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PREFACE
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to teach a semester course at the University of Colorado in Boulder, Colorado in

the fall of 2000. Much of what the book has become results from our many wonder-

ful students. We thank them for their interest, enthusiasm, good humor, and encour-

agement as we struggled to develop many of the ideas presented in this book.

We also are deeply indebted to the following colleagues for insightful discus-

sions and fruitful collaborations: Richard L. Cooley, Richard M. Yager, Frank

A. D’Agnese, Claudia C. Faunt, Arlen W. Harbaugh, Edward R. Banta, Marshall

W. Gannett, and D. Matthew Ely of the U.S. Geological Survey, Eileen P. Poeter

of the Colorado School of Mines, Evan R. Anderman formerly of Calibra Consult-

ants and McDonald-Morrissey Associates, Inc., Heidi Christiansen Barlebo of the
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2000, PEST, UCODE, and UCODE_2005 throughout the years have been

invaluable.

The book benefited from the careful reviews provided by Peter Kitanidis of

Stanford University, Eileen Poeter of the Colorado School of Mines and the Inter-

national GroundWater Modeling Center (USA), Steen Christensen of the University

of Aarhus (Denmark), Roseanna Neupauer of the University of Virginia (USA) (now

at the University of Colorado, USA), Luc Lebbe of Ghent University (Belgium),

David Lerner of the University of Sheffield (England), Chunmiao Zheng of the
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All errors and omissions are the sole responsibility of the authors.

MARY C. HILL
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1
INTRODUCTION

In many fields of science and engineering, mathematical models are used to

represent complex processes and results are used for system management and risk

analysis. The methods commonly used to develop and apply such models often

do not take full advantage of either the data available for model construction and

calibration or the developed model. This book presents a set of methods and guide-

lines that, it is hoped, will improve how data and models are used.

This introductory chapter first describes the contributions of the book, including a

description of what is on the associated web site. Sections 1.2 and 1.3 provide some

context for the book by reviewing inverse modeling and considering the methods

covered by the book relative to other paradigms for integrating data and models.

After providing a few definitions, Chapter 1 concludes with a discussion of the

expertise readers are expected to possess and some suggested readings and an

overview of Chapters 2 through 15.

1.1 BOOK AND ASSOCIATED CONTRIBUTIONS: METHODS,

GUIDELINES, EXERCISES, ANSWERS, SOFTWARE, AND

POWERPOINT FILES

The methods presented in the book include (1) sensitivity analysis for evaluating

the information content of data, (2) data assessment strategies for identifying

(a) existing measurements that dominate model development and predictions

1
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and (b) potential measurements likely to improve the reliability of predictions,

(3) calibration techniques for developing models that are consistent with the data

in some optimal manner, and (4) uncertainty evaluation for quantifying and commu-

nicating the potential error in simulated results (e.g., predictions) that often are used

to make important societal decisions.

The fourteen guidelines presented in the book focus on practical application of

the methods and are organized into four categories: (1) model development guide-

lines, (2) model testing guidelines, (3) potential new data guidelines, and (4) predic-

tion uncertainty guidelines.

Most of the methods presented and referred to in the guidelines are based on

linear or nonlinear regression theory. While this body of knowledge has its limits,

it is very useful in many circumstances. The strengths and limitations of the methods

presented are discussed throughout the book. In practice, linear and nonlinear

regression are best thought of as imperfect, insightful tools. Whether regression

methods prove to be beneficial in a given situation depends on how they are used.

Here, the term beneficial refers to increasing the chance of achieving one or more

useful models given the available data and a reasonable model development

effort. The methods, guidelines, and related exercises presented in this book illus-

trate how to improve the chances of achieving useful models, and how to address

problems that commonly are encountered along the way.

Besides the methods and guidelines, the book emphasizes the importance of how

results are presented. To this end, the book can be thought of as emphasizing two

criteria: valid statistical concepts and effective communication with resource man-

agers. The most advanced, complex mathematics and statistics are worth very little

if they cannot be used to address the societal needs related to the modeling

objectives.

The methods and guidelines in this book have wide applicability for mathemat-

ical models of many types of systems and are presented in a general manner. The

expertise of the authors is in the simulation of groundwater systems, and most of

the examples are from this field. There are also some surface-water examples and

a few references to other fields such as geophysics and biology. The fundamental

aspects of systems most advantageously addressed by the methods and guidelines

presented in this work are those typical of groundwater systems and shared by

many other natural systems. Of relevance are that groundwater systems commonly

involve (1) solutions in up to three spatial dimensions and time, (2) system charac-

teristics that can vary dramatically in space and time, (3) knowledge about system

variability in addition to the data used directly in regression methods, (4) available

data sets that are typically sparse, and (5) nonlinearities that are often significant but

not extreme.

Four important additional aspects of the book are the exercises, answers, soft-

ware, and PowerPoint files available for teaching.

The exercises focus on a groundwater flow system and management problem to

which students apply all the methods presented in the book. The system is simple,

which allows basic principles to be clearly demonstrated, and is designed to have

aspects that are directly relevant to typical systems. The exercises can be conducted
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using the material provided in the book, or as hands-on computer exercises using

instructions and files available on the web site http://water.usgs.gov/lookup/
get?crresearch/hill_tiedeman_book.

The web site includes instructions for doing the exercises using files directly

and/or using public-domain interface and visualization capabilities. It may also

include instructions for using selected versions of commercial interfaces. The

instructions are designed so that students can maximize the time spent understanding

the ideas and the capabilities discussed in the book.

Answers to selected exercises are provided on the web site.

The software used for the exercises is freely available, open source, well docu-

mented, and widely used. The groundwater flow system is simulated using the

Ground-Water Flow Process of MODFLOW-2000 (Harbaugh et al., 2000; Hill

et al., 2000). The sensitivity analysis, calibration, and uncertainty aspects of the

exercises can be accomplished using MODFLOW-2000’s Observation, Sensitivity,

and Parameter-Estimation Processes or UCODE_2005 (Poeter et al., 2005). Most of

the sensitivity analysis, calibration, and uncertainty aspects of the exercises also can

be conducted using PEST (Doherty, 1994, 2005). Relevant capabilities of MOD-

FLOW-2000 and UCODE_2005 are noted as methods and guidelines are presented;

relevant capabilities of PEST are noted in some cases. The public-domain programs

for interface and visualization are MFI2K (Harbaugh, 2002), GWChart (Winston,

2000), and ModelViewer (Hsieh and Winston, 2002). The web sites from which

these programs can be downloaded are listed with the references and on the book

web site listed above.

The methods and guidelines presented in this book are broadly applicable.

Throughout the book they are presented in the context of the capabilities of the com-

puter codes mentioned above to provide concrete examples and encourage use.

PowerPoint files designed for teaching of the material in the book are provided on

the web site. The authors invite those who use the PowerPoint files to share their

additions and changes with others, in the same spirit with which we share these

files with you.

The use of trade, firm, or product names in this book is for descriptive purposes

only and does not imply endorsement by the U.S. Government.

The rest of this introductory chapter provides a brief overview of how regression

methods fit into model calibration (Section 1.2), some perspective of how the ideas

presented here relate to other ideas and past work (Section 1.3), some definitions

(Section 1.4), a description of expertise that would assist readers and how to obtain

that expertise (Section 1.5), and an overview of Chapters 2 through 15 (Section 1.6).

1.2 MODEL CALIBRATION WITH INVERSE MODELING

During calibration, model input such as system geometry and properties, initial and

boundary conditions, and stresses are changed so that the model output matches

related measured values. Many of the model inputs that are changed can be charac-

terized using what are called “parameters” in this work. The measured values related

1.2 MODEL CALIBRATION WITH INVERSE MODELING 3



to model outputs often are called “observations” or “observed values,” which are

equivalent terms and are used interchangeably in this book.

The basic steps of model calibration are shown in Figure 1.1. In the context of the

entire modeling process, effectively using system information and observations to con-

strain the model is likely to produce a model that more accurately represents the simu-

lated system and produces more accurate predictions, compared to a modeling

procedure that uses these types of data less effectively. The ideas, methods, and guide-

lines presented in this book are aimed at helping to achieve more effective use of data.

The difficulties faced in simulating natural systems are demonstrated by the

complex variability shown in Figure 1.2 as discussed by Zhang et al. (2006).

Four issues fundamental to model calibration are discussed in the next four

sections. These include parameter definition or parameterization, which is the

mechanism used to obtain a tractable and hopefully meaningful representation of

FIGURE 1.1 Flowchart showing the major steps of calibrating a model and using it to make

predictions. Bold, italicized terms indicate the steps that are directly affected by nonlinear

regression, including the use of an objective function to quantify the comparison between

simulated and observed values. Predictions can be used during calibration as described in

Chapter 8. (Adapted from Herb Buxton, U.S. Geological Survey, written communication,

1990.)
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systems such as that shown in Figure 1.2; the objective function mentioned in

Figure 1.1; the utility of inverse modeling, which is also called parameter estimation

in this book; and using the model to quantitatively connect observations, parameters,

and predictions.

1.2.1 Parameterization

The model inputs that need to be estimated are often distributed spatially and/or
temporally, so that the number of parameter values could be infinite. The obser-

vations, however, generally are limited in number and support the estimation of rela-

tively few parameters. Addressing this discrepancy is one of the greatest challenges

faced by modelers in many fields. Typically, so-called parameterization is intro-

duced that allows a limited number of parameter values to define model inputs

throughout the spatial domain and time of interest. In this book, the term

“parameter” is reserved for the values used to define model inputs. Consider the

parameters defined in three groundwater model examples.

Example 1: One parameter represents the hydraulic conductivity of a hydro-

geologic unit that occupies a prescribed volume of the model domain and is

hydraulically distinctive and relatively uniform.

Example 2: One parameter represents a scalar multiplier of spatially varying

recharge rates initially specified by the modeler for a given geographic area

on the basis of precipitation, vegetation, elevation, and topography.

Example 3: One parameter represents the hydraulic head at a constant-head

boundary that is used to simulate the water level in a lake.

FIGURE 1.2 Experimental results from a subsiding tank, showing the kind of complexity

characteristic of deltaic deposits in a subsiding basin. (Reproduced with permission from

Paola et al. 2001.)
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This book focuses primarily on models for which a limited number of parameters

are defined. Alternative methods are discussed in Section 1.3.2.

Historically, observed and simulated values, such as hydraulic heads, flows, and

concentrations for groundwater systems, often were compared subjectively, so that it

was difficult to determine how well one model was calibrated relative to another. In

addition, in modeling of groundwater and other types of systems, adjustments of

parameter values and other model characteristics were accomplished mostly by

trial and error, which is time consuming, subjective, and inconclusive.

Formal methods have been developed that attempt to estimate parameter values

given a mathematical model of system processes and a set of relevant observations.

These are called inverse methods, and generally they are limited to the estimation of

parameters as defined above. Thus, the terms “inverse modeling” and “parameter

estimation” commonly are synonymous, as in this book. For some models, the

inverse problem is linear, in that the observed quantities are linear functions of

the parameters. In many circumstances of practical interest, however, the inverse

problem is nonlinear, and its solution is not as straightforward as for linear problems.

This book discusses methods for nonlinear inverse problems. One method of solving

such problems is nonlinear regression, which is the primary solution method

discussed in this book.

The complexity of many real systems and the scarcity of available data sets result

in inversions that are often plagued by problems of insensitivity, nonuniqueness, and

instability, regardless of how model calibration is achieved. Insensitivity occurs

when the observations do not contain enough information to support estimation of

the parameters. Nonuniqueness occurs when different combinations of parameter

values match the observations equally well. Instability occurs when slight changes

in, for example, parameter values or observations radically change simulated results.

All these problems are exacerbated when the system is nonlinear. These problems are

usually more easily detected when using formal inverse modeling and associated

methods than when using trial-and-error methods for calibration. Detecting these

problems is important to understanding the value of the resulting model.

1.2.2 Objective Function

In inverse modeling, the comparison of simulated and observed values is accom-

plished quantitatively using an objective function (Figure 1.1). The simulated and

observed values include system-dependent variables (e.g., hydraulic head for the

groundwater flow equation or concentration for the groundwater transport equation)

and other system characteristics as represented by prior information on parameters.

Parameter values that produce the “best fit” are defined as those that produce the

smallest value of the objective function.

1.2.3 Utility of Inverse Modeling and Associated Methods

Recent work has clearly demonstrated that inverse modeling and associated sensi-

tivity analysis, data needs assessment, and uncertainty evaluation methods provide

6 INTRODUCTION



capabilities that help modelers take greater advantage of their models and data, even

for simulated systems that are very complex (i.e., Poeter and Hill, 1997; Faunt et al.,

2004). The benefits include

1. Clear determination of parameter values that produce the best possible fit to

the available observations.

2. Graphical analyses and diagnostic statistics that quantify the quality of cali-

bration and data shortcomings and needs, including analyses of model fit,

model bias, parameter estimates, and model predictions.

3. Inferential statistics that quantify the reliability of parameter estimates and

predictions.

4. Other evaluations of uncertainty, including deterministic and Monte Carlo

methods.

5. Identification of issues that are easily overlooked when calibration is

conducted using trial and error methods alone.

Quantifying the quality of calibration, data shortcomings and needs, and uncer-

tainty of parameter estimates and predictions is important to model defensibility

and transparency and to communicating the results of modeling studies to managers,

regulators, lawyers, concerned citizens, and to the modelers themselves.

Despite its apparent utility, in many fields, such as groundwater hydrology, the

methods described in this book are not routinely used, and calibration using only

trial-and-error methods is more common. This, in part, is due to lack of familiarity

with the methods and the perception that they require more time than trial-

and-error methods. It is also because inverse modeling and related sensitivity

analysis methods clearly reveal problems such as insensitivity and nonuniqueness,

and thereby reveal inconvenient model weaknesses. Yet if they are revealed, such

weaknesses often can be reduced or eliminated. This occurs because knowledge

of the weaknesses can be used to determine data collection and model develop-

ment effort needed to strengthen the model. We hope this text will encourage

modelers to use, and resource managers to demand, the more transparent and

defensible models that result from using the types of methods and ideas described

in this book.

1.2.4 Using the Model to Quantitatively Connect Parameters,

Observations, and Predictions

The model quantitatively connects the system information and the observations to

the predictions and their uncertainty. The entities Parameters, Observations, and

Predictions are in bold type in Figure 1.1 because these entities are directly used

by or produced by the model, whereas the system information often is indirectly

used to create model input. Many of the methods presented in this book take advan-

tage of the quantitative links the model provides between what is referred to in this

book as the triad of the observations, parameters, and predictions.

1.2 MODEL CALIBRATION WITH INVERSE MODELING 7



The depiction of model calibration shown in Figure 1.1 is unusual in that it

suggests simulating predictions and prediction uncertainty as model calibration pro-

ceeds. When execution times allow, it is often useful to include predictive analyses

during model calibration so that the dynamics affecting model predictions can be

better understood. Care must be taken, of course, not to use such simulations to

bias model predictions.

1.3 RELATION OF THIS BOOK TO OTHER IDEAS

AND PREVIOUS WORKS

This section relates the ideas of this book to predictive models and other literature.

1.3.1 Predictive Versus Calibrated Models

When simulating natural systems, the objective is often to produce a model that

can predict, accurately enough to be useful, for assessing the consequences of intro-

ducing something new in the system. In groundwater systems, this may entail new

pumpage or transport of recently introduced or potential contamination.

Ideally, model inputs would be determined accurately and completely enough

from directly related field data to produce useful model results. This is advantageous

because the resulting model is likely to be able to predict results in a wide range of

circumstances, and for this reason such models are called predictive models (e.g.,

see Wilcock and Iverson, 2003; National Research Council, 2002). However, com-

monly quantities simulated by the model can be more readily measured than model

inputs. The best possible determination of model inputs based on directly related

field data can produce model outputs that match the measured equivalents poorly.

If the fit is poor enough that the utility of model predictions is questionable, then

a decision needs to be made about how to proceed. The choices are to use the pre-

dictive model, which has been shown to perform poorly in the circumstances for

which testing is possible, or to modify the model so that, at the very least, it matches

the available measured equivalents of model results. A model modified in this way is

called a calibrated model.

There is significant and important debate about the utility of predictive and cali-

brated models, and it is our hope that the debate will lead to better methods of

measuring quantities directly related to model inputs. We would rejoice with all

others in the natural sciences to be able to always use predictive models. Until

then, however, it is our opinion that methods and guidelines that promote the best

possible use of models and data in the development of calibrated models are critical.

It is also our belief that such methods and guidelines can play a role in informing and

focusing the efforts of developing field methods that may ultimately allow predictive

models to be used in more circumstances.

1.3.2 Previous Work

For the most part, comments in this introductory chapter are limited to the history,

evolution, and status of nonlinear regression and modeling as related to groundwater

systems. Comments about how specific methods or ideas relate to previous
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publications appear elsewhere in the book. This section contains the broadest

discussion of parameterization methods presented in the book.

The topics covered by this book have been addressed by others using a variety of

different methods, and have been developed for and applied to many different fields

of science and engineering. We do not attempt to provide a full review of all work

on these topics. Selected textbooks are as follows. Parker (1994), Sun (1994),

Lebbe (1999), and Aster et al. (2005) discuss nonlinear regression in the field of geo-

physics. More general references for nonlinear regression and associated analyses

include Bard (1974), Beck and Arnold (1977), Belsley et al. (1980), Seber and

Wild (1989), Dennis and Schnabel (1996), and Tarantola (2005). Saltelli et al.

(2000, 2004) provide comprehensive overviews of sensitivity-analysis methods.

This book focuses on what Saltelli et al. describe as local sensitivity methods,

and includes new sensitivity-analysis methods not included in the previous books.

The pioneers of using regression methods in groundwater modeling were Cooley

(1977) and Yeh and Yoon (1981). Some of the material in this book was first

published in U.S. Geological Survey reports (Cooley and Naff, 1990; Hill, 1992;

Hill, 1994; Hill, 1998). Cooley and Naff (1990) presented a modified Gauss–

Newton method of nonlinear regression that with some modification is used in

Chapter 5, and residual analysis ideas derived from early editions of Draper and

Smith (1998) that are used in Chapter 6. Hill (1992) presents sensitivity-analysis

and residual-analysis methods used in Chapters 4 and 6. Cooley and Naff (1990),

and Hill (1992), and Hill (1994) present methods of residual analysis and linear

uncertainty analysis that are used in Chapters 6 and 8. Hill (1998) enhanced the

methods presented in the previous works and presents the first version of the guide-

lines that are described in Chapters 10 through 14. Various aspects of the guidelines

have a long history, and relevant references are cited in later chapters. To the

authors’ knowledge, these guidelines provide a more comprehensive foundation

for the calibration and use of models of complex systems than any similar set of

published guidelines. In general, the book expands the previously presented

material, presents some new methods, and includes an extensive set of exercises.

Achieving Tractable Problems Regression is a powerful tool for using data to test

hypothesized physical relations and to calibrate models in many fields (Seber and

Wild, 1989; Draper and Smith, 1998). Despite its introduction into the groundwater

literature in the 1970s (reviewed by McLaughlin and Townley, 1996), regression is

only starting to be used with any regularity to develop numerical models of compli-

cated groundwater systems. The scarcity of data, nonlinearity of the regression, and

complexity of the physical systems cause substantial difficulties. Obtaining tractable

models that represent the true system well enough to yield useful results is arguably

the most important problem in the field. The only options are (1) improving the data,

(2) ignoring the nonlinearity, and/or (3) carefully ignoring some of the system com-

plexity. Scarcity of data is a perpetual problem not likely to be alleviated at most

field sites despite recent impressive advances in geophysical data collection and

analysis (e.g., Eppstein and Dougherty, 1996; Hyndman and Gorelick, 1996;

Lebbe, 1999; Dam and Christensen, 2003). Methods that ignore nonlinearity are

presented by, for example, Kitanidis (1997) and Sun (1994, p. 182). The large
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changes in parameter values that occur in most nonlinear regressions of many

problems after the first iteration, however, indicate that linearized methods are

unlikely to produce satisfactory results in many circumstances. This leaves option

3, which is discussed in the following paragraphs.

Defining a tractable and useful level of parameterization for groundwater inverse

problems has been an intensely sought goal, focused mostly on the representation of

hydraulic conductivity or transmissivity. Suggested approaches vary considerably.

The most complex parameterizations are cell- or pixel-based methods in which

hydraulic conductivity or transmissivity parameters are defined for each model

cell, element, or other basic model entity, and prior information or regularization

is used to stabilize the solution (e.g., see Tikhonov and Arsenin, 1977; Clifton

and Neuman, 1982; Backus, 1988; McLaughlin and Townley, 1996). The simplest

parameterizations require homogeneity, such that, at the extreme, one parameter

specifies hydraulic conductivity throughout the model.

Asmore parameters are defined and the information contained in the observations is

overwhelmed, prior information on parameters and/or regularization on observations
and/or parameters become necessary to attain a tractable problem. In this book, we use

definitions of prior information and regularization derived from Backus (1988). When

applied to parameters, prior information and regularization produce similar penalty-

function terms in the objective function. For prior information, the weighting used

approximates the reliability of the prior information based on either classical or

Bayesian statistical arguments. Essentially, classical statistical arguments are based

on sampling methods; Bayesian statistical arguments are, at least in part, based on

belief (Bolstad, 2004). In contrast, for regularization the weighting generally is

determined as required to produce a tractable problem, as represented by a unique

set of estimated parameter values. The resulting weights generally are much larger

than can be justified based on what could possibly be known or theorized about the

parameter values and distribution. For both prior information and regularization,

the values used in the penalty function need to be unbiased (see the definition in

Section 1.4.2).

Between the two extreme parameterizations mentioned previously, there is a

wide array of designs ranging from interpolation methods such as pilot points

(RamaRoa et al., 1995; Doherty, 2003; Moore and Doherty, 2005, 2006) to zones

of constant value designed using geologic information (see Chapter 15 for

examples). For example, the Regularization Capability of the computer code

PEST (Doherty, 1994, 2005) typically allows many parameters to be estimated.

Indeed, the number of parameters may exceed the number of observations. Par-

ameter estimation is made possible by requiring that the parameter values satisfy

additional considerations. Most commonly, the parameter distribution is required

to be smooth. This and other considerations are discussed by Tikhonov and Arsenin

(1977) and Menke (1989). More recent approaches include the superparameters of

Tonkin and Doherty (2006) and the representer method of Valstar et al. (2004). The

former uses singular value decomposition to identify a few major eigenvectors from

sensitivity matrices; only the “superparameters” defined by the eigenvectors are

estimated by regression.
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Parameterizations with many parameters are advantageous in that they minimize

user-imposed simplifications, but they have the following problems: (1) they do not

eliminate the scale problem if heterogeneities smaller than the grid or parameter scale

are important, as they often are in transport problems, for example; (2) they generally

require more and better hydraulic-conductivity or transmissivity data than are avail-

able in most circumstances or unsupportable assumptions about smoothness; and (3)

they can easily lead to overfitting the observations and a resulting decline in predic-

tive accuracy. Historically, parameterization methods that resulted in many par-

ameters also were unable to accommodate easily knowledge about geologic

structure. Gradually, the ability to apply geologic constraints within the context of

many defined parameters is being developed and provides exciting possibilities.

Simpler parameterizations (simpler in that there are fewer defined parameters) can

be achieved using zonation, interpolation, or eigenvectors of the variance–covari-

ance matrix of grid-scale parameters (e.g., Jacobson, 1985; Sun and Yeh, 1985;

Cooley et al., 1986; RamaRao et al., 1995; Eppstein and Dougherty, 1996; Reid,

1996; D’Agnese et al., 1999; Tonkin and Doherty, 2006). Stochastic methods

(e.g., Gelhar, 1993; Kitanidis, 1995; Yeh et al., 1995; Carle et al., 1998) also generally

fall into this category, although they share some of the characteristics of the grid-

based methods. These simpler parameterizations produce a more tractable problem,

but it is not clear what level of simplicity diminishes utility.

The principle of parsimony (Box et al., 1994; Parker, 1994) suggests that simple

models should be considered, but the perception remains that many complex sys-

tems cannot be adequately represented using parsimonious models. For example,

Gelhar (1993, p. 341) claims that for groundwater systems “there is no clear

evidence that [nonlinear regression] methods [using simple parameterizations] actu-

ally work under field conditions.” Indeed, Beven and Binley (1992) even suggest

that for some problems it may be best to abandon the concept of parameterizations

simple enough to produce an optimal set of parameter values.

A concept as useful as parsimony should not be given up lightly, yet there have

been few conclusive evaluations of the parameter complexity needed to produce

useful results for groundwater models (Hill et al., 1998). In this book we proceed

from the point of view that it is best to introduce complexity slowly and carefully,

which is taken to mean increase the number of parameters slowly and carefully. One

reason for this approach is that models with a few parameters can be used to learn

things about a system that are true for all parameterizations but are more difficult to

determine when many parameters are defined. As related to the famous quote by

George E. P. Box, “All models are wrong, but some are useful,” the idea is that

parsimony is likely to play an important role in achieving useful models. We suggest

that simpler parameterizations are useful for many models and for the initial phases

of development of all models.

Direct and Indirect Inverse Modeling In groundwater inverse modeling, methods

have been classified as indirect and direct (Neuman, 1973; Yeh, 1986; Sun, 1994).

This book considers indirect inverse modeling, which uses available observation

data and optimization techniques to estimate model input values.
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Direct inverse modeling is dramatically different: available, usually sparse

observations are interpolated or extrapolated everywhere in the model domain to

create “observations” throughout the system. Using these “observations,” the differ-

ential equations describing the simulated processes (such as groundwater flow or

transport) are used to calculate the model input values (parameters) directly. The

direct inverse modeling methods have been in existence longer than the indirect

methods but have been shown consistently to be unstable in the presence of

common measurement errors (Yeh, 1986). The direct methods do not use sensi-

tivities and rarely calculate them, so these methods cannot be used to compute

many of the statistics used for model evaluation that are presented in this book.

1.4 A FEW DEFINITIONS

This section defines what is meant by a linear and a nonlinear model in the context of

parameter estimation. It also defines four terms that are often confusing and states

how the terms are used in this book.

1.4.1 Linear and Nonlinear

As discussed in Section 1.1, this book focuses on models for which parameter esti-

mation is nonlinear. In this context, nonlinearity results when simulated equivalents

to observations are nonlinearly related to parameters. For example, consider

groundwater flow.

In a confined groundwater flow system, hydraulic head is a linear function of space

and time, which is why superposition can be used (Reilly et al., 1987). In contrast, for

the same circumstances, head is a nonlinear function of many parameter values of

interest, such as hydraulic conductivity. The simplest form of the groundwater

flow equation, Darcy’s Law, can be used to demonstrate both linearity with respect

to the spatial dimension and nonlinearity with respect to hydraulic conductivity. This

was shown by Hill et al. (2000, pp. 16–18) and is presented here in a modified form.

Darcy’s Law relates the hydraulic head along the length of a cylinder packed

with saturated porous media and flow through the cylinder. Darcy’s Law can be

expressed as

Q ¼ �KA
@h

@X
(1:1)

where Q ¼ flow produced by imposing different hydraulic heads at opposite ends of a

cylinder containing homogenous, saturated, porous media [L3/T];

K ¼ hydraulic conductivity of the saturated porous media [L/T];

A ¼ cross-sectional area of the cylinder [L2];

X ¼ distance along an axis parallel to the length of the cylinder and,

therefore, parallel to the direction of flow [L];

h ¼ hydraulic head at any distance X along the cylinder [L].
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Equation (1.1) can be solved for the hydraulic head at any distance, X, to achieve

h ¼ h0 � Q

KA
X (1:2)

where h0 is the hydraulic head at X ¼ 0.

The derivatives @h/@Q and @h/@K are sensitivities in a parameter-estimation

problem in which Q and K are estimated. By using partial derivative notation, the

derivatives of Eq. (1.2) with respect to X, Q, and K are

@h

@X
¼ � Q

KA
(1:3)

@h

@Q
¼ � 1

KA
X (1:4)

@h

@K
¼ � Q

K2A
X (1:5)

The hydraulic head is considered to be a linear function of X because @h/@X is inde-

pendent of X. Hydraulic head also is a linear function of Q, because @h/@Q is

independent of Q. However, hydraulic head is a nonlinear function of K because

@h/@K is a function of K. As in this simple example, sensitivities with respect to

flows, such as Q, are nearly always functions of aquifer properties; sensitivities

with respect to aquifer properties, such as K, are nearly always functions of the aqui-

fer properties and the flows. If Q and K are both estimated, both situations make the

regression nonlinear.

1.4.2 Precision, Accuracy, Reliability, and Uncertainty

The terms precision, accuracy, reliability, and uncertainty are used in this book and

by many others and can cause confusion. Formal definitions of these terms as related

to estimated parameters and predictions are described here using an archery analogy

and by relating them to the statistical terms bias and variance or standard error of the

regression. (The archery analogy was suggested by Richard L. Cooley, retired from

the U.S. Geological Survey, oral communication, 1988).

Precision: In archery, a set of shots is precise if the shots fall within a narrow

range, regardless of whether they are near the bull’s eye. A parameter estimate

or prediction is more precise if associated coefficients of variation or confi-

dence intervals are smaller. A model fits the observations more closely if

the objective function is smaller, and this may indicate a more precise

model depending on the measure used (see Chapter 6). More precise estimates

or predictions are said to have lower variance. A precise parameter estimate

results when the observations provide abundant information about the par-

ameter, given the model construction. A precise prediction results when the

parameters important to the prediction are precisely estimated.
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Accuracy: In archery, a set of shots is accurate if the shots are distributed evenly

about the bull’s eye, though they may fall within a large radius around the

bull’s eye. Accurate estimates and predictions are, on average, close to the

true, unknown value, but the range of values may be large. An accurate par-

ameter estimate results when (1) the model is accurate and (2) the observations

are unbiased. The observations may or may not provide abundant information

about the parameter; abundant information would result in a parameter esti-

mate that is both accurate and precise if points 1 and 2 were satisfied. An accu-

rate prediction results when (1) the model is accurate and (2) parameter

values important to the prediction are accurate. The observations may or

may not provide much information about the parameters important to predic-

tions. Accurate estimates and predictions are sometimes referred to as

unbiased; inaccurate estimates and predictions are biased.

Reliability: In archery, a set of shots is reliable if the shots are distributed in a

narrow range about the bull’s eye. Reliable parameter estimates and predic-

tions are both accurate and precisely determined. Reliable parameter estimates

and predictions result when (1) the model accurately represents processes of

importance to the observations and the predictions, and (2) the observations

contain much information relevant to the predictions, so that the para-

meters important to the predictions are reliably estimated. From a probabi-

listic perspective, reliability is often defined as 1.0 minus the probability of

failure.

Uncertainty: The direct inverse of reliability, so often defined as the probability

of failure.

While these terms have distinct meanings, in practice, “accurate” often is used

when “precise” is more applicable. In this book, we had to choose between

always using these terms as defined here, or recognizing that many readers would

proceed without having these definitions firmly in mind and would possibly be con-

fused by proper usage. In some circumstances we chose more common usage to

create what we thought would be an easier learning experience.

1.5 ADVANTAGEOUS EXPERTISE AND SUGGESTED READINGS

Most of this book requires little expertise in statistics and mathematics. Familiarity

with basic statistics is useful, including definitions of the following terms: samples

and populations; mean, standard deviation, variance, and coefficient of variation of

samples and populations; normal probability distribution; log-normal probability

distribution; confidence interval; and significance level. Familiarity with simple

linear regression also is helpful. Good elementary references for these topics include

Benjamin and Cornell (1970), Ott (1993), Davis (2002), and Helsel and Hirsch

(2002). Useful advanced texts include Cook and Weisberg (1982), Seber and

Wild (1989), and Draper and Smith (1998).
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To use the exercises to learn the principles of sensitivity analysis, nonlinear

regression, and associated evaluation of the regression, students will benefit

from understanding groundwater flow problems well enough to follow the discus-

sions of the physical problem considered. To perform the optional simulations of

the groundwater model used in many of the exercises that accompany the

methods, students will benefit from familiarity with the computer program

MODFLOW-2000 (McDonald and Harbaugh, 1988; Harbaugh et al., 2000; Hill

et al., 2000; Anderman and Hill, 2001).

When this book is used to teach a semester- or quarter-long academic course, it

may be desirable to start with two to four weeks of instruction on statistics and linear

regression. Recommended topics include graphical data analysis, hypothesis testing,

simple linear regression, and multiple linear regression. If, for example, Helsel and

Hirsch (2002) is used, the readings and exercises in Table 1.1 address the suggested

material.

If Davis (2002) is used to learn basic statistics, the topics in Table 1.2 are

suggested.

TABLE 1.1 Suggested Reading Assignments and Exercises in

Helsel and Hirsch (2002)

Chapter Topic Reading Assignment Exercise

2 Graphical data analysis Introduction; Section 2.1.5 None

3 Uncertainty Sections 3.1, 3.2, 3.4 3.1 (parametric interval)

4 Hypothesis testing Introduction; Sections 4.1,

4.2, and 4.4

4.1 (for untransformed

data)

5 t-Tests Introduction; Section 5.2 5.2

8 Correlation coefficients Introduction; Sections 8.1

and 8.4

None

9 Simple linear regression All except Section 9.6 9.1. Use data subsets to

show the effect of

small data sets.

11 Multiple regression All except Section 11.8 11.1

TABLE 1.2 Suggested Reading Assignments and Exercises in Davis (2002)

Chapter Topic Reading Assignment

2 Summary statistics pp. 34–39

2 Joint variation of two variables pp. 40–46

2 Comparing normal populations pp. 55–58

2 Testing the mean, P-values, significance pp. 60–66

2 Confidence limits, t-distribution pp. 66–75

4 Runs tests pp. 185–191

4 Simple linear regression pp. 191–204, 227–228

6 Multiple regression pp. 462–470
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1.6 OVERVIEW OF CHAPTERS 2 THROUGH 15

The primary topics of this book are (1) methods for sensitivity analysis, data assess-

ment, model calibration, and uncertainty analysis developed on the basis of inverse

modeling theory; and (2) guidelines for the effective application of these methods.

The methods are presented in Chapters 3 to 9 and the guidelines are presented in

Chapters 10 to 14. Field applications and tests of the methods and guidelines are

presented in Chapter 15. Chapter 2 presents an overview of the exercises and the

computer programs used in this work. Three appendixes go into greater depth con-

cerning several aspects of the nonlinear regression method used and one appendix

presents selected statistical tables. Chapters 2 through 15 are described in more

detail in the following paragraphs.

Chapter 2 presents an overview of (1) three computer codes for inverse modeling

that are used throughout the book, (2) a hypothetical groundwater management pro-

blem to which the methods are applied, and (3) exercises that use this groundwater

management problem to clearly demonstrate the methods.

Chapters 3 to 5 present methods for measuringmodel fit, initial model sensitivity

analysis, and parameter estimation. Chapter 3 discusses how observations of the

simulated system are compared to equivalent simulated values using objective func-

tions. Terms of the objective functions are defined, and least-squares objective-

function surfaces are introduced. Chapter 4 discusses sensitivity analysis methods

for evaluating the information that the observations provide toward estimating a

set of parameters and using such an analysis to design parameterizations and

decidewhat parameters to estimate. Several statistics are presented that are indepen-

dent of model fit and thus can be applied prior to having achieved a successful inver-

sion. These are called fit-independent statistics. Chapter 5 presents the modified

Gauss–Newton gradient method for estimating parameter values that produce the

best fit to the observations by minimizing the least-squares objective function.

Chapters 6 to 8 present methods for evaluating model fit, parameter estimates,

data needs, and prediction sensitivity and uncertainty. Most of these methods

involve calculating and evaluating diagnostic and inferential statistics and conduct-

ing graphical analyses. Chapter 6 discusses methods for evaluating model fit, includ-

ing using residuals (differences between observed and simulated values) and

weighted residuals to calculate statistical measures of fit, and graphs that can be

used to help detect model error and assess normality of weighted residuals. Chapter 7

presents methods for evaluating estimated parameters and their uncertainty, includ-

ing confidence intervals and measures of the support that the observations provide

for the estimated parameter values. Methods for assessing model linearity are also

discussed. Chapter 8 discusses evaluation of model predictions and their sensitivity

and uncertainty, and methods for identifying data that would improve model

predictions. Topics include measures for assessing the importance to predictions

and to confidence intervals on predictions of observations and prior information

on parameters. Monte Carlo methods of evaluating uncertainty are discussed briefly.

Chapter 9 presents methods for calibrating transient and transport models, and for

recalibrating and reevaluating existing models when new data become available.
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Exercises at the ends of Chapters 3 to 9 demonstrate the methods. Most of the

exercises involve the simple hypothetical groundwater management problem

mentioned in the beginning of this chapter.

Chapters 10 to 14 present fourteen guidelines that address using the methods

presented in Chapters 3 to 9 to analyze, simulate, calibrate, and evaluate models of

complex systems. The guidelines are grouped into four topics: (1) model develop-

ment, (2) model testing, (3) potential new data, and (4) prediction uncertainty. Chap-

ter 10 introduces the guidelines and Chapters 11 to 14 each focus on the guidelines

that address one of the four topics.

Table 1.3 lists the guidelines to introduce the reader to the basic ideas they pro-

mote. For example, a fundamental aspect of the approach is to start simple and to

build complexity slowly.

Chapter 15 addresses the use and testing of the methods and guidelines. First,

issues of computer execution time, which are nearly always of concern when cali-

brating models, are discussed. Then, selected publications describing tests of the

guidelines using synthetic test cases and use of the guidelines in field applications

are listed. The remainder of Chapter 15 discusses a few aspects of two field cases

to illustrate some of the methods and guidelines presented in the book.

TABLE 1.3 Guidelines for Effective Model Calibration

Model Development (Chapter 11)

1. Apply the principle of parsimony (start very simple; build complexity slowly)

2. Use a broad range of system information (soft data) to constrain the problem

3. Maintain a well-posed, comprehensive regression problem

4. Include many kinds of observations (hard data) in the regression

5. Use prior information carefully

6. Assign weights that reflect errors

7. Encourage convergence by making the model more accurate and by evaluating the

observations

8. Consider alternative models

Model Testing (Chapter 12)

9. Evaluate model fit

10. Evaluate optimized parameter values

Potential New Data (Chapter 13)

11. Identify new data to improve simulated processes, features, and properties

12. Identify new data to improve predictions

Prediction Uncertainty (Chapter 14)

13. Evaluate prediction uncertainty and accuracy using deterministic methods

14. Quantify prediction uncertainty using statistical methods
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2
COMPUTER SOFTWARE AND
GROUNDWATER MANAGEMENT
PROBLEM USED IN THE EXERCISES

This chapter briefly describes the computer programs and the groundwater

management problem on which exercises presented in Chapters 2 through 9 are

based. The exercises can be completed using results provided in figures and tables

of the book, or hands-on computer exercises can be pursued.

The groundwater system can be simulated using the Ground-Water Flow Process of

MODFLOW-2000 or MODFLOW_2005. Sensitivity analysis, parameter estimation,

data needs assessment, predictions, and uncertainty evaluation can be performed

using the Observation, Sensitivity, and Parameter-Estimation Processes of

MODFLOW-2000 or the capabilities of UCODE_2005 or PEST. Explicit instructions

for theMODFLOW-2000 and UCODE_2005 and possibly for other codes and graphi-

cal interfaces are provided on the web site listed in Chapter 1, Section 1.1 of this book.

Performing the exercises using the computer programs or reviewing the instructions for

doing so is expected to facilitate use of the methods in the simulation of other systems.

2.1 COMPUTER PROGRAMS MODFLOW-2000,

UCODE_2005, AND PEST

The computer software used for the exercises was listed in Chapter 1, Section 1.1,

and access through web sites is described there. The discussion here refers to

MODFLOW-2000 Version 1.15, UCODE_2005 Version 1.0, and PEST Version

9.0. Later versions of these codes may have capabilities not discussed here.
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MODFLOW-2000 is applicable only to solution of the transient, three-

dimensional groundwater flow equation represented using a control-volume finite-

difference numerical method. In MODFLOW-2000, groundwater flow is simulated

using the Ground-Water Flow Process, and inverse modeling calculations are per-

formed using the Observation, Sensitivity, and Parameter-Estimation Processes.

UCODE_2005 and PEST are universal inverse codes with broad applicability.

They can be used with any simulation model that has ASCII input and output

files and can be executed from a command prompt. Both programs use very similar

template and instruction files to interact with the simulation model.

MODFLOW-2000, UCODE_2005, and PEST have many capabilities in common

and have a few key differences. Table 2.1 lists and compares selected capabilities of

each program for defining observations and parameters and lists some graphical user

interfaces that support the programs.

All of these codes perform inverse modeling, posed as a parameter-estimation

problem, by calculating parameter values that minimize a weighted least-squares

objective function using nonlinear regression. The methods shared by MOD-

FLOW-2000 and UCODE_2005 are described in Chapters 3 and 5. In addition,

UCODE_2005 has a trust region option that is mentioned briefly in Chapter

5. The trust region approach can reduce the number of iterations required for difficult

problems by as much as 50 percent (Mehl and Hill, 2002). For the problems con-

sidered in the exercises, PEST differs from the methods described in this book

mostly in its definition of the Marquardt parameter and its use of a line search capa-

bility that improves regression performance in some circumstances. See Chapter 5,

Section 5.1.1 for comments about the Marquardt parameter.

The method for calculating sensitivities in MODFLOW-2000 differs substan-

tially from that in UCODE_2005 and PEST. In MODFLOW-2000, the Sensitivity

Process calculates sensitivities using the sensitivity-equation method, which is the

most accurate method available. Implementing the sensitivity-equation method

requires extensive custom programming, which can easily double the size of a

code. Any subsequent change to the capabilities of the forward simulation generally

requires additional coding to accommodate sensitivity-equation sensitivities. The

required substantial investment means that sensitivity-equation sensitivities prob-

ably will be available for only a very few codes and will rarely be available for

all possible parameters, observations, or simulated dynamics.

Codes that calculate sensitivity-equation sensitivities can be produced using a

program called ADIFOR (http://www.unix.mcs.anl.gov/autodiff/ADIFOR/).
The resulting code tends to be difficult to develop further because the alterations cre-

ated by the program are not modularly constructed and not clearly coded, but this

option can be very useful.

UCODE_2005 and PEST can use sensitivities generated by programs such as

MODFLOW-2000, or sensitivities can be calculated using perturbation methods.

Perturbation sensitivities tend to be less accurate than sensitivity-equation sensi-

tivities but require no custom programming. This is what allows these codes to be

used with any process model. The less accurate sensitivities primarily can affect

performance in two ways: (1) convergence of the nonlinear regression can be less

2.1 COMPUTER PROGRAMS MODFLOW-2000, UCODE_2005, AND PEST 19



TABLE 2.1 Capabilities of MODFLOW-2000 Version 1.15, UCODE_2005

Version 1.0, and PEST Version 9.0

Capability MODFLOW-2000a UCODE_2005 and PESTa

OBSERVATION DEFINITION

Heads and temporal changes

in head, not necessarily at

cell centers

Yes Yes

Flows at head-dependent

boundaries, not necessarily

ending at a cell boundary

Yes Yes

Flows at constant-head boundaries Yes Yes

Heads at constant-head boundaries Yes Yes

Advective transport Yes, with the ADV

Package

Yes

Any other observation No Yes

PARAMETER DEFINITION

Zone arrays Yes Difficultb

Multiplication arrays Yes Difficultb

Pilot points interpolation

method

Yes, using

multiplication

arrays

UCODE_2005, difficultb;

PEST, efficient through

regularization capability

Additive parametersc Easy Difficultb

Association of a parameter with

more than one model

characteristic (e.g., layer and

riverbed hydraulic conductivity)

No Yes

REGRESSION CAPABILITIES

Trust region No UCODE_2005 onlyd

Line search No PEST onlyd

aMODFLOW-2000 (Harbaugh et al., 2000; Hill et al., 2000), UCODE_2005 (Poeter et al., 2005) and

PEST (Doherty, 2005) are public domain, open source programs. For websites, see Section 1.1 or the

reference list.
bDifficult if achieved using the capabilities of the listed code(s). If the process model, such as the Ground-

Water Flow Process of MODFLOW-2000, performs these functions easily, these codes can take advan-

tage of that.
cThe additive parameter capability of MODFLOW-2000 is very general, allowing most interpolation

methods to be applied to any characteristic that can be represented using parameters. This includes

variations in streambed characteristics along the length of a river and hydraulic-conductivity variations

caused by depositional processes.
dThe trust region approach in UCODE_2005 can reduce iterations for difficult problems by 50 percent

(Mehl and Hill, 2002). Performance of the line-search method has not been documented.
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stable for poorly conditioned problems, as demonstrated by Mehl and Hill (2002), so

that UCODE_2005 (without the trust region option) and PEST may not converge

when MODFLOW-2000 does converge, and (2) parameter correlation coefficients

calculated from the variance–covariance matrix on the parameter estimates can

be inaccurate enough to be misleading (Hill and Østerby, 2003). Consequently,

parameter correlation coefficients calculated by UCODE_2005 and PEST cannot

be used as reliably as those calculated by MODFLOW-2000 to determine the exist-

ence of extreme parameter correlation. This issue is discussed in more detail in

Chapter 4, Section 4.3; Exercise 4.1 clearly demonstrates this problem.

MODFLOW-2000 andUCODE_2005 or PEST can be used together to simplify the

processes that UCODE_2005 and PEST use to define parameters and simulated

equivalents of observations. This is advantageous when the MODFLOW-2000

Ground-Water Flow and Observation Process capabilities apply, but some other

aspect of the problem, such as the estimation of a parameter of interest, is not supported

by MODFLOW-2000. In this situation, the MODFLOW-2000 Ground-Water Flow

Process capabilities are used as the process model for UCODE_2005 or PEST, and

the MODFLOW-2000 Parameter and Observation capabilities are used to simplify

the parameter substitution and extraction of simulated values in UCODE_2005 or

PEST. As mentioned earlier, both UCODE_2005 and PEST can use sensitivities

calculated by the process model; they can calculate other needed sensitivities using

the perturbation method.

2.2 GROUNDWATER MANAGEMENT PROBLEM

USED FOR THE EXERCISES

The exercises in this book focus on a groundwater management problem within the

hypothetical geographic area depicted in Figure 2.1a. The groundwater system is of

interest because pumping wells are being completed in aquifers 1 and 2 to supply

local domestic and industrial water needs. In addition, a proposal has been submitted

to local authorities for construction of a landfill (Figure 2.1a). The developers claim

that the landfill is outside the capture zone of the proposed wells, and that any efflu-

ent from the landfill will reach the river sufficiently diluted to meet regulatory

standards. Local authorities would like to investigate this claim.

Data on the flow system without pumpage are available for model development

and are from a period of time that is consistent with long-term average conditions.

Seasonal variations appear to be small. Upon completion of the water-supply wells,

transient and steady-state data can be collected under pumping conditions. A key

issue is whether the decision on the proposed landfill should be delayed until after

the transient data are collected. The developers have requested a quick decision.

The flow system is complicated enough to require a numerical model for its

simulation, but lacks some complexities typical of many field problems. Most not-

ably, the subsurface material lacks local heterogeneity. The upper aquifer and con-

fining bed are homogeneous, and the lower aquifer has a mild degree of regional

heterogeneity. This is advantageous because the system is simple enough to clearly

demonstrate the methods in the book. Also, using a synthetic test case means that
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FIGURE 2.1 System and model used in exercises: (a) flow system; (b) finite-difference

grid, boundary conditions, and locations of observation wells, proposed pumping wells and

the landfill; (c) flows through a cross section; and (d) hydraulic heads. Parts (c) and (d) are

produced using the true parameter values and no pumping.
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results can be compared to “truth.” Extension of the methods to realistic problems is

discussed throughout the book, and especially in the guidelines and examples pre-

sented in Chapters 10 through 15.

2.2.1 Purpose and Strategy

A numerical model is needed to address this groundwater management problem

because there are multiple aquifer layers and spatial variation in hydraulic conduc-

tivity and boundary conditions that are not conducive to analytic solution. To coor-

dinate with data availability, a steady-state model without pumpage is developed

first and used to produce a preliminary evaluation of effluent transport from the

landfill when pumpage is applied. The effluent transport is simulated using particle

tracking methods. The concern here is whether the effluent goes to the well—other

issues like first arrival time are not of concern. If the particle goes to the well, there

is no reason to use more computationally demanding transport simulations.

The developers of the landfill raise important questions about the steady-state

model, so that additional data are needed. We use the steady-state model to evaluate

potential new data that can be collected once the supply wells are completed, and

we use the analysis in combination with field considerations to design a

monitoring network. The data are collected, a transient model is produced that

includes the pumping wells, and the model is recalibrated using the data from both

steady-state and stressed conditions. Finally, the effluent transport issue is reevalu-

ated using the recalibrated model.

2.2.2 Flow System Characteristics

The groundwater flow system used for most of the exercises is shown in Figure 2.1a.

The flow system is comprised of two confined aquifers separated by a confining unit.

Inflow occurs as areal recharge and as flow across the boundary with the adjoining

FIGURE 2.1 Continued.
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hillside. At steady state without pumping, outflow occurs only as discharge to the

river. In transient simulations and for steady-state simulations with pumpage, dis-

charge is simulated fromboth of themodel layers at the location shown in Figure 2.1a.

MODFLOW-2000 is used to simulate groundwater flow, and its ADV Package

(Anderman and Hill, 2001) is used to simulate advective transport of effluent from

the landfill. The domain is divided laterally into 18 rows and 18 columns

(Figure 2.1b). Each confined aquifer is represented by one model layer. In layer 1,

hydraulic conductivity is uniform. In layer 2, hydraulic conductivity increases line-

arly in steps with distance from the river, with each step consisting of a pair of model

columns. The confining bed is not represented as a separate model layer, but as a

vertical hydraulic conductivity that controls flow between the two model layers.

Boundary conditions include two zones of areal recharge applied to model layer 1,

one zone coincident with the 9 columns closest to the river, and the other coincident

with the 9 columns closest to the hillside (Figure 2.1a). Inflow from the hillside to

layers 1 and 2 and outflow from layer 1 to the river are simulated as head-dependent

boundaries (Figure 2.1b). No-flow boundaries are specified on the bottom of the

model domain and on all model sides except that adjacent to the hillside.

True steady-state simulated volumetric flows in the system without pumping are

illustrated in Figure 2.1c, and simulated hydraulic heads are shown in Figure 2.1d.

Without pumping, the flow system is actually two-dimensional because all stresses,

boundary conditions, and subsurface properties and, therefore, all hydraulic heads

and flows are the same for any cross section perpendicular to the river.

2.3 EXERCISES

Exercises are presented at the end of Chapters 2–9, and cover all of the methods and

ideas included in those chapters. Most of the exercises involve the simple ground-

water management problem described in Section 2.2. Through the development,

calibration, and analysis of the steady-state and transient models that address this

problem, the following steps are accomplished:

Steady-State Model

Simulate steady-state hydraulic heads (Exercises 2.1 and 2.2)

Define steady-state parameters and observations (Exercises 3.1 and 3.2)

Evaluate the initial steady-state model (Exercise 3.3)

Perform sensitivity analysis (Exercise 4.1)

Calibrate the steady-state model (Exercise 5.2)

Evaluate model fit to observations and prior information (Exercises 6.1 and 6.2)

Evaluate estimated parameter values (Exercises 7.1–7.3)

Make predictions using the calibrated steady-state model, perform sensitivity

analysis, and evaluate potential new data (Exercise 8.1)

Evaluate prediction uncertainty (Exercise 8.2)
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Transient Model

Simulate hydraulic heads in the transient model (Exercises 9.1 and 9.2)

Define transient parameters and observations (Exercises 9.3 and 9.4)

Evaluate the initial transient model (Exercise 9.5)

Perform sensitivity analysis (Exercise 9.6)

Recalibrate the model using original steady-state observations and new transient

observations (Exercise 9.7)

Evaluate the calibrated transient model (Exercises 9.8–9.11)

Make predictions using the recalibrated model (Exercise 9.12)

In groundwater model development, defining parameters often is difficult, as

discussed in Chapter 1, Section 1.2.1. The exercises do not address this phase of

model construction. Rather, the hypothetical flow system is designed so that its

hydrogeologic and hydrologic characteristics can be accurately represented using

only a few model parameters. Accurate representation of these aspects of the

system allows the methods presented in the book to be illustrated more clearly.

A more complicated problem might cause students to think that inaccurate para-

meterization is the problem when actually other issues are involved.

The exercises contain an explanation, followed by questions to be answered

or issues to be explained. These questions and issues are listed under the heading

Problem and usually involve examination and evaluation of results. The results are

obtained as follows. The Ground-Water Flow Process capabilities of MODFLOW-

2000 are used to simulate groundwater flow. The sensitivity and inverse modeling

exercises can be performed using UCODE_2005, the Sensitivity and Parameter-

Estimation Processes of MODFLOW-2000, or, in most situations, PEST. The results

of these simulations are contained in figures and tables included in this book.

Students can complete all exercises in this book and thoroughly learn all methods

presented without performing model simulations. To perform the model simulations,

download the instructions, data, and codes as described in Chapter 1, Section 1.1.

Exercises marked Optional can be skipped without disturbing continuity. The

exercises in Chapter 9 are all marked optional because they provide additional

experience with methods already used in previous exercises. It can be advantageous

to replace the Chapter 9 exercises with application of the methods to models related

to other student investigations, possibly with class presentation of results.

Exercise 2.1: Simulate Steady-State Heads and Perform Preparatory Steps In

these exercises, MODFLOW-2000 is used to simulate steady-state hydraulic

heads for the flow system described in Section 2.2. Initial and final computer

files, and instructions for modifying files, creating new files, and performing the

simulations are available from the web site for this book; see Chapter 1, Section

1.1 for information about obtaining these files and instructions. Students who are

not performing the simulations may skip these exercises.
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3
COMPARING OBSERVED AND
SIMULATED VALUES USING
OBJECTIVE FUNCTIONS

The match of observed to simulated values is one of the most important indicators of

how well a model represents an actual system. Objective functions measure this fit.

Model calibration efforts largely involve attempting to construct a model that pro-

duces a good fit. Here, good fit means the objective function is as small as possible.

Methods such as regression can determine parameter values that are optimal, mean-

ing that they produce the best fit given the constructed model. The resulting par-

ameter values are said to be optimal, optimized, or estimated by the regression. In

later chapters of this book, we will see that a close fit is not the only goal of

model calibration. However, methods that optimize parameter values are an import-

ant component of model calibration and can be used advantageously.

This chapter presents the objective functions used in this book to quantify the

match between observed and simulated values and discusses alternative objective

functions. It also lists the conditions needed for model results to be accurate when

produced using regression methods, discusses quantities used in the objective func-

tions, and introduces objective-function surfaces.

3.1 WEIGHTED LEAST-SQUARES OBJECTIVE FUNCTION

The weighted least-squares objective function is first presented with a commonly

used diagonal weight matrix. This allows use of summations, which are easier for
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many readers to understand than matrix and vector notation. The objective function

is then presented with a full weight matrix.

Often the termweighted regression is applied to regression with a diagonal weight

matrix and generalized regression is applied to regression with a full weight matrix

(Draper and Smith, 1998, p. 223). In this book we refer to both as weighted

regression. Regression without weighting is called ordinary regression.

3.1.1 With a Diagonal Weight Matrix

The objective function is first defined in the context of a groundwater model. Using

hydraulic heads and flows as the observations, the weighted least-squares objective

function, S(b), can be expressed as

S(b)¼
XNH
i¼1

vhi ½yhi � y0hi(b)�2þ
XNQ
j¼1

vqj ½yqj � y0qj(b)�2þ
XNPR
k¼1

vpk ½ypk � y0pk(b)�2 (3:1a)

where b ¼ a vector (which can be thought of as a list) containing values of each

of the NP parameters being estimated;

NP ¼ the number of estimated parameters;

NH ¼ the number of hydraulic-head observations;

NQ ¼ the number of flow observations;

NPR ¼ the number of prior information values;

yhi ¼ the ith observed hydraulic head being matched by the regression;

y0hi (b) ¼ the simulated hydraulic head that corresponds to the ith observed

hydraulic head (a function of b);

yqj ¼ the jth observed flow being matched by the regression;

y0qj (b) ¼ the simulated flow that corresponds to the jth observed flow (a

function of b);

ypk ¼ the kth prior estimate included in the regression;

y0pk (b) ¼ the kth simulated value (restricted to linear functions of b in

UCODE_2005 and MODFLOW-2000);

vhi ¼ the weight for the ith head observation;

vqj ¼ the weight for the jth flow observation;

vpk ¼ the weight for the kth prior estimate.

For NH and NQ, multiple observations at the same location or reach are each

counted. Using y to indicate a generic contribution of any kind and v to indicate

its weight, the objective function is more commonly expressed as

S(b) ¼
XNDþNPR

i¼1

vi½ yi � y0i(b)�2 ¼
XNDþNPR

i¼1

vie
2
i (3:1b)
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where ND ¼ the number of observations;

yi ¼ the ith observation or prior information value being matched by

the regression;

y0i (b) ¼ the simulated equivalent, defined as the simulated value

(a function of b) that corresponds to yi;

vi ¼ the weight for the ith contribution to the objective function;

ei ¼ the ith weighted residual, equal to [ yi2 y0i (b)].

Some of these terms are discussed further in Section 3.4.

3.1.2 With a Full Weight Matrix

In the simple diagonal weight matrix assumed in Eq. (3.1b), the diagonal entries are

nonzero, and the off-diagonal terms equal zero. Each entry on the diagonal is the

weight for a single observation or piece of prior information. More generally, the

weighting requires a full weight matrix, in which one or more of the off-diagonal

matrix entries are nonzero. These off-diagonal entries are needed to represent corre-

lated observation errors. For a full weight matrix, the least-squares objective func-

tion of Eq. (3.1b) is written using vector and matrix notation as

S(b) ¼ ½ y� y0(b)�Tv½ y� y0(b)� ¼ eTve (3:2)

wherev is the weight matrix and y is a vector of observations and prior information,

y0(b) is a vector of simulated values, and e is a vector of residuals. The dimensions of

the matrix and vectors are as follows:v is a square matrix dimensioned (NDþ NPR)

by (NDþ NPR); all three vectors have (NDþ NPR) elements. ND and NPR were

defined for Eq. (3.1). In Eq. (3.2), data for both observations and prior information

are included in the weight matrix and in the vectors y, y0(b), and e. The structures of
the weight matrix and the vectors are displayed in Appendix B, Eq. (B.1) and (B.2).

MODFLOW-2000 supports full weight matrices for all types of observations

(except hydraulic head) and for prior information. MODFLOW-2000 can accommo-

date some common temporal correlations in the errors of hydraulic-head obser-

vations by differencing as discussed in Section 9.1.2 and in Hill et al. (2000,

pp. 33–34). UCODE_2005 supports full weight matrices for all types of obser-

vations and for prior information and can accommodate any type of differencing.

Full weight matrices are discussed further in Guideline 6, Section G6.2, in

Chapter 11.

3.2 ALTERNATIVE OBJECTIVE FUNCTIONS

Alternatives to the least-squares objective function described in this work are the

maximum-likelihood objective function, the L1 norm, andmultiobjective optimization.
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3.2.1 Maximum-Likelihood Objective Function

The maximum-likelihood objective function reduces to the least-squares objective

function in most applications (as shown in Appendix A). The maximum-likelihood

objective function is presented here and its value is calculated and printed by

UCODE_2005 and MODFLOW-2000, because it can be used for model discrimi-

nation by itself or in the calculation of other statistics (e.g., see Carrera and

Neuman, 1986; Loaiciga and Marino, 1986; Burnham and Anderson, 2002). The

maximum-likelihood objective function is calculated as

S0(b) ¼ (NDþ NPR) ln 2p� ln jvj þ eTve (3:3)

where jvj is the determinant of the weight matrix, and, without loss of generality, it

is assumed that the weight matrix is defined such that the common error variance s2

described in Appendixes A and C equals 1.0. Unlike the least-squares objective

function, Eq. (3.3) can be negative. Appendix A presents the derivation of

Eq. (3.3) and the assumptions required for the derivation and explains the equival-

ence of using Eq. (3.2) or (3.3) in practice. An alternative but, in practice, equivalent

version is derived by Burnham and Anderson (2002, p. 12).

3.2.2 L1 Norm Objective Function

The L1 norm equals the sum of the absolute values of weighted residuals (Xiang

et al., 1993; Menke, 1989). Minimizing the L1 norm is often accomplished using

the simplex method and does not require sensitivities or derivatives of the objective

function. Inferential and diagnostic statistics that are derived from sensitivities and

used for the sensitivity analysis, data assessment, and uncertainty evaluation

described in this book can be obtained if the sensitivities are calculated separately.

In this situation these statistics could be used as described here. L1 norms are rarely

used for nonlinear systems because they do not perform as well as nonlinear

regression and provide less information.

3.2.3 Multiobjective Function

Multiobjective optimization uses multiple objective functions. The objective func-

tions may be least-squares objective functions such as those considered in this

work, or, for example, the objective function may be defined as the sum of costs

for well installation and sampling that are to be kept as small as possible (e.g.,

see Deb, 2001; Reed et al., 2003; Vrugt et al., 2003). Objective functions also can

include terms related to the smoothness of the estimated parameters (e.g., see

Vasco et al., 1997).

Defining what to include in the different objective functions is an important part

of multiobjective optimization. Some situations are clear, such as when one objec-

tive function represents the violation of established criteria, and another represents

well installation and sampling costs. Other situations are not as clear, such as when one
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objective function represents the fit to some of the observations used in model cali-

bration, and another represents the fit to other observations. For example, is it best

to include all hydraulic heads in one objective function and all streamflow gain and

loss observations in another? Should the data in different subbasins be included as sep-

arate objective functions, or as one combined objective function? In the former

example, if the heads are all combined, that objective function is more likely to

suffer from extreme parameter correlation. Is that advantageous to understanding

system dynamics? Users who consider multiobjective optimization are encouraged

to consider such questions and design their multiobjective optimizations carefully.

3.3 REQUIREMENTS FOR ACCURATE SIMULATED RESULTS

Theoretically, the least-squares objective function can be used to produce a model

that accurately represents a system and provides accurate measures of model uncer-

tainty only if three conditions are met. Two of these conditions relate to true errors,

which equal the unknown amounts by which an observation or prior information

equation differs from the value in the actual system. The conditions are: (1) Relevant

processes, system geometry, and so on are adequately represented and simulated; (2)

true errors of the observations and prior information are random and have a mean of

zero; and (3) weighted true errors are independent, which means that the weighting

needs to be proportional to the inverse of the variance-covariance matrix on the true

observation errors (Draper and Smith, 1998, p. 34, 222). The true errors cannot be

analyzed, so weighted residuals are investigated and the characteristics of the true

errors are inferred. Tests for weighted residuals are described in Chapter 6.

To estimate parameter values with the least-squares objective function there is no

requirement about the statistical distribution of the true errors (Helsel and Hirsch,

2002, Table 9.1). However, normality is often assumed, which allows calculation

of observation error variances and covariances from field data and construction of

linear confidence intervals. The first is discussed in Guideline 6 in Chapter 11;

linear confidence intervals are discussed in Sections 7.5.1 and 8.4.2. Tests for nor-

mality are presented in Sections 6.4.5. Model linearity can be tested using measures

discussed in Section 7.7.

3.3.1 Accurate Model

Many aspects of requirement 1 above are application specific, but some methods of

sensitivity analysis and comparing observed and simulated values can be useful for

achieving the requirement and/or for testing and demonstrating to what degree it is

achieved. Much of this book presents such methods and shows how to use them.

3.3.2 Unbiased Observations and Prior Information

Requirement 2 is important because if an observation or prior information equation

is biased—that is, the difference between observed and simulated values is expected

to be consistently negative or positive—the model is likely to be biased. For
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example, consider streamflow observations that are affected by a process that makes

them higher than would be expected given the simulated processes (e.g., if baseflow

contributes to streamflow but is not included in a rainfall-runoff model). Optimized

parameter values may produce a good fit to the observations, but the system may not

be simulated correctly. If the model is then used to simulate other circumstances the

predictions are likely to be inaccurate. One consequence of requirement 2 is that bias

cannot be accommodated by weighting. Instead, every effort needs to be made to

eliminate bias in the observations. For the streamflow example, the noted bias

is commonly eliminated by subtracting estimates of base flow to create the obser-

vations used in the regression. The importance of requirement 2 to the validity of

regression methods is explained in Appendix C.

3.3.3 Weighting Reflects Errors

To understand requirement 3, consider that weighting performs two related func-

tions. First, weighting needs to produce weighted residuals that have the same

units so that they can be squared and summed using Eqs. (3.1) or (3.2). Obviously,

summing numbers with different units produces nonsense. Second, weighting needs

to reduce the influence of observations and prior information that are less accurate

relative to those that are more accurate. These two functions relate directly to the

theoretical requirement that the weight matrix be proportional to the inverse of

the variance-covariance matrix of the true errors (requirement 2), which is derived

in Appendix C. Errors are discussed in Chapter 11 under Guideline 6; examples are

provided in Chapter 15. The assumptions implied by using a diagonal weight matrix

are discussed in Appendix A.

Mathematically, requirements 2 and 3 can be expressed as:

E(1) ¼ 0

for a diagonal weight matrix (Eq. 3.1): vi / 1=s 2
i

for a full weight matrix (Eq. 3.2): v1=2 / V(1)
�1

(3:4)

where / means “proportional to,” 1 is a vector of true errors, si
2 is the variance of

the true error of observation i, and V(1) is the variance–covariance matrix of the true

errors, with variances along the diagonal and covariances off the diagonal. The true

errors in vector 1 relate observed or prior information values, yi, to true, unknown

values, yi
true, through the expressions:

yi ¼ ytruei þ 1i, i ¼ 1, NDþ NPR or, equivalently,

y ¼ ytrue þ 1 (3:5)

Additive errors are assumed in Eq. (3.5). This is not a very restrictive assumption

because errors often are additive or can be converted to being additive, as discussed

in the following paragraphs.
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For many observations, and especially groundwater flow and concentration obser-

vations, errors are typically thought to be proportional to the true value, so that

y ¼ ytrue(1þ 1) ¼ ytrue þ ytrue1: (3:6)

An appropriate weighting strategy can be achieved by specifying the coefficient of

variation as the statistic from which the weight is calculated, and using observed or

simulated values to estimate ytrue (e.g., see Keidser and Rosbjerg, 1991). The variance
is then calculated as [(c.v.) � a]2, where c.v. is the coefficient of variation and a is the

observed or simulated value. The standard deviation equals [(c.v.) � a]. Anderman

and Hill (1999) show that using simulated, rather than observed, concentrations is

needed to obtain unbiased parameter estimates in transport problems, and this con-

clusion is likely to be generally applicable. See Section 9.2 for more discussion of

weighting concentrations. MODFLOW-2000 supports using observations to calculate

weights; UCODE_2005 supports using either observations or simulated values.

Errors that can be made additive through a transformation include, for example,

multiplicative errors for which yi ¼ (ytruei ) � (1i). This error model can be log-

transformed to produce ln(yi) ¼ ln(yi
true)þ ln(1i), in which the errors are additive

as in Eq. (3.5). Margulis et al. (2002) present a study in which errors are multipli-

cative. Observation transformations that convert multiplicative errors to be additive

can be easily implemented in UCODE_2005 or PEST, though doing so can make

model results harder to communicate to resource managers.

3.4 ADDITIONAL ISSUES

Issues related to prior information, weighting, and weighted residuals are discussed.

3.4.1 Prior Information

The linear prior information equations supported by MODFLOW-2000 and

UCODE_2005 have the form

P0
p(b) ¼

XNP
j¼1

(ap; j bj) ¼ ap,1b1 þ ap,2b2 þ � � � þ ap,NPRbNP (3:7)

where p indicates the pth prior information equation, ap, j are coefficients, and bj is

the jth parameter value. In this book, the subscript p is sometimes replaced by a prior

information name and j is replaced by the parameter name instead of a parameter

number.

Often, prior information equations have one nonzero coefficient ap, j equal to 1.0,

so they are of the form P 0
p ¼ bj. In this case, the contribution to the objective func-

tion (Eq. (3.1) or (3.2)) is simply the weighted difference between the prior value of

a parameter, Pp, and bj.
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More than one term is needed on the right side of Eq. (3.7) when the prior infor-

mation relates to a linear function that includes more than one parameter value.

Consider the following two groundwater examples.

Example 1: In each of two confined models, specific storage values are defined as

parameters and are estimated by regression. The names of these parameters are SS1

and SS2. The combined storage coefficient of both layers has been measured from

aquifer-test drawdown data that are not being used as observations in the calibration

of a regional-scale model. In this situation, the prior estimate, Pp, equals the com-

bined storage coefficient from the aquifer test; the simulated value, P 0
p, equals the

simulated combined storage coefficient; and the two parameters involved, bSS1 and

bSS2, are specific storage values for each model layer. In this situation, there are

two nonzero coefficients in Eq. (3.4): ap,SS1, the coefficient for bSS1, equals the thick-

ness of layer 1; ap,SS2, the coefficient for bSS2, equals the thickness of layer 2.

Example 2: The distribution of hydraulic conductivity is expected to be smooth

on the basis of an evaluation of depositional environment and hydraulic gradient.

This smooth distribution is simulated by interpolating from a number of locations

at which parameters are defined. Smoothness is imposed by introducing prior esti-

mates, Pp, that equal zero; simulated values, P0
p, that equal the difference between

parameter values at neighboring locations; and two parameters, bj1 and bj2, that

are involved in each prior information equation. Each equation has two nonzero

values of ap,j, one equal to 1.0 and one equal to 21.0. The prior information

equations are therefore of the form

P 0
p ¼ bj1 � bj2

Contributions to the objective function (Eq. (3.1) or (3.2)) are weighted differences

between Pp, which equals 0.0, and P0
p. The variance of the error could be

derived from geostatistical arguments, but to the authors’ knowledge this has not

been investigated.

Prior information must be used carefully. Two issues related to the use of prior

information are discussed briefly here, and are further discussed in Section 5.5

and in Chapter 11 under Guideline 5. First, prior information on sensitive parameters

can obscure important information available from the regression. This occurs when

prior information is used to restrict the parameter estimate from becoming unreason-

able during regression. However, unreasonable parameter estimates can lead to

important insight about problems with the model or with the observations.

Second, for insensitive parameters in models with long forward execution times,

it can be advantageous to set the parameter value equal to its prior estimate during

regression, rather than estimating the parameter. This can significantly reduce

execution times without substantially affecting the results. For final model runs,

including the prior information and estimating the parameter allows the modeler

to (1) assess whether the parameter value remains close to the prior value as
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expected, and (2) include the uncertainty of the parameter in the calculation of

diagnostic statistics used to evaluate the regression and uncertainty in predictions.

As for observations, the model can be used to identify new prior information

for which the cost of measurement would likely be a good or bad investment.

See Section 8.2 and Guideline 11 under Chapter 13.

3.4.2 Weighting

The purpose of weighting is described in Section 3.3.3. For a diagonal weight

matrix, Eq. (3.4) presents the requirement that weights of Eq. (3.1) need to be pro-

portional to 1.0 divided by the variance of the data measurement error; that is,

vii / 1/si
2. Specifying the weights on the basis of the inverse of the error variance

achieves the goal of emphasizing observations and prior information that are thought

to be accurate relative to those that are thought to be inaccurate. It is always import-

ant to analyze data error. Weighting provides a way for that analysis to be formally

included in model development.

An approach that is consistent with vii / 1/si
2 is to define the weighting in an

attempt to achieve the stricter requirement that:

vii ¼ 1=s2
i (3:8)

For a full weight matrix, the equivalent expression is

v ¼ V(1)�1 (3:9)

where V(1) is the variance–covariance matrix of the observation errors, with var-

iances along the diagonal and covariances off the diagonal. Setting the weights to

be equal to, rather than proportional to, the right-hand sides results in some very

useful properties, as described in Chapter 6, Section 6.3.2 and Guideline 6 in

Chapter 11. Eq. (3.8) and (3.9) are used extensively in this book.

Most modelers can envision standard deviations or coefficients of variation more

easily than variances, and MODFLOW-2000 and UCODE_2005 allow the user to

specify these statistics to characterize error; the codes then calculate the variance

internally. Examples of converting judgments about errors to standard deviations

and coefficients of variation are discussed under Guideline 6. As noted there, if

more than one source of error exists, the variance of each source needs to be deter-

mined and the variances need to be summed to obtain the final variance of the obser-

vation or prior information.

If the statistic (e.g., variance, standard deviation, or coefficient of variation) used

to weight observations and prior information accurately reflects the uncertainty in

the estimate, as suggested above, then (1) the observation or prior information

can be viewed in a Bayesian sense and (2) measures of uncertainty produced

by the model may reflect the actual uncertainty of the observations and prior

information. For prior information, this issue was mentioned in Section 1.3.2 and

in Section 3.4.1, and is discussed in more detail in Guideline 5 (Chapter 11).
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In some situations, errors in observations are not independent. For example, errors

in streamflow gain and loss observations calculated from streamflow measurements

can be correlated as discussed in Chapter 11 in Section G6.1 under the heading “Deter-

mine Covariances for Weight Matrices.” These correlations indicate that the infor-

mation present in the observations is redundant. Correlations close to 0.0 indicate

little redundancy; correlations close to 1.0 or 21.0 indicate extreme redundancy.

Although experience to date indicates that including the correlations in the weight

matrix often has a minor effect on estimated parameter values, using the full weight

matrix may be important to calculated uncertainties (see Chapter 11, Section G6.1).

3.4.3 Residuals and Weighted Residuals

Residuals are calculated as

½ yi � y0i(b)� (3:10)

and represent the match of the simulated values to the observations or prior esti-

mates. For a diagonal weight matrix, weighted residuals are calculated as

v1=2
i ½ yi � y0i(b)� (3:11)

and represent the fit of the regression relative to the weights.

For a full weight matrix, weighted residuals are calculated as

v1=2½ y� y0(b)�: (3:12)

The square-root of the weight matrix is calculated such that v1/2 is symmetric

(S. Christensen, Univ. of Aarhus, Denmark, written commun., 1996).

For weighting as suggested by Eq. (3.8) and (3.9) and discussed in Chapter 11

under Guideline 6, weighted residuals represent the fit of the regression in the con-

text of the expected accuracy of the observations or prior estimates. Those expected

to be less accurate are de-emphasized when weighted residuals are considered; those

expected to be more accurate are emphasized.

3.5 LEAST-SQUARES OBJECTIVE-FUNCTION SURFACES

For one or two parameters, it is possible to plot the objective function and to easily

diagnose any problems with its minimization. Objective-function surfaces for two par-

ameters can be constructed through the following steps: (1) vary the values of the two

parameters over selected ranges, (2) calculate the simulated equivalents of the

observations for each set of parameters, (3) calculate the sum of weighted squared

residuals (Eq. (3.1) or (3.2)) for each set of parameters, (4) plot these objective-

function values against the two parameter values, and (5) contour the plotted values.

The objective-function surfaces resemble topographic maps except that instead

of elevation above sea level, the topography is created by areas with lower and
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higher values of the objective function. Also, instead of coordinate direction, the

“location” is characterized by the values of the parameters. The goal of regression

is to identify the parameter values for which the objective-function is the smallest,

which is analogous to finding the location of the lowest point in the landscape.

Figure 3.1a shows a simple two-parameter model and the distribution of the

hydraulic heads calculated using the true values of transmissivity parameters T1

and T2. Figure 3.1b shows its weighted least-squares objective-function surface

(for plotting convenience, the logarithm of this surface is shown) plotted against

the log of T1 and T2. For a linear problem, the objective-function contours would

be concentric ellipses or parallel straight lines symmetrically spaced about a trough.

The nonlinearity of Darcy’s Law with respect to hydraulic conductivity results in

the much different shape shown in Figure 3.1b.

In practice, most models have more than two parameters and it is not possible to

visualize the entire objective function. However, objective-function surfaces can be

useful in two ways.

1. The model can be redesigned to be represented with only two parameters. For

example, for a groundwater model one parameter can be defined that multi-

plies all the hydraulic-conductivity values in the system and a second par-

ameter can be defined that multiplies all the recharge values in the system.

The resulting objective-function surface can reveal extreme parameter corre-

lation or other problems with multiple minima that exist but are difficult to

detect when the system is represented using more parameters. This procedure

is illustrated in Exercise 5.1.

2. For a problem with many defined parameters, objective-function surfaces can

be used to evaluate pairs of parameters that are difficult to estimate.

With UCODE_2005, it is easy to create the data sets for such plots through the

Investigate Objective Function mode. Similar data sets can be produced using

PEST with SENSAN. There is no simple method to produce such data sets with

MODFLOW-2000.

Objective functions for three or four dimensions can be represented using more

sophisticated methods, but this is not considered here.

3.6 EXERCISES

Exercise 3.1: Steady-State Parameter Definition This exercise stresses the

importance of checking the simulated values resulting from defined parameter

values and correcting any errors in how the parameters are defined.

This exercise involves defining and checking parameters of the steady-state flow

system described in Section 2.2. The flow system properties, parameter names, and

the starting parameter values are shown in Table 3.1. The conductance of the head-

dependent boundary adjacent to the hillside (see Figure 2.1a and 2.1b) is not

estimated because this property has a minor effect on the flow system, as shown

by the small amount of flow that enters this model boundary (Figure 2.1c).
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FIGURE 3.1 Objective-function surfaces for a simple model. (a) One-dimensional porous-

media flow field bounded by constant heads on the left and right and consisting of three

transmissivity zones and two transmissivity values T1 and T2. Hydraulic heads calculated

using the true parameter values are shown. (b) Logarithm of the weighted least-squares

objective function that includes observations of hydraulic heads h1 through h6, in meters, and

flow q1, in cubic meters per second. The observations contain no error. (c) Logarithm of the

weighted least-squares objective function using observations with error, and a three-

dimensional portrayal of the objective-function surface. Sets of parameter values produced by

modified Gauss–Newton nonlinear regression iterations are identified (þ), starting from two

sets of starting values and progressing as shown by the arrows. (From Poeter and Hill, 1997.)
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All work for Exercise 3.1 involves modifying computer files and simulating the

system. Instructions are available from the web site for this book described in

Section 1.1. Students who are not performing the simulations may skip Exercise 3.1.

Exercise 3.2: Observations for the Steady-State Problem In this exercise, obser-

vations of the steady-state flow system described in Section 2.2 are defined and

checked, and weights on the observations are defined and calculated.

The hydraulic-head observations used for the steady-state system are listed in

Table 3.2. Their locations are shown in Figure 2.1b. All head observations are

from wells located at the centers of model cells. In addition, there is one flow

observation equal to the groundwater discharge to a river reach. The reach extends

along the entire length of the river, and the gain in streamflow is 4.4 m3/s.

(a–b) Define observations in model input files.

Exercises 3.2a–b involve modifying computer files and simulating the

system. Instructions are available from the web site for this book described in

TABLE 3.1 Parameter Name and Starting Value for Properties of the Steady-State

Flow System for Which Parameters Are Estimated in Subsequent Exercises

Flow System Property

Parameter

Name

Starting

Valuea

Horizontal hydraulic conductivity of layer 1, in m/s HK_1 3.0 � 1024

Hydraulic conductivity of the riverbed, in m/s K_RB 1.2 � 1023

Vertical hydraulic conductivity of confining bed, in m/s VK_CB 1.0 � 1027

Horizontal hydraulic conductivity of layer 2 in columns

1 and 2, in m/s
HK_2 4.0 � 1025

Recharge in recharge zone 1, in cm/yr RCH_1 63.072

Recharge in recharge zone 2, in cm/yr RCH_2 31.536

aFive significant digits are used for recharge because of a units conversion.

TABLE 3.2 Hydraulic-Head Observations

Well

Identifier

Observation

Name Layer Row Column

Observed

Head (m)

Variance of

Well Elevation

Measurement

Error (m2)

Variance of

Water-Level

Measurement

Error (m2)

Variance

of the

Observation

Error (m2)

1 hd01.ss 1 3 1 101.804 1.00 0.0025 1.0025

2 hd02.ss 1 4 4 128.117 1.00 0.0025 1.0025

3 hd03.ss 1 10 9 156.678 1.00 0.0025 1.0025

4 hd04.ss 1 13 4 124.893 1.00 0.0025 1.0025

5 hd05.ss 1 14 6 140.961 1.00 0.0025 1.0025

6 hd06.ss 2 4 4 126.537 1.00 0.0025 1.0025

7 hd07.ss 2 10 1 101.112 1.00 0.0025 1.0025

8 hd08.ss 2 10 9 158.135 1.00 0.0025 1.0025

9 hd09.ss 2 10 18 176.374 1.00 0.0025 1.0025

10 hd10.ss 2 18 6 142.020 1.00 0.0025 1.0025
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Section 1.1. Students who are not performing the simulations may skip Exercises

3.2a–b.

(c) Check simulated values.

Observed hydraulic heads and flows and their simulated equivalents in the

initially constructed model are shown in Figure 3.2.

Problem: Using Figure 3.2, does the model fit suggest data input error?

(d) Calculate weights on hydraulic-head and flow observations.

As discussed in Sections 3.3 and 3.4.2 and in Chapter 11 under Guideline 6,

assignment of weights requires an analysis of the likely accuracy of the obser-

vations. In the simple model used for these exercises, this assignment is easier

than usual because any deviation from the accurate simulated values has been

added intentionally. More realistic situations are discussed elsewhere in this book,

including in Guideline 6 and Chapter 15.

The observed heads of Table 3.2 were generated by simulating hydraulic head

using the true model and adding randomly generated noise with known variance.

The added noise has the following characteristics:

1. The elevation of each observation well has a mean error of 0.0 and a variance

of 1.0, as shown in Table 3.2.

DATA AT HEAD LOCATIONS

OBS#
OBSERVATION

NAME

OBER-
VATION

*

SIMUL.
EQUIV.

* RESIDUAL WEIGHT**.5
WEIGHTED
RESIDUAL

1 hd01.ss 102. 100. 1.58 0.999 1.58
2 hd02.ss 128. 139. -11.2 0.999 -11.2
3 hd03.ss 157. 174. -17.7 0.999 -17.7
4 hd04.ss 125. 139. -14.4 0.999 -14.4
5 hd05.ss 141. 157. -16.2 0.999 -16.2
6 hd06.ss 127. 140. -13.1 0.999 -13.1
7 hd07.ss 101. 103. -1.76 0.999 -1.75
8 hd08.ss 158. 174. -15.8 0.999 -15.8
9 hd09.ss 176. 190. -13.9 0.999 -13.9

10 hd10.ss 142. 157. -15.0 0.999 -15.0
- - - - - - - - - - - - - - - - - -

DATA FOR FLOWS REPRESENTED USING THE RIVER PACKAGE

OBS#
OBSERVATION

NAME
MEAS.
FLOW

CALC.
FLOW RESIDUAL WEIGHT**.5

WEIGHTED
RESIDUAL

11 flow01.ss -4.40 -4.86 0.461 2.27 1.05

FIGURE 3.2 Part of MODFLOW-2000 LIST output file showing initial model fit and

weights for the head and flow observations.
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2. In addition, each head measurement has an error associated with the water-

level measurement method. This error has a mean of zero and a variance of

0.0025, as shown in Table 3.2.

3. The flow has an error with a mean of zero and a coefficient of variation of

10 percent.

Problem

. Compute the weights for each observation from the values specified for the

head observations in Table 3.2 and the flow observation in the text above.

Calculate the weights as the inverse of the observation variance. The final

variance equals the sum of the variances of the components.

. Check your calculations against the weights printed in output files from

Exercise 3.2b or using the output shown in Figure 3.2.

Exercise 3.3: Evaluate Model Fit Using Starting Parameter Values This exercise

involves assessing initial model fit. If the evaluation from Exercise 3.2 indicates no

problems, the model fit resulting from the starting parameter values is worth evalu-

ating. Use the tables of observed and simulated hydraulic heads and flows located in

the output files from Exercise 3.2, which are shown in Figure 3.2, and are produced

by students performing the exercises.

Problem

. Comment on the model fit achieved with the starting parameter values.

. How do the residuals compare to the weighted residuals?

For students performing the model simulations, do the following parts of

this exercise.

. Attempt to achieve a better model fit by changing the parameter values manu-

ally, using your knowledge about the behavior of the groundwater flow system.

Make changes three to twelve times. Each time, document the lack of fit being

addressed, the reason the change attempted was expected to address that lack of

fit, whether or not the change produced the expected results, and whether there

were any unexpected, welcome, or unwelcome consequences.

. When finished, restore the starting parameter values.
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4
DETERMINING THE INFORMATION
THAT OBSERVATIONS PROVIDE
ON PARAMETER VALUES USING
FIT-INDEPENDENT STATISTICS

This chapter focuses on selected sensitivity analysis methods that measure the infor-

mation that observations provide for defining parameters and estimating parameter

values. The sensitivity analysis described in this chapter uses what are herein called

fit-independent statistics. The statistics are fit independent in that residuals (Eq.

(3.7)) are not used to calculate these statistics—only sensitivities and the weighting

are used. Sensitivities are defined in Section 4.3.1.

Sensitivity analysis is a very broad field. This book includes some sensitivity

methods that are not common in other text books, such as the fit-independent stat-

istics, and there are many methods that are not presented in this book. Other sensi-

tivity analysis methods are presented by, for example, Saltelli et al. (2000, 2004).

The methods presented in this book are generally classified as local methods because

they use sensitivities calculated for one set of parameter values. They are most

useful if the model is not too nonlinear with respect to the parameter values. In

most circumstances the methods presented have been found to be useful; models

apparently have to be extremely nonlinear for the methods to fail completely.

This chapter focuses on sensitivity analysis methods using fit-independent stat-

istics that measure the information provided by observations for parameter values.

The methods are discussed again in Chapter 7 along with fit-dependent statistics

that serve the same basic purpose. Chapter 8 introduces fit-independent statistics

for evaluating the information observations provide on predictions and the import-

ance of parameter values to predictions. Thus, fit-independent statistics can be used
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to evaluate each link of the observation–parameter–prediction sequence connected

quantitatively by the model, as discussed in Chapters 1 and 10.

This chapter begins by discussing how observations provide information about

model construction and parameter definition, as well as providing information

about parameter values. Then, sensitivities are defined mathematically and concep-

tually, the importance of scaling the sensitivities is discussed, and fit-independent

statistics are presented. Finally, advantages and limitations of fit-independent stat-

istics are discussed.

4.1 USING OBSERVATIONS

Observations are used to construct models, define parameters, and estimate para-

meter values. These roles are discussed briefly here and more in Chapter 11.

4.1.1 Model Construction and Parameter Definition

Observations provide information about model construction and parameter defi-

nition (also called parameterization) as well as about the value of model parameters.

Observations provide information about what dynamics and features of a system are

important. For example, consider the following circumstances.

1. Hydraulic-head observations indicate smooth spatial changes in hydraulic

gradient in a groundwater system. Given the geologic history and hydraulic

conditions of the system, it is suspected that the gradual changes in

hydraulic gradient reflect a hydraulic-conductivity distribution that varies

gradually. Such a distribution might be well represented in a model using

an interpolation method in which the hydraulic-conductivity values at the

interpolation points are defined as parameters.

2. Hydraulic-head observations indicate abrupt spatial changes in hydraulic

gradient under natural conditions. Given the geologic history and hydraulic

conditions of the system, it is suspected that the abrupt changes in

hydraulic gradient reflect a hydraulic-conductivity distribution that varies

abruptly. Such a distribution might be well represented using a zonation

method in which the hydraulic-conductivity values in each of several hydro-

geologic units are defined as parameters.

3. Concentration observations suggest that near its source, a plume in a ground-

water system sinks significantly in a short distance and then sinks very slowly

as it spreads and moves downstream toward the northeast. The mass of the

plume appears to diminish with time. This situation is likely to result from

density effects at high concentrations, the effects of areal recharge over

time creating small downward vertical velocities, and the effects of advection,

dispersion, and decay. The groundwater flow model boundary conditions,

hydraulic-conductivity field, and so on need to reproduce these conditions

as the plume moves.
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The process by which observations are used to construct a model is dominated by

professional judgment and often by trying different options in an ad hoc fashion.

When the choices are discrete they do not lend themselves to gradient-based optim-

ization methods. To the extent that the options involve parameters, the methods

described in this chapter can be used as measures of the information provided by

the observations on the parameter value. The information provided by the obser-

vations on, for example, system processes often can be inferred from the information

provided on the parameter value. A complementary way of expressing this is that the

importance indicated by a sensitivity analysis related to the parameters often can be

used to infer the importance of a related process.

4.1.2 Parameter Values

For any given calibration, most of the effort generally is spent trying to use the infor-

mation provided by the observations to adjust parameter values. To make this task

more meaningful and manageable, this book suggests that nonlinear regression be

used to estimate parameter values given a set of observations. The ability of the

regression to precisely estimate a set of parameters is related to the information

the observations provide on the parameter values. The statistics typically used in

nonlinear regression to determine how well parameters are estimated are defined

in linear regression textbooks such as Draper and Smith (1998). These include

p-values, t-statistics, and so on. These statistics depend on model fit being optimized

and are calculated after regression is successfully completed. For models with

lengthy execution times, methods that do not require completion of regression can

be very helpful, and the fit-independent statistics presented in this chapter are

designed to serve this purpose. The fit-independent statistics are closely related to

standard statistics, as noted in the subsequent discussion.

The information that the observations provide about model construction and

parameter definition is difficult to quantify. One option is to construct and estimate

parameters for a variety of plausible alternative models, as discussed under

Guideline 8 in Chapter 11 and in the context of prediction uncertainty under

Guideline 14 in Chapter 14. This approach has the advantage of accounting for

model nonlinearity and the disadvantage of sometimes requiring unattainable com-

puter resources.

An approximate approach to evaluating the information observations provide

about model construction is to assume that if observations provide a large amount

of information about a parameter value, then they also are likely to provide a

large amount of information about the model construction related to that parameter,

including how the parameter is defined. Often such a conclusion is valid and

therefore focusing attention on model construction and parameter definition in

areas of high parameter value sensitivity can help improve model fit to the obser-

vations. In nonlinear models, however, exceptions will occur. For example, if the

material blocking groundwater flow in one part of the simulated system has an extre-

mely small value of simulated hydraulic conductivity, most of the measures of

importance discussed in this chapter will tend to be small. As more moderate

4.1 USING OBSERVATIONS 43



values of hydraulic conductivity are simulated, the sensitivities can increase if the

blockage is important to reproducing the dynamics represented by the observations.

Sometimes such exceptions can be identified through understanding of the flow

system.

Thus, a way of assessing the information provided by observations about differ-

ent aspects of model construction and parameter definition is to define parameters

that control those aspects. For example, parameters can be defined to control the

thickness of hydrogeologic units, to position points used in interpolation, or to pos-

ition zone boundaries. This has been done, for example, by Zheng and Wang (1996)

and Tung and Chou (2002). The sensitivity analysis methods presented in this work

are, therefore, limited in their generality only by the parameters the user chooses

to define.

While parameters can be defined to represent any aspect of a simulated system,

there are advantages to defining parameters frugally and carefully, as discussed

in Guidelines 1 and 3 in Chapter 11. Generally, some types of parameters are

not defined because these aspects of the system are better supported by independent

data and/or are less important to fitting observations than other types of

parameters. For example, in groundwater systems the product of hydraulic conduc-

tivity and hydrogeologic-unit thickness is important. However, it is more common

to define parameters to represent hydraulic conductivity, which can vary over

many orders of magnitude, than hydrogeologic-unit thickness, which is often

known within 50 percent or less. Focusing on parameters that represent the least

known and most important aspects of a system is a good strategy in most

circumstances.

4.2 WHEN TO DETERMINE THE INFORMATION THAT

OBSERVATIONS PROVIDE ABOUT PARAMETER VALUES

Determining the information that observations provide toward estimating parameter

values is valuable throughout model development. This analysis can help make the

most of every model run and, therefore, becomes increasingly important as models

require greater execution time. Determining observation information with respect to

parameter values is most commonly used to:

. Decide what observations to include

. Design the defined parameters

. Decide which of the defined parameters to estimate

. Evaluate which potential new observations are important to the parameters

. Evaluate how the analysis is affected by model nonlinearity

These issues are discussed briefly here to motivate the rest of the chapter and to

provide perspective, and in more detail in Chapter 11 under Guidelines 3 and

4. Examples of these issues are presented in Chapter 15.
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Three issues need to be considered when determining which observations to

include in a regression. The first is that some observations may be affected by

processes that are not simulated. For example, hydraulic heads may reflect perched

conditions which are typically not simulated by saturated groundwater flow models.

Omission of this category of observations needs to be based on the relevance of the

observations to the simulated processes and the importance of the omitted processes

to the predictions of interest. This analysis can often be addressed using

the sensitivity analysis methods described in this book. The second issue is that

observations are often clustered, and culling of clustered observations is one mech-

anism to consider. The effects of clustering can be evaluated in part with sensitivity

analysis, as discussed in Chapter 11 under Guideline 4. The third issue occurs when

there is the opportunity to conduct additional field work and the information pro-

vided by a potential observation is important to prioritizing the field effort. The

importance of the potential observation to parameter estimates can be evaluated

using the methods described in this chapter; its importance to predictions can be

evaluated using the methods described in Chapter 8.

When designing the defined parameters, observations commonly are more

reliable indicators of system dynamics than other types of data. In many ground-

water systems, for example, observations of hydraulic heads, flows, concentrations,

and so on are more reliable indicators of system properties than are direct measure-

ments of those properties. This is mostly because of problems with accessibility

and scale. For example, these problems make it difficult to obtain accurate measure-

ments of hydraulic conductivity and produce inconsistencies between the scale

of most hydraulic-conductivity measurements and the scale of the model (e.g., see

Barth et al., 2001; Barlebo et al., 2004). Thus, although hydraulic-conductivity

measurements are valuable, it is important to consider them in the context of their

likely errors and the errors of other available data. The fit-independent statistics

help in this evaluation.

The fit-independent statistics described in this chapter can be used to determine

the parameters that are well supported by the observations, which is important when

designing defined parameters. For example, a groundwater modeler may be inter-

ested in the detail supported by the observations for the hydraulic-conductivity

distribution of a system. In parts of the system where observations provide abundant

information, more parameters generally can be supported; where observations pro-

vide little information, fewer parameters generally can be supported. When deciding

whether to define additional parameters, it is important to know how much the new

parameters depend on the observation data, accounting for the effects of observation

error.

Deciding which of the defined parameters to estimate is important because for

models with long execution times, regression runs can be lengthy. Execution

times can be reduced by excluding from the regression insensitive parameters

(those for which the observations provide very little information) or selected

correlated parameters (those for which the observations do not provide unique

information for each value). Exclusion of such parameters improves the perform-

ance of the regression, rarely affects regression results, and reduces execution
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times. When this strategy is followed for nonlinear models, it is important to recal-

culate the fit-independent statistics occasionally using updated parameter values,

because, as noted at the end of this section, the value of the statistics will change

as parameter values change.

Evaluating which potential new observations are important to the parameters is

a valuable step for guiding collection of additional field data and can be done

using the sensitivity statistics presented in this chapter. These statistics produce

fit-independent measures of the information that individual potential observations

provide about individual or sets of parameters. A thorough discussion of using the

statistics in this context is given in Guideline 11 of Chapter 13.

Alternative methods for selecting new observations that improve the parameter

estimates use criteria related to minimizing parameter uncertainty (e.g., Knopman

and Voss, 1988, 1989; Nishikawa and Yeh, 1989). These methods often involve

the design of observation networks and thus generally focus on identifying sets of

observations, rather than on examining the information provided by individual

observations. These methods use many of the same measures of parameter uncer-

tainty that are used by the statistics presented here, so results are expected to be

similar. Recent work on monitoring network design methodologies has tended to

focus on minimizing prediction, rather than parameter, uncertainty. This topic is

discussed in Chapter 8.

For nonlinear models, different sensitivities are calculated for different parameter

values, as discussed in Section 1.4. If a model is too nonlinear, the sensitivities vary

so much that fit-independent statistics calculated from them become useless for the

purposes discussed here. However, experience to date has shown that for most

nonlinear models of groundwater systems, the statistics presented here have

been found to be very useful. Some examples are discussed in Guideline 3

(Chapter 11), in Guideline 11 (Chapter 13), and in Chapter 15.

4.3 FIT-INDEPENDENT STATISTICS FOR

SENSITIVITY ANALYSIS

Fit-independent statistics are calculated using sensitivities, which are defined in the

following section. Subsequent sections define scaling and five fit-independent

statistics.

Fit-independent statistics are measures of leverage—the potential for an

observation to make a difference based on the observation sensitivities. In contrast,

influence statistics measure the actual difference. The actual effect depends on the

observed value, and, therefore, influence statistics depend on model fit. Leverage

and influence statistics are discussed in Chapter 7, Section 7.3. Many of the fit-

independent statistics described here are compared to influence statistics and the

results of cross-validation in Foglia et al. (in press). The issue of observation import-

ance to parameters spans the first two components of the observation–

parameter–prediction triad composed of entities that are directly connected by

the model, as discussed in Chapters 1 and 10.
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4.3.1 Sensitivities

Sensitivities are calculated as the derivatives of simulated equivalents to obser-

vations (such as simulated hydraulic heads and flows) with respect to the model

parameters. That is,

@y0i
@bj

� �����
b

(4:1)

where y0i is defined after Eq. (3.1b) as the simulated value that corresponds to an

observation or item of prior information, bj is the jth parameter, and the notation

indicates that the sensitivities are calculated for the parameter values listed in

vector b. The latter is important because for nonlinear problems the sensitivities

are different when calculated for different parameter values. For this reason, the

sensitivities of Eq. (4.1) are called local sensitivities by Saltelli et al. (2000). This

issue is discussed in Section 4.4.

Some models, such as MODFLOW-2000, calculate the derivatives using sensi-

tivity-equation sensitivities (Hill et al., 2000, pp. 67–71) or adjoint states

(Thomas Clemo, Boise State University, written communication, 2004) which pro-

duce the most accurate sensitivities; other models, such as UCODE_2005 and PEST,

approximate sensitivities using forward, backward, or central differences. For

example, the forward-difference approximation to Eq. (4.1) is

@y0i
@bj

� �����
b

� y0i(bþ Db)� y0i(b)
Dbj

� �
(4:2)

where Db is a vector of zeros except that the jth element equals Dbj. Equation (4.2)

is calculated by running the model once using the parameter values in b to obtain

y0i (b), then again after changing the jth parameter value to obtain y0i(bþ Db), and
finally taking the difference and dividing by the change in the jth parameter

value. Execution time issues for calculating sensitivities are discussed in Chapter 15,

Section 15.1. Accuracy issues are discussed in Sections 2.1, 4.4, and 7.4, and by

Yager (2004)

The sensitivities indicate the slope of a plot of a simulated value y0i relative to

one parameter or, approximately, how much a simulated value would change if a

parameter value were changed, divided by the change in the parameter value. The

parameters are considered individually; sensitivities do not account for changes in

multiple parameters.

Sensitivities can be used to indicate the importance of the observations to the esti-

mation of parameter values. Observations are likely to be very valuable in estimat-

ing a parameter value if their simulated equivalents change substantially given a

small change in the parameter value; observations contribute very little to estimating

a parameter if their simulated equivalents change very little even with a large change

in the parameter value.
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4.3.2 Scaling

Generally, it is useful to compare the relative importance of different observations.

A problem with making this comparison using sensitivities is that sensitivities are in

the units of the simulated value divided by the units of the parameter, both of which

can vary considerably. For example, for groundwater models the simulated values

might be hydraulic heads measured in meters, flows measured in cubic meters per

day, and concentrations measured in milligrams per liter; parameters might be

hydraulic conductivity measured in meters per day and recharge measured in milli-

meters per year. The solution pursued here and by others is to scale the sensitivities

to achieve quantities with the same units. The scaling used depends on the intended

purpose of the resulting scaled sensitivities.

In bothMODFLOW-2000 and UCODE_2005, scalings are used to produce dimen-

sionless scaled sensitivities (dss) that are accumulated for each parameter to produce

composite scaled sensitivities (css). Composite scaled sensitivities provide information

about individual parameters, but cannot be used to evaluate whether a set of obser-

vations can estimate each parameter uniquely. Problems with uniqueness occur

when coordinated changes in parameter values produce the samefit to the observations.

Parameter correlation coefficients (pcc) indicate whether observations provide

information for estimating parameters uniquely. Leverage statistics reflect the

importance of observations on the basis of the effects measured by both css and pcc.

Finally, one-percent scaled sensitivities (1ss) can be used to produce sensitivity

maps, but there are difficulties with this scaling. These statistics are discussed below.

4.3.3 Dimensionless Scaled Sensitivities (dss)

When a diagonal weight matrix is used, dimensionless scaled sensitivities, dssij,

are calculated as (Hill, 1992; Hill et al., 1998)

dssij ¼ @y0i
@bj

� �����
b

jbjjv1=2
ii (4:3a)

where y0i ¼ a simulated value. Here the notation indicates that the simulated value

is associated with an observation (the ith observation), but similar

scaling can be used with sensitivities of other quantities, such as

potential observations. This is discussed inGuideline 12 inChapter 13.

bj ¼ the jth estimated parameter.

@y0i
@bj

� �
¼ the derivative, or sensitivity, of the simulated value associated

with the ith observation with respect to the jth parameter, evaluated

at the set of parameter values in b.

b ¼ a vector that contains the parameter values at which the sensitivities

are evaluated; for nonlinear models, sensitivities will be different for

different values in b.

vii ¼ the weight of the ith observation.

Similar scaling was used by Cooley et al. (1986) and Harvey et al. (1996).

48 INFORMATION THAT OBSERVATIONS PROVIDE



For log-transformed parameters, Eq. (4.3b) can be used to reflect the improved

regression performance produced by log transformation. However, use of Eq.

(4.3b) means that dss and css can vary considerably between model runs if the trans-

formed parameters change. MODFLOW-2000 and UCODE_2005 use Eq. (4.3b).

dssij ¼ @y0i
@ðln bjÞ
� �����

b

j ln (bj)jv1=2
ii ¼ @y0i

@bj

� �� ����
b

bj

�
j ln (bj)jv1=2

ii (4:3b)

To better understand the dimensionless scaled sensitivity, consider Eq. (4.3a)

with the square root of the weight replaced by 1/s, where s is the standard deviation

of the observation error (as discussed in Chapter 3, Section 3.4.4 and in Guideline 6

in Chapter 11, it is advantageous to define the observation weights as vii ¼ 1/s2).

Also, divide and multiply the equation by 100, to achieve

dssij ¼ @y0i
@bj

� �����
b

bj

100

���� ���� 100

s

� �
(4:4)

By Eq. (4.4), the dimensionless scaled sensitivity indicates the amount the simulated

value would change, expressed as a percent of the observation error standard devi-

ation, given a one-percent increase in the parameter value. If dssij ¼ 1, a one-percent

change in the parameter value, bj, would produce a change in the simulated value, y0i,
equivalent to one percent of the standard deviation of measurement error, s. If
dssij ¼ 10, a one-percent change in the parameter value would produce a change

in the simulated value equivalent to 10 percent of s. Thus, dimensionless scaled

sensitivities include the effects of sensitivity and of observation error. This is

discussed further in Section 4.3.4 on composite scaled sensitivities.

