally, whenever
possible, the instrument tripod’s legs can be set on long hubs that are
driven to refusal in the soft material.

Settlement of a Turning Point. This condition causes an error similar to
that resulting from settlement of the instrument. It can be avoided by
selecting firm, solid turning points or, if none are available, using a steel
turning pin set firmly in the ground. A railroad spike can also be used in
most situations.

5.12.3 Personal Errors

Bubble Not Centered. In working with levels that employ level vials, errors
caused by the bubble not being exactly centered at the time of sighting
are the most important of any, particularly on long sights. If the bubble
runs between the plus and minus sights, it must be recentered before the
minus sight is taken. Experienced observers develop the habit of check-
ing the bubble before and after each sight, a procedure simplified with
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some instruments, which have a mirror—prism arrangement permitting a
simultaneous view of the level vial and rod. i E

Parallax. Parallax caused by improper focusing of the objective or eyepiece
lens results in incorrect rod readings. Careful focusing eliminates this
problem. The video Removing Parallax, which is available on the com-
panion website for this book, demonstrates procedures for detecting and
removing parallax from the instrument.

Faulty Rod Readings. Incorrect rod readings result from parallax, poor
weather conditions, long sights, improper target settings, and other
causes, including mistakes such as those due to careless interpolation and
transposition of figures. Short sights selected to accommodate weather
and instrument conditions reduce the magnitude of reading errors. If a
target is used, the rodperson should read the rod, and the observer should
check it independently.

Rod Handling. Using a rod level that is in adjustment, or holding the
rod parallel to a plumb bob string eliminates serious errors caused by
improper plumbing of the rod. Banging the rod on a turning point for
the second (plus) sight may change the elevation of a point.

Target Setting. If a target is used, it may not be clamped at the exact place
signaled by the observer because of slippage. A check sight should
always be taken after the target is clamped.

=1
[=]

H 5.13 MISTAKES

A few common mistakes in leveling are listed here.

Improper Use of a Long Rod. If the vernier reading on the back of a dam-
aged Philadelphia rod with English units is not exactly 6.500 ft or 7.000 ft
for the short rod, the target must be set to read the same value before
extending the rod.

Holding the Rod in Different Places for the Plus and Minus Sights on a Turn-
ing Point. The rodperson can avoid such mistakes by using a well-defined
point or by outlining the rod base with lumber crayon, keel, or chalk.

Reading a Foot Too High. This mistake usually occurs because the
incorrect footmark is in the telescope’s field of view near the cross
line; for example, an observer may read 5.98 instead of 4.98. Noting
the footmarks both above and below the horizontal cross line will pre-
vent this mistake.

Waving a Flat Bottom Rod while Holding It on a Flat Surface. This action
produces an incorrect rod reading because rotation is about the rod edges
instead of the center or front face. In precise work, plumbing with a rod level,
or other means, is preferable to waving. This procedure also saves time.

Recording Notes. Mistakes in recording, such as transposing figures, enter-
ing values in the wrong column, and making arithmetic mistakes, can be
minimized by having the notekeeper repeat the value called out by an
observer, and by making the standard field-book checks on rod sums and
elevations. Digital levels that automatically take rod readings, store the
values, and compute the level notes can eliminate these mistakes.



122 LEVELING—FIELD PROCEDURES AND COMPUTATIONS

Figure 5.14
Sample data file
for field notes in
Figure 5.5.

Touching Tripod or Instrument during the Reading Process. Beginners using
instruments that employ level vials may center the bubble, put one hand
on the tripod or instrument while reading a rod, and then remove the hand
while checking the bubble, which has now returned to center but was off
during the observation. Of course, the instrument should not be touched
when taking readings, but detrimental effects of this bad habit are practi-
cally eliminated when using automatic levels.

H 5.14 REDUCING ERRORS AND ELIMINATING MISTAKES

Errors in running levels are reduced (but never eliminated) by carefully adjusting
and manipulating both instrument and rod (see Section 4.15 for procedures) and
establishing standard field methods and routines. The following routines prevent
most large errors or quickly disclose mistakes: (1) checking the bubble before
and after each reading (if an automatic level is not being used), (2) using a rod
level, (3) keeping the horizontal lengths of plus and minus sights equal, (4) run-
ning lines forward and backward, (5) making the usual field-book arithmetic
checks, and (6) breaking long leveling circuits into smaller sections.

H 5.15 USING SOFTWARE

On the companion website for this book at http:/www.pearsonhighered.com/
ghilani is the software WOLFPACK. In this software is an option that takes the
plus and minus readings from a simple leveling circuit to create a set of field notes
and the file appropriate for a least-squares adjustment of the data (see Section 16.6).
A sample file of the field notes from Figure 5.5 is depicted in Figure 5.14. The soft-
ware limits the length of the station identifiers to 10 characters. These characters
must not include a space, comma, or tab, since these are used as data delimiters in
the file. All benchmark stations must start with the letters BM, while all turning
points must start with the letters 7P. This is used by the software to differentiate
between a benchmark and a turning point in the data file.
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While the format of the file is explained fully in the WOLFPACK help
system, it will be presented here as an aid to the reader. The first line of the
file shown in Figure 5.14 is a title line, which in this case is “Grand Lakes Univ.
Campus Leveling Project.” The second line contains starting and ending bench-
mark elevations. Since this line starts and ends on the same benchmark (BM_
MIL), its elevation of 2053.18 need be listed only once. If a level circuit starts at
one benchmark, but closes on another, then both the starting and ending eleva-
tions of the leveling circuit should be listed on this line. The remainder of the file
contains the plus and minus sights between each set of stations. Thus each line
contains the readings from one instrument setup. For example, a plus sight of
1.33 was made on BM_MIL and a minus sight of 8.37 was made on TP1, which is
the first turning point. Each instrument setup is listed in order following the same
procedure. Once the file is created and saved using the WOLFPACK editor, it
can be read into the option Reduction of differential leveling notes as shown in
Figure 5.15. The software then creates notes similar to those shown in Figure 5.5
adjusting the elevations, and demonstrating a page check.

For those who are interested in higher-level programming, the Mathcad
worksheet C5.xmcd is available on the companion website for this book at
http://www.pearsonhighered.com/ghilani. This worksheet reads a text file of obser-
vations that are obtained typically in differential leveling and creates and adjust the
data placing the results in a format typically found in a field book. Additionally,
the Excel spreadsheet C5.xIs demonstrates how a spreadsheet can be used to
reduce the notes in Figure 5.5.

Asterisks (*) indicate problems that have partial answers given in Appendix G.
5.1 What errors are eliminated by keeping the lengths of plus and minus sights equal?
5.2 Why should sight lines in differential leveling be kept at least 0.5 m from any surface?
5.3 Why is it advisable to set up a level with all three tripod legs on, or in, the same
material (concrete, asphalt, soil), if possible.
5.4 Discuss how the collimation factor can be used to remove instrumental errors in
differential leveling.
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Explain how errors due to lack of instrument adjustment can be practically elimi-
nated in running a line of differential levels?

Why must the shoes of the tripod be snug?

List four considerations that govern a rodperson’s selection of turning points and
benchmarks.

What error is created by a rod leaning 10 min from plumb at a 12.513 m reading on
the leaning rod?

Similar to Problem 5.8, except for a 3.5-m reading.

What error results on a 30-m sight with a level if the rod reading is 1.505 m but the
top of the 4 m rod is 0.3 m out of plumb?

What error results on a 150-ft sight with a level if the rod reading is 4.307 ft but the
top of the 7-ft rod is 0.3 ft out of plumb?

Prepare a set of level notes for the data listed. Perform a check and adjust the mis-
closure. Elevation of BM 7 is 852.045 m. If the total loop length is 1500 m, what
order of leveling is represented? (Assume all readings are in meters.)

Point +S (BS) =S (FS)
BM 7 4.388

TP1 6.907 4.538
BM 8 4.680 8.800
TP2 3.730 5.978
TP3 8.464 5.245
BM 7 3.598

Similar to Problem 5.12, except the elevation of BM 7 is 823.38 ft and the loop
length 1500 ft. (Assume all readings are in feet.)

A differential leveling loop began and closed on BM Tree (elevation 323.48 ft). The
plus sight and minus sight distances were kept approximately equal. Readings (in
feet) listed in the order taken are 3.18 (+S) on BM Tree, 4.76 (—S) and 2.44 (+S)
on TP1, 3.05 (—S) and 6.63 (+S) on BM X, 3.64 (—S) and 2.35 (+S) on TP2, and
3.07 (—S) on BM Tree. Prepare, check, and adjust the notes.

A differential leveling circuit began on BM Hydrant (elevation 4823.65 ft) and
closed on BM Rock (elevation 4834.47 ft). The plus sight and minus sight dis-
tances were kept approximately equal. Readings (in feet) given in the order taken
are 2.65 (+S) on BM Hydrant, 3.51 (=S) and 7.23 (+S) on TP1, 5.04 (=S) and
11.41 (+S) on BM 1,8.58 (—S) and 7.65 (+S) on BM 2,4.23 (—S) and 7.53 (+S),
on TP2, and 4.34 (—S) on BM Rock. Prepare, check, and adjust the notes.

A differential leveling loop began and closed on BM Bridge (elevation 814.687 m).
The plus sight and minus sight distances were kept approximately equal. Readings
(in meters) listed in the order taken are 0.548 (+S) on BM Bridge, 1.208 (—S)
and 0.843 (+S) on TP1, 1.287 (—S) and 1.482 (+S) on BM X, 0.743 (—S) and
0.944 (+S) on TP2, and 0.571 (—S) on BM Bridge. Prepare, check, and adjust the
notes.

A differential leveling circuit began on BM Rock (elevation 543.202 m) and closed
on BM Manbhole (elevation 542.546 m). The plus sight and minus sight distances
were kept approximately equal. Readings (in meters) listed in the order taken
are 1.559(+S) on BM Rock, 0.987 (=S) and 1.105 (+S) on TPI1, 0.842 (-S)
and 0.679 (+S) on BM 1, 1.846 (—S) and 0.849 (+S) on BM 2, 1.895 (—S) and
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1.436 (+S) on TP2, and 0.704 (—S) on BM Manhole. Prepare, check, and adjust
the notes.

A differential leveling loop started and closed on BM Juno, elevation 2485.19 ft.
The plus sight and minus sight distances were kept approximately equal. Readings
(in feet) listed in the order taken are 5.49 (+S) on BM Juno, 3.46 (—S) and
8.84 (+S) on TP1, 5.34 (=S) and 6.51 (+S) on TP2, 827 (—=S) and 4.03 (+S)
on BM1, 9.46 (=S) and 7.89 (+S) on TP3, and 6.13 (—S) on BM Juno. Prepare,
check, and adjust the notes.

A level setup midway between X and Y reads 6.29 ft on X and 7.91 ft on Y. When
moved within a few feet of X, readings of 5.18 ft on X and 6.76 ft on Y are recorded.
What is the true elevation difference, and the reading required on Y to adjust the
instrument?

To test its line of sight adjustment, a level is setup near C (elev. 193.436 m) and
then near D. Rod readings listed in the order taken are C = 1.315m, D = 0.848 m,
D =1.296m, and C = 1.767 m. Compute the elevation of D, and the reading
required on C to adjust the instrument.

The line of sight test shows that a level’s line of sight is inclined downward 3 mm/50 m.
What is the allowable difference between BS and FS distances at each setup (neglect-
ing curvature and refraction) to keep elevations correct within 1 mm?

Reciprocal leveling gives the following readings in meters from a setup near A:
on A, 1.365; on B, 4.928, 4.924, and 4.926. At the setup near B: on B, 4.251; on A,
1.687, 1.688, and 1.688. The elevation of A is 564.872 m. Determine the misclosure
and elevation of B.

Reciprocal leveling across a canyon provides the data listed (in meters). The
elevation of Y is 2265.879 m. The elevation of X is required. Instrument at
X:+S = 3.182, —S = 9.365,9.370, and 9.368. Instrument at Y:+S = 10.223;
—S = 4.037,4.041, and 4.038.

Prepare a set of three-wire leveling notes for the data given and make the page
check. The elevation of BM X is 733.387 m. Rod readings (in meters) are (U de-
notes upper cross-wire readings, M middle wire, and L lower wire): +S on BM X:
U=2959,M = 2707, L = 2454, —-S on TP1: U = 1.683, M = 1.453, L = 1.224;
+SonTP1: U = 2.254, M = 2.054, L = 1.854; —=SonBM Y: U = 1.013, M = 0.817,
L = 0.620.

Similar to Problem 5.24, except the elevation of BM X is 1482.909 ft, and rod
readings (in feet) are (U denotes upper cross-wire readings, M middle wire,
and L lower wire): +S on BM X: U = 6.573, M = 6.321, L. = 6.070; —S on
TP1: U = 5949, M = 5.653,L = 5.356;+S on TPl: U = 5470,M = 5.195,
L =4921;-SonBM Y: U = 5.674, M = 5.453, L = 5.231.

Assuming a stadia constant of 99.996, what is the distance leveled in Problem 5.24?
Assuming a stadia constant of 100.5, what is the distance leveled in Problem 5.25?
Prepare a set of profile leveling notes for the data listed and show the page check.
All data is given in feet. The elevation of BM A is 659.08, and the elevation of BM
B is 648.47. Rod readings are: +S on BM A, 5.68; intermediate foresight (IFS) on
11 + 00,4.3; =S on TP1, 7.56; +S on TP1, 8.02; IFS on 12 + 00, 6.6; on 12 + 50,
5.3;0on 13 + 00, 5.8; on 14 + 00, 6.3; —S on TP2, 10.15, + S on TP2, 5.28; IFS on
14 + 73,4.1;0on 15 + 00,4.9;0n 16 + 00, 6.3; —S on TP3, 7.77; +S on TP3, 3.16; —S
on BM B, 7.23.

Same as Problem 5.28, except the elevation of BM A is 356.98 ft, the elevation of
BM B is 349.58 ft, and the +S on BM A is 8.77 ft.
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Plot the profile Problem 5.28 and design a grade line between stations 11 + 00 and
16 + 00 that balances cut and fill areas.

What is the percent grade between stations 11 + 00 and 16 + 00 in Problem 5.28?
Differential leveling between BMs A, B, C, D, and A gives elevation differences (in
meters) of —15.632, + 32.458, + 38.214, and —55.025, and distances in km of 4.0,
6.0, 5.0, and 3.0, respectively. If the elevation of A is 634.597, compute the adjusted
elevations of BMs B, C, and D, and the order of leveling.

Leveling from BM X to W, BM Y to W, and BM Z to W gives differences in
elevation (in feet) of —30.24, +26.20, and +10.18, respectively. Distances between
benchmarks are XW = 2500, YW = 3000, and ZW = 4000. True elevations of the
benchmarks are X = 571.93,Y = 515.47, and Z = 531.58. What is the adjusted
elevation of W? (Note: All data are given in feet.)

A 3-m level rod was calibrated and its graduated scale was found to be uniformly
contracted so that the distance between its 0 and 3.000 marks was actually 2.997 m.
How will this affect elevations determined with this rod for (a) circuits run on rela-
tively flat ground (b) circuits run downbhill (¢) circuits run uphill?

A line of levels with 42 setups (84 rod readings) was run from BM Rock to BM Pond
with readings taken to the nearest 3.0 mm; hence any observed value could have an
error of £ 1.5 mm. For reading errors only, what total error would be expected in
the elevation of BM Pond?

Same as Problem 5.35, except for 65 setups and readings to the nearest 0.01 ft with
possible error of +0.005 ft each.

Compute the permissible misclosure for the following lines of levels: (a) a 20-km
loop of third-order levels (b) a 10-km section of second-order class I levels (¢) a
30-km loop of first-order class I levels.
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PART | - METHODS FOR MEASURING DISTANCES

H 6.1 INTRODUCTION

Distance measurement is generally regarded as the most fundamental of all
surveying observations. In traditional ground surveys, even though many angles
may be read, the length of at least one line must be measured to supplement the
angles in locating points. In plane surveying, the distance between two points
means the horizontal distance. If the points are at different elevations, the distance
is the horizontal length between vertical lines at the points.

Lengths of lines may be specified in different units. In the United States,
the foot, decimally divided, is usually used, although the meter is becoming
increasingly more common. Geodetic surveys and many highway surveys employ
the meter. In architectural and machine work, and on some construction proj-
ects, the unit is a foot divided into inches and fractions of an inch. As discussed in
Section 2.2, chains, varas, rods, and other units have been, and still are, utilized in
some localities and for special purposes.

H 6.2 SUMMARY OF METHODS FOR MAKING
LINEAR MEASUREMENTS

In surveying, linear measurements have been obtained by many different
methods. These include (1) pacing, (2) odometer readings, (3) optical range-
finders, (4) tacheometry (stadia), (5) subtense bars, (6) taping, (7) electronic
distance measurement (EDM), (8) satellite systems, and others. Of these,
surveyors most commonly use taping, EDM, and satellite systems today. In
particular, the satellite-supported global navigation satellite systems (GNSS)
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are rapidly replacing all other systems due to their many advantages, but most
notably because of their range, accuracy, and efficiency. Methods (1) through
(5) are discussed briefly in the following sections. Taping is discussed in Part II
of this chapter, and EDM is described in Part III of this chapter. Satellite sys-
tems are described in Chapters 13, 14, and 15.

Triangulation is a method for determining positions of points from which
horizontal distances can be computed (see Section 19.12.1). In this procedure,
lengths of lines are computed trigonometrically from measured baselines and an-
gles. Photogrammetry can also be used to obtain horizontal distances. This topic
is covered in Chapter 27. Besides these methods, distances can be estimated, a
technique useful in making field note sketches and checking observations for
mistakes. With practice, estimating can be done quite accurately.

H 6.3 PACING

Distances obtained by pacing are sufficiently accurate for many purposes in sur-
veying, engineering, geology, agriculture, forestry, and military field sketching.
Pacing is also used to detect blunders that may occur in making distance observa-
tions by more accurate methods.

Pacing consists of counting the number of steps, or paces, in a required
distance. The length of an individual’s pace must be determined first. This is best
done by walking with natural steps back and forth over a level course at least
300-ft long, and dividing the known distance by the average number of steps. For
short distances, the length of each pace is needed, but the number of steps taken
per 100 ft is desirable for checking long lines.

It is possible to adjust one’s pace to an even 3 ft, but a person of average
height finds such a step tiring if maintained for very long. The length of an
individual’s pace varies when going uphill or downhill and changes with age.
For long distances, a pocket instrument called a pedometer can be carried
to register the number of paces, or a passometer attached to the body or leg
counts the steps. Some surveyors prefer to count strides, a stride being two
paces.

Pacing is one of the most valuable things learned in surveying, since it has
practical applications for everybody and requires no equipment. If the terrain is
open and reasonably level, experienced pacers can measure distances of 100 ft or
longer with an accuracy of 1/50 to 1/100 of the distance.

H 6.4 ODOMETER READINGS

An odometer converts the number of revolutions of a wheel of known cir-
cumference to a distance. Lengths measured by an odometer on a vehicle are
suitable for some preliminary surveys in route-location work. They also serve as
rough checks on observations made by other methods. Other types of measur-
ing wheels are available and useful for determining short distances, particularly
on curved lines. Odometers give surface distances, which should be corrected to
horizontal if the ground slopes severely (see Section 6.13). With odometers, an
accuracy of approximately 1/200 of the distance is reasonable.
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B 6.5 OPTICAL RANGEFINDERS

These instruments operate on the same principle as rangefinders on single-lens
reflex cameras. Basically, when focused, they solve for the object distance f, in
Equation (4.12), where focal length fand image distance f; are known. An opera-
tor looks through the lens and adjusts the focus until a distant object viewed is
focused in coincidence, whereupon the distance to that object is obtained. These
instruments are capable of accuracies of 1 part in 50 at distances up to 150 ft, but
accuracy diminishes as the length increases. They are suitable for reconnaissance,
sketching, or checking more accurate observations for mistakes.

B 6.6 TACHEOMETRY

Tacheometry (stadia is the more common term in the United States) is a survey-
ing method used to quickly determine the horizontal distance to, and elevation
of, a point. As discussed in Section 5.4, stadia observations are obtained by sight-
ing through a telescope equipped with two or more horizontal cross wires at a
known spacing. The apparent intercepted length between the top and bottom
wires is read on a graduated rod held vertically at the desired point. The distance
from telescope to rod is found by proportional relationships in similar triangles.
An accuracy of 1/500 of the distance is achieved with reasonable care.

B 6.7 SUBTENSE BAR

This indirect distance-measuring procedure involves using a theodolite to read the
horizontal angle subtended by two targets precisely spaced at a fixed distance apart
on a subtense bar. The unknown distance is computed from the known target spac-
ing and the measured horizontal angle. Prior to observing the angle from one end
of the line, the bar is centered over the point at the other end of the line, and ori-
ented perpendicular to the line and in a horizontal plane. For sights of 500 ft (150 m)
or shorter, and using a 1” theodolite, an accuracy of 1 part in 3000 or better can
be achieved. Accuracy diminishes with increased line length. Besides only being
suitable for relatively short lines, this method of distance measurement is time con-
suming and is not used today, having been replaced by EDM and GNSS surveys.

PART Il * DISTANCE MEASUREMENTS BY TAPING

H 6.8 INTRODUCTION TO TAPING

With the accuracy and ease of use of electronic distance measuring (EDM) instru-
ments discussed in Part III of this chapter, precise taping of lines over 100 ft is seldom,
if ever, performed today. Similarly, tape corrections are seldom, if ever, made today.
However, the proper use of a tape in measuring distances is still a required skill for
the practicing surveyor. Part II of this chapter deals with the proper care and use of a
tape when measuring distances. Since actual tape corrections are seldom performed,
examples of tape correction have been moved to Appendix A of this book.

129
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Figure 6.1

Taping equipment
for field party.
(Courtesy W. &
L.E. Gurley.)

Observation of horizontal distances by taping consists of applying the
known length of a graduated tape directly to a line a number of times. Two types
of problems arise: (1) observing an unknown distance between fixed points, such
as between two stakes in the ground, and (2) laying out a known or required dis-
tance with only the starting mark in place.

Taping is performed in six steps: (1) lining in, (2) applying tension, (3)
plumbing, (4) marking tape lengths, (5) reading the tape, and (6) recording the
distance. The application of these steps in taping on level and sloping ground is
detailed in Sections 6.11 and 6.12.

H 6.9 TAPING EQUIPMENT AND ACCESSORIES

Over the years, various types of tapes and other related equipment have been
used for taping in the United States. Tapes in current use are described here, as
are other accessories used in taping.

Surveyor’s and engineer’s tapes are made of steel 1/4- to 3/8-in. wide and
weigh 2 to 3 1bs/100 ft. Those graduated in feet are most commonly 100 ft in length,
although they are also available in lengths of 200, 300, and 500 ft. They are marked
in feet, tenths, and hundredths. Metric tapes have standard lengths of 30, 60, 100,
and 150 m. All can either be wound on a reel [see Figure 6.1(a)] or done up in loops.

Invar tapes are made of a special nickel-steel alloy (35% nickel and 65%
steel) to reduce length variations caused by differences in temperature. The ther-
mal coefficient of expansion and contraction of this material is only about 1/30
to 1/60 that of an ordinary steel tape. However, the metal is soft and somewhat
unstable. This weakness, along with the cost perhaps ten times that of steel tapes,
made them suitable for precise geodetic work only and as a standard for com-
parison with working tapes. Another version, the Lovar tape, has properties and
a cost between those of steel and Invar tapes.

Cloth (or metallic) tapes are actually made of high-grade linen, 5/8 in. wide
with fine copper wires running lengthwise to give additional strength and pre-
vent excessive elongation. Metallic tapes commonly used are 50, 100, and 200 ft
in length and come on enclosed reels [see Figure 6.1(b)]. Although not suitable
for precise work, metallic tapes are convenient and practical for many purposes.
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Fiberglass tapes come in a variety of sizes and lengths, and are usually wound
on a reel. They can be employed for the same types of work as metallic tapes.

Chaining pins or taping pins are used to mark tape lengths. Most taping pins
are made of number 12 steel wire, sharply pointed at one end, have a round loop at
the other end, and are painted with alternate red and white bands [see Figure 6.1(c)].
Sets of 11 pins carried on a steel ring are standard. Since distances over 100 ft are
typically observed using an EDM (see Part III), chaining pins are seldom used today.

The hand level, described in Section 4.13, is a simple instrument used to
keep the tape ends at equal elevations when observing over rough terrain [see
Figures 4.17 and 6.1(d)].

Tension handles facilitate the application of a desired standard or known
tension. A complete unit consists of a wire handle, a clip to fit the ring end of the
tape, and a spring balance reading up to 30 1b in 1/2-1b graduations.

Clamp handles are used to apply tension by a positive, quick grip using a
scissors-type action on any part of a steel tape. They do not damage the tape and
prevent injury to hands and the tape.

A pocket thermometer permits reading data for making temperature cor-
rections. It is about 5-in. long, graduated from perhaps —30° to +120°F in 1°0r2°
divisions, and kept in a protective metal case.

Range poles (lining rods) made of wood, steel, or aluminum are about
1-in. thick and 6 to 10 ft long. They are round or hexagonal in cross-section and
marked with alternate 1-ft long red and white bands that can be used for rough
measurements [see Figure 6.1(e)]. The main utility of range poles is to mark the
line being measured so that the tape’s alignment can be maintained.

Plumb bobs for taping [see Figure 6.1(f)] should weigh a minimum of 8 oz
and have a fine point. However, most surveyors use 24-0z plumb bobs for stabil-
ity reasons. At least 6 ft of good-quality string or cord, free of knots, is necessary
for convenient work with a plumb bob. The points of most plumb bobs are re-
movable, which facilitates replacement if they become dull or broken. The string
can be wound on a spring-loaded reel that is useful for rough targeting. However,
in taping, it is best to not use a reel.

Bl 6.10 CARE OF TAPING EQUIPMENT

The following points are pertinent in the care of tapes and range poles:

1. Considering the cross-sectional area of the average surveyor’s steel tape and
its permissible stress, a pull of 100 1b will do no damage. But if the tape is
kinked, a pull of less than 1 Ib can break it. Therefore, always check to be
certain that any loops and kinks are eliminated before tension is applied.

2. If a tape gets wet, wipe it first with a dry cloth, then with an oily one.

3. Tapes should be either kept on a reel or thrown into circular loops, but not
handled both ways.

4. Each tape should have an individual number or tag to identify it.

5. Broken tapes can be mended by riveting or applying a sleeve device, but a
mended tape should not be used on important work.

6. Range poles are made with the metal shoe and point in line with the section
above. This alignment may be lost if the pole is used improperly.
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H 6.11 TAPING ON LEVEL GROUND

The subsections that follow describe six steps in taping on level ground using a tape.

6.11.1 Lining In

Using range poles, the line to be measured should be marked at both ends, and at
intermediate points where necessary, to ensure unobstructed sight lines. Taping
requires a minimum of two people, a forward tapeperson and a rear tapeperson.
The forward tapeperson is lined in by the rear tapeperson. Directions are given
by vocal or hand signals.

6.11.2 Applying Tension

The rear tapeperson holding the 100-ft end of a tape over the first (rear) point lines
in while the forward tapeperson, holding the zero end of the tape. For accurate
results, the tape must be straight and the two ends held at the same elevation. A spec-
ified tension, generally between 10 and 25 Ib, is applied. To maintain a steady pull,
tapepersons wrap the leather thong at the tape’s end around one hand, keep fore-
arms against their bodies, and face at right angles to the line. In this position, they are
off the line of sight. Also, the body need only be tilted to hold, decrease, or increase
the pull. Sustaining a constant tension with outstretched arms is difficult, if not impos-
sible, for a pull of 15 Ib or more. Good communication between forward and rear
tapepersons will avoid jerking the tape, save time, and produce better results.

6.11.3 Plumbing

Weeds, brush, obstacles, and surface irregularities may make it undesirable to lay a
tape on the ground. In those cases, the tape is held above ground in a horizontal po-
sition. Placing the plumb-bob string over the proper tape graduation and securing
it with one thumb, mark each end point on the tape. The rear tapeperson continues
to hold a plumb bob over the fixed point, while the forward tapeperson marks the
length. In measuring a distance shorter than a full tape length, the forward tape-
person moves the plumb-bob string to a point on the tape over the ground mark.

6.11.4 Marking Tape Lengths

When the tape has been lined in properly, tension has been applied, and the rear
tapeperson is over the point, “stick” is called out. The forward tapeperson then
places a pin exactly opposite the zero mark of the tape and calls “stuck.” The
marked point is checked by repeating the measurement until certainty of its cor-
rect location is assured.

After checking the measurement, the forward tapeperson signals that the
point is OK, the rear tapeperson pulls up the rear pin, and they move ahead.
The forward tapeperson drags the tape pacing roughly 100 ft and stops. The rear
tapeperson calls “tape” to notify the forward tapeperson that they have gone
100 ft just before the 100-ft end reaches the pin that has been set. The process of
measuring 100-ft lengths is repeated until a partial tape length is needed at the
end of the line.
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6.11.5 Reading the Tape

There are two common styles of graduations on 100-ft surveyor’s tapes. It is
necessary to identify the type being used before starting work to avoid making
one-foot mistakes repeatedly.

The more common type of tape has a total graduated length of 101 ft. It
is marked from 0 to 100 by full feet in one direction, and has an additional foot
preceding the zero mark graduated from O to 1 ft in tenths, or in tenths and
hundredths in the other direction. In measuring the last partial tape length of a
line with this kind of tape, a full-foot graduation is held by the rear tapeperson at
the last pin set [like the 87-ft mark in Figure 6.2(a)]. The actual footmark held is
the one that causes the graduations on the extra foot between zero and the tape
end to straddle the closing point. The forward tapeperson reads the additional
length of 0.68 ft beyond the zero mark. In the case illustrated, to ensure correct
recording, the rear tapeperson calls “87.” The forward tapeperson repeats and
adds the partial foot reading, calling “87.68.” Since part of a foot has been added,
this type of tape is known as an add tape.

The other kind of tape found in practice has a total graduated length of
100 ft. It is marked from 0 to 100 with full-foot increments, and the first foot at
each end (from 0 to 1 and from 99 to 100) is graduated in tenths, or in tenths
and hundredths. With this kind of tape, the last partial tape length is measured
by holding a full-foot graduation at the last chaining pin set such that the gradu-
ated section of the tape between the zero mark and the 1-ft mark straddles the
closing point. This is indicated in Figure 6.2(b), where the 88-ft mark is being
held on the last chaining pin and the tack marking the end of the line is oppo-
site 0.32 ft read from the zero end of the tape. The partial tape length is then
88.0 — 0.32 = 87.68 ft. The quantity 0.32 ft is said to be cut off; hence this type
of tape is called a cut tape. To ensure subtraction of a foot from the number at
the full-foot graduation used, the following field procedure and calls are recom-
mended: rear tapeperson calls “88”; forward tapeperson says “cut point three-
two”; rear tapeperson answers “eighty seven point six eight”; forward tapeperson
confirms the subtraction and replies “check” when satisfied it is correct.

?/ Chaining pin Tack in stake \—‘

4 | c 1 [ HH\H.HHI
87 2 1 0 +1
‘FO.GS
(@) Add tape
/ Chaining pin Tack in stake
4 | c 1 [ [TTTTTTITTITT]

0
‘ Reading partial
(b) Cut tape 0.32 tape lengths.
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An advantage of the add tape is that it is easier to use because no subtrac-
tion is needed when measuring decimal parts of a foot. Its disadvantage is that
careless tapepersons will sometimes make measurements of 101.00 ft and record
them as 100.00 ft. The cut tape practically eliminates this mistake.

The same routine should be used throughout all taping by a party and the
results tested in every possible way. A single mistake in subtracting the partial
foot when using a cut tape will destroy the precision of a hundred other good mea-
surements. For this reason, the add tape is more foolproof. The greatest danger
for mistakes in taping arises when changing from one style of tape to the other.

6.11.6 Recording the Distance

Accurate fieldwork may be canceled by careless recording. After the partial tape
length is obtained at the end of a line, the rear tapeperson determines the num-
ber of full 100-ft tape lengths by counting the pins collected from the original set
of 11. Since long distances are measured electronically today, tapes are never
used for long distances. Although taping procedures may appear to be relatively
simple, high precision is difficult to achieve. Taping is a skill that can best be
taught and learned by field demonstrations and practice.

H 6.12 HORIZONTAL MEASUREMENTS ON SLOPING GROUND

In taping on uneven or sloping ground, it is standard practice to hold the tape
horizontally and use a plumb bob at one or perhaps both ends. It is difficult to
keep the plumb line steady for heights above the chest. Wind exaggerates this
problem and may make accurate work impossible.

On steeper slopes, where a 100-ft length cannot be held horizontally with-
out plumbing from above shoulder level, shorter distances are measured and
accumulated to total a full tape length. This procedure, called breaking tape, is
illustrated in Figure 6.3. As an example of this operation, assume that when taping
down slope, the 100-ft end of the tape is held at the rear point, and the forward
tapeperson can advance only 30 ft without being forced to plumb from above the
chest. A pin is therefore set beneath the 70-ft mark, as in Figure 6.4. The rear
tapeperson moves ahead to this pin and holds the 70-ft graduation there while
another pin is set at, say, the 25-ft mark. Then, with the 25-ft graduation over the
second pin, the full 100 ft distance is marked at the zero point. In this way, the
partial tape lengths are added mechanically to make a full tape length by holding
the proper graduations, and no mental arithmetic is required. The rear tapeperson
returns the pins set at the intermediate points to the forward tapeperson to keep
the tally clear on the number of full tape lengths established. To avoid kinking the
tape, the full 100-ft length is pulled ahead by the forward tapeperson into posi-
tion for measuring the next tape length. In all cases the tape is leveled by eye or
hand level, with the tapepersons remembering the natural tendency to have the
downhill end of a tape too low. Practice will improve the knack of holding a tape
horizontally by keeping it perpendicular to the vertical plumb-bob string.

Taping downhill is preferable to measuring uphill for two reasons. First, in
taping downhill, the rear point is held steady on a fixed object while the other
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Figure 6.3
Breaking tape.
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end is plumbed. In taping uphill, the forward point must be set while the other
end is wavering somewhat. Second, if breaking tape is necessary, the head tapep-
erson can more conveniently use the hand level to proceed downhill a distance,
which renders the tape horizontal when held comfortably at chest height.

H 6.13 SLOPE MEASUREMENTS

In measuring the distance between two points on a steep slope, rather than break
tape every few feet, it may be desirable to tape along the slope and compute the
horizontal component. This requires measurement also of either the altitude angle
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Figure 6.5
Slope measurement.

« or the difference in elevation d (Figure 6.5). Breaking tape is more time consum-
ing and generally less accurate due to the accumulation of random errors from
marking tape ends and keeping the tape level and aligned for many short sections.

In Figure 6.5, if altitude angle « is determined, the horizontal distance be-
tween points A and B can be computed from the relation

H = Lcosa (6.1)

where H is the horizontal distance between points, L the slope length separating
them, and « the altitude angle from horizontal, usually obtained with an Abney
hand level and clinometer (hand device for measuring angles of inclination). If
the difference in elevation d between the ends of the tape is measured, which is
done by leveling (see Chapter 5), the horizontal distance can be computed using
the following expression derived from the Pythagorean theorem:

H=VIL>- d* (6.2a)

Another approximate formula, obtained from the first term of a binomial
expansion of the Pythagorean theorem, may be used in lower-order surveys to
reduce slope distances to horizontal:

d2
H=L- i( approximate ) (6.2b)

In Equation (6.2b) the term d? /2L equals C in Figure 6.5 and is a correction
to be subtracted from the measured slope length to obtain the horizontal dis-
tance. The error in using the approximate formula for a 100-ft length grows with
increasing slope. Equation (6.2b) is useful for making quick estimates, without a
calculator, or error sizes produced for varying slope conditions. It should not be
used as an alternate method of Equation (6.2a) when reducing slope distances.
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Hl 6.14 SOURCES OF ERROR IN TAPING
There are three fundamental sources of error in taping:

1. Instrumental errors. A tape may differ in actual length from its nominal
graduated length because of a defect in manufacture or repair, or as a result
of kinks.

2. Natural errors. The horizontal distance between end graduations of a tape
varies because of the effects of temperature, wind, and weight of the tape
itself.

3. Personal errors. Tapepersons setting pins, reading the tape, or manipulat-
ing the equipment.

With the precision of the EDM in today’s total station, taping is seldom
used for precise work; it has been relegated to use in areas where lower accuracy
is required. However, when a tape is used these sources of errors should be un-
derstood and avoided. For example, an offset measurement or tie measurements
for a station taken with a tape should not be subjected to personal errors. The
effects of personal and systematic error sources in taping are discussed in the
subsections that follow. Due to the precision and accuracy of EDM instruments,
precise taping, which required these corrections, is seldom performed today.
Appendix A contains examples of tape corrections for systematic errors.

6.14.1 Incorrect Length of Tape

Incorrect length of a tape can be one of the most important errors. Tape manu-
facturers do not guarantee steel tapes to be exactly their graduated nominal
length—for example, 100.00 ft—nor do they provide a standardization certificate
unless requested and paid for as an extra. The true length is obtained by compar-
ing it with a standard tape or distance. The National Institute of Standards and
Technology (NIST)! of the U.S. Department of Commerce will make such a com-
parison and certify the exact distance between end graduations under given condi-
tions of temperature, tension, and manner of support. A 100-ft steel tape usually
is standardized for each of the two sets of conditions—for example, 68°F, a 12-1b
pull, with the tape lying on a flat surface (fully supported throughout); and 68°F, a
20-1b pull, with the tape supported at the ends only.

An error, caused by incorrect length of a tape, occurs each time the tape
is used. If the true length, known by standardization, is not exactly equal to its
nominal value of 100.00 ft recorded for every full length, the correction can be

determined as
=1
C; = < ; >L (6.3)

'Information on tape calibration services of the National Institute of Standards and Technology
can be obtained at the following website: http://www.nist.gov. Tapes can be sent for calibration
to the National Institute of Standards and Technology, Building 220, Room 113, 100 Bureau Dr.,
Gaithersburg, MD 20899; telephone: (301) 975-2465.

137


http://www.nist.gov

138 DISTANCE MEASUREMENT

where Cy is the correction to be applied to the measured (recorded) length of a
line to obtain the true length, / the actual tape length, /' the nominal tape length,
and L the measured (recorded) length of line. Units for the terms in Equation (6.3)
can be in either feet or meters.

6.14.2 Temperature Other Than Standard

Steel tapes are standardized for 68°F (20°C) in the United States. A temperature
higher or lower than this value causes a change in length that must be considered.
The coefficient of thermal expansion and contraction of steel used in ordinary
tapes is approximately 0.00000645 per unit length per degree Fahrenheit, and
0.0000116 per unit length per degree Celsius. For any tape, the correction for
temperature can be computed as

Cr=k(T, - T)L (6.4)

where Cr is the correction in the length of a line caused by nonstandard tem-
perature, k the coefficient of thermal expansion and contraction of the tape, T}
the tape temperature at the time of measurement, 7 the tape temperature when
it has standard length, and L the observed (recorded) length of line. The cor-
rection Cy will have the same units as L, which can be either feet or meters.
Errors caused by temperature change may be practically eliminated by either
(a) measuring temperature and making corrections according to Equation (6.4),
or (b) using an Invar tape.

Shop measurements made with steel scales and other devices likewise
are subject to temperature effects. The precision required in fabricating a large
airplane or ship can be lost by this one cause alone.

6.14.3 Inconsistent Pull

When a steel tape is pulled with a tension greater than its standard pull (the
tension at which it was calibrated), the tape will stretch and become longer than
its standard length. Conversely, if less than standard pull is used, the tape will be
shorter than its standard length. The modulus of elasticity of the tape regulates
the amount that it stretches. The correction for pull can be computed and applied
using the following formula

L

Cp= (P — P)E

(6.5)

where Cpis the total elongation in tape length due to pull, in feet; P; the pull applied
to the tape at the time of the observation, in pounds; P the standard pull for the tape
in pounds; A the cross-sectional area of the tape in square inches; £ the modulus of
elasticity of steel in pounds per square inch; and L the observed (recorded) length of
line. An average value of E is 29,000,000 Ib /in.? for the kind of steel typically used in
tapes. In the metric system, to produce the correction Cp in meters, comparable units
of P and P, are kilograms, L is meters, A is square centimeters, and E is kilograms
per square centimeter. An average value of E for steel in these units is approximately
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2,000,000 kg/ cm?. The cross-sectional area of a steel tape can be obtained from the
manufacturer, by measuring its width and thickness with calipers, or by dividing the
total tape weight by the product of its length (in feet) times the unit weight of steel
(490 Ib /ft?), and multiplying by 144 to convert square feet to square inches.

Errors resulting from incorrect tension can be eliminated by (a) using a
spring balance to measure and maintain the standard pull, or (b) applying a pull
other than standard and making corrections for the deviation from standard ac-
cording to Equation (6.5).

Errors caused by incorrect pull may be either systematic or random. The pull
applied by even an experienced tapeperson is sometimes greater or less than the
desired value. An inexperienced person, particularly one who has not used a spring
balance on a tape, is likely to apply less than the standard tension consistently.

6.14.4 Sag

A steel tape not supported along its entire length sags in the form of a catenary,
a good example being the cable between two power poles. Because of sag, the
horizontal distance (chord length) is less than the graduated distance between
tape ends, as illustrated in Figure 6.6. Sag can be reduced by applying greater ten-
sion, but not eliminated unless the tape is supported throughout. The following
formula is used to compute the sag correction:

o= WL 6.6
5 24P? (6.6)

where in the English system Cg, is the correction for sag (difference between
length of curved tape and straight line from one support to the next), in feet; Lg
the unsupported length of the tape, in feet; w the weight of the tape per foot of
length, in pounds; and P; the pull on the tape, in pounds. Metric system units for
Equation (6.6) are kg/m for w, kg for Py, and meters for Cg and L.

The effects of errors caused by sag can be eliminated by (a) supporting the
tape at short intervals or throughout, or (b) by computing a sag correction for
each unsupported segment and applying the total to the recorded length accord-
ing to Equation (6.6). It is important to recognize that Equation (6.6) is nonlinear
and thus must be applied to each unsupported section of the tape. It is incorrect to
apply it to the overall length of a line unless the line was observed in one section.

0-ft mark 100-ft mark
|

(a) Tape supported throughout

0 100

I
24pP?

(b) Tape supported at ends only

Figure 6.6
Effect of sag.
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As stated previously, when lines of unknown length are being measured, sag
corrections are always negative, whereas positive corrections occur if the tension
applied exceeds the standard pull. For any given tape, the so-called normal tension
needed to offset these two factors can be obtained by setting Equations (6.5) and
(6.6) equal to each other and solving for P;. Although applying the normal tension
does eliminate the need to make corrections for both pull and sag, it is not com-
monly used because the required pull is often too great for convenient application.

6.14.5 Tape Not Horizontal and Tape Off-Line

Corrections for errors caused by a tape being inclined in the vertical plane are
computed in the same manner as corrections for errors resulting from it being
off-line in the horizontal plane. Corrected lengths can be determined by Equation
(6.2), where in the vertical plane d is the difference in elevation between the tape
ends, and in the horizontal plane, d is the amount where one end of the tape is
off-line. In either case, L is the length of tape involved in the measurement.

Errors caused by the tape not being horizontal are systematic, and always
make recorded lengths longer than true lengths. They are reduced by using a
hand level to keep elevations of the tape ends equal, or by running differential
levels (see Section 5.4) over the taping points, and applying corrections for eleva-
tion differences. Errors from the tape being off-line are also systematic, and they
too make recorded lengths longer than true lengths. This type of error can be
eliminated by careful alignment.

6.14.6 Improper Plumbing

Practice and steady nerves are necessary to hold a plumb bob still long enough
to mark a point. The plumb bob will sway, even in calm weather. On very grad-
ual slopes and on smooth surfaces such as pavements, inexperienced tapeper-
sons obtain better results by laying the tape on the ground instead of plumbing.
Experienced tapepersons plumb most measurements.

Errors caused by improper plumbing are random, since they may make
distances either too long or too short. However, the errors would be systematic
when taping directly against or in the direction of a strong wind. Heavier plumb
bobs and touching the plumb bob on the ground, or steadying it with one foot,
decreases its swing. Practice in plumbing will reduce errors.

6.14.7 Faulty Marking

Chaining pins should be set perpendicular to the taped line but inclined 45° to
the ground. This position permits plumbing to the point where the pin enters the
ground without interference from the loop.

Brush, stones, and grass or weeds deflect a chaining pin and may increase
the effect of incorrect marking. Errors from these sources tend to be random and
are kept small by carefully locating a point, then checking it.

When taping on solid surfaces such as pavement or sidewalks, pencil marks
or scratches can be used to mark taped segments. Accuracy in taping on the ground
can be increased by using tacks in stakes as markers rather than chaining pins.



SumMARY OF ERRORS

Departure from Normal to

Error Error Systematic (S) Produce 0.01-ft Error for

Type Source* or Random (R) 100-ft Tape

Tape length I S 0.01 f

Temperature N SorR 15°F

Pull P SorR 151b

Sag N, P S 0.6 ft at center for 100t tape
standardized by support throughout

Alignment P S 1.4 ft at one end of 100-ft
tape, or 0.7 ft at midpoint

Tape not level P S 1.4t elevation difference
between ends of 100-ft tape

Plumbing P R 0.01 ft

Marking P R 0.01 ft

Interpolation P R 0.01 ft

*1, instrumental; N, natural; P, personal.

6.14.8 Incorrect Reading or Interpolation

The process of reading to hundredths on tapes graduated only to tenths, or to
thousandths on tapes graduated to hundredths, is called interpolation. Errors
from this source are random over the length of a line. They can be reduced by
care in reading, employing a magnifying glass, or using a small scale to determine
the last figure.

6.14.9 Summary of Effects of Taping Errors

An error of 0.01 ft is significant in many surveying measurements. Table 6.1 lists
the nine types of taping errors; classifies them as instrumental (I), natural (N),
or personal (P), and systematic (S) or random (R); and gives the departure from
normal that produces an error of 0.01 ft in a 100 ft length.

PART Ill « ELECTRONIC DISTANCE MEASUREMENT

Bl 6.15 INTRODUCTION

A major advance in surveying instrumentation occurred approximately 60 years
ago with the development of electronic distance measuring (EDM) instruments.
These devices measure lengths by indirectly determining the number of full
and partial waves of transmitted electromagnetic energy required in traveling
between the two ends of a line. In practice, the energy is transmitted from one

6.15 Introduction
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end of the line to the other and returned to the starting point; thus, it travels the
double path distance. Multiplying the total number of cycles by its wavelength
and dividing by 2, yields the unknown distance.

The Swedish physicist Erik Bergstrand introduced the first EDM instrument
in 1948. His device, called the geodimeter (an acronym for geodetic distance meter),
resulted from attempts to improve methods for measuring the velocity of light. The
instrument transmitted visible light and was capable of accurately observing dis-
tances up to about 25 mi (40 km) at night. In 1957, a second EDM apparatus, the
tellurometer, was introduced. Designed in South Africa by Dr. T. L. Wadley, this
instrument transmitted microwaves, and was capable of observing distances up to
50 mi (80 km) or more, day or night.

The potential value of these early EDM models to the surveying profession
was immediately recognized. However, they were expensive and not readily por-
table for field operations. Furthermore, observing procedures were lengthy, and
mathematical reductions to obtain distances from observed values were difficult and
time consuming. Continued research and development have overcome all of these
deficiencies. Prior to the introduction of EDM instruments, taping made accurate
distance measurements. Although seemingly a relatively simple procedure, precise
taping is one of the most difficult and painstaking of all surveying tasks. Now EDM
instruments have made it possible to obtain accurate distance measurements rap-
idly and easily. Given a line of sight, long or short lengths can be measured over
bodies of water, busy freeways, or terrain that is inaccessible for taping.

In the current generation, EDM instruments are combined with digi-
tal theodolites and microprocessors to produce total station instruments (see
Figures 1.3 and 2.5). These devices can simultaneously and automatically
observe both distances and angles. The microprocessor receives the measured
slope length and zenith (or altitude) angle, calculates horizontal and vertical
distance components, and displays them in real time. When equipped with
data collectors (see Section 2.12), they can record field notes electronically for
transmission to computers, plotters, and other office equipment for process-
ing. These so-called field-to-finish systems are gaining worldwide acceptance
and changing the practice of surveying substantially.

H 6.16 PROPAGATION OF ELECTROMAGNETIC ENERGY

EDM is based on the rate and manner that electromagnetic energy propagates
through the atmosphere. The rate of propagation can be expressed with the fol-
lowing equation

V=FfA (6.7)

where V is the velocity of electromagnetic energy, in meters per second; f the
modulated frequency of the energy, in hertz;> and A the wavelength, in meters.

’The hertz (Hz) is a unit of frequency egual to 1 cycle/sec. The kilohertz (kHz), megahertz (MHz),
and gigahertz (GHz) are equal to 10°, 10°, and 10° Hz, respectively.
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The velocity of electromagnetic energy in a vacuum is 299,792,458 m/sec. Its
speed is slowed somewhat in the atmosphere according to the following equation

V=c/n (6.8)

where c is the velocity of electromagnetic energy in a vacuum, and » the atmo-
spheric index of refraction. The value of n varies from about 1.0001 to 1.0005,
depending on pressure and temperature, but is approximately equal to 1.0003.
Thus, accurate EDM requires that atmospheric pressure and temperature be
measured so that the appropriate value of n is known.

Temperature, atmospheric pressure, and relative humidity all have an
effect on the index of refraction. Because a light source emits light composed
of many wavelengths, and since each wavelength has a different index of refrac-
tion, this group of waves has a group index of refraction. The value for the group
refractivity N, in standard air® for EDM is

4.88660 N 0.06800

N, = (n, — 1)10° = 287.6155 + 2 v

(6.9)

where A is the wavelength of the light expressed in micrometers (um) and n, is
the group refractive index. The wavelengths of light sources commonly used in
EDMs, are 0.6328 um for red laser and 0.900 to 0.930 um for infrared.

The actual group refractive index n, for atmosphere at the time of observa-
tion due to variations in temperature, pressure, and humidity can be computed as

273.15 NP 11.27
n, =1 ( . g ¢ )106 (6.10)

101325 ¢+ 27315 1+ 273.15

where e is the partial water vapor pressure in hectopascal* (hPa) as defined by
the temperature and relative humidity at the time of the measurement, P the
pressure in hPa, and ¢ the dry bulb temperature in °C. The partial water vapor
pressure, e, can be computed with sufficient accuracy for normal operating
conditions as

= FE - h/100 (6.11)

where E = 10[73/(2373 0 + 07858 and  is the relative humidity in percent.

M Example 6.1

What is the actual wavelength and velocity of a near-infrared beam
(A = 0915 um) of light modulated at a frequency of 320 MHz through an

3A standard air is defined with the following conditions: 0.0375% carbon dioxide, temperature of
0°C, pressure of 760 mm of mercury, and 0% humidity.

41 Atmosphere = 101.325 kPa = 1013.25 hPa = 760 torr = 760 mm Hg.
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atmosphere with a (dry) temperature ¢ of 34°C, relative humidity 4 of 56%, and
an atmospheric pressure of 1041.25 hPa?

Solution
By Equation (6.9)
4. .06800
N, = 287.6155 + —00000 006800 _ 03 5491746
(0.915)2 "~ (0.915)
By Equation (6.11)
= w + 0.7858 = 1.7257
CT (2373 +34) ¢ T

E =107 = 53.174
e = Eh = 53.174(56/100) = 29.7774

By Equation (6.10)

1 (273.15 293.5492 X 1041.25 11.27 X 29.7774)10_6
n, = -

101325 34 + 273.15 34 + 273.15
=1 + (268.268660 — 1.092597)10°°
= 1.0002672
By Equation (6.8)

V = 299,792,458 /1.0002672 = 299,712,382 m/sec

Rearranging Equation (6.7) yields an actual wavelength of

A = 299,712,382 /320,000,000 = 0.9366012 m

Note in the solution of Example 6.1 that the second parenthetical term in
Equation (6.10) accounts for the effects of humidity in the atmosphere. In fact, if
this term were ignored the actual index of refraction n, would become 1.0002683
resulting in the same computed wavelength to five decimal places. This demon-
strates why, in using EDM instruments that employ near-infrared light, the effects
of humidity on the transmission of the wave can be ignored for all but the most
precise work.

