

ECONOMIC CONCRETE FRAME ELEMENTS

A pre-scheme design handbook for the rapid sizing and selection of reinforced concrete frame elements in multi-storey buildings

CHGoodchild BSc, CEng, MCIOB, MISructE

FOREWORD

This publication was commissioned by the Reinforced Concrete Council, which was set up to promote better knowledge and understanding of reinforced concrete design and building technology. The Council's members are Co-Steel Sheerness plc and Allied Steel & Wire, representing the major suppliers of reinforcing steel in the UK, and the British Cement Association, representing the major manufacturers of Portland cement in the UK. Charles Goodchild is Senior Engineer for the Reinforced Concrete Council. He was responsible for the concept and management of this publication.

ACKNOWLEDGEMENTS

The ideas and illustrations come from many sources. The help and guidance received from many individuals are gratefully acknowledged on the inside back cover.

BS 8110 Pt 1:1997

The charts and data in this publication were prepared to BS 8110, Pt 1: 1985, up to and including Amendment No 4. During production, BS 8110 *Structural use of concrete:* Part 1:1997 *Code of practice for design and construction* was issued. This incorporated all published amendments to the 1985 version plus Draft Amendments Nos. 5 and 6. In general, the nett effect of the changes is that slightly less reinforcement is required: preliminary studies suggest 2 to 3% less in in-situ slabs and beams and as much as 10% less in columns. Readers should be aware that some of the tables in the new Code have been renumbered.

The charts and data given in this publication remain perfectly valid for pre-scheme design.

97.358 First published 1997

ISBN 0 7210 1488 7

Price group F

© British Cement Association 1997

Published by the British Cement Association on behalf of the industry sponsors of the Reinforced Concrete Council.

British Cement Association Century House, Telford Avenue Crowthorne, Berkshire RG45 6YS Telephone (01344) 762676 Fax (01344) 761214

All advice or information from the British Cement Association is intended for those who will evaluate the significance and limitations of its contents and take responsibility for its use and application. No liability (including that for negligence) for any loss resulting from such advice or information is accepted. Readers should note that all BCA publications are subject to revision from time to time and should therefore ensure that they are in possession of the latest version.

ECONOMIC CONCRETE FRAME ELEMENTS

CONTENTS

	PICTORIAL	INDEX		2		
1	INTRODUC	TION		4		
2	USING THE	E CHARTS	AND DATA	5		
3	IN-SITU CO	ONCRETE	CONSTRUCTION			
	3.2 Be	abs eams olumns	one-way slabs, two-way slabs, flat slabs rectangular beams, inverted 'L' beams, 'T' beams internal, edge and corner columns	15 46 72		
4	PRECAST A	AND COM	POSITE CONCRETE CONSTRUCTION			
	4.2 Be	abs eams olumns	beam and block, hollow cores, double 'T's, solid prestressed composite, lattice girder slabs rectangular, 'L' beams, inverted 'T' beams internal, edge and corner columns	81 90 97		
5	POST-TENS	POST-TENSIONED CONCRETE CONSTRUCTION				
	5.2 SI	otes abs eams	one-way slabs, ribbed slabs, flat slabs. rectangular and 2400 mm wide 'T' beams	101 102 108		
6	WALLS AN	WALLS AND STAIRS				
		/alls tairs	in-situ walls in-situ and precast prestressed stairs	112 113		
7	DERIVATIO	DERIVATION OF CHARTS AND DATA				
	7.2 Pr		nents l composite elements ned elements	114 117 118		
8	LOADS	LOADS				
	8.2 Be	abs eams olumns		120 121 124		
9	THE CASE	FOR CON	CRETE	125		
10	REFERENC	ES		127		

Intended as a pre-scheme design handbook, this publication will help designers choose the most viable concrete options quickly and easily. *CONCEPT* is a complementary computer program, available from the RCC, which facilitates rapid and semi-automatic investigation of a number of concrete options.

PICTORIAL INDEX

ONE-WAY SLABS

Rectangular p 48; Reinforced inverted 'L' p 52; Reinforced 'T' p 61; Precast p 90; Post-tensioned p 108

TWO-WAY SLABS

Solid (with beams) p 26

Waffle (with beams) pp 28, 30

FLAT SLABS

Solid p 36 (post-tensioned p 106)

Solid with drops p 38 Solid with column heads p 40 Solid with edge beams p 42

Waffle p 44

WALLS AND STAIRS

Reinforced walls p 112 Reinforced and prestressed stairs p 113

Waffle with integral beams pp 32, 34

COLUMNS

Reinforced p 72 Precast p 97

1 INTRODUCTION

In conceiving a design for a multi-storey structure, there are, potentially, many options to be considered. The purpose of this publication is to help designers identify least-cost concrete options quickly. Its main objectives are, therefore, to:

- Present feasible, economic concrete options for consideration
- Provide preliminary sizing of concrete frame elements in multi-storey structures
- Provide first estimates of reinforcement quantities
- Outline the effects of using different types of concrete elements
- Help ensure that the right concrete options are considered for scheme design

This handbook contains charts and data that present economic sizes for many types of concrete elements over a range of common loadings and spans. The main emphasis is on floor plates as these commonly represent 85% of superstructure costs. A short commentary on each type of element is given. **This publication does not cover lateral stability**. It presumes that stability will be provided by other means (eg. by shear walls) and will be checked independently.

The charts and data work on loads:

FOR SLABS –	Economic depths are plotted against span for a range of characteristic imposed loads.	
FOR BEAMS -	Economic depths are plotted against span for a range of ultimate applied uniformly distributed loads, uaudl.	Uaudl is the summation of ultimate loads from slabs (available from slab data), cladding, etc, with possible minor adjustment for beam self-weight
FOR COLUMNS	 Square sizes are plotted against ultimate axial load, and in the case of perimeter columns, according to number of storeys supported. 	Data provided for beams and two-way slabs include ultimate axial loads to columns.

Thus a conceptual design can be built up by following load paths down the structure. This is the basis for *CONCEPT* ⁽¹⁾, a complementary personal computer-based conceptual design program, available from the RCC.

Generally, the sizes given correspond to the minimum total cost of concrete, formwork, reinforcement, perimeter cladding and cost of supporting self-weight and imposed loads whilst complying with the requirements of BS 8110, *Structural use of concrete* ^(2,3). The charts and data are primarily intended for use by experienced engineers who are expected to make judgements as to how the information is used. The charts and data are based on simple and idealised models (eg. for in-situ slabs and beams, they are based on moment and shear factors given in BS 8110). Engineers must assess the data in the light of their own experience, methods and concerns ⁽⁴⁾ and the particular requirements of the project in hand.

This publication is intended as a handbook for the conceptual design of concrete structures in multistorey buildings. It cannot and should not be used for actual structural scheme design which should be undertaken by a properly experienced and qualified engineer. However, it should give other interested parties a 'feel' for the different options at a very early stage before an engineer sets forth with calculator or computer.

2.1 General

he charts and data are intended to	be used as follows.	Refe
DETERMINE GENERAL DESIGN CR	ITERIA	
	• Establish layout, spans, loads, intended use, stability, aesthetics, service integration, programme, etc. Identify worst case(s) of span and load.	2.2, 2.3
SHORT-LIST FEASIBLE OPTIONS		
FOR EACH SHORT-LISTED OPTION:	• Envisage the structure as a whole. With rough sketches of typical structural bays, consider, and whenever possible, discuss likely alternative forms of construction (see pictorial index, p 2 and chart, p 8). Identify preferred structural solutions.	2.4
DETERMINE SLAB THICKNESS	 Interpolate from the appropriate chart or data, using the maximum slab span and the relevant characteristic imposed load, ie. interpolate between IL = 2.5, 5.0, 7.5 and 10.0 kN/m². Make note of ultimate line loads to supporting beams (ie. characteristic line loads x load factors) or, in the case of flat slabs, troughed slabs, etc. ultimate axial loads to columns. Estimate ultimate applied uniformly distributed load (uaudl) to 	2.5, 2.11 8.1 8.2 2.6,
DETERIVIINE BEAINI SIZES	 Estimate utilinate applied uniformly distributed load (data) to beams by summing ultimate loads from: slab(s), cladding, other line loads. Choose the chart(s) for the appropriate form and width of beam and determine depth by interpolating from the chart and/or data for the maximum beam span and the estimated ultimate applied uniformly distributed load (uaudl). Note ultimate loads to supporting columns. Adjust, if required, to account for elastic reaction factors. 	2.0, 2.1 [°] 8.2 8.3
DETERMINE COLUMN SIZES	 Estimate total ultimate axial load at lowest level, eg. multiply ultimate load per floor by the number of storeys. Interpolate square size of column from the appropriate chart and/or data using the estimated total ultimate axial load, and in the case of perimeter columns, number of storeys. 	2.7, 2.1 [°] 8.3
IDENTIFY BEST VALUE OPTION(S)	• Using engineering judgement, compare and select the option(s) 2.8
	 which appear(s) to be the best balance between structural and aesthetic requirements, buildability and economic constraints. For cost comparisons, concentrate on floor plates. Estimate costs by multiplying quantities of concrete, formwork and reinforcement, by appropriate rates. Make due allowance for differences in self-weight (cost of support), overall thickness (cost of perimeter cladding) and time. Visualize the construction process as a whole and the resultant 	2.9
PREPARE SCHEME DESIGN(S)	impact on programme and cost.	
	 Refine the design by designing critical elements using usual design procedures, making due allowance for unknowns. Distribute copies of the scheme design(s) to all remaining design team members, and, whenever appropriate, members of the 	2.10

construction team.

2.2 Limitations

2.2.1 GENERAL

In producing the charts and data many assumptions have been made. These assumptions are more fully described in Section 7, *Derivation of the charts and data* and in the charts and data themselves. The charts and data are valid only if these assumptions and restrictions hold true. They are intended for use with medium rise multi-storey building frames and structures by experienced engineers who are expected to make judgements as to how the information is used.

2.2.2 ACCURACY

The charts and data have been prepared using spreadsheets which optimised on theoretical overall costs (see Section 7.1.1). Increments of 2 mm depth were used to obtain smooth curves for the charts (nonetheless some manual smoothing was necessary). The use of 2 mm increments is not intended to instill some false sense of accuracy into the figures given. Rather, the user is expected to exercise engineering judgement and round up both loads and depths in line with his or her confidence in the design criteria being used and normal modular sizing. Thus, rather than using a 282 mm thick slab, it is intended that the user would actually choose a 285, 290 or 300 mm thick slab, confident in the knowledge that a 282 mm slab would work. Going up to, say, a 325 mm thick slab might add 5% to the overall cost of structure and cladding but might be warranted in certain circumstances.

2.2.3 SENSITIVITY

At pre-scheme design, it is unlikely that architectural layouts, finishes, services, etc. will have been finalized. Any options considered, indeed any structural scheme designs prepared, should therefore, not be too sensitive to minor changes that are inevitable during the design development and construction phases.

2.2.4 REINFORCEMENT DENSITIES

The data contain estimates of reinforcement (including tendons) densities. These are included for very preliminary estimates and comparative purposes only. They should be used with great caution (and definitely should not be used for contractual estimates of tonnages). Many factors beyond the scope of this publication can affect actual reinforcement quantities on specific projects. These include non-rectangular layouts, large holes, actual covers used, detailing preferences (curtailment, laps, wastage), and the unforseen complications that inevitably occur. Different methods of analysis alone can account for 15% of reinforcement weight. Choosing to use a 300 mm deep slab rather than the 282 mm depth described above could alter reinforcement tonnages by 10%.

The densities given in the data are derived from simple rectangular layouts, the RCC's interpretation of BS 8110, the spreadsheets (as described in Section 7), with allowances for curtailment (as described in BS 8110), and, generally, a 10% allowance for wastage and laps.

Additionally, in order to obtain smooth curves for the charts for narrow beams, ribbed slabs, troughed and waffle slabs, it proved necessary to use and quote densities based on $A_{s required}$ rather than $A_{s provided}$. It may be appreciated that the difference between these figures can be quite substantial for individual spans and loads.

2.2.5 COLUMNS

The design of columns depends on many criteria. In this publication, only axial loads and, to an extent, moment, have been addressed. The sizes given (especially for perimeter columns) should, therefore, be regarded as tentative until proved by scheme design.

2.2.6 STABILITY

One of the main design criteria is stability. This handbook does not cover lateral stability, and presumes that stability will be provided by independent means (eg, by shear walls).

2.3 General design criteria

2.3.1 SPANS AND LAYOUT

Spans are defined as being from centreline of support to centreline of support. Although square bays are to be preferred on grounds of economy, architectural requirements will usually dictate the arrangement of floor layouts and the positioning of supporting walls and columns. Pinned supports are assumed.

Particular attention is drawn to the need to resolve lateral stability, and the layout of stair and service cores, which can have a dramatic effect on the position of vertical supports. Service core floors tend to have large holes, greater loads but smaller spans than the main area of floor slab. Designs for the core and main floor should at least be compatible.

2.3.2 MAXIMUM SPANS

The charts and data should be interrogated at the maximum span of the member under consideration. Multiple-span continuous members are assumed to have equal spans with the end span being critical.

Often the spans will not be equal. The use of moment and shear factors from BS 8110, Pt 1⁽²⁾ is restricted to spans which do not differ by more than 15% of the longest span. The charts and data are likewise restricted. Nonetheless, the charts and data can be used beyond this limit, but with caution. Where end spans exceed inner spans by more than 15%, sizes should be increased to allow for, perhaps, 10% increase in moments. Conversely, where the outer spans are more than 15% shorter, sizes

may be decreased. (For in-situ elements, apart from slabs for use with 2400 mm wide beams, users may choose to multiply a maximum internal span by 0.92 to obtain an effective span at which to interrogate the relevant chart (based on BS 8110, Pt 2⁽³⁾, Cl 3.7.2 assuming equal deflections in all spans, equal El and 1/r_b α M)).

2.3.3 LOADS

Client requirements and, via BS 6399⁽⁵⁾, occupancy or intended use usually dictate the imposed loads to be applied to floor slabs. Finishes, services, cladding and layout of permanent partitions should be discussed with the other members of the design team in order that allowances (eg superimposed dead loads for slabs) can be determined. See Section 8.

2.3.4 INTENDED USE

Aspects such as provision for future flexibility, additional robustness, sound transmission, thermal mass etc. need to be considered, and can outweigh first-cost economic considerations.

2.3.5 STABILITY

Means of achieving lateral stability (eg. using core or shear walls or frame action) and robustness (eg. by providing effective ties) must be resolved. Walls tend to slow up production, and sway frames should be considered for low-rise multi-storey buildings. This publication does not cover stability.

2.3.6 FIRE RESISTANCE AND EXPOSURE

The majority of the charts are intended for use on 'normal' structures and are therefore based on 1 hour fire resistance and mild exposure. Where the fire resistance and exposure conditions are other than 'normal', some guidance is given within the data. For other conditions and elements the reader should refer to BS 8110 or, for precast elements, to manufacturers' recommendations.

Exposure is defined in BS 8110, Pt 1⁽²⁾ as follows:

- Mild concrete surfaces protected against weather or aggressive conditions.
 Moderate – concrete sheltered from driving rain; concrete sheltered from freezing while wet; concrete subject to condensation; concrete continuously under water and/or concrete in contact with non-aggressive soils.
- Severe concrete surfaces exposed to severe rain, alternate wetting and drying or occasional freezing, or severe condensation.

2.3.7 AESTHETIC REQUIREMENTS

Aesthetic requirements should be discussed. If the structure is to be exposed, a realistic strategy to obtain the desired standard of finish should be formulated and agreed by the whole team. For example, ribbed slabs can be constructed in many ways: in-situ using polypropylene, GRP or expanded polystyrene moulds; precast as ribbed slabs or as double 'T's; or by using combinations of precast and in-situ concrete. Each method has implications on the standard of finish and cost.

2.3.8 SERVICE INTEGRATION

Services and structural design must be co-ordinated.

Horizontal distribution of services must be integrated with structural design. Allowances for ceiling voids, especially at beam locations, and/or floor service voids should be agreed. Above false ceilings, level soffits allow easy distribution of services. Although downstand beams may disrupt service runs they can create useful room for air-conditioning units, ducts and their crossovers,

Main vertical risers will usually require large holes, and special provisions should be made in core areas. Other holes may be required in other areas of the floor plate to accommodate pipes, cables, rain water outlets, lighting, air ducts, etc. These holes may significantly affect the design of slabs, eg. flat slabs with holes adjacent to columns. In any event, procedures must be established to ensure that holes are structurally acceptable.

2.4 Feasible options

2.4.1 GENERAL PRINCIPLES

Concrete can be used in many different ways and often many different configurations are feasible. However, market forces, project requirements and site conditions affect the relative economics of each option. The chart on page 8 has been prepared to show the generally accepted economic ranges of various types of floor under 'normal' conditions.

Minimum material content alone does not necessarily give the best value or most economic solution in overall terms. Issues such as buildability, repeatability, simplicity, aesthetics, thermal mass and, notably, speed must all be taken into account. Whilst a superstructure may only represent 10% of new build costs, it has a critical influence on the whole construction process and ensuing programme. Time-related costs, especially those for multi-storey structures, have a dramatic effect on the relative economics of particular types of construction.

2.4.2 THE CHOICE

Concrete floor slabs: typical economic span ranges

Note: All subject to market conditions and project specific requirements

Briefly, the main differences between types of construction may be summarised as follows:

One-way slabs (solid or ribbed)

Economic over wide range but supporting downstand beams affect overall economics, speed of construction and service distribution.

Flat slabs

With flat soffits, quick and easy to construct and usually most economic, but holes, deflection and punching shear require detailed consideration.

Troughed slabs

Slightly increased depths, formwork costs and programme durations offset by lighter weight, longer spans and greater adaptability.

Band beam and slab

Very useful for long spans in rectangular panels - popular for car parks.

Two-way slabs

Robust with large span and load capacities - popular for retail premises and warehouses, but downstand beams disrupt construction and services.

Waffle slabs

May be slow, but can be useful for larger spans and aesthetics.

Precast and composite slabs

Widely available and economic across a wide range of spans and loads. Speed and quality on site may be offset by lead-in times.

Post-tensioned slabs and beams

Extend the economic span range of in-situ slabs and beams, especially useful where depth is critical.

2.4.3 HYBRIDS

Whilst the charts and data have been grouped into insitu, precast and composite, and post-tensioned concrete construction, the load information is interchangeable. In other words, hybrid options⁽⁷⁾ such as precast floor units onto in-situ beams can be investigated by sizing the precast units and applying the appropriate ultimate load to the appropriate width and type of beam.

2.5 Determine slab thickness

Determine economic thickness from the appropriate chart(s) or data using the maximum span and appropriate **characteristic** imposed load (IL). The charts illustrate thicknesses given in the data. The user is expected to interpolate between values of imposed load given and to round up both the depth and ultimate loads to supports in line with his or her confidence in the design criteria used and normal modular sizing.

The design imposed load should be determined from BS 6399, Design loadings for buildings, Pt $1^{(5)}$, the intended use of the building and the client's

requirements, and should then be agreed with the client. The slab charts highlight the following characteristic imposed loads:

2.5 kN/m ²	General office loading, car parking
5.0 kN/m ²	High specification office loading, file rooms, areas of assembly
7.5 kN/m ²	Plant rooms and storage loadings
10.0 kN/m ²	Storage loading

The charts and data assume 1.50 kN/m^2 for superimposed dead loading (SDL). If the actual superimposed dead loading differs from 1.50 kN/m^2 , the characteristic imposed load used for interrogating the charts and data should be adjusted to an equivalent imposed load, which can be estimated from the following table. See Section 8.1.

Equivalent imposed loads, kN/m²

Imposed load	Superimposed dead load, kN/m ²					
kN/m ²	0.0	1.0	2.0	3.0	4.0	5.0
2.5	1.2	2.1	2.9	3.8	4.7	5.6
5.0	3.7	4.6	5.4	6.3	7.2	8.1
7.5	6.2	7.1	7.9	8.8	9.7	10.6
10.0	8.7	9.6	10.4	11.3	12.2	n/a

It should be noted that most types of slabs require beam support. However, flat slabs, in general, do not. Charts and data for flat slabs work on **characteristic** imposed load but give **ultimate** axial loads to supporting columns. Troughed slabs and waffle slabs (designed as two-way slabs with integral beams and level soffits) incorporate beams and the information given assumes beams of specified widths within the overall depth of the slab. These charts and data, again, work on **characteristic** imposed load, but give **ultimate** loads to supporting columns. The designs for these slabs assumed a perimeter cladding load of 10 kN/m.

The data include some information on economic thicknesses of two-way slabs and flat slabs with rectangular panels. The user may, with caution, interpolate from this information.

2.6 Determine beam sizes

For assumed web widths, determine economic depths from appropriate charts using maximum spans and appropriate **ultimate** applied uniformly distributed loads (uaudl).

The beam charts 'work' on **ultimate** applied uniformly distributed loads (uaudl) in kN/m. The user must calculate or estimate this line load for each beam considered. This load includes the ultimate reaction from slabs and ultimate applied line loads such as cladding or partitions which are to be carried by the beam. Self-weight of beams is allowed for within the beam charts and data. See Section 8.2.

For internal beams, this load usually results from supporting slabs alone: the load can be estimated by interpolating from the slab's data and, if necessary, adjusting the load to suit actual, rather than assumed, circumstances (eg. two-span rather than three-span assumed – see Section 8.2.2).

Perimeter beams typically support end spans of slabs and perimeter cladding. Again, slab loads can be interpolated from the data for slabs. Ultimate cladding loads and any adjustments required for beam self-weight should be estimated and added to the slab loads, see Section 8.2.3.

The user can interpolate between values given in the charts and is expected to adjust and round up both the loads and depth in line with his or her confidence in the design criteria used and normal modular sizing.

Beams supporting two-way slabs

In broad outline the same principles can be applied to beams supporting two-way slabs. See Section 8.2.4.

Point loads

Whilst this publication is intended for investigating uniformly distributed loads, central point loads can be investigated, with caution, by assuming an equivalent ultimate applied uniformly distributed load of twice the ultimate applied point load/span, kN/m.

2.6.1 IN-SITU BEAMS

The charts for in-situ reinforced beams cover a range of web widths and **ultimate** applied uniformly distributed loads (uaudl), and are divided into:

Rectangular beams: eg. isolated or upstand beams, beams with no flange, beams not homogeneous with supported slabs

Inverted 'L' beams: eg. perimeter beams with top flange one side of the web

 ${}^\prime T^\prime$ beams: eg. internal beams with top flange both sides of the web

The user must determine which is appropriate. For instance, a 'T' beam that is likely to have large holes in the flange at mid-span can be derated from a 'T' to an 'L' or even to a rectangular beam.

2.6.2 PRECAST BEAMS

The charts and data for precast reinforced beams cover a range of web widths and **ultimate** applied uniformly distributed loads (uaudl), and are divided into:

Rectangular beams: ie. isolated or upstand beams

 \mathcal{L}' $beams\colon \mathbf{eg.}\ perimeter\ beams\ supporting\ hollow\ core\ floor\ units$

(Inverted) 'T' beams: eg. internal beams supporting hollow core floor units

The charts assume that the beams are simply supported and non-composite, ie. no flange action or benefit from temporary propping is assumed. The user must determine which form of beam is appropriate.

2.6.3 POST-TENSIONED BEAMS

The first set of charts for post-tensioned beams assumes 1000 mm wide rectangular beams with no flange action. Other post-tensioned beam widths can be investigated on a pro-rata basis, ie. ultimate load per metre width of web (see Section 8.2.5). Additionally data are presented for 2400 mm wide 'T' beams assuming full flange action.

2.7 Determine column sizes

The charts are divided into internal, edge and (external) corner columns at different percentages of reinforcement contents. The square size of column required can be interpolated from the appropriate chart(s) using the total **ultimate axial** load at the lowest level and, in the case of perimeter columns, number of storeys supported.

The total **ultimate axial** load, N, is the summation of beam (or two-way floor system) reactions and column self-weight from the top level to the level under consideration (usually bottom). Ideally, this load should be calculated from first principles (see Section 8.3). In accordance with BS 6399, table 2, live loads might be reduced. However, to do so is generally unwarranted in pre-scheme design of low-rise structures. Sufficient accuracy can be obtained by approximating the load to be as follows:

N = {(ult. load from beams per level or ult. load from two-way slab system per level) + ultimate self-weight of column per level} x no. of floors

For schemes using beams

Beams reactions can be read or interpolated from the data for beams. Reactions in two orthogonal directions should be considered, eg. perimeter columns may provide end support for an internal beam and internal support for a perimeter beam. Usually the weight of cladding will have been allowed for in the loads on perimeter beams (see Section 8.2). If not, or if other loads are envisaged, due allowance must be made.

For schemes using two-way floor systems

Two-way floor systems (ie. flat slabs, troughed slabs and waffle slabs designed as two-way slabs with integral beams and level soffits) either do not require beams or else include prescribed beams. Their data include ultimate loads or reactions to supporting columns. These loads assume a cladding load of 10 kN/m (ie. 14 kN/m ultimate). NB: some reactions are expressed as meganewtons (MN, ie.1000 kN).

Roofs

Other than in areas of mechanical plant, roof loadings seldom exceed floor loadings. For the purposes of estimating column loads, loads from concrete roofs may be equated to those from a normal floor, and loads from a lightweight roof can be taken as a proportion of a normal floor. Around perimeters, an adjustment should be made for the usual difference in height of cladding at roof level.

2.8 Identify best value option(s)

Having determined sizes of elements, the quantities of concrete and formwork can be calculated and reinforcement estimated. By applying rates for each material, a rudimentary cost comparison of the feasible options can be made. Concrete, formwork and reinforcement in floor plates constitute up to 90% of superstructure costs. Due allowances for market conditions, site constraints, differences in time scales, cladding and foundation costs should be included when determining best value and the most appropriate option(s) for further study.

2.9 Visualize the construction process

Imagine how the structure will be constructed. Consider buildability and the principles of value engineering. Consider time-scales, the flow of labour, plant and materials. Whilst a superstructure may represent only 10% of new build costs, it has a critical influence on the construction process and ensuing programme. Consider the impact of the superstructure options on service integration, also types, sizes and programme durations of foundations and substructures.

2.10 Prepare scheme design(s)

Once preferred options have been identified, full scheme design should be undertaken by a suitably experienced engineer to confirm and refine sizes and reinforcement estimates. These designs should be forwarded to the remaining members of the design team, eg. the architect for co-ordination and dimensional control, and the cost consultant for budget costing.

The final choice of frame type should be a joint decision between client, design team, and whenever possible, contractor.

2.11Examples

2.11.1 SLABS

Estimate the thickness of a continuous multiple span one-way solid slab spanning 7.0 m supporting an imposed load of 2.5 kN/m², and superimposed dead load of 3.2 kN/m²

From Section 2.5 or 8.1, equivalent imposed load is estimated to be 4.0 kN/m^2 . From chart (p 16), depth required is estimated to be 220 mm.

Alternatively, interpolating from one-way solid slab data (p 17), multiple span, at 4 kN/m², between 2.5 (208 mm) and 5 kN/m² (226 mm), then:

thickness = $208 + (226 - 208) \times (4.0 - 2.5)/(5.0 - 2.5)$ = $208 + 18 \times 0.6$ = 219 mm, say, 220 mm Answer: 220 mm thick solid slab.

2.11.2 INTERNAL BEAMS

Estimate the size of internal continuous beams spanning 8.0 m required to support the solid slab in example 2.11.1 above.

Interpolating from one-way solid slab data (p 17), multiple span, at 4 kN/m², between 2.5 (101 kN/m) and 5 kN/m² (136 kN/m), then:

```
load = 101 + (4.0 - 2.5) \times (136 - 101)/(5.0 - 2.5)
= 122 \text{ kN/m}
```

This value assumes an elastic reaction factor of 1.1 is appropriate (see Section 8.2.2). Interpolating from the chart for, say, a 'T' beam web 900 mm wide multiple span (p 68) at 8.0 m span and between loads of 100 kN/m (408 mm) and 200 kN/m (586 mm, singly reinforced), then:

```
depth = 408 + (586 - 408) x (122 - 100)/(200 - 100)
= 408 + 39
= 447 mm
```

Answer: say, 900 mm wide by 450 mm deep internal beams.

2.11.3 PERIMETER BEAMS

Estimate the perimeter beam sizes for the slab in the examples above. Perimeter curtain wall cladding weighs 3.0 kN/m (characteristic) per storey.

For perimeter beam perpendicular to slab span. Interpolating end support reaction from one-way solid slab chart and data (p 17), multiple span, at 4 kN/m², between 2.5 (46 kN/m) and 5 kN/m² (62 kN/m), then:

load from slab	$= 46 + (4.0 - 2.5) \times (62 - 46)/(5.0 - 2.5)$
	= 56 kN/m
load from cladding	$y = 3 \times 1.4$
	= 4.2 kN/m
Total load	= 56 + 4.2
	= 60.2, say, 60 kN/m

Beam size: interpolating from 'L' beam chart and data, multiple span, say, 450 mm web width (p57), at 60 kN/m over 8 m. At 50 kN/m suggested depth is 404 mm; at 100 kN/m (662 mm), then:

depth required = 404 + 20% x (662 - 404)= 456 mm For perimeter beams parallel to slab span. Allow, say, 1.0 m of slab, then:

load from slab	= (0.22 x 24 + 3.2) x 1.4 + 2.5 x 1.6
	= 15.9 kN/m
load from cladding	= 4.2 kN/m
Total load	= 20.1 kN/m

Beam size: reading from 'L' beam chart and data, multiple span, say, 225 mm web width, at 25 kN/m over 7.0 m, suggested depth is 360 mm.

Answer: for edges perpendicular to slab span, use 450 x 460 mm deep edge beams; for edges parallel to slab span, 225 x 360 mm deep edge beams can be used. For simplicity, use 450 x 460 mm deep, say, 450 x 450 mm deep edge beams all round.

Commentary: for buildability, a wider shallower beam might be more appropriate.

2.11.4 COLUMNS

Estimate the column sizes for the above examples assuming a three-storey structure and floor-to-floor height of 3.5 m.

Loads

Beam reactions by interpolating data (pp 68 and 60)

	Internal support	End support
	reaction	reaction
Internal beams 900 x 450 mm deep 122 kN/m, 8.0m span	1035 kN#	518 kN
Perimeter, perpendi 450 x 450 mm deep 60kN/m, 8.0 m span	cular to slab spar 523kN	י 261kN
Perimeter, parallel 450 x 450 mm deep Self weight and claddi 11 kN/m, 7.0 m span	say 77 kN	say 40 kN

Note:

Figure interpolated from data and no adjustment made for elastic reactions (see Section 8.3.2). Alternatively, this load may be calculated:

span x uaudl (see 2.11.2)	= 8 x 122	= 976 kN
self-weight		
= 0.9 x (0.45-0.22) x 8	x 24 x 1.4	= <u>56 kN</u>
Total =		1032 kN

Self-weight of column

Assume 450 mm square columns and 3.5 m storey height, from table in Section 8.3.3, allow 25 kN or calculate:

0.45 x 0.45 x 3.5 x 24 x 1.4 = 23.8kN, say, 25 kN/floor

Total ultimate axial loads in the columns: Internal

(1035 + 0 + 25) kN x 3 storeys = 3180 kN, say, 3200 kN.

Edge L'r to slab span (523 + 0 + 25) x 3	= 1644 kN, say, 1650 kN.
Edge II to slab span (77 + 518 + 25) x 3	= 1860 kN, say, 1900 kN.
Corner (261 + 40 + 25) x 3	= 978 kN, say, 1000 kN.

Estimating column sizes from charts

Internal columns, p 74, for 3200 kN

A 440 mm square column would require approximately 1% reinforcement. A 395 mm square column would require approximately 2% reinforcement. Try 400 mm square with 2% reinforcement provided by (from p 75) 8T25s, approximately 285 kg/m³.

Edge columns, pp 76 and 77, for 1900 kN over 3 storeys Estimated sizes: 535 mm square @ 2% or 385 mm square @ 3%. Try 450 mm square with 2.6% reinforcement provided by (from p 80) 12T32s, approximately 536 kg/m³.

Corner columns, pp 78 and 79, for 1000 kN over 3 storeys Estimated sizes: 530 mm square @ 2% or 435 mm square @ 3%. Try 450 mm square @ 2.8% reinforcement, 12T32s as above.

Answer: suggested column sizes: internal 400 mm square perimeter 450 mm square

Commentary: the perimeter columns are critical to this scheme option. If this scheme is selected, these columns should be checked by design. Nonetheless, compared with the design assumptions made for the column charts, the design criteria for these particular columns do not appear to be harsh. It is probable that all columns could therefore be rationalized to, say, 450 mm square, without the need for undue amounts of reinforcement.

Perimeter beams would be rationalized at 450 wide, to match perimeter columns, by 450 mm deep. Internal beams would be 900 mm wide and 450 mm deep.

2.11.5 FLAT SLAB SCHEME

Estimate the sizes of columns and slabs in a sevenstorey building, five bays by five bays, 3.3 m floor to floor. The panels are 7.5 m x 7.5 m. Characteristic imposed load is 5.0 kN/m², and superimposed dead load 1.5 kN/m². Curtain wall glazing is envisaged. Approximately how much reinforcement would there be in such a superstructure?

Slab

Interpolating from the solid flat slab chart and data, p 37, at 5.0 kN/m^2 and 7.5 m, the slab should be 282, say,

285 mm thick with approximately 109 kg/m³ of reinforcement.

Columns

The minimum square sizes of columns should be 400 mm (from p 37, at 5.0 kN/m², average of 370 mm at 7 m and 430 mm at 8 m) internally and 355 mm (from p 37, average of 330 mm at 7 m and 380 mm at 8 m) around the perimeter to avoid punching shear problems.

From the flat slab data, ultimate load to **internal** column is 1.1 MN, ie. 1100 kN per floor. Allowing 25 kN/floor for ultimate self-weight of column, total axial load = (1100 + 25) x 7 = 7875 kN. From internal column chart, p 74, at 8000 kN, the internal columns could be 600 mm square, ie. greater than required to avoid punching shear problems. They would require approximately 2.5% reinforcement, ie. from p 75, 12T32s, about 318 kg/m³, including links.

From the flat slab data, ultimate load to **edge** columns is 0.7 MN, ie. 700 kN per floor. This includes a cladding load of 10 kN/m whereas 2.0 kN/m might be more appropriate. Therefore deduct $(10.0 - 2.0) \times 7.5 \times 1.4 =$ 84 kN ultimate per floor. Allowing 25 kN/floor for ultimate self-weight of column, total axial load = $(700 + 25 - 84) \times 7 = 4487$ kN. Interpolating from edge column charts, pp 76 and 77, at 4500 kN and at seven stories, the edge columns could be 565 mm square at 2% reinforcement or 475 mm square at 3%.

Checking **corner** columns: load per floor will be approximately:

Floor less cladding

	= (700 -10 x 7.5 x 1.4)/2	=	298 kN/floor
Cladding	= 2 x 7.5 x 1.4	=	21 kN/floor
Self-weigl	nt, say,	=	<u>25 kN/floor</u>
			344 kN/floor
Total load	= 344 x 7	=	2408 kN

From corner column charts at 2400 kN, pp 78 and 79, these columns could be 555 mm square at 2% reinforcement or 460 mm at 3%.