The dimensionless scaled sensitivities can be used in two ways.

First, they can be used to compare the importance of different observations to the

estimation of a single parameter bj. Observations with large dssij are likely to pro-

vide more information about parameter bj compared to observations associated

with small dssij (large and small in absolute value). Also, observations with large

dssij can be considered more important to the estimation of parameter bj.

Second, the dimensionless scaled sensitivities can be used to compare the import-

ance of different parameters to the calculation of a single simulated value yi
0.

Parameters that are more important to the simulated value have dssij that are

larger in absolute value. An example of using dimensionless scaled sensitivities is

provided in Exercise 4.1b.

For a full weight matrix, dimensionless scaled sensitivities are calculated as

dssij ¼
XND
k¼1

@y0k
@bj

� �� ����
b

bj v
1=2

� �
ki

�
(4:5)

where ND is the number of observations used in the regression, v1/2 is the square

root of the weight matrix determined such that v1/2 is a symmetric matrix, and

(v1/2)ki is the matrix element in row k and column i.
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In Eq. (4.5), the dimensionless scaled sensitivity dssij for simulated value yi
0 is a

function of the sensitivity of y0i with respect to bj as well as a function of the sensi-

tivities of other simulated values y0k, k = i, with respect to bj. For observations

with errors that are correlated with the error of observation yi, (v
1/2)ki = 0.0. For

observations with errors that are not correlated with the error of observation yi,

(v1/2)ki ¼ 0.0. In practice, the off-diagonal terms of (v1/2)ki are likely be smaller

than the diagonal terms, so the contribution of the sensitivity term @y0i/@bj to dssij
is likely to be greater than the contribution of @y0k/@bj, k = i.

The fit-dependent equivalent to the dimensionless scaled sensitivity is the

statistic DFBETAS presented in Chapter 7, Section 7.5.2.

4.3.4 Composite Scaled Sensitivities (css)

Composite scaled sensitivities reflect the total amount of information provided

by the observations for the estimation of one parameter. They are calculated for

each parameter using dimensionless scaled sensitivities and can be calculated

for some or all observations. The composite scaled sensitivity, cssj, for the jth

parameter calculated for ND observations is (Hill, 1992; Anderman et al., 1996;

Hill et al., 1998)

cssj ¼
XND
i¼1

�
(dssij)

2jb=ND
�1=2

(4:6)

where the quantity in parentheses equals a dimensionless scaled sensitivity of

Eq. (4.3) or (4.5). The composite scaled sensitivity is equal to a scaled version of

the square root of the diagonal of XTvX, which is the regression variance times

the Fisher information matrix (Burnham and Anderson, 2002); X is a matrix of

the sensitivities defined in detail following Eq. (5.2). Statistics that perform a similar

function are the L1 norm of sensitivities used by R. L. Cooley (U.S. Geological

Survey, written communication, 1988) and the CTB statistic of Sun and Yeh

(1990a) and Sun (1994). The CTB statistic is scaled using the weight on prior infor-

mation for parameter bj instead of the parameter value bj as in Eq. (4.3) or (4.5).

Often composite scaled sensitivities are used in a comparative manner, whereby

larger values indicate parameters for which the observations provide more infor-

mation. If there are composite scaled sensitivities that are less than one percent of

the largest value, regression often will have trouble converging. In this situation,

the values of parameters with small composite scaled sensitivities may need to be

assigned prior information or have the parameter specified rather than estimated

by the regression (see Guideline 5 in Chapter 11).

Composite scaled sensitivities are also meaningful individually. By using

Eq. (4.4), they can be interpreted as the average amount that the simulated values

change, expressed as a percent of the standard deviation of the observation error,

given a one-percent change in the parameter value. This interpretation of the
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composite scaled sensitivity shows clearly that a parameter can be estimated only

if the information provided by the observations, as expressed through their

sensitivities, dominates the effects of observation error (noise in the data). The infor-

mation provided by the sensitivities is related to the observation types, locations,

measurement times, and system conditions. If a cssj value is too small, the

observation data may be too noisy relative to the sensitivity information provided,

and the regression may not be able to estimate a value of bj. An example of using

composite scaled sensitivities is provided in Exercise 4.1b.

Linear regression can be used to illustrate the interaction between the noise in the

data and the sensitivity information that the observations provide by virtue of their

type, location, and time. In linear regression, values of the independent variable, X,

play a role similar to the sensitivities in nonlinear regression. The effect of the

sampled range of X values on linear regression behavior is analogous to the effect

of the range of observation types, locations, times, and system conditions on non-

linear regression behavior. In linear regression, the amount of noise in the data

that can occur while still enabling accurate estimation of the parameters depends

on the range of X values sampled. As this range increases, the regression can

detect a trend in the data (and estimate parameters of the linear model) in the

presence of a greater amount of data error. Figure 4.1 illustrates this concept by

showing a linear model plotted with three different sets of observation data. In

Figure 4.1a, the noise in the data overwhelms the information provided by the

data locations (the range of X values), and consequently it is difficult to discern a

trend in the data. In Figure 4.1b, the data locations are the same, but there is less

noise in the data, and the trend in the data is thus much more discernable. In

Figure 4.1c, the noise level is the same as in Figure 4.1b, but the information content

of the observations is reduced by reducing the range of X, and the noise level again

overwhelms the information that the observations provide.

The interaction between the information content of the observations, as reflected

in their sensitivities, and the noise in the observations suggests that there is some cssj
value below which the observations provide insufficient information to estimate

parameter bj. Although experience to date has not clearly identified this critical

value, we suggest a value of 1.0. A cssj value of 1.0 means that a one-percent

change in the parameter value produces, on average, a change in simulated values

that is equivalent to one percent of the measurement error standard deviation. Par-

ameter values with composite scaled sensitivities less than 1.0 are more likely to be

poorly estimated, in that confidence intervals are large and regression convergence

problems are persistent.

4.3.5 Parameter Correlation Coefficients ( pcc)

Parameter correlation coefficients (pcc) used in conjunction with composite scaled

sensitivities produce a useful sensitivity analysis. Parameter correlation coefficients

are calculated as Covfbgjk/[Varfbgjj Varfbgkk], where Covfbgjk is the covariance

between two parameters and Varfbgjj and Varfbgkk are the variances of each of
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FIGURE 4.1 A single linear model, y ¼ b0þ b1X, with three sets of data. The true

parameter values are b0 ¼ 3 and b1 ¼ 0.5. (a) The noise in the data has a standard

deviation of s ¼ 15. (b) The data are at the same X values, and s ¼ 5. (c) The noise level

is the same as in (b), but the range of X values is reduced.
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the parameters. Further discussion of pcc is presented in Chapter 7, Section 7.2.1,

because it is closely associated with the parameter statistics discussed there. Limit-

ations of pcc are discussed in Section 4.4.2. Here we present comments needed to

support wise use of parameter correlation coefficients in sensitivity analysis.

The pcc are calculated for each possible pair of model parameters. They indicate

whether parameter values can be estimated uniquely by regression, given the

constructed model and the observations and prior information provided. The pcc

values can vary from 21.00 to þ1.00. The pcc for a parameter with itself is

always 1.00. If the pcc for a pair of parameters is equal to or very close to 21.00

or þ1.00, the two parameters generally cannot be estimated uniquely. Extreme

correlation between more than two parameters is indicated if pcc values for all

pairs of the parameters involved are near 21.00 and þ1.00 and indicates that the

parameters involved generally cannot be estimated uniquely. If the absolute

values of all pcc are less than about 0.95, then it is likely that all parameter

values can be estimated uniquely. However, this is a rule of thumb; experience

has shown that unique estimates sometimes can be obtained even with absolute

values of pcc that are very close to 1.00.

Correlation coefficients are typically displayed as a matrix. This matrix is always

symmetric, with diagonal elements equal to 1.00. For example,

PAR1 PAR2 PAR3

PAR1 1:00 0:96 0:05

PAR2 0:96 1:00 0:98

PAR3 0:05 0:98 1:00

Here, PAR1, PAR2, and PAR3 are parameter names. Alternatively, the large values

can be listed in a table, such as

Parameter Pair Correlation Coefficient

PAR1–PAR2 0.96

PAR2–PAR3 0.98

This table lists all pcc values greater than 0.95
In the global output file for MODFLOW-2000 and the main output file for

UCODE_2005, the full parameter correlation coefficient matrix is printed,

followed by a list of values larger in absolute value than 0.85. Moderate correlations

between 0.85 and 0.95 are included because parameter correlation coefficients can

change substantially during calibration and it is useful to know whether a previously

high correlation has become just moderately high or low. In addition, moderate

parameter correlations can contribute to large confidence intervals in some

circumstances.

An example of evaluating pcc as part of a sensitivity analysis is provided

in Exercise 4.1c. Additional exercises on parameter correlation include
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Exercise 5.1a, which uses objective-function surfaces for a two-parameter problem

to investigate the performance of regression in the presence of extreme parameter

correlation, and Exercise 7.1f, which uses regression from different starting

parameter values to test the uniqueness of parameter estimates with correlation

coefficients very close to 1.00.

Parameter correlation can also be evaluated using eigenanalysis and singular

value decomposition. These alternatives are discussed in Chapter 7, Section 7.2.5.

In this book, we focus on parameter correlation coefficients because in most cases

they are easier for most modelers and resource managers to understand and critical

values for identifying nonunique estimates are clearer. The alternative methods do

not offer enough advantage to overcome these considerations.

It is important to assess the pcc in conjunction with the scaled sensitivities and

leverage statistics before proceeding with regression. Limitations of pcc are dis-

cussed in Section 4.4.2. If the pcc for one or more parameter pairs is very close

to þ1.00 or21.00, the regression may be unable to uniquely estimate the extremely

correlated parameters. Options for addressing this situation are discussed in Chapter 7,

Section 7.4.

4.3.6 Leverage Statistics

Leverage statistics combine the information provided by the dss, css, and pcc to

identify observations able to dominate the regression. Leverage statistics are calcu-

lated using only sensitivities and weights and so are independent of model fit. They

are introduced here because of their utility when used in conjunction with dss, css,

and pcc. The equation for the leverage statistic is presented in Chapter 7, Section 7.3

because it is closely associated with the parameter statistics discussed there.

One leverage statistic is calculated for each observation. Observations with large

values of leverage could dramatically affect one or more of the estimated parameter

values, depending on the value of the observation. Often, but not always, observa-

tions with greater leverage have large absolute values of dss for one or more par-

ameters and large css. An observation with small dss and css values can attain a

large value of leverage if it is instrumental in reducing the correlation between

two or more parameters.

4.3.7 One-Percent Scaled Sensitivities

A final scaling considered here produces one-percent scaled sensitivities, denoted

1ssij, which are calculated as

1ssij ¼ @y0i
@bj

� �����
b

bj

100
(4:7)

Commonly, one-percent scaled sensitivities are calculated for simulated values at

every node of a model grid instead of just at observation locations, so the subscript

i would be used to identify every grid node. Sensitivities at every node of a grid are
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readily available when sensitivities are calculated using the sensitivity-equation

method using, for example, MODFLOW-2000.

One-percent scaled sensitivities maintain the units of the simulated values.

They approximately equal the amount that the simulated value would change if

the parameter value increased by one percent. When calculated for simulated

values of the same type, larger values of lssij indicate greater sensitivity to bj,

which indicates that an observed equivalent to simulated value i could be important

to the estimation of the parameter value. Because they have dimensions, one-percent

scaled sensitivities cannot be used to compare the importance of different types of

observations to the estimation of parameter values and generally cannot be used

to form a composite statistic. However, retaining units of the simulated values

allows the one-percent scaled sensitivities to more effectively communicate results

in some circumstances.

The omission of weights from Eq. (4.7) means that the one-percent scaled

sensitivities do not reflect the importance of the observations on the regression as

effectively as do the dss or leverage statistics. The omission of the weighting

does, however, make the statistic easier to calculate.

One-percent scaled sensitivities can be used to create contoured sensitivity maps

the same way heads at every node are used to create contoured head maps. Similar

maps can be produced using UCODE_2005 or PEST by defining enough model

locations as observations so that accurate maps are created, but this is an arduous

undertaking. Maps of one-percent scaled sensitivities can be used to identify

where additional observations would be most important to the estimation of different

parameters. For example, if composite scaled sensitivities show that existing obser-

vations do not provide ample information to estimate a parameter, large absolute

values on maps of one-percent scaled sensitivities for this parameter can help

show where in the model domain a new observation would provide the most infor-

mation about the parameter. However, as noted later, significant limitations exist.

There are three disadvantages that limit the use of one-percent scaled sensitivity

maps in practice. First, there are potentially a large number of maps to evaluate.

For each parameter, there is a map for each model layer and, in transient models,

for each time step. Searching these maps for the largest values of one-percent

scaled sensitivities can be cumbersome. Furthermore, the largest values of one-

percent scaled sensitivity often occur at different locations and times for each of

the parameters. Additional criteria are needed to determine important locations,

such as the potential effect of the observation on simulated predictions and their

uncertainty. Second, conclusions drawn from one-percent sensitivity maps can be

difficult to justify to resource managers because the many maps can be overwhelm-

ing, and different conclusions might be drawn from different maps. Third, the maps

can only be produced for an observation type for which the simulated equivalent can

be calculated over the entire model domain, such as hydraulic heads in groundwater

systems. The maps do not provide information about other types of observations,

such as flows or advective-transport observations in groundwater systems. The

opr statistic presented in Chapter 8 generally is a better method of identifying

important new observations.
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Despite their practical limitations, an excellent use of one-percent scaled

sensitivities is for instructional purposes. For relatively simple problems, using

knowledge of the physics and other processes that control the simulated system to

explain the patterns and magnitudes of one-percent sensitivities helps modelers

understand what sensitivities mean and provide to regression calculations. This is

illustrated in Exercise 4.1d. For more complex problems, one-percent sensitivity

maps can help the modeler better understand the processes controlling the simulated

system.

4.4 ADVANTAGES AND LIMITATIONS OF FIT-INDEPENDENT

STATISTICS FOR SENSITIVITY ANALYSIS

The fit-independent statistics presented in this chapter have the advantage that in

many circumstances they provide a good evaluation of the information provided

by the observations for estimating parameters without first having to complete

a successful regression. For models with long execution times, using fit-independent

statistics to design the parameterization and decide which parameters to estimate in a

given regression run can be advantageous.

Limitations of fit-independent statistics generally are related to the scaling,

inaccurate sensitivities, or the nonlinearity of the sensitivities, as discussed in the

following sections. Additional comments and guidance for addressing difficulties

are provided in Guideline 3 of Chapter 11, Section G3.2.

4.4.1 Scaled Sensitivities

Three issues related to scaled sensitivities are discussed: (1) they do not account for

parameter correlations, (2) the scaling by parameter values defined in Eqs. (4.3) to

(4.7) works well for some circumstances but not for others, and (3) though relatively

robust in the presence of inaccurate sensitivities and model nonlinearity, they fail to

perform well if the model is extremely nonlinear.

Scaled sensitivities are limited in that they do not account for the possibility

that while the observations may provide substantial information about individual

parameters, coordinated changes in the parameter values may produce the same

model fit. Thus, it cannot be determined if the observations can be used to estimate

each parameter uniquely. This occurs when parameters are highly correlated

and can be detected by calculating the parameter correlation coefficients and

leverage statistics defined in Sections 4.3.5 and 4.3.6 and discussed further in

Sections 4.4.2 and 4.4.3.

The scaling by the parameter value used in the definitions of dimensionless,

composite, and one-percent scaled sensitivities is useful when the effect of changing

parameter values by a multiplicative factor is of interest. For example, in ground-

water models it is common to think of errors in flow parameters, such as recharge,

as some percentage of the flow (such as 5 or 10 percent), rather than as plus or

minus a particular flow value. Similarly, potential changes in hydraulic conductivity

commonly are thought of as a multiplicative factor such as plus and minus an
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order of magnitude (multiplying and dividing by 10), rather than plus and minus a

particular hydraulic-conductivity value. The utility of the scaling results from the

underlying physics.

For some types of parameters, scaling by the parameter value can produce mis-

leading results. For example, in groundwater models, parameters that represent

hydraulic head at constant-head boundaries pose a special problem. By using

Eqs. (4.3) to (4.5) and (4.7), a flow system at sea level would have different dimen-

sionless and one-percent scaled sensitivities than the identical system at 100 meters

above sea level, which indicates that these scaled sensitivities provide misleading

results. In other types of models, the test of whether a change of datum would

change the dss values can be used to determine when scaling by the parameter

value is problematic.

In MODFLOW-2000, the scaling difficulty affects Constant-Head Boundary

(CHD) parameters (Harbaugh et al., 2000, pp. 78–79). For CHD parameters, modi-

fied versions of Eqs. (4.3) to (4.5) and (4.7) are used in which the scaled sensitivities

are not multiplied by the parameter value. Thus, the values printed in the table of

dimensionless scaled sensitivities (in the MODFLOW-2000 output file) for these

parameters are not dimensionless; they have units of 1.0 divided by length. They

can be thought of as the amount that the dependent variable would change if the

CHD parameter changed by 1.0 unit, where the unit depends on how the parameter

is defined and is commonly foot or meter.

UCODE_2005 is generally applicable, so presentation of scaled sensitivities

cannot be tailored to particular types of parameters. Modelers need to be aware

that scaled sensitivities of parameters for which a change of datum would change

the dss values are misleading and should not be used.

An alternative scaling that may be useful in some circumstances was proposed

by Tiedeman et al. (2003) and suggests that the parameter value be replaced by

the parameter standard deviation (sbi). This scaling can be achieved by multiplying

one-percent scaled sensitivities by 100/sbi. As discussed in Chapter 7, Section 7.2.2,
sbi depends on model fit, making such scaled sensitivities fit-dependent.

Finally, the effects of both nonlinearity and scaling by the parameter value cause

scaled sensitivities to be different for different sets of parameter values. If the

differences that occur for a reasonable range of parameter values are too extreme,

such that different parameters are rated as important when calculated at one set of

parameter values and not important when calculated at another set, the scaled

sensitivities are inadequate for the purposes they serve in the guidelines discussed

in Chapters 10–14. Their utility can be tested by calculating values for several

sets of parameter values.

In practice, the sensitivity analysis suggested in this book has proved to be useful

even for highly nonlinear problems, as gauged by the modified Beale’s measure

discussed in Chapter 7, Section 7.7. For example, their utility is demonstrated in

many groundwater flow and transport problems (Anderman et al., 1996; Barlebo

et al., 1996; D’Agnese et al., 1997, 1999, 2002; Poeter and Hill, 1997; Hill et al.,

1998). Problems that are too nonlinear for the sensitivity analysis to be useful

also may be too nonlinear for the gradient optimization methods described in

Chapter 5 to be useful, but this has not been tested. Problems that are too nonlinear
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for gradient optimization methods need to be addressed using global search methods

such as simulated annealing and genetic algorithm (see Chapter 5, Section 5.2),

which are much more computationally intensive than gradient methods.

4.4.2 Parameter Correlation Coefficients

Parameter correlation coefficients (pcc) have two advantages. First, they are easier

to understand than alternatives such as eigenvector analysis or the closely related

singular value decomposition, as noted in Section 4.3.5. Second, except for

problems related to accuracy of the sensitivities, the degree of correlation can be

determined easily by comparing the absolute value of the pcc to the value 1.00.

There are three limitations associated with the pcc.

First, the nonlinearity of inverse problems can cause correlation coefficients to be

quite different for different sets of parameter values, as shown in Figure 4.2. In

Figure 4.2, the objective-function surface has a distinct minimum, indicating that the

parameters can be uniquely estimated. The absolute values of pcc calculated at many

of the parameter values are significantly less than 1.00, correctly indicating the exist-

ence of a unique minimum. However, pcc with absolute values very close to 1.00

are calculated for some sets of parameter values. These large pcc values could lead

to the incorrect conclusion that a unique minimum does not exist. In practice, nonuni-

queness can only be clearly concluded if supported by an analysis of the simulated pro-

cesses and available data, by using pcc values calculated for a range of parameter

values, or by using regression to investigate uniqueness as discussed in Chapter 7.

A second concern about pcc is that they can be inaccurate when calculated using

sensitivities with an inadequate number of correct significant digits (Hill and

FIGURE 4.2 Correlation of parameters T1 and T2 of the simple model shown in

Figure 3.1a. Correlation coefficients are calculated at different parameter values and are

plotted on the log10 weighted least-squares objective-function surface shown in

Figure 3.1c. T1 and T2 are in square meters per day. (From Poeter and Hill, 1997.)
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Østerby, 2003). The accuracy of perturbation sensitivities suffers if the perturbation

amount is too large for nonlinear parameters or too small for insensitive parameters,

or if simulated values have an insufficient number of significant digits. The latter can

occur because the process model lacks numerical precision or does not print numbers

with sufficient precision, or the template or instruction input files for codes such as

UCODE_2005 or PEST have not been set up to include enough significant digits. See

Poeter et al. (2005) for further discussion. The accuracy of sensitivity-equation sen-

sitivities can suffer if the convergence criteria for the solver are too large or the

numerics of the model are inadequate. Following suggestions to enhance sensitivity

precision is always important when calculating pcc values.

The third issue related to pcc is that as parameter sensitivity decreases, greater

sensitivity precision is required for the pcc to be accurate (Hill and Østerby,

2003). In general, as more parameters are defined, parameter sensitivity is reduced.

Composite scaled sensitivities (css) can be used to identify insensitive parameters.

Combining parameters can be used to identify existing correlation that is obscured

by having many defined parameters.

For example, consider that the hydraulic conductivity Krock of a fractured

rock aquifer in an initial groundwater model has been divided into parameters

Kgranite and Kschist, corresponding to different rock types within the aquifer, in a

subsequent model. Commonly, the cssj for Kgranite and for Kschist will be smaller

than that for Krock. Even if the sensitivities in the two models are precise to the

same number of significant digits, the pcc in the first model may be more accurate

than those in the second model because the parameter sensitivity has decreased.

As the number of defined parameters increases, in any problem a point will be

reached at which the pcc are no longer reliable indicators of parameter correlation.

The reverse also is true—as parameter sensitivity increases, less precision is

required for the pcc to be accurate. This characteristic can be used to advantage.

For example, in groundwater models, the correlation that commonly occurs between

recharge and hydraulic conductivity may not be revealed by pcc when many

parameters are defined. By combining all the recharge and all the hydraulic-

conductivity parameters into a few parameters (using multiplication arrays to pre-

serve the original spatial distribution of values), a more definitive test of parameter

correlation can be achieved. Any extreme correlation that occurs for the few par-

ameters also is present in the set of many parameters, it just cannot be identified

using the pcc values calculated for the large set of parameters.

4.4.3 Leverage Statistics

Leverage statistics have the advantage of reflecting the importance of observations

produced by the effects measured by both scaled sensitivities and correlation

coefficients. They also have the advantage of not needing to be scaled and therefore

do not inherit the difficulties of scaling discussed in Section 4.4.1. One difficulty of

leverage statistics is that they do not reveal why observations are important; scaled

sensitivities and parameter correlation coefficients can be used to gain insight. In
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addition, nonlinearity is likely to produce the same types of changes in leverage

values that occur for pcc values. To the authors’ knowledge, this has not

been tested.

4.5 EXERCISES

Exercise 4.1: Sensitivity Analysis for the Steady-State Model with Starting
Parameter Values In this exercise, sensitivities, parameter correlations, and lever-

age statistics for the steady-state flow system described in Chapter 2, Section 2.2 are

calculated and evaluated.

(a) Calculate sensitivities for the steady-state flow system.

This exercise involves modifying computer files and simulating the system.

Instructions are available from the web site for this book described in Chapter 1,

Section 1.1. Students who are not performing the simulations may skip this exercise.

(b) Use dimensionless and composite scaled sensitivities (dss and css) to evalu-

ate observations and defined parameters.

Dimensionless and composite scaled sensitivities are presented in Table 4.1.

These statistics are discussed in Sections 4.3.3 and 4.3.4, Guideline 3 in Chapter

11, and Guideline 11 in Chapter 13. Plotting the composite scaled sensitivities on

a bar graph as shown in Figure 4.3 is an effective method for showing how much

information the observations likely provide for each parameter.

Problem
. Use the dimensionless scaled sensitivities of Table 4.1 and the discussion in

Section 4.3 to identify which observations are most important to estimation

of parameter HK_1. Use information about the flow system to explain why

the dss for observations hd01.ss, hd07.ss, and flow01.ss are much smaller

than the dss for the other observations.

. Use the composite scaled sensitivities of Table 4.1 and Figure 4.3 and the

discussion in Section 4.3 to assess whether it is likely that all of the parameters

for this model can be estimated with the available head and flow observations.

(c) Evaluate parameter correlation coefficients (pcc) to assess parameter

uniqueness.

Use the parameter correlation coefficients shown in Tables 4.2 and 4.3 and

the criterion presented in Section 4.3.5 to identify parameter values that might

be difficult to estimate uniquely with the 10 head and one flow observations. In

these tables, results calculated by (a) MODFLOW-2000, with the more accurate

sensitivity-equation sensitivities, and (b) UCODE_2005, using less accurate

perturbation sensitivities, are presented to show the effects of sensitivity inaccuracy.
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TABLE 4.2 Parameter Correlation Coefficient (pcc) Matrixa Calculated by (a)

MODFLOW-2000 and (b) UCODE_2005 with Central-Difference Perturbation, Using

the Starting Parameter Values for the Steady-State Problem with 10 Hydraulic-Head

Observations and One Streamflow Gain Observation

HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

(a) MODFLOW-2000

HK_1 1.00 20.37 20.57 20.75 0.95 20.63

K_RB 1.00 20.11 0.31 20.22 0.25

VK_CB 1.00 0.82 20.68 0.81

HK_2 Symmetric 1.00 20.83 0.98

RCH_1 1.00 20.76

RCH_2 1.00

(b) UCODE_2005

HK_1 1.00 20.39 20.57 20.76 0.95 20.63

K_RB 1.00 20.10 0.32 20.24 0.25

VK_CB 1.00 0.82 20.68 0.81

HK_2 Symmetric 1.00 20.83 0.98

RCH_1 1.00 20.76

RCH_2 1.00

aCells are in bold type for pcc � 0.95.

FIGURE 4.3 Composite scaled sensitivities (css) for the steady-state simulation calculated

using starting parameter values.
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Problem
. When the flow observation is included, are any of the pcc calculated

by MODFLOW-2000 (Table 4.2a) above 0.90? Above 0.95? Although

parameters with pcc values up to nearly 1.00 can probably be estimated

uniquely, it is useful to be aware of which parameters have these relatively

high correlations.

. Based on the comments above, what do the pcc values indicate about the like-

lihood of being able to estimate all of the parameters independently using the

head and flow data?

. When only hydraulic-head observations are included, why are all the par-

ameters extremely correlated, as indicated by the results from MODFLOW-

2000 (Table 4.3a)?

. Why are the correlation coefficients calculated by UCODE_2005 unable to

capture fully the extreme parameter correlation of all parameters when using

only hydraulic-head observations (Table 4.3b)?

(d) Use contour maps of one-percent sensitivities for the steady-state flow system.

Contour maps of one-percent scaled sensitivities for the steady-state system,

calculated for the starting parameter values, are shown in Figure 4.4. Each map is

TABLE 4.3 Parameter Correlation Coefficient (pcc) Matrixa Calculated by

(a) MODFLOW-2000 and (b) UCODE_2005 for Starting Parameter Values for

the Steady-State Problem Using Only the 10 Hydraulic-Head Observations

HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

(a) MODFLOW-2000b

HK_1 1.00 1.00 1.00 1.00 1.00 1.00

K_RB 1.00 1.00 1.00 1.00 1.00

VK_CB 1.00 1.00 1.00 1.00

HK_2 Symmetric 1.00 1.00 1.00

RCH_1 1.00 1.00

RCH_2 1.00

(b) UCODE-2005c

HK_1 1.00 0.97 1.00 1.00 1.00 1.00

K_RB 1.00 0.97 0.97 0.97 0.97

VK_CB 1.00 1.00 1.00 1.00

HK_2 Symmetric 1.00 1.00 1.00

RCH_1 1.00 1.00

RCH_2 1.00

aCells are in bold type for pcc � 0.95.
bThe correct values of 1.00 calculated by MODFLOW-2000 use the more accurate sensitivity-equation

sensitivities.
cThe incorrect values calculated by UCODE_2005 are caused by the less accurate central-difference

perturbation sensitivities.
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related to one parameter and can be used to identify areas with relatively large and

small absolute values of scaled sensitivity. Areas with large absolute values indicate

where hydraulic-head measurements are likely to be most important for estimating

the parameter. Because the sensitivities are scaled by the parameter values and all

sensitivities are for the same observation type, the one-percent scaled sensitivity

maps also can be compared with each other.

FIGURE 4.4 Contour maps of one-percent scaled sensitivities of hydraulic head for the

steady-state model, calculated using Eq. (4.7), where y0 is hydraulic head evaluated at each

cell in the model grid and b is one of the six model parameters: (a) HK_1, (b) HK_2,

(c) K_RB, (d) VK_CB, (e) RCH_1, and ( f ) RCH_2. The sensitivities are calculated using

the starting parameter values. Contour labels apply to sensitivities in both layers for all

maps except that for VK_CB.
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The simple system considered here provides the opportunity to (1) identify

how sensitivities reflect system dynamics, and (2) demonstrate the utility of sensitivity

analysis and the role sensitivities play in regression. This exercise can form a frame of

reference for considering sensitivities calculated in more complicated systems.

Problem: Explain the one-percent sensitivity maps from the steady-state system

(Figure 4.4), basing your analysis on characteristics of fluxes into, out of, and

within the flow system. The cell-by-cell fluxes and the boundary fluxes of the

steady-state flow system along a cross section perpendicular to the river (along a

row) are shown in Figure 4.5. The steady-state flow system is two-dimensional,

because all features are the same for any row; thus, all information about

the system is portrayed in a cross section along any row of the model. The total

fluxes through the entire model are obtained by multiplying the values in

Figure 4.5 by 18, which is the number of rows. In explaining the sensitivities,

answer the following questions:

. Why are the one-percent scaled sensitivities negative for hydraulic-

conductivity parameters HK_1 and HK_2, and positive for the recharge

parameters RCH_1 and RCH_2?

. Why are the magnitudes of the one-percent scaled sensitivities larger for HK_1

than for HK_2?

FIGURE 4.5 Cell-by-cell fluxes, in m3/s, along any model row of the steady-state flow

system with the true parameter values.
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. Why do the one-percent scaled sensitivities for RCH_1 vary only over the left

half of the system, whereas those for RCH_2 vary over the entire domain?

. Why is VK_CB the only parameter for which there are substantial differences

in the one-percent scaled sensitivities for model layers 1 and 2?

. Why are the one-percent scaled sensitivities for K_RB the same throughout

the system?

(e) Evaluate leverage statistics.

For the initial model, four observations have leverage statistics that are larger

than 0.90:

flow01.ss 1.00

hd01.ss 0.99

hd07.ss 0.97

hd09.ss 0.94

Problem: Leverage statistics reflect the combined effects of sensitivity and

correlation. Use the leverage statistics, the discussions of Sections 4.3 and 4.4,

and Tables 4.1 and 4.2 to address the following questions.

. For each of the high leverage observations, which parameters have the largest

dimensionless scaled sensitivities?

. Evaluate whether the high leverage observations are dominated by sensitivity

or correlation considerations. Use the system dynamics that contribute to the

importance of each observation.
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5
ESTIMATING PARAMETER VALUES

As part of model calibration, it is often useful to determine parameter values that

produce the smallest possible value of the objective function in Eq. (3.1) or (3.2).

The process of calculating such parameter values is called optimization. If more

than one set of parameter values produce the same small objective-function value,

the resulting parameter values define multiple minima; if only one set of parameter

values produces the smallest objective-function value, the resulting parameter

values define a unique minimum. If the optimization problem has a unique minimum

and the objective function is smooth enough, as in Figure 3.1b, c, optimization

methods that use calculated sensitivities are very advantageous in that they are com-

putationally efficient. These are called gradient methods because they generally use

the gradient of the objective-function surface to determine how to proceed toward

the minimum. They are also called regression methods.

Nonlinear regression, instead of the simpler linear regression, is needed when

simulated values are nonlinear functions of the parameters being estimated. This

is common in groundwater models, as discussed in Chapter 1, Section 1.4.1.

Model nonlinearity produces important complications to regression and has been

the topic of considerable investigation in several fields. Seber and Wild (1989)

and Dennis and Schnabel (1996) are excellent upper-level texts on nonlinear

regression. The discussion in this book is the most accessible nonlinear regression

presentation known to the authors.

This book uses a modified Gauss–Newton nonlinear regression method. The

method uses an iterative form of standard linear-regression equations and works
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well only with modifications. This chapter describes the difficulties of the method

and most of the modifications used by MODFLOW-2000 and UCODE_2005.

Appendix B describes additional modifications, including quasi-Newton updating.

The modified Gauss–Newton method presented here is an extension of the

method presented by Cooley and Naff (1990, Chap. 3), which is similar to methods

presented by Seber and Wild (1989), Sun (1994), Tarantola (2005), Dennis and

Schnabel (1996), and other texts on nonlinear regression. The modified Gauss–

Newton method presented in this book also can be categorized as a Marquardt or

Levenberg–Marquardt method. The approach forms the basis of most multicriteria

gradient optimization methods (Ehrgott, 2000).

The modified Gauss–Newton method presented here has performed well relative

to alternatives in that fewer or an equivalent number of total model evaluations are

required and it is at least as robust as the alternatives. Cooley (1985), Hill (1990),

and Cooley and Hill (1992) compare the modified Gauss–Newton method to

quasi-linearization, quasi-Newton, Fletcher–Reeves, a combined Fetcher–Reeves/
quasi-Newton, a modified Gauss–Newton/full-Newton hybrid, and the modified

Gauss–Newton method with the quasi-Newton updating described in Appendix

B. They considered problems of steady-state and transient groundwater flow in

which relatively few parameters are estimated. Results presented by Mehl and Hill

(2003) suggest that the double-dogleg trust region approach of Dennis and Schnabel

(1996) can substantially reduce execution times for difficult problems. Thismethod is

available in UCODE_2005; it is not described in this book.

5.1 THE MODIFIED GAUSS–NEWTON GRADIENT METHOD

Parameter values that minimize the least-squares objective function (Eqs. (3.1) and

(3.2) in Chapter 3) are calculated using normal equations. Section 5.1.1 presents the

normal equations for the modified Gauss–Newton method used in this work and

uses a one-parameter problem to illustrate aspects of the method. Section 5.1.2

presents a two-parameter example problem that demonstrates the iterations required

to solve nonlinear regression using the normal equations. Finally, Section 5.1.3

discusses the convergence criteria that govern when to stop the iterative process.

5.1.1 Normal Equations

Normal equations are derived by taking the derivative of the objective function with

respect to the parameters and setting the derivative equal to zero. By using Eq. (3.2),

this becomes

@

@b
½ y� y0(b)�Tv½ y� y0(b)�	 
 ¼ 0 (5:1)

where 0 is a vector of NP values that all equal zero, and NP is the number of

estimated parameters.
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When y0(b) is nonlinear, Eq. (5.1) is solved by approximating y0(b) as a linear

function using two terms of a Taylor series expansion, so that

y0(b) ffi y‘(b) ¼ y0(b0)þ @y0(b)
@b

����
b¼b0

(b� b0) (5:2a)

where y‘(b) ¼ the linearized form of y0(b);
b0 ¼ the vector of parameter values about which y0(b) is linearized;

@y0(b)
@b

����
b¼b0

¼ the sensitivity matrix calculated using the parameter values

listed in vector b0.

The vector y0(b) has NDþ NPR elements, where ND is the number of observations

and NPR is the number of prior information equations; the vector b has NP elements,

where NP is the number of estimated parameters.

If the sensitivities are expressed as the matrix X, Eq. (5.2a) can be written

y‘(b) ¼ y0(b0)þ Xjb¼b0 (b� b0) (5:2b)

where X is the sensitivity matrix (also called the Jacobian matrix), with elements

equal to @y0i/@bj. X has NDþ NPR rows and NP columns, so i ¼ 1, NDþ NPR

and j ¼ 1, NP as shown in Appendix B.

To understand what linearizing y0(b) means, it is useful to consider a model that

has only one parameter. Here we consider the Theim equation, which describes the

shape of a steady-state cone of depression around a pumping well given a

homogeneous groundwater system and a constant head at radial distance r0.

Figure 5.1a shows the nonlinear function linearized about b0 ¼ 0.005, which is a

starting guess for the value of the transmissivity parameter (T ). At b0, the linearized

approximation equals the nonlinear function; away from b0 the linearized approxi-

mation generally differs from the nonlinear function. The function can be rep-

resented by the notation y0(b), where b is not bold because there is only one

parameter and y is not bold because it represents the function, not a vector of

values simulated for a set of observations.

The Gauss–Newton normal equations are developed by substituting the linear-

ized approximation of y0(b) into the objective function. Using the expression of

the least-squares objective function from Eq. (3.2) gives

S‘(b) ¼ ½ y� y‘(b)�Tv½ y� y‘(b)� (5:3)

Again using the one-parameter problem to understand what this equation rep-

resents, Figure 5.1b shows the shapes of the least-squares objective function calcu-

lated using the nonlinear model and the model linearized about b0. The figure shows

that the linearized objective function reaches a minimum value at T ¼ 0.007, which

is closer to the minima of the nonlinear objective function than is the starting guess

of T ¼ 0.005. Starting at b0, the Gauss–Newton method uses the objective function
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formed using the linear model to determine how the parameter value should be chan-

ged. Ideally, moving from b0 to the minimum of the linearized objective function

will result in an estimated parameter value that is closer to the minimum of the

nonlinear objective function. This is indeed the case for the objective functions

shown in Figure 5.1b.

One difference between linear and nonlinear regression is that in linear

regression, parameter values are estimated by solving the normal equations once.

In contrast, nonlinear regression is iterative in that a sequence of parameter updates

is calculated, solving linearized normal equations once for each update. Thus, in

nonlinear regression there are parameter-estimation iterations.

The iterative form of the normal equations needed to solve nonlinear regression

problems is produced by minimizing the objective function of Eq. (5.3). This is

accomplished by taking the derivative with respect to the parameter values and set-

ting it to zero. In addition, the superscript 0 (shown in Eq. (5.2b)) is replaced by r,

which identifies the parameter-estimation iteration. The resulting Gauss–Newton

nonlinear regression normal equations are

(XT
r vXr)dr ¼ XT

r v( y� y0(br)) (5:4)

where r ¼ the parameter-estimation iteration number;

Xr ¼ the sensitivity matrix calculated for the parameter values in br;

FIGURE 5.1 (a) Nonlinear model y0(b) and linearized approximation of y0(b), linearized
about point T ¼ b ¼ b0 ¼ 0.005. (b) The objective function calculated using the nonlinear

function y0(b) and the linearized objective function calculated using the linear approximation

of y0(b). The nonlinear model is the Theim equation, s ¼ [Q/(2pT)] ln(r/r0), with Q

(pumpage) ¼ 1, r0 (distance of zero drawdown) ¼ 1000, and generated “observations” at r

(distance to the observation well) ¼ 1, 2, 4, 6, 10, 40, 80, 120, 200, 300, 450, 600. No noise

was added to the “observations”.
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v ¼ the weight matrix;

(XT
r vXr) ¼ a symmetric, square matrix of dimension NP by NP (as noted in

Chapter 4, Section 4.3.4, XTvX is related to the Fisher information

matrix);

dr ¼ an NP-dimensional vector used to update the parameter estimates

(called the parameter change vector in this book);

br ¼ the vector of parameter estimates at the start of iteration r.

The sensitivity matrix Xr appears in Eq. (5.4) because taking the derivative of

Eq. (5.3) produces sensitivities @y0/@b. When calculated at parameter values br,
these sensitivities can be expressed as matrix Xr.

For the first parameter-estimation iteration, the model is linearized about starting

parameter values defined by the modeler. In each subsequent iteration, the model is

linearized about parameter values estimated in the previous iteration. For each

parameter-estimation iteration, Eq. (5.4) is solved for dr , and then dr is used to

update the parameter values for the start of iteration rþ 1, using the equation

brþ1 ¼ brþ dr. In practice, a modified form of this equation is used, as described

later in this chapter. Figure 5.2 shows how Eq. (5.4) relates to the geometry of a lin-

earized objective-function surface for a hypothetical two-parameter problem. The

right side of Eq. (5.4) is proportional to the gradient of the linearized objective func-

tion. Without the (XT
r vXr) term on the left side of Eq. (5.4), the parameter change

vector dr would point directly down the gradient of the linearized objective-function
surface, as shown by arrow A in Figure 5.2. This is called the steepest descent direc-

tion. The (XT
r vXr) term modifies the direction of dr to point toward the minimum of

the linearized objective-function surface, as shown by arrow B in Figure 5.2.

The basic Gauss–Newton method presented in Eq. (5.4) is prone to difficulties

such as oscillations due to overshooting the optimal parameter values. It only

FIGURE 5.2 A linearized objective-function surface for a hypothetical two-parameter

problem, illustrating the geometry of the normal equations. The arrows represent the

direction relevant to the parameter change vector dr. Arrow A points down gradient in a

direction defined by the right-hand side of Eq. (5.4). Arrow B points in the direction of dr
solved for using Eq. (5.4) or (5.5). Arrow C shows that the direction of dr, solved for using

a nonzero Marquardt parameter in Eq. (5.6), is between arrows A and B.
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works well when modified. Three important modifications are scaling, the Mar-

quardt parameter, and damping. These are discussed in the following paragraphs.

Scaling Often the parameter values, and thus the sensitivities, have values that

differ by many orders of magnitude. This can cause great difficulties with obtaining

an accurate solution of Eq. (5.4). The accuracy of the parameter change vector dr can
be improved by scaling Eq. (5.4). The scaling is implemented as

(CTXT
r vXrC)C

�1dr ¼ CTXT
r v( y� y0(br)) (5:5a)

where C is a diagonal scaling matrix with element cjj equal to [(XTvX)jj]
21/2.

Marquardt Parameter The resulting scaled matrix has the smallest possible con-

dition number (Forsythe and Strauss, 1955; Hill, 1990). Scaling with C changes the

magnitude but not the direction of dr. Therefore, in Figure 5.2 the parameter change

vector dr still points in the direction of arrow B after scaling has been implemented.

In some circumstances, the direction of the change vector dr is nearly parallel to

the contours of the objective-function surface and changing the parameter values

using dr yields little progress toward estimating optimal parameter values. In this

case, changing the direction of dr can be advantageous. The second modification

involves introduction of a term that causes the direction of vector dr to move

toward the steepest-descent direction. The term is called the Marquardt parameter

(Marquardt, 1963; Theil, 1963; Seber and Wild, 1989; Cooley and Naff, 1990). In

Figure 5.2 a nonzero Marquardt parameter moves the direction of dr from the direc-

tion of arrow B to the direction of arrow C. The Marquardt parameter is included in

the scaled objective function of Eq. 5.5a as

(CTXT
r vXrC þ Imr)C

�1dr ¼ CTXT
r v( y� y0(br)) (5:5b)

where I is an NP � NP identity matrix and mr is the Marquardt parameter. The

procedure for determining the Marquardt parameter is discussed in the next section.

Damping Overshoot is a common problem with the Gauss–Newton method, so

damping is introduced. Overshoot occurs when the parameter change vector

points toward locations on the objective-function surface that are closer to the mini-

mum of the nonlinear objective-function surface, but then extends beyond these

locations to larger objective-function values. Damping helps prevent overshoot by

allowing the parameters to change less than the full amount calculated by dr. This
can significantly improve regression performance. Damping is applied when

updating the parameter values using the parameter change vector dr.
Including damping in Eq. (5.5b) produces

(CTXT
r vXrC þ Imr)C

�1dr ¼ CTXT
r v( y� y0(br)) (5:6a)

brþ1 ¼ rrdr þ br (5:6b)

where rr is the damping parameter. Together, Eqs. (5.6a) and (5.6b) almost express

the normal equations and the iterative process for the modified Gauss–Newton
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optimization method used in UCODE_2005 and MODFLOW-2000. Additional

modifications include an iteration control mechanism and a quasi-Newton modifi-

cation that are discussed in Appendix B. In addition, UCODE_2005 provides a

trust region approach not described here. Calculation of the Marquardt and damping

parameters is discussed next.

Calculate the Marquardt Parameter The Marquardt parameter is used to change

the direction of and shorten dr. These modifications improve regression performance

for ill-posed problems (Marquardt, 1963). In Eq. (5.6a), mr initially equals 0.0 for

each parameter-estimation iteration r. If dr is nearly orthogonal to the steepest

descent direction, the resulting parameter changes are unlikely to reduce the value

of the objective function, and mr is changed to a nonzero value. The modification

to the direction and length of dr caused by mr . 0.0 is illustrated in Figure 5.2 as

the change from arrow B to arrow C.

In MODFLOW-2000 and UCODE_2005, the value of the Marquardt parameter

is determined as suggested by Cooley and Naff (1990, pp. 71–72). If the cosine of

the angle between the vector dr and the vector orthogonal to the steepest descent

direction is less than a threshold value (commonly 0.08), mr is increased using

the relationmr
new ¼ a � mr

oldþ b. Commonly, a ¼ 1.5 and b ¼ 0.001. The threshold

value for the cosine of the angle and a and b can be specified by the user. PEST

handles the Marquardt parameter somewhat differently in that it is applied to the

unscaled matrix. The results obtained by PEST have been similar to those achieved

by MODFLOW-2000 and UCODE_2005 in tests conducted by the authors. John

Doherty (oral communication, 2003), author of PEST, suggested that PEST con-

verged in one less parameter-estimation iteration in some circumstances, but the

specifics of his numerical experiments are unknown.

Calculate the Damping Parameter The damping parameter, rr, shortens dr
and can vary in value from 0.0 to 1.0. This parameter modifies all values in the

parameter change vector dr by the same factor. Thus, in vector terminology, the

direction of dr is preserved. For each parameter-estimation iteration, the damping

parameter initially equals 1.0 but is changed to a smaller value for either of

two reasons:

1. To ensure that the absolute values of fractional parameter value changes

are all less than a value specified by the user. This value is the input variable

MaxChange of UCODE_2005 and MAX-CHANGE of MODFLOW-2000. In

this book, this value is referred to as max-allowed-change.

2. To damp oscillations that occur when elements in dr and dr-1 define opposite
directions (Cooley, 1993), implemented as described in Appendix B.

To evaluate whether damping needs to be implemented for reason 1, fractional

parameter value changes are calculated for each native parameter value as

(brþ1
j jrr¼1:0 � brj)=jbrj j ¼ drj=jbrjj, j ¼ 1, NP (5:7)
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where bj
r is the jth element of vector br, that is, the value of the jth parameter at par-

ameter estimation iteration r. If bj
r equals 0.0, 1.0 is used in the denominator. The

value of brþ1
j in Eq. (5.7) is calculated using Eq. (5.6b) with rr ¼ 1.0. That is, the

value is calculated assuming no damping. In this book the absolute value of

the largest fractional parameter value change calculated using Eq. (5.7) is referred

to as max-calculated-change.

If max-calculated-change is greater than max-allowed-change, rr is calculated as
follows unless oscillation concerns (reason 2 above) result in an even smaller value:

rr ¼
max-allowed-change

max-calculated-change
(5:8)

Following computation of rr by Eq. (5.8), brþ1 is calculated by Eq. (5.6b) and con-

tains the parameter values for starting the next parameter-estimation iteration. A

somewhat different procedure is used for calculating the damping parameter for

model parameters that are log-transformed in the regression. This procedure is

described in Section 5.4 and Appendix B.

Typically, max-allowed-change has been the same for all parameters.

UCODE_2005 and PEST, however, allow different values of max-allowed-change

to be assigned to different parameters. This is likely to be used to allow insensitive

parameters to change more than sensitive parameters so that the insensitive par-

ameters do not produce tiny damping parameters that can restrict updates of

sensitive parameters to the point where no progress can be made.

5.1.2 An Example

To understand more clearly how the modified Gauss–Newton method works, con-

sider its performance for the two-parameter model shown in Figure 5.3. The data

shown in Figure 5.3a are transient groundwater level drawdowns caused by pum-

page from a single well. The model used is the Theis equation, in which drawdown

is a nonlinear function of two parameters: the transmissivity (T) and the storage

coefficient (S). Both parameters are estimated. The observations are the drawdowns

listed in Figure 5.3a.

The nonlinear objective-function surface is shown in Figure 5.3b. Conceptually,

this is analogous to the objective function in Figure 5.1b produced using the non-

linear function of Figure 5.1b. Figure 5.3c and Figure 5.3d show approximations

of the objective-function surface produced by linearizing the Theis equation about

the parameter values marked by X1 and X2. The problem is linearized by replacing

the Theis equation with the first two terms of a Taylor series expansion (Eq. (5.2)) in

which b0 includes the parameter values at X1 or X2, and using this linearized model

to replace y0(b) in Eq. (3.2) to obtain Eq. (5.3). As in Figure 5.1b, the linearized

objective-function surfaces approximate the nonlinear surface well near b0 and

less well further away.

In Figure 5.3c, the objective function is linearized about a point (X1) far from the

minimum (†) of the nonlinear objective function. Moving from this point all the
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way to the minimum of the linearized objective-function surface (a point to the left

of the plot) would overshoot the nonlinear objective-function minimum. As men-

tioned previously, this is a common problem with unmodified Gauss–Newton

methods. Here, proceeding to the minimum of the linearized surface would produce

a negative value of transmissivity, which is computationally infeasible. This is a

situation in which more advantageous results can be obtained by limiting the par-

ameter value changes using the damping parameter rr of Eq. (5.6b). With damping,

the regression moves only part of the way from X1 to the minimum of the linearized

surface.

FIGURE 5.3 Model equation, data, and objective-function surfaces for a nonlinear model.

(Example from Cooley and Naff, 1990, p. 66.)

5.1 THE MODIFIED GAUSS–NEWTON GRADIENT METHOD 75



In Figure 5.3d, the objective function is linearized about a point near the mini-

mum of the nonlinear objective function. In this case, moving to the minimum of

the linearized objective-function involves small changes in the parameter values,

and damping is not needed. Moving to this minimum produces parameter values

near the minimum of the nonlinear objective-function, which is the goal of the

regression.

Figure 5.3d also shows that the linearized model closely replicates the objective-

function surface near the minimum. This has consequences for the applicability of

linear inferential statistics, such as linear confidence intervals, as discussed in

Chapter 7, Section 7.5.1 and Chapter 8, Section 8.4.2. The figures of the objective-

function surfaces also can be used to better understand nonlinear confidence inter-

vals, as discussed in Chapter 7, Section 7.5.1 and Chapter 8, Section 8.4.3.

5.1.3 Convergence Criteria

Convergence criteria are needed to determine when to stop the modified Gauss–

Newton iterative process. In UCODE_2005 and MODFLOW-2000, parameter esti-

mation converges if either one of two convergence criteria are satisfied. By the first

criterion, convergence is achieved when the parameter values change only a small

amount from one parameter-estimation iteration to the next. This indicates that at

the current regression iteration, the parameter values lie in a relatively flat area

that is a minimum in the objective-function space. For untransformed parameters,

this condition is satisfied if, for all parameters, max-calculated-change in Eq. (5.8)

is less than max-allowed-change (user-specified variable TolPar of UCODE_2005

and TOL of MODFLOW-2000). That is, using the UCODE_2005 variable name,

max-calculated-change , TolPar for all j ¼ 1, NP (5:9)

Preferably, this convergence is achieved in the final calibrated model with a criterion

value no larger than 0.01. For log-transformed parameters, a modified form of

Eq. (5.9) is used, as described in Section 5.4 and Appendix B.

TolPar typically is 0.01 or 0.001 for final regressions, indicating that convergence

is reached when parameter values are changing between parameter-estimation iter-

ations no more than 1 or 0.1 percent. There are situations in which it is advantageous

for larger values of TolPar to be specified, especially for preliminary regressions.

Typically, TolPar has been the same for all parameters. UCODE_2005 and PEST,

however, allow different values of TolPar to be assigned to different parameters. This

is likely to allow inclusion of parameters that are too insensitive to achieve the small

convergence criteria imposed on most parameters, but not so insensitive that the

instabilities are very large. There has been little experience so far with this option.

By the second convergence criterion, the nonlinear regression converges if the

model fit changes little over the course of two parameter-estimation iterations. If

three consecutive values of the least squares objective function (Eq. (3.1) or

(3.2)) change less than a user-defined amount (TolSOSC of UCODE_2005 and

SOSC of MODFLOW-2000), nonlinear regression converges. The model-fit
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criterion often is useful early in the calibration process to avoid lengthy simulations

that fail to improve model fit. However, satisfying this criterion does not provide as

strong an indication that a minimum has been reached as the parameter-value

criterion. Therefore, for final regression runs, it is preferable that the parameter-

value criterion be satisfied.

As discussed by Cooley and Naff (1990, p.70), modified Gauss–Newton optim-

ization typically converges within “a number of iterations equal to five or twice the

number of parameters, whichever is greater.” Well-conditioned problems (com-

monly those with large css values and little correlation) tend to converge in fewer

iterations than poorly conditioned problems. It is rarely fruitful to increase the

number of iterations to more than twice the number of parameters, and the resulting

runs can take large amounts of computer time. It is generally more productive to

consider alternative models (see Guideline 8, Chapter 11).

5.2 ALTERNATIVE OPTIMIZATION METHODS

Alternative algorithms for the minimization of the least-squared objective function

with respect to parameter values include methods that use the gradient of the objec-

tive function and not the full sensitivity matrix (as used by, e.g., Carrera and

Neuman, 1986; Hill, 1992; Xiang et al., 1993; Tarantola, 2005), and global optim-

ization methods such as simulated annealing, genetic algorithms, tabu search, and

shuffled complex evolution (SCE) (e.g., Zheng and Wang, 1996; Solomatine

et al., 1999; Tsai et al., 2003b; Vrugt et al., 2003; Fazal et al., 2005).

For the first set of methods, the steepest descent direction, which equals the

derivative of the objective function with respect to the parameter values, generally

is calculated efficiently using adjoint states (Hill, 1992; Townley and Wilson, 1985).

Scaled derivative of the objective function might be able to replace the composite

scaled sensitivities in the guidelines, but this has not been tested. There are no repla-

cements for the one-percent and dimensionless scaled sensitivities, the parameter

correlations, and leverage statistics. However, adjoint states themselves can be

useful, as discussed by Sykes et al. (1985). In addition, adjoint-state algorithms

are often programmed to calculate the sensitivities and the parameter variance–

covariance matrix to provide analyses that need them after convergence is reached.

In this case, the methods suggested in this book could be used.

Global-search methods operate quite differently than gradient methods such as

modified Gauss–Newton. Global-search methods do not use sensitivities. Instead,

they proceed to the next set of parameters using a long history of the model fit pro-

duced by previous sets of parameters. The methods differ in how the previous sets

are used. The advantage of global-search methods is their ability to identify par-

ameter values that produce the best fit to observed values and prior information

regardless of the degree of model nonlinearity and the presence of local minima.

The disadvantage is that they are much more computationally intensive, often

requiring execution times that are tens or hundreds of times as long as the execution

times required by gradient-search methods.
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Global-search methods are most useful for problems with very irregular

objective-function surfaces that are not amenable to the much more numerically effi-

cient gradient-search methods. For problems with such irregular objective functions,

scaled sensitivities, parameter correlation coefficients, and leverage statistics are

likely to change dramatically as parameter values change, and thus they are not

useful. If the irregularity is local, the methods presented in this book may be

useful in part of the solution space. For example, biological processes can be very

nonlinear with regard to pH because outside some range of pH the organism dies.

Within a certain range, however, and often the range of most interest, the process

may be linear enough for the methods presented in this book to be useful.

Public-domain programs are available for implementing some common

global-search methods. For example, MGO (Zheng andWang, 2003) provides global-

search capabilities using genetic algorithms, simulated annealing, and tabu search.

5.3 MULTIOBJECTIVE OPTIMIZATION

When developing models of many natural systems, data are scarce and it often is

useful for all data relevant to model outputs to be considered simultaneously

using a single objective function. Weighting is used to include many kinds of

data. This book focuses on this approach to model calibration.

Alternatively, as mentioned in Chapter 3, Section 3.2.3, regression can be per-

formed using subsets of the observations and prior information, whereby each

subset is used to define a different objective function. This is called multiobjective

optimization. A short description of multiobjective optimization can be found at

http://www.fp.mcs.anl.gov/otc/Guide/OptWeb/multiobj/. Recent books on these
methods include Statnikov and Matusov (1995) and Ehrgott (2000).

In multiobjective optimization, trade-offs between the different objective func-

tions are an integral part of the evaluation. The trade-offs are obtained by weighting

different objective functions differently. This has consequences in the implied rela-

tive accuracy of the data contained in each of the objective functions. This issue

needs to be considered when determining feasible solutions using multiobjective

function optimization. For example, solutions with weights that result in one set

of data dominating or being ignored may be of interest as part of the analysis but

generally are not viable solutions.

While for any one combination of weights the regression methods discussed here

could be used, in recent applications multiobjective optimization has been accom-

plished with Shuffle Complex Evolution (SCE) (Nunoo and Mrawira, 2004).

5.4 LOG-TRANSFORMED PARAMETERS

Log-transformed parameters are often useful because the uncertainty of many

parameters is best represented by a log-normal probability distribution. When the

parameter is log-transformed, the uncertainty is then best represented by a normal

78 ESTIMATING PARAMETER VALUES



distribution, which is convenient to use. Log-transforming dependent variables was

discussed in Chapter 3, Section 3.3.3, and is not addressed further here.

Log-transformation involves taking the logarithm of selected parameters. Thus,

the parameters in vector b of Eq. (3.1) or (3.2) can be either native values or the

log-transform of the native values. Log-transforming parameters can produce an

inverse problem that converges more easily and prevents the native parameter

values from becoming negative (Carrera and Neuman, 1986).

Log transformation can be defined using base e or base 10, where base e is also

called the natural logarithm. Base 10 is easier for most modelers to use because a

log-transformed value of 1 indicates a native value of 10, a log-transformed value

of 2 indicates a native value of 100, and so on. Conversion between natural and

base 10 logarithms involves multiplying by a factor of 2.3. In UCODE_2005 and

MODFLOW-2000, the log-transform is implemented internally using natural logar-

ithms (log e); the input and output use base 10 logarithms as much as possible.

Even when some parameters are log-transformed, allowing modelers to consider

native values has the advantage of emphasizing the connection between model

results and field data. For example, even for log-transformed parameters, it is

useful to define starting parameter values for regression runs as native values and

to report final estimates as native values. UCODE_2005 and MODFLOW-2000

are constructed so that the user can consider native values as much as possible.

There are four special circumstances, one related to model input and three

related to model output, in which the modeler has to deal more directly with

log-transformed values.

The one model input situation occurs when there is prior information on the log-

transformed parameter. In this case, only one parameter can be included in the prior

information equation (one term in the summation presented after Eq. (3.2)). For

UCODE_2005, the specified statistic needs to be related to the base 10 log of the

parameter. MODFLOW-2000 can read statistics related to the native value and cal-

culate the statistic related to the log-transformed parameter value. The value of the

statistic specified can be determined using the methods described under Guideline 6

in Chapter 11.

The first model output situation is fairly subtle and will not be noticed by most

modelers. It involves calculation of the damping parameter and the convergence cri-

teria, which are used to control or measure the change in the parameter values. For

native parameter values, Eqs. (5.8) and (5.9) are used. Calculation of these quantities

is different for log-transformed parameters and is described in Appendix B.

The second model output situation is that log-transformed parameter estimates,

standard deviations, coefficients of variation, and confidence interval limits appear

in the MODFLOW-2000 and UCODE_2005 output files along with analogous

statistics applicable to the native parameter values. In most circumstances, the user

can ignore the statistics related to the log-transformed parameter values and instead

use the statistics related to the native values. Related issues are discussed in

Chapter 7, Section 7.2.4.

The third model output situation occurs when there is prior information defined

for a log-transformed parameter. In this situation the associated residual, weight, and
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weighted residual are reported as the natural logarithms of the actual values, because

the regression calculations use these values.

5.5 USE OF LIMITS ON ESTIMATED PARAMETER VALUES

Upper and lower limits on parameters that constrain possible estimated values are

commonly available in inverse models and are suggested, for example, by Sun

(1994, p. 35). Such limiting constraints on parameter values may appear to be

necessary given the unrealistic parameter values that can be estimated through

inverse modeling. However, this practice can disguise more fundamental modeling

errors, as demonstrated by Poeter and Hill (1997) using a simple synthetic test case

and Hill et al. (1998) using a complex synthetic test case. Anderman et al. (1996)

show how unrealistic optimized values of recharge in a field problem revealed

important model construction inaccuracies.

As discussed in Guideline 5 in Chapter 11, unrealistic estimated parameter values

are likely to indicate either that (1) the data do not contain enough information to

estimate the parameters or (2) there is a more fundamental model error. In the

first circumstance, the best response is to use prior information or regularization

on the parameter value, which tends to produce an estimate that is close to the

most likely value, instead of at the less likely values that generally constitute the

imposed upper and lower limits. In the second circumstance, the best response is

to find and resolve the error. In the authors’ opinions, the only circumstance in

which it is advantageous to use limits on parameter estimates is to prohibit values

that would make the process model fail.

To prevent the regression from calculating parameter values that would cause the

process model to fail, UCODE_2005 supports limits. MODFLOW-2000 does not

support limits because the required limits are imposed internally. For example, if

a negative value of hydraulic conductivity is calculated by the regression, the

value is changed to two orders of magnitude smaller than its starting value.

5.6 EXERCISES

Exercise 5.1 uses a two-parameter version of the test case to demonstrate the effects

of extreme parameter correlation and the performance of the modified Gauss–

Newton method and ends with an exercise asking students to derive the Gauss–

Newton equation. In Exercise 5.2 the modified Gauss–Newton method is used to

estimate the six parameters of the steady-state model.

Exercise 5.1: Modified Gauss–Newton Method and Application to a Two-
Parameter Problem This exercise involves objective-function surfaces for a

two-parameter version of the steady-state model described in Chapter 2, Section

2.2. Objective-function surfaces were discussed in Chapter 3, Section 3.5 and

examples were shown in Figure 3.1. Objective-function surfaces constructed for
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the two combined parameters are used to show the effects of the different types of

observations (hydraulic heads and flows) on objective-function surfaces and on non-

linear regression.

The two-parameter version of the model is developed by combining the six

defined parameters into two parameters. One of the combined parameters multiplies

hydraulic conductivities of the system and the other combined parameter multiplies

recharge rates.

The combined hydraulic-conductivity parameter is defined so that if the par-

ameter value equals 1.0, all the hydraulic-conductivity values equal their starting

values. As the combined parameter value changes, all the hydraulic-conductivity

values change proportionately. In UCODE_2005 or PEST, defining the combined

hydraulic-conductivity parameter is straightforward. In MODFLOW-2000, the

hydraulic conductivities controlled by the K_RB parameter (Table 3.1) cannot be

combined with the other hydraulic conductivities and the value is fixed in the

simulations. This does not compromise the analysis, because the observations are

much less sensitive to K_RB than to most other parameters. The combined recharge

parameter is defined so that if its value equals 1.0, both recharge parameters equal

their starting values. As its value changes, the recharge values of zones 1 and 2

change proportionately. Combining the parameters in MODFLOW-2000 and

UCODE_2005 is described in more detail in the computer instructions available

from the web site described in Chapter 1, in Section 1.1.

Once a two-parameter model is constructed, UCODE_2005 or PEST can easily

be used to produce data sets for constructing objective-function surfaces. There is

no simple method of constructing such data sets with MODFLOW-2000. The objec-

tive-function values resulting from the UCODE_2005 and MODFLOW-2000 simu-

lations are nearly identical. Objective-function surfaces using only hydraulic-head

observations and including the flow observation with different weights are shown

in Figure 5.4.

(a) Assess relation of objective-function surfaces to parameter correlation

coefficients.

The objective-function surfaces from the two-parameter model are used in this

exercise to investigate parameter correlations.

With hydraulic-head observations alone (Figure 5.4a), the objective-function

surface is composed of parallel lines, and no unique minimum exists. In this situation,

the two parameters are completely correlated, meaning that the correlation coefficients

for all parameter pairs equal positive or negative 1.00 (here,þ1.00). Thus, the hydrau-

lic-head data cannot be used to estimate both parameters uniquely. Nonuniqueness

would occur for any weighting, any combination of hydraulic-head observations

in this system, and any number and configuration of hydraulic-conductivity and

recharge parameters, as long as all parameters are estimated. Table 4.3a shows

that with six parameters all correlation coefficients equal 1.00.

With the addition of the flow data weighted using a coefficient of variation of 10

percent (Figure 5.4b), which is a reasonable level of precision for such a measurement,
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the objective-function surface indicates that aminimumexists, but that it covers a fairly

broad area. When the flow is weighted using a coefficient of variation of 1 percent

(Figure 5.4c), which indicates a generally unachievable level of precision, a clear mini-

mum is apparent in the objective-function surface. Objective-function surfaces that

contain a minimum indicate that the parameters are not completely correlated, and

at the minimum the parameter correlation coefficients lie between the extreme

values of –1.0 and 1.0. As shown in Figure 4.2, the correlation coefficient can be differ-

ent for different sets of parameter values in nonlinear problems.

Problem
. Use Darcy’s Law (Eq. (1.1)) to explain why the parameters are completely cor-

related when only hydraulic-head observations are used. In the equation, equate

the recharge parameter, RCH_MULT, to q and the hydraulic-

conductivity parameter, K_MULT, to K.

. Why does adding the flow measurement make such a difference in the objec-

tive-function surface?

. If adding one observation prevents the parameters from being completely

correlated, what effect do you expect any error in that observation to have on

the regression results?

. If the lines were all parallel to one of the axes, would the problem be correlation

or insensitivity?

(b) Examine the performance of the modified Gauss–Newton method.

Parts of Exercise 5.1b involve modifying computer files and simulating the

system. Instructions are available from the web site for this book described in

FIGURE 5.4 Objective-function surfaces for the two-parameter version of the simple test

case, using (a) only head data, (b) head data and flow data weighted using a reasonable

coefficient of variation of 10 percent, and (c) head data and flow data weighted using an

unrealistically small coefficient of variation of 1 percent. In the regression, parameter

K_MULT is log-transformed and parameter RCH_MULT is not. Logarithmic scales are

used for both parameters so that the objective function values can be shown for a wide

range of parameter values.

82 ESTIMATING PARAMETER VALUES



Chapter 1, Section 1.1. Selected results are provided for students not performing the

simulations.

First, perform nonlinear regression using the problem with two combined par-

ameters for the situation in which only hydraulic-head observations are used. Per-

form regression in the four situations listed below. Check whether parameter

estimation converged. Plot the progression of the parameter values produced by

the modified Gauss–Newton method on the objective-function surface in

Figure 5.4a. The parameter values are listed in Table 5.1.

1. Set MAX-CHANGE (see definition of this variable in Section 5.1.1,

preceding Eq. (5.7)) to a large number, such as 10,000, and set the starting

parameters to values near those that produce the best fit. The large value of

MAX-CHANGE would never be used in practice; here it causes the regression

to perform as if there were no damping in the modified Gauss–Newton

method.

2. Keep MAX-CHANGE large, and set the starting parameter values to values

located in the lower right corner of the objective-function surface of

Figure 5.4a, where the surface is relatively flat.

3. Keep the starting values as in run 2, but decrease MAX-CHANGE to 0.5.

4. Keep MAX-CHANGE small, but set the starting parameter values to values

near the upper central part of the objective-function surface. Compare

estimates achieved in this run to those from run 3.

Second, perform nonlinear regression in the same four situations as described

above, but include the flow observation weighted using a coefficient of variation

of 10 percent. Plot the progression of the parameter values produced by the modified

Gauss–Newton method on the objective-function surface in Figure 5.4b. The

parameter values are listed in Table 5.2.

Third, perform nonlinear regression in the same four situations as described

above, but include the flow observation and increase its weight by decreasing its

coefficient of variation to 1 percent. Plot the progression of the parameter values

produced by the modified Gauss–Newton method on the objective-function surface

in Figure 5.4c. The parameter values are listed in Table 5.3.

Discuss the following questions related to the regression runs.

Problem
. Do the regression runs converge to optimal parameter values? How do the esti-

mated parameter values compare among the different regression runs? Explain

these results. Explain the difference in the progression of parameter values

during these regression runs.

. Based on the results shown in Table 5.1, how can parameter correlation be

detected if the correlation coefficients are not reliable? Is success of the modi-

fied Gauss–Newton method a reliable indicator?
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(c) Derive the Gauss–Newton normal equations (optional).

Problem: As shown in Eq. (5.4), the unmodified Gauss–Newton equations can be

expressed as

(XT
r vXr)dr ¼ XT

r v( y� y0(br)) (5:10)

Derive this equation by minimizing the objective function of Eq. (3.2) after substi-

tuting in the linearized version of y0(b), which equals

y0(b) � y0(br)þ Xr(b� br) (5:11)

Exercise 5.2: Estimate the Parameters of the Steady-State Model In this

exercise, a range of reasonable values is assigned to each of the six parameters

of the steady-state flow system model described in Chapter 2, Section 2.2, and

nonlinear regression is used to estimate the parameter values. Nonlinear

regression is attempted without and then with prior information on two of the

parameters.

Parts of this exercise involve modifying computer files and simulating the

system. Instructions are available from the web site for this book described in

Chapter 1, Section 1.1. Students not performing the simulations can skip those

parts of the exercise.

(a) Define a range of reasonable values for each parameter.

In MODFLOW-2000 and UCODE_2005, a reasonable range specified by the user

is compared with each parameter estimate as discussed in Section 5.5. This approach

allows for a powerful check on likely model accuracy. In this exercise, ranges of

reasonable values are defined for each steady-state model parameter. For students

performing the simulations, files and instructions on the web site for this book can

be used to complete the exercise.

(b) First attempts at estimating parameters by nonlinear regression.

In this exercise, first attempt to estimate the native values of all parameters,

and then attempt to estimate the native values of the recharge parameters and

the log-transformed values of the hydraulic-conductivity parameters. As discussed

in Section 5.4, advantages of estimating the log of some parameter values instead

of the native values are that (1) convergence problems can sometimes be alle-

viated, and (2) estimating the log-transform of a parameter prevents its native

value from becoming negative. In this exercise, however, similar results are

obtained whether or not the parameters are log-transformed. After the runs

have been completed, consider the following questions. Selected results from

the run without log-transformed parameters are presented in Tables 5.4, 5.5,
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and 5.6. For students performing the computer exercises, these results can be

found in the model output files.

Problem
. In Table 5.4 and Figure 5.5, examine the changing values of the parameters and

max-calculated-change (column 3 in the top part of Figure 5.5) to diagnose why

the regressions did not converge. Max-calculated-change is the largest frac-

tional parameter change that would occur if the damping parameter were

equal to 1.0 (see Eq. (5.7)). A value of 0.50 indicates that the largest change

(in absolute value) is a 50-percent increase in the parameter value, and a

TABLE 5.4 Parameter Values for Each Parameter-Estimation Iteration of the

Regression Run Without Log-Transformed Parameters in Exercise 5.2b

Iteration HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

Start 3.00 � 1024 1.20 � 1023 1.00 � 1027 4.00 � 1025 63.07 31.54

1 3.40 � 1024 1.20 � 1025a 9.79 � 1028 2.82 � 1025 61.28 30.94

2 4.91 � 1024 2.16 � 1025 1.73 � 1028 4.00 � 1027a 63.90 22.10

3 4.92 � 1024 2.17 � 1025 1.00 � 1029a 4.00 � 1027a 64.06 21.94

4 4.92 � 1024 2.28 � 1025 3.00 � 1029 1.16 � 1026 62.84 23.13

5 4.94 � 1024 2.32 � 1025 1.00 � 1029a 4.00 � 1027a 63.20 22.76

6 4.94 � 1024 2.44 � 1025 3.00 � 1029 1.16 � 1026 62.03 23.92

7 4.97 � 1024 2.50 � 1025 1.00 � 1029a 4.00 � 1027a 62.40 23.54

8 4.97 � 1024 2.62 � 1025 3.00 � 1029 1.16 � 1026 61.27 24.65

9 4.99 � 1024 2.69 � 1025 1.00 � 1029a 4.00 � 1027a 61.63 24.28

10 4.99 � 1024 2.82 � 1025 3.00 � 1029 1.16 � 1026 60.54 25.36

Did not converge

aIf hydraulic conductivities are assigned negative values by the regression, MODFLOW-2000 assigns

them to be equal to the starting parameter value divided by 100.

TABLE 5.5 Composite Scaled Sensitivities for Each Parameter-Estimation Iteration

of the Regression Run Without Log-Transformed Parameters in Exercise 5.2b

Iteration HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

Start 41.3 0.214 0.783 11.0 27.4 25.6

1 41.6 20.9 0.515 7.45 37.9 30.4

2 35.2 10.8 0.033 0.085 28.2 17.2

3 35.0 10.8 0.473 0.499 28.1 17.0

4 35.1 10.3 0.464 0.543 27.2 17.8

5 35.1 10.1 0.472 0.499 27.2 17.4

6 35.2 9.58 0.464 0.543 26.3 18.1

7 35.2 9.35 0.471 0.499 26.2 17.8

8 35.3 8.92 0.463 0.544 25.4 18.4

9 35.2 8.68 0.471 0.499 25.4 18.1

10 35.4 8.28 0.464 0.545 24.6 18.8
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value of21.00 indicates that the largest change is a 100-percent decrease. Also

examine the sums of squared weighted residuals in Figure 5.5.

. In diagnosing why the regressions did not converge, also consider the com-

posite scaled sensitivities (css) calculated for the starting parameter values

(shown in Table 4.1 and Figure 4.3) and for the parameter values calculated

at each iteration of the regression (shown in Table 5.5). What are the differ-

ences in the magnitudes of the css calculated at the starting parameter

values? What might this indicate about the likelihood of estimating all six

parameter values? How do the css calculated at iterations 2 through 10

differ from those calculated at the starting parameter values? How does

this additional css information help explain the results shown in Table 5.4

and Figure 5.5?

SELECTED STATISTICS FROM MODIFIED GAUSS-NEWTON ITERATIONS

ITER.
MAX. PARAMETER

PARNAM
CALC. CHANGE
MAX. CHANGE

MAX. CHANGE
ALLOWED

DAMPING
PARAMETER

1 K_RB -7.53194 2.00000 0.26554

2 HK_2 -2.11493 2.00000 0.94566

3 HK_2 -377.849 2.00000 0.52931E-02

4 VK_CB 33.7467 2.00000 0.59265E-01

5 HK_2 -79.4868 2.00000 0.25161E-01

6 VK_CB 33.8172 2.00000 0.59141E-01

7 HK_2 -71.9800 2.00000 0.27785E-01

8 VK_CB 33.8676 2.00000 0.59054E-01

9 HK_2 -62.8221 2.00000 0.31836E-01

10 VK_CB 33.9119 2.00000 0.58976E-01

SUMS OF SQUARED WEIGHTED RESIDUALS FOR EACH ITERATION

SUMS OF SQUARED WEIGHTED RESIDUALS
ITER. OBSERVATIONS PRIOR INFO. TOTAL

1 1752.2 0.0000 1752.2

2 9286.4 0.0000 9286.4

3 650.03 0.0000 650.03

4 674.36 0.0000 674.36

5 603.16 0.0000 603.16

6 563.63 0.0000 563.63

7 504.43 0.0000 504.43

8 469.75 0.0000 469.75

9 420.64 0.0000 420.64

10 389.73 0.0000 389.73

PARAMETER ESTIMATION DID NOT CONVERGE IN THE ALLOTTED NUMBER OF

ITERATIONS

FIGURE 5.5 Selected statistics from the modified Gauss–Newton iterations of the

regression run without log-transformed parameters in Exercise 5.2b. This is a fragment

from the global output file of MODFLOW-2000.
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(c) Assign prior information on parameters.

The analysis from Exercise 4.1 and the performance of the regression in Exercise

5.2b suggested that prior information on parameters VK_CB and K_RB may be

needed for the regression to converge. In this exercise, define the starting values

of these two parameters as prior estimates. The prior information needs to be

weighted in the same manner as observations need to be weighted. For both

VK_CB and K_RB, assign a coefficient of variation of 0.3 to the prior estimates.

Then, perform nonlinear regression.

SELECTED STATISTICS FROM MODIFIED GAUSS-NEWTON ITERATIONS

ITER.
MAX. PARAMETER

PARNAM
CALC. CHANGE
MAX. CHANGE

MAX. CHANGE
ALLOWED

DAMPING
PARAMETER

1 HK_2 -0.470616 2.00000 1.0000

2 HK_2 -0.353595 2.00000 1.0000

3 HK_2 0.106790 2.00000 0.81707

4 HK_2 0.302890E-01 2.00000 1.0000

5 HK_2 0.330029E-02 2.00000 1.0000

SUMS OF SQUARED WEIGHTED RESIDUALS FOR EACH ITERATION

SUMS OF SQUARED WEIGHTED RESIDUALS
ITER. OBSERVATIONS PRIOR INFO. TOTAL

1 1752.2 0.0000 1752.2
2 81.454 0.19343E-01 81.473

3 10.954 0.13860E-01 10.968
4 10.562 0.93029E-02 10.571

5 10.548 0.84770E-02 10.556

FINAL 10.548 0.84769E-02 10.556

*** PARAMETER ESTIMATION CONVERGED BY SATISFYING THE TOL
CRITERION ***

FIGURE 5.6 Selected statistics from the modified Gauss–Newton iterations from Exercise

5.2c. This is a fragment from the global output file of MODFLOW-2000.

TABLE 5.6 Parameter Values for Each Parameter-Estimation Iteration for

Exercise 5.2c

Iteration HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

Start 3.00 � 1024 1.20 � 1023 1.00 � 1027 4.00 � 1025 63.07 31.54

1 4.14 � 1024 1.16 � 1023 9.77 � 1028 2.12 � 1025 49.36 36.77

2 4.61 � 1024 1.17 � 1023 9.80 � 1028 1.37 � 1025 48.45 37.65

3 4.62 � 1024 1.17 � 1023 9.88 � 1028 1.49 � 1025 47.71 38.28

4 4.62 � 1024 1.17 � 1023 9.90 � 1028 1.53 � 1025 47.47 38.50

5 4.62 � 1024 1.17 � 1023 9.90 � 1028 1.54 � 1025 47.45 38.53

Converged
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Problem
. Compare the regression performance (Figure 5.6) with the results of Exercise

5.2b (Figure 5.5). Consider the values of max-calculated-change (column 3

in the top parts of Figures 5.5 and 5.6), and the sums of squared weighted

residuals and the parameter values in Tables 5.5 and 5.6. For students who

perform the computer exercises, these values are listed in the model output files.

. The two parameters with prior information have estimates that are nearly iden-

tical to the respective prior value. Why? If execution times are long, under what

circumstances would you suggest including prior information and estimating

these parameters? Explain.

. The statistic used to determine the weighting is important to whether the prior

information can really be regarded as prior information or as regularization. For

this problem, what would you conclude from the weighting used?

(d) Parameter estimates and objective-function values.

The starting, estimated, and true parameter values are shown in Table 5.7, and

values of the objective function calculated for each of these parameter sets are

shown in Table 5.8.

Problem
. Why do the estimated parameter values differ from the true parameter values?

. Comment on the objective-function values for the different parameter sets.

TABLE 5.8 Objective-Function Values Calculated Using the Starting,

Estimated, and True Parameters

Starting

Parameters

Estimated

Parameters

True

Parameters

Objective-function value

(heads and flows only)

1752.2 10.55 11.71

Objective-function value

(heads, flows, and prior)

1752.2 10.56 23.13

TABLE 5.7 Starting, Estimated, and True Values of the Parameters of the

Steady-State Flow-System

Parameter Name Starting Value Estimated Value True Value

HK_1 3.0 � 1024 4.62 � 1024 4.0 � 1024

K_RB 1.2 � 1023 1.17 � 1023 1.0 � 1023

VK_CB 1.0 � 1027 9.90 � 1028 2.0 � 1027

HK_2 4.0 � 1025 1.54 � 1025 4.4 � 1025

RCH_1 63.072 47.45 31.536

RCH_2 31.536 38.53 47.304
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(e) Using objective-function surfaces to explore regression performance

(Optional).

As discussed in Chapter 3, Section 3.5, objective-function surfaces can be plotted

for any two parameters, by systematically changing the values of only those two

model parameters. In this exercise, use objective-function surfaces for selected par-

ameter pairs to investigate the performance of the regression in Exercises 5.2b, 5.2c,

and 5.2d. This is easily accomplished with UCODE_2005, as discussed in the

instructions for this exercise on the web site described in Chapter 1, Section 1.1.

Problem: What insight is gained beyond what was provided by the sensitivity

analysis using composite scaled sensitivities and parameter correlation coefficients?
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6
EVALUATING MODEL FIT

The fit of model simulated values to the observations and prior information tests the

ability of the model to realistically represent the simulated system. This chapter

presents methods of evaluating model fit in the order they generally are used in a

modeling project.

6.1 MAGNITUDE OF RESIDUALS AND WEIGHTED RESIDUALS

The first step in evaluating model fit generally involves determining the largest (in

absolute value) residuals and weighted residuals, which were defined in Chapter 3,

Section 3.4.3. Weighted residuals have the advantage of including the effects of

errors. Large absolute values of weighted residuals indicate unexpectedly poor

model fit more reliably than do large absolute values of unweighted residuals.

In initial model runs, the largest weighted residuals often indicate gross errors in

the model, the observation data, the simulated equivalents of the observations, and/
or the weighting. For example, some observations might be misrepresented in the

simulation, suffer from incorrect data interpretation, or simply have been entered

incorrectly in model input files. To help detect such problems, UCODE_2005 and

MODFLOW-2000 output lists the five largest positive weighted residuals and the

five largest negative weighted residuals (Hill et al., 2000, Table 14; Poeter et al.,

2005, Table 28). In addition, the programs print the percent contribution of these

individual weighted residuals to the objective function. Weighted residuals that
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individually account for a large percent of the objective-function value are suspect

and should be checked carefully. In subsequent model runs, after the major problems

contributing to very large weighted residuals have been corrected, analysis of sys-

tematic misfit and statistics that measure overall model fit become increasingly

important, as noted in Exercise 3.2.

6.2 IDENTIFY SYSTEMATIC MISFIT

Systematic model misfit can reveal problems with the model and/or the data. For

example, a groundwater model may provide a good match to hydraulic heads but

a very poor match to streamflow gains and losses. This indicates that the model

poorly represents the dynamics of the simulated flow system. Alternatively, the

model may fit all observations well, but only with parameter values that differ sub-

stantially and systematically from prior information. For example, in groundwater

models, estimated hydraulic conductivities often are smaller than hydraulic conduc-

tivities measured by aquifer tests. One possibility is that aquifer tests use wells that

commonly are screened in the subsurface materials with the highest hydraulic

conductivities, and the volumes of these materials are small relative to the volumes

represented by model hydraulic conductivities. In this situation, the problem is that

the prior information is defined using data that are not representative of much of the

subsurface included in the model.

Systematic misfit can be detected through application of the methods presented in

this chapter. Often it is useful to apply the methods to subsets of the residuals and

weighted residuals. Subsets generally are defined on the basis of observation or

prior information type, location, time, and so on. Subset definition is problem

dependent, and useful subsets often are determined only after some experimentation.

For example, in a groundwater model it may be important for subsets to be defined

based on well depth, model layer, distance from some types of boundaries, and

so on. It is important to calculate the overall measures of model fit presented in

Section 6.3 using subsets of observations and prior information, and the entire

data set. For the graphical analyses of model fit presented in Section 6.4, it is import-

ant to use different symbols to represent different sets of observation and prior

information.

6.3 MEASURES OF OVERALL MODEL FIT

Measures of overall model fit are single values that provide a quick evaluation of

how well a model matches all or subsets of the observations and prior information.

Measures calculated for alternative models of the same system often are used to

judge how well the different models perform. The measures described here can be

used in this way as long as the number of observations and prior information and

their weighting do not vary between the models being compared.
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The measures can be thought of as representing two competing goals—obtaining

as good a fit as possible to observations and prior information and using as few

parameters as possible. A better fit can always be obtained by increasing the

number of parameters, but, as discussed in Chapter 11, Guideline 1, too many par-

ameters can degrade the predictive ability of the model. Thus, all but the first

measure presented here include a penalty for additional parameters. For the statistic

to have a smaller value when a parameter is added, the model fit needs to be

improved enough to overwhelm the increase in the penalty.

We do not provide an extensive list of overall measures of model fit. Measures

not mentioned here include Kashyap’s measure (Kashyap, 1982) and GCV

(Craven and Whaba, 1979). These measures can be calculated using, for example,

MMA (Poeter and Hill, in press).

6.3.1 Objective-Function Value

The value of the weighted least-squares or maximum-likelihood objective function

(Eq. (3.1) to (3.3)) often is used informally to indicate model fit. Objective functions

are rarely used for more formal comparisons because their values nearly always

decrease as additional parameters are defined in the model and included in parameter

estimation.

6.3.2 Calculated Error Variance and Standard Error

A common indicator of the overall magnitude of the weighted residuals is

the calculated error variance, s2, which equals (Cooley and Naff, 1990, p. 166;

Ott, 1993)

s2 ¼ S(b)

(NDþ NPR� NP)
(6:1)

where S(b) is the weighted least-squares objective-function value (Eq. (3.1) or (3.2))
and the other variables are defined for Eq. (3.1). s2 is dimensionless if the weighting

is defined as suggested in this book. The square root of the calculated error variance,

s, is called the standard error of the regression. Smaller values of both the calculated

error variance and the standard error indicate a closer overall fit to the observations,

and smaller values are preferred as long as the weighted residuals do not indicate

model error (discussed in Section 6.4).

Overall Fitted Error Statistics A disadvantage to using s2 and s directly as

measures of model fit is that they have little intuitive appeal because they are

dimensionless.

To obtain dimensional values that more effectively reflect the fit, s can be used to

multiply the standard deviations and coefficients of variation used to calculate the

weights for any group of observations. The resulting statistics are defined by Hill

(1998, pp. 19, 53) as fitted error statistics, of which the fitted standard deviation

and the fitted coefficient of variation are examples. These statistics express the
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average fit to different types of observations. For example, if a standard deviation of

measurement error equal to 0.3 m is used to calculate the weights for most of the

hydraulic-head observations and the calculated standard error is 3.0, the fitted stan-

dard deviation of 0.3 m � 3.0 ¼ 0.9 m represents the overall fit achieved for these

hydraulic heads. If a coefficient of variation of 0.25 (25 percent) is used to calculate

weights for a set of spring-flow observations and the calculated standard error is 2.0,

the fitted coefficient of variation of 0.25 � 2.0 ¼ 0.50 (50 percent) represents the

overall fit achieved to these spring flows. The standard deviation or coefficient of

variation used to calculate the weighting reflects knowledge about observation or

prior information error, and the fitted standard deviation or fitted coefficient of vari-

ation reflects both model fit and knowledge about error represented in the weighting.

Although the fitted error statistic is not standard statistical terminology, in the

authors’ experience, it provides a meaningful way of communicating model fit.

Generally, this approach applies only if the fitted error statistic summarizes the fit

to a fairly large number of observations or prior information. One or a few values

can be evaluated more effectively by considering their residuals and weighted

residuals directly.

Interpret the Calculated Error Variance The interpretation of the calculated error

variance, s2, or standard error, s, is related to the weighting used in the regression. If

the weight matrix is defined as suggested in Eq. (3.8) or (3.9) and if the fit achieved

by regression is consistent with the data accuracy as reflected in the weighting, the

expected value of both the calculated error variance and the standard error is 1.0.

This can be proved by substituting Eq. (3.2) into Eq. (6.1) and taking the expected

value. It can be demonstrated using generated random numbers instead of residuals,

as described in Exercise 6.1b.

If the calculated error variance or the standard error is significantly different from

a value of 1.0, this indicates that the model fit is inconsistent with the weighting. A

value of s or s2 that is significantly greater than 1.0 indicates that the residuals are

larger, on average, than is consistent with the statistics used to calculate the weight-

ing. That is, the model fit is worse than would be expected based on the analysis of

error used to determine the weighting. A value of s or s2 that is significantly less than

1.0 indicates that the residuals are smaller, on average, than is consistent with the

statistics used to calculate the weights. That is, the model fits the observations

better than would be expected based on the analysis of observation error used to

determine the weights.

For the calculated error variance, significant deviations from 1.0 can be evaluated

by constructing a confidence interval. The confidence interval limits can be calcu-

lated as (Ott, 1993, p. 332)

ns2

x 2
U

;
ns2

x 2
L

ð6:2Þ

where n is the degrees of freedom, here equal to NDþ NPR2 NP (see Eq. (3.1) for

definitions); xU
2 is the upper tail value of a chi-square distribution (Appendix D,
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Table D.5) with n degrees of freedom, with the area to the right equal to one-half the

significance level of the confidence interval (the significance level, a, is 0.05 for a

95-percent interval); and x
L

2 is the lower tail value of a chi-square distribution with n

degrees of freedom with the area to the left equal to one-half the significance level.

Significant deviations from 1.0 also can be evaluated using a x2 test statistic, (Ott,
1993, p. 334). To consider the standard error instead of the calculated error variance,

take the square root of each limit in Eq. (6.2). The confidence intervals are used to

evaluate significant deviations of s or s2 from 1.0 as described below.

If the confidence interval on s2 includes the value 1.0, a ¼ 0.05, and the weighted

residuals are random, then s2 does not significantly deviate from 1.0 at a 5-percent

significance level and model fit is consistent with the statistics used to calculate the

weights on the observations and prior information. Expressed in terms of prob-

ability, there is only a 5-percent chance that the model fits the data in a way that con-

tradicts the following assumptions: (1) the model is reasonably accurate and (2) the

statistics used to calculate the weights correctly reflect the observation and prior

information errors.

If the confidence interval does not include 1.0, the model fit is inconsistent with

the statistics used to calculate the weighting. Of interest is whether statistics that are

consistent with the model fit are realistic measures of error in the observations and

prior information. For example, if the standard error of the regression is 2.0, stat-

istics that would be consistent with the model fit would be 2.0 times the standard

deviations or coefficients of variation used to determine the weighting. If a stream-

flow observation was thought to have a 5-percent coefficient of variation, would an

increase by a factor of 2.0 to 10 percent be unreasonable? If so, unaccounted for

observation error could not explain the large standard error, and model error

would be suspected. Here, we refer to the adjusted statistics as individual fit-

consistent statistics. They differ from overall fitted error statistics in that individual

observations and prior information can be considered and are often important. For

individual fitted error statistics, the variances, standard deviations, and coefficients

of variation used to calculate the weights are adjusted. New weights that are consist-

ent with the model fit are obtained by multiplying the variances by s2 and the stan-

dard deviations and coefficients of variation by s. If the regression were carried out

with these new weights, the same parameter estimates would be obtained and the

residuals would be the same, but the weighted residuals would be different and s2

would equal 1.0.

If the entire confidence interval on s2 is less than 1.0 and the weighted residuals

are randomly distributed, the model fit is better than anticipated based on the

statistics used to calculate the weights. This is not necessarily an indication of the

overfitting discussed in Guideline 1, but the possibility should be considered.

Hill et al. (1998), obtained a small s2 value because the actual observation error

for a synthetic test case was smaller than expected. In this unusual case, the indivi-

dual fitted error statistics were much smaller than the statistics used to determine the

weighting and more accurately reflected the observation error.

If the entire confidence interval on s2 is greater than 1.0, which is common, then

the model fit is worse than anticipated based on the statistics used to calculate the
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weights. In this situation, the resulting interpretation depends on whether (1) the

weighted residuals are randomly distributed, and (2) the individual fitted error stat-

istics are so large that they could not reasonably be caused by observation and prior

information errors. Randomness of the weighted residuals can be evaluated as

discussed in Section 6.4 and in Exercise 6.2.

After the randomness of the weighted residuals has been evaluated and individual

fitted error statistics have been calculated, the analysis depends on which of the

following three situations apply.

1. The weighted residuals are randomly distributed and individual fitted error

statistics can be justified (meaning that the observations and prior information

error actually could be sufficiently larger than originally assumed). In this

case, the analysis indicates that the model fit is consistent with the model

being a reasonably accurate representation of the true system.

2. The weighted residuals are randomly distributed but individual fitted error

statistics reflect unreasonable levels of observation and prior information

error. In this case, the results of Hill et al. (1998) suggest that model error

is significant but many sources of model error probably contribute to the

lack of model fit. A few sources of model error do not dominate the model.

This situation is not uncommon, and if the results of Hill et al. (1998) are

valid, model predictions and measures of uncertainty can be accurate.

Future studies are needed to test this conclusion.

3. The weighted residuals are not randomly distributed. In this case, the analysis

suggests that there may be substantial and problematic model error. The

best approach is to evaluate the model to determine the cause of the non-

random residuals, and to evaluate the cause of any very large weighted

residuals.

6.3.3 AIC, AICc, and BIC Statistics

The calculated error variance and standard error are sometimes criticized for not

sufficiently representing the drawbacks associated with increasing the number of

estimated parameters. The AIC, AICc, and BIC statistics were developed in the

time-series literature to address this criticism (Brockwell and Davis, 1987; Burnham

and Anderson, 2002). These statistics are calculated as the sum of the maximum-

likelihood objective function (Eq. (3.3)) evaluated at the optimal parameter

values, S0(b0), and terms that become large as more parameters are added. Although

these statistics were developed for time-series problems, Carrera and Neuman

(1986) successfully used them to discriminate between different parameterizations

of a groundwater flow model. The references cited below for these statistics provide

statistic derivations and additional discussion.

The AIC statistic was developed by Akaike (1973, 1974) and was corrected

by Sugira (1978) to obtain AICc as described by Burnham and Anderson (2002, p. 66)
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AICc and AIC are calculated as:

AICc(b
0) ¼ S0(b0)þ NP� 2þ 2� NP� (NPþ 1)

(NOBSþ NPR� NP� 1)
ð6:3aÞ

AIC(b0) ¼ S0(b0)þ NP� 2 (6:3b)

where S0(b0) is the maximum-likelihood objective function of Eq. (3.3), NP is

the number of estimated parameters, NOBS is the number of observations used in

the regression, and NPR is the number of prior estimate equations used in the

regression. Often, S0(b0) is replaced in these equations by n� logðSðb0Þ=nÞÞ, where
Sðb0Þ is defined in Eq. (3.2). AICc is needed if NOBS/NP , 40 for any model

considered.

The statistic BIC was developed by Akaike (1978) as a response to concern that

AIC sometimes promoted use of more parameters than was required. The version of

this statistic used by Carrera and Neuman (1986) is:

BIC(b0) ¼ S0(b0)þ NP� ln(NOBS þ NPR) (6:4)

For these statistics, smaller values generally indicate a more accurate model.

However, if the statistics for a model with fewer parameters are only slightly

larger than the statistics of another model with more parameters, it may be preferable

to select the model with fewer parameters, unless the investigator has other

information indicating the validity of the more complicated model. Burnham and

Anderson (2002) suggest that of the three statistics, AICc has distinct advantages.

These statistics can be cited in addition to s2 or s; it is common to present all of

these values in a table and/or graphically, for the models considered. MODFLOW-

2000 prints AIC and BIC, UCODE_2005 prints AIC, AICc, and BIC.

6.4 ANALYZING MODEL FIT GRAPHICALLY AND

RELATED STATISTICS

In addition to overall measures of model fit, several graphical analyses and related

statistics can be used to assess whether the match of simulated values to observed

values contradicts the requirements of Section 3.3 and thus indicates that the

regression is not valid. The graphical methods were developed for groundwater

inverse modeling by Cooley and Naff (1990), using the work of Draper and

Smith (1981, 1998), and were slightly modified by Hill (1992, 1994). Required

data files are produced by UCODE_2005 and MODFLOW-2000. The graphical

methods are described in the following sections. Examples are presented here and

in Exercise 6.2. In Chapter 10, Table 10.2 lists these graphs with questions they

are likely to address and guidelines they are likely to support.
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6.4.1 Using Graphical Analysis of Weighted Residuals to

Detect Model Error

The graphical analyses of model fit presented here focus on weighted residuals.

Regression results are valid (basically, model error is not indicated) only if (1)

the weighted residuals from all types of observations and prior information

appear to be statistically consistent (they all look like they have the same variance

and a mean of zero) or (2) any statistical inconsistency can be explained by the cor-

relation of weighted residuals expected through the fitting process imposed by the

regression. The statistical consistency is evaluated using graphs of the weighted

residuals with respect to: weighted or unweighted simulated values, independent

variables such as space and time, and normal order statistics. This chapter focuses

on using graphical analyses to detect model error. If model error is detected, see

Guideline 9 in Chapter 12 for a discussion of how to proceed.

6.4.2 Weighted Residuals Versus Weighted or Unweighted Simulated
Values and Minimum, Maximum, and Average Weighted Residuals

Graphs of weighted residuals can be plotted against either weighted or unweighted

simulated values. The need to plot weighted instead of unweighted residuals

and the advantages and disadvantages of weighting the simulated values are

discussed here.

From an intuitive perspective, it makes sense that a model that fits the data well

should not demonstrate a distinctively different fit to similar observations. In

groundwater models, for example, simulated hydraulic heads would be expected

to match observed hydraulic heads equally well in areas of high and low hydraulic

head, all else being equal. Consider, for example, one area where the hydraulic heads

are five meters, on average, above the heads in the other area. Residuals that are all

negative in one area and all positive in the other would indicate model error.

Yet all observations are not similar. Weighted residuals need to be considered

instead of unweighted residuals when errors associated with observations or prior

information have different variances and/or are correlated for the analysis to

detect model error. In the groundwater example, if the average depth to water in

the observation wells and/or the methods used to determine the elevation of the

wells differed in the two areas, larger residuals might be expected in one area.

Use of weighted residuals eliminates the effects of this expected difference in

model fit to observations in the two areas, allowing the graphs to be used more

easily to detect model error.

Weighted simulated values are suggested for these graphs by Draper and Smith

(1998, p. 63–64) because, in most circumstances, weighted residuals and weighted

simulated values are statistically independent. However, Hill (1994) shows that

three problems can occur. In some situations, plotting against unweighted residuals

is advantageous. Thus, graphs of weighted residuals versus weighted and

unweighted simulated values are considered here. The problems are discussed

after describing how the graphs are constructed.
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Example graphs are shown in Figure 6.1. Ideally, weighted residuals are scattered

evenly about 0.0 for the entire range of values on the horizontal axis, as in

Figure 6.1. Figure 6.2 shows examples of graphs for which the weighted residuals

are not random with respect to the weighted simulated values. When using MOD-

FLOW-2000, the data needed to produce graphs of weighted residuals against

weighted simulated values are listed in the output file with filename extension _ws.

For UCODE-2005, the file with extension _ws includes weighted residuals and

unweighted simulated values; weighted simulated values are listed in the output

file with extension _ww.

The importance of testing for systematic misfit to subsets of the observations and

prior information was discussed in Section 6.2. To identify systematic misfit, plot

the weighted residuals for different subsets with different symbols. For example,

in the exercises at the end of this chapter, hydraulic heads, flows, and prior infor-

mation are plotted using different symbols. MODFLOW-2000 and UCODE_2005

facilitate this by allowing the user to specify a plot-symbol variable for each obser-

vation and piece of prior information. The plot-symbol variables are integers; plot-

ting routines can use the integers to control the symbols used in graphs.

The statistics that summarize the distribution of the weighted residuals are the

minimum, maximum, and average weighted residuals. The minimum and maximum

weighted residuals display the range of weighted residuals at a glance. In practice,

especially in the initial stages of calibration, the minimum and maximum weighted

residuals often identify problems with the model or the observation data, as dis-

cussed in Section 6.1. The average weighted residual is a simple arithmetic average

of the weighted residuals and ideally equals zero. In linear regression, the average

always equals zero for the optimized parameter values; in nonlinear regression,

the value of the average weighted residual generally approaches zero as calibration

proceeds. In MODFLOW-2000, these statistics are printed in the LIST file, which is

defined in the Name File; in UCODE_2005 they are printed in the main output file

for the Forward, Sensitivity-Analysis, and Parameter-Estimation modes. That output

file has filename extension #uout.

The three problems that can occur with graphs of weighted residuals versus

weighted or unweighted simulated values and solutions for each are described next.

The first problem occurs when the weighted or unweighted simulated values extend

over a wide range so that it is not possible to scale the associated axis to obtain a useful

graph. The problem is illustrated in Exercise 6.2a. This problem can sometimes be

resolved by using weighted simulated values or by log-transforming the axis for the

weighted or unweighted simulated values. Another possibility is to multiply the

weighted or unweighted simulated values of extreme points by a factor so that they

plot closer to the other values. To ensure that the graph can still be used to test whether

the weighted residuals vary systematically for any one type of data, this adjustment

needs to be applied carefully. It is usually a good idea to apply the same factor to

all weighted or unweighted simulated values for a given data type.

The second problem occurs when weights are calculated using coefficients of

variation, as suggested after Eq. (3.5) and discussed in Chapter 11 under Guideline 6.

In this case, the weight for an observed value yi equals 1/(c.v.yi)
2 where (c.v.)i
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FIGURE 6.1 Example graphs of weighted residuals and weighted simulated values with no

model bias. The values of weighted residuals plotted here are three different realizations of

100 generated normally distributed numbers with mean 0.0 and standard deviation 1.5. The

standard deviation is used to define grid lines for the weighted residuals.
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is the coefficient of variation. Then the weighted residual and the associated

weighted simulated value are calculated as

v1=2
i � (yi � y0i) ¼

1

ðc:v:Þiyi
� (yi � y0i) ¼

1

ðc:v:Þi
� y0i
ðc:v:Þiyi

(6:5a)

v1=2
i � y0i ¼

y0i
ðc:v:Þiyi

(6:5b)

If the weight is calculated using the simulated value, as can be done using

UCODE_2005, the weighted residual and associated weighted simulated value are

calculated as

v1=2
i � (yi � y0i) ¼

1

ðc:v:Þiy0i
� (yi � y0i) ¼

yi

ðc:v:Þiy0i
� 1

ðc:v:Þi
(6:6a)

v1=2
i � y0i ¼

1

ðc:v:Þi
(6:6b)

The second term of Eq. (6.5a) equals Eq. (6.5b). If (c.v.)i is the same for multiple

observations, then the weighted residuals for these observations plot on a straight

line with a slope of 21. Equation (6.6b) is the same for all simulated values with

the same coefficient of variation, so the placement on the horizontal axis completely

ignores the simulated value. In both circumstances, the vertical distribution of the

weighted residuals still can be used to test their independence, but the purpose of

the graph described in this section has largely been circumvented.