The manner by which electromagnetic energy propagates through the
atmosphere can be represented conceptually by the sinusoidal curve illustrated
in Figure 6.7. This figure shows one wavelength, or cycle. Portions of wavelengths
or the positions of points along the wavelength are given by phase angles. Thus,
in Figure 6.7, a 360° phase angle represents a full cycle, or a point at the end of
a wavelength, while 180° is a half wavelength, or the midpoint. An intermediate
position along a wavelength having a phase angle of, say, 135° is 135/360, or 0.375
of a wavelength.
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Bl 6.17 PRINCIPLES OF ELECTRONIC DISTANCE
MEASUREMENT

In Section 6.15, it was stated that distances are observed electronically by de-
termining the number of full and partial waves of transmitted electromagnetic
energy that are required in traveling the distance between the two ends of a line.
In other words, this process involves determining the number of wavelengths in
an unknown distance. Then, knowing the precise length of the wave, the dis-
tance can be determined. This is similar to relating an unknown distance to the
calibrated length of a steel tape.

The procedure of measuring a distance electronically is depicted in
Figure 6.8, where an EDM device has been centered over station A by means
of a plumb bob or optical plumbing device. The instrument transmits a car-
rier signal of electromagnetic energy to station B. A reference frequency of a
precisely regulated wavelength has been superimposed or modulated onto the
carrier. A reflector at B returns the signal to the receiver, so its travel path is
double the slope distance AB. In the figure, the modulated electromagnetic
energy is represented by a series of sine waves, each having wavelength A. The
unit at A determines the number of wavelengths in the double path, multiplied
by the wavelength in feet or meters, and divided by 2 to obtain distance AB.

Of course, it would be highly unusual if a measured distance was exactly an
integral number of wavelengths, as illustrated in Figure 6.8. Rather, some frac-
tional part of a wavelength would in general be expected; for example, the partial
value p shown in Figure 6.9. In that figure, distance L between the EDM instru-
ment and reflector would be expressed as

na +
p="1"P (6.12)

2
where A is the wavelength, n the number of full wavelengths, and p the length
of the fractional part. The fractional length is determined by the EDM instru-
ment from measurement of the phase shift (phase angle) of the returned signal.

Figure 6.7

A wavelength of
electromagnetic
energy illustrating
phase angles.
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Figure 6.8
Generalized EDM
procedure.

Figure 6.9
Phase difference
measurement
principle.
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To illustrate, assume that the wavelength for the example of Figure 6.8 was pre-
cisely 20.000 m. Assume also that the phase angle of the returned signal was
115.7°, in which case length p would be (115.7/360)20.000 = 6.428 m. Then
from the figure, since n = 9, by Equation (6.12), length L is

9(20.000) + 6.428
L= 5 = 93214m

Considering the double path distance, the 20-m wavelength used in the example
just given has an “effective wavelength” of 10 m. This is one of the fundamental
wavelengths used in current EDM instruments. It is generated using a frequency
of approximately 15 MHz.

EDM instruments cannot determine the number of full wavelengths in an
unknown distance by transmitting only one frequency and wavelength. To re-
solve the ambiguity n, in Equation (6.12), they must transmit additional signals
having longer wavelengths. This procedure is explained in the following section,
which describes electro-optical EDM instruments.
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B 6.18 ELECTRO-OPTICAL INSTRUMENTS

The majority of EDM instruments manufactured today are electro-optical, and
these transmit infrared or laser light as a carrier signal. This is primarily because
its intensity can be modulated directly, considerably simplifying the equipment.
Earlier models used tungsten or mercury lamps. They were bulky, required a large
power source, and had relatively short operating ranges, especially during the day
because of excessive atmospheric scatter. EDM instruments using coherent light
produced by gas lasers followed. These were smaller and more portable, and were
capable of making observations of long distances in the daytime as well as at night.

Figure 6.10 is a generalized schematic diagram illustrating the basic method
of operation of one particular type of electro-optical instrument. The transmit-
ter uses a GaAs diode that emits amplitude-modulated (AM) infrared light.
A crystal oscillator precisely controls the frequency of modulation. The modula-
tion process may be thought of as similar to passing light through a stovepipe in
which a damper plate is spinning at a precisely controlled rate or frequency. When
the damper is closed, no light passes. As it begins to open, light intensity increases
to a maximum at a phase angle of 90° with the plate completely open. Intensity
reduces to zero again with the damper closed at a phase angle of 180°, and so on.
This intensity variation or amplitude modulation is properly represented by sine
waves such as those shown in Figures 6.7 and 6.8.
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Figure 6.11

Triple retroreflector.
(Courtesy Topcon
Positioning Systems.)

As shown in Figure 6.10, a beam splitter divides the light emitted from the
diode into two separate signals: an external measurement beam and an internal
reference beam. By means of a telescope mounted on the EDM instrument, the
external beam is carefully aimed at a retroreflector that has been centered over
the point at the line’s other end. Figure 6.11 shows a triple corner cube retrore-
flector of the type used to return the external beam, coaxial, to the receiver.

The internal beam passes through a variable-density filter and is reduced in
intensity to a level equal to that of the returned external signal, enabling a more
accurate observation to be made. Both internal and external signals go through an
interference filter, which eliminates undesirable energy such as sunlight. The inter-
nal and external beams then pass through components to convert them into electric
energy while preserving the phase shift relationship resulting from their different
travel path lengths. A phase meter converts this phase difference into direct cur-
rent having a magnitude proportional to the differential phase. This current is con-
nected to a null meter that is adjusted to null the current. The fractional wavelength
is measured during the nulling process, converted to distance, and displayed.

To resolve the ambiguous number of full cycles a wave has undergone,
EDM instruments transmit different modulation frequencies. The unit illustrated
in the schematic of Figure 6.10 uses four frequencies: Fy, F,, F3, and Fy, as indi-
cated. If modulation frequencies of 14.984 MHz, 1.4984 MHz, 149.84 kHz, and
14.984 kHz are used, and assuming the index of refraction is 1.0003, then their
corresponding “effective” wavelengths are 10.000, 100.00, 1000.0, and 10,000 m,
respectively. Assume that a distance of 3867.142 appears on the display as the
result of measuring a line. The four rightmost digits, 7.142, are obtained from the
phase shift measured while transmitting the 10.000-m wavelength at frequency F.
Frequency F,, having a 100.00-m wavelength, is then transmitted, yielding a
fractional length of 67.14. This provides the digit 6 in the displayed distance.
Frequency F; gives a reading of 867.1, which provides the digit 8 in the answer,
and finally, frequency Fy yields a reading of 3867, which supplies the digit 3,
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to complete the display. From this example, it should be evident that the high
resolution of a measurement (nearest 0.001 m) is secured using the 10.000-m
wavelength, and the others simply resolve the ambiguity of the number of these
shorter wavelengths in the total distance.

With older instruments, changing of frequencies and nulling were done
manually by setting dials and turning knobs. Now modern instruments incorpo-
rate microprocessors that control the entire measuring process. Once the instru-
ment is aimed at the reflector and the measurement started, the final distance
appears in the display almost instantaneously. Other changes in new instruments
include improved electronics to control the amplitude modulation, and replace-
ment of the null meter by an electronic phase detector. These changes have
significantly improved the accuracy with which phase shifts can be determined,
which in turn has reduced the number of different frequencies that need to be
transmitted. Consequently, as few as two frequencies are now used on some in-
struments: one that produces a short wavelength to provide the high-resolution
digits, and one with a long wavelength to provide the coarse numbers. To illus-
trate how this is possible, consider again the example measurement just described
which used four frequencies. Recall that a reading of 7.142 was obtained with
the 10.000-m wavelength, and that 3867 was read with the 10,000-m wavelength.
Note the overlap of the common digit 7 in the two readings. Assuming that both
phase shift measurements are reliably made to four significant figures, the left-
most digit of the first reading should indeed be the same as the rightmost one
of the second reading. If these digits are the same in the measurement, this pro-
vides a check on the operation of the instrument. Modern instruments compare
these overlapping digits and will display an error message if they do not agree. If
they do check, the displayed distance will take all four digits from the first (short
wavelength) reading, and the first three digits from the second reading.

Manufacturers provide a full range of instruments with precisions that vary
from * (1 mm + 1ppm) to + (10 mm + 5 ppm).> Earlier versions were manu-
factured to stand alone on a tripod, and thus from any setup they could only
measure distances. Now, as noted earlier, in most instances EDMs are combined
with electronic digital theodolites to produce our modern and very versatile total
station instruments. These are described in the following section.

H 6.19 TOTAL STATION INSTRUMENTS

Total station instruments combine an EDM instrument, an electronic digital
theodolite, and a computer in one unit. These devices, described in more detail
in Chapter 8, automatically observe horizontal and vertical angles, as well as dis-
tances, and transmit the results in real time to a built-in computer. The horizontal
and vertical angle and slope distance can be displayed, and then upon keyboard
commands, horizontal and vertical distance components can be instantaneously
computed from these data and displayed. If the instrument is oriented in direction,

3 Accuracies in electronic distance measurements are quoted in two parts; the first part is a constant, and
the second is proportional to the distance measured. The abbreviation ppm = parts per million. One
ppm equals 1 mm/km. In a distance 5000 ft long, a 5-ppm error equals 5000(5 X 10~ 6) = 0.025 ft.
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Figure 6.12

The LEICA Viva
TS12 with CS10
survey controller.
(Courtesy Leica
Geosystems AG.)

and the coordinates of the occupied station are input to the system, the coordinates
of any point sighted can be immediately obtained. This data can all be stored within
the instrument, or in a survey controller, thereby eliminating manual recording.

Total station instruments are of tremendous value in all types of surveying,
as will be discussed in later portions of this chapter. Besides automatically comput-
ing and displaying horizontal and vertical components of a slope distance, and co-
ordinates of points sighted, total station instruments can be operated in the tracking
mode. In this mode, sometimes also called stakeout, a required distance (horizontal,
vertical, or slope) can be entered by means of the control panel, and the instrument’s
telescope aimed in the proper direction. Then as the reflector is moved forward or
back in position, the difference between the desired distance and that to the reflector
is rapidly updated and displayed. When the display shows the difference to be zero,
the required distance has been established and a stake is set. This feature, extremely
useful in construction stakeout, is described further in Section 23.9.

The total station instruments shown in Figures 2.5, 6.12, and 8.2 all have a
distance range of approximately 3 km (using a single prism) with an accuracy of
+ (1 mm + 1.5 ppm) and read angles to the nearest 2”.

H 6.20 EDM INSTRUMENTS WITHOUT REFLECTORS

Some EDM instruments do not require reflectors for distance measurement.
These devices use time-pulsed infrared laser signals, and in their reflectorless
mode of operation, they can observe distances up to 200 m in length. The Leica
Disto unit shown in Figure 6.13(a) is convenient for measuring lengths in a con-
struction environment.

Some total station instruments, like that shown in Figure 6.12, utilize laser
signals and can also observe distances up to 1000 m in the reflectorless mode. But
as noted earlier, with prisms they can observe lengths greater than 3 km.

Using instruments in the reflectorless mode, observations can be made to
inaccessible objects such as the features of a building as shown in Figures 6.13(b)
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Figure 6.13

(a) The LEICA
DISTO handheld
laser distance
measuring instru-
ment, (b) using
the LECIA DISTO
to measure to an
inaccessible point.
(Courtesy Leica
Geosystems AG.)

and 23.4, faces of dams and retaining walls, structural members being assembled
on bridges, and so on. These instruments can increase the speed and efficiency of
surveys in any construction or fabrication project, especially when measuring to
features that are inaccessible.

H 6.21 COMPUTING HORIZONTAL LENGTHS
FROM SLOPE DISTANCES

All EDM instruments measures the slope distance between two stations. As
noted earlier, if the EDM unit is incorporated into a total station instrument,
then it can reduce these distances to their horizontal components automatically
using the vertical angle. With some of the earliest EDMs, this could not be done,
and reductions were carried out manually. The procedures used, whether per-
formed internally by the microprocessor or done manually, follow those outlined
in this section. It is presumed, of course, that slope distances are first corrected
for instrumental and atmospheric conditions.

Reduction of slope distances to horizontal can be based on elevation dif-
ferences, or on zenith (or vertical) angle. Because of Earth curvature, long lines
must be treated differently in reduction than short ones and will be discussed in
Section 19.15.

6.21.1 Reduction of Short Lines by Elevation Differences

If difference in elevation is used to reduce slope distances to horizontal, during
field operations heights /4, of the EDM instrument, and 4, of the reflector above
their respective stations are measured and recorded (see Figure 6.14). If eleva-
tions of stations A and B in the figure are known, Equation (6.2) will reduce the
slope distance to horizontal, with the value of d (difference in elevation between
EDM instrument and reflector) computed as follows:

d = (elevy + h,) — (elevg + h,) (6.13)
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Figure 6.14
Reduction of EDM
slope distance to
horizontal.

elev,

Datum |

B Example 6.2

A slope distance of 165.360 m (corrected for meteorological conditions) was mea-
sured from A to B, whose elevations were 447.401 and 445.389 m above datum,
respectively. Find the horizontal length of line AB if the heights of the EDM
instrument and reflector were 1.417 and 1.615 m above their respective stations.

Solution

By Equation (6.13)
d = (447401 + 1.417) — (445.389 + 1.615) = 1.814m
By Equation (6.2)

H = V(165.360)> — (1.814)% = 165350 m

6.21.2 Reduction of Short Lines by Vertical Angles

If zenith angle z (angle measured downward from the upward direction of the
plumb line) is observed to the inclined path of the transmitted energy when mea-
suring slope distance L (see Figure 6.14), then the following equation is appli-
cable to reduce the slope length to its horizontal component:

H = Lsin(z) (6.14)

If altitude angle « (angle between horizontal and the inclined energy path)
is observed (see Figure 6.14), then Equation (6.1) is applicable for the reduction.
For most precise work, especially on longer lines, the zenith (or altitude) angle
should be observed in both the direct and reversed modes, and averaged (see
Section 8.13). Also, as discussed in Section 19.15.2, the mean obtained from both
ends of the line will compensate for curvature and refraction.
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B 6.22 ERRORS IN ELECTRONIC DISTANCE MEASUREMENT

As noted earlier, accuracies of EDM instruments are quoted in two parts: a con-
stant error, and a scalar error proportional to the distance observed. Specified er-
rors vary for different instruments, but the constant portions range from 1 mm to
3 mm, and the scalar parts range from 1 ppm to 3 ppm. The constant error is most
significant on short distances; for example, with an instrument having a constant
error of £2 mm, a measurement of 20 m is good to only 2/20,000 = 1/10,000,
or 100 ppm. For a long distance, say 2 km, the constant error becomes negligible
and the scalar part more important.

The major error components in an observed distance are instrument and
target miscentering, and the specified constant and scalar errors of the EDM in-
strument. Using Equation (3.11), the error in an observed distance is computed as

E; = VE? + E? + E2 + (ppm X D)? (6.15)

where E; is the estimated miscentering error in the instrument, E, is the estimated
miscentering error in the reflector, E. the specified constant error for the EDM,
ppm the specified scalar error for the EDM, and D the measured slope distance.

M Example 6.3

A slope distance of 827.329 m was observed between two stations with an EDM
instruments having specified errors of = (2 mm + 2 ppm). The instrument was
centered with an estimated error of 1.5 mm. The estimated error in target mis-
centering was 3 mm. What is the estimated error in the observed distance?

Solution

By Equation (6.15)

E;= V18 + 3+ 22+ (2 X 10° x 827329)2 = £42mm

Note in the solution that the distance of 827.329 m was converted to millime-
ters to obtain unit consistency. This solution results in a distance precision of
4.2/827,329, or about 1:195,000.

From the foregoing, it is clear that except for very short distances, the order
of accuracy possible with EDM instruments is very high. Errors can seriously
degrade the observations, however, and thus care should always be exercised to
minimize their effects. Sources of error in EDM work may be personal, instru-
mental, or natural. The subsections that follow identify and describe errors from
each of these sources.

6.22.1 Personal Errors

Personal errors include inaccurate setups of EDM instruments and reflectors
over stations, faulty measurements of instrument and reflector heights [needed
for computing horizontal lengths (see Section 6.23)], and errors in determining
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atmospheric pressures and temperatures. These errors are largely random. They
can be minimized by exercising utmost care and by using good-quality barometers
and thermometers.

Mistakes (not errors) in manually reading and recording displayed dis-
tances are common and costly. They can be eliminated with some instruments by
obtaining the readings in both feet and meters and comparing them. Of course,
data collectors (see Section 2.12) also circumvent this problem. Additionally, as
shown in Table 6.2, misalignment of the prism can cause significant errors when
the reflector is set in its 0 mm constant position.

An example of a common mistake is failing to set the temperature and
pressure in an EDM before obtaining an observation. Assume this occurred with
the atmospheric conditions given in Example 6.1. The actual index of refraction
was computed as 1.0002672. If the fundamental wavelength for a standard atmo-
sphere was 10.000 m, then the actual wavelength produced by the EDM would be
10.000/1.0002672 = 9.9973 m. Using Equation (6.7) with an observed distance
of 827.329 m, the error, e, in the observed distance would be

= (9.9973 — 10.000

10,000 )827.329 = —0.223 m

The effect of failing to account for the actual atmospheric conditions produces a
precision of only | —0.223 | /827.329 or 1:3700. This is well below the computed pre-
cision of 1:195,000 in Example 6.3.

For each 1°C change in temperature, a 1 ppm error in the distance measure-
ment will occur. As a rule, the current temperature and pressure should be set at
the time of the measurement. However, it is often practical to set the temperature
and pressure three or four times per day: morning, midmorning, noon, and midafter-
noon. At a minimum, the temperature and pressure should be set twice a day; once
in the morning and at noon. However, a lower-accuracy survey will result. Table 6.3
depicts the distance error in millimeters versus the error in temperature entered into
an EDM for various lengths of sight. Notice that an error of 1 mm can occur for all
distances over 50 m when the temperature error is more than 9°C. This tempera-
ture difference can easily occur during certain times of the year between an early

ERROR IN OBSERVED DISTANCE DUE TO NISALIGNMENT OF THE PRISM

Misalignment 0 mm Constant —30 mm Constant
in Degrees Prism Error (mm) Prism Error (mm)
0 0.00 0.00
5 0.1 0.0
10 0.6 0.1
15 1.3 0.2
20 2.3 0.4
25 3.5 0.7

30 5.1 1.1
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2y (040753 ERROR IN OBSERVED DISTANCE IN MILLIMETERS VERSUS ERROR IN TEMPERATURE FOR
VARIOUS SIGHT LENGTHS

Error in
Temperature Length of Sights (m)

°C °F 100 200 300 400 500
3 5.4 0.3 0.6 0.9 1.2 1.5

6 10.8 0.6 1.2 1.8 24 3

9 16.2 0.9 1.8 2.7 3.6 4.5
12 21.6 1.2 2.4 3.6 4.8 6
15 27 1.5 3 4.5 o) 7.5
30 54.0 3 o) 9 12 15

morning, midday, and late afternoon. Also note that this error will occur with only a
3°C temperature error for sight lengths that are greater than 300 m.

6.22.2 Instrumental Errors

If EDM equipment is carefully adjusted and precisely calibrated, instrumental
errors should be extremely small. To assure their accuracy and reliability, EDM
instruments should be checked against a first-order baseline at regular time in-
tervals. For this purpose, the National Geodetic Survey (NGS) has established a
number of accurate baselines in each state. These are approximately a mile in
length and placed in relatively flat areas. Monuments are set at the ends and at
intermediate points along the baseline.

Although most EDM instruments are quite stable, occasionally they become
maladjusted and generate erroneous frequencies. This results in faulty wavelengths
that degrade distance measurements. Periodic checking of the equipment against a
calibrated baseline will detect the existence of observational errors. It is especially
important to make these checks if high-order surveys are being conducted.

The corner cube reflectors used with EDM instruments are another source
of instrumental error. Since light travels at a lower velocity in glass than in air,
the “effective center” of the reflector is actually behind the prism. Thus, it fre-
quently does not coincide with the plummet, a condition that produces a system-
atic error in distances known as the reflector constant. This situation is shown
in Figure 6.15. Notice that because the retroreflector is comprised of mutually
perpendicular faces, the light always travels a total distance of a + b + ¢ = 2D
in the prism. Additionally, given a refractive index for glass, which is greater than
air, the velocity of light in the prism is reduced following Equation (6.8) to cre-
ate an effective distance of nD where n is the index of refraction of the glass

®For locations of baselines in your area, contact the NGS National Geodetic Information Center by
e-mail at: info_center@ngs.noaa.gov; at their website address: http://www.ngs.noaa.gov/CBLINES/
calibration.html; by telephone at (301) 713-3242; or by writing to NOAA, National Geodetic Survey,
Station 09202, 1315 East West Highway, Silver Spring, MD 20910.
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Figure 6.15
Schematic of
retroreflector where
D is the depth of
the prism.
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(approximately 1.517). The dashed line in Figure 6.15 shows the effective center
thus created. The reflector constant, K in the figure, can be as large as 70 mm,
and will vary with reflectors.

Once known, the electrical center of the EDM can be shifted forward to
compensate for the reflector constant. However, if an EDM instrument is being
used regularly with several unmatched reflectors, this shift is impractical. In this
instance, the offset for each reflector should be subtracted from the observed
distances to obtain corrected values.

With EDM instruments that are components of total stations and are con-
trolled by microprocessors, this constant can be entered via the keyboard and
included in the internally computed corrections. Equipment manufacturers also
produce matching reflector sets for which the reflector constant is the same, thus
allowing a single constant to be used for a set of reflectors with an instrument.

By comparing precisely known baseline lengths to observed distances, a so-
called system measurement constant can be determined. This constant can then be
applied to all subsequent observations for proper correction. Although calibration
using a baseline is preferred, if one is not available, the constant can be obtained
with the following procedure. Three stations, A, B, and C, should be established
in a straight line on flat ground, with stations A and C at a distance that is multiple
units of the fundamental wavelength of the instrument apart. The fundamental
wavelength of most instruments today is typically 10 m. Station B should be in
between stations A and C also at a multiple of the fundamental wavelength of the
EDM. For example, the lengths AB and BC could be set at 40 m and 60 m, respec-
tively, for an instrument with a fundamental wavelength of 10 m. The length of
AC and the two components, AB and BC, should be observed several times with
the instrument-reflector constant set to zero and the means of each length deter-
mined. From these observations, the following equation can be written:

AC+ K= (AB + K) + (BC + K)
from which
K =AC - (AB + BC) (6.16)
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where K is the system measurement constant to be added to correct the observed
distances.

The procedure, including centering of the EDM instrument and reflector,
should be repeated several times very carefully, and the average value of K ad-
opted. Since different reflectors have varying offsets, the test should be performed
with any reflector that will be used with the EDM, and the results marked on each to
avoid confusion later. For the most precise calibration, lengths AB and BC should
be carefully laid out as even multiples of the instrument’s shortest measurement
wavelength. Failure to do this can cause an incorrect value of K to be obtained. As
shown in Figure 6.15, due to the construction of the reflector and the pole being
located near the center of the reflector, the system measurement constant is typi-
cally negative. The video EDM-Reflector Offset Constant Determination, which is
available on the companion website for this book, discusses this method.

While the above procedure provides method for determining a specific in-
strument-reflector constant, it is highly recommended that EDM instruments be
calibrated using NGS calibration baselines. These baselines have been established
throughout the country for use by surveyors. Their technical manual Use of
Calibration Base Lines, which is listed in the bibliography at the end of the chap-
ter, provides guidelines on the use of the baselines and reduction of the observa-
tions providing both the instrument-reflector offset constant and a scaling factor.

6.22.3 Natural Errors

Natural errors in EDM operations stem primarily from atmospheric variations in
temperature, pressure, and humidity, which affect the index of refraction and mod-
ify the wavelength of electromagnetic energy. The values of these variables must be
measured and used to correct observed distances. As demonstrated in Example 6.1,
humidity can generally be neglected when using electro-optical instruments but this
variable was important when microwave instruments were employed.

The National Weather Service adjusts atmospheric pressure readings to
sea level values. Since atmospheric pressure changes by approximately 1 in.
of mercury (Hg) per 1000 ft of elevation, under no circumstances should radio
broadcast values for atmospheric pressure be used to correct distances. Instead,
atmospheric pressure should be measured by an aneroid barometer that is cali-
brated against a barometer not corrected to sea level. Many high school and col-
lege physics departments have these barometers.

EDM instruments within total stations have onboard microprocessors that
use atmospheric variables, input through the keyboard, to compute corrected
distances after making observations but before displaying them. For older instru-
ments, varying the transmission frequency made corrections, or they could be
computed manually after the observation. Equipment manufacturers provided
tables and charts that assisted in this process. The magnitude of error in EDM
due to errors in observing atmospheric pressure and temperature is indicated
in Figure 6.16. Note that a 10°C temperature error, or a pressure difference of
25 mm (1 in.) of mercury, each produce a distance error of about 10 ppm. Thus
if a radio broadcast atmospheric pressure is entered into an EDM in Denver,
Colorado, the resulting distance error could be as great as 50 ppm and a 200-m
distance could in error by as much as 1 cm.
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Figure 6.16
Errors in EDM
produced by
temperature
and pressure
errors (based
on atmospheric
temperature and
pressure of 15°
and 760 mm of
mercury).
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A microclimate can exist in the layers of atmosphere immediately above a
surface such as the ground. Field experiments prove that temperatures on or near
the ground may be 10° to 25° higher or lower than those at shoulder height. Since
this microclimate can substantially change the index of refraction, it is important
to maintain a line of sight that is at least 0.5 m above the surface of the ground.
On long lines of sight, the observer should be cognizant of intervening ridges or
other objects that may exist between the instrument and reflector, which could
cause problems in meeting this condition. If this condition cannot be met, the
height of the reflector may be increased. Under certain conditions, it may be nec-
essary to set an intermediate point on the encroaching surface to ensure that light
from the EDM does not travel through these lower layers.

For the most precise work, on long lines, a sampling of the atmospheric
conditions along the line of sight should be observed. In this case, it may be nec-
essary to elevate the meteorological instruments. This can be difficult where the
terrain becomes substantially lower than the sight line. In these cases, the atmo-
spheric measurements for the ends of the line can be measured and averaged.

H 6.23 USING SOFTWARE

On the companion website at http://www.pearsonhighered.com/ghilani is the
Excel spreadsheet c6.xls. This spreadsheet demonstrates the computations in
Example 6.1 as well as tape corrections for systematic errors. For those wish-
ing to see this programmed in a higher-level language, a Mathcad worksheet C6.
xmcd is also available on the companion website. This worksheet, additionally,
demonstrates Example 6.2.
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Asterisks (*) indicate problems that have partial answers given in Appendix G.

6.1
6.2%

6.3

6.4

6.5%
6.6

6.7

6.8%*

6.9
6.10
6.11
6.12*
6.13
6.14

6.15

6.16

6.17

6.18*

6.19

What distance in travel corresponds to 1 usec of time for electromagnetic energy?

A student counted 92, 90, 92, 91, 93, and 91 paces in six trials of walking along a

course of 200-ft known length on level ground. Then 85, 86, 86, and 84 paces were

counted in walking four repetitions of an unknown distance AB. What is (a) the

pace length and (b) the length of AB?

What difference in temperature from standard, if neglected in use of a steel tape,

will cause an error of 1 part in 10,000?

An add tape of 101 ft is incorrectly recorded as 100 ft for a 200 ft distance. What is

the correct distance?

List five types of common errors in taping.

List the proper procedures taping a horizontal distance of about 84 ft down a 4%

slope.

For the following data, compute the horizontal distance for a recorded slope dis-

tance AB.

(a) AB = 104.93 ft, slope angle = 2°13'46"

(b) AB = 86.793 m, difference in elevation A to B = —2.499 m

When measuring a distance AB, the first taping pin was placed 1.0 ft to the right of

line AB and the second pin was set 0.5 ft left of line AB. The recorded distance was

236.89 ft. Calculate the corrected distance. (Assume three taped segments, the first

two 100 ft each.)

List the possible errors that can occur when measuring a distance with an EDM.

Briefly describe how a distance can be measured by the method of phase comparison.

Describe why the sight line for electronic distance measurement should be at least

0.5 m off the surface of the pavement along its entire line of sight.

Assume the speed of electromagnetic energy through the atmosphere is

299,784,458 m/sec for measurements with an EDM instrument. What time lag in

the equipment will produce an error of 800 m in a measured distance?

What is the length of the partial wavelength for electromagnetic energy with a fre-

quency of the 14.9989 MHz and a phase shift of 156°?

What “actual” wavelength results from transmitting electromagnetic energy

through an atmosphere having an index of refraction of 1.0043, if the frequency is
*(a) 29.988 MHz

(b) 14.989 MHz

Using the speed of electromagnetic energy given in Problem 6.12, what distance

corresponds to each microsecond of time?

To calibrate an EDM instrument, distances AC, AB, and BC along a straight line

were observed as 90.158 m, 60.025 m, and 30.164 m, respectively. What is the system

measurement constant for this equipment? Compute the length of each segment

corrected for the constant.

Which causes a greater error in a line measured with an EDM instrument: (a) A dis-

regarded 10°C temperature variation from standard or (b) a neglected atmospheric

pressure difference from standard of 50 mm of mercury?

In Figure 6.14, h,, h,, elev,, elevg, and the measured slope length L were 5.56, 6.00,

603.45, 589.06, and 408.65 ft, respectively. Calculate the horizontal length between

A and B.

Similar to Problem 6.18, except that the values were 1.489, 1.502, 126.897, 142.681,

and 206.782 m, respectively.
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6.20

6.21*

6.22

6.23

6.24

6.25*

6.26

6.27

6.28

6.29

6.30

6.31

In Figure 6.14, h,, h,, z, and the measured slope length L were 5.53 ft, 6.00 ft,
93°20'06" and 489.65 ft, respectively. Calculate the horizontal length between A and
B if a total station measures the distance.

Similar to Problem 6.20, except that the values were 1.45 m, 1.55 m, 96°05'33" and
1663.254 m, respectively.

What is the actual wavelength and velocity of a near-infrared beam (A = 0.901 um)
of light modulated at a frequency of 330 MHz through an atmosphere with a dry
bulb temperature, 7, of 26°C; a relative humidity, 4, of 75%; and an atmospheric
pressure of 893 hPa?

What is the actual wavelength and velocity of a near-infrared beam (A = 0.901 um)
of light modulated at a frequency of 330 MHz through an atmosphere with a dry
bulb temperature, 7, of 26°C; a relative humidity, 4, of 75%; and an atmospheric
pressure of 893 hPa?

If the temperature and pressure at measurement time are 18°C and 760 mm Hg,
respectively, what will be the error in electronic measurement of a line 3 km long
if the temperature at the time of observing is recorded 10°C too high? Will the ob-
served distance be too long or too short?

The standard deviation of taping a 30 m distance is =5 mm. What should it be for a
90 m distance?

Determine the most probable length of a line AB, the standard deviation, and the
95% error of the measurement for the following series of taped observations made
under the same conditions: 215.382, 215.381, 215.384, 215.374, 215.391, 215.382,
215.374,215.382, 215.389, and 215.387 m.

If an EDM instrument has a purported accuracy capability of £ (1.5 mm + 2ppm),
what error can be expected in a measured distance of: (a) 25 m, (b) 483.40 ft,
(¢) 387.563 m? (Assume that the instrument and target miscentering errors are
equal to zero.)

The estimated error for both instrument and target miscentering errors is = 1.5 mm.
For the EDM in Problem 6.27, what is the estimated error in the observed distances?
If a certain EDM instrument has an accuracy capability of * (2mm + 2 ppm),
what is the precision of measurements, in terms of parts per million, for line lengths
of: (a) 20.000 m, (b) 200.000 m, (¢) 2000.000 m? (Assume that the instrument and
target miscentering errors are equal to zero.)

The estimated error for both instrument and target miscentering errors is = 1.5 mm.
For the EDM and distances listed in Problem 6.29, what is the estimated error in each
distance? What is the precision of the measurements in terms of parts per million?
Create a computational program that solves Problem 6.22.
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H 7.1 INTRODUCTION

Determining the locations of points and orientations of lines frequently depends
on the observation of angles and directions. In surveying, directions are given by
azimuths and bearings (see Sections 7.5 and 7.6).

As described in Section 2.1, and illustrated in Figure 2.1, angles observed
in surveying are classified as either horizontal or vertical, depending on the plane
in which they are measured. Horizontal angles are the basic observations needed
for determining bearings and azimuths. Vertical angles are used in trigono-
metric leveling and for the reduction of distances to horizontal (see Sections 6.23
and 19.14.2).

Angles are most often directly observed in the field with total station instru-
ments, although in the past transits, theodolites, and compasses have been used.
(The surveyor’s compass is described in Section 7.10.) Three basic requirements
determine an angle. As shown in Figure 7.1, they are (1) reference or starting line,
(2) direction of turning, and (3) angular distance (value of the angle). Methods
of computing bearings and azimuths described in this chapter are based on these
three elements.

H 7.2 UNITS OF ANGLE MEASUREMENT

A purely arbitrary unit defines the value of an angle. The sexagesimal system
used in the United States and in many other countries is based on degrees, min-
utes, and seconds, with the last unit further divided decimally. In Europe the
grad or gon is commonly used (see Section 2.2). Radians are more suitable in
computer computations, but the sexagesimal system continues to be used in most
U.S. surveys.
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Figure 7.1

Basic requirements
in determining an
angle.

Figure 7.2

Closed polygon.

(a) Clockwise
interior angles
(angles to

the right).

(b) Counterclockwise
interior angles
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H 7.3 KINDS OF HORIZONTAL ANGLES

The kinds of horizontal angles most commonly observed in surveying are
(1) interior angles, (2) angles to the right, and (3) deflection angles. Because
they differ considerably, the kind used must be clearly indicated in field notes.
Interior angles, shown in Figure 7.2, are observed on the inside of a closed
polygon. Normally the angle at each apex within the polygon is measured.
Then, as discussed in Section 9.7, a check can be made on their values because
the sum of all interior angles in any polygon must equal (n — 2)180°, where
n is the number of angles. Polygons are commonly used for boundary surveys
and many other types of work. Surveyors (geomatics engineers) normally refer
to them as closed traverses.

Exterior angles, located outside a closed polygon, are explements of interior
angles. The advantage to be gained by observing them is their use as another check,
since the sum of the interior and exterior angles at any station must total 360°.

Angles to the right are measured clockwise from the rear to the forward
station. Note: As a survey progresses, stations are commonly identified by consec-
utive alphabetical letters (as in Figure 7.2), or by increasing numbers. Thus, the
interior angles of Figure 7.2(a) are also angles to the right. Most data collectors
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require that angles to the right be observed in the field. Angles to the left, turned
counterclockwise from the rear station, are illustrated in Figure 7.2(b). Note that
the polygons of Figure 7.2 are “right” and “left” —that is, similar in shape but
turned over like the right and left hands. Figure 7.2(b) is shown only to empha-
size a serious mistake that occurs if counterclockwise angles are observed and
recorded and then assumed to be clockwise later on. To avoid this confusion, it is
recommended that a uniform procedure of always observing angles to the right be
adopted, and the direction of turning noted in the field book with a sketch.

Angles to the right can be either interior or exterior angles of a closed-
polygon traverse. Whether the angle is an interior or exterior angle depends
on the direction the instrument proceeds around the traverse. If the direction
around the traverse is counterclockwise, then the angles to the right will be inte-
rior angles. However, if the instrument proceeds clockwise around the traverse,
then exterior angles will be observed. If this is the case, the sum of the exterior
angles for a closed-polygon traverse will be (n + 2)180°. Analysis of a simple
sketch should make these observations clear.

Deflection angles (Figure 7.3) are observed from an extension of the back
line to the forward station. They are used principally on the long linear align-
ments of route surveys. As illustrated in the figure, deflection angles may be
observed to the right (clockwise) or to the left (counterclockwise) depending
on the direction of the route. Clockwise angles are considered plus, and coun-
terclockwise ones minus, as shown in the figure. Deflection angles are always
smaller than 180° and appending an R or L to the numerical value identifies the
direction of turning. Thus the angle at B in Figure 7.3 is (R), and that at Cis (L).
Deflection angles are the only exception where counterclockwise observation of
angles should be made. In a closed polygon traverse, the sum of the deflection
angles should be 360°.
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Figure 7.3
NA Deflection angles.
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B 7.4 DIRECTION OF A LINE

The direction of a line is defined by the horizontal angle between the line and an
arbitrarily chosen reference line called a meridian. Different meridians are used for
specifying directions including (a) geodetic (also often called true), (b) astronomic,
(c) magnetic, (d) grid, (e) record, and (f) assumed.

The geodetic meridian is the north-south reference line that passes
through a mean position of the Earth’s geographic poles. The positions of the
poles defined as their mean locations between the period of 1900.0 and 1905.0
(see Section 19.3).

Wobbling of the Earth’s rotational axis, as discussed in Section 19.3, causes
the position of the Earth’s geographic poles to vary with time. At any point, the
astronomic meridian is the north—south reference line that passes through the
instantaneous position of the Earth’s geographic poles. Astronomic meridians
derive their name from the field operation to obtain them, which consists in mak-
ing observations on the celestial objects, as described in Appendix C. Geodetic and
astronomic meridians are very nearly the same, and the former can be computed
from the latter by making small corrections (see Sections 19.3 and 19.5).

A magnetic meridian is defined by a freely suspended magnetic needle
that is only influenced by the Earth’s magnetic field. Magnetic meridians are
discussed in Section 7.10.

Surveys based on a state plane or other map projection coordinate systems
employ a grid meridian for reference. Grid north is the direction of geodetic
north for a selected central meridian, and held parallel to it over the entire area
covered by a map projection coordinate system (see Chapter 20).

In boundary surveys, the term record meridian refers to directional refer-
ences quoted in the recorded documents from a previous survey of a particular
parcel of land. Another similar term, deed meridian, is used in the description of
a parcel of land as recorded in a property deed. Chapters 21 and 22 discuss the
use of record meridians and deed meridians in boundary retracement surveys.

An assumed meridian can be established by merely assigning any arbitrary
direction—for example, taking a certain street line to be north. The directions of
all other lines are then found in relation to it.

From the above definitions, it should be obvious that the terms north or due
north, if used in a survey, must be defined, since they do not specify a unique line.

B 7.5 AZIMUTHS

Azimuths are horizontal angles observed clockwise from any reference meridian.
In plane surveying, azimuths are generally observed from north, but astrono-
mers and the military have used south as the reference direction. The National
Geodetic Survey (NGS) also used south as its reference for azimuths for
NAD?27, but north has been adopted for NADS3 (see Section 19.6). Examples
of azimuths observed from north are shown in Figure 7.4. As illustrated, they
can range from 0° to 360° in value. Thus the azimuth of OA is 70°; of OB,
145°; of OC, 235° and of OD, 330°. Azimuths may be geodetic, astronomic,
magnetic, grid, record, or assumed, depending on the reference meridian used.
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To avoid any confusion, it is necessary to state in the field notes, at the begin-
ning of work, what reference meridian applies for azimuths, and whether they
are observed from north or south.

A line’s forward direction can be given by its forward azimuth, and its
reverse direction by its back azimuth. In plane surveying, forward azimuths are
converted to back azimuths, and vice versa, by adding or subtracting 180°. For
example, if the azimuth of OA is 70°, the azimuth of AO is 70° + 180° = 250°. If
the azimuth of OC is 235°, the azimuth of CO is 235° — 180° = 55°. However, as
discussed in Sections 19.13.2 and 20.8.2, the convergence of the Earth’s meridians
must be taken into account for surveys covering large areas.

Azimuths can be read directly on the graduated circle of a total station
instrument after the instrument has been oriented properly. As explained
in Section 9.2.4, this can be done by sighting along a line of known azimuth
with that value indexed on the circle, and then turning to the desired course.
Azimuths are used advantageously in boundary, topographic, control, and other
kinds of surveys, as well as in computations.

B 7.6 BEARINGS

Bearings are another system for designating directions of lines. The bearing of
a line is defined as the acute horizontal angle between a reference meridian and
the line. The angle is observed from either the north or south toward the east or
west, to give a reading smaller than 90°. The letter N or S preceding the angle,
and E or W following it shows the proper quadrant. Thus, a properly expressed
bearing includes quadrant letters and an angular value. An example is NSO°E.
In Figure 7.5, all bearings in quadrant NOE are measured clockwise from the
meridian. Thus the bearing of line OA is N70°E. All bearings in quadrant SOE
are counterclockwise from the meridian, so OB is S35°E. Similarly, the bearing
of OC is S55°W and that of OD, N30°W. When lines are in the cardinal direc-
tions, the bearings should be listed as “Due North,” “Due East,” “Due South,”
or “Due West.”

7.6 Bearings 165

Figure 7.4
Azimuths.
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Figure 7.5
Bearing angles.

Figure 7.6
Forward and back
bearings.
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Geodetic bearings are observed from the geodetic meridian, astronomic
bearings from the local astronomic meridian, magnetic bearings from the local
magnetic meridian, grid bearings from the appropriate grid meridian, and
assumed bearings from an arbitrarily adopted meridian. The magnetic meridian
can be obtained in the field by observing the needle of a compass, and used along
with observed angles to get computed magnetic bearings.

In Figure 7.6 assume that a compass is set up successively at points A, B, C,
and D and bearings read on lines AB, BA, BC, CB, CD, and DC. As previously
noted, bearings AB, BC, and CD are forward bearings; those of BA, CB, and DC,
back bearings. Back bearings should have the same numerical values as forward
bearings but opposite letters. Thus if bearing AB is N44°E, bearing BA is S44°W.

B 7.7 COMPARISON OF AZIMUTHS AND BEARINGS

Because bearings and azimuths are encountered in so many surveying opera-
tions, the comparative summary of their properties given in Table 7.1 should be
helpful. Bearings are readily computed from azimuths by noting the quadrant in
which the azimuth falls, then converting as shown in the table.

On the companion website for this book at http://www.pearsonhighered
.com/ghilani are instructional videos that can be downloaded. The video Angles,
Azimuths, and Bearings discusses each type of angle typically used in surveying,
the different types of azimuths and bearings, and demonstrates how azimuths can
be converted to bearings.


http://www.pearsonhighered.com/ghilani
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7.7 Comparison of Azimuths and Bearings

m COMPARISON OF AZIMUTHS AND BEARINGS

Azimuths

Bearings

Vary from O to 360°
Require only a numerical value

May be geodetic, astronomic, magnetic,
grid, assumed, forward or back

Are measured clockwise only

Are measured either from north only, or
from south only on a particular survey

Vary from 0 to 90°
Require two letters and a numerical value

Same as azimuths

Are measured clockwise and counterclockwise

Are measured from north and south

Formulas for computing bearing

Quadrant angles from azimuths

I (NE) Bearing = Azimuth

I (SE) Bearing = 180° — Azimuth
I (SW) Bearing = Azimuth — 180°
IV (NW) Bearing = 360° — Azimuth

Example directions for lines in the four quadrants (azimuths from north)

Azimuth Bearing
54° N54°E
112° S68°E

231° S51°W

345° N15°W

M Example 7.1

The azimuth of a boundary line is 128°13'46". Convert this to a bearing.

Solution

The azimuth places the line in the southeast quadrant. Thus, the bearing angle is
180° — 128°13'46" = 51°46'14"
and the equivalent bearing is S51°46'14" E.

B Example 7.2

The first course of a boundary survey is written as N37°13'W. What is its equivalent

azimuth?

167
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Figure 7.7
Computation of
azimuth BC of
Figure 7.2(a).

Solution

Since the bearing is in the northwest quadrant, the azimuth is

360° — 37°13" = 322°47'.

H 7.8 COMPUTING AZIMUTHS

Most types of surveys, but especially those that employ traversing, require com-
putation of azimuths (or bearings). A traverse, as described in Chapter 9, is a
series of connected lines whose lengths and angles at the junction points have
been observed. Figures 7.2 and 7.3 illustrate examples. Traverses have many uses.
To survey the boundary lines of a piece of property, for example, a “closed-
polygon” type traverse like that of Figure 7.2(a) would normally be used. A
highway survey from one city to another would usually involve a traverse like
that of Figure 7.3. Regardless of the type used, it is necessary to compute the
directions of its lines.

Many surveyors prefer azimuths to bearings for directions of lines because
they are easier to work with, especially when calculating traverses with computers.
Also sines and cosines of azimuth angles provide correct algebraic signs for
departures and latitudes as discussed in Section 10.4.

Azimuth calculations are best made with the aid of a sketch. Figure 7.7
illustrates computations for azimuth BC in Figure 7.2(a). Azimuth BA is
found by adding 180° to azimuth AB: 180° + 41°35' = 221°35’ to yield its
back azimuth. Then the angle to the right at B, 129°11’, is added to azimuth
BA to get azimuth BC: 221°35" + 129°11' = 350°46'. This general process of
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adding (or subtracting) 180° to obtain the back azimuth and then adding the
angle to the right is repeated for each line until the azimuth of the starting
line is recomputed. If a computed azimuth exceeds 360°, then 360° is sub-
tracted from it and the computations are continued. These calculations are
conveniently handled in tabular form, as illustrated in Table 7.2. This table
lists the calculations for all azimuths of Figure 7.2(a). Note that a check was
secured by recalculating the beginning azimuth using the last angle. The pro-
cedures illustrated in Table 7.2 for computing azimuths are systematic and
readily programmed for computer solution. The reader can view a Mathcad
worksheet Azs.xmcd on the companion website for this book at http://www
.pearsonhighered.com/ghilani to review these computations. Also on this
website are instructional videos that can be downloaded. The video Azimuths
from Angles discusses the process of computing azimuths around a traverse
and demonstrates the tabular method.

Traverse angles must be adjusted to the proper geometric total before azi-
muths are computed. As noted earlier, in a closed-polygon traverse, the sum of
interior angles equals (n — 2)180°, where n is the number of angles or sides. If
the traverse angles fail to close by say 10” and are not adjusted prior to comput-
ing azimuths, the original and computed check azimuth of AB will differ by the
same 10", assuming there are no other calculating errors. The azimuth of any
starting course should always be recomputed as a check using the last angle. Any
discrepancy shows that (a) an arithmetic error was made or (b) the angles were
not properly adjusted prior to computing azimuths.

m ComputATiON OF AzimutHs (FRom NORTH) FOR LINES oF FIGURE 7.2(a)
Angles to the Right [Figure 7.2(a)]

41°35" = AB 211°51" = DE
+180°00" —180°00"
221°35" = BA 31°51" = ED
+129°11’ +135°42’
350°46' = BC 167°33" = EF
—180°00’ +180°00’
170°46’ = CB 347°33" = FE
+88°35’ +118°52’
259°21" = CD 466°25" — *360° = 106°25" = FA
—~180°00’ —~180°00’
79°21" = DC 286°25' = AF
+132°30’ +115°10’
211°51" = DE 401°35" — #360° = 41°35" = ABv

*When a computed azimuth exceeds 360°, the correct azimuth is obtained by merely subtracting 360°.


http://www.pearsonhighered.com/ghilani
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170 ANGLES, AZIMUTHS, AND BEARINGS

Figure 7.8

(a) Computation
of bearing BC
of Figure 7.2(a).
(b) Computation
of bearing CD of
Figure 7.2(a).

B 7.9 COMPUTING BEARINGS

Drawing sketches similar to those in Figure 7.8 showing all data simplify
computations for bearings of lines. In Figure 7.8(a), the bearing of line AB
from Figure 7.2(a) is N41°35’E, and the angle at B turned clockwise (to the
right) from known line BA is 129°11'. Then the bearing angle of line BC is
180° — (41°35" + 129°11") = 9°14’, and from the sketch the bearing of BC is
N9°14'W.

In Figure 7.8(b), the clockwise angle at C from B to D was observed as
88°35'. The bearing of CD is 88°35" — 9°14" = §79°21'W. Continuing this tech-
nique, the bearings in Table 7.3 have been determined for all lines in Figure 7.2(a).
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m BeARINGS OF LINES IN FIGURE 7.2(a)
Course Bearing
AB N41°35'E
BC N9°14'W
CD S79°21'W
DE S31°51'W
EF S12°27'E
FA S73°35'E

AB N41°35'Ev
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In Table 7.3, note that the last bearing computed is for AB, and it is obtained
by employing the 115°10" angle observed at A. It yields a bearing of N41°35'E,
which agrees with the starting bearing. Students should compute each bearing of
Figure 7.2(a) to verify the values given in Table 7.3.

An alternate method of computing bearings is to determine the azimuths as
discussed in Section 7.8, and then convert the computed azimuths to bearings using
the techniques discussed in Section 7.7. For example in Table 7.2, the azimuth of
line CD is 259°21". Using the procedure discussed in Section 7.7, the bearing angle
is 259°21" — 180° = 79°21’, and the bearing is S79°21'W.

Bearings, rather than azimuths, are used predominately in boundary survey-
ing. This practice originated from the period of time when the magnetic bearings
of parcel boundaries were determined directly using a surveyor’s compass (see
Section 7.10). Later, although other instruments (i.e., transits and theodolites) were
used to observe the angles, and the astronomic meridian was more commonly used,
the practice of using bearings for land surveys continued, and is still in common use
today. Because boundary retracement surveyors must follow the footsteps of the
original surveyor (see Chapter 21), they need to understand magnetic directions and
their nuances. The following sections discuss magnetic directions, and explain how
to convert directions from magnetic to other reference meridians, and vice versa.

H 7.10 THE COMPASS AND THE EARTH’S MAGNETIC FIELD

Before transits, theodolites, and total station instruments were invented, di-
rections of lines and angles were determined using compasses. Most of the
early land-surveying work in the United States was done using these vener-
able instruments. Figure 7.9(a) shows the surveyor’s compass. The instrument
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Figure 7.9
(a) Surveyor's compass. (© B. Christopher/Alamy.) (b) Compass box.
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consists of a metal baseplate (A) with two sight vanes (B) at the ends. The
compass box (C) and two small level vials (D) are mounted on the baseplate,
the level vials being perpendicular to each other. When the compass was set
up and the bubbles in the vials centered, the compass box was horizontal and
ready for use.

A single leg called a Jacob’s staff supported early compasses. A ball-and-
socket joint and a clamp were used to rotate the instrument and clamp it in its
horizontal position. Later versions, such as that shown in Figure 7.9(a), were
mounted on a tripod. This arrangement provided greater stability.

The compass box of the surveyor’s compass was covered with glass to pro-
tect the magnetized steel needle inside. The needle was mounted on a pivot at
the center of a circle that was graduated in degrees. A top view of a surveyor’s
compass box with its graduations is illustrated in Figure 7.9(b). In the figure, the
zero graduations are at the north and south points of the compass and in line
with the two sight-vane slits that comprise the line of sight. Graduations are num-
bered in multiples of 10° clockwise and counterclockwise from 0° at the north
and south, to 90° at the east and west.

In using the compass, the sight vanes and compass box could be revolved
to sight along a desired line, and then its magnetic bearing could be read directly.
Note in Figure 7.9(b) for example, that the needle is pointing north and that the
line of sight is directed in a northeast direction. The magnetic bearing of the line,
read directly from the compass, is N40°E. (Note that the letters E and W on the
face of the compass box are reversed from their normal positions to provide the
direct readings of bearings.)

Unless disturbed by local attraction (a local anomaly caused from such
things as power lines, railroad tracks, metallic belt buckles, and so on that af-
fect the direction a compass needle points at any location), a compass needle is
free to spin and align itself with the Earth’s magnetic field pointing in the direc-
tion of the magnetic meridian (toward the magnetic north pole in the northern
hemisphere).!

The magnetic forces of the Earth not only align the compass needle, but
they also pull or dip one end of it below the horizontal position. The angle of
dip varies from 0° near the equator to 90° at the magnetic poles. In the north-
ern hemisphere, the south end of the needle is weighted with a very small coil
of wire to balance the dip effect and keep it horizontal. The position of the
coil can be adjusted to conform to the latitude in which the compass is used.
Note the coil (dark spot) on the south end of the needle of the compass of
Figure 7.9(b).

The Earth’s magnetic field resembles that of a huge dipole magnet lo-
cated at the Earth’s center, with the magnet offset from the Earth’s rotational
axis by about 13°. This field has been observed at about 200 magnetic obser-
vatories around the world, as well at many other temporary stations. At each

IThe locations of the north and south geomagnetic poles are continually changing, and in 1996, they
were located at approximately 79.74° north latitude and 71.78° west longitude, and 79.74° south latitude
and 108.22° east longitude, respectively.



7.11 Magnetic Declination

observation point both the field’s intensity, and its direction are measured.
Based upon many years of this data, models of the Earth’s magnetic field
have been developed. These models are used to compute the magnetic dec-
lination and annual change (see Sections 7.11 and 7.12), which are elements
of importance to surveyors. The accuracy of the models is affected by several
items including the locations of the observations, the types of rocks at the
surfaces together with the underlying geological structures in the areas, and
local attractions. Today’s models give magnetic declinations that are accurate
to within about 30 min of arc, however, local anomalies of 3° to 4°, or more,
can exist in some areas.