For the sake of buildability, make all perimeter columns the same size as internal columns, ie. 600 mm square. This size avoids punching shear problems, and would require approximately 1.8% (effective) reinforcement. From the chart on p 80, allow for 12T32s, at a density of 318 kg/m³.

Walls

From p 112 assuming 200 mm thick walls, reinforcement density is approximately 80 kg/m³.

Stairs

From p 113 say 5 m span and 4.0 kN/m² imposed load, reinforcement density is approximately 30 kg/m² (assume landings included with floor slab estimate).

Reinforcement		
Slabs = (7.5 x 5 + 0.6) ² x 7 x 285/1000 x 109/100	0 —	216 t
Columns =	0 — .	5101
0.6 x 0.6 x 3.3 x 6 x 6 x 7 x 318/1000	=	95 t
Walls, say, =		
41 x 3.3 x 0.2 x 7 x 80 /1000	=	15 t
Stairs, say, = 30 flights x 5 x 1.5 x 30 / 1000	=	8 t
Plant roof, say, =		
7.5 x 7.5 x 3 x 1 x 0.282 x 109/1000	=	5 t
Plant room columns, say, =		
0.6 x 0.6 x 3.3 x 8 x 318/1000	=	<u>3 t</u>
Total, approximately	= 4	442 t

Answer: use 285 mm flat slabs and 600 mm square columns throughout. Reinforcement quantities for the superstructure would be in the order of 445 tonnes.

Commentary: this example is based on the M4C7 building in the RCC's Cost Model Study⁽⁶⁾ which used 300 mm thick flat slabs and 700 mm square columns. The estimated tonnage of of reinforcement in the superstructure was 452 tonnes. Further work on the Cost Model Study indicated that a 285 mm slab gives the least-cost solution (albeit with little scope for further design development).

More detailed analysis (including live load reduction) revealed that internal columns could be 500 mm square at 3.4% reinforcement (12T32s) and perimeter columns 450 mm at 2.1% (8T32s)

3 IN-SITU CONCRETE CONSTRUCTION

Combined Operations Centre, Heathrow, under construction

3.1 Slabs

3.1.1 USING IN-SITU SLABS

In-situ slabs offer economy, versatility, mouldability, fire resistance, sound attenuation, thermal capacity and robustness. They can easily accommodate large and small service holes, fixings for suspended services and ceilings, and cladding support details. Also, they can be quick and easy to construct. Each type has implications on overall costs, speed, self-weight, storey heights and flexibility in use: the relative importance of these factors must be assessed in each particular case.

3.1.2 USING THE CHARTS AND DATA

The charts and data give overall depths against spans for a range of **characteristic** imposed loads (IL). An allowance of 1.5 kN/m² has been made for superimposed dead loads (finishes, services, etc).

Where appropriate, the charts and data are presented for both single simply supported spans and the end span of three continuous spans. Continuity allows the use of thinner, more economic slabs. However, depths can often be determined by the need to allow for single spans in parts of the floor plate.

In general, charts and data assume that the slabs have line support (ie. beams or walls). The size of beams required can be estimated by noting the load to supporting beams and referring to the appropriate beam charts. See Section 2.6

Two-way slab systems (ie. flat slabs, troughed slabs and waffle slabs designed as two-way slabs with integral beams) do not, generally, need separate consideration of beams. In these cases, the ultimate load to supporting columns is given. An allowance of 10 kN/m characteristic load has been made around perimeters to allow for the self-weight of cladding (approximately the weight of a traditional brick-and-block cavity wall with 25% glazing and 3.5 m floor-to-floor height; see Section 8.2.3.

Flat slabs are susceptible to punching shear around columns: the sizes of columns supporting flat slabs should therefore be checked. The charts and data include the minimum sizes of column for which the slab thickness is valid. The charts and data assume one 150 mm hole adjoining each column. Larger holes adjacent to columns may invalidate the flat slab charts and data unless column sizes are increased appropriately.

3.1.3 DESIGN ASSUMPTIONS

Design

The charts and data are based on moment and shear factors in BS 8110, Pt $1^{(2)}$ tables 3.6 and 3.13 assuming end spans are critical.

In order to satisfy defection criteria, service stress, f_s , is, in very many cases, reduced (to as low as 200 N/mm²) by increasing steel contents.

Reinforcement

Concrete

Main reinforcement, $f_y = 460 \text{ N/mm}^2$. Links, $f_y = 250 \text{ N/mm}^2$.

For reinforcement quantities, see Section 2.2.4.

C35, 24 kN/m³, 20 mm aggregate. *Fire and durability*

Fire resistance 1 hour; mild exposure.

Variations from the above assumptions and assumptions for the individual types of slab are described in the relevant data. Other assumptions made are described and discussed in Section 7, *Derivation of charts and data*.

One-way solid slabs

One-way in-situ solid slabs are the most basic form of slab. Deflection usually governs the design, and steel content is usually increased to reduce service stress and increase span capacity.

Generally employed for utilitarian purposes in office buildings, retail developments, warehouses, stores, etc. Can be economical for spans from 4 to 8 m.

ADVANTAGES

- Simple
- Holes cause few structural problems

DISADVANTAGES

 Associated downstand beams may require greater storey height, deter fast formwork cycles and compromise flexibility of partition location and horizontal service distribution

SPAN: DEPTH CHART

DESIGN ASSUMPTIONS

SUPPORTED BY	BEAMS. Refer to beam charts and data to estimate sizes. End supports min 300 mm wide.
REINFORCEMENT	<6.5 m:T16T&B, >6.5 m:T20T&B uno. T10 @ 300 distribution. 10% allowed for wastage and laps. To comply with deflection criteria, service stress, f_s , may have been reduced. No A_sT in midspan.
LOADS	A superimposed dead load (SDL) of 1.50 kN/m ² (for finishes, services, etc.) is included. Ultimate loads assume elastic reaction factors of 0.5 to supports of single spans, 1.1 to internal supports and 0.46 to end supports of multiple span continuous slabs.
CONCRETE	C35, 24 kN/m ³ , 20 mm aggregate.
FIRE & DURABILITY	Fire resistance 1 hour; mild exposure.

SINGLE SPAN, m	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	148	182	218	258	298	348	396	458	528
$IL = 5.0 \text{ kN/m}^2$	160	196	232	274	318	370	420	484	548
$IL = 7.5 \text{ kN/m}^2$	168	208	248	292	334	390	440	502	582
$IL = 10.0 \text{ kN/m}^2$	176	218	260	302	352	402	458	526	602

ULTIMATE LOAD TO SUPPORTING BEAMS, INTERNAL (END), kN/m

$IL = 2.5 \text{ kN/m}^2$	n/a (22)	n/a (31)	n/a (40)	n/a (52)	n/a (64)	n/a (80)	n/a (96)	n/a (118)	n/a (143)
$IL = 5.0 \text{ kN/m}^2$	n/a (31)	n/a (42)	n/a (54)	n/a (68)	n/a (83)	n/a (102)	n/a (120)	n/a (145)	n/a (171)
$IL = 7.5 \text{ kN/m}^2$	n/a (39)	n/a (53)	n/a (67)	n/a (84)	n/a (101)	n/a (122)	n/a (143)	n/a (170)	n/a (202)
$IL = 10.0 \text{ kN/m}^2$	n/a (48)	n/a (64)	n/a (81)	n/a (99)	n/a (120)	n/a (142)	n/a (167)	n/a (197)	n/a (230)
DEINICODOCEMENT Leg/m2	11 1 23								
REINFORCEMENT, kg/m ²	(Kg/m ³)								
$IL = 2.5 \text{ kN/m}^2$	(<i>kg/m³)</i> 14 (95)	16 (90)	19 (89)	23 (89)	26 (89)	30 (86)	34 (88)	39 (85)	45 (85)
		16 (90) 18 (94)	19 (89) 23 (99)	23 (89) 27 (98)	26 (89) 29 (92)	30 (86) 33 (89)	34 (88) 38 (90)	39 (85) 43 (88)	45 (85) 51 (93)
$IL = 2.5 \text{ kN/m}^2$	14 (95)	,	()	,	,		()		. ,
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	14 (95) 15 (96)	18 (94)	23 (99)	27 (98)	29 (92)	33 (89)	38 (90)	43 (88)	51 (93)

VARIATIONS TO DESIGN ASSUMPTIONS: differences in slab thickness for a characteristic imposed load (IL) of 5.0 kN/m²

Fire resistance Exposure	2 hours Moderate	+20 mm +15 mm				,	Severe, C	4 hours 40 concrete	+40 mm +25 mm
MULTIPLE SPAN, m	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	125	150	178	208	244	282	318	362	416
$IL = 5.0 \text{ kN/m}^2$	134	162	192	226	262	300	340	386	438
$IL = 7.5 \text{ kN/m}^2$	142	172	204	240	278	318	358	406	462
$IL = 10.0 \text{ kN/m}^2$	148	180	214	250	290	332	374	422	482
ULTIMATE LOAD TO SU	IPPORTING BE	AMS. INTER	RNAL (END).	kN/m					
$IL = 2.5 \text{ kN/m}^2$	45 (21)	61 (28)	80 (36)	101 (46)	125 (57)	154 (70)	183 (83)	221 (100)	265 (120)
$IL = 5.0 \text{ kN/m}^2$	64 (29)	85 (39)	109 (50)	136 (62)	165 (75)	200 (91)	235 (107)	279 (127)	324 (147)
$IL = 7.5 \text{ kN/m}^2$	83 (38)	109 (50)	138 (63)	171 (78)	205 (93)	245 (112)	285 (130)	334 (152)	391 (178)
$IL = 10.0 \text{ kN/m}^2$	102 (46)	133 (60)	167 (76)	204 (93)	244 (111)	290 (132)	335 (152)	391 (178)	453 (206)
REINFORCEMENT, kg/m	² (kg/m³)								
$IL = 2.5 \text{ kN/m}^2$	10 (84)	12 (83)	14 (80)	17 (82)	19 (80)	22 (78)	25 (80)	29 (81)	33 (79)
$IL = 5.0 \text{ kN/m}^2$	12 (87)	14 (86)	16 (84)	19 (83)	22 (84)	25 (83)	28 (84)	32 (83)	39 (90)
$IL = 7.5 \text{ kN/m}^2$	13 (90)	15 (88)	18 (86)	20 (85)	23 (85)	27 (84)	31 (87)	35 (88)	39 (84)
$IL = 10.0 \text{ kN/m}^2$	14 (95)	17 (92)	19 (89)	22 (90)	26 (89)	29 (87)	33 (90)	37 (88)	41 (86)
DESIGN NOTES		a = impos	ed load, q _k ,	> 1.25 dea	ad load, g_k	$b = q_k$	> 5 kN/m²	<i>g</i> =	T25s used
$IL = 2.5 \text{ kN/m}^2$								g	g
$IL = 5.0 \text{ kN/m}^2$							g	g	g
$IL = 7.5 \text{ kN/m}^2$	a b	a b	b	b	b	bg	bg	bg	bg
$IL = 10.0 \text{ kN/m}^2$	a b	a b	a b	a b	b	bg	bg	bg	bg

VARIATIONS TO DESIGN ASSUMPTIONS: differences in slab thickness for a characteristic imposed load (IL) of 5.0 kN/m²

Fire resistance	2 hours	+5 mm	4 hours	+25 mm
Exposure	Moderate	+15 mm	Severe, C40 concrete	+25 mm

One-way slabs for use with 2400 mm wide band beams only

(One-way slabs with wide beams)

Used in car parks, schools, shopping centres, offices, etc. where spans in one direction are predominant and live loads are relatively light.

Slabs effectively span between edges of the relatively wide and shallow band beams; slab depth and overall depth of floor are thus minimized. Perimeter beams often take the form of upstands.

Economic for slab spans up to 9 m (centreline support to centreline support) and band beam spans up to 15 m in reinforced concrete (see pp 64 and 71) or up to 18 m using post- tensioned concrete (see pp 110 and 111). Thicknesses are typically governed by deflection and, to suit formwork, by ideally restricting the downstands of beams to 150 mm.

ADVANTAGES

- Medium range spans
- Simple
- Large and small holes can be accommodated
- Fast
- Amenable to simple distribution of horizontal services

SPAN:DEPTH CHART

DESIGN ASSUMPTIONS

SUPPORTED BY	BEAMS. Internally, 2400 mm wide BEAMS. Refer to beam charts to estimate sizes.
DIMENSIONS	Square panels, minimum of two (for end spans) or three slab spans x three beam spans
SPANS	Spans quoted in charts and data are centreline support to centreline support (eg. grid to grid). However, the designs of these slabs are based on spans of end span - 1.2 m + $d/2$, or internal span - 2.4 m + d.
REINFORCEMENT	<7.5 m:T16T&B, >7.5 m: T20T&B uno. T10 @ 300 distribution. 10% allowed for wastage and laps. To comply with deflection criteria, service stress, f_s , may have been reduced. No A_sT in midspan.
LOADS	A superimposed dead load (SDL) of 1.50 kN/m² (for finishes, services, etc.) is included. Ultimate loads assume elastic reaction factors of 1.1 to internal beams and 0.5 to end beams.
CONCRETE	C35, 24 kN/m ³ , 20 mm aggregate.
FIRE & DURABILITY	Fire resistance 1 hour; mild exposure.

BASED ON END SPAN, m	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
THICKNESS, mm			Add mini	imum 100 r	nm for min	imum deptl	h of 2400 s	pine beam
$IL = 2.5 \text{ kN/m}^2$	125	146	178	212	246	278	312	354
$IL = 5.0 \text{ kN/m}^2$	130	158	192	224	262	298	332	376
$IL = 7.5 \text{ kN/m}^2$	138	168	202	236	274	314	350	402
$IL = 10.0 \text{ kN/m}^2$	144	176	212	250	292	330	370	422
ULTIMATE LOAD TO SUPPORTING	BEAMS, INTE	RNAL (END)	, kN/m					
$IL = 2.5 \text{ kN/m}^2$	56 (25)	73 (33)	93 (42)	115 (52)	142 (65)	168 (77)	201 (91)	238 (108)
$IL = 5.0 \text{ kN/m}^2$	80 (36)	102 (46)	127 (58)	155 (70)	187 (85)	221 (101)	257 (117)	300 (136)
$IL = 7.5 \text{ kN/m}^2$	103 (47)	130 (59)	160 (73)	194 (88)	231 (105)	271 (123)	313 (142)	364 (166)
$IL = 10.0 \text{ kN/m}^2$	126 (57)	158 (72)	194 (88)	233 (106)	276 (126)	321 (146)	368 (167)	426 (194)
REINFORCEMENT, kg/m ² (kg/m ³)								
$IL = 2.5 \text{ kN/m}^2$	9 (78)	12 (79)	13 (74)	16 (77)	19 (77)	23 (83)	24 (78)	30 (84)
$IL = 5.0 \text{ kN/m}^2$	11 (81)	13 (83)	15 (78)	18 (81)	22 (83)	24 (81)	28 (83)	33 (89)
$IL = 7.5 \text{ kN/m}^2$	12 (84)	14 (85)	18 (88)	20 (84)	25 (91)	27 (85)	30 (87)	35 (86)
$IL = 10.0 \text{ kN/m}^2$	13 (89)	16 (89)	19 (88)	21 (87)	25 (87)	29 (86)	33 (89)	37 (87)
DESIGN NOTES	a = impos	ed load, q _k	,> 1.25 dea	ad load, g_k	$b = q_k$	> 5 kN/m²	<i>g</i> =	T25s used
$IL = 2.5 \text{ kN/m}^2$						g	g	g
$IL = 5.0 \text{ kN/m}^2$						g	g	g
$IL = 7.5 \text{ kN/m}^2$	a b	a b	b	b	b	bg	bg	bg
$IL = 10.0 \text{ kN/m}^2$	a b	a b	a b	a b	b	bg	bg	bg
BASED ON INTERNAL SPAN, m	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
THICKNESS, mm			Add mini	imum 150 r.	nm for min	imum deptl	h of 2400 s	pine beam
$IL = 2.5 \text{ kN/m}^2$			134	160	196	222	250	282
$IL = 5.0 \text{ kN/m}^2$		125	146	174	210	240	272	302
$IL = 7.5 \text{ kN/m}^2$		125	154	184	222	254	286	318
$IL = 10.0 \text{ kN/m}^2$		130	162	194	232	262	300	334
							500	
ULTIMATE LOAD TO SUPPORTING	BEAMS, INTE	RNAL (END)	, kN/m				500	
$IL = 2.5 \text{ kN/m}^2$	BEAMS, INTE	RNAL (END)	, <u>kN/m</u> 82 (n/a)	101 (n/a)	126 (n/a)	149 (n/a)	175 (n/a)	206 (n/a)
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	BEAMS, INTE	RNAL (END) 93 (n/a)		101 (n/a) 140 (n/a)	126 (n/a) 170 (n/a)	149 (n/a) 200 (n/a)		
$ IL = 2.5 \text{ kN/m}^2 IL = 5.0 \text{ kN/m}^2 IL = 7.5 \text{ kN/m}^2 $	BEAMS, INTE	93 (n/a) 121 (n/a)	82 (n/a) 116 (n/a) 148 (n/a)	140 (n/a) 178 (n/a)	170 (n/a) 213 (n/a)	200 (n/a) 249 (n/a)	175 (n/a) 233 (n/a) 287 (n/a)	206 (n/a) 267 (n/a) 327 (n/a)
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	BEAMS, INTE	93 (n/a)	82 (n/a) 116 (n/a)	140 (n/a)	170 (n/a)	200 (n/a)	175 (n/a) 233 (n/a)	206 (n/a) 267 (n/a)
$ IL = 2.5 \text{ kN/m}^2 IL = 5.0 \text{ kN/m}^2 IL = 7.5 \text{ kN/m}^2 $	BEAMS, INTE	93 (n/a) 121 (n/a)	82 (n/a) 116 (n/a) 148 (n/a)	140 (n/a) 178 (n/a)	170 (n/a) 213 (n/a)	200 (n/a) 249 (n/a)	175 (n/a) 233 (n/a) 287 (n/a)	206 (n/a) 267 (n/a) 327 (n/a)
$\begin{split} IL &= 2.5 \ kN/m^2 \\ IL &= 5.0 \ kN/m^2 \\ IL &= 7.5 \ kN/m^2 \\ IL &= 10.0 \ kN/m^2 \end{split}$	BEAMS, INTE	93 (n/a) 121 (n/a)	82 (n/a) 116 (n/a) 148 (n/a)	140 (n/a) 178 (n/a)	170 (n/a) 213 (n/a)	200 (n/a) 249 (n/a)	175 (n/a) 233 (n/a) 287 (n/a)	206 (n/a) 267 (n/a) 327 (n/a)
$IL = 2.5 \text{ kN/m}^{2}$ $IL = 5.0 \text{ kN/m}^{2}$ $IL = 7.5 \text{ kN/m}^{2}$ $IL = 10.0 \text{ kN/m}^{2}$ $REINFORCEMENT, kg/m^{2} (kg/m^{3})$ $IL = 2.5 \text{ kN/m}^{2}$ $IL = 5.0 \text{ kN/m}^{2}$	BEAMS, INTE	93 (n/a) 121 (n/a) 148 (n/a) 10 (80)	82 (n/a) 116 (n/a) 148 (n/a) 181 (n/a)	140 (n/a) 178 (n/a) 217 (n/a) 12 (74) 13 (76)	170 (n/a) 213 (n/a) 256 (n/a) 14 (71) 16 (77)	200 (n/a) 249 (n/a) 296 (n/a) 17 (75) 19 (78)	175 (n/a) 233 (n/a) 287 (n/a) 341 (n/a)	206 (n/a) 267 (n/a) 327 (n/a) 387 (n/a) 22 (76) 24 (80)
$IL = 2.5 \text{ kN/m}^{2}$ $IL = 5.0 \text{ kN/m}^{2}$ $IL = 7.5 \text{ kN/m}^{2}$ $IL = 10.0 \text{ kN/m}^{2}$ $REINFORCEMENT, kg/m^{2} (kg/m^{3})$ $IL = 2.5 \text{ kN/m}^{2}$ $IL = 5.0 \text{ kN/m}^{2}$ $IL = 7.5 \text{ kN/m}^{2}$	BEAMS, INTE	93 (n/a) 121 (n/a) 148 (n/a) 10 (80) 10 (83)	82 (n/a) 116 (n/a) 148 (n/a) 181 (n/a) 10 (76)	140 (n/a) 178 (n/a) 217 (n/a) 12 (74) 13 (76) 15 (81)	170 (n/a) 213 (n/a) 256 (n/a) 14 (71) 16 (77) 18 (81)	200 (n/a) 249 (n/a) 296 (n/a) 17 (75) 19 (78) 21 (82)	175 (n/a) 233 (n/a) 287 (n/a) 341 (n/a) 19 (78)	206 (n/a) 267 (n/a) 327 (n/a) 387 (n/a) 22 (76) 24 (80) 27 (85)
$IL = 2.5 \text{ kN/m}^{2}$ $IL = 5.0 \text{ kN/m}^{2}$ $IL = 7.5 \text{ kN/m}^{2}$ $IL = 10.0 \text{ kN/m}^{2}$ $REINFORCEMENT, kg/m^{2} (kg/m^{3})$ $IL = 2.5 \text{ kN/m}^{2}$ $IL = 5.0 \text{ kN/m}^{2}$	BEAMS, INTE	93 (n/a) 121 (n/a) 148 (n/a) 10 (80)	82 (n/a) 116 (n/a) 148 (n/a) 181 (n/a) 10 (76) 11 (77)	140 (n/a) 178 (n/a) 217 (n/a) 12 (74) 13 (76)	170 (n/a) 213 (n/a) 256 (n/a) 14 (71) 16 (77)	200 (n/a) 249 (n/a) 296 (n/a) 17 (75) 19 (78)	175 (n/a) 233 (n/a) 287 (n/a) 341 (n/a) 19 (78) 21 (77)	206 (n/a) 267 (n/a) 327 (n/a) 387 (n/a) 22 (76) 24 (80)
$IL = 2.5 \text{ kN/m}^{2}$ $IL = 5.0 \text{ kN/m}^{2}$ $IL = 7.5 \text{ kN/m}^{2}$ $IL = 10.0 \text{ kN/m}^{2}$ $REINFORCEMENT, kg/m^{2} (kg/m^{3})$ $IL = 2.5 \text{ kN/m}^{2}$ $IL = 5.0 \text{ kN/m}^{2}$ $IL = 7.5 \text{ kN/m}^{2}$		93 (n/a) 121 (n/a) 148 (n/a) 10 (80) 10 (83)	82 (n/a) 116 (n/a) 148 (n/a) 181 (n/a) 10 (76) 11 (77) 13 (83) 14 (85)	140 (n/a) 178 (n/a) 217 (n/a) 12 (74) 13 (76) 15 (81) 16 (82)	170 (n/a) 213 (n/a) 256 (n/a) 14 (71) 16 (77) 18 (81) 20 (85)	200 (n/a) 249 (n/a) 296 (n/a) 17 (75) 19 (78) 21 (82)	175 (n/a) 233 (n/a) 287 (n/a) 341 (n/a) 19 (78) 21 (77) 24 (83) 26 (85)	206 (n/a) 267 (n/a) 327 (n/a) 387 (n/a) 22 (76) 24 (80) 27 (85)
$\begin{split} & \text{IL} = 2.5 \text{ kN/m}^2 \\ & \text{IL} = 5.0 \text{ kN/m}^2 \\ & \text{IL} = 7.5 \text{ kN/m}^2 \\ & \text{IL} = 10.0 \text{ kN/m}^2 \\ & \text{IL} = 10.0 \text{ kN/m}^2 \\ & \text{IL} = 2.5 \text{ kN/m}^2 \\ & \text{IL} = 5.0 \text{ kN/m}^2 \\ & \text{IL} = 5.0 \text{ kN/m}^2 \\ & \text{IL} = 7.5 \text{ kN/m}^2 \\ & \text{IL} = 10.0 \text{ kN/m}^2 \\ & \text{IL} = 2.5 \text{ kN/m}^2 \\ & \text{IL} = 2.5 \text{ kN/m}^2 \end{split}$		93 (n/a) 121 (n/a) 148 (n/a) 10 (80) 10 (83) 11 (87)	82 (n/a) 116 (n/a) 148 (n/a) 181 (n/a) 10 (76) 11 (77) 13 (83) 14 (85)	140 (n/a) 178 (n/a) 217 (n/a) 12 (74) 13 (76) 15 (81) 16 (82)	170 (n/a) 213 (n/a) 256 (n/a) 14 (71) 16 (77) 18 (81) 20 (85)	200 (n/a) 249 (n/a) 296 (n/a) 17 (75) 19 (78) 21 (82) 24 (90)	175 (n/a) 233 (n/a) 287 (n/a) 341 (n/a) 19 (78) 21 (77) 24 (83) 26 (85)	206 (n/a) 267 (n/a) 327 (n/a) 387 (n/a) 22 (76) 24 (80) 27 (85) 29 (87)
$\begin{split} & \text{IL} = 2.5 \text{ kN/m}^2 \\ & \text{IL} = 5.0 \text{ kN/m}^2 \\ & \text{IL} = 7.5 \text{ kN/m}^2 \\ & \text{IL} = 10.0 \text{ kN/m}^2 \\ & \text{IL} = 10.0 \text{ kN/m}^2 \\ & \text{IL} = 2.5 \text{ kN/m}^2 \\ & \text{IL} = 5.0 \text{ kN/m}^2 \\ & \text{IL} = 5.0 \text{ kN/m}^2 \\ & \text{IL} = 10.0 \text{ kN/m}^2 \\ & \text{IL} = 2.5 \text{ kN/m}^2 \\ & \text{IL} = 5.0 \text{ kN/m}^2 \end{split}$		93 (n/a) 121 (n/a) 148 (n/a) 10 (80) 10 (83) 11 (87) ed load, q _k	82 (n/a) 116 (n/a) 148 (n/a) 181 (n/a) 10 (76) 11 (77) 13 (83) 14 (85)	140 (n/a) 178 (n/a) 217 (n/a) 12 (74) 13 (76) 15 (81) 16 (82)	170 (n/a) 213 (n/a) 213 (n/a) 256 (n/a) 14 (71) 16 (77) 18 (81) 20 (85) $b = q_k$	200 (n/a) 249 (n/a) 296 (n/a) 17 (75) 19 (78) 21 (82) 24 (90) > 5 kN/m ²	175 (n/a) 233 (n/a) 287 (n/a) 341 (n/a) 19 (78) 21 (77) 24 (83) 26 (85)	206 (n/a) 267 (n/a) 327 (n/a) 387 (n/a) 22 (76) 24 (80) 27 (85) 29 (87) T25s used
$\begin{split} & \text{IL} = 2.5 \text{ kN/m}^2 \\ & \text{IL} = 5.0 \text{ kN/m}^2 \\ & \text{IL} = 7.5 \text{ kN/m}^2 \\ & \text{IL} = 10.0 \text{ kN/m}^2 \\ & \text{IL} = 10.0 \text{ kN/m}^2 \\ & \text{IL} = 2.5 \text{ kN/m}^2 \\ & \text{IL} = 5.0 \text{ kN/m}^2 \\ & \text{IL} = 5.0 \text{ kN/m}^2 \\ & \text{IL} = 7.5 \text{ kN/m}^2 \\ & \text{IL} = 10.0 \text{ kN/m}^2 \\ & \text{IL} = 2.5 \text{ kN/m}^2 \\ & \text{IL} = 2.5 \text{ kN/m}^2 \end{split}$		93 (n/a) 121 (n/a) 148 (n/a) 10 (80) 10 (83) 11 (87) red load, qk	82 (n/a) 116 (n/a) 148 (n/a) 181 (n/a) 10 (76) 11 (77) 13 (83) 14 (85)	140 (n/a) 178 (n/a) 217 (n/a) 12 (74) 13 (76) 15 (81) 16 (82)	170 (n/a) 213 (n/a) 256 (n/a) 14 (71) 16 (77) 18 (81) 20 (85)	200 (n/a) 249 (n/a) 296 (n/a) 17 (75) 19 (78) 21 (82) 24 (90)	175 (n/a) 233 (n/a) 287 (n/a) 341 (n/a) 19 (78) 21 (77) 24 (83) 26 (85)	206 (n/a) 267 (n/a) 327 (n/a) 387 (n/a) 22 (76) 24 (80) 27 (85) 29 (87) T255 used g

(One-way joists)

ADVANTAGES

- Medium to long spans
- Lightweight
- Holes in topping easily accommodated
- Large holes can be accommodated
- Profile may be expressed architecturally, or used for heat transfer in passive cooling

Introducing voids to the soffit of a slab reduces dead weight and increases the efficiency of the concrete section. A slightly deeper section is required but these stiffer floors facilitate longer spans and provision of holes. Economic in the range 8 to 12 m.

The saving of materials tends to be offset by some complication in formwork. The advent of expanded polystyrene moulds has made the choice of trough profile infinite and largely superseded the use of standard T moulds. Ribs should be at least 125 mm wide to suit reinforcement detailing.

The chart and data assume line support (ie. beam or wall) and bespoke moulds.

DISADVANTAGES

- Higher formwork costs than for other slab systems
- Slightly greater floor thicknesses
- Slower

SPAN:DEPTH CHART

DESIGN ASSUMPTION		6. Refer to b	eam charts a	nd data to e	stimate bean	n sizes and re	einforcement		
DIMENSIONS			imum of thre						m Moulds o
DIVIENSIONS		e depth. Rik	solid interse					11 5	
REINFORCEMENT			s in ribs: 2T2 . 10% allowe						142 mesh (@
LOADS	elastic	reaction fa	ead load (SDL ctors of 1.1 t is and solid e	o internal b	eams and 0.				
CONCRETE		•	mm aggrega						
FIRE & DURABILITY			our; mild exp						
SINGLE SPAN, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
THICKNESS, mm	0.0	710	0.0	510	10.0	1110	12.0	1510	1.110
$IL = 2.5 \text{ kN/m}^2$	250	288	334	382	434	514	610	722	
$IL = 5.0 \text{ kN/m}^2$	272	320	372	428	492	588	772		
$IL = 7.5 \text{ kN/m}^2$	294	346	406	472	594				
$IL = 10.0 \text{ kN/m}^2$	314	372	438	564					
ULTIMATE LOAD TO SU									
$IL = 2.5 \text{ kN/m}^2$	n/a (35)	n/a (43)	n/a (52)	n/a (61)	n/a (72)	n/a (87)	n/a (105)	n/a (126)	
$IL = 5.0 \text{ kN/m}^2$	n/a (48)	n/a (58)	n/a (70)	n/a (83)	n/a (97)	n/a (116)	n/a (146)		
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	n/a (61) n/a (74)	n/a (74) n/a (89)	n/a (88) n/a (106)	n/a (104) n/a (129)	n/a (126)				
		1//4 (05)	184 (100)	11/0 (125)					
REINFORCEMENT, kg/m		12 (41)	11 (24)	11 (20)		action only, ac			forcement
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	11 (42) 11 (42)	12 (41)	11 (34)	11 (30)	12 (27)	12 (23)	12 (20)	12 (17)	
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$	11 (42)	11 (36) 12 (34)	11 (31) 12 (29)	12 (27) 12 (25)	12 (24) 12 (20)	12 (20)	12 (16)		
$IL = 10.0 \text{ kN/m}^2$	11 (36)	12 (34)	12 (23)	12 (21)	12 (20)				
MULTIPLE SPAN, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$		250	278	312	342	392	452	520	598
$IL = 5.0 \text{ kN/m}^2$	250	266	302	336	376	440	510	590	688
$IL = 7.5 \text{ kN/m}^2$	250	282	318	364	414	484	592	732	
$IL = 10.0 \text{ kN/m}^2$	258	298	342	392	476	588	730		
ULTIMATE LOAD TO SU IL = 2.5 kN/m ²	PPORTING BE				142 (65)	16E (7E)	102 (00)	224 (102)	261 (110)
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	101 (46)	89 (40) 122 (55)	105 (48) 144 (65)	123 (56) 167 (76)	142 (65) 192 (87)	165 (75) 223 (101)	193 (88) 257 (117)	224 (102) 297 (135)	261 (119) 346 (157)
$IL = 7.5 \text{ kN/m}^2$	129 (59)	154 (70)	181 (82)	210 (96)	242 (110)	279 (127)	328 (149)	389 (177)	540 (157)
$IL = 10.0 \text{ kN/m}^2$	156 (71)	187 (85)	219 (100)	254 (115)	297 (135)	348 (158)	411 (187)	,	
REINFORCEMENT, kg/m	² (kg/m³)				S	lab only, ac	ld mesh an	d beam reir	forcement
$IL = 2.5 \text{ kN/m}^2$		11 (45)	12 (44)	16 (51)	17 (51)	18 (46)	18 (40)	18 (35)	18 (31)
$IL = 5.0 \text{ kN/m}^2$	12 (53)	16 (59)	16 (54)	18 (53)	18 (48)	18 (41)	18 (36)	18 (31)	18 (27)
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	16 (64) 17 (64)	17 (60) 17 (59)	18 (57) 18 (53)	18 (50) 18 (46)	18 (44) 18 (38)	18 (38) 18 (31)	18 (31) 18 (25)	18 (25)	
$\frac{DESIGN NOTES}{IL = 2.5 \text{ kN/m}^2}$	$= q_k > 1.25 g$	q_k $D = q_l$	$k > 5 \text{ kN/m}^2$	C = 212	20B d = 0	deflection ci	ntical e =	designed I	inks in ribs e
$IL = 5.0 \text{ kN/m}^2$	e			e	de	de	de	е	e
$IL = 7.5 \text{ kN/m}^2$	abe	abe	abde	abde	abe	bde	be	be	
$IL = 10.0 \text{ kN/m}^2$	abe	abe	abde	abde	abe	abe	be		
VARIATIONS TO DESIGI					for a charac			· ·	
Fire resistance		50 rib & 11		+5 mm			150 rib & to	1 5	see below
Exposure Standard moulds	Moderate T moulds			+15 mm e below			2 40 concrete 5 moulds	125 mm ri	see below bs @ 600
CC									
Thickness, mm	Span, m 4 hrs 150	rib & toppin	6.0 Ig 258	7.0 300	8.0 338	9.0 386	10.0 442	11.0 534	12.0 600
		10 concrete	248 248	288	326	366	442	494	576
									570
	T2 mould,	175 deep	265	291	305	347			
	T3 mould	250 deep	265	291	305 340	340	382		
	T3 mould T4 mould		265	291			382 415 490	450 490	524

Ribbed slabs for use with 2400 mm wide band beams only

(One-way joists with wide beams)

ADVANTAGES

- Medium to long spans
- Lightweight
- Holes in topping easily accommodated (but avoid beams)
- Large holes can be accommodated

As with solid slab arrangements, the band beam has a relatively wide, shallow cross section which reduces the overall depth of floor while permitting longer spans.

Used in car parks, offices, etc. where spans in one direction are predominant and live loads are relatively light. Slab spans up to 10 m (centreline support to centreline support) with beam spans up to 16 m are economic.

Charts and data assume wide beam support, minimum 100 or 180 mm downstand, and bespoke moulds. For beam thicknesses refer to pp 64, 71, 110 or 111). Thicknesses are typically governed by deflection and, to suit formwork, by restricting the downstands of beams.