FIGURE 6.2 Example graphs of weighted residuals and weighted simulated values showing

evidence of model bias for two different data sets. (a) The weighted residuals associated with

smaller weighted simulated values vary less (have smaller variance). (b) The weighted

residuals increase with increasing weighted simulated value. The standard deviations are of

the weighted residuals (1.23 and 2.01) are used to define grid lines for the weighted residuals.
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The most straightforward way to rectify this situation is to use the unweighted

instead of weighted simulated values. Alternatively, Hill (1994) multiplies the

weighted simulated values of Eq. (6.5b) by the observed values, yi. Then, the modi-

fied weighted simulated values are

v1=2
i � y0i � yi ¼ y0i

ðc:v:Þi
(6:7a)

Similarly, multiplying Eq. (6.6b) by the simulated value yields

v1=2
i � y0i � y0i ¼

y0i
ðc:v:Þi

(6:7b)

Both modifications resolve the second problem but can worsen the first problem

discussed earlier. The first option of plotting against simulated values is probably

the most useful in many circumstances.

The third problem occurs when estimated parameters that have prior information

are scaled using the value of the prior information. Such scaling is sometimes con-

venient because it produces prior information values that equal 1.0. Then, during

regression, the percent change between the estimate and the prior value is obvious.

For example, with this type of scaling, a parameter estimate of 1.5 indicates that the

estimate is 50 percent larger than the prior value. In this circumstance, the weighted

residuals for the prior information are calculated as

v1=2
p � (1:0� P0

p) (6:8)

and the weighted simulated values are calculated as

v1=2
p � P0

p (6:9)

If vp
1/2 is equal to 1 divided by the coefficient of variation, which is common, and the

coefficient of variation is the same for multiple prior parameters, which also is

common, a graph of the weighted residuals and weighted simulated values forms

a straight line with a slope of 21.0. As for the second problem, the graph would

not indicate whether the weighted residuals vary systematically with the size of

the simulated value. A meaningful graph can be obtained by plotting against

unweighted simulated values or by calculating a modified weighted simulated

value as

v1=2
p � P0

p � Pp ð6:10Þ

Caution should be taken when altering the values used to create the graphs dis-

cussed in this section to ensure that the resulting graph serves the intended purpose

of testing whether weighted residuals show systematic patterns of model fit when

compared to simulated values.

104 EVALUATING MODEL FIT



6.4.3 Weighted or Unweighted Observations Versus Simulated

Values and Correlation Coefficient R

Ideally, simulated values are close to observed values, so that graphs of observations

against simulated values fall along a straight line with slope equal to 1.0 and an inter-

cept of zero. Correspondingly, graphs constructed using weighted observations and

weighted simulated values would have the same characteristics and can be useful

when the weighting results in the values having a more condensed range. They

also have the advantage that variations in expected error variance are accounted

for already, making it easier to detect model error using the graph.

Comparing Figure 6.3 with Figure 6.2 shows that, all else being equal, plotting

weighted residuals provides a better test of model bias than plotting weighted or

unweighted observations. This is because the typically large range in magnitudes of

the weighted or unweighted observations and simulated values can obscure trends in

the differences between them. The greater the range, the smaller the same difference

looks. This limitation is eliminated when weighted residuals are considered instead.

Graphs of weighted residuals are less commonly used. Perhaps some modelers

prefer to disguise model error.

When using MODFLOW-2000 or UCODE_2005, graphs of observed versus

simulated values can be produced using data from the output file with filename

extension _os; graphs of weighted observed values versus weighted simulated

values can be produced using data listed in output file with filename extension _ww.

The correlation coefficient between the weighted observations and the weighted

simulated values measures how well the trends in the weighted simulated values

match those of the weighted observed values and, therefore, how closely the

FIGURE 6.3 Example graphs of weighted observed and simulated values. The data plotted

are the same data shown in the graphs of Figure 6.2. This display of the data does not reveal

problems as clearly as do the graphs of weighted residuals and weighted simulated values in

Figure 6.2.
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points on a graph such as that shown in Figure 6.3 fall on the line. This correlation

coefficient, R, can be calculated for a diagonal weight matrix as (Cooley and Naff,

1990, p. l66)

R ¼
PND

i¼1 (v
1=2
i yi � my)(v

1=2
i y0i � my0 )PND

i¼1 (v
1=2
i yi � my)

2
h i1=2

� PND
i¼1 (v

1=2
i y0i � my0)

2
h i1=2 (6:11a)

where yi and y
0
i are observed and simulated values, vi is the weight for the ith obser-

vation, and my and my0 are the means of the weighted observations and simulated

values. For a full weight matrix the equation is

R¼ (v1=2y�my)
T (v1=2y0 �my0)

(v1=2y�my)
T (v1=2y�my)

	 
1=2
(v1=2y0 �my0)

T (v1=2y0 �my0 )
	 
1=2 ð6:11bÞ

where y, y0, and v were defined for Eq. (3.2). my and my0 are vectors with all ND

elements equal to

my¼
XND
q¼1

(v1=2y)q=ND (6:12)

my0 ¼
XND
q¼1

(v1=2y0(b))q=ND (6:13)

Thus, my is a vector with each component equal to the average of the weighted

dependent-variable observations, and my0 is an analogous vector using the weighted

simulated values. Generally, a value of R that is greater than 0.90 indicates that the

trends in the weighted simulated values closely match those of the weighted

observations. However, R depends on the range of values and wide ranges are

common when using different types of data. Use care when interpreting R.

When there is prior information, R also is calculated with y, y0(b), and v aug-

mented as in Appendix A, in which case NDþ NPR replaces ND when calculating

my and my0. In MODFLOW-2000, these statistics are printed in the LIST file; in

UCODE_2005, they are printed in the main output file (filename extension #uout).

6.4.4 Graphs and Maps Using Independent Variables and

the Runs Statistic

It is very important to evaluate weighted and unweighted residuals, observations,

and simulated values with respect to the independent variables of a problem, such

as space and time. Ideally, the signs and magnitudes of the weighted residuals

plotted spatially on maps or temporally on graphs such as hydrographs show no

discernible patterns and appear random. Distinct patterns, such as the presence of
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only positive weighted residuals in a particular model layer or region, can indicate

substantial model error that may cause simulated predictions to be incorrect and mis-

leading. Distinct patterns often are present, however, especially in temporal graphs.

It is crucial for the modeler to understand the cause of such patterns, and analysis of

these problems can lead to changes in model construction that increase model accu-

racy. Examples of maps used to evaluate weighted and unweighted residuals are

shown in Exercise 6.2 and in Chapter 15.

The runs test (Cooley, 1979; Draper and Smith, 1998, pp. 192–198) takes the

order of the residuals into account, which is ignored in all the other summary stat-

istics. The runs test produces a summary statistic that checks for the randomness of

weighted residuals with respect to the order in which they are listed. A sequence of

residuals of the same sign is called a run, and the number of runs is counted and the

value assigned to the variable u. For example, the sequence of numbers 25, 22, 4,

3, 6,24, 2,23,29 has the five runs (25,22), (4, 3, 6), (24), (2), (23,29), so that

u ¼ 5. By using the total number of positive residuals (n1), and the total number of

negative residuals (n2), u can be defined as a random variable. If n1 . 10 and

n2 . 10, u is normally distributed with mean, m, and variance, s2, equal to

m ¼ 2n1n2

n1 þ n2

� �
þ 1:0 (6:14)

s2 ¼ 2n1n2(2n1n2 � n1 � n2)

(n1 þ n2)
2(n1 þ n2 � 1)

(6:15)

The actual number of runs in a data set is compared with the expected value using

test statistics. The test statistic for too few runs is

zf ¼ (u� mþ 0:5)=s (6:16)

The test statistic for too many runs is

zm ¼ (u� m� 0:5)=s (6:17)

Critical values for zf and zm are printed by UCODE_2005 and MODFLOW-2000.

The critical values indicate the likelihood that the weighted residuals are in a

random order. The critical values only apply when there are more than 10 positive

residuals and more than 10 negative residuals.

For smaller numbers of positive and negative residuals, Table D.4 (Appendix D)

can be used to assess the randomness of the ordered weighted residuals. This table is

applicable for situations in which n1 and n2 are each greater than or equal to 3 and

less than or equal to 10, and 10 	 n1þ n2 	 20. The table gives the lower-tail and

upper-tail cumulative probabilities that a particular number of runs would occur,

given the values of n1 and n2. Smaller probabilities indicate that it is less likely

that the signs of the ordered weighted residuals are random.

InUCODE_2005 andMODFLOW-2000, theweighted residuals are analyzed using

the order in which the observations are listed in the input file. The runs statistic can

bemademoremeaningful byconsidering the orderingof theobservations.For example,
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in a groundwater model with pump-test data, listing the drawdowns at each location by

increasing time produces a situation in which the runs statistic can be used to test

whether the observed drawdowns are consistently greater than or less than the simulated

values over time at each observation well. As the data are matchedmore randomly, the

runs test will move away from indicating too few runs. In this situation it will rarely

show too many runs. If spatial data are considered and observations are listed

predominantly north to south, the runs statistic can provide a quick indication of

whether spatial trends are diminishing as regression proceeds. Even if the runs statistic

is used to evaluate trends in this manner, it is also necessary to conduct more thorough

examinations using the graphical analyses of residuals described in this chapter.

The runs statistic information printed by MODFLOW-2000 is displayed in

Figure 6.4. A two-tailed test is used, but the critical values from only one tail are

printed. The information printed by UCODE_2005 is similar. The negative runs

test statistic shown in Figure 6.4 indicates that, using the order in which they are

listed in the input file, there are fewer runs than would be expected given 35

values consisting of 18 positive and 17 negative values. However, the 20.339 runs

statistic is closer to zero than even21.28, the critical value with the smallest absolute

value. Thus, the hypothesis that the residuals are random is not rejected. This is one

indication that the weighted residuals are sufficiently randomly distributed.

An example of using the runs test to evaluate weighted residuals along selected

transects through amodel area is shown in the discussion for Guideline 9 inChapter 12.

6.4.5 Normal Probability Graphs and Correlation Coefficient RN
2

The requirements for accurate simulated results are discussed in Chapter 3, Section

3.3. If the conditions listed in Section 3.3 are met, weighted residuals are expected to

STATISTICS FOR ALL RESIDUALS:
AVERAGE WEIGHTED RESIDUAL: 0.691E+00
# RESIDUALS >=0.: 50
# RESISUALS <0.: 43
NUMBER OF RUNS: 38 IN 93 OBSERVATIONS

INTERPRETING THE CALCUALTED RUNS STATISTIC VALUE OF -1.83
NOTE: THE FOLLOWING APPLIES ONLY IF

# RESIDUALS >= 0. IS GREATER THAN 10 AND
# RESIDUALS < 0. IS GREATER THAN 10

THE NEGATIVE VALUE MAY INDICATE TOO FEW RUNS:
IF THE VALUE IS LESS THAN -1.28, THERE IS LESS THAN A

10 PERCENT CHANCE THE VALUES ARE RANDOM,
IF THE VALUE IS LESS THAN -1.645, THERE IS LESS THAN A

5 PERCENT CHANCE THE VALUES ARE RANDOM,
IF THE VALUE IS LESS THAN -1.96, THERE IS LESS THAN A

2.5 PERCENT CHANCE THE VALUES ARE RANDOM.

FIGURE 6.4 Example runs test result printed by MODFLOW-2000 and UCODE_2005

(from the study described by Tiedeman et al., 1997).
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either (1) be random, normally distributed, and independent or (2) be random, nor-

mally distributed, and correlated in a way that is consistent with the fitting process of

the regression. Possibility (1) is easiest to check and so is considered first. If the data

do not satisfy the criteria, further testing is conducted to determine if the violations

are consistent with the expected correlations produced by the fitting process.

The test for independent, normal weighted residuals is conducted using normal

probability graphs of weighted residuals. If the weighted residuals are independent

and normally distributed, they will fall on an approximately straight line in a normal

probability graph (Cooley and Naff, 1990; Helsel and Hirsch, 2002, pp. 30–33).

Normal probability graphs can be constructed by ordering the weighted residuals

from smallest to largest and plotting them against the cumulative probability that

would be expected for each value if they were independent and normally distributed.

The expected cumulative probabilities depend on the number of weighted residuals

considered and can be calculated in a number of ways (Looney and Gulledge,

1985a,b; Draper and Smith, 1998, p. 71). For the results presented in this work

they are calculated as (k2 0.5)/n (Hazen, 1914), where n equals the number of

weighted residuals and k equals 1 for the smallest weighted residual, 2 for the

next largest, and so on. For the largest weighted residual, k equals n. Calculating

the cumulative probabilities in this way makes the normal probability graphs con-

sistent with how the statistic RN
2 is calculated, as discussed later in this section.

To obtain a graph on which random, normally distributed data are expected to

lie on a straight line requires that the axis on which the probabilities are plotted be

scaled for a normal probability distribution, as shown in Helsel and Hirsch (2002,

Figures 2.7 and 2.9). This is called a normal probability axis. Many common plot-

ting programs, such as Microsoft Excel, do not support normal probability axes.

Fortunately, as shown by Helsel and Hirsch (2002, Figure 2.8), an alternative arith-

metic scale can be used. The arithmetic scale requires that the probabilities be con-

verted into what are called “standard normal statistics,” “normal quantiles,” or

“normal score.” The cumulative probability can be calculated from the standard

normal statistics using, for example, the function NORMDIST in Excel.

Common values printed on the axis of standard normal statistics and associated

cumulative probabilities are as follows:

Standard Normal Statistic Cumulative Probability

24.0000 0.0000

23.0000 0.0013

22.0000 0.0228

21.0000 0.1587

0.0000 0.5000

1.0000 0.8413

2.0000 0.9772

3.0000 0.9987

4.0000 1.0000
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Based on the analysis above, given 101 ordered weighted residuals, the 51st

largest value would have a cumulative probability of (512 0.5)/101 ¼ 0.5; the

standard normal statistic would be 0.0000. That is, the middle value would be

expected, on average, to equal the mean of the standard normal distribution.
Helsel and Hirsch (2002, Figures 2.10–2.13) show and discuss normal prob-

ability graphs characterized by several common problems. In their graphs the

term “normal quantile” is used instead of “standard normal statistic,” and it is plotted

on the horizontal axis instead of the vertical axis.

Regression problems commonly have small numbers of observations. To illus-

trate the variation that would be expected given a small sample size, Figure 6.5

shows normal probability plots generated with sample sizes of 10 and 40. As

sample size increases, minor deviations from a straight line become more indicative

of nonnormality.

The associated summary statistic, RN
2 , is the correlation coefficient between the

weighted residuals ordered from smallest to largest and the normal order statistics

(Brockwell and Davis, 1987, p. 304). RN
2 is nearly equivalent to the PPCC statistic

of Helsel and Hirsch (2002, Chap. 4.4). RN
2 can be used to test for independent, nor-

mally distributed weighted residuals and was chosen instead of other statistics, such

as chi-squared and Kolmogorov–Smirnov, because it is more powerful for com-

monly used sample sizes (Shapiro and Francia, 1972). The correlation coefficient

is calculated as

R2
N ¼ ½(e0 �m)Tt�2

½(e0 �m)T (e0 �m)�(tTt) (6:18)

where all vectors are of length ND when RN
2 is evaluated only for the ND observation

weighted residuals, and of length NDþ NPR when RN
2 is evaluated for the

NDþ NPR observation and prior information weighted residuals; m is a vector

FIGURE 6.5 Normal probability graphs constructed using (a) 10 and (b) 40 data points

generated from a normal probability distribution.
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with all components equal to the average of the weighted residuals, e0 is a vector of
weighted residuals ordered from smallest to largest, and t is a vector with the ith

element equal to the standard normal statistic for a cumulative probability equal

to ui ¼ (i2 0.5)/ND.
Values of RN

2 close to 1.0 indicate that the weighted residuals are independent and

normally distributed. If RN
2 is too far below the ideal value of 1.0, the weighted

residuals are not likely to be independent and normally distributed. To test whether

RN
2 is close enough to 1.0, it can be compared with critical values for RN

2 at significance

levels of 0.05 and 0.10. These critical values are shown in Table D.3 of Appendix D.

6.4.6 Acceptable Deviations from Random,

Normally Distributed Weighted Residuals

Weighted residuals may appear to be nonrandom when evaluated using the methods

described in Sections 6.4.1 to 6.4.5 because of (1) model inadequacy, (2) corre-

lations induced by the fitting process of the regression (Cooley and Naff, 1990,

p. 168; Draper and Smith, 1998, p. 206), or (3) too few residuals. Methods presented

in this section can be used to test for the latter two reasons.

Otherwise unexplained deviations from expected attributes are likely due to

model inadequacy. Problems could occur with the model construction, including

the parameterization, the observation data, and/or the weights. If the model appears

to be inadequate, then every attempt needs to be made to identify and resolve pro-

blems with the model, so that weighted residuals that are more random and normally

distributed are achieved. Possible ways of dealing with an inadequate model are

discussed in Guideline 9 in Chapter 12.

The correlations produced by the regression fitting process is most severe when

there are few observations relative to the number of parameters. An extreme

example occurs when only two data points are used to determine the slope and inter-

cept of a simple linear model. In this situation, a perfect fit is achieved for

both points, and the error is completely accommodated by the fitting process. As

more points are added the situation becomes less dramatic, but the fit achieved by

the regression always accommodates the error to some degree, and this can cause

the weighted residuals to be correlated, rather than independent.

Too few residuals can cause normal probability graphs to appear nonnormal and

can cause graphs of weighted residuals versus weighted simulated values to appear

nonrandom, just by virtue of the small sample size. This problem was illustrated in

Figure 6.5a for a normal probability graph.

Residuals that appear nonrandom and/or nonnormal can be tested by generat-

ing sets of values that have the expected correlations between the weighted

residuals. The expected correlations can be calculated from the variance–

covariance matrix of the weighted residuals, which equals (Bard, 1974, p. 194;

similar to Cooley and Naff, 1990, p. 176)

V(v1=2e) ¼ (I � X(XTvX)�1XTv)s2 ð6:19Þ
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The steps of the test are as follows (Cooley and Naff, 1990, p. 176).

1. Generate sets of independent, normally distributed random numbers, which do

not have the regression-induced correlations (called d’s by Cooley and Naff,

1990). Generate sets of correlated, normally distributed random numbers,

which do have the regression-induced correlations (called g’s by Cooley

and Naff, 1990). Within each set, associate each generated number with one

of the NDþ NPR observations or prior information values used in the

regression using Eq. (6.19).

2. Compare graphs of the weighted residuals with graphs of the independent

random numbers (d’s) as follows:

a. Evaluate graphs of weighted residuals and d’s versus weighted or

unweighted simulated values (as in Figure 6.1). If the graphs of the inde-

pendent random numbers and of the weighted residuals have similar devi-

ations from a random distribution about the zero line, the nonrandom

distribution of the weighted residuals could result from the small

number of observations.

b. Evaluate normal probability graphs (as in Figure 6.5). If the graphs of the

independent random numbers and of the weighted residuals have similar

deviations from a straight line, the nonlinear shape of the weighted

residuals graph could result from the small number of observations.

3. Compare graphs of the weighted residuals with graphs of the correlated

random numbers (g’s) as follows:

a. Evaluate graphs of weighted residuals and g’s versus weighted or

unweighted simulated values (as in Figure 6.1). If the graphs of the corre-

lated random numbers and of the weighted residuals have similar devi-

ations from a random distribution about the zero line, the nonrandom

distribution of the weighted residuals could result from the fitting process

of the regression.

b. Evaluate normal probability graphs (as in Figure 6.5). If the graphs

of the correlated random numbers and of the weighted residuals have

similar deviations from a straight line, the nonlinear shape of the

weighted residuals graphs could result from the fitting process of the

regression.

The d’s and g’s can be produced by MODFLOW-2000 and RESAN-2000 (Hill

et al., 2000) or by UCODE_2005 and RESIDUAL_ANALYSIS (Poeter et al.,

2005). Examples of graphs produced using data sets generated with RESAN-2000

are shown in Exercise 6.2e.

An alternative test is described by Cooley (2004) and Christensen and Cooley

(2005). It involves generating hundreds or thousands of sets of correlated normal

random numbers, calculating the mean and plus and minus two standard deviations

for each normal probability plotting position, and plotting them with the weighted

residuals on a normal probability graph. An example graph is presented by

Christensen and Cooley (2005, p. 44). Data sets for these graphs can be produced
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by MODFLOW-2000’s UNC Process (Christensen and Cooley, 2005) or

UCODE_2005 and RESIDUAL_ANALYSIS_ADV (Poeter et al., 2005). Graphs

can be produced using, for example, GWChart (Winston, 2000).

6.5 EXERCISES

These exercises consider the fit of the calibrated steady-state model of the flow

system described in Chapter 2, Section 2.2. Transport predictions will not be

credible if the model can not produce heads and flows that are reasonably similar

to the observations. Predictions will also be suspect if the match to observations

is so close that it appears observation error is being fit. To investigate model fit,

Exercise 6.1 considers the overall statistical measures of model fit and Exercise

6.2 considers the graphical analyses and associated statistics.

Exercise 6.1: Statistical Measures of Overall Fit In this exercise, overall fit to the

head, flow, and prior information data is evaluated. This evaluation uses statistics

located in output files produced by the MODFLOW-2000 or UCODE_2005

regression run of Exercise 5.2c. For students who have not performed the simu-

lations, this output file is available from the web site for this book; see Chapter 1,

Section 1.1 for information about obtaining this file. The statistics also are included

in tables accompanying the exercises.

(a) Examine objective-function values.

The values of the least-squares (Eq. (3.1)) and maximum-likelihood (Eq. (3.3))

objective functions for the final parameter values are shown in Figure 6.6.

Problem
. Use equation 3.3 in the text to verify the value of the maximum-likelihood

objective function.

. Explain why the objective function values may not be the best indicators of

model fit.

(b) Demonstrate the circumstance in which the expected value of both the

calculated error variance and the standard error is 1.0. (optional)

In Section 6.3.2, it is claimed that if the fit achieved by regression is consistent

with the data accuracy as reflected in the weighting, the expected value of both

the calculated error variance and the standard error is 1.0. In this exercise, demon-

strate this using generated random numbers instead of residuals. A diagonal weight

matrix will be used, but the results are applicable to a full weight matrix as well.

Proceed through the following steps:

1. Use a software package to generate n ¼ 100 random numbers using any dis-

tribution (such as normal or uniform). These are equivalent to the residuals of

Eq. (3.1) or (3.2).

2. Square each random number.
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3. Divide each squared number by the variance of the distribution used. If

weights are defined to be one divided by the variances, the resulting numbers

are equivalent to squared, weighted residuals.

4. Sum the numbers from step 3 and divide by n.

5. Compare this value to 1.0. As n increases, the value should approach 1.0.

6. Repeat the analysis with two sets of n random numbers (total sample size is

2n) generated with very different variances.

Problem: Discuss the results obtained.

(c) Evaluate calculated error variance, standard error, and fitted error statistics.

The values of the estimated error variance, s2 (Eq. (6.1)), and its square root, the

standard error of regression, s, are shown in Figure 6.6.

Problem
. How does s2 compare to the expected value of 1.0? In the analysis, consider the

confidence interval on the standard error of the regression. Use the x2 distri-
bution in Table D.5 of Appendix D to obtain the critical values needed to

calculate the confidence intervals. Here, x2(1326),0.975 ¼ 1.690; x2(1326),0.025 ¼
16.01. Does 1.0 fall within the confidence interval?

. Using s and the standard deviation of measurement error used to calculate the

weights for hydraulic-head observations (see Exercise 3.2d), calculate the fitted

standard deviation for heads. Compare the fitted standard deviation to the total

head loss across the flow system (i.e., the difference between the maximum and

minimum head, derived from the contour map of heads in Figure 2.1), and use

this to judge the model fit.

LEAST-SQUARES OBJ FUNC (DEP.VAR. ONLY) – = 10.548
LEAST-SQUARES OBJ FUNC (W/PARAMETERS)– – = 10.556
CALCULATED ERROR VARIANCE– – – – – – – – – – – = 1.5080
STANDARD ERROR OF THE REGRESSION– – – – – – = 1.2280
CORRELATION COEFFICIENT– – – – – – – – – – – – = 0.99979

W/PARAMETERS– – – – – – – – – – – – – – – – – = 0.99989
ITERATIONS– – – – – – – – – – – – – – – – – – – – – – = 5

MAX LIKE OBJ FUNC = -17.671
AIC STATISTIC– – – = -5.6713
BIC STATISTIC– – – = -2.2816

FIGURE 6.6 Selected statistics related to overall model fit, from the modified Gauss–

Newton iterations of the regression run in Exercise 5.2c. This is a fragment from the global

output file of MODFLOW-2000. “DEP.VAR.ONLY” means that only observations are

included in the calculation. “W/PARAMETERS” means that prior information, if defined,

is also included.
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(d) Examine the AIC, AICc, and BIC statistics.

The values of the AIC (Eq. (6.3)) and BIC (Eq. (6.4)) statistics are shown in

Figure 6.6. As discussed in Section 6.2.4, these statistics can be useful when

comparing different models.

Problem:
. Using Eqs. (6.3) and (6.4) and the values listed in the top part of Figure 6.6,

verify the values of AIC and BIC shown in Figure 6.6. Calculate AICc.

Should AIC or AICc be used?

. Suppose that parameters are added to the steady-state test-case model to better

represent some feature of the true system. For each additional parameter added,

how much does the model fit, as represented by the weighted least-squares

objective function, need to improve to result in a reduced value of the AIC,

AICc, and BIC statistics?

Exercise 6.2: Evaluate Graphs of Model Fit and Related Statistics In this exer-

cise, the fit of the steady-state model calibrated in Exercise 5.2c to the head, flow,

and prior observation data is evaluated using graphical methods and associated stat-

istics. This evaluation uses residuals and statistics produced by the regression run of

Exercise 5.2c. Students who have performed the simulations can create the graphs

from model output files; see Chapter 1, Section 1.1 for the website where instruc-

tions are provided.

(a) Graph of weighted residuals versus weighted simulated values and the

minimum, maximum, and average weighted residuals.

The graph of weighted residuals versus weighted simulated values is shown

in Figure 6.7a. Ideally, the weighted residuals show no pattern relative to the

simulated values.

Problem
. Comment on the graph in Figure 6.7a. Do the weighted residuals appear to

be randomly distributed about zero? The very small residuals for the flows

and prior information are discussed in subsequent exercises.

. Comment on the values of the maximum, minimum, and average weighted

residuals shown in Figure 6.8.

(b) Graphs of observations versus simulated values. Examine the correlation

coefficient R.

A graph of weighted observations versus weighted simulated values is shown

in Figure 6.7b, and a graph of observed versus simulated values is shown in

Figure 6.7c. The correlation coefficient between the weighted observed and

simulated values, R (Eq. (6.11a)), equals 0.99979 for the head and flow
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observations, and 0.99989 for the observed values and prior values on K_RB

and VK_CB. These values are shown in Figure 6.6. Ideally, the values plotted

on the types of graphs shown in Figures 6.7b and 6.7c fall on a line with a

slope of 1.0.

Problem
. Comment on the utility of the three different graphs shown in Figure 6.7. Which

graph is likely to be more useful for diagnosing problems with the model fit to

the observation data?

FIGURE 6.7 Plots for analyzing model fit for Exercise 5.2c. (a) Weighted residuals versus

weighted simulated values (unweighted simulated values also could be used on the horizontal

axis). The vertical gridlines are placed at increments of the standard error of the regression

(1.2). (b) Plot of weighted observed values versus weighted simulated values. (c) Plot of

observed versus simulated values.
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. Does the value of R indicate a good match between the trends in the weighted

simulated and weighted observed values? Is R a useful diagnostic statistic in

this situation? Why?

(c) Graphs of weighted residuals against independent variables. Evaluate runs

statistic.

The weighted residuals from the regression of Exercise 5.2c are plotted on maps

of the model layers in Figure 6.9.

Problem
. Do the weighted residuals shown in Figure 6.9 appear to be randomly distrib-

uted in space?

SMALLEST AND LARGEST WEIGHTED RESIDUALS
SMALLEST WEIGHTED

RESIDUALS
LARGEST WEIGHTED

RESIDUALS
NAME WEIGHTED

RESIDUAL
PERCENT OF
OBJ FUNC

NAME WEIGHTED
RESIDUAL

PERCENT OF
OBJ FUNC

4.ss -2.05 39.68 1.ss 1.59 24.01

6.ss -0.552 2.89 2.ss 1.17 13.05
3.ss -0.506 2.43 8.ss 0.993 9.34
9.ss -0.275 0.72 10.ss 0.882 7.37
5.ss -0.114 0.12 7.ss 0.178 0.30

STATISTICS FOR ALL RESIDUALS:
AVERAGE WEIGHTED RESIDUAL: 0.114E+00

FIGURE 6.8 Smallest, largest, and average weighted residuals from the regression run

in Exercise 5.2c. This is a fragment from the global output file of MODFLOW-2000.

–
–

–
–

–
–

–
–

FIGURE 6.9 Weighted residuals for the steady-state regression plotted on maps of the two

model layers.
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. Comment on the physical reasons for the three large weighted residuals in

model layer 1. It may be helpful to consider the dimensionless scaled sensi-

tivities of Table 4.1.

The runs statistic and critical values for this problem are shown in Figure 6.10.

For the steady-state model regression, there are less than 10 positive residuals and

less than 10 negative residuals, and thus the printed critical values for the runs

statistic are not applicable. In most situations, there will be enough positive

and negative residuals so that the critical values do apply. For cases where the

critical values are applicable, understanding the runs statistic can be facilitated

by locating the runs statistic and critical values on a normal probability distri-

bution.

Problem
. Draw a normal probability distribution and locate the value of the test statistic

and the critical values. Remember that this is a two-tailed test, so include the

critical values printed in the file, and also the critical values of the other tail

of the distribution.

. Given the runs test statistic value and the critical values, what do you conclude

about the randomness of the weighted residuals with respect to their order in the

MODFLOW-2000 or UCODE_2005 input files? When answering this ques-

tion, ignore the problem that the steady-state regression has too few negative

and positive residuals.

# RESIDUALS >= 0. : 8
# RESIDUALS < 0. : 5
NUMBER OF RUNS : 5 IN 13 OBSERVATIONS

INTERPRETING THE CALCULATED RUNS STATISTIC VALUE OF
-1.02

NOTE: THE FOLLOWING APPLIES ONLY IF
# RESIDUALS >= 0 . IS GREATER THAN 10 AND
# RESIDUALS < 0. IS GREATER THAN 10

THE NEGATIVE VALUE MAY INDICATE TOO FEW RUNS:
IF THE VALUE IS LESS THAN -1.28, THERE IS LESS

THAN A 10 PERCENT CHANCE THE VALUES ARE RANDOM,
IF THE VALUE IS LESS THAN -1.645, THERE IS LESS

THAN A 5 PERCENT CHANCE THE VALUES ARE RANDOM,
IF THE VALUE IS LESS THAN -1.96, THERE IS LESS

THAN A 2.5 PERCENT CHANCE THE VALUES ARE RANDOM.

FIGURE 6.10 Runs statistic and critical values from the regression run in Exercise 5.2c.

This is a fragment from the global output file of MODFLOW-2000.
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(d) Evaluate normal probability graphs and the correlation coefficient RN
2 .

A normal probability graph of the weighted residuals from Exercise 5.2c is

shown in Figure 6.11. RN
2 (Eq. (6.18)) is shown in Figure 6.12. Use this plot

and associated statistic to test the independence and normality of the weighted

residuals.

Problem
. Do the weighted residuals appear to be normally distributed in Figure 6.11?

Compare the results of this analysis with the calculated value of RN
2 shown in

Figure 6.12.

. Generate 10 sets of 13 normally distributed random numbers and calculate

the RN
2 statistic for each. Compare these values to the critical value for the

5-percent significance level. Compare how many of the 10 RN
2 values are

less than the critical value to how many are expected to be less than the

critical value.

(e) Determine acceptable deviations from random, independent, and normal

weighted residuals.

Graphs of independent and correlated random numbers versus weighted

simulated values from Exercise 5.2c are shown in Figure 6.13, and normal

probability graphs of independent and correlated random numbers are shown

in Figure 6.14. These graphs are used to test expected correlation between the

FIGURE 6.11 Normal probability graph of the weighted residuals from Exercise 5.2c.
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CORRELATION BETWEEN ORDERED WEIGHTED RESIDUALS AND
NORMAL ORDER STATISTICS FOR OBSERVATIONS = 0.941

CORRELATION BETWEEN ORDERED WEIGHTED RESIDUALS AND
NORMAL ORDER STATISTICS FOR OBSERVATIONS AND
PRIOR INFORMATION = 0.926

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –-– –
COMMENTS ON THE INTERPRETATION OF THE CORRELATION
BETWEEN WEIGHTED RESIDUALS AND NORMAL ORDER
STATISTICS:

Generally, IF the reported CORRELATION is LESS than the
critical value, at the selected significance level
(usually 5 or 10%), the hypothesis that the
weighted residuals are INDEPENDENT AND NORMALLY
DISTRIBUTED would be REJECTED. HOWEVER, in this case,
conditions are outside of the range of published
critical values as discussed below.

The sum of the number of observations and prior information
items is 13 which is less than 35, the minimum value
for which critical values are published. Therefore,
the critical values for the 5 and 10% significance levels
are less than 0.943 and 0.952, respectively.

CORRELATIONS GREATER than these critical values indicate
that, probably, the weighted residuals ARE INDEPENDENT
AND NORMALLY DISTRIBUTED.

Correlations LESS than these critical values MAY BE
ACCEPTABLE, and rejection of the hypothesis is not
necessarily warranted.

The Kolmogorov-Smirnov test can be used to further evaluate
the residuals.
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –-– –

FIGURE 6.12 RN
2 statistic and critical values from the regression run in Exercise 5.2c.

This is a fragment from the global output file of MODFLOW-2000.
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FIGURE 6.13 Graphs of four sets of normally distributed (a) independent and (b)

correlated random numbers versus weighted simulated values from Exercise 5.2c, as

needed in Exercise 6.2e.
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FIGURE 6.14 Normal probability graphs of four sets of normally distributed (a)

independent and (b) correlated random numbers related to Exercise 5.2c, as needed in

Exercise 6.2e.
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weighted residuals. Instructions for producing the data sets needed for these

graphs are available from the web site for this book as described in Chapter 1,

Section 1.1.

Problem
. Is the behavior of the weighted residuals more similar to that of the generated

independent or correlated random numbers? To answer this question, compare

Figure 6.7a with Figure 6.13, and compare Figure 6.11 with Figure 6.14.

Explain your answer.

. What conclusion can be drawn about the reason for the nonrandomness of the

flow and prior weighted residuals in Figure 6.7a, and for the deviation of the

weighted residuals from a straight line in Figure 6.11? Use your knowledge

of the model construction and the observations and prior information.
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7
EVALUATING ESTIMATED
PARAMETER VALUES AND
PARAMETER UNCERTAINTY

Once parameter values are estimated, they need to be evaluated for a number of

reasons. In this chapter we present methods for analyzing estimated parameters

with brief explanations of how the analyses are used. Additional discussions and

examples are provided in Guideline 10 of Chapter 12.

The methods described in this chapter start with reevaluation of composite scaled

sensitivities. Next, five variations of the parameter variance-covariance matrix are

introduced and statistics derived from the parameter variance-covariance matrix

are defined. After comments about log-transformed parameters and when to use

the five variations of the parameter variance-covariance matrix, five issues are dis-

cussed: (1) identification of individual observations that dominate the parameter

estimates, (2) uniqueness and optimality of the estimates, (3) quantifying parameter

uncertainty, (4) comparing parameter estimates against reasonable ranges, and (5)

testing for model nonlinearity. The issues considered in this chapter span the first

two components of the observation-parameter-prediction triad composed of entities

that are directly connected by the model, as discussed in Chapters 1 and 10.

7.1 REEVALUATING COMPOSITE SCALED SENSITIVITIES

Composite scaled sensitivities (css) are a measure of the total information provided

by the regression observations about a parameter value. These sensitivities were pre-

sented in Chapter 4, Section 4.3.4, which focused on using them to determine which
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parameters to estimate by regression, and which to exclude because of insensitivity.

At the optimal parameter values it is important to calculate css for all defined model

parameters (those included in the regression as well as those excluded from the

regression). These sensitivities will likely be different from those calculated for

initial regression runs, because of model nonlinearity and because of scaling by bj
in Eq. (4.3). If any parameters that were initially excluded from the regression

appear to have increased in stature, additional regression runs should be considered

with these parameters included.

Although the css are useful measures of the information the data contain for a

single parameter, they do not account for the many parameters being estimated sim-

ultaneously, and they do not measure the precision of the parameter estimates. Other

statistics discussed in this chapter fill these roles.

7.2 USING STATISTICS FROM THE PARAMETER

VARIANCE–COVARIANCE MATRIX

The variance–covariance matrix on the parameters contains important information

about parameter uncertainty and correlation, and about the support that the obser-

vations offer to the estimated parameters, given the model as constructed. This sec-

tion presents five alternate versions of the variance–covariance matrix, statistics

derived from the variance–covariance matrix, and the circumstances in which

these statistics are used for each of the five versions of the matrix. Finally, the sec-

tion discusses alternate statistics that are commonly suggested and notes that we

believe they are more complicated without providing much additional insight for

the purposes of evaluating parameter uncertainty and correlation.

7.2.1 Five Versions of the Variance–Covariance Matrix

The parameter variance–covariance matrix is calculated using an equation of the

form

V(b) ¼ s2(XTvX)�1 (7:1)

where V(b) is an NP by NP matrix, s2 is the calculated error variance (Eq. (6.1)),

X is a matrix of sensitivities defined after Eq. (5.2b) and calculated for the par-

ameters listed in the vector b, and v is a weight matrix defined after Eq. (3.2)

and in Appendix A.

It can be very useful to define X, b, and v differently to investigate different

aspects of the model, the data, and the predictions. Five versions are presented

here and discussed further in Section 7.2.5.

1. Variance–Covariance Matrix with Optimized Parameter Values. Only opti-

mized parameters are included. Sensitivities are calculated for the optimized
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parameter values, b ¼ b0, and X is a matrix of sensitivities for the parameters

estimated and the observations and prior information used in the regression

(Bard, 1974, p. 59; Draper and Smith, 1998, p. 223).

2. Variance–Covariance Matrix with All Defined Parameters. This is the same

as option 1 except that any defined parameters for which values were set and

not estimated in the regression are included. This means that there are

additional columns in the sensitivity matrix, X. In addition, in some circum-

stances this variation of the variance–covariance matrix includes realistic

weighting. This means that (1) any weights that were altered to obtain par-

ameter estimates need to be returned to values representative of realistic

levels of error in the observations and prior information, and (2) if available,

prior information and associated realistic weighting needs to be included, and

is most important for parameters not estimated by the regression.

For options 3 to 5, the useful statistics that are derived from the variance–

covariance matrix do not depend on s2.

3. Variance–Covariance Matrix with Nonoptimal Parameter Values. This is the

same as option 1 or 2 except that any set of parameter values can be used.

4. Variance–Covariance Matrix with Alternate Observation Sets. This is the

same as option 1 or 2 except that different observations are included. Existing

observations may be omitted or information on new observations may be

added. This requires changes in the weight matrix,v, and, when adding obser-

vations, the sensitivity matrix, X.

5. Variance–Covariance Matrix with Predictions. This is the same as option 1

or 2 except that predictions are added. This requires changes in the weight

matrix, v, and the sensitivity matrix, X.

7.2.2 Parameter Variances, Covariances, Standard Deviations,
Coefficients of Variation, and Correlation Coefficients

The precision (see definition in Chapter 1, Section 1.4.2) and correlation of par-

ameter estimates can be analyzed by using the parameter variance–covariance

matrix. The diagonal elements equal the parameter variances; the off-diagonal

elements equal the parameter covariances. For a problem with three estimated

parameters, the matrix would appear as

Var(1) Cov(1, 2) Cov(1, 3)

Cov(2, 1) Var(2) Cov(2, 3)

Cov(3, 1) Cov(3, 2) Var(3)

(7:2)

where Var(1) is the variance (s 2b1 ) of parameter 1, Cov(1, 2) is the covariance

between parameters 1 and 2, and so on. The variance–covariance matrix is

always symmetric, so that, for example, Cov(1, 2) ¼ Cov(2, 1). Equation (7.1) is

most useful if the model is nearly linear in the vicinity of b0 (see Chapter 5, Section
5.1.2) and if the weight matrix is appropriately defined (see Chapter 3, Sections 3.3.3
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and 3.4.2). A method of testing for model linearity is presented in Section 7.7. For

nonlinear problems the variance–covariance matrix only approximates parameter

uncertainty.

Variances and covariances commonly are not intuitively understood, but they can

be used to calculate informative statistics. The first of these is the parameter standard

deviation, which equals the square root of the parameter variances. That is,

sbj ¼ (Var( j))1=2 (7:3)

where Var( j) is the jth diagonal of the variance–covariance matrix. Parameter stan-

dard deviations have the same units as do the parameter values and are more easily

understood measures of parameter uncertainty. However, parameter standard devi-

ations are perhaps most useful when processed further to calculate three other

statistics: confidence intervals for parameter values (presented in Section 7.5.1),

coefficients of variation, and the t-statistic. The coefficient of variation for each

parameter equals the standard deviation divided by the parameter value:

c:v: ¼ sbj=b j (7:4)

The coefficient of variation is a dimensionless number with which the relative accu-

racy of different parameter estimates can be compared. The t-statistic serves the

same purpose and equals 1/c.v: or bj/sbj. The coefficient of variation is used instead

of the t-statistic in this book.

Correlation coefficients are calculated as the covariance between two parameters

divided by the product of their standard deviations. Using the notation of Eq. (7.2),

the correlation between the jth and kth parameter is

pcc( j, k) ¼ Cov( j, k)

Var( j)1=2Var(k)1=2
(7:5)

Characteristics of parameter correlation coefficients were discussed in Chapter 4,

Sections 4.3.5 and 4.4.2. Briefly, unique values are nearly always assured if the

absolute values of all pcc are all less than about 0.95. However, unique estimates

can be obtained with larger absolute values. Suspected problems with uniqueness

can be tested as discussed in Section 7.4.

7.2.3 Relation Between Sample and Regression Statistics

For students unfamiliar with means, variances, covariances, standard deviations,

coefficients of variation, and correlation coefficients, it can be beneficial to com-

pare how they are calculated for sample data with how they are calculated in

regression. The two situations are similar in that both attempt to use data to esti-

mate some quantity and express the precision of the estimate. Sample data used in

a comparison are shown in Figure 7.1. The equations for calculating the sample
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statistics are shown in Table 7.1, with the calculated values of the sample statistics

for the two data sets shown in Figure 7.1. These equations differ from those used to

calculate the analogous regression statistics, which are presented in Eq. 5.6 and

Section 7.2.1.

The sample variance is a measure of the spread of the data. Table 7.1 shows that

the sample variance for data set y1 is less than that for data set y2 (4.2 versus 11);

this is expected given the wider range of values in data set y2 compared to data set

y1. The sample covariance indicates whether x and y vary in a coordinated way, and

the correlation coefficient is a scaled measure of the sample covariance. The covari-

ance and the absolute value of the correlation coefficient for data set y1 are greater

than the corresponding statistics for data set y2 (0.98 versus20.26). This is because

the y1 values vary in a systematic way with x, whereas the y2 values are more

random with respect to the x values, as shown in Figure 7.1.

In regression, the parameter values are not estimated by direct sampling. Instead,

they are estimated indirectly using observations of the state of the simulated system.

This can be accomplished because the simulation model used in the regression is

based on equations that relate the observations and the parameter values. Because

of this indirect way of estimating parameter values, parameter variances and covari-

ances are calculated in a different manner from the sample equations of Table 7.1, as

indicated in the lower half of this table.

Interpretation of the variance and correlation of parameters estimated by

regression is similar to that for the sample statistics but is not completely analogous.

In regression, the variance indicates the range over which a parameter value could

extend without affecting model fit too adversely, and the parameter correlation

FIGURE 7.1 Values and graph of x and two sets of y variables used to investigate sample

variances, covariances, and correlation coefficients. The values of y1 equal the x values plus

and minus small deviations; the values of y2 were generated from a random normal

distribution with a mean of 4.5 and a standard deviation of 3.0.
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TABLE 7.1 Equations for Sample Mean, Variance, Standard Deviation, Coefficient

of Variation, Covariance, and Correlation Coefficients; the Values Calculated for

the Data Sets Shown in Figure 7.1; and the Analogous Relations When Quantities

Are Estimated by Regression Instead of Directly from Sample Data

Sample Statistics

Statistic Equation (Davis, 2002) y1 y2

Mean x0 ¼ (1/n)
P

i xi x0 ¼ 4 x0 ¼ 4

y0 ¼ (1/n)
P

i yi y0 ¼ 6.1 y0 ¼ 4.38

Variance sx
2 ¼ 1/(n2 1)

P
i (xi2 x0)2 sx

2 ¼ 4.7 sx
2 ¼ 4.7

sy
2 ¼ 1/(n2 1)

P
i (yi2 y0)2 sy

2 ¼ 4.2 sy
2 ¼ 11

Standard deviation sx ¼ (sx
2)1/2 sx ¼ 2.2 sx ¼ 2.2

sy ¼ (sy
2)1/2 sy ¼ 2.0 sy ¼ 3.3

Standard deviation of

the mean

sx0 ¼ sx/n
1/2 sx ¼ 0.83 sx ¼ 0.83

sy0 ¼ sy/n
1/2 sy ¼ 0.76 sy ¼ 1.25

Coefficient of variation c.v.x ¼ sx/x
0 c.v.x ¼ 0.55 c.v.x ¼ 0.55

c.v.y ¼ sy/y
0 c.v.y ¼ 0.33 c.v.y ¼ 0.75

t-statistic tx ¼ x0/sx tx ¼ 1.82 tx ¼ 1.82

ty ¼ y0/sy ty ¼ 3.03 ty ¼ 1.33

Covariance Cov ¼ 1/(n2 1)	P
i (xi2 x0) (yi2 y0)


 4.4 21.9

Correlation coefficient r ¼
P

i (xi � x0)(yi � y0Þ�P
i (xi � x0)2

�1=2�P
j (yj � y0)2

�1=2
¼ Cov=½sxsy�

0.98 20.26

When Parameters Are Estimated by Regression

Statistic Description

Mean (parameter

estimate)

Symbol: bj. Estimated using the observations, the model, and the

modified Gauss–Newton normal equations (Eq. 5.6).

Parameter variance Symbol: s2bj ; diagonals of Eq. (7.1) and (7.2). This equation uses

the following quantities:

(1) the sensitivities, as measures of the information provided for

the parameter;

(2) the weights, as measures of the error in the observations; and

(3) the calculated variance of the regression, as a measure of

model fit to the observations.

Parameter standard

deviation

Symbol: sbj ; Eq. (7.3). Equals the square root of the parameter

variance. Analogous to the sample standard deviation of the

mean instead of the standard deviation of the population.

Parameter coefficient of

variation

Symbol: c.v.; Eq. (7.4). Equals (parameter standard deviation)/
(parameter estimate)

Parameter t-statistic Equals 1/c.v. ¼ (parameter standard deviation)/(parameter

estimate)

Parameter correlation

coefficient

Symbol: pcc(i, j); Eq. (7.5). Instead of measuring how closely x

tracks y, it measures whether coordinated changes in two

parameters would result in the same simulated values and,

therefore, the same model fit to the observations and same

objective function value.
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coefficients indicate whether coordinated changes in the parameter values could pro-

duce the same simulated values and, therefore, the same model fit.

7.2.4 Statistics for Log-Transformed Parameters

For log-transformed parameters, the parameter estimates, coefficients of variation

(Eq. (7.4)), and confidence intervals (discussed in Section 7.5.1) can be difficult

to interpret. It is advantageous to present statistics related to native parameter

values to encourage comparison with field data.

The native estimate is calculated as the exponential of the log-transformed esti-

mate obtained by regression. The nature of the log-normal distribution means that

the native value reported is the mode instead of the mean of the log-normal distri-

bution. Using the mode as the measure of central tendency of the distribution has

the advantage of producing a native parameter value that produces the regression

results when used in the model input files, and this consideration overrides the

need to use the mean of the log-normal distribution.

Confidence intervals on the native equivalent of log-transformed parameters are

reported as the exponential of the confidence interval limits calculated for the log-

transformed parameter. For log-transformed parameters, the linear confidence inter-

vals for the true, unknown native parameters are symmetric when plotted on a log

scale, but are not symmetric when plotted on an arithmetic scale. Despite this asym-

metry of the intervals on an arithmetic plot, it is often easier for modelers to interpret

and communicate to others the ranges for the native parameters than the ranges for

the log-transformed parameters.

Standard deviations and coefficients of variation (the standard deviation divided

by the estimate) for the native parameter estimates are obtained by converting the

variance for the log-transformed parameter, (slog b)
2, using the expression

s2b ¼ exp½2:3(slog b)2 þ 2:0� log b�½exp(2:3(slog b)2)� 1:0� (7:6)

where the exponentials and logarithms are in base 10, b is the value of the native

parameter, and log b is the estimated log-transformed parameter. The coefficient

of variation of the native parameter is calculated by dividing the square root of its

variance by the native parameter value.

7.2.5 When to Use the Five Versions of the Parameter

Variance–Covariance Matrix

This section presents the circumstances for which the five variations of the variance–

covariance matrix (Section 7.2.1) are used. Also discussed are the statistics calcu-

lated from the matrix that are most useful in each circumstance.

Matrix with Optimized Parameter Values This version of the variance–covariance

matrix is routinely calculated if regression is used for model calibration. Useful
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statistics include the parameter coefficients of variation and the parameter corre-

lation coefficients.

Matrix with All Defined Parameters In Eq. (7.1), the sensitivity and weight

matrices usually contain entries only for the parameters estimated by regression.

In many situations, there are additional defined model parameters that are excluded

from the regression because of insensitivity and/or nonuniqueness detected using

the sensitivity analysis discussed in Chapter 4, or for other reasons. It is important

to periodically calculate sensitivities and the variance–covariance and correlation

matrices for all defined model parameters, for two reasons.

First, it is important to determine whether updated parameter values or other

modifications to the model have changed conclusions about insensitivity and

nonuniqueness, and to evaluate observations and parameters from the perspective

of predictions. Including all defined parameters can be accomplished easily using

UCODE_2005 and MODFLOW-2000 by activating unestimated parameters.

Second, when evaluating the uncertainty of predictions or performing other

related analyses, it is important to include all defined parameters to obtain realistic

results. Parameters that may not have been important to observations may be import-

ant to predictions, and this can be determined only if all defined parameters are

included in the analysis.

When activating all parameters to evaluate model predictions, it is important to

include prior information (Chapter 3, Section 3.4.3) and associated weighting for the

parameters that were not estimated by regression. This allows for a realistic degree

of uncertainty in these parameters to be reflected in analyses of prediction uncer-

tainty. If prior information on these parameters is not included, the contribution

of parameter uncertainty will be unrealistically large. The prior value specified

needs to equal the parameter value, so that the numerator of the s2 term in Eq. (7.1)

is not affected. The denominator will not be affected if one item of prior information

is included for each added parameter. The weights on the prior information need to

reflect the uncertainty in the independent information about the parameter values.

Weighting strategies are discussed in more detail in Guideline 6 in Chapter 11.

Matrix with Nonoptimal Parameter Values Equation (7.1) can be calculated for

any set of parameter values, and some of the resulting statistics are very useful

for diagnosing problems with the regression (Anderman et al., 1996; Poeter and

Hill, 1997; Hill et al., 1998; Hill and Østerby, 2003). For example, parameter cor-

relation coefficients calculated with the starting model parameter values are a

very important aspect of the sensitivity analysis performed at the initial stages of

the regression, as discussed in Chapter 4, Section 4.2.3.

Matrix with Alternate Observation Sets The fourth version of Eq. (7.1) involves

observation sets that are different from that used to calibrate the model. Two such

alternative observation sets are used in this book. Both are used to calculate the

observation-prediction (opr) statistic for evaluating the importance of observations

to model predictions, discussed in Chapter 8, Section 8.3.2. The first set consists
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of the calibration observations with one or more of the observations used in model

calibration omitted, which is used to evaluate existing observations in the context of

model predictions. The second set consists of the calibration observations with one

or more observations added, to evaluate potential new observations in the context of

model predictions.

Usually these analyses with alternate observation sets are conducted using the

variance–covariance matrix with all defined parameters represented and with

weighting that reflects realistic errors in observations and prior information.

Matrix with Predictions A version of Eq. (7.1) can be used to determine if

parameters that are highly correlated given the observations used in the regression

are problematic to predictions of interest. This version is discussed in Chapter 8,

Section 8.2.4 and is generally calculated using all defined model parameters.

7.2.6 Some Alternate Methods: Eigenvectors, Eigenvalues,

and Singular Value Decomposition

Alternate methods available for evaluating parameter uncertainty and correlation

include calculation of the eigenvectors and eigenvalues of the parameter variance–

covariance matrix and singular value decomposition (SVD) of the weighted

sensitivity matrix. Both produce eigenvectors and eigenvalues. Large eigenvalues

identify important eigenvectors. Each eigenvector identifies a linear combination

of parameters and parameters with larger coefficients dominate the eigenvector.

Dominant parameters in important eigenvectors are important parameters.

Hill and Østerby (2003) compared the ability of parameter correlation coeffi-

cients and the SVD method to detect extreme parameter correlation. They found

that both methods performed similarly for a simple hypothetical groundwater

flow model similar to that used in the exercises of this book. Parameter corre-

lation coefficients are emphasized in this work because they are easy to interpret,

as discussed in Section 4.3.5. Sometimes parameter correlations are criticized

because they only identify extreme correlation between pairs of parameters.

However, as noted in Section 4.3.5, if more then two parameters are correlated

all pairs will have correlation coefficients with absolute values close to 1.00,

so the fact that pcc are calculated only for parameter pairs is rarely a meaningful

limitation.

MODFLOW-2000 and UCODE_2005 can calculate the eigenvectors and eigen-

values of the parameter variance–covariance matrix, so modelers who prefer to use

these measures can do so with these computer programs.

7.3 IDENTIFYING OBSERVATIONS IMPORTANT

TO ESTIMATED PARAMETER VALUES

Different observations can play different roles in the regression. Even in regressions

with hundreds of observations, one or two can profoundly affect parameter

estimates. Important observations are not consistently associated with either very
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large or very small weighted residuals, or large scaled sensitivities. As discussed in

Chapter 4, dimensionless and composite scaled sensitivities can be used to identify

observations important to individual parameters, but they cannot identify obser-

vations that reduce parameter correlation. Though parameter correlation coefficients

can be used to address this concern, statistics that integrate the effects of sensitivity

and correlation are needed.

The regression equations presented in Chapter 5 and the parameter variance–

covariance matrix of this chapter can be used to create statistics that integrate effects

measured separately by scaled sensitivities and parameter correlation coefficients.

The statistics are similar to the scaled sensitivities and parameter correlation coeffi-

cients in that they take advantage of the model as a quantitative connection between

the simulated equivalents to the observations and the model parameters. The scaled

sensitivities and parameter correlation coefficients continue to be useful in part

because they can be used to understand why different observations are important.

As for the previous analyses, the statistics presented here depend on how the

model is constructed.

Three statistics are presented: one is a leverage statistic; two are influence

statistics.

Leverage and influence are two important measures of the role observations play

in regression. Leverage statistics were mentioned in Chapter 4, Section 4.3.6, and

depend only on the independent variables associated with an observation, such as

its type, location, and time. Influence depends on the observed value as well. The

concepts of leverage and influence are illustrated in Figure 7.2 for a simple linear

regression problem. In Figure 7.2a, the outlier data point has high leverage because

its x location is very different from that of all other observations. However, it does

not have high influence, because its presence does not cause the regression results to

significantly differ from the results that are obtained in its absence. In contrast, in

Figure 7.2b, the outlier has both high leverage and high influence. It has the same

FIGURE 7.2 The effect on a simple linear regression of an observation with (a) high

leverage and (b) high leverage and high influence. (FromHelsel andHirsch, 2002, Figure 9.19.)
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x location as the outlier in Figure 7.2a, but it has a y value that causes the regression

line to be significantly different from the line that is obtained in its absence. In gen-

eral, whether or not the observation actually dominates the regression depends on

how consistent its observed value is with the simulated equivalent calculated

using all other observations. If it does dominate, it not only has high leverage but

also has high influence.

In linear models, influential observations are a subset of the observations with

substantial leverage; this relation applies approximately to nonlinear models.

Often it is useful to calculate leverage and influence statistics using all defined

parameters. Dominant observations deserve extra attention to ensure that simulated

equivalents are appropriate and simulated correctly, that the observation is correctly

determined from field data, and that the observation errors are fully considered in the

weighting.

7.3.1 Leverage Statistics

Leverage statistics identify observations that are sensitive in a way that causes the

observed values to potentially have a profound effect on the regression results. In

general, an observation is more likely to have high leverage if its location, time, cir-

cumstance, or type provides unusual information to the regression, as for the outlier

points in Figure 7.2.

Leverage is calculated as (Helsel and Hirsch, 2002, p. 246):

hii ¼ (v1=2 X )i (X
TvX )�1 (XTv1=2)i (7:7)

where (v1/2X )i is a row vector of the weighted sensitivities associated with the ith

observation, (XTv1/2)i is a column vector equal to the transpose of (v1/2X )i,

(XTvX)21 is from Eq. (7.1), and hii is the leverage of the ith observation.

Values of hii range from 0.0 to less than 1.0. Values close to 1.0 identify obser-

vations with high leverage.

The leverage hii calculated in Eq. (7.7) is the ith diagonal of the “hat” matrix

v1/2X(XTvX)21XTv1/2 (Belsley et al., 1980, p. 16; Draper and Smith, 1998,

p. 205). The full matrix is used for advanced regression analyses that are not

discussed in this book (see, e.g., Cook and Weisberg, 1982).

7.3.2 Influence Statistics

Whereas leverage statistics indicate the potential importance of an observation to

the estimation of a parameter, the actual effect of the observation in the regression

also depends on the observed values, as illustrated in Figure 7.2. The Cook’s D and

DFBETAS influence statistics incorporate this effect. The Cook’s D statistics are

calculated for each observation and measure the influence of each individual

observation on the estimation of the set of parameters as a whole. DFBETAS

are calculated for each parameter bj and each observation yi and measure an
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observation’s effect on a single parameter value. Both statistics were first applied to

groundwater models by Yager (1998).

Cook’s D Cook’sD is a measure of how a set of parameter estimates would change

with omission of an observation, relative to how well the parameters are estimated

given the entire set of observations. Cook’s D is defined as follows, where the first

expression explicitly shows the components of the statistic and the second is used for

calculation (Cook and Weisberg, 1982, p. 116; Draper and Smith, 1998, p. 211;

Cook and Weisberg, 1999, pp. 357–360; Helsel and Hirsch, 2002, p. 248):

Di ¼
(b(i)� b0)T s 2(XTvX)�1

	 
�1
(b(i)� b0)

NP
¼ 1

NP
r2i

hii

1� hii
(7:8)

where b0 ¼ the set of parameter values optimized using all observations;

b(i) ¼ the linear estimate of the set of parameter values that would be esti-

mated if the ith observation were omitted;

X ¼ a matrix of sensitivities, as defined before Eq. (5.2b);

v ¼ the weight matrix of Eq. (3.2) and (5.1);

NP ¼ the number of estimated parameters;

s2 ¼ the variance of the regression;

ri ¼ the ith weighted residual divided by its standard error, calculated as

fi/[s(12 hii)
1/2];

fi ¼ the ith weighted residual of the regression with all observations;

hii ¼ the leverage of the ith observation, calculated by Eq. (7.7).

The variance of the regression, s2, and its square root, s, are estimated using s2

(Eq. (6.1)) and s, the variance and standard error of the regression, respectively.

For Cook’s D to be large, the misfit needs to be large relative to the expected

accuracy of the observation (ri is large) and/or the leverage term needs to be large.

Nonlinearity of influence measures that fill the same purpose as Cook’s D were

investigated by Ross (1987). The measures were based on likelihood distances.

One performs like Cook’s D and others were suggested by Cook and Weisberg

(1982). The one that performed like Cook’s D performed well in the presence of

high parameter-effects curvature (the terminology of Bates and Watts, 1980),

which is called nonintrinsic nonlinearity by Christensen and Cooley (2005). See

Section 7.7 for a discussion of linearity measures. This means that Cook’s D is

more robust for many nonlinear models than, for example, the sensitivity methods

discussed in Chapter 4. It is suspected that the fit-independence of the methods

discussed in Chapter 4 is advantageous for initial models. However, more testing is

needed and the advantage may depend on model nonlinearity and the misfit of the

initial model. Cook’s D can be calculated very quickly.
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Two distinctly different critical values for Cook’s D have been suggested. On the

basis of comments by Cook (1977a), Helsel and Hirsch (2002, p. 248) suggest using

Fa¼0.1(NPþ 1, NDþ NPR2 NP), where Fa is the value of the F distribution

(Table D.7 in Appendix D) with a significance level of 0.1 and with NPþ 1 and

NDþ NPR2 NP degrees of freedom. Cook (1977b) and Cook and Weisberg

(1982, p. 116) note, however, that Cook’s D is not distributed as F. Rawlings

(1988) suggests using 4/(ND þ NPR), which results in a much smaller critical

value and more observations being identified as influential. The Rawlings (1988)

critical value is used in this book.

The critical value for Cook’s D lacks an associated significance level. That is,

unlike confidence intervals, no probability level is suggested by the critical value

of Cook’s D. It simply identifies observations that are more influential than the

other observations.

DFBETAS The DFBETAS statistic (pronounced d-f-beta-s) measures the influ-

ence of one observation, yi, on one parameter, bj. DFBETASij is calculated as fol-

lows, where the first expression again explicitly shows the components of the

statistic and the second is used for calculation (Belsley et al., 1980):

DFBETASij ¼
(b0j � b0j(i))

s(i)½(XTvX)�1
jj �1=2 ¼

cjiPND
k¼1

c2jk

� �1=2

fi

s(i)(1� hii)
(7:9)

where b0j ¼ the optimized value of the jth parameter using all observations;

b0j(i) ¼ the optimized value of the jth parameter omitting only the ith obser-

vation;

s(i) ¼ an alternate to s as an estimate of s, chosen to make the denominator

statistically independent of the numerator under normal theory, and

calculated as (Belsley et al., 1980, p. 14):

s(i)¼½1=(NDþNPR�NP�1)�½(NDþNPR�NP)s2�f 2i =(1�hii)�1=2;

cji ¼ an entry of the matrix product C ¼ (XTvX )21v1/2XT.

All other symbols are defined after Eq. (7.8).

A value of DFBETASij greater than the critical value of 2/(NDþ NPR)1/2

(Belsley et al., 1980, p. 28) indicates that the ith observation is influential in

the estimation of the jth parameter. The likelihood of a single observation being

influential to a single parameter will generally decrease as the number of

regression observations increases. The critical value for DFBETASij takes this

into account, as it decreases with increasing NDþ NPR. As a result, there are

roughly the same proportion of influential observations identified regardless of

the size of NDþ NPR. DFBETAS can be calculated very quickly.
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7.4 UNIQUENESS AND OPTIMALITY OF THE ESTIMATED

PARAMETER VALUES

Two important questions are (1) given the constructed model, are the observations

and prior information sufficient to have estimated the one and only set of parameter

values that provide the best fit? and (2) does a set of parameter values exist that pro-

duces a better fit than that achieved? The first issue primarily requires investigation

of uniqueness, the second primarily involves optimality.

Uniqueness of the estimated parameter values can be investigated by (a) evaluat-

ing parameter correlation coefficients and (b) repeating the regression using

different starting values. These methods are the focus of Sections 4.3.5, 4.4.2, and

7.2.2, and Exercises 4.1c, 5.1a, and 7.1f. The method in (a) is considered to be a

local method because parameter correlation coefficients apply locally in the

objective function surface (see Figure 4.2). Optimality can not be investigated

using local methods; they require more computationally demanding global methods

such as that described in (b).

As mentioned previously, nonunique parameter estimates may be indicated if

parameter correlation coefficients calculated at the optimal parameter estimates

are greater than about 0.95 in absolute value or pcc accuracy is suspect because

of inaccurate sensitivities and/or insensitive parameters. In these situations or to

test optimality, additional regression runs can be useful, as shown in Exercise 7.1f.

If significantly different parameter estimates result from the regression runs with

different starting values, and these estimates produce nearly identical values of the

objective function (Eq. (3.1) or (3.2)), the parameter estimates are not unique. If

smaller values are encountered, the orginal solution is not optimal. In the case of non-

uniqueness, the identical objective function values generally are produced because

coordinated changes in parameter values produce identical simulated equivalents.

This indicates that the available observation data are insufficient to uniquely estimate

each parameter value. To reduce correlation and improve the likelihood of obtaining

a unique solution and to address nonoptimality, parameters can be redefined, obser-

vations can be added to the regression, or prior information on the correlated

parameters can be added to the regression. Redesigning parameters and prior

information are discussed in Chapters 11 and 12 in Guidelines 3, 5, and 10.

7.5 QUANTIFYING PARAMETER VALUE UNCERTAINTY

Two methods of quantifying prediction uncertainty are discussed—inferential

statistics and Monte Carlo methods.

7.5.1 Inferential Statistics

Linear inferential statistical methods are used here to calculate confidence intervals

on estimated parameter values. Nonlinear confidence intervals also are discussed

briefly and are calculated in Exercise 7.1g, but details of calculating nonlinear inter-

vals are presented in Chapter 8, which focuses on evaluating predictions. The most

common use of nonlinear intervals is to assess prediction uncertainty.
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Confidence intervals on parameter values are intervals that, with a specified like-

lihood, contain the true, unknown parameters, if the model is correct. Here we

consider individual confidence intervals because they are most often used for par-

ameters. Other types of intervals are discussed in Chapter 8 because they are often

used to quantify the uncertainty of predictions. Other types of intervals on parameters

can be calculated using the ideas and methods presented for intervals on predictions.

Confidence intervals are discussed in many texts, such as Miller (1981), Seber and

Wild (1989), Cooley and Naff (1990), Davis (2002), and Helsel and Hirsch (2002).

Linear Individual Confidence Intervals An individual confidence interval on a

quantity, such as a parameter estimate, has a specified probability of including the

true value of the quantity, regardless of whether confidence intervals on other quan-

tities, such as other parameter estimates, include their true values. Usually individual

intervals are used to evaluate uncertainty in parameter estimates.

An individual linear confidence interval for the true, unknown jth parameter bj is

calculated as

b j + t n, 1:0� a=2ð Þsb j
(7:10)

where t n, 1:0� a=2ð Þ is the Student t-statistic (Appendix D, Table D.2) for n

degrees of freedom and a significance level of a; n is the degrees of freedom,

here equal to NDþ NPR2 NP; and sbj is the standard deviation of the jth parameter.

Because a confidence interval is a range that has a stated probability of containing

the true value, it is stated in terms of the true, unknown value that is being estimated.

Thus, Eq. (7.10) is said to be the confidence interval for the true value of the jth par-

ameter, bj, and the width of the confidence interval is a measure of the likely pre-

cision of the estimate. Narrower intervals indicate greater precision. If the model

correctly represents the system, the interval also can be thought of as a measure

of the likely accuracy of the estimate. Definitions of precision and accuracy relevant

to parameter estimates are given in Chapter 1, Section 1.4.2.

Linear confidence intervals truly represent uncertainty at the given significance

level only to the extent that the assumptions underlying the calculation of

Eq. (7.10) are satisfied. These requirements are discussed in Chapter 3, Section

3.3. Normality of the parameter estimates is required because the Student t-statistic

is used in Eq. (7.10). The Student t-distribution is similar to a normal distribution but

accounts for small sample sizes. The normality assumption is tested using methods

for assessing the normality of weighted residuals (Chapter 6, Sections 6.4.5 and

6.4.6), because the probability distribution of the true errors is unknown.

Linear confidence intervals require trivial amounts of execution time, and indi-

vidual linear 95-percent confidence intervals are calculated and printed by

UCODE_2005, MODFLOW-2000, and PEST. However, in many natural systems

the assumptions discussed above are not met and calculated linear confidence

intervals are not accurate. More accurate nonlinear intervals developed by Vecchia

and Cooley (1987) can be calculated, as discussed next and in Chapter 8, Section

8.4.3, but require substantial execution time.
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Nonlinear Individual Confidence Intervals Nonlinearity of simulated values with

respect to parameters is discussed in Chapter 1, Section 1.4.1. The nonlinearity of a

model with respect to its parameters can be evaluated using the methods described in

Section 7.7.

For nonlinear models, linear confidence intervals on parameters calculated using

Eq. (7.10) can be inaccurate. More accurate nonlinear confidence intervals can be

calculated using inferential statistics, as described briefly here, or using Monte

Carlo methods, as described in Section 7.5.2.

Vecchia and Cooley (1987) developed inferential methods to compute nonlinear

confidence intervals on any function of the model parameters. For nonlinear inter-

vals on a parameter, the function is specified to be the value of a single parameter.

Calculating a nonlinear confidence interval involves finding the smallest and largest

parameter values on a confidence region for the model parameters, as illustrated in

Figure 7.3 for parameter b1 of a hypothetical two-parameter model. Unlike a linear

confidence interval, the nonlinear confidence interval generally is not symmetric

about the optimal value of b1: in Figure 7.3, the upper limit of the interval is

much further from b01 than is the lower limit of the interval. The method for calculat-

ing nonlinear intervals is substantially more complicated and more computationally

intensive than is the method for calculating linear intervals, as discussed in Chapter

8, Section 8.4.3.

MODFLOW-2000’s UNC Process (Christensen and Cooley, 2005),

UCODE_2005, and PEST support calculation of nonlinear confidence intervals

for parameter values. Because they are expensive computationally, these intervals

usually are calculated only for selected quantities of interest. If computation time

is a limiting factor, it is likely that the intervals will be calculated for model predic-

tions instead of for model parameters. Nonlinear intervals for parameters are pre-

sented here largely to introduce students to nonlinear intervals in as simple a

context as possible.

FIGURE 7.3 Confidence region (shaded area) and upper (b1,U) and lower (b1,L) limits of a

nonlinear confidence interval on parameter b1, for a hypothetical two-parameter model.

(Adapted from Christensen and Cooley, 1999, Figure 9.)
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7.5.2 Monte Carlo Methods

There are two approaches with which random sampling by Monte Carlo analysis

can be used to evaluate uncertainty of estimated parameter values. The first

approach involves investigating the variation in estimated parameter values that

would result if the observations had a different realization of error. These methods

are generally called bootstrap methods (Efron and Tibshirani, 1993; Chernick,

1999) and can produce measures of uncertainty that are consistent with confidence

intervals. The calibrated model is used to generate sets of observations, which are

then contaminated with noise. Prior information can be generated on the basis of

the estimated parameter values. The generated observations and prior information

are then used to estimate parameter values. This type of Monte Carlo analysis

essentially addresses the question of how much the estimated parameter values

would vary for different realizations of error in the observations and prior

information.

The second way Monte Carlo methods can be used is to investigate how different

model construction alternatives would affect the estimated parameter values (see

Poeter and McKenna, 1995). These Monte Carlo runs could be combined with the

first type, or confidence intervals could be calculated for the alternative model con-

structions using inferential methods. The Monte Carlo approach is discussed in

Chapter 8, Section 8.5 in the context of predictions.

Beven and Binley (1992) and Binley and Beven (2003) present an interesting

method of portraying Monte Carlo results called dottie plots. In their Monte Carlo

analyses, many forward model runs are conducted using different parameter

values, and for each a function of the sum of squared residuals is calculated such

that larger values indicate a better fit. The dottie plots consist of x–y graphs with

these statistics plotted against each parameter value. Optimal parameter values

exist if there is a peak in the dottie plot.

7.6 CHECKING PARAMETER ESTIMATES AGAINST

REASONABLE VALUES

When plotted on graphs with the related estimated values, linear confidence intervals

can provide a vivid image of the approximate precision with which parameters

are estimated using the data included as observations in the regression, given

the constructed model. It often is useful to compare these intervals to ranges of

reasonable parameter values. This comparison can be a powerful tool for diagnosing

error in data interpretation and model construction. As discussed in Chapter 5,

Section 5.5, avoiding limits that constrain the estimated parameters allows

the regression to estimate unreasonable parameter values, and thus makes this

comparison possible.

In Figure 7.4, the estimates and confidence intervals for three hypothetical

parameters are plotted with reasonable ranges for each parameter. This figure shows

three situations that might result from considering reasonable parameter ranges.
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1. For parameter A, the parameter estimate and most of the confidence interval

lie within the reasonable range of values. This suggests that the estimate is

consistent with independent information about the parameter.

2. For parameter B, the estimate and entire confidence interval lie outside the

range of reasonable values, meaning that the regression data together with

the given model construction produce a parameter estimate that is inconsistent

with independent information about the parameter. This indicates the exist-

ence of model bias and that the data, as represented by the observations and

the reasonable range of parameter values, are sufficient to detect it. In this

situation, the interpretation of the observations, prior information, model

construction and reasonable range need to be carefully scrutinized.

3. For parameter C, the estimate is unreasonable, but the confidence interval

partly lies in the reasonable range of values. This result indicates that there

may or may not be model bias; the data are insufficient to make either con-

clusion. In this last situation, the modeler needs to consider both (a) the possi-

bility of model error and (b) additional data that could provide information

toward estimating the parameter value or the reasonable range more precisely.

Linear confidence intervals often are sufficient for this analysis, though the ana-

lyses also can be performed using nonlinear intervals.

The analysis described above does not evaluate one very important characteristic

of reasonable parameter values. In some situations the reasonable ranges of two par-

ameters may overlap, but it is known that the value of one should be greater or less

than the value of the other. That is, in addition to the requirement that parameters lie

in their respective reasonable ranges, the relative magnitudes of two or more

different parameter values are important. This is a valuable test that needs to be

considered when evaluating estimated parameter values (Poeter and McKenna,

1995; Poeter and Anderson, 2005). If the parameters cannot be estimated uniquely,

a parameter that equals the ratio of the parameters could be estimated, and the ratio

FIGURE 7.4 Graph illustrating the comparison of parameter estimates and confidence

intervals with the reasonable range of parameter values. Closed circles are parameter

estimates, black bars are confidence intervals, and grey bars represent the range of

reasonable values for each parameter.
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could be evaluated for its consistency with known relative properties. This manipu-

lation of parameters can be accomplished with UCODE_2005 and PEST, and, in

some circumstances with MODFLOW-2000.

7.7 TESTING LINEARITY

The application and utility of some of the methods presented in this chapter depend

on the linearity of the model with respect to the parameter values. Although the

modified Gauss–Newton optimization method and many of the statistical methods

discussed are useful even for problems that are quite nonlinear, more stringent

requirements on linearity are needed for linear confidence intervals to represent

parameter uncertainty adequately.

Linearity can be tested using the modified Beale’s measure (also called Linssen’s

measure) described by Cooley and Naff (1990, pp. 187–189). The original Beale’s

measure is described by Beale (1960). The modified Beale’s measure indicates non-

linearity of the parameter confidence region and does not directly measure nonli-

nearity of confidence intervals. It is, however, a good measure of nonlinearity that

is likely to affect confidence intervals on parameters.

The modified Beale’s measure tests model linearity with respect to the regression

observations. Use of this measure as an indicator of model linearity with respect to

predictions becomes increasingly problematic as the predictive quantities or situ-

ations differ more from the calibration observations and situations. For more infor-

mation, see Chapter 8, Section 8.7.

The modified Beale’s measure is calculated by the following four steps.

Step 1. Sets of parameter values are generated that lie on the edge of the linear confi-

dence region for the parameters. This is accomplished using the following equation:

~b ¼ b0 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NP� Fa(NP,NDþ NPR� NP

p
)

sbj
V(b0)
	 


j
, j ¼ 1, NP (7:11)

where b̃ ¼ a vector of generated parameter values;

b0 ¼ a vector of optimal parameter estimates;

Fa(NP, NDþ NPR� NP) ¼ the value from the F distribution with signifi-

cance level a (equal to 0.05 for the calculations

in this book) and with NP and NDþ NPR2 NP

degrees of freedom;

[V(b0)]j ¼ a vector equivalent to the jth column of V(b0);
sbj ¼ the standard deviation of the jth parameter,

defined in Eq. (7.3).

Because of the +, Eq. (7.11) yields two parameter vectors for each j, yielding a

total of 2 � NP generated parameter vectors. In the generated vectors, values of

parameters with small variances generally are relatively near the optimal par-

142 ESTIMATED PARAMETER VALUES AND PARAMETER UNCERTAINTY



ameter estimates, and values of parameters with large variances generally are

relatively far from optimal parameter estimates. The process by which Beale’s

measure generates parameter values is statistical, and sometimes one or more

of the parameter sets generated do not yield valid or accurate solutions. Resol-

ution of such problems is discussed later. For the jth pair of generated parameter

vectors, the jth parameter value usually varies the most, but parameter corre-

lation causes other parameter values to vary as well.

Step 2. Simulated equivalents of the calibration observations are computed by

executing a forward model run for each generated set of parameter values.

These simulated values are ~yik, where i refers to the ith observation and k refers

to the kth generated parameter vector.

Step 3. Linearized estimates of the simulated values are calculated using the gener-

ated parameter sets as follows:

~yoik ¼ y0i þ
XNP
j¼1

b0j � ~bjk
0

� @y0i
@bj

����
b0

(7:12)

where ~yoik ¼ the linearized simulated equivalent of the ith observation calculated

using the kth parameter set;

y0j ¼ the simulated equivalent of the ith observation calculated using the

original model and optimal parameter estimates;

b0j ¼ the jth optimal parameter estimate;
~bjk
0 ¼ the jth parameter value from the kth generated parameter set.

Step 4. The modified Beale’s measure, bNb, is calculated as a measure of the differ-

ence between the model-computed and the linearized estimates of the simulated

values (Cooley and Naff, 1990, p. 188):

bNb ¼ NP� s2

P2NP
k¼1

PND
i¼1

PND
q¼1

~yik � ~yoik
� �

viq ~yqk � ~yoqk

� 
P2NP
k¼1

PND
i¼1

PND
q¼1

~yoik � y0i
� �

vij ~yoqk � y0q
�  (7:13)

where ~yik the simulated equivalent of the ith observation calculated using the

original model and the kth parameter set.

The program BEALE-2000 (Hill et al., 2000) can be used to calculate the

modified Beale’s measure in conjunction with regression performed using

MODFLOW-2000. The program MODEL_LINEARITY can be used to calculate

the measure for regressions performed using UCODE_2005.

In step 2 above, problems can occur with obtaining a forward model solution

using the parameter values generated in step 1. The most common problems are

that physically impossible negative parameter values are generated (such as for
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hydraulic conductivity in groundwater models), or that solution with the specified

solver convergence criteria is not possible within the number of allowed solver iter-

ations. The problem of negative parameters can be solved by log-transforming the

parameter(s) involved, possibly repeating the regression to account for any resulting

change in optimized parameter values, and regenerating the parameter values for

Beale’s measure. For any parameter with prior information, the log-transformation

may require alteration of the statistic used to calculate the prior information weights,

as discussed in Guideline 6 in Chapter 11.

In some situations the solver will not converge for some of the data sets. As long

as the final solution obtained is not too inaccurate, the resulting value of Beale’s

measure will still reflect model nonlinearity adequately. If the lack of convergence

is accompanied by a very inaccurate solution, this is, of course, problematic. Some-

times better results can be obtained using a different solver.

To assess the degree of linearity of the model, the modified Beale’s measure cal-

culated by Eq. (7.13) is compared with two critical values (Cooley and Naff, 1990,

p. 189), as follows. IfbNb , 0:09=Fa(NP, NDþ NPR� NP), the model is effectively

linear, in that linear confidence intervals closely approximate the exact nonlinear

confidence intervals of Vecchia and Cooley (1987). If bNb . 1:0=Fa

(NP, NDþ NPR� NP), the model is highly nonlinear. If the modified Beale’s

measure lies between these two critical values, then the model can be considered

moderately nonlinear.

Alternative methods for evaluating model nonlinearity with respect to parameters

described by Cooley (2004) and Christensen and Cooley (2005) are derived from

Beale (1960) and Linssen (1975). Using the terminology used in Poeter et al.

(2005), the statistics are called total model nonlinearity and intrinsic model non-

linearity. Intrinsic model nonlinearity is the nonlinearity that cannot be removed

by a parameter transformation of any kind. For many circumstances it is the intrinsic

nonlinearity that is problematic. The following equations apply if the weighting

satisfies v ¼ V(1)21 (see Chapter 3, Section 3.4.2).

Total model nonlinearity can be calculated as follows. The sets of parameter

values are calculated as

~b ¼ b0 +
ffiffiffiffiffiffiffi
NP

p

sbj
V(b0)
	 


j
, j ¼ 1, NP (7:14)

The total nonlinearity statistic is calculated as

bN ¼ 1

NP� s2

P2NP
k¼1

PND
i¼1

PND
q¼1

~yik � ~yoik
� �

viq ~yqk � ~yoqk

� 
2� NP

(7:15)

Total model nonlinearity performs like the modified Beale’s measure (Eq. (7.13))

but is scaled differently. Values of total model nonlinearity that are less than 0.09
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indicate a linear model and values greater than 1.0 indicate a highly nonlinear

model.

The intrinsic model nonlinearity uses the sets of parameters from Eq. (7.14). The

intrinsic model linearity statistic is calculated as follows, using matrix notation

instead of the summations of Eqs. (7.13) and (7.15):

bNmin ¼ 1

NP� s2

P2�NP

k¼1

~yk � ~yok
� �� Xc
� �T

viq ~yk � ~yok
� �� Xc
� �

2� NP
(7:16)

where

c ¼ (XTvX)�1XTv ~yk � ~yok
� �

(7:17)

As for total model nonlinearity, values of intrinsic model nonlinearity that are less

than 0.09 indicate a linear model and values greater than 1.0 indicate a highly non-

linear model.

The total and instrinsic model linearity are calculated using UCODE_2005

and associated code MODEL_LINEARITY_ADV, or with the UNC Process of

MODFLOW-2000. Calculation of the statistics is illustrated in Exercise 7.3.

7.8 EXERCISES

Exercise 7.1: Parameter Statistics This exercise uses parameter statistics to

evaluate the optimal parameter estimates from the steady-state model regression

run of Exercise 5.2c. These statistics are used to reevaluate the importance of the

observations to the parameter estimates, and to evaluate parameter uncertainty

and correlation.

(a) Evaluate composite scaled sensitivities.

For nonlinear models, the composite scaled sensitivities calculated for the final

estimated parameters are likely to be different from those for the starting parameter

values. In the regression of Exercise 5.2c, the initial css considered in Exercise 4.1b

(shown in Figure 4.3 and 7.5a) suggested that prior information (actually, regular-

ization) was needed for parameters K_RB and VK_CB. It is important to examine

the final css, shown in Figure 7.5b, to assess whether their relative values for the

model parameters are similar. If the final css for the parameters with regularization

have become larger (relative to the css for other parameters), then it is important to

try to estimate these parameters without the regularization imposed.

Problem
. Discuss the differences between the initial (Figure 7.5a) and final (Figure 7.5b)

css values in terms of model nonlinearity and scaling.
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. How does nonlinearity and the scaling used affect the utility of the css?

. Do the css in Figure 7.5b suggest that the regression should be attempted

without prior information specified for parameters K_RB or VK_CB?

. Use the css to explain why the weighted residuals for the prior information are

so small (Figure 6.7a).

(b) Evaluate leverage statistics.

Problem: Compare the leverage statistics of Exercise 4.le and Table 7.2 and

comment on any differences. Refer to system dynamics and the added prior infor-

mation. To help explain the leverage of hd07.ss, consider Table 7.4, which shows

the parameter correlation coefficients calculated using the final parameter estimates

from Exercise 5.2e and all the regression data except observation hd07.ss.

(c) Evaluate importance using influence statistics.

In this exercise, the importance of individual observations and prior information

to the estimation of the model parameters is assessed using the Cook’s D and

DFBETAS measures. Table 7.2 shows the Cook’s D values for the steady-state

regression. The critical value of Cook’s D is 0.308. Table 7.3 shows the DFBETAS

statistics for the steady-state regression; the critical value is 0.555.

Problem

. Which observations have values of Cook’s D and of DFBETAS that exceed

the critical values? Why would these observations be most influential to the

FIGURE 7.5 Composite scaled sensitivities from the (a) starting and (b) final steady-state

model.

146 ESTIMATED PARAMETER VALUES AND PARAMETER UNCERTAINTY



estimation of the model parameters? As for leverage, to help explain the influ-

ence of observation hd07.ss, consider Table 7.4.

. Compare the DFBETAS values in Table 7.3 to the dimensionless scaled sensi-

tivities shown in Table 7.5. Explain why observation–parameter combinations

with the largest DFBETAS values can have very small dimensionless

scaled sensitivities. What is the implication for using dimensionless scaled

TABLE 7.3 DFBETAS Valuesa for the Steady-State Regression

DFBETAS

Observation Name HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

hd01.ss 0.030 20.089 0.000 20.006 0.018 0.005

hd02.ss 20.074 20.013 0.018 20.001 0.069 20.076

hd03.ss 0.020 20.006 0.003 20.005 0.001 0.000

hd04.ss 0.162 0.029 20.040 0.001 20.149 0.167

hd05.ss 0.0012 0.0003 0.002 0.016 20.021 0.022

hd06.ss 0.075 20.001 20.007 20.114 0.066 20.070

hd07.ss 20.586 20.001 20.012 1.74 21.46 1.605

hd08.ss 20.030 0.009 20.001 20.019 0.020 20.024

hd09.ss 20.098 0.011 20.009 20.032 0.223 20.245

hd10.ss 20.046 0.003 20.013 20.037 0.084 20.089

flow01.ss 259.4 20.088 20.018 1.14 232.8 221.1

K_RB prior 20.611 14.7 0.007 0.929 20.607 0.685

VK_CB prior 21.60 0.010 20.1 4.05 23.10 3.41

aThe values in bold type are larger than the critical value of 0.555.

TABLE 7.2 Leverage Statisticsa and Cook’s D Valuesb

for the Steady-State Regression

Observation Name Leverage Statistic Cook’s D

hd01.ss 0.00 0.0013

hd02.ss 0.14 0.0283

hd03.ss 0.18 0.0079

hd04.ss 0.14 0.0860

hd05.ss 0.22 0.0005

hd06.ss 0.19 0.0093

hd07.ss 0.96 0.5934

hd08.ss 0.18 0.0300

hd09.ss 0.84 0.2879

hd10.ss 0.19 0.0247

flow01.ss 1.00 589.1

K_RB prior 1.00 35.94

VK_CB prior 1.00 72.16

aThe values in bold type are larger than 0.90.
bThe values in bold type are larger than the critical value of 0.308.
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sensitivities and composite scaled sensitivities to determine which observations

are most important to estimating the parameters?

(d) Evaluate the uniqueness of the parameter estimates using correlation

coefficients.

Parameter correlation coefficients were introduced in Exercise 4.1a, to assess

likely parameter uniqueness using the starting parameter values, and in Exercise

5.1a, to demonstrate the relation between these coefficients and objective-function

surfaces and to illustrate the necessity of flow observations in preventing complete

correlation between groundwater flow model parameters. Here, the correlation

coefficients are used to evaluate uniqueness of the parameter estimates from Exer-

cise 5.2c. The correlation coefficients calculated by MODFLOW-2000 are shown

in Table 7.6a, and those calculated by UCODE_2005 are shown in Table 7.6b.

TABLE 7.5 Dimensionless Scaled Sensitivities Calculated for the Final Parameter

Values Estimated for the Steady-State Regression

Dimensionless Scaled Sensitivities

Observation Name HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

hd01.ss 1.18E-05 20.210 28.23E-09 1.29E-06 0.116 0.094

hd02.ss 225.5 20.210 20.020 21.16 13.2 13.7

hd03.ss 252.7 20.210 20.041 24.13 22.1 35.1

hd04.ss 225.5 20.210 20.020 21.16 13.2 13.7

hd05.ss 238.5 20.210 20.028 22.30 18.6 22.4

hd06.ss 225.6 20.210 20.181 21.02 13.2 13.9

hd07.ss 20.699 20.210 20.677 0.657 0.490 0.440

hd08.ss 252.7 20.210 0.003 24.19 21.9 35.2

hd09.ss 268.9 20.210 0.184 27.67 22.0 54.5

hd10.ss 238.5 20.210 20.096 22.25 18.5 22.6

flow01.ss 25.65E-04 22.38E-05 4.10E-07 26.20E-05 25.54 24.50

TABLE 7.4 Parameter Correlation Coefficient Matrix Calculated by MODFLOW-

2000 for the Final Parameter Estimates, Using All Hydraulic-Head and Flow

Observations and Prior Information Except Observation hd07.ssa

HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

HK_1 1.00 20.025 20.035 20.79 0.87 20.72

K_RB 1.00 0.0006 0.015 20.011 0.011

VK_CB 1.00 0.034 20.029 0.029

HK_2 Symmetric 1.00 20.98 0.99

RCH_1 1.00 20.97

RCH_2 1.00

aBold values have absolute value greater than 0.95.
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Problem
. Which parameter pairs are most highly correlated? What physical arguments

can be used to explain why these parameters are correlated?

. Do the parameter correlations calculated by MODFLOW-2000 at the final

parameter values (Table 7.6a) differ from those calculated at the starting

parameter values (Table 4.2a)? Is this expected?

. Are there any significant differences between the correlations calculated by

MODFLOW-2000 (Table 7.6a) and by UCODE_2005 (Table 7.6b)? What

would produce the differences?

(e) Detecting nonunique parameter estimates.

The next part of this Exercise repeats some of the types of regression runs per-

formed in Exercise 5.1b for the two-parameter combined model, to demonstrate

further the effects of parameter correlation and methods for detecting it. Recall

that the data available for estimating the six parameters of the steady-state model

consist of 10 hydraulic heads (five in each model layer) and the gain in streamflow.

When the streamflow gain observation is omitted, no prior information on par-

ameters is specified, and only the 10 head observations are used, then all parameter

correlation coefficients equal 1.0. This result is a direct consequence of Darcy’s

Law, as discussed in the answer to Exercise 5.1a (available on the web site described

in Chapter 1, Section 1.1). When the absolute values of any correlations are 1.00 or

very close to 1.00, it may be that no single set of parameter values will produce the

smallest value of the sum of squared, weighted residuals, and the nonlinear

TABLE 7.6 Parameter Correlation Coefficient Matrix for Final Parameter Values

Using the Hydraulic-Head Observations, the Streamflow Observation, and Prior

Information Calculated for the Steady-State Problem by MODFLOW-2000 and

UCODE_2005a

(a) MODFLOW-2000

HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

HK_1 1.00 20.042 20.080 20.36 0.72 0.025

K_RB 1.00 0.0005 0.063 20.041 0.047

VK_CB 1.00 0.20 20.15 0.17

HK_2 Symmetric 1.00 20.85 0.91

RCH_1 1.00 20.65

RCH_2 1.00

(b) UCODE_2005

HK_1 1.00 20.039 20.077 20.36 0.72 0.024

K_RB 1.00 0.0005 0.059 20.038 0.043

VK_CB 1.00 0.19 20.15 0.16

HK_2 Symmetric 1.00 20.85 0.91

RCH_1 1.00 20.65

RCH_2 1.00
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regression may have trouble converging, or the solution may be nonunique in that

different solutions would result from using different initial parameter values.

Instructions for these simulations are available from the web site for this book

described in Chapter 1, Section 1.1.

(1) Perform a regression run in which the flow observation is omitted from the

calibration data set, and there is no prior information on parameters. Statistics

from the modified Gauss–Newton iterations of this run are shown in Figure 7.6.

Problem
. What happened in this regression run? Discuss the calculated value of the

maximum change (column 3 in the top of the figure).

SELECTED STATISTICS FROM MODIFIED GAUSS-NEWTON ITERATIONS

ITER.
---------

MAX. PARAMETER
PARNAM

--------------

CALC. CHANGE

MAX. CHANGE
---------------------

MAX. CHANGE

ALLOWED
---------------------

DAMPING

PARAMETER
----------------------

1 K_RB -6.09916 2.00000 0.32791
2 HK_2 -0.902458 2.00000 1.0000

3 K_RB 0.849936 2.00000 1.0000
4 HK_2 -4.83286 2.00000 0.41383

5 VK_CB 39.8648 2.00000 0.50170E-01
6 VK_CB -329.378 2.00000 0.30360E-02

7 VK_CB 13.8278 2.00000 0.36159E-01
8 VK_CB 12.3276 2.00000 0.16224

9 VK_CB 1.96435 2.00000 1.0000
10 HK_2 -1.84155 2.00000 1.0000

SUMS OF SQUARED WEIGHTED RESIDUALS FOR EACH ITERATION

SUMS OF SQUARED WEIGHTED RESIDUALS
ITER. OBSERVATIONS PRIOR INFO. TOTAL

1 1751.1 0.0000 1751.1

2 7941.6 0.0000 7941.6
3 695.77 0.0000 695.77

4 148.52 0.0000 148.52
5 63.538 0.0000 63.538

6 58.476 0.0000 58.476
7 62.818 0.0000 62.818

8 59.196 0.0000 59.196
9 46.333 0.0000 46.333

10 16.519 0.0000 16.519

PARAMETER ESTIMATION DID NOT CONVERGE IN THE ALLOTTED NUMBER OF

ITERATIONS

FIGURE 7.6 Selected statistics from the modified Gauss–Newton iterations of the

regression run with only hydraulic-head observations in Exercise 7.1e. This is a fragment

from the global output file of MODFLOW-2000.
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. Explain the parameter correlations resulting from this run. These correlations

are shown in Table 4.3 in Exercise 4.1c; in that exercise a regression run was

not performed but correlations for the six-parameter steady-state model were

calculated using only the head observations.

(2) Test model nonuniqueness by starting the regression from the different sets

of initial parameter values listed in Table 7.7, and comparing the resulting estimates,

as suggested in Section 7.5.1. Include the flow observation and prior information.

The results are shown in Table 7.8.

Problem: How much do the estimated parameter values differ from those produced

using the original initial values? Are any differences large when compared to the

associated parameter standard deviations? What are the strengths and weaknesses

of this test?

( f ) Evaluate the precision of the estimates using standard deviations, linear con-

fidence intervals, and coefficients of variation.

Table 7.9 and Figure 7.7 show the starting and estimated (optimal) parameter

values for the steady-state regression of Exercise 5.2c, and the approximate linear,

individual, 95-percent confidence intervals on the estimated parameter values.

Problem
. Which estimated parameters have the largest individual, linear, 95-percent con-

fidence intervals as a percentage of the estimated value? Do these same par-

ameters have the largest coefficients of variation? Explain.

. What conclusions can be drawn about the relative uncertainty among the six

parameters?

. Theoretically, 95-percent confidence intervals should include the true value 95

percent of the time. Use the last column in Table 7.9 to note how many of these

TABLE 7.7 New Sets of Starting Parameter Values for Exercise 7.1e

HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

Original 3 � 1024 1.2 � 1023 1 � 1027 4 � 1025 63.072 31.536

Set 1 1.5 � 1024 0.6 � 1023 0.5 � 1027 2 � 1025 31.536 15.768

Set 2 6 � 1024 2.4 � 1023 2 � 1027 8 � 1025 126.144 63.072

TABLE 7.8 Estimated Parameter Values for Exercise 7.1e

HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

Original 4.62 � 1024 1.17 � 1023 9.90 � 1028 1.54 � 1025 47.45 38.53

Set 1 4.62 � 1024 1.17 � 1023 9.90 � 1028 1.54 � 1025 47.45 38.53

Set 2 4.62 � 1024 1.17 � 1023 9.90 � 1028 1.54 � 1025 47.43 38.54
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linear 95-percent confidence intervals include the true value. If the percent is

significantly smaller than 95 percent, explain why. In your answer, consider

the prior information imposed, whether it constitutes regularization, and its

effect on measures of uncertainty such as confidence intervals.

(g) Compare estimated parameter values with reasonable ranges.

Figure 7.7 shows the estimated parameter values and individual linear confidence

intervals in relation to the reasonable ranges of parameter values.

Problem: Are the estimated parameter values reasonable on the basis of the speci-

fied reasonable ranges? Are parameter confidence intervals needed to answer this

question for this problem?

FIGURE 7.7 Starting and true parameter values, limits of approximate, individual, linear,

95-percent confidence intervals (black bars), and limits of reasonable ranges of parameter

values, expressed as percentage of the estimated values, for the steady-state regression run.

Note that linear confidence intervals can have a negative lower limit, even if physically

implausible, when parameters are not log-transformed in the regression. Here, none of the

parameters are log-transformed.
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(h) Evaluate the precision of the estimates using nonlinear confidence intervals.

Figure 7.8 shows the nonlinear 95-percent confidence intervals calculated on par-

ameter values for the steady-state regression of Exercise 5.2c, together with the

approximate, individual, linear 95-percent confidence intervals and reasonable

ranges of parameter values from Figure 7.7. The nonlinear confidence intervals were

computed using the UNC Process (Christensen and Cooley, 2005) of MODFLOW-

2000. UCODE_ 2005 produced the same results. The web site for this book (see

Chapter 1, Section 1.1) provides instructions for calculating the nonlinear intervals.

Problem
. Compare the individual linear and nonlinear intervals, in terms of their size and

symmetry.

. How many of the nonlinear 95-percent confidence intervals include the true

parameter value? How does this analysis compare to that performed in Exercise

7.1c for the linear intervals?

FIGURE 7.8 Limits of individual, linear, 95-percent confidence intervals (thin error bars);

individual, nonlinear 95-percent confidence intervals (thick error bars); and reasonable ranges

of parameter values, for the steady-state regression run. All values are expressed as percentage

of the estimated parameter values.
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. Using the nonlinear intervals, assess the relative uncertainty among the six par-

ameter values. How do the conclusions about relative parameter uncertainty

compare to the conclusions drawn in Exercise 7.1f using the linear intervals?

Exercise 7.2: Consider All the Different Correlation Coefficients Presented
Three different statistics referred to as correlation coefficients have been presented:

R (Eq. (6.11)), the correlation between weighted simulated and observed values; R2
N

(Eq. (6.18)), the correlation coefficient between weighted residuals ordered from

smallest to largest and the order statistics from a N(0, 1) probability distribution;

and pcc, parameter correlation coefficients (Eq. (7.5)), which measure whether coor-

dinated changes in parameter values would produce the same simulated values and,

therefore, the same value of the objective function. For all of these correlation coef-

ficients, values range between –1.0 and 1.0, and values close to these extremes indi-

cate high correlation. For R and R2
N , values close to 1.0 are good: for R, this means

the simulated values are in some ways similar to the observed values; for R2
N , this

means the weighted residuals are normally distributed. For pcc, values close to

21.0 or 1.0 are bad: it means that the available data are insufficient to uniquely esti-

mate the parameter values being estimated.

Problem: Consider the equations for these three statistics. Note how they are similar

and different, and use the equations to explain why extreme values of R2
N and of R

are good, whereas extreme values of the parameter correlation coefficients are

problematic.

Exercise 7.3: Test for Linearity

(a) Use the modified Beale’s measure.

In this exercise, the linearity of the steady-state model is tested using the modified

Beale’s measure. First, calculate the measure using the weights on the prior values

for K_RB and VK_CB that were used in the regression. Then, recalculate the

measure using weights that more realistically reflect likely uncertainty in these

hydraulic-conductivity parameters.

Instructions for model and postprocessor simulations needed to calculate the

modified Beale’s measure are available from the web site for this book described

in Chapter 1, Section 1.1. For students not performing the simulations, the infor-

mation shown in Figures 7.9 and 7.10 can be used to complete the exercise.

Problem
. Does the modified Beale’s measure indicate that the model is effectively linear

so that linear confidence intervals accurately display the uncertainty in the

parameters?

. Would using nonlinear instead of linear confidence intervals change the con-

clusions reached in Exercise 7.1g?
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. How does the modified Beale’s measure change when the weights on the prior

values for K_RB and VK_CB are changed? Which calculated measure more

realistically reflects the nonlinearity of the steady-state model?

(b) Use total and intrinsic model nonlinearity.

In this exercise, the linearity of the steady-state model is tested using total and

intrinsic model nonlinearity measures mentioned at the end of Section 7.7. As in

Exercise 7.3a, first calculate these measures using the weights on the prior values

for K_RB and VK_CB that were used in the regression. Then, recalculate the

measures using weights that more realistically reflect the uncertainty in these two

parameters.

Instructions for the simulations needed to calculate total and intrinsic nonlinear-

ity are available from the web site for this book described in Chapter 1, Section 1.1.

For students not performing the simulations, the results are as follows. With the

weights used in the regression, total model nonlinearity is 223.7 and intrinsic

model nonlinearity is 0.142, and with a more realistic coefficient of variation of

1.0, total model nonlinearity is 359.0 and intrinsic model nonlinearity is 0.138.

See Section 7.7 for critical values against which to compare the total model nonli-

nearity measures.

USING FSTAT = 3.8700, BEALES MEASURE = 61.107
IF BEALES MEASURE IS GREATER THAN 0.26, THE MODEL IS
NONLINEAR.
IF BEALES MEASURE IS LESS THAN 0.23E-01, THE MODEL IS
EFFECTIVELY LINEAR, AND LINEAR CONFIDENCE INTERVALS ARE
FAIRLY ACCURATE IF THE RESIDUALS ARE NORMALLY DISTRIBUTED.

FIGURE 7.10 Part of BEALE-2000 output file showing Beale’s measure calculated with a

more realistic coefficient of variation of 1.0 used to compute the weights on prior values for

both K_RB and VK_CB.

USING FSTAT = 3.8700, BEALES MEASURE = 35.564
IF BEALES MEASURE IS GREATER THAN 0.26, THE MODEL IS
NONLINEAR.
IF BEALES MEASURE IS LESS THAN 0.23E-01, THE MODEL IS
EFFECTIVELY LINEAR, AND LINEAR CONFIDENCE INTERVALS ARE
FAIRLY ACCURATE IF THE RESIDUALS ARE NORMALLY DISTRIBUTED.

FIGURE 7.9 Part of BEALE-2000 output file showing Beale’s measure calculated with the

prior weights used in the regression for Exercise 5.2c.
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Problem
. Does the total model nonlinearity statistic indicate that the model is effectively

linear so that linear confidence intervals accurately display the uncertainty in

the parameters? Is this result consistent with the analysis of the modified

Beale’s measure?

. Does the steady-state model have a large degree of intrinsic model nonlinearity?