H 7.11 MAGNETIC DECLINATION

Magnetic declination is the horizontal angle observed from the geodetic merid-
ian to the magnetic meridian. Navigators call this angle variation of the compass;
the armed forces use the term deviation. An east declination exists if the mag-
netic meridian is east of geodetic north; a west declination occurs if it is west of
geodetic north. East declinations are considered positive and west declinations
negative. The relationship between geodetic north, magnetic north, and magnetic
declination is given by the expression

geodetic azimuth = magnetic azimuth + magnetic declination (7.1)

Because the magnetic pole positions are constantly changing, magnetic dec-
linations at all locations also undergo continual changes. Establishing a meridian
from astronomical or satellite (GNSS) observations and then reading a compass
while sighting along the observed meridian can obtain the current declination at
any location obtained baring any local attractions. Another way of determining
the magnetic declination at a point is to interpolate it from an isogonic chart.
An isogonic chart shows magnetic declinations in a certain region for a specific
epoch of time. Lines on such maps connecting points that have the same decli-
nation are called isogonic lines. The isogonic line along which the declination
is zero (where the magnetic needle defines geodetic north as well as magnetic
north) is termed the agonic line. Figure 7.10 is an isogonic chart covering the
conterminous (CONUS) 48 states of the United States for the year 2005. On
that chart, the agonic line cuts through the central part of the United States. It
is gradually moving westward. Points to the west of the agonic line have east
declinations and points to the east have west declinations. As a memory aid, the
needle can be thought of as pointing toward the agonic line. Note there is about
a 40° difference in declination between the northeast portion of Maine and the
northwest part of Washington. This is a huge change if a pilot flies by compass
between the two states!

The dashed lines in Figure 7.10 show the annual change in declination.
These lines indicate the amount of secular change (see Section 7.12) that is
expected in magnetic declination in a period of one year. The annual change at
any location can be interpolated between the lines and the value used to estimate
the declination a few years before or after the chart date.
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Figure 7.10
Isogonic lines from World Magnetic Model for 2005. This image is from the NOAA National Geophysical Data Center, NGDC on the Internet
at http://www.ngdc.noaa.gov/geomag
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7.13 Software for Determining Magnetic Declination

Bl 7.12 VARIATIONS IN MAGNETIC DECLINATION

It has been stated that magnetic declinations at any point vary over time. These
variations can be categorized as secular, daily, annual, and irregular, and are sum-
marized as follows.

Secular Variation. Because of its magnitude, this is the most important of
the variations. Unfortunately, no physical law has been found to enable
precise long-term predictions of secular variation, and its past behavior
can be described only by means of detailed tables and charts derived from
observations. Records, which have been kept at London for four centu-
ries, show a range in magnetic declination from 11°E in 1580, to 24°W in
1820, back to 3°W in 2000. Secular variation changed the magnetic decli-
nation at Baltimore, MD, from 5°11'W in 1640 to 0°35’W in 1800, 5°19'W
in 1900, 7°25"W in 1950, 8°43’W in 1975, and 11°01"W in 2000.

In retracing old property lines run by compass or based on the
magnetic meridian, it is necessary to allow for the difference in magnetic
declination at the time of the original survey and at the present date. The
difference is attributed mostly to secular variation.

Daily Variation. Daily variation of the magnetic needle’s declination
causes it to swing through an arc averaging approximately 8’ for the
United States. The needle reaches its extreme easterly position at about
8:00 A.M. and its most westerly position at about 1:30 p.m. Mean declina-
tion occurs at around 10:30 A.m. and 8:00 p.M. These hours and the daily
variation change with latitude and season of the year. Usually the daily
variation is ignored since it is well within the range of error expected in
compass readings.

Annual Variation. This periodic swing is less than 1 min of arc and can be
neglected. It must not be confused with the annual change (the amount
of secular-variation change in one year) shown on some isogonic maps.

Irregular Variations. Unpredictable magnetic disturbances and storms can
cause short-term irregular variations of a degree or more.

B 7.13 SOFTWARE FOR DETERMINING
MAGNETIC DECLINATION

As noted earlier, direct observations are only applicable for determining cur-
rent magnetic declinations. In most situations, however, magnetic declinations
that existed years ago, for example on the date of an old property survey, are
needed in order to perform retracement surveys. Until recently these old mag-
netic declinations had to be interpolated from isogonic charts for the approxi-
mate time desired, and the lines of annual change used to correct to the specific
year required. Now software is available that can quickly provide the needed
magnetic declination values. The software uses models that were developed
from historical records of magnetic declination and annual change, which have
been maintained for the many observation stations throughout the United
States and the world.
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Figure 7.11
Magnetic
declination data
entry screen in
WOLFPACK

setup to compute
magnetic field
values for Portland,
Maine.
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s 7 04 A7 | MAGNETIC DECLINATION AND ANNUAL CHANGE FOR VARIOUS LOCATIONS IN THE
U.S. For January 1, 2013

City Magnetic Declination Annual Change
Boston, MA 14°57'"W 3.7'E
Cleveland, OH 8°14'W 2.3'W
Madison, WI 2°27'W 5.6'W
Denver, CO 8°45'E 8.0'W

San Francisco, CA 14°01'E 6.2'W
Seattle, WA 16°27'E 10.3'W

The program WOLFPACK, which is on the companion website for this
book at http://www.pearsonhighered.com/ghilani, contains an option for comput-
ing magnetic field elements. This program uses models that span five or more
year time frames. Using the World Magnetic Model of 2010 (file: WMM-10.
DAT), the declination and annual change for Portland Oregon on January 1,
2013 were determined to be about 16°23'E? and 9.1'W per year, respectively (see
the input data in Figure 7.11). Using this same program, the declinations for vari-
ous other cities in the United States were determined for January 1,2013, and are
shown in Table 7.4. It is important when using this software to select the appro-
priate model file for the desired date. Select the appropriate model from a drop-
down list for the “Model File.” The models are given by their source, and the
year. The latitude, longitude, and elevation of the station must be entered in the
appropriate data boxes and the time of the desired computation is selected from
the drop-down list at the bottom of the box. After computing the magnetic field
elements for the particular location and time, the results are displayed for print-
ing. Similar computations to determine magnetic declination and rates of annual
change can be made by using the NOAA National Geophysical Data Centers’

The software indicates west declination as negative, and east declination as positive.
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(NGDC) online computation page at http://www.ngdc.noaa.gov/geomag/WMM/
calculators.shtml. The location of any U.S. city can be found with the U.S.
Gazetteer, which is linked to the software, or can be obtained at http://www
.census.gov/cgibin/gazetteer on the Internet page of the U.S. Census Bureau. It
should be noted that all of these models are only accurate to the nearest 30 min
and should be used with caution.

B 7.14 LOCAL ATTRACTION

Metallic objects and direct-current electricity, both of which cause a local
attraction, affect the main magnetic field. As an example, when set up beside an
old-time streetcar with overhead power lines, the compass needle would swing
toward the car as it approached, then follow it until it was out of effective range.
If the source of an artificial disturbance is fixed, all bearings from a given station
will be in error by the same amount. However, angles calculated from bearings
taken at the station will be correct.

Local attraction is present if the forward and back bearings of a line differ
by more than the normal observation errors. Consider the following compass
bearings read on a series of lines:

AB N24°15'W
BC N76°40'W
CD N60°00'E
DE N88°35'E
BA S24°10'E
CB S76°40'E
DC S61°15'W
ED S87°25'W

Forward-bearing AB and back-bearing BA agree reasonably well, indi-
cating that little or no local attraction exists at A or B. The same is true for
point C. However, the bearings at D differ from corresponding bearings taken
at C and E by roughly 1°15’ to the west of north. Local attraction therefore
exists at point D and deflects the compass needle by approximately 1°15” to the
west of north.

It is evident that to detect local attraction, successive stations on a compass
traverse have to be occupied, and forward and back bearings read, even though
the directions of all lines could be determined by setting up an instrument only
on alternate stations.

B 7.15 TYPICAL MAGNETIC DECLINATION PROBLEMS

Typical problems in boundary surveys require the conversion of geodetic bear-
ings to magnetic bearings, magnetic bearings to geodetic bearings, and magnetic
bearings to magnetic bearings for the declinations existing at different dates.
The following examples illustrate two of these types of problems.


http://www.census.gov/cgibin/gazetteer
http://www.census.gov/cgibin/gazetteer
http://www.ngdc.noaa.gov/geomag/WMM/calculators.shtml
http://www.ngdc.noaa.gov/geomag/WMM/calculators.shtml
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Figure 7.12
Computing
geodetic bearings
from magnetic
bearings and
declinations.

M Example 7.3

Assume the magnetic bearing of a property line was recorded as S43°30'E in
1862. At that time the magnetic declination at the survey location was 3°15'W.
What geodetic bearing is needed for a subdivision property plan?

Solution

A sketch similar to Figure 7.12 makes the relationship clear and should be used by
beginners to avoid mistakes. Geodetic north is designated by a full-headed long
arrow and magnetic north by a half-headed shorter arrow. The geodetic bearing
is seen to be S43°30'E + 3°15" = S46°45'E. Using different colored pencils to
show the direction of geodetic north, magnetic north, and lines on the ground helps
clarify the sketch. Although this problem is done using bearings, Equation (7.1)
could be applied by converting the bearings to azimuths. That is, the magnetic
azimuth of the line is 136°30’. Applying Equation (7.1) using a negative declina-
tion angle results in a geodetic azimuth of 136°30" — 3°15" = 133°15’, which cor-
rectly converts to the geodetic bearing of S46°45'E.

H Example 7.4

Assume the magnetic bearing of line AB read in 1878 was N26°15'E. The dec-
lination at the time and place was 7°15'W. In 2000, the declination was 4°30'E.
The magnetic bearing in 2000 is needed.

Solution

The declination angles are shown in Figure 7.13. The magnetic bearing of line AB
is equal to the earlier date bearing minus the sum of the declination angles, or

N26°15'E — (7°15" + 4°30") = N14°30'E



14°30°

Again, the problem can be computed using azimuths as 26°15" — 7°15" — 4°30" =
14°30', which converts to a bearing of N14°30’E.

On the companion website for this book at http://www.pearsonhighered
.com/ghilani are instructional videos that can be downloaded. The video
Magnetic Directions discusses how to obtain the magnetic declination for any
time period, the process of converting magnetic azimuths to their geodetic
equivalents, and how to convert magnetic directions between different time
periods.

H 7.16 MISTAKES
Some mistakes made in using azimuths and bearings are:

1. Confusing magnetic and other reference bearings.
Mixing clockwise and counterclockwise angles.
Interchanging bearings for azimuths.
Listing bearings with angular values greater than 90°.
Failing to include both directional letters when listing a bearing.
Failing to change bearing letters when using the back bearing of a line.
Using an angle at the wrong end of a line in computing bearings—that is,
using angle A instead of angle B when starting with line AB as a reference.
8. Not including the last angle to recompute the starting bearing or azimuth as
a check—for example, angle A in traverse ABCDEA.
9. Subtracting 360°00" as though it were 359°100" instead of 359°60’, or using
90° instead of 180° in bearing computations.
10. Adopting an assumed reference line that is difficult to reproduce.
11. Reading degrees and decimals from a calculator as though they were de-
grees, minutes, and seconds.
12. Failing to adjust traverse angles before computing bearings or azimuths if
there is a misclosure.

Nk wbd
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Figure 7.13
Computing
magnetic bearing
changes due

to declination
changes.
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PROBLEMS

Asterisks (*) indicate problems that have partial answers given in Appendix G.

7.1 Define the different reference meridians that can be used for the direction of a line.

7.2 List the three basic requirements in determining an angle.

7.3 Why is it important to adopt a standard angle measuring procedure, such as always
measuring angles to the right?

7.4 What is the relationship of a forward and back azimuth?

7.5 Convert: *(a) 203°26'48" to grads (b) 2.341539 radians to degrees, minutes, and seconds
(¢) 43°38'05"” to radians.

In Problems 7.6 through 7.7, convert the azimuths from north to bearings, and com-
pute the angles, smaller than 180° between successive azimuths.
7.6 43°00'36", 141°25'34", 230°12'20", and 330°35'48"
7.7 98°12'55",153°26'40", 192°56'22", and 288°12'50"
Convert the bearings in Problems 7.8 through 7.9 to azimuths from north and com-
pute the angle, smaller than 180°, between successive bearings.
7.8 N44°50'38"E, S38°42'54"E, S45°06'02"W, and N13°24"30"W
7.9 N32°42'38"E, S54°02'02"E, S22°42'56"W, and N44°35'26"W
Compute the azimuth from north of line CD in Problems 7.10 through 7.12.
(Azimuths of AB are also from north.)

7.10% Azimuth AB = 101°26'32"; angles to the right ABC = 50°54'26", BCD = 38°36'38".

711 Bearing AB = S74°26'12"E; angles to the right ABC = 98°20'06",
BCD = 104°21'08".

7.12 Azimuth AB = 275°32'20"; angles to the right ABC = 66°36'10", BCD = 82°16"24".

7.13* For a bearing DE = N08°53'56"W and angles to the right, compute the bearing of
FG if angle DEF = 88°12'29" and EFG = 40°20'30".

7.14 Similar to Problem 7.13, except the azimuth of DE is 12°02'18" and angles to the
right DEF and EFG are 21°44'52" and 86°10'14", respectively.

Course AB of a five-sided traverse runs due north. From the given balanced interior
angles to the right, compute and tabulate the bearings and azimuths from north for each
side of the traverses in Problems 7.15 through 7.17.

715 A = 82°13'15", B = 106°35'18", C = 28°45'06", D = 205°14'56", E = 117°11'25"
7.16% A = 90°29'18", B = 107°54'36", C = 104°06'37", D = 129°02'57", E = 108°26'32"
717 A = 156°23'48", B = 41°37'02", C = 94°30'15", D = 154°11'50", E = 93°17'05"

In Problems 7.18 through 7.20, compute and tabulate the azimuths of the sides of a

regular pentagon (polygon with five equal angles), given the starting direction of side AB.

7.18 Bearing of AB = N37°26'05"E (Station C is westerly from B.)
7.19 Azimuth of AB = 207°53'14" (Station C is westerly from B.)
7.20 Azimuth of AB = 202°02'00" (Station C is easterly from B.)

Compute azimuths of all lines for a closed traverse ABCDEFA that has the fol-
lowing balanced angles to the right, using the directions listed in Problems 7.21 and
7.22. FAB = 118°26'59", ABC = 123°20'28", BCD = 104°10'32", CDE = 133°52'50",
DEF = 108°21'58", EFA = 131°47'13".

7.21 Bearing AB = N88°18'42"W.
7.22 Azimuth DE = 36°10'20".
7.23 Similar to Problem 7.21, except that bearings are required, and fixed bearing

AB = S44°46'25"E.



Problems

7.24 Similar to Problem 7.22, except that bearings are required, and fixed azimuth
DE = 206°22'40" (from north).

7.25 Geometrically show how the sum of the interior angles of a pentagon (five sides)
can be computed using the formula (n — 2)180°.

7.26 Determine the predicted declinations on January 1, 2013 using the WMM-10 model
at the following locations.

*(a) latitude = 42°58'28"N, longitude = 77°12'36"W, elevation = 310.0 m;

(b) latitude = 37°56'44"N, longitude = 110°50'40"W, elevation = 1500 m;
(c) latitude = 41°18'15"N, longitude = 76°00'26"W, elevation = 240 m;

7.27 Explain why the letters E and W on a compass [see Figure 7.9(b)] are reversed from
their normal positions.

7.28 The magnetic declination at a certain place is 18°06'W. What is the magnetic bearing
there: (a) of true north (b) of true south (c¢) of true east?

7.29 Same as Problem 7.28, except the magnetic declination at the place is 9°30'E.

For Problems 7.30 through 7.32 the observed magnetic bearing of line AB and its
true magnetic bearing are given. Compute the amount and direction of local attraction at
point A.

Observed Magnetic Bearing True Magnetic Bearing
7.30% N32°30'E N30°15'E
731 S15°25'W S10°15'W
7.32 N9°56'W N820'E

What magnetic bearing is needed to retrace a line for the conditions stated in
Problems 7.33 through 7.36?

1875 Magnetic Bearing 1875 Declination Present Declination
7.33* N32°45'E 812'W 2°30'E
7.34 S63°40'E 3°40'W 2°20'E
7.35 S69°20"W 14°20'W 12°30'W
7.36 N24°30'W 2°30'E 2°30'W

In Problems 7.37 through 7.38 calculate the magnetic declination in 1870 based on
the following data from an old survey record.

1870 Magnetic Present Magnetic Present Magnetic
Bearing Bearing Declination
7.37 N14°20E N16°30'E 10°15'W
7.38 S40°40'W S54°35'W 8°30'E

7.39 An angle APB is measured at different times using various instruments and pro-
cedures. The results, which are assigned certain weights, are as follows: 89°43'38",
wt 2; 89°43'42" wt 1; and 89°43'30", wt 3. What is the most probable value of the
angle?

7.40 Similar to Problem 7.39, but with an additional measurement of 89°43'32" wt 4.
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PART | « TOTAL STATION INSTRUMENTS

H 8.1 INTRODUCTION

In the past, transits and theodolites were the most commonly used surveying
instruments for making angle observations. These two devices were fundamen-
tally equivalent and could accomplish basically the same tasks. Today, the total
station instrument has replaced transits and theodolites. Total station instruments
can accomplish all of the tasks that could be done with transits and theodolites,
and do them much more efficiently. In addition, they can also observe distances
accurately and quickly and, as discussed in Chapter 2, can be connected to survey
controllers. Furthermore, they can make computations with the angle and distance
observations, and display the results in real time. These and many other significant
advantages have made total stations the predominant instruments used in surveying
practice today. They are used for all types of surveys including topographic, hydro-
graphic, cadastral, and construction surveys. The use of total station instruments
for specific types of surveys is discussed in later chapters. This chapter describes the
general design and characteristics of total station instruments, and also concentrates
on procedures for using them in observing angles.

H 8.2 CHARACTERISTICS OF TOTAL STATION INSTRUMENTS

Total station instruments, as shown in Figure 8.1, combine three basic components—
an electronic distance measuring (EDM) instrument, an electronic angle measuring
component, and a computer or microprocessor —into one integral unit. These devices
can automatically observe horizontal and vertical angles, as well as slope distances
from a single setup (see Chapter 6). From these data, they can compute horizontal
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Figure 8.1
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(Courtesy Leica
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and vertical distance components instantaneously, elevations and coordinates of
points sighted, and display the results on a liquid crystal display (LCD). As discussed
in Chapter 2, they can also store the data, either onboard or in external data collec-
tors connected to their communication ports.

The telescope is an important part of a total station instrument. It is mounted
between the instrument’s standards (see Figure 8.1), and after the instrument has
been leveled, it can be revolved (or “plunged”) so that its axis of sight' defines a
vertical plane. The axis about which the telescope revolves is called the horizontal
axis. The telescope can also be rotated in any azimuth about a vertical line called
the vertical axis. Being able to both revolve and rotate the telescope in this manner
makes it possible for an operator to aim the telescope in any azimuth, and along
any slope, to sight points. This is essential in making angle observations, as de-
scribed in Part II of this chapter. The three reference axes, the axis of sight, the
horizontal axis, and the vertical axis, are illustrated in Figure 8.24.

I'The axis of sight, also often called the “line of sight,” is the reference line within the telescope which
an observer uses for making pointings with the instrument. As defined in Section 4.7, it is the line
connecting the optical center of the objective lens and the intersection of cross hairs in the reticle.
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The EDM instruments that are integrated into total station instruments
(described in Section 6.21), are relatively small, and as shown in Figure 8.1, are
mounted with the telescope between the standards of the instrument. Although
the EDM instruments are small, they still have distance ranges adequate for most
work. Lengths up to about 4 km can be observed with a single prism, and even
farther with a triple prism like the one shown in Figure 6.11.

Total station instruments are manufactured with two graduated circles,
mounted in mutually perpendicular planes. Prior to observing angles, the instru-
ment is leveled so that its horizontal circle is oriented in a horizontal plane, which
automatically puts the vertical circle in a vertical plane. Horizontal and zenith (or
altitude) angles can then be observed directly in their respective planes of reference.
To increase the precision of the final horizontal angle, repeating instruments had
two vertical axes. This resulted in two horizontal motion screws. One set of motion
screws allowed the instrument to be turned without changing the value on the hori-
zontal circle. Today’s total station instruments usually have only one vertical axis
and thus are considered directional instruments. However, as discussed later, angles
can be repeated on a total station by following the procedures described in the in-
strument’s manual. Most early versions of total station instruments employed level
vials for orienting the circles in horizontal and vertical planes, but many newer ones
now use automatic compensators, which are electronic tilt-sensing mechanisms.

The angle resolution of available total stations varies from as low as a half-
second for precise instruments suitable for control surveys, up to 20" for less
expensive instruments made specifically for construction work. Formats used for
displaying angles also vary with different instruments. For example, the displays of
some actually show the degree, minute, and second symbols, but others use only
a decimal point to separate the number of degrees from the minutes and seconds.
Thus, 315.1743 is actually 315°17'43". Most instruments allow a choice of units, such
as the display of angular measurements in degrees, minutes, and seconds, or in grads
(gons). Distances may be shown in either feet or meters. Also, certain instruments
enable the choice of displaying vertical angles as either zenith or altitude angles.
These choices are entered through the keyboard, and the microprocessor performs
the necessary conversions accordingly. The keyboard, used for instrument control
and data entry, is located just above the leveling head, as show in Figure 8.1.

Once the instrument has been set up and a sighting has been made through
the telescope, the time required in displaying an angle and distance reading is
approximately 2 to 4 sec when a total station instrument is being operated in
the normal mode, and less than 0.5 sec when operated in the tracking mode. The
normal mode, which is used in most types of surveys with the exception of con-
struction layout, results in higher precision because multiple observations are
made and averages taken. In the tracking mode, used primarily for construction
layout, a prism is held on line near the anticipated final location of a stake. An
observation is quickly taken to the prism, and the distance that it must be moved
forward or back is instantly computed and displayed. The prism is moved ahead
or back according to the results of the first observation, and another check of
the distance is made. The process is quickly repeated as many times as necessary
until the correct distance and direction are obtained, whereupon the stake is set.
This procedure is discussed in more detail in Chapter 23.
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Robotic total stations, which are further discussed in Section 8.6, have
servomotors on both the horizontal and vertical axes that allow the instrument to
perform a second pointing on a target or track a roving target without operator in-
teraction. These instruments are often used in construction layout. In fact, robotic
total stations are required in machine guidance and control on a construction site
as discussed in Section 23.11. In machine guidance, the instrument guides a piece
of construction equipment through the site preparation process, informing the
construction equipment operator of the equipment’s position on the job site and
the amount of soil that needs to be removed or added at its location to match the
project design. In machine control, the instrument sends data to a control unit on
the machine that controls the equipment during the entire construction process.

H 8.3 FUNCTIONS PERFORMED BY TOTAL
STATION INSTRUMENTS

Total station instruments, with their microprocessors, can perform a variety of
functions and computations, depending on how they are programmed. Most are
capable of assisting an operator, step by step, through several different types
of basic surveying operations. After selecting the type of survey from a menu,
prompts will automatically appear on the display to guide the operator through
each step. An example illustrating a topographic survey conducted using this pro-
cedure is given in Section 17.9.1.

In addition to providing guidance to the operator, microprocessors of total
stations can perform many different types of computations. The capabilities vary
with different instruments, but some standard computations include (1) aver-
aging of multiple angle and distance observations, (2) correcting electronically
observed distances for prism constants, atmospheric pressure, and temperature,
(3) making approximate curvature and refraction corrections to vertical angles
and elevations determined by trigonometric leveling, (4) reducing slope distances
to their horizontal and vertical components, (5) calculating point elevations from
the vertical distance components (supplemented with keyboard input of instru-
ment and reflector heights), and (6) computing coordinates of surveyed points
from horizontal angle and horizontal distance components (supplemented with
keyboard input of coordinates for the occupied station), and a reference azimuth.
The subject of coordinate computations is covered in Chapters 10 and 11.

Many total stations, but not all, are also capable of making corrections
to observed horizontal and vertical angles for various instrumental errors. For
example, by going through a simple calibration process, the indexing error of
the vertical circle can be determined (see Section 8.13), stored in the micro-
processor, and then a correction applied automatically each time a vertical
angle is observed. A similar calibration and correction procedure applies to
errors that exist in horizontal angles due to imperfections in the instrument
(see Section 8.8). Some total stations are also able to correct for personal
errors, such as imperfect leveling of the instrument. By means of electronic
tilt-sensing mechanisms, they automatically measure the amount and direction
of dislevelment, and then make corrections to the observed horizontal and
vertical angles for this condition.
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H 8.4 PARTS OF A TOTAL STATION INSTRUMENT

The upper part of the total station instrument, called the alidade, includes the
telescope, graduated circles, and all other elements necessary for measuring an-
gles and distances. The basic design and appearance of these instruments (see
Figures 8.1 and 8.2) are:

1. The telescopes are short, have reticles with cross hairs etched on glass, and
are equipped with rifle sights or collimators for rough pointing. Most telescopes
have two focusing controls. The objective lens control is used to focus on the object
being viewed. The eyepiece control is used to focus on the reticle. If the focus-
ing of the two lenses is not coincident, a condition known as parallax will exist.
Parallax is the apparent motion of an object caused by a movement in the position
of the observer’s eye. The existence of parallax can be observed by quickly shifting
one’s eye position slightly and watching for movement of the object in relation to
the cross hairs. Careful adjustment of the eyepiece and objective lens will result
in a sharp image of both the object and the cross hairs with no visible parallax.
Since the eye tends to tire through use, the presence of parallax should be checked
throughout the day. A common mistake of beginners is to have a colleague “check”
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their pointings. This is not recommended for many reasons including the personal
focusing differences that exist between different individuals. The video Removing
Parallax, which is available on the companion website, discusses the procedure
used to detect and remove parallax from the optics.

With newer instruments, objective lens auto focusing is available. This works
in a manner similar to auto focusing for a camera, and increases the rate at which
pointings can be made when objects are at variable distances from the instrument.

2. The angle measurement system functions by passing a beam of light
through finely spaced graduations. The instrument in Figure 8.2 is representative
of the way total stations operate, and is briefly described here. For horizontal
angle measurements, two glass circles within the alidade are mounted parallel,
one on top of the other, with a slight spacing between them. After the instrument
has been leveled, the circles should be in horizontal planes. The rotor (lower
circle) contains a pattern of equally divided alternate dark lines and light spaces.
The stator (upper circle) contains a slit-shaped pattern, which has the same pitch
as that of the rotor circle. A light-emitting diode (LED) directs collimated light
through the circles from below toward a photo detector cell above. A modern
total station may have as many as 20,000 graduations!

When an angle is turned, the rotor moves with respect to the stator creating
alternating variations of light intensity. Photo detectors sense these variations,
convert them into electrical pulses, and pass them to a microprocessor for con-
version into digital values. The digits are displayed using an LCD. Another sepa-
rate system like that just described is also mounted within the alidade for mea-
suring vertical angles. With the instrument leveled, this vertical circle system is
aligned in a vertical plane. After making an observation, horizontal and verti-
cal angles are both displayed, and can be manually read and recorded in field
books, or alternatively, the instruments can be equipped with data collectors
that eliminate manual reading and recording. (This helps eliminate mistakes!)
Today’s total stations can resolve angles to an accuracy of 1”, 3", or 5” typically.

3. The vertical circle of most total station instruments is precisely indexed
with respect to the direction of gravity by an automatic compensator. These
devices are similar to those used on automatic levels (see Section 4.10) and auto-
matically align the vertical circle so that 0° is oriented precisely upward toward
the zenith (opposite the direction of gravity). Thus, the vertical circle readings
are actually zenith angles, that is, 0° occurs with the telescope pointing vertically
upward, and either 90° or 270° is read when it is horizontal. Upon command, the
microprocessor can convert zenith angles to altitude angles (i.e., values measured
up or down from 0° at the horizontal). The vertical motion, which contains a lock
and fangent screw, enables the telescope to be released so that it can be revolved
about the horizontal axis, or locked (clamped) to prevent it from revolving. To
sight a point, the lock can be opened and the telescope tilted up or down about
the horizontal axis as necessary to the approximate position needed to sight a
point. The lock is then clamped, and fine pointing completed using the vertical
tangent screw.

In servo-driven total stations (see Figure 8.7), the lock and tangent screw are
replaced with a jog/shuttle mechanism. This device actuates an internal servo-drive
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motor that rotates the telescope about its horizontal axis. The speed at which the
mechanism rotates determines the speed at which the telescope rotates.

4. Rotation of the telescope about the vertical axis occurs within a steel
cylinder or on precision ball bearings, or a combination of both. The horizontal
motion, which also contains a lock and tangent screw, controls this rotation.
Clamping the lock can prevent rotation. To sight a point, the lock is released and
the telescope rotated in azimuth to the approximate direction desired, and the
lock clamped again. Then the horizontal tangent screw enables a fine adjustment
to be made in the direction of pointing. (Actually when sighting a point, both the
vertical and horizontal locks are released so that the telescope can be simultane-
ously revolved and rotated. Then both are locked and fine pointing made using
the two tangent screws.)

Similar to the vertical motion in servo-driven total stations, the horizontal
lock and tangent screw is replaced with a jog/shuttle mechanism that actuates
an internal servo-drive to rotate the instrument about its vertical axis. Again the
speed at which the mechanism is rotated determines the speed at which the tele-
scope rotates.

5. The tribrach consists of three screws or cams for leveling, a circular level,
clamping device to secure the base of the total station or accessories (such as
prisms and sighting targets), and threads to attach the tribrach to the head of a
tripod. As shown in Figure 8.3, some tribrachs also have integral optical plum-
mets (described below) to enable centering accessories over a point without the
instrument.

6. The bases of total stations are often designed to permit interchange of
the instrument with sighting targets and prisms in tribrachs without disturbing
previously established centering over survey points. This can save a considerable
amount of time. Most manufacturers use a standardized “three-post” arrange-
ment to enable interchangeability between different instruments and accessories.

Right-angle | Vertical axis
prism : of instrument
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Objective
lens focus

Axis of sight
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Figure 8.3 (a) Tribrach with optical plummet, (b) schematic of a tribrach optical plummet.
[Figure (a), Courtesy Topcon Positioning Systems.]
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7. An optical plummet, built into either the tribrach or alidade of total
station instruments, permits accurate centering over a point. Although either
type enables accurate centering, best accuracy is achieved with those that are
part of the alidade of the instrument. The optical plummet provides a line of sight
that is directed downward, collinear with the vertical axis of the instrument. But
the total station instrument or tribrach must be leveled first for the line of sight
to be vertical. Figures 8.3(a) and (b) show a tribrach with optical plummet, and a
schematic of the tribrach optical plummet, respectively. Due to the short length
of the telescope in an optical plummet, it is extremely important to remove paral-
lax before centering the instrument with this device.

In some instruments, laser plummets have replaced the optical plummet.
This device produces a beam of collimated light that coincides with the vertical
axis of the instrument. Since focusing of the objective and eyepiece lens is not
required with a laser plummet, this option will increase both the speed and accu-
racy of setups. However, the laser mark may be difficult to see in bright sunlight.
Shading the mark can help in these situations. Additionally, the defined laser
point maybe larger than the mark the operator is trying to center over.

8. When being used, total station instruments stand on tripods. The tripods
are the wide-frame type, and most have adjustable legs. Their primary composi-
tion may be wood, metal, or fiberglass.

9. The microprocessor provides several significant advantages to surveyors.
For example, (a) the circles can be zeroed instantaneously by simply pressing
a button, or they can be initialized to any value by entry through the keyboard
(valuable for setting the reference azimuth for a backsight); (b) angles can be
observed with values increasing either left or right; and (c) angles observed by
repetition (see Section 8.8) can be added to provide the total, even though 360°
may have been passed one or more times. Other advantages include reduction of
mistakes in making readings, and an increase in the overall speed of operation.

10. The keyboard and display (see Figure 8.2) provide the means of com-
municating with the microprocessor. Most total stations have a keyboard and
display on both sides of the instrument, a feature that is especially convenient
when operating the instrument in both the direct and reverse modes (see Section
8.8), as is usually done when observing angles. Some robotic total stations (see
Section 8.6) also have a keyboard and display mounted on a remote prism pole
for “one-person” operations.

11. The communication port (see Figure 8.1) enables external data collectors
to be connected to the instrument. Some instruments have internal data collection
capabilities, and their communications ports permit them to be interfaced with a
computer for direct downloading of data.

H 8.5 HANDLING AND SETTING UP A TOTAL
STATION INSTRUMENT

A total station instrument should be carefully lifted from its carrying case by
grasping the standards or handle, and the instrument securely fastened to the
tripod by means of the tribrach. For most surveys, prior to observing distances
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and angles, the instrument must first be carefully set up over a specific point.
The setup process using an instrument with an optical plummet, tribrach mount
with circular bubble, and adjustable-leg tripod is accomplished most easily using
the following steps: (1) extend the legs so that the scope of the instrument will
be at an appropriate elevation for view and then adjust the position of the tripod
legs by lifting and moving the tripod as a whole until the point is roughly cen-
tered beneath the tripod head? (beginners can drop a stone from the center of
the tripod head, or use a plumb bob to check nearness to the point); (2) firmly
place the legs of the tripod on the ground and extend the legs so that the head
of the tripod is approximately level; repeat step (1) if the tripod head is not
roughly centered over the point; (3) roughly center the tribrach leveling screws
on their posts; (4) mount the tribrach approximately in the middle of the tripod
head to permit maximum translation in step (9) in any direction; (5) focus the
plummet properly on the point, making sure to check and remove any parallax;
(6) manipulate the leveling screws to aim the plummet’s pointing device at the
point below; (7) center the circular bubble by adjusting the lengths of the tripod
extension legs; (8) and level the instrument using the plate bubble and leveling
screws; and (9) if necessary, loosen the tribrach screw and translate the instru-
ment (do not rotate it) to carefully center the plummet’s pointing device on
the point; (10) repeat steps (8) and (9) until precise leveling and centering are
accomplished. With total stations that have their plummets in the tribrach, the
instrument can and should be left in the case until step (8). The videos Leveling
an Instrument and Centering an Instrument over a Point, which are available on
the companion website of this book, demonstrate the process of leveling an in-
strument and setting an instrument with an optical plummet and adjustable leg
tripod over a point.

To level a total station instrument that has a plate-level vial, the telescope
is rotated to place the axis of the level vial parallel to the line through any two
leveling screws, such as the line through A and B in Figure 8.4(a). The bubble is
centered by turning these two screws, then the instrument is rotated 90°, as shown
in Figure 8.4(b), and centered again using the third screw (C) only. This process is
repeated in the initial two positions and carefully checked to ensure that the bub-
ble remains centered. As illustrated in Figure 8.4, the bubble moves in the direction
of the left thumb when the foot screws are turned. A solid tripod setup is essential,
and the instrument must be shaded if set up in bright sunlight. Otherwise, the
bubble will expand and run toward the warmer end as the liquid is heated.

Many instruments, such as that shown in Figure 8.1, do not have traditional
level vials. Rather, they are equipped with an electronic, dual-axis leveling sys-
tem as shown in Figure 8.5 in which four probes sense a liquid (horizontal) sur-
face. After preliminary leveling is performed by means of the tribrach’s circular
bubble, signals from the probes are processed to form an image on the LCD,
which guides an operator in performing rough leveling. The three leveling screws
are used, but the instrument need not be turned about its vertical axis in the

2Some prefer to place one leg firmly on the ground. The surveyor then looks through the optical
plummet and moves the tripod with hands on the remaining two legs until the point is in view in the
optical plummet. The remaining two legs are then set firmly on the ground.
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Figure 8.4 Bubble centering with three-screw leveling head.

Figure 8.5

The LEICA TPS
300 electronic
leveling system.
(Courtesy Leica
Geosystems AG.)
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leveling process. After rough leveling, the amount and direction of any residual
dislevelment is automatically and continuously received by the microprocessor,
which corrects observed horizontal and vertical angles accordingly in real time.

As noted earlier, total stations are controlled with entries made either
through their built-in keypads or through the keypads of handheld data collec-
tors. Details for operating each individual total station vary somewhat and there-
fore are not described here. They are covered in the manuals provided with the
purchase of instruments.

When moving between setups in the field, proper care should be taken.
Before the total station is removed from the tripod, the foot screws should be
returned to the midpoints of the posts. Many instruments have a line on the
screw post that indicates the halfway position. The instrument should NEVER
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Figure 8.6 (a) A
proper method of
transporting a total
station in the field.
(b) Total station

in open case.
(Courtesy Leica
(b) Geosystems AG.)

be transported on the tripod since this causes stress to tripod head, tribrach, and
instrument base. Figure 8.6(a) depicts the proper procedure for carrying equip-
ment in the field. With adjustable-leg tripods, retracting them to their shortest
positions and lightly clamping them in position can avoid stress on the legs. Since
the screws on the instrument are made of brass typically, over-tightening screws
on tripods and the instrument can cause serious harm to the instruments. Screws
and locks should only be “finger” tight. Inexperienced users sometimes over-
tighten screws to the detriment of the equipment.

When returning the total station to its case, all locking mechanisms should
be released. This procedure protects the threads and reduces wear when the
instrument is jostled during transport and also prevents the threads from seizing
during long periods of storage. If the instrument is wet, it should be wiped down
and left in an open case until it is dry as shown in Figure 8.6(b). When storing
tripods, it is important to loosen or lightly clamp all legs. This is especially true
with wooden tripods where the wood tends to expand and contract with humid-
ity in the air. Failure to loosen the clamping mechanism on wooden tripods can
result in crushed wood fibers, which inhibit the ability of the clamp to hold the
leg during future use.

H 8.6 SERVO-DRIVEN AND REMOTELY OPERATED
TOTAL STATION INSTRUMENTS

Manufacturers also produce “robotic” total station instruments equipped with
servo-drive mechanisms that enable them to aim automatically at a point. The
total station shown in Figure 8.7 is an example. When staking out points with
these instruments, it is only necessary to identify the point’s number with a key-
board entry. The computer retrieves the direction to the point from storage or
computes it and activates a servomotor to turn the telescope to that direction
within a few seconds. This feature is particularly useful for construction stakeout,
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Figure 8.7

A Leica
Geosystems robotic
total station with its
survey controller

on the prism pole.
(Courtesy Leica
Geosystems AG.)

but it is also convenient in control surveying when multiple observations are
made in observing angles. In this instance, final precise pointing is done manually.

The survey controller shown in Figure 8.7, which is attached to a prism pole,
has a built-in telemetry link for communication with the total station. The robotic
instrument is equipped with an automatic search and aim function, as well as a link
for communication with the survey controller. It has servomotors for automatic
aiming at the prism both horizontally and vertically. Using the survey controller,
the total station instrument can be controlled from a distance.

To operate the system, the robotic instrument must first be set up and ori-
ented. This consists in entering the coordinates of the point where the total station
is located, and taking a backsight along a line of known azimuth. Once oriented,
an operator carries the survey controller and prism to any convenient location
and faces the robotic instrument. The instrument then scans for the prism both
horizontally and vertically. Its horizontal servomotor then activates and swings
around until it finds the prism. Once the total station has found the prism, which
only takes a few seconds, and locks onto it, it will automatically follow its further
movements. If lock is lost, the search routine is simply repeated.

With this and similar systems, the total station instrument is completely
controlled through the keyboard of the remote unit at the prism pole. These sys-
tems enable one person to conduct a complete survey. They are exceptionally
well suited for construction surveys and topographic surveys, but can be used
advantageously in other types as well. The system not only eliminates one person
and speeds the work, but more importantly, it eliminates mistakes in identifying
points that can occur when the prism is far from the total station and cannot be
seen clearly.
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PART Il « ANGLE OBSERVATIONS

H 8.7 RELATIONSHIP OF ANGLES AND DISTANCES

Determining the relative positions of points often involves observing of both an-
gles and distances. The best-quality surveys result when there is compatibility be-
tween the accuracies of these two different kinds of measurements. The formula
for relating distances to angles is given by the geometric relationship

S = R0 (8.1)

In Equation (8.1), S is the arc length subtended at a distance R by an arc of
6 in radians. To select instruments and survey procedures necessary for achiev-
ing consistency, and to evaluate the effects of errors due to various sources, it is
helpful to consider the relationships between angles and distances given here and
illustrated in Figure 8.8.

1’ of arc = 0.03 ft at 100 ft, or 3 cm at 100 m (approx.)

1’ of arc = 1in. at 300 ft (approx.; actually 340 ft)

1" of arc = 1 ft at 40 mi, or 0.5 m at 100 km, or 1 mm at 200 m (approx.)
1" of arc = 0.000004848 radians (approx.)

1 radian = 206,264.8" of arc (approx.)

In accordance with the relationships listed, an error of approximately
1 min results in an observed angle if the line of sight is misdirected by 1 in. over
a distance of 300 ft. This illustrates the importance of setting the instrument and
targets over their respective points precisely, especially where short sights are
involved. If an angle is expected to be accurate to within *5” for sights of 500 ft,
then the distance must be correct to within 500(5”)0.000004848 = £0.01 ft for
compatibility.

To appreciate the precision capabilities of a high-quality total station, an
instrument reading to the nearest 0.5” is capable of measuring the angle between
two points approximately 1 cm apart and 4 km away theoretically! However, as

o

f R ‘
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/\ /\ Figure 8.8
100 m 200 m Angle and distance
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@)
Figure 8.9 Measurement of horizontal angles.

discussed in Sections 8.19 through 8.21, errors from centering the instrument,
sighting the point, reading the circle, and other sources, make it difficult, if not
impossible, to actually accomplish this accuracy.

H 8.8 OBSERVING HORIZONTAL ANGLES
WITH TOTAL STATION INSTRUMENTS

As stated in Section 2.1, horizontal angles are observed in horizontal planes.
After a total station instrument is set up and leveled, its horizontal circle is
in a horizontal plane and thus in proper orientation for observing horizontal
angles. To observe a horizontal angle, for example angle JIK of Figure 8.9(a),
the instrument is first set up and centered over station /, and leveled. Then a
backsight is taken on station J. This is accomplished by releasing the horizon-
tal and vertical locks, turning the telescope in the approximate direction of J,
and clamping both locks. A precise pointing is then made to place the vertical
cross hair on the target using the horizontal and vertical tangent screws, and
an initial value of 0°00'00” is entered in the display. The horizontal motion is
then unlocked, and the telescope turned clockwise toward point K to make the
foresight. The vertical circle lock is also usually released to tilt the telescope for
sighting point K. Again the motions are clamped with the line of sight approxi-
mately on station K, and precise pointing is made as before using the horizontal
tangent screw. When the foresight is completed, the value of the horizontal
angle will automatically appear in the display. The video Turning an Angle,
which is available on the companion website for this book, demonstrates the
procedures for measuring an angle and creating accompanying field notes using
a total station instrument.

To eliminate instrumental errors and increase precision, angle obser-
vations should be repeated an equal number of times in each of the direct
and reverse modes, and the average taken. Built-in computers of total station
instruments will perform the averaging automatically and display the final
results. For instruments that have only a single keyboard and display, the in-
strument is in its direct mode when the eyepiece and keyboard are on the same

B
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side of the instrument. However, instruments do vary by manufacturer, and
the operator should refer to the instrument’s manual to determine the proper
orientation of their instrument when in the direct mode. To get from the direct
mode into the reverse mode, the telescope is “plunged” (rotated 180° about
the horizontal axis).

Procedures for repeating horizontal angle observations can differ with in-
struments and survey controllers of different manufacture, and operators must
therefore become familiar with the features of their specific instrument by re-
ferring to its manual. The following is an example procedure that applies to
some instruments. After making the first observation of angle JIK, as described
above, the angular value in the display is held by pressing a button on the key-
board of the instrument. (Assume the first observation was in the direct mode.)
To repeat the angle with the instrument in the same mode, a backsight is again
taken on station J using the horizontal lock and tangent screw. After the back-
sight is completed, with the next angle observation is taken by again pressing
the appropriate button on the keyboard. Using the same procedures described
earlier, a foresight is again taken on station K, after which the display will read
the second angle. This procedure is repeated until the desired number of angles
is observed in the direct mode. Then the telescope is plunged to place it in the
reverse mode, and the angle repeated an equal number of times using the same
procedure. In the end, the average of all angles turned, direct and reverse, will
be displayed along with the individual observations and their residual errors.
The operator can then accept the set of angles as observed or discard individual
angles and repeat their observation.

The procedure just described for observing horizontal angles is often called
the repetition method. As noted earlier, obtaining an average value from re-
peated observations increases precision, and by incorporating equal numbers of
direct and reverse measurements, certain instrumental errors are eliminated (see
Section 8.20).

An example set of field notes for observing the angle of Figure 8.9(a) by
the repetition method is shown in Figure 8.10. In the example, four repetitions,
two in each of the direct (Face I) and reverse (Face II) modes, were taken. In
the notes, the identification of the angle being observed is recorded in column
(1), the position of the instrument is placed in column (2), the values of the

(" HORIZONTAL ANGLE )

MEASUREMENT

(1) (2) (3) (4) (5)

Angle| Face Mean
0 7 w70 7 7|0 7 7 Figure8.10
Field notes for

JIK I 663740 |66 3742 measuring the

Il |663740 |66 37 48| 66 37 40 horizontal angle

of Figure 8.9(a) by
“- 1l 1 1 — ~——~] A repetition.
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direct readings are tabulated in column (3), the values of the reverse readings
are tabulated in column (4), and the mean of the four readings, which produces
the final angle, is given in column (5). If these values agree within tolerable lim-
its, the mean angle is accepted, if not the work is repeated.

Special capabilities are available with many total station instruments to
enhance their accuracy and expedite operations. For example, most instruments
have a dual-axis automatic compensator that senses any misorientation of the
circles. This information is relayed to the built-in computer that corrects for any
indexing error in the vertical circle (see Section 8.13), and any dislevelment of the
horizontal circle, before displaying angular values. This real-time tilt sensing and
correction feature makes it necessary to perform rough leveling of the instrument
only, thus reducing setup time. In addition, some instruments observe angles by
integration of electronic signals over the entire circle simultaneously; thus, er-
rors due to graduations and eccentricities (see Section 8.20.1) are eliminated.
Furthermore, the computer also corrects horizontal angles for instrumental errors
if the axis of sight is not perpendicular to the horizontal axis, or if the horizontal
axis is not perpendicular to the vertical axis. (These conditions are discussed in
Sections 8.15 and 8.20.1, respectively.). This feature makes it possible to obtain
angle observations free from instrumental errors without averaging equal num-
bers of direct and reverse readings. With these advantages, and more, it is obvi-
ous why these instruments have replaced the older optical instruments. However
even with these advantages, it is best practice to keep your instrument in proper
calibration but use it as if it is not, which means always reading and averaging the
same number of direct and reverse face angles observations.

H 8.9 OBSERVING MULTIPLE HORIZONTAL ANGLES
BY THE DIRECTION METHOD

As an alternative to observing a single horizontal angle by the repetition method
described in the preceding section, total station instruments can be used to
determine horizontal angles by the direction method. This procedure consists in ob-
serving directions, which are simply horizontal circle readings taken to successive
stations sighted around the horizon. Then by taking the difference in directions
between any two stations, the angle between them is determined. The procedure is
particularly efficient when multiple angles are being observed at a station.

An example of this type of situation is illustrated in Figure 8.9(b), where
angles a and b must both be observed at station P. Figure 8.11 shows a set of
field notes for observing these angles by direction method. The method involves
sighting the initial station Q in the direct mode (Face I) and zeroing the plates.
Following this, all subsequent stations are sighted in the direct position and
the readings written in column (3). After completing the readings in the direct
mode, the telescope is plunged to its reverse (Face II) position, and all directions
observed again [see the data entries in column (4)]. A set of readings in both the
direct and reverse modes constitutes a so-called position.

The notes in Figure 8.11 are the results of four repetitions of direction mea-
surements in each of the direct and reverse mode. In these notes, the repetition
number is listed in column (1), the station sighted in column (2), direction readings
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(" DIRECTIONS OBSERVED FROM
STATION P

Repetition|Station|Reading|Reading
No. Sighted| Direct |Reverse

Mean Angle

(1) (2) | (3) | (4) | (5) | (&)

o ¢+ w0 s 2|0 s 2|0 7 1w

1 Q 0 0000|000 0000000

R 373027 | 3730 21|37 20 24 | 37 20 24

5 7413 42|74 15 34| 74 15 35| 36 43 14
2 Q 0 0000|000 000|000 00

R 3730 32|37 30 26|37 20 30| 37 20 30

5 7413 48|74 1542|7413 46| 36 43 16
3 Q 0 0000|000 000|000 00

R 373026|57 3026|3730 26| 37 30 26

S 7413 36|74 1340|7413 38| 36 45 12

Figure 8.11
4 Q 0 00 00| 0 00 00| 0 00 0O Field notes
R 3730 34| 3730 30| 57 30 32| 37 30 32 for measuring
S |741348|7413 44|74 13 46| 36 43 14 directions for

taken in the direct and reverse modes in columns (3) and (4), respectively, the mean
of direct and reverse readings in column (5), and the computed angles (obtained by
subtracting the mean direction for station Q from that of station R, and subtracting
R from §) in column (6).

Final values for the two angles are taken as the averages of the four an-
gles in column (6). These are 37°30'28" and 36°43'14" for angles a and b, respec-
tively. Note that in this procedure, as was the case with the repetition method,
the multiple readings increase the precisions of the angles, and by taking equal
numbers of direct and reverse readings, many instrumental errors are eliminated.
As previously noted, this method of observing directions can significantly reduce
the time at a station, especially when several angles with multiple repetitions are
needed, for example, in triangulation.

The procedures for observing multiple angles with data collectors can vary by
manufacturer. The reader should refer to their data collector manual to determine the
proper procedures for their situation. One of the advantages of using a data collector
to observe multiple angles is that they provide immediate postobservation statistics.
The residuals of each observation can be displayed after the observation process be-
fore accepting the average observations. The operator can view each residual and
decide if any are too large to meet the job specifications, instrument specifications,
and field conditions. If a single residual is deemed excessive, that observation can be
removed and the observation repeated. If all the residuals are too large, the entire set
of observations can be removed and the entire angle observation process repeated.
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Figure 8.12

Field notes for
closing the hori-
zon at station A of
Figure 8.9(c).

H 8.10 CLOSING THE HORIZON

Closing the horizon consists in using the direction method as described in the pre-
ceding section, but including all angles around a point. Suppose that in Figure 8.9(c)
only angles x and y are needed. However, in closing the horizon angle z is also ob-
served thereby providing for additional checks. An example set of field notes for
this operation is shown in Figure 8.12. The angles are first turned around the horizon
by making a pointing and direction reading at each station with the instrument in
the direct mode [see the data entries in column (3) of Figure 8.12]. A final foresight
pointing is made on the initial backsight station, and this provides a check because
it should give the initial backsight reading (allowing for reasonable random errors).
Any difference is the horizon misclosure, and if its value exceeds an allowable tol-
erance, that round of readings should be discarded and the observations repeated.
(Note that in the field notes of Figure 8.12, the maximum horizon misclosure is 4".)

The note-reduction process consists of calculating mean values of the direct
and reverse directions to each station, [see column (5)], and from them, the
individual angles around the horizon are computed as discussed in Section 8.9
[see column (6)]. Finally their sum is calculated, and checked against (360°).

" CLOSING THE HORIZON
AT STATION A

Fosition[Station|Reading|Keading
No. Sighted| Direct |Reverse

Mean Angle

(1) (2) | (3) | (4) | (5) | (6)

o s w|o s wlo s w| o s w

0 0000|000 00|0 0000
42121214212 1414212 13| 42 12 13
102 06 206|102 08 28|102 08 27|59 56 14
00002|00002|000 02| 2575135
5um|360 00 02
0 0000|000 00|0 0000
42121214212 14142 12 13| 42 12 13
102 06 268|102 08 28|102 06 28|59 56 15
0 0004|000 04|000 04| 2575136
5um|\360 00 04
0 0000|000 00|0 0000
421214 42121214212 13| 42 12 13
102 06 268|102 08 26|102 08 27|59 56 14
000 04|00000|000 02| 2575135
5um|360 00 02
0 0000|000 00|0 0000
421214 42121214212 13| 42 12 13
102 06 32/102 08 28[102 08 30,59 56 17
0 0004|000 04|0 00 04| 2575134
5um|\360 00 04
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Any difference reveals a mistake or mistakes in computing the individual angles.
Again, repeat values for each individual angle are obtained, and as another check
on the work, these should be compared for their agreement.

As an alternative to closing the horizon by observing directions, each in-
dividual angle could be measured independently using the procedures outlined
in Section 8.8. After observing all angles around the horizon, their sum could
also be computed and compared against 360°. However, this procedure is not as
efficient as closing the horizon using directions.

H 8.11 OBSERVING DEFLECTION ANGLES

A deflection angle is a horizontal angle observed from the prolongation of the pre-
ceding line, right or left, to the following line. In Figure 8.13(a) the deflection angle at
Fis 12°15'10" to the right (12°15'10"R), and the deflection angle at Gis 16°20'27"L.