DISADVANTAGES

- Higher formwork costs than for other slab systems
- Slightly greater floor heights
- Slower

SPAN:DEPTH CHART

DESIGN ASSUMPTIONS

SUPPORTED BY	BEAMS. Internally, 2400 mm wide BEAMS. Refer to beam charts to estimate sizes.
DIMENSIONS	Square panels, minimum of two (for end spans) or three slab spans x three beam spans. Ribs 150 mm wide @ 750 mm cc. Topping 100 mm. Rib/solid intersection at beam span/7 from centreline of internal support, and at span/9 from end support.
SPANS	Spans quoted in charts and data are centreline support to centreline support (eg. grid to grid). However, the designs of these slabs are based on spans of end span - $1.2 \text{ m} + d/2$, or internal span - $2.4 \text{ m} + d$.
REINFORCEMENT	Maximum bar sizes in ribs: 2T25B, 2T20T (in top of web) and R8 links. 25 mm allowed for A142 mesh (@ 0.12%) in topping. 10% allowed for wastage and laps.
LOADS	SDL of 1.50 kN/m ² (finishes) included. Ultimate loads assume elastic reaction factors of 1.1 to internal beams and 0.5 to end beams. Self weight used accounts for 10 degree slope to ribs and solid ends as described above.
CONCRETE	C35, 24 kN/m ³ , 20 mm aggregate.
FIRE & DURABILITY	Fire resistance 1 hour; mild exposure.

BASED ON END SPAN, m	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
THICKNESS, mm			Add minim	um 100 mr	n for minim	um depth d	of 2400 spir	ne beam
$IL = 2.5 \text{ kN/m}^2$		250	282	316	350	390	452	524
$IL = 5.0 \text{ kN/m}^2$		268	302	336	374	440	512	596
$IL = 7.5 \text{ kN/m}^2$	250	280	318	362	412	486	602	756
$IL = 10.0 \text{ kN/m}^2$	256	296	338	392	478	598	754	

ULTIMATE LOAD TO SUPPORTING BEAMS, INTERNAL (END), kN/m²

$IL = 2.5 \text{ kN/m}^2$		101 (46)	118 (54)	139 (63)	156 (71)	180 (82)	209 (95)	242 (110)
$IL = 5.0 \text{ kN/m}^2$		139 (63)	161 (73)	184 (84)	210 (96)	243 (110)	279 (127)	322 (146)
$IL = 7.5 \text{ kN/m}^2$	151 (69)	176 (80)	203 (92)	233 (106)	266 (121)	305 (139)	357 (162)	425 (193)
$IL = 10.0 \text{ kN/m}^2$	182 (83)	213 (97)	246 (112)	282 (128)	327 (148)	382 (174)	451 (205)	

REINFORCEMENT, kg/m² (kg/m³)				Sla	ab only, add	mesh and	beam reinfo	orcement
$IL = 2.5 \text{ kN/m}^2$		11 (44)	12 (43)	11 (34)	16 (48)	18 (45)	18 (39)	18 (34)
$IL = 5.0 \text{ kN/m}^2$		12 (43)	16 (54)	17 (52)	18 (48)	18 (40)	18 (35)	18 (30)
$IL = 7.5 \text{ kN/m}^2$	11 (43)	16 (57)	17 (54)	18 (49)	18 (44)	18 (37)	18 (30)	18 (24)
$IL = 10.0 \text{ kN/m}^2$	15 (60)	17 (56)	18 (53)	18 (45)	18 (38)	18 (30)	18 (24)	

DESIGN NOTES a IL = 2.5 kN/m ²	= imposed loa	d, q _k ,> 1.2	5 dead load	$d, g_k = b =$	$q_k > 5 \ kN/m^2$	e = 0	lesigned link	s in ribs
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m} \le$	abe abe	e abe abe	e abe abe	e abe abe	e abe abe	e be abe	e be be	e be
BASED ON INTERNAL SPAN, m	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0

THICKNESS, mm		Add minimu	um 180 mn	n for minim	um depth c	of 2400 spin	e beam
$IL = 2.5 \text{ kN/m}^2$			254	288	320	358	406
$IL = 5.0 \text{ kN/m}^2$		250	274	306	342	388	456
$IL = 7.5 \text{ kN/m}^2$		258	290	326	366	422	492
$IL = 10.0 \text{ kN/m}^2$	250	270	308	348	390	458	536

ULTIMATE LOAD TO SUPPORTING BEAMS, INTERNAL (END), kN/m²

$IL = 2.5 \text{ kN/m}^2$			128 (58)	147 (67)	166 (75)	188 (85)	214 (97)
$IL = 5.0 \text{ kN/m}^2$		153 (70)	175 (80)	198 (90)	223 (101)	252 (114)	287 (131)
$IL = 7.5 \text{ kN/m}^2$		195 (89)	222 (101)	250 (114)	281 (128)	316 (144)	358 (163)
$IL = 10.0 \text{ kN/m}^2$	205 (93)	236 (107)	268 (122)	306 (139)	338 (154)	382 (173)	430 (195)

REINFORCEMENT, kg/m² (kg/m³)			Sla	ab only, add	I mesh and	beam reinf	orcement
$IL = 2.5 \text{ kN/m}^2$			10 (41)	13 (46)	14 (44)	16 (43)	17 (41)
$IL = 5.0 \text{ kN/m}^2$		13 (53)	14 (52)	15 (50)	16 (47)	17 (45)	17 (38)
$IL = 7.5 \text{ kN/m}^2$		14 (54)	16 (53)	17 (51)	21 (56)	21 (50)	21 (43)
$IL = 10.0 \text{ kN/m}^2$	14 (59)	15 (56)	16 (53)	19 (51)	21 (54)	21 (47)	22 (40)

$\frac{DESIGN NOTES}{IL = 2.5 \text{ kN/m}^2}$	$a = imposed load, q_{k,>}$	1.25 dead lo	ad, g _k b	$p = q_k > 5 kN/n$	$n^2 e =$	designed lir	nks in ribs
$IL = 5.0 \text{ kN/m}^2$		e	e	е	e	е	e
$IL = 7.5 \text{ kN/m}^2$		abe	abe	abe	abe	abe	be
$IL = 10.0 \text{ kN/m}^2$	abe	abe	abe	abe	abe	abe	abe

Troughed slabs

(Ribbed slabs with integral beams and level soffits, troughed flat slabs, one-way joist floors)

ADVANTAGES

- Longer spans than one-way solid or flat slabs
- Lightweight
- Level soffit
- Profile may be expressed architecturally, or used for heat transfer
- Holes in ribbed slab areas cause little or no problem

Troughed slabs are popular in spans up to 12 m as they combine the advantages of ribbed slabs with level soffits.

Economic depths depend on the widths of beams used. Deflection is usually critical to the design of the beams, which, therefore, tend to be wide and heavily reinforced. The chart and data assume internal beam widths of beam span/3.5, perimeter beam width of beam span/9 plus column width/2. They include an allowance for an edge loading of 10 kN/m. (See also Ribbed slabs).

In rectangular panels, the ribbed slab should usually span the longer direction.

DISADVANTAGES

Higher formwork costs than plain soffits

SPAN: DEPTH CHART

SUPPORTED BY	COLUMNS. Refer to	column cha	orts and data	to estimate s	sizes, etc.			
DIMENSIONS	Square panels, mini 100 mm. Moulds va wide. Edges flush wi	riable depth	n. Internal bea	ams span/3.5				
REINFORCEMENT	Max. bar sizes, ribs: for A142 mesh (@ service stress, fs, ma	0.12%) in t	topping. 10%	,				
LOADS	SDL of 1.50 kN/m ² (assume erfs of 1.2 i weight used accoun	nternally ar	nd 0.46 at en	ıds. Ultimate	loads to colu	umns assume	erfs of 1.0	
CONCRETE	C35, 24 kN/m ³ , 20 m	nm aggrega	ite.					
FIRE & DURABILITY	Fire resistance 1 hou	ır; mild exp	osure.					
MULTIPLE SPAN, m	4.0 5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
THICKNESS, mm								
$IL = 2.5 \text{ kN/m}^2$		250	282	318	356	396	452	524
$IL = 5.0 \text{ kN/m}^2$	250	272	306	342	382	430	486	566
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	254 270	288 308	324 350	366 398	412 454	466 522	532 596	610 720
					4J4	JZZ	390	720
	PPORTING COLUMNS, IN		1		1 1 (0 0)	1 / /1 0	10/17)	2 2 (1 C)
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	0.4 (0.4)	0.4 (0.4) 0.6 (0.5)	0.6 (0.5) 0.8 (0.6)	0.8 (0.7) 1.1 (0.8)	1.1 (0.8) 1.4 (1.0)	1.4 (1.0) 1.8 (1.3)	1.8 (1.3) 2.3 (1.6)	2.3 (1.6) 3.0 (2.0)
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$	0.4 (0.4)	0.8 (0.5)	1.0 (0.8)	1.4 (1.0)	1.4 (1.0)	2.3 (1.6)	2.5 (1.6) 2.9 (2.0)	3.0 (2.0)
$IL = 10.0 \text{ kN/m}^2$	0.6 (0.5)	0.9 (0.7)	1.2 (0.9)	1.7 (1.2)	2.1 (1.5)	2.8 (1.9)	3.5 (2.3)	4.5 (2.9)
		0.5 (0.7)	1.2 (0.3)	(1.2)	2.1 (1.3)	2.0 (1.5)	5.5 (2.5)	1.5 (2.5)
REINFORCEMENT, kg/m ²	(kg/m³)	20 (114)	22 (110)	20 (127)	40 (114)	41 (10C)	41 (02)	46 (00)
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	30 (127)	29 (114)	33 (119)	39 (127)	40 (114)	41 (106) 50 (122)	41 (92)	46 (88)
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$		32 (118)	36 (120)	38 (112)	45 (122)	46 (122)	48 (99) 49 (91)	49 (86) 50 (82)
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	32 (125) 37 (138)	34 (118) 35 (113)	37 (114) 41 (118)	41 (111) 44 (110)	46 (112) 46 (105)	48 (100) 47 (90)	49 (91) 50 (86)	49 (68)
	$k > 1.25 g_k b = q_k > 5$. ,		ck punching		
$IL = 5.0 \text{ kN/m}^2$					e	е	e	e
$IL = 7.5 \text{ kN/m}^2$	ab	abe	abe	abe	abe	abe	be	be
$IL = 10.0 \text{ kN/m}^2$	abe	abe	abe	abe	abe	abe	abe	abe
LINKS, %AGE BY WEIGH	HT OF REINFORCEMENT					Lin	nks in ribs a	and beams
$IL = 2.5 \text{ kN/m}^2$	36%	29%	24%	18%	14%	13%	11%	11%
$IL = 5.0 \text{ kN/m}^2$	34%	25%	20%	15%	13%	11%	9%	9%
$IL = 7.5 \text{ kN/m}^2$	28%	20%	17%	13%	11%	10%	9%	9%
$IL = 10.0 \text{ kN/m}^2$	25%	19%	15%	12%	9%	10%	9%	10%
	ASSUMPTIONS: differen							
Fire resistance	2 hours, 150 rib & 115	11 5	+5 mm			rib & topping		see below
Exposure	Moderate	-	+20 mm		Severe, C40 c			see below
Cladding load Dimensions	No cladding load 125 mm ribs @ 600		-0 mm +0 mm		20 kN/m clad Beam widths:	5		+25 mm
Dimensions	125 mm ribs @ 750		+0 mm	1		edge L/12 +	col/2	see below
	150 mm ribs @ 900		+0 mm			edge L/12 +		+10 mm
	200 mm ribs @ 1200		+0 mm			8.5, edge L/9		as original
	250 mm ribs @ 1500		+0 mm			edge L/8 + c		-10 mm
Other	25 mm cover	-	+10 mm	I	Rectangular b	eams (cf 'T' 8	& 'L')	+0 mm
Single spans	Single slab span		e below		Single spine b			see below
Thickness, mm	Span, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0
	4 hrs,150 rib & topping		354	460	602	804		
	Severe, C40 concrete	290	320	350	412	524	672	888
	Beams L/5 & L/12 wide		332	368	410	496	544	624
	1-span slab	282	320	364 410	420 470	482 532	578 632	748 748
Rectangular nanole	1-span spine beam equivalent spans, m	304	354			532 Jare span, be		
	Ribbed slab span, m	6.0	7.0	8.0	9.0	10.0	1000, to deriv	12.0
	Beam span = 5.0 m	5.4	6.2	6.5	7.7	9.0		
	Beam span = 6.0 m	6.0	6.3	6.8	7.8	9.0	10.6	11.4
	Beam span = 7.0 m	6.6	7.0	7.3	7.9	9.1	10.6	11.5
	Beam span = 8.0 m	7.1	7.6	8.0	8.4	9.2	10.6	11.5
	Beam span = 9.0 m	8.0	8.3	8.6	9.0	9.4	10.6	11.5

8.0

9.0

10.2

10.9

Beam span = 9.0 m

Beam span = 10.0 m

Beam span = 11.0 m Beam span = 12.0 m

8.3

9.3

10.5

11.1

8.6

9.6

10.5

11.3

9.0

9.8

10.7

11.5

9.4

10.0

10.9

11.6

10.6

10.5

11.0

11.9

11.5 11.5 11.6

12.0

Two-way solid slabs

Two-way in-situ solid slabs are utilitarian and generally used for retail developments, warehouses, stores, etc. Economical for more heavily loaded spans from 9 to 12 m, but difficult to form when used with a grid of downstand beams.

Design is usually governed by deflection. Steel content is usually increased to reduce service stress and increase span capacity.

ADVANTAGES

• Economical for longer spans and high loads

DISADVANTAGES

- Presence of beams may require greater storey height
- Requires a regular column layout
- Grid of downstand beams deters fast formwork recycling
- Flexibility of partition location and horizontal service distribution may be compromised.

SPAN:DEPTH CHART

SUPPORTED BY	BEAMS	5 in two orth	ogonal direct	ions. Refer t	o beam char	s and data to	o estimate si	zes, etc.	
DIMENSIONS	Square	panels, min	imum of two	spans x two	bays. Suppo	rts minimum	300 mm wid	le.	
REINFORCEMENT	<8.5 m	n:T16T&B, >8	3.5 m: T20T&l	B uno. 10% a	allowed for v	astage and	aps. f₅ may ł	ave been re	duced.
LOADS			(finishes etc pplicable as a					ıme two adj	acent corne
CONCRETE	C35, 24	4 kN/m³, 20	mm aggregat	e.		5			
FIRE & DURABILITY	Fire res	sistance 1 ho	our; mild expo	sure.					
DESIGN	Design	based on co	orner panels.	Single span (both ways) a	issumes torsi	onal restrain	t.	
SINGLE SPAN, m	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$		140	166	192	220	250	288	332	378
$IL = 5.0 \text{ kN/m}^2$	125	152	178	206	238	268	308	354	402
$IL = 7.5 \text{ kN/m}^2$	132	160	190	220	252	284	324	372	422
$IL = 10.0 \text{ kN/m}^2$	138	168	198	230	264	296	340	388	440
ULTIMATE LOAD TO SU	UPPORTING BE				. (5.5)		s 1.5 kN/m²		
$IL = 2.5 \text{ kN/m}^2$	1. (15)	n/a (18)	n/a (23)	n/a (29)	n/a (36)	n/a (43)	n/a (52)	n/a (63)	n/a (74)
$IL = 5.0 \text{ kN/m}^2$	n/a (19)	n/a (25)	n/a (32)	n/a (39)	n/a (48)	n/a (57)	n/a (67)	n/a (80)	n/a (93)
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	n/a (24) n/a (30)	n/a (32) n/a (39)	n/a (41) n/a (49)	n/a (50) n/a (60)	n/a (60) n/a (71)	n/a (70) n/a (83)	n/a (82) n/a (97)	n/a (97) n/a (113)	n/a (112) n/a (130)
		. ,	. ,		la al calla a				
$\frac{REINFORCEMENT}{IL} = 2.5 \text{ kN/m}^2$	n² (<i>kg/m³)</i> 9 (75)	11 (77)	13 (77)	15 (79)	18 (84)	wastage bu 21 (82)	24 (84)	27 (82)	31 (82)
$IL = 5.0 \text{ kN/m}^2$	11 (88)	12 (82)	15 (77)	18 (88)	21 (88)	24 (89)	27 (89)	31 (86)	34 (86)
$IL = 7.5 \text{ kN/m}^2$	12 (92)	15 (91)	17 (90)	20 (90)	23 (93)	24 (03)	31 (95)	34 (91)	38 (89)
$IL = 10.0 \text{ kN/m}^2$	14 (98)	16 (96)	19 (97)	22 (96)	26 (98)	29 (99)	33 (97)	37 (95)	41 (92)
MULTIPLE/TWO SPAN	l,m 4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	125	128	146	168	190	216	240	286	324
$IL = 5.0 \text{ kN/m}^2$	125	134	156	180	204	232	258	304	346
$IL = 7.5 \text{ kN/m}^2$	125	142	166	190	216	246	272	320	362
$IL = 10.0 \text{ kN/m}^2$	125	148	174	200	228	258	286	334	378
ULTIMATE LOAD TO SU	UPPORTING BE		RNAL (END),	kN/m					
$IL = 2.5 \text{ kN/m}^2$	36 (12)	42 (14)	52 (17)	66 (21)	80 (26)	96 (31)	114 (37)	138 (45)	164 (53)
$IL = 5.0 \text{ kN/m}^2$	47 (15)	58 (19)	74 (24)	90 (29)	108 (35)	128 (42)	150 (49)	178 (58)	208 (68)
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	60 (209) 73 (23)	76 (25) 92 (30)	94 (31) 114 (37)	114 (37) 138 (45)	136 (44) 164 (54)	162 (52) 192 (63)	186 (60) 222 (72)	218 (71) 258 (84)	252 (82) 296 (96)
IL = 10.0 km/m	75 (25)	92 (30)	114 (57)	156 (45)	104 (54)	192 (03)	222 (72)	230 (04)	290 (90)
REINFORCEMENT, kg/n		0 (50)	40 (74)	(22)		47 (70)	10 (70)	22 (76)	o.c. (77)
$IL = 2.5 \text{ kN/m}^2$	6 (51)	8 (60)	10 (71)	12 (73)	14 (76)	17 (78)	19 (79)	22 (76)	25 (77)
$IL = 5.0 \text{ kN/m}^2$	8 (74)	10 (78)	13 (83)	15 (83)	17 (85)	20 (85)	22 (86)	25 (84)	28 (81)
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	10 (83) 12 (96)	12 (84) 14 (93)	14 (87) 16 (93)	17 (91) 19 (95)	20 (91) 21 (94)	22 (90) 24 (95)	25 (92) 27 (96)	28 (89) 31 (93)	31 (87) 34 (90)
DESIGN NOTES		a			> 5 kN/m²	d - doft	ection critic	$a = T^{\prime}$	
$IL = 2.5 \text{ kN/m}^2$	d	a = 1 d	q _k > 1.25 g _k d	$\omega - q_k$	> J KIV/IIF	u – uen		u y - 12	203 USEU D
$IL = 5.0 \text{ kN/m}^2$	u	u	u						
$IL = 7.5 \text{ kN/m}^2$	ab	ab	ab	b	b	b	b	bq	bg
$IL = 10.0 \text{ kN/m}^2$	ab	ab	ab	ab	ab	ab	b	bg	bg
VARIATIONS TO DESIG	N ASSUMPTIO	NS: differe	nces in slab	thickness f	or a charac	teristic impo	osed load (li) of 5.0 kN	I/m²
Fire resistance	2 hours	+10 mm						4 hours	+30 mm
Exposure	Moderate	+15 mm					Severe C4	10 concrete	+25 mm
Thickness, mm			6.0	7.0	8.0	9.0			12.0

Thickness, mm	Span, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0
	Internal panel	146	166	184	206	230	266	318
Rectangular panels	equivalent spans, m		Use an equiva	lent square s	pan, below, t	to derive thic	kness. See Se	ction 2.6
	Long span, m	8.0	9.0	10.0	11.0	12.0	13.0	14.0
	Short span = 5.0 m	5.7	5.9	6.0				
	Short span = 6.0 m	6.7	6.8	7.0	7.1	7.2		
	Short span = 7.0 m	7.4	7.7	7.9	8.1	8.1	8.2	8.3
	Short span = 8.0 m	8.0	8.4	8.7	8.9	9.0	9.2	9.3
	Short span = 9.0 m		9.0	9.4	9.7	9.9	10.1	10.2
	Short span = 10.0 m			10.0	10.2	10.4	10.6	10.7

Waffle slabs designed as two-way slabs (standard moulds)

ADVANTAGES

- Medium to long spans
- Lightweight
- Profiles may be expressed architecturally, or used for heat transfer

Introducing voids to the soffit reduces dead weight and these deeper, stiffer floors permit longer spans which are economic for spans between 9 and 14 m. The saving of materials tends to be offset by complication in site operations.

Standard moulds are 225, 325 and 425 mm deep and are used to make ribs 125 mm wide on a 900 mm grid. Toppings are between 50 and 150 mm thick.

The chart and data assume surrounding and supporting downstand beams, which should be subject to separate consideration, and solid margins. Both waffles and downstand beams complicate formwork.

DISADVANTAGES

- Higher formwork costs than for other slab systems
- Slightly deeper members result in greater floor heights
- Slow. Difficult to prefabricate reinforcement

SPAN: DEPTH CHART

DESIGN ASSUMPTION	S								
SUPPORTED BY	BEAM	S in two ortho	gonal direct	ions. Refer t	o beam char	ts and data t	o estimate s	izes, etc.	
DIMENSIONS	Mould	e panels, minir ls 225, 325 or line of suppor	425 mm d						125/2 from
REINFORCEMENT		num bar sizes i 2%) in toppin		, ,	,				r A193 mesh
LOADS	panels	f 1.50 kN/m ² . Loads are ap , solid edges a	plicable as a	udl over 75	% of the bea	am's length. S			
CONCRETE	C35, 2	4 kN/m ³ , 20 m	nm aggregat	e.					
FIRE & DURABILITY	Fire re	sistance 1 hou	ır; mild expo	sure.					
DESIGN	Desigr	n based on cor	mer panels.	Single span	(both ways)	assumes torsi	ional restrair	nt.	
SINGLE SPAN, m	7.2	8.1	9.0	9.9	10.8	11.7	12.6	13.5	14.4
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	325	325	350	375	435	525	565		
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$	325 325	325 350	365 425	425 440	470 525	535			
$IL = 10.0 \text{ kN/m}^2$	325	375	425	470	540				
ULTIMATE LOAD TO SU	PPORTING BE	AMS, INTER	NAL (END),	kN/m					
$IL = 2.5 \text{ kN/m}^2$	n/a (29)	n/a (32)	n/a (38)	n/a (45)	n/a (49)	n/a (59)	n/a (69)		
$IL = 5.0 \text{ kN/m}^2$	n/a (38)	n/a (43)	n/a (52)	n/a (58)	n/a (68)	n/a (76)			
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	n/a (48)	n/a (56)	n/a (64)	n/a (72)	n/a (83)				
	n/a (57)	n/a (69)	n/a (76)	n/a (89)	n/a (99)				
$\frac{REINFORCEMENT}{IL} = 2.5 \text{ kN/m}^2$	⁶ (<i>kg/m³)</i> 8 (24)	12 (35)	15 (44)	19 (51)	18 (42)	16 (31)	21 (38)		
$IL = 5.0 \text{ kN/m}^2$	11 (33)	18 (56)	20 (53)	17 (40)	21 (45)	22 (40)	21 (50)		
$IL = 7.5 \text{ kN/m}^2$	15 (45)	19 (55)	16 (37)	21 (48)	20 (37)	()			
$IL = 10.0 \text{ kN/m}^2$	19 (57)	20 (53)	20 (46)	22 (47)	23 (42)				
MULTIPLE/TWO SPAN,	m 7.2	8.1	9.0	9.9	10.8	11.7	12.6	13.5	14.4
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	325	325	325	325	350	425	450	525	565
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$	325 325	325 325	325 325	325 335	350 375	425 425	450 475	525 535	565
$IL = 10.0 \text{ kN/m}^2$	325	325	325	350	425	450	525	575	
ULTIMATE LOAD TO SU	PPORTING BE	AMS, INTER	NAL (END),	kN/m					
$IL = 2.5 \text{ kN/m}^2$	66 (23)	75 (26)	83 (29)	91 (32)	106 (37)	122 (43)	139 (49)	158 (56)	184 (65)
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$	89 (31)	100 (35) 124 (44)	111 (39)	122 (43)	139 (49) 180 (63)	158 (55)	177 (62)	200 (70)	228 (80)
$IL = 7.5 \text{ kN/m}^2$ IL = 10.0 kN/m ²	111 (39) 133 (47)	149 (52)	138 (49) 166 (58)	154 (54) 189 (66)	212 (74)	193 (68) 237 (83)	226 (79) 264 (93)	244 (86) 300 (105)	
REINFORCEMENT, kg/m ²					. ,				
$IL = 2.5 \text{ kN/m}^2$	5 (16)	7 (20)	8 (25)	10 (32)	13 (37)	12 (27)	15 (32)	14 (27)	17 (30)
$IL = 5.0 \text{ kN/m}^2$	7 (21)	9 (26)	11 (34)	15 (46)	19 (55)	16 (37)	20 (44)	19 (36)	22 (39)
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	8 (26)	11 (33) 13 (40)	14 (44)	19 (58)	21 (55)	20 (48) 22 (50)	22 (47)	23 (43)	
	10 (31)	. ,	18 (55)	21 (59)	18 (43)	. ,	21 (41)	24 (42)	rod in rihs
$\frac{DESIGN NOTES}{IL = 2.5 \text{ kN/m}^2}$		$a = q_k$	> 1.25 g _k	$u = q_k$	e s KN/m	e = desig	e ned links n	nay be requi e	e rea in ribs
$IL = 5.0 \text{ kN/m}^2$			e	е	e	e	e	e	e
$IL = 7.5 \text{ kN/m}^2$	ab	abe	abe	abe	be	be	be	be	
$IL = 10.0 \text{ kN/m}^2$	abe	abe	abe	abe	abe	abe	be	be	
VARIATIONS TO DESIGN Thickness, mm		ins: aitteren		thickness 1 8.1	or a charac 9.0	teristic impo 9.9	0360 1080 (1 10.8	L) OT 5.0 KN 11.7	/m² 12.6
	Span, m		1.2	0.1					
	Span, m 2 hrs fire,	115 topping	7.2 340	340	340	340	440	440	540
	2 hrs fire, 4 hrs 150	rib & topping	340 375	340 375	340 475	340 475	475	575	540 575
	2 hrs fire, 4 hrs 150 Moderate	rib & topping exposure	340 375 325	340 375 325	340 475 339	340 475 425	475 435	575 525	
Rectangular panels:	2 hrs fire, 4 hrs 150 Moderate Severe ex	rib & topping exposure posure (C40)	340 375	340 375	340 475	340 475	475	575	
Rectangular panels:	2 hrs fire, 4 hrs 150 Moderate Severe ex economic th Long spa	rib & topping exposure posure (C40) ickness, mm in, m	340 375 325	340 375 325	340 475 339	340 475 425	475 435	575 525	
Rectangular panels:	2 hrs fire, 4 hrs 150 Moderate Severe ex economic th Long spa Short spa	rib & topping exposure posure (C40) ickness, mm in, m n = 9.0 m	340 375 325 325 12.6 325	340 375 325 325 13.5 325	340 475 339 345 14.4 325	340 475 425 425 15.3 325	475 435 440 16.2 325	575 525 535 17.1 325	575 18.0 325
Rectangular panels:	2 hrs fire, 4 hrs 150 Moderate Severe ex economic th Long spa Short spa Short spa	rib & topping exposure posure (C40) ickness, mm in, m n = 9.0 m n = 9.9 m	340 375 325 325 12.6 325 325	340 375 325 325 13.5 325 325 325	340 475 339 345 14.4 325 335	340 475 425 425 15.3 325 345	475 435 440 16.2 325 350	575 525 535 17.1 325 355	575 18.0 325 360
Rectangular panels:	2 hrs fire, 4 hrs 150 Moderate Severe ex economic th Long spa Short spa Short spa Short spa	rib & topping exposure posure (C40) ickness, mm in, m n = 9.0 m n = 9.9 m n = 10.8 m	340 375 325 325 12.6 325 325 325 355	340 375 325 325 13.5 325 325 325 365	340 475 339 345 14.4 325 335 375	340 475 425 425 15.3 325 345 425	475 435 440 16.2 325 350 425	575 525 535 17.1 325 355 425	575 18.0 325 360 425
Rectangular panels:	2 hrs fire, 4 hrs 150 Moderate Severe ex economic th Long spa Short spa Short spa Short spa Short spa	rib & topping exposure posure (C40) ickness, mm in, m n = 9.0 m n = 9.9 m	340 375 325 325 12.6 325 325	340 375 325 325 13.5 325 325 325	340 475 339 345 14.4 325 335	340 475 425 425 15.3 325 345	475 435 440 16.2 325 350	575 525 535 17.1 325 355	575 18.0 325 360

Waffle slabs designed as two-way slabs (bespoke moulds)

ADVANTAGES

- Medium to long spans
- Lightweight
- Profile may be expressed architecturally, or used for heat transfer

Bespoke moulds make the choice of profile infinite, but their cost will generally be charged to the particular project. Polypropylene, GRP or expanded polystyrene moulds can be manufactured to suit particular requirements and obtain overall economy in spans up to 16 m.

Minimum width of rib usually 125 mm, although 150 mm may be more practical to suit reinforcement detailing on longer spans. Minimum topping thickness is usually 90 mm to suit fire requirements.

The chart and data assume a 900 mm grid and solid margins adjacent to beams. Supporting downstand beams complicate formwork.

DISADVANTAGES

- Higher formwork costs than for standard moulds and other slab systems
- Slightly deeper members result in greater floor heights
- Slow. Difficult to prefabricate reinforcement

SPAN: DEPTH CHART

DESIGN ASSUMPTIONS	BEAM	S in two ortho	gonal direct	tions. Refer t	o beam char	ts and data t	o estimate s	zes, etc.	
DIMENSIONS	Square	e panels, minin	num of two	spans x two	bays. Ribs 1	25 mm wide	@900 mm c	c. Moulds vai	iable depths
REINFORCEMENT	Maxin	lid intersectior num bar sizes	in ribs: 2T2	5B, 2T20T (ii	n top of web		5		142 mesh (@
OADS) in topping. 1 f 1.50 kN/m ²		5		ds to interna	l heams ass	ume two ad	acent corne
	panels	Loads are ap and solid edg	plicable as a	a udl over 75					
CONCRETE	C35, 2	4 kN/m³, 20 m	im aggregat	te.					
FIRE & DURABILITY	Fire re	sistance 1 hou	r; mild expo	osure.					
DESIGN	Desigr	based on cor	ner panels.	Single span ((both ways)	assumes tors	ional restrair	it.	
SINGLE SPAN, m	7.2	8.1	9.0	9.9	10.8	11.7	12.6	13.5	14.4
THICKNESS, mm		202	250	270			5.6.4		
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	294 294	322 326	350 364	378 404	434 462	496 532	564 612	636 708	734
$IL = 7.5 \text{ kN/m}^2$	310	350	304	404	502	580	670	700	
$IL = 10.0 \text{ kN/m}^2$	328	370	416	466	540	624	0,0		
ULTIMATE LOAD TO SUPP	ORTING BE	AMS, INTERI	VAL (END)	kN/m					
$IL = 2.5 \text{ kN/m}^2$	n/a (28)	n/a (32)	n/a (37)	n/a (42)	n/a (49)	n/a (57)	n/a (67)	n/a (78)	n/a (93)
$IL = 5.0 \text{ kN/m}^2$	n/a (37)	n/a (43)	n/a (49)	n/a (56)	n/a (65)	n/a (75)	n/a (87)	n/a (103)	
$IL = 7.5 \text{ kN/m}^2$	n/a (47)	n/a (55)	n/a (63)	n/a (71)	n/a (82)	n/a (94)	n/a (109)		
IL = 10.0 kN/m ²	n/a (57)	n/a (66)	n/a (76)	n/a (86)	n/a (99)	n/a (113)			
REINFORCEMENT, kg/m² (i IL = 2.5 kN/m²	U P	12 (27)	14 (41)	17 (AE)	18 (41)	10 (20)	20 (26)	22 (2E)	22 (21)
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	10 (34) 16 (55)	12 (37) 18 (55)	14 (41) 19 (52)	17 (45) 20 (49)	21 (45)	19 (38) 21 (40)	20 (36) 22 (36)	22 (35) 23 (32)	23 (31)
$IL = 7.5 \text{ kN/m}^2$	18 (58)	19 (54)	20 (52)	20 (43)	21 (43)	22 (38)	22 (30)	25 (52)	
$IL = 10.0 \text{ kN/m}^2$	19 (56)	20 (54)	21 (50)	22 (47)	22 (42)	23 (37)	20 (0 !)		
MULTIPLE/TWO SPAN, m	n 7.2	8.1	9.0	9.9	10.8	11.7	12.6	13.5	14.4
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	250	264	286	308	350	398	450	508	566
$IL = 5.0 \text{ kN/m}^2$	250	266	292	316	352	398	450	508	566
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	258 266	280 292	306 320	332 350	372 396	420 448	474 506	532 570	598 640
JLTIMATE LOAD TO SUPP					550	110	500	570	010
$IL = 2.5 \text{ kN/m}^2$	61 (21)	70 (24)	79 (28)	90 (31)	103 (36)	118 (41)	135 (47)	155 (55)	177 (62)
$IL = 5.0 \text{ kN/m}^2$	83 (29)	95 (33)	108 (38)	121 (42)	136 (48)	154 (54)	174 (61)	197 (69)	222 (78)
$IL = 7.5 \text{ kN/m}^2$	106 (37)	121 (42)	136 (48)	153 (54)	172 (60)	193 (68)	216 (76)	242 (85)	273 (96)
$IL = 10.0 \text{ kN/m}^2$	128 (45)	146 (51)	165 (58)	185 (65)	208 (73)	233 (82)	260 (91)	291 (102)	326 (115)
REINFORCEMENT, kg/m² (I	kg/m³)								
$IL = 2.5 \text{ kN/m}^2$	7 (28)	9 (33)	10 (36)	12 (38)	12 (35)	13 (33)	14 (31)	15 (29)	16 (29)
$IL = 5.0 \text{ kN/m}^2$	10 (40)	13 (49)	14 (49)	16 (51)	18 (51)	19 (47)	19 (43)	20 (39)	21 (37)
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	12 (48) 15 (55)	15 (54) 17 (58)	17 (55) 19 (59)	19 (57) 20 (58)	20 (55) 21 (54)	21 (50) 22 (49)	22 (46) 23 (45)	23 (43) 24 (42)	23 (39) 25 (38)
DESIGN NOTES $a = q_k > $								nay be requ	
$IL = 2.5 \text{ kN/m}^2$	0				ed	ed	ed	ed	ed
$IL = 5.0 \text{ kN/m}^2$		e	e	e	ed	ed	ed	ed	ed
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	abe abe	abe abe	abe abe	abe abe	be abe	be abe	be abe	be be	be be
IL = 10.0 km/m									
VARIATIONS TO DESIGN /	13301011 110	NJ. unrerend	7.2	8.1	9.0	9.9	10.8	11.7	12.6
VARIATIONS TO DESIGN A Thickness, mm	Span, m								100
	2 hrs fire,	115 topping	270	296	322	350	396	444	
	2 hrs fire, 4 hrs 150	rib & topping	270 314	344	388	412	450	502	566
	2 hrs fire, 4 hrs 150 Moderate	rib & topping exposure	270 314 270	344 302	388 338	412 376	450 430	502 520	566 660
Thickness, mm	2 hrs fire, 4 hrs 150 Moderate Severe ex	rib & topping exposure posure (C40)	270 314	344 302 308	388 338 342	412 376 382	450 430 436	502 520 528	566 660 670
	2 hrs fire, 4 hrs 150 Moderate Severe ex quivalent s	rib & topping exposure posure (C40) pans, m	270 314 270 276	344 302 308 Use an equir	388 338 342 valent square	412 376 382 e span, belov	450 430 436 v, to derive t	502 520 528 nickness. See	566 660 670 Section 2.6
Thickness, mm	2 hrs fire, 4 hrs 150 Moderate Severe ex quivalent s Long spa	rib & topping exposure posure (C40) pans, m	270 314 270 276 12.6	344 302 308	388 338 342 valent square 14.4	412 376 382	450 430 436 v, to derive th 16.2	502 520 528 nickness. See 17.1	566 660 670 Section 2.6 18.0
Thickness, mm	2 hrs fire, 4 hrs 150 Moderate Severe ex quivalent s Long spa Short spa	rib & topping exposure posure (C40) pans, m in, m	270 314 270 276	344 302 308 Use an equi 13.5	388 338 342 valent square	412 376 382 e span, belov 15.3	450 430 436 v, to derive t	502 520 528 nickness. See	566 660 670 Section 2.6 18.0
Thickness, mm	2 hrs fire, 4 hrs 150 Moderate Severe ex quivalent s Long spa Short spa Short spa	rib & topping exposure posure (C40) pans, m in, m n = 9.0 m	270 314 270 276 12.6 9.3	344 302 308 Use an equir 13.5 9.4	388 338 342 valent square 14.4 9.5	412 376 382 e span, belov 15.3 9.6	450 430 436 v, to derive th 16.2 9.7	502 520 528 nickness. See 17.1 9.8	566 660 670 Section 2.6 18.0 9.9 10.9
Thickness, mm	2 hrs fire, 4 hrs 150 Moderate Severe ex quivalent s <u>Long spa</u> Short spa Short spa Short spa Short spa	rib & topping exposure posure (C40) pans, m n, m n = 9.0 m n = 9.9 m	270 314 270 276 12.6 9.3 10.2	344 302 308 Use an equir 13.5 9.4 10.3	388 338 342 valent square 14.4 9.5 10.5	412 376 382 e span, below 15.3 9.6 10.6	450 430 436 v, to derive th 16.2 9.7 10.7	502 520 528 nickness. See 17.1 9.8 10.8	18.0 9.9

Waffle slabs designed as two-way slabs with integral beams and

level soffits (standard moulds)

ADVANTAGES

- Medium spans
- Lightweight
- Level soffit
- Profile may be expressed architecturally, or used for heat transfer

These slabs are popular in spans up to 10 m. They combine the advantages of waffle slabs with those of level soffits.