. How do the statistics change when the weights on the prior values for K_RB

and VK_CB are changed? Which calculated measure more realistically reflects

the nonlinearity of the steady-state model?
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8
EVALUATING MODEL
PREDICTIONS, DATA NEEDS, AND
PREDICTION UNCERTAINTY

This chapter presents methods for evaluating model predictions and focuses on three

broad topics: (1) defining the predictions of interest and calculating the predictions,

their sensitivities, and their standard deviations; (2) using simulated predictions to

assess future data needs, which involves statistics that indicate which parameters

and which existing or potential observations are important to the predictions; and

(3) quantifying prediction uncertainty using linear and nonlinear inferential statistics

and Monte Carlo methods.

8.1 SIMULATING PREDICTIONS AND PREDICTION

SENSITIVITIES AND STANDARD DEVIATIONS

Model predictions typically are made to investigate the simulated system at a past or

future time, under stress conditions that may differ from those used to calibrate the

model and/or at spatial locations where no observations exist. For example, in a

groundwater transport model, the predictions might be future solute concentrations

resulting from evolution of a contaminant plume under the steady-state flow

conditions for which the model was calibrated. Or, in a groundwater flow model,

the predictions might be simulated hydraulic heads under future pumping conditions

that are substantially different from those for which the model was calibrated. Or,

both future transport and changes in pumpage might be of interest. Simulating

predictions involves imposing the appropriate stresses and conditions and then
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calculating the predicted quantity. After the predictions have been simulated, their

sensitivities can be calculated by the same methods used to calculate sensitivities

for the simulated equivalents of the observations.

In MODFLOW-2000, UCODE_2005, and PEST, any type of quantity that can be

treated as an observation also can be treated as a prediction. The quantities that can

be used as observations are listed in Table 2.1.

After the predictions have been defined and simulated, and their sensitivities have

been calculated, the prediction standard deviations can be calculated as

sz0
‘
¼

XNP
i¼1

XNP
j¼1

@z0‘
@bj

V(b)
@z0‘
@bi

" #1=2

(8:1a)

where z0‘ ¼ the ‘th prediction;

sz0
‘
¼ the standard deviation of the predictions;

@z0‘=@bj ¼ the sensitivity of the ‘th predictionwith respect to bj, the jth parameter;

V(b) ¼ the parameter variance–covariance matrix (Eq. (7.1)), often calcu-

lated for all parameters, as described in Sections 7.2.1 and 7.2.5.

Expressing the sensitivities of prediction z 0‘ as vector xz‘ and expanding V(b) using
Eq. (7.1) yields

sz0
‘
¼ s2(xz‘ (X

TvX)�1xTz‘

j k1=2
(8:1b)

Prediction sensitivities and standard deviations are not often used directly, but

rather are scaled or used to derive measures for evaluating prediction uncertainty

and assessing data needs, as discussed later in this chapter. They can be used to

measure and communicate substantial insight about the system information, par-

ameters, and observations that are most important to the calculated predictions

and, to the extent that the model is accurate, the actual predictions. Prediction stan-

dard deviations also can be used to quantify the uncertainty of the predictions. This

chapter describes methods for accomplishing these tasks.

Use of measures derived from prediction sensitivities and from standard devi-

ations computed using Eq. (8.1) assumes that the model is linear. When calculating

these measures for nonlinear models, it is important to conduct the analyses with

likely sets of parameter values that differ from the optimal parameter estimates.

This tests the robustness of the conclusions drawn from these measures when apply-

ing them to nonlinear models.

8.2 USING PREDICTIONS TO GUIDE COLLECTION OF DATA

THAT DIRECTLY CHARACTERIZE SYSTEM PROPERTIES

The expense of data collection and the inaccessibility of many natural systems

typically limits the amount of information that can be obtained about the properties

and state of a simulated system. It is, therefore, important to design data
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collection strategies that provide as much information as possible about aspects of

the system that are important to the predictions. Here, we consider collection of

data that directly characterize the properties of the simulated system. For a ground-

water system, these data might include information about stratigraphy, hydro-

geologic unit geometries, hydraulic conductivities, and areal recharge values. In

Section 8.3, we consider collection of data related to quantities that can be used

as observations in model calibration, such as hydraulic heads, streamflow gains

and losses, and concentrations.

One way to use a calibrated model to identify system properties that are most

important to the predictions is by identifying model parameters that are most import-

ant to the predictions. The issue of parameter importance to predictions spans the

last two components of the observation–parameter–prediction triad composed of

entities that are directly connected by the model, as discussed in Chapters 1 and

10. Using predictions to design and evaluate strategies for collecting data related

to the model parameters requires statistics that measure the importance of the par-

ameters to the predictions. In nonlinear regression, predictions may be distinctly

different kinds of quantities from the observations. For example, in groundwater

models, the observations might be heads and flows, while the predictions might

be solute concentrations. Any analysis needs to accommodate this.

The methods discussed in this book for identifying parameter importance to

predictions include (1) prediction scaled sensitivities (pss); (2) combined use of pre-

diction, composite, and dimensionless scaled sensitivities (pss, css, and dss), to

identify parameters important to predictions that are not well supported by the obser-

vations; (3) parameter correlation coefficients (pcc) that include both observations

and predictions, to evaluate whether parameters that are highly correlated in the cali-

brated model are individually important to the predictions; and (4) the parameter–

prediction (ppr) statistic, which includes the effects of parameter uncertainty and

correlation, in addition to prediction sensitivities. The pss, css, dss, and pcc statistics

can be used to help reveal why different parameters are important; the ppr statistic

does the best job of identifying parameters for which additional data is most

advantageous. Foglia et al. (in press) compare these statistics to the results of

cross validation.

The broad field of model sensitivity analysis offers many additional measures for

evaluating the importance of model inputs to model predictions (e.g., Saltelli et al.,

2000, 2004). These range from simple measures like pss, to computationally

intensive measures that account for model nonlinearity. In this book, we focus on

a set of methods that are conceptually intuitive and fairly simple to calculate.

8.2.1 Prediction Scaled Sensitivities (pss)

Prediction sensitivities (@z 0‘/@bj) indicate the importance of the parameter values to

the predictions, but need to be scaled when used for comparing the relative import-

ance of different parameters. These are called prediction scaled sensitivities regard-

less of the exact scaling used. When calculating and presenting these measures, it is

important to state clearly the scaling used.
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Generally, prediction scaled sensitivities are calculated in one of four ways:

Sensitivity Scaling

pss‘j ¼ (@z0‘=@bj) (bj=100)(100=r
0
‘) (8:2a)

pss‘j ¼ (@z0‘=@bj) (sbj=100)(100=r
0
‘) (8:2b)

pss‘j ¼ (@z0‘=@bj) (bj=100)(100=z
0
‘) (8:2c)

pss‘j ¼ (@z0‘=@bj) (sbj=100)(100=z
0
‘) (8:2d)

where pss‘j is the scaled sensitivity of prediction z 0‘ to parameter bj; r
0
‘ is a reference

value defined by the modeler, as described below; sbj is the standard deviation of

parameter bj calculated in Eq. (7.3); and z 0‘ is the simulated value of the prediction.

As noted, the first term is the sensitivity; the following terms are the applied scaling.

UCODE_2005 produces data-exchange files with these prediction scaled sensi-

tivities (Poeter et al., 2005, Table 20).

The multiplication by bj/100 in the scaling of Eq. (8.2a) is equivalent to the scal-
ing for the one-percent scaled sensitivity of Eq. (4.7). When the scaling by 100/r 0‘ or
100/z 0‘ also is included, the resulting statistic is the change in the predicted value,

expressed as a percentage of r 0‘ or z 0‘, caused by a one-percent change in the par-

ameter value. This scaling can be produced rather awkwardly with MODFLOW-

2000 by setting the statistic for the weighting of the predictions to r 0‘ or z 0‘, and
specifying the STAT-FLAG as 1 (Hill et al., 2000, p. 53). Prediction scaled sensi-

tivities with this scaling will then be listed in the table of dimensionless scaled

sensitivities printed by the programs.

Themultiplication by sbj/100 in Eq. (8.2b) produces scaled sensitivities that equal
the change in the predicted value, expressed as a percentage of r 0‘ or z 0‘, caused by

changing the parameter value by an amount equal to one-percent of the parameter

standard deviation. This scaling expresses prediction sensitivity in the context of par-

ameter uncertainty and has two advantages and one disadvantage. The first advan-

tage is that, unlike parameter values, sbj almost never equals zero. The second

advantage is that it is valid for parameters that are affected by the datum of the

model, such as groundwater model parameters representing the head at constant-

head boundaries. Its disadvantage is that it is not fit-independent because the value

of the objective function is a term of the variance–covariance matrix (Eq. (7.1)).

For all pss calculated using results from a single regression run, this disadvantage

will affect all parameters proportionately, so the relative importance of parameters

in a single run can be evaluated. This scaling can be accomplished awkwardly

with MODFLOW-2000 by printing unscaled sensitivities and then applying the scal-

ing using spreadsheet software.

Possible alternatives for r 0‘ in Eq. (8.2) include a regulatory limit or another

quantity relevant to a given modeling situation. Clearly, using 0.0 in Eq. (8.2) is

not mathematically valid.

In some circumstances the prediction is the difference between two simulations,

as discussed in Section 8.4.5. For example, in groundwater models, a common

prediction is the drawdown or the change in flow to a stream caused by pumpage.
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UCODE_2005 and MODFLOW-2000 are designed to calculate sensitivities related

to differences, and thus pss also can be computed for these differences. For

UCODE_2005, this is accomplished using the Predictions mode and derived predic-

tions; for MODFLOW-2000, this is achieved using the computer program YCINT-

2000 (Hill et al., 2000, pp. 87–91).

8.2.2 Prediction Scaled Sensitivities Used in Conjunction

with Composite Scaled Sensitivities

In Figure 8.1, selected pss values calculated using Eq. (8.2c) for the model discussed

in Chapter 15, Section 15.2.1 are compared to the css of Eq. (4.6). In the example,

the predictions are the Cartesian components of advective travel simulated by par-

ticle tracking using the ADV Package of Anderman and Hill (2001). The model grid

is oriented with the north compass direction, so the predictions are the particle travel

distance in the north or south, east or west, and vertical directions. Figure 8.1b shows

results for the north–south component of travel. The figure shows the mean and

range of the pss values for five transported particles. Here, the pss values are defined

to equal the percent change in the advective transport caused by a one-percent

change in parameter value. The simulated value equals the simulated length of

advective transport in the north or south coordinate direction.

In Figure 8.1b, the pss show that HK2, HK3, and RCH2 (the hydraulic conduc-

tivity of two rock types and the recharge potential of one area) are the most import-

ant parameters to the determination of advective transport. In Figure 8.1a, the css

show that the observations used in the regression provide more information for par-

ameters HK2 and HK3 than for RCH2. This suggests that of these three parameters,

it is probably most important to collect additional information about RCH2 for

improving the transport predictions. This parameter was estimated by the regression,

as shown by its black bar, but collecting additional information about its character-

istics or additional observation data that support it could help improve its represen-

tation in the model and its estimated value, and thereby probably also improve the

predictions.

This analysis can be taken one step further by evaluating the dss shown in

Figure 8.1c. Although the css for parameter HK4 is large, the dss show that the sup-

port primarily comes from just four observations, suggesting that these observations

should be closely investigated. This type of analysis can be used to understand and

communicate model strengths and weaknesses and to justify and plan additional

model development and data collection efforts. It can also be used to better under-

stand more sophisticated statistics such as the parameter–prediction (ppr) statistic

described in Section 8.2.5.

8.2.3 Parameter Correlation Coefficients without and with Predictions

To determine whether parameters that are highly correlated for the calibrated model

are individually important to predictions of interest, two different sets of parameter

correlation coefficients are compared: those calculated using one of the first two
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FIGURE 8.1 (a) Composite scaled sensitivities for selected parameters, (b) one-percent

prediction scaled sensitivities for the north–south component of predicted advective

transport, and (c) dimensionless scaled sensitivities showing the support provided by the

observations for parameter HK4. In (a), the composite scaled sensitivities for parameters

estimated in the regression are shown using black bars; those not estimated in the regression

are shown using gray bars. In (b), the prediction scaled sensitivities are defined as the

percent change in the prediction given a one-percent change in the parameter value. These

are selected results from simulations of the model discussed in Chapter 15, Section 15.2.1.

8.2 COLLECTION OF DATA THAT CHARACTERIZE SYSTEM PROPERTIES 163



versions of the parameter variance–covariance matrix (Eq. (7.1)) described in

Chapter 7, Sections 7.2.1 and 7.2.5, and those calculated with predictions as

well (the fifth version of the parameter variance–covariance matrix described in

Chapter 7, Sections 7.2.1 and 7.2.5).

The pcc calculated with the predictions as well as the observations used in the

regression is produced by augmenting the terms of Eq. (7.1) to include information

related to the predictions. This produces an alternate parameter variance–covariance

matrix that can be represented as

V‘(b
0) ¼ s2(XT

‘v‘X‘)
�1 (8:3)

where the sensitivity matrix, X‘, and the weight matrix,v‘, are augmented to include

the predictions. Predictions can be included individually or in groups, as appropriate

for the particular problem to be addressed.

These augmentations can be implemented easily when using MODFLOW-2000

or UCODE_2005 by adding the predictions to the list of observations, and executing

the sensitivity analysis mode of either computer program. The value specified for the

prediction as the “observed value” does not affect the calculated parameter corre-

lation coefficients with predictions because the s2 term in Eq. (8.3) cancels out in

the calculation of Eq. (7.5). However, the specifiedweight does affect the calculation.

One implication of this is that inMODFLOW-2000 and UCODE_2005 it is generally

not desirable to specify the statistic used to calculate the prediction weight as a coef-

ficient of variation because in that situation the “observed value” is used to calculate

the weight. Additional comments about determining “weights” for predictions are

provided at the end of this section.

The resulting pcc with predictions are compared with pcc calculated only with

the observations used in the regression. If adding the predictions causes some

highly correlated parameter pairs to become much less correlated, this indicates

that the predictions are likely to depend on individual parameter values that the

regression could not estimate uniquely. This identifies a weakness in the calibrated

model.

The utility of pcc with predictions is illustrated by a groundwater modeling

example. Consider a groundwater flow model calibrated by estimating parameter

values using observations of hydraulic-head and streamflow gain or loss. The cali-

brated model is used to predict (a) hydraulic head at a location where no measure-

ment can be obtained and (b) advective transport from the site of a contaminant spill.

Parameter correlation coefficients are first calculated using the calibrated model,

all calibration observations, and all defined parameters. Two sets of pcc with predic-

tions are then obtained, by first including the predicted hydraulic-head location and

then the predicted advective transport. Using an analysis with calculations similar to

these, Anderman et al. (1996) show that prediction of the hydraulic head using the

calibrated model did not require uncorrelated parameter estimates and thus this

prediction could be used with some confidence. Prediction of advective transport

did require uncorrelated estimates, and thus the transport prediction is highly

suspect.
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The weights for the predictions can be established using one of the two following

approaches:

1. The weight can be established using a statistic (standard deviation or variance;

see Chapter 3, Section 3.4.4 and Guideline 6 in Chapter 11) that reflects an

acceptable range of uncertainty in the prediction. Compared to approach 2,

this approach is more consistent with the scaling of the CTB statistic of Sun

and Yeh (1990a) and Sun (1994).

2. The weight determined using approach 1 can be increased (by decreasing the

value of the statistic used to calculate the weight) so that the results clearly

indicate whether unique parameter values are important to predictions.

By approach 1, predictions for which a larger amount of uncertainty is acceptable

have smaller weights. Predictions that are desired to be more certain have larger

weights, which increases the absolute values of the pcc for parameters to which

these predictions are sensitive. Approach 2 allows weights for certain predictions

to be subjectively increased. This option ensures that if individual parameter

values are important to predictions, this will be revealed by the pcc.

8.2.4 Composite and Prediction Scaled Sensitivities Used

with Parameter Correlation Coefficients

Composite and prediction scaled sensitivities and parameter correlation coefficients

(css, pss, and pcc) can be used together to assess whether an improved estimate of a

parameter is needed. A classification system for this analysis is shown in Figure 8.2.

The upper portion of this figure classifies the precision of a parameter estimate in

combination with the importance of the parameter to the predictions. The lower por-

tion of the figure classifies the uniqueness of the estimates for a parameter pair in

combination with the importance to the predictions of having unique estimates of

the two parameters.

If the analysis of a parameter indicates a classification in box IV of Figure 8.2a or

8.2b, this means that improved estimation of this parameter and/or improved

representation of the system features with which it is associated are likely to improve

prediction accuracy. If the analysis indicates a classification in boxes I, II, or III, the

term “acceptable” in these boxes means that a parameter is estimated well, is unim-

portant to the predictions, or both. Improved estimation of the parameter and

improved representation of the system features with which it is associated are

likely to be less beneficial to improving prediction accuracy than for parameters

that are classified in box IV.

The pcc are used in Figure 8.2b as measures of both the uniqueness of the par-

ameter estimate and the importance of unique parameter values to the predictions.

To measure the uniqueness of the parameter estimate, pcc are calculated with only

the observations and prior information used in the calibration. To measure whether

unique parameter estimates are important to the predictions, pcc are calculated with
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the predictions as well as the calibration observations and prior information. These

two different types of pcc are discussed in Section 8.2.3.

The classification system illustrated in Figure 8.2b only addresses uniqueness

caused by lack of parameter correlation. Methods for detecting nonuniqueness

caused by multiple minima are discussed in Chapter 7, Section 7.4.

This method of using css, pss, and pcc can be revealing but is awkward.

Fortunately, the ppr statistic described next incorporates the effects of parameter

correlation as well as observation and prediction sensitivity.

8.2.5 Parameter–Prediction (ppr) Statistic

Unlike prediction scaled sensitivities (pss), the parameter–prediction (ppr) statistic

assesses the importance of parameters to predictions in a way that accounts for

FIGURE 8.2 Classification of the need for improved estimation of a parameter and,

perhaps, associated system features. The classification is based on statistics that indicate

(a) the precision and importance to predictions of a single parameter and (b) the

uniqueness and importance to predictions of a pair of parameters. See text for additional

explanation.
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parameter correlations. The ppr statistic also takes advantage of the connection

between parameter uncertainty, parameter correlation, and prediction uncertainty

provided by Eq. (8.1) for the prediction standard deviation. The drawback of the

ppr statistic is that the equation and procedure for obtaining the statistic is more

complicated than for pss, which can cause the results to be less clear. Evaluating

the dss, css, pss, and pcc statistics as described above can help explain the ppr

results. The ppr statistic was developed by Tiedeman et al. (2003) and was called

the value of improved information (voii) statistic in that work. In this book, the stat-

istic name has been changed to better reflect its purpose.

The equation for the ppr statistic is derived using Eq. (8.1), which calculates the

prediction standard deviation using a calibrated model with existing independent

information about parameter values included as prior information. In this calcu-

lation, it is important that the parameter variance–covariance matrix for all par-

ameters (defined in Chapter 7, Sections 7.2.1 and 7.2.5) be used. Then, the

standard deviation is recomputed under the assumption of increased certainty in

one or more parameter values. The difference in prediction standard deviation is

used to calculate the ppr statistic.

The parameter variance–covariance matrix in Eq. (8.1) is calculated as

V(b) ¼ s2(XTvX)�1 (8:4)

where X and v include sensitivities and weights for prior information as well as for

observations used in the regression. To explain the method for calculating the ppr

statistic, it is convenient to express X and v as

X ¼ XY;PRI

I

� �
(8:5)

v ¼ vY;PRI 0

0 vppr

� �
(8:6)

where XY,PRI ¼ the NP by NDþ NPR matrix of sensitivities of the ND calibration

observations and the NPR prior equations with respect to the NP

model parameters, with elements equal to @y0i=@bj (Eq. 4.1);
NP ¼ the total number of defined model parameters and may be greater

than the number of estimated model parameters;

I ¼ the NP by NP identity matrix (all elements equal 1.0);

v ¼ the weight matrix expressed here as in Appendix B;

vY;PRI ¼ the ND by NDþ NPR matrix of weights on observations and prior

equations;

vppr ¼ the NP by NP matrix used to calculate ppr statistics, defined after

Eq. 8.7.

In calculating the variance–covariance matrix for all parameters, there is usually

no prior information on parameters for which the calibration observations supply

8.2 COLLECTION OF DATA THAT CHARACTERIZE SYSTEM PROPERTIES 167



abundant information. For parameters supported better by independent information

than by the calibration observations (commonly these parameters are not estimated

by the regression), it is important that prior information and associated weighting be

specified, as discussed in Chapter 7, Section 7.2.5. By specifying prior weights in

this manner, the parameter variance–covariance matrix calculated using Eq. (8.4)

reflects actual levels of uncertainty, and the prediction uncertainty calculated

using Eq. (8.1) reflects these realistic parameter uncertainties.

The prediction uncertainty produced with improved information on one par-

ameter is calculated using a modified form of Eq. (8.1):

sz0
‘
(j) ¼

XNP0

i¼1

XNP0

j¼1

@z0‘
@bj

V(b)( j)
@z0‘
@bj

" #1=2

(8:7)

where sz0
‘
( j) ¼ the standard deviation of the ‘th predicted value, z0‘, calculated

with improved information on the jth parameter, bj;

NP ¼ the total number of defined parameters;

V(b)( j) ¼ the symmetric, square NP by NP parameter variance–covariance

matrix for all parameters, calculated with improved information

on the jth parameter, expressed as V(b)( j) ¼ s2(XTv( j)X)
�1;

s2 ¼ identical to s2 in Eq. (8.1), because the model has not been recali-

brated and s2 is still considered the best estimate of the true error

variance s2;

v( j) ¼ the weight matrix in which the jth parameter has improved infor-

mation, expressed as

v( j) ¼ vY;PRI 0

0 vppr( j)

� �
;

vppr( j) ¼ a NP by NP matrix, in which all entries are zero except for the

diagonal entry related to the jth parameter.

The matrixvppr( j) is central to calculating the ppr statistic. Improved information

on the jth parameter is implemented in this matrix by specifying a positive value on

its jth diagonal. Conceptually, this positive value represents the increased certainty

in the prior value that might result from collection of additional field data; that is,

from improved information about the parameter.

The consequence of including vppr( j) is that the variance of the jth parameter,

which has improved information, will be smaller in V(b)( j) than in V(b). Parameters

that do not have improved information, but that are correlated with the jth parameter,

also tend to have smaller variances in V(b)( j) compared to those in V(b). Primarily

because of the reductions in parameter variances, the prediction standard deviation

calculated with improved information (sz0
‘
(j) of Eq. (8.7)) generally is smaller than
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the prediction standard deviation calculated without improved information (sz0
‘
of

Eq. (8.1)).

The scaled difference between sz0
‘
( j) and sz0

‘
measures the value of the

improved information on the jth parameter with respect to prediction z 0‘ and is

calculated as

ppr‘(j) ¼ 100�
sz‘ � sz0

‘
( j)

sz‘

� �
¼ 100� 1� sz0

‘
( j)

sz‘

� �
(8:8)

where ppr‘( j) is the parameter–prediction statistic and equals the percent reduction

in the standard deviation of prediction z 0‘ that results from improved information on

the jth parameter. To rank the importance of individual parameters to prediction z 0‘,
ppr‘( j) is calculated NP times, each time with improved information on one par-

ameter. The parameter associated with the largest value of ppr‘( j) ranks as most

important to prediction z 0‘.
To implement improved information on each model parameter in a consistent

manner, Tiedeman et al. (2003) suggest increasing the positive value on the diagonal

of the vpprðjÞ matrix until the standard deviation on the parameter estimate is

decreased by a specified percent. This requires an iterative procedure. Tiedeman

et al. (2003) specified a 10 percent decrease, which represents the situation in

which improved, but not perfect, information is collected about a parameter. For

diagonal vpprðjÞ matrices, implementing this specified percent decrease is accom-

plished by increasing the value on the diagonal associated with the parameter in

question; for full weight matrices it is less clear how to proceed and this issue has

not been investigated.

The method presented above is easily extended to the case of evaluating

improved information on more than one parameter. When evaluating multiple par-

ameters, the effect of parameter correlations can strongly influence which par-

ameters are important to a prediction. This effect can produce situations in which

the set of parameters with the highest individual ppr‘( j) values is not identical to

the set of parameters that are most important when improved information on mul-

tiple parameters is considered. Tiedeman et al. (2003) present the method for the

general case of improved information on any number of parameters.

The computer program OPR-PPR (Tonkin et al., in press) can be used to calculate

the ppr statistic. OPR-PPR easily can calculate the ppr statistic for models devel-

oped and calibrated using UCODE_2005 or MODFLOW-2000 because it is

designed to use their output files directly. OPR-PPR also can be used with other

models if appropriate files are produced.

Other methods for evaluating the importance of model parameters to model pre-

dictions include those developed for hydrologic models byWalker (1982), Melching

et al. (1990), Indelman et al. (1996), Høybye (1998), Levy et al. (1998), and Levy

and Ludy (2000). These are similar to the ppr statistic in that they incorporate par-

ameter uncertainty and prediction sensitivity, but unlike the ppr statistic, most of

these methods do not include the effects of parameter correlations.
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The calculation of the ppr statistic assumes that the model is linear with respect to

the parameter values (see Chapter 1, Section 1.4.1). However, Tiedeman et al.

(2003) found that the method is fairly robust for a mildly nonlinear groundwater

model, for an application that is summarized in Chapter 15. Methods that account

for model nonlinearity are presented by Sulieman et al. (2001) for models calibrated

by regression, and by Saltelli et al. (2000) for the general case in which the model

may not have been calibrated by regression. These methods are more complex than

that for calculating the ppr statistic and also are substantially more computationally

intensive.

The basic concept embodied by the ppr statistic is the use of the first-order

second-moment equation for prediction uncertainty (Eq. (8.1)) as a basis for asses-

sing parameter importance. This concept has been used by other researchers as the

basis for designing sampling networks for collecting data about the properties or par-

ameters of groundwater systems. McLaughlin and Wood (1988) were among the

first to investigate aquifer property sampling strategies in this context. McKinney

and Loucks (1992), Sun and Yeh (1992), and Wagner (1995, 1999) incorporated

this type of analysis into an optimization framework and developed methods for

designing aquifer property sampling networks that minimize prediction uncertainty.

The ppr statistic differs in that it is used as a tool for ranking the importance of all

model parameters to any individual prediction.

8.3 USING PREDICTIONS TO GUIDE COLLECTION

OF OBSERVATION DATA

Evaluating the importance of observations to predictions spans the entire

observation–parameter–prediction triad discussed in Chapters 1 and 10. We present

two methods for evaluating the importance of observations to predictions, both of

which use sensitivity statistics and are computationally fast. The first, using

scaled sensitivities and parameter correlation coefficients (pss, css, and dss), is

more awkward than the second, which uses the observation–prediction (opr)

statistic.

The statistics available in classical regression methods to address evaluation of

observation importance to predictions include jackknife and bootstrap methods,

both of which require many regressions and therefore often require prohibitive

amounts of computer execution time for models of environmental systems. Foglia

et al. (in press) demonstrate that opr statistics perform comparably to leave-one-

out cross-validation in the evaluation of a groundwater model.

8.3.1 Use of Prediction, Composite, and Dimensionless Scaled Sensitivities
and Parameter Correlation Coefficients

Using pss, css, and dss together as illustrated in Figure 8.1 is one method for span-

ning the observation–parameter–prediction sequence to identify existing and

potential observations important to the predictions. This figure was presented and
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discussed in Section 8.2.2 in the context of identifying parameters that are important

to the predictions but are not well-supported by the existing observations. A similar

approach is also suggested by Merry et al. (2003).

The pss, css, and dss also can be evaluated with the primary objective of identify-

ing important existing and potential observations. Identification of the most import-

ant existing observations involves first identifying the parameters most important to

the predictions using the methods illustrated in Figure 8.1, then identifying obser-

vations with large dss for these parameters. In Figure 8.1, this analysis revealed

the potentially problematic situation of only four observations providing infor-

mation for parameter HK_1. This same type of analysis can be used to identify

observations most important to the predictions; in this case, observation types and

locations with large dss are likely to be important, for example, to continue moni-

toring in the future (see Section 8.3.4). This type of analysis also can be used to

identify important potential new observation types and locations, by calculating

the dss for potential observations instead of for existing observations.

The importance of potential new observations to the predictions also can be eval-

uated with respect to parameter correlations because pcc does not depend on the

value of the observation. If the analysis of pcc without and with predictions (Section

8.2.3) shows that the predictions are likely to depend on parameter values that the

regression could not estimate uniquely, then potential new observations could

improve this situation if they enable unique estimation of the parameters. This

can be evaluated prior to actually collecting the observations, by calculating the

pcc with both the existing and the potential observations. In this calculation, the

simulated conditions might be different for the existing and potential observations,

and both sets of conditions need to be properly represented. The pcc calculated with

the existing and potential observations are then compared to those calculated with

only the existing observations. If adding the potential observations reduces the

absolute values of pcc that are very large when only the existing observations are

included, then the potential observations probably are important to predictions

that depend on the individual parameter values.

A drawback of using the pss, css, dss, and pcc together in this manner is that this

procedure is awkward. It can result in many graphs from which it can be difficult to

extract the key results. However, these methods can be quite useful in providing

insight about values of observation–prediction (opr) statistics.

8.3.2 Observation–Prediction (opr) Statistic

The opr statistic integrates the information contained in the fit-independent statistics

dimensionless and composite scaled sensitivities (css and dss of Chapter 4), par-

ameter correlation coefficients (pcc of Chapter 7), and prediction scaled sensitivities

(pss of Chapter 8). As indicated in Sections 8.3.1 and 8.3.3, it often is useful to

investigate those statistics to better understand opr results.

The methodology for the opr statistic assumes that the model is linear with

respect to the model parameters. Tests of this assumption are presented in Chapter 7,

Section 7.7 and Section 8.7.
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The observation–prediction (opr) statistic assesses the effect on the prediction

standard deviation of either removing one or more existing observations or adding

one or more new observations. This evaluation can address issues related to moni-

toring the state of the simulated system, as discussed in Section 8.3.4. Calculating

the opr statistic does not involve recalibrating the model with these observations

added or removed. Thus, the leverage of the observations, rather than their influence,

is determined (leverage and influence are defined in Chapter 7, Section 7.3).

The opr statistic requires trivial computational effort. In contrast, identifying

existing observations that are influential with respect to the predictions requires

jackknifing or similar methods, which repeat the nonlinear regression with one or

more observations omitted (Efron, 1982; Good, 2001). In addition, influence

cannot be determined for potential observations because assessing influence requires

the observed value in addition to other information associated with the potential

observation, such as its type, location, and time.

A modified version of Eq. (8.1) is used to evaluate the effect on prediction uncer-

tainty of omitting or adding one observation (Hill et al., 2000; Tiedeman et al., 2004):

sz0
‘
(+i) ¼

XNP0

i¼1

XNP0

j¼1

@z0‘
@bj

V(b)(+i)

@z0‘
@bi

" #1=2

(8:9)

where sz0
‘
(+i) ¼ the standard deviation of the ‘th predicted value, z 0‘, calculated

with the ith observation either added (þ) or removed (2);

NP ¼ the number of defined parameters, which may exceed the number

of estimated parameters;

V(b)(+i) ¼ the symmetric, square NP by NP parameter variance–covariance

matrix for all parameters, with the ith observation either added or

removed and is calculated as

V(b)(+i) ¼ s2(XT
(+i)v(+i)X(+i))

�1 (8:10)

where s2 ¼ identical to s2 in Eq. (8.1), because the model has not been recalibrated

and s2 is still considered the best estimate of the true error variance s2;

X(+i) ¼ a sensitivity matrix formed either by adding (þ) or removing (2) the

sensitivities of the simulated equivalent of the ith observation;

v(+i) ¼ formed by modifying matrix v (defined after Eq. (8.6)), either by

adding (þ) or by removing (2) the weight associated with the ith

observation.

As for the ppr statistic, it is important that the parameter variance–covariance

matrix for all parameters (Chapter 7, Sections 7.2.1 and 7.2.5) be calculated in

Eq. (8.10), and that prior information and associated weighting be specified for par-

ameters that are supported better by independent information than by the calibration

observations.
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In practice, the ith observation is removed by setting its weight equal to zero, and

by leaving the sensitivity matrix X unchanged. An observation is added by calculat-

ing the related sensitivities and assigning weights on the basis of an analysis of errors

that would be expected for the potential observed values. The observed value itself

does not affect the opr statistic because s2 from the regression is used in Eq. (8.10).

The percent change in prediction uncertainty that results from removing or

adding the ith observation is used as the measure of its importance to prediction z 0‘:

opr‘(+i) ¼ 100� sz0
‘
� sz0

‘
(+i)

sz0
‘

�����
����� ¼ 100� 1� sz0

‘
(+i)

sz0
‘

�����
����� (8:11)

where opr‘(+i) is the observation–prediction statistic, and the vertical lines indicate

absolute value.

This method can easily be extended to evaluate adding or omitting any combi-

nation of existing or potential observations (Tiedeman et al., 2004).

The computer program OPR-PPR (Tonkin et al., in press) can be used to calculate

the opr statistic. As discussed in Section 8.2.5, this program can calculate the stat-

istic for UCODE_2005 and MODFLOW-2000 models, as well as for any other

model that produces the needed output files.

Some of the strengths and weaknesses of the opr statistic, and, indeed of all stat-

istics calculated using a model, are that they reflect model simplifications and

approximations. Generally, the model is the best available representation of the

system in question, and as such it is important to consider model-calculated stat-

istics. Close evaluation of results that do not make sense can help improve model

results, as discussed in the next section.

8.3.3 Insights About the opr Statistic from Other

Fit-Independent Statistics

The reasons that certain observations rank as important to the model predictions by

the opr statistic can determine what action is advised on the basis of the opr results.

For example, large values of opr might be caused by aspects of model construction

that are unrealistic. The appropriate response is to fix the model, which is likely to

have the advantageous consequence of allowing other observations that are more

accurately simulated to have greater influence on simulated results. In other circum-

stances the opr analysis may reveal plausible improvements in data collection strat-

egies. Several of the fit-independent statistics discussed in previous chapters can

help reveal why particular observations have large opr statistics.

The contribution to the opr statistic of the prediction sensitivities in Eq. (8.9)

can be investigated using the pss of Eq. (8.2). The contribution of the variance–

covariance matrix can be investigated by first noting that Eq. (8.11) is designed so

that the s2 term of Eq. (7.1) cancels out, causing the opr statistic to be fit-independent.

Thus, only the term (XTvX)�1 from Eq. (7.1) remains. The contribution of this term

to the opr statistic can be investigated by considering dimensionless and composite

scaled sensitivities (dss of Eq. (4.3) or (4.5) and css of Eq. (4.6)) and the parameter
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correlation coefficients (pcc of Eq. (7.5)). Generally, if (1) observation yi provides

substantial information about parameter bj or about parameter bk correlated with bj
(dssij is large), and (2) bj is important to prediction z 0‘ (pss‘j is large), then it is

likely that opr‘(+j) will be large.

It is important to be aware that, in some situations, values of dss can be large

because of simplifications made during model construction rather than because of

actual hydrogeologic conditions. For example, consider a groundwater system in

which a pumping well draws water from a localized zone of high hydraulic conduc-

tivity, but in a regional model of this system, the cell containing the well has a much

lower hydraulic conductivity. Because the pumping well is located in a zone of low

conductivity, hydraulic head in this cell will have a relatively large sensitivity to the

hydraulic conductivity of the cell. In this case, the importance of an existing or

potential hydraulic-head observation in this cell may not actually be as important

to a prediction as the opr statistic may indicate.

Additional insight into why certain observations can rank as important using

opr is provided in Exercises 8.1d and 8.1f. Also, Tiedeman et al. (2004) apply the

opr statistic to a groundwater flow model with advective-transport predictions.

This application is summarized in Chapter 15.

8.3.4 Implications for Monitoring Network Design

Minsker (2003) summarizes methods and applications for groundwater monitoring

network design. The prediction standard deviation of Eq. (8.1) has been used by

many authors for monitoring network design. For example, Sun and Yeh (1990b)

and Wagner (1995, 1999) used Eq. (8.1) together with optimization methods to

determine an optimal set of groundwater observations for minimizing prediction

uncertainty. Reeves et al. (2000) used it to identify new data locations most

beneficial to groundwater remediation designs. Valstar and Minnema (2003) used

a Bayesian method that considers prediction uncertainty. A strength of these methods

and the opr statistic of Eq. (8.11) is that they can be used to evaluate and rank indi-

vidual and user-defined groups of observations by their importance to predictions.

8.4 QUANTIFYING PREDICTION UNCERTAINTY USING

INFERENTIAL STATISTICS

Prediction uncertainty can be evaluated and quantified using inferential statistics

and/or Monte Carlo analysis. The Monte Carlo method is discussed in Section

8.5. In both techniques, the magnitude of prediction uncertainty is related to the

uncertainty in the model parameters and the sensitivity of the predicted quantities

to the model parameters.

The inferential methods discussed here produce intervals on predictions. Larger

intervals indicate greater uncertainty. The methods are sometimes called first order,

second moment (FOSM) methods: first order because they are linear, second

moment because they use standard deviations, which are second moment statistics.
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Elementary texts that discuss inferential methods include Ott (1993, pp. 201–204)

and Davis (2002, pp. 200–204). More advanced references include Seber and Wild

(1989), Cooley and Naff (1990), Hill (1994), Helsel and Hirsch (2002), Glasgow et

al. (2003), and Stauffer et al. (2004).

8.4.1 Definitions

The intervals discussed in this book can be individual or simultaneous intervals, and

they can be confidence or prediction intervals. Thus, four types of intervals are poss-

ible: individual confidence intervals, individual prediction intervals, simultaneous

confidence intervals, and simultaneous prediction intervals. The four terms are

described in the following sections.

Individual Intervals An individual confidence or prediction interval is said to have

a (12 a) probability of including the true value of one predicted quantity. a is the

significance level; a ¼ 0.05 produces 95-percent confidence intervals.

Simultaneous Intervals Simultaneous intervals have the specified probability of

containing their respective true predicted values simultaneously. Because they sim-

ultaneously account for uncertainty in more than one quantity, simultaneous inter-

vals are always of equal size or larger than equivalent individual intervals. To

understand this, consider 95-percent intervals on a set of predictions. If calculated

using Monte Carlo methods, individual intervals would need to be set so that

each interval contains the predictions produced by 950 of 1000 randomly generated

sets of parameter values. Simultaneous intervals, on the other hand, would need to

be set so that all intervals contain the predictions produced by 950 of 1000 randomly

generated sets of parameter values. As more intervals are considered, the intervals

tend to become larger.

The size of linear simultaneous intervals increases until the number of intervals

equals the number of parameters included in the uncertainty analysis. Additional

intervals do not increase the size of linear simultaneous intervals. Nonlinear

simultaneous intervals generally are similar, but there may be exceptions.

Confidence Intervals Confidence intervals on predictions are intervals that, with a

specified likelihood, contain the true, unknown predictions, if the model is correct.

Confidence intervals reflect the uncertainty with which the parameters are estimated,

as represented by the variance–covariance matrix on the parameters, projected

using prediction sensitivities (Eq. (8.1)).

Prediction Intervals Prediction intervals account for the same uncertainty in the

parameter values reflected in confidence intervals, but also account for random

error incurred when the predicted quantity is measured. A prediction interval is

needed if the interval is to be compared with a measurement of the prediction.

Prediction intervals are most often calculated for predictions and rarely for par-

ameters. The use of the term “prediction” to describe both a type of interval and the
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quantity for which the interval is constructed is confusing, but well established in the

statistical literature.

8.4.2 Linear Confidence and Prediction Intervals on Predictions

All linear confidence intervals have the form

z0‘ + ½critical value�sz0
‘

(8:12)

where z 0‘ is the ‘th simulated value; sz0
‘
is the standard deviation of the prediction,

calculated as shown in Eq. (8.1); and critical value is a critical value from a statisti-

cal distribution. Critical values for four types of intervals are defined in Table 8.1.

All linear prediction intervals have the form

z0‘ + ½critical value�(s2z0
‘
þ s2a)

1=2 (8:13)

where sa is the product of (1) the standard error of the regression s (defined after

Eq. (6.1) in Chapter 6, Section 6.3.2) and (2) the standard deviation of the error

associated with a measured equivalent of the prediction (Hill, 1994, p. 32; Miller,

1981). Thus, to calculate prediction intervals the modeler needs to estimate the

likely uncertainty in a measurement of the predicted value. Strategies for estimating

this uncertainty are similar to those for observations discussed in Chapter 3, Sections

3.3.3, 3.4.2 and in Guideline 6 in Chapter 11.

The calculation of linear confidence and prediction intervals can (and often

should) include more parameters than were included in the regressions performed

for model calibration. Thus, when calculating sz0
‘
by Eq. (8.1), the parameter

variance–covariance matrix of Eq. (7.1) often will be the parameter variance–

covariance matrix with all parameters and with realistic weighting, as defined in

Chapter 7, Sections 7.2.1 and 7.2.5 and discussed in Sections 8.2.5 and 8.3.2.

TABLE 8.1 Critical Values Required in Eqs. (8.12) and (8.13) to Calculate the

Linear Confidence and Prediction Intervals Used in This Book

Type of Interval Critical Value Table in Appendix D

Individual ts (n, 1.02 a/2) D.2, Student-t distribution

Bonferroni simultaneous tB (n, 1.02 a/2k) D.6, Bonferroni t statistic

Scheffé d ¼ k simultaneous [d � Fa (d, n)]1/2

¼ [k � Fa (k, n)]1/2
D.7, F distribution

Scheffé d ¼ NP simultaneous [d � Fa (d, n)]1/2

¼ [NP � Fa (NP, n)]1/2
D.7, F distribution

Note: a is the significance level and is commonly 0.05 or 0.10 (5 or 10 percent), which results in 95- or

90-percent intervals, respectively; n is the degrees of freedom, here equal to NDþ NPR2 NP; k is

the number of simultaneous intervals or NP, whichever is smaller; NP is the number of parameters for

which sensitivities are used in Eq. (8.1). NP commonly equals either the number of estimated parameters

or the number of defined parameters.
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Linear, individual and simultaneous, confidence and prediction intervals for pre-

dictions are listed in output files produced by MODFLOW-2000 and computer pro-

gram YCINT-2000 (Hill et al., 2000), or by UCODE_2005 and computer program

LINEAR_UNCERTAINTY (Poeter et al., 2005). Calculation of linear intervals

requires only the sensitivities calculated for the optimized parameter values and,

therefore, takes very little computer execution time.

Individual confidence intervals are exact when constructed using the critical

value of Table 8.1 and Eq. (8.12) if the model is linear and satisfies the requirements

of Chapter 3, Section 3.3, as tested for using the methods of Chapters 6, 7, and 8.

“Exact” means that intervals have the stated probability of including the true value.

Exact critical values for linear simultaneous intervals are difficult to calculate,

but can be approximated using the Bonferroni, Scheffé d ¼ k, and Scheffé

d ¼ NP critical values of Table 8.1, as discussed by Miller (1981).

The Bonferroni, Scheffé d ¼ k, and Scheffé d ¼ NP approximate critical values

tend to be large. For example, an interval calculated for a 5 percent significance level

(a 95 percent interval) may be large enough to satisfy a smaller significance level

such as 3 percent (resulting in a 97 percent interval). The linear simultaneous inter-

vals tend to indicate that the uncertainty is greater than it really is.

If k is less than NP, either the Bonferroni or Scheffé d ¼ k critical values could be

used. Both tend to be too large; using the smaller critical value reduces the error. If k

is larger than NP, Scheffé d ¼ NP critical values are needed.

In some cases, k is not finite. For example, if a prediction of interest is the largest

simulated value over a defined area, the predicted quantity cannot be exactly

specified before performing a model simulation. An infinite number of simultaneous

predictions then need to be considered. In this circumstance, the Scheffé d ¼ NP

critical value is needed. These intervals are denoted Scheffé d ¼ NP intervals in

Table 8.1 and throughout this book; in other publications the term Scheffé interval

almost always refers to these d ¼ NP intervals.

For all linear intervals, as the model becomes nonlinear and violates the require-

ments of Chapter 3, Section 3.3 the calculated intervals become less accurate. This

means that the actual significance level can be substantially different than intended,

and is a serious concern for nonlinear models (Donaldson and Schnabel, 1987). For

some non-ideal situations linear intervals may be accurate enough to be useful, as

discussed in Section 8.4.3. Hopefully, evolving experience will provide additional

guidance on when the computationally expensive nonlinear intervals are needed.

8.4.3 Nonlinear Confidence and Prediction Intervals

For nonlinear models, nonlinear intervals are sometimes much more accurate than

linear intervals. Nonlinear intervals can be calculated using the methods of Vecchia

and Cooley (1987). These methods compute individual or simultaneous intervals on

any function of the model parameters g(b). The intervals can be individual or sim-

ultaneous Scheffé d ¼ NP confidence intervals or individual prediction intervals. To

obtain a nonlinear interval on a parameter, the function g(b) is specified to represent
the parameter; this situation was discussed in Chapter 7, Section 7.5.1. Here, we

consider that g(b) represents a prediction.
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Calculating nonlinear intervals involves determining the minimum and maxi-

mum values of g(b) over a confidence region on the parameter set listed in vector

b. The confidence region is defined in NP-dimensional parameter space and has a

specified probability of containing the true set of parameter values.

Vecchia and Cooley (1987) present methods for calculating intervals using exact

confidence regions and using approximate likelihood confidence regions. The

method that uses the likelihood confidence region is presented here for three

reasons: (1) determining the exact confidence region is mathematically more diffi-

cult than determining the likelihood region; (2) it has been shown that the prob-

ability that b lies in the likelihood region is very close to the true probability

determined using the exact confidence region (Donaldson and Schnabel, 1987);

and (3) this method is used in MODFLOW-2000’s UNC Process (Christensen and

Cooley, 2005), UCODE_2005 (Poeter et al., 2005), and PEST (Doherty, 2005).

The method for computing nonlinear confidence intervals involves first defining

the (12 a)100-percent likelihood parameter confidence region. This region is

defined as the set of parameter values for which the objective-function values,

S(b), satisfy the following condition (modified from Vecchia and Cooley, 1987,

Eq. (10) and Christensen and Cooley, 2005, Eqs. (8) and (19)):

S(b) 	 S(b0)þ s2 � critical valueþ a (8:14)

where S(b0) ¼ the objective function for the optimal parameter values b0;
s2 ¼ the calculated error variance defined in Eq. (6.1);

critical value ¼ a critical value from a statistical distribution; the critical values

required for different types of intervals are defined in Table 8.2;

a ¼ 0.0 for confidence intervals and for prediction intervals

reflects the accuracy of a measured observed equivalent of the

prediction.

TABLE 8.2 Critical Values for Eq. (8.14) Required to Calculate the Nonlinear

Confidence and Prediction Intervals Used in This Book

Type of Interval Critical Value Table in Appendix D

Individual confidence cc[ts(n, 1.02 a/2)]2 D.2, Student-t distribution

Scheffé d ¼ NP simultaneous

confidence

cr[NP � Fa (NP, n)] D.7, F distribution

Individual prediction cp[ts(n, 1.02 a/2)]2 D.2, Student-t distribution

Note: a is the significance level and is commonly 0.05 or 0.10 (5 or 10 percent), which results, respect-

ively, in 95- or 90-percent parameter confidence region and intervals. n is the degrees of freedom, here

equal to NDþ NPR2 NP. NP is the dimension of the parameter space, which commonly equals the

number of estimated parameters. ND is the number of observations and NPR is the number of prior infor-

mation equations. cc, cr, and cp are correction factors defined by Christensen and Cooley (2005), as

discussed by Poeter et al. (2005, Table 38). The correction factors are set to 1.0 for the results presented

in this book.
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The quantity on the right-hand side of Eq. (8.14) defines the bounding surface of the

parameter confidence region. The term a is not discussed further in this book. For

additional information see Christensen and Cooley (2005, pp. 11–12).

Some characteristics of nonlinear intervals can be investigated using Eq. (8.14)

and the critical value from Table 8.2 with NDþ NPR2 NP substituted for n. All

of the critical values generally increase as NP increases or NDþ NPR2 NP

decreases. The product NP � Fa(NP, NDþ NPR2 NP) generally increases with

NP. Thus, the size of the parameter confidence region and nonlinear intervals are

larger for poorer model fits (larger values of s2), more parameters (larger NP),

and fewer observations (smaller ND).

After defining the (12 a)100-percent parameter confidence region, the method

finds the minimum and maximum values of the prediction g(b) on the boundaries

of this region. These extreme values are the lower and upper limits of the

(12 a)100-percent nonlinear confidence interval on g(b). Figure 8.3 illustrates the

confidence region and the limits of a nonlinear confidence interval on a simple pre-

diction g(b) made with a hypothetical two-parameter model. Unlike a linear interval,

the nonlinear confidence interval is not symmetric about the value calculated using

the optimized parameter values, g(b0): the upper limit of the interval (g(b) ¼ c4) is

much further from g(b0) than is the lower limit of the interval (g(b) ¼ c2).

Nonlinear confidence intervals can be larger or smaller than corresponding linear

confidence intervals and, as shown in Figure 8.3, can be asymmetric about the

estimated value. These characteristics are illustrated in Figure 8.4, which shows

linear and nonlinear intervals calculated by Christensen and Cooley (1999) for

FIGURE 8.3 The geometry of a nonlinear confidence interval on prediction g(b0).The
parameter confidence region (shaded area), contours of constant g(b) (dashed lines), and

locations of the minimum (g(b) ¼ c2, with b ¼ bL) and maximum (g(b) ¼ c4, with b ¼ bU)

values of the prediction on the confidence region are shown. The lower and upper limits of

the nonlinear confidence interval on prediction g(b) are thus c2 and c4, respectively.

(Adapted from Christensen and Cooley, 1999, Figure 9.)
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hydraulic-head predictions in a groundwater flow model of an aquifer in Denmark.

For these predictions, the differences between the linear and nonlinear intervals tend

to increase as the size of the intervals increase. For relatively small intervals, the

linear and nonlinear intervals are roughly the same size. For some of the larger

intervals, such as 9, 13, 17, and 20, the linear confidence interval is larger than

the nonlinear confidence interval. For others, such as 4, 7, and 8, the nonlinear

confidence interval is larger. Some of the nonlinear intervals, such as 4, 7, 8, and

13, are highly asymmetric.

A significant difference in the evaluation of linear and nonlinear confidence inter-

vals involves the assumptions that apply to the calculation of the different intervals.

Recall that three important assumptions apply for linear confidence intervals to be

accurate: (1) the model is correct, (2) the model is linear, and (3) the true errors

are normally distributed. For nonlinear confidence intervals, only the first assump-

tion is needed. To the extent that model nonlinearity and deviations from normality

of the weighted residuals are problematic, nonlinear intervals are likely to be more

accurate than associated linear intervals.

Calculating nonlinear intervals is computationally intensive because of the

difficulty of determining the extreme values of g(b) over the confidence region.

Calculation of each limit of each nonlinear confidence interval involves a compu-

tational effort approximately equivalent to a full nonlinear regression simulation.

Furthermore, it is good practice to calculate each limit using a few different starting

parameter values, as the results can depend on these values.

It has been stressed in this book that it is important to include defined parameters

that were not estimated in the regression in evaluations of prediction uncertainty.

Though including such parameters in the calculation of nonlinear intervals has

not been investigated, it is likely that their inclusion will cause difficulties in

FIGURE 8.4 Linear and nonlinear Scheffé simultaneous confidence intervals on hydraulic

heads predicted by a steady-state groundwater flow model of an aquifer in Denmark. (From

Christensen and Cooley, 1999, Figure 5a.)
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determining the interval limits. If that proves to be the case, an advantage of the

linear intervals would be their ability to include the effects of these parameters.

This difference can be significant if the added parameters are important to predic-

tions. The importance of parameters to predictions can be evaluated using the

methods described earlier in this chapter, in Section 8.2.

The substantial effort required to compute nonlinear confidence and prediction

intervals suggests that a practical approach is first to calculate linear intervals,

and then to calculate nonlinear intervals for selected predictions. Additional non-

linear intervals may be needed depending on the discrepancies between the linear

and nonlinear intervals and the requirements of the uncertainty evaluation.

8.4.4 Using the Theis Example to Understand Linear and Nonlinear

Confidence Intervals

The nonlinear and linearized objective-function surfaces shown in Figure 8.5

(modified from Figure 5.3) can be used to better understand linear and nonlinear

confidence intervals on predictions. Each contour of the nonlinear objective-

function surface (Figure 8.5a) can be related to a significance level for inferential

statistics. Contours that are closer to the minimum of the nonlinear surface relate

to larger significance levels.

Consider a situation like that in Figure 8.5b, in which the objective-function

surface has been linearized around a point close to or equal to the minimum of

the objective function. If the designated significance level is large enough, then

the contour of this linearized surface will be close to the associated contour on

FIGURE 8.5 Objective functions for the Theis problem defined in Figure 5.3. (a) Objective

function for the nonlinear model, with the minima (†) and the linearization (�) points near to

and far from the minima. (b) Objective function for model linearized about the S and T values

at �. The point † is the minimum for the nonlinear model.

8.4 INFERENTIAL STATISTICS 181



the nonlinear surface. This is illustrated by comparing the contours close to the large

dot in Figure 8.5a and 8.5b. In this case, the inferential statistics calculated using

linear theory are likely to be accurate if the other required assumptions hold (that

the model is correct and the weighted residuals are normally distributed).

As the significance level declines, a contour more distant from the optimum par-

ameter values is needed, a broader range of parameter values is included in the inter-

val of interest, and more nonlinear parts of the objective-function surface become

important. This is illustrated by comparing contours distant from the large dot in

Figure 8.5a and 8.5b. In this circumstance, the stated significance level for the criti-

cal value used to calculate linear confidence intervals (a in Table 8.1) becomes less

reliable. Thus, while a 90-percent confidence interval (10-percent significance level)

might be well-estimated using linear theory in a certain situation, a 99-percent

confidence interval (1-percent significance level) might not.

8.4.5 Differences and Their Standard Deviations, Confidence

Intervals, and Prediction Intervals

In many management situations, the prediction is the change in a simulated quantity

under certain conditions. For example, in a groundwater model, the relevant predic-

tions might be drawdowns or changes in flow to a stream caused by changes in

pumping rates. Such changes are called differences here and are calculated by sub-

tracting values produced by a base simulation from values produced by a predictive

simulation. Thus, the difference, u0‘, is calculated as

u0‘ ¼ z0p‘ � z0q‘ (8:15)

where p represents the predictive conditions and q represents the base conditions.

Figure 8.6 illustrates the concept of differences. In the simple groundwater flow

system shown in Figure 8.6a, hydraulic heads and flow to a river were simulated for

steady-state calibration conditions and for steady-state conditions representing two

pumping scenarios. If the management criterion is that hydraulic heads cannot

decline by more than 2 meters, simulated drawdown is of interest. This difference

is calculated by subtracting simulated hydraulic heads for pumping scenario 1 or

2 from simulated hydraulic heads for the calibration conditions. If the management

criterion is that the streamflow gain along a reach must not decrease by more than

20 percent of an observed flow, the simulated change in streamflow is of interest.

This difference is calculated by subtracting streamflow gain simulated for pumping

scenarios 1 and 2 from the streamflow gain simulated for the calibration conditions.

To compute the standard deviation of a difference, z0‘ of Eq. (8.1a) is replaced
with the difference, u0‘, yielding

su0
‘
¼

XNP
i¼1

XNP
j¼1

@z0p‘
@bj

� @z0q‘
@bj

� �
V(b0)ij

@z0p‘
@bi

� @z0q‘
@bi

� �" #1=2

(8:16)
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where su0
‘
is the standard deviation of the difference u0‘. To compute confidence or

prediction intervals on differences, z0‘ of Eqs. (8.12) and (8.13) is replaced with

u0‘, and sz0
‘
of these equations is replaced with su0

‘
. In Eq. (8.13), s2a is calculated as

s2a ¼ s2ap
þ s2aq (8:17)

The calculation of confidence and prediction intervals on differences involves

differences in the sensitivities, as shown in Eq. (8.16). If the sensitivities to each

of the parameters are the same for the two subtracted values, su0
‘
equals zero and

the limits of calculated confidence intervals on differences each equal the simulated

difference u0‘. As a result, the width of these confidence intervals equals zero and

prediction intervals only reflect s2a.

An unrealistic but informative example illustrates this circumstance. If all con-

ditions, including stresses, are the same in the two simulations for which differences

are calculated, then all differences equal zero and the confidence interval limits on

differences all equal zero. This result indicates the certainty that if simulated

conditions do not change, the simulated values do not change. A more realistic

situation is that the differences between two simulations are small, in which case

the confidence intervals on the differences also will tend to be small.

FIGURE 8.6 (a) Cross section through a simple groundwater system at steady state,

showing simulated hydraulic head for calibration conditions and two predictive scenarios

with pumping. (b) Hydrograph of a transient groundwater system showing simulated

hydraulic head during a calibration period and during two predictive scenarios with

pumping. Quantities u1, u2, and u3 are differences that may be of interest.
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For some parameters, sensitivities might be identical for the two predictions

being subtracted, so the difference in sensitivity will equal zero. For example, con-

sider a groundwater flow simulation with areal recharge and pumpage in which all

model layers are confined and all boundary conditions are linear. Predictions are

changes in head or flow to a stream. In such a simulation, a specified increase in

areal recharge produces the same increase in hydraulic head or flow at any location

in the system regardless of the simulated pumpage. Thus, the sensitivities related to

areal recharge are independent of the pumpage that causes a difference in heads or

flows, and uncertainty in the recharge rate would not affect the uncertainty of the

predicted changes in head and flow.

Differences need not be between calibration conditions and alternative

conditions. For example, in Figure 8.6a, the relevant predictions might be the

differences between hydraulic heads simulated under pumping scenarios 1 and 2.

Figure 8.6b shows the hydrograph for a simulated well in such a model. Differences

that might be useful are (1) the decline in hydraulic head since the end of the cali-

bration period (differences u1 and u2 of Figure 8.6b) or (2) the additional decline in

hydraulic head that would occur under pumping scenario 1 compared to scenario 2

(difference u3 of Figure 8.6b).

Differences could also be spatial. For example, in a groundwater system the

predicted head loss across a confining layer might be of interest.

With MODFLOW-2000, YCINT-2000 (Hill et al., 2000, pp. 87–91) can be used

to calculate differences and their linear intervals. In UCODE_2005, differences can

be defined using derived predictions (Poeter et al., 2005); their linear intervals

can be calculated using LINEAR_UNCERTAINTY and nonlinear intervals can be

calculated as described by Poeter et al. (2005, Chapter 17).

8.4.6 Using Confidence Intervals to Serve the Purposes of

Traditional Sensitivity Analysis

Confidence intervals on simulated values can be employed to replace the traditional

procedure used to perform sensitivity analyses. According to Anderson and

Woessner (1992, p. 246), “the purpose of a sensitivity analysis is to quantify the

uncertainty in the calibrated model caused by uncertainty in the estimated parameter

values”; and in the procedure traditionally followed to fulfill this purpose, “cali-

brated values for hydraulic conductivity, storage parameters, and recharge and

boundary conditions are systematically changed within the previously established

plausible range.” The results of several traditional sensitivity analyses are shown

in Anderson and Woessner (1992, pp. 247–254). The major weaknesses of the tra-

ditional procedure are as follows:

1. The “plausible range” usually is determined subjectively prior to model cali-

bration (Anderson and Woessner, 1992, p. 231). Thus, this range does not

reflect the possibly substantial information provided by model calibration

on the parameter values. One effect of this is that many sets of parameter

values used in a traditional sensitivity analysis may result in a much poorer
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match to the observations than was achieved in model calibration. Yet if the

model reasonably represents the system, the poor fit produced by these

parameter values suggests that the values are unlikely. Thus, by using the

previously defined plausible ranges, traditional sensitivity analysis tends to

produce unrealistically large measures of uncertainty for results of calibrated

models.

2. Coordinated changes in two or more parameter values are rarely considered,

though they are often important, and some attempts to consider coordinated

parameter changes can actually be detrimental. For example, Anderson and

Woessner (1992, p. 248) suggest that, in traditional sensitivity analysis of

groundwater models, hydraulic conductivity and recharge values be changed

in opposite directions because such parameters are often positively correlated.

In some cases this can be useful, but in others it can exacerbate the problem

noted in weakness 1, producing an even more severely exaggerated impression

of model uncertainty.

Because of these weaknesses, confidence intervals often can be used to fulfill the

purpose of sensitivity analyses more effectively than the traditional approach.

8.5 QUANTIFYING PREDICTION UNCERTAINTY USING

MONTE CARLO ANALYSIS

As discussed in Chapter 7, Section 7.5.2, in Monte Carlo analysis, uncertain

aspects of the model input data are changed and for each change or set of changes

a model run is conducted and changes in selected simulated results are evaluated.

The changed model input data are often parameter values but can be any other

model attributes. Monte Carlo analysis often is used to evaluate prediction uncer-

tainty and can be used to test the significance level of confidence intervals (e.g.,

Hill, 1989). The present work seeks only to introduce the reader to Monte Carlo

analysis. More detailed description of Monte Carlo methods can be found in

a number of texts, including Skinner (1999), Vose (2000), and Bedford and

Cook (2001).

8.5.1 Elements of a Monte Carlo Analysis

The elements that define a Monte Carlo analysis include:

1. What model inputs are changed.

2. How changed model inputs are generated.

3. What constitutes a model run.

4. How many Monte Carlo runs are conducted.

5. What simulated values or quantities calculated using the simulated values are

saved.

6. How the saved results are analyzed.
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Each of these elements is discussed in more detail below.

1. Commonly, parameter values are changed during Monte Carlo analysis, but

other entities such as aspects of the conceptual model also could be changed. For

example, in groundwater models hydrogeologic interpretations might be changed.

In this situation, the modified model inputs could be the configuration of

hydraulic-conductivity zones that represent different hydrogeologic units, or the

variation of hydraulic conductivity within such zones using, perhaps, pilot points.

A very different type of analysis involves changing the errors on the observations.

These analyses generally are called bootstrap methods and are discussed briefly in

Chapter 7, Section 7.5.2.

2. If parameter values are changed, commonly they are assumed to be normally

or log-normally distributed with their means equal to the parameter estimates from

model calibration and their variation characterized by the parameter variance–

covariance matrix. Parameter values that honor these means and variation can be

generated randomly, or more frugal methods can be used that require fewer

Monte Carlo runs to produce an equivalently accurate evaluation. One such

method is Latin hypercube sampling (Gwo et al., 1996; Zhang and Pinder, 2003).

Another method, Markov chain Monte Carlo, has received substantial attention

recently, as noted by the contributions posted at the web site http://www.statslab.
cam.ac.uk/�mcmc/. For other types of changed quantities, analogous options

can be used. UCODE_2005 supports a very simple method in which parameter

values are sampled at equal intervals within a stated range.

If other aspects of a model are changed, often it is useful to consider a discrete

number of changes that produce deterministically derived alternative models. For

example, in groundwater modeling, a limited number of alternative interpretations

of the hydrogeologic framework could be tested.

3. The model run may be a forward simulation or can be a more complicated

run such as an inverse simulation. Poeter and McKenna (1995) provide an example

of using inverse simulations. This application is summarized in Guideline 8

(Chapter 11, Section G8.3) and Guideline 14 (Chapter 14, Section G14.2).

4. The number of Monte Carlo runs required depends on many factors, including

the number of model inputs changed, how they are changed, and whether they are

continuous or discrete variables. The desired results of the Monte Carlo analysis

also are important. For example, using Monte Carlo to determine an estimate of

the mean of a predicted value to a given accuracy generally takes far fewer

Monte Carlo runs than determining 90-percent confidence intervals, which in turn

takes fewer runs than determining 95-percent confidence intervals. In addition,

accounting for model nonlinearity can require an increased number of Monte

Carlo runs. The number of runs required often is determined by calculating the

desired result after some number of Monte Carlo runs, and then examining whether

this result changes after conducting an additional set of runs. When the result

becomes stable, sufficient runs have been conducted. The number of runs can be

very large in some circumstances and can commonly exceed 1000. Even if the
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model run takes only 1 minute of execution time, a 1000-run Monte Carlo

analysis requires almost 17 hours of computer time. This is problematic in fields

such as groundwater, in which even with modern computers model runs can take

30 minutes or more. For a 30-minute run, conducting 1000 runs requires 21 days

of execution time. Availability of parallel processors often can be used to great

advantage as long as each processor has enough random access memory to run

the model. Additional guidance on determining the required number of Monte

Carlo runs, with application to groundwater models, is presented by Ballio and

Guadagnini (2004).

5. Important results to save from Monte Carlo runs can include any model

output, or any quantity calculated from the output. The obvious items to save are

values of the defined model predictions. Less obvious items might be measures

that reflect the numerical accuracy of the solution, to ensure that any solutions

that did not satisfy the convergence criteria are identified; and statistics that measure

model fit to observations such as the objective function or standard error. Often it

also is useful to save information about what was changed for each solution, such

as parameter values, so that unusual results can easily be evaluated. It is important

to carefully choose what results to save from each Monte Carlo run, to avoid (a)

repeating the analysis to obtain model results that were not saved and (b) saving

too much output, which can be unwieldy and difficult to process.

6. There are many ways to analyze and display Monte Carlo results, including

calculation of histograms and confidence limits and presentation on maps or cross

sections. In many circumstances the main criterion motivating the presentation of

results is to convey the essence of the results to resource managers.

Many authors have suggested that (a) for any type of change considered,

simulated values need to be compared to observations, and (b) including simulated

values that produce a poor match to the observations can result in an overstatement

of model uncertainty (Beven and Binley, 1992; Brooks et al., 1994; Evers and

Lerner, 1998; Binley and Beven, 2003; and Morse et al., 2003). To account for

this, a measure of model fit needs to be saved for each run, and runs with poor

matches need to be omitted from the analyses and display of the Monte Carlo results.

8.5.2 Relation Between Monte Carlo Analysis and Linear and

Nonlinear Confidence Intervals

Some Monte Carlo analyses produce results that approximate those produced by

inferential statistics. Differences occur because of approximations made in the infer-

ential methods or inadequate sampling by the Monte Carlo analysis. For example,

nonlinear intervals are routinely estimated using an approximate likelihood-function

approach (e.g., Cooley, 2004; Christensen and Cooley, 2005).

Considering the approximate equivalence of Monte Carlo and inferential results

helps to understand both methods. For example, if the following conditions are met,

the results of a Monte Carlo analysis approximate nonlinear confidence intervals

(described in Section 8.4.3).
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a. Only parameter values are changed for the Monte Carlo runs, and the par-

ameters changed are the same as those that are active for the nonlinear con-

fidence interval calculations.

b. The same observations, prior information, and weighting are used for the

Monte Carlo analysis and to calculate the nonlinear intervals. In the Monte

Carlo runs the least-squares objective function of Eq. (3.1) is used to compare

the simulated values to the observations, and runs are omitted if the result

exceeds a specified value (denoted the “fit criterion” here), as suggested by

Beven and Binley (1992) and Binley and Beven (2003). This objective-

function fit criterion is the quantity on the right-hand side of Eq. (8.14).

c. No local minima exist in the objective-function surface and predictions are

continuous and monotonic with respect to the parameter values in the range

of interest.

d. The ranges of parameter values used for the Monte Carlo analysis are suffi-

ciently large to cover the entire parameter confidence region, as defined by

the objective function being less than the fit criterion.

e. The Monte Carlo interval is constructed as the maximum and minimum pre-

dicted values that occur for the objective-function fit criterion.

Advantages of the Monte Carlo method are that it is possible to consider (1)

changes in aspects of the system other than parameter values, and (2) highly non-

linear models that violate (c) above. In the first situation, inferential statistical

methods currently have no equivalent capability. In the second situation, inferential

methods would be unable to produce meaningful limits on the predictions.

8.5.3 Using the Theis Example to Understand Monte Carlo Methods

The Theis example of Figure 8.5 can be used to understand Monte Carlo analysis, in

a manner similar to that for understanding linear and nonlinear confidence intervals

(Section 8.4.4). In this example, suppose a Monte Carlo analysis is conducted that

involves changing parameter values, and that an objective-function value of 1.0 is

chosen as the fit criterion defined in Section 8.5.2. Figure 8.5a illustrates the import-

ance of choosing an appropriate range of parameter values sampled. For example, to

ensure that the analysis samples the entire parameter space within the objective-

function contour of 1.0, transmissivity values greater than 0.28 ft2/s and storage

coefficients larger than 0.001 need to be included. Objective-function surfaces

such as that in Figure 8.5 are almost never available to guide selection of the

range of parameter values, and thus in Monte Carlo analysis often it is difficult

to verify that the ranges are sufficiently large.

After the ranges of parameter values are chosen, it also is important to carefully

select the sampled parameter values within these ranges. If prediction uncertainty is

being evaluated, and the prediction consistently increases or decreases with the par-

ameter values, as for the example in Figure 8.3, then the extreme predictions will

occur for an objective-function value equal to the chosen fit criterion. In this case,

it is most important to sample parameter sets that produce an objective-function

188 MODEL PREDICTIONS, DATA NEEDS, AND PREDICTION UNCERTAINTY



value near the fit criterion. However, for some types of nonlinearity, the extreme

predictions may occur for smaller values of the objective function. In this case,

Monte Carlo methods are needed to identify extreme values, and it is important to

thoroughly sample sets of parameters that produce objective-function values smaller

than the fit criterion. Clearly, it can be difficult to determine the extreme predictions

with Monte Carlo methods and, when applicable, the nonlinear confidence interval

calculation is much more efficient for evaluating prediction uncertainty.

8.6 QUANTIFYING PREDICTION UNCERTAINTY USING

ALTERNATIVE MODELS

Recent work has proposed a number of methods for quantifying prediction uncertainty

in a way that accounts for alternative models. The methods involve calculation of

confidence intervals for each alternative model, weighting the intervals to reflect the

validity of the related model, and producing composite intervals. Methods have

been presented that calculate the weighting based on the AICc statistic (Eq. (6.3))

(Burnham and Anderson, 2004) and Bayes factors (Kass and Raftery, 1995;

Neuman, 2003; Meyer et al., 2004). Poeter and Anderson (2005) compared these

two methods using the Multi-Model Analysis (MMA) computer code (Poeter and

Hill, in press) and found the intervals produced using the weights based on the

AICc statistic to be more useful. Additional testing in a variety of circumstances is

needed, however, to determine the applicability of that conclusion.

8.7 TESTING MODEL NONLINEARITY WITH RESPECT TO

THE PREDICTIONS

The test for linearity described in Chapter 7, Section 7.7 uses the modified Beale’s

measure to evaluate the linearity of the model with respect to observed quantities. If

the predictions are similar in type, location, and time to the observations, and if the

predictive conditions are similar to the calibration conditions, then that test is suffi-

cient. In many circumstances, however, we are in the unenviable position of trying

to make predictions that are in some way very different from the observations. The

prediction conditions may be very different, or the predicted quantity could be very

different. In this circumstance, a model that is linear on the basis of the analysis pre-

sented in Chapter 7, Section 7.7 may be nonlinear with respect to the predictions. In

this situation, the judgment of linearity could lead to the incorrect conclusion that

linear intervals on predictions are accurate measures of prediction uncertainty.

Methods for testing model nonlinearity with respect to predictions are just being

developed. As an introduction to these methods, consider first the following statistic,

which is a direct extension of the modified Beale’s measure.

1. Use the same sets of parameters produced from step 1 of Chapter 7, Section

7.7, using Eq. (7.11). These parameter values are on the edge of the linearized

parameter confidence region.
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2. Compute the predictions by executing a forward model run for each generated

set of parameter values. These simulated values are ~zk‘, where k refers to the

kth generated parameter vector, ‘ refers to the ‘th prediction, and the tilde (�)

is used to designate values associated with the generated parameter values.

3. Calculate linearized estimates of the predictions using the generated

parameter sets as follows:

~zo‘k ¼ z0i þ
XNP
j¼1

(b0j � ~bkj)
@z0‘
@bj

����
b0

(8:18)

where ~zo‘i ¼ the linearized estimate of the ith prediction;

z0‘ ¼ the ‘th simulated prediction calculated using the optimal par-

ameter estimates;

b0j ¼ the jth optimal parameter estimate;
~bkj ¼ the jth parameter value from the kth generated parameter set.

4. Calculate the proposed modified Beale’s measure for predictions, N̂z
b, which is

a measure of the difference between the model-computed and the linearized

estimates of the predictions:

N̂z
b ¼

X2NP
k¼1

j~z‘k � ~zo‘kj
j~zo‘k � z0‘j

(8:19)

Equation (8.19) produces a unique measure of linearity for each prediction. For a

truly linear model, the numerator of Eq. (8.19) equals zero. Thus, values of N̂z
b that

are close to zero generally indicate that the model is close to being linear. As model

nonlinearity increases, the magnitude of the numerator increases. Testing of

Eq. (8.19) would be needed to develop critical values of N̂z
b that can be used as

objective criteria against which to evaluate model linearity.

A deficiency of Eq. (8.19) is that it measures only the nonlinearity of the predic-

tions with respect to the parameters. If Eq. (8.19) is close to zero, but the measures

discussed in Chapter 7, Section 7.7 indicate nonlinearity of the observation with

respect to the parameters, linear intervals on predictions may be in error. The

combined nonlinearity can be measured using the combined intrinsic model nonli-

nearity measures of Cooley (2004). The method is described by Cooley (2004) and

Christensen and Cooley (2005, pp. 20–24) and is available in MODFLOW-2000’s

UNC Process with BEALE2-2K (Christensen and Cooley, 2005) and in

UCODE_2005 with MODEL_LINEARITY_ADV (Poeter et al., 2005). While the

complete equations are not repeated here, the following analysis applicable to

individual confidence intervals on predictions provides an introduction.

Two issues of concern in Christensen and Cooley (2005) are (1) the validity of

linear confidence intervals and (2) the validity of correction factors that account

for unrepresented heterogeneity (the cc, cr, and cp of Table 8.2). The equations

are presented below along with many of the steps required to go from the more
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general equations presented in Christensen and Cooley (2005) to the equations

presented here, which apply if the weight matrix used in the regression has been

defined in Chapter 3, Section 3.4.2 (i.e., v ¼ V(1)�1).

If intrinsic model nonlinearity is small, the first issue is addressed by what we call

the combined intrinsic model nonlinearity measure for confidence intervals. Using

Christensen and Cooley (2005, Eq. (48)), the notation of this book, and rearranging

terms, the measure is calculated for each prediction as

bMmin ¼ 1

2s2

X2
p¼1

(ỹp � ỹop � Xwp)
Tv(ỹp � ỹop � Xwp) (8:20)

X is defined for Eq. (5.2b) and is calculated using the optimal parameter values, b0.
Terms covered by a tilde (�) and with a p subscript are calculated for parameter

values generated as (Christensen and Cooley, 2005, p. 21; Cooley, 2004, pp. 86–87)

b̃ ¼ b0 +
1

sz0
‘

½V(b0)� @z‘
@b

ð8:21Þ

where addition is used for p ¼ 1, substraction is used for p ¼ 2

b̃ ¼ a vector of generated parameter values;

b0 ¼ a vector of optimal parameter estimates;

sz0
‘
¼ the standard deviation of the ‘th prediction, defined in Eq. (8.1);

[V(b0)� ¼ the parameter variance–covariance matrix of Eq. (7.1);

@z‘=@b ¼ the sensitivity of the ‘th predictionwith respect to the optimal parameter

values; this is a vector with NP elements.

Superscript o indicates values calculated using a model linearized about the

optimized parameter values—that is, ỹop ¼ y0(b0)þ X(b̃� b0). The remaining term,

wp, accounts for prediction nonlinearity and is calculated as

wp ¼ w0
‘ þ

1

s2z0
‘

½V(b0)� @z‘
@b

(~zp � ~z0p) (8:22)

where

w0
‘ ¼

1

sz0
‘

½V(b0)� @z‘
@b

@z‘
@b

� �T

(XTvX)�1XTv1=2

 !"

� (XTvX)�1XTv1=2

�
v1=2(~yp � ~y0p) (8:23)

To obtain Eqs. (8.22) and (8.23) from the results presented by Christensen and

Cooley (2005, p. 21, Eqs. (50) and (51)), their term QTQ needs to be expanded

using the definition of Q on their page 8. The definition of s2z0
‘
using the square of
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Eq. (8.1b) also is used. This proof is valid for all types of intervals.
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@b
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‘

s2
(8:24)

It is assumed that V(b) ¼ s2(XTvX)�1, which is valid for linear systems with the

correct model (see Appendix C), and approximate otherwise.

One value of bMmin is calculated for each prediction. If intrinsic nonlinearity is

small, values less than 0.01 indicate that a standard linear individual confidence

interval, calculated using the equations in Section 8.4, should not be affected signifi-

cantly by nonlinearity.

If intrinsic model nonlinearity is small, the second issue is addressed by what we

call the combined intrinsic model nonlinearity for correction factors. The measure is

calculated as the largest of two values: bMmin þ 2bBU or jbMmin � 2bBLj. bMmin would

equal bBU if y were linear, so only the last term in the parentheses of Eq. (8.20) is

nonzero. Thus,

bBU ¼ 1
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¼ s2

2s2s2z0
‘
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1

s2z0
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This can be compared to Eq. (53) of Christensen and Cooley (2005, p. 21). M̂min

would equal B̂L if z were linear. In this circumstance, the last term in the parentheses

of Eq. (8.20) is zero. Thus,

B̂L ¼ 1

2s2

X2
p¼1

(ỹp � ỹop � Xw0
p)

Tvij(ỹp � ỹop � Xw0
p) ð8:26Þ

This can be compared with Eq. (54) of Christensen and Cooley (2005, p. 21).

One value of B̂U and B̂L is calculated for each parameter. Two values are

considered: bMmin þ 2bBU and jbMmin � 2bBLj. If the largest of these values is less

than 0.09, the correction factors used to determine the confidence intervals are

valid. For individual confidence intervals on predictions, the correction factor is

1.0, so that satisfying the linearity requirements means that the individual confidence

intervals of Section 8.4 are not adversely affected by nonlinearity from the perspec-

tive of correction factors.

8.8 EXERCISES

As discussed in Chapter 2, Section 2.2, water-supply wells are being completed and

a landfill has been proposed for the groundwater flow system considered in the exer-

cises of this book. The wells are located in the center of the area, at row 9, column

10; one well would pump from model layer 1, one would pump from layer 2, and

each is expected to pump, on average, 1.1 m3/s. The proposed site for the landfill

is near the center of row 2, column 16 (Figure 2.1a,b).

The landfill developers claim that if the landfill liner leaks, effluent from the land-

fill would flow toward the river, not toward the supply wells. Also, the landfill devel-

opers (who are knowledgeable about regression) argue that it is inappropriate to

use this model to evaluate potential advective travel from the landfill because it is

calibrated using hydraulic-head and streamflow-gain observations (no transport

observations), and they claim that the need for prior information indicates clearly

that the data used to calibrate the model are insufficient. They claim, therefore,

that there is no reason to believe the model predictions related to transport. In

Exercises 8.1 and 8.2, we evaluate these claims.

The county wants to use the steady-state model to evaluate the potential transport

and the likely utility of additional data in addressing the complaints of the developer. It

would be possible to collect hydraulic-head and streamflow-interaction observations
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under pumping conditions and to use these data to further calibrate the model, but

obtaining these model results would require substantial delay of the landfill permitting

process. County officials would like to know whether the additional information

is likely to be important enough to warrant such a delay. As an initial evaluation,

all parties agree to use the steady-state model to evaluate two potential observations

using simulated steady-state pumping conditions: (1) the streamflow gain or loss

and (2) hydraulic head in one location far from the river (row 9, column 18).

While a thorough analysis of the potential transport requires an advective–

dispersive transport model, a preliminary analysis can be conducted by simulating

advective transport alone, using the Advective-Transport Observation Package

(ADV) (Anderman and Hill, 2001) of MODFLOW-2000. If the advective-travel

path goes to the well, advective–dispersive modeling is not necessary. If the advec-

tive path does not go to the well, it is still possible that landfill effluent will reach the

well by dispersive transport, and an analysis using a model that includes dispersive

processes will be needed.

The analysis of advective transport from the potential landfill site will address the

following questions:

Question 1. When the supply wells are pumped, where does an advective path

from the landfill travel? Does it go to the well or the river? If it

goes to the well, how long does it take to get there?

Question 2. What parameter values are most important to the predicted advective

transport and how does this compare to the information provided for

their estimation by the observation data?

Question 3. Of the existing head and flow observations used for calibration of the

steady-state model, which are most important to the advective-

transport predictions?

Question 4. Is collection of the streamflow and hydraulic-head data under pump-

ing conditions likely to contribute additional information that is

important to the simulation of advective transport, and if so,

which of these potential observations would contribute the most

information?

Question 5. What is the uncertainty with which the predictions are simulated

using the steady-state calibrated model?

Question 1 is addressed in Exercise 8.1a with a forward model run that includes

calculation of advective travel from the landfill site using the ADV Package.

Question 2 is partly addressed in Exercise 8.1b using two comparisons. First,

prediction scaled sensitivities (pss) are compared with composite scaled sensi-

tivities (css) of Exercise 5.2c. Second, parameter correlation coefficients (pcc) cal-

culated with observations and predictions are compared to those calculated with

only observations. These calculated pcc each have prior information omitted, to

address the developer’s concern about the use of prior information. Question 2

is further addressed in Exercise 8.1c using the parameter–prediction (ppr)

statistic.

194 MODEL PREDICTIONS, DATA NEEDS, AND PREDICTION UNCERTAINTY



Question 3 is addressed in Exercise 8.1d using the observation–prediction (opr)

statistic for evaluating existing observations.

Question 4 is first addressed in Exercise 8.1e by considering dimensionless scaled

sensitivities (dss) for the possible new observations and pcc calculated including the

new observations. It is further addressed in Exercise 8.1f by using the observation–

prediction (opr) statistic.

Question 5 is addressed in Exercise 8.2 using confidence intervals.

Exercise 8.1: Predict Advective Transport and Perform Sensitivity Analysis This

exercise addresses Questions 1–4. Parts of this exercise involve simulations using

either MODFLOW-2000 or UCODE_2005, and in Exercises 8.1c,d and 8.1f calcu-

lations are performed using the computer program OPR-PPR (Tonkin et al., in

press). For students performing the simulations and calculations, instructions are

available from the web site for this book listed in Chapter 1, Section 1.1.

(a) Predict advective transport.

This exercise addresses Question 1 using a forward MODFLOW-2000 run with

the ADV Package and with steady-state pumping imposed to predict the advective-

transport path originating at the proposed landfill location.

The ADV Package uses particle-tracking methods comparable to those of Pollock

(1994) to determine advective-transport paths. To compute a particle path, total par-

ticle movement is decomposed into displacements in the three spatial grid dimen-

sions, resulting in three advective-transport predictions at every location of

interest along a path. An additional system property, effective porosity, is needed

to simulate advective transport. Effective porosity does not affect the path trajectory

but does affect the particle travel time.

In the model used for the exercises, the spatial grid dimensions are the x, y, and z

directions. Predictions are defined for 10, 50, and 100 years of advective transport.

Thus, the ADV Package calculates nine advective-transport predictions: the trans-

port distances in the x, y, and z directions at 10, 50, and 100 years. For this run

an observation also is defined for 200 years so that the full path is simulated. Two

effective porosity parameters are defined. POR_1&2 is the porosity of the aquifers

(layers 1 and 2 of the model) and POR_CB is the porosity of the confining bed. The

values of POR_1&2 and POR_CB are set to 0.33 and 0.10, respectively.

Output from the MODFLOW-2000 simulation describing the movement of a

particle originating at the proposed landfill location is shown in Figure 8.7.

Problem: Use the information about the particle path to answer all parts of Ques-

tion 1. Plot the particle path on the model grid shown in Figure 8.7b. The X-position

is measured along model grid rows: X ¼ 0 at the left and increases to the right. The

Y-position is measured along model grid columns: Y ¼ 0 at the northern boundary

and increases toward the south. The Z-position is measured vertically. In this appli-

cation, Z ¼ 210 at the bottom of layer 2 and increases in the upward direction.

(MODFLOW users will note that in the ADV output the Z-axis definition is

opposite to that used in MODFLOW, in which the model layer numbers increase
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with depth. The Z-axis is defined in this way so that the particle elevations are more

intuitive and consistent with plotting routines.)

(b) Determine the parameters that are important to the predictions using predic-

tion scaled sensitivities and parameter correlation coefficients.

This exercise addresses Question 2 by making the two comparisons that were

presented in Figure 8.2 and discussed in Section 8.2.4. First, prediction and

(a) ADVECTIVE-TRANSPORT OBSERVATION NUMBER 1

PARTICLE TRACKING LOCATIONS AND TIMES:

LAYER ROW COL X-POSITION Y-POSITION Z-POSITION TIME
----------------------------------------------------------------------------------------------------------------

1 2 16 15500. 1500.0 100.00 0.0000
.....................................................................................................................................................
OBS # 12- 14 OBS NAME: AD10x

1 2 16 15156. 1609.3 89.366 0.31500E+09
.....................................................................................................................................................

1 2 15 15000. 1657.2 85.481 0.44658E+09

1 3 15 14085. 2000.0 69.953 0.11164E+10

1 3 14 14000. 2028.4 69.024 0.11668E+10
.....................................................................................................................................................
OBS# 15- 17 OBS NAME: AD50x

1 3 14 13269. 2341.2 62.686 0.15700E+10

.....................................................................................................................................................
1 3 13 13000. 2457.4 60.867 0.17072E+10

1 4 13 12076. 3000.0 56.119 0.21508E+10

1 4 12 12000. 3041.5 55.844 0.21813E+10

1 4 11 11000. 3817.0 52.850 0.25811E+10

1 5 11 10834. 4000.0 52.431 0.26481E+10

1 6 11 10022. 5000.0 50.679 0.29476E+10

1 6 10 10000. 5028.3 50.627 0.29548E+10

2 6 10 9804.5 5363.8 50.000 0.30232E+10

PARTICLE ENTERING CONFINING UNIT
.....................................................................................................................................................
OBS # 18- 20 OBS NAME: A100x

2 6 10 9804.5 5363.8 46.239 0.31500E+10
.....................................................................................................................................................

2 6 10 9804.5 5363.8 40.000 0.33604E+10
.....................................................................................................................................................
PARTICLE EXITING CONFINING UNIT

2 7 10 9552.7 6000.0 35.216 0.39200E+10

2 8 10 9375.4 7000.0 22.891 0.44052E+10

2 9 10 9379.0 8000.0 8.4270 0.45677E+10

FIGURE 8.7 (a) Part of MODFLOW-2000 List output file describing the movement of a

particle that originates at the top of the cell (row 2, column 16, layer 1) containing the

proposed landfill. Predictions AD10, AD50, and A100 are defined for times of 10, 50, and

100 years, respectively. (b) Diagram of the model grid for plotting the particle path (see

Figure 2.1 for explanation of symbols).
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composite scaled sensitivities are compared. Second, parameter correlation coeffi-

cients calculated using only the calibration observations are compared with those

calculated with the addition of the predictions. These pcc are both calculated with

prior information omitted.

For this problem, calculate pss that equal the percent change in the predicted

quantity produced by a one-percent change in the parameter value (Eq. (8.2c)). Pre-

diction scaled sensitivities calculated by UCODE_2005 are listed in data-exchange

files. For MODFLOW-2000, the pss calculated by Eq. (8.2c) are in tables of dimen-

sionless scaled sensitivities if the statistic for calculating prediction weights is set to

the predicted value (the transport distance at a given time in a given direction) and

STAT-FLAG is specified as 1. Composite scaled sensitivities calculated without the

advective-transport prediction are listed in the _sc output file produced by

MODFLOW-2000 and UCODE_2005 and are shown in Figure 7.5b of Exercise 7.1a

for the optimal parameter estimates.

To obtain pcc that include only the calibration observations, the prior information

needs to be omitted, which addresses one of the developer’s concerns. These corre-

lation coefficients can be calculated by using the optimized parameter values and

completing a model run that produces the pccwithout changing the parameter values.

To calculate pcc for the calibration observations plus the predictions, note first

that the hydrologic conditions for the calibration are different from those for the pre-

dictions. In this model, the difference is the addition of pumpage. Therefore, cor-

rectly producing the pcc requires simulation of two conditions—one without

pumpage and one with pumpage. The hydraulic-head and flow observations used

for calibration occur during conditions without pumpage; advective-transport

predictions occur during conditions with pumpage. Sensitivities related to

FIGURE 8.7 Continued.
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calibration observations are calculated without pumpage, and those related to the

predictions are calculated with pumpage. Both sets of sensitivities are used to

compute the pcc.

As discussed in Section 8.2.3, the weighting specified for a prediction affects the

calculated pcc (Eq. (8.3)). The standard deviations used to calculate the weights for

the advective travel at specified times in the three coordinate directions are listed in

Table 8.3.

The pss are plotted together with the css in Figure 8.8. In this figure, the scales are

different for the css and pss, but this is not problematic because the analysis involves

evaluating the relative values of each measure. The pss for effective porosity also are

included in Figure 8.8. These parameters are not relevant to the model calibration

with head and flow observations, but could be important in the calculation of advec-

tive transport times. The pss for effective porosity are computed with UCODE_2005

using central-difference perturbation. The pcc without and with predictions are

shown in Tables 8.4 and 8.5, respectively.

TABLE 8.3 Standard Deviations (in meters) Used to Calculate

Weightsa for the Advective-Transport Predictions

Time of Advective Travel

Direction 10 years 50 years 100 years

X 200 600 1000

Y 200 600 1000

Z 10 15 25

aThe weights are needed to calculate parameter correlation coefficients and are deter-

mined using criterion 1 of Section 8.2.3.

FIGURE 8.8 Composite and prediction scaled sensitivities for the calibrated parameters

and for effective porosity. The pss for the x, y, and z grid directions are shown as the left,

middle, and right columns, respectively, for each advective-travel time. The pss are defined

as the percent change in advective travel caused by a one-percent change in the parameter

value (Eq. (8.2c)).
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Problem
. Answer Question 2 above using the css and pss in Figure 8.8 and the pcc with-

out and with predictions in Tables 8.4 and 8.5.

. Why are the pss in Figure 8.8 equal to or very close to zero for parameters

K_RB, VK_CB, and RCH_1?

. Why is the pss for POR_CB equal to zero for all predictions except A100z?

Consider the location of the particle at 100 years, shown in Figure 8.7a.

. Which of the effective porosity parameters should be included in analyses of

prediction uncertainty conducted to further answer Question 2, and to answer

Questions 3–5? Why?

(c) Determine the parameters that are important to the predictions using the

parameter–prediction statistic.

This exercise addresses Question 2 using the parameter–prediction (ppr) statistic,

calculated with the omission of existing prior information on parameters K_RB and

VK_CB. As discussed in Section 8.2.5, the ppr statistic calculates parameter import-

ance to predictions in a manner that includes the effects of parameter uncertainty and

correlation as well as prediction sensitivities. The pss shown in Figure 8.8 include

only the effects of prediction sensitivities.

TABLE 8.5 Parameter Correlation Matrix Using the Hydraulic-Head and Flow

Observations and the Advective-Transport Predictions, with Prior Information

Omitted, Using Final Parameter Values, and Calculated by MODFLOW-2000a

HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

HK_1 1.00 20.15 0.097 20.15 0.70 0.36

K_RB 1.00 20.62 20.009 0.27 20.090

VK_CB 1.00 0.32 20.17 0.26

HK_2 Symmetric 1.00 20.46 0.81

RCH_1 1.00 20.23

RCH_2 1.00

aNo correlation coefficients are greater than 0.95.

TABLE 8.4 Parameter Correlation Matrix Using Only the Hydraulic-Head and

Flow Observations, with Prior Information Omitted, Using Final Parameter Values,

and Calculated by MODFLOW-2000a

HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

HK_1 1.00 20.40 20.90 20.93 0.96 20.90

K_RB 1.00 0.20 0.34 20.32 0.32

VK_CB 1.00 0.97 20.97 0.97

HK_2 Symmetric 1.00 20.99 0.996

RCH_1 1.00 20.98

RCH_2 1.00

aCorrelation coefficients greater than 0.95 are in bold type.
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The program OPR-PPR (Tonkin et al., in press) is used to calculate the ppr stat-

istic for individual parameters. For these calculations, a 10-percent reduction in par-

ameter standard deviation is specified. Thus, the ppr statistic represents the percent

decrease in the standard deviation of a prediction that is produced by a 10-percent

decrease in the standard deviation of one parameter. The effective porosity of the

aquifer is also included in the ppr calculation, and prior information and weighting

are used to realistically represent its uncertainty. The sensitivities of the heads and

flows to POR_1&2 are zero; thus, its uncertainty would be infinite if prior infor-

mation were not imposed. The weighting used for the prior information is calculated

by forming a 95-percent confidence interval of 0.27 to 0.39 for the true effective por-

osity value (see Guideline 6 in Chapter 11).

Average ppr statistics for all advective-transport predictions are shown in

Figure 8.9a. Figure 8.9b presents ppr statistics for predictions at 100 years, and

Figure 8.9c shows the corresponding decreases in the prediction standard deviation.

This intermediate result of the ppr statistic calculation is useful because it is import-

ant to evaluate whether a large percent reduction in a prediction standard deviation is

associated with a very small change in the standard deviation. If so, then it might not

be beneficial to use that particular ppr result for guiding field data collection, despite

the large value of the statistic.

Problem
. Compare the results of Figure 8.9a,b with those in Figure 8.8. What are the

differences in terms of which parameters rank as most important to predicted

advective travel? For future data collection, which parameters would be most

beneficial to further investigate according to the ppr results?

. Explain the different rankings of parameter importance by the pss and ppr

results. Consider the parameter correlations shown in Table 8.4 in answering

this question. Recall that because POR_1&2 is not applicable to the model

calibration, its correlation with all other parameters is zero.

. Figure 8.9c shows the standard deviation decreases associated with the ppr

values in Figure 8.9b. Are the standard deviation decreases for any of the

predictions small enough to suggest that it might not be beneficial to collect

additional data aimed at improving that prediction? Use distances traveled

derived from Figure 8.7 and system dimensions of Figure 2.1.

OPR-PPR also is used to calculate the ppr statistic for all possible groups of two par-

ameters. This analysis is applicable if field data collection will involve simul-

taneously obtaining information about two parameters. A 10-percent reduction in

the standard deviation of each parameter is specified, and so the ppr statistic for a

parameter pair represents the percent decrease in the prediction standard deviation

that is produced by a 10-percent decrease in the standard deviation of each par-

ameter in a group. The results for the advective-transport predictions at 100 years

are shown in Figure 8.9d. The ppr statistics are similar for all pairs that include

K_RB or POR_1&2 and are similar for all other pairs, so average values are

shown for each of these groups of parameter pairs.
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FIGURE 8.9 Parameter–prediction (ppr) statistic and intermediate calculations for

evaluating the importance of model parameters to predicted advective transport. The

statistic for each prediction is computed as the percent decrease in prediction standard

deviation produced by a 10-percent reduction in the standard deviation of a parameter. (a)

For each parameter, average ppr statistic for all predictions. (b) The ppr statistics for

predicted transport in the x, y, and z directions at 100 years. The statistics for K_RB and

POR_1&2 are similar, as are the statistics for all other parameters. Thus, the average value

for each of these groups is shown. (c) Decreases in prediction standard deviation

(s0z‘ � sz0
‘
( j) in Eq. (8.8)) corresponding to the ppr results in (b). (d) Average ppr statistics

for evaluating the importance of pairs of parameters to predicted advective transport at

100 years.
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Problem: Which parameter pairs would be most beneficial to simultaneously inves-

tigate, according to the ppr results shown in Figure 8.9d?

(d) Assess the importance of existing observations to the predictions using the

observation–prediction (opr) statistic.

This exercise addresses Question 3, by evaluating the relative contribution

that the existing head and flow observations make toward reliably simulating the

advective-transport predictions. This analysis is useful after initial model calibration

to guide further field investigation of existing observations that rank as most import-

ant to the predictions with the goal of ensuring that their representation in the model

is as accurate as possible. For example, for the most important head observations,

field work might involve more accurately measuring the screened interval depth

and areal location of the corresponding monitoring wells. This information then

could be used to update the observation location in the model.

The program OPR-PPR (Tonkin et al., in press) is used to calculate the opr stat-

istic for omitting individual observations. The opr statistic values equal the percent

increase in the standard deviation of a prediction that is produced by omitting one

observation. This analysis includes uncertainty in parameter POR_1&2, as

described in Exercise 8.1c.

The results for the advective-transport predictions at 100 years are displayed in

Figure 8.10a, which shows the opr statistics, and Figure 8.10b, which shows the

corresponding increases in the prediction standard deviation. As discussed for the ppr

statistic in Exercise 8.1c, this intermediate result of the opr statistic calculation is useful

because it is important to evaluate whether a large percent increase in a prediction

standard deviation is associated with a small increase in the standard deviation.

Problem
. Using the opr results presented in Figure 8.10a, identify the observations that

rank as most important to the predictions.

. Observations can rank as important by the opr statistic if they are sensitive to

parameters to which the predictions are sensitive, or if they are sensitive to

parameters that are correlated with parameters to which the predictions are sen-

sitive. Examine the dimensionless scaled sensitivities for the observations

shown in Table 7.5 and the prediction scaled sensitivities shown in

Figure 8.8. Do these sensitivities help explain the importance of observations

head01.ss and flow01.ss?

. Observations also can rank as important if their removal substantially increases

parameter correlations, because prediction uncertainty tends to increase as

these correlations increase. In the base case for the opr statistic calculations,

prior information on K_RB and VK_CB is omitted, and there are several par-

ameter correlations that are very large in absolute value, as shown in Table 8.4.

Table 8.6 summarizes the increases in these parameter correlations that occur

when individual head observations are omitted in the opr calculations. Use

the information in this table, along with knowledge of how omission of the

202 MODEL PREDICTIONS, DATA NEEDS, AND PREDICTION UNCERTAINTY



flow observation affects parameter correlations (discussed in Exercises 4.1c,

5.1a, and 7.1f), to help explain the importance of observations head01.ss and

flow01.ss by the opr analysis.

. Figure 8.10b shows the standard deviation increase associated with each opr

statistic value in Figure 8.10a. Are the standard deviation increases for any

FIGURE 8.10 (a) Observation–prediction (opr) statistic calculated to evaluate the

importance of existing head and flow observations to predicted advective transport in the x, y,

and z directions at 100 years. The statistic is computed as the percent increase in prediction

standard deviation produced by omitting an observation individually. The opr statistics for

observation flow01.ss and predictions A100x and A100z equal 280,000 and 5404,

respectively. (b) Increase in prediction standard deviation (sz0
‘
� sz0

‘
(+i) in Eq. (8.11))

produced by omitting an observation. Increase in standard deviation for observation flow01.ss

and prediction A100x equals 6 � 106 m. Note that this figure uses a logarithmic scale on the

vertical axis.
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of the predictions small enough to suggest that further investigating obser-

vations for purposes of improving a particular prediction might not be war-

ranted, despite relatively large opr statistics for the prediction?

(e) Assess the likely importance of potential new observations to the predictions

using dimensionless and composite scaled sensitivities and parameter

correlation coefficients.

This exercise addresses Question 4, by evaluating the likely importance to the pre-

dictions of potential new observations that would be collected under pumping con-

ditions. The potential new observations include a hydraulic head in layer 1, row 9,

column 18, and a streamflow gain or loss over all river cells in column 1 of the flow

model. The potential new hydraulic-head observation location was chosen because

the county has access to this property and county modelers believe that a location far

from the river would provide substantial information about the model parameters.

The two potential observations have different units of measurement. Their rela-

tive importance can be evaluated using dimensionless scaled sensitivities, which are

scaled using weights. As discussed in Chapter 3, Section 3.3.3, the statistics com-

monly used to determine the weights are variances, standard deviations, and coeffi-

cients of variation that reflect observation error. For potential measurements, it is

preferable to use variances or standard deviations. Coefficients of variation can

only be used to calculate the weights if a reasonable guess is specified for the antici-

pated observed value, because when coefficients of variation are used the weight is

calculated as vii ¼ 1/[cvi � y]2, where y is the specified observed value. For this

problem the variance of the potential head observation error is specified as 1.0025,

TABLE 8.6 Summary of Increases in Parameter Correlation

Coefficients ( pcc) Caused by Omitting Individual Observationsa

Observation Name

Maximum Percent

Increase in Any pcc

Number of pcc that

Increase by More Than

1 percent

hd01.ss 5.8 3

hd02.ss 2.1 3

hd03.ss 0.0 0

hd04.ss 2.1 3

hd05.ss 2.6 3

hd06.ss 2.3 3

hd07.ss 0.0 0

hd08.ss 0.0 0

hd09.ss 0.5 0

hd10.ss 1.7 3

flow01.ss 7.5 6

aThe percent increases and number of pcc shown in columns 1 and 2 of the table all occur

for pcc that are greater than 0.90 in the base case calculation, in which no observations are

omitted.
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to be consistent with the variances of head observation errors used in the calibration.

The standard deviation of measurement error for the flow is set to 0.44 m3/s.
Parameter correlation coefficients with and without the potential new obser-

vations also need to be included in the analysis. They are used to evaluate if

adding potential observations reduces the values of any problematic correlations,

as discussed in Section 8.3.1.

The dss associated with the potential head and flow observations are plotted in

Figure 8.11. Parameter correlation coefficient matrices with the potential obser-

vations are shown in Table 8.7.

Problem: Answer Question 4 by comparing the dss to the css for the existing

observations and by comparing the pcc for this exercise with those evaluated in

Exercise 8.1b.

( f ) Assess the likely importance of potential new observations to the predictions

using the observation–prediction (opr) statistic.

This exercise addresses Question 4, by using the opr statistic to calculate the

decrease in prediction uncertainty caused by adding potential new observations

collected under pumping conditions. First, opr statistics are calculated for the poten-

tial head and flow data described in Exercise 8.1e. Second, the opr statistic is

calculated for the case of individually adding a new head observation in each cell

of the model domain. This latter analysis identifies all areas of the domain that

would be good candidates for new head observation locations, in terms of improving

the advective-transport predictions. Both of these analyses can be completed using

the program OPR-PPR (Tonkin et al., in press). Both analyses include uncertainty in

parameter POR_1&2, as described in Exercise 8.1c.

FIGURE 8.11 Composite scaled sensitivities (css) for the observations used in model

calibration and dimensionless scaled sensitivities (dss) for two potential new observations.

All sensitivities are calculated using the parameter values estimated by regression.
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Results of the first analysis are presented in Figure 8.12, which shows the opr

statistic calculated for each potential observation and each of the nine advective-

transport predictions.

Problem
. Answer Question 3 by evaluating the opr statistics shown in Figure 8.12.

. Why does the potential head observation have larger values of the opr statistic

for all predictions than does the potential flow observation? Consider the par-

ameter correlation coefficients shown in Table 8.7.

. Why is the potential flow observation relatively unimportant to the predictions,

in contrast to the very large importance of the existing flow observation as

shown in Figure 8.10a.