A straight line between terminal points is theoretically the most economical
route to build and maintain for highways, railroads, pipelines, canals, and trans-
mission lines. Practically, obstacles and conditions of terrain and land-use require
bends in the route, but deviations from a straight line are kept as small as possible.
If an instrument is in perfect adjustment, which is unlikely, the deflection angle at
F [see Figure 8.13(a)] is observed by setting the circle to zero and backsighting on
point E with the telescope in the direct position. The telescope is then plunged to its
reversed position, which places the line of sight on EF extended, as shown dashed
in the figure. The horizontal lock is released for the foresight, point G sighted, the
horizontal lock clamped, the vertical cross hair set on the mark carefully by means
of the horizontal tangent screw, and the angle read.

Deflection angles are subject to serious errors if the instrument is not in
adjustment, particularly if the line of sight is not perpendicular to the horizontal
axis (see Section 8.15). If this condition exists, deflection angles may be read as
larger or smaller than their correct values, depending on whether the line of sight
after plunging is to the right or left of the true prolongation [see Figure 8.13(b)].
To eliminate errors from this cause, angles are usually doubled or quadrupled
by the following procedure: the first backsight is taken and the horizontal circle
zeroed. The scope is then plunged to the reverse position and a foresight read-
ing is taken and recorded. With the scope plunged, a second backsight is taken
on the initial station and the horizontal circle zeroed. The scope is again plunged
to the direct position and a second foresight is taken and recorded. The average
of the two foresight readings is determined from which many instrumental errors
are eliminated by cancellation. In outline fashion, the method is as follows:

1. Backsight with the telescope direct. Plunge to reversed mode and observe
the angle. Record the reading.
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Figure 8.13
(a) (b) Deflection angles.
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2. Backsight with the telescope still reversed. Plunge again to direct mode,
and observe and record the angle.
3. Average the two angles.

Of course, making four, six, or eight repetitions and averaging can increase
the precision in direction angle observation.

Figure 8.14 shows the left-hand page of field notes for observing the deflec-
tion angles at stations F and G of Figure 8.13(a). The procedure just outlined was
followed. Four repetitions of each angle were taken with the instrument alter-
nated from direct to reverse with each repetition. Readings were recorded only
after the first, second, and fourth repetitions. The four angles observed should
be checked for agreement. Any angle with a large discrepancy from the mean
should be discarded and reobserved.

H 8.12 OBSERVING AZIMUTHS

Azimuths are observed from a reference direction, which itself must be deter-
mined from (a) a previous survey, (b) the magnetic needle, (c) a solar or star
observation, (d) GNSS (global navigation satellite systems) observations, (e) a
north-seeking gyro, or (f) assumption. Suppose that in Figure 8.15 the azimuth
of line AB is known to be 137°17'00” from north. The azimuth of any other line
that starts at A, such as AC in the figure, can be found directly using a total
station instrument. In this process, with the instrument set up and centered
over station A, and leveled, a backsight is first taken on point B. The azimuth
of line AB (137°17'00") is then set on the horizontal circle using the keyboard.
The instrument is now “oriented,” since the line of sight is in a known direc-
tion with the corresponding azimuth on the horizontal circle. If the circle were
turned until it read 0°, the telescope would be pointing toward north (along the
meridian). The next steps are to loosen the horizontal lock, turn the telescope
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Figure 8.15
Orientation by
B azimuths.

clockwise to C and read the resultant direction, which is the azimuth of AC,
and in this case is 83°38'00".

In Figure 8.15, if the instrument is set up at point B instead of A, the azimuth
of BA (317°17'00") or the back azimuth of AB is put on the circle and point A
sighted. The horizontal lock is released, and sights taken on points whose azi-
muths from B are desired. Again, if the instrument is turned until the circle reads
zero, the telescope points north (or along the reference meridian). By following
this procedure at each successive station of a traverse, for example, at A, B, C, D,
E, and F of the traverse of Figure 7.2(a), the azimuths of all traverse lines can be
determined. With a closed polygon traverse like that of Figure 7.2(a), station A
should be occupied a second time and the azimuth of AB determined again to
serve as a check on the work.

H 8.13 OBSERVING VERTICAL ANGLES

A vertical angle is the difference in direction between two intersecting lines mea-
sured in a vertical plane. Vertical angles can be observed as either altitude or
zenith angles. An altitude angle is the angle above or below a horizontal plane
through the point of observation. Angles above the horizontal plane are called
plus angles, or angles of elevation. Those below it are minus angles, or angles of
depression. Zenith angles are measured with zero on the vertical circle oriented
toward the zenith of the instrument and thus go from 0° to 360° in a clockwise
circle about the horizontal axis of the instrument.

Most total station instruments are designed so that zenith angles are dis-
played rather than altitude angles. In equation form, the relationship between
altitude angles and zenith angles is

Direct mode a=90° -z (8.2a)

Reverse mode a =z — 270° (8.2b)

where z and « are the zenith and altitude angles, respectively. With a total station,
therefore, a reading of 0° corresponds to the telescope pointing vertically upward.



204 TOTAL STATION INSTRUMENTS; ANGLE OBSERVATIONS

In the direct mode, with the telescope horizontal, the zenith reading is 90°, and if
the telescope is elevated 30° above horizontal, the reading is 60°. In the reverse
mode, the horizontal reading is 270°, and with the telescope raised 30° above the
horizon it is 300°. Altitude angles and zenith angles are observed in trigonometric
leveling, and in EDM work for reduction of observed slope distances to horizontal.

Observation of zenith angles with a total station instrument follows the
same general procedures as those just described for horizontal angles, except
that an automatic compensator orients the vertical circle. As with horizontal
angles, instrumental errors in vertical angle observations are compensated for by
computing the mean from an equal number of direct and reverse observations.
With zenith angles, the mean is computed from

2 = 2zp N n(360°) — (2zp + 2zg) (8.3)
n 2n

where Zp is the mean value of the zenith angle [expressed according to its direct
mode value], 3zp the sum of direct zenith angles, Xz the sum of reverse angles,
and n the number of zp and zi pairs of zenith angles read. The latter part of
Equation (8.3) accounts for the indexing error present in the instrument. The
video Checking the Vertical Plate Indexing Error, which is available on the com-
panion website for this book, demonstrates the procedure and the application of
Equation (8.3).

An indexing error exists if 0° on the vertical circle is not truly at the zenith
with the instrument in the direct mode. This will cause all vertical angles read
in this mode to be in error by a constant amount. For any instrument, an error
of the same magnitude will also exist in the reverse mode, but it will be of op-
posite algebraic sign. The presence of an indexing error in an instrument can be
detected by observing zenith angles to a well-defined point in both modes of the
instrument. If the sum of the two values does not equal 360°, an indexing error
exists. To eliminate the effect of the indexing error, equal numbers of direct
and reverse angle observations should be made, and averaged. The averaging
is normally done by the microprocessor of the total station instrument. Even
though an indexing error may not exist, to be safe, experienced surveyors always
adopt field procedures that eliminate errors just in case the instrument is out of
adjustment.

With some total station instruments, indexing errors can be eliminated from
zenith angles by computation, after going through a calibration procedure with
the instrument. The computations are done by the microprocessor and applied to
the angles before they are displayed. Procedures for performing this calibration
vary with different manufacturers and are given in the manuals that accompany
the equipment.

B Example 8.1

A zenith angle was read twice direct giving values of 70°00'10” and 70°00'12",
and twice reverse yielding readings of 289°59'44” and 289°59'42". What is the
mean zenith angle?
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Solution

Two pairs of zenith angles were read, thus n = 2. The sum of direct angles is
140°00'22", and that of reverse values is 579°59'26". Then by Equation (8.3)

L 140700227 2(360°) — (140°00'22" + 579°59°26")
LT 2(2)
= 70°00"11" + 0°00’03" = 70°00’14"

Note that the value of 03” from the latter part of Equation (8.3) is the index error.

H 8.14 SIGHTS AND MARKS

Objects commonly used for sights when total station instruments are being used
only for angle observations include prism poles, chaining pins, nails, pencils, plumb-
bob strings, reflectors, and tripod-mounted targets. For short sights, a string is pre-
ferred to a prism pole because the small diameter permits more accurate sighting.
Small red and white targets of thin plastic or cardboard placed on the string extend
the length of observation possible. Triangular marks placed on prisms as shown in
Figure 8.16(a) provide excellent targets at both close and longer sight distances.
An error is introduced if the prism pole sighted is not plumb. The pole is kept
vertical by means of a circular bubble. [The bubble should be regularly checked for
adjustment, and adjusted if necessary (see Section 8.19.5)]. The person holding the
prism has to take special precautions in plumbing the pole, carefully watching the
circular bubble on the pole. Bipods like the one shown in Figure 8.16(b) and tripods
have been developed to hold the pole during multiple angle observation sessions.
The prism pole shown in Figure 8.16(b) has graduations for easy determina-
tion of the prism’s height. The tripod mount shown in Figure 8.16(a) is centered

b

Figure 8.16

(a) Prism and
sighting target
with tribrach and
tribrach adapter,
and (b) pole and
bipod, used

when measuring
distances and
horizontal

angles with total
station instruments.
(Courtesy Topcon
Positioning
Systems.)
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over the point using the optical plummet of the tribrach. When sighting a prism
pole, the vertical cross hair should bisect the pole just below the prism. Errors
can result if the prism itself is sighted, especially on short lines since any misalign-
ment of the face of the prism with the line of sight will cause and offset pointing
on the prism.

In construction layout work, and in topographic mapping, permanent back-
sights and foresights may be established. These can be marks on structures such
as walls, steeples, water tanks, and bridges, or they can be fixed artificial targets.
They provide definite points on which the instrument operator can check orien-
tation without the help of a rodperson.

The error in a horizontal angle due to miscentering of the line of sight
on a target, or too large a target, can be determined with Equation (8.1). For
instance, assume a prism pole that is 20 mm wide is used as a target on a direc-
tion of only 100 m. Assuming that the pointing will be within 1/2 of the width
of the pole (10 mm), then according to Equation (8.1) the error in the direction
would be (0.01/100)206,264.8 = 21"! For an angle where both sight distances
are 100 m and assuming that the pointings are truly random, the error would
propagate according to Equation (3.12), and would result in an estimated error
in the angle of 21"V2, or approximately 30”. From the angle-distance relation-
ships of Section 8.7, it is easy to see why the selection of good targets that are
appropriate for the sight distances in angle observations is so important.

H 8.15 PROLONGING A STRAIGHT LINE

On route surveys, straight lines may be continued from one point through sev-
eral others. To prolong a straight line from a backsight, the vertical cross wire is
aligned on the back point by means of the lower motion, the telescope plunged,
and a point, or points, set ahead on line. In plunging the telescope, a serious
error can occur if the line of sight is not perpendicular to the horizontal axis. The
effects of this error can be eliminated, however, by following proper field pro-
cedures. The procedure used is known as the principle of reversion. The method
applied, actually double reversion, is termed double centering. Figure 8.17 shows
a simple use of the principle in drawing a right angle with a defective triangle.
Lines OX and OY are drawn with the triangle in direct and reverse positions.
Angle XOY represents twice the error in the triangle at the 90° corner, and its
bisector (shown dashed in the figure) establishes a line perpendicular to AB.

To prolong line AB of Figure 8.18 by double centering with a total station
whose line of sight is not perpendicular to its horizontal axis, the instrument is set
up at B. A backsight is taken on A with the telescope in the direct mode, and by
plunging the telescope into the reverse position the first point C’ is set. The hori-
zontal circle lock is released, and the telescope turned in azimuth to take a second
backsight on point A, this time with the telescope still plunged. The telescope is
plunged again to its direct position and point C” placed. Distance C'C" is bisected
to get point C, on line AB prolonged. In outline form, the procedure is as follows:

1. Backsight on point A with the telescope direct. Plunge to the reverse position
and set point C".
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2. Backsight on point A with the telescope still reverse. Plunge to a direct
position and set point C".
3. Split the distance C'C" to locate point C.

In the above procedure, each time the telescope is plunged, the instrument
creates twice the total error in the instrument. Thus, at the end of the procedure,
four times the error that exists in the instrument lies between points C' and C”.
This procedure could be used to prolong a line in preparation for observing deflec-
tion angles. If this is done, the backsight for the deflection angle would be at C.

To adjust the instrument, the reticle must be shifted to bring the vertical cross
wire one fourth of the distance back from C” toward C’. For total station instru-
ments that have exposed capstan screws for adjusting their reticles, an adjustment
can be made in the field. Generally, however, it is best to leave this adjustment
to qualified experts. If the adjustment is made in the field, it must be done very
carefully! Figure 8.19 depicts the condition after the adjustment is completed. Since
each cross hair has two sets of opposing capstan screws, it is important to loosen one
screw before tightening the opposing one by an equal amount. After the adjustment
is completed, the procedure should be repeated to check the adjustment. The video
Perpendicularity of the Line of Sight Axis with the Horizontal Axis, which is avail-
able on the companion website, discusses this error when prolonging a line of sight.

H 8.16 BALANCING-IN

Occasionally it is necessary to set up an instrument on a line between two points
already established but not intervisible—for example, A and B in Figure 8.20.
This can be accomplished in a process called balancing-in or wiggling-in.
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Figure 8.19
The cross-hair
adjustment
procedure.

Figure 8.20
Balancing-in.
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Location of a trial point C’ on line is estimated and the instrument set over it.
A sight is taken on point A from point C” and the telescope plunged. If the line of
sight does not pass through B, the instrument is moved laterally a distance CC’
estimated from the proportion CC' = BB'(AC/AB), and the process repeated.
Several trials may be required to locate point C exactly, or close enough for the
purpose at hand. The shifting head of the instrument is used to make the final
small adjustment. A method for getting a close first approximation of required
point C takes two persons, X able to see point A and Y having point B visible,
as shown in Figure 8.20. Each aligns the other in with the visible point in a series
of adjustments, and two range poles are placed at least 20 ft apart on the course
established. An instrument set at point C in line with the poles should be within a
few tenths of a foot of the required location. From there the wiggling-in process
can proceed more quickly.

H 8.17 RANDOM TRAVERSE

On many surveys it is necessary to run a line between two established points that
are not intervisible because of obstructions. This situation arises repeatedly in
property surveys. To solve the problem, a random traverse is run from one point
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in the approximate direction of the other. Using coordinate computation proce-
dures presented in Chapter 10, the coordinates of the stations along the random
traverse are computed. Using these same computation procedures, coordinates
of the points along the “true” line are computed, and observations necessary to
stake out points on the line computed from the coordinates. With data collectors,
the computed coordinates can be automatically determined in the field, and then
staked out using the functions of the data collector.

As a specific example of a random traverse, consider the case shown in
Figure 8.21 where it is necessary to run line X-Y. On the basis of a compass
bearing, or information from maps or other sources, the general direction
to proceed is estimated, and starting line X-/ is given an assumed azimuth.
Random traverse X-/-2-3-Y is then run, and coordinates of all points deter-
mined. Based upon these computations, coordinates are also computed for
points A and B, which are on line X-Y. The distance and direction necessary
for setting A with an instrument set up at point 1 are then computed using
procedures discussed in Chapter 10. Similarly the coordinates of B are deter-
mined and set from station 2. Using a data collector, these computations can
be performed automatically. This procedure, known as stake out, is discussed
in Chapter 23.

Once the angles and distances have been computed for staking points A
and B, the actual stake out procedure is aided by operating the total station
instrument in its tracking mode (see Section 6.21 and Chapter 23). If a robotic
total station instrument is available, one person can perform the layout proce-
dure. This method of establishing points on a line is only practical when direct
sighting along the line is not physically possible.

H 8.18 TOTAL STATIONS FOR DETERMINING
ELEVATION DIFFERENCES

With a total station instrument, computed vertical distances between points can
be obtained in real time from observed slope distances and zenith angles. In
fact, this is the basis for trigonometric leveling (see Section 4.5.4). Several studies
have compared the accuracies of elevation differences obtained by trigonometric
leveling using modern total station instruments to those achieved by differen-
tial leveling as discussed in Chapters 4 and 5. Trigonometric leveling accuracies
have always been limited by instrumental errors (discussed in Section 8.20) and
the effects of refraction (see Section 4.4). Even with these problems, elevations
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derived from a total station survey are of sufficient accuracy for many applica-
tions such as for topographic mapping and other lower-order work.

However, studies have suggested that high-order results can be obtained
in trigonometric leveling by following specific procedures. The suggested guide-
lines are (1) place the instrument between two prisms so that sight distances are
appropriate for the angular accuracy of the instrument, using Figure 8.22 as a
guide,? (2) use target panels with the prisms; (3) keep rod heights equal so that
their measurement is unnecessary; (4) observe the vertical distances between the
prisms using two complete sets* of observations at a minimum; (5) keep sight
distances approximately equal; and (6) apply all necessary atmospheric correc-
tions and reflector constants as discussed in Chapter 6. This type of trigonometric
leveling can be done faster than differential leveling, especially in rugged terrain
where sight distances are limited due to rapid changes in elevation.

A set of notes from trigonometric leveling is shown in Figure 8.23. Column
(a) lists the backsight and foresight station identifiers and the positions of the
telescope [direct (D) and reverse (R)] for each observation; (b) tabulates the
backsight vertical distances, (BS+); (c) lists the backsight horizontal distances
to the nearest decimeter; (d) gives the foresight vertical distances, (FS—); (e)
lists the foresight horizontal distances to the nearest decimeter; and (f) tallies the
elevation differences between the stations, computed as the difference of the BS
vertical distances, minus the FS vertical distances. The observed elevation differ-
ence between stations A and E is 8.405 m.

H 8.19 ADJUSTMENT OF TOTAL STATION
INSTRUMENTS AND THEIR ACCESSORIES

The accuracy achieved with total station instruments is not merely a function
of their ability to resolve angles and distances. It is also related to operator pro-
cedures and the condition of the total station instrument and other peripheral

3A description of DIN18723 noted in Figure 8.22 is given in Section 8.21.
4One set of observations includes an elevation determination in both the direct and reverse positions.
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4 TRIGONOMETRIC N
LEVELING NOTES
(a) (b) (¢) (d) (¢) (f)
StalPos | BS(+) | BD Fs(-) FD AElev
A
plren | 9812 |1.405 | 86.34
p|1.210 1.405
| 1.211 1.404
| 1.211 1.405
Mean | 1.2108 1.4055 -0.192
B
D|-5.238 |101.543 | -9.1091 | 95171
D|-5.226 -9.191
R |-5.256 -9.195
R |-5.257 -9.192
Mean |-5.2575 -9.1918 3.954
c
D|4.087 |73.245|-3849 | 97.592
D|4.088 —3.851
R |4.086 —5.649
R |4.087 -3.849
Mean |4.0870 -3.6495 7.936
D
D|3.214 | 89.87 |6.507 |97.592
D|3.214 6.507
R|5.214 6.508
R|3.215 6.507
Mean | 3.2145 6.5072 -5.293
E Figure 8.23
Sum| &.405 Trigonometric
\_ _/ leveling field notes.

equipment being used with it. Operator procedure pertains to matters such as
careful centering and leveling of the instrument, accurate pointing at targets,
and observing proper field procedures such as taking averages of multiple angle
observations made in both direct and reverse positions.

In Section 8.2, three reference axes of a total station instrument were
defined: (a) the line of sight, (b) the horizontal axis, and (c) the vertical axis.
These instruments also have a fourth reference axis, (d) the axis of the plate-level
vial (see Section 4.8). For a properly adjusted instrument, the following relation-
ships should exist between these axes: (1) the axis of the plate-level vial should
be perpendicular to the vertical axis, (2) the horizontal axis should be perpen-
dicular to the vertical axis, and (3) the line of sight should be perpendicular to
the horizontal axis. If these conditions do not exist, accurate observations can
still be made by following proper procedures. However, it is more convenient
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if the instrument is in adjustment. Today, most total stations have calibration
procedures that can electronically compensate for conditions (1) and (2) using
sightings to well-defined targets with menu-defined procedures that can be per-
formed in the field. However, if the operator is in doubt about the calibration
procedures, a qualified technician should always be consulted.

The adjustment for making the line of sight perpendicular to the horizontal
axis was described in Section 8.15, and the procedure for making the axis of the
plate bubble perpendicular to the vertical axis is given in Section 8.19.1. The test
to determine if a total station’s horizontal axis is perpendicular to its vertical axis
is a simple one. With the instrument in the direct mode, it is set up a convenient
distance away from a high vertical surface, say the wall of a two- or three-story
building. After carefully leveling the instrument, sight a well-defined point, say A,
high on the wall, at an altitude angle of at least 30°, and clamp the horizontal lock.
Revolve (plunge) the telescope about its horizontal axis to set a point, B, on the
wall below A and just above ground level. Plunge the telescope to put it in reverse
mode, turn the telescope 180° in azimuth, sight point A again, and clamp the hor-
izontal lock. Plunge the telescope to set another point, C, at the same level as B.
If B and C coincide, no adjustment is necessary. If the two points do not agree,
then the horizontal axis is not perpendicular to the vertical axis. If an adjustment
for this condition is necessary, the operator should refer to the manual that came
with the instrument, or send the instrument to a qualified technician.

Peripheral equipment that can affect accuracy includes tribrachs, plum-
mets, prisms, and prism poles. Tribrachs must provide a snug fit without slippage.
Plummets that are out of adjustment cause instruments to be miscentered over
the point. Crooked prism poles or poles with circular bubbles that are out of
adjustment also cause errors in placement of the prism over the point being
observed. Prisms should be checked periodically to determine their constants (see
Section 6.24.2), and their values stored for use in correcting distance observations.
Surveyors should always heed the following axiom: In practice, instruments should
always be kept in good adjustment, but used as though they might not be.

In the following subsections, procedures are described for making some rel-
atively simple adjustments to equipment that can make observing more efficient
and convenient, and also improve accuracy in the results.

8.19.1 Adjustment of Plate-Level Vials

As stated earlier, two types of leveling systems are used on total station instru-
ments; (a) plate-level vials, and (b) electronic leveling systems. These systems con-
trol the fine level of the instrument. If an instrument is equipped with a plate-level
vial, it can easily be tested for its state of adjustment. To make the test, the instru-
ment should first be leveled following the procedures outlined in Section 8.5. Then
after carefully centering the bubble, the telescope should be rotated 180° from its
first position. If the level vial is in adjustment, the bubble will remain centered. If
the bubble deviates from center, the axis of the plate-level vial is not perpendicu-
lar to the vertical axis. The amount of bubble run indicates twice the error that
exists. Level vials usually have a capstan adjusting screw for raising or lowering
one end of the tube. If the level vial is out of adjustment, it can be adjusted by
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bringing the bubble halfway back to the centered position by turning the screw.
Repeat the test until the bubble remains centered during a complete revolution
of the telescope. If the instrument is equipped with an electronic level, follow the
procedures outlined in the operator’s manual to adjust the leveling mechanism.
The video Adjusting the Level Vials, which is available on the companion website
for this book, demonstrates how to adjust the level vials on an instrument.

If a plate bubble is out of adjustment, the instrument can be used without
adjusting it and accurate results can still be obtained, but the specific procedures
described in Section 8.20.1 must be followed.

8.19.2 Adjustment of Tripods

The nuts on the tripod legs must be tight to prevent slippage and rotation of the
head. They are correctly adjusted if each tripod leg falls slowly of its own weight
when placed in a horizontal position. If the nuts are overly tight, or if pressure is
applied to the legs crosswise (which can break them) instead of lengthwise to fix
them on the ground, the tripod is in a strained position. The result may be an unno-
ticed movement of the instrument head after the observational process has begun.

Tripod legs should be well spread to furnish stability, and set so that the
telescope is at a convenient height for the observer. Tripod shoes must be tight.
Proper field procedures can eliminate most instrument maladjustments, but
there is no method that corrects a poor tripod with dried-out wooden legs, except
to discard or repair it. The video, Checking the Tripod, which is available on the
companion website for this book, demonstrates the items that should be checked
on a tripod each time it is used.

8.19.3 Adjustment of Tribrachs

The tribrach is an essential component of a secure and accurate setup. It consists of
a minimum of three components, which are (1) a clamping mechanism, (2) level-
ing screws, and (3) a circular level bubble. As shown in Figure 8.3, some tribrachs
also contain an optical plummet to center the tribrach over a station. The clamping
mechanism consists of three slides that secure three posts that protrude from the
base of the instrument or tribrach adapter. As the tribrach wears, the clamping
mechanism may not sufficiently secure the instrument during observation proce-
dures. When this happens, the instrument will move in the tribrach after it has been
clamped, and the tribrach should be repaired or replaced.

8.19.4 Adjustment of Plummets

The line of sight in a plummet should coincide with the vertical axis of the instru-
ment. Two different situations exist: (1) the plummet is enclosed in the alidade
of the instrument and rotates with it when turned in azimuth, or (2) the plummet
is part of the tribrach that is fastened to the tripod and does not turn in azimuth.

To adjust a plummet contained in the alidade, set the instrument over a fine
point and aim the line of sight exactly at it by turning the leveling screws. Carefully
adjust for any existing parallax. Rotate the instrument 180° in azimuth. If the plum-
met reticle moves off the point, bring it halfway back by means of the adjusting
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screws provided. These screws are similar to those shown in Figure 8.19. As with
any adjustment, repeat the test to check the adjustment and correct if necessary.

For the second case where the optical plummet is part of the tribrach, care-
fully lay the instrument, with the tribrach attached, on its side (horizontally) on a
stable, horizontal base such as a bench or desk, and clamp it securely. Fasten a sheet
of paper on a vertical wall at least six feet away, such that it is in the field of view of
the optical plummet’s telescope. With the horizontal lock clamped, mark the posi-
tion of the optical plummet’s line of sight on the paper. Release the horizontal lock
and rotate the tribrach 180°. If the reticle of the optical plummet moves off the
point, bring it halfway back by means of the adjusting screws. Center the reticle on
the point again with the leveling screws, and repeat the test. The video Checking the
Instrument Plummet, which is available on the companion website, demonstrates
the procedure of testing an optical/laser plummet when it is part of instrument.

8.19.5 Adjustment of Circular Level Bubbles

If a circular-level bubble on a total station does not remain centered when the
instrument is rotated in azimuth, the bubble is out of adjustment. It should be
corrected, although precise adjustment is unnecessary because it does not con-
trol fine leveling of the reference axes. To adjust the bubble, carefully level the
instrument using the plate bubble and then center the circular bubble using its
adjusting screws.

Circular bubbles used on prism poles and level rods must be in good adjust-
ment for accurate work. To adjust them, carefully orient the rod or pole verti-
cally by aligning it parallel to a long plumb line, and fasten it in that position
using shims and C-clamps. Then center the bubble in the vial using the adjusting
screws. Special adapters have been made to aid in the adjustment of the circular
level bubble on rods or poles by some vendors.

For instruments such as automatic levels that do not have plate bubbles, use
the following procedure. To adjust the bubble, carefully center it using the leveling
screws and turn the instrument 180° in azimuth. Half of the bubble run is corrected
by manipulating the vial-adjusting screws. Following the adjustment, the bubble
should be centered using the leveling screws, and the test repeated. The video
Adjusting the Level Vials, which is available on the companion website, demon-
strates the procedures used to test and adjust the level vials on an instrument or rod.

H 8.20 SOURCES OF ERROR IN TOTAL STATION WORK

Errors in using total stations result from instrumental, natural, and personal
sources. These are described in the subsections that follow.

8.20.1 Instrumental Errors

Figure 8.24 shows the fundamental reference axes of a total station. As discussed
in Section 8.19, for a properly adjusted instrument, the four axes must bear specific
relationships to each other. These are (1) the vertical axis should be perpendicular
to the axis of the plate-level vial, (2) the horizontal axis should be perpendicular to
the vertical axis, and (3) the axis of sight should be perpendicular to the horizontal
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Vertical axis

! Axis of sight
Horizontal axis

Axis of the
plate level vial

axis. If these relationships are not true, errors will result in measured angles unless
proper field procedures are observed. A discussion of errors caused by maladjust-
ment of these axes, and of other sources of instrumental errors, follows.

1. Plate bubble out of adjustment. If the axis of the plate bubble is not perpen-
dicular to the vertical axis, the latter will not be truly vertical when the plate bubble
is centered. This condition causes errors in observed horizontal and vertical angles
that cannot be eliminated by averaging direct and reverse readings. The plate bubble
is out of adjustment if after centering it runs when the instrument is rotated 180°
in azimuth. The situation is illustrated in Figure 8.25. With the telescope initially

ALV -1

% T
o \ - I\ ‘900
ALY N o
\\oﬁ
S
—
— OL\/
| \
Vertical
axis
Vertical \*1 \
line

215

Figure 8.24
Reference axes
of a total station
instrument.
(Courtesy Topcon
Positioning
Systems.)

Figure 8.25
Plate bubble out of
adjustment.
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Figure 8.26
Geometry of
instrument
dislevelment.

pointing to the right and the bubble centered, the axis of the level vial is horizontal,
as indicated by the solid line labeled ALV-1. Because the level vial is out of ad-
justment, it is not perpendicular to the vertical axis of the instrument, but instead
makes an angle of 90° — « with it. After turning the telescope 180°, it points left
and the axis of the level vial is in the position indicated by the dashed line labeled
ALV-2. The angle between the axis of the level vial and vertical axis is still 90° — «;
but as shown in the figure, its indicated dislevelment, or bubble run, is E. From the
figure’s geometry, E = 2« is double the bubble’s maladjustment. The vertical axis
can be made truly vertical by bringing the bubble back half of the bubble run, using
the foot screws. Then, even though it is not centered, the bubble should stay in the
same position as the instrument is rotated in azimuth, and accurate angles can be
observed. Although instruments can be used to obtain accurate results with their
plate bubbles maladjusted, it is inconvenient and time consuming, so the required
adjustment should be made as discussed in Section 8.19.1.

As noted earlier, some total stations are equipped with dual-axis com-
pensators, which are able to sense the amount and direction of vertical axis tilt
automatically. They can make corrections computationally in real time to both
horizontal and vertical angles for this condition. Instruments equipped with
single-axis compensators can only correct vertical angles. Procedures outlined
in the manuals that accompany the instruments should be followed to properly
remove any error.

As was stated in Section 8.8, total station instruments with dual-axis compen-
sators can apply a mathematical correction to horizontal angles, which accounts for
any dislevelment of the horizontal and vertical axes. In Figure 8.26, to sight on point
S, the telescope is plunged upward. Because the instrument is misleveled, the line of
sight scribes an inclined line SP’ instead of the required vertical line SP. The angle
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between these two lines is «, the amount that the instrument is out of level. From
this figure, it can be shown that the error in the horizontal direction, Ey, is

Ey = atan (v) (8.4)

In Equation (8.4), v is the altitude angle to point S. For the observation of any
horizontal angle if the altitude angles for both the backsight and foresight are nearly
the same, the resultant error in the horizontal angle is negligible. In flat terrain, this
is approximately the case and the error due to dislevelment can be small. However,
in mountainous terrain where the elevations of backsight and foresight pointings can
vary by large amounts, this error can become substantial. For example, assume that
an instrument that is 20” out of level reads a backsight zenith angle as 93°, and the
foresight zenith angle as 80°. The horizontal error in the backsight direction would
be 20”tan(—3°) = —1.0” and in the foresight is 20”tan(10°) = 3.5" resulting in a
cumulative error in the horizontal angle of 3.5” — (—1") = 4.5". This is a system-
atic error that becomes more serious as larger vertical angles are observed. It is criti-
cal in astronomical observations for azimuth as discussed in Appendix C.

Two things should be obvious from this discussion, it is important to check
(1) the adjustment of the plate bubble often and (2) check the position of the
bubble during the observation process.

2. Horizontal axis not perpendicular to vertical axis. This situation causes
the axis of sight to define an inclined plane as the telescope is plunged and,
therefore, if the backsight and foresight have differing angles of inclination, in-
correct horizontal angles will result. Errors from this origin can be canceled by
averaging an equal number of direct and reverse readings, or by double center-
ing if prolonging a straight line. With total station instruments having dual-axis
compensation, this error can be determined in a calibration process that consists
of carefully pointing to the same target in both direct and reverse modes. From
this operation, the microprocessor can compute and store a correction factor. It
is then automatically applied to all horizontal angles subsequently observed. The
video Perpendicularity of the Horizontal and Vertical Axes, which is available on
the companion website, demonstrates this procedure.

3. Axis of sight not perpendicular to horizontal axis. If this condition exists,
as the telescope is plunged, the axis of sight generates a cone whose axis coincides
with the horizontal axis of the instrument. The greatest error from this source
occurs when plunging the telescope, as in prolonging a straight line or measuring
deflection angles. Also, when the angle of inclination of the backsight is not equal
to that of the foresight, observed horizontal angles will be incorrect. These errors
are eliminated by double centering and by averaging equal numbers of direct and
reverse readings. The video Perpendicularity of Line of Sight Axis with Horizontal
Axis, which is available on the companion website, demonstrates this procedure.

4. Vertical-circle indexing error. As noted in Section 8.13, when the axis of
sight is horizontal, an altitude angle of zero, or a zenith angle of either 90° or 270°,
should be read; otherwise, an indexing error exists. The error can be eliminated by
computing the mean from equal numbers of altitude (or zenith) angles read in the



218 TOTAL STATION INSTRUMENTS; ANGLE OBSERVATIONS

direct and reverse modes. With most total station instruments, the indexing error
can be determined by carefully reading the same zenith angle both direct and re-
verse. The value of the indexing error is then computed, stored, and automatically
applied to all observed zenith angles. However, the determination of the index-
ing error should be done carefully during calibration to ensure that an incorrect
calibration is not applied to all subsequent angles observed with the instrument.
The video Checking the Vertical Plate Indexing Error, which is available on the
companion website, demonstrates this procedure.

S. Eccentricity of centers. This condition exists if the geometric center of
the graduated horizontal (or vertical) circle does not coincide with its center of
rotation. Errors from this source are usually small. Total stations may also be
equipped with systems that automatically average readings taken on opposite
sides of the circles, thereby compensating for this error.

6. Circle graduation errors. If graduations around the circumference of a
horizontal or vertical circle are nonuniform, errors in observed angles will result.
These errors are generally very small. Some total stations always use readings
taken from many locations around the circles for each observed horizontal and
vertical angle, thus providing an elegant system for eliminating these errors.

7. Errors caused by peripheral equipment. Additional instrumental errors
can result from worn tribrachs, plummets that are out of adjustment, unsteady tri-
pods, and sighting poles with maladjusted circular bubbles. This equipment should
be regularly checked and kept in good condition or adjustment. Procedures for
adjusting these items are outlined in Section 8.19.

8.20.2 Natural Errors

1. Wind. Wind vibrates the tripod that the total station instrument rests
on. On high setups, light wind can vibrate the instrument to the extent that pre-
cise pointings become impossible. Shielding the instrument, or even suspending
observations on precise work, may be necessary on windy days. An optical plum-
met is essential for making setups in this situation.

2. Temperature effects. Temperature differentials cause unequal expansion
of various parts of total station instruments. This causes bubbles to run, which
can produce erroneous observations. Shielding instruments from sources of
extreme heat or cold reduces temperature effects.

3. Refraction. Unequal refraction bends the line of sight and may cause an
apparent shimmering of the observed object. It is desirable to keep lines of sight
well above the ground and avoid sights close to buildings, smokestacks, vehicles,
and even large individual objects in generally open spaces. In some cases, observa-
tions may have to be postponed until atmospheric conditions have improved.

4. Tripod settlement. The weight of an instrument may cause the tripod to
settle, particularly when set up on soft ground or asphalt highways. When a job
involves crossing swampy terrain, stakes should be driven to support the tripod
legs and work at a given station completed as quickly as possible. Stepping near a



8.20 Sources of Error in Total Station Work 219

tripod leg or touching one while looking through the telescope will demonstrate
the effect of settlement on the position of the bubble and cross wires. Most total
station instruments have sensors that tell the operator when dislevelment has
become too severe to continue the observation process.

8.20.3 Personal Errors

1. Instrument not set up exactly over point. Miscentering of the instrument
over a point will result in an incorrect horizontal angle being observed. As shown
in Figure 8.27, instrument miscentering will cause errors in both the backsight and
foresight directions of an angle. The amount of error is dependent on the position of
the instrument in relation to the point. For instance, in Figure 8.27(a), the miscen-
tering that is depicted will have minimal effect on the observed angle since the error
on the backsight to P, will partially cancel the error on the foresight to P,. However,
in Figures 8.27(b) and (c), the effect of the miscentering has a maximum effect on
the observed angular values. Since the position of the instrument is random in rela-
tion to the station, it is important to carefully center the instrument over the sta-
tion when observing angles. The position should be checked at intervals during the
time a station is occupied to be certain it remains centered. The video Centering an
Instrument over a Point, which is available on the companion website, demonstrates
the proper procedures to set an instrument with a plummet over a point.

2. Bubbles not centered perfectly. The bubbles must be checked frequently
but NEVER releveled between a backsight and a foresight —only before starting
and after finishing an angular position. The video Leveling an Instrument, which
is available on the companion website, demonstrates the proper procedures to
set an instrument with a plummet over a point.

3. Improper use of clamps and tangent screws. An observer must form good
operational habits and be able to identify the various clamps and tangent screws
by their touch without looking at them. Final setting of tangent screws is always
made with a positive motion to avoid backlash. Clamps should he tightened just
once and not checked again to be certain they are secure.

(@) (b) (©
Figure 8.27 Effects of instrument miscentering on an angle.
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4. Poor focusing. Correct focusing of the eyepiece on the cross hairs, and of
the objective lens on the target, is necessary to prevent parallax. Objects sighted
should be placed as near the center of the field of view as possible. Focusing
affects pointing, which is an important source of error. Some instruments like
the one shown in Figure 8.24, automatic focusing of the objective lens is pro-
vided. These devices are similar to the modern photographic camera, and can
increase the speed of the survey when sight distances to the targets vary. The
video Removing Parallax, which is available on the companion website, discusses
the causes and procedures for detecting and removing parallax.

S. Overly careful sights. Checking and double-checking the position of the
cross-hair setting on a target wastes time, and actually produces poorer results than
one fast observation. The cross hair should be aligned quickly, and the next opera-
tion begun promptly. Beginners often want someone else to check their sights. This
should never be done due to personal preferences, abilities, and physical limitations.

6. Careless plumbing and placement of rod. One of the most common errors
results from careless plumbing of a rod when the instrument operator because of
brush or other obstacles in the way can only see the top. Another is caused by
placing a pole off-line behind a point to be sighted.

H 8.21 PROPAGATION OF RANDOM ERRORS
IN ANGLE OBSERVATIONS

Random errors are present in every horizontal angle observation. Whenever
an instrument’s circles are read, a small error is introduced into the final
angle. Similarly, each operator will have some miscentering on the target.
These error sources are random. They may be small or large, depending on
the instrument, the operator, and the conditions at the time of the angle ob-
servation. Increasing the number of angle repetitions can reduce the effects of
reading and pointing.

With the introduction of total station instruments, standards were devel-
oped for estimating errors in angle observations caused by reading and point-
ing on a well-defined target. The standards, called DIN 18723, provide values
for estimated errors in the mean of two-direction observations, one each in the
direct and reverse modes. The instrument shown in Figure 8.1 has a DIN 18723
accuracy of =2”, and the one in Figure 8.2 has a DIN 18723 accuracy of +5".
Manufacturers often make a series of instruments that vary only in their ability to
resolve angles. It should be pointed out that the DIN 18723 standard was created
to allow individuals to determine the difference in the quality of the instruments.
It is not necessarily an accurate representation of one’s ability to use and resolve
an angle with the instrument. However, it does provide a means by which the
uncertainty in angles can be estimated.

A set of angles observed with a total station will have an estimated error of

_ 2EDIN
Vn

E (8.5)



Problems 221

where E is the estimated error in the angle due to pointing and reading, # is the
total number of angles read in both direct and reverse modes, and Eppy is the
manufacturer’s specified DIN 18723 error.

B Example 8.2

Three sets of angles (3D and 3R) are measured with an instrument having a DIN
18723 specified accuracy of +2”. What is the estimated error in the angle?

Solution

By Equation (8.5), the estimated error is

H 8.22 MISTAKES

Some common mistakes in angle observation work are:

Sighting on, or setting up over, the wrong point.

Calling out or recording an incorrect value.

Improper focusing of the eyepiece and objective lenses of the instrument.
Leaning on the tripod, or placing a hand on the instrument when pointing
or taking readings.

Calb o
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PROBLEMS

Asterisks (*) indicate problems that have partial answers given in Appendix G.
8.1 Why should a total station be carried in its case when moving to and from the field?
8.2 Define the axis of sight, horizontal axis, and vertical axis in a total station and
describe their relationship to each other.
8.3 What are the primary sources of random instrumental error in a total station?
8.4 Describe the procedure for properly focusing the optics of a total station.
8.5 Describe the procedure for properly focusing an optical plummet.
8.6 What is the purpose of the jog/shuttle mechanism on a servo-driven total station?
8.7 Why is it important to not sight the EDM reflector when turning an angle?
8.8 What are the functions of the stator and rotor in a total station?
8.9 What is meant by an angular position?
8.10 What is the purpose of the horizontal tangent screw on a total station?
8.11 Why is it important to maintain long sight distances when measuring angles?
8.12 Determine the angles subtended for the following conditions:
*(a) a l-cm diameter pipe sighted by total station from 100 m.
(b) a 1/8-in. tack sighted by total station from 300 ft.
(¢) a 1/4-in. diameter chaining pin observed by total station from 200 ft.



222 TOTAL STATION INSTRUMENTS; ANGLE OBSERVATIONS

8.13

8.14%

8.15

8.16
8.17

8.18

8.19

8.20*

8.21

What is the error in an observed direction for the situations noted?

(a) setting a total station S mm to the side of a tack on a 50-m sight.

(b) lining in the edge (instead of center) of a 1/4-in. diameter chaining pin at 100 ft.
(¢) sighting the edge (instead of center) of a 1-cm diameter range pole 200 m.

(d) sighting the top of a 6-ft range pole that is 3" off-level on a 200-ft sight.
Intervening terrain obstructs the line of sight so only the top of a 6-ft-long pole can
be seen on a 250-ft sight. If the range pole is out of plumb and leaning sideways
0.025 ft per vertical foot, what maximum angular error results?

Same as Problem 8.14, except that it is a 2-m pole that is out of plumb and leaning
sideways 1 cm per meter on a 200-m sight.

Discuss the advantages of a robotic total station instrument.

What instrumental errors are compensated by averaging an equal number of obser-
vations with the telescope direct and reversed?

Describe how a total station can be leveled when the leveling bubble is out of
adjustment.

An interior angle x and its explement y were turned to close the horizon. Each angle
was observed once direct and once reversed, using the repetition method. Starting
with an initial backsight setting of 0°00’00” for each angle, the readings after the
first and second turnings of angle x were 50°38'48” and 50°38'52" and the read-
ings after the first and second turnings of angle y were 309°21'06” and 309°21'04".
Calculate each angle and the horizon misclosure.

A zenith angle is measured as 84°13'56" in the direct position. What is the equiva-
lent zenith angle in the reverse position?

What is the average zenith angle given the following direct and reverse readings?
Direct: 87°45'04", 87°45'12", 87°45'08"

Reverse: 272°14'50", 272°14'48", 272°14'52"

In Figure 8.9(c), direct and reverse directions observed with a total station instru-

ment from A to points B, C, and D are listed in Problems 8.22 and 8.23. Determine the
values of the three angles, and the horizon misclosure.

8.22

8.23

8.24%

8.25

8.26

8.27
8.28*

8.29
8.30

Direct: 0°00'00”,26°29'21", 92°57'44", 0°00' 04"

Reverse: 0°00'00”, 26°29'17", 92°57'46", 0°00" 02"

Direct: 0°00'00”, 106°52'06", 191°38'43", 359°59'58"

Reverse: 0°00’'00”, 106°52'04", 191°38'41", 0°00'00”

The angles at point X were observed with a total station instrument. Based on four

readings, the standard deviation of the angle was 15.6". If the same procedure is

used in observing each angle within a six-sided polygon, what is the estimated stan-

dard deviation of closure at a 95% level of probability?

The line of sight of a total station is out of adjustment by 10".

(a) Inprolonging a line by plunging the telescope between backsight and foresight,
but not double centering, what angular error is introduced?

(b) What off-line linear error results on a foresight of 200 m?

A line PQ is prolonged to point R by double centering. Two foresight points R’ and

R" are set. What angular error would be introduced in a single plunging based on

the following lengths of QR and R'R”, respectively?

*(a) 650.50 ft and 0.35 ft.

(b) 312.600 m and 42 mm.

Explain why the “principal of reversion” is important in angle measurement.

A total station with a 20"/div. level bubble is one division out of level on a point with
an altitude angle of 38°15'44”. What is the error in the horizontal pointing?

What is the equivalent altitude angle for a zenith angle of 93°02'06"?

What is the equivalent altitude angle for a zenith angle of 276°42'36"?



8.31 What error in horizontal angles is consistent with the following linear precisions?
(a) 1/5000, 1/20,000, 1/50,000, and 1,/100,000
(b) 1/3000, 1,/15,000, 1,/30,000, and 1,/80,000

8.32 Why is it important to check if the shoes on a tripod are tight?

8.33 Describe the procedure to adjust an optical plummet on a total station.

8.34 List the procedures for “wiggling-in” a point.

8.35 A zenith angle was read twice direct giving values of 88°22'54" and 88°22'56", and
twice reverse yielding readings of 272°37'20" and 272°37'22". What is the mean
zenith angle? What is the indexing error?

8.36 A zenith angle was read twice direct giving values of 96°32'24" and 96°32'28", and
twice reverse yielding readings of 263°27'20” and 263°27'22". What is the mean
zenith angle? What is the indexing error?

8.37 A total station has a DIN 18723 specified accuracy of =3”. What is the estimated
precision of an angle observed with two repetitions?

8.38 Similar to Problem 8.37 except the instrument has a DIN 18723 specified accuracy
of £1” and the angle is observed with eight repetitions.
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H 9.1 INTRODUCTION

A traverse is a series of consecutive lines whose ends have been marked in the
field, and whose lengths and directions have been determined from observa-
tions. In traditional surveying by ground methods, traversing, the act of mark-
ing the lines—that is, establishing traverse stations and making the necessary
observations—is one of the most basic and widely practiced means of deter-
mining the relative locations of points.

There are two kinds of traverses: closed and open. Two categories of closed
traverses exist: polygon and link. In the polygon traverse, as shown in Figure
9.1(a), the lines return to the starting point, thus forming a closed figure that is
both geometrically and mathematically closed. Link traverses finish upon another
station that should have a positional accuracy equal to or greater than that of
the starting point. The link type (geometrically open, mathematically closed), as
illustrated in Figure 9.1(b), must have a closing reference direction, for example,
line E-Az Mk,. Closed traverses provide checks on the observed angles and dis-
tances, which is an extremely important consideration. They are used extensively
in control, construction, property, and topographic surveys.

If the distance between stations C and E in Figure 9.1(a) were observed, the
resultant set of observations would become what is called a network. A network
involves the interconnection of stations within the survey to create additional
redundant observations. Networks offer more geometric checks than closed tra-
verses. For instance in Figure 9.1(a), after computing coordinates on stations C
and E using elementary procedures, the observed distance CE can be compared
against a value obtained by inversing the coordinates (see Chapter 10 for dis-
cussion on computation of coordinates and inversing coordinates). Figure 9.7(b)
shows another example where a network has been developed. Networks should
be adjusted using the method of least squares as presented in Chapter 16.
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An open traverse (geometrically and mathematically open) (Figure 9.2)
consists of a series of lines that are connected but do not return to the starting
point or close upon a point of equal- or greater-order accuracy. Open traverses
should be avoided because they offer no means of checking for observational errors
and mistakes. If they must be used, observations should be repeated carefully to
guard against mistakes. The precise control-traversing techniques presented in
Section 19.12.2 should be considered in these situations.

Hubs (wooden stakes with tacks to mark the points), steel stakes, or pipes
are typically set at each traverse station A, B, C, etc., in Figures 9.1 and 9.2, where
a change in direction occurs. Spikes, “P-K”! nails, and scratched crosses are
used on blacktop pavement. Chiselled or painted marks are made on concrete.
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'P.K is a trade name for concrete nails. The Parker—Kalon Company originally manufactured these
nails. There is a small depression in the center of the nail that serves as a marker for the location of
the station. Several companies now manufacture similar or better versions of this nail. Still the original
name, P-K, is used to denote this type of nail.
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Figure 9.1
Examples of closed
traverses.

Figure 9.2
Open traverse.
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Traverse stations are sometimes interchangeably called angle points because an
angle is observed at each one.

H 9.2 OBSERVATION OF TRAVERSE ANGLES OR DIRECTIONS

The methods used in observing angles or directions of traverse lines vary and
include (1) interior angles, (2) angles to the right, (3) deflection angles, and
(4) azimuths. These are described in the following subsections.

9.2.1 Traversing by Interior Angles

Interior-angle traverses are used for many types of work, but they are especially
convenient for property surveys. Although interior angles could be observed
either clockwise or counterclockwise, to reduce mistakes in reading, recording,
and computing, they should always be turned clockwise from the backsight station
to the foresight station. The procedure is illustrated in Figure 9.1(a). In this chap-
ter, except for left deflection angles, clockwise turning will always be assumed.
Furthermore, when angles are designated by three station letters or numbers in
this chapter, the backsight station will be given first, the occupied station second,
and the foresight station third. Thus, angle EAB of Figure 9.1(a) was observed at
station A, with the backsight on station £ and the foresight at station B.

Interior angles may be improved by averaging equal numbers of direct and
reverse readings. As a check, exterior angles may also be observed to close the
horizon (see Section 8.10). In the traverse of Figure 9.1(a), a reference line A-Az
MK of known direction exists. Thus, the clockwise angle at A from Az Mk to E
must also be observed to enable determining the directions of all other lines. This
would not be necessary if the traverse contained a line of known direction, like
AB of Figure 7.2, for example.

9.2.2 Traversing by Angles to the Right

Angles observed clockwise from a backsight on the “rearward” traverse station
to a foresight on the “forward” traverse station [see Figures 9.1(a) and (b)] are
called angles to the right. According to this definition, to avoid ambiguity in angle-
to-the-right designations, the “sense” of the forward traverse direction must be
established. This is normally done by consecutive numbering or lettering of tra-
verse stations so that they increase in the forward direction. Depending on the
direction of the traversing, angles to the right may be interior or exterior angles
in a polygon traverse. If the direction of traversing is counterclockwise around the
figure, then clockwise interior angles will be observed. However, if the direction
of traversing is clockwise, then exterior angles will be observed. Data collectors
follow this convention when traversing. Thus, in Figure 9.1(b), for example, the
direction from A to B, B to C, C to D, etc. is forward. By averaging equal numbers
of direct and reversed readings, observed angles to the right can also be checked
and their accuracy improved. From the foregoing definitions of interior angles and
angles to the right, it is evident that in a polygon traverse the only difference be-
tween the two types of observational procedures may be ordering of the backsight
and foresight stations since both procedures observe clockwise angles.
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Figure 9.3
| Azimuth traverse.

9.2.3 Traversing by Deflection Angles

Route surveys are commonly run by deflection angles observed to the right or
left from the lines extended, as indicated in Figure 9.2. A deflection angle is not
complete without a designation R or L, and, of course, it cannot exceed 180°.
Each angle should be doubled or quadrupled, and an average value determined.
The angles should be observed an equal number of times in face left and face
right to reduce instrumental errors. Deflection angles can be obtained by sub-
tracting 180° from angles to the right. Positive values so obtained denote right
deflection angles; negative ones are left.

9.2.4 Traversing by Azimuths

With total station instruments, traverses can be run using azimuths. This process
permits reading azimuths of all lines directly, and thus eliminates the need to
calculate them. In Figure 9.3, azimuths are observed clockwise from the north
end of the meridian through the angle points. The instrument is oriented at each
setup by sighting on the previous station with either the back azimuth on the
circle (if angles to the right are turned) or the azimuth (if deflection angles are
turned), as described in Section 8.11. Then the forward station is sighted. The
resulting reading on the horizontal circle will be the forward line’s azimuth.

H 9.3 OBSERVATION OF TRAVERSE LENGTHS

The length of each traverse line (also called a course) must be observed, and
this is usually done by the simplest and most economical method capable of
satisfying the required precision of a given project. Their speed, convenience,
and accuracy makes the EDM component of a total station instrument the most
often used, although taping or other methods discussed in Chapter 6 could be
employed. A distinct advantage of traversing with total station instruments is
that both angles and distances can be observed with a single setup at each station.
Averages of distances observed both forward and back will provide increased ac-
curacy, and the repeat readings afford a check on the observations and are thus
redundant observations.
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Sometimes state statutes regulate the precision for a traverse to locate
boundaries. On construction work, allowable limits of closure depend on the use
and extent of the traverse and project type. Bridge location, for example, de-
mands a high degree of precision.