Standard moulds are 225, 325 and 425 mm deep and are used with toppings between 50 and 150 mm thick. The ribs are 125 mm wide on a 900 mm grid.

Depth is governed by deflection of the beams, which, therefore, tend to be heavily reinforced. The chart and data assume internal beams at least 1925 mm wide (ie. two waffles wide) and perimeter beams at least 962 mm (ie. one waffle) plus column width/2, wide. They include an allowance for an edge loading of 10 kN/m.

DISADVANTAGES

- Higher formwork costs than for plain soffits
- Slow. Difficult to prefabricate reinforcement

SPAN:DEPTH CHART

SUPPORTED BY	COLUI	MNS. Refer to	olumn chai	ts and data	to estimate s	izes, etc.			
DIMENSIONS	425 m		ng 100 to 1	50 mm deep	. Internal bea	am two waff	e @ 900 mm cc es wide, edge b		
REINFORCEMENT		d for A142 or					eams: T32T, T32E or wastage and L		
LOADS	assum		on factors of	of 1.0 intern	ally and 0.5 a	t ends. Self) included. Ultim weight used acc		
CONCRETE	C35, 2	4 kN/m³, 20 m	m aggregat	e.	11 5				
FIRE & DURABILITY		sistance 1 hou	00 0						
DESIGN	Slab d	esign based or	n corner par	iels.					
MULTIPLE SPAN, m	5.4	6.3	7.2	8.1	9.0	9.9	10.8	11.7	12.6
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	325	325	325	361	425	451	525		
$IL = 5.0 \text{ kN/m}^2$	325	325	347	425	437	525			
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	325 325	325 343	363 425	425 443	525 525	537			
ULTIMATE LOAD TO SU	PPORTING CO	OLUMNS, INT	ERNAL (EL) GE) PER Si	TOREY. MN				
$IL = 2.5 \text{ kN/m}^2$	0.5 (0.3)	0.6 (0.4)	0.8 (0.5)	1.0 (0.7)	1.3 (0.8)	1.7 (1.0)	2.2 (1.3)		
$IL = 5.0 \text{ kN/m}^2$	0.6 (0.4)	0.8 (0.5)	1.0 (0.6)	1.4 (0.8)	1.7 (1.0)	2.2 (1.3)			
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	0.7 (0.4) 0.8 (0.5)	0.9 (0.6) 1.1 (0.7)	1.2 (0.7) 1.5 (0.9)	1.6 (1.0) 1.9 (1.1)	2.2 (1.3) 2.5 (1.4)	2.7 (1.5)			
REINFORCEMENT, kg/m²	² (ka/m³)						Including be	am reinfo	rcement
$IL = 2.5 \text{ kN/m}^2$	23 (70)	24 (75)	28 (85)	29 (81)	28 (67)	33 (72)	33 (63)		
$IL = 5.0 \text{ kN/m}^2$	25 (78)	28 (86)	32 (91)	29 (69)	34 (78)	34 (65)			
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	28 (86) 30 (94)	32 (99) 35 (101)	34 (95) 32 (76)	34 (80) 38 (86)	34 (64) 38 (73)	39 (74)			
DESIGN NOTES		$a = q_k$	> 1.25 g _k	$b = q_k$	> 5 kN/m²	e = desigi	ned links may	be require	d in ribs
$IL = 2.5 \text{ kN/m}^2$			Ŭ			0			
$IL = 5.0 \text{ kN/m}^2$						e			
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	ab ab	ab ab	be abe	be abe	be be	be			
LINKS (%age by weight	of reinforcer	nent)					Links	in ribs an	d heam
$IL = 2.5 \text{ kN/m}^2$	(58%)	(46%)	(36%)	(28%)	(22%)	(19%)	(15%)	III IIDS all	
$IL = 5.0 \text{ kN/m}^2$	(52%)	(40%)	(32%)	(24%)	(19%)	(16%)	(
$IL = 7.5 \text{ kN/m}^2$	(47%)	(35%)	(26%)	(21%)	(17%)	(14%)			
$IL = 10.0 \text{ kN/m}^2$	(43%)	(32%)	(25%)	(19%)	(16%)				
VARIATIONS TO DESIGN					or a charact				
Fire resistance Exposure		15 topping exposure		20 mm 25 mm			50 rib & topping 40 concrete		ee below o 25 mm
Cladding load	No claddi		+0 10	-0 mm			cladding load		o 12 mm
Dimensions		ib @ 800 cc	see	below			rib @ 925 cc		o 25 mm
		ib @ 950 cc		25 mm			rib @ 1000 cc		ee below
Single spans Thickness, mm	One way Span, m		+0 to 5.5	12 mm 6.5	7.4	Both way 8.3	s 9.3	+0 t 10.2	o 12 mm 11.1
mickness, mm	-	rib & topping		375	475	475		10.2	11.1
	4 nrs, 150 Span, m	in a rohhing	3/5 7.2	375 8.0	475 8.8	475 9.6	575 10.4	11.2	12.0
	125 ribs (@ 800 cc	325	357	425	429	525	525	
	Span, m		6.0	7.0	8.0	9.0	10.0	11.0	12.0
Rectangular panels:		⊉ 1000 cc ickness, mm	325	325	367	425	525	571	
5	Long spa	in, m	7.2	8.1	9.0	9.9	10.8	11.7	12.6
		n = 5.4 m	325	325	359	525	525		
		n = 6.3 m n = 7.2 m	325 347	333 347	425 425	425 431	525 475	550	
		n = 7.2 m n = 8.1 m	247	347 425	425	431	475 525	563	
		n = 9.0 m		.25	437	445	525	575	

Waffle slabs designed as two-way slabs with integral beams and

level soffits (bespoke moulds)

Profile may be expressed architecturally, or used for

These slabs are popular in spans up to 10 m as they combine the advantages of bespoke waffle slabs with level soffits. Bespoke moulds can overcome the dimensional and aesthetic restrictions imposed by standard moulds. However, site operations remain complicated.

Economic depths are a function of the beam width. The beams are governed by deflection and, therefore, tend to be heavily reinforced. The ribs are a minimum of 125 mm wide.

For simplicity, the chart and data assume a 900 mm grid, internal beams at least 1925 mm wide (ie. two waffles wide) and perimeter beams at least 962 mm (ie. one waffle) plus column width/2, wide. They include an allowance for an edge loading of 10 kN/m.

DISADVANTAGES

- Higher formwork costs than for standard moulds and other slab systems
- Slightly deeper members result in greater floor heights
- Slow. Difficult to prefabricate reinforcement

SPAN:DEPTH CHART

ADVANTAGES

Medium spans Lightweight

heat transfer

SUPPORTED BY	COLUN	MNS. Refer 1	o column cha	rts and data	to estimate	sizes, etc.			
DIMENSIONS	variab	le depth. Int		vo waffles w				Topping 100 m /solid intersec	
REINFORCEMENT			s: 2T25B, 2T2 0.12%) in to				s: T32 T & B,	T8 links. 25 m	im allowed
LOADS	assum	e elastic rea		of 1.0 intern	ally and 0.5			ltimate loads accounts for 5	
CONCRETE	C35, 2	4 kN/m³, 20	mm aggrega	te.					
FIRE & DURABILITY	Fire re	sistance 1 h	our; mild expo	osure.					
DESIGN	Slab d	esign based	on corner pa	nels.					
MULTIPLE SPAN, m	5.4	6.3	7.2	8.1	9.0	9.9	10.8	11.7	12.6
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	254 270	284 304	320 346	358 388	396 436	446 494	504 564	610 774	
$IL = 7.5 \text{ kN/m}^2$	290	304	340	414	430	536	694	//4	
$IL = 10.0 \text{ kN/m}^2$	302	342	388	442	506	610	051		
ULTIMATE LOAD TO SUI	PPORTING CO	OLUMNS. I	NTERNAL (EL	DGE) PER S	TOREY. MN	I			
$IL = 2.5 \text{ kN/m}^2$	0.4 (0.3)	0.6 (0.4)	0.8 (0.5)	1.0 (0.6)	1.3 (0.8)	1.6 (1.0)	2.1 (1.3)	2.8 (1.6)	
$IL = 5.0 \text{ kN/m}^2$	0.5 (0.4)	0.7 (0.5)	1.0 (0.6)	1.3 (0.8)	1.7 (1.0)	2.1 (1.3)	2.7 (1.6)	3.9 (2.2)	
$IL = 7.5 \text{ kN/m}^2$	0.7 (0.4)	0.9 (0.6)	1.2 (0.7)	1.6 (1.0)	2.1 (1.2)	2.6 (1.5)	3.6 (2.0)		
$IL = 10.0 \text{ kN/m}^2$	0.8 (0.5)	1.1 (0.7)	1.5 (0.9)	1.9 (1.1)	2.5 (1.4)	3.2 (1.8)			
REINFORCEMENT, kg/m ²		21 (100)	20 (05)	20 (00)	21 (70)	22 (72)	0	beam reinfo	prcement
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	31 (124) 33 (124)	31 (109) 32 (105)	30 (95) 31 (90)	29 (80) 33 (86)	31 (78) 34 (78)	32 (72) 36 (72)	34 (67) 38 (67)	35 (58) 37 (48)	
$IL = 7.5 \text{ kN/m}^2$	32 (110)	32 (105)	34 (95)	35 (85)	37 (78)	39 (72)	39 (56)	57 (40)	
$IL = 10.0 \text{ kN/m}^2$	34 (114)	34 (101)	37 (95)	38 (85)	40 (78)	41 (67)	()		
DESIGN NOTES		a = ($q_k > 1.25 q_k$	$b = a_k >$	→ 5 kN/m²	e = desia	ned links m	ay be require	ed in ribs
$IL = 2.5 \text{ kN/m}^2$			ик — Ок						
$IL = 5.0 \text{ kN/m}^2$						e	e	e	
$IL = 7.5 \text{ kN/m}^2$	ab	ab	b	be	be	be	be	be	
$IL = 10.0 \text{ kN/m}^2$	ab	ab	abe	abe	abe	be			
LINKS (%age by weight			(200())	(2001)	(220)	(100())		nks in ribs an	d beams
$IL = 2.5 \text{ kN/m}^2$	(60%)	(50%)	(39%)	(28%)	(22%)	(19%)	(15%)	(14%)	
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$	(54%) (47%)	(42%) (34%)	(32%) (26%)	(25%) (21%)	(19%) (17%)	(15%) (14%)	(14%) (15%)	(15%)	
$IL = 10.0 \text{ kN/m}^2$	(47 %)	(32%)	(25%)	(19%)	(15%)	(14%)	(1)(0)		
VARIATIONS TO DESIGN						(,	nsed load (II) of 5.0 kN/r	m^2
Fire resistance		15 topping					rib & topping	·	
Exposure	Moderate	2	+25 mm up	to 10 m		Severe, C40	concrete	+15 mm u	p to 10 m
Cladding load	No claddi	ing load	25	-0 mm		20 kN/m cla	dding load	+10 mm u	
Single spans Dimensions	One way Var rib w	idths & cc,	+25 mm up	to TU m e below		Both ways		+25 mm u	
Thickness, mm	Span, m	iuuis a ce,	6.0	7.0	8.0	9.0	10.0	11.0	12.0
	125 ribs @	@ 750 #	308	355	408	474	585	729	
	150 ribs @		308	355	409	476	595	752	
	125 ribs @		as orig	338	376	436	502	611	
	150 ribs @ 125 ribs @		290 288	338 326	376 362	438 416	506 476	637 540	740
	150 ribs @		288	326	362	418	478	540	740
	150 ribs @	@ 1200 #		309	346	390	441	500	580
	225 ribs @			309	346	392	446	508	596
	Internal b	eams 3 waf	fles wide #		352	378	432 Data internel	478 atod from more	560 Jular chanc
Rectangular panels				For non-so	uare panels			ated from moo pan to derive	
J J J J J J	Long spa	an, m	7.2	8.1	9.0	9.9	10.8	11.7	12.6
	Short spa	n = 5.4 m	6.3	6.9	7.5	8.3	9.1		
		n = 6.3 m	6.3	6.9	7.8	8.7	9.3	10.4	11.0
		n = 7.2 m	7.2	7.2	8.1	8.9	9.5	10.7	11.3
	Short spa			0.1	0 1	0 1	07	100	
	Short spa	n = 8.1 m		8.1	8.2 9.0	9.1 9.1	9.7 9.9	10.8 10.9	11.5 11.7
	Short spa Short spa	n = 8.1 m n = 9.0 m		8.1	8.2 9.0	9.1 9.1 9.9	9.7 9.9 10.1	10.8 10.9 10.9	11.5 11.7 11.8
	Short spa Short spa Short spa	n = 8.1 m		8.1		9.1	9.9	10.9	11.7

Flat slabs

(Solid flat slabs. Flat plates in US and Australia)

ADVANTAGES

- Simple and fast formwork and construction
- Absence of beams allows lower storey heights
- Flexibility of partition location and horizontal service distribution
- Architectural finish can be applied directly to the underside of slab

Flat slabs are quick and easy to construct but punching shear, deflections and holes around columns need to be considered. Nonetheless, flat slabs are popular for office buildings, hospitals, hotels, blocks of flats, etc. as they are quick, allow easy service distribution and are very economical for square panels with a span of 5 to 9 m.

The chart and data assume a perimeter loading of 10 kN/m and one 150 mm hole adjacent to each column. They assume column sizes will at least equal those given in the data

DISADVANTAGES

- Holes can prove difficult, especially large holes near columns
- Shear provision around columns may need to be resolved using larger columns, column heads, drop panels or proprietary systems
- Deflections, especially of edges supporting cladding, may cause concern

SPAN:DEPTH CHART

SUPPORTED BY	COLU	MNS. Refer t	o column cha	rts and data	to estimate s	sizes, etc. Mi	nimum dimer	sions of colu	mns as dat
DIMENSIONS	Squar	e panels, mir	nimum of thre	ee spans x th	iree bays. Ou	tside edge flu	ush with colu	mns.	
REINFORCEMENT					tion, 25% A _s reduced.10%				t midspan
LOADS					r load of 10 umns and 0.!			d. Ultimate l	oads assun
CONCRETE	C35,	24 kN/m³, 20	mm aggrega	ite.					
FIRE & DURABILITY	Fire r	esistance 1 h	our; mild exp	osure.					
HOLES	One 1	150 mm squa	re hole assur	ned to adjoir	n each colum	n. Larger hol	es may invali	date the data	a below.
MULTIPLE SPAN, m	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	200	202	222	244	280	316	354	410	466
$IL = 5.0 \text{ kN/m}^2$	200	214	240	264	300	340	384	442	502
$IL = 7.5 \text{ kN/m}^2$	200	226	254	284	320	362	410	468	528
$IL = 10.0 \text{ kN/m}^2$	200	236	268	304	340	384	436	490	548
ULTIMATE LOAD TO SL	IPPORTING C	OLUMNS, II	NTERNAL (E	DGE) PER S	TOREY, MN				
$IL = 2.5 \text{ kN/m}^2$	0.2 (0.2)	0.3 (0.3)	0.5 (0.4)	0.7 (0.5)	1.0 (0.7)	1.4 (0.9)	1.8 (1.1)	2.4 (1.4)	3.1 (1.9
$IL = 5.0 \text{ kN/m}^2$	0.3 (0.2)	0.4 (0.3)	0.7 (0.4)	0.9 (0.6)	1.3 (0.8)	1.7 (1.1)	2.3 (1.4)	3.0 (1.8)	3.9 (2.3
$IL = 7.5 \text{ kN/m}^2$	0.3 (0.2)	. ,	0.8 (0.5)	1.2 (0.7)	1.6 (1.0)	2.1 (1.3)	2.8 (1.6)	3.6 (2.1)	4.6 (2.6
$IL = 10.0 \text{ kN/m}^2$	0.4 (0.3)	0.7 (0.4)	1.0 (0.6)	1.4 (0.9)	1.9 (1.1)	2.5 (1.5)	3.3 (1.9)	4.2 (2.4)	5.2 (3.0
REINFORCEMENT, kg/m	² (kg/m ³)								
$IL = 2.5 \text{ kN/m}^2$	10 (52)	15 (75)	19 (87)	25 (104)	28 (101)	32 (101)	38 (108)	43 (104)	50 (108
$IL = 5.0 \text{ kN/m}^2$	13 (65)	18 (86)	22 (92)	29 (108)	33 (109)	39 (115)	44 (114)	50 (114)	54 (107
$IL = 7.5 \text{ kN/m}^2$	16 (80)	21 (93)	26 (103)	32 (112)	39 (123)	44 (121)	52 (127)	53 (114)	59 (111
$IL = 10.0 \text{ kN/m}^2$	20 (100)	24 (101)	29 (108)	34 (113)	43 (126)	52 (134)	54 (123)	58 (118)	65 (120
COLUMN SIZES ASSUM									
$IL = 2.5 \text{ kN/m}^2$	250 (225)	250 (225)	270 (250)	320 (290)	380 (340)	440 (400)	510 (460)	590 (530)	680 (61)

$IL = 2.5 \text{ kN/m}^2$	250 (225)	250 (225)	270 (250)	320 (290)	380 (340)	440 (400)	510 (460)	590 (530)	680 (610)
$IL = 5.0 \text{ kN/m}^2$	250 (225)	250 (230)	310 (280)	370 (330)	430 (380)	500 (450)	580 (510)	660 (590)	750 (670)
$IL = 7.5 \text{ kN/m}^2$	250 (225)	280 (250)	340 (300)	410 (360)	480 (420)	560 (490)	640 (560)	730 (640)	820 (730)
$IL = 10.0 \text{ kN/m}^2$	250 (225)	310 (270)	380 (330)	450 (390)	530 (450)	610 (520)	690 (600)	780 (690)	870 (770)

DESIGN NOTES $a = q_k > 1.25 g$	$b_k = b_k$	$q_k > 5 kN/m^2$	<i>f</i> =	shear critical	(initially v	$(>2v_{c})$ $g =$	T25s used	h =	T32s used
$IL = 2.5 \text{ kN/m}^2$				f	f	g	g	h	h
$IL = 5.0 \text{ kN/m}^2$				f	f	g	g	h	h
$IL = 7.5 \text{ kN/m}^2$	a b	a b	b	b f	b f	b g	bg	b h	b h
$IL = 10.0 \text{ kN/m}^2$	a b	a b	a b	a b f	b f	b g	b g	b h	b h

LINKS, MAXIMUM NUN	IBER OF PERII	METERS (and	d percentag	ge by weigh	t of reinfoi	rcement), no	D. (%)	
$IL = 2.5 \text{ kN/m}^2$	6 (4.8%)	7 (4.1%)	7 (2.8%)	6 (1.9%)	7 (2.6%)	7 (2.7%)	7 (2.5%)	7 (2.7%)

$IL = 2.5 \text{ kN/m}^2$	6 (4.8%)	7 (4.1%)	7 (2.8%)	6 (1.9%)	7 (2.6%)	7 (2.7%)	7 (2.5%)	7 (2.7%)	6 (2.2%)
$IL = 5.0 \text{ kN/m}^2$	7 (6.0%)	6 (3.6%)	6 (2.9%)	6 (2.7%)	6 (2.7%)	6 (2.6%)	6 (2.6%)	7 (3.1%)	7 (3.0%)
$IL = 7.5 \text{ kN/m}^2$	7 (5.9%)	6 (3.7%)	6 (3.7%)	6 (3.1%)	6 (2.8%)	6 (3.0%)	6 (2.8%)	7 (3.6%)	7 (3.6%)
$IL = 10.0 \text{ kN/m}^2$	6 (4.6%)	6 (3.7%)	6 (3.9%)	6 (3.9%)	6 (3.4%)	6 (3.0%)	7 (3.7%)	7 (3.9%)	7 (3.9%)

VARIATIONS TO DESIGN ASSUMPTIONS: differences in slab thickness for a characteristic imposed load (IL) of 5.0 kN/m²

Fire resistance	2 hours	+1() mm		4 hours			+35 mm
Exposure	Moderate	+20) mm		Severe, C40) concrete		+25 mm
Cladding load	No cladding load	-() mm		20 kN/m cl	adding load		+25 mm
Other	No holes	-() mm		Rectangula	r columns (1:	2)	+0 mm
	Using T25s cf T20s	+10) mm		2 spans			+10 mm
Thickness, mm	Span, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0
	Shear <1.6 v _c	256	310	376	416	486	550	520
	No shear links	402	490	586	654			
	225 holes adj. cols.	324	326	344	370	412	442	498
	300 holes adj. cols.	452	454	456	458	468	480	510
	Stiff edge (basic $l/d = 40$)	266	302	344	386	428	498	572
Rectangular panels	: equivalent spans, m			Use an equ	uivalent squa	re span, belo	w, to derive	e thickness
	Long span, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0
	Short span = 5.0 m	5.5	6.0	6.5	7.1	7.8		
	Short span = 6.0 m	6.0	6.5	7.0	7.7	8.4	9.3	10.1
	Short span = 7.0 m		7.0	7.5	8.0	8.7	9.5	10.3
	Short span = 8.0 m			8.0	8.5	9.0	9.7	10.5
	Short span = 9.0 m				9.0	9.5	10.0	10.7
	Short span =10.0 m					10.0	10.5	11.1
	Short span =11.0 m						11.0	11.6

Flat slabs with drops

(Flat slab in US and Australia)

ADVANTAGES

- Relatively simple and fast formwork and construction
- Absence of beams allows lower storey heights
- Flexibility of partition location and horizontal service distribution

Drop panels, formed by thickening the bottom of the slab around columns, increase shear capacity and increase the stiffness of the slab, allowing thinner slabs to be used. Popular for office buildings, hospitals, hotels, etc. Very economical for more heavily loaded spans of from 5 to 10 m. Square panels are most economical.

The chart and data assume an edge loading of 10 kN/m and one 150 mm hole adjacent to each column. They assume column sizes will at least equal those given in the data.

DISADVANTAGES

- Holes can prove difficult, especially large holes near columns
- Shear provision around columns may be considered a complication
- Deflections, especially at edges supporting cladding, may cause concern
- Drops may cause some disruption to formwork

SPAN:DEPTH CHART

DESIGN ASSUMPTIONS

SUPPORTED BY	COLUN	MNS. Refer to	column chai	rts and data t	o estimate s	izes, etc. Min	imum dimen	sions of colur	nns as data					
DIMENSIONS		e panels, mini nm deep.	mum of three	e spans x thre	e bays. Outsi	de edge flusł	n with columr	ns. Drops: spa	n/2 x span/					
REINFORCEMENT		Main bars: T20 uno. Links R8. To help deflection, 25% A _s T at first internal support used as A _s ' at midspan end spans. Service stress, f _s , may have been reduced.10% allowed for wastage and laps.												
LOADS				nd perimeter internal colu				. Ultimate lo	ads assum					
CONCRETE	C35, 2	4 kN/m³, 20	mm aggregat	te.										
FIRE & DURABILITY	Fire re	sistance 1 ho	ur; mild expo	osure.										
HOLES	One 1	50 mm squar	e hole assum	ied to adjoin	each columr	. Larger hole	s may invalio	late the data	below.					
MULTIPLE SPAN, m	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0					
THICKNESS, (excluding dro	p), mm													
$IL = 2.5 \text{ kN/m}^2$	162	188	214	244	276	306	346	398	464					
$IL = 5.0 \text{ kN/m}^2$	168	196	228	256	290	326	370	426						
IL = 5.0 km/m		150	220	200	290	520	370	420	488					
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$	174	206	238	250	306	344	390	420						
									502					
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	174 180	206 214	238 248	272 284	306 324	344	390	444	502					
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	174 180	206 214	238 248	272 284	306 324	344	390	444	502 524					
IL = 7.5 kN/m ² IL = 10.0 kN/m ² ULTIMATE LOAD TO SUPPO	174 180 <i>ORTING CC</i>	206 214 DLUMNS, in	238 248 ternal (edge	272 284 e) per storey	306 324 , <i>MN</i>	344 366	390 412	444 468	488 502 524 3.2 (1.8) 3.9 (2.2)					

$IL = 10.0 \text{ kN/m}^2$	0.4 (0.3)	0.7 (0.4)	1.0 (0.6)	1.4 (0.8)	1.9 (1.1)	2.5 (1.5)	3.3 (1.9)	4.2 (2.4)	5.2 (3.0)
REINFORCEMENT, kg/m ²	² (kg/m³)								
$IL = 2.5 \text{ kN/m}^2$	10 (58)	14 (66)	17 (74)	21 (79)	24 (83)	30 (92)	35 (97)	39 (93)	44 (90)
$IL = 5.0 \text{ kN/m}^2$	12 (66)	16 (76)	20 (80)	25 (90)	29 (94)	36 (103)	40 (103)	46 (103)	49 (97)
$IL = 7.5 \text{ kN/m}^2$	14 (73)	18 (81)	23 (88)	28 (95)	35 (107)	40 (109)	46 (113)	50 (109)	56 (107)
$IL = 10.0 \text{ kN/m}^2$	16 (80)	21 (88)	26 (97)	31 (101)	37 (109)	45 (118)	50 (116)	55 (112)	61 (112)

COLUMN SIZES ASSUMED, mm square, internal (perimeter)

$IL = 2.5 \text{ kN/m}^2$	250 (225)	250 (225)	270 (240)	330 (290)	390 (340)	450 (400)	520 (460)	600 (530)	680 (610)
$IL = 5.0 \text{ kN/m}^2$	250 (225)	250 (225)	310 (270)	370 (320)	440 (380)	510 (440)	580 (510)	670 (580)	760 (670)
$IL = 7.5 \text{ kN/m}^2$	250 (225)	280 (240)	350 (300)	410 (360)	480 (420)	560 (480)	640 (550)	720 (630)	810 (720)
$IL = 10.0 \text{ kN/m}^2$	250 (225)	310 (260)	380 (320)	450 (380)	530 (450)	610 (520)	690 (600)	780 (680)	870 (770)

DESIGN NOTES $a = q_k > 1$.	25 g _k b =	$q_k > 5 kN/m^2$	<i>f</i> :	= shear critical	(initially	$v > 2v_c$) $g =$	T25s used	h =	T32s used
$IL = 2.5 \text{ kN/m}^2$						f	fg	fg	h
$IL = 5.0 \text{ kN/m}^2$				f	f	fg	fg	fh	fh
$IL = 7.5 \text{ kN/m}^2$	b	b	bf	bf	bfg	bfg	bfh	bfh	bfh
$IL = 10.0 \text{ kN/m}^2$	ab	abf	abf	bf	bfg	bfh	bfh	bfh	bfh

LINKS, MAXIMUM NUMBER OF PERIMETERS (and percentage by weight of reinforcement), no. (%)

$IL = 2.5 \text{ kN/m}^2$	3 (1.2%)	4 (2.0%)	4 (1.6%)	5 (1.9%)	5 (2.2%)	5 (2.0%)	5 (1.9%)	5 (2.0%)	5 (2.0%)
$IL = 5.0 \text{ kN/m}^2$	3 (1.0%)	4 (2.1%)	5 (2.6%)	5 (2.5%)	5 (2.4%)	6 (2.3%)	6 (2.7%)	6 (2.2%)	5 (2.3%)
$IL = 7.5 \text{ kN/m}^2$	4 (2.5%)	5 (3.2%)	5 (3.1%)	5 (2.8%)	6 (2.5%)	6 (2.9%)	6 (2.7%)	5 (2.6%)	5 (2.7%)
$IL = 10.0 \text{ kN/m}^2$	4 (3.3%)	5 (3.3%)	5 (3.2%)	6 (3.2%)	6 (2.8%)	7 (2.7%)	6 (3.1%)	5 (2.9%)	5 (3.0%)

VARIATIONS TO DESIGN ASSUMPTIONS: differences in slab thickness for a characteristic imposed load (IL) of 5.0 kN/m²

Fire resistance	2 hours	+1	0 mm		4 hours			+30 mm
Exposure	Moderate	+2	0 mm		Severe, C40	concrete		+25 mm
Cladding load	No cladding load	-(0 mm		20 kN/m cla	adding load		+20 mm
Other	Drops L/3 wide	+1	5 mm		No holes			-0 mm
	150 mm drop	+	5 mm		Limiting sh	ear to v<1.6v	'c	+5 mm
	Using T25s cf T20s	+1	0 mm		2 spans			+5 mm
Thickness, mm	Span, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0
	No shear links	274	370	474	526	628	630	
	No links, 150 drops	230	262	338	384	484	486	562
	Stiff edge; (basic $l/d = 40$)	258	294	330	374	412	478	548
Rectangular panels:	equivalent spans, m			Use an equ	ivalent squa	re span, belo	w, to derive	thickness
	Long span m	6.0	7.0	8.0	9.0	10.0	11.0	12.0
	Short span = 5.0 m	5.3	5.8	6.8	7.7	8.3		
	Short span $= 6.0 \text{ m}$	6.0	6.4	6.9	7.8	8.5	9.3	10.2
	Short span = 7.0 m		7.0	7.5	8.1	8.7	9.7	10.5
	Short span $= 8.0 \text{ m}$			8.0	8.5	9.1	9.9	10.6
	Short span = 9.0 m				9.0	9.5	10.2	10.8
	Short span =10.0 m					10.0	10.5	11.0
	Short span =11.0 m						11.0	11.5

Flat slabs with column heads

ADVANTAGES

- Relatively simple and fast formwork and construction
- Absence of beams allows lower storey heights
- Flexibility of partition location and horizontal service distribution

Increasing the size of column heads under the slab increases the slab's shear-carrying capacity at columns.

Popular for office buildings, retail developments, hospitals, hotels, etc. Economical for more heavily loaded spans of from 6 to 10 m in square panels. However, unless the whole column can be poured at one time, column heads can disrupt cycle times.

The chart and data assume an edge loading of 10 kN/m and one 150 mm hole adjacent to each column head. They assume column head sizes will at least equal those given in the data.