TABLE 8.7 Parameter Correlation Matrices for Final Parameter Values Calculated

by MODFLOW-2000 Using the Existing Hydraulic-Head and Flow Observations Under

Conditions of No Pumping Together with, Under Pumping Conditions, (a) Only the

Potential Flow Observation, (b) Only the Potential Hydraulic-Head Observation, and

(c) Both Potential Observationsa

HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2

(a) Only the Potential Flow Observation

HK_1 1.00 20.42 20.93 20.96 0.97 20.94

K_RB 1.00 0.20 0.34 20.32 0.32

VK_CB 1.00 0.97 20.97 0.97

HK_2 Symmetric 1.00 20.996 0.998

RCH_1 1.00 20.99

RCH_2 1.00

(b) Only the Potential Hydraulic-Head Observation

HK_1 1.00 20.27 20.56 20.98 0.96 20.93

K_RB 1.00 20.38 0.18 20.062 0.093

VK_CB 1.00 0.64 20.61 0.63

HK_2 Symmetric 1.00 20.95 0.97

RCH_1 1.00 20.97

RCH_2 1.00

(c) Both Potential Observations

HK_1 1.00 20.33 20.43 20.96 0.93 20.89

K_RB 1.00 20.42 0.21 20.060 0.10

VK_CB 1.00 0.54 20.50 0.53

HK_2 Symmetric 1.00 20.91 0.95

RCH_1 1.00 20.95

RCH_2 1.00

aValues greater than 0.95 are in bold type.
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Results of the second analysis are presented in Figure 8.13. To understand these

results, examine the reduction in parameter correlation coefficients (pcc) caused by

adding a potential hydraulic-head observation at any cell throughout the model

domain. The reductions in pcc are summarized in Figure 8.14, which shows the

maximum percent reduction in any pcc when a hydraulic-head observation is

added at a particular cell center.

Problem

. Examine Figure 8.13 and identify the best locations for collecting additional

hydraulic-head data, from the perspective of reducing the uncertainty in

predicted advective transport at 100 years.

. How do the percent reductions in parameter correlations shown

in Figure 8.14 help explain the results in Figure 8.13? In Figure 8.14, the

maximum percent reduction in correlation is almost always associated

with parameter VK_CB. Use your knowledge about the flow system to

help explain why adding a hydraulic head most reduces the correlations

for this parameter.

Exercise 8.2: Prediction Uncertainty Measured Using Inferential Statistics This

exercise involves computing both linear and nonlinear confidence intervals on the

predicted advective transport at 10, 50, and 100 years. Uncertainty in parameter

POR_1&2 is included in these analyses, through prior information and weighting,

as explained in Exercise 8.1c.

FIGURE 8.12 Observation–prediction (opr) statistic calculated to evaluate the

importance of the potential head and flow observations to predicted advective transport in

the x, y, and z directions at 10, 50, and 100 years. The statistic is computed as the percent

decrease in prediction standard deviation produced by adding either the head or the

flow observation.
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(a) Calculate linear confidence intervals on the components of advective

transport.

This exercise addresses Question 5, using linear confidence intervals on the

simulated advective-transport predictions to quantify their uncertainty. For students

performing the simulations, instructions for calculating the intervals are available

from the web site for this book listed in Chapter 1, Section 1.1.

Linear, individual 95-percent confidence intervals and linear simultaneous

(Bonferroni) 95-percent confidence intervals in the x and y directions are shown

on a map of model layer 1 in Figure 8.15a,b. Bonferroni simultaneous intervals

are used instead of Scheffé simultaneous intervals because, for the finite number

of intervals of interest here, the Bonferroni intervals are smaller (see discussion in

Section 8.4.1). The intervals in the z direction are shown in Figure 8.16.

Problem

. Explain conceptually why the linear simultaneous intervals are larger than

the linear individual intervals. Of these two linear confidence intervals,

which might be the preferred representation of uncertainty? Why?

. Answer Question 4 above using the linear confidence intervals on the

advective-transport predictions.

FIGURE 8.13 Observation-prediction (opr) statistics (Eq. (8.9)), showing the percent

decrease in prediction standard deviation likely to be produced by collecting one new

hydraulic-head observation under pumping conditions. New observations are located at

each node in model layer 1. For each node, the new head is added to the existing 11

observations and the opr statistic is calculated. This procedure is repeated for all nodes

and the resulting values are contoured. The contours range from 10 to 80 percent. The

opr values plotted are averaged over the three advective transport directions for which the

ADV Package produces results.
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. Do the confidence intervals make sense? Is there anything surprising about

them? Note that because they are linear, these intervals sometimes do not

account for the physics of the problem. They can include values that are phys-

ically implausible, such as predicted advective-transport values that lie out-

side the model domain. This is typical of linear intervals.

(b) Calculate nonlinear confidence intervals on the components of advective

transport.

This exercise revisits Question 5, using nonlinear individual and simultaneous

(Scheffé d ¼ NP) confidence intervals on the components of simulated advective

transport. The nonlinear 95-percent confidence intervals in the x and y directions

are shown on a map of model layer 1 in Figure 8.15c,d. The intervals in the z

direction are shown in Figure 8.16. The nonlinear intervals were calculated using

UCODE_2005.

In Figure 8.15c and 8.15d, there are dashed lines on the confidence intervals cal-

culated for the particle position at 100 years. The interval limits involved are simu-

lated using parameter values that cause the advective transport path to reach the well

FIGURE 8.14 Maximum percent reduction in any parameter correlation coefficient (pcc),

produced by adding one new hydraulic-head observation under pumping conditions. New

observations are located at each node in model layer 1. For each node, the new head is added

to the existing 11 observations and the pcc is calculated, and the percent decrease from the

base case pcc (with only the existing 11 observations) is calculated. This procedure is

repeated for all nodes and the resulting values are contoured. The contours range from 10 to

40 percent. The maximum percent reduction for each node is determined using only base case

pcc that are greater than 0.90.
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FIGURE 8.15 Plan view of the model grid showing the predicted advective-transport path

from the proposed landfill and 95-percent confidence intervals in the x and y directions at

simulated travel times of 10, 50, and 100 years (locations labeled on each map). The true

path also is shown. (a) Linear individual confidence intervals. (b) Linear simultaneous

(Bonferroni) confidence intervals. (c) Nonlinear individual confidence intervals. (d)

Nonlinear simultaneous (Scheffé d ¼ NP) intervals. (a) and (b) At 100 years, the linear

intervals in the x and y directions extend outside the model domain. In (a), the upper limit

in the x direction is 18,930 m and the limits in the y direction are 217,680 m and

28,390 m. In (b), the limits in the x direction are 25,430 m and 25,040 m and those in the

y direction are 233,110 m and 43,820 m. (c) and (d ) The dashed lines at 100 years reflect

projections simulated by the ADV Package when a particle exits the model. See

discussion in text about this and about the intervals in (d ) at 50 and 100 years that extend

to the river.
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prior to 100 years. When a particle reaches a flow model boundary prior to the pre-

diction time, the ADV Package projects the particle until the prediction time is

reached, using the particle velocity when the particle exits the model (Anderman

and Hill, 2001, p. 12). As they explain, this procedure is very useful when estimating

parameter values because it makes sensitivities remain informative. In the model

considered here, the large velocity at the pumping well causes the particle to be

projected a considerable distance in the y direction after entering the well, and the

resulting interval limit is not meaningful. A better approximation of the confidence

interval limit in that direction is the location where the particle left the system. Here,

that location is the well, as indicated by the solid lines in Figure 8.15c,d.

Other examples of projected particles are not apparent in Figure 8.15d, but affect

the output files used to construct the figure. In Figure 8.15d, the confidence intervals

in the x direction at 50 and 100 years extend to the river. These limits are simulated

using parameter values that cause the advective transport path to reach the river prior

to the prediction time of 50 or 100 years. The ADV Package projects the particle

FIGURE 8.16 Predicted z locations of the advective-transport path, linear individual

and simultaneous (Bonferroni) 95-percent confidence intervals, and nonlinear individual

and simultaneous 95-percent confidence intervals at simulated travel times of 10, 50, and

100 years. True z locations also are shown. The bottom of the model domain lies at

an elevation of 210 m. For prediction A100z, the limits of the linear individual

intervals are 266 m and 152 m. The limits of the linear simultaneous intervals are 2141 m

and 234 m.
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until the prediction time is reached. The interval limit printed in the output file falls

outside the model domain, which is not meaningful. In this case, the appropriate

limit at both 50 and 100 years is the location of the river, as shown in Figure

8.15d. Dashed lines are not needed because interval limits outside the model

domain are not plotted.

Problem: Reevaluate the answer to Question 4 considering the nonlinear confidence

intervals on the components of advective transport. Is the answer based on the non-

linear intervals different from that based on linear intervals?
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9
CALIBRATING TRANSIENT
AND TRANSPORT MODELS
AND RECALIBRATING
EXISTING MODELS

The methods presented in Chapters 3 to 8 are applicable to models of any system.

However, there are special considerations when applying the methods to certain

types of models. This chapter discusses three types of models that are of special

interest to many scientific and engineering fields: transient models, transport

models, and existing models that may need to be recalibrated.

9.1 STRATEGIES FOR CALIBRATING TRANSIENT MODELS

In many natural and engineered systems, conditions change with time. When simu-

lating these transient systems, it is important to carefully consider (1) initial con-

ditions, (2) representation and weighting of transient observations used for model

calibration, and (3) definitions of model inputs and parameters added for the

transient simulation.

9.1.1 Initial Conditions

For transient models, initial conditions define the system state at the beginning of the

simulation. In some situations, such as for atmospheric systems, conditions change

very quickly and there is no choice but to begin the simulation with initial conditions

derived directly from measurements. In this case, the specified initial state of the

system generally is inconsistent to some degree with the conservation equations
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and properties of the model. That is, the initial simulated processes and properties

result in a simulated system state that differs from the initially specified state.

When the simulation is started, the simulated state changes from the initially speci-

fied state to become consistent with the simulated initial processes and properties

and ongoing stresses. For a system in which conditions change rapidly, the inconsis-

tencies between the initially specified state and the simulated initial processes and

properties generally are not problematic because the ongoing stresses soon dominate

the solution. As a result, comparing observed and simulated values becomes mean-

ingful after a relatively short simulated time.

Other systems, like most groundwater flow systems, change slowly with time. For

these systems it is preferable, and often possible, to begin the transient simulation

with initial conditions produced by a steady-state simulation. This ensures initial

conditions that are consistent with all simulated processes and properties except

for the imposed transient stresses (Franke et al., 1987). This consistency is import-

ant, because inconsistencies in initial conditions can endure for long periods of

simulated time in slowly changing systems. From the perspective of model

calibration, enduring inconsistencies can affect model fit and, therefore, estimated

parameter values and model design.

If initial conditions for slowly changing systems are derived directly from

measurements, it is critical to evaluate how any enduring inconsistencies affect

the model, the estimated parameters, and predictions of interest. Often, the effect

of imposed initial conditions can be evaluated using a simulation in which transient

stresses and processes are omitted from the simulation. For example, in a ground-

water flow simulation, if the transient stress is pumpage and the predictions of

interest are changes in head (drawdowns), it is important to simulate the system

without any transient changes in pumpage to determine the head changes simulated

as the model adapts to the imposed initial conditions. If the head changes are large

relative to the head changes simulated with pumpage, comparisons of observed and

simulated drawdowns can be meaningless, and attempts to calibrate the model using

such comparisons can lead to a badly flawed model. Finally, for slowly changing

systems it is important to reevaluate the effects of imposed initial conditions as

regression proceeds and model construction and parameter values change.

9.1.2 Transient Observations

Four issues important to using transient observations are discussed in this book: the

effects of imposed initial conditions, inconsistencies in observed and simulated tem-

poral effects, weighting of transient observations, and temporal differencing. The

first issue was discussed in Section 9.1.1. The other three are introduced here and

are also addressed in Guidelines 4 and 6 of Chapter 11 and the field examples pre-

sented in Chapter 15.

Observed and Simulated Temporal Effects When temporally varying obser-

vations are used to calibrate models of transient systems, it is important to consider

whether the transient effects contained in the observations are consistent with the
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simulated transient processes. For example, consider water-level data in wells

collected on a daily or weekly basis by an automated recording device being used

in a model for which simulated transient effects are limited to pumpage and recharge

that vary seasonally. The data are likely to be affected by hydrologic processes that

are not simulated in the model, such as water-table fluctuations due to short-term

hydrologic events like storms or daily variations in pumping rates. Using the numer-

ous high-frequency data as observations can require substantial data preparation

effort and make it difficult to evaluate the aspects of model fit most important to

the designed purpose of the model. It can also result in (a) optimized parameter

estimates that are unreasonable because they are making up for unrepresented

processes, (b) poor fit to observations and simulated values that are often consist-

ently above or below the observations, and/or (c) problems with convergence of

the parameter-estimation iterations.

Using observations that are consistent with the simulated processes eliminates the

difficulties. We call these time-consistent observations. While it can be difficult

to obtain completely time-consistent observations, substantial understanding of

the data and the model can be derived from trying and generally sufficient consist-

ency is achievable. In the example above, for which the data are far more frequent

than the simulated processes, time-consistent observations can be obtained by

temporally averaging observations or by selectively using observations that are

thought to be representative for each season. Obviously, clearly describing the

criteria used to obtain the observations from the data is critical to the integrity of

any model.

If the data are affected by unrepresented, high-frequency transient processes but

the data are infrequently collected, other possibilities need to be considered. In some

cases, the time of year or time of day can be used to determine if the observation is

likely to be different from the desired time-average quantity, and time-consistent

observations can be obtained by making appropriate adjustments. More frequent

data in nearby locations or similar circumstances sometimes can be used to support

adjustments. If there is no way to know whether a value is too high or too low,

this implies that no bias can readily be identified and the data can be used directly

as an observation. In all cases, the weighting of the observations needs to reflect the

analysis of errors conducted, as discussed in the next section.

A common situation is that data affected by transient processes are used to

calibrate a steady-state model. This situation is discussed in Chapter 15, Section

15.2.1.

An example of using transient data to define the time discretization of simulated

processes to obtain time-consistent observations is presented by Bravo et al. (2002).

They used this approach to calibrate a model of steady-state groundwater flow and

transient heat transport in a wetland system. Frequency domain analysis of water-

level and temperature data revealed time periods when heat transport showed tran-

sient variation yet groundwater flow could be assumed to be at steady state. Cali-

bration of the model over these time periods using the water-level and

temperature observations allowed estimation of average rates of flow from the wet-

land to the groundwater system.
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Weighting Transient Observations When determining weights for temporal

observations, it is important to assess whether observation errors are correlated or

are independent over time. Observation errors can be classified as presented in

Appendix A, Section A.3 in the fifth assumption required for diagonal weights to

be correct. Briefly, the classes are (1) constant over time (perfectly correlated),

(2) correlated over time (autocorrelated), and (3) random over time (uncorrelated).

For measurements of hydraulic head over time in a single monitoring well, examples

of these types of error are as follows. Well elevation measurement error is constant

in time, because the elevation is typically measured once and used to calculate

hydraulic head whenever water levels in the well are measured. Temporally corre-

lated errors include the transient drift of the reference point of a pressure transducer

and the lag due to mechanical friction of float-type measuring device (Rosenberry,

1990). Random errors can be generated by procedures and devices used to measure

the depth to water in a well.

Determining each of these types of error for a given observation requires careful

consideration of measurements that contribute to each observation and the errors

associated with each measurement. As discussed in Guideline 6 in Chapter 11,

variances of these individual measurement errors can be added to obtain the total

variance for the observation.

Temporal Differencing Differencing is a useful method for addressing errors that

are constant over time. In groundwater modeling, differencing is commonly used

because often the drawdown of hydraulic head caused by pumping is the observation

of greatest interest. Drawdown equals the difference in hydraulic heads measured

at two different times. In other scientific fields the system stress may be different,

but often the change caused by some stress is of interest. In these circumstances it

is desired not only to match the measured values, but also to match the changes

in these values. Differences can be used to emphasize these changes and to achieve

a simpler diagonal weight matrix. Differencing can produce a much more effective

set of calibration observations in some circumstances. See Assumption 5 in

Appendix A for more information.

9.1.3 Additional Model Inputs

A final consequence of a transient model is that, in most systems, the transition from

steady state to transient simulation requires additional model inputs. In groundwater

systems, the primary additional inputs include (1) storage coefficients; (2) stresses

that vary over time, such as recharge and pumping rates; and (3) boundary con-

ditions that vary over time, such as lake or river levels. These properties can be

parameterized and estimated in the same manner as for system properties that are

invariant in time, as suggested by the methods and guidelines presented in this book.

As for time-invariant model inputs, a common calibration issue for transient

properties is that the potential number of parameters generally is large. For example,

for a transient groundwater flow model with a total simulation time of 10 years and

with recharge from precipitation that varies on a monthly basis, there are potentially

216 CALIBRATING TRANSIENT AND TRANSPORT MODELS



120 different recharge parameters even before spatial variability is considered. It is

not likely that the observation data available for calibration would support indepen-

dent estimation of all of these parameters. One strategy is to estimate an initial dis-

tribution of recharge over time, using site data on climate, geology, vegetation, and

so on, and then define one or more multiplicative parameters that scale this initial

distribution of recharge (e.g., Tiedeman and Gorelick, 1993). The parameters

have initial values of 1.0, and regression is used to estimate their optimal values.

In some models of transient systems, only a subset of the simulated stresses vary

in time. For example, in a transient model of a regional groundwater system in the

arid environment of the Albuquerque Basin, Tiedeman et al. (1998b) simulated

historical pumping rates that varied by season and used transient observations for

calibration. Recharge and regional groundwater inflow were simulated as tem-

porally constant, representing average annual values over the calibration period.

This approach was reasonable because the typically large depth to the water table

resulted in small seasonal recharge effects. A similar method was employed by

Faunt et al. (2004).

9.2 STRATEGIES FOR CALIBRATING TRANSPORT MODELS

Predicting transport of introduced or naturally occurring constituents is of interest in

many systems. Preferably transport observations, such as concentrations or concen-

trations summarized as advective-travel observations, moment observations, and so

on, are available for model calibration. However, sometimes only observations

related to the flow system are available for model calibration, and the model is

used to predict some aspect of transport. This circumstance is difficult in that predic-

tive capability can be compromised. However, models are still the only way to intro-

duce conservation principles into the analysis of complicated natural environments,

and, as discussed in Chapter 1, calibration is an important option in many circum-

stances. The difficulties involved in simulating concentration with models devel-

oped using only flow-system observations make the sensitivity analysis and

uncertainty evaluation methods described in this book especially critical to pursue

in these circumstances.

When calibrating transport models, it is important to carefully consider (1) what

transport processes to include, (2) definition of the source, (3) scale issues, (4)

numerical accuracy and execution time, (5) representation and weighting of trans-

port observations used for model calibration, and (6) additional model inputs.

These issues are addressed in the following sections. We also give some examples

of how to obtain a tractable, useful model.

9.2.1 Selecting Processes to Include

The transport of constituents in natural and engineered systems is the result of many

processes, generally including advection, transient changes in advection, dispersion,

retardation, and chemical reaction with other dissolved or particulate transported
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constituents and the surrounding material (e.g., rocks and sediments in groundwater

systems). In addition, there are processes such as density and temperature that can

result in feedback effects on the flow field. Also, multiple phases such as nonaqueous

phase liquids (NAPLs), alternate transport mechanisms such as colloids, and living

particles such as viruses can be simulated. Execution times generally increase dra-

matically as more processes are included. The importance of thinking carefully

about execution times is discussed in Chapter 15, Section 15.1.

The options for simulating transport are generally as follows:

Option 1. Use advection to approximate transport travel time and direction.

Option 2. Use advection and dispersion to simulate the arrival of low

concentrations at the plume front, the concentration and time at the plume

peak, and/or enduring low concentrations at the plume tail.

Option 3. Use advection, dispersion, reactions, and other mechanisms to account

for additional processes that can affect arrival times, peak concentration times,

and duration of low concentrations.

A model calibration effort need not use just one of the options mentioned.

As suggested by Anderman et al. (1996), it can be advantageous to begin with

just advective transport (option 1) to obtain the correct transport direction and

timing. Progressively more processes can then be developed and tested against

the available data and can be evaluated on the basis of the importance of

the additional processes to predictions. This progression is consistent with

Guideline 1 of Chapter 11.

Decisions about which transport processes to simulate depends on many things

(e.g., see Zheng and Bennett, 2002, Chapter 7). Here we are concerned with how

observations and parameters can be defined to achieve a tractable model calibration

problem and a useful model. Relevant issues are discussed and examples are

presented in Sections 9.2.2–9.2.7.

9.2.2 Defining Source Geometry and Concentrations

When simulating the transport of contaminants from a disposal source, the

location at which the disposal occurred and the release history of contamination

are important to simulated concentrations. To the extent that simulated source

characteristics are incorrect, parameter estimates that produce a good match to

measured concentrations might be unattainable or, even if a good match is achieved,

may be unable to produce good predictions for other circumstances.

In some situations, the source characteristics are well known and can be used

directly in the model. Even in these situations, however, difficulties can occur

because local flow characteristics associated with source emplacement may not be

simulated and/or the extreme concentration gradients at the source cause unrealistic

numerical spreading of the plume at early time (e.g., LeBlanc and Celia, 1991;

Zhang et al., 1998; Barlebo et al., 2004).
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In other situations, the source location and history are poorly known. An alterna-

tive to specifying the source characteristics is to simultaneously estimate its

location and release history along with model parameter values. Wagner (1992)

and Mahar and Datta (2001) present methods for this simultaneous estimation pro-

blem. Applications of their methods to synthetic examples show that the approach

has promise, but that nonuniqueness can be problematic. Simultaneously estimated,

unique values could only be achieved with constraints imposed on the parameter

values and the source characteristics. When the source location is well known,

but the source history is not, nonuniqueness can be less problematic: Sonnenborg

et al. (1996) and Medina and Carrera (1996) successfully estimated source concen-

trations along with flow and transport parameters.

An advantage of defining parameters that represent the source characteristics

is that sensitivity analysis methods can be used to investigate the importance of

the parameters to model fit to observations and to model predictions.

9.2.3 Scale Issues

In addition to carefully considering which transport processes to simulate and

which parameters to estimate, it also is important to recognize that features that

are inconsequential to flow may be important to transport. This has been demon-

strated for groundwater systems by a number of authors, including Poeter and

Gaylord (1990), Zheng and Gorelick (2003), and De Marsily et al. (2005). Both

unresolved smaller-scale features and misrepresented larger-scale features are of

concern.

Calibration of transport models with unresolved and misrepresented features

can cause problems with the regression and its results. For instance, the regression

may estimate unreasonable parameter values to compensate for the inaccurate

representation of system features, produce a poor fit to transport observations,

and/or have difficulty converging to optimal parameter estimates.

Scale issues are problematic for groundwater models because (1) the variability

consists of subsurface materials with properties that can vary by many orders of

magnitude, (2) only a small portion of the subsurface material of any system

is measured or measurable using current technology, and (3) the variability is

important to the quantity and the quality of the groundwater needed by human

and ecological communities.

This book does not address scale issues comprehensively, though the methods

and guidelines provide important tools and ideas for addressing scale issues.

Interesting methods that have been developed to deal with scale issues in transport

problems include, for example, zonation (discussed further in Guideline 2,

Chapter 11), the transitional probability method of Carle et al. (1998), the

superparameter method of Tonkin and Doherty (2005), the constrained minimiz-

ation method of Doherty (2003) and Moore and Doherty (2005, 2006), the represen-

ter method of Valstar et al. (2004), and the sequential indicator simulation method of

Deutsch and Journel (1992, pp. 123–125, 148) and Gomez-Hernandez (2006), some

of which were mentioned in Chapter 1 of this book. Scale issues are also addressed
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in many of the guidelines presented in Chapters 10 to 14. This is an area of active

research and it has not yet matured to the point of achieving thorough comparison

of methods for realistic problems. One can imagine that there might be a continuum

between the solute spreading best represented by explicit representation of subsur-

face heterogeneity and solute spreading best represented by a simple representation

of the heterogeneity combined with volume-averaged processes. An intermediate

model would include some explicit representation of heterogeneity and some dis-

persion. It is not known where models along this continuum would be of most

use in different practical problems. This seems to the authors of this book to be a

rich area for future research.

9.2.4 Numerical Issues: Model Accuracy and Execution Time

Forward execution times of less than about 30 minutes or so are important to being

able to explore the meaning of data and model processes regardless of the method

used for model calibration (see Chapter 15, Section 15. 1). Numerical accuracy is

important to obtaining accurate sensitivities and parameter estimates. For transport

problems, there is often a trade-off between accuracy and execution time—greater

accuracy requires longer execution times. Also, as mentioned in Section 9.2.1,

added processes can require much greater execution times.

The three options for simulating transport defined in Section 9.2.1 each have

issues related to model execution time and accuracy of the numerical simulation.

Option 1 Simulate advective transport with particle tracking methods that require

only slightly more execution time and computer storage than a flow model without

any transport.

A problem with applying regression methods to models with advective-transport

observations is that if a particle exits the grid when the model is solved for a particu-

lar set of parameters, its sensitivities cannot be calculated. Anderman and Hill

(2001) address this problem by calculating a projected position for any particle

that leaves the grid, using the particle velocity at the point where it exits the

model. Sensitivities are then calculated using the projected position.

Advective-transport simulation accuracy can deteriorate as the model grid

becomes coarse. This can be addressed by testing different grid refinements and

possibly locally refining grids in selected parts of the model (e.g., Mehl and Hill,

2006). Zheng (1994) discusses two situations that can cause inaccurate particle

tracking results when the model grid discretization becomes coarse: the presence

of a weak sink or source, and a vertically distorted grid. He presents computational

methods for minimizing the particle tracking errors that arise from these problems,

which can be used when it is impractical to more finely discretize the grid. These

methods are now used in many particle tracking codes.

Options 2 and 3 Simulating advection and dispersion requires substantially more

execution time than does simulating advection only, and including reactions and

other transport mechanisms generally requires even greater execution times. For
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these types of transport simulations, numerical accuracy issues are much more

problematic than for simulation of advective transport. Concerns discussed here

are time-step size coordination, problems with perturbation sensitivities when

using Lagrangian methods, and the consequences of numerical dispersion.

Slight changes in time-step size can cause slight changes in the concentration

simulated at a particular location and time. When calculating sensitivities by pertur-

bation methods, these small changes in concentrations can cause large changes in

sensitivities. This situation occurs commonly when the transport-step size is

automatically calculated by the modeling software to satisfy, for example, the

Courant number criterion (e.g., Zheng and Bennett, 2002, p. 187; Barth and Hill,

2005a). It is very likely that the transport-step size will be different in the two

simulations needed to compute the perturbation sensitivities for each parameters,

which adversely affects the sensitivities. This problem can be eliminated by execut-

ing the transport code for the starting parameter values, noting the model-calculated

transport time step, and defining a somewhat smaller time step to calculate sensi-

tivities and perform parameter estimation. In regression runs, the parameter

values and simulated flow field changes from one regression iteration to the next.

To ensure that the imposed transport-step size remains valid, occasionally use the

updated parameter values in a forward run for which the model calculates the

step size.

In Lagrangian methods of solute transport simulation, concentrations in a model

cell or element are calculated from masses or concentrations associated with the

particles present in the cell. Examples are the method of characteristics and the

random-walk method. Simulated concentrations at one location tend to be accurate

on average but are not smooth over time. Instead, they tend to oscillate about a

smooth curve as particles leave and enter the cell. The oscillations are reduced

as more particles are used, but enough particles to obtain a reasonably smooth

curve often results in long execution times for practical problems. It is dangerous

to use perturbation methods to calculate sensitivities based on oscillating concen-

trations. Depending on the oscillation captured in the two runs required to obtain

perturbation sensitivities, the sensitivity can range from being much too small to

much too large. Resulting sensitivities commonly do not vary smoothly from one

time step to the next, or from one parameter estimation iteration to the next,

which can cause substantial problems with convergence of the nonlinear regression

procedure. Sonnenborg et al. (1996) minimized this problem by calculating the sen-

sitivities using concentrations averaged over time periods that are longer than the

model time steps. This approach can easily be implemented using universal inverse

models such as UCODE_2005 and PEST.

Numerical dispersion is a common problem and its presence affects estimated

parameters and model predictions. Mehl and Hill (2001) illustrated this by simulat-

ing a two-dimensional laboratory experiment constructed of discrete, randomly dis-

tributed, homogeneous blocks of five sands. They first demonstrated that when

laboratory measurements of hydraulic conductivity and dispersivity values are

used directly in the transport model, a poor fit to the measured breakthrough

curve (BTC) is achieved (Figure 9.1a). Results of these simulations also show
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FIGURE 9.1 Measured and simulated breakthrough curves (BTCs) for a two-dimensional

laboratory experiment of transport through saturated sands. For the measured concentration

values, 95 percent confidence intervals are shown and reflect measurement error. (a) BTCs

using measured hydraulic conductivities and dispersivities. Computation times are listed in

brackets and are from a LINUX workstation, Pentium II-333, 64 Mb RAM. (b) BTCs using

optimized hydraulic conductivities and measured dispersivities. The solution labeled

P-C(2) uses dispersivity values increased to approximate the numerical dispersion common

to the FD and MMOC methods of MT3DMS. (From Mehl and Hill, 2001.)
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that, as coded in MT3DMS (Zheng and Wang, 1999; Zheng, 2005), the finite-

difference (FD) method and the modified method of characteristics (MMOC) exhibit

more numerical dispersion than the method of characteristics (MOC) and the total

variation diminishing (TVD) method. A predictor-corrector (P-C) method added

to MT3DMS for the study also had little numerical dispersion.

Sensitivities found using the different solution methods produced similar

conclusions about what parameters were important, but regression estimates of dis-

persivity and hydraulic conductivity parameters were strongly affected by numerical

dispersion. When dispersivity was set to laboratory-measured values, regression

using FD and MMOC produced substantially different hydraulic-conductivity

estimates than did MOC, TVD, and P-C. Better fits to measured BTCs were

achieved for FD and MMOC (Figure 9.1b), which have more numerical dispersion.

This suggests that the measured dispersivities were consistently too small and the

estimated hydraulic conductivities were compensating for the bias in the

measured dispersivities. When a single multiplicative dispersivity parameter and

the five hydraulic-conductivity parameters were estimated, similar hydraulic-

conductivity estimates and a similar fit were attained for all solution methods, and

dispersivity estimates were larger for methods with little numerical dispersion.

9.2.5 Transport Observations

Three issues important to using transport observations are discussed: (1) simul-

taneous use of transport and flow-system observations, (2) weighting concentration

observations, and (3) using point concentrations to determine other types of

observations.

Simultaneous Use of Transport and Flow-System Observations Concentration

observations are important to the estimation of both flow and transport

parameters, typically providing substantial information about transmissive proper-

ties such as hydraulic conductivity and transmissivity, because (1) concentrations

are sensitive to velocities and (2) in process-based models, velocity magnitude

and direction depend on these properties.

Simultaneous use of concentrations and other types of data is likely to be more

successful than a sequential estimation strategy, by which, for example, head and

flow observations are used to estimate flow model parameter values, when these

values are fixed and concentration data are used to estimate the transport parameters.

Wagner and Gorelick (1987) were the first to develop a coupled estimation method-

ology and applied it to a synthetic example. Several later studies have shown that

coupled estimation of flow and transport parameters produces parameter estimates

that are more reasonable and have reduced uncertainty, compared to a sequential

estimation strategy or a procedure whereby subsets of the observations (e.g., only

heads or only concentrations) are used to estimate both flow and transport par-

ameters (e.g., Gailey et al., 1991; Sonnenborg et al., 1996; Barlebo et al., 1998;

Anderman and Hill, 1999). In some cases, a sequential estimation strategy might

produce the same results as those from a coupled inverse procedure (e.g., Jacques
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et al., 2002). However, there is no guarantee of this, and thus the use of simultaneous

estimation of flow and transport parameters is encouraged.

Weighting Concentration Observations As discussed in the context of Eq. (3.6)

in Chapter 3, Section 3.3.3, the standard deviation of errors in concentrations

often can be thought of as being proportional to the concentration. Under this

circumstance, the standard deviation equals the product of a coefficient of variation

and a concentration; both observed and simulated concentrations have been used in

the literature, though there is some indication that simulated values are needed for

unbiased parameter estimates (Anderman and Hill, 1999). Valstar et al. (2004) pro-

vide an example of using errors that are proportional to concentrations. Figure 9.2b

shows how weighted residuals can vary depending on whether simulated or

observed values are used to calculate the weights.

When applying parameter-estimation methods to transport models, a numerical

problem can occur when the range of concentration observations spans more than

about four orders of magnitude (Barth and Hill, 2005a,b). Such a large range

occurs for many constituents, such as dissolved aqueous species or pathogens. The

difficulty arises when observation uncertainty is represented as being proportional

FIGURE 9.2 (a) Simulated breakthrough curves trailing and not overlapping the observed

breakthrough curve, and (b) the resulting weighted residuals employing weights calculated

using coefficients of variation and either observed or simulated concentrations (referred to

as observed- and simulated-value weights in the legend). Observed- and simulated-

value weights produce weighted residuals of similar magnitude. However, decreasing the

transport rate so that the simulated breakthrough curve shifts to the right and beyond the

period of observations decreases the sum of squared weighted residuals with observed-

value weighting while having no significant effect on weighted residuals with simulated-

value weighting. (From Barth and Hill, 2005a.)
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to the concentration. Applying a constant coefficient of variation for all observations

can result in enormous weighted residuals for small concentrations. This can occur

even if the concentrations are log-transformed. A solution is to place a lower bound

on the statistic, and thus an upper bound on the weight, as suggested by, for example,

Keidser and Rosbjerg (1991). Barth and Hill (2005a) show that it can be important to

approach the upper bound gradually.

Alternatives to Using Point Concentration Measurements as Observations Often

when calibrating transport models, use of point concentrations as measures of

goodness of fit can be problematic, because (1) concentration measurements can

vary over many orders of magnitude, (2) concentration measurements are often

scarce spatially, and (3) simulated point concentrations depend on the particular

representation of heterogeneity in the model, though the predictions of interest

may be averaged quantities that do not have this dependence. Thus, alternative

measures of goodness of fit might be preferable when calibrating transport

models. Here, we cite four alternatives to using point concentration measurements.

1. To calibrate a model of natural-gradient tracer transport in an extremely

heterogeneous aquifer, Feehley et al. (2000) divide the model domain into

six zones along the flow direction and compare simulated and observed

masses within each zone.

2. For calibrating a model of a different natural-gradient tracer test in the same

aquifer studied by Feehley et al. (2000), Julian et al. (2001) compare the

maximum simulated concentration from all model layers at a given areal

location with the maximum observed value from all vertical sampling

points at that location.

3. Barth and Hill (2005a,b) use moments of the concentration distribution.

4. Anderman et al. (1996) use concentration measurements to derive advective-

transport observations.

9.2.6 Additional Model Inputs

Simulation of transport often brings additional observations to the model calibra-

tion effort, and also brings additional system characteristics that typically are

determined at least in part using additional estimated parameters. If only advection

is considered, effective porosity is the sole additional system characteristic required

(as was the case for simulation of advective-transport predictions in Exercise 8.1). If

dispersive processes are included, dispersivity in up to three spatial directions is

needed. If multicomponent reactive transport is considered, there are potentially

a large number of additional system characteristics (e.g., see Parkhurst, 1995;

Prommer et al., 2003). All of the new system characteristics can vary spatially.

As for transient models, the additional model inputs can be parameterized and

parameters estimated as suggested by the methods and guidelines presented in

this book.
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Problems with insensitivity and correlation, as discussed in Chapter 4, can be

troublesome in transport models. When only advection is simulated and the flow

field is steady state, hydraulic conductivity, recharge, and effective porosity tend

to be intercorrelated. Insensitivity and correlation can be severe for multicomponent

reactive transport models, because each component is potentially characterized by

several separate transport properties.

9.2.7 Examples of Obtaining a Tractable, Useful Model

First, we mention two examples presented in more detail in Chapter 15 with very

different scales and modeling objectives. In a regional model of the Death Valley

groundwater system with 1500-meter grid spacing, advective transport was

chosen to simulate transport predictions. In a site-scale model of the Grindsted

landfill in Denmark with grid spacing as small as 1 meter, advection and dispersion

were included to calibrate with concentration observations. See Chapter 15 for

additional information.

Three recent applications of nonlinear regression to multicomponent reactive

transport models achieved tractable problems by carefully selecting which para-

meters to specify rather than estimate, or by simplifying the simulated processes

without sacrificing the ability of the model to reasonably represent the simulated

system.

1. To calibrate a model of vapor phase hydrocarbon transport, Gaganis et al.

(2002) grouped sets of individual hydrocarbon constituents with similar

thermodynamic properties into composite constituents. They then defined thermo-

dynamic parameters associated with these composite constituents, and thus substan-

tially reduced the total number of model parameters. These transport parameters

were estimated using concentrations of the composite constituents as the calibration

observations.

2. Ghandi et al. (2002b) calibrated a model of cometabolic trichloroethylene

biodegradation by retaining the full model complexity and large number of para-

meters, and fixing several insensitive parameters at values obtained from laboratory

experiments or previous modeling studies.

3. Essaid et al. (2003) made two simplifications when applying regression to a

model of hydrocarbon dissolution and biodegradation. First, they represented biode-

gradation by using first-order reactions rather than Monod kinetics, because of high

correlations between the Monod kinetics parameters. Second, they defined a single

dissolution rate parameter for all hydrocarbon components, because of high corre-

lation between the dissolution rate parameter and biodegradation rate parameter

for each component. This approach was supported by independent experiments.

Even with these simplifications, the model retained a considerable amount of

complexity, and the observation data supported estimation of a large number of
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parameters including individual first-order anaerobic biodegradation rates for all of

the hydrocarbon components.

9.3 STRATEGIES FOR RECALIBRATING EXISTING MODELS

Models frequently are recalibrated as additional observations become available or as

other new information is obtained. For groundwater systems, examples of other new

information include new observations, possibly affected by different stresses such

as pumpage or drought; new geologic interpretations; and new information on the

distribution of areal recharge.

Recalibrated models can be developed and evaluated using the methods described

in previous chapters of this book. While methods that allow building on previous

regression results, such as the Kalman filter (Drécourt and Madsen, 2002), could

be used, for nonlinear models using nonlinear regression with the new information

is more straightforward. Negative consequences such as greater execution time

often are not serious enough to warrant using the more complicated methods.

Model results can help determine when the possibly considerable additional

investment in model recalibration is needed. While such decisions are often based

largely on data and policy criteria, the model (or alternative models) generally pro-

vides the best available representation of system processes and can provide import-

ant insight. Table 9.1 presents the issues likely to be of concern and methods useful

in addressing each issue. The guidelines presented in this book are also likely

to be useful.

If a model is recalibrated, the following issues need to be considered.

. Does the recalibrated model produce predictions that differ significantly from

those produced using previous models?

To address this issue, compare predictions simulated using the recalibrated model to

those from previous models.

. Is the uncertainty of the predictions greater or smaller than previously calculated?

To address this issue, compare linear and possibly nonlinear confidence intervals for

predictions produced by the recalibrated model to intervals produced by

previous models. Generally, it is expected that model uncertainty will be reduced

when data are added, given the same number of parameters, but this may not

always be the case, because of model nonlinearity. Even if the model construction

is unchanged, the new estimated parameter values will cause the sensitivities to

be different, and the effect of this difference on the calculated uncertainty may be

greater than the effect of the information provided by the new observations. Often

new observations motivate modifications to the model construction, such as changes

in where parameters apply, what processes are included, and perhaps how many

parameters are defined and/or estimated.
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9.4 EXERCISES (OPTIONAL)

In Exercises 9.1–9.8 the model that was developed, calibrated, and evaluated in

Exercises 2.1 through 8.2 is recalibrated using new hydraulic-head and streamflow

TABLE 9.1 Issues to Consider When Deciding if Model Recalibration Is Neededa

Issue Method

Section or

Comment Guideline

Do new observations

suggest the model is

incorrect or suggest

an alternative

model?

Observation residuals

and weighted

residuals.

Use graphical analysis

to compare model fit

to new observations

with the fit to

observations used in

model calibration.

6.2.1

6.4.1 to 6.4.4

4, 6, 9

Do new system data

suggest the model is

incorrect or suggest

an alternative

model?

Compare new system

data with model

input and parameter

values.

Framing new data as

prior information

and calculating prior

residuals and

weighted residuals is

sometimes useful.

Usually requires GIS

or 3D visualization;

6.2.1, 6.4.1 to 6.4.4

2, 6, 10

Is the information

provided by new

observations likely

to affect estimated

parameter values or

parameter

uncertainty?

dss, css, pcc

Leverage statistics

Influence statistics:

Cook’s D

DFBETAS

4.3

4.3.6, 7.5.2

7.5.2

7.5.2

3, 11

Is the information

provided by new

observations likely

to affect predictions

of interest?

opr 8.2.2 12

Is new information

about parameter

values or model

construction likely

to affect predictions

of interest?

ppr 8.2.1 12

aValidity of results depends on the accuracy of the model; consider analyzing results from the perspective

of simplifications and approximations made in model construction.
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gain observations obtained during a long-term transient aquifer test. Water-

supply wells have been completed in both aquifers at the areal location shown in

Figure 2.1a and the aquifer test was conducted using these wells. During the test,

groundwater was withdrawn for 283 days at a rate of about 1.0 m3/s from each of

the two aquifers (total pumping rate of about 2.0 m3/s). Because of fluctuations

in the pumping rate during the aquifer test, the true average pumping rate is

uncertain.

The model used in the recalibration simulates steady-state groundwater flow

without pumping (the conditions used in the previous exercises), and then uses

that solution as initial conditions for a transient simulation of the aquifer test. Obser-

vations used for the recalibration include the observations used in the previous exer-

cises and the observations of hydraulic head and river discharge collected during the

aquifer test. In these exercises, the term “transient model” refers to the combined

simulation that includes steady-state flow without pumping and transient flow

during the aquifer test. The term “steady-state model” refers to the model without

pumping that was used in previous exercises.

Figure 9.3 shows the volumetric budget for the transient flow system with

pumping, calculated using the true parameter values. Simulated heads at selected

times are shown in Figure 9.4a–d.

Exercises 9.1 and 9.2: Simulate Transient Hydraulic Heads and Perform
Preparatory Steps Exercises 9.1 and 9.2 involve initial MODFLOW-2000 simu-

lations of the transient model. Instructions for performing these simulations are

available from the web site for this book listed in Chapter 1, Section 1.1. Students

who are not performing the simulations may skip these exercises.

FIGURE 9.3 Transient budget showing simulated flows in the true system with pumping.

Inflows are positive in sign; outflows are negative.
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Exercise 9.3: Transient Parameter Definition Parameters needed for the transient

model that were not applicable to the steady-state model are the pumping rate and

the specific storage for each model layer. The pumping rate is treated as a potentially

estimated parameter because of fluctuations in the pumping rate during the aquifer

test. The regression is used here to estimate the constant rate that is most consistent

with the observed drawdown.

The names and starting values of storage and pumping parameters are given in

Table 9.2. In addition, parameters HK_1, VK_CB, HK_2, K_RB, RCH_1, and

RCH_2 are defined as for the steady-state model (see Exercise 3.1).

FIGURE 9.4 Simulated hydraulic heads for the true system with pumping, after (a) 4 days,

(b) 58 days, (c) 283 days, and (d ) at steady state.
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All work for this exercise involves modifying computer files, as described in the

instructions on the web site for this book listed in Chapter 1, Section 1.1. Students

who are not performing the simulations may skip this exercise.

Exercise 9.4: Observations for the Transient Problem This exercise involves

defining observations and their weights for the transient model. The observations

are listed in Tables 9.3 and 9.4 and include steady-state hydraulic heads, drawdowns

during pumping, and steady-state and transient discharge to the river.

The head and drawdown observations are in the same locations used for the steady-

statemodel (Figure 2.1b). As discussed for the steady-statemodel, the hydraulic-head

observations were generated by including random error. The error in the elevation of

each observation well has a mean of 0.0 and a variance of 1.0, and each water-level

measurement error has a mean of zero and a variance of 0.0025. The total variance of

the error in each hydraulic-head observation is 1.0025.

There are three observations of groundwater discharge to the river, which

include one observation for the steady-state conditions without pumping, and two

observations during the aquifer test (Table 9.4). As in the steady-state model, the

reach over which flow is measured extends the entire length of the river.

(a) Define observations of hydraulic head, drawdown, and flow.

Use the information in Tables 9.3 and 9.4 to define the observations of hydraulic

head, drawdown, and flow in the appropriate input files, and simulate a forward

model run. Instructions for performing this simulation are available from the web

site for this book listed in Chapter 1, Section 1.1. Students who are not performing

the simulations may skip this exercise.

(b) Calculate weights on observations for the transient model.

Problem
. Use the information provided on head observation error, the discussion of

transient observations in Section 9.1.2, and the discussion of weighting in

Guideline 6 and Appendix A to explain the variance on drawdowns listed in

Table 9.3.

TABLE 9.2 Parameter Names and Starting Values for Properties that Are Only

Applicable in the Transient System

Flow-System Property Parameter Name Starting Value

Specific storage in layer 1 SS_1 2.6 � 1025

Specific storage in layer 2 SS_2 4.0 � 1026

Pumping rate in each of model

layers 1 and 2, in m3/s
Q_1&2 21.1
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. Calculate the weights on the hydraulic-head, drawdown, and flow observations

for the transient model using information in Tables 9.3 and 9.4. Compare your

results with the square roots of the weights shown in Figure 9.5.

Exercise 9.5: Evaluate Transient Model Fit Using Starting Parameter Values In

this exercise, the initial fit is evaluated for the forward transient model run.

Tables of observed and simulated hydraulic heads and flows are shown in

Figure 9.5.

Problem: Comment on the model fit achieved with the starting parameter values.

Are there any residuals that are clearly outliers? How do the residuals compare to

the weighted residuals?

Exercise 9.6: Sensitivity Analysis for the Initial Model This exercise involves

evaluating sensitivities for the transient model. For students performing the simu-

lations, instructions for calculating the sensitivities are available from the web

site for this book listed in Chapter 1, Section 1.1.

(a) Evaluate contour maps of one-percent scaled sensitivities for the transient

flow system.

Contour maps of one-percent scaled sensitivities after 4, 58, and 283 days of

pumpage, for parameters HK_1, HK_2, VK_CB, K_RB, SS_1, and SS_2 are

shown in Figures 9.6–9.8. One-percent scaled sensitivities for parameters RCH_1

and RCH_2 at all times are the same as those for the steady-state flow system

without pumpage (shown in Figure 4.4).

These maps reflect the flow system dynamics and are useful for understanding the

effect of each parameter on the simulated hydraulic heads. Thus, they could be used

to help guide collection of additional head observations that would provide infor-

mation about individual parameters. However, note that for the transient model,

there are a large number of maps, and that a location or time important to one

parameter might not be important to another parameter. It is difficult to use these

maps to clearly identify locations that would be most beneficial, for example, to

improving a set of parameter estimates, and they do not address the issue of improv-

ing predictions. Limitations on the use of the one-percent scaled sensitivity maps are

discussed further in Chapter 4, Section 4.3.7.

This exercise focuses on using the physics of the groundwater flow system to

understand the one-percent scaled sensitivities. In a confined flow system like

the one considered here, the principal of superposition applies. This occurs

because hydraulic head is a linear function of the applied fluxes, spatial dimension

and time, as discussed in Chapter 1, Section 1.4.1. As a result of these linear

relationships, hydraulic head calculated for the transient flow system, with applied

fluxes of areal recharge and pumpage, is equal to the sum of the hydraulic head

calculated for the flow system with areal recharge only and the drawdown calcu-
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DATA AT THE HEAD LOCATIONS

OBS#

OBSERVATION

NAME

OBSER-

VATION

*

SIMUL.

EQUIV.

*

RESIDUAL WEIGHT**.5

WIEGHTED

RESIDUAL

1 hd01.ss 102. 100. 1.58 0.999 1.58

2 dd01.1 -0.290E-01 -0.153E-04 -0.290E-01 14.1 -0.410

3 dd01.tr2 -0.129 -0.906E-01 -0.384E-01 14.1 -0.543

4 hd02.ss 128. 139. -11.2 0.999 -11.2

5 dd02.tr1 -0.410E-01 -0.949E-02 -0.315E-01 14.1 -0.446

6 dd02.tr2 -0.557 -0.276 -0.281 14.1 -3.97

7 dd03.tr3 -11.5 -13.0 1.43 14.1 20.3

8 dd02.tr4 -14.2 -18.8 4.59 14.1 64.9

9 hd03.ss 157. 174. -17.7 0.999 17.7

10 dd03.tr1 -4.38 -3.67 -0.715 14.1 -10.1

11 dd03.tr2 -42.5 -56.2 13.7 14.1 194.

12 hd04.ss 125. 139. -14.4 0.999 -14.4

13 dd04.tr1 -0.670E-01 -0.163E-01 -0.507E-01 14.1 -0.718

14 dd04.tr2 -14.3 -18.8 4.54 14.1 64.3

15 hd05.ss 141. 157. -16.2 0.999 -16.2

16 dd05.tr1 -0.600E-01 -0.368E-01 -0.232E-01 14.1 -0.328

17 dd05.tr2 -21.7 -28.5 6.79 14.1 96.0

18 hd06.ss 127. 140. -13.1 0.999 -13.1

19 dd06.tr1 0.500E-02 -0.125E-01 0.175E-01 14.1 0.247

20 dd06.tr2 -14.4 -19.2 4.82 14.1 68.2

21 hd07.ss 101. 103. -1.76 0.999 -1.75

22 dd07.tr1 0.480E-01 -0.109E-02 0.491E-01 14.1 0.694

23 dd07.tr2 -0.568 -1.38 0.813 14.1 11.5

24 hd08.ss 158. 174. -15.8 0.999 -15.8

25 dd08.tr1 -5.53 -5.81 0.277 14.1 3.91

26 dd08.tr2 -43.2 -57.3 14.0 14.1 199.

27 hd09.ss 176. 190. -13.9 0.999 -13.9

28 dd09.tr1 -0.992E-03 -0.506E-01 0.496E-01 14.1 0.702

29 dd09.tr2 -38.2 -49.5 11.3 14.1 159.

30 hd10.ss 142. 157. -15.0 0.999 -15.0

31 dd10.tr1 -0.130E-01 -0.436E-02 -0.864E-02 14.1 -0.122

32 dd10.tr2 -19.9 -26.1 6.21 14.1 87.8

............................................

DATA FOR FLOWS REPRESENTED USING THE RIVER PACKAGE

OBS# OBSERVATION

NAME

MEAS.

FLOW

CALC.

FLOW RESIDUAL WEIGHT**.5

WEIGHTED

RESIDUAL

33 flow01.ss -4.40 -4.86 0.461 2.27 1.05

34 flow01.10 -4.10 -4.72 0.618 2.63 1.63

35 flow01.283 -2.20 -2.86 0.663 4.76 3.16

FIGURE 9.5 Part of MODFLOW-2000 LIST output file showing initial model fit and

weights for the head, drawdown, and flow observations.
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FIGURE 9.6 Contour maps of one-percent scaled sensitivity of hydraulic head to (a)–(c)

parameter HK_1 [(@h/@HK_1) � (HK_1/100)] and (d )–( f ) parameter HK_2 [(@h/
@HK_2) � (HK_2/100) after 4, 58, and 283 days of pumping in the transient flow model,

calculated using the starting parameter values. Contour labels apply to contours for both

model layers.

9.4 EXERCISES 237



FIGURE 9.7 Contour maps of one-percent scaled sensitivity of hydraulic head to (a)–(c)

parameter K_RB [(@h/@K_RB) � (K_RB/100)] and (d )–( f ) parameter VK_CB [(@h/
@VK_CB) � (VK_CB/100) after 4, 58, and 283 days of pumping in the transient flow

model, calculated using the starting parameter values. In (a)–(c), contour labels apply to

contours for both model layers; in (d)–( f ), bold contour labels apply to model layer 1 and

italic contour labels apply to model layer 2.
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FIGURE 9.8 Contour maps of one-percent scaled sensitivity of hydraulic head to (a)–(c)

parameter SS_1 [(@h/@SS_1) � (SS_1/100)] and (d)–( f ) parameter SS_2 [(@h/
@SS_2) � (SS_2/100) after 4, 58, and 283 days of pumping in the transient flow model,

calculated using the starting parameter values. In (a)–(c) and (e) and ( f ), contour labels

apply to contours for both model layers; in (d ), bold contour labels apply to model layer 1

and italic contour labels apply to model layer 2.
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lated for the flow system with pumpage only. Because taking the derivative is a

linear process, the principle of superposition also applies to sensitivities. The

one-percent scaled sensitivities of hydraulic head for the flow system with areal

recharge only are those calculated for the steady-state model, and are shown in

Figure 4.4. The one-percent sensitivities of hydraulic head to the hydraulic-

conductivity parameters HK_1, HK_2, K_RB, and VK_CB for the transient

flow system without areal recharge (with pumpage only) are shown in Figures

9.9 and 9.10.

Problem: Explain the one-percent scaled sensitivity maps for the transient system

by answering the following questions using your knowledge of the flow system

and the principle of superposition:

. Why are the one-percent scaled sensitivities of hydraulic head to HK_1 and

HK_2 positive for the flow system with pumpage only?

. Explain the distribution of the one-percent scaled sensitivities for HK_1 at

4 days and at 283 days.

. Use the sensitivities for HK_1 in Figure 4.4a, Figure 9.6a–c, and Figure 9.9a–c

to convince yourself that the principle of superposition can be used to calculate

sensitivities for this model.

. In the steady-state model, the one-percent scaled sensitivities for K_RB are the

same throughout the model domain (Figure 4.4b). Why do the sensitivities for

K_RB in the transient system vary over the model domain (Figure 9.7a–c and

Figure 9.10a–c)?

. Why are the one-percent scaled sensitivities for SS_1 and SS_2 (Figure 9.8)

concentric around the pumping wells at early time and nearly parallel to the

river at late time?

(b) Use composite scaled sensitivities to evaluate the information observations

provide about the defined parameters.

In preparation for performing nonlinear regression, examine the composite scaled

sensitivities for the parameters of the transient model, shown in Figure 9.11. Use

these css to help decide which parameters to estimate by regression.

Problem
. Which parameters have the smallest and largest composite scaled

sensitivities?

. Using suggestions from Chapter 4, Section 4.3.4 about evaluating relative and

individual css values, determine which parameters are likely to be estimated by

the regression, given the information provided by the observations.
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FIGURE 9.9 Contour maps of one-percent scaled sensitivity of hydraulic head to (a)–(c)

parameter HK_1 [(@h/@HK_1) � (HK_1/100)] and (d )–( f ) parameter HK_2 [(@h/
@HK_2) � (HK_2/100) after 4, 58, and 283 days of pumping in the transient model

without areal recharge (with pumpage only), calculated using the starting parameter values.

Contour labels apply to contours for both model layers.
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FIGURE 9.10 Contour maps of one-percent scaled sensitivity of hydraulic head to (a)–(c)

parameter K_RB [(@h/@K_RB) � (K_RB/100)] and (d )–( f ) parameter VK_CB [(@h/
@VK_CB) � (VK_CB/100)] after 4, 58, and 283 days of pumping in the transient model

without areal recharge (with pumpage only), calculated using the starting parameter

values. In (a)–(c), contour labels apply to contours for both model layers; in (d )–( f ), bold

contour labels apply to model layer 1 and italic contour labels apply to model layer 2.
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(c) Evaluate parameter correlation coefficients.

As discussed for the steady-state regression, it is important to use parameter

correlation coefficients for the initial model to assess the likelihood of uniquely

estimating all flow system parameters given the available observation data.

The correlation coefficients calculated by MODFLOW-2000 are shown in

Table 9.5.

Problem
. Are any of the correlation coefficients greater than 0.95 in absolute value? Are

any greater than 0.90 in absolute value?

. What do the correlation coefficients indicate about the likelihood of estima-

ting all of the parameters independently using the head, drawdown, and

flow data?

Exercise 9.7: Estimate Parameters for the Transient System by Nonlinear
Regression In most applications, the problems of sensitivity and uniqueness

identified by the analysis above would lead to first trying to estimate the more sen-

sitive parameters and then, using the updated values, attempt the regression with

the less sensitive parameters as well. Here, however, model execution times are

relatively short, so it is feasible to try estimating all the parameters in the first

regression run. Generally, execution times for parameter estimation can be

long and tend to be longer when using UCODE_2005 than when using

MODFLOW-2000 because of the perturbation sensitivity calculations performed

by UCODE_2005. Approximate execution times can be calculated as described

in Chapter 15, Section 15.1.

FIGURE 9.11 Composite scaled sensitivities calculated at the starting parameter values for

the transient model.
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Performing nonlinear regression for the transient model involves modifying

computer files and simulating either MODFLOW-2000 or UCODE_2005. For

students performing the computer simulations, instructions are available from the

web site for this book listed in Chapter 1, Section 1.1. For students not performing

the simulations, Figure 9.12 summarizes the results of the regression run.

Problem
. Examine the results shown in Figure 9.12a. What happened during this

regression run?

. The parameter values calculated for all regression iterations are shown in

Figure 9.12b. On the basis of this figure, which parameter does the regression

have the most difficulty estimating? Is the answer consistent with the infor-

mation about the regression behavior shown in Figure 9.12a?

. The starting, estimated, and true parameter values are shown in Table 9.6.

Why do the estimated values differ from the true values?

. In this problem the starting parameter values are close to the final parameter

values. Given the information provided about objective functions in Chapters

4 and 5, what problems might be expected given starting parameter values

that are progressively further from the optimal values?

Exercise 9.8: Evaluate Measures of Model Fit This exercise evaluates model

fit for the transient model regression performed in Exercise 9.7, using statistics

shown in Figure 9.13.

Problem
. What conclusion about model fit might be drawn from the result that s2 (the

calculated error variance of Figure 9.13) is less than 1.0?

TABLE 9.5 Correlation Coefficient Matrix for Starting Parameter Values Using the

Hydraulic-Head, Drawdown, and Flow Observations, Calculated for the Transient

Problem by MODFLOW-2000a,b

Q_1&2 SS_1 HK_1 K_RB VK_CB SS_2 HK_2 RCH_1 RCH_2

Q_1&2 1.00 20.91 20.99 20.057 20.67 20.41 20.96 20.66 20.83

SS_1 1.00 0.88 20.078 0.80 0.043 0.89 0.58 0.75

HK_1 1.00 20.029 0.68 0.41 0.92 0.67 0.82

K_RB 1.00 20.36 0.38 0.22 0.051 0.055

VK_CB 1.00 20.23 0.61 0.43 0.55

SS_2 Symmetric 1.00 0.41 0.30 0.35

HK_2 1.00 0.62 0.81

RCH_1 1.00 0.16

RCH_2 1.00

aThe matrix produced using UCODE_2005 is nearly identical.
bCorrelation coefficients greater than 0.95 in absolute value are in bold type.
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(a)

SELECTED STATISTICS FROM MODIFIED GAUSS-NEWTON ITERATIONS

MAX.

ITER.

-----

PARAMETER CALC.

PARNAM

---------------

CHANGE MAX.

MAX. CHANGE

------------

CHANGE

ALLOWED

-----------

DAMPING

PARAMETER

------------

1 VK_CB 0.868519 2.00000 1.0000

2 K_RB 1.43887 2.00000 1.0000

3 K_RB 0.894564 2.00000 1.0000

4 K_RB 0.346358 2.00000 1.0000

5 K_RB 0.559047E-01 2.00000 1.0000

6 K_RB 0.182992E-02 2.00000 1.0000

SUMS OF SQUARED WEIGHTED RESIDUALS FOR EACH ITERATION

SUMS OF SQUARED WEIGHTED RESIDUALS

ITER. OBSERVATIONS PRIOR INFO. TOTAL

1 0.13469E+06 0.0000 0.13469E+06

2 625.19 0.0000 625.19

3 38.638 0.0000 38.638

4 26.242 0.0000 26.242

5 23.892 0.0000 23.892

6 23.846 0.0000 23.846

FINAL 23.841 0.0000 23.841

*** PARAMETER ESTIMATION CONVERGED BY SATISFYING THE TOL CRITERION ***

FIGURE 9.12 (a) Selected statistics from the modified Gauss–Newton iterations from

Exercise 9.7. This is a fragment from the global output file of MODFLOW-2000. (b)

Normalized parameter values at the end of each iteration of the transient regression. For

each parameter, the graphed values are normalized by the starting value of the parameter

(see Table 9.6).
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. Construct a confidence interval for the true error variance (Eq. (6.2)) to

determine if the deviation of s2 from a value of 1.0 is significant. How does

this result affect the answer to the question in the previous bullet?

. Calculate the fitted standard deviation for heads and for drawdowns. Do

the fitted standard deviations suggest that the model provides a good fit to

these data?

Exercise 9.9: Perform Graphical Analyses of Model Fit and Evaluate
Related Statistics In this exercise, the fit of the transient model to the head,

drawdown, and flow data is evaluated using graphical methods and associated

statistics.

TABLE 9.6 Starting, Estimated, and True Parameter Values for the

Transient Model

Parameter

Name

Starting

Value

Estimated

Value in

Steady-State

Regression

Estimated

Value in

Transient

Regression True Value

Q_1&2 21.10 — 21.07 21.00

SS_1 2.6 � 1025 — 2.3 � 1025 2.0 � 1025

HK_1 3.0 � 1024 4.6 � 1024 4.3 � 1024 4.0 � 1024

K_RB 1.2 � 1023 1.2 � 1023 1.3 � 1023 1.0 � 1023

VK_CB 1.0 � 1027 9.9 � 1028 2.2 � 1027 2.0 � 1027

SS_2 4.0 � 1026 — 1.2 � 1026 2.0 � 1026

HK_2 4.0 � 1025 1.5 � 1025 4.8 � 1025 4.4 � 1025

RCH_1 63.072 47.45 34.10 31.536

RCH_2 31.536 38.53 50.44 47.304

LEAST-SQUARES OBJ FUNC (DEP.VAR. ONLY)----- = 23.841

LEAST-SQUARES OBJ FUNC (W/PARAMETERS)------ = 23.841

CALCULATED ERROR VARIANCE--------------- = 0.91697

STANDARD ERROR OF THE REGRESSION---------- = 0.95758

CORRELATION COEFFICIENT----------------- = 0.99999

W/PARAMETERS--------------------- = 0.99999

ITERATIONS--------------------------- = 6

MAX LIKE OBJ FUNC = -35.070

AIC STATISTIC---- = -17.070

BIC STATISTIC---- = -3.0715

FIGURE 9.13 Selected statistics related to overall model fit, from the modified Gauss–

Newton iterations of the regression run in Exercise 9.7. This is a fragment from the global

output file of MODFLOW-2000
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(a) Evaluate graphs of weighted residuals and weighted and unweighted simu-

lated and observed values.

Graphs for analyzing model fit are shown in Figure 9.14.

Problem
. Do the weighted residuals appear to be randomly distributed with respect to the

simulated values?

. Comment on the utility of the graphs in Figure 9.14b,c for analyzing the model

fit to the data.

. Does the correlation R between the weighted simulated values and weighted

observed values, shown in Figure 9.13, provide evidence that there is a good

fit of the model to the data?

FIGURE 9.14 (a) Weighted residuals versus simulated values, (b) weighted observed

values versus weighted simulated values, and (c) observed versus simulated values for the

transient regression.
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(b) Evaluate graphs of weighted residuals against independent variables and

the runs statistic.

In this exercise, the randomness of the hydraulic head and drawdown weighted

residuals is evaluated (a) graphically with respect to their spatial location in the

model, and (b) by applying the runs statistic to residuals as ordered in the input

files containing the observations. The graphical analysis is conducted using

FIGURE 9.15 Weighted residuals for the transient regression plotted on maps of the two

model layers.
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Figure 9.15, which shows the weighted residuals plotted on maps of the model

domain. For this model, there are only three times (steady state, 1 day, and 283

days) at which observations are available at all wells, and plotting weighted residuals

at these times is feasible. For transient models with observations at many times, such

maps can only be evaluated for a subset of the times. The evaluation using the runs

statistic is shown in Figure 9.16.

Problem
. For each of the observation times, does the spatial distribution of the weighted

residuals in Figure 9.15 appear to be random? Why is the distribution of the

weighted residuals for the steady-state head observations very similar to that

in the steady-state regression (Figure 6.9)?

. For the transient regression, are there enough positive and negative weighted

residuals so that the runs statistic can be evaluated using the critical values

printed in the output file? Use Figure 9.16.

. Does the runs statistic indicate that the residuals are random with respect to the

order in which the calibration observations are listed?

(c) Assess independence and normality of weighted residuals.

A normal probability graph of the weighted residuals from the transient problem

and the associated statistic RN
2 , the correlation coefficient between the ordered

weighted residuals and the normal order statistic, are shown in Figure 9.17.

Problem
. Does the normal probability graph indicate that the weighted residuals are

independent and normally distributed?

. Are the results of this analysis consistent with the evaluation of RN
2 ?

# RESIDUALS >=0.: 18

# RESIDUALS <0. : 17

NUMBER OF RUNS : 17 IN 35 OBSERVATIONS

INTERPRETING THE CALCULATED RUNS STATISTIC VALUE OF -0.339

NOTE: THE FOLLOWING APPLIES ONLY IF

#RESIDUALS >=0. IS GREATER THAN 10 AND

#RESIDUALS <0. IS GREATER THAN 10

THE NEGATIVE VALUE MAY INDICATE TOO FEW RUNS:

IF THE VALUE IS LESS THAN -1.28, THERE IS LESS THAN A 10 PERCENT

CHANCE THE VALUES ARE RANDOM,

IF THE VALUE IS LESS THAN -1.645, THERE IS LESS THAN A 5 PERCENT

CHANCE THE VALUES ARE RANDOM,

IF THE VALUE IS LESS THAN -1.96, THERE IS LESS THAN A 2.5 PERCENT

CHANCE THE VALUES ARE RANDOM.

FIGURE 9.16 Runs statistic and critical values from the regression run in Exercise 9.7. This

is a fragment from the global output file of MODFLOW-2000.
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. Should normal probability graphs of independent and correlated random

numbers be prepared to determine acceptable deviations of the weighted

residuals from independence and normality?

Exercise 9.10: Evaluate Estimated Parameters This exercise evaluates the sensi-

tivity, correlation, uncertainty, and reasonableness of the estimated parameter values

for the transient model.

(b)

CORRELATION BETWEEN ORDERED WEIGHTED RESIDUALS AND NORMAL ORDER

STATISTICS FOR OBSERVATIONS = 0.969

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
COMMENTS ON THE INTERPRETATION OF THE CORRELATION BETWEEN WEIGHTED

RESIDUALS AND NORMAL ORDER STATISTICS:

The critical value for correlation at the 5% significance level is 0.943

IF the reported CORRELATION is GREATER than the 5% critical value,

ACCEPT the hypothesis that the weighted residuals are INDEPENDENT AND

NORMALLY DISTRIBUTED at the 5% significance level. The probability that

this conclusion is wrong is less than 5%.

IF the reported correlation IS LESS THAN the 5% critical value REJECT

the hypothesis that the weighted residuals are INDEPENDENT AND NORMALLY

DISTRIBUTED at the 5% significance level.

The analysis can also be done using the 10% significance level.

The associated critical value is 0.952

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

FIGURE 9.17 (a) Normal probability graph of weighted residuals from the transient

regression. (b) RN
2 statistic and critical values from the regression run in Exercise 9.7. This

is a fragment from the global output file of MODFLOW-2000.
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(a) Composite scaled sensitivities.

Composite scaled sensitivities for the final parameter estimates are shown in

Figure 9.18.

Problem: Compare the composite scaled sensitivities for the final parameter estimates

with those for the initial parameter values (Figure 9.11).Why are the two sets of values

different? Are they so different that conclusions drawn from the composite scaled

sensitivities for the initial parameter values (Exercise 9.6b) have changed?

(b) Parameter estimates and confidence intervals.

The starting parameter values, true parameter values, optimal parameter

estimates, and approximate, linear, individual, 95-percent confidence intervals are

shown in Figure 9.19. Each of these quantities is plotted as a percentage of

the estimated parameter value, by dividing each value or interval limit by the

corresponding parameter estimate and then multiplying the result by 100.

Problem
. Compare the parameter estimates for the transient regression with those for

the steady-state regression (Figure 7.7). Which parameter estimates are

closer to their true values in the transient regression than in the steady-state

regression? Why? Which parameter estimates are closer to their true values

in the steady-state regression than in the transient regression? Why?

. Why are the confidence intervals on most hydraulic-conductivity and recharge

parameters smaller for the transient regression than for the steady-state

regression? Why is the confidence interval on K_RB not significantly smaller?

FIGURE 9.18 Composite scaled sensitivities calculated at the final parameter values for the

transient regression.
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(c) Reasonable parameter ranges.

The optimal parameter estimates and linear confidence intervals are compared to

reasonable parameter ranges in Figure 9.19.

Problem
. Are all the estimated parameter values within their respective reasonable ranges?

. Some of the linear confidence intervals extend outside the reasonable ranges.

Using the analysis suggested in Chapter 7, Section 7.6, does this indicate

any significant problems with the model construction or with the calibration

observations?

(d ) Parameter correlation coefficients.

Recall that some of the initial parameter correlation coefficients for the transient

model (Table 9.5) were very close to 1.0. The parameter correlations calculated

by MODFLOW-2000 at the optimal estimates are shown in Table 9.7.

Problem: Are any correlations larger than 0.95? How do the correlations compare to

those for the initial parameter values?

FIGURE 9.19 Starting and true parameter values, limits of approximate, linear, individual

95-percent confidence intervals (black bars), and limits of reasonable ranges of parameter

values (grey bars), expressed as percentage of the estimated values, for the transient

regression run. The estimated value for each parameter is represented by the thick line at a

value of 100.
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Given the very large correlation between parameter pair HK_1 and Q_1&2, it is

important to test whether the parameter estimates are unique. Accomplish this by

running the regression with a few sets of different parameter starting values. Try

values of the hydraulic-conductivity and storage parameters that are 10 times

larger and smaller than the starting parameter values, and pumping and recharge

parameters that are two times larger and smaller than the starting values. If any

set of different starting parameters causes the regression to have difficulty conver-

ging, try less extreme starting values.

Problem: Does the regression converge to the same estimates as in Exercise 9.7?

What does this mean in terms of uniqueness and optimality of the estimated

parameter values?

Exercise 9.11: Test for Linearity This exercise uses the modified Beale’s measure

to assess the linearity of the transient model. For students performing the simu-

lations, instructions for calculating this measure are provided on the web site for

this book listed in Chapter 1, Section 1.1. The primary output from this computation

is shown in Figure 9.20.

TABLE 9.7 Correlation Coefficient Matrix for Final Parameter Values Using

the Hydraulic-Head, Drawdown, and Flow Observations, Calculated for the

Transient Problem by MODFLOW-2000a,b

Q_1&2 SS_1 HK_1 K_RB VK_CB SS_2 HK_2 RCH_1 RCH_2

Q_1&2 1.00 20.75 20.99 20.089 20.50 20.05620.95 20.17 20.91

SS_1 1.00 0.74 2 0.19 0.82 20.60 0.70 0.12 0.68

HK_1 1.00 0.0003 0.51 0.057 0.91 0.18 0.90

K_RB 1.00 20.38 0.42 0.28 0.005 0.095

VK_CB 1.00 20.70 0.43 0.090 0.44

SS_2 Symmetric 1.00 0.078 0.021 0.065

HK_2 1.00 0.14 0.88

RCH_1 1.00 20.23

RCH_2 1.00

aThe matrix produced by UCODE_2005 is nearly identical.
bCorrelation coefficients greater than 0.95 in absolute value are in bold type.

USING FSTAT = 2.2700, BEALES MEASURE = 84.181
IF BEALES MEASURE IS GREATER THAN 0.44, THE MODEL IS NONLINEAR.
IF BEALES MEASURE IS LESS THAN 0.40E-01, THE MODEL IS
EFFECTIVELY LINEAR, AND LINEAR CONFIDENCE INTERVALS ARE FAIRLY
ACCURATE IF THE RESIDUALS ARE NORMALLY DISTRIBUTED.

FIGURE 9.20 Part of the BEALE-2000 output file for the transient regression, showing the

value of the modified Beale’s measure.
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Problem: Does the modified Beale’s measure indicate that the model is effectively

linear? What are the implications of this result with regard to the parameter

confidence intervals shown in Figure 9.19? What options are there for obtaining

more accurate measures of parameter uncertainty?

Exercise 9.12: Predictions The recalibrated model can now be used to update the

predictions of advective transport, as requested by the landfill developer who had

argued that it was inappropriate to use the calibrated steady-state model for evalu-

ating the predictions. The landfill developer agrees that the transient model

addresses many of his concerns with the steady-state model. Although direct obser-

vations of transport are still not available, the model has been calibrated with tran-

sient observations of head and flow that were collected under the same stress

conditions that will be in place when the landfill is operating and that will be

used for predicting advective transport. In addition, these data were sufficient to cali-

brate the model without including prior information. The landfill developer also is

pleased that the uncertainty of most flow system parameters has been reduced,

compared to the parameter uncertainty calculated using the steady-state model.

A thorough analysis of the potential transport from the landfill still requires an

advective-dispersion transport model, but, as for the steady-state model, advective

transport alone will be considered first. Including dispersion is not needed for this pro-

blem if the advected particle goes to the well and the time of arrival is not a concern.

The advective travel paths (Exercise 9.12a) and their uncertainty (Exercise 9.12c)

can be analyzed under steady-state conditions with pumping, because the landfill

will be operating under the condition of approximately steady pumping from the

proposed supply wells near the center of the aquifer. The evaluation of the

model’s ability to simulate the predictions (Exercise 9.12b) also uses a transient

simulation that includes the calibration observations. All analyses of the predictions

use models with parameter values from the calibrated transient model.

The results of the simulations are used to address questions similar to those posed

in Exercises 8.1 and 8.2 for the original steady-state model and predictions. Instruc-

tions for these simulations are available from the website for this book listed in

Chapter 1, Section 1.1.

(a) Predict advective transport with the updated steady-state model.

First, predict the advective-transport path from the landfill location using the

ADV Package in a forward MODFLOW-2000 run of a steady-state model.

Model output that describes the movement of the advective path is shown in

Figure 9.21.

Problem: Plot the particle path on a copy of the model grid of Figure 2.1b, and

answer the following questions.

. Does an advective path from the landfill go to the well or the river? How long

does it take to get there?
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ADVECTIVE-TRANSPORT OBSERVATION NUMBER 1

PARTICLE TRACKING LOCATIONS AND TIMES:

LAYER ROW COL X-POSITION Y-POSITION Z-POSITION TIME

----------------------------------------------------------------------------------------------------
1 2 16 15500. 1500.0 100.00 0.0000

OBS # 1- 3 OBS NAME: AD10

1 2 16 15178. 1575.8 85.940 0.31500E+09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 2 15 15000. 1615.4 79.690 0.47394E+09

1 2 14 14000. 1875.5 56.849 0.12269E+10

1 3 14 13600. 2000.0 51.405 0.14794E+10

2 3 14 13469. 2037.2 50.000 0.15518E+10

PARTICLE ENTERING CONFINING UNIT
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OBS # 4- 6 OBS NAME: AD50

2 3 14 13469. 2037.2 48.862 0.15700E+10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 3 14 13469. 2037.2 40.000 0.17114E+10

PARTICLE EXITING CONFINING UNIT

2 3 13 13000. 2167.8 34.419 0.20230E+10

2 3 12 12000. 2539.7 25.685 0.26478E+10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OBS # 7- 9 OBS NAME: A100

2 3 12 11165. 2909.6 20.380 0.31500E+10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 3 11 11000. 2988.7 19.436 0.32485E+10

2 4 11 10980. 3000.0 19.336 0.32603E+10

2 4 10 10000. 3609.3 14.987 0.38208E+10

2 5 10 9464.0 4000.0 13.057 0.41490E+10

2 5 9 9000.0 4426.0 11.385 0.44536E+10

2 6 9 8497.7 5000.0 10.083 0.48233E+10

2 7 9 8046.1 6000.0 8.1157 0.53184E+10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OBS # 10- 12 OBS NAME: A175

2 7 9 8018.8 6524.4 6.9647 0.55200E+10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 7 8 8000.0 6988.7 6.1411 0.56728E+10

2 8 8 7999.0 7000.0 6.1113 0.56810E+10

2 8 9 8000.0 7001.1 6.1068 0.56817E+10

2 9 9 8384.8 8000.0 3.0823 0.59752E+10

2 9 10 9000.0 8186.7 1.6827 0.60413E+10

FIGURE 9.21 Part of the MODFLOW-2000 List output file (from the steady-state model

with pumping) describing the path of a particle that originates at the top of the cell

containing the proposed landfill.
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. Does the path differ from that predicted using the model calibrated with only

steady-state observation data?

(b) Evaluate the model’s ability to simulate predictions using composite and

prediction scaled sensitivities, and parameter correlation coefficients.

To assess the model’s ability to simulate the predictions, evaluate whether the

observation data support parameters that are important to the predictions. This

evaluation uses the classification in Figure 8.2 and involves (1) comparing predic-

tion and composite scaled sensitivities (pss and css), and (2) comparing parameter

correlation coefficients (pcc) calculated using only the calibration observations with

pcc calculated with the addition of the predictions.

The pss are calculated as the percent change in simulated value caused by a one-

percent change in the parameter value (Eq. (8.2c)). The css are calculated using the

final parameter values for the transient calibration (Figure 9.18). The pcc using only

the calibration observations are shown in Table 9.7. The pcc with the addition of the

predictions are calculated using a simulation with (1) steady-state conditions with

pumpage, during which advective transport is predicted, (2) steady-state conditions

without pumpage, during which the steady-state head and flow observations are

simulated, and (3) transient conditions with pumpage, during which the transient

head and flow observations are simulated.

Weights for the advective-travel predictions are needed to calculate the pcc with

predictions. Weights at 10, 50, and 100 years are the same as those for Exercise 8.1b,

shown in Table 8.3. Weights for the prediction at 175 years are calculated using a

standard deviation of 1300 m in the x and y directions, and a standard deviation

of 50m in the z direction.

The css are plotted together with the pss in Figure 9.22. The pcc with the

predictions are shown in Table 9.8.

FIGURE 9.22 Final composite scaled sensitivities (css) from the calibrated transient model,

and advective-transport prediction scaled sensitivities (pss) calculated using a model

with parameters from the transient calibration. The pss represent the percent change in

advective travel that would be caused by a one-percent change in the parameter value.
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Problem: Using Figure 9.22 and Tables 9.7 and 9.8, determine what parameter values

are most important to predicted advective transport, and assess how well these

parameter values are supported by the observation data used in the transient

calibration. Does this analysis suggest that the model does a good job of simulating

the predictions?

(c) Evaluate prediction uncertainty using inferential statistics.

In this exercise, linear and nonlinear, simultaneous, 95-percent confidence

intervals on the advective-transport predictions are computed. Equation (8.12) is

used for the linear intervals and Eq. (8.14) is used for the nonlinear intervals. The

results of Exercise 9.12b showed that most of the advective transport predictions

have relatively large sensitivities to the aquifer effective porosity, parameter

POR_1&2. Because of this result, uncertainty in effective porosity is considered

when calculating the confidence intervals on advective transport, using prior infor-

mation and weighting, as was done for the calibrated steady-state model in the

exercises of Chapter 8. The weighting used for the prior information is calculated

by forming a 95-percent confidence interval of 0.27 to 0.39 for the true effective

porosity value.

The linear and nonlinear, simultaneous confidence intervals in the x and y

directions are shown on an aerial map of the model domain in Figure 9.23a,b.

Intervals in the z direction are shown in Figure 9.23c.

In Figure 9.23b, dashed lines form the upper limits of the nonlinear confi-

dence intervals for the predictions in the x and y directions at 175 years and

in Figure 9.23c, the lower limit of the interval in the z direction at 175 years

extends below the bottom of the system. These limits are simulated using

parameter values that cause the advective-transport path to reach the well in

less than 175 years. As explained in Exercise 8.2b, when a particle reaches

a flow model boundary such as a well prior to the prediction time, the ADV

Package of MODFLOW-2000 projects the particle until the prediction time is

reached (Anderman and Hill, 2001, p. 12). The dashed line in Figure 9.23b,c

TABLE 9.8 Parameter Correlation Coefficient Matrix Calculated by MODFLOW-

2000 Using Parameter Estimates and Observations from the Transient Calibration, and

Using the Advective-Transport Predictionsa

Q_1&2 SS_1 HK_1 K_RB VK_CB SS_2 HK_2 RCH_1 RCH_2

Q_1&2 1.00 20.65 20.99 20.066 20.40 20.035 20.92 20.37 20.84

SS_1 1.00 0.63 20.26 0.80 20.71 0.58 0.22 0.53

HK_1 1.00 20.050 0.42 0.036 0.84 0.38 0.82

K_RB 1.00 20.43 0.42 0.32 0.016 0.076

VK_CB 1.00 20.75 0.30 0.15 0.32

SS_2 Symmetric 1.00 0.063 0.028 0.047

HK_2 1.00 0.31 0.79

RCH_1 1.00 20.17

RCH_2 1.00

aCorrelation coefficients greater than 0.95 in absolute value are in bold type.
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FIGURE 9.23 (a) and (b) Plan view of model grid showing predicted advective-transport

path from the proposed landfill and 95-percent confidence intervals in the x and y

directions at simulated travel times of 10, 50, 100, and 175 years. The true path is also

shown. These results are produced using the parameter estimates from the transient

calibration. (a) Linear, simultaneous confidence intervals. (b) Nonlinear, simultaneous

confidence intervals. (c) Cross-section showing predicted vertical particle positions and

linear and nonlinear confidence intervals. True z locations are shown. At 175 years, the

interval limits with dashed line in (b) and the nonlinear interval in (c) are affected by

projections simulated by the ADV Package when a particle exits in the model, as discussed

in the text. Smaller intervals at late time reflect that the pumpage limits the potential

location at late time.
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shows the limits formed by the projected particles. A more realistic approxi-

mation of the limits in the x and y directions is the location of the well, and

in the z direction it is the aquifer depth at which the particle enters the well.

These limits are represented by the solid lines on Figure 9.23b,c for the nonlinear

intervals in the x, y, and z directions at 175 years.

Problem
. Are the predictions calculated in this exercise more or less certain than those

calculated using the original steady-state model (Figure 8.6)? Why? What

are the potential effects of model nonlinearity?

. What are the differences in size and symmetry between the linear intervals

(Figure 9.23a) and nonlinear intervals (Figure 9.23b)?

. How do the predicted path and particle locations at 10, 50, 100, and 175 years

compare to the true advective-transport path? Why is the prediction closer to

the true path and particle locations than for the calibrated steady-state model

(compare Figure 9.23 with Figures 8.15 and 8.16)?
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10
GUIDELINES FOR EFFECTIVE
MODELING

This chapter introduces and summarizes a set of guidelines for effective modeling of

natural and engineered systems. These guidelines show how data, models, and the

methods presented in Chapters 3 through 9 can be used together to gain insight

into the simulated system, and to successfully attain goals related to calibrating

and evaluating the simulated system. The guidelines are summarized in

Table 10.1 and are explained in Chapters 11 through 14. The guidelines are orga-

nized into four topics: (a) Guidelines 1 through 8 for model development (presented

in Chapter 11), (b) Guidelines 9 and 10 for model testing (Chapter 12), (c) Guide-

lines 11 and 12 for evaluating potential new data (Chapter 13), and (d) Guidelines 13

and 14 for evaluating prediction uncertainty (Chapter 14).

In Figure 1.1, the terms “system information” and “observations” are used for

what are sometimes called “soft” and “hard” data, respectively. For a groundwater

system, the system information includes hydrologic and hydrogeologic data; obser-

vations include hydraulic heads, streamflow gains and losses, and concentrations

used directly or used interpretively to define advective-travel observations. In the

guidelines, the terms “system information” and “observations” are used instead of

“hard” and “soft” data because we believe they describe the data more clearly.

For example, prior information generally is derived from system information, but

because it appears in the regression objective function in the same manner as obser-

vations, it is sometimes classified as hard data. Using the terms system information

and observations reduces the confusion.

260

Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities,
Predictions, and Uncertainty. By Mary C. Hill and Claire R. Tiedeman
Published 2007 by John Wiley & Sons, Inc.



TABLE 10.1 Guidelines for Effective Development and Use of Models

Guidelinea Description and Suggested Actionsb

Preliminary Steps (Not covered by the guidelines. See, for example, Anderson and Woessner, 1992)

Define purpose Design the model to meet the modeling objectives.

Develop conceptual models Select processes and system characteristics. Identify ways to

attain a tractable model and aspects that are uncertain.

Choose code Use modular codes that allow easy inclusion and exclusion of

processes.

Model Development Guidelines (Chapter 11)

1. Apply the principle of

parsimony

† Start simple and add complexity as warranted by the

hydrology and hydrogeology, the inability of the model to

reproduce observations, and the complexity that can be

supported by the available observations.

2. Use a broad range of

system information (soft

data) to constrain the

problem

† Identify spatial and temporal structure. Use it to represent the

system well using few parameters.

† Do not add features or parameters to improve model fit if they

contradict system information.

† Possibly use geographic information systems (GIS) and 3D

database and visualization methods to organize, analyze,

interpret, and present data.

3. Maintain a well-posed,

comprehensive regression

problem

† Maintain a well-posed regression: define few parameters.

† Maintain a comprehensive model: represent many aspects with

parameters.

† To be both well-posed and comprehensive, seek simple

models that represent important system dynamics.

† Detect ill-posed regressions with css and pcc.

4. Include many kinds of data

as observations (hard data)

in the regression

† Add different kinds of observations; this can be critical to

obtaining a reasonably accurate model. In groundwater flow

model calibration, it is very important to include information

about flows.

† Use opr to evaluate which observations dominate the

predictions.

5. Use prior information

carefully

† Begin with no prior information to investigate the

observations.

† Insensitive parameters (e.g., small css): include with prior

information or exclude to reduce run time. Include for

Guidelines 11–14.

† Sensitive parameters: do not use prior information to make

unrealistic optimized parameter values realistic. See

Guideline 10.

6. Assign weights that reflect

errors

† Assign weights that equal 1/si
2.

7. Encourage convergence by

making the model more

accurate and evaluating the

observations

† If nonlinear regression does not converge (can occur even

when css, pss, and so on indicate observations are sufficient to

estimate the parameters), work to make the model represent

the system more accurately and make sure observations are

interpreted correctly.

(Continued)
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TABLE 10.1 Continued

Guidelinea Description and Suggested Actionsb

† Use model fit, dss, css, pss, and system information to

determine what to change.

8. Consider alternative

models

† Develop alternative models using deterministic or stochastic

methods.

† Judge models based on better fit and more realistic

parameter estimates.

Model Testing Guidelines (Chapter 12)

9. Evaluate model fit † Use standard error, AICc, and other statistics from Chapter 6 to

assess overall model fit.

† Use weighted and unweighted residuals to assess details of

model fit.

10. Evaluate optimized

parameter values

† Unreasonable estimated parameter values can indicate model

error.

† Perhaps combine parameters with overlapping confidence

intervals, divide parameters with large css.

Potential New Data Guidelines (Chapter 13)

11. Identify new data to

improve simulated

processes, features, and

properties

† Use fit-independent statistics dss, css, pcc, leverage to identify

potential important new observations.

† Use css and pcc to identify parameters for which existing and

potential observations contain substantial information.

Consider representing the associated system characteristics

using additional estimated parameters.

12. Identify new data to

improve predictions

† Identify observations and parameters important to predictions

using fit-independent statistics dss, css, pss, pcc, ppr, opr.

Prediction Uncertainty Guidelines (Chapter 14)

13. Evaluate prediction

uncertainty and accuracy

using deterministic

methods

† Use regression to determine whether predicted values of interest

(such as regulatory guidelines) contradict the observations.

† Use postaudits to test prediction accuracy.

14. Quantify prediction

uncertainty using

statistical methods

† Use statistical inference—linear and nonlinear. Includes

uncertainty intervals.

† Use designed and random sampling—omit poor-fit

realizations.

† Include parameters not estimated by regression, perhaps with

prior information.

† Consider alternative models by including the probability of

each.

aThe guidelines generally are used iteratively, not just once in sequence.
bdss, css, pss, dimensionless, composite, and prediction scaled sensitivities, respectively; pcc, parameter

correlation coefficients; ppr, parameter–prediction statistic; opr, observation–prediction statistic; 3D,

three-dimensional; s 2
i is the best approximation of the observation error variance. See text for discussion

of weight matrices. Fit-independent statistics are italicized.
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This chapter explains the purpose of the guidelines, discusses them in the context

of previous work and other modeling approaches, and provides suggestions for

effectively implementing them during modeling.

10.1 PURPOSE OF THE GUIDELINES

An entire modeling protocol is presented by Anderson and Woessner (1992, pp.

4–9), which spans the modeling procedure from defining the purpose of the

model and selecting a code, through predictive analysis and postaudits. The guide-

lines presented in Chapters 10 to 14 fit into that protocol, enhancing the sensitivity

analysis, calibration, prediction, and uncertainty evaluation phases. The guidelines

also emphasize investigation of different conceptual models. The guidelines do

not address the preliminary steps of the protocol. For example, there are no

guidelines for the important steps of defining the modeling objectives and selecting

or programming a code with the appropriate capabilities.

The guidelines are closely tied to the modeling process represented in Figure 1.1.

As discussed in Chapter 1, Section 1.1, Figure 1.1 shows how the model, with its

defined parameters, quantitatively links the system information and the observations

to the predictions of interest and measures of prediction uncertainty. Figure 1.1

emphasizes the direct links the model provides between the triad composed of

observations, parameters, and predictions. The methods and statistics presented

in Chapters 3 through 8 take advantage of these links. Selected statistics that connect

each element of the triad are listed in Table 10.2. The guidelines show how modelers

can use these links and associated methods and statistics advantageously during

model development, testing, and evaluation of predictions and their uncertainty.

TABLE 10.2 Statisticsa from Chapters 4, 7, and 8 that Indicate the

Importance of Observations to Parameters, Parameters to Predictions,

or Observations (Through the Parameters) to Predictions

Observations–Parameters

Parameters–Predictions

(Chapter 8)

dss, css, pcc, leverage (Chapter 4)

Parameter standard deviations,

coefficients of variation,

confidence intervals,

DFBETAS, Cook’s D (Chapter 7)

pss, ppr

Observations–Parameters–Predictions (Chapter 8)

opr

Prediction standard deviations, coefficients of variation, confidence intervals.

Cross-validation, jackknifing, bootstrapping (only mentioned briefly in the text).

adss, css, pss, dimensionless, composite, and prediction scaled sensitivity, respectively;

pcc, parameter correlation coefficient; ppr, parameter–prediction statistic; opr,

observation–prediction statistic. Fit-independent statistics are italicized.
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In the context of the entire modeling process shown in Figure 1.1, the ideas

suggested in the guidelines are aimed at facilitating effective use of the system infor-

mation and the observations to constrain the model and at making the model and

model development more transparent. The goal is to produce a model that represents

the simulated system more accurately, compared to modeling procedures that use

these data less effectively, and to encourage clear testing.

10.2 RELATION TO PREVIOUS WORK

The guidelines are presented in the context of groundwater modeling problems but

are applicable to other fields. Many aspects of the approach have had a long history

in a variety of fields. The idea of parsimony—starting simple and building complex-

ity slowly—is emphasized in Guideline 1 and has been discussed by Popper (1982),

Cooley et al. (1986), Constable et al. (1987), Backus (1988), Cooley and Naff

(1990), and Parker (1994). The importance of conceptual models is discussed by

many authors, including Bredehoeft (2003, 2005). Most of the graphical analyses

of Guideline 8 were suggested for application to groundwater problems by

Cooley and Naff (1990) as derived from Draper and Smith (1981). Very similar

approaches were tested using simple and complex synthetic test cases in Poeter

and Hill (1996, 1997) and in Hill et al. (1998). Alternative guidelines have been

presented by Refsgaard and Henrikson (2004). Hill et al. (2004) provide a review.

From the perspective of stochastic inverse methods (e.g., Kitanidis, 1997), many

aspects of the approach presented here can be applied directly. This is accomplished

by considering the parameters of the stochastic model to be analogous to the par-

ameters discussed in this work, and calculating sensitivities appropriately.

Alternatively, the approach presented here can be thought of as a strategy to approxi-

mate mean, or effective, values. Stochastic methods generally require that the mean of

any spatially distributed quantity, such as hydraulic conductivity, be constant, a simple

function, or known. Unfortunately, geologic media often defy these limitations. A

model developed using the guidelines presented here can be used to evaluate whether

themean is constant, and, if not, to provide an estimate ofwhat could be a very complex

spatial distribution, often with sharp contrasts. Once large-scale variations are estab-

lished, stochastic methods can be used to assess the influence of small-scale variations.

To date, methods to characterize large- and small-scale variations mostly have been

considered separately, and integration is sorely needed. One goal of such work can

be thought of as identifying the aspects of a given problem that can most profitably

be regarded as deterministic, and the aspects that can be most profitably be regarded as

stochastic, given the information available (perhaps using the ideas in Guidelines 2 and

4) and the objectives of the work (such as the predictions considered in Guideline 12).

10.3 SUGGESTIONS FOR EFFECTIVE IMPLEMENTATION

Although the guidelines are presented roughly in the order along which most studies

proceed, flexible application is important to their success. We encourage modelers to
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follow the guidelines out of order if warranted by the individual modeling situation,

or to revisit some of the guidelines during the course of model development, cali-

bration, and evaluation. For example, analyses of prediction uncertainty discussed

in Guideline 14 often are useful in guiding data collection, which is the topic of

Guidelines 11 and 12.

Sun (1994, p. 210) recognized the need for flexible application of modeling steps.

He noted that there is an inherent difficulty associated with the optimal design of

data collection for nonlinear problems: the solution for the optimal design depends

on the values of the unknown parameters, which in turn depend on the data. In

addition, new data may cause the conceptual model to evolve and may challenge

previous conceptual models and result in changes to many aspects of the model,

including the optimized parameter values. Sun (1994) presents some elegant

methods of addressing this problem that are generally very computationally inten-

sive. The methods presented in this book tend to be simpler and less computationally

intensive, while still being useful in many situations. The methods presented here

may be used alone or may serve as preliminary steps to a more computationally

intensive evaluation.

The guidelines do not suggest formally considering the predictions or using the

model to evaluate potential new data until Guidelines 11 and 12. This is because

it is expected that a reasonably accurate model is needed for a quantitative evalu-

ation of predictions. The placement of predictions in the guidelines is not intended

to diminish the importance of considering prediction issues throughout data collec-

tion and model development. Indeed, as predictions differ from observations signifi-

cantly in terms of location, depth, time, type, or system stresses, it becomes

increasingly important to simulate the predictions as calibration proceeds, as empha-

sized in Figure 1.1. This allows the modeler to understand how the assumptions and

simplifications being made during model calibration affect the predictions.

However, the results need to be considered cautiously until the model is reasonably

accurate, which is the reason for the order of the guidelines. In addition, ethics

require that the model not be designed to obtain desired predictions. If assessing pre-

dictions during calibration in any way endangers the integrity of the model, delay the

simulation of predictions until the end of model development.

Many statistical and graphical analyses related to inverse modeling methods were

presented in Chapters 3 to 8. In the guidelines, additional examples of using these

statistics and graphs are presented. To aid cross-referencing, Table 10.3 lists most

of the statistics and graphs discussed in Chapters 3 to 8 and shows the figures and

guidelines in which they are presented and discussed in Chapters 11 to 14. These

are presented in the context of typical questions that arise during model sensitivity

analysis, calibration, and evaluation.

As the methods described in this work are used in the context of the guidelines,

modelers may devise new methods or apply these to new situations. Thoughtful

innovation is welcome and essential in this immature field.
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11
GUIDELINES 1 THROUGH 8—
MODEL DEVELOPMENT

Eight guidelines focus on model development: (1) follow the principle of parsimony

in all model development endeavors; (2) use system information effectively; (3) use

as few parameters as possible to represent as many important aspects of the system

as possible; (4) include observations that cover a broad range of system dynamics;

(5) use prior information when appropriate; (6) specify weighting that represents

errors; (7) encourage convergence of the regression by using results from failed

regressions to guide model improvements; and (8) consider alternative conceptual

models.

GUIDELINE 1: APPLY THE PRINCIPLE OF PARSIMONY

The methods of science depend on our attempts to describe the world with simple

theories. Theories that are complex become unstable, even if they happen to be true.

Science may be described as the art of oversimplification: the art of discerning what

we may with advantage omit.

—Popper (1982)

The principle of parsimony calls for keeping the model as simple as possible

while accounting for the system processes and characteristics that are evident in

the observations and are important to the predictions, and while respecting all

system information. In many fields, including groundwater hydrology, the known
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complexities of the simulated systems often seem overwhelming, and applying par-

simony in model development can require substantial restraint.

Of greatest concern are two- or three-dimensional spatial fields that also may vary

in time. Literally an infinite number of parameters could be defined. In numerical

models, the possible number of parameters is finite because of the discretization

of the numerical grid or mesh, but it is still far more than can be supported using

observations of the simulated system, and probably more than is useful.

G1.1 Problem

Keeping a model simple is important because though more complex models

generally fit the observations more closely compared to simpler models, they

can have greater prediction error. For example, consider the situation shown in

Figure 11.1a,b, where the true model is linear. A more complicated model

(Figure 11.1b) clearly produces a better fit to the observations, but much of the

improved fit is achieved by matching the observation error rather than the system

processes. In this example the predictions are less accurate in the more complicated

model than in the simpler model. Figure 11.1c displays the general situation, in

which there is a trade-off between model fit and prediction accuracy with respect

to the number of parameters. All model-fit statistics used for model discrimination

include a penalty as the number of parameters increases to account for this effect;

see Chapter 6, Section 6.3.2.

FIGURE 11.1 (a) Data with a true linear model. (b) The same data with an overly complex

model with little predictive capability. (c) Schematic graph showing conceptually the trade-

off between model fit to observations and prediction accuracy with an increasing number of

parameters.
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In practice, we do not know many of the characteristics of the underlying model.

We do not know, therefore, when we are using observations advantageously to

characterize the processes of concern, and when we are fitting errors and are prob-

ably degrading the predictive capabilities of the model. Guideline 1 suggests

approaching this problem from the left in Figure 11.1c—that is, by starting with

simple models and building complexity carefully. By starting with a simple

model, the modeler can more easily understand the effect that added complexity,

such as additional simulated processes or using more parameters to represent

system features, has on model fit, optimal parameter estimates, predicted values,

and prediction uncertainty. This helps keep the behavior of the model as a whole

in perspective, compared to narrowly focusing on a small portion of the spatial or

temporal domain of the model. This “big picture” view is consistent with the

sparse data available for characterizing many systems. In many cases, it also is

consistent with the detail needed to obtain useful predictions.

There has been an active discussion in the Earth science literature about the

advantages and disadvantages of using models with different levels of complexity.

For example, Parker (1994) and Smith et al. (1999) address these issues with regard

to a geophysical investigation and suggest the utility of simple models; Murray

(2002, 2003), Bras et al. (2003), and Harry (2003) discuss general numerical mod-

eling issues, the first two with an emphasis on geomorphic modeling; de Marsily

et al. (2005) stress the importance of detailed hydraulic-conductivity structure in

simulations of groundwater transport (an issue also mentioned in Chapter 9, Section

9.2.3); Hill (2006) and Gomez-Hernandez (2006) debate simplicity and complexity

of groundwater models. Yeh and Sun (1990) suggest a stepwise approach. Oreskes

(2000) discusses the paradox of complex models and the importance of refutability

and transparency. Refutability means the model is constructed such that different

assumptions can be tested; transparency means the model dynamics are understand-

able. Both refutability and transparency suffer as a model becomes more compli-

cated, and this loss needs to be weighed against perceived advantages gained.

One goal of the guidelines is to increase refutability and transparency.

G1.2 Constructive Approaches

Applying the principle of parsimony to all aspects of model development is import-

ant. For example, only include the processes needed for the system being simulated.

The most useful models are designed modularly so that different combinations of

processes can easily be included to test their relevance and unused capabilities do

not interfere by increasing execution time or computer storage, or affecting simu-

lated values. This approach also allows execution time to be managed efficiently,

as noted in Chapter 15, Section 15.1.

To represent a system adequately with relatively few parameters, as suggested in

Guideline 1, the model and parameters need to be defined carefully to capture the

important processes and system features. When considering changes that decrease

the complexity of a model, it is important to test whether system information

and/or observations contradict the changes and the importance of the changes to
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the predictions. The remaining model development guidelines suggest how to obtain

a parsimonious, useful model.

The remainder of this section investigates two difficulties commonly encountered

that need to be managed well to obtain a useful model. The first is nonlinearities of

the forward model and the second is variability of system properties. Both are

presented in the context of groundwater models, but the basic ideas are directly

applicable to other fields.

Managing Forward Model Nonlinearities Part of managing execution time effi-

ciently is managing forward model nonlinearities efficiently. Replacing nonlinear

forward problems with linear approximations as much as possible can dramatically

reduce execution time. If designed wisely, this can be achieved without substantially

diminishing model accuracy. Basically this comes down to managing the nonlinear-

ity to best serve the purpose of the model.

In groundwater flow simulations, for example, unconfined and convertible

layers (as they are called in MODFLOW96 and MODFLOW-2000, respectively)

can be replaced by confined layers with approximate defined thicknesses during

model calibration. Using confined layers is always good practice for steady-

state simulations because in the final calibrated model the saturated thicknesses

are expected to conform to observed hydraulic heads. Allowing saturated thick-

nesses to vary as the parameters vary during calibration can be a numerical night-

mare and produces no advantage. The result will be about the same regardless of

whether confined layers are used during calibration; we suggest choosing the

easier option and spending the effort on more worthwhile endeavors. A sensible

approach is to maintain saturated thicknesses that are consistent with the observed

heads and, therefore, the expected simulated heads in the final calibrated model.

This can save a tremendous amount of time and aggravation.

The approach also can be useful in transient simulations depending on how much

de-watering or saturation occur over time. It is important to consider the proportion

of the pumped strata that becomes dewatered, which may not be the same as the pro-

portion of a pumped model layer. For example, if a well intersects permeable

material that is 50 m thick and is represented by ten 5-m thick model layers, it is

the proportion of the 50-m thickness that needs to be considered.

Once a model is close to being calibrated, two options can be pursued.

First, the importance of the linear approximation can be evaluated. It is easy to

evaluate the model inaccuracy that results from defining layers as confined with

approximate specified thickness instead of as unconfined or convertible. This

involves simply comparing a forward simulation that includes the water table and

the convertible layers to a forward simulation with approximate layer thicknesses

and confined layers.

Second, if needed, there are several options for integrating the nonlinearity into

the simulation. For example, the top of the system can be updated using the topmost

simulated hydraulic heads iteratively until little change occurs between iterations.