In closed traverses, each course is observed and recorded as a separate dis-
tance. On long, link traverses for highways and railroads, distances are carried
along continuously from the starting point using stationing (see Section 5.9.1).
In Figure 9.2, which uses stationing in feet, for example, beginning with station
0 + 00 at point A, 100-ft stations (1 + 00,2 + 00, and 3 + 00) are marked until
hub B at station 4 + 00 is reached. Then stations 5 + 00, 6 + 00,7 + 00,8 + 00,
and 8 + 19.60 are set along course BC to C, etc. The length of a line in a stationed
link traverse is the difference between stationing at its end points; thus, the length
of line BC is 819.60 — 400.00 = 419.60 ft.

H 9.4 SELECTION OF TRAVERSE STATIONS

Positions selected for setting traverse stations vary with the type of survey. In
general, guidelines to consider in choosing them include accuracy, utility, and
efficiency. Of course, intervisibility between adjacent stations, forward and back,
must be maintained for angle and distance observations. The stations should also
ideally be set in convenient locations that allow for easy access. Ordinarily, sta-
tions are placed to create lines that are as long as possible. This not only increases
efficiency by reducing the number of instrument setups, but it also increases
accuracy in angle observations. However, utility may override using very long
lines because intermediate hubs, or stations at strategic locations, may be needed
to complete the survey’s objectives. Seasonal variations may also improve sight
lines. For example, lack of foliage may aid visibility between stations during the
late fall, winter, and early spring.

Often the number of stations can be reduced and the length of the sight
lines increased by careful reconnaissance. It is always wise to “walk” the area
being surveyed and find “ideal” locations for stations before the traverse stakes
are set and the observation process is undertaken.

Each different type of survey will have its unique requirements concerning
traverse station placement. On property surveys, for example, traverse stations
are placed at each corner if the actual boundary lines are not obstructed and can
be occupied. If offset lines are necessary, a stake is located near each corner to
simplify the observations and computations. Long lines and rolling terrain may
necessitate extra stations.

On route surveys, stations are set at each angle point, and at other locations
where necessary to obtain topographic data or extend the survey. Usually, the
centerline is run before construction begins, but it will likely be destroyed and
need replacement one or more times during various phases of the project. An
offset traverse can be used to avoid this problem.

A traverse run to provide control for topographic mapping serves as a
framework to which map details such as roads, buildings, streams, and hills are
referenced. Station locations must be selected to permit complete coverage of
the area to be mapped. Spurs consisting of one or more lines may branch off as
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open (stub) traverses to reach vantage points. However, their use should be dis-
couraged since a check on their positions cannot be made.

If a stub traverse must be executed, the surveyor should exercise extreme
caution using multiple direct and reverse readings at each station to check their
work. In some extreme cases, it may be advisable to repeat each setup at a later
time; for example, setting over a station while both proceeding to the terminus
of the stub and on the way back to the main traverse. It should be realized by the
surveyor that observational errors can go undetected in an open traverse, thus
additional observational checks such as closing the angular horizon and precise
traversing techniques, which are discussed in Section 19.13.2, must be performed
to ensure the correctness of the observations.

H 9.5 REFERENCING TRAVERSE STATIONS

Traverse stations often must be found and reoccupied, months or even years
after they are established. Also, they may be destroyed through construction
or other activity. Therefore, it is important that they be referenced by creating
observational fies to them so that they can be relocated if obscured or reestab-
lished, if destroyed.

Figure 9.4 presents a typical traverse tie. As illustrated, these ties consist
of distance observations made to nearby fixed objects. Short lengths (less than
100 ft) are convenient if a steel tape is being used, but, of course, the distance to
definite and unique points is a controlling factor. Two ties, preferably at about
right angles to each other, are sufficient, but three should be used to allow for the
possibility of one reference mark being destroyed. Ties to trees can be observed
in hundredths of a foot if nails are driven into them. However, permission must
be obtained from the landowner before driving nails into trees. It is always impor-
tant to remember that the surveyor may be held legally responsible for any dam-
ages to property that may occur during the survey.

If natural or existing features such as trees, utility poles, or corners of build-
ings are not available, stakes may be driven and used as ties. Figure 9.5(a) shows
an arrangement of straddle hubs well suited to tying in a point such as H on a
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Figure 9.5
Hubs for ties.
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highway centerline or elsewhere. Reference points A and B are carefully set on
the line through H, as are C and D. Lines AB and CD should be roughly perpen-
dicular, and the four points should be placed in safe locations, outside of areas
likely to be disturbed. It is recommended that a third point be placed on each
line to serve as an alternate in the event one point is destroyed. The intersection
of the lines of sight of two total stations set up at A and C, and simultaneously
aimed at B and D, respectively, will recover the point. The traverse hub H can
also be found by intersecting strings stretched between diagonally opposite ties if
the lengths are not too long. Hubs in the position illustrated by Figure 9.5(b) are
sometimes used, but are not as desirable as straddle hubs for stringing.

H 9.6 TRAVERSE FIELD NOTES

The importance of notekeeping was discussed in Chapter 2. Since a traverse is
itself the end on a property survey and the basis for all other data in mapping, a sin-
gle mistake or omission in recording is one too many. All possible field and office
checks must therefore be made. A partial set of field notes for an interior-angle
traverse run using a total station instrument is shown in Figure 9.6. Notice that
details such as date, weather, instrument identifications, and party members and
their duties are recorded on the right-hand page of the notes. Also a sketch with a
north arrow is shown. The observed data is recorded on the left-hand page. First,
each station that is occupied is identified, and the heights of the total station instru-
ment and reflector that apply at that station are recorded. Then horizontal circle
readings, zenith angles, horizontal distances, and elevation differences observed
at each station are recorded. Notice that each horizontal angle is measured twice
in the direct mode, and twice in the reversed mode. As noted earlier, this practice
eliminates instrumental errors, and gives repeat angle values for checking. Zenith
angles were also observed twice each direct and reversed. Although not needed for
traversing, they are available for checking if larger than tolerable misclosures (see
Chapter 10) should exist in the traverse. Details of making traverse observations
with a total station instrument are described in Section 9.8.

H 9.7 ANGLE MISCLOSURE

The angular misclosure for an interior-angle traverse is the difference between the
sum of the observed angles and the geometrically correct total for the polygon. The
sum, 2, of the interior angles of a closed polygon should be

3 = (n—2)180° (9.1)
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Figure 9.6 Example traverse field notes using a total station instrument.

where n is the number of sides, or angles, in the polygon. This formula is easily
derived from known facts. The sum of the angles in a triangle is 180°; in a rectangle,
360°; and in a pentagon, 540°. Thus, each side added to the three required for a
triangle increases the sum of the angles by 180°. As was mentioned in Section 7.3,
if the direction about a traverse is clockwise when observing angles to the right,
exterior angles will be observed. In this case, the sum of the exterior angles will be

S = (n+2)180° (9.2)

Figure 9.1(a) shows a five-sided figure in which, if the sum of the observed
interior angles equals 540°00'05”, the angular misclosure is 5”. Misclosures result
from the accumulation of random errors in the angle observations. Permissible
misclosure can be computed by the formula

c=KVn (9.3)
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where 7 is the number of angles, and K is a constant that depends on the level of
accuracy specified for the survey. The Federal Geodetic Control Subcommittee
(FGCS) recommends constants for five different orders of traverse accuracy:
first-order, second-order class I, second-order class Il, third-order class I, and
third-order class I1. Values of K for these orders, from highest to lowest, are
1.7",3",4.5”,10", and 12", respectively. Thus, if the traverse of Figure 9.1(a) were
being executed to second-order class II standards, its allowable misclosure error
would be 4.5"V5 = +10".

The algebraic sum of the deflection angles in a closed-polygon traverse
equals 360°, clockwise (right) deflections being considered plus and counter-
clockwise (left) deflections, minus. This rule applies if lines do not crisscross, or
if they cross an even number of times. When lines in a traverse cross an odd
number of times, the sum of right deflections equals the sum of left deflections.

A closed-polygon azimuth traverse is checked by setting up on the starting
point a second time, after having occupied the successive stations around the
traverse, and orienting by back azimuths. The azimuth of the first side is then
obtained a second time and compared with its original value. Any difference is
the misclosure. If the first point is not reoccupied, the interior angles computed
from the azimuths will automatically check the proper geometric total, even
though one or more of the azimuths may be incorrect.

Although angular misclosures cannot be directly computed for link
traverses, the angles can still be checked. The direction of the first line may be
determined from two intervisible stations with a known azimuth between them,
or from a sun or Polaris observation, as described in Appendix C. Observed
angles are then applied to calculate the azimuths of all traverse lines. The last
line’s computed azimuth is compared with its known value, or the result obtained
from another sun or Polaris observation. On long traverses, intermediate lines
can be checked similarly. In using sun or Polaris observations to check angles on
traverses of long east-west extent, allowance must be made for convergence of
meridians. This topic is discussed in Section 19.13.2.

H 9.8 TRAVERSING WITH TOTAL STATION INSTRUMENTS

Total station instruments, with their combined electronic angle and distance
measurement components, speed the process of traversing significantly because
both the angles and distances can be observed from a single setup. The observing
process is further aided because angles and distances are resolved automatically
and displayed. Furthermore, the microprocessors of total stations can perform
traverse computations, reduce slope distances to their horizontal and vertical
components, and instantaneously calculate and store station coordinates and
elevations. The reduction to obtain horizontal and vertical distance components
was illustrated with the traverse notes of Figure 9.6.

To illustrate a method of traversing with a total station instrument, refer to
the traverse of Figure 9.1(b). With the instrument set up and leveled at station
A, a backsight is carefully taken on Az MK;. The azimuth of line A-Az MK, is
initialized on the horizontal circle by entering it in the unit using its keyboard.
The coordinates and elevation of station A are also entered in memory. Next,
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a foresight is made on station B. The azimuth of line AB will now appear on
the display, and upon keyboard command, can be stored in the microproces-
sor’s memory. Slope distance AB is then observed and reduced to its horizontal
and vertical components by the microprocessor. Then the line’s departure and
latitude are computed and added to the coordinates of station A to yield the
coordinates of station B. (Departures, latitudes, and coordinates are described
in Chapter 10.) These procedures should be performed in both the direct and
reverse modes, and the results averaged to account for instrumental errors.

The procedure outlined for station A is repeated at station B, except that the
back azimuth BA and coordinates of station B need not be entered; rather, they
are recalled from the instrument’s memory. From the setup at B, azimuth BC and
coordinates of C are determined and stored. This procedure is continued until a
station of known coordinates is reached, as E in Figure 9.1(b). Here the known co-
ordinates of E are entered in the unit’s computer and compared to those obtained
for E through the traverse observations. Their difference (or misclosure) is com-
puted, displayed, and, if within allowable limits, distributed by the microprocessor
to produce final coordinates of intermediate stations. (Procedures for distributing
traverse misclosure errors are covered in Chapters 10 and 16.)

Mistakes in orientation can be minimized when a data collector is used in
combination with a total station. In this process, the coordinates of each backsight
station are checked before proceeding with the angle and distance observations
to the next foresight station. For example, in Figure 9.1(a), after the total station
is leveled and oriented at station B, an observation is taken “back” on A. If the
newly computed coordinates of A do not closely match their previously stored
values, the instrument setup, leveling, and orientation should be rechecked, and
the problem resolved before proceeding with any further measurements. This
procedure often takes a minimal amount of time and typically identifies most
field mistakes that occur during the observational process.

If desired, traverse station elevations can also be determined as a part of
the procedure (usually the case for topographic surveys). Then entries 4i (height
of instrument) and Ar (height of reflector) must be input (see Section 6.23). The
microprocessor computes the vertical component of the slope distance, which in-
cludes a correction for curvature and refraction (see Section 4.5.4). The elevation
difference is added to the occupied station’s elevation to produce the next point’s
elevation. At the final station, any misclosure is determined by comparing the
computed elevation with its known value, and if within tolerance, the misclosure
is distributed to produce adjusted elevations of intermediate traverse stations.

All data from traversing with a total station instrument can be stored in
a data collector for printing and transfer to the office for computing and plot-
ting (see Sections 2.12 through 2.15). Alternatively, the traverse notes can be
recorded manually as illustrated with Figure 9.6.

H 9.9 RADIAL TRAVERSING

In certain situations, it may be most convenient to determine the relative positions
of points by radial traversing. In this procedure, as illustrated in Figure 9.7(a), some
point O, whose position is assumed known, is selected from which all points to be
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Figure 9.7
Radial traversing.
(a) From one
occupied

station. (b) From
two occupied
stations.

located can be seen. If a point such as O does not exist, it can be established. It is
also assumed that a nearby azimuth mark, like Z in Figure 9.7(a), is available, and
that reference azimuth OZ is known. With a total station instrument at point O,
after backsighting on Z, horizontal angles to all stations A through F are observed.
Azimuths of all radial lines from O (as OA, OB, OC, etc.) can then be calculated.
The horizontal lengths of all radiating lines are also observed. By using the ob-
served lengths and azimuths, coordinates for each point can be computed. (The
subject of coordinate computations is discussed in Chapter 10.)

It should be clear that in the procedure just described, each point A through
F has been surveyed independently of all others, and that no checks on their
computed positions exist. To provide checks, lengths AB, BC, CD, etc., could be
computed from the coordinates of points, and then these same lengths observed.
This results in many extra setups and substantially more fieldwork, thus defeat-
ing one of the major benefits of radial traversing. To solve the problem of gaining
checks with a minimum of extra fieldwork, the method presented in Figure 9.7(b)
is recommended. Here a second hub O’ is selected from which all points can also
be seen. The position of O’ is determined by observations of the horizontal angle
and distance from station O. This second hub O’ is then occupied, and horizontal
angles and distances to all stations A through F are observed as before. With the
coordinates of both O and O’ known, and by using the two independent sets of
angles and distances, two sets of coordinates can be computed for each station,
thus obtaining the checks. If the two sets for each point agree within a reasonable
tolerance, the average can be taken. However, a better adjustment is obtained
using the method of least squares (see Section 3.21 and Chapter 16). Although
radial traversing can provide coordinates of many points in an area rapidly, the
method is not as rigorous as running closed traverses.

Radial traversing is ideal for quickly establishing a large number of points
in an area, especially when a total station instrument is employed. They not only
enable the angle and distance observations to be made quickly, but they also
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perform the calculations for azimuth, horizontal distance, and station coordinates
in real time. Radial methods are also very convenient for laying out planned con-
struction projects with a total station instrument. In this application, the required
coordinates of points to be staked are determined from the design, and the angles
and distances that must be observed from a selected station of known position
are computed. These are then laid out with a total station to set the stakes. The
procedures are discussed in detail in Section 23.9.

H 9.10 SOURCES OF ERROR IN TRAVERSING
Some sources of error in running a traverse are:

1. Poor selection of stations, resulting in bad sighting conditions caused by
(a) alternate sun and shadow, (b) visibility of only the rod’s top, (c) line of
sight passing too close to the ground, (d) lines that are too short, (e) line of
sight passing close to an object like a vehicle, which causes a refracted line
of sight, and (f) sighting into the sun.

2. Errors in observations of angles and distances.

3. Failure to observe angles an equal number of times direct and reversed.

H 9.11 MISTAKES IN TRAVERSING
Some mistakes in traversing are:

1. Occupying or sighting on the wrong station.
Incorrect orientation.

Confusing angles to the right and left.
Mistakes in note taking.

Misidentification of the sighted station.

RARE N

Asterisks (*) indicate problems that have partial answers given in Appendix G.

9.1 How is angular closure achieved in a polygon traverse?

9.2 List the disadvantages of an open traverse.

9.3 How can an angular closure be obtained on a link traverse?

9.4 In your own words define an angle to the right.

9.5 Draw two five-sided closed polygon traverses with station labels 1 to 5. The first tra-
verse should show angles to the right that are interior angles, and the second should
show angles to the right that are exterior angles.

9.6 List four pertinent considerations in selecting locations for traverse stations.

9.7 How should traverse stations be referenced?

9.8 Discuss the advantages and dangers of radial traversing.

9.9 What should be the sum of the interior angles for a closed-polygon traverse that has

*(a) 6 sides (b) 10 sides (¢) 15 sides?
9.10 What should the sum of the exterior angles for a closed-polygon traverse that are
listed in Problem 9.9?
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9.11

9.12

9.13

9.14
9.15%

9.16*

9.17

9.18

9.19*

9.20

9.21
9.22%

9.23

Five interior angles of a six-sided polygon traverse were observed as A = 43°17'08",
B = 202°04'57", C = 103°33'44", D = 98°35'15", and E = 132°23'59". The angle
at ' was not observed. If all observed angles are assumed to be correct, what is the
value of angle F?

Similar to Problem 9.11, except the traverse had seven sides with observed
angles of A = 158°15'44", B = 235°05'44", C = 66°14'26", D = 111°26'53",
E = 133°38'27", and F = 141°20'36". Compute the angle at G, which was not
observed.

What is the angular misclosure of a six-sided polygon traverse with observed angles
of 98°10'10", 133°45'58", 68°23'10", 182°50"54", 134°32'02", and 102°17'36"?

What FGCS standard would the angular misclosure in Problem 9.13 meet?
According to FGSC standards, what is the maximum acceptable angular misclosure
for a second-order class I traverse having 20 angles?

What is the angular misclosure for a five-sided polygon traverse with observed exte-
rior angles of 252°26'37",255°55'13", 277°15'53", 266°35'02", and 207°47'05"?

What is the angular misclosure for a five-sided polygon traverse with observed inte-
rior angles of 92°26'47",109°55'03", 137°15'33", 106°35'22", and 93°47'20"?

Discuss how a data collector can be used to check the setup of a total station in
traversing.

If the standard error for each measurement of a traverse angle is & 3.3”, what is the
expected standard error of the misclosure in the sum of the angles for an eight-sided
traverse?

If the angles of a traverse are turned so that the 95% error of any angle is +3.5"
what is the 95% error in a 12-sided traverse?

What criteria should be used when making reference ties to traverse stations?

The azimuth from station A of a link traverse to an azimuth mark is
212°12'36". The azimuth from the last station of the traverse to an azi-
muth mark is 192°12'16". Angles to the right are observed at each station:
A = 136°15'40", B = 119°15'36", C = 93°48'54", D = 136°04'16", E = 108°3010",
F = 42°48'02", and G = 63°17'16". What is the angular misclosure of this link
traverse?

What FGCS order and class does the traverse in Problem 9.22 meet?

9.24* The interior angles in a five-sided closed-polygon traverse were observed

9.25

9.26
9.27
9.28

as A = 108°28'36", B = 110°26'54", C = 106°25'58", D = 102°27'02", and
E = 112°11'15". Compute the angular misclosure. For what FGCS order and
class is this survey adequate?

Similar to Problem 9.24, except for a six-sided traverse with observed exterior
angles of A = 244°28'36", B = 238°26'54", C = 246°25'58", D = 234°27'02",
E = 235°08'55", and F = 241°02'45".

In Figure 9.6, what is the average interior angle with the instrument at station 101?
Same as Problem 9.26 except at instrument station 102.

Explain why it is advisable to use two instrument stations, as O and O in Figure 9.7(b),
when running radial traverses.
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Measured angles or directions of closed traverses are readily investigated before
leaving the field. Linear measurements, even though repeated, are more likely a
source of error, and must also be checked. Although the calculations are lengthier
than angle checks, with today’s data collectors they can also be done in the field
to determine, before leaving, whether a traverse meets the required precision. If
specifications have been satisfied, the traverse is then adjusted to create geometric
“closure” or geometric consistency among angles and lengths; if not, field obser-
vations must be repeated until adequate results are obtained.

Investigation of precision, and acceptance or rejection of the field data
is extremely important in surveying. Adjustment for geometric closure is also
crucial. For example, in land surveying the law may require property descriptions
to have exact geometric agreement.

Different procedures can be used for computing and adjusting traverses.
These vary from elementary methods to more advanced techniques based
on the method of least squares (see Chapter 16). This chapter concentrates
on elementary procedures. The usual steps followed in making elementary
traverse computations are (1) adjusting angles or directions to fixed geo-
metric conditions, (2) determining preliminary azimuths (or bearings) of the
traverse lines, (3) calculating departures and latitudes and adjusting them for
misclosure, (4) computing rectangular coordinates of the traverse stations,
and (5) calculating the lengths and azimuths (or bearings) of the traverse
lines after adjustment. These procedures are all discussed in this chapter, and
are illustrated with several examples. Chapter 16 discusses traverse adjust-
ment using the method of least squares.
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Figure 10.1
Traverse.

H 10.2 BALANCING ANGLES

In elementary methods of traverse adjustment, the first step is to balance (adjust)
the angles to the proper geometric total. For closed traverses, angle balancing is
done readily since the total error is known (see Section 9.7), although its exact
distribution is not. Angles of a closed traverse can be adjusted to the correct geo-
metric total by applying one of two methods:

1. Applying an average correction to each angle where observing conditions
were approximately the same at all stations. The correction for each
angle is found by dividing the total angular misclosure by the number of
angles.

2. Making larger corrections to angles where poor observing conditions were
present.

Of these two methods, the first is almost always applied.

M Example 10.1

For the traverse of Figure 10.1, the observed interior angles are given in
Table 10.1. Compute the adjusted angles using methods 1 and 2.

Solution

The computations are best arranged as shown in Table 10.1. The first part of
the adjustment consists of summing the interior angles and determining the mis-
closure according to Equation (9.1), which in this instance, as shown beneath
column 2, is +11"”. The remaining calculations are tabulated, and the rationale for
the procedures follows.

5000.00N (Y) A
10,000.00 E (X)

Legend:
A Control station
O Traverse station
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Method 1
Measured Multiples  Correction
Interior of Average Rounded Successive Adjusted
Point Angle Correction To 1” Differences Angle
(1) (2) (3) (3) (5) (6)
A 100°45'37" 2.2’ 2" 2" 100°45'35"
B 231°23'43" 4.4 4 2" 231°23'41"
c 17°12'59" 6.6 7" 3’ 17°12'56"
D 89°03'28" 8.8 9" 2" 89°0326"
E 101°34'24"  11.0” 11" 2’ 101°34'22"
> = 540°00'11" 2 =11" X = 540°00'00"
Method 2
Measured
Interior Adjusted
Point Angle Adjustment Angle
(1) (2) (7) (8)
A 100°45'37" 2" 100°45'35"
B 231°23'43” 3" 231°23740”
C 17°12'59" 3" 17°12'56"
D 89°03'28” 1" 89°03'27"
E 101°34'24" 2" 101°34'22"
> = 540°00'11" > =11 > = 540°00'00"

For work of ordinary precision, it is reasonable to adopt corrections that
are even multiples of the smallest recorded digit or decimal place for the angle
readings. Thus in this example, corrections to the nearest 1” will be made.

Method 1 consists of subtracting 11”/5 = 2.2” from each of the five angles.
However, since the angles were read in multiples of 1”, applying corrections to
the nearest tenth of a second would give a false impression of their precision.
Therefore it is desirable to establish a pattern of corrections to the nearest 1”,
as shown in Table 10.1. First multiples of the average correction of 2.2” are tabu-
lated in column (3). In column (4), each of these multiples has been rounded
off to the nearest 1”. Then successive differences (adjustments for each angle)
are found by subtracting the preceding value in column (4) from the one being
considered. These are tabulated in column (5). Note that as a check, the sum of
the corrections in this column must equal the angular misclosure of the traverse,
which in this case is 11”. The adjusted interior angles obtained by applying these
corrections are listed in column (6). As another check, they must total exactly the
true geometric value of (n — 2)180°, or 540°00’00” in this case.
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In method 2, judgment is required because corrections are made to the
angles expected to contain the largest errors. In this example, 3" is subtracted
from the angles at B and C, since they have the shortest sights (along line BC),
and 2" is subtracted from the angles at A and E, because they have the next
shortest sights (along line AE). A 1” correction was applied to angle D because
of its long sights. The sum of the corrections must equal the total misclosure. The
adjustment made in this manner is shown in columns (7) and (8) of Table 10.1.

It should be noted that, although the adjusted angles by both methods
satisfy the geometric condition of a closed figure, they may be no nearer to the
true values than before adjustment. Unlike corrections for linear observations
(described in Section 10.7), adjustments applied to angles are independent of the
size of the angle.

On the companion website for this book at http://www.pearsonhighered.
com/ghilani are instructional videos that can be downloaded. The video Adjusting
Angle Observations discusses the use of method 1 to adjust angles in this section.

H 10.3 COMPUTATION OF PRELIMINARY
AZIMUTHS OR BEARINGS

After balancing the angles, the next step in traverse computation is calculation of
either preliminary azimuths or preliminary bearings. This requires the direction of
at least one course within the traverse to be either known or assumed. For some
computational purposes an assumed direction is sufficient, and in that case the usual
procedure is to simply assign north as the direction of one of the traverse lines. On
certain traverse surveys, the magnetic bearing of one line can be determined and
used as a reference for determining the other directions. However, in most instances,
as in boundary surveys, true directions are needed. This requirement can be met by
(1) incorporating within the traverse a line whose true direction was established
through a previous survey; (2) including one end of a line of known direction as a
station in the traverse [e.g., station A of line A-Az Mk of Figure 9.1(a)], and then
observing an angle from that reference line to a traverse line; or (3) determining the
true direction of one traverse line by astronomical observations (see Appendix C),
or by GNSS surveys (see Chapters 13, 14, and 15).

If a line of known direction exists within the traverse, computation of prelimi-
nary azimuths (or bearings) proceeds as discussed in Chapter 7. Angles adjusted to
the proper geometric total must be used; otherwise the azimuth or bearing of the first
line, when recomputed after using all angles and progressing around the traverse,
will differ from its fixed value by the angular misclosure. Azimuths or bearings at this
stage are called “preliminary” because they will change after the traverse is adjusted,
as explained in Section 10.11. It should also be noted that since the azimuth of the
courses will change, so will the angles, which were previously adjusted.

N Example 10.2

Compute preliminary azimuths for the traverse courses of Figure 10.1, based
on a fixed azimuth of 234°17'18" for line AW, a measured angle to the right of
151°52'24" for WAE, and the angle adjustment by method 1 of Table 10.1.
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74 [ 8 ComPUTATION OF PRELIMINARY AzimutH USING THE TABULAR METHOD

126°55'17" = AB +89°03'26" + D
+180° 284°35'20" = DE

306°55'17" = BA —180°
104°35'20" = ED

+231°23'41" + B
538°18'58” — 360° = 178°18'58" = BC
—180°

+101°34'22" + E
206°09'42" = EA

358°18'58" = CB —_]802 o
+17°12'56" + C 26009 '42“ = AF
375°31'54" — 360° = 15°31'54" = CD +100°45'35" + A
_180° 126°55'17" = AB
195°31'54"
Solution

Step 1: Compute the azimuth of course AB.
Azyap = 234°17'18" + 151°52'24" + 100°45'35" — 360° = 126°55'17”

Step 2: Using the tabular method discussed in Section 7.8, compute preliminary
azimuths for the remaining lines. The computations for this example are shown in
Table 10.2. Figure 10.2 demonstrates the computations for line BC. Note that the
azimuth of AB was recalculated as a check at the end of the table.

B 10.4 DEPARTURES AND LATITUDES

After balancing the angles and calculating preliminary azimuths (or bearings),
traverse closure is checked by computing the departure and latitude of each
line. As illustrated in Figure 10.3, the departure of a course is its orthographic
projection on the east—west axis of the survey and is equal to the length of the
course multiplied by the sine of its azimuth (or bearing) angle. Departures are
sometimes called eastings or westings.

178°18'58"
l Figure 10.2

Computation of
ToC azimuth BC.
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Figure 10.3
Departure and
latitude of a line.

N (Y)

Latitude
AY ‘

‘

Departure
AX

‘ ‘

Also as shown in Figure 10.3, the latitude of a course is its orthographic
projection on the north—-south axis of the survey, and is equal to the course length
multiplied by the cosine of its azimuth (or bearing) angle. Latitude is also called
northing or southing.

In equation form, the departure and latitude of a line are

departure = Lsin « (10.1)
latitude = Lcos « (10.2)

where L is the horizontal length and « the azimuth of the course. Departures and
latitudes are merely changes in the X and Y components of a line in a rectangular
grid system, sometimes referred to as AX and AY. In traverse calculations, east de-
partures and north latitudes are considered plus; west departures and south latitudes,
minus. Azimuths (from north) used in computing departures and latitudes range
from 0 to 360°, and the algebraic signs of sine and cosine functions automatically
produce the proper algebraic signs of the departures and latitudes. Thus a line with
an azimuth of 126°55'17" has a positive departure and negative latitude (the sine at
the azimuth is plus and the cosine minus); a course of 284°35'20"” azimuth has a nega-
tive departure and positive latitude. In using bearings for computing departures and
latitudes, the angles are always between 0 and 90°; hence their sines and cosines are
invariably positive. Proper algebraic signs of departures and latitudes must therefore
be assigned on the basis of the bearing angle directions, so a NE bearing has a plus
departure and latitude, a SE bearing gets a plus departure and minus latitude, and
so on. Because computers and calculators automatically affix correct algebraic signs
to departures and latitudes through the use of azimuth angle sines and cosines, it is
more convenient to use azimuths than bearings for traverse computations.
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H 10.5 DEPARTURE AND LATITUDE CLOSURE CONDITIONS

For a closed-polygon traverse like that of Figure 10.1, it can be reasoned that
if all angles and distances were measured perfectly, the algebraic sum of the
departures of all courses in the traverse should equal zero. Likewise, the alge-
braic sum of all latitudes should equal zero. And for closed link-type traverses
like that of Figure 9.1(b), the algebraic sum of departures should equal the
total difference in departure (AX) between the starting and ending easting
(X) coordinates. The same condition with the northing (Y) coordinates applies
to latitudes (AY) in a link traverse. Because the observations are not perfect,
and errors exist in the angles and distances, the conditions just stated rarely
occur. The amounts by which they fail to be met are termed departure misclo-
sure and latitude misclosure. Their values are computed by algebraically sum-
ming the departures and latitudes, and comparing the totals to the required
conditions.

The magnitudes of the departure and latitude misclosures for closed-
polygon-type traverses give an “indication” of the precision that exists in the
observed angles and distances. Large misclosures certainly indicate that either
significant errors or even mistakes exist. Small misclosures usually mean the
observed data are precise and free of mistakes, but it is not a guarantee that
systematic or compensating errors do not exist.

H 10.6 TRAVERSE LINEAR MISCLOSURE
AND RELATIVE PRECISION

Because of errors in the observed traverse angles and distances, if one were to
begin at point A of a closed-polygon traverse like that of Figure 10.1, and progres-
sively follow each course for its observed distance along its preliminary bearing or
azimuth, one would finally return not to point A, but to some other nearby point A"'.
Point A" would be removed from A in an east-west direction by the departure
misclosure, and in a north—south direction by the latitude misclosure. The distance
between A and A’ is termed the linear misclosure of the traverse. It is calculated
from the following formula:

linear misclosure = \/(departure misclosure )? + (latitude misclosure)? (10.3)
The relative precision of a traverse is expressed by a fraction that has the
linear misclosure as its numerator and the traverse perimeter or total length as its

denominator, or

linear misclosure

relative precision = (10.4)

traverse length

The fraction that results from Equation (10.4) is then reduced to reciprocal form,
and the denominator rounded to the same number of significant figures as the
numerator. This is illustrated in the following example.
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L i [ B= 8 ComPUTATION OF DEPARTURES AND LATITUDES

Preliminary

Station Azimuths Length Departure Latitude
A 126°55'17" 647.25 517.451 —-388.815
B 178°18'58" 203.03 5.966 —202.942
C 15°31'54" 720.35 192.889 694.045
D 284°35'20" 610.24 —-590.565 153.708
E 206°09'42" 285.13 -125.715 -255.919
A > = 2466.00 > =0.026 > =0.077

M Example 10.3

Based on the preliminary azimuths from Table 10.2 and lengths shown in
Figure 10.1, calculate the departures and latitudes, linear misclosure, and rela-
tive precision of the traverse.

Solution

In computing departures and latitudes, the data and results are usually listed in
a standard tabular form, such as that shown in Table 10.3. The column headings
and rulings save time and simplify checking.

In Table 10.3, taking the algebraic sum of east (+) and west (—) depar-
tures gives the misclosure, 0.026 ft. Also, summing north (+) and south (—)
latitudes gives the misclosure in latitude, 0.077 ft. Linear misclosure is the hypot-
enuse of a small triangle with sides of 0.026 ft and 0.077 ft, and in this example its
value is, by Equation (10.3)

linear misclosure = \/(0.026)2 + (0.077)% = 0.081ft
The relative precision for this traverse, by Equation (10.4), is

0081 1
2466.00 30,000

relative precision =

B 10.7 TRAVERSE ADJUSTMENT

For any closed traverse the linear misclosure must be adjusted (or distributed)
throughout the traverse to “close” or “balance” the figure. This is true even though
the misclosure is negligible in plotting the traverse at map scale. There are several
elementary methods available for traverse adjustment, but the one most commonly
used is the arbitrary method known as the compass rule (Bowditch method). As
noted earlier, adjustment by least squares is a more advanced technique that can
also be used. These two methods are discussed in the subsections that follow.
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10.7.1 Compass (Bowditch) Rule

The compass, or Bowditch, rule adjusts the departures and latitudes of traverse
courses in proportion to their lengths. Although not as rigorous as the least-
squares method, it does result in a logical distribution of misclosures. Corrections
by this method are made according to the following rules:

correction in departure for AB

(total departure misclosure )

= - length of AB (10.5)
traverse perimeter
correction in latitude for AB
(total latitude misclosure )
= length of AB (10.6)

traverse perimeter

Note that the algebraic signs of the corrections are opposite those of the respec-
tive misclosures.

M Example 10.4

Using the preliminary azimuths from Table 10.2 and lengths from Figure 10.1,
compute departures and latitudes, linear misclosure, and relative precision.
Balance the departures and latitudes using the compass rule.

Solution

A tabular solution, which is somewhat different than that used in Example 10.3,
is employed for computing departures and latitudes (see Table 10.4). To com-
pute departure and latitude corrections by the compass rule, Equations (10.5)
and (10.6) are used as demonstrated. By Equation (10.5) the correction in de-
parture for AB is

0.026
_<2466 )647.25 = —0.007 ft

And by Equation (10.6) the correction for the latitude of AB is

0.077
_<2466 )647.25 = —0.020 ft

The other corrections are likewise found by multiplying a constant—the ratio of
misclosure in departure, and latitude, to the perimeter —by the successive course
lengths.

In Table 10.4, the departure and latitude corrections are shown in paren-
theses above their unadjusted values. These corrections are added algebraically
to their respective unadjusted values, and the corrected quantities tabulated in
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s .10 (0 | BALANCING DEPARTURES AND LATITUDES BY THE ComPASS (BowbiTcH) RuLe

Unadjusted Balanced Coordinates*
Preliminary X (ft) Y (ff)
Station Azimuths  Length (ff) Departure Latitude Departure Latitude (easting) (northing)
A (=0.007) (=0.020) 10,000.00 5000.00
126°55'17" 647.25 517.451 -388.815 517.444  -388.835
B (~0.002) (~0.006) 10,517.44  4611.16
178°18'58” 203.03 5.966 —202.942 5964  -202.948
C (~0.008) (-0.023) 10,523.41 4408.22
15°31'54" 720.35 192.889 694.045 192.881 694.022
D (—0.006) (-0.019) 10,716.29  5102.24
284°35'20” 610.24  —-590.565 153.708 -590.571 153.689
E (—0.003) (—0.009) 10,125.72 5255.93
206°09'42" 285.13 —-125.715 -255.919 -125.718  —255.928
A 10,000.00v 5000.00v

> = 2466.00 X =0.026 > =0077 X =0.000 X =0.000

Linear precision = V/(0.026)2 + (-0.077)2 = 0.081 f
0.081 1

Relative precision = =

2466 30,000

*Coordinates are rounded to same significance as observed lengths.
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the “balanced” departure and latitude columns. A check is made of the compu-
tational process by algebraically summing the balanced departure and latitude
columns to verify that each is zero. In these columns, if rounding off causes a
small excess or deficiency, revising one of the corrections to make the closure . -
perfect eliminates this. However, if computations are carried out to one more [ | [ |
decimal place than is justified, rounding seldom affects the final values.

On the companion website for this book at http://www.pearsonhighered
.com/ghilani are instructional videos that can be downloaded. The video Latitudes
and Departures demonstrates the computation and adjustment for the traverse ™
shown in Figure 10.1.

10.7.2 Least-Squares Method

As noted in Section 3.21, the method of least squares is based on the theory
of probability, which models the occurrence of random errors. This results in
adjusted values having the highest probability. Thus the least-squares method
provides the best and most rigorous traverse adjustment, but until recently the
method has not been widely used because of the lengthy computations required.
The availability of computers has now made these calculations routine, and con-
sequently the least-squares method has gained popularity.

In applying the least-squares method to traverses, angle and distance
observations are adjusted simultaneously. Thus no preliminary angle adjustment
is made, as is done when using the compass rule. The least-squares method is
valid for any type of traverse, and has the advantage that observations of varying
precisions can be weighted appropriately in the computations. Examples illus-
trating some elementary least-squares adjustments are presented in Chapter 16.

H 10.8 RECTANGULAR COORDINATES

Rectangular X and Y coordinates of any point give its position with respect to an
arbitrarily selected pair of mutually perpendicular reference axes. The X coordi-
nate is the perpendicular distance, in feet or meters, from the point to the Y axis;
the Y coordinate is the perpendicular distance to the X axis. Although the refer-
ence axes are discretionary in position, in surveying they are normally oriented so
that the Y axis points north—south, with north the positive Y direction. The X axis
runs east-west, with positive X being east. Given the rectangular coordinates of a
number of points, their relative positions are uniquely defined.

Coordinates are useful in a variety of computations, including (1) determining
lengths and directions of lines, and angles (see Section 10.11 and Chapter 11); (2)
calculating areas of land parcels (see Section 12.5); (3) making certain curve calcula-
tions (see Sections 24.12 and 24.13); and (4) locating inaccessible points (see Section
11.9). Coordinates are also advantageous for plotting maps (see Section 18.8.1) and
in developing geographic information systems (see Section 28.1).

In practice, state plane coordinate systems, as described in Chapter 20, are
most frequently used as the basis for rectangular coordinates in plane surveys.
However, for many calculations, any arbitrary system may be used. As an exam-
ple, coordinates may be arbitrarily assigned to one traverse station. For example,
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to avoid negative values of X and Y an origin is assumed south and west of the
traverse such that one hub has coordinates X = 10,000.00, Y = 5,000.00, or any
other suitable values. In a closed traverse, assigning Y = 0.00 to the most southerly
point and X = 0.00 to the most westerly station saves time in hand calculations.

Given the X and Y coordinates of any starting point A, the X coordinate of
the next point B is obtained by adding the adjusted departure of course AB to X.
Likewise, the Y coordinate of B is the adjusted latitude of AB added to Y,. In
equation form this is

Xg = X, + departure AB

: (10.7)
Yz = Y, + latitude AB

For closed polygons, the process is continued around the traverse, succes-
sively adding departures and latitudes until the coordinates of starting point A
are recalculated. If these recalculated coordinates agree exactly with the starting
ones, a check on the coordinates of all intermediate points is obtained (unless
compensating mistakes have been made). For link traverses, after progressively
computing coordinates for each station, if the calculated coordinates of the clos-
ing control point equal that point’s control coordinates, a check is obtained.

M Example 10.5

Using the balanced departures and latitudes obtained in Example 10.4 (see
Table 10.4), and starting coordinates X, = 10,000.00 and Y, = 5,000.00, calcu-
late coordinates of the other traverse points.

Solution

The process of successively adding balanced departures and latitudes to obtain
coordinates is carried out in the two rightmost columns of Table 10.4. Note that
the starting coordinates X, = 10,000.00 and Y, = 5,000.00 are recomputed at
the end to provide a check. Note also that X and Y coordinates are frequently
referred to as eastings and northings, respectively, as is indicated in Table 10.4.

H 10.9 ALTERNATIVE METHODS FOR MAKING
TRAVERSE COMPUTATIONS

Procedures for making traverse computations that vary somewhat from those de-
scribed in preceding sections can be adopted. One alternative is to adjust azimuths
or bearings rather than angles. Another is to apply compass rule corrections directly
to coordinates. These procedures are described in the subsections that follow.

10.9.1 Balancing Angles by Adjusting Azimuths or Bearings

In this method, “unadjusted” azimuths or bearings are computed based on the ob-
served angles. These azimuths or bearings are then adjusted to secure a geometric
closure, and to obtain preliminary values for use in computing departures and
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latitudes. The method is equally applicable to closed-polygon traverses, like that
of Figure 10.1, or to closed-link traverses, as shown in Figure 9.1(b) that begins on
one control station and ends on another. The procedure of making the adjustment
for angular misclosure in this manner will be explained by an example.

M Example 10.6

Table 10.5 lists observed angles to the right for the traverse of Figure 9.1(b). The
azimuths of lines A-Az Mk, and E-Az Mk, have known values of 139°05’45" and
86°20'47", respectively. Compute unadjusted azimuths and balance them to ob-
tain geometric closure.

Solution

From the observed angles of column (2) in Table 10.5, unadjusted azimuths
have been calculated and are listed in column (3). Because of angular errors, the
unadjusted azimuth of the final line E-Az Mk, disagrees with its fixed value by
0°00"10". This represents the angular misclosure, which is divided by 5, the num-
ber of observed angles, to yield a correction of —2" per angle. The corrections
to azimuths, which accumulate and increase by —2” for each angle, are listed in

27 RS BALANCING TRAVERSE AZIMUTHS

Measured Unadjusted Azimuth Preliminary
Station Angle* Azimuth Correction Azimuth
(1) (2) (3) (4) (5)
Az Mk,
319°05'45” 319°05745"
A 283°50'10”
62°55'55" =2" 62°55'53"
B 256°17'18”
139°13'13” —4" 139°13'09”
C 98°12'36"
57°25'49" =6 57°25'43"
D 103°30'34”
340°56'23" -8 340°56'15"
E 285°24'34"
86°20'57" -10" 86°20'47"
Az Mk,
86°20'57"
—86°20'47"

misclosure = 0°00'10”
correction per angle = —10"/5 = =2

*Observed angles are angles fo the right.
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column (4). Thus line AB, which is based on one observed angle, receives a —2"
correction; line BC, which uses two observed angles, gets a —4” correction; and
so on. The final azimuth, E-Az Mk,, receives a —10" correction because all five
observed angles have been included in its calculation. The corrected preliminary
azimuths are listed in column 5.

10.9.2 Balancing Departures and Latitudes
by Adjusting Coordinates

In this procedure, commencing with the known coordinates of a beginning
station, unadjusted departures and latitudes for each course are successively
added to obtain “preliminary” coordinates for all stations. For closed-polygon
traverses, after progressing around the traverse, preliminary coordinates are
recomputed for the beginning station. The difference between the computed
preliminary X coordinate at this station and its known X coordinate is the
departure misclosure. Similarly, the disagreement between the computed pre-
liminary Y coordinate for the beginning station and its known value is the
latitude misclosure. Corrections for these misclosures can be calculated using
compass-rule Equations (10.5) and (10.6) and applied directly to the prelimi-
nary coordinates to obtain adjusted coordinates. The result is exactly the same
as if departures and latitudes were first adjusted and coordinates computed
from them, as was done in Examples 10.4 and 10.5.

Closed traverses like the one shown in Figure 9.1(b) can be similarly ad-
justed. For this type of traverse, unadjusted departures and latitudes are also
successively added to the beginning station’s coordinates to obtain preliminary
coordinates for all points, including the final closing station. Differences in pre-
liminary X and Y coordinates, and the corresponding known values for the clos-
ing station, represent the departure and latitude misclosures, respectively. These
misclosures are distributed directly to preliminary coordinates using the compass
rule to obtain final adjusted coordinates. The procedure will be demonstrated by
an example.

M Example 10.7

Table 10.6 lists the preliminary azimuths (from Table 10.5) and observed lengths
(in feet) for the traverse of Figure 9.1(b). The known coordinates of stations A and
E are X, = 12,765.48, Y, = 43,280.21, Xi = 14,797.12, and Yy = 44,384.51 ft.
Adjust this traverse for departure and latitude misclosures by making corrections
to preliminary coordinates.

Solution

From the lengths and azimuths listed in columns (2) and (3) of Table 10.6,
departures and latitudes are computed and tabulated in columns (4) and (5).
These unadjusted values are progressively added to the known coordinates
of station A to obtain preliminary coordinates for all stations, including E,
and are listed in columns (6) and (7). Comparing the preliminary X and Y
coordinates of station E with its known values yields departure and latitude



(814

s G102 -5 TRAVERSE ADJUSTMENT BY COORDINATES

Preliminary Adjusted
L. Coordinates (ft) Corrections (ft) Coordinates*
Preliminary
Station Length (ft) Azimuth Depariure Latitude X Y X Y X (ft) Y (ft)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1)
A 12,765.48  43,280.21 12,765.48 43,280.21
1045.50 62°55'53"  930.978 475.762 —-0.048  0.006
B 13,696.458 43,755.972 (—0.048) (0.006) 13,696.41 43,755.98
1007.38 139°13'09” 657.988 —762.802 —0.046 0.006
C 14,354.446 42,993.170 (—0.094) (0.012) 14,354.35 42,993.18
897.81 57°25'43"  756.604 483.336 —0.041 0.006
D 15,111.050 43,476.506 (—0.135) (0.018) 15,110.92 43,476.52
960.66 340°56'15" —-313.751 907.980 —0.044 0.006
E 14,797.299 44,384.486 (—-0.179) (0.024) 14,797.12v/ 44,384.51v
> =3911.35 —14,797.12 —44,384.51
Misclosures +0.179 —0.024

Linear precision = \/(0.179)2 + (—-0.024)? = 0.181 ft

Relative precision =

*Adjusted coordinates are rounded to same significance as observed lengths.

0.181 _
3911

1
21,000
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misclosures of +0.179 and —0.024 ft, respectively. From these values, the lin-
ear misclosure of 0.181 ft and relative precision of 1/21,000 are computed (see
Table 10.6).

Compass-rule corrections for each course are computed and listed in col-
umns (8) and (9). Their cumulative values obtained by progressively adding the
corrections are given in parentheses in columns (8) and (9). Finally, by apply-
ing the cumulative corrections to the preliminary coordinates of columns 6 and 7,
final adjusted coordinates (rounded to the nearest hundredth of a foot) listed in
columns (10) and (11) are obtained.

H 10.10 INVERSING

If the departure and latitude of a line AB are known, its length and azimuth or
bearing are readily obtained from the following relationships:

_ departure AB

. . _ 10.
tan azimuth (or bearing) AB latitude AB (10.8)

departure AB

length AB =
eng sin azimuth (or bearing) AB

latitude AB
cos azimuth (or bearing) AB

\/(departure AB)? + (latitude AB)> (10.9)

Equations (10.7) can be written to express departures and latitudes in terms of
coordinate differences AX and AY as follows:

departure 3 = Xz — Xy = AX
latitudeAB = YB - YA = AY (10.]0)

Substituting Equations (10.10) into Equations (10.8) and (10.9)
Xy~ X4 _ AX
Y — Y, AY
XB - XA (Or AX)
sin azimuth (or bearing) AB
YB - YA (Or AY)
cos azimuth (or bearing) AB

tan azimuth (or bearing) AB = (10.11)

length AB =

= V(Xp — X3) + (Y5 — Y,)2

= V(AX)? + (AY)? (10.12)
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Equations (10.8) through (10.12) can be applied to any line whose coordi-
nates are known, whether or not it was actually observed in the survey. Note
that Xz and Yz must be listed first in Equations (10.11) and (10.12), so that
AX and AY will have the correct algebraic signs. Computing lengths and di-
rections of lines from departures and latitudes, or from coordinates, is called
inversing.

H 10.11 COMPUTING FINAL ADJUSTED TRAVERSE
LENGTHS AND DIRECTIONS

In traverse adjustments, as illustrated in Examples 10.4 and 10.7, corrections
are applied to the computed departures and latitudes to obtain adjusted values.
These in turn are used to calculate X and Y coordinates of the traverse stations.
By changing departures and latitudes of lines in the adjustment process, their
lengths and azimuths (or bearings) also change. In many types of surveys, it is
necessary to compute the changed, or “final adjusted,” lengths and directions.
For example, if the purpose of the traverse was to describe the boundaries of
a parcel of land, the final adjusted lengths and directions would be used in the
recorded deed.

The equations developed in the preceding section permit computation of
final values for lengths and directions of traverse lines based either on their ad-
justed departures and latitudes or on their final coordinates.

M Example 10.8

Calculate the final adjusted lengths and azimuths of the traverse of Example 10.4
from the adjusted departures and latitudes listed in Table 10.4.

Solution

Equations (10.8) and (10.9) are applied to calculate the adjusted length and azi-
muth of line AB. All others were computed in the same manner. The results are
listed in Table 10.7.

274 [0 A FINAL ApjusTep LENGTHS AND DIREcTIONS FOR TRAVERSE OF ExampLe 10.4

Balanced Balanced
Line Departure Latitude Length (ft) Azimuth
AB 517.444 —-388.835 647.26 126°55'23"
BC 5.964 —202.948 203.04 178°19'00"
CD 192.881 694.022 720.33 15°31'54"
DE —-590.571 153.689 610.24 284°35'13"

EA -125.718 -255.928 285.14 206°09'41"
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By Equation (10.8)
. _ 517444 )
tan azimuth,p = 338835 1.330755;
azimuth,p = —53°04'37" + 180° = 126°55'23"
By Equation (10.9)

lengthyy = V/(517.444)% + (—388.835)% = 647.26 ft

Comparing the observed lengths of Table 10.4 to the final adjusted values
in Table 10.7, it can be seen that, as expected, the values have undergone small
changes, some increasing, others decreasing, and length D E remaining the same
because of compensating changes.

M Example 10.9

Using coordinates, calculate adjusted lengths and azimuths for the traverse of
Example 10.7 (see Table 10.6).

Solution

Equations (10.11) and (10.12) are used to demonstrate calculation of the adjusted
length and azimuth of line AB. All others were computed in the same way. The
results are listed in Table 10.8. Comparing the adjusted lengths and azimuths of
this table with their unadjusted values of Table 10.6 reveals that all values have
undergone changes of varying amounts.

Xp — Xy = 13,696.41 — 12,765.48 = 930.93 = AX

Yp — Y, = 43,755.98 — 43280.21 = 475.77 = AY
By Equation (10.11), tan azimuth,z = 930.93/475.77 = 1.95668075; azimuth,z =
62°55'47".
By Equation (10.12), length,z = \/(930.93)2 + (475.77)% = 1045.46 ft.

s T (G 8 FINAL ApsusTep LENGTHS AND DIRECTIONS FOR TRAVERSE OF ExampLe 10.7

Adjusted Adjusted
Line AX AY Length (ft) Azimuth
AB 930.93 475.77 1045.46 62°55'47"
BC 657.94 —762.80 1007.35 139°13'1¢6”
CcD 756.57 483.34 897.78 57°25'38"

DE -313.80 907.99 960.68 340°56'06"
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y i [ 2 FiNa ApsusTep ANGLES FOR Exampie 10.4

Angle Foresight Azimuth Backsight Azimuth Adjusted Angle

Difference

A (EAB) AB = 126°55'23" AE = 206°09'41" 100°45'42"
B (ABC) BC = (178°19'00” + 360°) BA = 306°55'23" 231°23'37"
C(BCD) CD = (15°31'54" + 360°) CB = (178°19'00” + 180°) 17°12'54"
D (CDE) DE = 284°35'13" DC = (15°31'54" + 180°) 89°03'19”
E (DEA) EA = 206°09'41" ED = (284°35'13" — 180°) 101°34'28”

7n
—4”
_on
_7

6"

> = 540°00'00”

E:ON

Because the final adjusted azimuths are different from their preliminary val-
ues, the preliminary adjusted angles have also changed. The backsight azimuth
must be subtracted from the foresight azimuth to compute the final adjusted angles.
A method of listing both the backsight and foresight stations for each angle helps
in determining which azimuths should be subtracted. For example, the angle at A
in Figure 10.1 is listed as EAB where E is the backsight station and B is the fore-
sight station for the clockwise interior angle. As a pneumonic, angle A is computed
as the difference in azimuths AB and AE where Az,4p is the foresight azimuth of
angle A and Az is the backsight azimuth. Thus, the angle at A is computed as

LEAB = Az p — AzZag
= 126°55'23" — (206°09'41" — 180°)
= 100°45"42"

Notice in this example that the back azimuth of EA from Table 10.7 was needed
for the backsight, and thus 180° was subtracted from azimuth EA. Also note that
the final adjusted value for the angle at A differs from the preliminary adjusted
value by 7”. The final adjusted angles for remainder of the traverse are shown in
Table 10.9. For each angle the appropriate three-letter designator, which defines
the clockwise interior angle, is shown in parentheses. Table 10.8 also shows the
appropriate foresight and backsight azimuths and the final adjusted angle at each
station. Notice that the sum of the angles again achieves geometric closure with a

value of 540°. However, each angle differs from the value given in Table 10.1 by [ |

the amount shown in the last column.