DISADVANTAGES

- Holes can prove difficult, especially large holes near columns
- Shear provision around columns may be considered difficult
- Deflections, especially at edges supporting cladding, may cause concern
- Column heads can disrupt cycle times

SPAN:DEPTH CHART

DESIGN ASSUMPTIONS

colum Squard Main l end sp SDL o elastic C35, 2 Fire re	n heads as c e panels, mir bars: T20 un bans. Service f 1.50 kN/m : reaction fac : reaction fac : eaction fac : eaction fac : sistance 1 h 50 mm squa 5.0	lata (internal nimum of thru o. Links R8. Tr stress, fs, ma ² (finishes) a ctors of 1.0 tr mm aggrega our; mild exp	osure. ned to adjoir	ds, span/20+ ree bays. Our ion, 25% A _s T reduced.10% r load of 10 umns and 0.1	150 mm). side edge flu at first inter allowed for kN/m (clado to end colu	ish with colu nal support wastage an ling) include mns.	ımns. used as A _s ' a d laps.	at midspan c
Main I end sp SDL o elastic C35, 2 Fire re One 1 4.0 200 200	bars: T20 un bars: Service f 1.50 kN/m : reaction fac 24 kN/m ³ , 20 esistance 1 h 50 mm squa 5.0	b. Links R8. To stress, f _s , ma ² (finishes) a ctors of 1.0 to mm aggrega our; mild exp re hole assur	o help deflect ay have been and perimete o internal col ate. oosure. med to adjoir	ion, 25% A _s T reduced.10% load of 10 umns and 0.!	at first inter allowed for kN/m (clade to end colu	nal support wastage an ling) include mns.	used as As' a d laps.	
end sp SDL o elastic C35, 2 Fire re One 1 4.0 200 200	oans. Service f 1.50 kN/m : reaction fac 24 kN/m ³ , 20 sistance 1 h 50 mm squa 5.0	stress, f _s , ma ² (finishes) a ctors of 1.0 to mm aggrega our; mild exp re hole assur	ay have been and perimete o internal col ate. iosure. med to adjoir	reduced.10% r load of 10 umns and 0.!	allowed for kN/m (clado 5 to end colu	wastage an ling) include mns.	d laps.	
SDL o elastic C35, 2 Fire re One 1 4.0 200 200	f 1.50 kN/m reaction fac 4 kN/m ³ , 20 sistance 1 h 50 mm squa 5.0	² (finishes) a tors of 1.0 to mm aggrega our; mild exp re hole assur	and perimete o internal col ate. osure. med to adjoir	load of 10 umns and 0.!	kN/m (clado to end colu	ling) include mns.		loads assum
Fire re One 1 4.0 200 200	sistance 1 h 50 mm squa 5.0	our; mild exp re hole assur	osure. ned to adjoir	each colum				
One 1 4.0 200 200	50 mm squa 5.0	re hole assur	med to adjoir	each colum	. Laur			
4.0	5.0		-	each colum				
200 200		6.0	= -		i. Larger hole	es may inval	idate the dat	a below.
200			7.0	8.0	9.0	10.0	11.0	12.0
200								
	202	214	244	274	316	358	414	464
200	202 202	226 234	256 266	290 306	330 348	374 394	430 452	482 506
200	202	242	278	318	362	412	468	528
RTING CO	OLUMNS, ii	nternal (edg	ie) per store	y, MN				
0.2 (0.2)	0.3 (0.2)	0.5 (0.3)	0.7 (0.5)	1.0 (0.6)	1.4 (0.8)	1.8 (1.1)	2.4 (1.4)	3.1 (1.7)
0.3 (0.2)	0.4 (0.3)	0.6 (0.4)	0.9 (0.6)	1.3 (0.7)	1.7 (1.0)	2.3 (1.3)	3.0 (1.6)	3.8 (2.1)
								4.4 (2.4)
).4 (0.3)	0.6 (0.4)	1.0 (0.6)	1.3 (0.8)	1.8 (1.0)	2.5 (1.4)	3.2 (1.7)	4.1 (Z.Z)	5.2 (2.8)
/ <mark>m³)</mark> 9 (46)	13 (63)	10 (00)	23 (03)	27 (00)	31 (00)	34 (95)	/1 (00)	51 (111)
								58 (122)
13 (66)	22 (108)	26 (112)	32 (121)	35 (116)	42 (120)	46 (118)	55 (121)	65 (130)
17 (84)	27 (130)	30 (123)	36 (130)	40 (127)	47 (129)	51 (124)	61 (130)	68 (128)
MED, mi	m							
400 sq.	500 sq.	600 sq.	700 sq.	800 sq.	900 sq.	1000 sq.	1100 sq.	1200 sq.
0 x 350 350 sq.	500 x 400 400 sq.	600 x 450 450 sq.	700 x 500 500 sq.	800 x 550 550 sq.	900 x 600 600 sq.	1000 x 650 650 sq.	700 sq.	1200 x 750 750 sq.
25 a _k b	$a_k > 5$	kN/m² f	= shear cri	ical (initiall	$(v > 2v_c)$	a = T25s u	ised h =	T32s used
<u>9</u> k					g	g	h	h
				f	g	fg	fh	fh
b					bfg	bfg	bfh	bfh
abt	abt	abt	bt	bt	btg	btg	bth	bfh
		· · · · · · · · · · · · · · · · · · ·					6 (2.0%)	6 (1.8%)
								6 (2.6%)
			6 (2.8%)				6 (3.1%)	6 (3.0%)
5 (5.5%)	6 (3.1%)	6 (3.5%)	7 (3.2%)	6 (3.0%)	6 (2.9%)	6 (3.0%)	6 (3.1%)	6 (3.5%)
	DNS: differe			or a charac		osed load (IL) of 5.0 kl	
								+30 mm
								+25 mm +10 mm
	5						iu	+10 mm
					2 spans			+10 mm
Span, m		6.0	7.0	8.0	9.0	10.0	11.0	12.0
		260	358	418	490	602	648	
		40) 264	300		384	426		
	•	60	7.0					ve thickness 12.0
								12.0
		6.0	6.3	7.0	8.0	8.6		10.1
			7.0	7.4	8.2	8.8		
				8.0	8.4	9.1	9.9	10.6
					9.0	9.4		
Short spa Short spa						10.0	10.5	11.0
	0.2 (0.2) 0.3 (0.2) 0.3 (0.2) 0.4 (0.3) (m ³) 9 (46) 11 (55) 13 (66) 17 (84) MED, mi 400 sq. 0 x 350 350 sq. 25 gk b b abf OF PER! (3.5%) 5 (6.0%) 5 (5.5%) 5 (6.0%) 5 (5.5%) 5 (5.5%) 5 (6.0%) 5 (6.0%) 5 (6.0%) 5 (6.0%) 5 (6.0%) 5 (6.0%) 5 (6.0%) 5 (6.0%) 5 (5.5%) 5 (6.0%) 5 (6.0%) 5 (5.5%) 5 (6.0%) 5 (6.0%)	0.2 (0.2) 0.3 (0.2) 0.3 (0.2) 0.4 (0.3) 0.3 (0.2) 0.5 (0.3) 0.4 (0.3) 0.6 (0.4) (m ³) 9 (46) 13 (63) 11 (55) 17 (82) 13 (66) 22 (108) 17 (84) 27 (130) MED, mm 400 sq. 500 sq. 0 x 350 500 x 400 350 sq. 400 sq. 25 g_k $b = q_k > 5$ b $bfabf$ $abf0 F PERIMETERS (ar)(4.3%) 6 (3.3%)(6.0%) 6 (3.7%)(5.5%) 6 (3.1%)SUMPTIONS: difference2 hoursModerateNo cholesUsing T25s cf T20sSpan, mNo shear links$	1.2 (0.2) 0.3 (0.2) 0.5 (0.3) 1.3 (0.2) 0.4 (0.3) 0.6 (0.4) 1.3 (0.2) 0.5 (0.3) 0.8 (0.5) 0.4 (0.3) 0.6 (0.4) 1.0 (0.6) (m^3) 9 (46) 13 (63) 19 (90) 11 (55) 17 (82) 22 (98) 13 (66) 22 (108) 26 (112) 17 (84) 27 (130) 30 (123) MED, mm 400 sq. 500 sq. 600 sq. 400 sq. 500 sq. 600 sq. 500 s 400 0 x 350 500 x 400 600 x 450 350 sq. 350 sq. 400 sq. 450 sq. 25 gk b bf bf abf abf (25 gk b $q_k > 5$ kN/m² f b bf abf abf abf (3.5%) 5 (2.4%) 5 (1.8%) (4.3%) 6 (3.7%) 6 (2.7%) (6.0%) 6 (3.1%) 6 (3.5%) SUMPTIONS: differences in slatz abar abar 2 hours Moderate No chading load No holes abar abar	b.2 (0.2) 0.3 (0.2) 0.5 (0.3) 0.7 (0.5) 0.3 (0.2) 0.4 (0.3) 0.6 (0.4) 0.9 (0.6) 0.3 (0.2) 0.5 (0.3) 0.8 (0.5) 1.1 (0.7) 0.4 (0.3) 0.6 (0.4) 1.0 (0.6) 1.3 (0.8) (m ³) 9 (46) 13 (63) 19 (90) 23 (93) 11 (55) 17 (82) 22 (98) 27 (106) 13 (66) 22 (108) 26 (112) 32 (121) 17 (84) 27 (130) 30 (123) 36 (130) MED, mm 400 sq. 500 sq. 600 sq. 700 sq. 0 x 350 500 x 400 600 x 450 700 x 500 350 sq. 400 sq. 450 sq. 500 sq. 25 g _k b q _k > 5 kN/m ² f = shear crit b bf bf bf cl.55%) 6 (2.4%) 5 (1.8%) 5 (1.8%) i (4.3%) 6 (3.3%) 6 (2.6%) 6 (2.3%) i (5.5%) 6 (3.1%) 6 (3.5%) 7 (3.2%) SUMPTIONS: differences in slab thickness f 2 hours +10 mm No holes -0	0.3 0.2 0.4 0.3 0.6 0.4 0.9 0.6 1.3 0.7 0.3 0.2 0.5 0.3 0.8 0.5 1.1 (0.7) 1.6 (0.9) 0.4 (0.3) 0.6 (0.4) 1.0 (0.6) 1.3 (0.8) 1.8 (1.0) (m ³) 9 (46) 13 (63) 19 (90) 23 (93) 27 (99) 11 (55) 17 (82) 22 (98) 27 (106) 33 (115) 13 (66) 22 (108) 26 (112) 32 (121) 35 (116) 17 (84) 27 (130) 30 (123) 36 (130) 40 (127) MED, mm 4000 sq. 500 sq. 600 sq. 700 sq. 800 sq. 550 sq. 250 sq. 50 sq.	1.2 (0.2) (0.3) (0.7) (0.6)	D2 (0.2) 0.3 (0.2) 0.5 (0.3) 0.7 (0.5) 1.0 (0.6) 1.4 (0.8) 1.8 (1.1) D3 (0.2) 0.4 (0.3) 0.6 (0.4) 0.9 (0.6) 1.3 (0.7) 1.7 (1.0) 2.3 (1.3) D3 (0.2) 0.5 (0.3) 0.8 (0.5) 1.1 (0.7) 1.6 (0.9) 2.1 (1.2) 2.7 (1.5) D4 (0.3) 0.6 (0.4) 1.0 (0.6) 1.3 (0.8) 1.8 (1.0) 2.5 (1.4) 3.2 (1.7) /m ³) 9 (46) 13 (63) 19 (90) 23 (93) 27 (99) 31 (99) 34 (95) 11 (55) 17 (82) 22 (98) 27 (106) 33 (115) 38 (118) 42 (113) 13 (66) 22 (108) 26 (112) 32 (121) 35 (116) 42 (120) 46 (118) 17 (84) 27 (130) 30 (123) 36 (130) 40 (127) 47 (129) 51 (124) MED, mm 400 sq. 450 sq. 500 sq. 500 sq. 600 sq. 60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Flat slabs with edge beams

Introducing edge beams to flat slabs overcomes many of the problems associated with shear at perimeter columns and edge deflection. These slabs are popular for use in office buildings, retail developments, hospitals, hotels, etc. and commonly incorporate upstands rather than downstand perimeter beams. They are economical for spans up to 10 m in square panels.

The chart and data assume an edge loading of 10 kN/m and one 150 mm hole in the slab adjacent to each column. They assume internal columns sizes will at least equal those given in the data. The overall depth of edge beams must be at least 50% greater than the slab thickness.

ADVANTAGES

- Relatively simple and fast formwork and construction
- Architectural finish can be applied directly to the underside of the slab
- Absence of internal beams allows lower storey heights
- Flexibility of partition location and horizontal service distribution.
- Perimeter holes present few problems

DISADVANTAGES

• Perimeter downstand beams may hinder use of table forms

SPAN: DEPTH CHART

DESIGN ASSUMPTIONS

>								
							d data to es	timate size
Square	e panels, min	imum of thre	e spans x th	ree bays. Out	side edge flu	sh with colur	nns.	
								pans. f _s ma
							. Ultimate lo	oads assum
C35, 2	4 kN/m³, 20	mm aggrega	ite.					
Fire re	sistance 1 ho	our; mild exp	osure.					
				each colum	n. Larger hole	es may invalio	late the data	below.
4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
200	202	214	242	274	308	350	400	46
								50
								52
200	212	248	286	328	372	416	472	53
					1.2	4.0	2.4	2
								3.
								3.
								4. 5.
0.4	0.6	1.0	1.4	1.9	2.5	3.2	4.1	э.
								Ŭ,
(28)	(31)	(35)		(46)	(52)	(61)	(70)	(83
								(99
								(115
(40)	(47)	(56)	(65)	(75)	(87)	(99)	(113)	(129
(kg/m³)					L	Beam reinfo	rcement to	be added
8 (39)	10 (50)	15 (70)	18 (75)	22 (80)	26 (85)	30 (85)	35 (87)	40 (85
								44 (88
								47 (90
12 (61)	19 (87)	22 (91)	27 (97)	33 (101)	39 (104)	44 (106)	48 (101)	52 (96
250	250	260	320	380	440	510		68
								75
								82) 87(
1.25 g _k b	$p = q_k > 5$	kN/m² f⊧	= shear crit	ical (initially	$v > 2v_c)$			T32s use
					a			
h	h	h	h	ha				bl
ab	ab	ab					bfh	b
				piq	DIII			
				5				
BER OF PERI			ge by weigl	nt of reinfoi	rcement), n	o. (%)	1 (1 10/)	A (1 10/
0 (0.0%)	2 (0.7%)	3 (0.7%)	<i>ge by weigl</i> 3 (0.6%)	nt of reinfor 4 (0.9%)	rcement), no 4 (1.0%)	<mark>o. <i>(%)</i> 4 (1.0%)</mark>	4 (1.1%)	•
0 (0.0%) 2 (1.2%)	2 (0.7%) 3 (1.0%)	3 (0.7%) 3 (0.9%)	<i>ge by weigl</i> 3 (0.6%) 4 (1.2%)	nt of reinfor 4 (0.9%) 4 (1.2%)	rcement), no 4 (1.0%) 4 (1.2%)	0. <i>(%)</i> 4 (1.0%) 4 (1.3%)	4 (1.2%)	5 (1.4%
0 (0.0%) 2 (1.2%) 3 (1.8%)	2 (0.7%) 3 (1.0%) 4 (1.5%)	3 (0.7%) 3 (0.9%) 4 (1.3%)	<i>ge by weigl</i> 3 (0.6%) 4 (1.2%) 4 (1.3%)	nt of reinfor 4 (0.9%)	ccement), no 4 (1.0%) 4 (1.2%) 4 (1.4%)	0. <i>(%)</i> 4 (1.0%) 4 (1.3%) 4 (1.3%)	4 (1.2%) 5 (1.6%)	5 (1.4% 5 (1.6%
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%)	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%)	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%)	ge by weigl 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%)	at of reinfor 4 (0.9%) 4 (1.2%) 4 (1.4%) 5 (1.7%)	ccement), no 4 (1.0%) 4 (1.2%) 4 (1.4%) 6 (2.0%)	2. (%) 4 (1.0%) 4 (1.3%) 4 (1.3%) 5 (1.6%)	4 (1.2%) 5 (1.6%) 5 (1.6%)	5 (1.4% 5 (1.6% 5 (1.8%
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) ASSUMPTIO	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%)	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%)	ge by weigh 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) • thickness f	at of reinfor 4 (0.9%) 4 (1.2%) 4 (1.4%) 5 (1.7%)	4 (1.0%) 4 (1.2%) 4 (1.2%) 4 (1.4%) 6 (2.0%) teristic impo	2. (%) 4 (1.0%) 4 (1.3%) 4 (1.3%) 5 (1.6%)	4 (1.2%) 5 (1.6%) 5 (1.6%)	5 (1.4% 5 (1.6% 5 (1.8%
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) ASSUMPTIO 2 hours	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) DNS: differe	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) nces in slab	ge by weigl 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) • thickness f +5 mm	at of reinfor 4 (0.9%) 4 (1.2%) 4 (1.4%) 5 (1.7%)	<i>ccement), no</i> 4 (1.0%) 4 (1.2%) 4 (1.4%) 6 (2.0%) <i>teristic impo</i> 4 hours	5. (%) 4 (1.0%) 4 (1.3%) 4 (1.3%) 5 (1.6%) 5 (1.6%)	4 (1.2%) 5 (1.6%) 5 (1.6%)	5 (1.4% 5 (1.6% 5 (1.8% //m ² +30 mm
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) ASSUMPTIC 2 hours Moderate	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) DNS: differe	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) nces in slab	ge by weigl 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) 9 thickness f +5 mm +20 mm	at of reinfor 4 (0.9%) 4 (1.2%) 4 (1.4%) 5 (1.7%)	cement), no 4 (1.0%) 4 (1.2%) 4 (1.4%) 6 (2.0%) teristic impo 4 hours Severe, C	 <i>(%)</i> 4 (1.0%) 4 (1.3%) 4 (1.3%) 5 (1.6%) <i>osed load (IL</i> 40 concrete 	4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%)	5 (1.4%) 5 (1.6%) 5 (1.8%) //m ² +30 mm +25 mm
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) ASSUMPTIO 2 hours	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) 20NS: differe e re holes	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) nces in slab	ge by weigl 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) • thickness f +5 mm	at of reinfor 4 (0.9%) 4 (1.2%) 4 (1.4%) 5 (1.7%)	cement), no 4 (1.0%) 4 (1.2%) 4 (1.4%) 6 (2.0%) teristic impo 4 hours Severe, C 50 mm d	5. (%) 4 (1.0%) 4 (1.3%) 4 (1.3%) 5 (1.6%) 5 (1.6%)	4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%)	5 (1.4% 5 (1.6% 5 (1.8% //m ² +30 mm +25 mm -5 mm
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) ASSUMPTIO 2 hours Moderate 300 squar	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) 20NS: differe e re holes	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) nces in slab	ge by weigl 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) 4 (1.6%) 4 thickness f +5 mm +20 mm +0 mm	at of reinfor 4 (0.9%) 4 (1.2%) 4 (1.4%) 5 (1.7%)	cement), no 4 (1.0%) 4 (1.2%) 4 (1.4%) 6 (2.0%) teristic impo 4 hours Severe, C	 <i>(%)</i> 4 (1.0%) 4 (1.3%) 4 (1.3%) 5 (1.6%) <i>osed load (IL</i> 40 concrete 	4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%)	5 (1.4% 5 (1.6% 5 (1.8% //m ² +30 mr +25 mr -5 mr + 0 mr
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) ASSUMPTIC 2 hours Moderate 300 squat Using T25 Span, m No shear	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) 20NS: differe e re holes sis cf T20s links	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) nces in slab	ge by weigl 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) 4 (nt of reinfor 4 (0.9%) 4 (1.2%) 4 (1.4%) 5 (1.7%)	4 (1.0%) 4 (1.2%) 4 (1.2%) 4 (1.4%) 6 (2.0%) teristic impo 4 hours Severe, C 50 mm d 2 spans	 b. (%) 4 (1.0%) 4 (1.3%) 4 (1.3%) 5 (1.6%) c) (1.6%) <lic) (1.6%)<="" li=""> c) (1.6%) <lic) (1.6%)<="" li=""> <lic) (1.6%)<<="" td=""><td>4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%) .) of 5.0 kN</td><td>5 (1.4%) 5 (1.6%) 5 (1.6%) +30 mm +25 mm -5 mm + 0 mm 12.0</td></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)>	4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%) .) of 5.0 kN	5 (1.4%) 5 (1.6%) 5 (1.6%) +30 mm +25 mm -5 mm + 0 mm 12. 0
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) ASSUMPTIC 2 hours Moderate 300 squar Using T25 Span, m No shear equivalent sp	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) 20NS: differe ere holes sis cf T20s links pans, m	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) ncces in slab 6.0 242	ge by weigl 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) 4 (1.6%) thickness f +5 mm +0 mm +5 mm 7.0 308	nt of reinfol 4 (0.9%) 4 (1.2%) 4 (1.4%) 5 (1.7%) For a charac 8.0 394 Use an e	4 (1.0%) 4 (1.2%) 4 (1.2%) 6 (2.0%) teristic impo 4 hours Severe, C 50 mm d 2 spans 9.0 460 equivalent sq	2. (%) 4 (1.0%) 4 (1.3%) 5 (1.6%) 5 (1.6%) 40 concrete rops, L/3 wide 10.0 498 uare span, be	4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%) .) of 5.0 kN e 11.0 554 clow, to deriv	5 (1.4% 5 (1.6% 5 (1.8% 430 mm +25 mm +25 mm + 0 mm 12.0 640 e thicknes
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) <i>ASSUMPTIC</i> 2 hours Moderate 300 squal Using T25 Span, m No shear equivalent s Long spa	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) 20NS: differe ere holes sos of T20s links pans, m an, m	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) a (1.5	ge by weigi 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) 4 (1.6%) thickness f +5 mm +20 mm +5 mm +5 mm 7.0 308 7.0	nt of reinfoi 4 (0.9%) 4 (1.2%) 5 (1.7%) 5 (1.7%) for a charac 8.0 394 Use an e 8.0	4 (1.0%) 4 (1.2%) 4 (1.2%) 6 (2.0%) teristic import 6 (2.0%) teristic import 8 evere, C 50 mm d 2 spans 9.0 460 equivalent sq 9.0	2. (%) 4 (1.0%) 4 (1.3%) 5 (1.6%) 5 (1.6%) 5 (0.000 (/l) 40 concrete rops, L/3 wide 10.0 498 uare span, be 10.0	4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%) c) of 5.0 kN c e <u>11.0</u> 554 clow, to deriv 11.0	5 (1.4% 5 (1.6% 5 (1.8% 430 mm +25 mm +25 mm + 0 mm 12.0 640 e thicknes
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) <i>ASSUMPTIC</i> 2 hours Moderate 300 squal Using T25 <u>Span, m</u> No shear equivalent sp <u>Long spa</u> Short spa	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) 20NS: differe ere holes siss of T20s links pans, m an, m n = 5.0 m	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) a (1.5	ge by weigi 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) 0 thickness f +5 mm +20 mm +5 mm 7.0 308 7.0 5.7	nt of reinfor 4 (0.9%) 4 (1.2%) 4 (1.2%) 5 (1.7%) for a charac 8.0 394 Use an e 8.0 6.4	4 (1.0%) 4 (1.2%) 4 (1.2%) 6 (2.0%) teristic important 5 (2.0%) teristic important 5 (2.0%) teristic important 5 (2.0%) 4 hours 5 (2.0%) 5 (2.0%)	2. (%) 4 (1.0%) 4 (1.3%) 5 (1.6%) 5 (1.6%)	4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%) .) of 5.0 kN e 11.0 554 elow, to deriv 11.0 8.8	5 (1.4% 5 (1.6% 5 (1.6% 5 (1.8% //m ² +30 mr +25 mr +25 mr +0 mr 12. 64 e thickness 12.
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) <i>ASSUMPTIC</i> 2 hours Moderate 300 squat Using T25 Span, m No shear equivalent s Long spa Short spa Short spa	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) <i>DNS: differe</i> 9 re holes 55 cf T20s links pans, m an, m n = 5.0 m n = 6.0 m	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) a (1.5	ge by weigi 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) 5 thickness f +5 mm +20 mm +5 mm 7.0 308 7.0 5.7 6.3	at of reinform 4 (0.9%) 4 (1.2%) 4 (1.4%) 5 (1.7%) For a charact 8.0 394 Use an et al.0 8.0 6.4 6.9	ccement), no. 4 (1.0%) 4 (1.2%) 4 (1.4%) 6 (2.0%) teristic importance 4 hours Severe, C 50 mm d 2 spans 9.0 400 7.2 7.5	2. (%) 4 (1.0%) 4 (1.3%) 5 (1.6%) 5 (1.6%) 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%) .) of 5.0 kN 2 2 11.0 554 clow, to deriv 11.0 8.8 9.2	5 (1.4% 5 (1.6% 5 (1.8%
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) <i>ASSUMPTIC</i> 2 hours Moderate 300 squat Using T25 <u>Span, m</u> No shear equivalent spa <u>Short spa</u> Short spa Short spa	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) 20NS: differe 2 re holes 5s cf T20s links pans, m an, m n = 5.0 m n = 6.0 m n = 7.0 m	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) a (1.5	ge by weigi 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) 0 thickness f +5 mm +20 mm +5 mm 7.0 308 7.0 5.7	8.0 394 Use an e 8.0 394 0.4 394 0.5 0.64 6.9 7.4	ccement), no. 4 (1.0%) 4 (1.2%) 4 (1.4%) 6 (2.0%) teristic importance 4 hours Severe, C 50 mm dt 2 spans 9.0 460 7.2 7.5 8.0	2. (%) 4 (1.0%) 4 (1.3%) 5 (1.6%) 5 (1.6%) 5 (1.6%) 4 (1.3%) 5 (1.6%) 5 (1.6%)	4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%) .) of 5.0 kN e 11.0 554 How, to deriv 11.0 8.8 9.2 9.4	5 (1.4% 5 (1.6% 5 (1.8% /m ² +30 mm +25 mm +25 mm +0 mm 12.1 64 e thickness 12.1 10.1 10.1
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) ASSUMPTIC 2 hours Moderate 300 squal Using T25 Span , m No shear equivalent sp Short spa Short spa Short spa	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) 20NS: differe 2 re holes is cf T20s links pans, m n = 5.0 m n = 6.0 m n = 7.0 m n = 8.0 m	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) a (1.5	ge by weigi 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) 5 thickness f +5 mm +20 mm +5 mm 7.0 308 7.0 5.7 6.3	at of reinform 4 (0.9%) 4 (1.2%) 4 (1.4%) 5 (1.7%) For a charact 8.0 394 Use an et al.0 8.0 6.4 6.9	ccement), no. 4 (1.0%) 4 (1.2%) 4 (1.4%) 6 (2.0%) teristic importance 4 hours Severe, C 50 mm dt 2 spans 9.0 460 equivalent sqt 9.0 7.2 7.5 8.0 8.5	2. (%) 4 (1.0%) 4 (1.3%) 5 (1.6%) 5 (1.6%) 2. (1.6%) 40 concrete rops, L/3 wide 10.0 498 ware span, be 10.0 7.9 8.2 8.6 9.0	4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%) 0 of 5.0 kN 2 11.0 554 100 8.8 9.2 9.4 9.6	5 (1.4% 5 (1.6% 5 (1.8% //m ² +30 mm +25 mm +25 mm +25 mm 12.1 644 e thickness 12.1 10 10
0 (0.0%) 2 (1.2%) 3 (1.8%) 3 (1.6%) ASSUMPTIC 2 hours Moderate 300 squai Using T25 Span, m No shear equivalent sp Short spa Short spa Short spa Short spa	2 (0.7%) 3 (1.0%) 4 (1.5%) 4 (1.7%) 20NS: differe 2 re holes 5s cf T20s links pans, m an, m n = 5.0 m n = 6.0 m n = 7.0 m	3 (0.7%) 3 (0.9%) 4 (1.3%) 4 (1.5%) a (1.5	ge by weigi 3 (0.6%) 4 (1.2%) 4 (1.3%) 4 (1.6%) 5 thickness f +5 mm +20 mm +5 mm 7.0 308 7.0 5.7 6.3	8.0 394 Use an e 8.0 394 0.4 394 0.5 0.64 6.9 7.4	ccement), no. 4 (1.0%) 4 (1.2%) 4 (1.4%) 6 (2.0%) teristic importance 4 hours Severe, C 50 mm dt 2 spans 9.0 460 7.2 7.5 8.0	2. (%) 4 (1.0%) 4 (1.3%) 5 (1.6%) 5 (1.6%) 5 (1.6%) 4 (1.3%) 5 (1.6%) 5 (1.6%)	4 (1.2%) 5 (1.6%) 5 (1.6%) 5 (1.6%) .) of 5.0 kN e 11.0 554 How, to deriv 11.0 8.8 9.2 9.4	+30 mn +25 mn -5 mn + 0 mn 12.0 640
	COLUI etc. M Squard Main I have B SDL o elastic C35, 2 Fire re One 1 4.0 200 200 200 200 200 200 200 200 200 2	COLUMNS internal etc. Minimum colu Square panels, min Main bars: T20 und have been reduced SDL of 1.50 kN/m ³ elastic reaction fac C35, 24 kN/m ³ , 20 Fire resistance 1 ho One 150 mm squar 4.0 5.0 200 202 200 203	COLUMNS internally and BEAN etc. Minimum column size as d. Square panels, minimum of three Main bars: T20 uno. Links R8. T. have been reduced. 10% allows SDL of 1.50 kN/m² (finishes) and elastic reaction factors of 1.0 to C35, 24 kN/m³, 20 mm aggregat Fire resistance 1 hour; mild exp One 150 mm square hole assur 4.0 5.0 6.0 200 202 200 202 200 202 200 202 200 202 200 202 200 202 200 202 200 202 200 202 200 202 200 202 200 202 200 202 200 212 200 202 212 248 PORTING COLUMNS, internal (edg 0.2 0.3 0.4 0.6 1.0 28 213 (35) (32) <td>COLUMNS internally and BEAMS around peetc. Minimum column size as data. Edge bea Square panels, minimum of three spans x the Main bars: T20 uno. Links R8. To help with d have been reduced. 10% allowed for wastag SDL of 1.50 kN/m² (finishes) and perimeter elastic reaction factors of 1.0 to internal colu C35, 24 kN/m³, 20 mm aggregate. Fire resistance 1 hour; mild exposure. One 150 mm square hole assumed to adjoin 4.0 5.0 6.0 7.0 200 202 214 242 200 202 236 274 200 202 236 274 200 202 236 274 200 202 236 274 200 202 236 274 200 202 236 274 200 212 248 286 PORTING COLUMNS, internal (edge) per store 0.2 0.3 0.5 0.7 0.3 0.4 0.6 1.0 1.4 DGE) BEAMS, kN/m Includes pee (28) (31) (35</td> <td>COLUMNS internally and BEAMS around perimeter. Refe etc. Minimum column size as data. Edge beams at least 5 Square panels, minimum of three spans x three bays. Out Main bars: T20 uno. Links R8. To help with deflection, 25 have been reduced. 10% allowed for wastage and laps. E SDL of 1.50 kN/m² (finishes) and perimeter load of 10 elastic reaction factors of 1.0 to internal columns and 0.5 C35, 24 kN/m³, 20 mm aggregate. Fire resistance 1 hour; mild exposure. One 150 mm square hole assumed to adjoin each column 4.0 5.0 6.0 7.0 8.0 200 202 214 242 274 200 202 218 260 296 200 202 236 274 314 200 212 248 286 328 PORTING COLUMNS, internal (edge) per storey, MN 0.2 0.3 0.5 0.7 1.0 0.3 0.4 0.6 0.9 1.3 0.3 0.5 0.8 1.1 1.6 0.4 0.6 1.0 1.4 1.9 OCE) BEAMS, kN/m Incl</td> <td>COLUMNS internally and BEAMS around perimeter. Refer to appropriet. Minimum column size as data. Edge beams at least 50% deeper to Square panels, minimum of three spans x three bays. Outside edge flu Main bars: T20 uno. Links R8. To help with deflection, 25% A₅T used a have been reduced. 10% allowed for wastage and laps. Beam reinford SDL of 1.50 kN/m² (finishes) and perimeter load of 10 kN/m (cladd elastic reaction factors of 1.0 to internal columns and 0.5 to edge beat C35, 24 kN/m³, 20 mm aggregate. Fire resistance 1 hour; mild exposure. One 150 mm square hole assumed to adjoin each column. Larger hole 4.0 5.0 6.0 7.0 8.0 9.0 200 202 214 242 274 308 200 202 214 242 274 308 200 202 236 274 314 354 200 202 236 274 314 354 200 212 248 286 328 372 PORTING COLUMNS, internal (edge) per storey, MN 0.2 0.3 0.5 0.7 1.0 1.3 0.3 0.5 0.8 1.1 1.6 2.1 0.4 0.6 1.0 1.4 1.9 2.5<</td> <td>COLUMNS internally and BEAMS around perimeter. Refer to appropriate charts an etc. Minimum column size as data. Edge beams at least 50% deeper than slab. Square panels, minimum of three spans x three bays. Outside edge flush with colur Main bars: T20 uno. Links R8. To help with deflection, 25% A,T used as A_s' at mids have been reduced. 10% allowed for wastage and laps. Beam reinforcement to be SDL of 1.50 kN/m² (finishes) and perimeter load of 10 kN/m (cladding) included elastic reaction factors of 1.0 to internal columns and 0.5 to edge beams. C35, 24 kN/m³, 20 mm aggregate. Fire resistance 1 hour; mild exposure. One 150 mm square hole assumed to adjoin each column. Larger holes may invalid 200 202 214 242 274 308 350 200 202 236 274 314 354 398 200 212 248 286 3228 372 416 PORTING COLUMNS, internal (edge) per storey, MNI 0.2 0.3 0.5 0.7 1.0 1.3 1.8 0.3 0.4 0.6 0.9 1.3 1.7 2.3 0.3 0.5 0.8 1.1 1.6 2.1 2.7 0.4 0.6 1.0 1.4 1.9 2.5 3.2 COLUMS, internal (edge) per storey, MNI 0.2 0.3 0.5 0.8 1.1 1.6 2.1 2.7 0.4 0.6 1.0 1.4 1.9 2.5 3.2 COLUM (28) (31) (35) (40) (46) (52) (61) (32) (36) (42) (49) (56) (64) (74) (36) (41) (49) (57) (66) (76) (86) (40) (47) (56) (65) (75) (87) (99) (8/m³) (1050) 15 (70) 18 (75) 22 (80) 26 (85) 30 (85) 34 (90) 11 (53) 17 (83) 20 (86) 24 (89) 29 (92) 33 (93) 39 (99) 12 (61) 19 (87) 22 (91) 27 (97) 33 (101) 39 (104) 44 (106) D, mm square, internal 250 250 260 320 380 440 510 250 250 300 370 440 520 600 680 11.25 gk b = q_k > 5 kN/m² f = shear critical (initially v>2vc) g = T25s us g</td> <td>COLUMNS internally and BEAMS around perimeter. Refer to appropriate charts and data to esete. Minimum of unsize as data. Edge beams at least 50% deeper than slab. Square panels, minimum of three spans x three bays. Outside edge flush with columns. Main bars: T20 uno. Links R8. To help with deflection, 25% AT used as A,' at midspan of end a have been reduced. 10% allowed for wastage and laps. Beam reinforcement to be added. SDL of 1.50 kN/m² (finishes) and perimeter load of 10 kN/m (cladding) included. Ultimate latelastic reaction factors of 1.0 to internal columns and 0.5 to edge beams. C35, 24 kN/m², 20 mm aggregate. Fire resistance 1 hour; mild exposure. One 150 mm square hole assumed to adjoin each column. Larger holes may invalidate the data 200 202 214 242 274 308 350 400 200 202 214 242 274 308 350 400 200 202 228 260 296 336 380 438 200 202 236 274 314 354 398 456 200 212 248 286 328 372 416 472 PORTING COLUMINS, internal (edge) per storey, MN 0.3 <t< td=""></t<></td>	COLUMNS internally and BEAMS around peetc. Minimum column size as data. Edge bea Square panels, minimum of three spans x the Main bars: T20 uno. Links R8. To help with d have been reduced. 10% allowed for wastag SDL of 1.50 kN/m ² (finishes) and perimeter elastic reaction factors of 1.0 to internal colu C35, 24 kN/m ³ , 20 mm aggregate. Fire resistance 1 hour; mild exposure. One 150 mm square hole assumed to adjoin 4.0 5.0 6.0 7.0 200 202 214 242 200 202 236 274 200 202 236 274 200 202 236 274 200 202 236 274 200 202 236 274 200 202 236 274 200 212 248 286 PORTING COLUMNS, internal (edge) per store 0.2 0.3 0.5 0.7 0.3 0.4 0.6 1.0 1.4 DGE) BEAMS, kN/m Includes pee (28) (31) (35	COLUMNS internally and BEAMS around perimeter. Refe etc. Minimum column size as data. Edge beams at least 5 Square panels, minimum of three spans x three bays. Out Main bars: T20 uno. Links R8. To help with deflection, 25 have been reduced. 10% allowed for wastage and laps. E SDL of 1.50 kN/m² (finishes) and perimeter load of 10 elastic reaction factors of 1.0 to internal columns and 0.5 C35, 24 kN/m³, 20 mm aggregate. Fire resistance 1 hour; mild exposure. One 150 mm square hole assumed to adjoin each column 4.0 5.0 6.0 7.0 8.0 200 202 214 242 274 200 202 218 260 296 200 202 236 274 314 200 212 248 286 328 PORTING COLUMNS, internal (edge) per storey, MN 0.2 0.3 0.5 0.7 1.0 0.3 0.4 0.6 0.9 1.3 0.3 0.5 0.8 1.1 1.6 0.4 0.6 1.0 1.4 1.9 OCE) BEAMS, kN/m Incl	COLUMNS internally and BEAMS around perimeter. Refer to appropriet. Minimum column size as data. Edge beams at least 50% deeper to Square panels, minimum of three spans x three bays. Outside edge flu Main bars: T20 uno. Links R8. To help with deflection, 25% A ₅ T used a have been reduced. 10% allowed for wastage and laps. Beam reinford SDL of 1.50 kN/m ² (finishes) and perimeter load of 10 kN/m (cladd elastic reaction factors of 1.0 to internal columns and 0.5 to edge beat C35, 24 kN/m ³ , 20 mm aggregate. Fire resistance 1 hour; mild exposure. One 150 mm square hole assumed to adjoin each column. Larger hole 4.0 5.0 6.0 7.0 8.0 9.0 200 202 214 242 274 308 200 202 214 242 274 308 200 202 236 274 314 354 200 202 236 274 314 354 200 212 248 286 328 372 PORTING COLUMNS, internal (edge) per storey, MN 0.2 0.3 0.5 0.7 1.0 1.3 0.3 0.5 0.8 1.1 1.6 2.1 0.4 0.6 1.0 1.4 1.9 2.5<	COLUMNS internally and BEAMS around perimeter. Refer to appropriate charts an etc. Minimum column size as data. Edge beams at least 50% deeper than slab. Square panels, minimum of three spans x three bays. Outside edge flush with colur Main bars: T20 uno. Links R8. To help with deflection, 25% A,T used as A _s ' at mids have been reduced. 10% allowed for wastage and laps. Beam reinforcement to be SDL of 1.50 kN/m ² (finishes) and perimeter load of 10 kN/m (cladding) included elastic reaction factors of 1.0 to internal columns and 0.5 to edge beams. C35, 24 kN/m ³ , 20 mm aggregate. Fire resistance 1 hour; mild exposure. One 150 mm square hole assumed to adjoin each column. Larger holes may invalid 200 202 214 242 274 308 350 200 202 236 274 314 354 398 200 212 248 286 3228 372 416 PORTING COLUMNS, internal (edge) per storey, MNI 0.2 0.3 0.5 0.7 1.0 1.3 1.8 0.3 0.4 0.6 0.9 1.3 1.7 2.3 0.3 0.5 0.8 1.1 1.6 2.1 2.7 0.4 0.6 1.0 1.4 1.9 2.5 3.2 COLUMS, internal (edge) per storey, MNI 0.2 0.3 0.5 0.8 1.1 1.6 2.1 2.7 0.4 0.6 1.0 1.4 1.9 2.5 3.2 COLUM (28) (31) (35) (40) (46) (52) (61) (32) (36) (42) (49) (56) (64) (74) (36) (41) (49) (57) (66) (76) (86) (40) (47) (56) (65) (75) (87) (99) (8/m ³) (1050) 15 (70) 18 (75) 22 (80) 26 (85) 30 (85) 34 (90) 11 (53) 17 (83) 20 (86) 24 (89) 29 (92) 33 (93) 39 (99) 12 (61) 19 (87) 22 (91) 27 (97) 33 (101) 39 (104) 44 (106) D, mm square, internal 250 250 260 320 380 440 510 250 250 300 370 440 520 600 680 11.25 gk b = q_k > 5 kN/m ² f = shear critical (initially v>2vc) g = T25s us g	COLUMNS internally and BEAMS around perimeter. Refer to appropriate charts and data to esete. Minimum of unsize as data. Edge beams at least 50% deeper than slab. Square panels, minimum of three spans x three bays. Outside edge flush with columns. Main bars: T20 uno. Links R8. To help with deflection, 25% AT used as A,' at midspan of end a have been reduced. 10% allowed for wastage and laps. Beam reinforcement to be added. SDL of 1.50 kN/m² (finishes) and perimeter load of 10 kN/m (cladding) included. Ultimate latelastic reaction factors of 1.0 to internal columns and 0.5 to edge beams. C35, 24 kN/m², 20 mm aggregate. Fire resistance 1 hour; mild exposure. One 150 mm square hole assumed to adjoin each column. Larger holes may invalidate the data 200 202 214 242 274 308 350 400 200 202 214 242 274 308 350 400 200 202 228 260 296 336 380 438 200 202 236 274 314 354 398 456 200 212 248 286 328 372 416 472 PORTING COLUMINS, internal (edge) per storey, MN 0.3 <t< td=""></t<>

Waffle slabs designed as flat slabs (bespoke moulds)

Introducing voids to the soffit of a flat slab reduces dead weight and these slabs are economical in spans up to 12 m in square panels. Thickness is governed by deflection, punching shear around columns and shear in ribs.