Also, the water table can be explicitly simulated using, for example, the wet/dry
capability of MODFLOW.
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The likely consequence of using confined layers can be evaluated by considering

the effect of dewatering on the transmissivity (hydraulic conductivity times satu-

rated thickness) versus the effect of the possible range of hydraulic-conductivity

values. For example, dewatering half the saturated thickness of a model layer or

hydrogeologic unit reduces transmissivity by a factor of two, whereas possible vari-

ation in hydraulic conductivity for the layer easily can be an order of magnitude or

more. In this situation, it would be reasonable to set the thickness and define model

layers as confined, at least for preliminary regression runs. As noted, the model

layers can then be represented as unconfined or convertible layers for final

regression runs.

Managing Variability Often the variability of data is the driving force behind

increasing model complexity. Scheibe and Chien (2003), however, present a

study that suggests that increased model complexity is not always advantageous.

They investigated an extensive groundwater data set using numerical simulations

with transport predictions and different levels of detail used in representing the

hydraulic-conductivity (K) field. The data are used to construct predictive models

that were not calibrated. Scheibe and Chien (2003) draw the following conclusion

important to Guideline 1: “model conditioning to local (effectively point support)

data, even hundreds of such data, provides little benefit for prediction and may

even provide misleading results. One would expect that conditioning data would

improve predictions overall and decrease model uncertainty (narrow the range of

variations in predicted behavior). However, the average summary performance

metric for the simulations conditioned to borehole flowmeter measurements of

K . . .was not significantly improved over the homogeneous base case.”

However, Scheibe and Chien (2003) also found that conditioning on larger-scale

hydraulic-conductivity data, consisting of estimates based on geophysical tomogra-

phy, did significantly improve the predictions. Thus, this study found that adding

very detailed complexity on the basis of local-scale measurements was not beneficial

to predictive analyses, but that adding less detailed complexity was beneficial. These

conclusions were possible because the investigators started with a very simple

model, which served as a base case for objectively assessing whether or not the

additional complexities were advantageous.

GUIDELINE 2: USE A BROAD RANGE OF SYSTEM
INFORMATION TO CONSTRAIN THE PROBLEM

In most scientific and engineering modeling studies, there is system information that

is related to model inputs. Effective use of this information in building conceptual

models of the system can mean the difference between a model that represents

the system well and one that does not. This applies whether or not the model is

constructed in a parsimonious manner. In developing the parsimonious models

encouraged by these guidelines, we try to use system information to define
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simplifications and approximations that produce a model with just enough of the

right detail, and no more (paraphrasing Albert Einstein). The goal, of course, is

for the resulting model to be as useful as possible, which requires as much trans-

parency and refutability as possible (see Guideline 1).

G2.1 Data Assimilation

Guidelines 2 and 4, when taken together, emphasize what is sometimes referred to as

data assimilation or data fusion. Examples of approaches for incorporating different

types of system information in groundwater flow and transport model development

are reported by Rubin et al. (1992), McKenna and Poeter (1995), Poeter and

McKenna (1995), Eppstein and Dougherty (1996), Woodbury and Ulrych (2000),

Barrash and Clemo (2002), and Chen and Rubin (2003). Many of these studies pro-

vide site-specific applications of the methods. A general framework for hydrologic

data assimilation that is not limited to groundwater systems is described by

McLaughlin (2002). Koltermann and Gorelick (1996) divide approaches of using

field data to construct groundwater models into three categories: structure imitating,

process imitating, and descriptive. It is becoming common to use diverse types of

data in model construction, and methods for integrating these data have much poten-

tial for further development.

G2.2 Using System Information

System information can be used to define model structure, including the choice of

processes to simulate, or to directly provide information on parameter values

through determination of reasonable ranges (Chapter 7, Section 7.6), parameter

limits (Chapter 5, Section 5.5), or prior information (Chapter 3, Sections 3.1 and

3.4.1). Here we focus on using system information to constrain the structure of

groundwater models. This reflects the problem-specific nature of using system infor-

mation to constrain model structure. We expect that providing concrete approaches

for a specific field will be more useful than a general presentation.

If a groundwater model is to have any credibility, the simulated hydraulic-

conductivity distribution needs to be consistent with the known hydrology and

hydrogeology. Most groundwater investigations consider relatively shallow systems

for which substantial surficial and subsurface information can be determined. This is

in contrast to many fields of geophysics and other Earth sciences in which the great

depths of interest preclude substantially constraining the calibration with known

geology. Indeed, Carerra et al. (2005) state the following in relation to groundwater

models: “when available, geologic information about parameter variability is so

compelling (in the sense that it can be included deterministically) that it overcomes

the advantages of conventional geostatistics.”

For groundwater systems, hydrogeologic data often indicate that faults, fractures,

and/or depositional processes have produced sharp contrasts in the hydraulic-

conductivity distribution. These contrasts sometimes need to be explicitly represented
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in the model to simulate the system accurately. While zones of constant value provide

an unrealistically uniform distribution of hydraulic conductivity within the zone, they

are very useful when large-scale contrasts overwhelm the importance of smaller scale

features. Even when smaller scale features are important, they often need to be charac-

terized within the structure provided by such zones. At large or small scales, deposi-

tional conditions may suggest a gradual refining or coarsening in horizontal or

vertical directions such that interpolation methods instead of zonation are most

useful. Whenmany interpolation points are used, as in pilot point methods, advantages

of zonation can sometimes be captured. Representing hydraulic-conductivity vari-

ations is also discussed in Chapter 9, Section 9.2.3. D’Agnese et al. (1997, 1999) pro-

vide a good example of analyzing three-dimensional hydrologic and hydrogeologic

data to construct a groundwater flow model of a complex system. This system is dis-

cussed in Chapter 15.

Commonly, the information used to constrain a problem as described in this

guideline also is used to support the prior information on parameters discussed in

Guideline 5. For example, the results of aquifer tests may be used to determine

that two hydrogeologic units have similar hydraulic-conductivity values and prob-

ably can be combined to form one parameter in the regression. This information

may be an important constraint on the problem. Later, the same results might be

used to determine a prior information value for the combined or individual hydro-

geologic units.

G2.3 Data Management

Evaluating, integrating, and using different types of system information for model

development can require sophisticated data management capabilities. The level of

sophistication required depends on the complexity of the system investigated. For

example, in groundwater models, the system hydrogeology might be represented as

homogeneous, as layered, or as a complex heterogeneous distribution. Homogeneous

models require a simple data management structure, layered models generally require

standard GIS (geographic information systems) capabilities, and more complex

representations could require sophisticated methods found mostly in either fairly

expensive software packages such as GMS (Environmental Modeling Systems,

2006) or more expensive software packages such as StratWorks 3D (Landmark,

2006), Earthvision (Dynamic Graphics, 2006), and GOCAD (Earth Decision, 2006).

D’Agnese et al. (1999) and associated publications describe the software used to

develop a complex groundwater flowmodel of the regional Death Valley groundwater

system, and part of their discussion is presented in Chapter 15. Examples applied to

glacial sediments are presented by Frind et al. (2002) and Ross et al. (2005). Many

aspects of their approaches are directly applicable to studies of other types of systems.

For fully three-dimensional systems, the methods available for data organization

and analysis are not very mature and can be very expensive. Recent and continuing

advances in computer capabilities and standardization of technology related to soph-

isticated visualization and databases are likely to result in greatly improved methods

in the coming years.
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FIGURE 11.2 Continued.
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Generally, the constraints imposed by the system information are never enough to

fully characterize the system. Computational methods have been proposed for iden-

tifying the structure of a model and can be useful as long as the system data are

respected, such as geologic and hydrogeologic information for groundwater sys-

tems. Parameter structure identification methods are presented by Tsai et al.

(2003a,b), who also provide a comprehensive review of past work on this topic

applied to groundwater models. A continuing challenge is the integration of these

methods with the constraints imposed by the system information.

G2.4 Application: Characterizing a Fractured Dolomite Aquifer

Yager (1996) simulated a groundwater flow system near Niagara Falls, New York,

that is dominated by fractured dolomite (Figure 11.2). Definition of parameters for

this system appeared problematic until a simple and powerful relation was derived

from aquifer-test results available as part of the system information. Two factors

contributed to the simplification.

1. The dominant regional fractures in the dolomite are roughly horizontal and

along bedding planes. Fractures between these planes are dominated by

vertical flow.

2. Transmissivities calculated for different aquifer tests were approximately pro-

portional to the number of bedding-plane fractures intersected by the pumped

well.

These two factors led to the assumption that each fracture has equal transmissivity,

so that model-layer transmissivity is proportional to the known number of fractures

in each layer. This relationship allows the entire heterogeneous horizontal hydraulic-

conductivity distribution to be realistically represented using a single hydraulic-

conductivity parameter andmultiplication arrays that indicate the number of fractures

in each model layer. Multiplication arrays are available in MODFLOW-2000 and

possibly other models.

GUIDELINE 3: MAINTAIN A WELL-POSED, COMPREHENSIVE

REGRESSION PROBLEM

The first part of this guideline suggests that the regression problem be well posed.

For the purposes of these guidelines, a regression is well posed if it converges to

an optimal set of reasonable parameter values given reasonable starting parameter

values. In Earth systems, available observations are commonly sparse, so the

requirement of maintaining a well-posed regression usually produces rather

simple models with relatively few estimated parameters. Thought of in another

way, only this simple level of model complexity can be supported by the obser-

vations, and the regression is providing an assessment of the information contained

in the data. Thus, determining the greatest possible level of model complexity while
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maintaining a well-posed regression can be considered an objective analysis of the

information provided by the observations. Prior information and regularization can

be used to support additional complexity (see Guideline 5). However, it is important

to model transparency for the modeler to know and to communicate to others what

complexity is supported by the observations, what is supported by other types of

information, and what is pure speculation.

The second part of this guideline suggests that the regression problem be compre-

hensive. This means characterizing as many aspects of a given system as possible

using defined parameters. Being comprehensive is important for two reasons.

1. Preconceived notions about various aspects of the system only can be quanti-

tatively tested against the observations by defining parameters, calculating

sensitivities, and attempting estimation by regression. Such testing and resul-

tant reevaluation of system characteristics is a key advantage of using

regression methods, as discussed, for example, by Poeter and Hill (1997).

2. Many methods evaluate model uncertainty using the parameter variance–

covariance matrix. As more aspects of the system are represented by defined

parameters, more aspects are represented in the uncertainty evaluation using

these methods.

The two parts of this guideline represent a fundamental tension faced by modelers

of most natural systems. For most modelers, a comprehensive regression problem is

easier to achieve than a well-posed regression problem. That is, it is easier to add

complexity than to be simple, even if a simple design could be found that represents

the system well.

A number of the statistics discussed in this book and listed in Table 10.2 can be

used to encourage a well-posed problem. In the initial stages of model development,

it can be advantageous to use fit-independent statistics. Sections G3.1 and G3.2 dis-

cuss the utility of two of the most useful fit-independent statistics: composite scaled

sensitivities (css), presented in Chapter 4, and parameter correlation coefficients

(pcc), presented in Chapters 4 and 7. Dimensionless scaled sensitivities (dss) also

are useful, particularly for better understanding css values.

G3.1 Examples

The css and pcc, along with the system information discussed in Guideline 2, can be

used to define parameters and to decide which parameters to estimate using

regression. The css and pcc are well suited for this purpose because they are

fit-independent, as discussed in Chapter 4. This means that they depend only on

the observation sensitivities and weights; they are independent of the model fit

to observed values. When evaluated at the starting parameter values, these fit-

independent statistics can be used to determine what sets of parameters are likely

to be estimated successfully given a model and a set of observations.

Composite Scaled Sensitivities (css) Composite scaled sensitivities were used to

help achieve a well-posed regression for the three-layer model of the Death
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Valley regional groundwater flow system (DVRFS) (see Chapter 15). The bar chart

of css for the initial, uncalibrated model used by D’Agnese et al. (1997, 1999)

(Figure 11.3a) indicates that the K4 and RCH parameters are likely to be easily esti-

mated by regression, whereas the ANIV1 and ETM parameters are not likely to be

FIGURE 11.3 Composite scaled sensitivities for parameters of the DVRFS model of

D’Agnese et al. (1997, 1999) for (a) the initial model and (b) the final model. In (b),

parameters estimated by regression have black bars; parameters defined but not estimated

by regression have gray bars. Parameters represent the following: K
, hydraulic

conductivity; ANIV
, vertical anisotropy; RCH
, areal recharge; ETM, maximum

evapotranspiration parameter; GHB
, conductance of head-dependent boundaries used to

represent springs; Q, pumping (the two Q parameters apply to different areas); POROS,

effective porosity. The observations provide no information for POROS, but this parameter

is important to the transport predictions of interest. Together these parameters define all

aspects of the system except the lateral and bottom boundary conditions.
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easily estimated. In general, the available observations appear to contain substantial

information about the K (hydraulic conductivity) and RCH (areal recharge)

parameters, and less information about the ANIV (vertical anisotropy) and ETM

(maximum evapotranspiration) parameters. Composite scaled sensitivities were cal-

culated often during the calibration of this model and were used to determine what

new parameters to introduce and whether previously excluded parameters should be

included.

The css for the final model are shown in Figure 11.3b. Note that there are

additional K and RCH parameters, and that most of these were estimated by

regression. This is consistent with the initial evaluation showing that the data con-

tained substantial information for these types of parameters. An important aspect

of this analysis is that the basic conclusions from the initial and final evaluations

are the same, despite the model nonlinearity and the substantial model and par-

ameter-value changes made during calibration. This stability is typical and

makes this method useful. If problems are too nonlinear to be stable, the utility

of the composite scaled sensitivity method is diminished and possibly absent

altogether.

Chapter 4, Section 4.3.4 states that if any parameters have css values that are less

than one-percent of the largest css values, problems with convergence can be

expected in regression. In Figure 11.3b, there are a few parameters with very

small values, and these were not estimated. There are others with larger values

that were not estimated for other reasons. For example, consider the one new type

of parameter, GHB
, which are the hydraulic conductivity of the head-dependent

boundary conditions used to represent groundwater supported springs. None of

the GHB parameters were estimated in the regression for the final model because

they tended to produce a good match solely to the flow of the spring or set of springs

at which they were applied. This was evident because the dimensionless scaled sen-

sitivities for each of these parameters generally were large for only one observation.

Any error in the spring-flow measurements would have been fit by the model

through adjustment of the GHB parameters. The values of the GHB parameters

were determined primarily on the basis of hydrogeologic arguments and a few

preliminary regression results.

Recall that the pcc indicate whether the estimated parameter values are likely to

be unique. For the parameters of Figure 11.3b, all pcc were less than 0.95,

suggesting that the estimates are unique. These simulations used a parsimonious

model and the sensitivity-equation sensitivities of MODFLOWP (Hill, 1992) and

MODFLOW-2000 (Hill et al., 2000), so potential problems with pcc accuracy,

discussed in Chapter 4, Section 4.4.2, were not expected.

Parameter Correlation Coefficients (pcc) Anderman et al. (1996) and Anderman

and Hill (1998) used pcc to investigate what types of observations were needed to

achieve a well-posed regression for a model of groundwater flow in a shallow aqui-

fer on Cape Cod, Massachusetts. The system had a lake and a well-monitored sewage

plume. Three different sets of observation data were considered: (1) hydraulic heads
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only, (2) hydraulic heads and a lake seepage value, and (3) hydraulic heads, lake

seepage, and an advective-transport observation derived from the monitored

concentrations of the sewage plume. Figure 11.4 shows the pcc calculated at final

parameter values for five model parameters, for each of the three observation

data sets. This figure clearly shows that with only hydraulic heads (data set 1), all

parameters are completely correlated (the absolute values of all correlation coeffi-

cients equal 1.00), so that any parameter estimates found by the regression are

not unique. Adding one lake seepage measurement (data set 2) reduced correlations

somewhat, but correlations remain very large. Only the observation set with the

advective-travel observation (data set 3) could uniquely estimate all of the

parameters.

G3.2 Effects of Nonlinearity on the css and pcc

As discussed above and in Chapter 4, Section 4.4, the utility of many of the statistics

presented in this book can be affected by model nonlinearity. Some (like pcc) also

are affected by even slightly inaccurate sensitivities. Here, we consider css and pcc

because the authors have the most experience with these statistics; the discussion

can largely be extended to other statistics. In general, difficulties with nonlinearity

and inaccurate sensitivities occur when the conclusions drawn from the statistics

are in error. The most common problems, their consequences, and suggested resol-

utions are displayed in Table 11.1.

FIGURE 11.4 Parameter correlation coefficients for five parameters for three data sets from

the Cape Cod sewage plume model as reported by Anderman et al. (1996), evaluated for the

final parameter values. For values close to 1.00, parameter estimates are likely to be

nonunique. For values less than 0.95, unique values are expected. The five parameters are

K, hydraulic conductivity; RCH, areal recharge; Qb, sewage discharge sand-bed flux; Qn,

northern boundary flux; GHB, conductance of the lake bottom. For data set 3, correlations

not shown are ,j0.5j. (From Anderman and Hill, 1998.)

GUIDELINE 3: WELL-POSED, COMPREHENSIVE REGRESSION 281



T
A
B
L
E
1
1
.1

C
o
n
se
q
u
en
ce
s
a
n
d
S
u
g
g
es
te
d
A
ct
io
n
s
W

h
en

N
o
n
li
n
ea
ri
ty

a
n
d
In
a
cc
u
ra
te

S
en
si
ti
v
it
ie
s
P
la
g
u
e
P
a
ra
m
et
er

C
o
rr
el
a
ti
o
n
C
o
ef
fi
ci
en
ts

a
n
d
N
o
n
li
n
ea
ri
ty

P
la
g
u
es

C
o
m
p
o
si
te

S
ca
le
d
S
en
si
ti
v
it
ie
s

P
ro
b
le
m

E
ff
ec
t

C
o
n
se
q
u
en
ce
s

A
ct
io
n
s

P
a
ra
m
et
er

C
o
rr
el
a
ti
o
n
C
o
ef
fi
ci
en
ts

N
o
n
li
n
ea
ri
ty

C
o
rr
el
at
io
n
co
ef
fi
ci
en
ts

ca
lc
u
la
te
d
u
si
n
g
d
if
fe
re
n
t
se
ts
o
f

p
ar
am

et
er

v
al
u
es

re
su
lt
in

v
er
y

d
if
fe
re
n
t
co
n
cl
u
si
o
n
s
ab
o
u
t

w
h
et
h
er

th
e
o
b
se
rv
at
io
n
s
co
n
ta
in

en
o
u
g
h
in
fo
rm

at
io
n
to

es
ti
m
at
e
p
ar
am

et
er
s
u
n
iq
u
el
y
.

(S
ee

F
ig
u
re

4
.2
.)

In
co
rr
ec
t
co
n
cl
u
si
o
n
s

m
ig
h
t
b
e
d
ra
w
n
ab
o
u
t
w
h
et
h
er

th
e
o
b
se
rv
at
io
n
s
ar
e

ad
eq
u
at
e
to

es
ti
m
at
e
th
e

d
efi
n
ed

p
ar
am

et
er
s
u
n
iq
u
el
y
.

In
n
o
n
li
n
ea
r
sy
st
em

s,
co
rr
el
at
io
n
co
ef
fi
ci
en
ts

ca
n
v
ar
y
su
b
st
an
ti
al
ly

fo
r
d
if
fe
re
n
t
se
ts
o
f

p
ar
am

et
er

v
al
u
es
.
T
h
e
p
ri
m
ar
y
co
n
ce
rn

is

w
h
et
h
er

th
e
o
p
ti
m
iz
ed

v
al
u
es

ar
e
u
n
iq
u
e.
a

T
h
at

is
,
ar
e
an
y
p
ar
am

et
er
s
ex
tr
em

el
y

co
rr
el
at
ed

at
th
e
o
p
ti
m
iz
ed

p
ar
am

et
er

v
al
u
es
?
If
th
e
an
sw

er
is
in
co
n
cl
u
si
v
e

b
ec
au
se

o
f
p
ro
b
le
m
s
w
it
h
n
o
n
li
n
ea
ri
ty

o
r

in
ac
cu
ra
te

se
n
si
ti
v
it
ie
s,
co
n
si
d
er

fu
rt
h
er

te
st
s:

(a
)
C
h
ec
k
w
h
et
h
er

th
e
es
ti
m
at
es

an
d
o
b
je
ct
iv
e-

fu
n
ct
io
n
v
al
u
es

ar
e
si
m
il
ar

b
in

re
g
re
ss
io
n
s

w
it
h
d
if
fe
re
n
t
st
ar
ti
n
g
v
al
u
es
.

(b
)
R
ed
u
ce

p
ro
b
le
m
s
re
la
te
d
to

sm
al
l
cs
s
b
y

co
m
b
in
in
g
p
ar
am

et
er
s.
c

(c
)
If
co
rr
el
at
io
n
is
su
sp
ec
te
d
,
ch
an
g
e
th
e

p
ar
am

et
er

v
al
u
es

su
b
st
an
ti
al
ly

in
a
w
ay

th
at
re
fl
ec
ts
th
e
su
sp
ec
te
d
co
rr
el
at
io
n
.I
f
th
e

re
su
lt
in
g
o
b
je
ct
iv
e-
fu
n
ct
io
n
v
al
u
e
is

si
m
il
ar
,b
ex
tr
em

e
co
rr
el
at
io
n
is
co
n
fi
rm

ed
.

N
o
te
:
P
ar
am

et
er

co
rr
el
at
io
n
ca
n
n
o
t
b
e

d
et
ec
te
d
b
y
th
e
p
ro
g
re
ss

o
r
co
n
v
er
g
en
ce

o
f

a
si
n
g
le

re
g
re
ss
io
n
.
(S
ee

E
x
er
ci
se

5
.1
b
.)

In
ac
cu
ra
te

ca
lc
u
la
te
d

se
n
si
ti
v
it
ie
s

(m
o
st

p
ro
b
le
m
at
ic
if

cs
s
is
sm

al
l)
c

E
x
tr
em

el
y
co
rr
el
at
ed

p
ar
am

et
er
s
d
o
n
o
t
h
av
e
co
rr
el
at
io
n

co
ef
fi
ci
en
ts
eq
u
al

to
1
.0
0
o
r

2
1
.0
0
,
as

n
ee
d
ed

to
d
et
ec
t

co
rr
el
at
io
n
.

282



C
o
m
p
o
si
te

S
ca
le
d
S
en
si
ti
vi
ti
es

(c
ss
)

N
o
n
li
n
ea
ri
ty

cs
s
v
al
u
es

ca
lc
u
la
te
d
u
si
n
g
d
if
fe
re
n
t

se
ts
o
f
re
as
o
n
ab
le
p
ar
am

et
er

v
al
u
es

re
su
lt
in

v
er
y
d
if
fe
re
n
t
co
n
cl
u
si
o
n
s

ab
o
u
t
w
h
et
h
er

th
e
o
b
se
rv
at
io
n
s

co
n
ta
in

en
o
u
g
h
in
fo
rm

at
io
n
to

es
ti
m
at
e
ce
rt
ai
n
p
ar
am

et
er
s.

(a
)
Ju
d
g
m
en
ts
ab
o
u
t
th
e

fe
as
ib
il
it
y
o
f
es
ti
m
at
in
g
a

p
ar
am

et
er

m
ay

b
e
in

er
ro
r.

(b
)
P
ar
am

et
er
iz
at
io
n
s
an
d
o
th
er

as
p
ec
ts
o
f
m
o
d
el

st
ru
ct
u
re

d
es
ig
n
ed

u
si
n
g
cs
s
v
al
u
es

re
su
lt
s
in

u
n
ex
p
ec
te
d
m
o
d
el

p
er
fo
rm

an
ce
.
F
o
r
ex
am

p
le
,
a

sy
st
em

ch
ar
ac
te
ri
st
ic
ch
an
g
es

fr
o
m

b
ei
n
g
im

p
o
rt
an
t
to

u
n
im

p
o
rt
an
t
w
h
en

th
e

p
ar
am

et
er
iz
at
io
n
is
ch
an
g
ed
.

(a
)
Ju
d
g
m
en
ts
ab
o
u
t
li
k
el
y
su
cc
es
s
o
r
fa
il
u
re
o
f

es
ti
m
at
io
n
ar
e
p
re
li
m
in
ar
y
.I
f
re
su
lt
s
ar
e
n
o
t

as
ex
p
ec
te
d
(e
.g
.,
p
ar
am

et
er
s
w
it
h

re
la
ti
v
el
y
la
rg
e
cs
s
ca
n
n
o
t
b
e
es
ti
m
at
ed
),

re
ca
lc
u
la
te

cs
s
fo
r
u
p
d
at
ed

se
ts
o
f

re
as
o
n
ab
le

p
ar
am

et
er

v
al
u
es
.

(b
)
K
ee
p
ev
al
u
at
in
g
cs
s
as

th
e
m
o
d
el

ev
o
lv
es
.

If
p
ro
b
le
m
s
p
er
si
st
,
tr
y
to

fi
g
u
re

o
u
t
w
h
y
.

A
p
p
ro
p
ri
at
e
st
ra
te
g
ie
s
d
ep
en
d
o
n
th
e

si
tu
at
io
n
.
In

n
o
n
li
n
ea
r
sy
st
em

s,
p
ar
am

et
er

ch
an
g
es

ca
n
fu
n
d
am

en
ta
ll
y
m
o
d
if
y
sy
st
em

d
y
n
am

ic
s.
U
se

m
o
d
el

fi
t
to

o
b
se
rv
at
io
n
s,

u
n
d
er
st
an
d
in
g
o
f
th
e
m
at
h
em

at
ic
al

m
o
d
el
,

an
d
th
e
sy
st
em

in
fo
rm

at
io
n
to

ev
al
u
at
e
th
e

sy
st
em

d
y
n
am

ic
s
fo
r
th
e
d
if
fe
re
n
t

p
ar
am

et
er

v
al
u
es

an
d
p
am

et
er
iz
at
io
n
s.
If

th
e
p
ro
b
le
m
s
co
n
ti
n
u
e
to

o
cc
u
r
fo
r

p
la
u
si
b
le

p
ar
am

et
er

v
al
u
es

an
d
sy
st
em

d
y
n
am

ic
s,
co
n
si
d
er

u
si
n
g
a
g
lo
b
al

se
ar
ch

te
ch
n
iq
u
e
(C
h
ap
te
r
5
,
S
ec
ti
o
n
5
.2
).

a
T
h
e
fo
cu
s
h
er
e
is
n
o
n
u
n
iq
u
en
es
s
ca
u
se
d
b
y
p
ar
am

et
er

co
rr
el
at
io
n
,
b
u
t
fu
rt
h
er

te
st
(a
)
ch
ec
k
s
fo
r
lo
ca
l
m
in
im

a.
b
“S
im

il
ar
”
fo
r
p
ar
am

et
er
v
al
u
es

m
ea
n
s
d
if
fe
re
n
ce
s
ar
e
sm

al
l
re
la
ti
v
e
to
th
e
ca
lc
u
la
te
d
p
ar
am

et
er
st
an
d
ar
d
d
ev
ia
ti
o
n
s
(s
ee

E
x
er
ci
se

7
.1
e)
.“
S
im

il
ar
”
fo
r
o
b
je
ct
iv
e-
fu
n
ct
io
n

v
al
u
es

m
ea
n
s
w
it
h
in

a
fe
w

p
er
ce
n
t.

c
T
h
is
is
d
is
cu
ss
ed

in
C
h
ap
te
r
4
,
S
ec
ti
o
n
4
.4
.2
.

283



GUIDELINE 4: INCLUDE MANY KINDS OF DATA AS

OBSERVATIONS IN THE REGRESSION

Guideline 4 stresses the importance of using as many kinds of observations as poss-

ible. Guidelines 2 and 4, when taken together, emphasize data assimilation.

References on data assimilation are listed in Section G2.1.

Different systems offer different observation possibilities. For example, in

groundwater flow problems it is important to augment commonly available

hydraulic-head observations with flow observations. Flows often constrain solutions

much more than do hydraulic heads, which tend to be easier to match. Using obser-

vations that reflect the rate and/or direction of groundwater flow, therefore, tends to
promote the development of more accurate models. In many settings, measurements

of groundwater flow are difficult to obtain. Often concentrations of contaminants are

used. Groundwater age dates and geochemical measurements are alternative types of

data that also can provide valuable information on flow rates and directions (see Sec-

tion G4.4). Many studies have shown that regression results improve when transport

observations are included in regression models of flow and/or transport, compared

to use of only hydraulic heads and flows. Studies illustrating this finding are cited in

Chapter 9, Section 9.2.5.

The observations that can be used with MODFLOW-2000, UCODE_2005, and

PEST are described in Chapter 2, Table 2.1. Detailed analyses of the importance

of different observation types are presented by, for example, Anderman et al.

(1996), Poeter and Hill (1997), and in this book.

Three issues about observations are discussed next: the use of interpolated obser-

vations, clustered observations, and observations that are inconsistent with model

construction. Lastly, three applications are presented.

G4.1 Interpolated “Observations”

In some circumstances, it is appealing to use interpolated values to increase the number

of “observations” available for the regression. Interpolated values are obtained by

interpolating the actual observations. If interpolated “observations” are used, then

the errors of the interpolated “observations” are correlated with each other and with

the errors in the actual observations. Thus, the weight matrix needs to be full (see

Chapter 3 and Guideline 6). In groundwater examples, Clifton and Neuman (1982),

Neuman (1982), Neuman and Jacobson (1984), and Carrera and Neuman (1986)

kriged hydraulic-head measurements to generate interpolated hydraulic heads and

used them as observations in the regression. When kriging is used, the associated kri-

ging variances and variogram can be used to calculate the variance–covariance matrix

on hydraulic-head observation errors that is needed to calculate the full weight matrix

for the observations.

The disadvantage of interpolation methods is that the interpolated “observations”

generally are not consistent with the processes governing the simulated system. For

example, Cooley and Sinclair (1976) show that for groundwater systems, inter-

polated hydraulic heads are not necessarily based on the physics of groundwater

flow. Thus, the interpolated values are expected to respect the underlying processes
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represented in the model only to the extent that (1) they are constrained by the actual

observations and (2) the actual processes happen to be represented well by the

chosen interpolation scheme. The problems associated with item (2) can be severe

if there are abrupt spatial variations in aquifer properties. Abrupt spatial variations

can result in regions of steep and flat gradients that are only partially captured by the

actual observations and, therefore, by the interpolation. This could cause the

“observed” hydraulic-head distribution to be unrealistically smooth. Alternatively,

it could cause a steep gradient evident in some of the actual observations to be

unrealistically extrapolated.

These problems can be avoided if the observations are used directly in the

regression. Then, the processes built into the model do the “interpolation,” and lack

of fit focuses attention on the quality of the observations and the model, which is

where the focus of model calibration needs to be.

G4.2 Clustered Observations

In many circumstances data are clustered in limited areas or within short time inter-

vals. For example, in groundwater systems, wells are often clustered in areas of high

hydraulic conductivity where yields are highest and/or near population centers

served by groundwater. As a result of the clustering of wells, hydraulic-head obser-

vations tend to be clustered spatially. Also, hydraulic-head observations are often

limited to recent times, long after the start of substantial pumping.

There are two problems in regression related to clustered observations.

First, the presence of a large number of observations may make it difficult to

evaluate whether the model is reproducing basic system characteristics represented

by the observations. If the system characteristics are well represented by a subset of

the observations, it can be productive to use the subset in at least the initial stages of

regression. Alternatively, the observations can be averaged over defined areas or

times. The error used to weight an averaged observation would not necessarily be

much smaller than the error of the individual observations, because many com-

ponents of error are caused by effects that averaging does not eliminate.

Second, clustered data can be problematic if they dominate regression methods

such that observations are ignored elsewhere in the system or at other times. This

would produce poor fit to sparse observations. If poor model fit occurs where obser-

vations are sparse, the possibility that clustering is the problem can be tested by

grossly increasing the weights on some of the sparsely distributed observations in

some regression runs. If this does not significantly improve the fit to those obser-

vations, then clustered data probably are not the problem. Instead, problems such

as conceptual model error should be considered—that is, some aspect of model

construction may be preventing any set of parameter values from producing a

match at the location(s) in question. This is discussed in Section G4.3.

Data clustering is not a major problem in many groundwater models because

most of the data clusters are hydraulic heads in areas of high hydraulic conductivity

where significant quantities of water are pumped. In these areas, sensitivities of

hydraulic heads to most parameters tend to be relatively small and the clustered

wells will not adversely affect the regression.
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G4.3 Observations that Are Inconsistent with Model Construction

Model simplifications and assumptions can result in observation data that reflect

processes that are impossible to simulate using the constructed model. This can

occur by design or can be unintended.

Situations that occur by design include those discussed for transient groundwater

models in Chapter 9, Section 9.1.2. Consequences of designed inconsistencies

depend on how the inconsistency is expected to affect model fit. If the omitted

processes are expected to create a bias, such that the observations are consistently

higher or lower than values simulated by an accurate model, the observations

need to be adjusted to eliminate the bias. If the omitted processes are not expected

to create a bias, so that the observations may be higher or lower than values simu-

lated by an accurate model, the observation weights need to be adjusted to reflect the

expected error introduced by omitting the processes.

Unintended inconsistencies can be more difficult. An example is presented by

Hvilshøj and Jensen (2000) in which an analytic solution for a dipole test in a well

was inconsistent with measured heads. This was resolved by simulating the test

with a heterogeneous numerical model. If matching observations is troublesome

or estimated parameter values are unrealistic, try to identify contributing model

inconsistencies.

First, inspect the model for characteristics that could prohibit fitting the obser-

vation(s) in question using reasonable parameter values. In groundwater models

when the problem is with fitting hydraulic heads, check for nearby head-dependent

boundaries or specified heads. When the problem is with fitting flows, think about

how the model simulates flow approaching or leaving the location in question. Com-

pare the simulated flow paths involved to the flow paths conceptualized based on

field information to ensure there are no unintentional simulated barriers or sources

of water. Also, consider if there are any processes that occur in the true system and

affect the observed values but that the model does not simulate.

Second, the existence, and sometimes the cause, of model inconsistencies can be

identified by assigning the observation(s) in question enormous weight(s) (equival-

ent to a tiny variance, standard deviation, or coefficient of variation) and proceeding

with a regression run. There are two possibilities.

1. The fit to observation(s) does not improve. This is a clear indication of incon-

sistency between the model and the observation(s). The model is constructed

in such a way that the observation cannot be matched. Consider the options

presented in the preceding paragraph.

2. The fit to observation(s) improves. Two results need to be checked.

(a) Model fit to other observations. If the fit to the observation(s) is achieved

by making the fit to other observations much worse, note what other

observations those are. Determine if the original difficulty in fitting the

observation(s) was because of other inconsistent observations, and

resolve any inconsistencies.
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(b) Optimized parameter values. If the fit to the observation(s) is achieved

with clearly unrealistic parameter values, evaluate the associated simu-

lated features, such as the geometry of hydrogeologic units in ground-

water models. Is the simulated geometry or some other aspect of the

features possibly in error?

G4.4 Applications: Using Different Types of Observations

to Calibrate Groundwater Flow and Transport Models

Imaginative modelers continually explore, including testing new types of obser-

vations in the development of environmental models. Here, we describe several

examples from the groundwater literature in which innovative types of observations

were included. Generally, the use of such observations requires the use of a universal

inverse code such as UCODE_2005 or PEST.

Age and Geochemistry Observations It can be especially difficult to obtain

measurements of flows to or from groundwater systems in arid environments,

where the water-table elevation is often far below surface-water bodies. To overcome

the lack of flow data when calibrating a regional flowmodel of the Middle Rio Grande

Basin aquifer system in central New Mexico, Sanford et al. (2004a,b) used an

extensive set of carbon-14 and other geochemical data to estimate hydraulic-

conductivity and recharge parameters.

Carbon-14 measurements were used to infer age dates, which in the regression

were compared to simulated ages calculated by backward particle tracking with

MODPATH (Pollock, 1994).

Geochemistry data were used to infer whether or not groundwater originated

from the Rio Grande River. These data were used in the regression by defining

nine hydrochemical zones. In each zone, an observation was defined as the percen-

tage of groundwater that originated in the river, which was determined using geo-

chemistry samples collected from all wells in the zone. The corresponding

simulated percentage of water in the zone that originated in the river was calculated

by backtracking a large number of particles from model layer 2 to any recharge

location, and calculating the percentage of these particles that were tracked back

to the river. The advantage of defining the observations in this way is that they

were then continuous instead of discrete numbers, so that sensitivities could be

calculated and the observations fit into readily available regression methods.

Use of these two data sets in addition to hydraulic-head data allowed estimation

of 59 model parameters with no large correlation coefficients for any parameter

pairs. The regression also produced recharge estimates that were more consistent

with independent data than were recharge values estimated by previous groundwater

models of the basin that used very few flow data.

Temperature Observations If groundwater flow is sufficient for advective heat

transport to occur, then groundwater temperature data can provide information

about parameters that govern groundwater flow.
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Manning and Ingebritsen (1999) describe several studies in which temperature

data were used to develop models of heat transport in relatively deep groundwater

flow systems through, for example, sedimentary basins and mountainous terrain.

Although most of the studies cited did not use formal inverse modeling techniques,

they illustrate the substantial benefit of temperature data for constraining crustal

permeability estimates in numerical models.

Anderson (2005) recently reviewed the use of heat as a tracer in groundwater

systems and cites numerous studies in which temperature data are used to constrain

hydraulic-conductivity estimates. For example, temperature measurements have

been widely used in recent years in unsaturated zone models to constrain estimates

of the vertical hydraulic conductivity of streambeds (e.g., Burow et al., 2005;

Niswonger et al., 2005). This constraint leads to more accurate estimates of the

flux between streams and groundwater systems. Only a small number of studies

have incorporated temperature observations in a formal inverse modeling context;

two such studies are described next.

Woodbury and Smith (1988) demonstrate the advantages of temperature data to

estimating parameters of a cross-sectional model of groundwater flow and heat

transport through and beneath a large landslide. They showed that when

only hydraulic-head data were used for calibration, the estimated recharge and

hydraulic-conductivity parameters were perfectly correlated. With temperature

observations, these parameters could be uniquely estimated, as could additional par-

ameters such as thermal conductivity and basal heat flux. The latter parameters had a

fairly high degree of uncertainty, but the estimates were consistent with results from

other studies.

Bravo et al. (2002) simulated groundwater flow and heat transport through

a wetland system characterized by a fluvial sedimentary layer underlain by

sandstone. Subsurface temperatures varied on a daily and seasonal basis. Appli-

cation of inverse modeling to a flow and heat transport model using both head

and temperature observations yielded parameter estimates with much smaller

uncertainty and produced fewer problems with convergence of the regression

procedure, compared to calibration of a flow model using only hydraulic-head

observations.

GUIDELINE 5: USE PRIOR INFORMATION CAREFULLY

Prior information allows measurements related to defined parameters to be included

in the regression (see Eq. (3.1)). The measurements involved are a subset of the

system information of Guideline 2 and are related to model input.

G5.1 Use of Prior Information Compared with Observations

It can be argued that prior information should be treated differently than obser-

vations for two reasons. First, experience has shown that in many systems obser-

vations often can be measured more accurately than prior information. Second,
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the relationship between observed and simulated values is usually more direct than

is the relationship between prior information and model parameter values. Often

both problems result from what could be called scale issues: local variability

makes it difficult to measure many model input quantities at a scale that is consistent

with the model input. Resulting measurements can be grossly in error relative to

what is appropriate in the model.

To the extent that measurements of the model input values represented by

parameters are accurate as well as applicable to the scale of the model, model cali-

bration may become unnecessary or less important. This book addresses problems in

which model calibration is important, which implies that the measurements related

to model inputs are inadequate in some way.

We suggest that for problems in which observations are more accurate and well

understood, they be emphasized more than prior information that is less accurate

and poorly understood. For systems with accurate measurements that directly

relate to some or all of the parameters, the prior information might be more strongly

emphasized and perhaps used in a manner closer to that suggested here for the

observation data. In the applications described below, geophysical data are used

in that way.

To encourage understanding of the information that is directly available from the

observations alone, Guideline 5 suggests initially omitting from the regression any

prior information on parameters. Two reasons generally motivate the subsequent

inclusion of prior information.

First, if the parameter is insensitive, as indicated by a small composite scaled

sensitivity (css), regression that includes the parameter often will not converge. Pro-

blematic parameters can be identified as those with the largest fractional changes

calculated by Eq. (5.7), which are printed by most nonlinear regression programs

(e.g., see Exercise 5.2b). Two options generally exist for dealing with these proble-

matic parameters: (1) specify prior information for the parameter or (2) set the

parameter value so that it is not changed during the regression.

In the regression, specifying prior information on an insensitive parameter

usually results in a parameter estimate that is close to the specified prior value.

Thus, the estimated parameter value generally is equal to or close to the prior infor-

mation value regardless of which option is chosen. Model execution time is less

when the parameter value is set, because this eliminates the need to calculate sensi-

tivities for the parameter. Thus, option (2) often works well for model calibration.

This will continue to be a good option as long as the parameter remains insensitive.

Sensitivities can be checked by occasionally calculating css for all defined

parameters.

Other groundwater studies, in which prior information was used either because of

insensitive parameters or to explore its effect on parameter or prediction uncertainty,

include those by Parker and Islam (2000), Christensen and Cooley (1999),

Heidari and Ranjithan (1998), Christensen (1997), Bentley (1997), and Cooley

(1983a).

The second common reason for using prior information occurs when a parameter

value estimated by the regression is unreasonable. This problem is discussed in
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Chapter 5, Section 5.5. As noted there, the most productive response to this problem

depends on the amount of information the observations provide on the parameter in

question.

1. If little information is provided, the problem falls into the category of insensitive

parameters. Detection and resolution of such problems are discussed above.

2. If substantial information is provided, the unrealistic estimated parameter

value may indicate problems with the model or the data, as discussed in

Chapter 7, Section 7.6 and Guideline 10 in Chapter 12. These problems

need to be resolved to achieve an accurate model.

In both of these situations, imposition of prior information during model calibration

is not the best way to proceed.

Weiss and Smith (1998) also suggest cautious use of prior information and

present methods of identifying parameters for which specification of prior infor-

mation would be most beneficial. Their methods are based on analyzing attributes

of scaled objective-function surfaces and parameter confidence regions. One

method identifies parameters for which imposition of prior information will most

stabilize the regression in terms of making it better posed. This method is likely

to produce similar results as would be obtained by analyzing composite scaled sen-

sitivities to determine parameters about which the observations provide little

information.

G5.2 Highly Parameterized Models

In some situations, a modeler purposely defines more parameters than can be

directly supported by the data, to represent potential variability in system properties.

When very large numbers of parameters are defined, the model is considered

highly parameterized. To obtain a tractable regression problem, such models require

the use of prior information; the associated weights generally result in it being

classified as regularization (see Guideline 6). The regularization is used to penalize

parameter distributions that violate certain requirements. Commonly, the require-

ment is simply that the parameter values be close to specified values. This approach

was considered in a simple way by Hill et al. (1998), and in more sophisticated

ways by Valstar et al. (2004), among others. Alternatively, neighboring estimated

parameter values that differ from one another are penalized so that high frequency

variations are discouraged. Resulting distributions tend to be smooth. This is one

of the approaches presented by Tikhonov and Arsenin (1977) and has been used

extensively (e.g., Eppstein and Dougherty, 1996; Moore and Doherty, 2005,

2006). This approach is available through the regularization capability of PEST

(Doherty, 1994, 2005).

Thus, parsimonious and highly parameterized models are two end-member

approaches to obtaining tractable regression problems for complex groundwater

systems. Parsimonious models are the focus of much of this book, though the

methods presented have potential utility for highly parameterized models as well.
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For example, parameter correlations can be revealed using single parameters

multiplying the highly parameterized fields. Extreme correlations would suggest

that though the variability produced by the highly parameterized model may be

important, the overall mean depends on the value of other parameters. Thus, despite

a good fit to observations, the model may poorly simulate results sensitive to

the values of the individual system properties. The issue of scale discussed in

Chapter 9, Section 9.2.3 also is relevant. Parsimonious methods are not necessarily

limited to characterizing large-scale variations (e.g., Carle et al., 1998). Highly

parameterized models generally represent variability at the scale of the grid

or, in the case, for example, of pilot points, at a larger scale. Methods for

sub-grid scale effects exist (e.g. Anderman and Hill, 2001; Rubin et al., 2003),

but, to the authors’ knowledge, have not yet been used in highly parameterized

models.

G5.3 Applications: Geophysical Data

For models of groundwater systems, geophysical data are commonly used to define

model layer thickness and define parameterizations as discussed in Guideline 2.

A few investigations have used geophysical data more directly; selected studies

are listed in Table 11.2. Most commonly, the geophysical data are used to support

prior information, which is why geophysical data are included here under Guideline

5. However, in some of these studies the geophysical data is classified as a type of

observation because equations relating the geophysical data to hydraulic conduc-

tivity are included as a model equation.

GUIDELINE 6: ASSIGN WEIGHTS THAT REFLECT ERRORS

Chapter 3, Section 3.1 of this book shows how weights and weight matrices

appear in the objective functions minimized in nonlinear regression; Section 3.3.3

presents the purpose and theoretical requirements of weighting; and Section 3.4.2

suggests that, except for limited testing, it is useful to define weights that

equal one divided by the variance of the errors in observations and prior information,

or a weight matrix that equals the inverse of the variance–covariance matrix

of errors.

Under Guideline 6, we first show how weights can be determined using

common field data and assumptions and we then discuss selected issues related

to weighting. The discussion reveals the importance of assigning weighting in a

way that respects its intended role in the regression. Seven points emphasized

in the discussion are:

1. The strategy of defining weighting based on likely error is supported by

theory, has a strong intuitive appeal, and provides practical advantages. A

chief advantage is that the strategy provides a formal mechanism for including

an analysis of errors in model development.
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2. Additional insight into model fit can be achieved if the weighting relates

directly to observation error instead of relating to it proportionately, as

required by theory.

3. Theoretical considerations and available data can be used to determine

weighting that is adequate, partly because regression results are not very sen-

sitive to modest variations in weighting. The requirement that the weights

reasonably represent observation error provides a sufficiently restrictive

framework for determining weights.

4. The terminology used by different parameter-estimation methods causes part

of the confusion that plagues weighting.

5. Some kinds of model errors can be included in determining weighting as

long as the expected value of each error represented by the weighting

equals zero.

6. Large weights on selected observations or prior information can be useful to

the following interrelated goals: (a) ensuring the data are not being ignored,

(b) determining whether a plausible solution exists with a given model

construction, and (c) identifying model construction errors. This is related

to the analyses proposed in Sections G4.2 and G4.3.

7. For uncertainty analyses to be meaningful, all observations and prior infor-

mation need to be weighted based on likely errors.

G6.1 Determine Weights

Substantial guidance for determining weights is provided by the idea that weights

need to equal one divided by the variance of the observation error and that weight

matrices need to equal the inverse of the error variance–covariance matrix. Even

if alternate weighting is chosen, it is important to evaluate errors in observations

and prior information as discussed here to ensure the data are used appropriately.

Using this strategy to determine the weights provides a formal mechanism for

including analysis of errors in model development.

For problems with one kind of observation (e.g., all hydraulic heads) measured

and simulated with errors of apparently equal variance, it is common to set all

weights equal to 1.0. For example, see the Theis problem of Figure 5.3. The calcu-

lated standard error of the regression (defined after Eq. (6.1)) can be compared to the

expected standard deviation of the errors to evaluate the likely model error (see

Chapter 6, Section 6.3.2).

For commonly used diagonal weight matrices, the weight is defined to be equal to

one divided by the variance of the errors, si
2, as discussed in Chapter 3, Section

3.4.2. More readily understood quantities are si, the standard deviation, and si/yi
or si/y

0
i, the coefficient of variation, where yi is an observed value or prior estimate

and y0i is an equivalent simulated value. Variances are readily calculated from these

quantities.

For full weight matrices, the weighting equals the inverse of the variance–

covariance matrix of the observation errors.
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For any observation, errors result from many processes. Determining the statistic

(the variance, standard deviation, or coefficient of variation) used to calculate the

weight requires quantifying as many of the major error sources as possible. In

this section, we first consider quantifying a single component of error, then many

components of error, and finally errors for observations that are sums of or differ-

ences between measurements when the errors are independent, additive, and

normally distributed. Chapter 3, Section 3.3.3 discussed situations in which these

assumptions may not apply.

Quantify One Component of Error: An Observation Well Example The statistics

used to calculate observation weights can often be determined using readily avail-

able information about likely errors and a simple statistical framework. For example,

consider the common situation in groundwater modeling of error in the elevation of

an observation well used to determine head measurements at the well.

The data on the well are as follows: the well elevation was determined by an alti-

meter and is thought to be accurate to within 3 ft. To estimate the variance of the

error, this statement needs to be quantified. For example, the statement that “the

probability is 95 percent that the true elevation is within 3 ft of the measured

elevation” might apply. If, in addition, the errors are assumed to be normally distrib-

uted, a table of areas under the standard normal curve (Table D.1 in Appendix D) can

be used to determine the desired statistics. This process is outlined in Table 11.3.

For some data and/or instrument types, error studies have been conducted.

For example, for determining elevations from U.S. Geological Survey (USGS)

TABLE 11.3 Steps Needed to Determine a Standard Deviation that Can Be Used

by MODFLOW-2000 and UCODE_2005 to Calculate a Weight

Step Description Example

1. Quantify the statement about

measurement accuracy; include a

significance level.

“The probability is 95 percent that the

true elevation is within 3 ft of the

measured elevation.” The

significance level is 5 percent

(5 ¼ 1002 95)

2. Determine the critical value. For

normally distributed errors, use areas

under the standard normal curve

(Table D.1) to obtain the critical

value.

A significance level of 5 percent has a

critical value of 1.96.

3. Construct a confidence interval on the

measured value, yi, using the critical

value and standard deviation of the

error. Equate it to the confidence

interval expressed in the statement

developed in step 1.

Confidence interval ¼ yi+ 1.96 � syi¼ yi+ 3 ft

Thus, 1.96 � syi ¼ 3 ft

4. Solve for syi. syi ¼ 1.53.
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topographic maps, the USGS (1980, p. 6) states that on these maps, “not more than

ten percent of the elevations tested shall be in error more than one-half the contour

interval.” This statement indicates that a 90-percent confidence interval for this error

equals plus and minus one-half the contour interval. Assuming that the error is nor-

mally distributed, a 90-percent interval is constructed by adding and subtracting 1.65

times the standard deviation of the measurement error. Thus, the standard deviation

of the measurement error can be calculated as one-half the contour interval divided

by 1.65, or (contour interval)/(2 � 1.65). The value of 1.65 was obtained from

Table D.1 as described in Table 11.3.

Errors can also be evaluated by modeling the sampling process. For example,

Schäfer et al. (2003) use what they call virtual aquifers to evaluate solute concen-

trations measured at wells in heterogeneous materials.

Many situations are not as definitive as the examples above. Difficulties in deter-

mining weighting are discussed in Section G6.2.

Accumulate All Error Components Generally, for any observation there are many

sources of error. For example, possible errors for hydraulic heads in the simulation

of a groundwater system include:

1. Error in measuring the water level in the well.

2. Error in determining the elevation of thewell. (For drawdowns, this cancels out.)

3. Aspects ofwell construction. If we could drill 100wells in the same place, differ-

ent gravel packs, screen settings, grouting, and so onwould produce variations in

the measured water levels. Unfortunately, such repeated sampling is not practi-

cal, so these variations are not well characterized. Errors related towell construc-

tion are likely to be greatest in dynamic situations such as during an aquifer test.

There are other errors in placing the well in the context of the model:

4. Errors in placement horizontally.

5. Errors in placement vertically.

There are errors that can be classified as model errors in that they could be corrected

with a finer grid or time step, but can be included in the weighting if they have a

mean of zero. These include:

6. Incorrect placement of hydrogeologic units caused by grid size.

7. Unrepresented temporal variations in recharge, pumping, and so on (see

Chapter 9, Section 9.1.2).

8. Unrepresented flow fields, such as typically local flow fields in a regional flow

model (see Section G6.2).

9. Unrepresented flow fields, such as regional flow omitted from a site model.

Often the errors can be considered independent and normally distributed. In this

situation, the variance of the sum of the errors equals the sum of the variances. That
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is, s2
total ¼ s1

2þ s2
2þ � � �. Only variances are additive; standard deviations and coeffi-

cients of variation cannot be added. This is because the standard deviation (fromwhich

the coefficient of variation is calculated) is defined as the square root of the variance,

and the square root of the sum of two quantities does not equal the sum of the square

roots of the two quantities. An example of accounting for a number of different

types of error for transient head observations in a groundwater model is presented

in Chapter 15, Section 15.2.1.

Weights for Observations that Are Sums of or Differences Between Measure-
ments Observations can be sums of or differences between measured values.

For example, consider streamflow measurements between two streamflow gauging

stations. In groundwater modeling, the difference between two flow measurements

often is used as an observation in the regression. These observations are called

streamflow gains or losses.

Consider a situation in which the upstream and downstream flow measure-

ments are 3.0 ft3/s and 2.5 ft3/s, so that there is a 0.5 ft3/s loss in streamflow

between the two measurement sites, and in which the following assumptions apply:

1. The measurements are each thought to be accurate to within 5 percent (using

the error analysis of Carter and Anderson, 1963).

2. There is a 90-percent probability that the first measurement is within

0.15 ft3/s (5 percent) of the true value, and a 95-percent chance that the

second measurement is within 0.125 ft3/s (5 percent) of the true value.

3. The errors in the two measurements are independent and are normally

distributed.

The procedure for calculating the coefficient of variation of the streamflow loss is as

follows:

1. Calculate the standard deviation of the first measurement using the method

described in Table 11.3.

1:65 sq1 ¼ 0:15 ft3=s, so sq1 ¼ 0:091:

2. Calculate the standard deviation of the secondmeasurement in the samemanner.

1:96 sq2 ¼ 0:125 ft3=s, so sq2 ¼ 0:064:

3. Square the standard deviations to calculate variances.

s2q1 ¼ 0:0083( ft3=s)2 and s2q2 ¼ 0:0041 ( ft3=s)2:

4. Calculate the variance of the 0.5-ft3/s streamflow loss (the difference between

the two flows) by adding the variances.

s2q1 þ s2q2 ¼ 0:0124 ( ft3=s)2:
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5. Take the square root of the variance to obtain the standard deviation of

measurement error.

½0:0124( ft3=s)2�1=2 ¼ 0:111 ft3=s:

6. Calculate the coefficient of variation of the loss by dividing the standard

deviation by the loss.

c:v: ¼ (0:111 ft3=s)=(0:5 ft3=s) ¼ 0:22, or 22 percent.

In UCODE_2005 and MODFLOW-2000, a variance, standard deviation, or co-

efficient of variation can be specified by the user for each observation. The choice

generally is based on achieving statistical values that are most meaningful to

the modeler. For many types of flow observations, coefficients of variation are

often most meaningful.

Determine Covariances for Weight Matrices Some circumstances clearly produce

correlations between errors of different observations. For example, consider three

streamflow measurements, q1, q2, and q3, along the length of a stream, and three

associated measurement error variances, s1
2, s2

2, and s3
2. Gains or losses are calcu-

lated by subtracting each measurement from the next downstream measurement.

For the three measurements, this results in two gain/loss observations, q22 q1

and q32 q2 and, from the preceding discussion, error variances s1
2þ s2

2 and

s2
2þ s1

2. The errors in the two differences are not statistically independent, because

the error in q2 is included in both differences. Hill (1992, p. 43) reported that in this

circumstance the covariance between the two differences equals 2s2
2. Christensen

et al. (1998) extended this result to measurements along branching streams and indi-

cate that the covariance equals21 times the sum of the variances of the flows shared

by any two gain/loss observations. Covariances can be included in UCODE_2005 or
MODFLOW-2000. In some situations, inclusion of off-diagonal covariance terms in

the weight matrix have had a negligible effect on estimated parameters (unpublished

results by the first author of this book and S. Christensen, 1996, Aarhus University,

oral communication). In others they have been important (Bentley, 1997).

It is not known how large the covariances need to be before a diagonal weight

matrix produces significant errors in parameter estimates or measures of uncertainty.

Additional work and definitive publications would be useful. In some situations,

correlated errors can be accommodated by differencing, as discussed in Chapter

9, Section 9.1.2 in the context of temporal observations.

G6.2 Issues of Weighting in Nonlinear Regression

The following common issues are considered: difficulties in determining the

weights, confusion about the term weighting, measurement error versus model

error, the utility and difficulty of using exaggerated weights, the importance of

weighting strategy in detecting model error and overfitting, and weighting system

information on parameter values.
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Difficulties in Determining the Weights In practice, it is generally impossible to

identify all errors that contribute to an observation. In addition, the variances, stan-

dard deviations, and coefficients of variation calculated using the methods discussed

in this guideline are clearly approximate. Thus, determining proper weighting can

seem problematic and has discouraged some from using regression methods.

Yet, it is rarely difficult to determine weighting that adequately represents

errors for use in regression. If one poses different levels of potential error,

almost always some can clearly be identified as realistic while others are not

realistic. Indeed, posing a range of values generally reveals a believable range of

error. Such evaluations can be used to create statements for step 1 of Table 11.3,

and the statistics can then be determined using steps 1 through 4. While the resulting

statistics are not rigidly defined, such an analysis generally is able to determine the

weights well enough. This is because regression results generally are not sensitive

to moderate variation in the weighting: nearly identical results are typically obtained

given weighting within a range that reasonably represents the likely observation

error. If the weighting is changed beyond reasonable ranges, large variations in

regression results can occur, causing the regression to lose meaning and become

arbitrary.

In applications of multiobjective optimization, which was discussed in Chapter 3,

Section 3.2.3 and Chapter 5, Section 5.3, alternative weighting schemes are con-

sidered. In those methods, the weighting changes as multipliers on the different

objective functions change. An example in which only four weightings are con-

sidered is presented by Ghandi et al. (2002a), who used head, concentration, and

interwell flow data to calibrate a transport model of a groundwater recirculation

system used for in situ bioremediation. As for most applications of multiobjective

optimization, the weighting strategy differed from that suggested in this book in

that none of the observation weights were based on likely errors, and they may

have varied over a larger range than would have been supported by an analysis of

errors. Even so, the four strategies only resulted in moderately different estimates

of some parameters. The authors selected the final weighting strategy on the

basis of its ability to produce a good overall fit to all three data types. Because no

analysis of observation error is presented, the relationship between the weighting

and the errors cannot be evaluated.

Confusion About Terminology Confusion about weighting occurs for many

reasons. One reason is that very different definitions for the terms “weights” and

“weighting” are used in different parameter-estimation methods. In this book we

use these terms only to describe a term in the objective function (Eq. (3.1)). How-

ever, other authors have used these terms very differently. For example, Yeh

et al. (1996) use terms “weights” and “weighting” to describe quantities that reflect

the smoothness of the parameter field (through the spatial variance–covariance

matrix of, typically, hydraulic conductivity) and the sensitivities. Other methods

may have no formal mechanism for accommodating expected data errors, a role

suggested for weights in this book. To avoid confusion about the role of weights

in different parameter-estimation methods, careful reading and writing are
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important. This will help all modelers clearly understand the function of weights and

weighting in any application of any method.

Measurement Error and Model Error Model errors are defined here as any errors

that could be eliminated by changes in the model given greater computer capacity,

more time, or more complete information about the groundwater flow system even if

the information is not attainable given present technology. Model errors are caused

by, for example, inaccurate interpolation of simulated equivalents to observations,

inability of the model to represent some processes, fluctuations in properties that

are smaller than the grid size, and parameterizations that limit the spatial or temporal

variability of parameters. As noted in Chapter 1, parameterization is needed to attain

a tractable problem, but it does produce model errors. Dealing with this conflict is

the topic of Guideline 3.

Here we consider whether the observation errors accounted for by weighting

should include only measurement errors, or whether some types of model error

can be included as well. While this point can be, and is, argued extensively, a

useful definition is:

Observation error is error related to any aspect of the observation not accounted for

by the model considered, for which the expected value is zero.

Unambiguous types of measurement errors are those associated with the measur-

ing device and the spatial location of the measurement. Ambiguous contributions

include, for example, heads measured in wells that only partially penetrate the

numerical layer to which they are assigned, or temporally averaged head measure-

ments or single measurements that are clearly affected by transient effects used in a

steady-state model. These are more ambiguous because the model could be modified

to better accommodate the measurements. Despite such ambiguities, the above defi-

nition for observation error works well in practice, because it produces sufficiently

accurate weighting, and, as mentioned above, the regression often is not highly

sensitive to moderate changes in the weighting.

For example, in a groundwater model of the Madison aquifer in the northern

Great Plains, USA, Cooley et al. (1986, p. 1764) anticipated that the small error

with which the hydraulic head in shallow wells could be measured would produce

accurate observations at these points, and thus assigned them large weights.

During calibration it was determined that “the model fit no better at these points

than elsewhere” (Cooley et al., 1986, p. 1772). Apparently, heads in the shallow

wells were affected by shallow, local flow systems not represented by the

regional-scale model, and this situation produced residuals that were as large as

those associated with inaccurately measured heads in deep wells. Decreasing the

weights (increasing the variances) for observations from shallow wells to account

for the model not simulating the shallow flow dynamics produced better results.

If weights are determined based on observation errors that include measurement

errors and possibly some model errors, the standard error of the regression is signifi-

cantly greater than 1.0 (as determined using the methods described in Chapter 6,
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Section 6.3.2), and the fitted error statistics (see Section 6.3.2) are too large to be

accounted for by measurement error, it is likely that model error is involved in

the misfit. If the weighted residuals are randomly distributed, it is possible that unac-

counted for model errors have zero means and a variance–covariance matrix that is

proportional to the variance–covariance matrix of the observation errors. In this

situation, the large value of the calculated error variance produces a variance–

covariance matrix on the parameters of Eq. (7.1) that appropriately accounts for

the unaccounted for model errors.

Using Large Weights It can be useful to assign large weights to selected obser-

vations or prior information, as discussed in Sections G4.2 and G4.3. Figure 5.4

and Exercise 5.1b showed how a regression could become better posed by increasing

the weighting on an observation to place more emphasis on it than is warranted

given likely observation errors. This is frequently done to establish the existence

of a solution (Backus, 1988), especially for observations that provide unique infor-

mation. Such observations may be identified from an understanding of the simulated

processes, or because statistics such as scaled sensitivities or measures of leverage or

influence are distinctive. Examples include observations that are a different

measurement type or that are collected at a different location or time.

For example, in groundwater flow modeling there are typically many hydraulic-

head observations but very few flow observations (such as streamflow gains and

losses, or spring flows). There is a perception that the small number of special obser-

vations (here, flows) will not be properly accounted for in the regression, and thus

there is often an inclination to assign larger weights than are consistent with

likely errors in these observations. The concern is heightened if predictions of inter-

est are closely related to the few special observations.

However, the possibility that keeping large weights throughout both model

calibration and uncertainty analysis might diminish the accuracy of the model, pre-

dictions, and/or measures of uncertainty is suggested by the theoretical require-

ments of weighting and needs to be considered.

To investigate this issue, consider a simple problem in which linear regression is

applied in a situation known to be characterized by a linear model. Figure 11.5

shows that of 10 observations only one is located in the range of relatively large

x values for which predictions are of interest. The important question is whether

the accuracy of the predictions can be improved by increasing the weighting

of the special observation. It is apparent from Figure 11.5 that the answer is no,

because the other data are clearly relevant to predictions at larger values of x,

given that a linear model is valid. Increasing the weighting of the observation

with large x would produce a model that closely matches the error of that measure-

ment, but is likely to degrade the accuracy of the resulting calibrated model.

The one observation for large x in Figure 11.5 is analogous, for example, to the

few flow observations in a groundwater system, because in both cases these

observations have sensitivities that are special in some way. For this linear

regression problem, the sensitivity of each data point with respect to the intercept

parameter equals 1.0, and the sensitivity to the slope parameter equals the x value
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of the observation (i.e., for the model y ¼ aþ bx, @y/@a ¼ 1.0, and @y/@b ¼ x).

Thus, for the special observation, the sensitivity to the slope parameter is larger

than that for the other observations. In groundwater systems, flow data provide

special information, which is expressed by sensitivities that often reduce corre-

lations among parameters, and thus produce a regression better able to uniquely

estimate parameter values. Also, errors in flow data tend to have very different

sources and magnitudes than errors in head data, as well as different units (e.g.,

m3/day versus m).

To more closely examine this issue, consider the results of Exercise 5.1a and

define a prediction of interest as the advective-transport distance toward the river

from the center of the top layer after 10 years. The true predicted value is

1737 m. Objective-function surfaces for the parameter-estimation problem are

shown in Figure 5.4. With hydraulic-head observations alone (Figure 5.4a), the

objective-function surface is composed of parallel lines, and no minimum exists.

Addition of the flow observation using weighting that realistically represents the

observation error produces the objective function in Figure 5.4b; imposing a large

weight that assumes an unrealistically small observation error produces the objec-

tive function of Figure 5.4c. Increasing the weighting of this observation obviously

produces a better-defined minimum and might be justified if the existence of a plaus-

ible solution is being explored, but the consequences need to be considered. As

shown in Table 11.4, for this simple model the parameter estimates and the advec-

tive-transport prediction are very similar for the two different weightings. The

regression with the large, unrealistic weight on the flow observation produced a

slightly more accurate prediction. However, in general, this accuracy could either

improve or deteriorate, depending on the actual error in the flow observation.

FIGURE 11.5 The true model of y ¼ 0.0þ 1.0x, and possible observations to be used in

linear regression. The data represented by dots are clustered and have x values that are

distinctly different from that of the data point represented by the triangle.
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The most significant consequence of using an unrealistic weight is related to the

confidence intervals on the predictions (Table 11.4). With the unrealistically small

coefficient of variation of 1 percent, the small prediction confidence interval does

not reflect a realistic level of prediction uncertainty, as indicated by its omission

of the true predicted value by a wide margin. In contrast, with a more reasonable

coefficient of variation of 10 percent, the interval is more realistic and contains

the true predicted value. This results from the unrealistic weight being included in

the calculation of the parameter variance–covariance matrix (Eq. (7.1)) and the

effects being propagated to the standard deviation on the prediction using Eq. (8.1).

In more complex situations, unrealistic weightings may produce different esti-

mates and predictions compared to when realistic weights are used, but there is

no assurance that the different values will be more accurate. In addition, the conse-

quences for uncertainty analysis are likely to be similar to those shown here for the

simple two-parameter model. Ultimately, exaggerated weighting cannot be expected

to produce more accurate models; that goal can only be achieved by better data

and/or better use of data. This book focuses on the latter.

Detecting Model Error and Overfitting Specifying weighting that equals the

inverse of the variance–covariance matrix of the observation errors establishes a

context for detecting model error and for identifying fits that are too good (as

shown in Figure 11.1b). This analysis uses common measures of model fit and is dis-

cussed in Chapter 6, Section 6.3.2 and considered later in Guideline 8. This analysis

is useful and is often overlooked, so a summary of the analysis is included here.

If the model fit is consistent with the assigned weighting, then the calculated error

variance and the standard error of regression will be close to 1.0. Larger values

(common in practice) indicate that themodel fits the datamore poorly than is consistent

with theweighting. For example, if the standard error is 5.0, themodel fit is, on average,

five times worse than is consistent with the expected observation error. Possible

sources of the additional error are neglected measurement error or model error. If

model error is suspected, but no bias is evident in the weighted residuals, the error

may be accumulated from small contributions, and model predictions and measures

of uncertainty may still be useful (Hill et al., 1998) (see Chapter 6, Section 6.3.2).

TABLE 11.4 Selected Regression Results Using Weighting of the Flow Observation

Resulting from Reasonable (10 percent) and Unrealistically Small (1 percent)

Coefficients of Variation

Flow

Coefficient

of Variation

Parameter Estimate

Prediction

(Distance

Traveled

Toward River

in 10 years) (m)

Confidence

Intervalb (m)

on the

Prediction

Interval

Includes

True Value

of 1737 m?K_MULT RCH_MULT

10 percent 1.16 0.89 1017 71; 1964 Yes

1 percent 1.18 0.91 1036 940; 1131 No

aA smaller coefficient of variation produces a larger weight.
bNinety-five percent linear confidence intervals constructed assuming a normal probability distribution.
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The calculated error variance and the standard error of regression also can be less

than 1.0. This is not common in practice but may occur if too many model par-

ameters are estimated. The value of the standard error might not increase as the

number of parameters increases if prior information is added for each added par-

ameter value. Small values of the standard error indicate that the model fits the

observations better than expected based on the analysis of observation errors.

Thus, for example, if the standard error is 0.1 and the confidence interval on the

value (Eq. (6.2)) does not include 1.0, then the model fit is, on average, 10 times

better than is consistent with the preliminary analysis of observation error. In this

situation, the expected errors and the model fit should be closely examined for

evidence that the model is fitting errors rather than system processes. Overfitting

can be more easily identified if the observation errors have been carefully evaluated.

This can be accomplished when weighting is defined as suggested here.

Defining weights on the basis of an analysis of errors encourages comparison of

the weighting to theoretical ideals. If nonideal weighting is used to achieve

regression results, the nonideal weighting can be compared to likely errors. For

example, if an observation has a weighted residual that is distinctly larger than

other weighted residuals in absolute value, reducing the weight (by increasing the

variance, standard deviation, or coefficient of variation) can make the weighted

residual more comparable to other weighted residuals. Indeed, robust regression

automatically makes such adjustments to the weights (Huber, 1981). However, it

is important to evaluate whether the final statistics believably represent the error.

If manual adjustment or robust regression methods result in variances, standard

deviations, or coefficients of variation that seem to represent an unrealistic level

of error, evaluate the magnitude of the associated unweighted residual for indi-

cations of important model error or observation bias. Clearly, resolving these two

problems is more likely to yield an accurate model than hiding the problem by redu-

cing the weight (increasing the value of the statistic).

The example above and comments in Chapter 6, Section 6.3.2 suggest that the

relatively simple idea of making the weights equal to one over the variance of

the error or making the weight matrix equal to the inverse of the error variance–

covariance matrix has proved to be very useful. It respects the statistical theory,

provides a framework for identifying model error and/or measurement bias, and

contributes to using the standard error of regression as a measure of model error.

That is quite an accomplishment for a simple idea!

Weighting System Information on Parameter Values The discussion above

focused on observations but is directly applicable to weighting prior information.

Errors in system information often result from scale issues; see, for example,

Beckie and Harvey (2002).

Weighting on prior information can be determined by, for example, constructing

a 95-percent confidence interval on the basis of the likely range of parameter values,

using independent field data or knowledge about hydrologic or geologic processes

related to the quantities represented by the parameters. Two issues of special import-

ance to prior information are the use of large weights and resulting “regularization,”
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and the use of log-transformed parameters. While observations can be log-

transformed, as mentioned in Chapter 3, Section 3.3.3, it is not very common.

Thus, the effects of log-transformations on weighting are discussed here in the

context of system information.

If the weighting realistically represents the uncertainty, the system information

on parameter values included in the regression is called prior information and fits

into the framework of either classical statistics or Bayesian statistics (the latter

being the framework from which the term “prior information” originates). Some-

times, however, larger weights (smaller statistics) are assigned to the system

information to achieve a stable regression, in which case the term “regularization”

needs to be used instead of prior information (Backus, 1988). Setting parameter

values to constants that are not changed by the regression can be thought of as an

extreme case of regularization. When regularization is used, confidence intervals

on parameters and predictions tend to underestimate actual uncertainty, as demon-

strated in Table 11.4. Thus, it is very important in practice to appropriately classify

prior information and regularization.

Prior information and regularization can be imposed on individual parameter

values, or on characteristics of a parameter distribution, such as smoothness, as dis-

cussed in Chapter 1, Section 1.3.2 and Section G5.1. Extreme examples of the latter

are (1) requiring that the model input value be constant over a region, a volume, or a

specific type of material wherever it exists, or (2) requiring a specific interpolation

scheme.

The capability of defining many parameters is implemented in PEST as its regular-

ization capability. An example is presented by Doherty (2003). PEST is programmed

to allow the user to specify the desired fit to observations and then adjust the weighting

to achieve that fit. As suggested by Doherty (2003), users need to take care that the

model fit specified is not less than expected observation errors. In addition, the resulting

weighting of the observations and regularization need to be checked to determine

if the weights are supportable based on hydrogeologic data. If not, it is important to

modify the weighting before proceeding with uncertainty analysis.

The second issue unique to prior information occurs when the associated par-

ameter is log-transformed. In this situation, the statistic used to weight the prior

information generally needs to relate to the log of the parameter value. The methods

discussed above for quantifying errors are directly applicable, but an extra step often

is needed because usually it is easier to establish a range of plausible values for

native than for transformed values. Thus, if the prior estimate for a hydraulic con-

ductivity is 1 � 1025 m/s, and the true value is expected to fall between

1 � 1026 and 1 � 1024 m/s with a certainty of about 95 percent, a 95-percent con-

fidence interval for the native value has approximate limits of 1 � 1026 to 1 � 1024

m/s. Taking the log (base 10) of these values produces limits of26 and24 about a

prior estimate of 25. If it is assumed that the uncertainty in the hydraulic conduc-

tivity can be approximated by a log-normal distribution, the log-transformed value is

normally distributed. The methods described above can be used to determine that the

standard deviation relevant to the log-transformed parameter equals 0.51. This value

would be specified as the statistic used to calculate the weight for the prior estimate.
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GUIDELINE 7: ENCOURAGE CONVERGENCE BY

MAKING THE MODEL MORE ACCURATE AND

EVALUATING THE OBSERVATIONS

Nonlinear regression models of complex systems often do not converge despite

using the ideas suggested in Guideline 3 to maintain a well-posed problem. The

major reasons for convergence problems are insensitive parameters, nonlinearity

of the forward model with respect to estimated parameters, and inconsistencies

between the processes important to the observations and simulated processes

caused by poor representation of the system by the model and/or misinterpre-

tation of data. These causes are listed in Table 11.5. Parameter correlation is

TABLE 11.5 Possible Actions to Encourage Convergence and Obtain an

Accurate Model

General Comments

Identify the parameters associated with the largest values of max-calculated-change. This

information is provided by the computer codes used in this book, as shown in Figure 5.5,

and possible actions are as follows.

The Three Main Problems that Plague Convergence and Possible Solutions a

Insensitivity

If css for any parameter is less than 1 percent of the largest css, consider ideas

presented in Guideline 3. These include:

(a) Specify the parameter values with small css.b

(b) Check problematic parameters. Consider combining existing parameters or redesigning

the parameterization. Consider the suggestions in Guideline 2 about creative use of

system information.

Nonlinearity

Evaluate simulated results for parameter values from intermediate parameter-estimation

iterations. Look for evidence of nonlinearity. Consider weighted residuals that are

largest in absolute value, observations omitted because simulated equivalents could

not be obtained, and whether parameter values are realistic. If forward model

nonlinearities are problematic, consider using a linear approximation, as suggested

in Guideline 1.

Inconsistencies

Check the representation of the parameters. Check dominant observations identified

using dss, DFBETAS, and leverage statistics.

Evaluate observations, prior information, and their simulated equivalents.

(Continued)
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not likely to result in lack of convergence of a single regression, as shown in

Exercise 5.1b and discussed in Guideline 3. Similar results are expected for

local minima.

Convergence is usually improved as the model becomes a better representation of

the system that produced the observations beingmatched by the regression. Thismeans

that, generally, the goal of achieving convergence with a valid regression and the goal

of achieving a model that accurately represents major processes are identical.

Information available from regressions that fail to converge provide substantial

insight. This insight can be obtained by careful consideration of dimensionless,

one-percent, and composite scaled sensitivities; parameter correlation coefficients;

TABLE 11.5 Continued

All

Consider reducing the amount by which parameters are allowed to change within

one parameter-estimation iteration—called max-allowed-change in Chapter 5, Section

5.1.3 before Eq. (5.7). Alternatively, consider using the trust-region approach available in

UCODE_2005 or other methods.

Diagnosing Problems that Plague Convergence

Regression Performance Problem c

(1) In the first parameter-estimation

iteration, values of sensitive

parameters move far

from their starting values.

Inconsistencies. If evaluation indicates no

inconsistencies, move starting parameter

values closer to those from the first

iteration, after first checking model fit.

(2) max-calculated-change remains large in

absolute value and is either consistently

positive or consistently negative.

Insensitivity.

(3) max-calculated-change goes through

a repeated sequence in which it is

reduced in size over several iterations

only to dramatically increase.

Nonlinearity and/or insensitivity.

(4) max-calculated-change oscillates

between large positive and negative

values (as in Figure 5.5).

Insensitivity of one or more parameters.

aThe solution of obtaining more data on insensitive parameters is not listed. Potential data acquisition

efforts often are most advantageously considered in the context of predictions, as discussed in Guidelines

11 and 12 in Chapter 13.
bIf parameter values are specified to alleviate convergence problems, calculate their css and pcc in later

regression runs. If possible, estimate the parameters using regression. Generally, specified parameters

need to be included to assess uncertainty. See Chapters 7 and 8.
cThe problems are listed with the performance to which they are most likely to apply. However, consider

all problems and actions listed to address convergence problems.

Note: css, composite scaled sensitivity; dss, dimensionless scaled sensitivity; pcc, parameter correlation

coefficient.
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weighted and unweighted residuals; parameter values; parameter updates calculated

by the regression; and other information from the regression. These items can be

used to detect inaccuracies in model construction. Review of Tables 10.1 and

10.2 and the questions of Table 10.3 may help to suggest useful approaches.

In addition, evaluation of regression performance can be useful, as suggested in

Exercise 5.2b. The max-calculated-change defined after Eq. (5.7) is the largest

calculated fractional change, in absolute value, for any parameter in one

parameter-estimation iteration and is reported for each iteration. Generally, max-

calculated-change must be less than a user-defined criterion for the regression to

converge (see Chapter 5, Section 5.1.3). When it does not diminish sufficiently,

the regression is said to not converge. Possibilities include, but are not limited

to: max-calculated-change remains large in absolute value and is either consist-

ently positive or consistently negative; max-calculated-change goes through

a repeated sequence in which it is reduced in size over several iterations only to

dramatically increase; max-calculated-change oscillates between large positive

and negative values (as in Figure 5.5).

These possibilities are listed in Table 11.5. They are related to the three likely

causes of nonconvergence mentioned above in this guideline and in the first part

of Table 11.5. Suggested causes and solutions are listed. There is no suggestion

to change observation weighting, which is tempting but rarely helpful in this circum-

stance and can be very time-consuming. Also, when the regression performs in

the four ways listed in the second part of Table 11.5, increasing the number of

parameter-estimation iterations is rarely helpful for achieving convergence.

GUIDELINE 8: CONSIDER ALTERNATIVE MODELS

There is always more than one possible representation of natural systems, because

there are different possible interpretations of the incomplete data about the systems.

Guideline 8 encourages considering as many alternative models as possible and

offers strategies for designing, organizing, and comparing them.

Formal parameter-estimation methods that produce optimal parameter values are

essential to use when considering alternative models if results are to be at all defini-

tive. If parameter values are determined using a clear process such as optimization,

model fit and other model attributes can be compared without speculation about

whether conclusions would be different if only this parameter value was a bit

higher or that one a bit lower.

Commonly, to begin the modeling process, one model is constructed using

Guidelines 1 through 7. During development of this model, model fit and parameter

values are evaluated at various stages using Guidelines 9 and 10 in Chapter 12. In

addition, predicted quantities are evaluated, and their relationships to model

calibration issues are considered, as discussed in Guideline 13 in Chapter 14. This

process is an example of how the guidelines are not always used sequentially. Guide-

line 8 is positioned to emphasize that alternative models are fundamental to the

study of any natural system.
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G8.1 Develop Alternative Models

Alternative model evaluation often indicates that many plausible models exist.

Considered another way, the data are insufficient to further limit the possible

alternatives. Development of alternative models can be motivated by many

different circumstances, including different equally plausible interpretations of incom-

plete system information (Guideline 2) and difficulties with initial models of the

system, such as problems with model fit or optimal parameter values (Guidelines 9

and 10 in Chapter 12).

Alternative models typically differ in their representation of the characteristics

and properties of the simulated system and/or in their simulated processes. Com-

monly, they have the same set of observations, and this is required by some methods

of analysis.

The mechanisms for developing alternative models fall into three categories:

deterministic, stochastic, or a combination of these two. These approaches are dis-

cussed below.

Deterministic methods of developing alternative models generally use different

conceptual models. For example, in groundwater systems it is common that different

interpretations of geologic processes yield different hydrogeologic framework

models. Different choices of included processes are also usually determined from

a deterministic decision process: for example, including the effects of temperature

or subsidence on groundwater flow. Deterministic development of alternative con-

ceptual models often is facilitated for complex three-dimensional problems by

using the data organization, visualization, and analysis tools discussed in Chapter

15 for the Death Valley regional groundwater flow system.

Stochastic methods for developing alternative models usually identify one aspect

of the system that is expected to dominate simulated results of interest (e.g., predic-

tions) and randomly generate model input realizations. Each realization is then used

in the model to produce simulated results. The model input may be a single number;

or it may be many numbers that define a spatial and/or temporal field of—using

groundwater model examples—hydraulic conductivity and areal recharge. The

model input might also be numbers that define the spatial distribution of a system

property, but not the actual values. For example, Poeter and McKenna (1995) pre-

sent an innovative method in which alternative models are developed using indicator

kriging to generate different zonation arrays that are used in the model to define the

hydraulic-conductivity distribution. Hydraulic-conductivity values for each zona-

tion are then estimated by regression. This example is discussed in Guideline 14

in Chapter 14. The transition-probability method of Carle et al. (1998) and the indi-

cator simulation method of Gomez-Hernandez (2006) also are designed to generate

many realizations of a three-dimensional field.

For field systems, methods of developing alternative models that depend on both

deterministic and stochastic contributions are likely to be very useful. This includes

generating stochastic distributions within a deterministic structure. For example, in a

groundwater model the alternative structures may be different interpretations of

large-scale hydrogeologic units; stochastic methods might be used to generate
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alternative models of the interior variability of selected units and/or selected parts of
the system.

G8.2 Discriminate Between Models

Models that are more likely to be accurate tend to have three attributes: lower values

of overall fit statistics (Chapter 6 and Guideline 9); weighted residuals that are more

randomly distributed (Chapter 6 and Guideline 9); and more realistic optimal par-

ameter values (Chapter 7 and Guideline 10).

Often these criteria are used to identify a single most likely model and all sub-

sequent simulations of predictions and other analyses are pursued with this one

model. However, for most natural systems, one model generally is insufficient to

represent the variety of defensible ideas about how the system works, and many

alternative models should be evaluated. In this context, these criteria are used to

identify strengths and weaknesses of the developed models.

The first attribute of more accurate models is a better match to observed data, as

indicated by smaller values of the calculated error variance (Eq. (6.1)), the standard

error of the regression (the square root of Eq. (6.1)), fitted error statistics (Chapter 6,

Section 6.3.2), AICc and BIC statistics (Eqs. (6.3) and (6.4)), or the maximum

likelihood criteria (Eq. (3.3)). These measures are printed by UCODE_2005 and

MODFLOW-2000. The UCODE_2005 and MMA (Multi-Model Analysis; Poeter

and Hill, in press) computer codes report additional statistics, such as Kashyap’s

measure (Medina and Carrera, 1996).

Figure 11.6 shows a graph of AICc and BIC statistics and the sum of squared,

weighted residuals for five models of the Maggia Valley in southern Switzerland.

The models differed in that the hydraulic-conductivity distribution was represented

with between one and six parameters defined using geologic mapping of fluvial

deposits. As is typical, the sum of squared, weighted residuals diminishes or is

unchanged as parameters are added. The AICc and BIC statistics are smallest for

the model with three hydraulic-conductivity parameters, which suggests that, of

the models considered, this one is preferable.

The second attribute of better models is that weighted residuals (defined in Chap-

ter 3, Section 3.4.3) are more randomly distributed. This attribute generally is deter-

mined using the graphs and related statistics discussed in Chapter 6, Section 6.4 and

Guideline 9 in Chapter 12. Graphs of weighted residuals against weighted simulated

values are shown for two models of the same system in Figure 11.7. The weighted

simulated values have been adjusted because the coefficients of variation for the

weighting are calculated using the observed values, as discussed in Chapter 6,

Section 6.4.2. The weighted residuals from model CAL0 tend to be larger than

those of CAL3, as indicated by the greater spread about the 0.0 weighted-residual

line. In this example, the weighting on the streamflow gains and lake loss was modi-

fied within reasonable limits during the course of model development to achieve

statistically consistent weighted residuals (Hill et al., 1998, Table 1). A consequence

is that the spread of weighted residuals for flows in model CAL3 does not necess-

arily indicate a closer fit between simulated and observed flows, compared to

model CAL0. However, the smaller spread for hydraulic heads in model CAL3
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does indicate a better fit, as also is evident in Figure 11.7. The two sets of weighted

residuals of Figure 11.7 are both reasonably random, although the dominance of

positive CAL0 residuals in Figure 11.7a for weighted simulated values between

15 and 30 may indicate some model bias.

In analyzing the distribution of weighted residuals when comparing alternative

models, it also is important to consider additional types of figures that display the

observations, simulated values, residuals, and weighted residuals, as discussed in

Chapter 6, Section 6.4 and Guideline 9 in Chapter 12.

The third attribute of better models is that optimal parameter values tend to be

more reasonable. Evaluating the optimal estimates and confidence intervals is

discussed in Chapter 7, in Guideline 10 in Chapter 12, and in Guideline 14 in

Chapter 14.

For the complex synthetic system considered by Hill et al. (1998), analyses of the

optimal parameter estimates resulted in elimination of model CAL0 as a viable

model. In the calibrated CAL0 model, one hydraulic-conductivity estimate was

unreasonable, and the confidence interval on the parameter excluded all reasonable

values. Analyses of optimal parameter estimates showed that all of the other alterna-

tive models were viable, and that none could be considered clearly better than the

others on the basis of analyzing these estimates.

FIGURE 11.6 AICc and BIC statistics and the sum of squared, weighted residuals (SSWR),

defined in Chapter 3, calculated for five models of the Maggia Valley in southern Switzerland.

(From data presented by Foglia et al., in press).
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G8.3 Simulate Predictions with Alternative Models

There is general agreement that predictions need to be evaluated using alternative

models, but there is disagreement about what alternative models should be included.

Some suggest that all models developed should be included in any analysis of predic-

tions (e.g., Burnham and Anderson, 2004; Poeter and Anderson, 2004), while others

suggest a more selective approach. The argument for including all models is that

those that do not fit the observations well, as indicated by large values of one or

more of the measures of overall fit listed in Section G8.2, are given little credence

in the analysis, and leaving them in allows all underlying conceptual models to be

represented. The argument for a more selective approach is that results from clearly

unreasonable models can be confusing to resource managers and the public.

The presentation of predictions from alternative models is important because

usually this communicates the most important result of a typically substantial invest-

ment by a government, commercial, or nonprofit entity. Ideally, the presentation

reveals the predictions, measures of prediction uncertainty, and possibly a separate

indicator of model plausibility.

Measures of prediction uncertainty can be calculated using the methods described

in Chapter 8, Sections 8.4 and 8.5. Quantifying prediction uncertainty using alterna-

tive models is discussed in Chapter 8, Section 8.6 and Guideline 14 in Chapter 14.

FIGURE 11.7 Weighted residuals versus weighted simulated values for models (a) CAL0

(with 34 heads and 3 flows) and (b) CAL3 (with 54 heads, 19 flows, and 16 prior) of Hill et al.

(1998).
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G8.4 Application

Here we discuss three alternative models presented by Tiedeman et al. (1997,

1998a). The models represent a regional groundwater flow system in fractured crys-

talline rock near Mirror Lake, New Hampshire. In each of the models, two model

layers represent surficial glacial deposits, and three layers represent fractured crys-

talline bedrock. The three alternative models differ in their representation of the bed-

rock hydraulic conductivity, as shown in Figure 11.8. In model A, the bedrock

hydraulic conductivity is homogeneous; in model B, it varies with depth; and in

model D, it varies with land-surface elevation. Model C is not discussed here.

The variations each have a hydrogeologic rationale. For example, consider weath-

ering processes, where weathering of the fractured crystalline rock is expected to

FIGURE 11.8 Representations of bedrock hydraulic conductivity along a hillside cross

section (vertical exaggeration approximately 5:1), parameter estimates, and linear individual

95-percent confidence intervals for alternative models A, B, and D of a regional groundwater

flow system in fractured crystalline rock near Mirror Lake, New Hampshire. Kg is the

hydraulic conductivity of surficial glacial deposits; other K parameters are hydraulic

conductivities of the bedrock, as shown on the left for each alternative model. (Adapted from

Tiedeman et al., 1997, 1998a.)
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increase hydraulic conductivity. Homogeneity (model A) suggests little weathering;

model B suggests weathering concentrated at the surface and evenly distributed

throughout the area, and model D suggests weathering concentrated in the lower

elevations.

Each model was calibrated by nonlinear regression using three flow observations.

The number of hydraulic-head observations was 90 for models A and B and 91 for

model D. The additional head observation lies in the upper elevations of the system

and displays a fairly shallow water level. Only one such observation is available, and

it is not known if the water level detected at this well represents the regional water

table. As a result, all models were tested with and without this observation; it is only

included in the results shown here for model D. Models A and B, which lack any

change in hydraulic conductivity with elevation, cannot simultaneously match this

observation and head observations at lower elevations. The importance of this

depends on the validity of the high-elevation head observation, which is unclear.

The optimal hydraulic-conductivity estimates and linear confidence intervals pro-

duced by the three models are shown in Figure 11.8.

In model B, the parameter estimates for the hydraulic conductivity of each bed-

rock model layer (K3, K4, and K5) are nearly the same as the estimate of homo-

geneous bedrock hydraulic conductivity (Kb) in model A. The confidence

intervals for K3, K4, and K5 are each significantly larger than that for Kb. These

results suggest that the observations do not support the hypothesis that hydraulic

conductivity varies with depth. The model fit to the observations is almost identical

in models A and B (the standard error of regression, s, equals 3.0 in both models),

which also supports the conclusion that model B is not an improved representation

of the flow system compared to model A. Further discussion considers only

models A and D.

In model D, the estimate of Klower is about the same as that of Kb in model A, but

the estimate of Kupper is substantially smaller, and the confidence intervals for Klower

and Kupper are relatively small and do not overlap, suggesting that the calibration

observations support the hypothesis that conductivity varies with elevation. How-

ever, the standard error of regression for model D of 3.4 is somewhat larger than

that for model A, primarily because model D produces a poorer match to the

three flow observations.

Models A and D appear to represent conceptual models that are reasonably well

supported by the observations. Additional hydraulic-head data at the upper

elevations are needed to better delineate the regional water table. If collected,

these data could then help discriminate between the two models. Because models

A and D are both plausible, predictions of the regional water budget and of the

three-dimensional groundwater basin are simulated for both models (Tiedeman

et al., 1997, 1998a).
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12
GUIDELINES 9 AND 10—
MODEL TESTING

A basic attribute of nonlinear regression methods is that, given a well-posed

problem, parameter values are calculated that produce the best fit between simulated

and observed values. The model can then be evaluated without speculation about

whether a different set of parameter values would produce a better model fit.

A primary purpose of evaluating model fit is to detect ways in which the model

incorrectly represents the real system. This incorrect representation is commonly

referred to as model error. Model error that causes systematic problems with

model fit is denoted model bias. Two common problems are strong indicators of

model error: (1) the model does a poor job of matching observations in that the

lack of fit is large and/or the weighted residuals are not randomly distributed in

time, in space, and/or relative to simulated values and (2) the optimized parameter

values are unrealistic and confidence intervals on the optimized values do not

include reasonable values. The fundamental premise is displayed in Figure 12.1.

Model fit issues are discussed in Guideline 9; estimated parameter-value issues

are discussed in Guideline 10.
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GUIDELINE 9: EVALUATE MODEL FIT

The match to observations can be evaluated using the methods described in

Chapter 6. The evaluation generally involves the following: (1) determine model

fit, including both overall fit and variation in fit among individual observations

and (2) diagnose the cause of poor model fit. Evaluations of model fit have been

presented in many publications, including Cooley et al. (1986), Yager (1993,

1996), D’Agnese et al. (1997), Tiedeman et al. (1998a,b), Hill et al. (1998), and

other studies cited in Chapter 15.

G9.1 Determine Model Fit

Overall measures of model fit were discussed in Chapter 6, Section 6.3; graphical

measures are discussed in Section 6.4. Here, we present additional example analyses

of model fit.

Weighted residuals have the advantage of indicating model fit in the context of

expected observation error (Guideline 6). Model misfit is often more useful when

presented in this context. This is especially true if observation errors are proportional

to the observed or simulated value and this value varies over many orders of mag-

nitude. In such situations, unweighted residuals can be very misleading. Examples

include flow observations in surface-water models and concentration observations

in any type of transport model. On the other hand, weighted residuals can be confus-

ing because they are dimensionless. Often it is useful to include maps and other

figures of both weighted and unweighted residuals in reports. The discussion of

these figures can then indicate whether any large unweighted residuals are actually

less problematic than their magnitudes suggest, because of observation error.

Figures constructed using unweighted and weighted residuals from a model of the

Death Valley regional flow system are presented in Chapter 15.

FIGURE 12.1 Premise underlying much of the analysis of model fit and estimated

parameter values suggested in Guidelines 9 and 10. If 1 and/or 2 are not true, a better

model can be obtained by reevaluating the observations and the model.
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Two graphs that illustrate model fit are presented in Figure 12.2. Figure 12.2a

shows observed and simulated streamflow gains along the length of a river.

Figure 12.2b shows the related residuals, which are a good indication of model fit

if the observed gains are all similarly reliable. Although the two figures present iden-

tical information about model fit, each display is useful in a unique way. Figure 12.2a

places the model fit in the context of the observed quantity. Figure 12.2bmore clearly

displays the variation of misfit with the number of the measured reach.

Figure 12.3 shows an example of weighted residuals displayed on a map of a

groundwater model domain. This type of figure is effective for assessing the details

of model fit and the spatial randomness of the weighted residuals. Figure 12.3 shows

that the weighted residuals are generally small and appear to be randomly distributed

in the southern part of the domain. However, in the northern part, weighted residuals

are larger and clusters of residuals with similar signs are present, illustrating some

bias in the model fit. In this model, the subsurface hydrogeology in the north was not

as well characterized as that in the central and southern part of the region, which

helped explain this bias (Sanford et al., 2004a).

Identifying trends (lack of randomness) by visual inspection is not always reliable

and is made more difficult by the small sample size typical of many regression pro-

blems. Often it is useful to evaluate randomness using formal methods to avoid false

identification of trends and to identify trends that are difficult to detect. One such

method is the runs test, as discussed in Chapter 6, Section 6.4.4. The runs test stat-

istics are calculated using Eq. (6.16) and (6.17).

MODFLOW-2000 and UCODE_2005 each calculate a runs statistic that evalu-

ates the randomness of the weighted residuals with respect to the order in which

the observations are listed in the model input files. This statistic can be used to

quickly and roughly assess whether the spatial randomness of the weighted residuals

is improving as changes are made in the model during the calibration process, which

can be advantageous when it is time-consuming to produce maps of weighted

residuals such as those shown in Figure 12.3. For example, if water-level obser-

vations are listed in the model input file in order from north to south, and initially

FIGURE 12.2 (a) Observed and simulated streamflow gains for model CAL3 of Hill et al.

(1998). (b) Streamflow gain residuals, equal to the observed minus the simulated values.

GUIDELINE 9: EVALUATE MODEL FIT 317



FIGURE 12.3 Distribution of weighted hydraulic-head residuals in a model of steady-state

predevelopment groundwater flow in the Middle Rio Grande Basin, New Mexico. (From

Sanford et al., 2004a.)
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the model fit is such that simulated water levels are consistently too large in the north

and too small in the south, then the runs statistic will indicate too few runs (a large

negative value). As the model is refined and additional regression runs are made, the

runs statistic can be evaluated rather than producing a new map after every

regression run in which some model aspect has been modified. A runs statistic

that becomes smaller in absolute value (closer to 0.0) indicates that the weighted

residuals are becoming more randomly distributed.

FIGURE 12.4 Hydraulic-head residuals from a model of the Truckee River Basin, Nevada,

with lines used to conduct runs tests. The lines are located in the center of swaths for which the

runs statistic is calculated. (From Cooley, 1979.)
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The runs statistic also can be used to assess the spatial randomness of weighted

residuals plotted on the model domain as illustrated in Figure 12.4. In this study,

Cooley (1979) used runs tests to evaluate randomness for residuals distributed

within a specified distance of selected transects. The results indicated that all the

runs along each transect could have occurred by chance. MODFLOW-2000 and

UCODE_2005 do not calculate runs statistics to evaluate the residuals in this

manner, so this type of analysis requires the modeler to use a custom spreadsheet

or code.

The fit of a calibrated model also can be tested using simulated equivalents for

observations that either were not included in the model calibration process or are

collected after model calibration. Such testing commonly is referred to as validation

or a postaudit and is discussed in Guideline 13 in Chapter 14.

G9.2 Examine Fit for Existing Observations Important

to the Purpose of the Model

It is important to closely examine the model fit for observations important to the pur-

pose of the model. If the purpose is related to some aspect of model construction, the

statistics listed in Table 10.2 that connect observations and parameters can be used

to identify these observations. If the purpose is to predict unmeasured quantities, the

opr statistic that connects observations and predictions can be used. The opr statistic

is presented in Guideline 12 in Chapter 13 in the context of guiding additional

field work. An example of using this statistic is presented in Chapter 15,

Section 15.2.1.

G9.3 Diagnose the Cause of Poor Model Fit

Detailed evaluations of weighted residuals, such as those shown in Figures 12.2–

12.4, can be used to diagnose the cause of poor model fit. Obvious locations of

potential problems include areas in which the model fit is poor and/or biased. How-
ever, in models of natural systems, simulated conditions are generally sensitive to

both local and distant aspects of model construction. Thus, discovering the cause

of problems with model fit often requires considering problems located not only

where the misfit occurs, but in a potentially large surrounding volume and, for tran-

sient models, at earlier simulated times. For example, discharge to springs in

regional groundwater models can be influenced by hydrogeologic and hydrologic

conditions at great distances upgradient and downgradient from the spring location.

Water needs to supply the spring and some system characteristic or dynamic needs

to make the water flow to the spring instead of to downstream locations. Similarly,

recharge in high-elevation regions of a model can affect hydraulic heads and dis-

charge at distances far downgradient.

In some cases, aspects of model construction make it impossible for the

regression to match a given observation. Dimensionless scaled sensitivities (dss)

(Chapter 4, Section 4.3.3) and leverage and influence statistics (Chapter 7, Section

7.3) can help reveal this problem. If the values of these statistics for an observation

are near zero for all parameters, then the simulated equivalent is insensitive to
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changes in all parameters. This suggests that model construction precludes a good fit

to the observation and can reveal problems with model construction. In groundwater

modeling, an extreme example occurs when an observed head is located in a cell

defined as constant head, and the value of the constant head is not being estimated

by the regression. For a less extreme example of this problem, consider a geologic

feature with very low hydraulic conductivity that has been interpreted as discontinu-

ous, based on geologic data. However, differences in hydraulic head across the fea-

ture indicate that it is continuous and forms a substantial barrier to groundwater

flow. If the model construction is not changed, the model fit to these head obser-

vations will be poor.

In many types of models, it can be difficult to address problems with model con-

struction because of the inaccessibility of the true system and/or the expense of data
collection. These limitations to investigating the true system may preclude modify-

ing the model to alleviate all problems with poor model fit. In this case, the modeler

needs to carefully evaluate the implications for the model predictions of the poor

model fit.

An additional potential type of model error involves omission of processes that

are important to simulating the observed values, or including processes that actually

do not occur in the true system. This type of error can strongly affect the quality of

the model fit to the observed values. Thus, when diagnosing the cause of poor fit, it is

important to assess whether the model includes the relevant and important processes

thought to occur in the true system. Determining the appropriate processes is

especially important in transport models, where there are typically a large number

of potential transport mechanisms that affect simulated concentrations, as discussed

in Chapter 9, Section 9.2.

If the model fit is unsatisfactory, five aspects of the model or calibration effort can

be investigated and possibly changed as described below. The magnitude of the

changes can range from correcting data entry errors, to adding simulated processes,

to completely reevaluating some or all facets of the conceptual model.

Parameter Definition Parameter definition can be modified, for example, by

adding, omitting, dividing, or combining parameters. As always, the final parameter-

ization needs to be consistent with all known information about the system; for

example, in groundwater problems, hydrogeologic information needs to be

respected. See the methods described in Chapters 4 and 7 and Guidelines 2 and 3

in Chapter 11.

Simulated Equivalents of the Observations Problems with the calculation of

simulated equivalents to observations may become apparent as model calibration

proceeds.

For example, consider a groundwater system with an observation from a well in

which the screen spans several layers of the corresponding groundwater model. The

simulated equivalent of the observed head is typically calculated as a weighted aver-

age of the simulated hydraulic heads in the model layers spanned by the screen. It is

not always straightforward to define the contribution from each layer and the

appropriate contribution may change as the model changes during calibration. If
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there is a poor fit to this type of observation, definition of the simulated equivalent

may need to be modified. Alternatively, the methods included in, for example, the

Multi-Node Well (MNW) Package (Halford and Hanson, 2002) of MODFLOW

could be adapted to calculate the contributions from each model layer.

Problems with calculation of simulated equivalent also can occur when the

defined elevations for head-dependent boundaries of a discretized model are

determined from digital elevation maps (DEMs). Within the area of the model-

grid cell the appropriate value might be the average elevation, the lowest

elevation, or, depending on the resolution of the DEM, an elevation that is

even somewhat lower than the lowest elevation. The latter circumstance can

occur when there are narrowly incised rivers or springs ensuing from small

depressions. Problems are generally indicated by too little simulated flow to the

head-dependent boundaries, unexpected flow from the boundaries to the ground-

water system, or too much flow from the boundaries into the groundwater system.

Inspection of areal photographs and/or field work at selected representative sites

often is needed to determine appropriate elevations to use in the model.

Other Aspects of Model Construction Model construction can be modified, for

example, by correcting input data, changing the representation of boundary con-

ditions and parameterization, and changing the processes simulated. In groundwater

models, a surface-water body represented by a constant-head boundary might be

changed to a head-dependent boundary, the pumping rates at wells might be updated

based on new information, or temperature variations might be included explicitly or

implicitly. Most of these changes are no different from modifications a modeler

would consider as part of any model calibration effort.

Observations Affected by Processes that Are Not Simulated It is sometimes

necessary to remove observations from the regression; however, this should be

done only after careful consideration. For example, in groundwater systems, wells

that intersect perched water do not directly reflect the dynamics of a regional flow

system. Including measurements from such wells as observations in the calibration

of a regional model is likely to produce fallacious results, and thus, these obser-

vations will typically be omitted from the regression.

Perched wells are one example of observations affected by systematic errors

caused by omission from the model of a process important to the observation.