"u
On the companion website for this book at http://www.pearsonhighered I:'!q'h.
.com/ghilani are instructional videos that can be downloaded. The video Traverse  wmsn

Computations II demonstrates the computations of the adjusted observations for ™

the traverse shown in Figure 10.1.

H 10.12 COORDINATE COMPUTATIONS
IN BOUNDARY SURVEYS

Computation of a bearing from the known coordinates of two points on a line is
commonly done in boundary surveys. If the lengths and directions of lines from
traverse points to the corners of a field are known, the coordinates of the corners
can be determined and the lengths and bearings of all sides calculated.
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M Example 10.10

In Figure 10.4, APODFEA is a parcel of land that must be surveyed, but because
of obstructions, traverse stations cannot be set at P and Q. Therefore offset sta-
tions B and C are set nearby, and closed traverse ABCDE run. Lengths and
azimuths of lines BP and CQ are observed as 42.50 ft, 354°50'00", and 34.62 ft,
26°39'54", respectively. Following procedures demonstrated in earlier examples,
traverse ABCEA was computed and adjusted, and coordinates were determined
for all stations. They are given in the following table.

Point X (ft) Y (ft)
A 1000.00 1000.00
B 1290.65 1407.48
C 152736 1322.10
D 1585.70 101722
E 1464.01 688.25

Compute the length and bearing of property line PQ.

Solution

1. Using Equations (10.1) and (10.2), the departures and latitudes of lines BP
and CQ are:

Depgp = 42.50 sin(354°50'00") = —3.83 ft
Depcp = 34.62 5in(26°39'54") = 15.54 ft

Latgp = 42.50 cos(354°50'00") = 42.33 ft
Latcp = 34.62 cos(26°39'54") = 30.94 ft
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2. From the coordinates of stations B and C and the departures and latitudes
just calculated, the following tabular solution yields X and Y coordinates

for points P and Q:
X Y X Y
B 1290.65 140748 @ 152736 1322.10
BP —3.83  +42.33 CcO +15.54 +30.94

P 1286.82  1449.81 (0] 1542.90 1353.04

3. From the coordinates of P and Q, the length and bearing of line PQ are
found in the following manner:

X Y
o 1542.90 1353.04
P —1286.88 —1449.81

PO AX = 256.02 AY = =96.77

By Equation (10.11), tan bearingpy = 256.02/—-96.77 = —2.64565; bearingp, =
S69°17'40"E.

By Equation (10.12), length PQ = \/(=96.77)2 + (256.02)2 = 273.79 ft.

By using Equations (10.11) and (10.12), lengths and bearings of lines AP
and OD can also be determined. As stated earlier, extreme caution must be used
when employing this procedure, since no checks are obtained on the length and
azimuth measurements of lines BP and CQ, nor are there any computational
checks on the calculated lengths and bearings.

B 10.13 USE OF OPEN TRAVERSES

Although open traverses should be used with reluctance, sometimes there are
situations where it is very helpful to run one and then compute the length and
direction of the “closing line.” In Figure 10.5, for example, suppose that im-
proved horizontal alignment is planned for Taylor Lake and Atkins Roads, and
a new construction line AE must be laid out. Because of dense woods, visibility
between points A and E is not possible. A random line (see Section 8.17) could
be run from A toward E and then corrected to the desired line, but that would
be very difficult and time consuming due to tree density. One solution to this
problem is to run open traverse ABCDE, which can be done quite easily along
the cleared right-of-way of existing roads.

For this problem an assumed azimuth (e.g., due north) can be taken
for line UA, and assumed coordinates (e.g., 10,000.00 and 10,000.00) can be
assigned to station A. From observed lengths and angles, departures and
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Figure 10.5
Closing line of an
open traverse.

Dense
/ forest

latitudes of all lines, and coordinates of all points can be computed. From the
resulting coordinates of stations A and E, the length and azimuth of closing
line AE can be calculated. Finally, the deflection angle « needed to reach E
from A can be computed and laid off.

In running open traverses, extreme caution must be exercised in all obser-
vations, because there is no check, and any errors or mistakes will result in an
erroneous length and direction for the closing line. Procedures such as closing
the horizon and observing the lengths of the lines from both ends of the lines
should be practiced so that independent checks on all observations are obtained.
Utmost care must also be exercised in the calculations, although carefully plot-
ting the traverse and scaling the length of the closing line and the deflection angle
can secure a rough check on them.

M Example 10.11

Compute the length and azimuth of closing line AE and deflection angle « of
Figure 10.5, given the following observed data:



Solution
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Length Angle
Point (ft) to the Right

115°18'25"
3305.78

161°24'11"
1862.40

204°50"09"
1910.22

273°46'37"
6001.83

Table 10.10 presents a tabular solution for computing azimuths, departures and

latitudes, and coordinates.
From the coordinates of points A and E, the AX and AY values of line AE are

AX = 7,004.05 — 10,000.00 = —2,995.95 ft
AY = 17,527.05 — 10,000.00 = 7,527.05 ft

By Equation (10.12), the length of closing line AE is

length,; = V/(—2995.95)% + (7527.05)2 = 8101.37 ft

sy 0 18 N ComPUTATIONS FOR CLOSING LINE

Point Azimuth Departure Latitude X (ft) Y (ft)
v
North (assumed)

A 10,000.00 10,000.00
295°18'25” —2988.53 1413.11

B 7011.47 11,413.11
276°42'36" —1849.64 217.61

C 5161.83 11,630.72
301°32'45” —-1627.93 999.39

D 3533.90 12,630.11
35°19'22" 3470.15 4896.94

7004.05 17,527.05
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By Equation (10.11), the azimuth of closing line AE is

~2995.95

50705 —0.39802446; azimuth, ; = 338°17'46

tan azimuth,p =

(Note that with a negative AX and positive AY the bearing of AE is northwest,
hence the azimuth is 338°17'46".)

Finally, deflection angle « is the difference between the azimuths of lines
AFE and UA, or

—a = 338°17'46" — 360° = —21°42'14" (left)

With the emergence of GNSS, problems like that illustrated in Example
10.11 will no longer need to be solved using open traverses. Instead, receivers
could be set at points U, A, and E of Figure 10.5, and their coordinates deter-
mined. From these coordinates the azimuths of lines UA and AE can be calcu-
lated, as well as angle a.

H 10.14 STATE PLANE COORDINATE SYSTEMS

Under ordinary circumstances, rectangular coordinate systems for plane surveys
would be limited in size due to Earth curvature. However, the National Geodetic
Survey (NGS) developed statewide coordinate systems for each state in the
United States, which retain an accuracy of 1 part in 10,000 or better while fitting
curved geodetic distances to plane grid lengths. However, if reduction of obser-
vations is properly performed (see Section 20.8), little accuracy will be lost in the
survey.

State plane coordinates are related mathematically to the geodetic coor-
dinates of latitude and longitude, so control survey stations set by the NGS, as
well as those set by others, can all be tied to the systems. As additional stations
are set and their coordinates determined, they too become usable reference
points in the state plane systems. These monumented control stations serve
as starting points for local surveys, and permit accurate restoration of obliter-
ated or destroyed marks having known coordinates. If state plane coordinates
of two intervisible stations are known, like A and Az Mk of Figure 9.1(a), the
direction of line A-Az Mk can be computed and used to orient the total station
instrument at A. In this way, azimuths and bearings of traverse lines are ob-
tained without the necessity of making astronomical observations or resorting
to other means.

In the past, some cities and counties have used their own local plane coor-
dinate systems for locating street, sewer, property, and other lines. Because of
their limited extent and the resultant discontinuity at city or county lines, such
local systems are less desirable than a statewide system. Another plane coordi-
nate system called the Universal Transverse Mercator (UTM) (see Section 20.12)
is widely used to pinpoint the locations of objects by coordinates. The military
and others use this system for a variety of purposes.
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H 10.15 TRAVERSE COMPUTATIONS USING COMPUTERS

Computers are particularly convenient for making traverse computations.
Small programmable handheld units, data collectors, and laptop computers
are commonly taken into the field and used to verify data for acceptable mis-
closures before returning to the office. In the office, personal computers are
widely used. A variety of software is available for use by surveyors. Some
manufacturers supply standard programs, which include traverse computa-
tions, with the purchase of their equipment. Various software is also available
for purchase from a number of suppliers. Spreadsheet software can also be
conveniently used with personal computers to calculate and adjust traverses.
Of course, surveying and engineering firms frequently write programs specifi-
cally for their own use. Standard programming languages employed include
Fortran, Pascal, BASIC, C, and others.

A traverse computation program is provided in the software WOLFPACK
on the companion website for this book at http://www.pearsonhighered.com/
ghilani. It computes departures and latitudes, linear misclosure, and relative
precision, and performs adjustments by the compass (Bowditch) rule. In ad-
dition, the program calculates coordinates of the traverse points and the area
within polygon traverses using the coordinate method (discussed in Section
12.5). In Figure 10.6, the input and output files from WOLFPACK are shown
for Example 10.4. For the data file of Figure 10.6, the information entered to
the right of the numerical data is for explanation only and need not be included
in the file. The format of any data file can be found in the accompanying help
screen for the desired option.

Also, on the companion website for this book, the Excel file C/0.xls dem-
onstrates the traverse computations and for the data in Examples 10.4 and 10.6.
For those interested in a higher-level programming language, Example 10.4
is computed in the Mathcad worksheet TRAV.XMCD. This example is also
demonstrated in the html file Trav.html.

Besides performing routine computations such as traverse solutions, per-
sonal computers have many other valuable applications in surveying and en-
gineering offices. Two examples, are their use with computer-aided drafting
(CAD) software for plotting maps and drawing contours (see Section 18.14), and
with increasing frequency they are also being employed to operate geographic
information system (GIS) software (see Chapter 28).

H 10.16 LOCATING BLUNDERS IN TRAVERSE OBSERVATIONS

A numerical or graphic analysis can often be used to determine the location of
a mistake, and thereby save considerable field time in making necessary addi-
tional observations. For example, if the sum of the interior angles of a five-sided
traverse gives a large misclosure—say 10'11"”—it is likely that one mistake of 10’
and several small errors accumulating to 11” have been made. Methods of graphi-
cally locating the station or line where the mistake occurred are illustrated in
Figure 10.7. The procedure is shown for a five-sided traverse, but can be used for
traverses having any number of sides.
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DATA

FILE

Figure 10.1,
//number of courses;

55 17 //azimuth of first course in traverse;

25 100 45 37 //first distance and angle at control station

03 231 23 43 //distance and angle for second course and station,

.35 17 12 59 //and so on

.24 89 03 28

51

126

647.
203.
720
610
285.

13 101

34 24

Example 10.4 //title line
1 = angles to the right; -1 = clockwise direction
degrees minutes seconds

10000.00 5000.00 //coordinates of first control station

OUTPUT FILE

respectively

e: Figure 10.1,

Titl

Angle Summary

Traverse Computation
Example 10.4 //title line Type:

Station Unadj. Angle Adj. Angle
1 100°45'37.0" 100°45'34.8"
2 231°23'43.0" 231°23'40.8"
3 17°12'59.0" 17°12'56.8"
4 89° 3'28.0" 89°03'25.8"
5 101°34'24.0" 101°34'21.8"
Angular misclosure (sec): 11"
Unbalanced
Course Length Azimuth Dep Lat
1-2 647.25 12655'17.0" 517.451 -388.815
2-3 203.03 17818'57.8" 5.966 -202.942
3-4 720.35 1531'54.6" 192.891 694.044
4-5 610.24 28435'20.4" -590.564 153.709
5-1 285.13 20609'42.2" -125.716 -255.919
Sum = 2,466.00 0.028 0.077
Balanced Coordinates
Dep Lat Point X Y
517.443 -388.835 1 10,000.00 5,000
5.964 -202.949 2 10,517.44 4,611
192.883 694.022 3 10,523.41 4,408
-590.571 153.690 4 10,716.29 5,102
-125.719 -255.928 5 10,125.72 5,255
Linear misclosure = 0.082
Relative Precision = 1 in 30,200
Area: 272,600 sqg. ft.

6.258 acres {if distance units

Adjusted Observations

are feet}

Data file and output file of traverse computations using WOLFPACK.

126°55'24"
178°19'00"

15°31'54"
284°35'14"
206°09'41"

100°45'42"
231°23'37"
17°12'54"
89°03'20"
101°34'28"

Polygon traverse
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Figure 10.7 Locating a distance (a) or angle (b) blunder.

In Figure 10.7(a), a blunder in the distance BC has occurred. Notice that
the mistake CC’ shifts the computed coordinates of the remaining stations in
such a manner that the azimuth of the linear misclosure line closely matches the
azimuth of the course BC that contains the mistake. If no other errors, random or
systematic, occurred in the traverse, there would be a perfect match in the direc-
tions of the two lines. However, since random errors are inevitable, the direction
of the course containing the mistake and that of the linear misclosure line never
matches perfectly, but will be close.

As shown in Figure 10.7(b), a mistake in an angle (such as at D) will rotate
the computed coordinates of the remaining stations. When this happens, the linear
misclosure line AA’ is a chord of a circle with radius AD. Thus, the perpendicular
bisector of the linear misclosure line will point to the center of the circle, which is
the station where the angular mistake occurred. Again, if no other errors occurred
during the observational process, this perpendicular bisector would point directly
to the station. Since other random errors are inevitable, it will most likely point
very near the station.

Additional observations and careful field practice will help isolate mistakes.
For instance, horizon closures often help isolate and eliminate mistakes in the field.
A cutoff line, such as CE shown dashed in Figure 9.1(a), run between two stations
on a traverse, produces smaller closed figures to aid in checking and isolating
blunders. Additionally, the extra observations will increase the redundancy in the
traverse, and hence the precision of the overall work. These additional observa-
tions can be used as checks when performing a compass rule adjustment or can be
included in a least squares adjustment, which is discussed in Chapter 16.

For those wishing to program the computations presented in this chapter,
the Mathcad worksheet TRAV.XMCD, which is available on the companion
website for this book, demonstrates the examples presented in this chapter.
Additionally, a traverse with a single angular blunder is used to demonstrate how
the perpendicular bisector of the misclosure line seemingly points directly to the
angle containing a 1-min blunder.
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H 10.17 MISTAKES IN TRAVERSE COMPUTATIONS

Some of the more common mistakes made in traverse computations are:

1.
2.

3,
4.

Failing to adjust the angles before computing azimuths or bearings;
Applying angle adjustments in the wrong direction and failing to check the
angle sum for proper geometric total;

Interchanging departures and latitudes, or their signs;

Confusing the signs of coordinates.

H H § § B 5§ 5 S S S S S S S S S S SR EEEEE®~N
PROBLEMS

Asterisks (*) indicate problems that have partial answers given in Appendix G.

10.1
10.2*

10.3

10.4

10.5%

10.6

10.7

10.8

10.9

10.10

10.11

What are the usual steps followed in adjusting a closed traverse?

The sum of seven interior angles of a closed-polygon traverse each read to the
nearest 3” is 899°59'39”. What is the misclosure, and what correction would be ap-
plied to each angle in balancing them by method 1 of Section 10.2?

Similar to Problem 10.2, except the angles were read to the nearest 2", and their
sum was 720°00"12" for a six-sided polygon traverse.

Similar to Problem 10.2, except the angles were read to the nearest 1”, and their
sum for a nine-sided polygon traverse was 1259°59'42".

Balance the angles in Problem 9.22. Compute the preliminary azimuths for each
course.

Balance the following interior angles (angles-to-the-right) of a five-sided
closed polygon traverse using method 1 of Section 10.2. If the azimuth of
side AB is fixed at 122°32'16", calculate the azimuths of the remaining sides.
A =105°13'14"; B = 92°36'06"; C = 67°15'22"; D = 217°24'30"; E = 57°30'38".
(Note:line BC bears NE.)

Compute departures and latitudes, linear misclosure, and relative precision for
the traverse of Problem 10.6 if the lengths of the sides (in feet) are as follows:
AB = 2157.34; BC = 1722.58; CD = 1318.15; DE = 1536.06;and EA = 1785.58.
(Note: Assume units of feet for all distances.)

Using the compass (Bowditch) rule, adjust the departures and latitudes of the
traverse in Problem 10.7 If the coordinates of station A are X = 20,000.00 ft and
Y = 15,000.00 ft, calculate (a) coordinates for the other stations, (b) lengths and
azimuths of lines AB and DE, and (c) the final adjusted angles at stations A and C.
Balance the following interior angles-to-the-right for a polygon traverse to
the nearest 1” using method 1 of Section 10.2. Compute the azimuths assum-
ing a fixed azimuth of 202°40'04” for line AB. A = 119°37'20"; B = 106°12'58";
C = 104°39'22"; D = 130°01'54"; E = 79°28'16". (Note: Line BC bears SE.)
Determine departures and latitudes, linear misclosure, and relative precision for
the traverse of Problem 10.9 if lengths of the sides (in meters) are as follows:
AB = 223.011; BC = 168.818; CD = 182.358; DE = 229.054;and EA = 207.930.
Using the compass (Bowditch) rule, adjust the departures and latitudes of the
traverse in Problem 10.10. If the coordinates of station A are X = 310,630.892 m
and Y = 121,311.411 m, calculate (a) coordinates for the other stations and, from
them, (b) the lengths and bearings of lines BC and EA, and (c) the final adjusted
angles at B and D.



10.12

10.13

10.14

10.15

10.16%*

10.17

Same as Problem 10.9, except assume line AB has a fixed azimuth of 147°36'25"
and line BC bears NE.

Using the lengths from Problem 10.10 and azimuths from Problem 10.12, calculate
departures and latitudes, linear misclosure, and relative precision of the traverse.
Adjust the departures and latitudes of Problem 10.13 using the compass
(Bowditch) rule, and compute coordinates of all stations if the coordinates of
station A are X = 243,605.596 m and Y = 25,393.201 m. Compute the length
and azimuth of line AC.

Compute and tabulate for the following closed-polygon traverse: (a) preliminary azi-
muths, (b) unadjusted departures and latitudes, (¢) linear misclosure, and (d) relative
precision. (Note: line BC bears NE.)

Length Interior Angle
Course Azimuth (m) (Right)
AB 179°50'39" E 2862.392 A = 120°05'50"
BC 4189.033 B = 91°57'50"
CD 3815.353 C = 121°44'06"
DE 3645.450 D = 82°02'08"
EA 3490.014 E = 124°10'11"

In Problem 10.15, if one side and/or angle is responsible for most of the error of
closure, which is it likely to be?

Adjust the traverse of Problem 10.15 using the compass rule. If the coordinates in
meters of point A are 6521.951 E and 7037072 N, determine the coordinates of all
other points. Find the length and bearing of line AC.

For the closed-polygon traverses given in Problem 10.18 through 10.19 (lengths in

feet), compute and tabulate: (a) unbalanced departures and latitudes, (b) linear misclosure,
(c) relative precision, and (d) preliminary coordinates if X, = 10,000.00 and Y, = 5000.00.
Balance the traverses by coordinates using the compass rule.

10.18

10.19

10.20

Course AB BC CD DA
Bearing N8°17'02"E  N87°02'05"E  S14°47'06"W  N68°43'20"W
Length 403.73 622.63 653.16 550.84
Azimuth 111°18'00” 25°03'12" 312°43'05" 205°05'04"
Length 385.94 1016.88 403.50 1164.49

Compute the linear misclosure, relative precision, and adjusted lengths and azi-
muths for the sides after the departures and latitudes are balanced by the compass
rule in the following closed-polygon traverse.

Course Length (m) Departure (m) Latitude (m)
AB 2119.287 —2014.119 +662.335
BC 4460.292 —1656.601 —4358.126
CA 5209.110 +3670.793 +3695.957

Problems 265
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10.21 The following data apply to a closed link traverse [like that of Figure 9.1(b)].
Compute preliminary azimuths, adjust them, and calculate departures and lati-
tudes, misclosures in departure and latitude, and traverse relative precision.
Balance the departures and latitudes using the compass rule, and calculate coor-
dinates of points B, C,and D. Compute the final lengths and azimuths of lines AB,
BC, CD,and DE.

Measured
Angle Adjusted Measured
Station (to the Right)  Azimuth Length (ft) X (ft) Y (ft)
AzMk;
342°09'28"
A 258°12'18" 2,521,005.86 379,490.84
200.55
B 215°02'53”
253.84
C 128°19'11”
205.89
D 237°34'05" 2,521,575.16  379,714.76
101°18'31"
AzMk,

10.22 Similar to Problem 10.21, except use the following data:

Measured
Angle Adjusted  Measured
Station (to the Right) Azimuth  Length (m) X (m) Y (m)
AzMk,
250°57'23"
A 253°03'38" 194,325.090 25,353.988
224111
B 91°32'06”
116.738
C 242°25'54"
231.566
D 111°12'02"
97217
E 295°31'13" 193,819.150  25,514.391
344°42'26"
AzMk,

The azimuths (from north of a polygon traverse are AB = 38°17'02",
BC = 121°26'30", CD = 224°56'59", and DA = 308°26'56". If one observed distance
contains a mistake, which course is most likely responsible for the closure conditions given
in Problems 10.23 and 10.24? Is the course too long or too short?



10.23* Algebraic sum of departures = 5.12 ft latitudes = —3.13 ft.

10.24 Algebraic sum of departures = —3.133 m latitudes = +2.487 m.

10.25 Determine the lengths and bearings of the sides of a lot whose corners have the
following X and Y coordinates (in feet): A (5000.00,5000.00); B (5289.67,5436.12);
C (4884.96,5354.54); D (4756.66, 5068.37).

10.26 Compute the lengths and azimuths of the sides of a closed-polygon traverse
whose corners have the following X and Y coordinates (in meters): A (8000.000,
5000.000); B (2650.000,4702.906); C (1752.028,2015.453); D (1912.303, 1511.635).

10.27 In searching for a record of the length and true bearing of a certain boundary line
which is straight between A and B, the following notes of an old random traverse
were found (survey by compass and Gunter’s chain, declination 4°45’W). Compute
the true bearing and length (in feet) of BA.

Course A-1 1-2 2-3 3-B
Magnetic bearing Due North  N20°00'E =~ Due East S46°30'E
Distance (ch) 11.90 35.80 24.14 12.72

10.28 Describe how a blunder may be located in a traverse.
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H 11.7 INTRODUCTION

Except for extensive geodetic control surveys, almost all other surveys are
referenced to plane rectangular coordinate systems. State plane coordinates (see
Chapter 20) are most frequently employed, although local arbitrary systems can
be used. Advantages of referencing points in a rectangular coordinate system are
as follows: (1) the relative positions of points are uniquely defined, (2) they can
be conveniently plotted, (3) if lost in the field, they can readily be recovered from
other available points referenced to the same system, and (4) computations are
greatly facilitated.

Computations involving coordinates are performed in a variety of surveying
problems. Two situations were introduced in Chapter 10, where it was shown that
the length and direction (azimuth or bearing) of a line can be calculated from the
coordinates of its end points. Area computation using coordinates is discussed in
Chapter 12. Additional problems that are conveniently solved using coordinates
are determining the point of intersection of (a) two lines, (b) a line and a circle,
and (c) two circles. The solutions for these and other coordinate geometry prob-
lems are discussed in this chapter. It will be shown that the method employed
to determine the intersection point of a line and a circle reduces to finding the
intersection of a line of known azimuth and another line of known length. Also,
the problem of finding the intersection of two circles consists of determining the
intersection point of two lines having known lengths. These types of problems
are regularly encountered in the horizontal alignment surveys where it is neces-
sary to compute intersections of tangents and circular curves, and in boundary
and subdivision work where parcels of land are often defined by straight lines
and circular arcs.
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B Figure 11.1
A An oblique triangle.

The three types of intersection problems noted above are conveniently
solved by forming a triangle between two stations of known position from which
the observations are made, and then solving for the parts of this triangle. Two
important functions used in solving oblique triangles are (1) the law of sines, and
(2) the law of cosines. The law of sines relates the lengths of the sides of a triangle
to the sines of the opposite angles. For Figure 11.1, this law is

BC  AC  AB
sinA sinB sinC
where AB, BC, and AC are the lengths of the three sides of the triangle ABC, and
A, B, and C are the angles. The law of cosines relates two sides and the included

angle of a triangle to the length of the side opposite the angle. In Figure 11.1, the
following three equations can be written that express the law of cosines:

(11.1)

BC? = AC? + AB> — 2(AC)(AB) cosA
AC? = BA + BC?* — 2(BA)(BC) cosB (11.2)
AB? = CB* + CA* — 2(CB)(CA) cosC

In some coordinate geometry solutions, the use of the quadratic formula
can be used. Examples where this equation simplifies the solution are discussed
in Sections 24.16.1 and 25.10. This formula, which gives the solution for x in any
quadratic equation of form ax® + bx + ¢ = 0, is

-b + VP — dac

x = » (11.3)

In the remaining sections of this chapter, procedures using triangles and
Equations (11.1) through (11.3) are presented for solving each type of standard
coordinate geometry problem.

H 11.2 COORDINATE FORMS OF EQUATIONS
FOR LINES AND CIRCLES

In Figure 11.2, straight line AB is referenced in a plane rectangular coordinate
system. Coordinates of end points A and B are X, Y4, Xp, and Y. Length AB
and azimuth Az, of this line in terms of these coordinates are

AB =V (Xz — X)2 + (Y — Y)? (11.4)
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Figure 11.2
Geometry of a
straight line in a
plane coordinate
system.

B(Xg, Yp)

P(X,,Y,)
Az, PP

—

BN AXgs Ya)
b
'

AX
=tan' | — | + n.
Azyp = tan (AY ) C (11.5q)

where AX is Xz — X, AYis AYy — AY,, Cis0°if both AX and AY are greater
than zero, C is 180° if AY is less than zero, and C is 360° if AX is less than zero,
and AY is greater than zero. Another frequently used equation for determin-
ing the azimuth of a course in software is known as the atan2 function, which is
computed as

VAX? + AY? — AY

AX

Azup = atan2(AY,AX) + D = 2tan1< ) + D (11.5b)

where D is the 0° if the results of the atan2 function are positive and 360° if the
results of the function are negative. The general mathematical expression for a
straight line is

Yp:mXp+ b (11.6)

where Ypis the Y coordinate of any point P on the line whose X coordinate is Xp, m
the slope of the line, and b the y-intercept of the line. Slope m can be expressed as

Yp — Yy
m = ﬁ = cot(Azup) (11.7)

From Equations (11.5a) and (11.7), it can be shown that
Az p = tan! <1> +C (11.8)
ZAB m .

The mathematical expression for a circle in rectangular coordinates can be
written as

R = (Xp— Xp)* + (Yp — Yp)* (11.9)
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Figure 11.3
Geometry of a
circle in a plane
coordinate system.

In Equation (11.9), and with reference to Figure 11.3, R is the radius of the
circle, Xy and Y, are the coordinates of the radius point O, and Xp and Y5 the co-
ordinates of any point P on the circle. The general form of the circle equation is

X2+ Y —2XpXp —2YpYp+f =0 (11.10)

where the radius of the circle is given as R = VX% + Y% — f. [Note: Although
Equations (11.9) and (11.10) are not used in solving problems in this chapter,
they are applied in later chapters.]

H 11.3 PERPENDICULAR DISTANCE FROM A POINT TO A LINE

A common problem encountered in boundary surveying is determining the
perpendicular distance of a point from a line. This procedure can be used to
check the alignment of survey markers on a block and is also useful in sub-
division design. Assume in Figure 11.4 that points A and B are on the line de-
fined by two block corners whose coordinates are known. Also assume that the

Y

P(XP: yP)

. Block corners

Figure 11.4
Perpendicular
distance of a point
from a line.

b
|
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coordinates of point P are known. The slope, m, and y-intercept, b, of line AB
are computed from the coordinates of the block corners. By assigning the X and
Y coordinate axes as shown in the figure, the coordinates of point A are X, = 0,
and Y, = b. Using Equations (11.4) and (11.5a), the length and azimuth of line
AP can be determined from its coordinates. By Equation (11.8), the azimuth of
line AB can be determined from the slope of the line AB. Now angle « can be
computed as the difference in the azimuth AP and AB, which for the situation
depicted in Figure 11.4 is

a = Azsp — AzZup (11.11)

Recognizing that ABP is a right triangle, length BP is
BP = APsin« (11.12)
where the length of AP is determined from the coordinates of points A and P

using Equation (11.4).

M Example 11.1

For Figure 11.4, assume that the XY coordinates of point P are (1123.82, 509.41)
and that the coordinates of the block corners are (865.49, 416.73) and (1557.41,
669.09). What is the perpendicular distance of point P from line AB? (All units
are in feet.)

Solution

Using the block corner coordinates and Equation (11.7), the slope of line AB is

669.09 — 416.73

M= e eps g — 0364724245

Rearranging Equation (11.6), the y-intercept of line AB is
b = 416.73 — 0.364724245(865.49) = 101.065 ft

By Equations (11.4) and (11.5a), the length and azimuth of line AP is

AP = V(112382 — 0)2 + (509.41 — 101.065)2 = 1195.708 ft

1123.82 = 0

e — + O — O ’ . 4
509.41 — 101.07 ) 0 001522

Azup = tanl(

By Equation (11.8), the azimuth of line AB is

1

- @ + ° — o ! i 4
0.364724245 ) 0 09757427

Azyp = tan’! <

Using Equation (11.11), angle « is
a = 70°01'52.2" — 69°57'42.7" = 0°04’09.5"
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From Equation (11.12), the perpendicular distance from point P to line AB is

BP = 1195.708 sin(0°04'09.5") = 1.45 ft

H 11.4 INTERSECTION OF TWO LINES,
BOTH HAVING KNOWN DIRECTIONS

Figure 11.5 illustrates the intersection of two lines AP and BP. Each has known
coordinates for one end point, and each has a known direction. Determining
the point of intersection for this type of situation is often called the direction-
direction problem. A simple method of computing the intersection point P is to
solve for the parts of oblique triangle ABP. Since the coordinates of A and B are
known, the length and azimuth of AB (shown dashed) can be determined using
Equations (11.4) and (11.5a), respectively. Then, from the figure it can be seen
that angle A is the difference in the azimuths of AB and AP, or

A = Azup — AZyp (11.13)
Similarly, angle B is the difference in the azimuths of BA and BP, or

B = Az, — Azpp (11.14)
With two angles of the triangle ABP computed, the remaining angle P is

P=180°—A - B (11.15)

Figure 11.5
Intersection of two
lines with known
directions.
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Substituting into Equation (11.1), and rearranging, the length of side AP is

sin(B)

AP = AB
sin(P)

(11.16)

With both the length and azimuth of AP known, the coordinates of P are

Xp = XA + AP sin AZAP
Yp =Y, + AP cos Azyp

(11.17)

A check on this solution can be obtained by solving for length BP, and
using it together with the azimuth of BP to compute the coordinates of P. The
two solutions should agree, except for round off.

It should be noted that if the azimuths for lines AP and BP are equal, then
the lines are parallel and have no intersection.

N Example 11.2

In Figure 11.5, assuming the following information is known for two lines, com-
pute coordinates Xp and Yp of the intersection point. (Coordinates are in feet.)

X, = 142507 Xz = 7484.80 Az,p = 76°04'24"
Y, = 197128 Yy = 5209.64 Azgp = 141°30'16"

Solution

By Equations (11.4) and (11.5a), the length and azimuth of side AB are

AB = V/(7484.80 — 1425.07)2 + (5209.64 — 1971.28)% = 6870.757 ft

7484.80 — 1425.07
5209.64 — 1971.28

Azap = tan—1< ) + 0° = 61°52'46.8"

By Equations (11.13) through (11.15), the three angles of triangle ABP are
A =76°04'24" — 61°52'46.8" = 14°11'37.2"
B = (180° + 61°52'46.8") — 141°30'16" = 100°22'30.8"
P = 180° — 14°11'37.2" — 100°22'30.8" = 65°25'52.0"
By Equation (11.16), length AP is

sin 100°22'30.8”
AP = 6870.757 m = 7431.224 ft

By Equations (11.17), the coordinates of station P are

Xp = 1425.07 + 7431.224 sin 76°04'24" = 8637.85 ft
Yp = 1971.28 + 7431.224 cos 76°04'24" = 3759.83 ft
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Check:

sin 14°11'37.2"
sin 65°25'52"

Xp = 7484.80 + (1852.426) sin 141°30'16” = 8637.85 v
Yp = 5209.64 + (1852.426)cos141°30'16" = 3759.83 v/

BP = 6870.757[ } = 1852.426 ft

H 11.5 INTERSECTION OF A LINE WITH A CIRCLE

Figure 11.6 illustrates the intersection of a line (AC) of known azimuth with a
circle of known radius (BP; = BP,). Finding the intersection for this situation
reduces to finding the intersection of a line of known direction with another line
of known length and is sometimes referred to as the direction-distance problem.
As shown in the figure, notice that this problem has two different solutions, but
as discussed later, the incorrect one can generally be detected and discarded.
The approach to solving this problem is similar to that employed in
Section 11.4; that is, the answer is determined by solving an oblique triangle. This
particular solution will demonstrate the use of the quadratic equation to obtain both
solutions. In Figure 11.6, the coordinates of B (the radius point of the circle) are
known. From the coordinates of points A and B, the length and azimuth of line AB
(shown dashed) are determined by employing Equations (11.4) and (11.5a), respec-
tively. Then angle A is computed from the azimuths of AB and AC as follows:

A =AZAP_AZAB (1].18)

Substituting the known values of A, AB, and BP into the law of cosines
[Equation (11.2)] yields

BP?> = AB> + AP?> — 2(AB)(AP)cos A (11.19)

Y

Figure 11.6
Intersection of a
line and a circle.
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In Equation (11.19), AP is an unknown quantity. Rearranging this equation
gives

AP? — 2(AB)(cosA)AP + (AB> — BP?) =0 (11.20)

Now Equation (11.20), which is a second-degree expression, can be solved
using the quadratic formula [Equation (11.3)] as follows:

p 2(AB) cos (A) + \/[Z(Af;) cosA]? — 4(AB> — BP?) (11.21)

In comparing Equation (11.21) to Equation (11.3), it can be seen that
a=1,b=2(AB) cosA and, c = (AB> — BP?). Because of the ¥ sign in the
formula, there are two solutions for length AP. Once these two lengths are deter-
mined, the possible coordinates of station P are

XPl = XA + APl Sin(AZAP) and YPl = YA + APl COS(AZAP)
11.22
XP2 = XA + Apzsin(AZAp) and YPZ = YA + AP2COS(AZAP).( )

If errors exist in the given data for the problem, or if an impossible design is at-
tempted, the circle willnotintersect the line. In this case, the terms under the radical in
Equation (11.21) will be negative, thatis, [2(AB) cos A)> — 4(AB*> — BP?) < 0.
It is therefore important when solving any of the coordinate geometry problems to
be alert for these types of potential problems.

The sine law can also be used to solve this problem. However, care must
be exercised when using the sine law since the two solutions will not be read-
ily apparent. The procedure of solving this problem using the sine law is as
follows:

1. Compute the length and azimuth of line AB from the coordinates using
Equations (11.4) and (11.5a), respectively.

2. Compute the angle at A using Equation (11.18).

3. Using the sine law solve for the angles at Py as

ABsin A
nP=——— 11.23
sin BP ( )

4. Note that the sine function has the relationship sin(x) = sin(180° — x).
Thus, the solution for the angle at B is

B, = 180° — (A + P)
B,=P-A

(11.24)

5. Using the two solutions for angle B, determine the azimuth of line BP as

Az = Azgqs — B
BP1 BA 1 (11.25)

Azpgpy = Azpa — B>
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6. Finally using the two azimuths and the observed length of BP determine
the two possible solutions for station P as

XPI = XB + BP Sin(AZBPl) and YPl = YB + BP Sin(AZBpl)
11.26
XPZ = XB + BP Sin(AZBPQ) and YPZ = YB + BP Sin(AZsz) ( )

M Example 11.3

In Figure 11.6, assume the coordinates of point A are X = 100.00 and Y = 130.00,
and that the coordinates of point B are X = 500.00, and Y = 600.00. If the
azimuth of AP is 70°42'36", and the radius of the circle (length BP) is 350.00, what
are the possible coordinates of point P? (Note: linear units are feet.)

Solution

By Equations (11.4) and (11.5a), the length and azimuth of AB are

AB = V(500 — 100)? + (600 — 130)2 = 617.171 ft

500 — 100
— 71 + O — O ! . "
Azyp = tan (600 — 13()) 0 40°23'59.7
By Equation (11.18), the angle at A is

A = 70°42'36" — 40°23'59.7" = 30°18'36.3"

Substituting appropriate values according to Equation (11.20), the quadratic
equation coefficients are

a=1
b = —2(617.171)cos 30°18'36.3" = —1065.616
¢ = 617.171% — 350.00> = 258,400.043

Substituting these values into Equation (11.21) yields

po 1065.616 = V/1065.616* — 4(258,400.043)
N 2

1065.616 = 319.276
2

373.170 or 692.446

Using the azimuth and distances for AP, the two possible solutions for the coor-
dinates of P are

Xpy = 100.00 + 373.170 sin 70°42'36" = 452.22 ft
Yp; = 130.00 + 373.170 cos 70°42'36" = 253.28 ft

277
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Figure 11.7
Intersection of two
circles.

or

Xp, = 100.00 + 692.446 sin 70°42'36" = 753.57 ft
Ypy, = 130.00 + 692.446 cos 70°42'36" = 358.75 ft

In solving a quadratic equation, the decision to add or subtract the value
from the radical can be made on the basis of experience, or by using a carefully
constructed scaled diagram, which also provides a check on the computations.
One answer will be unreasonable and should be discarded. An arithmetic check
is possible by solving for the two possible angles at B to P in triangle ABP and
determining the coordinates of P from station B, or by solving the problem using
the second procedure. Readers should verify that the same solution can be ob-
tained using Equations (11.23) through (11.26).

H 11.6 INTERSECTION OF TWO CIRCLES

In Figure 11.7, the intersection of two circles is illustrated. Note that the circles are
obtained by simply radiating two distances (their radius values R4 and Rp) about
their radius points A and B. As shown, this geometry again results in two intersec-
tion points, P; and P,. As with the two previous cases, these intersection points can
again be located by solving for the parts of oblique triangle ABP. In this situation,
two sides of the triangle are the known radii, and thus the problem is often called
the distance-distance problem. The third side of the triangle, AB, can be computed
from known coordinates of A and B, or the distance can be observed.

The first step in solving this problem is to compute the length and azi-
muth of line AB using Equations (11.4) and (11.5a). Then angle A can be deter-
mined using the law of cosines (Equation 11.2). As shown in Figure 11.7, the two
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solutions for P at either P or P, are derived by either adding or subtracting angle
A from the azimuth of line AB to obtain the direction of AP. By rearranging
Equation (11.2), angle A is

[ (AB)* + (AP)* — (BP)?

A = cos 2(AB)(AP) (11.27)
Thus, the azimuth of line AP is either
Azypr = Azyp + A (11.28)
Azgpy = Azyp — A
The possible coordinates of P are
Xpy = X4 + AP;sin(Azypy) and Yp = Y, + AP, cos(Azapr) (11.29)

Xp2 = XA + APz Sin(AZApz) and Yp2 = YA + AP2 COS(AZApz)

The decision of whether to add or subtract angle A from the azimuth of
line AB can be made on the basis of experience, or through the use of a carefully
constructed scaled diagram. One answer will be unreasonable, and should be dis-
carded. As can be seen from Figure 11.7, there will be no solution if length of AB
is greater than the sum of R, and Rp.

M Example 11.4

In Figure 11.7, assume the following data (in meters) are available:

X, = 285128 Y, =29940 R, = 2000.00
Xp = 3898.72 Yz = 2870.15 Ry = 1500.00

Compute the X and Y coordinates of point P.

Solution

By Equations (11.4) and (11.5a), the length and azimuth of AB are

AB = \/(3898.72 — 2851.28)2 + (2870.15 — 299.40)% = 2775.948 m

3898.72 — 2851.28
2870.15 — 299.40

Az = tan1< ) + 0° = 22°10'05.6"

By Equation (11.27), A is

s cos—1<2775'9482 + 2000.00° — 1500.007

= 10 ! . "
2(2775.948)2000.00 ) 31°36'53.6

279
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By combining Equations (11.28) and (11.29), the possible solutions for P are

Xp
Yp

= 2851.28 + 2000.00 sin(22°10'05.6" + 31°36'53.6") = 4464.85 m
= 299.40 + 2000.00 cos(22°10'05.6" + 31°36'53.6") = 1481.09 m

1

or

Xp, = 2851.28 + 2000.00 sin(22°10"05.6” — 31°3653.6") = 2523.02 m
Yp, = 299.40 + 2000.00 cos(22°10"05.6” — 31°36'53.6") = 2272.28 m

An arithmetic check on this solution can be obtained by determining the
angle and coordinates of P from station B.

On the companion website for this book at http://www.pearsonhighered
.com/ghilani are instructional videos that can be downloaded. The video COGO [
demonstrates the intersection problems presented in the previous sections.

H 11.7 THREE-POINT RESECTION

This procedure locates a point of unknown position by observing horizontal
angles from that point to three visible stations whose positions are known. The
situation is illustrated in Figure 11.8, where a total station instrument occupies
station P and angles x and y are observed. A summary of the method used to
compute the coordinates of station P follows (refer to Figure 11.8):

1. From the known coordinates of A, B, and C calculate lengths a and ¢, and
angle « at station B.

2. Subtract the sum of angles x, y, and « in figure ABCP from 360° to obtain
the sum of angles A + C

A+ C=360°— (a+x+y) (11.30)

3. Calculate angles A and C using the following:

A=t _1( asinxsin(A + C) )
= tan

csiny + asinxcos(A + C)
csinysin(A + C) >
asinx + c¢sinycos(A + C)

(11.31)

C = tan‘1< (11.32)

4. From angle A and azimuth AB, calculate azimuth AP in triangle ABP.
Then solve for length AP using the law of sines, where @; = 180° — A — x.
Calculate the departure and latitude of AP followed by the coordinates of P.

5. In the manner outlined in step 4, use triangle BCP to calculate the coordi-
nates of P to obtain a check.
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11.7 Three-Point Resection

Figure 11.8
X The resection
problem.

M Example 11.5

In Figure 11.8, angles x and y were measured as 48°53’12" and 41°20'35", respec-
tively. Control points A, B, and C have coordinates (in feet) of X, = 5721.25,
Y, = 21,802.48, Xp = 13,542.99, Yy = 22,497.95, Xc = 20,350.09, and Y. =
24,861.22. Calculate the coordinates of P.

Solution

1. By Equation (11.4)

a = V(20350.09 — 13,542.99)? + (24,861.22 — 22,497.95)% = 7205.67 ft
¢ = V(13,542.99 — 5721.25) + (22,497.95 — 21,802.48) = 7852.60 ft

2. By Equation (11.5a)

P _1< 13.542.99 — 572125
L = M0 55 497.95 — 21.802.48

> + 0° = 84°55'08.1"
o tan_1<20,350.09 — 13,542.99
ZBc 2486122 — 22.497.95

3. Calculate angle o,

a = 180° — (70°51'15.0" — 84°55'08.1") = 194°03'53.1"

) + 0° = 70°51'15.0"

4. By Equation (11.30)
A + C = 360° — 194°03'53.1" — 48°53'12" — 41°20'35" = 75°42'19.9"

281



282 COORDINATE GEOMETRY IN SURVEYING CALCULATIONS

5. By Equation (11.31)

A:

tan‘l( 7250.67 sin 48°53'12" sin 75°42'19.9" )
7852.60 sin 41°20'35" + 7205.67 sin 48°5312" cos 75°42'19.9"
= 38°51'58.7"

6. By Equation (11.32)

C = tanl( 7852.60 sin 41°20'35" sin 75°42'19.9" >
7205.67 sin 48°53"12" + 7852.60 sin 41°20'35" cos 75°42'19.9"
= 36°50'21.2"

(A + C = 38°51'58.7" + 36°50'21.2" = 75°42'19.9"V")
7. Calculate angle a4
a; = 180° — 38°51'58.7" — 48°53'12" = 92°14'49.3"
8. By the law of sines

p= sin 92°14'49.3"(7852.60) 10,414.72 ft
- sin 48°53/12" -

AZ p = AZ p + A = 84°55'08.1" + 38°51'58.7" = 123°47'06.8"

9. By Equations (10.1) and (10.2)

Depap = 10,414.72 sin 123°47'06.8" = 8655.97 ft
Lat,p = 10,414.72 cos 123°47'06.8" = —5791.43 ft

10. By Equation (10.7)

Xp = 5721.25 + 8655.97 = 14,377.22 ft
Yp = 21,802.48 — 5791.43 = 16,011.05 ft

11. As a check, triangle BCP was solved to obtain the same results.

The three-point resection problem just described provides a unique so-
lution for the unknown coordinates of point P, that is, there are no redundant
observations, and thus no check can be made on the observations. This is actu-
ally a special case of the more general resection problem, which provides redun-
dancy and enables a least-squares solution. In the general resection problem, in
addition to observing the angles x and y, distances from P to one or more control
stations could also have been observed. Other possible variations in resection that
provide redundancy include observing (a) one angle and two distances to two
control stations; (b) two angles and one, two, or three distances to three control
points; or (c) the use of more than three control stations. Then all observations
can be included in a least-squares solution to obtain the most probable coordinates
of point P. Resection has become a popular method for quickly orienting total
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station instruments, as discussed in Section 23.9. The procedure is convenient be-
cause these instruments can readily observe both angles and distances, and their
on-board microprocessors can instantaneously provide the least-squares solution
for the instrument’s position.

It should be noted that the resection problem will not have a unique solu-
tion if points A, B, C, and P define a circle. Selecting points B and P so that they
both lie on the same side of a line connecting points A and C avoids this problem.
Additionally, the accuracy of the solution will decrease if the observed angles
x and y become small. As a general guideline, the observed angles should be
greater than 30° for best results.

H 11.8 TWO-DIMENSIONAL CONFORMAL
COORDINATE TRANSFORMATION

It is sometimes necessary to convert coordinates of points from one survey co-
ordinate system to another. This happens, for example, if a survey is performed
in some local-assumed or arbitrary coordinate system, and later it is desired to
convert it to state plane coordinates. The process of making these conversions
is called coordinate transformation. If only planimetric coordinates (i.e., Xs and
Ys) are involved, and true shape is retained, it is called two-dimensional (2D)
conformal coordinate transformation.

The geometry of a 2D conformal coordinate transformation is illustrated
in Figure 11.9. In the figure, X-Y represents a local-assumed coordinate system,

Figure 11.9
Geometry of the
two-dimensional
coordinate
transformation.
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and E-N a state plane coordinate system. Coordinates of points A through D
are known in the X-Y system and those of A and B are also known in the E-N
system. Points such as A and B, whose positions are known in both systems, are
termed control points. At least two control points are required in order to deter-
mine E-N coordinates of other points such as C and D.

In general, three steps are involved in coordinate transformation: (1) rota-
tion, (2) scaling, and (3) translation. As shown in Figure 11.9, rotation consists
in determining coordinates of points in the rotated X'-Y’ axis system (shown
dashed). The X'-Y" axes are parallel with E-N but the origin of this system coin-
cides with the origin of X-Y. In the figure, the rotation angle 0, between the X-Y
and X'-Y’ axis systems, is

6=a-p (11.33)

In Equation (11.33), azimuths, « and B, are calculated from the two sets of
coordinates of control points A and B using Equation (11.5a) as follows:

Xz — X
tan1<BA> + C

‘T Y5 — Y

_ EB_EA>
=tan’!( — =)+ C
P an <NB_NA

where as explained in Section 11.2, C places the azimuth in the proper
quadrant.

In many cases, a scale factor must be incorporated in coordinate transfor-
mations. This would occur, for example, in transforming from a local arbitrary
coordinate system into a state plane coordinate grid. The scale factor relating any
two coordinate systems can be computed according to the ratio of the length of
a line between two control points obtained from E-N coordinates to that deter-
mined using X-Y coordinates. Thus,

= \/(EB — E5)* + (Np — Ny)? (11.34)
V(X — Xa)2 + (Y5 — Yy)?

(Note: 1f the scale factor is unity, the two surveys are of equal scale, and it
can be ignored in the coordinate transformation.)

With 6 and s known, scaled and rotated X’ and Y’ coordinates of any point,
for example, A, can be calculated from

X'y = sX cos6 — sY,sin 6
A A A (11.35)
Y4 = sX,sin6 + sY,cos 6

Individual parts of the rotation formulas [right-hand sides of Equations
(11.35)] are developed with reference to Figure 11.10. Translation consists of
shifting the origin of the X'-Y” axes to that in the E-N system. This is achieved by
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SNl Ly Y __ X/
F—XA cos 0 .

adding translation factors Ty and Ty (see Figure 11.9) to X’ and Y’ coordinates
to obtain E and N coordinates. Thus, for point A

NA:Y;"FTY

(11.36)

Rearranging Equations (11.36) and using coordinates of one of the control
points (such as A), numerical values for Ty and 7y can be obtained as

TX:EA_XTA
Ty:NA_Y;‘

(11.37)

The other control point (i.e., point B) should also be used in Equations (11.37)
to calculate Ty and 7y and thus obtain a computational check.

Substituting Equations (11.35) into Equations (11.36) and dropping sub-
scripts, the following equations are obtained for calculating £ and N coordinates
of noncontrol points (such as C and D) from their X and Y values:

E =s5sXcosh —sYsing + Ty
N = sXsinf + sYcosO + Ty

(11.38)

In summary, the procedure for performing 2D conformal coordinate trans-
formations consists of (1) calculating rotation angle 6 using two control points,
and Equations (11.5) and (11.33); (2) solving Equations (11.34), (11.35), and
(11.37) using control points to obtain scale factor s, and translation factors Ty
and Ty; and (3) applying 6, s, and Ty and Ty in Equations (11.38) to transform
all noncontrol points. If more than two control points are available, an improved
solution can be obtained using least squares. Coordinate transformation calcula-
tions require a significant amount of time if done by hand, but are easily per-
formed when programmed for computer solution.

M Example 11.6

In Figure 11.9, the following E-N and X-Y coordinates are known for points A
through D. Compute E and N coordinates for points C and D.

Figure 11.10
Detail of rotation
formulas in
two-dimensional
conformal
coordinate
transformation.
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State Plane Coordinates (ft) Arbitrary Coordinates (ft)
Point E N X Y
A 194,683.50 99,760.22 2848.28 2319.94
B 196,412.80 102,367.61 5720.05 3561.68
C 3541.72 897.03
D 6160.31 1941.26

Solution

1. Determine «, 8, and 6 from Equations (11.5) and (11.33)

3561.68 — 2319.94

_1<196,412.80 — 194,683.50
k 102,367.61 — 99,760.22

0 = 66°36'59.7" — 33°33'12.7" = 33°03'47"

B <5720.05 - 2848.28> +0° = 66°36'59.7"

) + 0° = 33°33'12.7"

2. Compute the scale factor from Equation (11.34)

V/(196,412.80 — 194,683.50)% + (102,367.61 — 99,860.22)2
V/(5720.05 — 2848.28)% + (3561.68 — 2319.94)2
312873
3128.73
= 1.00000

s =

(Since the scale factor is 1, it can be ignored.)
3. Determine Ty and 7y from Equations (11.35) through (11.37) using
point A
X'y = 2848.28 cos 33°03'47" — 2319.94 sin 33°03'47" = 1121.39 ft
Y, = 2848.28 sin 33°03'47" + 2319.94 cos 33°03'47" = 3498.18 ft
Ty = 194,683.50 — 1121.39 = 193,562.11 ft
Ty = 99,760.22 — 3498.18 = 96,262.04 ft
4. Check Ty and Ty using point B
s = 5720.05 cos 33°03'47" — 3561.68 sin 33°03'47" = 2850.69 ft
Y's = 5720.05 sin 33°03'47" + 3561.68 cos 33°03'47" = 6105.58 ft

Ty = 196,412.80 — 2850.69 = 193,562.11 ft v/
Ty = 102,367.61 — 6105.58 = 96,262.03 ft v/
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5. Solve Equations (11.38) for E and N coordinates of points C and D

Ec = 3541.72 cos 33°03'47" — 897.03 sin 33°03'47" + 193,562.11

196,040.93 ft

N¢ = 3541.72 sin 33°03'47" + 897.03 cos 33°03'47" + 96,262.04
= 98,946.04 ft

Ep = 6160.31 cos 33°03'47" — 1941.26 sin 33°03'47" + 193,562.11
=197,665.81 ft

Np = 6160.31 sin 33°03'47" + 1941.26 cos 33°03'47" + 96,262.04
=101,249.78 ft

With some simple modifications, Equations (11.38) can be rewritten in

matrix form as
X TX E UE:|
R + = + 11.39
* {Y} {TJ {N] LN (-9

where the rotation matrix, R, is
cosf —sinf
R = [ ) } (11.40)
sinf cos6

Also vg and vy are residual errors which must be included if more than two con-
trol points are available. Scaling the rotation matrix by s, and substituting a for
(scos ), b for (ssind), c for Ty, and d for Ty, Equation (11.39) can be rewritten

IR R ma

With Equation (11.41), a least-squares adjustment (see Chapter 16) can be per-
formed when more than two points are common in both coordinate systems.
The program WOLFPACK, which is on the companion website for this book
at http://www.pearsonhighered.com/ghilani, has this software option under the
coordinate computations submenu. It will determine the unknown parameters
for the 2D conformal coordinate transformation, and transform any additional
points. The data file and the results of the adjustment for Example 11.6 are
shown in Figure 11.11.