The charts assume a solid area adjacent to supporting columns up to span/2 wide and long. The chart and data include an allowance for an edge loading of 10 kN/m.

ADVANTAGES

- Profile may be expressed architecturally
- Flexibility of partition location and horizontal service distribution
- Lightweight

DISADVANTAGES

- Higher formwork costs than for other slab systems
- Slightly deeper members result in greater floor heights
- Difficult to prefabricate, therefore reinforcement may be slow to fix

SPAN: DEPTH CHART

DESIGN ASSUMPTIONS

SUPPORTED BY	COLUM	NS. Refer to o	column charts	s and data to	estimate siz	zes, etc.			
DIMENSIONS				spans x thre ≯ span/2 in	,		ide @ 900 m	ım cc. Toppin	g 100 mm.
REINFORCEMENT			,	and R8 links. nave been red		wed for A142	2 mesh T (@	0.12%) in toj	oping. 10%
LOADS	assume		on factors of	perimeter loa f 1.0 internall above.					
CONCRETE	C35, 24	kN/m³, 20 m	m aggregate						
FIRE & DURABILITY	Fire resi	stance 1 hou	r; mild expos	ure.					
MULTIPLE SPAN, m	6.3	7.2	8.1	9.0	9.9	10.8	11.7	12.6	13.5

0.5	1.2	0.1	5.0	5.5	10.0	11.7	12.0	13.5
280	310	344	376	416	470	532	608	690
296	324	360	398	442	502	570	654	742
312	340	378	420	468	532	606	698	862
328	356	394	440	494	564	658	826	
PPORTING C	OLUMNS, ii	nternal (edg	ie) per store	y, MN				
0.5 (0.3)	0.7 (0.4)	0.9 (0.5)	1.2 (0.7)	1.5 (0.8)	1.9 (1.1)	2.4 (1.3)	3.1 (1.7)	3.9 (2.1)
0.7 (0.4)	0.9 (0.5)	1.2 (0.7)	1.5 (0.9)	1.9 (1.1)	2.5 (1.4)	3.1 (1.7)	4.0 (2.1)	4.9 (2.7)
0.8 (0.5)	1.1 (0.6)	1.5 (0.8)	1.9 (1.0)	2.4 (1.3)	3.0 (1.7)	3.8 (2.0)	4.8 (2.6)	6.2 (3.4)
1.0 (0.6)	1.4 (0.8)	1.7 (1.0)	2.3 (1.2)	2.8 (1.5)	3.6 (1.9)	4.5 (2.4)	5.9 (3.2)	
' (kg/m³)								
16 (56)	28 (99)	31 (98)	25 (67)	27 (66)	30 (64)	32 (60)	34 (56)	37 (53)
20 (66)	26 (79)	28 (78)	31 (78)	33 (76)	35 (70)	36 (63)	39 (60)	42 (56)
23 (72)	31 (92)	33 (88)	35 (84)	38 (83)	38 (72)	41 (68)	44 (63)	45 (52)
26 (78)	35 (100)	37 (94)	40 (90)	43 (88)	43 (77)	45 (68)	46 (56)	
ED, mm squa	are, interna	l (perimeter)					
270 (260)	310 (300)	350 (340)	420 (390)	460 (440)	530 (510)	600 (570)	680 (650)	760 (730)
310 (290)	360 (340)	410 (390)	470 (440)	530 (500)	600 (570)	670 (640)	760 (720)	850 (810)
350 (320)	410 (370)	460 (420)	530 (490)	590 (550)	670 (620)	740 (700)	830 (790)	950 (900)
380 (340)	440 (400)	500 (460)	570 (530)	640 (590)	720 (670)	810 (750)	930 (870)	
$> 1.25 g_k$	$b = q_k > 3$	5 kN/m ²	f = shear c	ritical (initia	lly v>2v₀) j	= links in r	ribs close to	solid area
fj	fj	fj	fj	fj	fj	fj	fj	fj
fj	fj	fj	fj	fj	fj	fj	fj	fj
	280 296 312 328 PPORTING C 0.5 (0.3) 0.7 (0.4) 0.8 (0.5) 1.0 (0.6) (kg/m ³) 16 (56) 20 (66) 23 (72) 26 (78) ED, mm squa 270 (260) 310 (290) 350 (320) 380 (340) > 1.25 g _k fj	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	bfj abfj	bfj abfj	bfj abfj	bfj bfj	bfj bfj	bfj bfj	bfj bfj	bfj bfj	bj
LINKS, MAXIMUM NUI	MBER OF PERIN	METERS IN	SOLID AREA	AS (and perc	centage by	weight of	reinforcemei	nt, all links),	no. (%)
$IL = 2.5 \text{ kN/m}^2$	7 (6.7%)	6 (2.4%)	7 (2.3%)	7 (3.9%)	7 (4.2%)	6 (3.7%)	6 (4.4%)	5 (4.6%)	4 (5.2%)
$IL = 5.0 \text{ kN/m}^2$	7 (7.6%)	7 (4.1%)	7 (4.9%)	7 (4.3%)	7 (5.6%)	7 (5.1%)	5 (5.6%)	5 (6.6%)	5 (7.4%)

$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	(,		(,	(, , , , , , , , , , , , , , , , , , ,	(,		5 (7.1%) 5 (7.9%)	,	4 (9.8%)
VARIATIONS TO DESIGN	ASSUMPTIC	NS: differe	nces in slab	thickness f	or a charact	teristic impo	osed load (IL	.) of 5.0 kN	/m²

Fire resistance	2 hours,115 mm topping#	4	-20 mm		4 hours		not usually	/ feasible
Exposure	Moderate #	-1	-20 mm		Severe, C40	concrete#		+25 mm
Cladding load	No cladding load	-	20 mm		20 kN/m cla	adding	+ 40 mm if	<12.6 m
	Edge beams	-	20 mm		Column hea	ad L/10 squa	are	-0 mm
Holes	No holes, 225 holes		+0 mm		300 mm sq	. holes	+ 0 mm i	if >8.1 m
	#175 rib width required	ł						
Thickness, mm	Span, m	8.1	9.0	9.9	10.8	11.7	12.6	13.5
	No shear links	486	550	608	644	700	794	882
	50 mm drop, L/2 wi	348	388	426	484	548	628	714
	2 spans	378	422	466	536	614	746	
Rectangular panels			For non-squa	are panels us	se an equivale	nt square s	pan to derive	thickness
	Long span, m		9.0	10.8	12.6	14.4	16.2	18.0
	Short span = 9.0 m		9.0	9.4	10.7	12.1	13.4	14.4
	Short span = 9.9 m			9.7	11.0	12.4	13.5	14.4
	Short span =10.8 m			10.8	11.3	12.7	13.8	
	Short span =11.7m				11.7	12.9	14.0	
	Short span =12.6 m				12.6	13.2	14.3	
	Short span =13.5 m					13.4	14.5	

3.2 Beams

3.2.1 USING IN-SITU BEAMS

In-situ beams provide support: they transfer loads from slabs to columns and walls. They offer strength, robustness and versatility, eg. in accommodating cladding support details.

In overall terms, wide flat beams are less costly to construct than narrow deep beams; the deeper and narrower, the more costly they are. Beams and columns of the same width give maximum formwork efficiency as formwork can proceed along a continuous line. However, used internally, these relatively deep beams result in additional perimeter cladding and tend to disrupt service runs. Deep edge beams may limit the use of flying form systems on the slab. Upstand perimeter beams (designed as rectangular beams) can reduce overall cost. Parapet wall beams are less disruptive and less costly to form than deep downstand beams.

The intersections of beams and columns require special consideration of reinforcement details. Sufficient width is required to get both beam and column steel through; end supports need to be long enough to allow bends in bottom reinforcement to start beyond half the support length yet maintain cover for links and/or lacers.

3.2.2 USING THE CHARTS AND DATA

The charts for in-situ reinforced beams cover a range of web widths and **ultimate** applied uniformly distributed loads (uaudl). They are divided into:

Rectangular:

isolated or upstand beams, beams with no flange, beams not homogeneous with supported slabs.

Inverted 'L' beams:

perimeter beams with top flange one side of the web.

'T' beams:

internal beams with top flange both sides of the web

In the charts, sizes of singly reinforced beams are shown using solid lines; sizes of beams with two layers of reinforcement are shown using dashed lines. As the use of beams with two layers of reinforcement should normally be avoided, no further information is given.

The user must determine which form of beam is appropriate and, therefore, which chart and data to use. From the appropriate chart(s) and data, use the maximum span and appropriate **ultimate** applied uniformly distributed loads (uaudl) to interpolate between values given in the charts and data. The user is expected to make adjustments for two-span configurations, etc. and to round up both the depth and loads to supports in line with his or her confidence in the design criteria used and normal modular sizing.

3.2.3 DESIGN ASSUMPTIONS

Design

The charts and data are based on moment and shear factors in BS 8110, Pt $1^{(2)}$, table 3.6 assuming end spans are critical. Assumptions about dimensions are given in the table below. See also Section 7.

In order to satisfy defection criteria, service stress, f_s, is, in very many cases (particularly with shallow beams), reduced by increasing steel contents.

Dimensions

Beam type	Rect.	Ľ	'T'
Flange width, single span	bw	bw + 0.10L where	bw + 0.20L L = span
Flange width, continuous spans	bw	bw + 0.07L where	bw + 0.14L L = span
Top flange thickness		100	100
Nom. top bars	T16	T16	T16
Allowance above T1 bars in continuous beams for links, mesh, bars, etc. perpendicular to span		15 mm	23 mm

Reinforcement

Main bars: maximum T32s top and bottom, T10 links. 10% allowed for wastage and laps. Nominal top steel in mid-span. Minimum 50 mm between bars.

For reinforcement quantities, please refer to Section 2.2.4

Concrete

C35, 24 kN/m³, 20 mm aggregate. For severe exposure, C40 is assumed.

Fire and durability Fire resistance 1 hour; mild exposure.

Loads

Beam self-weight (extra over an assumed 200 mm depth of solid slab) allowed for and included.

In line with BS 8110, Pt 1, Cl 3.8.2.3, ultimate loads to columns assume elastic reaction factors of 1.0 to internal columns supporting continuous beams and 0.5 to end columns.

3.2.4 DESIGN NOTES

Different design criteria can be critical across the range of beams described. The sizes given in the charts and data are critical on the following parameters:

- K Beams 20 mm shallower than those given in the charts cannot be designed because K, (M/bd^2f_{cu}) at supports, exceeds maximum allowable (0.225)
- a $A_s B$ (area of steel, bottom) restricted by end support width or length
- b Compression steel required at internal supports but does not exceed nominal percentage of $30\% A_s B$
- c Compression steel required at internal supports exceeds 30% A_sB (ie. special curtailment required)
- d Two layers of reinforcement
- e Compression steel required in top of span

In-situ concrete beams: 'T' and inverted 'L' beams The slab data assume that internal beams support threespan slabs. Internal beams supporting two-span slabs might attract more load.

Upstand and band beams

Upstand beams and shallow downstand beams can be easier to construct and have less impact on horizontal services distribution and floor-to-floor heights.

800 1 layer 2 layers of 700 reinforcement 600 500 400 BEAM DEPTH, mm 300 200 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 SPAN, m **KEY** Ultimate applied udl = 25 kN/m = = 50 kN/m — = 100 kN/m — = 200 kN/m SINGLE SPAN, m 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 DEPTH, mm uaudl = 25 kN/m264 320 374 428 484 544 610 708 816 uaudl = 50 kN/m 780 300 356 432 522 642 942 uaudl = 100 kN/m370 508 672 uaudl = 200 kN/m 788 ULTIMATE LOAD TO SUPPORTS/COLUMNS INTERNAL (END), kN ult uaudl = 25 kN/m n/a (55) n/a (71) n/a (86) n/a (102) n/a (120) n/a (137) n/a (156) n/a (177) n/a (199) uaudl = 50 kN/m n/a (106) n/a (134) n/a (163) n/a (193) n/a (226) n/a (260) n/a (297) uaudl = 100 kN/mn/a (207) n/a (263) n/a (320) uaudl = 200 kN/m n/a (416) REINFORCEMENT, kg/m (kg/m³) uaudl = 25 kN/m 20 (249) 16 (170) 20 (181) 21 (164) 22 (148) 24 (144) 24 (133) 25 (117) 26 (105) uaudl = 50 kN/m21 (228) 24 (223) 25 (195) 26 (168) 26 (136) 27 (114) 27 (97) uaudl = 100 kN/m 29 (257) 27 (176) 26 (131) uaudl = 200 kN/m 21 (87) **DESIGN NOTES** See Section 3.2.4 on p 47 uaudl = 25 kN/m а а а а а ad ad ad uaudl = 50 kN/m ae ae ade ade ad ad ad uaudl = 100 kN/m ae ade ad uaudl = 200 kN/m d VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 50 kN/m uaudl, mm 2 hours fire +5 mm 4 hours fire 368 452 576 732 924 318 418 542 696 888 Moderate exposure Severe exposure (C40) 330 414 538 692 884

SPAN: DEPTH CHART

Rectangular beams **300 mm** wide single span

Rectangular beams

600 mm

single span

wide

SPAN: DEPTH CHART

	800								
			/-			/			/
			1 laye	•r		- / -			
			· · · / · ·						
	700						/	-	
				2 layers of inforcement				·	
					·				
		- ,	/K-				/		
	600								
		/- '						·	
		/-/-							
	500	11							
		<u>/</u>							
	- /								
	400							· - ·	
		/-							
E									
BEAM DEPTH mm			+-			+ -			
I I I I I I I I I I I I I I I I I I I	300								
E									
			+ -						
				7.0			40.0	44.0	42.0
	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
									SPAN, m
	KEY Ult	imate appl	ied udl						SPAN, III
	KEY Ult	imate appl = = 25 kN/		= 50 kN/m	=	100 kN/m	<u> </u>	00 kN/m	SPAN, III
SINGLE SPAN. m	-	= 25 kN/	m <u> </u>						
SINGLE SPAN, m	KEY Ult			= 50 kN/m 7.0	= 8.0	100 kN/m 9.0	— = 2 10.0	00 kN/m 11.0	12.0
DEPTH, mm	4.0	= 25 kN/	m — : 6.0	7.0	8.0	9.0	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m	4.0 252	= 25 kN/ 5.0 286	m — : 6.0	7.0	8.0 428	9.0 478	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m	4.0 252 290	= 25 kN/ 5.0 286 326	m — : 6.0 330 380	7.0 380 434	8.0 428 492	9.0 478 562	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m	4.0 252	= 25 kN/ 5.0 286	m — : 6.0	7.0	8.0 428	9.0 478	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 252 290 326 402	= 25 kN/ 5.0 286 326 394 568	m = = = = = = = = = = = = = = = =	7.0 380 434 532 994	8.0 428 492	9.0 478 562	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP	4.0 252 290 326 402	- = 25 kN/ 5.0 286 326 394 568 UMNS INTER	m : 6.0 330 380 462 760 RNAL (END)	7.0 380 434 532 994 , kN ult	8.0 428 492 642	9.0 478 562 898	10.0 532 644	11.0 608 720	12.0 688 816
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60)	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77)	m : 6.0 330 380 462 760 RNAL (END) n/a (95)	7.0 380 434 532 994 <i>kN ult</i> n/a (115)	8.0 428 492 642 n/a (134)	9.0 478 562 898 n/a (157)	10.0 532 644 n/a (178)	11.0 608 720 n/a (205)	12.0 688 816 n/a (233)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60) n/a (112)	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77) n/a (141)	m	7.0 380 434 532 994 <i>kN ult</i> n/a (115) n/a (206)	8.0 428 492 642 n/a (134) n/a (240)	9.0 478 562 898 n/a (157) n/a (276)	10.0 532 644	11.0 608 720	12.0 688 816
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60) n/a (12) n/a (213)	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE.</i> n/a (77) n/a (141) n/a (270)	m	7.0 380 434 532 994 <i>kN ult</i> n/a (115) n/a (206) n/a (387)	8.0 428 492 642 n/a (134)	9.0 478 562 898 n/a (157)	10.0 532 644 n/a (178)	11.0 608 720 n/a (205)	12.0 688 816 n/a (233)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60) n/a (112)	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77) n/a (141)	m	7.0 380 434 532 994 <i>kN ult</i> n/a (115) n/a (206)	8.0 428 492 642 n/a (134) n/a (240)	9.0 478 562 898 n/a (157) n/a (276)	10.0 532 644 n/a (178)	11.0 608 720 n/a (205)	12.0 688 816 n/a (233)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60) n/a (112) n/a (213) n/a (416) (kg/m ³)	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE:</i> n/a (77) n/a (141) n/a (270) n/a (529)	m	7.0 380 434 532 994 , kN ult n/a (115) n/a (206) n/a (387) n/a (770)	8.0 428 492 642 n/a (134) n/a (240) n/a (452)	9.0 478 562 898 n/a (157) n/a (276) n/a (531)	10.0 532 644 n/a (178) n/a (315)	11.0 608 720 n/a (205) n/a (354)	12.0 688 816 n/a (233) n/a (399)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m REINFORCEMENT, kg/m uaudl = 25 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60) n/a (112) n/a (213) n/a (416) (kg/m ³) 27 (177)	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77) n/a (141) n/a (270) n/a (529) 29 (167)	m	7.0 380 434 532 994 , kN ult n/a (115) n/a (206) n/a (387) n/a (770) 28 (122)	8.0 428 492 642 n/a (134) n/a (240) n/a (452) 33 (129)	9.0 478 562 898 n/a (157) n/a (276) n/a (531) 32 (111)	10.0 532 644 n/a (178) n/a (315) 37 (117)	11.0 608 720 n/a (205) n/a (354) 40 (109)	12.0 688 816 n/a (233) n/a (399) 44 (106)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60) n/a (112) n/a (213) n/a (416) (kg/m ³) 27 (177) 30 (170)	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77) n/a (141) n/a (270) n/a (529) 29 (167) 30 (154)	m	7.0 380 434 532 994 <i>kN ult</i> n/a (115) n/a (206) n/a (387) n/a (770) 28 (122) 36 (140)	8.0 428 492 642 n/a (134) n/a (240) n/a (452) 33 (129) 39 (133)	9.0 478 562 898 n/a (157) n/a (276) n/a (531) 32 (111) 42 (124)	10.0 532 644 n/a (178) n/a (315)	11.0 608 720 n/a (205) n/a (354)	12.0 688 816 n/a (233) n/a (399)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 252 290 326 402 PORTS/COL n/a (60) n/a (112) n/a (213) n/a (213) n/a (416) (kg/m ³) 27 (177) 30 (170) 35 (178)	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77) n/a (141) n/a (270) n/a (529) 29 (167) 30 (154) 39 (166)	m	7.0 380 434 532 994 <i>kN ult</i> n/a (115) n/a (206) n/a (387) n/a (770) 28 (122) 36 (140) 50 (159)	8.0 428 492 642 n/a (134) n/a (240) n/a (452) 33 (129)	9.0 478 562 898 n/a (157) n/a (276) n/a (531) 32 (111)	10.0 532 644 n/a (178) n/a (315) 37 (117)	11.0 608 720 n/a (205) n/a (354) 40 (109)	12.0 688 816 n/a (233) n/a (399) 44 (106)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60) n/a (112) n/a (213) n/a (416) (kg/m ³) 27 (177) 30 (170)	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77) n/a (141) n/a (270) n/a (529) 29 (167) 30 (154)	m	7.0 380 434 532 994 <i>kN ult</i> n/a (115) n/a (206) n/a (387) n/a (770) 28 (122) 36 (140)	8.0 428 492 642 n/a (134) n/a (240) n/a (452) 33 (129) 39 (133)	9.0 478 562 898 n/a (157) n/a (276) n/a (531) 32 (111) 42 (124)	10.0 532 644 n/a (178) n/a (315) 37 (117)	11.0 608 720 n/a (205) n/a (354) 40 (109)	12.0 688 816 n/a (233) n/a (399) 44 (106)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m REINFORCEMENT, kg/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 252 290 326 402 PORTS/COL n/a (60) n/a (112) n/a (213) n/a (213) n/a (416) (kg/m ³) 27 (177) 30 (170) 35 (178)	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77) n/a (141) n/a (270) n/a (529) 29 (167) 30 (154) 39 (166)	m	7.0 380 434 532 994 <i>kN ult</i> n/a (115) n/a (206) n/a (387) n/a (770) 28 (122) 36 (140) 50 (159)	8.0 428 492 642 n/a (134) n/a (240) n/a (452) 33 (129) 39 (133)	9.0 478 562 898 n/a (157) n/a (276) n/a (531) 32 (111) 42 (124)	10.0 532 644 n/a (178) n/a (315) 37 (117) 44 (115)	11.0 608 720 n/a (205) n/a (354) 40 (109)	12.0 688 816 n/a (233) n/a (399) 44 (106) 50 (103)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60) n/a (112) n/a (213) n/a (416) (kg/m ³) 27 (177) 30 (170) 35 (178) 46 (192)	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77) n/a (141) n/a (270) n/a (529) 29 (167) 30 (154) 39 (166)	m	7.0 380 434 532 994 <i>kN ult</i> n/a (115) n/a (206) n/a (387) n/a (770) 28 (122) 36 (140) 50 (159)	8.0 428 492 642 n/a (134) n/a (240) n/a (452) 33 (129) 39 (133) 51 (132)	9.0 478 562 898 n/a (157) n/a (276) n/a (531) 32 (111) 42 (124) 47 (87)	10.0 532 644 n/a (178) n/a (315) 37 (117) 44 (115) <i>See</i>	11.0 608 720 n/a (205) n/a (354) 40 (109) 48 (114)	12.0 688 816 n/a (233) n/a (399) 44 (106) 50 (103) 44 on p 47 a
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60) n/a (112) n/a (213) n/a (213) n/a (416) (kg/m ³) 27 (177) 30 (170) 35 (178) 46 (192) d	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77) n/a (141) n/a (270) n/a (529) 29 (167) 30 (154) 39 (166) 44 (129)	m	7.0 380 434 532 994 , <i>kN ult</i> n/a (115) n/a (206) n/a (387) n/a (770) 28 (122) 36 (140) 50 (159) 47 (80)	8.0 428 492 642 n/a (134) n/a (240) n/a (452) 33 (129) 39 (133) 51 (132)	9.0 478 562 898 n/a (157) n/a (276) n/a (531) 32 (111) 42 (124) 47 (87)	10.0 532 644 n/a (178) n/a (315) 37 (117) 44 (115)	11.0 608 720 n/a (205) n/a (354) 40 (109) 48 (114)	12.0 688 816 n/a (233) n/a (399) 44 (106) 50 (103) 4 on p 47
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60) n/a (112) n/a (213) n/a (416) (kg/m ³) 27 (177) 30 (170) 35 (178) 46 (192) d e	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77) n/a (141) n/a (270) n/a (529) 29 (167) 30 (154) 39 (166) 44 (129) ad	m	7.0 380 434 532 994 <i>kN ult</i> n/a (115) n/a (206) n/a (387) n/a (387) n/a (770) 28 (122) 36 (140) 50 (159) 47 (80)	8.0 428 492 642 n/a (134) n/a (240) n/a (452) 33 (129) 39 (133) 51 (132)	9.0 478 562 898 n/a (157) n/a (276) n/a (531) 32 (111) 42 (124) 47 (87)	10.0 532 644 n/a (178) n/a (315) 37 (117) 44 (115) <i>See</i>	11.0 608 720 n/a (205) n/a (354) 40 (109) 48 (114)	12.0 688 816 n/a (233) n/a (399) 44 (106) 50 (103) 44 on p 47 a
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m	4.0 252 290 326 402 PPORTS/COL n/a (60) n/a (112) n/a (213) n/a (213) n/a (416) (kg/m ³) 27 (177) 30 (170) 35 (178) 46 (192) d	- = 25 kN/ 5.0 286 326 394 568 <i>UMNS INTE</i> n/a (77) n/a (141) n/a (270) n/a (529) 29 (167) 30 (154) 39 (166) 44 (129)	m	7.0 380 434 532 994 , <i>kN ult</i> n/a (115) n/a (206) n/a (387) n/a (770) 28 (122) 36 (140) 50 (159) 47 (80)	8.0 428 492 642 n/a (134) n/a (240) n/a (452) 33 (129) 39 (133) 51 (132)	9.0 478 562 898 n/a (157) n/a (276) n/a (531) 32 (111) 42 (124) 47 (87)	10.0 532 644 n/a (178) n/a (315) 37 (117) 44 (115) <i>See</i>	11.0 608 720 n/a (205) n/a (354) 40 (109) 48 (114)	12.0 688 816 n/a (233) n/a (399) 44 (106) 50 (103) 44 on p 47 a

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 50 kN/m uaudl

Moderate exposure (C40) +20 mm up to 10 m only Severe exposure (C40) +20 mm up to 10 m only

² hours fire +5 mm up to 10 m only 4 hours fire +35 mm up to 10 m only

	800							
			/					
	_	/	/-	·	-	, + -		
	-		/	1 layer				
	700	- / -	/	· / - ·				
	700		1	2 12	yers of _			
		7:::::		- reinfo	rcement -			
	_	L X _						<u></u>
					-			
	600							
	-		/		/-			
	-							
			- T - X			<u></u>		
	500	·	11					
	-							
	-				-		6	
	-				-			
	400							
	400		/					
	ε 🖌				_ -			
	E F	-	/		-			
=					-			
	300							
	5 [
2	≥ _				_			
 L 	5 1	-			-			
	300 200 200 L			7.0				11.0
< L C	200 E 4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0
	4.0			7.0	8.0	9.0	10.0	11.0
2	4.0	5.0 timate app		7.0	8.0	9.0	10.0	11.0
2 2 2	4.0	timate app	lied udl					
< 2 2	4.0		lied udl	7.0 = 50 kN/n		9.0 = 100 kN/m		11.0 00 kN/m
	4.0 KEY UI	timate app – = 25 kN/	lied udl /m —	= 50 kN/n	n <u> </u>	= 100 kN/m	— = 2	00 kN/m
MULTIPLE SPAN, m	4.0	timate app	lied udl			= 100 kN/m		
MULTIPLE SPAN, m DEPTH, mm	4.0 KEY UI 4.0	timate app – = 25 kN 5.0	lied udl /m — 6.0	= 50 kN/n 7.0	n — = 8.0	= 100 kN/m 9.0	— = 2 10.0	00 kN/m 11.0
MULTIPLE SPAN, m DEPTH, mm uaudl = 25 kN/m	4.0 KEY UI 4.0 224	timate app = 25 kN 5.0 268	lied udl /m 6.0 312	= 50 kN/n 7.0 354	n — = 8.0 398	= 100 kN/m 9.0 444	— = 2 10.0 508	00 kN/m 11.0 600
MULTIPLE SPAN, m DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m	4.0 KEY UI 4.0 224 276	timate app - = 25 kN 5.0 268 324	lied udl /m 6.0 312 376	= 50 kN/n 7.0 354 456	n — = 8.0	= 100 kN/m 9.0 444	— = 2 10.0	00 kN/m 11.0
MULTIPLE SPAN, m DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 KEY UI 4.0 224 276 348	timate app = 25 kN 5.0 268 324 448	lied udl /m 6.0 312	= 50 kN/n 7.0 354	n — = 8.0 398	= 100 kN/m 9.0 444	— = 2 10.0 508	00 kN/m 11.0 600
MULTIPLE SPAN, m DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m	4.0 KEY UI 4.0 224 276	timate app - = 25 kN 5.0 268 324	lied udl /m 6.0 312 376	= 50 kN/n 7.0 354 456	n — = 8.0 398	= 100 kN/m 9.0 444	— = 2 10.0 508	00 kN/m 11.0 600
MULTIPLE SPAN, m DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 KEY UI 4.0 224 276 348 602	timate app = 25 kN 5.0 268 324 448 870	lied udl /m 6.0 312 376 610	= 50 kN/n 7.0 354 456 776	n — = 8.0 398	= 100 kN/m 9.0 444	— = 2 10.0 508	00 kN/m 11.0 600
MULTIPLE SPAN, m DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU	4.0 KEY UI 4.0 224 276 348 602 PPORTS/COL	timate app = 25 kN, 5.0 268 324 448 870 LUMNS INTE	lied udl /m 6.0 312 376 610 ERNAL (END	= 50 kN/n 7.0 354 456 776), kN ult	n — = 8.0 398 584	= 100 kN/m 9.0 444 700	= 2 10.0 508 838	00 kN/m 11.0 600 1000
MULTIPLE SPAN, m DEPTH, mm uaudi = 25 kN/m uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m ULTIMATE LOAD TO SU uaudi = 25 kN/m	4.0 KEY UI 4.0 224 276 348 602 PPORTS/COI 109 (55)	timate app = 25 kN, 5.0 268 324 448 870 LUMNS INTE 139 (69)	lied udl /m	= 50 kN/n 7.0 354 456 776), <i>kN ult</i> 200 (100)	n <u> </u>	= 100 kN/m 9.0 444 700 265 (133)	= 2 10.0 508 838 301 (151)	00 kN/m 11.0 600 1000 342 (171)
MULTIPLE SPAN, m DEPTH, mm uaudi = 25 kN/m uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m ULTIMATE LOAD TO SU uaudi = 25 kN/m	4.0 KEY UI 4.0 224 276 348 602 PPORTS/COI 109 (55) 212 (106)	timate app = 25 kN/ 5.0 268 324 448 870 LUMNS INTE 139 (69) 266 (133)	Jied udl /m	= 50 kN/n 7.0 354 456 776), kN ult 200 (100) 382 (191)	n — = 8.0 398 584	= 100 kN/m 9.0 444 700 265 (133)	= 2 10.0 508 838	00 kN/m 11.0 600 1000
MULTIPLE SPAN, m DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 KEY UI 4.0 224 276 348 602 PPORTS/COI 109 (55) 212 (106) 414 (207)	timate app = 25 kN/ 5.0 268 324 448 870 LUMNS INTE 139 (69) 266 (133) 523 (261)	lied udl /m	= 50 kN/n 7.0 354 456 776), <i>kN ult</i> 200 (100)	n <u> </u>	= 100 kN/m 9.0 444 700 265 (133)	= 2 10.0 508 838 301 (151)	00 kN/m 11.0 600 1000 342 (171)
MULTIPLE SPAN, m DEPTH, mm uaudi = 25 kN/m uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m ULTIMATE LOAD TO SU uaudi = 25 kN/m	4.0 KEY UI 4.0 224 276 348 602 PPORTS/COI 109 (55) 212 (106) 414 (207)	timate app = 25 kN/ 5.0 268 324 448 870 LUMNS INTE 139 (69) 266 (133)	Jied udl /m	= 50 kN/n 7.0 354 456 776), kN ult 200 (100) 382 (191)	n <u> </u>	= 100 kN/m 9.0 444 700 265 (133)	= 2 10.0 508 838 301 (151)	00 kN/m 11.0 600 1000 342 (171)
MULTIPLE SPAN, m DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 KEY UI 4.0 224 276 348 602 PPORTS/CO 109 (55) 212 (106) 414 (207) 824 (412)	timate app = 25 kN/ 5.0 268 324 448 870 LUMNS INTE 139 (69) 266 (133) 523 (261)	Jied udl /m	= 50 kN/n 7.0 354 456 776), kN ult 200 (100) 382 (191)	n <u> </u>	= 100 kN/m 9.0 444 700 265 (133)	= 2 10.0 508 838 301 (151)	00 kN/m 11.0 600 1000 342 (171)
MULTIPLE SPAN, m DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 KEY UI 4.0 224 276 348 602 PPORTS/CO 109 (55) 212 (106) 414 (207) 824 (412) n (kg/m ³)	timate app = 25 kN, 5.0 268 324 448 870 LUMNS INTE 139 (69) 266 (133) 523 (261) 1044 (522)	lied udl /m	= 50 kN/n 7.0 354 456 776), <u>kN ult</u> 200 (100) 382 (191) 755 (377)	n = 8.0 398 584 232 (116) 447 (224)	= 100 kN/m 9.0 444 700 265 (133) 514 (257)	= 2 10.0 508 838 301 (151) 584 (292)	00 kN/m 11.0 600 1000 342 (171) 661 (330)
MULTIPLE SPAN, m DEPTH, mm uaudi = 25 kN/m uaudi = 50 kN/m uaudi = 50 kN/m uaudi = 200 kN/m ULTIMATE LOAD TO SU uaudi = 25 kN/m uaudi = 50 kN/m uaudi = 50 kN/m uaudi = 200 kN/m uaudi = 200 kN/m	4.0 KEY UI 4.0 224 276 348 602 PPORTS/CO 109 (55) 212 (106) 414 (207) 824 (412) n (kg/m³) 19 (286)	timate app = 25 kN/ 5.0 268 324 448 870 LUMNS INTE 139 (69) 266 (133) 523 (261) 1044 (522) 22 (268)	Alied udl /m	= 50 kN/n 7.0 354 456 776), <i>kN ult</i> 200 (100) 382 (191) 755 (377) 23 (213)	n = 8.0 398 584 232 (116) 447 (224) 25 (213)	= 100 kN/m 9.0 444 700 265 (133) 514 (257) 28 (210)	= 2 10.0 508 838 301 (151) 584 (292) 29 (191)	00 kN/m 11.0 600 1000 342 (171) 661 (330) 29 (160)
MULTIPLE SPAN, m DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 KEY UI 4.0 224 276 348 602 PPORTS/CO 109 (55) 212 (106) 414 (207) 824 (412) n (kg/m ³)	timate app = 25 kN, 5.0 268 324 448 870 LUMNS INTE 139 (69) 266 (133) 523 (261) 1044 (522)	lied udl /m	= 50 kN/n 7.0 354 456 776), <u>kN ult</u> 200 (100) 382 (191) 755 (377)	n = 8.0 398 584 232 (116) 447 (224)	= 100 kN/m 9.0 444 700 265 (133) 514 (257) 28 (210)	= 2 10.0 508 838 301 (151) 584 (292)	00 kN/m 11.0 600 1000 342 (171) 661 (330)