Unlike random measurement error, systematic error cannot easily be accommodated

by weighting and can be impossible to separate from the effects of simulated pro-

cesses. An example is given by Pavelko (2004) for aquifer compaction and expan-

sion data recorded by an extensometer in Las Vegas, Nevada. Extreme heating in

the extensometer shed caused thermal effects on the extensometer, which were

recorded as apparent diurnal fluctuations in aquifer deformation. When these

data were employed as observations in regression runs used to calibrate a model

of aquifer deformation, this resulted in poor model fit, unreasonable parameter

estimates, and problems with regression convergence (M. Pavelko, U.S. Geological

Survey, written communication, 2004). To correct this problem, the calibration
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observations were defined as aquifer deformation over time periods of 25 days or

longer. This definition of the observations minimized the influence of the thermal

effects.

Weighting Errors Errors in the weighting of the observations or prior information

also are possible. However, use caution when considering changes to the weighting

as an approach to resolving problems with model fit. It is easy to invest a great deal

of time modifying weights and running regressions, with little consequent gain in

model accuracy or in understanding the system dynamics. This does not mean

that weighting never needs to be modified. Adherence to the principles described

in Guideline 6 in Chapter 11 will help keep the effort spent determining and

modifying the weight matrix consistent with its importance to the purpose of

the model.

GUIDELINE 10: EVALUATE OPTIMIZED

PARAMETER VALUES

Evaluating optimized parameter values involves five steps. (1) Quantify parameter-

value uncertainty. (2) Detect model error by comparing the estimates and their linear

and nonlinear confidence intervals to reasonable ranges determined from field data.

(3) Diagnose the cause of unreasonable parameter values. (4) Identify observations

important to the parameter estimates. (5) Determine whether fewer parameters

are likely to produce as good a fit or if additional parameters can be supported by the

available observations. These issues are discussed in the following five sections.

G10.1 Quantify Parameter-Value Uncertainty

Parameter-value uncertainty can be quantified using parameter confidence intervals,

which are an integral part of the analyses discussed in Sections G10.2 to G10.5.

Calculation of parameter confidence intervals is presented in Chapter 7.

The relative uncertainty of parameters can be important to the evaluations of

Sections G10.4 and G10.5. Confidence intervals can be directly compared for par-

ameters with the same units, such as in Figure 12.5. To compare the uncertainty

of parameters with different units, such as hydraulic conductivity and recharge,

confidence intervals can be expressed in terms of percent of estimated value, as

shown in Figure 7.7, 7.8, and 9.19. Alternatively, parameter coefficients of variation

(Eq. (7.4)) can be used.

G10.2 Use Parameter Estimates to Detect Model Error

The use of optimized parameter values to detect model bias was presented in

Chapter 7, Section 7.6. This simple test can be an unexpectedly powerful indicator

of model error, even given the wide ranges of reasonable values for many

characteristics of natural systems. For example, in groundwater systems hydraulic
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conductivity can vary by many orders of magnitude in a single field site. Use of

reasonable ranges to detect model error has been demonstrated using synthetic

numerical test cases by Poeter and McKenna (1995), Anderman et al. (1996),

Poeter and Hill (1996), Barlebo et al. (1998), and Hill et al. (1998). Field studies

that have found this test to be useful include those by D’Agnese et al. (1997, 1999),

Tiedeman et al. (1998b), McAda (1999), Faunt et al. (2004), and Gannett and Lite

(2004). Relevant results from Barlebo et al. (1998) are presented in Chapter 15.

A graphical comparison of estimated hydraulic conductivities and ranges of

expected values is presented in Figure 12.5 for the Death Valley regional flow

system study of D’Agnese et al. (1997, 1999), which is discussed further in Chapter

15. Two features of Figure 12.5 deserve discussion: the large reasonable ranges and

the small linear confidence intervals on the estimates.

The reasonable ranges in this example are large, but a number of conceptual

models were rejected because optimized parameter values were outside these

ranges. Thus, even in this circumstance with large ranges of expected values, requir-

ing reasonable optimized parameter values produced an important constraint on

model development.

FIGURE 12.5 Optimized hydraulic-conductivity values, 95-percent linear confidence

intervals, and the range of hydraulic-conductivity values derived from field and laboratory

data. (From D’Agnese et al., 1997.)
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Examination of the confidence intervals of Figure 12.5 could lead to the con-

clusion that the intervals are too small to realistically represent the uncertainty in

the estimate. This judgment, however, needs to be made in the context of the mean-

ing of the parameter estimates and confidence intervals. In this example, and in

many situations, the defined parameters result from simplifying assumptions. The

most relevant assumption in this example is that a few parameters and simple func-

tions are used to represent the very complicated hydraulic-conductivity distribution

that exists in the true flow system. In the Death Valley model, the simple functions

are a zonation scheme in which the hydraulic conductivity is set to the same par-

ameter value at all locations where rocks with certain characteristics occur. The

simple functions also could involve using a few defined parameters to implement

an interpolation scheme. Definition of a few parameter values to represent hydraulic

conductivity throughout a model is very useful if broadly defined variations in

hydraulic conductivity dominate system dynamics. The resulting estimated par-

ameters represent effective or average values. The confidence intervals for these par-

ameters represent the uncertainty in these effective or average values. In contrast,

the reasonable ranges often represent the breadth of local values.

Confidence intervals on average (mean) values depend on the standard deviation

of the original population, and on the sample size used to calculate the estimated

average. Because the population statistics often are unknown, the sample standard

deviation is commonly used. To demonstrate the importance of these dependencies,

consider a simple example using a generated population of 300 normally distributed

random numbers. Figure 12.6 shows the mean and range of the 300 numbers, as well

as the mean and the confidence interval on the mean for different sample sizes drawn

from the population. This simple example illustrates that even with very few

samples, the confidence interval for the average is significantly smaller than the

range of the population.

In Figure 12.5, the ranges of hydraulic conductivities are derived from measured

field and laboratory values. Each of the six ranges is analogous to the population

range in Figure 12.6. The six parameter estimates shown in Figure 12.5 for the

Death Valley regional flow model are analogous to the three means of

Figure 12.6, with one important difference. In Figure 12.5, the parameter estimates

are derived through nonlinear regression. Thus, most of the data used to estimate the

effective hydraulic-conductivity values are measurements of other quantities

(hydraulic heads and spring flows). In contrast, the means of Figure 12.6 are calcu-

lated from samples taken from the population for which the range is plotted on the

left side of the figure. Figure 12.6 reveals something important about Figure 12.5.

That is, the wide ranges and much narrower confidence intervals such as those

shown in Figure 12.5 are to be expected given that the confidence intervals are on

the expected value.

Using independent information on the parameters to identify model error, as

suggested here and in Chapter 7, Section 7.6, is an alternative to using the infor-

mation on the parameters to define prior information or to impose limits on esti-

mated parameter values, which are discussed in Chapter 5, Section 5.5 and in

Guideline 5 in Chapter 11. As noted there, unreasonable optimized parameter
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values can be disconcerting but can be important indicators of problems with model

construction, the observations, or both.

G10.3 Diagnose the Cause of Unreasonable Optimal

Parameter Estimates

If the analysis of parameter estimates and confidence intervals reveals imprecise

and/or unreasonable parameter estimates, investigation of the issues discussed in

Section G9.3 can help reveal the cause. Here, two strategies for diagnosing un-

reasonable estimates are discussed: influence statistics and inconsistencies between

true and simulated processes. When attempting to diagnose why the regression is

producing unreasonable parameter estimates, it is important to keep in mind that

error in other model attributes (those not associated with the parameters with unrea-

sonable estimates) also might be contributing to the problem.

Yager (1998) used DFBETAS influence statistics to help identify model error.

In the model of regional groundwater flow through fractured dolomite depicted

in Figure 11.2, an unreasonably large optimal value of horizontal anisotropy

was estimated by nonlinear regression. The DFBETAS statistics were used to

FIGURE 12.6 Population range and mean, and confidence intervals and means for different

sample sizes. Means are calculated as the arithmetic average value (Table 7.1) The population

range is noted by the bar labeled “Pop.” The other bars are labeled with the sample size used

(3, 5, and 10), and the lengths of the bars display the associated confidence interval on the mean,

calculated as the mean +2s/n1/2, where s is the sample standard deviation (Table 7.1) and n

is the sample size (Ott, 1993, pp. 201–202).
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identify a set of influential head observations that were important to the anisotropy

parameter and were located at the edge of a rural recharge zone that was adjacent

to an urban recharge zone. The recharge rate in the rural zone was expected to be

substantially lower than that in the urban zone. Evaluation of the calibrated model

revealed that to optimize the overall model fit, the unrealistically large anisotropy

value was estimated because it compensated for a recharge rate that was too low

to provide a good fit to the influential heads. To resolve this problem, Yager

(1998) modified the position of the boundary between the recharge zones,

which was not clearly defined by field data, so that the influential observations

were in the urban recharge zone. With this modification to model construction,

the regression produced a realistic optimal estimate of horizontal anisotropy and

of other model parameters and provided a good fit to the influential heads.

Investigating whether processes important to observed values are simulated in the

model, as discussed in Guideline 9 with regard to diagnosing poor model fit, also can

lead to identification of model error when diagnosing unrealistic optimized par-

ameter values. For example, if observed solute concentrations in fractured rock

are strongly controlled by advection, dispersion, and matrix diffusion, transport

simulations using only advection and dispersion can produce unreasonable estimates

of dispersion parameters. Matrix diffusion needs to be simulated to obtain reason-

able estimates. In the example from Pavelko (2004) described in Guideline 9, unrea-

sonable parameter estimates, as well as poor model fit, resulted when observations

were defined in a way that emphasized diurnal signals in the data caused by heating

of the extensometer.

G10.4 Identify Observations Important to the Parameter Estimates

The statistics presented in this book that can be used to identify observations import-

ant to parameters are listed in Table 10.2.

Statistics that can be used to identify observations that are important to individual

parameter estimates include dimensionless scaled sensitivities (dss, Chapter 4, Sec-

tion 4.3.3) andDFBETAS (Chapter 7, Section 7.3.2). The dss are fit-independent, but

this attribute is not as important for Guideline 10 applied to a model that is substan-

tially calibrated, as it is for Guideline 3 applied to a newly constructed model.

DFBETAS has the advantage of representing the effects of both sensitivity and para-

meter correlation, so it is usually a better choice for the evaluations conducted as

part of Guideline 10. Using dss to identify observations important to one parameter

estimate is illustrated in Figure 8.1c. DFBETAS statistics can be presented similarly.

The statistics that can be used to identify observations that are important to a set of

parameters include leverage (Chapter 4, Sections 4.3.6 and 4.4.3 and Chapter 7,

Section 7.3.1) and Cook’s D (Chapter 7, Section 7.3.2) Using Cook’s D to identify

observations important to all parameter values is illustrated in Chapter 15, Section

15.2.1. The statistics differ in that the leverage statistics are fit-independent, so that

they do not account for model fit to observations. Cook’sD is a measure of influence

that accounts for model fit to observations. The choice of statistic, therefore, is likely
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to be based on whether the model is mature enough that inclusion of model fit is

preferred.

G10.5 Reduce or Increase the Number of Parameters

If individual linear confidence intervals (Chapter 7, Section 7.5.1) for two or more

parameters overlap, it may imply that the true parameter values are similar, even if

the estimated values are different. An example is presented in Figure 11.8 and dis-

cussed in Section G8.4. In model B, the overlapping 95-percent linear individual

confidence intervals and similar estimates suggest that the true hydraulic conduc-

tivities may be similar and it may be possible to assign the same hydraulic conduc-

tivity to model layers 3, 4, and 5 without a significant deterioration in model fit.

Indeed, this was achieved using model A. If model fit significantly deteriorates,

the parameters probably should not be combined. For nonlinear models, linear inter-

vals are approximate. Nonlinear intervals (Chapter 7, Section 7.5.1) can be con-

sidered, but each limit of each interval requires as much execution time as a

regression. It is often more effective to use linear intervals to identify likely par-

ameter combinations that can then be tested using a single regression.

Analysis with the confidence intervals is analogous to performing a standard two-

tailed, or two-sided, hypothesis test (Davis, 2002, pp. 61–64; Helsel and Hirsch,

2002, p. 104) in which the hypothesis for model B is that the hydraulic conductivity

of the bedrock is uniform with depth. If the test results show that this hypothesis

cannot be rejected, then it may be possible to define one hydraulic-conductivity

parameter that applies to layers 3, 4, and 5 (model A).

At any stage of model calibration, composite scaled sensitivities can be analyzed

as described in Guideline 3 (Chapter 11) to determine if the available data are likely

to support additional detail in representing the system characteristics associated with

the defined parameters. Parameters with composite scaled sensitivities that are sig-

nificantly larger than 1.0 and large compared to css values for other parameters

might be divided in ways that are consistent with other data, such as geologic and

hydrogeologic data in groundwater problems. The new set of defined parameters

could then be evaluated using the methods of Guideline 3, and regression pursued

if warranted.

New parameters can also be added and estimated using, for example, the

representer, super parameter, or constrained minimization method. See Chapter 1,

Section 1.3.2 for references.
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13
GUIDELINES 11 AND 12—
POTENTIAL NEW DATA

In most natural systems, collecting meaningful data is expensive and time-consuming.

Thus, it is important to collect data most beneficial to the modeling objectives. These

objectives commonly include (1) better understanding of the processes and properties

governing system dynamics and/or (2) simulating predictions of future conditions. Of

course, (2) depends on (1), but identifying predictions that are of primary importance

can be used to focus data collection efforts.

Models are powerful tools for guiding additional field data collection, as

suggested in Chapter 8, Section 8.3. This effort is best achieved using the fit-

independent statistics listed in Table 10.2. Fit-independence is important because

the value of the potential new data is unknown. If fit-dependent statistics are

used, they need to be evaluated for a reasonable range of potential observed

values. The statistics can be used to identify observations important to parameters,

parameters important to predictions, and observations important to predictions.

Knowledge of the important parameters and observations can then be used to

guide the data collection effort, as discussed in Guidelines 11 and 12.

To be useful for the task of identifying important potential new data, a model

needs to represent the system with a reasonable level of accuracy. It can be difficult

to determine when a model is sufficiently accurate, but at the very least, obvious

errors in the system representation and in simulated equivalents to observations

need to be resolved. Strategies to resolve these problems using analyses of model

fit and optimal parameter estimates are presented in Guidelines 9 and 10 in

Chapter 12.
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In this chapter, Guideline 11 discusses identifying new data to improve the

parameter estimates and distribution. Guideline 12 discusses identifying new data

to improve model predictions. The analyses of model uncertainty discussed in Chap-

ter 14 also often motivate and provide guidance for new data collection efforts.

Modelers are encouraged to be creative in how they use the methods discussed in

the guidelines.

For the approaches discussed here, results need to be considered carefully

because they inherit all the simplifications and approximations in the model. To

determine how to proceed with data collection, generally it is wise to use model

results in combination with other information, such as existing observation data,

existing knowledge of the system characteristics and observations, and information

about past and future stresses, such as pumping in groundwater systems. That is, we

do not suggest depending only on the model-generated results that are the primary

focus of this discussion.

GUIDELINE 11: IDENTIFY NEW DATA TO IMPROVE

SIMULATED PROCESSES, FEATURES, AND PROPERTIES

Sometimes models are constructed primarily to better understand the processes, fea-

tures, and properties that govern system dynamics. New data can serve four roles in

improving the representation of these entitites in models. Data can be used to support:

(1) modifying system processes; (2) modifying the geometry of system features,

including parameter structures such as zonation or interpolation; (3) defining

system property values that relate directly to parameter values; and (4) new obser-

vations that provide indirect data about system information. Guideline 11 focuses

on the fourth role and on methods for identifying useful new observations.

Commonly, data related to observations are much easier and less expensive to collect

than is system information. First, roles (1)–(3) are briefly discussed.

Collecting new data to support modification of processes or system features often

is motivated by poor model fit or unreasonable parameter estimates. The first step

typically is to evaluate the likely importance of the process or feature conceptually.

Next, the process or feature is modified in the simulation model, and methods in

Guidelines 8–10 can be used to test model improvement. If supported by these

analyses, field data can be collected to further characterize the process or feature,

and to improve its representation in the model, as discussed in Guideline 2.

Obtaining data that relate directly to parameter values can be difficult. System

properties commonly are measured at scales that differ from those to which

model parameters apply, as discussed in Chapter 9, Section 9.2.3 in relation to trans-

port models. To the extent that the measurements do apply to parameter values, they

can be used as reasonable ranges, prior information, or specified values, as discussed

in Guidelines 2 and 5.

Data that support additional observations can be evaluated with the model using

fit-independent statistics. We discuss methods that use sensitivities to evaluate

potential new observation types and locations for the information they provide
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about the model parameters. These methods include dimensionless and composite

scaled sensitivities (dss, css), parameter correlation coefficients (pcc), and leverage

statistics (Chapter 4, Sections 4.3.6 and 4.4.3, and Chapter 7, Section 7.5.2). For dss,

css, and leverage statistics, the anticipated accuracy of the potential observations also

can be considered because observation weights are included in the calculation.

Weights for potential observations can be determined using the same strategies as

for existing observations, discussed in Guideline 6.

Table 13.1 shows the dss calculated in Exercise 8.1c for two potential obser-

vations in the simple steady-state model with pumping, and the css calculated

using only existing observations obtained before pumping began. In Exercise

8.1c, the potential observations were evaluated with respect to their contribution

to reducing prediction uncertainty. Here they are evaluated with respect to their con-

tribution to improving parameter estimates.

The dss in Table 13.1 are shown for three model parameters for which the

existing observation data provide relatively little information (HK_2, VK_CB,

and K_RB), as indicated by the css. The dss also are shown for parameter

RCH_2, for which the existing observations provide ample information. The dss

suggest that the potential head observation, which is located in the top model

layer far upgradient from the river, is more important to all four model parameters

than is the potential flow observation, which is the discharge along the entire length

of the river.

In analyzing the dss in the context of the importance of potential observations to

improving parameter estimates, it is important to assess them relative to the css

calculated for the existing observations. To be helpful for improving a parameter

estimate, the absolute value of the dss for a potential observation needs to be roughly

of the same or greater magnitude than the css for the parameter. Comparison of the

dss and css values in Table 13.1 suggests that the potential head observation is likely

to improve the estimates of HK_2, K_RB, and RCH_2 but would contribute little

TABLE 13.1 Dimensionless Scaled Sensitivities (dss) and Leverage for Two

Potential Observations from Exercise 8.1c, and Composite Scaled Sensitivities (css)

Calculated for the Existing Observations

Dimensionless Scaled Sensitivitiesa (dss) for Parameterb:

HK_2 VK_CB K_RB RCH_2 Leverage

Potential head

observation

23.5 8.0 � 1023 20.105 54.8 0.988

Potential flow

observation

23.2 � 1025 1.1 � 1026 20.349 � 1025 24.50 0.491

css for existing

observations

3.1 0.22 0.20 25.3

aFor four of six parameters.
bParameter labels: HK_2, hydraulic conductivity of model layer 2; VK_CB, vertical hydraulic conduc-

tivity of the confining unit; K_RB, vertical hydraulic conductivity of the riverbed; RCH_2, recharge rate

away from the river.

GUIDELINE 11: IDENTIFY NEW DATA TO IMPROVE SIMULATED PROCESSES 331



toward estimating VK_CB. The potential flow observation is only likely to help

improve the estimate of RCH_2. When evaluating the dss to determine the value

of a potential observation, there is an additional consideration. As discussed in

Chapter 4, Section 4.3.4, parameters with css less than 1.0 are more likely than

those with larger css to be poorly estimated, and to cause regression convergence

problems. Thus, potential observations that are likely to increase the css of a

parameter to greater than 1.0 are of special interest. Potential observations that

are likely to increase the css to a value less than 1.0 are not likely to improve the

estimate of that parameter. By this analysis, the potential head observation is not

likely to improve the estimate of K_RB.

Parameter correlation coefficients (pcc) also need to be considered when evalu-

ating potential new observations. Potential observations that provide little infor-

mation as indicated by the dss might be very important to improving the

parameter estimates, if they help to reduce parameter correlations. This can be

tested by comparing pcc calculated only with the existing observations to those

calculated with the existing and potential observations. The latter calculation uses

the parameter variance–covariance matrix with potential observations, discussed

in Chapter 7, Sections 7.2.1 and 7.2.5. The results of this comparison are given in

Exercise 8.1c for the example presented above and show that addition of the poten-

tial head observation reduces the absolute value of several correlations that are very

large when only the existing observations are included. Addition of the flow obser-

vation as well further reduces the correlations, indicating that it is more important to

improving the parameter estimates than is indicated by the dss alone, but how much

more is not clear.

Leverage statistics also can be used to evaluate the potential effect of one or more

observations on a set of parameter estimates. The actual effect is measured by influ-

ence statistics, which depend on the observed value, and so are not useful for

evaluating potential observation data. In addition to the effects measured by dss,

leverage statistics reflect the ability of the potential observation to reduce parameter

correlations. The leverage statistics for the example are listed in Table 13.1. Lever-

age statistics can range from 0.0 to 1.0, so the potential head observation

has extremely high leverage and the potential flow observation has moderate lever-

age. A disadvantage of leverage statistics is that they do not indicate the particular

parameter(s) to which a potential observation is most important. In this example, the

leverage statistic suggests that, overall, the head observation is likely to contribute

more information than the flow observation, which is consistent with the analyses of

the dss and pcc. Final decisions about data collection often also depend on which

parameters are important to predictions, which is the topic of Guideline 12.

It can also be useful to plot the dss for potential observations in relation to inde-

pendent variables such as time and location. The graph of dss versus time shown in

Figure 13.1 indicates the relative importance of potential drawdown observations

during pumpage. For parameters HK_1, HK_2, and Q_1&2, the sensitivity increases

with time, indicating drawdown observations later in time provide the most infor-

mation about these parameters. In contrast, drawdown at an intermediate time is

most likely to improve the estimates of the storage coefficient parameters.
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Additional uses of scaled sensitivities are discussed in Chapter 14 under Guideline

14 and in Chapter 4, Section 4.3.3. Using dss in this manner is similar to how sen-

sitivity measures were used by Knopman and Voss (1988).

Maps of one-percent scaled sensitivities for hydraulic heads, such as those

shown in Figure 4.4, are an additional tool for identifying areas and depths where

hydraulic heads are important to one or more parameters but there are no existing

observations. However, there are important limitations to the use of these maps, as

discussed in Chapter 4, Section 4.3.7.

When evaluating potential new observations using dss, css, pcc, and leverage,

model nonlinearity can produce misleading results. This is illustrated using

the example from Anderman et al. (1996), discussed in Chapter 11, Section

G3.1. Although in this example existing observations are considered, the results

of analyzing the css and pcc would be identical if these observations were potential

data. This example also provides an example of how nonlinearity can affect sensi-

tivity analysis. Using initial parameter values, the advective-transport path entered

a lake near the source instead of continuing a greater distance within the ground-

water system. The longer path is more probable given the concentration data. The

unrealistic short advective-travel path resulted in an underestimate of the import-

ance of the advective-transport data when evaluated using the css and pcc calcu-

lated for the initial parameter values.

This situation demonstrates the importance of calculating statistics for multiple

sets of parameter values, which also is discussed in Chapter 4, Section 4.4 and

portrayed in Figure 4.2. If the statistics change considerably when calculated at a

different, reasonable set of parameter values, then they may not be reliable indicators

FIGURE 13.1 Dimensionless scaled sensitivities plotted in relation to time for an existing

head observation (at time ¼ 0 days, with no pumpage) and potential drawdown observations

(at time .0 days, with constant pumpage) from well 2 of Exercise 9.6. Model parameter

HK_1 represents the hydraulic conductivity in model layer 1, HK_2 is used to calculate the

hydraulic conductivity of model layer 2, SS_1 and SS_2 are storage coefficients of the top

and bottom layers, respectively, and Q_1&2 is the pumping rate in wells 1 and 2.
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of the worth of the potential data to the model calibration. Reasonable parameter

values are those that both respect the system information and produce a reasonable

fit to observations. If the simulations produce statistics that support very different

data acquisition efforts, the improved understanding of the system obtained from

the analysis may still be helpful in making decisions about how to proceed with

data acquisition and model development efforts.

GUIDELINE 12: IDENTIFY NEW DATA TO

IMPROVE PREDICTIONS

Often models are developed primarily for predictive purposes. In this case, a high

priority for field data collection is to improve predictions by increasing their accuracy

or reducing their uncertainty. As noted in Guideline 11, new data can serve four roles

in improving the representation of model processes, features, and properties govern-

ing system dynamics. Data can be used to (1) modify the processes included; (2)

modify the geometry of system features, including the structure of parameterizations

such as zonation or interpolation; (3) define system property values that relate directly

to parameter values; (4) support additional observations. In the context of improving

predictions, we expand the fourth role to include improving existing observations

with poorly characterized attributes. The first role is discussed briefly below, (2)

and (3) are considered in Section G12.1, and (4) is considered in Section G12.2.

Considering additional processes in the context of predictions follows the steps

described for Guideline 11, except the effect on predictions also is considered.

Once the process is included in the model, the methods used are identical to those

described in Section G12.1.

G12.1 Potential New Data to Improve Features and

Properties Governing System Dynamics

The most common method for identifying system features that are important to

predicted values is to simulate the predictions using alternative conceptual models

of the system in which selected features are added, removed, or modified. The pro-

cess is similar to the sampling methods described in Chapter 14, Section G14.2,

except that here the simulations are used to identify potential new data instead of

evaluating uncertainty.

Methods presented in Chapter 8, Section 8.2 also can be used to guide collection

of data important to the predictions. These include (1) combined use of composite

and prediction scaled sensitivities (css and pss) and parameter correlation coeffi-

cients (pcc), as illustrated in Figure 8.2, and (2) the parameter–prediction (ppr)

statistic. These methods focus on identifying parameters that are most important

to the predictions. The results of these methods can be used to guide collection of

data about the values of parameters associated with system features. Field activities

to obtain this type of data in groundwater systems include, for example, hydraulic

tests for estimating transmissivity and storativity values.

334 GUIDELINES 11 AND 12—POTENTIAL NEW DATA



The results from the css–pss–pcc and ppr methods also can be used to guide

collection of system information related to the representation of model features.

By this approach, it is assumed that there is a link between model parameter import-

ance and system feature importance. That is, it is assumed that information about

system features is important to predictions if parameters related to the features

are identified as important to predictions. The parameters identified as most

important to the model predictions may not always correspond to the features of

model construction that aremost important to themodel predictions, but it is expected

that there will often be such a correspondence. In groundwater systems, such features

might include the geometry and internal variability of a hydrogeologic unit associ-

ated with a hydraulic-conductivity parameter identified as important. Field activities

might include geologic and geophysical investigation and interpretation of the extent

and thickness of the hydrogeologic unit.

Tiedeman et al. (2003) discuss inmore detail issues related to using the pss and ppr

statistics to guide field data collection and provide an example of their application,

which is summarized in Chapter 15, Section 15.2.1.

G12.2 Potential New Data to Support Observations

New data can be used to improve existing observations or to obtain new observations.

It can be beneficial to improve existing observations if they are shown to be important

to predictions and there is a resolvable deficiency in the observations. For example in a

groundwater study, wells for which existing head observations are shown to be

important to predictions might be the focus of downhole methods to better understand

the condition of well screens where corrosion is suspected. In a surface-water study,

high streamflow at a site may be important to predictions, but the flow might be

derived from a stage measurement and a rating curve extrapolated beyond streamflow

measurements. The new data might involve better delineating the local topography

and vegetation and using the methods of Kean and Smith (2005) to improve the

streamflow observation.

There are two primary tools for evaluating potential new observation data

for improving the predictions, both of which are presented in Chapter 8, Section 8.3.

The first involves using dss, css, pss, and pcc together, and the second is the obser-

vation–prediction (opr) statistic.

Using dss–css–pss–pcc involves first using pss to identify parameters that are

important to a prediction, then using css to identify whether any of these parameters

are not well supported by the existing observation data. Then, the methods discussed

in Guideline 11 can be used to identify potential new observations likely to provide

information about the identified parameters. Finally, pcc can be used to evaluate if

the potential new observations help reduce parameter correlations that are proble-

matic for predictions. This process has the advantage that each of the separate stat-

istics is conceptually easy to understand and to convey to others. Disadvantages

include that it can be cumbersome to display and evaluate the four different

measures and associated graphs and it does not reflect the importance of parameter

correlations to predictions.
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The opr statistic of Chapter 8, Section 8.3.2 addresses the disadvantages of the

dss–css–pss–pcc method by integrating the effects of both sensitivity and corre-

lation. It can be used to evaluate an existing monitoring network to identify locations

and types of data that are most advantageous to continue measuring under anti-

cipated future scenarios. It also can be used to identify potential new observation

types and locations that would be most beneficial to add to a monitoring network.

The primary disadvantage is that oprmay be more difficult to understand. Tiedeman

et al. (2004) provide an example of applying the opr statistic to evaluate a hydraulic-

head monitoring network associated with the Death Valley regional groundwater

flow system. This application is summarized in Chapter 15, Section 15.2.1.
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14
GUIDELINES 13 AND 14—
PREDICTION UNCERTAINTY

An advantage of using optimization for model development and calibration is that

optimization provides methods for evaluating and quantifying prediction uncer-

tainty. Both deterministic and statistical methods can be used. Guideline 13 dis-

cusses using regression and postaudits, which we classify as deterministic

methods. Guideline 14 discusses inferential statistics and Monte Carlo methods,

which we classify as statistical methods.

GUIDELINE 13: EVALUATE PREDICTION UNCERTAINTY

AND ACCURACY USING DETERMINISTIC METHODS

Deterministic methods are useful for evaluating and understanding prediction

error. Here we consider two methods. The authors have discussed the first method

with a number of people, including John Doherty (Watermark Consulting, Corinda,

Australia, oral communication, 2002), but we are not aware that it has appeared

in any previous publication.

G13.1 Use Regression to Determine Whether Predicted Values Are
Contradicted by the Calibrated Model

In some circumstances the regression can be a useful tool for evaluating predic-

tions and their uncertainty. For example, consider a model in which the simulated
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concentration of a contaminant at a location is always below the drinking water

standard, but resource managers question whether a small change in the parameter

values could result in the simulated concentration exceeding the standard. This

question can be addressed using linear and nonlinear confidence intervals, but

the answer can sometimes be conveyed more clearly by revealing the parameter

values or conditions that would be required to produce a specific simulated predic-

tion or set of predictions. This can be accomplished using MODFLOW-2000,

UCODE_2005, PEST, or other inverse models as follows.

1. Add the predicted value to the regression as an “observation” using a large

weight (small statistic). In the example given above, this value would be a

concentration that exceeds the drinking water standard.

2. Perform regression.

The conclusion is that the predicted value is contradicted by the observations and

the calibrated model if (a) the predicted value cannot be matched by the regression,

(b) it can be matched but the parameter values required produce a poor match to the

calibration observations, or (c) the parameter values required to achieve the match

are unreasonable. To the extent that the model represents the relevant aspects of the

system, this suggests that the predicted value is unlikely to occur. This result also

can be communicated using nonlinear confidence intervals on the predicted value,

and possibly linear intervals.

The conclusion is that the predicted value is not contradicted by the observations

and the calibrated model, and the concerns of the resource manager are substantiated,

if the predicted value is matched without producing a poor match to the observations

or unreasonable parameter values. This result can be communicated using the results

of the regression and linear or nonlinear confidence intervals.

G13.2 Use Omitted Data and Postaudits

Model accuracy can be evaluated by comparing simulated predictions with existing

data intentionally omitted from model calibration or new data. Here we concentrate

on situations when the omitted or new data are related to predictions. Sometimes

these tests are called model validation, but we agree with concerns expressed by,

for example, Konikow and Bredehoeft (1992) and Bredehoeft and Konikow

(1993), that this terminology is misleading. Different tests lead to different levels

of confidence in the model, and saying each “validates” the model ignores that

important distinction. Tests against new data are sometimes called postaudits.

These tests are meaningful when the new data represent stress conditions or

aspects of the system that differ from those represented in the data used for model

calibration. For example, consider a model calibrated using two cycles of tidally

induced fluctuations. It is less meaningful to test the model using another cycle

with the same amplitude and phase and measured at the same locations than to

assess the ability of the model to reproduce a cycle with a different amplitude or

system response to some other type of stress entirely, such as the imposition of
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pumpage. As another example, consider a groundwater model calibrated with

hydraulic-head and flow data. A meaningful test might be to assess its ability to

predict (1) heads and/or flows collected when pumpage had increased significantly

or (2) another process such as transport.

Here we present a few published examples of using new data to test model

predictive capabilities. The first two examples use new data collected under

conditions similar to the calibration conditions.

Van Loon and Troch (2002) calibrated a suite of distributed hydrological models

with varying temporal and spatial resolutions, using sets of soil moisture obser-

vations with different temporal and spatial densities. They then tested the ability

of the calibrated models to predict a subset of soil moisture data collected later in

time under similar hydrologic conditions. They concluded that prediction accuracy

did not necessarily increase as model resolution increased.

Saiers et al. (2004) examined the dependence of prediction accuracy on the types

of observations used to calibrate a groundwater flow and transport model. The obser-

vation sets consisted of heads; heads and flow; or heads, flows, and concentrations.

The predictions were heads and flows measured at different times under similar con-

ditions. The authors found that, for predicting heads, use of all three calibration

observation sets performed equally well. For predicting flows, use of head obser-

vations alone did a poor job, and use of concentration observations did not produce

increased prediction accuracy compared to use of only head and flow data. The latter

conclusion resulted because the information about flow that the concentration obser-

vations provided was similar to that provided by the flow observations.

Most published postaudits of regional-scale groundwater flow and transport

models have found that actual system responses differ from responses predicted

by the model. For example, see the postaudits presented by Konikow and Person

(1985), Alley and Emery (1986), Konikow (1986), Reichard and Meadows

(1992), Hanson (1996), and Stewart and Langevin (1999), which involved

regional-scale models with prediction times several years after the model calibration

period. Results of these postaudits were used to gain considerable insight into the

simulated groundwater systems, even though the predictions were incorrect to

some degree. This insight was used to help detect model error and to identify

data needs and changes to the conceptual model that could help reduce this model

error. Andersen and Lu (2003) present a study in which remediation results are

used for a postaudit analysis, which helped reveal error in the initial model. How-

ever, capture zones simulated with an updated model were similar to those with

the initial model, indicating that the initial model was useful for designing remedial

strategies despite the error.

GUIDELINE 14: QUANTIFY PREDICTION UNCERTAINTY USING

STATISTICAL METHODS

Guideline 14 suggests two methods for quantifying prediction uncertainty: inferen-

tial statistics and random sampling (Monte Carlo) methods. For both these methods,
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the mechanism for communicating uncertainty is often some type of interval around

the prediction.

The prediction uncertainty that can be quantified most readily by both inferential

statistics and Monte Carlo methods is that produced by uncertainty in the defined

parameters. Indeed, as noted in Chapter 8, Section 8.5.2, the two types of methods

project parameter uncertainty onto predictions in ways that produce identical results

in some circumstances. If the parameters do not represent all aspects of the model

that may be incorrect, then the uncertainty represented by these methods tends to

underestimate the actual uncertainty. If, however, defined parameters represent

many aspects of the system, and other aspects of the model accurately represent

system characteristics, then these methods can capture a substantial amount of the

prediction uncertainty. This implies that one approach for better characterization

of uncertainty is to represent more aspects of the system using defined parameters.

This is a largely unexplored approach.

Predictions tend to be less accurate as they differ more from observations and as

prediction conditions differ more from calibration conditions. The example by

Saiers et al. (2004) presented in Section G13.1 showed that a groundwater model

calibrated using heads produced poor predictions of flow. It is not clear how

much measures of uncertainty can account for the differences between predictions

and calibrations. Certainly if the predictions are affected by processes not rep-

resented in the model, the uncertainty calculated using any of the methods discussed

here would be too small. There is no clear solution to this problem, but it is important

to be aware of its possible existence in many types of models.

Inferential statistics, Monte Carlo methods, and other methods of uncertainty

analysis, such as those presented by Sun (1994), are based on the assumption that

the model accurately represents the real system. In truth, all models are simplifica-

tions of real systems, and the accuracy of the uncertainty analysis is in question.

This accuracy is very difficult to evaluate definitively. Christensen and Cooley

(1999) compared nonlinear prediction intervals with measured heads and flows

and found good correspondence between the expected and realized significance

level of the intervals. If model fit to data indicates model bias, theory suggests

that the calculated intervals do not reflect all aspects of system uncertainty,

and thus they might be best thought of as indicating the minimum amount of uncer-

tainty. That is, actual uncertainty might be larger than indicated by the confidence

intervals. If prediction intervals are dominated by the measurement error term,

they are less likely to be prone to error. Unfortunately, in many circumstances the

confidence intervals are of greater interest because they reflect model uncertainty

most clearly. Cooley (1997, 2004) provides additional analysis of nonlinear

confidence intervals.

Inferential statistics and Monte Carlo methods also can be used together. For

example, Monte Carlo simulations based on alternative models could each calculate

linear or nonlinear confidence intervals based on inferential statistics. Model uncer-

tainty might then be represented by the range of predictions represented by the full

set of confidence intervals. Such ideas are promising and are just beginning to be

considered in the literature, as noted in Chapter 8, Section 8.6.
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Clearly, prediction uncertainty is an area where there is much to be done and

ongoing improvements in computer technology make advances more accessible

than ever before. Here, we comment on using the methods presented in Chapter 8.

G14.1 Inferential Statistics

The most common and useful inferential statistics for quantifying prediction uncer-

tainty are confidence and prediction intervals, which can be constructed using the

methods described in Chapter 8, Section 8.4. Instead of reporting a single predicted

value, a predicted value and a confidence or prediction interval are reported.

Given the different types of intervals discussed in Section 8.4—confidence and

prediction, individual and simultaneous, and linear and nonlinear—confusion can

arise as to when to use them. The following three points are provided for guidance.

1. Use prediction intervals to compare measured equivalents to predictions.

2. Use simultaneous intervals for multiple or vague predictions.

3. Suggested steps: calculate linear intervals and test model linearity. If the

model is nonlinear, calculate a few nonlinear intervals. If needed, calculate

more nonlinear intervals.

As noted in Chapter 8, Christensen and Cooley (1999) show that in nonlinear pro-

blems, nonlinear confidence intervals can be very different from linear intervals for

some quantities, and can be very similar for others. It appears that linear confidence

intervals are useful as a general indication of uncertainty in many circumstances, but,

if at all possible given computer resources, some nonlinear intervals need to be cal-

culated if themodel is nonlinear. Brooks et al. (1994) calculated nonlinear confidence

intervals for drawdowns. Keating et al. (2003) present nonlinear confidence intervals

calculated on boundary fluxes predicted by a groundwater flowmodel. Besides quan-

tifying the uncertainty, inferential statistics on predictions have been used to include

risk assessment in design criteria by Tiedeman and Gorelick (1993).

Predictions and their confidence intervals need to be calculated for all reasonably

accurate models to evaluate how different sets of observations and conceptual models

are likely to affect both the simulated predictions and their likely uncertainty. Indeed,

it can be useful to include at least linear confidence intervals when calculating

predictions for each model calibration run.

Christensen et al. (1998) examined how nonlinear confidence intervals on predic-

tions of streamflow gain varied with different observation sets used for calibrating a

groundwater model. The observation sets included hydraulic heads and from zero to

18 streamflow gains. As expected, the confidence intervals were large for the model

calibrated using only head data, but some intervals also were large even when the

full set of streamflow gains was used for calibration.

G14.2 Monte Carlo Methods

Monte Carlo methods were described in Chapter 8, Section 8.5.
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Computer technology and processor speed have greatly improved in recent years,

making it much more feasible to conduct Monte Carlo analyses for models of natural

systems. Parallel processing capabilities are advantageous to Monte Carlo studies in

which the different runs are independent, because individual simulations easily can

be distributed to different computer processors. These parallel processing capabili-

ties can be achieved cost-effectively by using clusters of networked personal com-

puters employing, for example, the parallel processing capabilities of the JUPITER

API (Banta et al., 2006).

Monte Carlo methods in groundwater modeling have been used to assess the

uncertainty of contributing areas to wells. For example, Evers and Lerner (1998)

identified a zone of confidence defined as the area that is common to all contribut-

ing areas predicted by models that provide a reasonable fit to the calibration data.

They also identified a zone of uncertainty, defined as the total area covered by all

reasonable contributing areas. Starn et al. (2000) varied parameter values in a

three-dimensional model using the variance–covariance matrix produced using

regression, and simulated contributing areas using the generated parameter sets.

Several Monte Carlo evaluations of capture zones that consider small-scale vari-

ations in hydraulic conductivity in two-dimensional systems have been published;

for example, van Leeuwen et al. (2000), Feyen et al. (2001, 2003), and Stauffer

et al. (2004). The latter was briefly described in Chapter 8, Section 8.5.2. Additional

references are cited in the listed works.

Monte Carlo methods also have been integrated with regression to quantify

model prediction uncertainty. Examples in groundwater modeling include Poeter

and McKenna (1995) and McKenna and Poeter (1995). The Poeter and McKenna

(1995) model was briefly described in Guideline 8 (Chapter 11) and provides an

example of the six elements of a Monte Carlo analysis presented in Chapter 8, Sec-

tion 8.5.1 for a groundwater problem. The work includes Monte Carlo runs con-

ducted using three sets of information on the hydraulic-conductivity field,

including (a) only hydrogeologic information (measurements of hydraulic conduc-

tivity), (b) hydrogeologic and geophysical information, and (c) hydrogeologic and

geophysical information as well as hydraulic-head and streamflow gain and loss

data integrated using nonlinear regression.

In all cases the goal was to quantify the uncertainty of concentration at a well.

The six elements for the analyses were as follows:

1. The model input changed was the zonation used to represent the hydrogeology

of the aquifer material.

2. The realizations were generated using indicator kriging.

3. Each Monte Carlo run for (a) and (b) consisted of a forward model simulation.

For (c) each run consisted of an inverse model simulation to obtain the best-fit

parameter values for the generated zonation. The observations were hydraulic

heads and streamflow gains and losses. The concentration at a well was simu-

lated for each Monte Carlo run. The system was simulated using MODFLOW,

MODFLOWP, and MT3D.
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4. Four hundred runs were conducted. The number of runs was determined

largely by computational limitations.

5. For each Monte Carlo run, the following were saved: the zonation, estimated

parameter values, information about parameter-estimation convergence, the

standard error of the regression, and the predicted concentration.

6. Final results were analyzed by plotting histograms of the predicted concen-

trations. For (a) and (b), results for all 400 runs were plotted. For (c), results

were omitted from the Monte Carlo analysis if one of the following conditions

occurred: (i) the best-fit parameter values were unrealistic in that they were

FIGURE 14.1 Histograms of simulated concentrations from models calibrated using three

sets of data: (a) only hydrogeologic information (measurements of hydraulic conductivity),

(b) hydrogeologic and geophysical information, and (c) hydrogeologic and geophysical

information as well as hydraulic-head and streamflow gain and loss data integrated using

nonlinear regression. (d) The true system and imposed boundary conditions, and a

generated zonation. (From Poeter and McKenna, 1995.)
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not in order from largest to smallest when such relations could be determined

from system information, (ii) the best-fit parameter values were substantially

different than expected, (iii) the model fit was significantly worse than for

other models, or (iv) the regression did not converge. Ten realizations

remained after these conditions were considered.

In this synthetic test case, the true solution was known so that performance of the

different methods of characterizing the system could be definitively tested. Results

are shown in Figure 14.1. Using nonlinear regression produced much more accurate

predictions than were attained by (a) and (b). This is because nonlinear regression

allowed conditioning to observations and comparison of estimated parameter

values with realistic ranges and rankings based on system information. The dramatic

improvement in the predictions produced by models screened using these criteria

indicates that their application is likely to be useful for identifying more accurate

models.
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15
USING AND TESTING THE
METHODS AND GUIDELINES

Nonlinear regression is a useful, imperfect tool for model calibration, and its appli-

cation is not always straightforward. In many situations, forward and inverse model

computer execution times are a concern. This chapter first discusses this issue.

It can be helpful to examine other, similar examples when designing, conducting,

and reporting a modeling study using nonlinear regression. The nonlinear regression

methods, diagnostic and inferential statistics, and guidelines described in this book

have been used successfully in many field applications and tested using many

synthetic test cases. This chapter lists some of these studies and their references

and provides information to help readers identify examples with selected charac-

teristics. The chapter concludes with results from two field sites.

15.1 EXECUTION TIME ISSUES

Computer execution time is often a problem when calibrating models. Whether

regression is used or not, model calibration requires many model runs to investigate

the interactions between the data, simulated processes, and parameter values. Thus,

effective model calibration needs to address how model construction affects

execution time. Guideline 1, with its suggestion to start with a relatively simple

model of the groundwater system and build complexity as warranted by the system

information and by the available data, is relevant to the issue of minimizing execution

time. Starting with a simple model often results in shorter execution times and an
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opportunity to understand simulated characteristics that might be obscured by a more

complicated model.

Without parallelization (Poeter et al., 2005, pp. 131–133), execution times

for regression simulations can be estimated using execution times for forward

simulations (e.g., a simulation that solves for hydraulic heads in a groundwater flow

model) as

Ti ¼ (2� NP)� ½Tf � (1þ NP)� (15:1)

where Ti is the execution time for the regression (inverse) solution, Tf is the execution

time for the forward solution, and NP is the number of parameters to be estimated by

regression. Parallelization can be used to reduce Ti (Poeter et al., 2005; Doherty, 2005).

This assumes that the number of parameter-estimation iterations approximately

equals twice the number of parameters (2 � NP), which is typical. The (1þ NP)

term accounts for one forward simulation and one simulation to calculate

sensitivities for each of the NP parameters. For the forward or backward pertur-

bation sensitivities commonly used by UCODE_2005 and PEST, the NP sensitivity

simulations solve a slight variation of the forward problem (Poeter et al., 2005,

Chapter 3). In MODFLOW-2000, these simulations solve sensitivity equations

that result from taking the derivative of the forward equation with respect to the

parameter (Hill et al., 2000, p. 67). In both cases, each of the sensitivity simulations

requires approximately the same amount of execution time as a forward simulation.

The longer execution times typically experienced with UCODE_2005 or PEST are

caused by the effort required to coordinate the different model runs, not a difference

in computational effort required to solve sensitivities.

Equation (15.1) applies when sensitivities are calculated using the sensitivity-

equation method and using forward or backward differencing. Faster execution time

can be achieved for some problems with the sensitivity-equation method using direct

solvers because a single matrix decomposition can be used to solve for heads and sen-

sitivities for all parameters (Hill et al., 2000, p. 70). More execution time is needed by

UCODE_2005 and PEST when sensitivities are calculated by central differencing.

Inverse model execution times that exceed about 15 hours (an overnight simu-

lation) commonly occur when the forward execution time exceeds 30 minutes.

The model spatial and temporal resolution that this execution time allows depends

on the speed of the computer, the number of computer processors, and the character-

istics of the simulated system.

Simple changes in the simulation can dramatically improve execution times. For

example, the initial hydraulic-conductivity structure of the groundwater flow model

described by D’Agnese et al. (1997, 1999) was characterized by values in neighbor-

ing finite-difference cells that differed by more than five orders of magnitude in

many parts of the model. Introducing single cells of moderate hydraulic conductivity

between the high and low valued cells in most of the model resulted in about a six-

fold decrease in execution time, with little effect on simulated results. The contrasts

were preserved where they were important.

Replacing nonlinear forward problems with linear approximations as much as

possible, as suggested in Chapter 11, Section G1.2, also can dramatically reduce

execution time without substantially diminishing model accuracy.

346 USING AND TESTING THE METHODS AND GUIDELINES



15.2 FIELD APPLICATIONS AND SYNTHETIC TEST CASES

Selected references describing field applications using some or all of the methods

and guidelines described in this book are listed in Table 15.1. Similar approaches

were used by Cooley (1977, 1979, 1983a), Gailey et al. (1991), Tiedeman and Gor-

elick (1993), Yager (1993), Kuiper (1994), Olsthoorn (1995), Christensen (1997),

and Christensen et al. (1998). Selected aspects of the field applications for the

Death Valley region, USA, and for Grindsted Landfill, Denmark, are described

later in this chapter.

Table 15.2 lists models of synthetic numerical systems to which the methods and

guidelines have been applied. These test cases provide the opportunity to conclus-

ively evaluate the accuracy of models calibrated using the methods described

in this book because all aspects of the synthetic numerical systems are known.

Hill et al. (1998) used a complex hypothetical groundwater model to test many of

the methods, and to develop and test the guidelines. Poeter and McKenna (1995)

present a synthetic groundwater transport model that evaluates stochastically gener-

ated parameter zonations using nonlinear regression methods. In both studies, better

models, as gauged using the ideas discussed in this book, produced more accurate

predictions. Poeter and Hill (1996, 1997) demonstrate many of the ideas presented

using simple examples. Selected characteristics of these and other examples are

listed in Table 15.2.

Three studies listed in Table 15.1 or 15.2 did not include optimization of par-

ameter values. Scheibe and Chien (2003) use a very extensive set of hydrogeologic

data to investigate the predictive (uncalibrated) use of stratigraphy and hydraulic-

conductivity data from three sources: borehole flowmeter data normalized to

slug tests, cross-borehole radar tomography, and ground-penetrating radar. Hill

and Østerby (2003) investigate the accuracy of parameter correlation coefficients.

Shoemaker (2004) investigates the importance of observations and parameters in

density-dependent groundwater flow using a sensitivity method that follows the

suggestions provided in this book.

15.2.1 The Death Valley Regional Flow System,
California and Nevada, USA

The Death Valley regional flow system (DVRFS) is located in southern California

and Nevada, USA, west of Las Vegas, Nevada (Figure 15.1). The groundwater

system has been studied extensively because of the potential effects of activities

at the Nevada Test Site, where underground nuclear testing has been conducted,

and Yucca Mountain, where high-level radioactive waste is proposed to be stored

in thick unsaturated volcanic strata located above the water table (D’Agnese

et al., 1997). In addition, several communities within the DVRFS pump groundwater

for a variety of uses, such as domestic and agricultural water supply. These activities

have raised concerns about the transport paths and times of potential contaminants

from the Nevada Test Site, and the effects of these potential contaminants at possible

groundwater discharge locations, such as Death Valley National Park and Ash

Meadows, and pumping wells in many locations. The DVRFS model was built to
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(1) provide a regional evaluation of the effects of pumpage, (2) provide boundary

conditions for local-scale models at selected sites, and (3) provide information

about regional-scale transport. Predictions related to (3) are discussed in the section

below on Guideline 12.

Several groundwater flow models of the DVRFS have been developed: a steady-

state, three-layer model (D’Agnese et al., 1997, 1999), a steady-state, 15-layer

model (D’Agnese et al., 2002), and a transient, 16-layer model (Faunt et al., 2004).

Examples from the three-layer model and the transient model are used in this section

to provide examples of applying Guidelines 2, 5, 6, 9, 10, and 12. Examples from the

DVRFS three-layer model also are included in the discussion of Guidelines 3 and 10

in Chapters 11 and 12 (Figures 11.3 and 12.5).

Evaluate System Information (Guideline 2) Evaluating and organizing data as

needed for Guideline 2 (“Use a Broad Range of System Information to Constrain

the Problem”) can require a simple or complicated database and visualization

methods and software, depending on the characteristics of the system and the

model being constructed. The DVRFS has very complex geology characterized

by faulted, fractured, and deformed rocks with a wide range of compositions,

ages, and depositional histories. A complex database and visualization system

FIGURE 15.1 (a) Location of the Death Valley regional groundwater flow system

(DVRFS) and the boundary of the three-layer flow model, (b) a surficial geologic map, and

(c) a hydrogeologic cross section. (Adapted from D’Agnese et al., 1997, and Belcher, 2004.)
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was used for integrating the hydrologic and geologic information and incorporating

it into a groundwater flow model. This involved developing a series of conceptual,

digital, and numerical models that build upon one another:

I. Hydrogeologic framework conceptual model

II. Hydrogeologic framework digital model

III. Groundwater system conceptual model

IV. Groundwater system numerical model

The following discussion, modified from D’Agnese et al. (1999), describes the

approach and specific tools used in developing each of these models. This process

was iterative. For example, testing of initial groundwater system numerical

models revealed problems with model fit to the observation data, which led to revi-

sion of the hydrogeologic framework conceptual and digital models, and ultimately

to improvement of the groundwater models.

Figure 15.2 shows the steps and software products used to evaluate system infor-

mation and develop the models listed above. Simpler systems, such as groundwater

flow in less complex geologic settings, often only use a subset of the methods and

products employed for this study. Characterizing the DVRFS hydrogeology and

groundwater flow system required integrating extensive regional-scale data. These

data included point hydraulic-head data, geologic maps and cross sections, vegetation

maps, surface-water maps, spring data, meteorological data, and remote-sensing ima-

gery. The data were converted into consistent digital formats using various traditional

two-dimensional geographic information system (GIS) products, as described by Faunt

et al. (1993). Fully three-dimensional geoscientific information system (GSIS) pro-

ducts alsowere needed because the hydrogeology is not well represented by a sequence

of layers. GSIS refers to digital data management and modeling systems designed

to handle a wide variety of three-dimensional data types (Raper, 1989). Use of

GIS and GSIS products to integrate the system data allowed ease of data manipulation

and significantly helped development of the conceptual, digital, and numerical models.

A three-dimensional hydrogeologic framework conceptual model (model I above)

is a set of ideas and hypotheses about the dynamics and processes in the hydrogeologic

system that are considered important to the observed and predicted quantities. Typi-

cally, conceptual hydrogeologic model development involves the following steps:

1. Describe the geometry, general composition, and hydraulic properties of the

materials that control groundwater flow.

2. Characterize surface and subsurface hydrologic conditions that affect ground-

water movement.

3. Evaluate hypotheses about the system to develop a conceptual model for

simulation.

For the DVRFS, some aspects of the hydrogeologic framework conceptual model

follow directly from data that are organized and visualized using the products

listed in Figure 15.2. Other aspects are hypotheses that need to be constantly tested
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against the data and that lose credence if they are contradicted by the data. Thus, data

organization and visualization are important when developing conceptual models.

The DVRFS hydrogeologic framework digital model (model II above) is a digital

representation of the conceptual hydrogeologic framework. Construction of this

model began by assembling digital elevation models (DEMs), hydrogeologic

maps and sections, and lithologic well logs. DEMs and hydrogeologic maps were

manipulated by standard GIS techniques. The merging of these four primary data

types to form a single coherent three-dimensional hydrogeologic framework digital

model required more specialized, fully three-dimensional GSIS software products.

Construction of this model involved five steps:

1. Combine DEM data with hydrogeologic maps to provide a set of points repre-

senting the outcrops of hydrogeologic units.

FIGURE 15.2 Flowchart showing logical movement of data used to investigate the Death

Valley regional groundwater flow system. (Adapted from D’Agnese et al., 1997, 1999.) Dark

dashed lines indicate the groundwater model results that affect the conceptual model.

Software program names are listed as examples in parentheses; their listing does not imply

endorsement by the authors, the publisher, or the U.S. Geological Survey. (Web sites

accessed June 7, 2006 for the listed software are www.esri.com, www.petrosys.com.au,

www.goldensoftware.com, www.dgi.com/earthvision, www.ems-i.com, www.groundwater-

vistas.com, and www.visual-modflow.com, www.earthdecision.com.)
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2. Locate hydrogeologic sections and well logs properly in three-dimensional

coordinate space to define locations of hydrogeologic units in the subsurface.

3. Interpolate surface and subsurface data to define the tops of hydrogeologic

units, incorporating any offsets along major faults.

4. Integrate hydrogeologic unit surfaces using appropriate stratigraphic prin-

ciples to represent natural stratigraphic and structural relations accurately.

This modifies the interpolations of step 3.

5. Analyze hydrologic and hydraulic property values to define parameter starting

values and reasonable ranges for the groundwater system models.

Assigning hydraulic properties to the framework digital model also required fully

three-dimensional GSIS capabilities. Following development of the groundwater

conceptual and numerical models, parameter values and other aspects of the frame-

work model were revised as observations were incorporated into the evaluation

through model calibration. In this way, hydraulic data and model IV were used to

test hypotheses about the hydrogeology represented in models I and II.

To develop a groundwater system conceptual model (model III above), the

hydrogeologic characterization was combined with the hydrologic components of

the system. For the DVRFS, these components included groundwater recharge

through infiltration of precipitation, and groundwater discharge through evapotran-

spiration (ET), spring flow, and pumpage. Maps describing these components of the

groundwater flow system were developed using remote sensing and GIS techniques

(D’Agnese et al., 1996).

Groundwater recharge estimates were developed from data related to varying

soil-moisture conditions (including elevation, slope aspect, parent material, and

vegetation) using the empirical methods described by D’Agnese et al. (1996). GIS

methods were used to produce maps describing recharge potential on a relative

scale. The recharge potential maps were used to describe groundwater infiltration

as a percentage of annual precipitation.

For groundwater discharge, a variety of different data sets were used. Multispec-

tral satellite data were evaluated to produce a vegetation map, which was combined

with ancillary data sets in a GIS to delineate areas of ET, including wetland, shrubby

phreatophyte, and wet playa areas. Estimated water consumption rates for these land

surface types were then applied to approximate total likely ET discharge from the

areas. Spring flow and pumpage were incorporated by developing point-based

GIS maps. For springs, this map contained spring location, elevation, and measured

discharge rates. Likewise, water-use records were used to develop a spatially distrib-

uted water-extraction map describing long-term average withdrawals.

Once completed, the three-dimensional data sets describing the hydrologic

system were integrated and compared to develop groundwater system conceptual

model configurations which included:

1. The three-dimensional hydrogeologic framework, including a complete defi-

nition of the geology throughout the volume simulated, and identification of

aspects for which the data supported multiple interpretations.

356 USING AND TESTING THE METHODS AND GUIDELINES



2. A description of system boundary conditions.

3. Estimates of the likely average values of hydraulic properties of the hydro-

geologic units.

4. Estimates of groundwater flow at sources and sinks.

5. Hypotheses about regional and subregional flow paths and the global water

budget.

Groundwater system numerical models (model IV above) were then developed

and used with the hydraulic head and spring-flow observation data to test the alterna-

tive conceptual models. This effort produced the following:

1. System interpretations that were feasible given the entire available database,

including all system information as well as the head and flow observations.

2. The location and type of additional data that would be needed to reduce the

uncertainty of values simulated by the flow model.

3. The location of likely physical boundaries within the flow system.

The feasibility of multiple conceptual models for the hydrogeologic framework

were evaluated. This evaluation showed that one of the alternatives considered

was clearly the most likely representation of the system. This model is described

in D’Agnese et al. (1997, 1999) and is used in this chapter to demonstrate selec-

ted guidelines.

Include Many kinds of Observations (Guideline 4) Water levels stored in the U.S.

Geological Survey Ground-Water Site Inventory (GWSI) database (http://waterdata.
usgs.gov/nwis/gwsi) were used to compute hydraulic-head and head-change obser-

vations for calibrating the DVRFS transient model. Water levels were retrieved from

GWSI and stored in a companion database. In this database each water level was

flagged to indicate the general condition at the time of measurement. The flags ident-

ified whether the water level represented regional or local, steady-state or transient,

or some other general or specific condition. Only measurements flagged as regional

steady-state and regional transient were used to calculate observations. The model

has one prepumping steady-state stress period followed by an 86-year period

(1913–1998) with pumping in annual stress periods. Regional steady-state measure-

ments represent prepumped, equilibrium conditions, and regional transient measure-

ments reflect water levels thought to be affected by pumping from the regional flow

system. Preliminary model-calibration efforts included only the steady-state stress

period and used observations derived as the average of all of the regional steady-

state water levels at each location. When calibrating the final model composed of

the initial steady-state and subsequent transient stress periods, the regional steady-

state water levels were used to calculate annual average head observations that

were specified in the stress period for the applicable year.

For wells with measurements that were thought to be affected by pumping, an

initial head and subsequent temporal changes in head were used as observations

defined for the transient stress periods. Temporal changes in head were calculated
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within the Observation Process of MODFLOW-2000 as the difference between the

initial head and subsequent heads. The initial head observation at each well was the

mean of the heads measured during the first year of record. The subsequent heads

were calculated as annual means in later years. This approach maintained sufficient

resolution of temporal changes in head and corresponded with the annual stress

periods used for the transient model.

Assign Weights that Reflect Errors (Guideline 6) The following methodology

was developed to determine weights for the transient 16-layer model of the

DVRFS (Faunt et al., 2004, pp. 279–283; San Juan et al., 2004, pp. 128–131).

This example illustrates typical concerns that need to be addressed when determining

weights. Each modeled system poses its own challenges, and different approaches

may be needed for other applications.

Calculation of Weights The weights for the observations of steady-state head and

transient change in head were calculated by MODFLOW-2000 from standard

deviations (see Guideline 6), which represent errors associated with the water-

level measurements used to compute each observation. Individual weights are

calculated from the sum of the variances associated with each of the individual

error sources:

1=(sd1 þ sd2 þ sd3 þ � � � )2

where sd is the standard deviation of the error source represented by the subscript. In

the analysis below all errors are assumed to be normally distributed so that the methods

described inChapter 11, SectionG6.1 can be used to calculate error standard deviation.

In these calculations, the critical value of 1.96 has been rounded to 2.

Steady-State Head Observations The sources of greatest error in determining the

head observation errors are listed and the method for determining the standard devi-

ations that represent these errors are described. Some are clearly measurement error;

some have at least a component of model error.

ALTITUDE UNCERTAINTY Altitude uncertainty for each well was calculated using

the altitude accuracy code given in the GWSI. The code expresses this potential

error as a range distributed symmetrically about the measurement that relates

directly to the method used to determine the altitude. This range varies from

+0.03 m for high-precision methods (spirit level surveys and differential GPS) to

+25 m for altitudes derived from maps with large contour intervals typical of

areas with steep terrain. Assuming that+ the accuracy code defines a 95-percent

confidence interval, the standard deviation can be computed as

sd ¼ (altitude accuracy code)=2

The standard deviation for this error ranges from 0.002 to 13 m.
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LOCATION UNCERTAINTY This uncertainty is calculated from the hydraulic gradi-

ent and a distance representing the uncertainty in the assigned well coordinates.

The hydraulic gradient is estimated from the generalized potentiometric-surface

map presented by D’Agnese et al. (1997). The distance is determined from the

coordinate accuracy code given in GWSI. This code, defined in seconds, ranges

from about 0.1 to 100 seconds for wells within the DVRFS. A second represents a

distance of about 30 m within this area, and thus, the accuracy expressed as

a distance ranges between about 3 and 3000 m. The large values typically were

associated with old well locations that were not updated; most occurred in areas

with flat gradients so that the location error did not result in large observation

error. Hydraulic gradients estimated at well locations for which observations

are computed range from near zero to about 0.12. Assuming that a 95-percent

confidence interval could be constructed by adding and subtracting the

product of the hydraulic gradient and the coordinate accuracy code, and that

the errors are approximately normally distributed, the standard deviation can be

computed as

sd ¼ (hydraulic gradient� spatial distance)=2

The standard deviation for this type of error ranges from near zero to 200 m. The

large values occur for the few instances in which the well location is poorly defined

in high-gradient areas. Despite the resulting small weight, the observation is included

in the analysis to demonstrate the fit of the model to the historic data.

HYDROGEOLOGIC BOUNDARY POSITION/LOCATION ERRORS These errors are

caused by inaccuracies in the geometric representation of hydrogeologic units

within the model grid. The error is likely to increase with coarser horizontal and ver-

tical model-grid resolution. It probably increases with depth because knowledge of

geologic units and structures decreases with depth. The error range is calculated as

the product of the hydraulic gradient and nodal width multiplied by a depth function.

The depth function was determined based on knowledge of the area and data. It

increases linearly with the depth of the uppermost opening and varies from a

value of about two for shallow wells to three for very deep wells. Assuming that

the calculated range is a 95-percent confidence interval, the standard deviation

can be computed as

½(hydraulic gradient� nodal width)� ((opening depth=model thickness)þ 2)�=4

Model thickness is about 3000 m. The standard deviation for this error ranges from

near zero to about 110 m.

MEASUREMENT ERRORS The largest measurement error associated with any of the

devices used to measure water levels in the DVRFS is about 0.1 percent of the depth

to water in the well. Assuming that+ the measurement error defines a 95-percent
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confidence interval, the standard deviation was computed as

sd ¼ (observation depth� 0:001)=2

The standard deviation for this error ranges from near zero to about 0.4 m.

NONSIMULATED TRANSIENT STRESS ERRORS Nonsimulated transient errors result

mainly from seasonal water-level fluctuations. The calculation of uncertainty associ-

ated with these fluctuations requires a sufficient number and distribution of measure-

ments within the year. This requirement is evaluated using a value calculated as the

total number of measurements divided by the number of years during which

measurements were taken. If this value is less than 7, then the range used to calculate

the standard deviation is set to a number approximating the maximum seasonal range

within the water-level database. The maximum range, as determined from measure-

ments within the DVRFS database, is about 15 ft for open intervals within 50 ft of

land surface, and about 5 ft for open intervals greater than 50 ft below land surface.

If this value is 7 or greater, then the range is calculated directly from the measure-

ments used to compute the observation. Assuming that the observation represents

the mean, and that the range represents 95-percent confidence, the standard deviation

can be calculated as

(range=4)

For shallowwells, the maximum standard deviation for wells having an open interval

within 50 ft of land surface is about 3.75 ft, and for deeper wells is about 1.25 ft.

Because the head observations are averages of heads measured over time, it is prob-

able that some of the nonsimulated transient stress errors cancelled out as part of the

averaging process so that the standard deviations calculated were too large. However,

the measurement times generally were not evenly distributed throughout the years. In

wells for which measurements were consistently in the same season, the error would

not have been averaged out, while in wells for which measurements were distributed

seasonally the errors would have been averaged out. Accounting for the time of year

would have required considerably more effort and this error was a small enough com-

ponent of the total error that the effects of averaging were ignored in determining the

standard deviations.

After converting to variances, adding, and taking the square root, the standard

deviations calculated for head observations used in the steady-state stress simulation

range from 1 to 215 m. Thus, weights range from about 2.2 � 1025 to 1m22.

Transient Head-Change Observations For initial heads at locations thought to be

affected by pumpage, weights were calculated as for the steady-state observations

except that only one year of measurements were used. In the model, the initial

head was applied at the end of that year.

As mentioned in Chapter 11, Section G6.1, the differencing used to obtain

head-change observation cancels errors that are constant. Here, errors that pertain

to well altitude and location are considered to be constant enough in time that
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they are effectively cancelled for head-change observations. While the same

dynamics that cause errors in unstressed conditions could cause errors in stressed

conditions, the effect is more difficult to characterize, and in the DVRFS model

another source of error is expected to dominate. Indeed the other source of error

is even expected to dominate the effects for nonsimulated transient effects.

The error of concern is that associated with uncertainties in the amount and

location of the pumpage, which are largely estimated based on crop type and electri-

city records. Personnel involved in estimating annual withdrawals for groundwater

users within the DVRFS believe their estimates to be within about 30 percent of

the actual value. Because the relation between pumping and head change is approxi-

mately linear, this component of the head-change error also is expected to be about 30

percent. To account for errors in pumpage location, a total error of 40 percent was

proposed. However, strict use of this percentage was problematic because it produced

unrealistically large and small weights for small and large head changes, respect-

ively. Therefore, a function was developed to relate the standard deviation to the

head change in a manner that did not produce problematic weights (San Juan

et al., 2004, Eq. (4)), to yield:

sdhc ¼ 4þ ½0:8� log(hcobs=40)� for hcobs . 1:0

sdhc ¼ 1 for hcobs 	 1:0

where sdhc is the standard deviation used to weight observed head change; log

denotes the natural log of the value in parentheses; and hcobs is the head-change

observation, measured in meters for the Death Valley regional model.

Examples of head-change values, standard deviations, and coefficients of vari-

ation are as follows:

Head

Change

Standard

Deviation

Coefficient of

Variation

0.5 1.00 2.00

0.6 1.00 1.67

0.7 1.00 1.43

0.8 1.00 1.25

0.9 1.00 1.11

1.0 1.00 1.00

5.0 2.34 0.47

6.0 2.48 0.41

10.0 2.89 0.29

20.0 3.45 0.17

Thus, a head change of about 6 has a coefficient of variation of about 0.40. Head-

change values smaller than 6 have coefficients of variation that become larger as the

head change becomes smaller, reflecting that additional errors are significant for

small head changes, and, for changes less than 1.0, it is even doubtful that the direction
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of the head change is correct. Head-change values larger than 6 have coefficients of

variation that become smaller as the head change becomes larger, reflecting that

large head-changes result from stresses that often are better defined, such as pumpage

from water-supply wells.

Investigate Model Fit to Observations (Guideline 9) Following calibration of the

steady-state, three-layer DVRFS model, model fit was evaluated using Guideline 9

and the methods in Chapter 6. Figure 15.3 shows graphs of weighted residuals for

the calibrated model. Figure 15.3a reveals that the weighted residuals are not entirely

randomly distributed. For heads, the positive weighted residuals are more extreme

and outnumber the negative weighted residuals. Also, if normality is assumed, it is

expected that only 3 out of 1000 (or 1 to 2 of the 516 weighted residuals) would

lie outside plus or minus three times the standard errors of the regression, s (here,

3s¼ 14.1). These problems with the distribution of residuals suggest that some

model bias exists. However, investigation of the observations associated with the

largest weighted head residuals revealed that they probably were affected by perched

conditions that are not simulated by the regional saturated-zone model, so the model

bias is likely to be less than indicated by Figure 15.3a.

The weighted simulated values that are plotted in Figure 15.3a for the flow obser-

vations, which are weighted using coefficients of variation, have been modified

using Eq. (6.7) and then are scaled so that they lie in a range compatible with the

range of weighted simulated values for heads.

Figure 15.3b shows weighted observed values versus weighted simulated values.

Here, unmodified weighted simulated values for all observations are plotted, so that

the weighted residuals, which are represented as deviations from the line with a

FIGURE 15.3 Graphs of (a) weighted residuals and (b) weighted observed values versus

weighted simulated values for the three-layer Death Valley regional flow system (DVRFS)

model of D’Agnese et al. (1997). Model misfit is more clearly displayed by graphs of

weighted residuals.
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slope of 1.0, are equal to the weighted residuals shown in Figure 15.3a. In

Figure 15.3b, the model misfit is much less obvious than in Figure 15.3a, and the

details of the misfit cannot be as easily discerned. This is consistent with the remarks

made in Chapter 6, Guideline 9, and Table 10.3 that suggest this type of graph is not

as useful as the graph shown in Figure 15.3a for revealing model bias.

Figure 15.4 shows maps with weighted and unweighted head residuals. There are

a large number of positive weighted and unweighted residuals in the northwest part

the model domain. The poorer fit to the observed heads is partly because the quality

of the data used for model construction in these areas is generally worse than that of

data used for other areas. Also, in the region extending from Amargosa Valley

southeast to Pahrump Valley (see Figure 15.1), residuals tend to be negative in

the northeast part of this band and positive in the southwest part. This systematic

trend is believed to be caused in part by the coarse vertical discretization in the

model, which precludes accurate representation of the vertical hydraulic

conductivity.

Some head observations with relatively large (in absolute value) unweighted

residuals in Figure 15.4a have much smaller weighted residuals in Figure 15.4b.

For example, in the mountainous area just east of Death Valley, several observations

have large positive unweighted residuals, but most have weighted residuals that are

much smaller in magnitude. This indicates that the match is as expected, given the

quality of the head data. Most of these observations are in areas of steep hydraulic

gradient, where observation location errors can be very large.

Figure 15.5 shows maps with weighted and unweighted spring-flow residuals.

Most flow residuals are negative. In MODFLOW groundwater discharge is negative,

FIGURE 15.4 Spatial distributions of (a) unweighted and (b) weighted residuals for

hydraulic-head observations in model layer 1 of the steady-state, three-layer DVRFS

model. (Adapted from D’Agnese et al., 1997, Figures 48 and 49.)
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so the dominance of negative residuals indicates that the simulated discharge at the

springs is generally less than that observed. D’Agnese et al. (1997) concluded from

this result that more detailed evaluation was needed of the conductance parameters

that control the spring discharge.

Three flow observations with very large unweighted residuals, in absolute value

(Figure 15.5a), have much more moderate weighted residuals (Figure 15.5b). At

these locations, spring discharge is larger than elsewhere in the domain, and the

weighted residuals provide the more meaningful result that, based on percent differ-

ence in flow, the residuals at these locations are similar to those at other locations.

The flows are weighted using coefficients of variation.

Observations important to predictions can be identified using the opr statistic, as

illustrated in the section for Guideline 12 below.

Determine Observations that Dominate Parameter Estimation (Guideline
10) The Cook’s D values calculated for the 501 hydraulic-head observations of

the three-layer model are shown in Figure 15.6. The critical value of Cook’s D (see

Chapter 7, Section 7.3.2) is 4/517¼ 0.0077, because there are 501 hydraulic-

head observations and 16 flow observations for the steady-state DVRFS model

calibration. Sixty-six of the head observations and 13 of the flow observations

exceed this critical value. The head observations with large Cook’s D are spread

fairly evenly over most of the areas that contain head observations, indicating that

observations from one part of the model domain do not dominate the regression.

The large percentage of flow observations with large Cook’sD indicates the extreme

importance of flow observations in the calibration of this model.

FIGURE 15.5 Spatial distributions of (a) unweighted and (b) weighted residuals for spring-

flow observations of the three-layer DVRFS model. (Adapted from D’Agnese et al., 1997,

Figures 54 and 55.)
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Identify New Data to Improve Predictions (Guideline 12) First, the predictions

are defined. Then prediction scaled sensitivities (pss) and parameter–prediction

statistics (ppr) are used to identify parameters important to predictions and to

infer advantageous data to collect for improving simulated properties governing

system dynamics. Finally, observation–prediction statistics (opr) are used to ident-

ify existing and potential new observations important to predictions and to infer

advantageous field data to collect to support observations.

Predictions In the DVRFS, the predictions of interest involve potential transport

of hypothetical contaminants. Accurate simulation of this transport is plagued by

a number of problems, including the fractured nature of the subsurface rocks and

the regional scale of the model. In a regional model, it is impossible to represent

accurately processes such as dispersion and retardation or small features that can

be important to transport. A useful approach is to consider only the transport pro-

cesses appropriate to the scale of the model. Thus, advective transport is considered,

which is the transport that would occur if the solute did not disperse and encountered

no reactions with the surrounding rocks. It is simply the transport produced by bulk

flow in the subsurface system. It can be considered the first building block of

transport, upon which other complexities are added. Calculation of advective

transport over large distances and times is consistent with the scale of a regional

FIGURE 15.6 Cook’s D values for the 501 head observations in the three-layer DVRFS

model of D’Agnese et al. (1997, 1999). Sixty-six have Cook’s D values larger than the

critical value. Cook’s D identifies observations important to estimated parameter values.
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model, because regional conditions generally influence this component of transport

more than they influence other aspects of transport.

Advective transport was simulated using the Advective-Transport Observation

(ADV) Package of MODFLOW-2000 (Anderman and Hill, 2001). The ADV Pack-

age uses particle-tracking methods nearly identical to those in MODPATH (Pollock,

1994) to determine advective-travel paths. To compute the particle trajectory, par-

ticle displacement is decomposed into displacements in the three spatial dimensions

of the DVRFS model: north–south (N–S), east–west (E–W), and vertical. This

analysis of the directional components of transport allows parameter and obser-

vation importance to be evaluated on the basis of the information they provide for

each direction of transport. The predicted transport paths from several locations

on the Nevada Test Site are shown in Figure 15.7.

Using pss and ppr Prediction scaled sensitivities (pss, Eq. (8.2c)) and the

parameter–prediction (ppr) statistic (Eq. (8.8)) were used to evaluate the importance

of all 23 defined parameters (Tiedeman et al., 2003).

The pss (Figure 15.8a) show that parameters K5 (very high hydraulic conductivity)

and K1 (high hydraulic conductivity) rank as the twomost important parameters to the

FIGURE 15.7 Selected predicted advective-transport paths from locations on the Nevada

Test Site. The paths are simulated using the steady-state, three-layer model of D’Agnese

et al. (1997). The paths shown start slightly below the water table. The vertical component

of advective transport is small compared to the lateral component and is not shown.

(Adapted from Tiedeman et al., 2004.)
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E–W and N–S components of advective transport. The results indicate that increasing

the value of K5 by 1 percent of its standard deviation would change the distance

traveled in the E–W direction by about 0.5 percent and the distance traveled in the

N–S direction by about 0.7 percent. The ppr statistics for individual parameters

(Figure 15.8b) show that K1 and Rch3 (relatively high recharge) are the two most

important parameters to advective transport in the E–WandN–S directions. Reducing

the standard deviation of K1 by 10 percent reduces the uncertainty of both the E–W

and the N–S transport components by about 3.5 percent.

Figure 15.8 shows that some of the same parameters are identified by both the pss

and ppr methods as important to the prediction of interest, but it also shows that the

parameters identified as important can be different. For example, the pss indicate that

predicted advective transport in the E–W andN–S directions is relatively insensitive

FIGURE 15.8 Prediction scaled sensitivities (pss) and parameter–prediction statistic (ppr)

calculated to evaluate the importance of all 23 DVRFS model parameters to a predicted

advective-transport path. (a) Absolute value of pss, defined as the percent change in

predicted value produced by a 1 percent change in the standard deviation of a parameter

(Eq. (8.2c)). (b) The ppr statistic, calculated as the percent decrease in prediction standard

deviation produced by a 10 percent reduction in the standard deviation of a parameter

(Eq. (8.8)). (From Tiedeman et al., 2003.)
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to Rch3. However, the ppr indicate that Rch3 is important to advective transport in

these directions. These differences occur because ppr accounts for parameter corre-

lations, while pss does not. There are high correlations between Rch3 and K1 (0.96)

and Rch3 and K3 (0.94). The pss show that transport in the E–W and N–S directions

is sensitive to K1 and K3 (Figure 15.8a). Because of the correlations, specifying

improved information on Rch3 improves the estimation of K3, which reduces the

prediction uncertainty. This results in a relatively large value of ppr.

The effects of parameter correlations on ppr results have an important conse-

quence for the cost-effectiveness of future data collection. For example, to improve

predicted advective transport at this site, field data could be collected about Rch3

instead of about K1 or K3. Collecting data about a recharge rate or the geographic

extent of a recharge zone is likely to be less expensive than collecting subsurface

information about a hydraulic-conductivity value or hydrogeologic unit.

Using opr The observation–prediction (opr) statistic (Eq. (8.11)) was used to ident-

ify existing and potential observations important to the advective-transport predictions.

The existing 501 hydraulic-head observations were evaluated using the opr(21)

statistic averaged over a set of advective-transport paths, including those shown

in Figure 15.7 (Hill et al., 2001; Tiedeman et al., 2004). Figure 15.9 shows the

sets of 100 observations that are most and least important to the advective-transport

FIGURE 15.9 Results of using the opr statistic to rank the 501 existing head observations in

the steady-state, three-layer DVFRS model of D’Agnese et al. (1997, 1999) by their

importance to advective-transport predictions. (Adapted from Hill et al., 2001.)
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predictions. The advective paths are on or near the Nevada Test Site, in the center of

the modeled region. These results clearly show that many important observations are

located far from the predictions of interest, which reflects the distributed nature of

most groundwater systems. The identification of important and unimportant obser-

vations can be used in Guideline 9 to focus evaluations of model fit, and as part of

Guideline 12 to identify wells for which field work might be warranted, for example,

to reduce errors in well altitude or screened depth.

The results shown in Figure 15.9 were obtained by evaluating each observation

individually. While the results might be used to suggest that there is no need to

investigate further the 100 least important observations, a concern is whether

these 100 observations are important if considered together. This can be evaluated

by calculating an opr statistic for which the entire group of 100 least important

observations is omitted. This yields an opr(2100) statistic equal to only 0.6 percent,

indicating that the 100 observations that are least important on an individual basis

also are not important when considered as a group.

The opr(þ1) statistics shown in Figure 15.10 for potential new hydraulic-head

observations located anywhere in the uppermost layer of the Death Valley regional

flow model. The very large values in some areas suggest locations where additional

head observations would be extremely advantageous.

The opr values result from the parameterization using zonation and the simulated

flow system dynamics. For example, in the area in the southern part of the model just

FIGURE 15.10 Results of using the opr(þ1) statistic to rank potential new observation

locations in the DVRFS by their importance to advective-transport predictions. (Adapted

from Tiedeman et al., 2004.) High values identify areas where new head observations

would be most advantageous, based on the steady-state, three-layer model described by

D’Agnese et al. (1997, 1999).
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east of Death Valley, opr is large because locally, steep gradients make the simulated

hydraulic heads very sensitive to the hydraulic conductivity. The rocks here are thought

to be hydraulically similar to rocks close to or along the advective-travel paths and are

assigned the same hydraulic-conductivity parameter. If the rocks at the two locations

are actually similar hydraulically, the steep gradients in this area provide a great oppor-

tunity to determine the hydraulic conductivity more accurately than is possible given

the relatively flat gradients in the area of the advective-transport paths. However, if

the hydraulic properties of these different rocks are actually not similar, then some

observations ranked as important to the predictions may actually not be as valuable

as indicated by the opr statistics. For a more detailed discussion of issues related to

opr statistic results, see Tiedeman et al. (2004).

15.2.2 Grindsted Landfill, Denmark

The Grindsted landfill (Figure 15.11), located in the western part of Denmark, was

the focus of a European Union study. Barlebo et al. (1998) characterized the

underlying groundwater system using 100 head and 210 chloride concentration

observations and an inverse groundwater flow and transport model developed

using an early version of the finite-element model WATFLOW/WTC (Molson

and Frind, 2002).

A map and cross section for the system are shown in Figures 15.11 and 15.12,

respectively; the layers shown extend over most of the simulated area and were

used to represent the system in all of the models developed. The model grid

and other site features are shown in Figure 15.13. The concentrations were measured

along the four transects labeled A, B, C, and D in Figure 15.13. This study

investigated the possibility that transport occurred through the clay/silt layer

FIGURE 15.11 The Grindsted landfill, with local water-table contours and piezometer

locations. Datum is sea level, contour interval is 0.2 m. Model area includes the landfill

and extends to the northeast. (From Barlebo et al., 1998.)

370 USING AND TESTING THE METHODS AND GUIDELINES



shown in Figure 15.12. Most heads and all concentrations were measured using

wells screened only above the silt layer.

Use a Broad Range of System Information (Guideline 2) and Include Many Kinds
of Data as Observations (Guideline 4) Barlebo et al. (1998) focus on using the

data set to investigate two issues: (1) the accuracy of simulated concentrations

FIGURE 15.13 Plan view of modeled area in the vicinity of the Grindsted landfill, with the

location of the cross section shown in Figure 15.12 identified by an arrow. The constant-head

cells extend along each end of the model and the head imposed changes with depth as shown.

(From Barlebo et al., 1998.)

FIGURE 15.12 Northwest–southeast cross section of modeled area in the vicinity of the

Grindsted landfill. Dots represent nodes in the model. (From Barlebo et al., 1998.)
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using a model calibrated with hydraulic-head observations and no concentration

observations, and (2) the advantages and disadvantages of using a two-dimensional

cross-sectional model instead of a three-dimensional model when the contaminant

source is at the land surface. First, a three-dimensional model was developed

using all available system information and was calibrated using the head and con-

centration observations. This was expected to be the most accurate model, and the

plume simulated using this model is shown in Figure 15.14a. Then, the two issues

of interest were considered. The absence of concentration data for calibrating a

model used to predict transport was investigated by estimating hydraulic parameters

for the three-dimensional model using only the head observations. The parameters

needed only for simulating transport were assigned values equal to those estimated

for the first model. The resulting plume is shown in Figure 15.14b. Use of a two-

dimensional cross-sectional model (Figure 15.13) produced the plume shown in

Figure 15.14c.

Two main conclusions were drawn from these analyses. First, the simulated

plumes in Figure 15.14a,b are dramatically different, with the first indicating trans-

port through the clay/silt layer and the second indicating transport to much greater

distances from the source, but with the plume remaining above the clay/silt layer.
This demonstrates the inaccurate transport behavior that is predicted using a

model calibrated only with hydraulic-head observations. Second, the major benefit

of two-dimensional cross-sectional modeling was that execution times were reduced

FIGURE 15.14 Cross section along the center of the plume at the end of the simulation

period (1993) in models of the Grindsted landfill, Denmark. (a) Using a three-dimensional

model with parameter values that produce the best fit to heads and concentrations. (b)

Using a three-dimensional model with parameter values that produce the best fit to heads

only. (c) Using a two-dimensional model with parameter values that produce the best fit to

heads and concentrations. (From Barlebo et al., 1998.)
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by a factor of 7. Advantages of the three-dimensional simulation were primarily that

accurate representation of the source was possible (it had to be calibrated in the two-

dimensional model), and that all hydraulic-head and concentration observations

could be used. The simulated plumes are similar, though the three-dimensional

plume matches the measured concentrations more closely.

Compare Estimated Parameters and Confidence Intervals to Reasonable Ranges
(Guideline 10) During calibration of this model, estimated parameter values

were compared to reasonable ranges. Figure 15.15 demonstrates why these compari-

sons also need to consider confidence intervals on the estimated parameters. The

parameter value estimated using only head observations is unreasonable, but

because of its large confidence interval, it is unclear whether the unreasonable esti-

mate indicates errors in model construction. When concentration observations are

included in the regression, the reasonable parameter estimate and small confidence

interval indicate clearly that the problem was not model error. For the parameter

estimate obtained when only heads were used, the information provided by the

large confidence interval helped prevent an unnecessary search for model errors.

FIGURE 15.15 Estimates of parameter khII, in meters per second, from a groundwater

model of the Grindsted landfill calibrated with only head observations and with head and

concentration observations. Linear individual 95-percent confidence intervals (black bars)

and the parameter reasonable range (gray boxes) also are shown. (From data reported by

Barlebo et al., 1998.)
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APPENDIX A

OBJECTIVE FUNCTION ISSUES

This appendix derives the maximum-likelihood objective function and shows that

in most circumstances it reduces to the least-squares objective function used in

MODFLOW-2000 and UCODE_2005. Because of the relationship between

these objective functions, regression results from MODFLOW-2000 and

UCODE_2005 can be interpreted in the context of either a maximum-likelihood

or least-squares objective function. The practical differences between the two are

as follows:

1. The maximum-likelihood objective function requires the assumption of

normally distributed true errors, which is not required by the least-squares

objective function except when constructing parametric confidence and pre-

diction intervals.

2. The value of the objective function is different, even though the part involved

in estimating optimal parameter values is the same. Values of both objective

functions are printed by MODFLOW-2000 and UCODE_2005.

This appendix also discusses an issue related to the weighting used in the objec-

tive function—the assumptions required for diagonal weighting to be correct.
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A.1 DERIVATION OF THE MAXIMUM-LIKELIHOOD

OBJECTIVE FUNCTION

The maximum-likelihood objective function is developed by considering the

random nature of y, the observations. This random nature results from conceptualiz-

ing observation error as random. If Y is the vector of jointly distributed random

variables of which y is a realization, the joint probability distribution function

(pdf), fY( y), depends on the true model and true parameter values. For the purpose

of estimating parameters for a given assumed model, consider the joint pdf con-

ditioned on a particular set of parameter values, fY(yjb). This joint pdf can be

thought of as the probability that different sets of possible observations would

occur given the parameter values b. In parameter estimation, the elements of y are

known and we would like to estimate b. A reasonable requirement of the estimates

in b is that they maximize the probability of obtaining the observations, y. This
requirement is imposed by defining the objective function using the likelihood func-

tion, ‘(bj y), which is defined as

‘(b j y) ¼ fY( yjb) (A:1)

If the true errors are from a joint, normal distribution, the likelihood function equals

(Brockwell and Davis, 1987, p. 247)

‘(bjy) ¼ (1=2p)ND=2jV(1)j�1=2 exp � 1
2

� �
eT (V(1))�1e

� �
(A:2)

where, as in Eq. (3.2), e is a vector of residuals calculated as

e ¼ y� y0

y0 is a function of b and ND is the number of observations.

Replacing V(1) using Eq. (C.21) (see Appendix C), taking the natural log, and

multiplying by (22) produces the maximum-likelihood objective function:

S0(b) ¼ �2 ln (‘(bj y)) ¼ ND ln 2p� ln j(1=s 2)vj þ eT{(1=s 2)v}e (A:3)

Multiplication by a negative number converts the maximization problem to

a minimization problem; the objective is to determine the parameter estimates

that minimize Eq. (A.3). To include prior estimates of the parameters, e and v
are augmented as shown in Eqs. (B.1) and (B.2), ND is replaced by NDþ NPR,

and the determinant of Eq. (A.3) is expanded so that Eq. (A.3) can be expressed as

S0(b) ¼ (NDþ NPR) ln 2pþ (NDþ NPR) lns 2

� ln jvdj � ln jv pj þ eT{(1=s 2)v}e, (A.4)
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where vd and vp are the sections of the weight matrix applicable to dependent

variable observations and prior estimates of the parameters, respectively. Equation

(A.4) is the maximum-likelihood objective function. Noting that ln 1.0 ¼ 0.0 and

(2lnjvdj2 lnjvpj) ¼ 2lnjvj as long as no observation errors are correlated with

errors in prior information, Eq. (A.4) is equivalent to Eq. (3.3) when s2 ¼ 1.0.

A.2 RELATION OF THE MAXIMUM-LIKELIHOOD AND

LEAST-SQUARES OBJECTIVE FUNCTIONS

For any assumed model, set of observations, and defined weight matrix used in the

parameter-estimation procedure, ND, s2, and v do not change during a regression.

Eliminating terms of Eq. (A.4) that do not depend on b and multiplying by s2 yields

S(b) ¼ eTv e (A:5)

Thus, for the optimization process, the maximum-likelihood objective function

equals the least-squares objective function (Eq. (3.2)). Burnham and Anderson

(2002, p. 12) provide a different derivation that results in S(b) ¼ ND(log(eTve)),
but for the purposes of this section the point is the same because both objective

functions would result in the same estimated parameter values.

The development of Eq. (A.5) from the maximum-likelihood objective function

requires that the true errors be from a joint, normal distribution, a condition not

required when the equation is derived in other ways.

A.3 ASSUMPTIONS REQUIRED FOR DIAGONAL

WEIGHTING TO BE CORRECT

Here we focus on errors in transient groundwater flow problems, though the con-

cepts are generally applicable. The weighting is assumed to equal the inverse of

the variance–covariance matrix of errors in observations and prior information, as

suggested in Chapter 3, Section 3.4.2. Here the errors are referred to as true errors.

In transient groundwater flow problems, various dependent variables might be

observed at many locations, and they might be observed at many times. The most

general variance–covariance matrix of the true errors includes the following

correlations:

1. Correlations between errors in observations made at different locations at the

same time.

2. Correlations between errors in observations made at the same location at

different times.

3. Correlations between errors in observations made at different locations and

different times.
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Such a matrix is laborious to estimate.

Fortunately, assumptions about the true errors that are realistic for many

circumstances can be made to simplify this variance–covariance matrix. Seven

assumptions that result in a simple diagonal weight matrix are listed below and

are further defined and discussed in this section. They are also discussed elsewhere

in the book.

1. All errors represented in the weighting have a mean of zero. Required for a

valid regression.

2. Errors of different kinds of dependent variables are uncorrelated. Commonly

realistic for measurement errors.

3. Errors of observations at different locations are uncorrelated. Commonly

realistic for measurement errors.

4. Time-dependent deterministic components of the error are small and can be

ignored. Commonly realistic for measurement errors.

5. At each observation location, total error for any observation ¼ 11þ 12þ 13.
11 errors are constant over time; 12 errors are temporally correlated, but not

completely correlated like 11 errors; and 13 errors are temporally uncorrelated.

Probably realistic.

6. Errors are normally distributed. Commonly realistic. Transformations may

be needed in some circumstances.

7. Either 11 or 12 or 13 errors dominate. Transformations (generally differen-

cing) can be applied to attain a diagonal matrix. Commonly questionable.

The set of assumptions presented here is not unique. They are presented so

that one set of assumptions leading to a diagonal weight matrix can be thoroughly

analyzed. The role of both measurement error and model error is included in the

discussion, because Chapter 11, Section G6.2 suggests that both can play a role in

determining weighting. Chapter 15, Section 15.2.1 provides an example of deter-

mining weighting.

1. All errors represented in the weighting have a mean of zero.

The sum of the errors accounted for by the weighting equals the 1 of Eq. (C.1).

The first assumption is discussed in Chapter 3, Section 3.3.2 and is required for a

valid regression. Error with means other than zero cannot be accommodated

correctly using the weight matrix.

2. Errors of different kinds of dependent variables are uncorrelated.

A similar assumption applied to observations and prior information produced the

weight matrix of Eq. (B.1). The second assumption indicates, for example, that

errors in observed hydraulic heads are independent of errors in observed streamflow

gains and losses. This assumption is realistic for measurement errors; for example,
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it is unlikely that errors incurred when observing hydraulic heads are related to

errors incurred when observing streamflow. This assumption, however, might not

be realistic for model errors; for example, simulated hydraulic heads and adjacent

simulated streamflows generally would be affected by the same deficiencies in the

model, and associated model errors could be correlated.

3. Errors of observations at different locations are uncorrelated.

The third assumption is that errors in observations at different locations are

uncorrelated. As with the second assumption, the third assumption is realistic for

most measurement errors, but might not be realistic for model errors, especially at

locations that are close to one another (Carrera, 1984, pp. 37–39). One exception

occurs for measurement errors of head-dependent boundary gains and losses

when one flow measurement is used to calculate more than one gain or loss, as

discussed in Section G6.1 of Chapter 11.

If valid, the result of the second and third assumptions is that all correlations

are eliminated except for the temporal correlations at each location.

4. Time-dependent deterministic components of the error are small and can be

ignored.

The fourth assumption is that time-dependent deterministic components of the

error (Brockwell and Davis, 1987, p. 15) are small and can be ignored. Such

components are more typical of model error than measurement error, so the

fourth assumption probably is realistic for measurement errors.

5. At each observation location, total error for any observation ¼ 11þ 12þ 13.

11 are errors that are constant over time; 12 are errors that are temporally corre-

lated, but not completely correlated like 11; and 13 are errors that are temporally

uncorrelated.

The fifth assumption is that the remaining correlations of the true errors, which

are temporal, can be categorized by thinking of the error associated with each

observation at a single time and location as the sum of three statistically independent

types of errors:

1 ¼ 11 þ 12 þ 13 (A:6)

where 11 is constant for all time for each observation location, so the temporal

correlation coefficients between this error and the errors associated with obser-

vations at other times at this location equal 1.0; 12 varies with time and has corre-

lation coefficients between this error and the errors associated with observations

at other times at this location between 0.0 and 1.0, exclusive; and 13 varies
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independently over time and has correlation coefficients between this error and the

errors associated with observations at other times at this location equal to zero.

Examples of observations with these types of errors are shown in Figure A.1.

Considering their definitions, the assumed independence of 11, 12, and 13 is realistic,
and this method of characterizing errors probably is valid for all groundwater

flow models. The autocorrelated temporal errors considered by Sadeghipour and

Yeh (1984), Carrera and Neuman (1986, p. 203), and Watson et al. (1990a, b)

would be classified as 12, as defined above. Lu et al. (1988, p. 675) introduced a

constant error similar to 11 to describe spatial correlations of errors in an estimated

transmissivity field.

Processes that are likely to produce the three error types are different for measure-

ment errors and model errors. For measurement errors, 11 might be the error in

the measured elevation of the well; 12 might be an autocorrelated error in the

recording device; and 13 might be random, uncorrelated inaccuracy in the recording

device. For model errors, some examples are as follows: 11 errors might be

produced because constant pumpage at a well near the observation location is not

accounted for in the model; 12 errors might be produced because the parameteri-

zation of transmissivity is not realistic; and 13 errors might be a valid way to account

for unrepresented processes with a mean affect of zero.

When written for a series of observations over time at an arbitrary observation

location ‘, Eq. (A.6) becomes

1‘ ¼ 11‘ þ 12‘ þ 13‘ (A:7)

where the length of each vector equals the number of temporal observations at

location ‘.

FIGUREA.1 True values represented by a solid line and observed values for which the errors

are 11 errors (A), 12 errors (W), and 13 errors (O). The 11 error equals 22.5; the 12 errors are
from an autoregressive moving average process of order 7 based on a uniform distribution

with a range of 21 to 1; the 13 errors are uniformly distributed with a range of 21 to 1.
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Here we discuss the characteristics of the variance–covariance matrix of each

type of error.

V(11‘) is a matrix with all elements equal to the variance of the error. Thus,

V(11‘) ¼ 1s 2
1‘, where 1 is a matrix of ones and s 2

1‘ is the error variance associated

with observation location ‘. V(11‘) can be simplified if changes in the dependent

variable over time are used in the regression instead of the actual values. For

example, if hydraulic head is observed multiple times at one location, the first

observation would be the first hydraulic head observation, and subsequent obser-

vations would be changes from that first hydraulic head defined as the temporal

difference (see Chapter 9, Section 9.1.2). Because 11 errors are constant over

time, they are included only in the first observation; the subtraction eliminates

these errors from subsequent observations. Thus, by using temporal differencing,

V(11‘) has one nonzero variance equal to s 2
1‘ associated with the first observation

at observation location ‘, and all other variances and covariances in the matrix

equal zero.

V(12‘) depends on the correlation between the errors. If the correlation can be

expressed by an autoregressive process (Brockwell and Davis, 1987, p. 79) and the

observations are made at equally spaced times, differencing can be used to produce

observations with independent errors and, therefore, a diagonal variance–covariance

matrix. Sadeghipour and Yeh (1984) use differencing of a one-step autoregres-

sive process and apply it to parameter estimation in a groundwater flow problem.

The concern discussed in Chapter 9, Section 9.1.2 about differencing resulting in

observations and associated sensitivities close to zero could be relevant in this

situation and should be considered when designing the observations.

V(13‘) is a diagonal matrix because the 13 errors are uncorrelated. If, in addition,
these errors are thought to have the same variance, V(13‘) ¼ Is 2

3‘, where I is the
identity matrix and s 2

3‘ is the error variance. When differencing is applied as

discussed in the last two paragraphs as a way to create diagonal weighting for 11
and 12 errors, the weighting for 13‘ errors goes from being diagonal to having

off-diagonal terms. The differences have variances equal to the sum of the

variances of the subtracted quantities and covariances are produced as discussed

for streamflow measurements in Section G6.1 of Chapter 11.

6. Errors are normally distributed.

The sixth assumption is that the sources of error are numerous and varied

enough that, by the central-limit theorem (Benjamin and Cornell, 1970,

pp. 251–253), the joint probability distribution function (pdf) of the errors of

Eq. (A.7) are normal, so

13 � N½0, V(11)� ¼ N½0, V(11‘)þ V(12‘)þ V(13‘)� (A:8)

where � means “distributed as,” and the three variance–covariance matrices can be

added because of the assumed normality and independence of 11‘, 12‘, and 13‘.
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By using the expressions for V(11‘) and V(13‘) described above (assuming all 13
errors have the same variance), the joint pdf can be expressed as

11 � N½0, 1s 2
1‘ þ V(12‘)þ Is 2

3‘� (A:9)

The sixth assumption probably is realistic for all groundwater flow problems.

Differencing of the observations result in 1s 2
1‘ being simplified further, but Is 2

3‘

becomes more complicated, as discussed above. If s 2
3‘ is small compared to s 2

1‘, an

approximate diagonal matrix with the first variance equal to s 2
1‘ and variances

for subsequent observations equal to 2s 2
3‘ could be used. If 12 errors are important

and first-order autoregressive, and the times between observations are constant,

differencing methods can be used to make V(12‘) diagonal. However, V(11‘) and
V(13‘) would then become more complicated.

7. Either 11 or 12 or 13 errors dominate.

The seventh assumption is that either 11 or 12 or 13 errors dominate, and if 12
errors dominate, the errors are autoregressive and the time between observations

is constant. Although, as discussed earlier, it could be argued that 12 errors generally
are a small part of the total error, the assumption that one type of error dominates

is questionable under most circumstances.

Summary If all seven assumptions are valid, no flow observations are used to cal-

culate more than one head-dependent boundary gain or loss, and the appropriate

transformations are used to address the dominant 11 and 12 error terms, the

variance–covariance matrix and, therefore, the weight matrix is diagonal. This

structure is advantageous computationally and because the effect of a diagonal

weight matrix on parameter estimation is easy for users to understand.

In practice, the seventh assumption is most likely to be violated. Violation of the

seventh assumption means that more than one classification of error is significant

and off-diagonal terms in the weight matrix are needed.

Little work has been done to determine the effect of using a diagonal weight

matrix when the errors are actually correlated. Of concern is the effect on estimated

parameter values and computed measures of uncertainty. The work that has been

done suggests that the effects are small in typical circumstances, as mentioned in

Chapter 11, Section G6.1.
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APPENDIX B

CALCULATION DETAILS
OF THE MODIFIED
GAUSS–NEWTON METHOD

Three aspects of the calculations needed for the nonlinear regression methods

described in this work require more detailed explanation. These include a more

detailed description of vectors and matrices of equations in Chapters 3–8, presen-

tation of an optional addition to Eq. (5.6a), and calculation of the damping parameter

and convergence of Eq. (5.6b).

B.1 VECTORS AND MATRICES FOR NONLINEAR REGRESSION

The primary vectors and matrices of concern in nonlinear regression are the measured

values of vector y, the simulated values of vector y0(b), the sensitivities of matrix X,
the weights of matrix v, the residuals of vector e (equal to y2 y0(b)), and the true

errors of vector 1. These vectors and matrices, including terms for both the obser-

vations and prior information used in the regression, are as follows. Except for 1,
these vectors and matrices are used in equations in Chapters 3–8 of this book.

Vector 1 is included here because it appears in Eq. (3.4) and Appendixes A and C.

383

Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities,
Predictions, and Uncertainty. By Mary C. Hill and Claire R. Tiedeman
Published 2007 by John Wiley & Sons, Inc.



A few common relationships are displayed using vector notation.

y ¼

y1

y2

..

.

yND

P1

P2

..

.

PNPR

2666666666666664

3777777777777775
, X ¼

x1,1 x1,2 � � � x1,NP

x2,1 x2,2 � � � x2,NP

..

.

xND,1

a1,1

xND,2

a1,2

� � �
� � �

xND,NP

a1,NP

..

.

a2,1 a2,2 � � � a2,NP

aNPR,1 aNPR,2 � � � aNPR,NP

266666666666666664

377777777777777775
, v ¼

W 0

0 U

" #
(B:1)

W is the weighting for the observations; U is the weight matrix for the prior infor-

mation, and it is assumed that the true errors in the observations are independent of

the true errors in the prior information.

y0(b) ¼

y01

y02
..
.

y0ND
P 0
1

P 0
2

..