Note that the transformed X and Y coordinates of points C and D obtained
using the computer program agree (except for round off) with those computed in
Example 11.6. Note also that in this solution with two control points, there are no
redundancies and thus the residuals V.X and VY are zeros. Also on the companion
website are instructional videos that can be downloaded. The video COGO II
develops the equations presented in this section and demonstrates the solution to
Example 11.6.
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DATA FILE
Example 11.6

{title line}
{number of control points}
194683.50 99760.22 2848.28 2319.94 {Point ID, SPCS E and N, arbitrary X and Y}
196412.80 102367.61 5720.05 3561.68
3561.68 897.03 {
6160.31 1941.26

Point ID, arbitrary system X and Y}

gnw®»N

RESULTS OF ADJUSTMENT

Two Dimensional Conformal Coordinate Transformation of File: Example 11.6

ax - by + Tx = X + VX
bx + ay + Ty = ¥ + VY

Transformed Control Points

POINT X Y VX \24
A 194,683.50 099,760.22 -0.000 -0.000
B 196,412.80 102,367.61 0.000 0.000

Transformation Parameters:

a = 0.83807009
b = 0.54556070
Tx = 193562.110

Ty = 96262.038

Rotation = 3303'46.9"
Scale = 1.00000

***kk%x**  Unique Solution Obtained ! ****x*x
POINT x y X Y
C 3,541.72 897.03 196,040.94 98,946.04

D 6,160.31 1,941.26 197,665.81 101,249.77

Figure 11.11 Data file and results of adjustment for Example 11.6 using WOLFPACK.

H 11.9 INACCESSIBLE POINT PROBLEM

It is sometimes necessary to determine the elevation of a point that is inaccessible.
This task can be accomplished by establishing a baseline such that the inaccessible
point is visible from both ends. As an example, assume that the elevation of the
chimney shown in Figure 11.12 is desired. Baseline AB is established, its length
measured, and the elevations of its end points determined. Horizontal angles A
and B, and altitude angles v; and v, are observed as shown in the figure. Points
1, and I are vertically beneath P. Using the observed values, the law of sines is
applied to compute horizontal lengths Al and Bl of triangle ABI as

Al — ABsin(B) _ ABsin(B) 1149

A~ Gn[180° — (A + B)] _ sin(A + B) ()
ABsin(A)

= (11.43)

Bl
B sin(A + B)
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hi,

Length /P can be derived from either triangle AI4P, or BIgP as

IAP:AIA tan(vl) (1].44)
IBP = BIB tan(vz) (1].45)
The elevation of point P is computed as the average of the heights from the

two triangles, which may differ because of random errors in the observation of
v and v,, as

IAP + ElE'UA + hlA + IBP + EleUB + hlB
2

Elevp = (11.46)

In Equation (11.46), hi, and hig are the instrument heights at A and B,
respectively.

M Example 11.7

Stations A and B have elevations of 298.65 and 301.53 ft, respectively, and the
instrument heights at A and B are hiy = 5.55 and hig = 5.48 ft. The other field
observations are
AB = 136.45 ft
A = 44°12'34" B = 39°26'56"
v = 8°12'47" v, = 5°50'10"

What is the elevation of the chimney stack?

Solution

By Equations (11.42) and (11.43), the lengths of Al and Bl are

Figure 11.12
Geometry of the
inaccessible point
problem.
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Figure 11.13
Geometry of the
three-dimensional
two-point resection
problem.

136.45 sin 39°26/56"
Al = = 87.233ft
A7 sin(44°12'34" + 39°26/56")

136.45 sin 44°12'34"
Bl = = 95.730 ft
B sin(44°12'34" + 39°26'56")

From Equation (11.44), length I, P is

1,P = 87.233 tan 8°12'47" = 12.591 ft
And from Equation (11.45), length IgzP is

IgP = 95.730 tan 5°50"10" = 9.785 ft

Finally, by Equation (11.46), the elevation of point P is

. + .05 + 555 + 9. + S3 + 5.
Elevp=12591 298.65 5552 9.785 + 301.53 548:316.79ft

H 11.10 THREE-DIMENSIONAL TWO-POINT RESECTION

The three-dimensional coordinates Xp, Yp, and Zp of a point such as P of
Figure 11.13 can be determined based upon angle and distance observations
made from that point to two other stations of known positions. This procedure
is convenient for establishing coordinates of occupied stations on elevated
structures, or in depressed areas such as in mines. In Figure 11.13, for exam-
ple, assume that a total station instrument is placed at point P, whose Xp, Yp,
and Zp coordinates are unknown, and that control points A and B are visible
from P. Slope lengths PA and PB are observed along with horizontal angle
v and vertical angles v; and v,. The computational process for determining
Xp, Yp, and Zp is as follows.

hra AXy, Vi, Z,) Xz Yz Zp)B  hrg
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1. Determine the length and azimuth of AB using Equations (11.4) and
(11.5).
2. Compute horizontal distances PC and PD as

PC = PA cos(v;)

(11.47)
PD = PB cos(v,)

where C and D are vertically beneath A and B, respectively.
3. Using Equation (11.3), calculate horizontal angle DCP as

AB? + PC? — PD?
DCP = cosl< >

2AB)PC (11.48)

4. Determine the azimuth of line AP as
Azpp = Azyp + DCP (11.49)

5. Compute the planimetric (X-Y) coordinates of point P as

XP = XA + PCSinAZAP

(11.50)
Yp =Y, + PCcos Az,p

6. Determine elevation differences AC and BD as

AC = PAssin(v;)

(11.51)
BD = PBsin(v,)

7. And finally calculate the elevation of P as

ElevPl = ElevA + hrA — AC — /’llp
Elevp, = Elevg + hrg — BD — hip (11.52)
Elevpl + Ele’Upz

Elevp = )

In Equations (11.52), hip is the height of instrument above point P, and hr,
and hrp are the reflector heights above stations A and B, respectively.

M Example 11.8

For Figure 11.13, the X, Y, and Z coordinates (in meters) of station A are
7034.982, 5413.896, and 432.173, respectively, and those of B are 7843.745,
5807.242, and 428.795, respectively. Determine the three-dimensional
position of a total station instrument at point P based upon the following
observations.

v = 24°33'42" PA = 667413 m hry, = 1.743m -y = 77°48'08"
v, = 26°35'08" PB = 612.354m hrg = 1.743m  hip = 1.685 m
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Solution

1. Using Equations (11.4) and (11.5), determine the length and azimuth of

line AB.
AB = \/(7843.745 — 7034.982)% + (5807.242 — 5413.896)> = 899.3435 m
7843745 — 7034.982
Azup = tan! + 0° = 64°03'49.6"
%aB <5807.242 - 5413.896> ?

2. By Equations (11.47), determine lengths PC and PD.

PC = 667.413 cos(24°33'42") = 607.0217 m
PD = 612.354 cos(26°35'08") = 547.6080 m

3. From Equation (11.48), compute angle DCP.

899.34352 + 607.0217% — 547.6080%
2(899.3435)607.0217

DCP = cos-1< ) = 36°31'24.2"

Note that this computed angle can be checked by using the law of sines,
Equation (11.1), as

547.6080 sin 77°48'08"
899.3435

DCP = sin1< ) = 36°31'242"/

4. Using Equation (11.49), find the azimuth of line AP.
Az p = 64°03'49.6" + 36°31'24.2" = 100°35'13.8"
5. From Equations (11.50), compute the X-Y coordinates of point P.

Xp = 7034.982 + 607.0217 sin 100°35'13.8” = 7631.670 m
Yp = 5413.896 + 607.0217 cos 100°35'13.8" = 5302.367 m

6. By Equations (11.51), compute the vertical distances of AC and BD.

AC = 667.413 sin 24°33'42" = 277425 m
BD = 612.354 sin 26°35'08" = 274.049 m

7. And finally, using Equations (11.52), compute and average the elevation of
point P.

Elevp = 432.173 + 1.743 — 277.425 — 1.685 = 154.806 m
Elevp = 428.795 + 1.743 — 274.049 — 1.685 = 154.804 m
Average Elevation = 154.805 m




H 11.11 SOFTWARE

Coordinate geometry provides a convenient approach to solving problems
in almost all types of modern surveys. Many problems that otherwise appear
difficult can be greatly simplified and readily solved by working with coordi-
nates. Although the calculations are sometimes rather lengthy, this has become
inconsequential with the advent of computers and data collectors. Many soft-
ware packages are available for performing coordinate geometry calculations.
However, people involved in surveying (geomatics) must understand the basis
for the computations, and they must exercise all possible checks to verify the
accuracy of their results.

The Mathcad worksheet C11.xmcd, which is available on the companion
website for this book at http://www.pearsonhighered.com/ghilani, demonstrates
the programming of each example shown in this chapter. This software demon-
strates the step-by-step approach in solving these problems. Programming of
these problems in a higher-level programming language eliminates many of the
mistakes that can occur when solving these problems by conventional methods.
Figure 11.14 shows the coordinate geometry submenu from the WOLFPACK
program, which is also available on the companion website. Also note in the
figure, the menu options for a 2D conformal coordinate transformation, and a
quadratic equation solver. The 2D conformal coordinate transformation requires
a data file. The format for this file is discussed in the WOLFPACK help sys-
tem, which is shown in Figure 11.15. This file can be created in a text editor.
WOLFPACK contains an editor for this purpose. Its solution is also demon-
strated in the Mathcad worksheet C171-8. XM CD, which is also available on the
companion website for this book. The software demonstrates the least-squares
solution of the example in Section 11.8.

Because of the nature of trigonometric functions, computations in some
coordinate geometry problems will become numerically unstable when the an-
gles involved approach the cardinal directions of 0°, 90°, 180°, or 270°. Thus, if
coordinate geometry is intended to be used to determine the locations of points,
it is generally prudent to design the survey so that triangles used in the solution

i Window Hep

Obligue Triangles »
Forvard..
Map projections 4 Inverse 4
Area
Astronomical Observations
Data Reductions for Mapping  * Geocentric Coordinates »

11.11 Software 293

Geodetic Computations »
Coordinate Geometry . 2 Drectbkn-Dl'chon Intersection
Curve Computations 4 & 1: Distancd-Distance Intersection

I Traverse Computations... 2D Conformal Coord. Trans... A 3 Angle-Angle Intersection

Least Squares Adjustment »| 3D Conformal Coord. Trans... "\ 4: Direction-Distance Intersection
4\ 5: Angle - Distance Intersection

Quadratic equation solver... W 6: Three-point Resection

7: Inaccessible Point

Photogrammetry 4

Figure 11.14 Coordinate geometry submenu from WOLFPACK program.
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Two-Dimensional Conformal Coordinate
Transformation

This transformation is used to take one survey in one coordinate system into another survey using a different coordinate
system. Equal scale computed for transformation. The adjustment requires two points known in both coordinate systems.

NOTE: Spaces and commas are treated as format delimiters in file. Station identifiers must not contain spaces or commas
and are limited to ten characters.

FILE FORMAT
TITLE (up to 80 characters)
Number of control points
Point id; x,y of control; x,y measured: [optional: sx, sy]
e.g./ A, 21101067.0, 104400.6, 171.922, 47.078
Point id, x,y of measured for points to be transformed
e.g./ 1, 198.185, 50.980

Sample File
Problem from Chapter 19 of Elementary Surveying Text.

2319.94
3561.68

194683.50, 99760.22,
196412.80, 102367.61,
c, 3541.72, 897.03
D, 6160.31, 1541.26

2848.28,
5720.05,

Figure 11.15 Help screen for two-dimensional conformal coordinate transformation from WOLFPACK program.

have angles between 30° and 60°. Also, it is important to observe good surveying
practices in the field, such as taking the averages of equal numbers of direct and
reverse angle observations, and exercising other checks and precautions.

As will be seen later, coordinate geometry plays an important role in
computing highway alignments, in subdivision designs, and in the operation of
geographic information systems.

PROBLEMS

Asterisks (*) indicate problems that have partial answers given in Appendix G.

11.1 The X and Y coordinates (in meters) of station Shore are 379.241 and 819.457, respec-
tively, and those for station Rock are 437.854 and 973.482, respectively. What are the
azimuth, bearing, and length of the line connecting station Shore to station Rock?

11.2 Same as Problem 11.1, except that the X and Y coordinates (in feet) of Shore are
2058.97 and 4831.59, respectively, and those for Rock are 1408.03 and 6980.06,
respectively.

11.3* What are the slope, and y-intercept for the line in Problem 11.1?

11.4 What are the slope, and the y-intercept for the line in Problem 11.2?

11.5%* If the slope (XY plane) of a line is 0.800946, what is the azimuth of the line to the
nearest second of arc? (XY plane)

11.6 If the slope (XY plane) of a line is —0.689443, what is the azimuth of the line to the
nearest second of arc? (XY plane)

11.7* What is the perpendicular distance of a point from the line in Problem 11.1, if the
X and Y coordinates (in meters) of the point are 422.058 and 932.096, respectively?



11.8

11.9*

11.10

11.11

11.12

11.13*

11.14

11.15%

11.16

11.17

What is the perpendicular distance of a point from the line in Problem 11.2, if the
X and Y coordinates (in feet) of the point are 1848.30 and 5528.73, respectively?
A line with an azimuth of 105°46'33” from a station with X and Y coordinates of
5885.31 and 5164.15, respectively, is intersected with a line that has an azimuth of
200°31'24" from a station with X and Y coordinates of 7337.08 and 5949.99, respec-
tively. (All coordinates are in feet.) What are the coordinates of the intersection point?
A line with an azimuth of 164°28'17” from a station with X and Y coordinates of
2443.94 and 3563.84, respectively, is intersected with a line that has an azimuth of
81°19'04” from a station with X and Y coordinates of 2126.86 and 3235.93, respec-
tively. (All coordinates are in feet.) What are the coordinates of the intersection
point?

Same as Problem 11.9 except that the bearing of the first line is S22°12'04"E and
the bearing of the second line is S38°12'11"W.

In the accompanying figure, the X and Y coordinates (in meters) of station A
are 2084.274 and 5579.124, respectively, and those of station B are 3012.870 and
3589.315, respectively. Angle BAP was measured as 310°20'25" and angle ABP was
measured as 44°21'58". What are the coordinates of station P?

Problems 11.12 through 11.16
Field conditions for intersections.

In the accompanying figure, the X and Y coordinates (in feet) of station A are
1248.16 and 3133.35, respectively, and those of station B are 1509.15 and 1101.89,
respectively. The length of BP is 265745 ft, and the azimuth of line AP is 98°25'00".
What are the coordinates of station P?

In the accompanying figure, the X and Y coordinates (in feet) of station A are
3539.51 and 5971.30, respectively, and those of station B are 3401.79 and 2708.06,
respectively. The length of AP is 198754 ft, and angle ABP is 35°22'43". What are
the possible coordinates for station P?

A circle of radius 798.25 ft, centered at point A, intersects another circle of radius
1253.64 ft, centered at point B. The X and Y coordinates (in feet) of A are 3548.53
and 2836.49, respectively, and those of B are 4184.62 and 1753.52, respectively.
What are the coordinates of station P in the figure?

The same as Problem 11.15, except the radii from A and B are 853.34 ft and 1389.54
ft, respectively, and the X and Y coordinates (in feet) of A are 2058.74 and 4311.32,
respectively, and those of station B are 2851.52 and 2344.21, respectively.

For the subdivision in the accompanying figure, assume that lines AC, DF, GI, and
JL are parallel, but that lines BK and CL are parallel to each other, but not parallel
to AJ.If the X and Y coordinates (in feet) of station A are (5000.00,5000.00), what
are the coordinates of each lot corner shown?

Problems 295
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Problem 11.17 Subdivision.

11.18 If the X and Y coordinates (in feet) of station A are (1000.00, 1000.00), what are
the coordinates of the remaining labeled corners in the accompanying figure?

430.00 ft, S 89°59" E
B c
46°41°
S{Po
4//:9;
Ll
o
o
- w
z 3
£ F E o
S TG Radius, 30.00 ft z
o
8 H ‘ |
L ‘ w
o o
S||e
|||~
z| ||z
200.00 ft J } K 5
S 89°59"E

— <— 30.00 ft
Problem 11.18 Subdivision.

11.19* In Figure 11.8, the X and Y coordinates (in feet) of A are 1234.98 and 5415.48,

11.20

respectively, those of B are 3883.94 and 5198.47, respectively, and those of C are
6002.77 and 5603.25, respectively. Also angle x is 36°59'21" and angle y is 44°58'06".

What are the coordinates of station P?

In Figure 11.8, the X and Y coordinates (in feet) of A are 7322.70 and 9432.62,
those of B are 7730.50 and 7588.65, and those of C are 9547.87 and 6453.90, respec-
tively. Also angle x is 36°21'28" and angle y is 53°43’07". What are the coordinates

of station P?
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11.21 In Figure 11.9, the following EN and XY coordinates for points A through D are
given. In a 2D conformal coordinate transformation, to convert the XY coordi-
nates into the EN system, what are the

*(a) Scale factor?
(b) Rotation angle?
(¢) Translations in X and Y?
(d) Coordinates of points C in the EN coordinate system?

State Plane Coordinates (m) Arbitrary Coordinates (ft)
Point E N X Y
A 719,542.829 111,493.468 4873.67 6609.04
B 719,899.341 111,844.860 6402.92 720745
C 7041.22 603723

11.22 Do Problem 11.21 with the following coordinates.

State Plane Coordinates (m) Arbitrary Coordinates (m)
Point E N X Y
A 678,805.266 121,851.804 6182.848 6323.893
B 679,481.136 121,952.112 5430.607 3816.422
C 3957467 5101.501

11.23 In Figure 11.12, the elevations of stations A and B are 100.00 ft and 98.45 ft, respec-
tively. Instrument heights hiy and hig are 5.20 and 5.06 ft, respectively. What is the
average elevation of point P if the other field observations are
AB = 128.46 ft
A = 62°06'00" B = 50°12'07"

v; = 36°33'59" v, = 33°22'46"

11.24 In Problem 11.23, assume station P is to the left of the line AB, as viewed from
station A. If the X and Y coordinates (in feet) of station A are 159.19 and 101.20,
respectively, and the azimuth of line AB is 69°22'32", what are the X and Y coordi-
nates of the inaccessible point?

11.25 In Figure 11.12, the elevations of stations A and B are 1106.78 and 1116.95 ft, re-
spectively. Instrument heights hiy and hig are 5.14 and 5.43 ft, respectively. What is
the average elevation of point P if the other field observations are
AB = 43818 ft
A = 49°31'00" B = 52°35'26"
vy = 27°40'57" v, = 27°20'51"

11.26 In Problem 11.25, assume station P is to the left of line AB as viewed from station A.
If the X and Y coordinates (in feet) of station A are 8975.18 and 7201.89, respec-
tively, and the azimuth of line AB is 347°22'38", what are the X and Y coordinates
of the inaccessible point?

11.27 In Figure 11.13, the X, Y, and Z coordinates (in feet) of station A are 5111.82,
4452.50, and 492.40, respectively, and those of B are 562741, 4440.12, and 501.65,
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11.28
11.29

11.30
11.31
11.32
11.33
11.34
11.35
11.36

respectively. Determine the three-dimensional position of the occupied station P
with the following observations:

vy = 32°14’00" PA = 513.06ft hry, = 6.53ft y = 79°06"19"
v, = 37°06'00" PB = 467.021ft hrg = 5331t hip = 535t

Adapt Equations (11.43) and (11.47) so they are applicable for zenith angles.

In Figure 11.13, the X, Y, and Z coordinates (in meters) of station A are 1671.392,
1168.484, and 252.796, respectively, and those of B are 1569.635, 1395.155, and
245.809, respectively. Determine the three-dimensional position of occupied sta-
tion P with the following observations:

7, = 110°33'54" PA = 200.285m hry, = 1.676m y = 89°40'58"
2 = 113°23'37" PB = 177.196m hrz = 1.678m  hip = 1.676 m

Use WOLFPACK to do Problem 11.9.

Use WOLFPACK to do Problem 11.10.
Use WOLFPACK to do Problem 11.12.
Use WOLFPACK to do Problem 11.13.
Use WOLFPACK to do Problem 11.15.
Use WOLFPACK to do Problem 11.16.
Use WOLFPACK to do Problem 11.17.

BIBLIOGRAPHY

Easa, S. M. 2007. “Direct Distance-Based Positioning without Redundancy—In Land
Surveying.” Surveying and Land Information Science 67 (No. 2): 69.

Ghilani, C. 2010. Adjustment Computations: Spatial Data Analysis, S5th Ed. New York:
Wiley.



H 12.1 INTRODUCTION

There are a number of important reasons for determining areas. One is to include
the acreage of a parcel of land in the deed describing the property. Other pur-
poses are to determine the acreage of fields, lakes, etc., or the number of square
yards to be surfaced, paved, seeded, or sodded. Another important application is
determining end areas for earthwork volume calculations (see Chapter 26).

In plane surveying, area is considered to be the orthogonal projection of
the surface onto a horizontal plane. As noted in Chapter 2, in the English system
the most commonly used units for specifying small areas are the ft? and yd2, and
for large tracts the acre is most often used, where 1 acre = 43,560 ft> = 10 ch?
(Gunter’s). An acre lot, if square, would thus be 208.71" ft on a side. In the metric
system, smaller areas are usually given in m?, and for larger tracts hectares are
commonly used, where 1 hectare is equivalent to a square having sides of 100 m,
and thus equals 10,000 m?. In converting areas between the English and metric
systems, the conversion factors given in Table 12.1 are useful.

H 12.2 METHODS OF MEASURING AREA

Both field and map measurements are used to determine area. Field measure-
ment methods are the more accurate and include (1) division of the tract into
simple figures (triangles, rectangles, and trapezoids), (2) offsets from a straight
line, (3) coordinates, and (4) double-meridian distances. Each of these methods
is described in sections that follow.

Methods of determining area from map measurements include (1)
counting coordinate squares, (2) dividing the area into triangles, rectangles,
or other regular geometric shapes, (3) digitizing coordinates, and (4) running
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Figure 12.1
Area determination
by triangles.

m ArPROXIMATE AREA CONVERSION FACTORS

To Convert from To Multiply by
fi2 m? (12/39.37)2 =~ 0.09291
m? 2 (39.37/12)% =~ 10.76364
yd? m? (36/39.37)% ~ 0.83615
m? yd? (39.37/36)% =~ 1.19596
acres hectares [39.37/(4.356 X 12)]2 ~ 2.47099
hectares acres (4.356 x 12/39.37)%2 = 0.40470

a planimeter over the enclosing lines. These processes are described and
illustrated in Section 12.9. Because maps themselves are derived from field
observations, methods of area determination invariably depend on this basic
source of data.

H 12.3 AREA BY DIVISION INTO SIMPLE FIGURES

A tract can usually be divided into simple geometric figures such as triangles,
rectangles, or trapezoids. The sides and angles of these figures can be observed
in the field and their individual areas calculated and totaled. An example of a
parcel subdivided into triangles is shown in Figure 12.1.
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Formulas for computing areas of rectangles and trapezoids are well known.
The area of a triangle whose lengths of sides are known can be computed by the
formula

area = \/s(s —a)(s—b)(s—c¢) (12.1)

where g, b, and ¢ are the lengths of sides of the triangle and s = 1/2(a + b + ¢).
Another formula for the area of a triangle is

1
area = EabsinC (12.2)

where C is the angle included between sides a and b.

The choice of whether to use Equation (12.1) or (12.2) will depend on the
triangle parts that are most conveniently determined, a decision ordinarily dic-
tated by the nature of the area and the type of equipment available.

H 12.4 AREA BY OFFSETS FROM STRAIGHT LINES

Irregular tracts can be reduced to a series of trapezoids by observing right-angle
offsets from points along a reference line. The reference line is usually marked by
stationing (see Section 5.9.1), and positions where offsets are observed are given
by their stations and pluses. The spacing between offsets may either be regular
or irregular, depending on the conditions. These two cases are discussed in the
subsections that follow.

12.4.1 Regularly Spaced Offsets

Offsets at regularly spaced intervals are shown in Figure 12.2. For this case, the
area is found by the formula

n

hy h
area = b ?+h1+h2+---+? (12.3)

where b is the length of a common interval between offsets, and A, k4, . . . , h,
are the offsets. The regular interval for the example of Figure 12.2 is a half-station,
or 50 ft.

[

5.2 8.7 9.2 4.9 10.4 5.2 12.2 2.8

0+00 0+50 1+00 1+50 2+00 2+50 3+00 3+50 4+00 Figure 12.2
A B Area by offsets.
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Figure 12.3
Area by offsets
for a tract with a
curved boundary.

N Example 12.1

Compute the area of the tract shown in Figure 12.2.

Solution

By Equation (12.3)

area = 50(0 +52+87+92+49+ 104 + 52 + 122 + 228)

= 2860 ft>

In this example, a summation of offsets (terms within parentheses) can be
secured by the paper-strip method, in which the area is plotted to scale and the
mid-ordinate of each trapezoid is successively added by placing tick marks on a
long strip of paper. The area is then obtained by making a single measurement
between the first and last tick marks, multiplying by the scale to convert it to a
field distance, and then multiplying by width b.

12.4.2 Irregularly Spaced Offsets

For irregularly curved boundaries like that in Figure 12.3, the spacing of offsets
along the reference line varies. Spacing should be selected so that the curved
boundary is accurately defined when adjacent offset points on it are connected
by straight lines. A formula for calculating area for this case is

1
area = E[a(h0 + hy) + b(hy + hy) + c(hy + h3) + -+ ] (12.4)

wherea, b, c, . .. are the varying offset spaces, and A, iy, h,, . . . are the observed
offsets.

N Example 12.2

Compute the area of the tract shown in Figure 12.3.

Curved boundary\

0+00 0+60 1+40 2+40 2+70 \3+75 4 +35

Reference line
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Solution

By Equation (12.4)

1
area = _[60(7.2 + 11.9) + 80(11.9 + 14.4) + 100(14.4 + 6.0)
+30(6.0 + 6.1) + 105(6.1 + 11.8) + 60(11.8 + 12.4) ]

= 4490 ft>

H 12.5 AREA BY COORDINATES

Computation of area within a closed polygon is most frequently done by the co-
ordinate method. In this procedure, coordinates of each angle point in the figure
must be known. They are normally obtained by traversing, although any method
that yields the coordinates of these points is appropriate. If traversing is used,
coordinates of the stations are computed after adjustment of the departures and
latitudes, as discussed and illustrated in Chapter 10. The coordinate method is
also applicable and convenient for computing areas of figures whose coordinates
have been digitized using an instrument like that shown in Figure 28.9. The coor-
dinate method is easily visualized; it reduces to one simple equation that applies
to all geometric configurations of closed polygons and is readily programmed for
computer solution.

The procedure for computing areas by coordinates can be developed
with reference to Figure 12.4. As shown in that figure, it is convenient (but
not necessary) to adopt a reference coordinate system with the X and Y axes
passing through the most southerly and the most westerly traverse stations,
respectively. Lines BB', CC', DD’, and EE’ in the figure are constructed per-
pendicular to the Y axis. These lines create a series of trapezoids and tri-
angles (shown by different color shadings). The area enclosed with traverse
ABCDEA can be expressed in terms of the areas of these individual trap-
ezoids and triangles as

ar€aspcprAa — E'EDD'E' + D'DCC'D’
—AE'EA — CC'B'BC — ABB'A (12.5)

The area of each trapezoid, for example E'EDD’E’, can be expressed in terms
of lengths as

E'E+DD' _ .
ar€arp ppp'pr — f X E'D

In terms of coordinate values, this same area E'EDD'E’ is

Xz + Xp
aréarp'gpp'pr = T(YE - Yp)
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Figure 12.4

Area computation
by the coordinate
method.

4
1 Xe E
E
XD
D D
A
XB
B B
Xg .
c c

Each of the trapezoids and triangles of Equation (12.5) can be expressed by co-
ordinates in a similar manner. Substituting these coordinate expressions into
Equation (12.5), multiplying by 2 to clear fractions, and rearranging

2(area) = +XAYB + XBYC + XCYD + XDYE + XEYA

—XpYy — XoYs — XpYe — XpYp — XY (12.6)
Equation (12.6) can be reduced to an easily remembered form by listing the
X and Y coordinates of each point in succession in two columns, as shown in
Equation (12.7), with coordinates of the starting point repeated at the end. The
products noted by diagonal arrows are ascertained with dashed arrows con-
sidered plus and solid ones minus. The algebraic summation of all products is
computed and its absolute value divided by 2 to get the area.

sy, (12.7)
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The procedure indicated in Equation (12.7) is applicable to calculating any
size traverse. The following formula, easily derived from Equation (12.6), is a
variation that can also be used,

1
E[XA(YE —Yg) + Xp(Yy — Yo) + Xe(Yp — Yp)

+ Xp(Ye — Yg) + Xp(Yp — Yy)]

area =
(12.8)

It was noted earlier that for convenience, an axis system can be adopted
in which X = 0 for the most westerly traverse point, and Y = 0 for the most
southerly station. Magnitudes of coordinates and products are thereby reduced,
and the amount of work lessened, since four products will be zero. However,
selection of a special origin like that just described is of little consequence if the
problem has been programmed for computer solution. Then the coordinates ob-
tained from traverse adjustment can be used directly in the solution. However, a
word of caution applies when the coordinate values are extremely large, as they
would be normally when using state plane coordinate values (see Chapter 20). In
those cases, to ensure sufficient precision and prevent serious round-off errors,
double precision should be used. Or, as an alternative, the decimal place in each
coordinate can arbitrarily be moved n places to the left, the area calculated, and
then multiplied by 10?".

Either Equation (12.6) or Equation (12.8) can be readily programmed
for solution by computer. The program WOLFPACK has this option under its
coordinate computations menu. The format of the data file for this option is listed
in its help screen. As was noted in Chapter 10, the “closed polygon traverse” option
of WOLFPACK also computes areas using the coordinates of the adjusted traverse
stations. A Mathcad worksheet C12.xmcd, which is available on the companion
website for this book at http://www.pearsonhighered.com/ghilani, demonstrates
the computations in Sections 12.3 through 12.5.

M Example 12.3

Figure 12.5 illustrates the same traverse as Figure 12.4. The computations in
Table 10.4 apply to this traverse. Coordinate values shown in Figure 12.5, how-
ever, result from shifting the axes so that X, = 0.00 (A is the most westerly sta-
tion) and Y = 0.00 (C is the most southerly station). This was accomplished by
subtracting 10,000.00 (the value of X,) from all X coordinates, and subtracting
4408.22 (the value of Y¢) from all Y coordinates. Compute the traverse area by
the coordinate method. (Units are feet.)

Solution

These computations are best organized for tabular solution. Table 12.2 shows the
procedure. Thus, the area contained within the traverse is

1,044,861 — 499,684 | 5 5
area = > = 272,588 ft~ (say 272,600 ft*) = 6.258 acres
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Figure 12.5
Traverse for
computation
of area by

coordinates.

X=125.72
Y =847.71

X=716.29
Y =694.02

X =0.00
Y =591.78

X=517.44

Y =202.94 B

C X=523.41
Y =0.00

m CompuTATION OF AREA BY COORDINATES

Double Area (ft)2

Point X (ft) Y (ft) Plus (XY) Minus (YX)
A 0.00 591.78

B 517.44 202.94 0 306,211
C 523.41 0.00 0 106,221
D 716.29 694.02 363,257 0
E 125.72 847.71 607,206 87,252
A 0.00 591.78 74,398 0
3 = 1,044,861 3 = 499,684

—499,684

545,177

545,177 + 2 = 272,588 ft2 = 6.258 acres
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Notice that the precision of the computations was limited to four digits.
This is due to the propagation of errors as discussed in Section 3.17.3. As an ex-
ample, consider a square that has the same area as the parcel in Table 12.2. The
length of its sides would be approximately 522.1 ft. Assuming that these coordi-
nates have uncertainties of about *0.05 ft, the error in the product as given by
Equation (3.13) would be

Eea = V(522.1 X 0.05)% + (522.1 X 0.05)2 = +37 ft?

Thus, rounding the computed area to the nearest hundred square feet is
justified. As a rule of thumb, the accuracy of the area should not be stated any
better than

Erea = 05SV2 (12.9)

where § is the length of the side of a square having an area equivalent to the
parcel being considered, and oy is the uncertainty in the coordinates of the points
that bound the area in question.

Because of the effects of error propagation, it is important to remember
that it is better to be conservative when expressing areas, and thus a phrase such
as “6.258 acres more or less” is often adopted, especially when writing property
descriptions (see Chapter 21).

On the companion website for this book at http:/www.pearsonhighered
.com/ghilani are instructional videos that can be downloaded. The video Area
Computations demonstrates the computation of areas in Figures 12.1 and 12.5.

H 12.6 AREA BY DOUBLE-MERIDIAN DISTANCE METHOD

The area within a closed figure can also be computed by the double-meridian
distance (DMD) method. This procedure requires balanced departures and
latitudes of the tract’s boundary lines, which are normally obtained in traverse
computations. The DMD method is not as commonly used as the coordinate
method because it is not as convenient, but given the data from an adjusted tra-
verse, it will yield the same answer. The DMD method is useful for checking an-
swers obtained by the coordinate method when performing hand computations.

By definition, the meridian distance of a traverse course is the perpendicular
distance from the midpoint of the course to the reference meridian. To ease the
problem of signs, a reference meridian usually is placed through the most westerly
traverse station.

In Figure 12.6, the meridian distances of courses AB, BC, CD, DE, and
EA are MM', PP', QQ', RR', and TT’, respectively. To express PP’ in terms of
convenient distances, MF and BG are drawn perpendicular to PP’. Then

PP’ = P'F + FG + GP
1
2

1

meridian distance of AB + >

departure of AB + — departure of BC
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Figure 12.6
Meridian distances
and traverse area
computation by
DMD method.

.— Reference meridian

O+ T m

Thus, the meridian distance for any course of a traverse equals the
meridian distance of the preceding course plus one half the departure of the
preceding course plus half the departure of the course itself. It is simpler to
employ full departures of courses. Therefore, DMDs equal to twice the merid-
ian distances that are used, and a single division by 2 is made at the end of the
computation.

Based on the considerations described, the following general rule can be
applied in calculating DMDs: The DMD for any traverse course is equal to the
DMD of the preceding course, plus the departure of the preceding course, plus the
departure of the course itself. Signs of the departures must be considered. When
the reference meridian is taken through the most westerly station of a closed
traverse and calculations of the DMDs are started with a course through that
station, the DMD of the first course is its departure. Applying these rules, for the
traverse in Figure 12.6

DMD of AB = departure of AB
DMD of BC = DMD of AB + departure of AB + departure of BC

A check on all computations is obtained if the DMD of the last course,
after computing around the traverse, is also equal to its departure but has the
opposite sign. If there is a difference, the departures were not correctly adjusted
before starting, or a mistake was made in the computations. With reference to
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Figure 12.6, the area enclosed by traverse ABCD EA may be expressed in terms
of trapezoid areas (shown by different color shadings) as

area = E'EDD'E’ + C'CDD'C’' — (AB'BA

+ BB'C'CB + AEE'A) (12.10)

The area of each figure equals the meridian distance of a course times its bal-
anced latitude. For example, the area of trapezoid C'CDD'C’' = Q'Q X C'D’,
where Q'Q and C'D’ are the meridian distance and latitude, respectively, of
line CD. The DMD of a course multiplied by its latitude equals double the area.
Thus, the algebraic summation of all double areas gives twice the area inside the
entire traverse. Signs of the products of DMDs and latitudes must be considered.
If the reference line is passed through the most westerly station, all DMDs are
positive. The products of DMDs and north latitudes are therefore plus, and those
of DMDs and south latitudes are minus.

M Example 12.4

Using the balanced departures and latitudes listed in Table 10.4 for the traverse
of Figure 12.6, compute the DMDs of all courses.

Solution

The calculations done in tabular form, following the general rule, are illustrated
in Table 12.3.

M Example 12.5
Using the DMDs determined in Example 12.4, calculate the area within the

traverse.
m ComputatioN oF DMDs

Departure of AB = +517.444 = DMD of AB
Departure of AB = +517.444
Departure of BC = +5.964
+1040.852 = DMD of BC
Departure of BC = +5.964
Departure of CD = +192.881
+1239.697 = DMD of CD
Departure of CD = +192.881
Departure of DE = —-590.571
+842.007 = DMD of DE
Departure of DE = -590.571
Departure of EA = -125.718

+125.718 = DMD of EA vV
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s 710 20§ ComputatioN oF ARea BY DMDs

Double Areas (ft)2

Balanced Balanced
Course Departure (ft) Latitude (ft) DMD (ft) Plus Minus
AB 517.44 -388.84 517.44 201,201
BC 5.96 —-202.95 1040.85 211,240
CD 192.88 694.02 1239.70 860,376
DE -590.57 153.69 842.01 129,408
EA —-125.72 —-255.93 125.72 32,176
Total 0.00 0.00 989,784 444,617
—444,617
545,167

545,167 /2 = 272,584 ft? (say 272,600 ft?) = 6.258 acres

Solution

Computations for area by DMDs are generally arranged as in Table 12.4, although
a combined form may be substituted. Sums of positive and negative double areas
are obtained, and the absolute value of the smaller subtracted from that of the
larger. The result is divided by 2 to get the area (272,600 ft?), and by 43,560 to
obtain the number of acres (6.258). Note that the answer agrees with the one ob-
tained using the coordinate method.

If the total of minus double areas is larger than the total of plus values, it sig-
nifies only that DMDs were computed by going around the traverse in a clockwise
direction. In that case, the absolute value of the computed area should be used.

In modern surveying and engineering offices, area calculations are seldom
done by hand; rather, they are programmed for computer solution. However, if
an area is computed by hand, it should be checked by using different methods
or by two persons who employ the same system. As an example, an individual
working alone in an office could calculate areas by coordinates and check by
DMDs. Those experienced in surveying (geomatics) have learned that a half-
hour spent checking computations in the field and office can eliminate lengthy
frustrations at a later time. The Mathcad worksheet C12.XMCD, which is avail-
able on the companion website at http://www.pearsonhighered.com/ghilani,
demonstrates the programming of the coordinate method discussed in this book.

H 12.7 AREA OF PARCELS WITH CIRCULAR BOUNDARIES

The area of a tract that has a circular curve for one boundary, as in Figure 12.7,
can be found by dividing the figure into two parts: polygon ABCDEGFA and
sector EGF. The radius R = EG = FG and either central angle § = EGF or
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length EF must be known or computed to permit calculation of sector area EGF.
If R and central angle 6 are known, then the area of sector is

EGF = 7R*(0/360°) (12.11)

If chord length EF is known, angle § = 2sin ' (EF/2R)_and the preceding
equation is used to calculate the sector area. To obtain the tract’s total area,
the sector area is added to area ABCD EGFA found by either the coordinate or
DMD method.

Another method that can be used is to compute the area of the traverse
ABCDEFA, and then add the area of the segment, which is the region between
the arc and chord EF. The area of a segment is found as

Area of segment = 0.5R*( — sin6) (12.12)

where 6 is expressed in radian units.

H 12.8 PARTITIONING OF LANDS

Calculations for purposes of partitioning land—that is, cutting off a portion of a
tract for title transfer —can be aided significantly by using coordinates. For example,
suppose the owner of the tract of land in Figure 12.5 wishes to subdivide the parcel
with a line GF, parallel to AE, and have 3.000 acres in parcel AEFG. This problem
can be approached by three different methods. The first involves trial and error, and
works quite well given today’s computing capabilities. The second consists of writ-
ing equations for simple geometric figures such as triangles, rectangles, and trap-
ezoids that enable a unique solution to be obtained for the coordinates of points
F and G. The third approach involves setting up a series of coordinate geometry
equations, together with an area equation, and then solving for the coordinates of F
and G. The following subsections describe each of the above procedures.

12.8.1 Trial and Error Method

In this approach, estimated coordinates for the positions of stations F and G are
determined, and the area of parcel AEF'G' is computed using Equation (12.6)

Figure 12.7
Area with circular
curve as part of
boundary.
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where F’' and G’ are the estimated positions of F and G. This procedure is re-
peated until the area of the parcel equals 3.000 acres, or 130,680 ft2.

Step 1:

Step 2:

Using the final adjusted lengths and directions computed in Example
10.8 and coordinates of A and E from Example 12.3, and estimating
the position of the cutoff line to be half the distance along line ED (i.e.,
610.24/2 = 305.12 ft), the coordinates of stations F' and G’ in parcel
AEF' G' are computed as

Station F':

X = 125.72 + 305.12 sin 104°35'13" = 421.00
Y = 847.71 + 305.12 cos 104°35'13" = 770.87

Station G': is determined by direction-direction intersection using pro-
cedures discussed in Section 11.4. From WOLFPACK, the coordinates of
Station G’ are

X = 24324 and Y = 408.99

Creating a file for area computations, the area contained by
these four stations is only 102,874 ft2. Since 3.000 acres is equivalent to
130,680 ft?, the estimated distance of 305.12 was short. It can now be in-
creased and the process repeated.

To estimate the needed increase to the distance, an assumption is made that
the figure F'FGG' is a rectangle, with F'G’ having a length of 403.18 ft,
which is determined by coordinate inverse based on the coordinates of F’
and G’ from step 1. Thus, the amount to move the line ' G is determined as

(130,680 — 102,874)/403.18 = 68.97 ft

For the second trial, the distance that F’ is from FE should be
305.12 + 68.97 = 374.09 ft. Using the same procedure as in step 1, the
area of AEF' G' is 131,015 ft>. The determined area is now too large, and
can be reduced using the same assumption that was used at the beginning
of this step. Thus, the distance EF’ should be

EF’ = 374.09 + (130,680 — 131,015)/(length of F'G")
= 374.09 — 0.78 = 37331

This process is repeated until the final coordinates for F and G are deter-
mined. The next iteration yielded coordinates for F' of (487.00, 753.69)
and for G’ of (29761, 368.14). Using these coordinates, the area of the
parcel was computed to be 130,690 ft?, or within 10 ft>. The process is
again repeated resulting in a reduction of the distance EF’ of 0.02 ft, or
EF' = 373.29 ft. The resulting area for AEF’ G is 130,679 ft%. Since this
is within 1 ft” of the area, the coordinates are accepted as

F = (486.98,753.70)
G = (297.59,368.16)
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X=125.72
E Y=847.71

X=716.29
Y =694.02

X =0.00
Y =591.78

X=517.44

Y =202.94 B

C X=523.41
Y =0.00

The trial and error approach can be applied to solve many different types
of land partitioning problems. Although the procedure may appear to involve
a significant number of calculations, in many cases it provides the fastest and
easiest solution when a computer program is available for doing the coordinate
geometry calculations.

12.8.2 Use of Simple Geometric Figures

As can be seen in Figure 12.8, parcel AEFG is a parallelogram. Thus, the formula
for the area of a parallelogram [A = 1/2(b; + b,)h] can be employed, where b,
is AE and b, is FG. In this procedure, a trigonometric relationship between the
unknown length EF (denoted as d in Figure 12.8) and the missing parts &, FE',
and A’'G must be determined. From the figure, angles « and 8 can be determined
from azimuth differences, as

a = AZEE' - AZED
B=AZsp — AZpn

Note in Table 10.7 that AZg, is 206°09'41", and thus AZ, 4 and AZgg,
which are perpendicular to line EA are 206°09'41" — 90° = 116°09'41". Also

Figure 12.8
Partitioning of
lands by simple
geometric figures.
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from Table 10.7, AZrp and AZ 5 are 104°35'13" and 126°55'23", respectively.
Thus, the numerical values for « and B are:

a = 116°09'41" — 104°35'13" = 11°34'28"
B = 126°55'23" — 116°09'41" = 10°45'42"

Now the parts 4, FE', and A'G can be expressed in terms of the unknown dis-
tance d as

h = dcosa
FE' = dsin« (12.13)
A'G = htan B8 = dcos atan B

The formula for the area of parallelogram AEFG is
Y.(AE + FE' + AE + A'G)h = 130,680 (12.14)
Substituting Equations (12.13) into Equation (12.14), rearranging yields
(cos’atan B + cosasina)d® + [2(AE)cos ald — 261,360 = 0 (12.15)

Expression (12.15) is a quadratic equation, and can be solved using Equation
(11.3). Substituting the appropriate values into Equation (12.15) and solving yields
d = EF = 373.29 ft. This is the same answer as was derived in Section 12.8.1.

This approach of using the equations of simple geometric figures is conve-
nient for solving a variety of land partitioning problems.

12.8.3 Coordinate Method

This method involves using Equations (10.11) and (12.8) to obtain four equa-
tions with the four unknowns X, Yz, X5, and Y, that can be solved uniquely. By
Equation (10.11), the following three coordinate geometry equations can be written:

Xp— Xp _ Xp — Xg

= 12.16
Vi Yo Yp- Y e

Xo— X X — X
G “A_2B 24 (12.17)

Yo — Y4 Yp— Y,y

X, — X, X — X
A_CE_ 26 “F (12.18)

Yao—Ye Yo Y

Also by area Equation (12.8):
Xa(Yo = Yi) + Xp(Ya = Yp) + Xp(Ye — Y5)

+ Xg(Yr — Yy) =2 X area (12.19)

Substituting the known coordinates Xy, Y4, Xp, Y, Xp, Yp, Xg, and Yy into
Equations (12.16) through (12.19) yields four equations that can be solved for
the four unknown coordinates. The four equations can be solved simultaneously,
for example by using matrix methods, to determine the unknown coordinates for
points F and G. (A program MATRIX is included on the companion website for
this book at http://www.pearsonhighered.com/ghilani.)
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Alternatively, the four equations can be solved by substitution. In this ap-
proach, Equations (12.16) and (12.17) are rewritten in terms of one of the unknowns,
say Xr and X;. These two new equations are then substituted into Equations
(12.18) and (12.19). The resultant equations will now contain two unknowns Yz
and Y. The equation corresponding to Equation (12.18) can then be solved in
terms of unknown, say Y, and this can be substituted into the equation correspond-
ing to (12.19). The resultant expression will be a quadratic equation in terms of Y,
which can be solved using Equation (11.3). This solution can then be substituted
into the previous equations to derive the remaining three unknowns.

H 12.9 AREA BY MEASUREMENTS FROM MAPS

To determine the area of a tract of land from map measurements its boundaries
must first be identified on an existing map or a plot of the parcel drawn from
survey data. Then one of several available methods can be used to determine
its area. Accuracy in making area determinations from map measurements is
directly related to the accuracy of the maps being used. Accuracy of maps, in
turn, depends on the quality of the survey data from which they were produced,
map scale, and the precision of the drafting process. Therefore, if existing maps
are being used to determine areas, their quality should first be verified.

Even with good-quality maps, areas measured from them will not normally
be as accurate as those computed directly from survey data. Map scale and the
device used to extract map measurements are major factors affecting the result-
ing area accuracy. If, for example, a map is plotted to a scale of 1000 ft/1 in., and
an engineer’s scale is used, which produces measurements good to *+0.02 in.,
distances or coordinates scaled from this map can be no better than about
(£0.02 X 1000) = %20 ft. This uncertainty can produce substantial errors in
areas. Differential shrinkage or expansion of the material upon which maps are
drafted is another source of error in determining areas from map measurements.
Changes in dimensions of 2% to 3% are common for certain types of paper. (The
subjects of maps and mapping are discussed in more detail in Chapters 17 and 18.)

Aerial photos can also be used as map substitutes to determine approxi-
mate areas if the parcel boundaries can be identified. The areas are approximate,
as explained in Chapter 27, because except for flat areas the scale of an aerial
photo is not uniform throughout. Aerial photos are particularly useful for deter-
mining areas of irregularly shaped tracts, such as lakes. Different procedures for
determining areas from maps are described in the subsections that follow.

12.9.1 Area by Counting Coordinate Squares

A simple method for determining areas consists in overlaying the mapped parcel
with a transparency having a superimposed grid. The number of grid squares
included within the tract is then counted, with partial squares estimated and
added to the total. Area is the product of the total number of squares times the
area represented by each square. As an example, if the grids are 0.20 in. on a
side, and a map at a scale of 200 ft/in. is overlaid, each square is equivalent to
(0.20 X 200)? = 1600 ft>.
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Figure 12.9
Electronic planimeter.
(Courtesy Topcon
Positioning Systems.)

12.9.2 Area by Scaled Lengths

If the boundaries of a parcel are identified on a map, the tract can be divided into
triangles, rectangles, or other regular figures, the sides measured, and the areas
computed using standard formulas and totaled.

12.9.3 Area by Digitizing Coordinates

A mapped parcel can be placed on a digitizing table that is interfaced with a
computer, and the coordinates of its corner points quickly and conveniently
recorded. From the file of coordinates, the area can be computed using either
Equation (12.6) or (12.8). It must be remembered, however, that even though
coordinates may be digitized to the nearest 0.001 in., their actual accuracy can be
no better than the map from which the data were extracted. Area determination
by digitizing existing maps is now being practiced extensively in creating data-
bases of geographic information systems. The area of a parcel on a map created in
a computer-aided design and drafting (CADD) system can often be determined
using this method by simply selecting the boundary of the parcel. This is the most
common method employed today.

12.9.4 Area by Planimeter

A planimeter measures the area contained within any closed figure that is cir-
cumscribed by its tracer. There are two types of planimeters: mechanical and
electronic. The major parts of the mechanical type are a scale bar, graduated
drum and disk, vernier, tracing point and guard, and anchor arm, weight, and
point. The scale bar may be fixed or adjustable. For the standard fixed-arm pla-
nimeter, one revolution of the disk (dial) represents 100 in. and one turn of the
drum (wheel) represents 10 in.2. The adjustable type can be set to read units of
area directly for any particular map scale. The instrument touches the map at
only three places: anchor point, drum, and tracing-point guard.

Because of its ease of use, the electronic planimeter (Figure 12.9) has re-
placed its mechanical counterpart. An electronic planimeter operates similarly to
the mechanical type, except that the results are given in digital form on a display

A



console. Areas can be measured in units of square inches or square centimeters,
and by setting an appropriate scale factor, they can be obtained directly in acres
or hectares. Some instruments feature multipliers that can automatically com-
pute and display volumes.

As an example of using an adjustable type of mechanical planimeter, assume
that the area within the traverse of Figure 12.5 will be measured. The anchor point
beneath the weight is set in a position outside the traverse (if inside, a polar constant
must be added), and the tracing point brought over corner A. An initial reading of
7231 is taken, the 7 coming from the disk, 23 from the drum, and 1 from the vernier.
The tracing point is moved along the traverse lines from A to B, C, D, and E, and
back to A. A triangle or a straightedge may guide the point, but normally it is steered
freehand. A final reading of 8596 is made. The difference between the initial and
final readings, 1365, is multiplied by the planimeter constant to obtain the area. To
determine the planimeter constant, a square area is carefully laid out 5 in. on a side,
with diagonals of 7.07 in., and its perimeter traced with the planimeter. If the differ-
ence between initial and final readings for the 5-in. square is, for example, 1250, then

5in. X 5in. = 25in.2 = 1250 units

Thus, the planimeter constant is

.25 -
1 unit = 1250 ~ 0.020 in.

Finally the area within the traverse is
area = 1365 units X 0.020 = 27.3in.2

If the traverse is plotted at a map scale of 1in. = 100 ft, then 1in.2 =
10,000 ft> and the area measured is 273,000 ft?.

As a check on planimeter operation, the outline may be traced in the oppo-
site direction. The initial and final readings at point A should agree within a limit
of perhaps two to five units.

The precision obtained in using a planimeter depends on operator skill,
accuracy of the plotted map, type of paper, and other factors. Results correct to
within 1/2% to 1% can be obtained by careful work.