27 (149)

abe

ab

d

+5 mm

328

302

304

K ace

uaudl = 200 kN/m

uaudl = 25 kN/m

uaudl = 50 kN/m

uaudl = 100 kN/m

uaudl = 200 kN/m

2 hours fire

4 hours fire

Moderate exposure

Severe exposure (C40)

DESIGN NOTES

27 (105)

ab

K ace

abde

d

398

384

382

ab

ad

abd

638

626

622

а

ad

506

494

490

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 50 kN/m uaudl, mm

K ace

ab

ad

800

788

784

ab

ad

Rectangular beams 300 mm wide

SPAN: DEPTH CHART

multiple span

See Section 3.2.4 on p 47

ad

ad

ad

ad

12.0 SPAN, m

12.0

696

384 (192)

29 (139)

ad

Rectangular beams

600 mm

multiple span

wide

SPAN: DEPTH CHART

	800 –								
						/-	/		
	_				r				
	700			·/		-	/		
	/00 -				layers of				
	_			rein	forcement	::: / :			
				<u>-</u> -{-	-	/	·		
	600		k			-1			
	-		/	· - ·	-	/- <i>/</i> -			
	-		-/			2000			<u> </u>
	500								
	-	/							
	-								
	400								
5	-								
Ē	-			·					
REAM DEPTH mm	300 🛓								
				: -					
Σ	F				-				
RFZ	200 🕻				-				
	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
									CDAN
									SPAN, m
	KEY U	timate app							SPAN, m
	KEY UI	timate app – = 25 kN		= 50 kN/n	ı <u> </u>	= 100 kN/m	— = 2	00 kN/m	SPAN, M
MULTIPLE SPAN, m	KEY UI 			= 50 kN/n 7.0	n — = 8.0	: 100 kN/m 9.0	10.0 = 2	00 kN/m 11.0	<i>SPAN</i> , m 12.0
MULTIPLE SPAN, m	_	– = 25 kN	/m —						
DEPTH, mm uaudl = 25 kN/m	4.0 218	- = 25 kN 5.0	/m 6.0 286	7.0	8.0 358	9.0 398	10.0 436	11.0 496	12.0 570
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m	4.0 218 252	- = 25 kN 5.0	/m 6.0 286 324	7.0 322 360	8.0 358 402	9.0 398 446	10.0 436 506	11.0 496 584	12.0
DEPTH, mm uaudl = 25 kN/m	4.0 218	- = 25 kN 5.0	/m 6.0 286	7.0	8.0 358	9.0 398	10.0 436	11.0 496	12.0 570
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 218 252 302 406	- = 25 kN 5.0 252 288 352 448	/m 6.0 286 324 404 584	7.0 322 360 456 746	8.0 358 402 508	9.0 398 446	10.0 436 506	11.0 496 584	12.0 570
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF	4.0 218 252 302 406	- = 25 kN/ 5.0 252 288 352 448	/m 6.0 286 324 404 584 <i>ERNAL (END</i>	7.0 322 360 456 746), <i>kN ult</i>	8.0 358 402 508 942	9.0 398 446 670	10.0 436 506 806	11.0 496 584 966	12.0 570 650
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 218 252 302 406	- = 25 kN 5.0 252 288 352 448	/m 6.0 286 324 404 584	7.0 322 360 456 746	8.0 358 402 508	9.0 398 446	10.0 436 506	11.0 496 584	12.0 570
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 218 252 302 406 PPORTS/COI 116 (58) 220 (110) 423 (212)	= 25 kN 5.0 252 288 352 448 <i>LUMNS INTE</i> 150 (75) 277 (139) 535 (268)	/m 6.0 286 324 404 584 <i>ERNAL (END</i> 185 (92) 339 (170) 645 (322)	7.0 322 360 456 746), kN ult 221 (111) 401 (200) 764 (382)	8.0 358 402 508 942 258 (129) 465 (232) 881 (441)	9.0 398 446 670 297 (149)	10.0 436 506 806 338 (169) 602 (301)	11.0 496 584 966 385 (192) 680 (340)	12.0 570 650 438 (219)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m	4.0 218 252 302 406 PPORTS/COI 116 (58) 220 (110) 423 (212)	= 25 kN 5.0 252 288 352 448 <i>LUMNS INTE</i> 150 (75) 277 (139)	/m 6.0 286 324 404 584 <i>ERNAL (END</i> 185 (92) 339 (170) 645 (322)	7.0 322 360 456 746), kN ult 221 (111) 401 (200) 764 (382)	8.0 358 402 508 942 258 (129) 465 (232) 881 (441)	9.0 398 446 670 297 (149) 531 (265)	10.0 436 506 806 338 (169) 602 (301)	11.0 496 584 966 385 (192) 680 (340)	12.0 570 650 438 (219)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 218 252 302 406 2PORTS/COI 116 (58) 220 (110) 423 (212) 833 (416) (kg/m ³)	= 25 kN 5.0 252 288 352 448 2000 SINTE 150 (75) 277 (139) 535 (268) 1045 (523)	/m	7.0 322 360 456 746 221 (111) 401 (200) 764 (382) 1505 (753)	8.0 358 402 508 942 258 (129) 465 (232) 881 (441) 1752 (876)	9.0 398 446 670 297 (149) 531 (265) 1022 (511)	10.0 436 506 806 338 (169) 602 (301) 1162 (581)	11.0 496 584 966 385 (192) 680 (340) 1314 (657)	12.0 570 650 438 (219) 757 (379)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m REINFORCEMENT, kg/m uaudl = 25 kN/m	4.0 218 252 302 406 2PORTS/COI 116 (58) 220 (110) 423 (212) 833 (416) (kg/m ³) 32 (262)	= 25 kN 5.0 252 288 352 448 2000 SINTE 150 (75) 277 (139) 535 (268) 1045 (523) 26 (171)	/m 286 324 404 584 <i>ERNAL (END</i> 185 (92) 339 (170) 645 (322) 1271 (635) 28 (162)	7.0 322 360 456 746 <i>2</i>), <i>kN ult</i> 221 (111) 401 (200) 764 (382) 1505 (753) 29 (147)	8.0 358 402 508 942 258 (129) 465 (232) 881 (441) 1752 (876) 33 (154)	9.0 398 446 670 297 (149) 531 (265) 1022 (511) 36 (149)	10.0 436 506 806 338 (169) 602 (301) 1162 (581) 38 (147)	11.0 496 584 966 385 (192) 680 (340) 1314 (657) 41 (138)	12.0 570 650 438 (219) 757 (379) 42 (123)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m	4.0 218 252 302 406 PPORTS/COI 116 (58) 220 (110) 423 (212) 833 (416) (kg/m ³) 32 (262) 29 (190)	= 25 kN 5.0 252 288 352 448 2000 1075 277 (139) 535 (268) 1045 (523) 26 (171) 38 (235)	/m 6.0 286 324 404 584 <i>CRNAL (END</i> 185 (92) 339 (170) 645 (322) 1271 (635) 28 (162) 36 (183)	7.0 322 360 456 746 <i>2</i> , (111) 401 (200) 764 (382) 1505 (753) 29 (147) 41 (190)	8.0 358 402 508 942 258 (129) 465 (232) 881 (441) 1752 (876) 33 (154) 50 (207)	9.0 398 446 670 297 (149) 531 (265) 1022 (511) 36 (149) 54 (200)	10.0 436 506 806 338 (169) 602 (301) 1162 (581) 38 (147) 57 (186)	11.0 496 584 966 385 (192) 680 (340) 1314 (657) 41 (138) 58 (164)	12.0 570 650 438 (219) 757 (379)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m REINFORCEMENT, kg/m uaudl = 25 kN/m	4.0 218 252 302 406 2PORTS/COI 116 (58) 220 (110) 423 (212) 833 (416) (kg/m ³) 32 (262)	= 25 kN 5.0 252 288 352 448 2000 SINTE 150 (75) 277 (139) 535 (268) 1045 (523) 26 (171)	/m 286 324 404 584 <i>ERNAL (END</i> 185 (92) 339 (170) 645 (322) 1271 (635) 28 (162)	7.0 322 360 456 746 <i>2</i>), <i>kN ult</i> 221 (111) 401 (200) 764 (382) 1505 (753) 29 (147)	8.0 358 402 508 942 258 (129) 465 (232) 881 (441) 1752 (876) 33 (154)	9.0 398 446 670 297 (149) 531 (265) 1022 (511) 36 (149)	10.0 436 506 806 338 (169) 602 (301) 1162 (581) 38 (147)	11.0 496 584 966 385 (192) 680 (340) 1314 (657) 41 (138)	12.0 570 650 438 (219) 757 (379) 42 (123)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 218 252 302 406 PPORTS/COI 116 (58) 220 (110) 423 (212) 833 (416) (kg/m ³) 32 (262) 29 (190) 39 (225)	= 25 kN 5.0 252 288 352 448 20000 (75) 277 (139) 535 (268) 1045 (523) 26 (171) 38 (235) 41 (193)	/m	7.0 322 360 456 746 7), kN ult 221 (111) 401 (200) 764 (382) 1505 (753) 29 (147) 41 (190) 59 (214)	8.0 358 402 508 942 258 (129) 465 (232) 881 (441) 1752 (876) 33 (154) 50 (207) 67 (221)	9.0 398 446 670 297 (149) 531 (265) 1022 (511) 36 (149) 54 (200)	10.0 436 506 806 338 (169) 602 (301) 1162 (581) 38 (147) 57 (186) 60 (125)	11.0 496 584 966 385 (192) 680 (340) 1314 (657) 41 (138) 58 (164) 61 (106)	12.0 570 650 438 (219) 757 (379) 42 (123) 61 (155)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m	4.0 218 252 302 406 PPORTS/COI 116 (58) 220 (110) 423 (212) 833 (416) (kg/m ³) 32 (262) 29 (190) 39 (225)	= 25 kN 5.0 252 288 352 448 20000 (75) 277 (139) 535 (268) 1045 (523) 26 (171) 38 (235) 41 (193)	/m	7.0 322 360 456 746 7), kN ult 221 (111) 401 (200) 764 (382) 1505 (753) 29 (147) 41 (190) 59 (214)	8.0 358 402 508 942 258 (129) 465 (232) 881 (441) 1752 (876) 33 (154) 50 (207) 67 (221)	9.0 398 446 670 297 (149) 531 (265) 1022 (511) 36 (149) 54 (200)	10.0 436 506 806 338 (169) 602 (301) 1162 (581) 38 (147) 57 (186) 60 (125)	11.0 496 584 966 385 (192) 680 (340) 1314 (657) 41 (138) 58 (164)	12.0 570 650 438 (219) 757 (379) 42 (123) 61 (155)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 200 kN/m	4.0 218 252 302 406 PPORTS/COI 116 (58) 220 (110) 423 (212) 833 (416) (kg/m ³) 32 (262) 29 (190) 39 (225) 43 (175)	= 25 kN 5.0 252 288 352 448 2000 SINTE 150 (75) 277 (139) 535 (268) 1045 (523) 26 (171) 38 (235) 41 (193) 61 (226) ab	/m	7.0 322 360 456 746 <i>2</i> , (111) 401 (200) 764 (382) 1505 (753) 29 (147) 41 (190) 59 (214) 62 (137) b	8.0 358 402 508 942 258 (129) 465 (232) 881 (441) 1752 (876) 33 (154) 50 (207) 67 (221) 62 (110) ab	9.0 398 446 670 297 (149) 531 (265) 1022 (511) 36 (149) 54 (200) 60 (148) ab	10.0 436 506 806 338 (169) 602 (301) 1162 (581) 38 (147) 57 (186) 60 (125) <i>See</i> ad	11.0 496 584 966 385 (192) 680 (340) 1314 (657) 41 (138) 58 (164) 61 (106) <i>Section 3.2</i> a	12.0 570 650 438 (219) 757 (379) 42 (123) 61 (155)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 20 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 218 252 302 406 2PORTS/COI 116 (58) 220 (110) 423 (212) 833 (416) (kg/m ³) 32 (262) 29 (190) 39 (225) 43 (175)	= 25 kN 5.0 252 288 352 448 20000 (75) 277 (139) 535 (268) 1045 (523) 26 (171) 38 (235) 41 (193) 61 (226) ab b	/m 6.0 286 324 404 584 5784 5784 5784 584 584 584 584 584 584 584 584 584 5	7.0 322 360 456 746), kN ult 221 (111) 401 (200) 764 (382) 1505 (753) 29 (147) 41 (190) 59 (214) 62 (137) b abd	8.0 358 402 508 942 258 (129) 465 (232) 881 (441) 1752 (876) 33 (154) 50 (207) 67 (221) 62 (110) ab be	9.0 398 446 670 297 (149) 531 (265) 1022 (511) 36 (149) 54 (200) 60 (148)	10.0 436 506 806 338 (169) 602 (301) 1162 (581) 38 (147) 57 (186) 60 (125) <i>See</i>	11.0 496 584 966 385 (192) 680 (340) 1314 (657) 41 (138) 58 (164) 61 (106) Section 3.2	12.0 570 650 438 (219) 757 (379) 42 (123) 61 (155)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m	4.0 218 252 302 406 PPORTS/COI 116 (58) 220 (110) 423 (212) 833 (416) (kg/m ³) 32 (262) 29 (190) 39 (225) 43 (175)	= 25 kN 5.0 252 288 352 448 2000 SINTE 150 (75) 277 (139) 535 (268) 1045 (523) 26 (171) 38 (235) 41 (193) 61 (226) ab	/m	7.0 322 360 456 746 <i>2</i> , (111) 401 (200) 764 (382) 1505 (753) 29 (147) 41 (190) 59 (214) 62 (137) b	8.0 358 402 508 942 258 (129) 465 (232) 881 (441) 1752 (876) 33 (154) 50 (207) 67 (221) 62 (110) ab	9.0 398 446 670 297 (149) 531 (265) 1022 (511) 36 (149) 54 (200) 60 (148) ab	10.0 436 506 806 338 (169) 602 (301) 1162 (581) 38 (147) 57 (186) 60 (125) <i>See</i> ad	11.0 496 584 966 385 (192) 680 (340) 1314 (657) 41 (138) 58 (164) 61 (106) <i>Section 3.2</i> a	12.0 570 650 438 (219) 757 (379) 42 (123) 61 (155)

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 50 kN/m uaudl

2 hours fire +5 mm 4 hours fire +25 mm Moderate exposure +15 mm Severe exposure (C40) +20 mm

Inverted 'L' bear 300 mm wide web	ms				sir	ngle spa	in		1
SPAN:DEPTH CHART									
	800								/
	700		1 = . 1 lay	yer 2 layers _ reinforcer	of				
	600					/			
	500					· · · · · · ·			·
E	400								
BEAM DEPTH, mm	300								
BEAM	200 4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
	KEY Ult	imate app = 25 kN/		= 50 kN/m		100 kN/m	20	0 kN/m	SPAN, m
SINGLE SPAN, m	4.0	5.0 ⁻	6.0	- 50 km/m 7.0	8.0	9.0	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	260 294 338 748	300 340 446	342 400 596	386 460	428 552	470 688	522 856	604	694
ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	n/a (53)	UMNS INTE n/a (68) n/a (131) n/a (259)	n/a (82) n/a (159)	n/a (98)	n/a (113) n/a (218)	n/a (129) n/a (252)	n/a (146) n/a (288)	n/a (165)	n/a (186)
	n/a (413)	11/a (255)	n/a (315)						
REINFORCEMENT, kg/m (uaudi = 25 kN/m uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m	n/a (413)	16 (182) 22 (212) 27 (199)	20 (199) 24 (199) 27 (149)	20 (173) 26 (185)	23 (183) 27 (160)	24 (173) 26 (128)	25 (158) 27 (105)	25 (138)	26 (124)
uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	n/a (413) (kg/m ³) 19 (251) 18 (203) 26 (254)	16 (182) 22 (212)	20 (199) 24 (199)				27 (105)	25 (138) Section 3.2. a	
uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m DESIGN NOTES uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	n/a (413) 19 (251) 18 (203) 26 (254) 21 (91) a a a d	16 (182) 22 (212) 27 (199) a a ad	20 (199) 24 (199) 27 (149) a a ad	26 (185) a ad	27 (160) a ad	26 (128) a ad	27 (105) See 3 ad ad	Section 3.2. a	4 on p 47 ad

Г

single span

wide web

SPAN: DEPTH CHART

600 mm

Inverted 'L' beams

	800 -								
				/					
			+-/	 yer					
	700		¥- [`]						/-
	700						/-		
			/-			/			
					of				
	600 -		+	 2 layers reinforcent 	ient —				
		- ;		<			/		
	500	/							
				/					
	400		/-						
	400								
ş									
REAM DEPTH mm									
Í.	300 🖊								
	5 🔼								
2									
RF									
	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
									SPAN, m
	KEY Ult	imate appl							SPAN, m
	KEY Ult	imate appl = 25 kN/		= 50 kN/m	- =	100 kN/m	<u> </u>	00 kN/m	SPAN, m
SINGLE SPAN, m	KEY Ult			= 50 kN/m 7.0	— = 8.0	100 kN/m 9.0	— = 20 10.0	00 kN/m 11.0	3PAN, m 12.0
DEPTH, mm	-	= 25 kN/	m <u> </u>				10.0		
DEPTH, mm uaudl = 25 kN/m	4.0 244	= 25 kN/ 5.0 280	m — : 6.0 316	7.0	8.0 388	9.0 432	10.0 486	11.0	12.0 598
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m	4.0 244 270	= 25 kN/ 5.0 280 322	m ; 6.0 316 370	7.0 352 420	8.0 388 470	9.0 432 520	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m	4.0 244	= 25 kN/ 5.0 280	m — : 6.0 316	7.0	8.0 388	9.0 432	10.0 486	11.0	12.0 598
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 244 270 294 380	= 25 kN/ 5.0 280 322 354 464	m ; 6.0 316 370 420 708	7.0 352 420 482	8.0 388 470	9.0 432 520	10.0 486	11.0	12.0 598
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 244 270 294 380 PPORTS/COL	- = 25 kN/ 5.0 280 322 354 464 UMNS INTER	m	7.0 352 420 482 , KN ult	8.0 388 470 568	9.0 432 520 830	10.0 486 584	11.0 534 642	12.0 598 738
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m	4.0 244 270 294 380 PPORTS/COL n/a (55)	- = 25 kN/ 5.0 280 322 354 464 <i>UMNS INTE</i> n/a (71)	m 6.0 316 370 420 708 RNAL (END) n/a (88)	7.0 352 420 482 , <u>kN ult</u> n/a (105)	8.0 388 470 568 n/a (123)	9.0 432 520 830 n/a (143)	10.0 486 584 n/a (164)	11.0 534 642 n/a (186)	12.0 598 738 n/a (210)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 244 270 294 380 PPORTS/COL	- = 25 kN/ 5.0 280 322 354 464 UMNS INTER	m	7.0 352 420 482 , KN ult	8.0 388 470 568	9.0 432 520 830	10.0 486 584	11.0 534 642	12.0 598 738
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m	4.0 244 270 294 380 PPORTS/COL n/a (55) n/a (107)	- = 25 kN/ 5.0 280 322 354 464 <i>UMNS INTE</i> n/a (71) n/a (136)	m	7.0 352 420 482 , <u>kN ult</u> n/a (105) n/a (198)	8.0 388 470 568 n/a (123) n/a (229)	9.0 432 520 830 n/a (143) n/a (263)	10.0 486 584 n/a (164)	11.0 534 642 n/a (186)	12.0 598 738 n/a (210)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 244 270 294 380 PPORTS/COL n/a (55) n/a (107) n/a (208) n/a (411)	- = 25 kN/ 5.0 280 322 354 464 <i>UMNS INTE</i> n/a (71) n/a (136) n/a (263)	m	7.0 352 420 482 , <u>kN ult</u> n/a (105) n/a (198)	8.0 388 470 568 n/a (123) n/a (229)	9.0 432 520 830 n/a (143) n/a (263)	10.0 486 584 n/a (164)	11.0 534 642 n/a (186)	12.0 598 738 n/a (210)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 244 270 294 380 PPORTS/COL n/a (55) n/a (107) n/a (208) n/a (411)	- = 25 kN/ 5.0 280 322 354 464 <i>UMNS INTE</i> n/a (71) n/a (136) n/a (263)	m	7.0 352 420 482 , <u>kN ult</u> n/a (105) n/a (198)	8.0 388 470 568 n/a (123) n/a (229)	9.0 432 520 830 n/a (143) n/a (263)	10.0 486 584 n/a (164)	11.0 534 642 n/a (186)	12.0 598 738 n/a (210)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m	4.0 244 270 294 380 PPORTS/COL n/a (55) n/a (107) n/a (208) n/a (411) (kg/m ³) 29 (205) 32 (202)	 = 25 kN/ 5.0 280 322 354 464 UMNS INTER n/a (71) n/a (71) 11(198) 28 (144) 	m <u>6.0</u> <u>316</u> <u>370</u> 420 708 <i>RNAL (END)</i> n/a (88) n/a (166) n/a (319) n/a (637) <u>31 (161)</u> <u>33 (152)</u>	7.0 352 420 482 , <u>kN ult</u> n/a (105) n/a (198) n/a (377) 30 (140) 34 (133)	8.0 388 470 568 n/a (123) n/a (229) n/a (438) 33 (143) 39 (141)	9.0 432 520 830 n/a (143) n/a (263) n/a (516) 35 (136) 40 (128)	10.0 486 584 n/a (164) n/a (299)	11.0 534 642 n/a (186) n/a (335)	12.0 598 738 n/a (210) n/a (377)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 244 270 294 380 PPORTS/COL n/a (55) n/a (107) n/a (208) n/a (411) (kg/m ³) 29 (205) 32 (202) 40 (224)	- = 25 kN/ 5.0 280 322 354 464 <i>UMNS INTEL</i> n/a (71) n/a (136) n/a (263) n/a (518) 31 (198) 28 (144) 40 (187)	m	7.0 352 420 482 , <u>kN ult</u> n/a (105) n/a (198) n/a (377) 30 (140)	8.0 388 470 568 n/a (123) n/a (229) n/a (438) 33 (143)	9.0 432 520 830 n/a (143) n/a (263) n/a (516) 35 (136)	10.0 486 584 n/a (164) n/a (299) 35 (120)	11.0 534 642 n/a (186) n/a (335) 41 (129)	12.0 598 738 n/a (210) n/a (377) 45 (126)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m	4.0 244 270 294 380 PPORTS/COL n/a (55) n/a (107) n/a (208) n/a (411) (kg/m ³) 29 (205) 32 (202)	 = 25 kN/ 5.0 280 322 354 464 UMNS INTER n/a (71) n/a (71) 11(198) 28 (144) 	m 6.0 316 370 420 708 <i>RNAL (END)</i> n/a (88) n/a (166) n/a (319) n/a (637) 31 (161) 33 (152)	7.0 352 420 482 , <u>kN ult</u> n/a (105) n/a (198) n/a (377) 30 (140) 34 (133)	8.0 388 470 568 n/a (123) n/a (229) n/a (438) 33 (143) 39 (141)	9.0 432 520 830 n/a (143) n/a (263) n/a (516) 35 (136) 40 (128)	10.0 486 584 n/a (164) n/a (299) 35 (120)	11.0 534 642 n/a (186) n/a (335) 41 (129)	12.0 598 738 n/a (210) n/a (377) 45 (126)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m waudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 244 270 294 380 PPORTS/COL n/a (55) n/a (107) n/a (208) n/a (411) (kg/m ³) 29 (205) 32 (202) 40 (224)	- = 25 kN/ 5.0 280 322 354 464 <i>UMNS INTEL</i> n/a (71) n/a (136) n/a (263) n/a (518) 31 (198) 28 (144) 40 (187)	m	7.0 352 420 482 , <u>kN ult</u> n/a (105) n/a (198) n/a (377) 30 (140) 34 (133)	8.0 388 470 568 n/a (123) n/a (229) n/a (438) 33 (143) 39 (141)	9.0 432 520 830 n/a (143) n/a (263) n/a (516) 35 (136) 40 (128)	10.0 486 584 n/a (164) n/a (299) 35 (120) 43 (122)	11.0 534 642 n/a (186) n/a (335) 41 (129)	12.0 598 738 n/a (210) n/a (377) 45 (126) 49 (111)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 244 270 294 380 PPORTS/COL n/a (55) n/a (107) n/a (208) n/a (411) (kg/m³) 29 (205) 32 (202) 40 (224) 45 (196)	- = 25 kN/ 5.0 280 322 354 464 <i>UMNS INTEL</i> n/a (71) n/a (136) n/a (263) n/a (518) 31 (198) 28 (144) 40 (187)	m	7.0 352 420 482 , <u>kN ult</u> n/a (105) n/a (198) n/a (377) 30 (140) 34 (133)	8.0 388 470 568 n/a (123) n/a (229) n/a (438) 33 (143) 39 (141) 50 (147)	9.0 432 520 830 n/a (143) n/a (263) n/a (516) 35 (136) 40 (128) 46 (93)	10.0 486 584 n/a (164) n/a (299) 35 (120) 43 (122) <i>See</i> 5	11.0 534 642 n/a (186) n/a (335) 41 (129) 48 (124)	12.0 598 738 n/a (210) n/a (377) 45 (126) 49 (111) 4 on p 47
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m	4.0 244 270 294 380 PPORTS/COL n/a (55) n/a (107) n/a (208) n/a (411) (kg/m ³) 29 (205) 32 (202) 40 (224) 45 (196)	 = 25 kN/ 5.0 280 322 354 464 UMNS INTEL n/a (71) n/a (71)<!--</th--><th>m 6.0 316 370 420 708 <i>RNAL (END)</i> n/a (88) n/a (166) n/a (319) n/a (637) 31 (161) 33 (152) 43 (172) 46 (107)</th><th>7.0 352 420 482 , <u>kN ult</u> n/a (105) n/a (198) n/a (377) 30 (140) 34 (133)</th><th>8.0 388 470 568 n/a (123) n/a (229) n/a (438) 33 (143) 39 (141) 50 (147)</th><th>9.0 432 520 830 n/a (143) n/a (263) n/a (516) 35 (136) 40 (128) 46 (93)</th><th>10.0 486 584 n/a (164) n/a (299) 35 (120) 43 (122)</th><th>11.0 534 642 n/a (186) n/a (335) 41 (129) 48 (124)</th><th>12.0 598 738 n/a (210) n/a (377) 45 (126) 49 (111)</th>	m 6.0 316 370 420 708 <i>RNAL (END)</i> n/a (88) n/a (166) n/a (319) n/a (637) 31 (161) 33 (152) 43 (172) 46 (107)	7.0 352 420 482 , <u>kN ult</u> n/a (105) n/a (198) n/a (377) 30 (140) 34 (133)	8.0 388 470 568 n/a (123) n/a (229) n/a (438) 33 (143) 39 (141) 50 (147)	9.0 432 520 830 n/a (143) n/a (263) n/a (516) 35 (136) 40 (128) 46 (93)	10.0 486 584 n/a (164) n/a (299) 35 (120) 43 (122)	11.0 534 642 n/a (186) n/a (335) 41 (129) 48 (124)	12.0 598 738 n/a (210) n/a (377) 45 (126) 49 (111)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 244 270 294 380 PPORTS/COL n/a (55) n/a (107) n/a (208) n/a (411) (kg/m³) 29 (205) 32 (202) 40 (224) 45 (196)	- = 25 kN/ 5.0 280 322 354 464 <i>UMNS INTE</i> . n/a (71) n/a (136) n/a (263) n/a (518) 31 (198) 28 (144) 40 (187) 51 (182)	m	7.0 352 420 482 , <u>kN ult</u> n/a (105) n/a (198) n/a (377) 30 (140) 34 (133)	8.0 388 470 568 n/a (123) n/a (229) n/a (438) 33 (143) 39 (141) 50 (147)	9.0 432 520 830 n/a (143) n/a (263) n/a (516) 35 (136) 40 (128) 46 (93)	10.0 486 584 n/a (164) n/a (299) 35 (120) 43 (122) <i>See</i> 5	11.0 534 642 n/a (186) n/a (335) 41 (129) 48 (124)	12.0 598 738 n/a (210) n/a (377) 45 (126) 49 (111) 4 on p 47

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 50 kN/m uaudl

² hours fire +5 mm up to 10 m only

⁴ hours fire +30 mm up to 10 m only Moderate exposure +16 mm up to 10 m only Severe exposure (C40) +20 mm up to 10 m only