.

P0
NPR

26666666666666664

37777777777777775
, y� y0(b) ¼ e ¼

e1

e2

..

.

eND

u1
u2

..

.

uNPR

2666666666666664

3777777777777775
; 1 ¼

11

12

..

.

1ND
v1
v2

..

.

vNPR

2666666666666664

3777777777777775
(B:2)

B.2 QUASI-NEWTON UPDATING OF THE

NORMAL EQUATIONS

For problems with large residuals and a large degree of nonlinearity, Dennis et al.

(1981) suggest substituting Xr
TvXrþ Rr for Xr

TvXr in Eq. (5.6a) at selected

iterations, where Rr is an estimate of the difference between Xr
TvXr and the Hessian

matrix, ½@2S(b)=@b2�, and is calculated by quasi-Newton updating as (Dennis et al.,

1981)

Rr ¼ 0, for r ¼ 0

Rr ¼ tRr�1 þ u DgTt þ Dgr u
T

rr�1d
T
r�1Dgr

� rr�1d
T
r�1u DgrDg

T
r

(rr�1d
T
r�1Dgr)

2
, for r . 0

(B:3)
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where

Dgr ¼ gr � gr�1; gr ¼ �XT
r ver

er ¼ ½ y� y0(b)�; u ¼ (Xr � Xr�1)
Tver � tRr�1rr�1dr�1

t ¼ min
rr�1(d

T
r�1)(Xr � Xr�1)

Tver

rr�1(d
T
r�1)Rr�1rr�1(dr�1)

�����
�����; 1:0

( )

and all other variables are defined after Eq. (3.2) and (5.6). Rr is calculated starting

at r ¼ 1 but is only included in Eq. (5.6a) in later iterations. Performance of the

method depends on when Rr is included. Cooley and Hill (1992) found that it is

most advantageous to include Rr after the sum of squared, weighted residuals no

longer changes very much at each parameter-estimation iteration. When Rr is

included in Eq. (5.6a), the elements of the diagonal scaling matrix, C, are calculated
as [(Xr

TvXrþ Rr)ii]
21/2.

In UCODE_2005 and MODFLOW-2000, if quasi-Newton updating is used, Rr is

included for all iterations after one of two criteria are satisfied: (1) the sum of

squared, weighted residuals decreases by less than a user-defined percentage over

two iterations or (2) after a user-specified number of iterations. The more elaborate

criteria for inclusion of Rr suggested by Dennis et al. (1981) require additional

model simulations. Given that many problems have lengthy execution times and

considering the modest expected benefit demonstrated by Cooley and Hill (1992),

the more elaborate criteria seem impractical and are not included.

B.3 CALCULATING THE DAMPING PARAMETER

For problems with one or more log-transformed parameters, requiring the absolute

value of Eq. (5.7) to be less than max-allowed-change for any parameter-estimation

iteration, and requiring Eq. (5.9) to be satisfied to achieve convergence can produce

inconsistent results. The following example illustrates the problem as manifested

when applying max-allowed-change which is labeled MAX-CHANGE here.

If the estimated parameter is bi ¼ log K, where K is hydraulic conductivity,

and MAX-CHANGE ¼ 2.0, placing the restriction on log K requires that

(log K)rþ1, the estimate at the next parameter-estimation iteration, be between

(log K)r2 2.0(log K)r and (log K)rþ 2.0(log K)r. If K at parameter-estimation

iteration r is close to 1.0, say, K ¼ 1.1, the restriction requires (log K)rþ1 to be

between 20.041 and 0.124, so that K rþ1 is required to be within the narrow

range 0.91 to 1.33. If K at parameter-estimation iteration r is far from 1.0, say,

K ¼ 1 � 1024, the restriction requires that (log K)rþ1 be between 212.00 and

4.00, so that K rþ1 is allowed to vary within the very wide range of 1 � 10212 to

1 � 10 4. More physically meaningful limitations are produced if the restriction is

placed on the native parameter, which requires that K be between 0.0 and 3.3 in

the first situation and between 0.0 and 3 � 1024 in the second situation. In both
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situations, the lower limit of 0.0 is a result of estimating a log-transformed parameter

and is always the lower limit for a log-transformed parameter when MAX-

CHANGE � 1.0.

To address this problem, a number of quantities can be calculated at each par-

ameter-estimation iteration, as shown in Table B.1. The circumstances treated indi-

vidually are (1) parameters that are not log-transformed, (2) parameters that are log-

transformed and the regression is trying to increase their value (di
r . 0), and (3)

parameters that are log-transformed and the regression is trying to decrease their

value (di
r , 0). The objective that allows a single damping parameter to be chosen

despite the individual circumstances is that the smallest of all values is needed,

regardless of how it is calculated. The resulting value is used in Eq. (5.6b) to alter

the magnitude of the change vector, leaving its direction undisturbed. MODFLOW-

2000 always uses these equations; UCODE_2005 provides them as on option.

The equations in Table B.1 are derived as follows. For native parameters, the

fractional change of the native parameter value of column A simply equals

Eq. (5.7). For log-transformed parameters, the fractional change in the native

TABLE B.1 Quantitiesa Used to Test for Convergence and to Calculate Damping

Parameter rr for Parameter-Estimation Iterations

Variable Used in Program and Brief Explanation

BDMXx ADMXx DMXx

A. Convergence test on

the fractional change

in the native

parameter valueb

B. Equation for rr if the
absolute value of

quantity A is larger

than MAX-CHANGEc

C. Fractional

parameter

change used to

adjust rr
for oscillation

control (Eq.

(B.7))

Parameter

category

Native di
r/bi

r (footnote d) rr ¼ MAX-CHANGE/
(jdir/birj) (footnote e)

di
r/jbirj (footnote d)

Transformed,

di
r . 0

exp(di
r )2 1 rr ¼ ln(MAX-

CHANGEþ 1)/di
r

(footnote e)

di
r/jbirj (footnote d)

Transformed,

di
r , 0

exp(di
r )2 1 rr ¼ ln(2MAX-

CHANGEþ 1)/di
r

(footnote d)

di
r/jbirj (footnote d)

adi
r, fractional change on the parameter value calculated by regression; bi

r, value of the parameter;

MAX-CHANGE, largest fractional change allowed for the parameter; called max-allowed-change in

Chapter 5, Section 5.1.1.
bLargest absolute value needs to be less than a defined convergence criterion.
cOtherwise rr ¼ 1.0, except as needed for oscillation control. For each parameter-estimation iteration, the

smallest of all rr values is used and printed with the related parameter number in the output file.
dbi

r is the native parameter value. If bi
r ¼ 0.0, these equal di

r.
eTo enable parameter values to increase more quickly after being assigned very small native values, MAX-

CHANGE is set to a larger number in some circumstances. See explanation in Chapter 5, Section 5.1.1.
fOnly use if MAX-CHANGE , 1.0; otherwise, rr ¼ 1.0 except as determined for oscillation control.
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value equals (exp(bi
rþ1)2 exp(bi

r))/exp(bi
r), or, equivalently, (exp(bi

rþ1)/
exp(bi

r))2 1.0. Substituting exp(di
r ) ¼ exp(bi

rþ1)/exp(bi
r), which is derived from

Eq. (5.6b) with rr ¼ 1.0, yields

fractional change in the native parameter value ¼ exp (d r
i )� 1:0 (B:4)

In column B of Table B.1, the equation for native parameters is obvious, and

the equations for log-transformed parameters are derived using Eq. (B.4). If

di
r . 0.0, Eq. (B.4) produces a positive value and the MAX-CHANGE restriction

requires that exp(rrdi
r)2 1.0 	 MAX-CHANGE. If di

r , 0.0, Eq. (B.4) produces

a negative value and the MAX-CHANGE restriction requires that exp(rr di
r)

21.0 � 2MAX-CHANGE. These requirements are satisfied if the following

conditions are satisfied:

rr¼ min
i¼1,np

1:0
ln(MAX-CHANGEþ1)=dr

i , d
r
i .0:0

ln(�MAX-CHANGEþ1)=dr
i , d

r
i ,0:0,MAX-CHANGE,1:0

8<: ðB:5Þ

The exception for MAX-CHANGE , 1.0 applies because, as mentioned pre-

viously, the exponential of a log-transformed parameter is always greater than 0.0

and can never decrease enough to require rr to be less than 1.0 if MAX-

CHANGE � 1.0. Thus, if di
r,0 for a log-transformed parameter and MAX-

CHANGE � 1.0, parameter i is excluded from consideration when calculating rr.
A difficulty occurs in the above procedure if a parameter value is made much

smaller than its starting value, and then the regression attempts to restore it. This

situation can make the parameter estimation move slowly in the iterations following

the iteration in which the parameter value is made small, because the damping

parameter is being controlled by the small parameter value. This problem is

addressed in MODFLOW-2000 and UCODE_2005 by allowing such small par-

ameter values to increase by more than max-allowed-change (here we use MAX-

CHANGE) would normally allow, and this is accomplished by assigning an

increased value of MAX-CHANGE to parameter values that are small relative to

their starting values. The increased MAX-CHANGE is calculated as

MAX-CHANGE
 ¼ ½jb=b0j � (MAX-CHANGEþ 1:)4��1 ðB:6Þ

where b is the current native value of the parameter, and b0 is the starting native

value, as specified in the input file. If MAX-CHANGE
 is smaller than MAX-

CHANGE, the latter is used. The value of MAX-CHANGE
 given different

values of MAX-CHANGE and of jb/b0j is shown in Figure B.1. If it is expected

that the smaller value is valid, restarting the regression with a smaller starting

value will cause smaller MAX-CHANGE
 values to be used in the lower range

(Figure B.2). Modification is not made if MAX-CHANGE is specified to be less

than 0.4 to allow the user to maintain control for small values of MAX-CHANGE.

Oscillation control is achieved using a slightly modified version of the method

described by Cooley (1983b, p. 1274; 1993). Oscillation control is evaluated internal
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to the regression, so it applies to log-transformed parameters where applicable.

A preliminary damping parameter, r
r, is calculated as follows, where jr identifies

the parameter with the smallest rr in iteration r.

DMXr ¼ d r
i =jbri j

If r ¼ 0 or jr = jr�1, r
r ¼ 1

If r . 0 and jr ¼ jr�1,

s ¼ DMXr=(rr�1DMXr�1)

If s � �1, r
r ¼ (3þ s)=(3þ jsj)
If s , �1, r
r ¼ 1=(2jsj)

(B:7)

FIGURE B.1 The value of MAX-CHANGE
 calculated given different values of MAX-

CHANGE and the ratio of the current and starting parameter values (jb/b0j).

FIGURE B.2 The effect of MAX-CHANGE
, as indicated by the ratio of the current to the
starting parameter value (jbr/b0j), and the ratio of the parameter value after the next

parameter-estimation iteration to the starting parameter value (jbrþ1/b0j). Using MAX-

CHANGE
, it generally takes no more than three parameter-estimation iterations to restore

a dramatically reduced parameter value.
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The condition on j has been added to Cooley’s method. The relationship between

s defined in Eq. (B.7) and the damping parameter is shown in Figure B.3.

The final damping parameter is the smaller of the value calculated using oscil-

lation control or the value calculated to conform with the specified MAX-

CHANGE.

MAX-CHANGE typically is larger than 1.0 and less than about 2.0. Use values

less than 1.0 to reduce excessive parameter-value oscillations. Values less than 1.0

do not prohibit parameter values from changing sign because of the increase in

MAX-CHANGE discussed above.

B.4 SOLVING THE NORMAL EQUATIONS

By using double precision as suggested by Stewart (1972, pp. 226–227), Eq. (5.6)

has been solved accurately and efficiently in many applications using Cholesky

LDLT decomposition (Dennis and Schnabel, 1983, pp. 50–51). Exceptions were

plagued by strong correlations between parameters or insensitive parameters, and

were resolved by reparameterization. Dennis and Schnabel (1983, p. 221) and

Seber and Wild (1989, p. 621) suggest that solving the alternative formulation

Xd ¼ ( y2 y0) using QR or singular-value decomposition (Dennis and Schnabel,

1983, pp. 49–51; Seber and Wild, 1989, pp. 680–681; Press et al., 1992, pp. 52–

63) is more stable, but it is unclear whether or not they used the scaling

and Marquardt parameter, which adds stability to Eq. (5.6). Press et al. (1992,

pp. 515–520) suggest using singular-value decomposition for linear regression,

but use Gauss–Jordon elimination to solve a variation of Eq. (5.6) that includes

similar scaling and implementation of the Marquardt parameter for nonlinear

regression. Considering the success experienced using Cholesky decomposition, it

is used in UCODE_2005 and MODFLOW-2000.

FIGURE B.3 The damping parameter produced through oscillation control based on s as

calculated using Eq. (B.7).

B.4 SOLVING THE NORMAL EQUATIONS 389



B.5 REFERENCES

Cooley RL (1983). Incorporation of prior information on parameters into nonlinear regression

groundwater flow models. 2. Applications. Water Resources Research 19(3):662–676.

Cooley RL (1993). Regression modeling of ground-water flow, Supplement 1—Modifications

to the computer code for nonlinear regression solution of steady-state ground-water flow

problems. U.S. Geological Survey Techniques of Water Resources Investigations, Book 3,

Chapter B4, Supplement 1.

Cooley RL, Hill MC (1992). A comparison of three Newton-like nonlinear least-squares

methods for estimating parameters of ground-water flow models. In Russel TF, Ewing RE,

Brebbia CA, Gray WG, Pinder GF, editors, Proceeding of Computational Methods in

Water Resources IX, Denver Colorado. Numerical Methods in Water Resources.

Elsevier, pp. 379–386.

Dennis JE, Gay DM, Welsch RE (1981). An adaptive nonlinear least-squares algorithm. ACM

Transactions on Mathematical Software 7(3):348–368.

Dennis JE, Schnabel RB (1983). Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. Englewood Cliffs, NJ: Prentice Hall.

Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992). Numerical Recipes in Fortran,

2nd ed. Cambridge, UK: Press Syndicate of the University of Cambridge.

Seber GAF, Wild CJ (1989). Nonlinear Regression. Hoboken, NJ: Wiley.

Stewart GW (1972). Introduction to Matrix Computations. New York: Academic Press.

390 APPENDIX B: MODIFIED GAUSS–NEWTON METHOD



APPENDIX C

TWO IMPORTANT PROPERTIES OF
LINEAR REGRESSION AND THE
EFFECTS OF NONLINEARITY

This appendix presents two basic properties of weighted linear regression, which are

generally known as the Gauss–Markov theorem, in a manner that emphasizes the

difficulties produced when the regression is nonlinear. More traditional derivations

of the Gauss–Markov theorem can be found in Bard (1974) and Beck and Arnold

(1977).

The two properties of concern are:

1. Parameters estimated by linear regression are unbiased.

2. The weight matrix needs to be defined in a particular way for the parameter

estimates to have the smallest variance, and for the parameter variance–

covariance matrix to be calculated using Eq. (7.1).

Needed definitions and identities are presented first, followed by the two proofs.
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C.1 IDENTITIES NEEDED FOR THE PROOFS

C.1.1 True Linear Model

The true model is unknown and correctly represents the system of concern. A true

linear model can be represented as

y ¼ b0 þ b1X1 þ b2X 2 þ � � � þ b jX j þ � � � þ bvX v þ 1, E(1) ¼ 0 (C:1)

where y ¼ a measurement of the dependent variable (for groundwater models,

hydraulic heads, flows, and so on);

bj ¼ true (unknown) parameter values;

Xj ¼ independent variables (generally, location in three-dimensional space

and time);

v ¼ number of terms in the true model;

1 ¼ true error, and needs to have a mean of zero, as shown, for regression

to be valid.

C.1.2 True Nonlinear Model

The true nonlinear model cannot be represented as in Eq. (C.1) and requires the more

general form F(b, z )þ 1, where F represents the form of the unknown nonlinear

function, z represents the independent variables, and the other symbols are as

defined for Eq. (C.1). b is a vector of the true parameter values.

C.1.3 Linearized True Nonlinear Model

A linearized true nonlinear model is defined here for the purposes of this discussion.

The model is linearized using a Taylor series expansion about the true parameter

values and has the form of Eq. (C.1). The constant b0 equals y ¼ F(b, z ) evaluated
at the independent variables associated with observation y. Each Xj is the derivative

of the nonlinear model with respect to the jth parameter, evaluated at the true

parameter values. Linearized models are discussed further next.

C.1.4 Approximate Linear Model

The approximate linear model is the model being developed to represent the system

of concern and is the model to be calibrated. An approximate linear model can be

represented as

y ¼ b0 þ b1X1 þ b2X2 þ � � � þ b jX j þ � � � þ bnXn þ e ¼ y0 þ e (C:2)

where y ¼ measurement of the dependent variable, as above;

bj ¼ estimated parameter values;
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Xj ¼ independent variables (generally, location in three-dimensional space

and time);

n ¼ number of terms in the approximate model;

e ¼ residual;

y 0 ¼ simulated equivalent of the measured dependent variable.

C.1.5 Approximate Nonlinear Model

As for the true nonlinear model, the approximate nonlinear model cannot be

represented as in Eq. (C.1) and requires the more general form presented in

Chapter 3, Section 3.4.2—that is, using vector notation, y ¼ f (b, j)þ e, where f rep-

resents the form of the approximate nonlinear function, j represents the independent
variables, b is a vector of the estimated parameter values, and the other symbols are

as defined for Eq. (C.2).

C.1.6 Linearized Approximate Nonlinear Model

The linearized approximate nonlinear model is produced using a Taylor series

expansion about a defined set of parameter values, b0, as discussed in Figure 5.1.

The linearized approximate nonlinear model can be expressed in the form of

Eq. (C.2). In this situation, however, the Xj are not independent variables; instead,

they equal the derivatives of the approximate nonlinear model with respect to the

parameter values, evaluated at b0. There is a connection between using independent

variables for the linear model and derivatives for the nonlinear model — for a linear

model the derivatives equal the independent variables.

The derivatives were defined for Eq. (5.2) and have the following characteristics:

1. The derivatives generally include the independent variables and also include

the effects of other aspects of the nonlinear model.

2. Because of model nonlinearity, the values of the derivatives depend on

the parameter values in b0, as demonstrated for Darcy’s Law in Chapter 1,

Section 1.4.1.

3. The derivatives generally are called sensitivities because they represent the

sensitivity of the simulated value to a change in the parameter value.

By definition, linearized models reproduce the same simulated value at b0 as
the nonlinear model and often closely mimic the nonlinear model for nearby

values of b. As the linearized model is evaluated for values farther from b0, simulated

values vary from those of the approximate nonlinear model depending on its

degree of nonlinearity. This deviation is apparent in Figures 5.1 and 5.3. In

these figures, the linearized surfaces closelymimic the nonlinear surface near the par-

ameter values about which the model is linearized, marked by an�, and mimic it less

well, and even poorly, for increasingly different sets of parameter values.
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C.1.7 The importance of X and X

The different symbols, X and X, are used in Eqs. (C.1) and (C.2) because they may

be different.

For linear problems they often are the same, but differences occur when the

approximate model includes more or fewer terms than the true model (n does not

equal n), or the terms are different. For nonlinear problems, variations in model

structure can lead to different sensitivities and the sensitivities also generally vary

depending on the set of parameter values about which the model is linearized.

The differences between X j and Xj become greater as the model and the optimized

parameter values differ more from those of the true system.

Errors in measuring the independent variables could affect X j and Xj

(as considered by Fuller, 1987; Toy et al., 1993). In this book it is suggested that

in some cases problems of inaccurate location can be integrated into the weighting.

See Guideline 6 (Chapter 11) and the part of Section 15.2.1 (Chapter 15) on

Guideline 6.

C.1.8 Considering Many Observations

Equations (C.1) and (C.2) use the variable y to indicate an observation. To identify

many observations the index i is introduced. The ith observation used in the

regression then can be expressed in terms of the true linear model as

yi ¼ b0 þ b1X 1i þ b2X 2i þ � � � þ b jX ji þ � � � þ bvX vi þ 1i (C:3)

instead of Eq. (C.1), and in terms of the approximate linear or linearized model as

yi ¼ b0 þ b1X1i þ b2X2i þ � � � þ b jXij

þ � � � þ bnXni þ ei ¼ y0i þ ei (C:4)

instead of Eq. (C.2).

All observations used in the regression together can be expressed in terms of the

true linear model using matrix notation (vectors are bold lowercase or Greek letters,

matrices are bold capital letters) as

y ¼ Xbþ 1 (C:5)

and in terms of the approximate linear or linearized model as

y ¼ Xbþ e (C:6)

For the linearized approximate nonlinear model, each element of the X array is

one of the derivatives, or sensitivities, discussed above. An expanded form of X
was shown in Appendix B. X is called the sensitivity matrix or the Jacobian,

as mentioned after Eq. (5.2b).
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C.1.9 Normal Equations

Normal equations in parameter estimation are discussed in Chapter 5. For a linear

model, the normal equations are

(XTvX)b ¼ XTvy or b ¼ (XTvX)�1XTvy (C:7)

Despite some variation, the similarity between Eq. (C.7), which applies to an

approximate linear model, and Eq. (5.4), which applies to an approximate nonlinear

model, is apparent, with the major difference being that Eq. (C.7) produces the

actual optimal parameter values after being evaluated just once, while Eq. (5.4)

produces a vector that is used to update the parameter values, and optimal parameter

values are obtained only after a number of parameter-estimation iterations. Because

the iterative nature of the equations is not central to the issue addressed in the proofs

later, Eq. (C.7) is used in the proofs.

C.1.10 Random Variables

The primary random variables in the above equations are the true errors 1.
Then, noting that functions of random variables are random, y is random from

Eq. (C.1), e is random from Eq. (C.2), and b is random from Eq. (C.7). Because

for any step of the analysis the nonlinear model is linearized and X is evaluated

for a defined set of parameters, X is not random.

C.1.11 Expected Value

The expected value can be taken of any term and is represented as E(†) or E[†],
where the term appears within the parentheses or brackets. As noted in Eq. (C.1),

1 has a mean of zero, so E(1) ¼ 0.

C.1.12 Variance–Covariance Matrix of a Vector

Property 2 requires the evaluation of the variance–covariance matrix of the vector

of estimated parameters and the true errors. The variance–covariance matrix of any

vector v is calculated as E[(v2 E(v)) (v2 E(v))T].

C.2 PROOF OF PROPERTY 1: PARAMETERS ESTIMATED BY

LINEAR REGRESSION ARE UNBIASED

Take the expected value of the optimized parameters, as calculated using Eq. (C.7):

E(b0) ¼ (XTvX)�1XTvE(y) ¼ (XTvX)�1XTvXb (C:8)
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If X ¼ X,

(XTvX)�1XTvX ¼ I (C:9)

where I is an identity matrix. Substituting Eq. (C.9) into Eq. (C.8) yields

E(b) ¼ b (C:10)

Thus, if X ¼ X, the expected values of the estimates equal the true values, which

means that the estimates are unbiased. In nonlinear models, even if the model is

correct the noise in the observations is likely to produce parameter values that

differ to some degree from the true parameter values, and the equality is unlikely

to be true. Thus, unbiasedness is not guaranteed for nonlinear models, even if the

model is correct (Also noted by, for example, Seber and Wild, 1989).

C.3 PROOF OF PROPERTY 2: THE WEIGHT MATRIX NEEDS TO

BE DEFINED IN A PARTICULAR WAY FOR EQ. (7.1) TO APPLY
AND FOR THE PARAMETER ESTIMATES TO HAVE THE

SMALLEST VARIANCE

The variances of the parameter estimates equal the diagonal terms in the variance–

covariance matrix of the parameters, which is calculated using the standard equation

for the variance–covariance matrix of the terms of a vector discussed just before the

proof of Property 1. Applying the equation to a vector of parameter values yields

V(b) ¼ E½(b� E(b)) (b� E(b))T � (C:11)

replacing b with Eq. (C.7) and E(b) with Eq. (C.10) yields

V(b) ¼ E½((XTvX)�1XTvy� b) ((XTvX)�1XTvy� b)T � (C:12)

Expanding the product produces an equation with four terms:

V(b) ¼ E½((XTvX)�1XTvy) ((XTvX)�1XTvy)T

� ((XTvX)�1XTvy)bT � b((XTvX)�1XTvy)T þ bbT �
(C:13)

Rearrange the first term using (a) the matrix property (AB)T ¼ BTAT and

(b) ((XTvX)21 and v are symmetric so the transpose equals (XTvX )21 and v,

respectively. This yields

((XTvX)�1XTvy) ((XTvy)�1XTvy)T

¼ (XTvX)�1XTvyyTvX(XTvX)�1 (C:14)
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Take the expected value of each term and note that only y is stochastic to obtain:

V(b) ¼ (XTvX)�1XTvE½ yyT �vX(XTvX)�1

� (XTvX)�1XTvE½ y�)bT � b((XTvX)�1XTvE½ y�)T þ bbT (C:15)

In the first term, apply y ¼ Xbþ 1, so that

E½ yyT � ¼ E½(Xbþ 1)(Xbþ 1)T �
¼ E½(Xb) (Xb)T þ (Xb)1T þ 1XbT þ 11T � (C:16)

Taking the expected value of each term, and noting that only 1 is stochastic and that

the second and third terms of Eq. (C.16) equal zero because E[1] ¼ 0, produces

E½yyT � ¼ (Xb)(XbT )þ E½11T � ¼ XbbTX T þ E½11T � (C:17)

Note that E[11T] ¼ V(1), the variance–covariance matrix of the true errors. This

can be derived by applying the standard equation for calculating the variance–

covariance matrix of a vector, so that V(1) ¼ E[(12 E(1)) (12 E(1))T], and

using E(1) ¼ 0.

Substituting these results into Eq. (C.15) yields

V(b) ¼ (XTvX)�1 XTvXbbTX TvX (XTvX)�1

þ (XTvX)�1XTvE½11T �vX (XTvX)�1

� ((XTvX)�1 XTvXb)bT � b((XTvX)�1 XTvXb)T þ bbT

(C:18)

If X ¼ X, then (XTvX)�1XTvX ¼ I, which gives the following:

V(b) ¼ bbT þ ðXTvXÞ�1 XTvE½11T �vX(XTvX)�1

� bbT � bbT þ bbT
(C:19)

The bbT terms cancel, leaving

V(b) ¼ (XTvX)�1 XTvE½11T �vX (XTvX)�1 (C:20)

If the weight matrix is defined such that

E½11T � ¼ V(1) ¼ s 2v�1 (C:21)
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where s2 is the true common error variance, Eq. (C.20) reduces to

V(b) ¼ s 2(XTvX)�1 � s2(XTvX)�1 (C:22)

where the last equal sign is approximate because s2, the calculated error variance, is

used to approximate s2, the unknown true common error variance. Equation (C.22)

is the expression commonly used to calculate the variance–covariance matrix for

the parameter values but really only applies if X ¼ X, and the weights are defined

based on Eq. (C.21).

If the equation for V(b) cannot be simplified to Eq. (C.22), equations of the form

(C.18) or (C.20) should be used to calculate the variance–covariance matrix of

the parameter estimates, although it is unclear how to evaluate Eq. (C.18) because

b is unknown. For linear problems, Eq. (C.19) always produces a larger variance

for the parameters and simulated predictions than is produced by other possible

equations (Bard, 1974; Beck and Arnold, 1977, pp. 232–234). Thus, the smallest

variance parameter estimates are those for which Eq. (C.21) applies and, therefore,

for which X ¼ X and the weighting is defined such that the v is proportional to

V(1)21 (the variance–covariance matrix of the true unknown errors). Although

approximate, linear theory provides the only available guidance for defining the

weight matrix for nonlinear problems.
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APPENDIX D

SELECTED STATISTICAL TABLES

TABLE D.1 Selected Web Sites for the Standard Normal Distribution

(Mean 5 0.0; Standard Deviation 5 1,0) (accessed June 15, 2006)

http://www.anu.edu.au/nceph/surfstat/surfstat-home/tables/normal.php

http://www.statsoft.com/textbook/sttable.html#z

http://psych.colorado.edu/�mcclella/java/normal/tableNormal.html

http://www.fon.hum.uva.nl/Service/Statistics/NormalZ_distribution.html?Z=1.378

TABLE D.2 Selected Web Sites for the Student t-Distribution

(accessed June 15, 2006)

http://www.statsoft.com/textbook/sttable.html#t

http://www.econtools.com/jevons/java/Graphics2D/tDist.html

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm

http://www.stat.tamu.edu/�west/applets/tdemo.html
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Predictions, and Uncertainty. By Mary C. Hill and Claire R. Tiedeman
Published 2007 by John Wiley & Sons, Inc.



TABLE D.3 Critical Values of RN
2 Below Which the Hypothesis that the

Weighted Residuals Are Independent and Normally Distributed Is Rejected

at the Stated Significance Levela

ND or

NDþ NPR

Significance Level
ND or

NDþ NPR

Significance Level

0.05 0.10 0.05 0.10

35 0.943 0.952

50 0.953 0.963

51 0.954 0.964 81 0.970 0.975

53 0.957 0.964 83 0.971 0.976

55 0.958 0.965 85 0.972 0.977

57 0.961 0.966 87 0.972 0.977

59 0.962 0.967 89 0.972 0.977

61 0.963 0.968 91 0.973 0.978

63 0.964 0.970 93 0.973 0.979

65 0.965 0.971 95 0.974 0.979

67 0.966 0.971 97 0.975 0.979

69 0.966 0.972 99 0.976 0.980

71 0.967 0.972 131 0.980 0.983

73 0.968 0.973 200 0.987 0.989

75 0.969 0.973

77 0.969 0.974

79 0.970 0.975

aND, the number of observations (N-OBSERVATIONS in the UCODE_2005 documentation); NPR, the

number of prior information values (NPRIOR in the UCODE_2005 documentation).

Source: Shapiro and Francia (1972) and Brockwell and Davis (1987, p. 304), with permission.
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TABLE D.5 Selected Web Sites for the Chi-square Distribution

(accessed June 15, 2006)

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm

http//www.danielsoper.com/statcalc/calc12.aspx

http://faculty.vassar.edu/lowry/tabs.html#csq

http://www.vias.org/simulations/simusoft_distcalc.html
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INDEX

Page references followed by t indicate material in tables.

Accuracy, defined, 14

Accurate models, attributes of, 310

Accurate simulated results, requirements

for, 30–32

Additive errors, 31, 32

ADIFOR program, 19

Adjoint-states, 47, 77

Advective transport

analysis of, 193–195

calculation of, 195, 366

simulating with particle tracking

methods, 220

Advective-Transport Observation Package

(ADV) of MODFLOW-2000,

24, 194, 195, 257, 366. See also

MODFLOW-2000 program

calculation of particle paths by, 195, 366

particle projection by, 209–211, 220, 257

Advective-transport predictions, 162, 163,

164, 302, 365–366

opr statistics for, 368–370

ppr statistics for, 366–368

Advective-transport predictions, in

Exercises, 195–196, 211, 254–255

linear confidence intervals on, 207–208,

257–259

nonlinear confidence intervals on,

209–212, 257–259

opr statistics for, 202–204, 205–207

ppr statistics for, 199–202

Age observations, 287

AICc statistic, 98–99

in calculating alternative model

weighting, 189

in Exercises, 115

use of, 265t, 310, 311

AIC statistic, 98–99

in Exercises, 115

Alternative models, 140, 189, 241t. See

also Guideline 8

application of, 313–314

considering, 308–314

developing, 309–310

simulating predictions with, 312
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Ambiguous measurement errors, 300

ANIV (vertical anisotropy) parameters,

279, 280

Approximate critical values for linear

simultaneous intervals, 177

Approximate likelihood-function

approach, 187

Approximate linear model, 392–393

Approximate nonlinear model, 393

Aquifer test, long-term transient, 229

Aquifer tests, use of results from, 33, 94,

274, 277

Arid environments, groundwater systems

in, 217, 287

Atmospheric systems, initial conditions

for, 213

Average weighted residual, 101, 115, 117

Backward differences, 47

Base 10 logarithms, 79

Bayesian, 10, 34, 174, 305

BEALE-2000 program, 143

output file for, 156, 253

BEALE2-2K program, 190

Beale’s measure, 142. See also Modified

Beale’s measure

Bedrock hydraulic conductivity, 313–314

Best fit, parameter values that produce, 6,

7, 77, 137, 315, 343–344. See also

Optimal parameters

Bias, 13–14

in observations or prior information,

30–31, 215, 286, 304. See also

Model bias

BIC statistic, 99

in Exercises, 115

use of, 265t, 310, 311

Biodegradation models, calibrating,

226–227

Bonferroni simultaneous intervals, 177,

208. See also Simultaneous

confidence intervals

critical values for, 176t, 177

Bonferroni t statistic, percentage points of,

404–405t

Bootstrap methods, 140, 170,

Boundary conditions, parameterization of,

57, 216, 280

Breakthrough curves (BTC), 221, 222, 224

Calculated error variance, 95. See also

Standard error of regression; True

error variance

in Exercises, 113, 114

expected value of, 96

interpreting, 96–98, 303–304

Calibrated models. See also Model

calibration

determining whether predicted

values are contradicted by,

337–338

testing using omitted data and

postaudits, 339

use in identifying system properties

important to predictions, 160

use in identifying observations important

to predictions, 170

versus predictive models, 8

Cape Cod groundwater flow model,

280–281

Capture zones, Monte Carlo evaluations of,

342

Carbon-14 measurements, 287

Central differences, 47

Central-limit theorem, 380

Chi-square (x2) distribution, 96–97, 114
selected Web Sites for, 403t

x2 test statistic, 97
Clustered observations, 45, 285

Coefficient of variation, fitted, 95–96

Coefficient of variation, in calculating

weights, 32, 34, 294, 297, 303

examples of, 40, 90, 361

issues for graphs of weighted residuals,

101–104, 310, 362

for concentration observations,

224–225

for streamflow gain or

loss, 297–298

using to interpret confidence interval on

calculated error variance, 97

Coefficient of variation, of parameter

estimates, 127, 129t

in Exercises, 152t

Combined intrinsic model nonlinearity

measures, 190

for confidence intervals, 191–192

for correction factors, 192–193

Common error variance, 29, 398
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Composite scaled sensitivities (css), 48,

50–51

effects of nonlinearity on, 281–283

in model development, 278–280, 328

for evaluating information observations

provide about parameters, 60–62,

89, 240, 251, 263t, 265t

for identifying observations important to

predictions, 170–171, 204–205,

266t, 335

for identifying observations to

improve simulated processes,

331–333

for identifying parameters important to

predictions, 162–163, 196–199,

256–257, 266t

for identifying the need for improved

parameter estimates, 165–166

plotting, 60

reevaluating, 124–125, 145–146

_sc output file, 197

Comprehensive regression problem, 278

Computer execution time. See Execution

time

Concentration observations, 42, 223, 226,

370–373. See also Transport

observations

alternatives to using point

concentrations, 225

weighting, 32, 224–225

Concentration predictions, 338, 342–344

Concentrations, defining for contaminant

sources, 218–219

Concentrations, simulating, 221. See also

Transport Conceptual models,

alternative, 309, 313–314, 352t

development of, 261t, 272, 354–357

importance of, 264

and predictions, 313–314, 334, 341

Confidence intervals

assumptions underlying, 138, 180, 340

on calculated error variance, 96–98, 114

calculating, 138, 139, 176, 178, 180, 341

combined intrinsic model nonlinearity

measure for, 191–192

comparing to reasonable parameter

values, 140–141, 153, 251–252,

324–325, 373

definition, 138, 175

for determining weights, 200, 295–296,

305, 358–360

on differences, 182–184

individual, 138–139, 175, 176–178.

See also Individual confidence

intervals

linear, 138, 176–177, 341. See also

Linear confidence intervals

on the native equivalent of log-

transformed parameters, 130

nonlinear, 139, 177–181, 341. See also

Nonlinear confidence intervals

on parameters, 138–139, 151–153, 251,

313, 324–325, 373

on predictions, 176–181, 208–212,

257–259, 341

relation of Monte Carlo analysis to,

187–188

relation to hypothesis testing, 328

simultaneous, 175, 176–178, 180, 341.

See also Simultaneous confidence

intervals

using the Theis example to understand,

181–182

using to replace traditional sensitivity

analysis, 184–185

Confidence regions. See Parameter

confidence regions

Constant-Head Boundary (CHD)

parameters, 57

Constant-over-time observation

errors, 216

Constrained minimization method, 219

Contaminant transport. See also Transport

predictions involving, 193, 365. See also

Advective-transport predictions

simulating, 218

Contoured sensitivity maps, 55

Contour maps

of objective function, 35–37, 82,

75, 181

of one-percent scaled sensitivities, 55,

64, 237–239, 241–242. See also

One-percent scaled sensitivity

contour maps

of opr statistics, 208

Convergence of nonlinear regression

encouraging, 306–308

quantities used to test for, 386t
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Convergence criteria, 76–77

Convergence problems. See also

Guideline 7

diagnosing, 88–89, 306–308

improving by log-transforming

parameters, 79

reasons for, 51, 215, 221,

306–308, 322

Cook’s D influence statistic, 134–136

critical values for, 136

in Exercises, 146, 147t

use of, 228t, 263t, 265t, 327, 364–365

Correction factors that account for

unrepresented heterogeneity,

192–193

Correlated-over-time observation

errors, 216

Correlation coefficient matrix, 53

Correlation coefficient, parameter. See

Parameter correlation coefficients

Correlation coefficient R between weighted

observations and weighted simulated

values, 105–106

in Exercises, 115–117

Correlation coefficient RN
2 , 109, 110–111

critical values of, 111, 400t

in Exercises, 119–120, 249–250

Correlation coefficients

considering all, 155

for sample data, 127–128, 129t

Correlations

between observation errors, 28, 35, 216,

284, 298, 376–381

between weighted residuals, expected,

109, 111–112, 119, 123

Coupled estimation methodology,

223–224

Covariances, 127. See also Parameter

variance–covariance matrix;

Variance–covariance matrix

of parameters, 126–127

of sample data, 127–128, 129t

for weight matrices, 35, 298

Critical values

Bonferroni simultaneous, 176–177

of Cook’s D, 136, 146, 364

of css, 51

for calculating confidence

intervals, 176, 178

for calculating weights, 295

of DFBETAS, 136, 146

of intrinsic model nonlinearity, 145

of modified Beale’s measure, 144

of RN
2 , 111, 120, 250, 400t

of runs statistic, 107–108, 118, 249

Scheffe simultaneous, 176–177, 178

of total model nonlinearity, 144–145

css. See Composite scaled sensitivities

CTB statistic, 50

Cumulative probabilities, calculating,

109–110

Damping, in the Gauss–Newton method,

72–73, 83

Damping parameter, 75, 79, 88

calculating, 73–74, 385–389

Darcy’s Law, 12, 36, 82, 149, 393

Data. See also Geophysical data; Hard

data; Observation data; Potential

new data (Guidelines 11 and 12);

Soft data

effect of transient processes on, 215

improving use of, 1, 260, 264

including many kinds of in regressions,

284–288

omitting from model calibration, 338

scarcity of, 6, 9, 78, 225

Data assessment strategies, 1

Data assimilation, 273, 284, 353–357

Data collection

to improve simulated processes,

330–334

methods to guide, 159–174

relation to modeling objectives, 329

using predictions to guide, 159–174,

200, 207, 334–336, 365–370

Data collection strategies, 159–160, 173,

267, 330

Data clustering. See Clustered observations

Data error, analyzing, 34

Data fusion, 273

Data interpretation, diagnosing error

in, 140

Data management, in model development,

274–277, 353–357

Data needs assessment, utility of, 6–7

Data noise, 51

Data variability, managing, 272
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Death Valley regional groundwater

flow system (DVRFS) model, 226,

347–370

composite scaled sensitivities in,

278–280

evaluating system information in,

353–357

flowchart of data used to develop,

354, 355

hydrogeologic framework conceptual

and digital models for, 354–356

including many kinds of observations in,

357–358

model fit to observations in, 362–364

parameter estimates for, 324–325

identifying new data to improve

predictions in, 365–370

reasonable parameter ranges for,

324–325

weights that reflect errors in, 358–362

Defined parameters

deciding which to estimate, 45–46

designing, 45, 278

including all, 131, 134, 164, 180–181,

289

Dependent variable, 6, 376

errors, uncorrelated, 377–378

Designed inconsistencies, 286

Deterministic methods

evaluating prediction uncertainty using,

337–339

for alternative model development,

186, 309

Dewatering, effect on transmissivity, 272

DFBETAS influence statistic, 50, 134, 136

use of, 146–147, 228t, 263t, 265t, 306t

in identifying model error, 326–327

Diagnostic statistics, 7

Diagonal matrix, 380

Diagonal weight matrix, 26–28, 31,

34, 294

assumptions required for, 376–381

correlation coefficient R and, 106

dimensionless scaled sensitivities

and, 48

using differencing to achieve, 216

weighted residuals and, 35

Differences, calculating weights on,

297–298

Differences, forward, backward, or

central, 47

Differences, for predictions

calculation of, 182

confidence or prediction intervals on,

183

spatial, 184

standard deviation of, 182–183

Differencing, temporal, 216

Digital elevation models (DEMs), 355

simulated equivalents and, 322

Dimensionless scaled sensitivities (dss),

48–50, 61t, 148t

for CHD parameters, 57

for diagnosing cause of poor model fit,

320–321

for evaluating information observations

provide about parameters, 60–62,

263t, 265t, 327

for identifying observations important to

predictions, 170–171, 204–205,

266t, 355

for identifying observations to improve

simulated processes, 331–333

for identifying parameters important to

predictions, 162–163

use of, 49

Dimensionless scaled sensitivities values,

large, 174

Direct inverse modeling, 11–12

Discharge. See Groundwater discharge

Dispersivity values, in transport modeling,

221

Dissolution rate parameter, 226

Dominant errors, 381

Dottie plots, 140

Double-dogleg trust region approach, 68

Drawdown observations

defined as differences, 182–183, 216

fitted standard deviation for, 246

in demonstrating modified

Gauss–Newton method, 70, 74–75

in Exercises, 231–233

potential, 332–333

weighted residuals for, 246–249

dss. See Dimensionless scaled sensitivities

dss-css-pss-pcc, using together, 335

DVRFS model. See Death Valley regional

groundwater flow system model
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Earth systems, well-posed regressions in,

277–278

Earthvision software, 274, 355

Effective hydraulic-conductivity values,

325. See also Hydraulic conductivity

Effective porosity parameters, in Exercises,

195, 199

prediction scaled sensitivites for, 198

parameter-prediction statistic for,

200–201

Effluent transport simulation, 23, 24,

193–194

Eigenvalues, 132

Eigenvectors, 10, 11, 132

Error analysis, defining weights on the

basis of, 31, 304, 376–381

Error components, for observations

accumulating, 296–297

assumptions about, 377–381

quantifying, 295–296

Errors. See alsoMeasurement error; Model

error; Observation errors, True errors

accurate simulated results and, 30

in data interpretation and model

construction, diagnosing, 140–141

fitting, 270

independent and normally distributed,

296–297

with a mean of zero, 377

normally distributed, 380–381

uncorrelated, 377–378

variance–covariance matrices of, 380

weighting and, 31–32, 34–35, 216, 224,

293–305, 376–381

weights that reflect, 358–362

Error, study of elevation error, 295–296

Estimated parameter values. See Parameter

estimates

Estimates

accurate, definition, 14

precise, definition, 13

reliable, definition, 14

Estimates, precision of, 126, 127, 138

classification of, 165–166

evaluating using nonlinear confidence

intervals, 154–155

evaluating using standard deviations,

linear confidence intervals, and

coefficients of variation, 151–153

ETM (maximum evapotranspiration)

parameters, 279, 280

Evapotranspiration (ET), 356

Exact critical values, linear simultaneous

intervals, 177

Execution time issues, 345–346

Execution times

improving, 346

for global-search methods, 77

for forward models, 271–272

for Monte Carlo methods, 186–187

for nonlinear confidence intervals, 139,

180–181

reducing, 45–46

for regression simulations, 346

for transport models, 220–221

Exercises, 2–3, 24–25

advective transport prediction, 195–196,

254–255

composite scaled sensitivities (css),

60–62, 145–146, 204–205, 240,

243, 250–251, 256

confidence intervals on parameters,

151–153, 154–155, 251–252

confidence intervals on predictions,

207–212, 257–259

Cook’s D, 146–147

DFBETAS, 146–147

dimensionless scaled sensitivities (dss),

60–61, 204–205

fitted error statistics, 114, 246

graphical analyses of model fit,

115–123, 246–250

groundwater management problem

used for, 21–24

influence statistics, 146–148

leverage statistics, 66, 146–147

linearity measures, 155–157, 253

model fit, 40, 113–123, 235, 244–250

modified Beale’s measure, 155–156,

252

modified Gauss–Newton method, 80–87

nonlinear regression, 80–92

nonlinearity measures, 156–157

normal probability graphs, 119–123

objective-function surfaces, 92

observation definition, 38–40, 231

observation–prediction (opr) statistic,

202–204, 205–207
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parameter correlation coefficients

(pcc), 60–62, 148–149 196–199,

204–207, 243, 244, 252–253,

256–257

parameter definition, 36, 38, 230–231

parameter estimates, 91, 245–246

parameter estimation, 87–92, 243–244

parameter-prediction (ppr) statistic,

199–202

prediction scaled sensitivities (pss),

196–199, 256

prior information, 90–91

reasonable ranges, 153, 251–252

runs statistic, 117–118

sensitivity analysis, 60–66, 235–243

simulate heads, 25, 229

uniqueness of parameter estimates,

148–151

weighted residuals, 115–119, 246–250

weighting, 39–40, 231–235

Existing model recalibration, strategies for,

227–228

Expected value, 395

of calculated error variance, 96,

113–114

of error, 294, 300

of optimized parameters, 395

of standard error of the regression, 96,

113–114

Failed regressions, information available

from, 307–308

Field applications, 277, 278–281,

287–288, 293, 313–314, 317–318,

319–320, 324–325, 347–351,

353–379

Field systems, developing alternative

models for, 309–310

Field work, using observations to guide, 45,

369. See also Data collection

First order, second moment (FOSM)

methods, 170, 174

Fit-consistent statistics, 97

Fit-independent statistics, 46–56, 263t,

265–266t, 278

advantages and limitations of, 56–60

insights about opr statistic from,

173–174

integration of by opr statistic, 171

as measures of leverage, 46

for sensitivity analysis, 46–56

use in determining parameters

supported by observations, 45

use in encouraging well-posed

regression, 278

Fitted coefficient of variation, 95–96

Fitted error statistics, 95–96, 114,

use of, 265t

Fitted standard deviation, 95–96,

114, 246

Flow and transport parameters, coupled

estimation of, 223–224

Flow data. See Flow observations

Flow model. See Groundwater model(s)

Flow observations

calculating weights on, 297–298

contribution toward simulating

advective-transport predictions, 202

in Exercises, 38–39, 231

importance in regression, 284

issues for weighting of, 301–303

in objective function, 27

in reducing parameter correlations,

81–82

residuals for, in Death Valley regional

flow system model, 362–364

Flow parameters, errors in, 56

Flow residuals. See Flow observations

Flow system. SeeGroundwater flow system

Flow system dynamics, using sensitivity

maps to understand, 63–65, 235

Flow-system observations

in calibrating transport models, 217

use with transport observations,

223–224

Flow system properties, in Exercises, 38t,

231t

Forward differences, 47

Forward model execution times. See

Execution times

Forward model nonlinearities, managing,

271–272

Forward model solution, difficulties

attaining, 143–144

Fractional parameter value changes,

73–74, 386–387

Fractured-rock aquifer, 275–276, 277,

313–314, 353
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Frequency domain analysis, 215

F statistic, selected Web sites for, 406t

Full weight matrices, 28, 34–35, 294

correlation coefficient R and, 106

dimensionless scaled sensitivities

and, 49

weighted residuals and, 35

Gauss–Markov theorem, 391

Gauss–Newton nonlinear regression

method, 67–68, 70, 71–72. See also

Modified Gauss–Newton method

difficulties with, 71–72, 75

Gauss–Newton nonlinear regression

normal equations, 69, 70–71

deriving, 87

GCV measure, 95

General Head Boundary (GHB) Package of

MODFLOW-2000

parameters, 279, 280

Geochemistry observations, 287

Geographic information system

products, 354

Geographic information systems

(GIS), 274

Geophysical data

as observations or to support prior

information, 291–292t

use of, 272, 293

Geoscientific information system (GSIS)

products, 354, 356

Global optimization methods, 77

Global-search methods, 77–78

GMS software, 274, 355

GOCAD software, 274, 355

Gradient methods, 67, 68, 77–78. See also

Modified Gauss–Newton method

Graphical analyses

of model fit and weighted residuals,

99–113, 316–320, 362–364

in Exercises, 115–119, 246–250

and utility of inverse modeling, 7

Graphs. See Graphical analyses

Grindsted landfill

groundwater system at, 370–373

flow and transport model of, 226,

370–373

two- and three-dimensional models

for, 372

Groundwater data, variability in, 272

Groundwater discharge, 320, 356. See also

Flow observations

Groundwater flow model. SeeGroundwater

model(s)

Groundwater flow problems, understanding,

15

Ground-Water Flow Process. See

MODFLOW-2000 program

Groundwater flow simulations, 24

confined layers in, 271

in MODFLOW-2000, 19

transient stress and, 214

Groundwater flow system, 21

changes in, 214

characteristics of, 23–24

differences in pumping scenarios in,

182–183

Groundwater hydrology, model

complexities in, 268–269

Groundwater inverse modeling, 11–12

Groundwater inverse problems, level of

parameterization for, 10

Groundwater management

problem, 21–24

purpose and strategy of, 23

Groundwater model(s). See also

Groundwater modeling; Models

calibration using different types of

observations for, 287–288

development, 25 OK

hydrogeology in, 273–277, 354–357

observation clustering in, 285

parameterization in, 5, 10–11,

290–291

prior information in, 289–290

scale issues in, 219–220

scaling by parameter value and, 57

systematic misfit in, 94

well-posed regression for, 280–281

Groundwater modeling. See also

Groundwater model(s)

differencing in, 216

Monte Carlo methods in, 342

pioneers of using regression

methods in, 9

Groundwater monitoring network

design, 174

Groundwater recharge estimates, 356
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Groundwater system conceptual model,

356–357. See also Conceptual

models

Groundwater system numerical models,

357. See also Numerical models

Groundwater systems

data assimilation in, 273

fundamental aspects of, 2

heat as a tracer in, 288

hydrogeologic data in, 160, 273–274,

354–357

interpolated hydraulic heads in,

284–285

plumes in, 42, 280–281, 372–373

selected field investigations of,

348–351t

synthetic models of, 352t

Groundwater temperature data, 287–288

Guideline 1 (Principle of parsimony), 44,

95, 97, 218, 264, 265t, 268–272, 273,

306, 345

Guideline 2 (Broad range of system data),

219, 228t, 264, 265t, 272–277, 278,

284, 288, 291, 306, 309, 321, 330,

353–357, 371–373

Guideline 3 (Well-posed regression),

44, 46, 56, 60, 137, 228t, 265t,

277–283, 300, 306, 307, 321, 327,

328, 333

Guideline 4 (Many kinds of observations),

44, 45, 214, 228t, 264, 265t, 273,

284–288, 371–373

Guideline 5 (Careful use of prior infor-

mation), 33, 34, 50, 80, 137, 265t, 274,

278, 288–293, 325, 357–358

Guideline 6 (Weights that reflect errors),

28, 30, 31, 34, 35, 39, 49, 79, 101, 131,

144, 165, 176, 200, 214, 216, 228t,

284, 290, 291–305, 316, 323, 331,

358–362, 377, 378, 380, 381, 394

Guideline 7 (Convergence), 306–308

Guideline 8 (Alternative models), 43, 77,

186, 264, 303, 328, 330, 342

Guideline 9 (Model fit), 100, 108, 111,

228t, 265–266t, 309–311, 316–323,

326–327, 329, 330, 362–364, 369

Guideline 10 (Parameter values), 124, 137,

228t, 266t, 290, 309–311, 323–328,

329, 330, 364, 373

Guideline 11 (New data to improve model),

34, 46, 60, 228t, 265t, 267, 306,

330–334

Guideline 12 (New data to improve pre-

dictions), 48, 228t, 264, 266t, 267,

306, 320, 332, 334–336, 365–370

Guideline 13 (Prediction uncertainty using

deterministic methods), 266t, 320,

337–339

Guideline 14 (Prediction uncertainty using

statistical methods), 43, 186, 266t,

267, 309, 311, 312, 333, 334,

339–344

Guidelines for effective modeling, 17t,

261–262t, 265–266t, 308

implementation of, 264–267

purpose, 263–264

relation to previous work, 264

using and testing, 345–373

Hard data, 260

Head-change observations, transient,

360–362

Head observations. See Hydraulic-head

observations

Heads. See Hydraulic heads

Heat transport models, 215, 288

Hydraulic conductivity

Darcy’s Law and, 12, 36

and geophysical data, 291

in groundwater system for Exercises, 24,

38, 81,

measurements of, 45, 94, 221, 272

prior information and, 33, 305

representing, 10, 42, 264, 272, 274, 310,

313, 325

ranges of, 325

Hydraulic-conductivity parameter(s), 81

confidence intervals on, 153, 252, 324

defining, 10–11, 42, 44

in Exercises, 38, 81

log transforming, 87

Hydraulic gradient

hydraulic-conductivity representation

and, 42

hydraulic-head error and, 359

interpolated observations and, 285

Hydraulic-head data. See Hydraulic-head

observations
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Hydraulic-head observations. See also

Hydraulic heads; Hydraulic-head

weighted residuals

calculating weights on, 295–296, 358

clustered, 285

confidence intervals on, 180

errors in, 216, 296–297, 358–362,

377–381

evaluating using opr statistic,

368–369

interpolated, 284–285

in Exercises, 38–39, 231

model construction and, 42

multilayer, 321–322

in objective function, 27

potential, 204–207, 331–332

temporal differencing of, 216

Hydraulic-head prediction(s) calculating

differences for, 182

Hydraulic-head residuals. See Hydraulic

head weighted residuals

Hydraulic heads

Darcy’s Law and, 12–13

linear relationships of, 235–240

maps of one-percent scaled

sensitivities for, 55–56, 64, 235,

237–242, 333

simulation of, 271–272

sources of error related to, 296

Hydraulic-head weighted residuals,

spatial randomness of, 117,

318, 363

Hydraulic properties, assigning to frame-

work digital model, 356

Hydrocarbon dissolution/biodegradation
model, applying regression to,

226–227

Hydrogeologic boundary position/location
errors, 359

Hydrogeologic data, use of, 273–275. See

also Hydraulic conductivity

Hydrogeologic framework conceptual

model, 354–355

Hydrogeologic framework digital model,

355–356

Hydrographs, 183

Hydrologic data, assimilation of, 273

Hydrologic models, 169, 339

Hypothesis testing, 328

Important observations. See also

Observation–prediction (opr) statistic

to parameter estimates, 132–136,

327–328, 364–365

to predictions, 170–173, 334, 368–370

Important parameters, to predictions,

160–170, 196–202, 366–368. See

also Parameter–prediction (ppr)

statistic; Prediction scaled sensitivities

(pss)

Important processes

capturing, 270

omission of, 321

Improved information, and ppr statistic,

168–169

Improved parameter estimation,

classification of the need

for, 165–166

Inconsistencies

between observations and model

construction, 286, 306

in initial conditions, 213–214

Independent variables, evaluating weighted

residuals against, 106–108, 117, 248,

318, 319, 332–333, 363–364

Indirect inverse modeling, 11–12

Individual confidence intervals, 341. See

also Confidence intervals

in Exercises, 151–155, 208–211,

251–252

on parameters, 138–139

on predictions, 175, 176–178

Individual fit-consistent statistics, 97

Individual prediction intervals, 175

Inferential methods, to compute nonlinear

needs work confidence intervals, 139

Inferential statistics, 7

quantifying parameter uncertainty using,

137–139, 151–153, 154–155,

251–252

quantifying prediction uncertainty using,

174–185, 207–212, 257–259, 341

Influence statistics, 46, 133–136, 172. See

also Cook’s D influence statistic;

DFBETAS influence statistic

diagnosing the cause of poor model fit

and, 320

diagnosing the cause of unreasonable

parameter estimates and, 326–327
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evaluating the importance of

observations using, 146–147,

327, 364–365

nonlinearity of, 135

Initial conditions, for transient models,

213–214

Insensitive parameters, 33, 45–46, 289,

290, 306–307t

Insensitivity, 6

Instability, 6

Interpolated observations, 284–285

Interpolation methods, for parameterization,

10, 11

Intrinsic model nonlinearity, 144, 145,

156–157

combined. See Combined intrinsic

model nonlinearity

Inverse modeling, 6

direct and indirect, 11–12

model calibration with, 3–8

problems revealed by, 7

use of parameter limits in, 80

utility of, 6–7

Inverse models

execution times for, 346

log transformations in, 79

nonlinearity of, 58

Investigate Objective Function mode. See

UCODE_2005 program

Jackknifing method, 170, 172

Jacobian matrix, 69

Kashyap’s measure, 95, 310

K (hydraulic conductivity) parameters.

See Hydraulic-conductivity

parameter(s)

Kriged hydraulic-head measurements,

284

Kriging, 284, 309, 342

L1 norm objective function, 29

L1 norm of sensitivities, 50

Lagrangian methods, 221

Landfill. See Exercises, groundwater

management problem used for;

Grindsted landfill

Large weights, using, 301–303

Latin hypercube sampling, 186

Least-squares objective function. See

Weighted least-squares objective

function; Weighted least-squares

objective-function surfaces

Levenberg–Marquardt method, 68

Leverage, 46

calculating, 134

Leverage statistics, 54, 133–134

advantages and limitations of, 59–60

for evaluating potential new data, 332

for identifying observations important to

parameters, 263t, 327

in Exercises, 66, 146–147

use of, 265t, 306t

Likelihood confidence regions, 178

Limits, on estimated parameter values,

80, 140

Linear confidence intervals, 138, 176–177,

341. See also Confidence intervals

assumptions underlying, 180, 340

comparing to nonlinear intervals,

179–180

comparing to reasonable parameter

values, 140–142

on differences, 183

in Exercises, 151–153, 208–210,

251–252, 257–259

for log-transformed parameters, 130

overlapping, 328

on parameters, 138

on predictions, 176–177

relation of Monte Carlo analysis to,

187–188

testing linearity for, 143–145

Linear individual confidence intervals. See

Individual confidence intervals;

Linear confidence intervals

Linear inferential statistical methods,

137–138

Linearity, testing, 142–145, 155–157,

189–193, 253

Linearized approximate nonlinear model,

393

Linearized objective function, 69–70

Linearized objective-function surface, 71,

74–76, 181–182

Linearized parameter confidence region,

189

Linearized true nonlinear model, 392
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Linear models, 12–13

Linear prediction intervals, 176–177

Linear prior information equations, 32

Linear regression, 2

observation influence in, 133–134

observation leverage in, 133–134

important properties of, 391–398

use in illustrating noise-sensitivity

interaction, 51

versus nonlinear regression, 70

Linear simultaneous confidence intervals.

See Linear confidence intervals;

Simultaneous confidence intervals

Linear uncertainty analysis, 9. See also

Linear confidence intervals; Linear

prediction intervals; First order,

second moment (FOSM) methods

LINEAR_UNCERTAINTY program, 177,

184

Linssen’s measure, 142

Local sensitivity methods, 9, 47

Location uncertainty, 359

Log-transformed parameters, 78–80, 305

calculating damping parameter for,

385–388

dss for, 49

in Exercises, 87

prior information and, 305

statistics for, 130

Madison aquifer groundwater model, 300

Maggia Valley models, 310, 311

Maps, using independent variables and the

runs statistic, 106–108, 319

Markov chain Monte Carlo method, 186

Marquardt method, 68

Marquardt parameter, 72

calculating, 73

difference in PEST, 19

Mathematical models, 1

Matrices. See also Errors, Full weight

matrices; Parameter correlation

coefficient matrices; Parameter

variance–covariance matrix;

Variance–covariance matrix;

Weight matrices

Jacobian, 69

for nonlinear regression, 383–384

sensitivity, 69, 71, 132, 384

Max-allowed-change, 73, 74, 76, 385

Max-calculated-change, 74, 76, 307, 308

convergence and, 88

MAX-CHANGE (MaxChange) variable,

73, 83, 385–389

effect of, 388

Maximum-likelihood objective function,

29, 95, 98, 99, 374

derivation of, 375–376

relation to least-squares objective

function, 376

Measured values, observations as sums of

or differences between, 297–298

Measurement error, 300–301, 359–360

Method of characteristics (MOC), 223

Methods, using and testing, 1–2,

345–373

MFI2K program, 3

MGO program, 78

Microsoft Excel, 109

Mirror Lake groundwater flow system,

alternative models for, 313–314

Model accuracy, encouraging convergence

via, 306–308

Model bias, 13–14, 315. See also Model

error

Model calibration, 289

execution time and, 345

flowchart for, 4

guidelines for, 17t

inconsistencies and, 214

with inverse modeling, 3–8

issues fundamental to, 4–8

steps in, 4

techniques, 2

of transient models, 213–217

of transport models, 217–227

Model construction

addressing problems with, 321

modifying, 322

observations inconsistent

with, 286–287

regression match and, 320–321

use of observations in, 42–43

Model development

highly parameterized, 291

measurements in, 1–2

parsimony in, 270–271

stages in, 308
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Model development guidelines, 268–314.

See also Guidelines; Modeling

guidelines

Model error, 296, 300–301

as a cause of model fit problems, 315

detecting, 16, 80, 303–304, 323–327

and model bias, 315

Death Valley model and, 358

model fit and, 97, 285, 303–304

graphs showing evidence of, 100,

103, 105

graphs showing no evidence of, 102

Grindsted transport model and, 373

indications of, 97, 107, 141, 262

omission of processes and, 321

parameter estimates in detecting,

323–326

postaudits and, 339

weighting and, 294, 296, 298, 300–301,

377–379

Model fit. See also Overfitting;

Guideline 9; Systematic model misfit

analysis of, 316

determining, 316–320

evaluating, 93–123, 315, 316–323

evaluating measures of, 244–246

evaluating using starting parameter

values, 40

examining for observations important to

model purpose, 320

graphical analyses of, 99–113, 246–250

magnitude of residuals and weighted

residuals in, 93–94

measures of, 94–99

poor model fit, diagnosing cause,

320–323, 327

statistics consistent with, 97

statistics related to, 246

Model-fit convergence criterion, 76–77

Model-fit statistics, 95–99, 269

Model fit to observations, investigating,

362–364

Model inconsistencies, identifying the

cause of, 286–287

Modeling guidelines, 260–267. See also

Guidelines; Model development

guidelines

categories of, 2

comprehensive nature of, 9

effective implementation of, 264–267

placement of predictions in, 267

purpose of, 263–264

questions, statistics, graphs, figures, and

tables related to, 265–266t

Modeling process, links and associated

methods in, 263

Modeling protocol, 263

Modeling steps, flexible application of, 267

Model input files, defining observations in,

38–39

Model inputs, 5

determination of, 8

additional for transport model

calibration, 225–226

Model layers, confined, 271–272

MODEL_LINEARITY_ADV program,

190

MODEL_LINEARITY program, 143

Model nonlinearity. See also Linearity,

testing; Nonlinearity

methods for detecting, 144–145

effect on analysis, 44

effect on regression, 391–398

managing, 271–272

methods that account for, 170

testing, 189–193

Model nonuniqueness, testing, 151

Model parameters, implementing improved

information on, 169

Model predictions. See also Predictions

evaluating, 158–170

importance of model parameters to, 169

use of, 158–159

Model predictive capabilities, testing,

337–339

Model purpose, 261t

observations important to, 320

Model recalibration, issues related to, 227,

228t

Models. See also Alternative models;

Death Valley regional groundwater

flow system (DVRFS) model;

Existing model recalibration;

Modeling guidelines; Transient model

calibration; Transport model

calibration

ability to simulate predictions, 256

accurate, 30
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Models (Continued)

biased, 30–31

complex, 269, 291

with different levels of complexity, 270

discriminating among, 98–99, 310–311

levels of confidence in, 174–193,

338–339

nonlinear, 12–13

predictive versus calibrated, 8

quantitative links provided by, 7–8

refutability of, 270

resolving problems with, 111

simple, 268–270

transparency of, 7, 270, 278

Model sensitivity analysis, 160. See also

Sensitivity analysis

Model simplification,

in Guideline 1, 268–277

example of, 277

Model testing

methods, 391–398

Guidelines 9 and 10, 315–328,

362–365

Model uncertainty, reduction of, 227

ModelViewer program, 3

MODFLOW-2000 program, 3, 18–21, 25,

112. See also Advective-Transport

Observation Package (ADV);

General Head Boundary (GHB)

Package, Multi-Node Well (MNW)

Package

capabilities of, 19–21

correlation coefficients calculated by,

62t, 63t, 148t, 149t, 199t, 206t,

244t, 253t, 257t

familiarity with, 15

full weight matrices and, 28

for graphs of observed versus simulated

values, 105

Ground-Water Flow (GWF) Process, 3,

18–21, 25

hydraulic conductivities in, 81

linear prior information equations

supported by, 32

listing of weighted residuals by, 93

LIST output file showing model fit, 236

LIST output file showing particle path,

196, 255

Marquardt parameter in, 73

Observation (OBS) Process, 3, 18, 19,

21, 25, 358

Parameter-Estimation (PES) Process, 3,

18, 19, 25

parameter correlation coefficient matrix

calculated by, 148

plot-symbol variables in, 101

prediction scaled sensitivities calculated

by, 197

regression simulations in, 346

runs statistic information printed by, 108

runs statistic test results via, 107–108

Sensitivity (SEN) Process, 3, 18, 19, 25

scaled sensitivities in, 161, 162

scaling of sensitivities difficulty, 57

sensitivities calculation by sensitivity-

equation method, 47, 280

sensitivities calculated by, 61t

Uncertainty (UNC) Process, 112, 139,

154, 190

runs statistic in, 108, 118, 249

MODFLOWP program, 280, 342

Modified Beale’s measure, 142–145,

189, 190

calculation of, 143

comparing with critical values, 144

using to test model linearity, 155–156,

253

Modified Gauss–Newton iterations,

statistics from, 89, 90, 150, 245

Modified Gauss–Newton method, 68–77.

See also Nonlinear regression

application to a two-parameter problem,

80–87

calculation details of, 383–390

convergence of, 77

convergence criteria for, 76–77

example of, 74–76

normal equations for, 68–74

performance of, 82–83

Modified method of characteristics

(MMOC), 223

Modified weighted simulated values for

graphical analysis, 104

Monitoring network design, 174

Monod kinetics, 226

Monte Carlo analyses, 140

advantages of, 188

elements of, 185–187
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individual intervals calculated

using, 175

least-squares objective function

in, 188

parameter sampling, 186, 188–189

quantifying prediction uncertainty using,

185, 341–344

relation to linear and nonlinear

confidence intervals, 187–188

results, analyzing and displaying, 187

results to save from, 187

runs, number of, 186–187

using the Theis example to understand,

188–189

Multi-Model Analysis (MMA) program,

189

Multi-Node Well (MNW) Package of

MODFLOW-2000, 322

Multiobjective optimization, 29,

30, 78

alternative weighting schemes

in, 299

Multiple parameters, improved information

on, 169, 330–334

Multiple parameter value sets, calculating

statistics for, 333–334

Multiplication arrays, 20, 277

Multiplicative errors, 32

Native parameter values, 79

calculating statistics for, 130

in Exercises, 87

Natural-gradient tracer transport, model

calibration of, 225

Natural logarithms, 79

Negative runs test statistic, 108

Network design. See Monitoring network

design

Nevada Test Site, potential contaminants

from, 347

New data. See also Data collection;

Guideline 11; Guideline 12

to improve predictions, 334–336,

365–370

to improve simulated processes,

330–334

to test model predictive capabilities, 339

New observations, importance to predic-

tions, 170–173, 334–336

95-percent confidence intervals, 176–181,

251, 252. See also Confidence

intervals

computed, 257

linear, 138, 176–177, 208

nonlinear, 139, 177–181, 209, 210

Nonaqueous phase liquids (NAPLs), 218

Nonintrinsic nonlinearity, 135

Nonlinear confidence intervals, 139,

177–181. See also Confidence

intervals

calculating on advective transport

components, 209–212

characteristics of, 179–180

in Exercises, 154–155, 209–212

on parameters, 139

on predictions, 177–181

relation of linear intervals to, 180, 341

relation of Monte Carlo analysis to,

187–188

Nonlinear function, linearizing, 69

Nonlinear individual confidence intervals,

138–139. See also Confidence

intervals

Nonlinear intervals, 341. See also

Nonlinear confidence intervals;

Nonlinear prediction intervals

calculating, 178, 180

investigating characteristics of, 179

Nonlinearity, 12. See also Model

nonlinearity

of influence measures, 135

effects on parameter correlation coeffi-

cients, 58, 281–283

effects on scaled sensitivities, 57,

281–283

methods that ignore, 9–10

Nonlinear models, 12–13

Nonlinear objective-function surface,

37, 58, 70, 74, 75, 82, 139, 179,

181–182

Nonlinear prediction intervals, 177–181

Nonlinear regression, 67. See also

Modified Gauss–Newton method

difference with linear regression, 70

encouraging convergence of, 306–308

estimating parameters by, 43

execution times for, 245–246

in Exercises, 82–86, 87–92, 243–244
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Nonlinear regression (Continued)

in geophysics, 9

predictions and, 160, 344

vectors and matrices for, 383–384

weighting issues in, 298–305

Nonlinear regression theory, 2

Nonlinear simultaneous intervals, 175. See

also Nonlinear confidence intervals;

Simultaneous confidence intervals

Nonoptimal parameter values, variance–

covariance matrix with, 126, 131

Nonrandom-appearing residuals, testing,

111–112

Nonsimulated processes, effect on

observations, 322–323

Nonsimulated transient stress

errors, 360

Nonuniqueness problem, 6

Nonunique parameter estimates, 137

detecting, 58, 149–151

Normal equations, 68–74, 395

deriving, 87

iterative form of, 70

quasi-Newton updating of the,

384–385

solving, 389

Normality, 30. See also Normal probability

distribution

Normally distributed errors, 380–381

Normally distributed weighted

residuals, acceptable deviations from,

119–123

Normal order statistics, correlation

between ordered weighted residuals

and, 108–111, 250

Normal probability axis, 109

Normal probability distribution, 118

assumed for linear intervals, 30,

138, 177

assumed for the maximum likelihood

objective function, 374

not assumed to estimate parameter

values, 30

Normal probability graphs, 108–111. See

also Normal order statistics

common problems with, 110

in Exercises, 119–123, 249–250

Normal quantiles (normal score), 109

Numerical dispersion, 221–223

Numerical issues, in transport model

calibration, 220–223

Numerical model(s)

developing, 354

for Exercises, 21, 23

groundwater system, 357

parameters in, 269

Objective function(s), 6, 26. See also

Maximum-likelihood objective

function; Weighted least-squares

objective function

alternative, 28–30

comparing observed and simulated

values using, 26–40

L1 norm, 29

least-squares, 29, 30

linearized, 69–70

maximum-likelihood, 29

Objective function issues, 374–382

Objective-function surfaces, 35–36, 37,

58, 181

linearized, 71, 75, 181

constructing, 35

data sets for constructing, 81

in Exercises, 81–82

irregular, 78

relation to parameter correlation

coefficients, 58, 81–82

usefulness of, 36

using to explore regression

performance, 92

Objective function trade-offs, in

multiobjective optimization, 78

Objective-function values

in Exercises, 91, 113

as a measure of overall model fit, 95

Observation data. See Observations

Observation errors, 300. See also

Weighting(s), Weights

classification of, 216

correlations between, 298

random-over-time, 216

uncorrelated, 378

Observation–parameter combinations

dimensionless scaled sensitivities of,

48–50

DFBETAS values of, 147

leverage statistics of, 54
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Observation(s)–parameter(s)–

prediction(s) sequence/triad, 7–8, 46,
160, 170, 263t

fit-independent statistics to evaluate, 42

Observation–prediction (opr) statistic,

131, 170, 171–173, 335, 336. See also

OPR-PPR program

calculating, 173

in Exercises, 205–207

fit-independent, 173–174

insights about, 173–174

large values of, 173

prediction standard deviation and, 172

strengths and weaknesses of, 173

using, 202, 205–207, 368–370

Observation possibilities, 284

Observations (observed values), 4, 260. See

also Guideline 4; Potential new

observations

advantageous use of, 270

alternatives to using point concentration

measurements as, 225

assigning large weights to, 301

clustered, 45, 285

comparing the relative importance of, 48

concentration, 42

considering many, 394

consistent with simulated processes, 215

in direct inverse modeling, 12

that dominate parameter estimation, 364

effect of non-simulated processes on,

322–323

errors in, 35

errors in the weighting of, 323

evaluating information provided

by, 43–44, 306–308

in Exercises, 38–40, 231–235

hydraulic-head, 42

important to estimated parameter values,

132–136

including in regressions, 45, 284–288

including many kinds of in regression,

357

inconsistent with model construction,

286–287

interpolated, 284–285

leverage statistics for, 54

potential new data to support, 335–336

regularization on, 10

simulated equivalents of, 28. See also

Simulated equivalents, of

observations

sources of error related to, 296–297

time-consistent, 215

total error for, 378–380

transient, 214–216

transport, 217

unbiased, 30–31

use in adjusting parameter

values, 43–44

using to calibrate groundwater flow and

transport models, 287–288

using predictions to guide

collection of, 170–174

versus prior information, 288–293

weighting, 26–27, 215, 293–305. See

also Weighting(s), Weights

Observation (OBS) Process. See

MODFLOW-2000 program

Observation uncertainty, represented as

proportional to concentration,

224–225

Observation well, quantification of error in

the elevation of, 295–296

Observed temporal effects, 214–215

Observed values. See also Observation(s)

comparing with simulated

values, 26–40

Off-diagonal covariance terms, 298

Omitted data, using, 338–339

One-percent prediction scaled sensitivities,

163. See also Prediction scaled

sensitivities (pss)

One-percent scaled sensitivities (1ss), 48,

54–56, 161

for instructional purposes, 56

using groundwater flow system physics

to understand, 235

One-percent scaled sensitivity contour

maps, 55, 63–64

in Exercises, 235–240

OPR-PPR program, 169, 173, 195. See also

Observation–prediction (opr)

statistic; Parameter–prediction (ppr)

statistic

use in calculating opr statistic, 202

use in calculating parameter–prediction

statistic, 200
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Optimality of parameter estimates, 137

Optimal parameters, 26. See also

Optimized parameter estimates

reasonable, implications of, 141, 311

test for reasonableness, 140–142, 153,

251–252

unreasonable, as indication of model

error, 323–326

unreasonable, diagnosing causes of,

326–327

Optimization, 67

advantage of, 337

methods, 67–68, 77–78

multiobjective, 78

Optimized parameter values. See also

Optimal parameters

evaluating (Guideline 10), 323–328

variance–covariance matrix with,

125–126

Ordinary regression, 27

Oscillation control, 387–388

Overall model fit

in Exercises, 113–115, 244–246

measures of, 94–99

selected statistics related to, 114

Overfitting, 269, 303–304

Overshoot, 72

Parallel processing, 187, 346

Parameter change vector, accuracy of, 72

Parameter complexity, 11, 290–291

Parameter confidence region, 139, 178, 179

and Beale’s measure, 142

exact, 178

likelihood, 178

Parameter correlation coefficient matrices,

53, 149t, 199t, 253t, 257t

calculated using potential observations,

206t

calculated using sensitivity-equation and

perturbation sensitivities, 21, 59,

62t, 63t

Parameter correlation coefficients (pcc),

21, 48, 51–54, 128–130, 160, 164,

204t

advantages and limitations of, 58–59

assessing parameter value uniqueness

using, 60, 137, 148–149

in collecting observation data, 170–171

combining parameters, effect on

performance, 59

composite scaled sensitivities (css) used

with, 51, 165–166, 243, 265–257,

278–281

prediction scaled sensitivities (pss) used

with, 60–63, 165–166, 256–257

effects of nonlinearity on, 281–283

in Exercises, 62–63, 243–244, 252–253

evaluating potential new data and, 332

maximum percent reduction in, caused

by new observation, 209

in model development, 280–281

potential observations and, 205

without and with predictions, 162–165

relation of objective-function surfaces

to, 58, 81–82

Parameter correlations

effects on ppr statistic, 368

scaled sensitivities do not reflect, 56

Parameter definition

modifying, 321

use of observations in, 42–43

Parameter design. See also Parameterization

role of hydrogeologic framework in,

272–277

role of observations in, 45

Parameter estimates, 91. See also

Parameter estimates, unreasonable;

Parameter estimation

checking against reasonable values,

140–142, 153

evaluating, 124–137, 250–253

evaluating optimality of, 137

evaluating uniqueness of, 137, 148–149,

165–166

evaluating uncertainty of, 137–140

in Exercises, 91, 246

identifying observations important to,

132–136, 327–328

in model recalibration, 227

nonunique, 137

Parameter estimates, unrealistic. See

Parameter estimates, unreasonable

Parameter estimates, unreasonable,

140–142

data collection, motivation for, 330

in Exercises, 153

Grindsted landfill model and, 373
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and limits on parameter values, 80

model error, caused by, 215, 219

model error, as indicator of, 262,

286–287, 311, 322, 323–327,

315–316

Monte Carlo, criterion in, 343

prior information, as reason for, 261,

289–290

predictions, as criterion for

unlikely, 338

recharge representation and, 327

Parameter estimation. See also Nonlinear

regression

execution times for, 243

formal, 68–80, 308

iterations, 70, 71

observations that dominate, 46–55, 364

for transport models, 224–225

review of methods for, 3–12

Parameter-Estimation (PES) Process. See

also MODFLOW-2000 program

Parameter importance, rankings of, 200

Parameter importance to predictions,

methods for identifying, 160–170

Parameterization(s), 4–6

many-parameter, 11

simple, 11

Parameter–prediction (ppr) statistic, 160,

162, 166–170, 172, 366–368. See

also OPR-PPR program

drawback of, 167

equation for, 167

in Exercises, 199–202

first-order second-moment equation for

prediction uncertainty and, 170

for multiple parameters, 169

Parameter ranges, reasonable. See also

Parameter estimates, unreasonable

Parameters, 3

changing the number of, 328

defining, 44

defining a range of reasonable values for,

87

log-transformed, 78–80, 144

prior information on, 10, 90, 91

problematic, 289

using independent information on,

325–326

Parameter standard deviation, 57

Parameter statistics, in evaluating optimal

parameter estimates, 145–155

Parameter uncertainty. See also Confidence

intervals; Parameter confidence region

alternate methods for evaluating, 132

minimizing, 46

quantifying, 137–140, 323

Parameter value(s). See also Guideline 10;

Parameter estimates

convergence and, 76

coordinated changes in, 185

estimated, 6, 53, 67–92, 124–137

generated, problems with, 143–144

generation for Beale’s measure, 143

obtaining data related to, 330

scaling by, 56–57

sensitivity calculation for, 46

simultaneously estimated, 219

using observations to adjust, 43–44

weighting system information on,

304–305

Parameter value range, choosing, 188

Parameter variance–covariance matrix,

124. See also Variance–covariance

matrix

dependence on defined

parameters, 278

eigenvalues and eigenvectors of, 132

equations for, 125, 164, 167, 172, 191,

398

in Monte Carlo methods, 186

potential new observations and, 126, 332

prediction uncertainty and, 126, 132,

159, 164, 168, 176, 303

singular-value decomposition

of, 132

statistics from, 125–132

Parameter variance–covariance matrix,

versions of, 125–126

with all defined parameters, 126, 131

with alternate observation sets, 126,

131–132

with nonoptimal parameter values, 126,

131

with optimized parameter values,

125–126, 130–131

with predictions, 126, 132

when to use, 130–132

Parameter variances, 126
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Parsimonious models, 11, 264. See also

Guideline 1

execution times and, 345–346

Guideline 1, 17, 261, 268–272

highly parameterized models and,

290–291

parameter correlation coefficients and,

59, 280

processes simulated and, 270

prior information in, 290–293

system information and, 272

Particle tracking. See Advective transport

pcc. See Parameter correlation coefficients

(pcc)

Perturbation methods, calculating

sensitivities by

accuracy, 19, 59, 60, 62t, 63t

accuracy with Lagangian transport

solutions, 221

execution time, 243, 346

flexibility, 19

used with sensitivity-equation

sensitivities, 21

PEST program

capabilities of, 18–21

exercises and, 3, 18, 25

confidence intervals, linear, 138

confidence intervals, nonlinear, 139, 178

Marquardt parameter in, 19, 73

objective-function plots, data for, 36

observations and, 32, 221, 284, 287

parameter definition options, 81, 142

parameterization using SVD, 10, 11

perturbation sensitivities and, 47, 59,

346

predictions and, 159, 338

regression parameter controls variable

and, 74, 76

regression simulations in, 346

regularization capability of, 10, 290, 305

sensitivity maps and, 55

superparameter method using SVD, 10,

11, 219

Porosity. See Effective porosity

Postaudits

model Guidelines and, 262, 263

model testing and, 320

as a deterministic uncertainty method,

337–339

Potential new data, 17. See also

Observation–prediction (opr)

statistic; Parameter–prediction (ppr)

statistic; Potential new data

(Guidelines 11 and 12)

in Exercises, 23, 204–207

evaluation of, 44

importance to parameters, 46

parameter-variance–covariance matrix

and, 132

scaled sensitivities, parameter

correlation coefficients, and, 171

Potential new data (Guidelines 11 and 12),

262, 329–336. See also Guideline 11;

Guideline 12

model accuracy needed for analysis, 329

fit-independent statistics and, 329,

331–334

for improving predictions, 334–336

for improving simulated processes,

features, and properties, 330–334

to support observations, 335–336

Potential new observations

assessing the likely importance of,

204–205

evaluating, 333

using opr to evaluate importance to

predictions, 205–207

PowerPoint files, 2, 3

PPCC statistic, 110. See also Correlation

coefficient RN
2

Precision, defined, 13

Predicted values, contradiction by the

calibrated model, 337–338

Prediction accuracy. See also Confidence

intervals; Prediction intervals,

Prediction uncertainty

dependence on observations, 339

evaluation using deterministic methods,

337–339

model error and, 339

observation weighting and, 301

Prediction improvement, identifying new

data for, 334–336. See also Potential

new data

Prediction intervals, 175–176, 341

calculating, 176

individual, 175

linear, 176
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nonlinear, 177

predictions and, 175–176

simultaneous, 175

Predictions

accuracy of, 14, 340

determining weights for, 164–165

identifying new data to improve,

365–370

importance of observations to, 170

importance of parameters to, 166–167

precise, 13

reliable, 14

simulating, 158–159

testing model nonlinearity with respect

to, 189–193

use of recalibrated model to update,

254–259

using to guide data collection, 159–170

Prediction scaled sensitivities (pss), 159,

160–162

calculation of, 161–162

in collecting observation data, 170–171

comparing with composite scaled

sensitivities, 256

in conjunction with composite scaled

sensitivities, 162

in Exercises, 198

parameter importance and, 196–198,

366–368

used with parameter correlation

coefficients, 165–166

Prediction simulation, with alternative

models, 312

Prediction standard deviation, 167

calculated with improved information,

168–169

calculating, 159

opr statistic and, 172

use in monitoring network

design, 174

Prediction uncertainty, 174–189. See also

Guideline 13; Guideline 14

calculation of, 168

effect of removing or adding one

observation on, 172–173

evaluation using deterministic methods,

337–339

evaluation using Monte Carlo analysis,

185–189, 340, 341–344

evaluation using statistical inference,

174–185, 341, 339–344

Guidelines 13 and 14, 337–344

model averaged using MMA, 189

first-order second-moment equation

for, 170

quantifying using alternative models,

189

Prediction uncertainty measurement, using

inferential statistics, 207–208

Predictive models, versus calibrated

models, 8

Predictor-corrector (P-C) method, 223

Prior estimates, 33. See also Prior

information

scaled for graphical analysis, 104

Prior information. See also Guideline 5

in activating all parameters to evaluate

model predictions, 131

assigning, 90

assigning large weights to, 301

biased, 30–31

careful use of, 288–293, 357–358

equations, 33

extensive use of, 289–290

importance of, 146

issues related to, 32–34

parameters and, 293

smoothing and, 33

use of, 10, 33–34

versus observations, 288–293,

357–358

versus regularization, 10

weighting on, 168, 200, 304

Prior weights, specifying, 168

Probability graphs, normal, 108–111. See

also Normal probability graphs

Problem constraint (Guideline 2), use of

system information in, 272–277,

353–357

Process selection, in calibrating transport

models, 217–218

Projected particles, examples of,

209–212

Pumpage

in Exercises, 21, 193

uncertainties in amount and location of,

361

Pumping rate parameters, 230–231
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Quasi-Newton updating, of normal

equations, 384–385

R. See Correlation coefficient R

RN
2 . See Correlation coefficient RN

2

Random sampling, by Monte Carlo

analysis, 140

Reading assignments, suggested, 14–15

Reasonable parameter values. See also

Parameter ranges, reasonable;

Parameter estimates, unreasonable

checking parameter estimates against,

140–142

important characteristics of, 141–142

Recalibration, of existing models,

227–228

Recharge parameters

confidence intervals for, 251

correlation with hydraulic-conductivity

parameters, 81, 82

estimated using age and geochemistry

observations, 287

in Exercises, 24, 38, 81, 240

for a transient problem, 217

Regional-scale data, integrating, 354

Regional-scale models, postaudits

of, 339

Regional steady-state measurements, 357

Redundancy, correlations indicating, 35

Regression. See also Linear regression;

Nonlinear regression; Regression

methods

clustered observations in, 285

goal of, 36

including many kinds of data in,

284–288

Monte Carlo method integration with,

342

observations to include in, 45

omitting prior information from, 289

parameter values in, 128

role of observations in, 132–136

using to determine whether predicted

values are contradicted by

calibrated model, 337–339

Regression convergence, problems with,

221, 280, 306–308

Regression fitting process, correlations

produced by, 111

Regression methods, 67

pioneers of using in groundwater

modeling, 9

Regression performance. See also

Regression convergence

evaluation of, 308

using objective-function surfaces to

explore, 92

weighting, dependence on, 303t

Regression, well-posed and comprehensive,

277–281

Regression simulations, execution times

for, 346

Regression statistics, relation to sample

statistics, 127–130

Regularization, 289, 290. See also PEST

program

highly parameterized models and, 290

limits on parameters and, 80

sensitivity analysis and, 145

model transparency and, 278

prior information and, 10, 91, 153

stabilizing highly parameterized

models, 10

weighting and, 304–305

Reliability, defined, 14

Representer method, 10, 219, 328

RESAN-2000 program, 112

Residual analysis. See also Weighted

residuals

background for methods presented,

9

in evaluating model fit, 93–94

RESIDUAL_ANALYSIS program, 112

Residuals. See also Residual analysis;

Weighted residuals

calculating, 35

Results, presentation of, 2

Robust regression methods, 304

Runs statistic, 107

in exercises, 118, 249

maps of, 319

ordering of observations

and, 107–108

probability table, 401–402t

Sample statistics

equations for calculating, 129t

relation to regression statistics, 127–130
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Scaled sensitivities, 48. See also Composite

scaled sensitivities (css); Dimension-

less scaled sensitivities (dss);

Fit-independent statistics; Leverage

statistics; One-percent scaled

sensitivities (1ss); Parameter

correlation coefficients (pcc)

advantages and limitations of, 56–58

for evaluating potential new

data, 331–332

relationship to parameter values, 57

statistics related to, 133

Scale issues, in transport model calibration,

219–220, 289, 304

Scaling. See also Scaled sensitivities

alternative, 57

in the Gauss–Newton method, 72

by parameter value, 56–57

Scheffé critical values, 177. See also

Simultaneous confidence intervals

Sensitivities, 47

calculating in MODFLOW-2000, 19

calculating in PEST and UCODE_2005,

19–20

calculation and use of, 47

differences in, 184

execution time and, 346

local, 47

parallel calculation of, 346

Sensitivity analysis, 1, 41–44. See also

Scaled sensitivities; Fit-independent

statistics

in Exercises, 60–66, 235–243

in previous work, 9

scaling of, 48

traditional, purpose of, 184

traditional, using confidence intervals to

replace, 184–185

transient model, for the, 235–243

utility of, 6–7, 57–58

Sensitivity (SEN) Process. See

MODFLOW-2000 program

Sensitivity-equation method, 19

Sensitivity-equation sensitivities, 19, 47,

280

accuracy of, 19, 47, 59

accuracy, conditions which diminish, 59

accuracy, consequences, 59

ADIFOR and, 19

custom coding and, 19

grid sensitivities produced by, 54–55

Sensitivity maps, contoured. See

One-percent scaled sensitivity contour

maps

Sensitivity matrix, 69, 71, 384

Sensitivity precision, effect on parameter

correlation coefficients, 59

Sensitivity statistics, using, 46

Sequential estimation strategy for

transport, 223–224

Sequential indicator simulation method,

219

Shuffle Complex Evolution (SCE) method,

77, 78

Simple models, 268–272. See also

Parsimonious models

utility of, 270

Simplifying assumptions, 325

Simulated equivalents, of observations, 12,

28, 321–322. See also Simulated

values

incorrect calculation of, 300, 321–322,

329

linearization of, 70, 143, 181

omitted observations and, 306

sensitivities of, 47

sensitivity maps and, 55

uniqueness and, 137

Simulated processes

observations consistent with, 215

potential new data for improving,

330–334

time discretization of, 215

Simulated results, requirements for

accurate, 30–32

Simulated stresses, variation in time, 217

Simulated systems, collection of data that

characterize, 160, 272–277

Simulated values, 33. See also Simulated

equivalents, of observations

checking, 39

comparing with observed values, 214

importance of checking, 36–38

linearized estimates of, 69–70, 143

matching observed values to, 26–40

one-percent scaled sensitivities and, 55

sensitivities and, 47

weighted, 310
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Simulated values (Continued)

weighted or unweighted observations

versus, 105–106

weighted residuals versus, 247

Simultaneous confidence intervals,

175–177. See also Confidence

intervals; Simultaneous prediction

intervals

in Exercises, 208–212

linear and nonlinear, 180,

211, 257–258

on predictions, 175–181

Simultaneous estimation

of flow and transport parameters,

223–224

of source location and history, 219

Simultaneous intervals, 341. See also

Simultaneous confidence intervals

Simultaneous prediction intervals, 175

Singular value decomposition (SVD)

method

as alternative to parameter correlation

coefficients, 132

superparameter method of PEST, 10,

219

Soft data, 260

Software, 3. See also Earthvision software;

GMS software; GOCAD software;

LINEAR_UNCERTAINTY program;

MODEL_LINEARITY entries;

MODFLOW_2000 program; Multi-

Model Analysis (MMA) program;

PEST program; RESAN-2000

program; RESIDUAL_ANALYSIS

program; StratWorks 3D software;

UCODE_2005 program;

Visualization software

Solute transport. See Transport entries

Source characteristics and geometry See

also Transport entries

simultaneous estimation of, 219

in calibrating transport models, 218–219

Specific storage parameter(s), in Exercises,

231

Specific storage values, prior information

from field data, 33

Spring-flow observations, 363–364

Standard deviation(s), 127

converting judgments about errors to, 34

decreases associated with ppr statistics,

200

of errors in concentrations, 224

for differences, 182, 297

evaluating estimate precision using,

151–153

examples of, for DVRFS observations,

361

increases associated with opr statistics,

203–204

as indicator of importance of

observations to parameters and

predictions, 263

iterative procedure for decreasing, 169

fitted, 95, 97, 246. See also Fitted

standard deviation

for log-transformed parameter estimates,

79, 130

for parameter estimates, 126–127

for predictions, 159

for predictions, and monitoring network

design, 174

not additive, 297

reflective of unrealistic error, 304

use by MODFLOW-2000 and

UCODE_2005, 295t

used to judge changes in parameter

estimates, 151

weighting and, 34, 198, 204, 299, 358,

360, 361

Standard error of the regression, 95, 304.

See also Calculated error variance

expected value of, 113

grid line definition for graphs, 103

interpreting, 96, 97

Standard normal distribution, selected web

sites for, 399t

Standard normal statistics, 109

Starting parameter values, in Exercises, 91,

246

evaluating steady-state model fit using,

40

evaluating transient model fit

using, 235

varying, 83

Statistical consistency, testing weighted

residuals for, 100

Statistical inference, quantifying prediction

uncertainty using, 339–344
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Statistical tables, 399–406

Steady-state model, 23, 24. See also

Exercises

calculating sensitivities for, 60

cell-by-cell and boundary fluxes of, 65

evaluate potential landfill advective

transport using, 193–195

fit, evaluating, 115–123

linearity, testing, 155–156

observations, 38t, 358

parameter definition for, 36–38

parameter values, estimated, 87–92,

152t

regression, 118

simulated volumetric flows in, 24

simulation, 229

with starting parameter values, 60–66

Steepest descent direction, 71–73, 77

Stochastic methods, 11, 263, 264,

309, 347

field examples, 350

StratWorks 3D software, 274

Streamflow gain(s)

nonlinear confidence intervals on

predictions of, 341

observed and simulated, 317

Streamflow gain/loss observations, errors
in, 35

Streamflow gauging stations,

measurements between, 297–298

Streamflow observations, biased, 31

Student t-distribution, selected web sites

for, 399t

Student t-statistic, 138

Subset definition, for residuals, 94

Superparameter method, 219

Superparameters, 10

Superposition principle, 235, 240

Surface-water studies, 335

Synthetic test cases, 347, 352t

System data, using. See also Guideline 2

System dynamics

potential new data to improve,

334–335

sensitivities as a reflection of, 65

System information, 260

evaluating, 353–357

methods to guide collection, 335

use in defining model structure, 273

use in problem constraint, 272–277

using a broad range of, 371–373

weighting, 304–305

Systematic error, 322–323

Systematic model misfit, 94

importance of testing for, 101

Temperature observations, 215, 287–288

Temporal differencing, 216

Temporal effects, observed and simulated,

214–215

Tests of methods and guidelines,

347–373

Theim equation, 69–70

Theis equation, 74–75

Theis example

for understanding linear and nonlinear

confidence intervals, 181–182

for understanding Monte Carlo methods,

188–189

for understanding the modified

Gauss–Newton method, 74–75

Thermodynamic parameters, 226

Three-dimensional hydrogeologic data,

analyzing, 274, 354–356

Three-dimensional simulation, versus

two-dimensional simulation,

372–373

Time-consistent observations, 215

Time-dependent deterministic error

components, 378

Time-step size issues, in transport models,

221

TolPar variable, 76. See also

UCODE_2005 Program

Total model nonlinearity, 144–145

in Exercises, 156–157

Total variation diminishing (TVD) method,

223

Tractable models, obtaining, 9–11,

226–227, 290

Traditional sensitivity analyses,

weaknesses of, 184–185

Transient groundwater flow problems,

errors in, 376–381

Transient head-change observations, 216,

360–362

Transient model calibration, strategies for,

213–217
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Transient model, 25. See also Exercises

calculating observation weights for,

231–235

defining observations for, 231–234

fit, evaluating, 246–250

flow observations for, 234t

hydraulic-head observations for,

232–233t

parameters in, 230–231

predictions for, 254–259

regression for, 243–244

sensitivity analysis for, 235–243

starting, estimated, and true parameter

values for, 246t

weighted residuals for, 247–250

Transient model initial conditions,

213–214

Transient model inputs, additional,

216–217

Transient observations, 214–216

weighting, 216

Transient processes, effect on observations,

215, 360

Transient simulations, confined layers in,

271–272

Transitional probability method, 219

Transmissivity, effect of dewatering on,

272

Transmissivity parameters, 36, 69–70. See

also Hydraulic conductivity

parameter(s)

Transport. See also Advective transport;

Contaminant transport

options for simulating, 218

predicting, 217

simulating advection and dispersion,

220–223

Transport and flow-system observations,

simultaneous use of, 223–224

Transport model(s). See also Heat transport

models

advection and dispersion in, 220–223

defining source characteristics for, 218

execution time issues for, 220

Lagrangian methods and, 221

selecting processes to

include, 217–218

simulated well concentrations,

histograms of, 343

simulations, system state at the

beginning of, 213–214

solution methods and numerical

dispersion, 221–223

unresolved and misrepresented features

in, 219

Transport model calibration

applications of, 226–227, 288,

370–373

estimating source characteristics

for, 219

insensitivity and correlation problems in,

226

numerical dispersion and, 221–233

numerical issues in, 220–223

point concentrations in, 225

scale issues in, 219–220

strategies for, 217–227

transport observations in, 223–225

Transport observations, 223–225. See also

Concentration observations

Transport-step size, 221

Trends, evaluation of using runs statistic,

108, 317

Trial-and-error methods, 6, 7

True errors, 30

assumptions about, 180, 374, 376–381

variance–covariance matrix of, 31–32,

376, 380

True error variance, 31

confidence interval for, 96–98, 246

True linear model, 392

True nonlinear model, 392

t-statistic. See Student t-statistic

Trust region. See Double-dogleg trust

region approach

Two-dimensional simulation, versus

three-dimensional simulation,

372–373

Two-parameter objective-function

surfaces, 35–36, 71, 74–75

in Exercises, 81–82

Two-tailed hypothesis test, 328

UCODE_2005 program, 3, 18–21

capabilities of, 19–21

convergence criteria in, 76

correlation coefficients calculated by, 21,

59, 62t, 63t, 149t

452 INDEX



dampling parameter in, 73–74

double-dogleg trust region approach

in, 68

execution times using, 346

full weight matrices and, 28

for graphs of observed versus

simulated values, 105

Investigate Objective Function mode

in, 36

Marquardt parameter in, 73

Monte Carlo methods and, 186

parameter limits in, 80

parameter log transformation in, 79

plotting objective function surfaces

in, 36

prediction scaled sensitivities produced

by, 161

prior information equations supported

by, 32

runs statistic information printed

by, 108

sensitivity approximation by, 47, 59

TolPar variable in, 76

using for Exercises, 25

weighting in, 32, 34, 295, 298

Unambiguous measurement

errors, 300

Unbiased observations, 30–31. See also

Bias

Uncertainty. See Confidence intervals;

Linear uncertainty analysis; Parameter

uncertainty; Prediction uncertainty;

Weighting(s); Weights

Uncertainty, defined, 14

Uncertainty evaluation, 2

utility of, 6–7

Uncertainty (UNC) Process. See

MODFLOW-2000 program

Uncorrelated observation errors, 216, 378.

See also Observation errors

Unintended inconsistencies, 286

Unrealistic estimated parameter values, 80,

289–290

diagnosing cause of, 326–327

Unrealistic weightings, 302–303

Unweighted observations, versus simulated

values and correlation coefficient R,

105–106

Unweighted residuals, plotting, 100, 363

US Geological Survey (USGS)

Ground Water-Site Inventory (GWSI)

data base, 357, 358

US Geological Survey (USGS) software.

See Software;

LINEAR_UNCERTAINTY program;

MODEL_LINEARITY entries;

MODFLOW_2000 entries; Multi-

Model Analysis (MMA) computer

code; Multi-Node Well (MNW)

Package; OPR-PPR program;

RESAN-2000 program;

RESIDUAL_ANALYSIS program;

UCODE_2005 entries

U.S. Geological Survey (USGS),

topographic maps determining

elevations from, 295–296

Value of improved information (voii)

statistic, 167

Vapor phase hydrocarbon transport model

calibration, 226

Variability

of data, managing, 272

highly parameterized models and,

290–291

scale issues and, 219, 289

Variance–covariance matrix, 126, 301.

See also Errors; Parameter variance–

covariance matrix; True errors

of a vector, 395

Vector(s). See also Eigenvectors

for nonlinear regression, 383–384

notation for full weight matrix, 28

variance–covariance matrix of, 395

Visual inspection, identifying trends

by, 317

Visualization software, 3, 355

water.usgs.gov web site, 3

WATFLOW/WTC finite-element model,

370

Weighted least-squares objective function,

26–28, 95. See also Objective

function(s)

with diagonal weight matrix, 27–28

with full weight matrix, 28

modified Gauss–Newton method

and, 68
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Weighted least-squares objective function

(Continued)

relation to maximum-likelihood

objective function, 376

Weighted least-squares objective-function

surfaces, 35–36, 37. See also

Objective function surfaces

Weighted observations, versus simulated

values, 105–106, 362–363

Weighted regression, 27

Weighted residuals, 35. See also Weighted

residuals graphs and maps

acceptable deviations from being

random and normal, 111–113,

119–123

assessing independence and normality

of, 109, 249–250

assessing randomness of, 98, 106–109,

317–320

calculating, 35

for concentration observations, 224

in diagnosing the cause of poor model fit,

320

in evaluating alternative models,

310–312

in evaluating model fit, 93–94,

100–104, 106–108, 316–320

in Exercises, 115–119, 247–250

in interpreting calculated error variance,

97–98

minimum, maximum, and average, 101

random, normally distributed, 108–109

with respect to independent variables,

106–108

using, 265t

Weighted residuals graphs and maps,

99–104, 106–107, 108–109, 317,

318, 319, 362, 363, 364

in Exercises, 116, 117, 119, 247,

248, 250

problems with, 101–104

versus independent variables,

106–107

versus weighted or unweighted

simulated values, 100–104

Weighted sensitivity matrix, singular value

decomposition of, 132

Weighted simulated values, 100–106

Weighted true errors, 30

Weighting(s). See also Guideline 6;

Weights

of concentration observations,

224–225

effect on calculated pcc, 198

errors in, 323

functions of, 31–32

issues related to, 34–35

of transient observations, 216

unrealistic, 303

Weighting issues, in nonlinear regression,

298–305

Weighting terminology, confusion related

to, 299–300

Weight matrices. See also Diagonal weight

matrices; Full weight matrices

determining covariances for, 298

defining, 396–398

Weights. See also Guideline 6;

Weighting(s)

calculating, 39–40, 358

calculating for observations that are

sums of or differences between

measurements, 297–298

calculating using observed values,

101–103

determining, 294–298

determining the statistic used to

calculate, 295

difficulties in determining, 299

effect on measures of prediction

uncertainty, 302–303

large, 301–303

that reflect errors, 291, 294–305,

358–362

Well altitude uncertainty, 358

Well elevation measurement error, 216,

295–296

Well-posed regression. See also Guideline

3, 277–281

Wetland system, groundwater flow and

heat transport simulation through, 288

X, importance of, 394

X, 69. See also Sensitivities; Sensitivity

matrix

importance of, 394

X value, effect on linear regression

behavior, 51
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y. See Observations

y0. See Simulated values

y0(b) vector, linearizing, 69
YCINT-2000 program, 162, 177, 184

Zonation, for parameterization, 11,

273–274, 309, 342–343

Zone arrays, 20

Zone of confidence, 342

Zone of uncertainty, 342

Zones. See also Capture zones;

Zonation

hydrochemical, 287

recharge, 24, 327
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