A planimeter is most useful for irregular areas, such as that in Figure 12.3,
and has many applications in surveying and engineering. The planimeter has
been widely used in highway offices for determining areas of cross-sections, and
is also convenient for determining areas of drainage basins and lakes from mea-
surements on aerial photos, checking computed areas in property surveys, etc.

H 12.10 SOFTWARE

As discussed in this chapter, there are several methods of determining the area
of a parcel or figure. The method of area by coordinates is most commonly used
in practice. However, other methods are sometimes used in unique situations
that require a clever solution. Software typically uses the method of area by co-
ordinates. For example, a CADD software package can use the coordinates of

12.10 Software 317



318 AREA

any irregularly shaped parcel to quickly determine their area by the coordinate
method. WOLFPACK uses this method in determining the area enclosed by a
figure from a listing of coordinates in sequential order. You may also enter the
bounding coordinates of a parcel in a CADD package to determine the area en-
closed by a parcel. For those wishing to see a higher-level programming of sev-
eral of the examples discussed in this chapter, you are encouraged to explore the
Mathcad worksheet C12.XMCD, which can be found on the companion website
for this book at http://www.pearsonhighered.com/ghilani.

H 12.11 SOURCES OF ERROR IN DETERMINING AREAS
Some sources of error in area computations are:

1. Errors in the field data from which coordinates or maps are derived.
Making a poor selection of intervals and offsets to fit irregular boundaries.
Making errors in scaling from maps.

Shrinkage and expansion of maps.

Using coordinate squares that are too large and therefore make estimation
of areas of partial blocks difficult.

Making an incorrect setting of the planimeter scale bar.

Running off and on the edge of the map sheet with the planimeter drum.

8. Using different types of paper for the map and planimeter calibration sheet.

RARE R

No

H 12.12 MISTAKES IN DETERMINING AREAS

In computing areas, common mistakes include:

1. Forgetting to divide by 2 in the coordinate and DMD methods.

2. Confusing signs of coordinates, departures, latitudes, and DMDs.

3. Forgetting to repeat the coordinates of the first point in the area by coordi-
nates method.

4. Failing to check an area computation by a different method.

Not drawing a sketch to scale or general proportion for a visual check.

6. Not verifying the planimeter scale constant by tracing a known area.

e
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PROBLEMS

Asterisks (*) indicate problems that have answers given in Appendix G.

12.1* Compute the area enclosed within polygon ABDFGA of Figure 12.1 using
triangles.

12.2 Similar to Problem 12.1, except for polygon BGFDB of Figure 12.1.

12.3 Compute the area enclosed by AGBA and the shoreline of Figure 12.1 using the
offset method.

12.4 By rule of thumb, what is the estimated uncertainty in 870,684 ft? if the estimated
error in the coordinates was +0.2 ft?
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12.5% Compute the area between a lake and a straight line AG, from which offsets are
taken at irregular intervals as follows (all distances in feet):

Offset Point A B C D E F G
Stationing 0.00 0 + 5480 1 + 3254 2 + 13.02 2 + 98.74 3 + 45.68 4 + 50.17
Offset 12.3 342 56.5 85.4 69.1 68.9 239

12.6  Repeat Problem 12.5 with the following offset in meters.

Offset Point A B C D E F G
Stationing 0.000 20.000  78.940 148.963 163.654 203.691 250.454
Offset 2.15 3.51 4.04 6.57 5.87 4.64 1.65

12.7 Use the coordinate method to compute the area enclosed by the traverse of
Problem 10.8.

12.8  Calculate by coordinates the area within the traverse of Problem 10.11.

12.9 Compute the area enclosed in the traverse of Problem 10.8 using DMDs.

12.10* Determine the area within the traverse of Problem 10.11 using DMDs.

12.11 By the DMD method, find the area enclosed by the traverse of Problem 10.20.

12.12 Compute the area within the traverse of Problem 10.17 using the coordinate
method. Check by DMDs.

12.13 Calculate the area inside the traverse of Problem 10.18 by coordinates and check
by DMDs.

12.14 Compute the area enclosed by the traverse of Problem 10.19 using the DMD
method. Check by coordinates.

12.15 Find the area of the lot in Problem 10.25.

12.16* Determine the area of the lot in Problem 10.26.

12.17 Calculate the area of Lot 15 in Figure 21.2.

12.18 Plot the lot of Problem 10.25 to a scale of 1 in. = 100 ft. Determine its surrounded
area using a planimeter.

12.19 Similar to Problem 12.18, except for the traverse of Problem 10.26.

12.20 Plot the traverse of Problem 10.19 to a scale of 1 in. = 200 ft, and find its enclosed
area using a planimeter.

12.21 The (X,Y) coordinates (in feet) for a closed-polygon traverse ABCD EFA follow. A
(1000.00, 1000.00), B (1645.49,1114.85), C (1675.95,1696.05), D (1178.99, 1664.04),
E (1162.62,133778), and F (996.53, 1305.30). Calculate the area of the traverse by
the method of coordinates.

12.22 Compute by DMDs the area in hectares within a closed-polygon traverse
ABCDEFA by placing the X and Y axes through the most southerly and most
westerly stations, respectively. Departures and latitudes (in meters) follow.
AB: E dep. = 30, Nlat. = 40; BC: E dep. = 70, Nlat. = 10; CD: E dep. = 30,
Slat. = 50; DE:Wdep. = 60, Slat. =40; EF:Wdep. =90, Slat. = 30;
FA: E dep. = 20, N lat. = 70.

12.23 Calculate the area of a piece of property bounded by a traverse and circular arc
with the following coordinates at angle points: A (1275.11, 1356.11), B (1000.27,
1365.70), C (1000.00, 1000.00), D (1450.00, 1000.00) with a circular arc of radius
CD starting at D and ending at A with the curve outside the course AD.
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12.24

12.25

12.26

12.27

12.28

12.29

Calculate the area of a piece of property bounded by a traverse and circular arc
with the following coordinates in feet at angle points: A (526.68, 823.98), B (535.17,
745.61), C (745.17,745.61), D (745.17,845.61), E (546.62, 846.14) with a circular arc
of radius 25 ft starting at E, tangent to DE, and ending at A.

Divide the area of the lot in Problem 12.23 into two equal parts by a line through
point B. List in order the lengths and azimuths of all sides for each parcel.
Partition the lot of Problem 12.24 into two equal areas by means of a line paral-
lel to BC. Tabulate in clockwise consecutive order the lengths and azimuths of all
sides of each parcel.

Lot ABCD between two parallel street lines is 350.00 ft deep and has a 220.00 ft
frontage (AB) on one street and a 260.00 ft frontage (CD) on the other. Interior
angles at A and B are equal, as are those at C and D. What distances AE and BF
should be laid off by a surveyor to divide the lot into two equal areas by means of
a line EF parallel to AB?

Partition 1-acre parcel from the northern part of lot ABCDEFA in Problem 12.21
such that its southern line is parallel to the northern line.

Write a computational spreadsheet for calculating areas within closed polygon tra-
verses by the coordinate method.
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H 13.1 INTRODUCTION

During the 1970s, the global positioning system (GPS) emerged. This system,
which grew out of the space program, relies upon signals transmitted from satel-
lites for its operation. It has resulted from research and development paid for by
the military to produce a system for global navigation and guidance. More re-
cently other countries are developing their own systems. Thus the entire scope of
satellite systems used in positioning is now referred to as global navigation satel-
lite systems (GNSS). Receivers that use GPS satellites and another system such as
GLONASS, Galileo, and Beidou (see Section 13.10) are known as GNSS receiv-
ers. These systems provide precise timing and positioning information anywhere
on the Earth with high reliability and low cost. The systems can be operated day
or night, rain or shine, and do not require cleared lines of sight between survey
stations. This represents a revolutionary departure from conventional surveying
procedures, which rely on observed angles and distances for determining point
positions. Since these systems all share similar features, GPS will be discussed in
further detail herein.

Development of the first generation of satellite positioning systems began
in 1958. This early system, known as the Navy Navigation Satellite System (NNSS),
more commonly called the TRANSIT system, operated on the Doppler principle.
In this system, Doppler shifts (changes in frequency) of signals transmitted from
satellites were observed by receivers located on ground stations. The observed
Doppler shifts are a function of the distances to the satellites and their directions
of movement with respect to the receivers. The transmitting frequency was known
and together with accurate satellite orbital position data and precise timing
of observations, the positions of the receiving stations could be determined. The
constellation of satellites in the TRANSIT system, which varied between five and
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seven in number, operated in polar orbits at altitudes of approximately 1100 km.
The objective of the TRANSIT system was to aid in the navigation of the U.S.
Navy’s Polaris submarine fleet. The first authorized civilian use of the system
occurred in 1967, and the surveying community quickly adopted the new tech-
nology, finding it particularly useful for control surveying. Although these early
instruments were bulky and expensive, the observation sessions lengthy, and the
accuracy achieved moderate, the Doppler program was nevertheless an important
breakthrough in satellite positioning in general, and in surveying in particular.

Because of the success of the Doppler program, the U.S. Department of
Defense (DoD) began development of the NA Vigation Satellite Timing and
Ranging (NAVSTAR) Global Positioning System. The first satellite to support
the development and testing of the system was placed in orbit in 1978. Since that
date many additional satellites have been launched. The global positioning sys-
tem, developed at a cost of approximately $12 billion, became fully operational
in December of 1993. Like the earlier Doppler versions, the global positioning
system is based on observations of signals transmitted from satellites whose posi-
tions within their orbits are precisely known. Also, the signals are picked up with
receivers located at ground stations. However, the methods of determining dis-
tances from receivers to satellites, and of computing receiver positions, are differ-
ent. These methods are described in later sections of this chapter. Current genera-
tion satellite receivers are illustrated in Figures 1.4 and 13.1. The size and cost of
satellite surveying equipment have been substantially reduced from those of the
Doppler program, and field and office procedures involved in surveys have been
simplified so that now high accuracies can be achieved in real time.

H 13.2 OVERVIEW OF GPS

As noted in the preceding section, precise distances from the satellites to the
receivers are determined from timing and signal information, enabling receiver
positions to be computed. In satellite surveying, the satellites become the refer-
ence or control stations, and the ranges (distances) to these satellites, are used to
compute the positions of the receiver. Conceptually, this is equivalent to resec-
tion in traditional ground surveying work, as described in Section 11.7, where
distances and/or angles are observed from an unknown ground station to control
points of known position.

The global positioning system can be arbitrarily broken into three parts: (a)
the space segment, (b) the control segment, and (c) the user segment. The space
segment consists nominally of 24 satellites operating in six orbital planes spaced at
60° intervals around the equator. Four additional satellites are held in reserve as
spares. The orbital planes are inclined to the equator at 55° [see Figure 13.2(b)].
This configuration provides 24-hr satellite coverage between the latitudes of 80°N
and 80°S. The satellites travel in near-circular orbits that have a mean altitude
of 20,200 km above the Earth and an orbital period of 12 sidereal hours.! The

! A sidereal day is approximately 4 min shorter than a solar day. See Appendix C.5 for more informa-
tion on sidereal years, and days.
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Figure 13.1

(a) The Trimble R10
and (b) the Sokkia
GRX2 GNSS
receivers. (Courtesy
of (a) Trimble
Navigation and

(b) Topcon-Sokkia.)

individual satellites are normally identified by their PseudoRandom Noise (PRN)
number, (described later in this chapter), but can also be identified by their satel-
lite vehicle number (SVN) or orbital position.

Precise atomic clocks are used in the satellites to control the timing of the
signals they transmit. These are extremely accurate clocks,” and extremely expen-
sive as well. If the receivers used these same clocks, they would be cost prohibitive
and would also require that users become trained in handling hazardous materi-
als. Thus the clocks in the receivers are controlled by the oscillations of a quartz
crystal that, although also precise, are less accurate than atomic clocks. However,
these relatively low cost timing devices produce a receiver that is also relatively
inexpensive.

The control segment consists of monitoring stations, which monitor the sig-
nals and track the positions of the satellites over time. The initial GPS monitor-
ing stations are at Colorado Springs, and on the islands of Hawaii, Ascension,
Diego Garcia, and Kwajalein. The DoD has since added several more tracking
stations to its control network. The tracking information is relayed to the master
control station in the Consolidated Space Operations Center (CSOC) located at

2Atomic clocks are used, which employ either cesium or rubidium. The rubidium clocks may lose 1
sec per 30,000 years, while the cesium type may lose 1 sec only every 300,000 years. Hydrogen maser
clocks, which may lose only 1 sec every 30,000,000 years, have been proposed for future satellites. For
comparison, quartz crystal clocks used in receivers may lose a second every 30 years.
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Figure 13.2 (a) A GPS satellite, and (b) the GPS constellation.

Schriever Air Force base in Colorado Springs. The master control station uses
this data to make precise, near-future predictions of the satellite orbits, and their
clock correction parameters. This information is uploaded to the satellites, and,
in turn, transmitted by them as part of their broadcast message to be used by
receivers to predict satellite positions and their clock biases (systematic errors).

The user segment in GPS consists of two categories of receivers that are
classified by their access to two services that the system provides. These services
are referred to as Standard Position Service (SPS) and the Precise Positioning
Service (PPS). The SPS is provided on the L1 broadcast frequency and more
recently the L2 (see Section 13.3) at no cost to the user. This service was initially
intended to provide accuracies of 100 m in horizontal positions, and 156 m in
vertical positions at the 95% error level. However, improvements in the system
and the processing software have substantially reduced these error estimates.
The PPS is broadcast on both the L1 and L2 frequencies, and is only available
to receivers having valid cryptographic keys, which are reserved for military and
authorized users only. This message provides a published accuracy of 18 m in the
horizontal, and 28 m in the vertical at the 95% error level.

H 13.3 THE GPS SIGNAL

As the GPS satellites are orbiting, each continually broadcasts a unique signal on
the two carrier frequencies. The carriers, which are transmitted in the L band of
microwave radio frequencies, are identified as the L1 signal with a frequency of
1575.42 MHz and the L2 signal at a frequency of 1227.60 MHz. These frequen-
cies are derived from a fundamental frequency, f;, of the atomic clocks, which is
10.23 MHz. The L1 band has frequency of 154f; and the L2 band has a frequency
of 120f;.
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Several different types of information (messages) are modulated upon
these carrier waves using a phase modulation technique. Some of the informa-
tion included in the broadcast message is the almanac, broadcast ephemeris,
satellite clock correction coefficients, ionospheric correction coefficients, and
satellite condition (also termed satellite health). These terms are defined later in
this chapter.

In order for receivers to independently determine the ground positions of
the stations they occupy in real time, it was necessary to devise a system for ac-
curate measurement of signal travel time from satellite to receiver. In GPS this
was accomplished by modulating the carriers with pseudorandom noise (PRN)
codes. The PRN codes consist of unique sequences of binary values (zeros
and ones) that appear to be random but, in fact, are generated according to a
special mathematical algorithm using devices known as tapped feedback shift
registers. Satellites transmit two or more different PRN codes. The L1 frequency
is modulated with the precise code, or P code, and also with the coarse/acquisition
code, or C/A code. This C/A code allows receivers to acquire the satellites as well
as determine their approximate positions. Until recently, the L2 frequency was
modulated only with the P code.

The C/A and P codes are old technology. Modernized satellites are being
equipped with new codes. The modernized satellites include a second civilian code
on the L2 signal called the L2C. This code has both a civilian moderate (CM) and
civilian long (CL) version. Additionally, the P code is being replaced by two new
military codes, known as M codes. In 1999, the Interagency GPS Executive Board
(IGEB) decided to add a third civilian signal known as the L5 to provide safety
of life applications to GPS. L5 will be broadcast at a frequency of 1176.45 MHz.
The L5 signal will carry both civilian codes along with a codeless component. This
feature will greatly increase the strength of the signal due to different processing
techniques. Additionally, as will be discussed in Section 13.6.2, these new codes
will allow real-time ionospheric refraction corrections in code-based positioning.
Both the L2C and L5 are added to the Block IIF and subsequent Block III satel-
lites. The improvements in positioning due to these new codes will be discussed
later in this chapter.

The C/A code has a frequency of 1.023 MHz and a wavelength of about
300 m. It is accessible to all users, and is a series of 1023 binary digits (chips) that
are unique to each satellite. This chip pattern is repeated every millisecond in
the C/A code. This code allows receivers to acquire the satellites and determine
their approximate/coarse positions. The P code, with a frequency of 10.23 MHz
and a wavelength of about 30 m, is 10 times more accurate for positioning than
the C/A code. Additionally, as discussed in Section 13.6.2, P-code users can make
corrections for ionospheric refraction, which can be the largest error source in
positioning. The P code has a chip pattern that takes 266.4 days to repeat. Each
satellite is assigned a unique single-week segment of the pattern that is reinitial-
ized at midnight every Saturday. Table 13.1 lists the GPS frequencies, and gives
their factors of the fundamental frequency, f;, of the P code.

To meet military requirements, the P code is encrypted with a W code to de-
rive the Y code. This Y code can only be read with receivers that have the proper
cryptographic keys. This encryption process is known as anti-spoofing (A-S). Its
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s =55 B FREQUENCIES TRANSMITTED BY GPS

Code Name Frequency (MHz) Factor of fy
C/A 1.023 Divide by 10
P 10.23 1
L1 1575.42 Multiply by 154
12 1227.60 Multiply by 120
L5 1176.45 Multiply by 115

purpose is to deny access to the signal by potential enemies who could deliberately
modify and retransmit it with the intention of “spoofing” unwary friendly users.

Because of its need for “one-way” communication, the satellite position-
ing systems depend on precise timing of the transmitted signal. To understand
the concepts of the one-way system, consider the following. Imagine that the
satellite transmits a series of audible beeps, and that the beeps are broadcast in
a known irregular pattern. Now imagine that this same pattern is synchronously
duplicated (but not transmitted) at the receiving station. Since the signal from
the satellite transmitter must travel to the receiver, its reception will be delayed
in relation to the signal generated by the receiver. This delay, which is approxi-
mately 0.07 sec, can be measured, and converted to a time difference.

The process described above is similar to that used with GPS. In GPS the
chips of the PRN codes replace the beeps and the precise time of broadcast of
the satellite code is placed into the broadcast message with a starting time indi-
cated by the front edge of one of the chips. The receiver simultaneously generates
a duplicate PRN code. Matching the incoming satellite signal with the identical
receiver-generated signal derives the time it takes for the signal to travel from
satellite to receiver. This yields the signal delay that is converted to travel time.
From the travel time, and the known signal velocity, the distance to the satellite
can be computed.

To aid in matching the codes, the broadcast message from each satellite
contains a Hand-Over Word (HOW), which consists of some identification bits,
flags, and a number. This number, times four, produces the Time of Week (TOW),
which marks the leading edge of the next section of the message. The HOW and
TOW assist the receiver in matching the signal received from the satellite to that
generated by the receiver, so the delay can be quickly determined. This matching
process is illustrated diagrammatically in Figure 13.3.

\ Subframe of message
Receiver signal :8
|

‘ Time delay i Matching subframe of message

Delayed satellite signal HOW 0

Figure 13.3 Determination of signal travel time by code matching.
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B 13.4 REFERENCE COORDINATE SYSTEMS

In determining the positions of points on Earth from satellite observations, three
different reference coordinate systems are important. First of all, satellite posi-
tions at the instant they are observed are specified in the “space-related” satellite
reference coordinate systems. These are three-dimensional rectangular systems
defined by the satellite orbits. Satellite positions are then transformed into a
three-dimensional rectangular geocentric coordinate system, which is physically
related to the Earth. As a result of satellite positioning observations, the posi-
tions of new points on Earth are determined in this coordinate system. Finally,
the geocentric coordinates are transformed into the more commonly used and
locally oriented geodetic coordinate system. The following subsections describe
these three coordinate systems.

13.4.1 The Satellite Reference Coordinate System

Once a satellite is launched into orbit, its movement thereafter within that orbit is
governed primarily by the Earth’s gravitational force. However, there are a num-
ber of other lesser factors involved including the gravitational forces exerted by
the sun and moon, as well as forces due to solar radiation. Because of movements
of the Earth, sun, and moon with respect to each other, and because of variations
in solar radiation, these forces are not uniform and hence satellite movements
vary somewhat from their ideal paths. As shown in Figure 13.4, ignoring all forces
except the Earth’s gravitational pull, a satellite’s idealized orbit is elliptical, and
has one of its two foci at G, the Earth’s mass center. The figure also illustrates a
satellite reference coordinate system, Xs, Ys, Zg. Perigee and apogee are points
where the satellite is closest to, and farthest away from G, respectively, in its orbit.
The line of apsides joins these two points, passes through the two foci, and is the
reference axis Xs. The origin of the X, Ys, Zg coordinate system is at G; the Yg
axis is in the mean orbital plane; and Zg is perpendicular to this plane. Values of

Satellite Ys
orbit

Satellite

LIne of apsides

/

Apogee

Figure 13.4
Satellite reference
coordinate system.
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Zg coordinates represent departures of the satellite from its mean orbital plane,
and normally are very small. A satellite at position S; would have coordinates
Xs1, Y51, and Zg;, as shown in Figure 13.4. For any instant of time, the satellite’s
position in its orbit can be calculated from its orbital parameters, which are part of

the broadcast ephemeris.

13.4.2 The Geocentric Coordinate System

Because the objective of satellite surveys is to locate points on the surface of the
Earth, it is necessary to have a so-called ferrestrial frame of reference, which en-
ables relating points physically to the Earth. The frame of reference used for this
is the geocentric coordinate system. Figure 13.5 illustrates a quadrant of a refer-
ence ellipsoid,® with a geocentric coordinate system (X,, Y,, Z,) superimposed.
This three-dimensional rectangular coordinate system has its origin at the mass

(—L.S .“-.‘ - - _;;" >
s | satelite -
& P 2
2 ;5 Perigee\(
5 . s
$/ Ascending
i A
1G] node 4
{ . y
| | GHAy
L i w
t Q) — S

Figure 13.5
Parameters in-
volved in trans-
forming from the
satellite reference
coordinate system
to the geocentric
coordinate system.

3The reference ellipsoid used for most GPS work is the World Geodetic System of 1984 (WGS84)
ellipsoid. As explained in Section 19.2, any ellipsoid can be defined by two parameters, for example
the semimajor axis (a), and the flattening ratio (f). For the WGS84 ellipsoid these values are
a = 6,378,137 m (exactly), and f = 1/298.257223563.
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center of the Earth. Its X, axis passes through the Greenwich meridian in the
plane of the equator, and its Z, axis coincides with the Conventional Terrestrial
Pole (CTP)(see Section 19.3). Its Y, axis lies in the plane of the equator and cre-
ates a right-handed coordinate system.

To make the conversion from the satellite reference coordinate system to
the geocentric system, four angular parameters are required, which define the
relationship between the satellite’s orbital coordinate system and key reference
planes and lines on the Earth. As shown in Figure 13.5, these parameters are
(1) the inclination angle, i (angle between the orbital plane and the Earth’s
equatorial plane), (2) the argument of perigee, w (angle in the orbital plane from
the equator to the line of apsides), (3) the right ascension of the ascending node,
Q (angle in the plane of the Earth’s equator from the vernal equinox to the line
of intersection between the orbital and equatorial planes), and (4) the Greenwich
hour angle of the vernal equinox, GHA, (angle in the equatorial plane from the
Greenwich meridian to the vernal equinox). These parameters are known in real
time for each satellite based upon predictive mathematical modeling of the or-
bits. Where higher accuracy is needed, satellite coordinates in the geocentric sys-
tem for specific epochs of time are determined from observations at the tracking
stations and distributed through precise ephemerides.

The equations for making conversions from satellite reference coordinate
systems to the geocentric system are beyond the scope of this text. They are in-
cluded in the software that accompanies the satellite positioning systems when
they are purchased. However, an html file named satellite.html is available on
the companion website for this book at http://www.pearsonhighered.com/ghilani,
which demonstrates the transformation of satellite coordinates to the terrestrial
coordinate system. Although the equations are not presented here, through this
discussion students are apprised of the nature of satellite motion, and of the fact
that there are definite mathematical relationships between orbiting satellites and
the positions of points located on the Earth’s surface.

13.4.3 The Geodetic Coordinate System

Although the positions of points in a satellite survey are computed in the geocen-
tric coordinate system described in the preceding subsection, in that form they
are inconvenient for use by surveyors (geomatics engineers). This is the case for
three reasons: (1) with their origin at the Earth’s center, geocentric coordinates
are typically extremely large values, (2) with the X-Y plane in the plane of the
equator, the axes are unrelated to the conventional directions of north-south or
east-west on the surface of the Earth, and (3) geocentric coordinates give no indi-
cation about relative elevations between points. For these reasons, the geocentric
coordinates are converted to geodetic coordinates of latitude (¢), longitude (A),
and height (/) so that reported point positions become more meaningful and con-
venient for users.

Figure 13.6 also illustrates a quadrant of the reference ellipsoid, and
shows both the geocentric coordinate system (X,Y,Z), and the geodetic coor-
dinate system (¢, A, h). Conversions from geocentric to geodetic coordinates,
and vice versa are readily made. From the figure it can be shown that geocentric
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Figure 13.6
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coordinates of point P can be computed from its geodetic coordinates using the
following equations:

Xp = (Ry, + hp) cos ¢pcos Ap
Yp = (RNP + hp) Cos ¢P sin )\p (13.1)
Zp = [Ry, (1 — &) + hp]sin ¢p

where

a
R =
T e g 132

In Equations (13.1), Xp, Yp, and Zp are the geocentric coordinates of any
point P, and the term e, which appears in both Equations (13.1) and (13.2), is
the eccentricity of the WGS84 reference ellipsoid. Its value is 0.08181919084. In
Equation (13.2), Ry, is the radius in the prime vertical* of the ellipsoid at point P,

“4The eccentricity and radius in the prime vertical are both described in Chapter 20.
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and a, as noted earlier, is the semimajor axis of the ellipsoid. In Equations (13.1)
and (13.2), north latitudes are considered positive and south latitudes negative.
Similarly, east longitudes are considered positive and west longitudes negative.
Additionally, the programming for the conversion of geodetic coordinates to
geocentric coordinates and vice versa is demonstrated in Mathcad worksheet
C13.xcmd, which is on the companion website for this book.

M Example 13.1

The geodetic latitude, longitude, and height of a point A are 41°15'18.2106" N,
75°00'58.6127" W, and 312.391 m, respectively. Using WGS84 values, what are
the geocentric coordinates of the point?

Solution

Substituting the appropriate values into Equations (13.1) and (13.2) yields

Ry, = 6’378’.13 ! = 6,387,440.3113 m
V1 — 0.0066943799 sin? (41°1518.2106" )
X, = (6,387,440.3113 + 312.391) cos 41°15'18.2106” cos( —75°00'58.6127")
= 1.241,581.343 m
Y, = (6,387,440.3113 + 312.391) cos 41°15'18.2106" sin( —75°00'58.6127")
— —4,638,917.074 m
Z, = [6,387,440.3113(1 — 0.00669437999) + 312.391)] sin(41°15'18.2106")

= 4,183,965.568 m

Conversion of geocentric coordinates of any point P to its geodetic values is
accomplished using the following steps (refer again to Figure 13.6).

Step 1: Compute Dp as
Dp= VX5 + Y5> (13.3)

Step 2: Compute the longitude as’

Dp — X,
/\P =2 tan1<PP> (13.4)
Yp
Step 3: Calculate approximate latitude, s
Zp
= tan_1|::| 13.5
d)() Dp( 1 — 62) ( )

SThis formula can conveniently be implemented in software with the function atan2(Xp, Yp).

A Mathcad electronic book on the companion website for this book contains the routines to convert
between geodetic and geocentric coordinates.
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Step 4: Calculate the approximate radius of the prime vertical, Ry, using ¢ from
step 3, and Equation (13.2).
Step 5: Calculate an improved value for the latitude from

¢ _ tan1<ZP + 62 RNPSiH(¢0)>
Dy

Step 6: Repeat the computations of steps 4 and 5 until the change in ¢ between
iterations becomes negligible. This final value, ¢ p, is the latitude of the
station.

Step 7: Use the following formulas to compute the geodetic height of the station.
For latitudes less than 45°, use

(13.6)

hp= 20 g 13.7
P Cos(dp) Np (13.7q)
For latitudes greater than 45° use the formula
Zp
hp = — Ry, (1 —¢° 13.7b
P Lin(q')p)} N ( e”) ( )

It should be noted that the reason for Equations (13.7a) and (13.7b) are due to
numerical stability of the trigonometric functions that they each employ.

N Example 13.2

What are the geodetic coordinates of a point that has X, Y, Z geocentric coor-
dinates of 1,241,581.343, —4,638,917.074, and 4,183,965.568, respectively? (Note:
Units are meters)

Solution

To visualize the solution, refer to Figure 13.6. Since the X-coordinate value is posi-
tive, the longitude of the point is between 0° and 90°. Also, since the Y-coordinate
value is negative, the point is in the western hemisphere. Similarly since the
Z-coordinate value is positive, the point is in the northern hemisphere. Substituting
the appropriate values into Equations (13.3) through (13.7) yields

Step 1:
D = \V/(1241,581.343)% + (—4,638,917.074)% = 4,802,194.8993
Step 2:
4,802,194.8993 — 1,241,581.343
A =2tan ! 222 il — —75°00758.6127" (West
an ( —4,638,917.074 ) (West)
Step 3:
4,183,965.568
— tan’! 202, = 41°15'18.2443"
o = tan [4,802,194.8993(1 - 0.00669437999)}
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Step 4:
6,378,137
Ry = = = 6,387,440.3148
V1 — 0.00669437999 sin?(41°15'18.2443")
Step S:
_4| 4,183,965.568 + % 6,387,440.3148 sin 41°15'18.2443"
Q’)O = tan

4,802,194.8993

41°15'18.2107"

Step 6: Repeat steps 4 and S until the latitude converges. The values for the next
iteration are

Ry = 6,387,440.3113
by = 41°15'18.2106"

Repeating with the above values results in the same value for latitude
to four decimal places, so the latitude of the station is 41°15'18.2106" N.

Step 7: Since the latitude is less than 45°, compute the geodetic height using
Equation (13.7a) as

_4,802,194.8993

 cos 41°15'18.2106"
The geodetic coordinates of the station are latitude = 41°15'18.2106" N,
longitude = 75°00'58.6127” W, and height = 312.391 m. Note that this

example was the reverse computations of Example 13.1, and it repro-
duced the starting geodetic coordinate values for that example.

— 6,387,440.3113 = 312.391

It is important to note that geodetic heights obtained with satellite surveys are
measured with respect to the ellipsoid. That is, the geodetic height of a point is the
vertical distance between the ellipsoid and the point as illustrated in Figure 13.7. As
shown, these are not equivalent to elevations (more properly referred to as ortho-
metric heights) given with respect to the geoid. Recall from Chapter 4 that the geoid
is an equipotential gravitational reference surface that is used as a datum for eleva-
tions. To convert geodetic heights to elevations, the geoid height (vertical distance
between ellipsoid and geoid) must be known. Then elevations can be expressed as

H=h-N (13.8)

where H is elevation above the geoid (orthometric height), 4 the geodetic height
(determined from satellite surveys), and N the geoidal height. Figure 13.7 shows
the correct relationship of the geoid and the WGS84 ellipsoid in the continental
United States. Here the ellipsoid is above the geoid, and geoid height (measured
from the ellipsoid) is negative. The geoid height at any point can be estimated with
mathematical models developed by combining gravimetric data with distributed
networks of points where geoidal height has been observed. One such model,
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GEOIDI2A, is a high-resolution model for the United States available from the
National Geodetic Survey.’ It uses latitude and longitude as arguments for deter-
mining geoid heights at any locations in the conterminous United States (CONUS),
Hawaii, Puerto Rico, and the Virgin Islands.

M Example 13.3

Compute the elevation (orthometric height) for a station whose geodetic height
is 312.391 m, if the geoid undulation in the area is —33.000 m.

Solution

By Equation (13.8):
H = 312391 — (—33.000) = 345391 m

Since the geoid height generally changes gradually in any region, a value that
can be applied for it over a limited area can be determined. Including NAVDS8S8
benchmarks in the area in a GNSS survey can do this. Then with the ellipsoid
heights and elevations known for these benchmarks, the following rearranged
form of Equation (13.8) is used to determine GNSS observed geoidal heights:

NGPS =h—-—H (13.9)
The value for Ngpg obtained in this manner should be compared with that de-

rived from the model supplied by the National Geodetic Survey (NGS), and the dif-
ference should be computed as AN = Ngyss — Nmodel- It is best to perform this

7A disk containing GEOID12A can be obtained by writing to the National Geodetic Information
Center, NOAA, National Geodetic Survey, N/CG17, SSMC3 Station 09535, 1315 East West Highway,
Silver Spring, Md. 20910, telephone (301) 713-3242, or it can be downloaded over the Internet at
http://www.ngs.noaa.gov/PC_PROD/pc_prod.shtml.
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procedure on several well-dispersed benchmarks in an area whenever possible. Then
using an average AN for the survey area, the corrected orthometric height is

H=h- (Nmodel + A]\]avg) (13.10)

M Example 13.4

The GNSS observed geodetic heights of benchmark stations Red, White, and Blue
are 412.345, 408.617, and 386.945 m, respectively. The model geoidal heights for
the stations are —29.894, —29.902, and —29.901 m, respectively, and their pub-
lished elevations are 442.214, 438.490, and 416.822 m, respectively. What is the
elevation of station Brown, which has an observed GNSS height of 397.519 m, if
the model geoid height is published as —29.898 m?

Solution

By Equation (13.9), the observed geoid heights and AN’s are

Station N AN

Red 412.345 — 442.214 = —29.869 —29.869 — (—29.894) = 0.025

White 408.617 — 438.490 = —29.873 —29.873 — (—=29.902) = 0.029

Blue 386.945 — 416.822 = —29.877 —29.877 — (=29.901) = 0.024
AN, = 0.026

By Equation (13.10), the elevation of Brown is
Elevg,own = 397.519 — (—29.898 + 0.026) = 427.391 m

A word of caution should be added. Because the exact nature of the geoid is
unknown, interpolated or extrapolated values of geoidal heights from an observed
network of points, or those obtained from mathematical models, are not exact.
Thus orthometric heights obtained from ellipsoid heights will be close to their true
values, but they may not be accurate enough to meet project requirements. Thus
for work that requires extremely accurate elevation differences, it is still best to ob-
tain them by differential leveling from nearby benchmarks. The NGS is currently
working on improvement of the geoid model for the United States to alleviate
some of the error in conversion from geodetic to orthometric heights.

13.4.4 Evolution of WGS84 Reference Frame

It has always been the goal in surveying/geomatics to have one unifying coordi-
nate system for the entire Earth. In 1987, the coordinates of the GPS tracking
stations were realized by the over 1000 terrestrial control station coordinates that
were observed using TRANSIT. This became known as the WGS84 datum, which
was considered to be coincidental with the original NAD 83 (1986) horizontal
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datum.® However, with the evolution of GPS, better fitting reference coordi-
nate systems were realized for the Earth. The International Earth Rotation and
Reference Systems Service (IERS), which consists of more than 200 worldwide
agencies, has generated better fitting reference systems for the Earth based on an
expansive network of GNSS tracking stations, very long baseline interferometry
(VLBI) stations, satellite laser ranging (SLR), and Doppler ranging integrated on
satellite (DORIS) stations. These new coordinate systems were realized as the
International Terrestrial Reference Frames (ITRF). The first was created in 1989
with ITRF89. Since then there have been the following reference coordinate sys-
tems: ITRF90, ITRFI1, ITRF92, ITRF93, ITRF9%4, ITRF9S, ITRF96, ITRF97,
ITRF2000, ITRF2005, and ITRF2008. All of these are known as Earth-centered,
Earth-fixed (ECEF) coordinate systems since, as discussed in Section 13.4.2, they
are based on the origin being at the mass center of the Earth and the axes de-
fined by the Conventional Terrestrial Pole (CTP) and Greenwich meridian. All
of these systems use the Geodetic Reference System of 1980 (GRS 80) ellipsoid.

Because of discrepancies between the original WGS84 reference frame and
the better fitting ITRF coordinate systems, the Department of Defense began
changing their control station coordinates to agree with the IGS reference frames.
For GPS these coordinate changes occurred during GPS weeks of 730, 873, 1150,
and 1674. These new reference coordinate systems were designated as WGS84
(G730), WGS84 (G873), WGS84 (G1150), and WGS84 (G1674), respectively,
where the “G” indicates that GPS measurements were used to establish the new
datum on the control stations, and the number following the “G” indicates the
GPS week during which the coordinates were implemented. The latest WGS84
(G1674) is in agreement with the ITRF08 (epoch 2005.0) reference system but is
significantly different from NADS3 (1986). These changes are made to account
for the motions of the Earth’s crustal plates.

When performing GNSS surveys or comparing coordinates from early
GNSS surveys, it is always important to check the reference system for the station
coordinates. Likewise for future use, it is important to have the date and the refer-
ence system as part of the metadata to accompany the station coordinates. Since it
is quite possible that the position of stations given in coordinates can be in varying
reference frames, several agencies such as IGS, NGS, and National Geospatial-
Intelligence Agency (NGA) along with private firms have created conversion
software to transform coordinates between reference frames. The mathematics
of these transformations is discussed in Section 19.7. Horizontal Time Dependent
Positioning (HTDP) software, which is available from the NGS, allows users to
transform coordinates between reference frames and dates. It is important for
students early in their surveying careers to realize that coordinate systems will
continue to evolve and change as we learn more about the Earth and the move-
ment of its crustal plates. Thus it is important to know not only the values of the
coordinates for stations but also the defining reference coordinate system that is
the basis for the coordinates and the dates of the survey that established these
coordinates.

8The history of NADS3 and transformations between different reference coordinate systems is fur-
ther discussed in Section 19.
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B 13.5 FUNDAMENTALS OF SATELLITE POSITIONING

As discussed in Section 13.3, the precise travel time of the signal is necessary to
determine the distance, or so-called range, to the satellite. Since the satellite is in
an orbit approximately 20,200 km above the Earth, the travel time of the signal
will be roughly 0.07 sec after the receiver generates the same signal. If this time
delay between the two signals is multiplied by the signal velocity (speed of light
in a vacuum) ¢, the range to the satellite can be determined from

r=c¢Xt (13.11)

where r is the range to the satellite and ¢ the elapsed time for the wave to travel
from the satellite to the receiver.

Satellite receivers in determining distances to satellites employ two funda-
mental methods: code ranging and carrier phase-shift measurements. From dis-
tance observations made to multiple satellites, receiver positions can be calculated.
Descriptions of the two methods, and their mathematical models, are presented
in the subsections that follow. These mathematical models are presented to help
students better understand the underlying principles of GPS operation. Computers
that employ software provided by manufacturers of the equipment perform solu-
tions of the equations.

13.5.1 Code Ranging

The code ranging method of determining the time it takes the signals to travel
from satellites to receivers was the procedure briefly described in Section 13.3.
With the travel times known, the corresponding distances to the satellites can
then be calculated by applying Equation (13.11). With one range known, the re-
ceiver would lie on a sphere. If the range were determined from two satellites,
the results would be two intersecting spheres. As shown in Figure 13.8(a), the
intersection of two spheres is a circle. Thus, two ranges from two satellites would
place the receiver somewhere on this circle. Now if the range for a third satellite
is added, this range would add an additional sphere, which when intersected with
one or both of the other two spheres would produce another circle of intersec-
tion. As shown in Figure 13.8(b), the intersection of two circles would leave only

(@) (b)
Figure 13.8 (a) The intersection of two spheres and (b) the intersection of two circles.
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two possible locations for the position of the receiver. A “seed position” is used
to quickly eliminate one of these two intersections.

For observations taken on three satellites, the system of equations that
could be used to determine the position of a receiver at station A is

ph= V(X' = X,)7 + (Y = )’ + (2 = Z,)
Pa= V(X - X))+ (Y = Ya) + (2 = Za) (13.12)
P = V(X - X))+ (Y =)+ (2 - Zy)

where p’j are the geometric ranges for the three satellites to the receiver at station
A, (X", Y", Z") are the geocentric coordinates of the satellites at the time of the
signal transmission, and (X}, Y4, Z,4) are the geocentric coordinates of the re-
ceiver at transmission time. Note that the variable n pertains to superscripts and
takes on values of 1, 2, or 3.

However, in order to obtain a valid time observation, the systematic error
(known as bias) in the clocks, and the refraction of the wave as it passes through
the Earth’s atmosphere, must also be considered. In this example, the receiver
clock bias is the same for all three ranges since the same receiver is observing each
range. With the introduction of a fourth satellite range, the receiver clock bias
can be mathematically determined. This solution procedure allows the receiver to
have a less accurate (and less expensive) clock. Algebraically, the system of equa-
tions used to solve for the position of the receiver and clock bias are:

Ry(1) = pa(t) + c(8'(1) = 8a(1))
Ri(1) = pa(r) + c(8%(r) = 8a(1))
U X (13.13)
Ra(1) = pa(t) +¢(87°(2) = 8a(1))
Ri(t) = pa(t) + c(8*(r) = 84(1))

where is R/ (¢) is the observed range (also called pseudorange) from receiver A
to satellites 1 through 4 at epoch (time) ¢, p’4 (¢) the geometric range as defined in
Equation (13.12), c the speed of light in a vacuum, §,(¢) the receiver clock bias,
and 6"(t) the satellite clock bias, which can be modeled using the coefficients
supplied in the broadcast message. These four equations can be simultaneously
solved yielding the position of the receiver (X4, Y4, Z4), and the receiver clock
bias 64 (t). Equations (13.13) are known as the point positioning equations and as
noted earlier they apply to code-based receivers.

As will be shown in Section 13.6, in addition to timing there are several
additional sources of error that affect the satellite’s signals. Because of the clock
biases and other sources of error, the observed range from the satellite to receiver
is not the true range, and thus it is called a pseudorange. Equations (13.13) are
commonly called the code pseudorange model.

13.5.2 Carrier Phase-Shift Measurements

Better accuracy in measuring ranges to satellites can be obtained by observing
phase-shifts of the satellite signals. In this approach, the phase-shift in the signal
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that occurs from the instant it is transmitted by the satellite, until it is received at
the ground station, is observed. This procedure, which is similar to that used by
EDM instruments (see Section 6.17), yields the fractional cycle of the signal from
satellite to receiver.” However, it does not account for the number of full wave-
lengths or cycles that occurred as the signal traveled between the satellite and
receiver. This number is called the integer ambiguity or simply ambiguity. Unlike
EDM instruments, the satellites utilize one-way communication, but because the
satellites are moving and thus their ranges are constantly changing, the ambiguity
cannot be determined by simply transmitting additional frequencies. There are
different techniques used to determine the ambiguity. All of these techniques re-
quire that additional observations be obtained. One such technique is discussed
in Section 13.6. Once the ambiguity is determined, the mathematical model for
carrier phase-shift, corrected for clock biases, is

di(r) = %p{f(t) + NI+ fI[8/(1) — 8i(1)] (13.14)

where for any particular epoch in time, ¢, ®(t) is the carrier phase-shift measure-
ment between satellite j and receiver i, f’ the frequency of the broadcast signal
generated by satellite j, 8 () the clock bias for satellite j, A the wavelength of
the signal, pi(¢) the geometric range as defined in Equations (13.12) between
receiver i and satellite j, N! the integer ambiguity of the signal from satellite j to
receiver i, and §;(¢) the receiver clock bias.

H 13.6 ERRORS IN OBSERVATIONS

Electromagnetic waves can be affected by several sources of error during their
transmission. Some of the larger errors include (1) satellite and receiver clock biases
and (2) ionospheric and tropospheric refraction. Other errors in satellite surveying
work stem from (a) satellite ephemeris errors, (b) multipathing, (c) instrument mis-
centering, (d) antenna height measurements, and (e) satellite geometry. All of these
errors contribute to the total error of satellite-derived coordinates in the ground
stations. These errors are discussed in the subsections that follow.

13.6.1 Clock Bias

Two errors already discussed in Section 13.5 were the satellite and receiver clock
biases. The satellite clock bias can be modeled by applying coefficients that are
part of the broadcast message using the polynomial

8(t) = ay + ay(t — ty) + ax(t — t)? (13.15)

where 8/(t) is the satellite clock bias for epoch ¢, t, the satellite clock reference
epoch, and ay, a;, and a, the satellite clock offset, drift, and frequency drift,
respectively, which are part of the broadcast message. As will be discussed in
Section 13.9.1, when using relative-positioning techniques, and specifically

9The phase-shift can be measured to approximately 1/100 of a cycle.
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single differencing, the satellite clock bias can be mathematically removed during
post-processing.

As was shown in Section 13.5, the receiver clock bias can be treated as an
unknown and computed using Equations (13.13) or (13.14). However, as dis-
cussed in Section 13.9.2 when using relative positioning techniques, it can also be
eliminated through double differencing during post-processing of the survey data.

13.6.2 Refraction

As discussed in Section 6.16, the velocities of electromagnetic waves change as
they pass through media with different refractive indexes. The atmosphere is
generally subdivided into regions. The subregions of the atmosphere that have
similar composition and properties are known as spheres. The boundary layers
between the spheres are called pauses. The two spheres that have the greatest
effect on satellite signals are the troposphere and ionosphere. The troposphere
is the lowest part of the atmosphere, and is generally considered to exist up to
10-12 km in altitude. The tropopause separates the troposphere from the strato-
sphere. The stratosphere goes up to about 50 km. The combined refraction in the
stratosphere, tropopause, and troposphere is known as tropospheric refraction.

There are several other layers of atmosphere above 50 km, but the one
of most interest in satellite surveying is the ionosphere that extends from 50 to
1500 km above the Earth. As the satellite signals pass through the ionosphere and
troposphere, they are refracted. This produces range errors similar to timing errors
and is one of the reasons why observed ranges are referred to as pseudoranges.

The ionosphere is primarily composed of ions—positively charged atoms
and molecules, and free negatively charged electrons. The free electrons affect
the propagation of electromagnetic waves. The number of ions at any given time
in the ionosphere is dependent on the sun’s ultraviolet radiation. Solar flare
activity known as space weather can dramatically increase the number of ions in
the ionosphere, and thus can be reason for concern when working with satellite
surveying during periods of high sunspot activity, which follows a periodic peak
variation of 11 years.'” Since ionospheric refraction is the single largest error in
satellite positioning, it is important to explore the space weather when perform-
ing surveys. This topic is further discussed in Section 15.2.

A term for both the ionospheric and tropospheric refraction can be incorpo-
rated into Equations (13.13) and (13.14) to account for those errors in the signal.
Letting A8/ equal the difference between the clock bias for satellite j and the
receiver at A for epoch ¢ [i.e., A8/ = &/(t) — 8,(¢)], then for any particular range
listed in Equation (13.13) the incorporation of tropospheric and ionospheric
refraction on the code pseudorange model yields

Ria(0) = (1) + sl + c[8f1” + 5"7(1) ]
Riat) = (1) + eAd + c[s17 + 67 ()] rerel
Ris(t) = (1) + eAd + e[of2 + 5"(1)]

1020122014 is a period of high solar activity.
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where R} (t), Rj,(t), and R}s(t) are the observed pseudoranges as computed
with frequency L1, L2, and L5 (f;4, f72, and f;5) from satellite j to the receiver,
p/(t) the geometric range as defined in Equation (13.12) from the satellite to the
receiver, ¢ the velocity of light in a vacuum, §7°7(¢) the delay in the signal caused
by the tropospheric refraction, and 6" the ionospheric delay for the L1, L2, and
LS frequencies, respectively.

A similar expression can be developed for the carrier phase-shift model and is

(I)/Ll = TUPI([) + le AS + NLl _ leézono + lealr()p

D, = TP’(I) + fio A8 + Npp — f128"" + f1,6" (13.17)
2

. 1 . . .
s = Tpl(f) + fis A + Nps — f156"" + fr56"F
Ls

where ®/ |, ¥),, and ® 5 are the carrier phase-shift observations from satellite
j using frequencies L1, L2, and LS5, respectively, Ny, N;,, and N;5 are integer
ambiguities for the frequencies L1, L2, and LS5, and the other terms are as previ-
ously defined in Equations (13.14) and (13.16) for each frequency.

By taking observations on the three frequencies, and employing either
Equations (13.16) or (13.17), the atmospheric refraction can be modeled and
mathematically removed from the data. This is a major advantage of dual-
frequency receivers (those which can observe both L1 and L2 signals) over their
single-frequency counterparts, and allows them to accurately observe baselines
up to 150 km accurately. The linear combination of the Li and Lj frequencies for
the code pseudorange model, which is almost free of ionospheric refraction, is

(fui)?
(f))?
where R;; ;; is the pseudorange observation for the combined Li and L signals
and Li and Lj are a pair of the L1, L2, or L5 carrier frequencies. Until recently,
only receivers capable of receiving the P code could perform the ionospheric
refraction correction using code ranges. However with the addition of civilian
codes on all three frequencies, civilian receivers will be able to process signals
using Equation (13.18). This will result in much higher accuracies in positioning
due to their ability to nearly eliminate ionospheric refraction in real time.

The carrier-phase model, which is also almost free of ionospheric refraction, is

Iij

where ®;; ;; is the phase observation of the linear combination of the Li and Lj
waves and Li and Lj are replaced by a pair of L1, L2, or LS5 carrier frequencies.
By their very nature, single-frequency receivers cannot take advantage of the two
separate signals, and thus they must use ionospheric modeling data that is part of
the broadcast message. This limits their effective range to between 10 and 20 km,
although, this limit is dependent on the space weather at the time of the survey.

Rpi1j= Ry — Ry; (13.18)

q)Li,Lj - q)Li (13.19)
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The advantage in having the satellites at approximately 20,200 km above
the Earth is that signals from one satellite going to two relatively close receiv-
ers pass through nearly the same atmosphere. Thus the atmosphere has similar
effects on the signals, and its affects can be practically eliminated using math-
ematical techniques as discussed in Sections 13.7 through 13.9. For long lines
Equations (13.18) and (13.19) are typically used.

As can be seen in Figure 13.9, signals from satellites that are on the horizon
of the observer must pass through considerably more atmosphere than signals
coming from high above the horizon. Because of the difficulty in modeling the
atmosphere at low altitudes, signals from satellites below a certain threshold
angle, are typically omitted from the observations. The specific value for this
angle (known as the satellite mask angle) is somewhat arbitrary. It can vary
between 10° and 20° depending on the desired accuracy of the survey. Higher
horizontal positioning accuracies will be obtained with satellites below 15° and
thus mask angles between 10° and 15° are typically used in surveying. This is dis-
cussed further in Chapter 14.

13.6.3 Other Error Sources

Several other smaller error sources contribute to the positional errors of a
receiver. These include (1) satellite ephemeris errors; (2) multipathing errors;
(3) errors in centering the antenna over a point; (4) errors in measuring antenna
height above the point; and (5) errors due to satellite geometry.
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As noted earlier, the broadcast ephemeris predicts the positions of the
satellites in the near future. However, because of fluctuations in gravity, solar
radiation pressure, and other anomalies, these predicted orbital positions are
always somewhat in error. In the code-matching method, these satellite position-
ing errors are translated directly into the computed positions of ground stations.
This problem can be reduced by updating the orbital data using information
obtained later, which is based on the actual positions of the satellites determined
by tracking stations. One disadvantage of this is the delay that occurs in obtain-
ing the updated data. One of three updated post-survey ephemerides is available:
(1) ultra-rapid ephemeris, (2) the rapid ephemeris, and (3) the precise ephemeris.
The ultra-rapid ephemeris is available twice a day; the rapid ephemeris is avail-
able within two days after the survey; the precise ephemeris (the most accurate
of the three) is available two weeks after the survey. The ultra-rapid or rapid
ephemerides are sufficient for most surveying applications.

As shown in Figure 13.10(a), multipathing occurs when a satellite signal re-
flects from a surface and is directed toward the receiver. This causes multiple signals
from a satellite to arrive at the receiver at slightly different times. Vertical structures
such as buildings and chain link fences are examples of reflecting surfaces that can
cause multipathing errors. Mathematical techniques have been developed to elimi-
nate these undesirable reflections, but, in extreme cases, they can cause a receiver
to lose lock on the satellite —loss of lock is essentially a situation where the receiver
cannot use the signals from the satellite. This can be caused not only by multipa-
thing, but also by obstructions, or high ionospheric activity. Multipathing can also
cause incorrect resolution of the initial integer ambiguities, which results in errors
in positions throughout the project until the ambiguities are resolved a second time.

< b
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plane

N
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Figure 13.10
(a) Multipathing and (b) Slant height measurements.
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In satellite surveying, pseudoranges are observed to the receiver antenna’s
phase center. For precise work, the antennas are generally mounted on fixed-
height tripods, set up and carefully centered over a survey station, and leveled.
Miscentering of the antenna over the point is another potential source of error.
Setup and centering over a station should be carefully done following procedures
like those described in Section 8.5. Any error in miscentering of the antenna over
a poi