Inverted 'L' beams 1200 mm

single span

wide web

SPAN:DEPTH CHART

2 hours fire +5 mm 4 hours fire +35 mm up to 10 m only Moderate exposure +16 mm up to 10 m only Severe exposure (C40) +20 mm up to 10 m only Inverted 'L' beams 225 mm

multiple span

wide web

SPAN: DEPTH CHART

	000								
	800				· /-			L _/	
			1/-					· - / - /- - ·	
	Z	-							
	700								
		4-							
				1 lay	er				
	600			/	2 laye	urs of			
	2		11.Z.[1	-/	reinforc				
		/ -				/		<u></u>	
	500	-	/						
								· ·	
	6		/		/				
	400		-/						
		-						· – – – – – -	
	-								
글	300								
REAMN DEPTH mm								· ·	
κΕΔ	200	-			· -			· – – – – – ·	
Ц	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
									SPAN, m
	KEY UI	timate app	lied udl						SPAN, m
	KEY UII	timate app – = 25 kN/		= 50 kN/m		100 kN/m	<u> </u>	00 kN/m	SPAN, m
MULTIPLE SPAN, m	KEY UI1 			= 50 kN/m 7.0	= 8.0	100 kN/m 9.0	— = 2 10.0	00 kN/m 11.0	<i>SPAN,</i> m 12.0
MULTIPLE SPAN, m	-	= 25 kN/	′m —						
DEPTH, mm uaudl = 25 kN/m	4.0 234	- = 25 kN/ 5.0 274	6.0	7.0 360	8.0 460	9.0			
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m	4.0 234 298	- = 25 kN/ 5.0 274 356	6.0	7.0	8.0	9.0	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m	4.0 234	- = 25 kN/ 5.0 274	6.0	7.0 360	8.0 460	9.0	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 234 298 430 724	= 25 kN/ 5.0 274 356 608	6.0 316 490 814	7.0 360 618	8.0 460	9.0	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 234 298 430 724 PPORTS/COL	- = 25 kN/ 5.0 274 356 608 .UMNS INTE	/m 6.0 316 490 814 <i>RNAL (END)</i>	7.0 360 618 , <i>kN ult</i>	8.0 460 766	9.0 558 944	10.0 664	11.0 786	12.0 932
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m	4.0 234 298 430 724 PPORTS/COL 104 (52) 206 (103)	- = 25 kN/ 5.0 274 356 608 	m 6.0 316 490 814 <i>RNAL (END)</i> 160 (80) 318 (159)	7.0 360 618	8.0 460	9.0	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 234 298 430 724 PPORTS/COL 104 (52) 206 (103) 410 (205)	- = 25 kN/ 5.0 274 356 608 .UMNS INTE 132 (66)	/m 6.0 316 490 814 <i>RNAL (END)</i> 160 (80)	7.0 360 618 <i>kN ult</i> 189 (94)	8.0 460 766 222 (111)	9.0 558 944 256 (128)	10.0 664	11.0 786	12.0 932
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 234 298 430 724 PPORTS/COL 104 (52) 206 (103) 410 (205) 819 (409)	- = 25 kN/ 5.0 274 356 608 	m 6.0 316 490 814 <i>RNAL (END)</i> 160 (80) 318 (159)	7.0 360 618 <i>kN ult</i> 189 (94)	8.0 460 766 222 (111)	9.0 558 944 256 (128)	10.0 664	11.0 786	12.0 932
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 234 298 430 724 PPORTS/COL 104 (52) 206 (103) 410 (205) 819 (409) (kg/m³)	- = 25 kN/ 5.0 274 356 608 	m 316 490 814 <i>RNAL (END)</i> 160 (80) 318 (159) 632 (316)	7.0 360 618 189 (94) 377 (189)	8.0 460 766 222 (111) 440 (220)	9.0 558 944 256 (128) 507 (254)	10.0 664 293 (146)	11.0 786 332 (166)	12.0 932 375 (188)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 234 298 430 724 200 <i>CTS/COL</i> 104 (52) 206 (103) 410 (205) 819 (409) (<i>kg/m³)</i> 15 (288)	 = 25 kN/ 5.0 274 356 608 000000000000000000000000000000000000	m 6.0 316 490 814 <i>RNAL (END)</i> 160 (80) 318 (159) 632 (316) 19 (271)	7.0 360 618 , kN ult 189 (94) 377 (189) 21 (263)	8.0 460 766 222 (111) 440 (220) 21 (202)	9.0 558 944 256 (128) 507 (254) 21 (168)	10.0 664	11.0 786	12.0 932
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 234 298 430 724 PPORTS/COL 104 (52) 206 (103) 410 (205) 819 (409) (kg/m ³) 15 (288) 18 (275) 22 (229)	- = 25 kN/ 5.0 274 356 608 	m 316 490 814 <i>RNAL (END)</i> 160 (80) 318 (159) 632 (316)	7.0 360 618 189 (94) 377 (189)	8.0 460 766 222 (111) 440 (220)	9.0 558 944 256 (128) 507 (254)	10.0 664 293 (146)	11.0 786 332 (166)	12.0 932 375 (188)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m REINFORCEMENT, kg/m uaudl = 25 kN/m uaudl = 50 kN/m	4.0 234 298 430 724 PPORTS/COL 104 (52) 206 (103) 410 (205) 819 (409) (kg/m ³) 15 (288) 18 (275)	 = 25 kN/ 5.0 274 356 608 2000 (130) 260 (130) 519 (260) 17 (279) 22 (269) 	m 6.0 316 490 814 <i>RNAL (END)</i> 160 (80) 318 (159) 632 (316) 19 (271) 21 (189)	7.0 360 618 , kN ult 189 (94) 377 (189) 21 (263)	8.0 460 766 222 (111) 440 (220) 21 (202)	9.0 558 944 256 (128) 507 (254) 21 (168)	10.0 664 293 (146)	11.0 786 332 (166)	12.0 932 375 (188)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 234 298 430 724 PPORTS/COL 104 (52) 206 (103) 410 (205) 819 (409) (kg/m ³) 15 (288) 18 (275) 22 (229)	 = 25 kN/ 5.0 274 356 608 2000 (130) 260 (130) 519 (260) 17 (279) 22 (269) 	m 6.0 316 490 814 <i>RNAL (END)</i> 160 (80) 318 (159) 632 (316) 19 (271) 21 (189)	7.0 360 618 , kN ult 189 (94) 377 (189) 21 (263)	8.0 460 766 222 (111) 440 (220) 21 (202)	9.0 558 944 256 (128) 507 (254) 21 (168)	10.0 664 293 (146) 22 (144)	11.0 786 332 (166) 22 (124)	12.0 932 375 (188) 22 (106)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 234 298 430 724 PPORTS/COL 104 (52) 206 (103) 410 (205) 819 (409) (kg/m ³) 15 (288) 18 (275) 22 (229) 24 (145) K ac	 = 25 kN/ 5.0 274 356 608 274 256 260 260 (130) 519 (260) 17 (279) 22 (269) 22 (162) K ac 	m 6.0 316 490 814 RNAL (END) 160 (80) 318 (159) 632 (316) 19 (271) 21 (189) 23 (123) K c	7.0 360 618 , <i>KN ult</i> 189 (94) 377 (189) 21 (263) 21 (154) cd	8.0 460 766 222 (111) 440 (220) 21 (202) 22 (127) d	9.0 558 944 256 (128) 507 (254) 21 (168) 22 (105) d	10.0 664 293 (146) 22 (144)	11.0 786 332 (166)	12.0 932 375 (188) 22 (106)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 200 kN/m	4.0 234 298 430 724 PPORTS/COL 104 (52) 206 (103) 410 (205) 819 (409) (kg/m ³) 15 (288) 18 (275) 22 (229) 24 (145) K ac K ac	 = 25 kN/ 5.0 274 356 608 2000 (130) 260 (130) 519 (260) 17 (279) 22 (269) 22 (162) K ac K ac K ac 	m 6.0 316 490 814 RNAL (END) 160 (80) 318 (159) 632 (316) 19 (271) 21 (189) 23 (123) K c d	7.0 360 618 4, <i>kN ult</i> 189 (94) 377 (189) 21 (263) 21 (154)	8.0 460 766 222 (111) 440 (220) 21 (202) 22 (127)	9.0 558 944 256 (128) 507 (254) 21 (168) 22 (105)	10.0 664 293 (146) 22 (144) <i>See</i>	11.0 786 332 (166) 22 (124) Section 3.2	12.0 932 375 (188) 22 (106) 4 on p 47
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 234 298 430 724 PPORTS/COL 104 (52) 206 (103) 410 (205) 819 (409) (kg/m ³) 15 (288) 18 (275) 22 (229) 24 (145) K ac	 = 25 kN/ 5.0 274 356 608 274 256 260 260 (130) 519 (260) 17 (279) 22 (269) 22 (162) K ac 	m 6.0 316 490 814 RNAL (END) 160 (80) 318 (159) 632 (316) 19 (271) 21 (189) 23 (123) K c	7.0 360 618 , <i>KN ult</i> 189 (94) 377 (189) 21 (263) 21 (154) cd	8.0 460 766 222 (111) 440 (220) 21 (202) 22 (127) d	9.0 558 944 256 (128) 507 (254) 21 (168) 22 (105) d	10.0 664 293 (146) 22 (144) <i>See</i>	11.0 786 332 (166) 22 (124) Section 3.2	12.0 932 375 (188) 22 (106) 4 on p 47

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 50 kN/m uaudl

2 hours fire +10 mm 4 hours fire not appropriate Moderate exposure (C40) not appropriate

Inverted 'L' beams multiple span 300 mm wide web SPAN: DEPTH CHART 800 700 1 layer 600 2 layers of reinforcement 500 400 BEAM DEPTH, mm 300 200 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 SPAN, m **KEY** Ultimate applied udl = 25 kN/m = 50 kN/m — = 100 kN/m — = 200 kN/m MULTIPLE SPAN, m 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 DEPTH, mm uaudl = 25 kN/m230 264 296 330 362 398 494 586 682 uaudl = 50 kN/m 284 324 370 450 574 692 828 988 uaudl = 100 kN/m350 446 608 772 uaudl = 200 kN/m 552 836 ULTIMATE LOAD TO SUPPORTS/COLUMNS INTERNAL (END), KN ult uaudl = 25 kN/m 105 (52) 133 (66) 162 (81) 191 (95) 221 (111) 252 (126) 290 (145) 329 (164) 370 (185) uaudl = 50 kN/m 207 (104) 261 (131) 316 (158) 375 (187) 438 (219) 504 (252) 573 (287) 648 (324) uaudl = 100 kN/m410 (205) 517 (259) 631 (315) 747 (374) uaudl = 200 kN/m 818 (409) 1037 (519) REINFORCEMENT, kg/m (kg/m³) uaudl = 25 kN/m 21 (277) 26 (240) 19 (283) 21 (235) 24 (243) 29 (244) 27 (183) 27 (154) 28 (135) uaudl = 50 kN/m23 (267) 23 (235) 26 (235) 28 (207) 27 (159) 28 (135) 29 (116) 30 (100) uaudl = 100 kN/m 26 (243) 29 (215) 28 (155) 29 (125) uaudl = 200 kN/m 29 (178) 28 (110) **DESIGN NOTES** See Section 3.2.4 on p 47 uaudl = 25 kN/m ab ас ас ab ab ac ad ad ad uaudl = 50 kN/m acd K ac K ac abd ad ad ad ad uaudl = 100 kN/m K ac abd ad ad uaudl = 200 kN/m ad d VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 50 kN/m uaudi, mm 2 hours fire +5 mm 4 hours fire 328 392 498 630 788 980 380 968 Moderate exposure 302 488 618 776

Severe exposure (C40)

302

380

484

614

774

964

multiple span

450 mm

SPAN: DEPTH CHART

Inverted 'L' beams

	800								
	800					1			
	-			/					/-
	-		11			1 layer -		/-	/
	700					7		/	
	-				/		· / -		
	-		/		/-			/-	
	-		/			_ 2 layer	ement	-	
	600								
	-		/- <i>i</i> -+-		-//		/		
	-		//		/		· / -		
		/			× -		/-/		
	500			-//					
	-	/ -		· - // - - ·	-		/		
	-				-				
	Ξ.	/							
	400 🖌		$ \rightarrow $						
	-		/						
PEANA DEDTH	F		+ -					-	
-									
L L	300 🖊								
					-		·	-	
	ξ 📮								
ä									
	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
									SPAN, m
	KEY UI	timate app	lied udl						
	_	= 25 kN	/m	= 50 kN/m) <u> </u>	= 100 kN/m) <u> </u>	200 kN/m	
	-	= 25 kN		= 50 kN/m		= 100 kN/m		200 kN/m	
MULTIPLE SPAN, m	4.0	– = 25 kN 5.0	/m — 6.0	= 50 kN/m 7.0	n — = 8.0	= 100 kN/m 9.0	n — = 10.0	200 kN/m 11.0	12.0
	4.0								12.0
DEPTH, mm		5.0	6.0	7.0	8.0	9.0	10.0	11.0	
	4.0 220 236								12.0 534 778
DEPTH, mm uaudl = 25 kN/m	220	5.0	6.0 286	7.0	8.0 352	9.0 390	10.0 428	11.0 470	534
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m	220 236	5.0 252 286	6.0 286 324	7.0 320 362	8.0 352 404	9.0 390 456	10.0 428 574	11.0 470	534
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	220 236 298 392	5.0 252 286 356 520	6.0 286 324 416 702	7.0 320 362 526 898	8.0 352 404	9.0 390 456	10.0 428 574	11.0 470	534
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF	220 236 298 392 PPORTS/COL	5.0 252 286 356 520	6.0 286 324 416 702 ERNAL (END	7.0 320 362 526 898), kN ult	8.0 352 404 662	9.0 390 456 798	10.0 428 574 960	11.0 470 672	534 778
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m	220 236 298 392 PPORTS/COL 107 (54)	5.0 252 286 356 520 LUMNS INTE 136 (68)	6.0 286 324 416 702 ERNAL (END 165 (83)	7.0 320 362 526 898 9), <i>kN ult</i> 198 (99)	8.0 352 404 662 230 (115)	9.0 390 456 798 264 (132)	10.0 428 574 960 296 (148)	11.0 470 672 337 (168)	534 778 379 (189)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m	220 236 298 392 PPORTS/COL 107 (54) 208 (104)	5.0 252 286 356 520 LUMNS INTE 136 (68) 264 (132)	6.0 286 324 416 702 ERNAL (END 165 (83) 320 (160)	7.0 320 362 526 898 9), <i>kN ult</i> 198 (99) 378 (189)	8.0 352 404 662 230 (115) 437 (218)	9.0 390 456 798 264 (132) 498 (249)	10.0 428 574 960 296 (148) 572 (286)	11.0 470 672	534 778
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	220 236 298 392 PPORTS/COI 107 (54) 208 (104) 412 (206)	5.0 252 286 356 520 LUMNS INTE 136 (68) 264 (132) 519 (260)	6.0 286 324 416 702 FRNAL (END 165 (83) 320 (160) 629 (314)	7.0 320 362 526 898 9), kN ult 198 (99) 378 (189) 745 (373)	8.0 352 404 662 230 (115)	9.0 390 456 798 264 (132) 498 (249)	10.0 428 574 960 296 (148)	11.0 470 672 337 (168)	534 778 379 (189)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m	220 236 298 392 PPORTS/COI 107 (54) 208 (104) 412 (206)	5.0 252 286 356 520 LUMNS INTE 136 (68) 264 (132)	6.0 286 324 416 702 FRNAL (END 165 (83) 320 (160) 629 (314)	7.0 320 362 526 898 9), kN ult 198 (99) 378 (189) 745 (373)	8.0 352 404 662 230 (115) 437 (218)	9.0 390 456 798 264 (132) 498 (249)	10.0 428 574 960 296 (148) 572 (286)	11.0 470 672 337 (168)	534 778 379 (189)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	220 236 298 392 PPORTS/COI 107 (54) 208 (104) 412 (206) 818 (409)	5.0 252 286 356 520 LUMNS INTE 136 (68) 264 (132) 519 (260)	6.0 286 324 416 702 FRNAL (END 165 (83) 320 (160) 629 (314)	7.0 320 362 526 898 9), kN ult 198 (99) 378 (189) 745 (373)	8.0 352 404 662 230 (115) 437 (218)	9.0 390 456 798 264 (132) 498 (249)	10.0 428 574 960 296 (148) 572 (286)	11.0 470 672 337 (168)	534 778 379 (189)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	220 236 298 392 PPORTS/COI 107 (54) 208 (104) 412 (206) 818 (409)	5.0 252 286 356 520 LUMNS INTE 136 (68) 264 (132) 519 (260)	6.0 286 324 416 702 FRNAL (END 165 (83) 320 (160) 629 (314)	7.0 320 362 526 898 9), kN ult 198 (99) 378 (189) 745 (373)	8.0 352 404 662 230 (115) 437 (218)	9.0 390 456 798 264 (132) 498 (249)	10.0 428 574 960 296 (148) 572 (286)	11.0 470 672 337 (168)	534 778 379 (189)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	220 236 298 392 PPORTS/COI 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³)	5.0 252 286 356 520 LUMNS INTE 136 (68) 264 (132) 519 (260) 1032 (516)	6.0 286 324 416 702 ERNAL (END 165 (83) 320 (160) 629 (314) 1255 (627)	7.0 320 362 526 898 9), <i>kN ult</i> 198 (99) 378 (189) 745 (373) 1484 (742)	8.0 352 404 662 230 (115) 437 (218) 868 (434)	9.0 390 456 798 264 (132) 498 (249) 995 (497)	10.0 428 574 960 296 (148) 572 (286) 1130 (565)	11.0 470 672 337 (168) 645 (323)	534 778 379 (189) 723 (362)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m	220 236 298 392 PPORTS/COL 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³) 20 (206) 29 (276) 34 (252)	5.0 252 286 356 520 200 200 200 200 200 200 200 200 200	6.0 286 324 416 702 FRNAL (END 165 (83) 320 (160) 629 (314) 1255 (627) 28 (231) 33 (229) 47 (250)	7.0 320 362 526 898 9), <i>kN ult</i> 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229) 47 (201)	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188)	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181)	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 38 (210)	11.0 470 672 337 (168) 645 (323) 38 (181)	534 778 379 (189) 723 (362) 39 (163)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m REINFORCEMENT, kg/m uaudl = 25 kN/m uaudl = 50 kN/m	220 236 298 392 PPORTS/COL 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³) 20 (206) 29 (276)	5.0 252 286 356 520 200 2136 (68) 264 (132) 519 (260) 1032 (516) 22 (196) 29 (225)	6.0 286 324 416 702 FRNAL (END 165 (83) 320 (160) 629 (314) 1255 (627) 28 (231) 33 (229)	7.0 320 362 526 898), <i>kN ult</i> 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229)	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188) 44 (242)	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181) 47 (231)	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 38 (210) 46 (176)	11.0 470 672 337 (168) 645 (323) 38 (181)	534 778 379 (189) 723 (362) 39 (163)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	220 236 298 392 PPORTS/COL 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³) 20 (206) 29 (276) 34 (252)	5.0 252 286 356 520 200 200 200 200 200 200 200 200 200	6.0 286 324 416 702 FRNAL (END 165 (83) 320 (160) 629 (314) 1255 (627) 28 (231) 33 (229) 47 (250)	7.0 320 362 526 898 9), <i>kN ult</i> 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229) 47 (201)	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188) 44 (242)	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181) 47 (231)	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 38 (210) 46 (176) 50 (116)	11.0 470 672 337 (168) 645 (323) 38 (181) 46 (153)	534 778 379 (189) 723 (362) 39 (163) 48 (136)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m REINFORCEMENT, kg/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	220 236 298 392 PPORTS/COI 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³) 20 (206) 29 (276) 34 (252) 46 (263)	5.0 252 286 356 520 136 (68) 264 (132) 519 (260) 1032 (516) 22 (196) 29 (225) 38 (237) 50 (215)	6.0 286 324 416 702 ERNAL (END 165 (83) 320 (160) 629 (314) 1255 (627) 28 (231) 33 (229) 47 (250) 49 (154)	7.0 320 362 526 898 9), <i>kN ult</i> 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229) 47 (201)	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188) 44 (242)	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181) 47 (231)	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 38 (210) 46 (176) 50 (116) <i>See</i>	11.0 470 672 337 (168) 645 (323) 38 (181) 46 (153) Section 3.2	534 778 379 (189) 723 (362) 39 (163) 48 (136) 2.4 on p 47
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 200 kN/m	220 236 298 392 PPORTS/COL 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³) 20 (206) 29 (276) 34 (252) 46 (263) a	5.0 252 286 356 520 2000 136 (68) 264 (132) 519 (260) 1032 (516) 29 (225) 38 (237) 50 (215) a	6.0 286 324 416 702 <i>ERNAL (END</i> 165 (83) 320 (160) 629 (314) 1255 (627) 28 (231) 33 (229) 47 (250) 49 (154) ab	7.0 320 362 526 898 <i>), kN ult</i> 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229) 47 (201) 51 (125)	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188) 44 (242) 47 (158)	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181) 47 (231) 49 (136)	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 38 (210) 46 (176) 50 (116) 50 (116) See ab	11.0 470 672 337 (168) 645 (323) 38 (181) 46 (153) <i>Section 3.2</i> a	534 778 379 (189) 723 (362) 39 (163) 48 (136) 2.4 on p 47 a
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m	220 236 298 392 PPORTS/COL 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³) 20 (206) 29 (276) 34 (252) 46 (263) a ac	5.0 252 286 356 520 200 264 (132) 519 (260) 1032 (516) 29 (225) 38 (237) 50 (215) a a ac	6.0 286 324 416 702 FRNAL (END 165 (83) 320 (160) 629 (314) 1255 (627) 28 (231) 33 (229) 47 (250) 49 (154) ab ac	7.0 320 362 526 898), <i>kN ult</i> 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229) 47 (201) 51 (125) ac	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188) 44 (242) 47 (158) ac	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181) 47 (231) 49 (136) ac	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 38 (210) 46 (176) 50 (116) 50 (116) <i>See</i> ab ad	11.0 470 672 337 (168) 645 (323) 38 (181) 46 (153) <i>Section 3.2</i> a ad	534 778 379 (189) 723 (362) 39 (163) 48 (136) 2.4 on p 47
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 200 kN/m	220 236 298 392 PPORTS/COL 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³) 20 (206) 29 (276) 34 (252) 46 (263) a	5.0 252 286 356 520 204 (132) 519 (260) 1032 (516) 29 (225) 38 (237) 50 (215) a c K ac	6.0 286 324 416 702 <i>ERNAL (END</i> 165 (83) 320 (160) 629 (314) 1255 (627) 28 (231) 33 (229) 47 (250) 49 (154) ab	7.0 320 362 526 898 <i>), kN ult</i> 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229) 47 (201) 51 (125)	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188) 44 (242) 47 (158)	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181) 47 (231) 49 (136)	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 38 (210) 46 (176) 50 (116) 50 (116) <i>See</i> ab ad	11.0 470 672 337 (168) 645 (323) 38 (181) 46 (153) <i>Section 3.2</i> a ad	534 778 379 (189) 723 (362) 39 (163) 48 (136) 2.4 on p 47 a
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 20 kN/m	220 236 298 392 PPORTS/COL 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³) 20 (206) 29 (276) 34 (252) 46 (263) a ac K ac	5.0 252 286 356 520 204 (132) 519 (260) 1032 (516) 29 (225) 38 (237) 50 (215) a c K ac	6.0 286 324 416 702 ERNAL (END 165 (83) 320 (160) 629 (314) 1255 (627) 28 (231) 33 (229) 47 (250) 49 (154) ab ac acd	7.0 320 362 526 898 0), KN ult 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229) 47 (201) 51 (125) ac abd	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188) 44 (242) 47 (158) ac	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181) 47 (231) 49 (136) ac	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 38 (210) 46 (176) 50 (116) 50 (116) <i>See</i> ab ad	11.0 470 672 337 (168) 645 (323) 38 (181) 46 (153) <i>Section 3.2</i> a ad	534 778 379 (189) 723 (362) 39 (163) 48 (136) 2.4 on p 47 a
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 25 kN/m uaudl = 200 kN/m UESIGN NOTES uaudl = 25 kN/m uaudl = 20 kN/m uaudl = 200 kN/m UARLATIONS TO DESIGN	220 236 298 392 PPORTS/COL 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³) 20 (206) 29 (276) 34 (252) 46 (263) a a c K ac K ac	5.0 252 286 356 520 136 (68) 264 (132) 519 (260) 1032 (516) 29 (225) 38 (237) 50 (215) a a ac K ac bd	6.0 286 324 416 702 ERNAL (END 165 (83) 320 (160) 629 (314) 1255 (627) 28 (231) 33 (229) 47 (250) 49 (154) ab ac acd d	7.0 320 362 526 898 20, <i>kN ult</i> 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229) 47 (201) 51 (125) acc abd d	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188) 44 (242) 47 (158) ac d	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181) 47 (231) 49 (136) ac d	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 38 (210) 46 (176) 50 (116) 50 (116) <i>See</i> ab ad d	11.0 470 672 337 (168) 645 (323) 38 (181) 46 (153) Section 3.2 a ad	534 778 379 (189) 723 (362) 39 (163) 48 (136) 2.4 on p 47 a d
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 200 kN/m	220 236 298 392 PPORTS/COL 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³) 20 (206) 29 (276) 34 (252) 46 (263) a ac K ac K ac K ac K ac	5.0 252 286 356 520 20/////////////////////////////////	6.0 286 324 416 702 <i>ERNAL (END</i> 165 (83) 320 (160) 629 (314) 1255 (627) 28 (231) 33 (229) 47 (250) 49 (154) ab ac acd d	7.0 320 362 526 898 <i>), kN ult</i> 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229) 47 (201) 51 (125) ac abd d <i>on p 46): ii</i>	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188) 44 (242) 47 (158) ac d	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181) 47 (231) 49 (136) ac d on beam of	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 38 (210) 46 (176) 50 (116) 50 (116) 50 (116) <i>Seee</i> ab ad d	11.0 470 672 337 (168) 645 (323) 38 (181) 46 (153) <i>Section 3.2</i> a ad	534 778 379 (189) 723 (362) 39 (163) 48 (136) 2.4 on p 47 a d
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m	220 236 298 392 PPORTS/COL 107 (54) 208 (104) 412 (206) 818 (409) (kg/m ³) 20 (206) 29 (276) 34 (252) 46 (263) a ac K ac K ac K ac K ac X assumptification 2 (200) 2	5.0 252 286 356 520 20/////////////////////////////////	6.0 286 324 416 702 28(23) 320(160) 629(314) 1255(627) 28(231) 33(229) 47(250) 49(154) 28(ction 3.2.3 344	7.0 320 362 526 898 0), KN ult 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229) 47 (201) 51 (125) ac abd d on p 46): ii 398	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188) 44 (242) 47 (158) ac d mplications 486	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181) 47 (231) 49 (136) ac d on beam of 582	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 1130 (565) 38 (210) 46 (176) 50 (116) 50 (116) 50 (116) <i>See</i> ab ad d	11.0 470 672 337 (168) 645 (323) 38 (181) 46 (153) 38 (181) 46 (153) Section 3.2 a a ad	534 778 379 (189) 723 (362) 39 (163) 48 (136) 2.4 on p 47 a d
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m ULTIMATE LOAD TO SU/ uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 25 kN/m uaudl = 200 kN/m	220 236 298 392 PPORTS/COI 107 (54) 208 (104) 412 (206) 818 (409) 20 (206) 29 (276) 34 (252) 46 (263) a a ac K ac K ac K ac S ASSUMPTI 2 280 2 268	5.0 252 286 356 520 20/////////////////////////////////	6.0 286 324 416 702 <i>ERNAL (END</i> 165 (83) 320 (160) 629 (314) 1255 (627) 28 (231) 33 (229) 47 (250) 49 (154) ab ac acd d	7.0 320 362 526 898 <i>), kN ult</i> 198 (99) 378 (189) 745 (373) 1484 (742) 26 (182) 37 (229) 47 (201) 51 (125) ac abd d <i>on p 46): ii</i>	8.0 352 404 662 230 (115) 437 (218) 868 (434) 30 (188) 44 (242) 47 (158) ac d	9.0 390 456 798 264 (132) 498 (249) 995 (497) 32 (181) 47 (231) 49 (136) ac d on beam of	10.0 428 574 960 296 (148) 572 (286) 1130 (565) 1130 (565) 38 (210) 46 (176) 50 (116) 50 (116) 50 (116) <i>See</i> ab ad d	11.0 470 672 337 (168) 645 (323) 38 (181) 46 (153) 38 (181) 46 (153) Section 3.2 a ad	534 778 379 (189) 723 (362) 39 (163) 48 (136) 2.4 on p 47 a d

Inverted 'L' beams multiple span 600 mm wide web SPAN: DEPTH CHART 800 layer 700 2 layers of reinforcement 600 500 400 BEAM DEPTH, mm 300 200 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 SPAN, m **KEY** Ultimate applied udl = 25 kN/m = 50 kN/m — = 100 kN/m — = 200 kN/m MULTIPLE SPAN, m 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 DEPTH, mm uaudl = 25 kN/m224 244 268 304 346 386 424 470 540 uaudl = 50 kN/m 252 282 310 352 390 432 474 536 616 uaudl = 100 kN/m304 342 380 426 496 630 758 898 uaudl = 200 kN/m 360 420 544 704 888 ULTIMATE LOAD TO SUPPORTS/COLUMNS INTERNAL (END), KN ult uaudl = 25 kN/m 108 (54) 140 (70) 170 (85) 204 (102) 241 (120) 277 (138) 311 (156) 354 (177) 406 (203) uaudl = 50 kN/m 212 (106) 268 (134) 325 (162) 386 (193) 447 (223) 510 (255) 575 (287) 647 (323) 725 (362) uaudl = 100 kN/m415 (207) 524 (262) 633 (316) 745 (373) 864 (432) 996 (498) 1130 (565) 1277 (638) uaudl = 200 kN/m 820 (410) 1032 (516) 1254 (627) 1485 (743) 1727 (864) REINFORCEMENT, kg/m (kg/m³) uaudl = 25 kN/m 31 (256) 25 (163) 31 (195) 30 (142) 39 (161) 41 (150) 39 (122) 32 (174) 33 (141) uaudl = 50 kN/m28 (183) 34 (200) 39 (210) 47 (203) 50 (193) 55 (196) 58 (181) 59 (159) 40 (189) uaudl = 100 kN/m 62 (208) 37 (215) 42 (202) 52 (233) 58 (231) 61 (160) 63 (141) 63 (116) uaudl = 200 kN/m 53 (251) 61 (242) 63 (194) 63 (149) 65 (122) **DESIGN NOTES** See Section 3.2.4 on p 47 uaudl = 25 kN/m а uaudl = 50 kN/m а а ab b b b ab ab uaudl = 100 kN/m ab b K ac K ac bd d d uaudl = 200 kN/m cd K ac bd d

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 50 kN/m uaudl

2 hours fire +5 mm 4 hours fire +25 mm Moderate exposure +20 mm Severe exposure (C40) +25 mm

Inverted 'L' beams

multiple span

wide web

SPAN: DEPTH CHART

900 mm

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 50 kN/m uaudl

2 hours fire +5 mm 4 hours fire +25 mm Moderate exposure +20 mm Severe exposure (C40) +20 mm

Inverted 'L' beams multiple span 1200 mm wide web SPAN: DEPTH CHART 800 1 layer 2 layers of reinforcement 700 600 500 400 BEAM DEPTH, mm 300 200 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 4.0 15.0 16.0 SPAN, m **KEY** Ultimate applied udl — = 25 kN/m = 50 kN/m — = 100 kN/m — = 200 kN/m MULTIPLE SPAN, m 6.0 7.0 8.0 9.0 10.0 11.0 12.0 14.0 16.0 DEPTH, mm uaudl = 25 kN/m250 286 320 352 386 420 472 580 696 uaudl = 50 kN/m 286 320 356 388 426 480 538 676 810 uaudl = 100 kN/m320 358 398 442 486 558 800 636 uaudl = 200 kN/m 394 438 506 618 708 836 988 ULTIMATE LOAD TO SUPPORTS/COLUMNS INTERNAL (END), KN ult uaudl = 25 kN/m 417 (208) 187 (93) 227 (114) 271 (135) 316 (158) 365 (183) 487 (243) 621 (310) 784 (392) uaudl = 50 kN/m 345 (172) 412 (206) 483 (241) 555 (277) 629 (315) 723 (361) 812 (406) 1025 (513) 1258 (629) uaudl = 100 kN/m653 (327) 772 (386) 898 (449) 1024 (512) 1156 (578) 1303 (652) 1459 (730) 1795 (898) 1266 (633) 1494 (747) 1731 (865) 1988 (994) 2245 (1123) 2526 (1263) 2830 (1415) uaudl = 200 kN/mREINFORCEMENT, kg/m (kg/m³) uaudl = 25 kN/m 49 (161) 50 (119) 47 (138) 49 (127) 63 (108) 81 (116) 98 (117) 54 (117) 63 (125) uaudl = 50 kN/m55 (159) 59 (154) 69 (148) 76 (150) 95 (118) 115 (118) 62 (145) 75 (127) 84 (130) uaudl = 100 kN/m 74 (194) 81 (190) 86 (178) 98 (185) 106 (182) 109 (163) 113 (147) 123 (128)

DESIGN NOTES uaudl = 25 kN/m							See Secti	on 3.2.4 on p 47
uaudl = 50 kN/m								
uaudl = 100 kN/m	b	b	b	b	b			
uaudl = 200 kN/m	b	ac	b		d	d	d	

121 (163)

134 (158)

137 (136)

137 (116)

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 50 kN/m uaudl

119 (196)

2 hours fire +5 mm 4 hours fire +25 mm Moderate exposure +20 mm Severe exposure (C40) +20 mm

104 (231)

115 (223)

uaudl = 200 kN/m

'T' beams				sin	gle spa	n —	[<u> </u>	
300 mm									
wide web									
SPAN:DEPTH CHART									
	800	/	1		•				
	700								
	600			/-		1 layer			
	500	 4 				· 2 laye	ers of cement		
		·	'						
Ē	400								
BEAMA DEPTH mm	300								
3FAN 3FAN	200								
_	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
_	4.0			7.0	8.0	9.0	10.0		12.0 SPAN, m
_	4.0	5.0 timate app = = 50 kN/	lied udl		8.0		10.0		
SINGLE SPAN, m	4.0	timate app	lied udl				10.0		
	4.0 KEY Uli	timate app = = 50 kN/	lied udl m — =	100 kN/m	<u> </u>	00 kN/m		S	SPAN, m
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 KEY UI1 4.0 300 320 724	timate appl = = 50 kN/ 5.0 320 428	lied udl m — = 6.0 368 562	100 kN/m 7.0 426 <i>kN ult</i>	— = 2 8.0	00 kN/m 9.0 666		S	SPAN, m
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SUP uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 KEY UII 4.0 300 320 724 PORTS/COL n/a (102) n/a (202) n/a (411)	timate appl = = 50 kN/ 5.0 320 428 	lied udl m — = 6.0 368 562 RNAL (END), n/a (155)	100 kN/m 7.0 426 <i>kN ult</i>	— = 2 8.0 538	00 kN/m 9.0 666		S	SPAN, m
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SUP uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 KEY UII 4.0 300 320 724 PORTS/COL n/a (102) n/a (202) n/a (202) n/a (411) (kg/m ³) 18 (197) 26 (268)	timate appl = = 50 kN/ 5.0 320 428 UMNS INTE n/a (128) n/a (256) 22 (225)	lied udl m — = 6.0 368 562 RNAL (END), n/a (155) n/a (311) 24 (219)	100 kN/m 7.0 426 <u>kN ult</u> n/a (183)	= 2 8.0 538 n/a (214)	00 kN/m 9.0 666 n/a (246)	10.0	S	SPAN, m 12.0
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SUP uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 100 kN/m uaudl = 400 kN/m	4.0 KEY UII 4.0 300 320 724 PORTS/COL n/a (102) n/a (202) n/a (202) A A A A A A A A A A A A A	timate appl = = 50 kN/ 5.0 320 428 UMNS INTE n/a (128) n/a (256) 22 (225) 27 (207) a ad	lied udl m → = 6.0 368 562 RNAL (END), n/a (155) n/a (311) 24 (219) 28 (163) a ad ction 3.2.3 (2)	100 kN/m 7.0 426 <i>kN ult</i> n/a (183) 26 (207) ad	= 2 8.0 538 n/a (214) 27 (165) ad	00 kN/m 9.0 666 n/a (246) 27 (134) Dad	10.0 See Se	5 11.0	SPAN, m 12.0 on p 47
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SUP uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 400 kN/m	4.0 KEY Ult 4.0 300 320 724 PORTS/COL n/a (102) n/a (202) n/a (202) n/a (411) (kg/m ³) 18 (197) 26 (268) 21 (96) a a d ASSUMPTIN +5 456	timate appl = = 50 kN/ 5.0 320 428 UMNS INTE n/a (128) n/a (256) 22 (225) 27 (207) a a ad	lied udl m → = 6.0 368 562 RNAL (END), n/a (155) n/a (311) 24 (219) 28 (163) a ad ction 3.2.3 (2)	100 kN/m 7.0 426 <i>kN ult</i> n/a (183) 26 (207) ad	= 2 8.0 538 n/a (214) 27 (165) ad	00 kN/m 9.0 666 n/a (246) 27 (134) Dad	10.0 See Se	5 11.0	SPAN, m 12.0 on p 47

IN-SITU BEAMS

T' beams 600 mm				single	span				
wide web									
SPAN:DEPTH CHART									
	800		· · · · · · · · · · · · · · · · · · ·	/		1			
	700								
		·						1 la 	ayer -
	600								ers of cement
	500	· · · · · · · / ·	·		/			reinfor	cement_
	400								
E						· ·			
BEAM DEPTH, mm	300								
>			+ -						
BEAI									
BEAI	200 4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
BEA	4.0	5.0		7.0	8.0	9.0	10.0	11.0	12.0 SPAN, m
BEA	4.0		ied udl	7.0		9.0 200 kN/m	10.0 — = 40		
	4.0	imate appl	ied udl						
INGLE SPAN, m DEPTH, mm	4.0 KEY Ulti 4.0	imate appl = 50 kN/n 5.0	ied udl n : 6.0	= 100 kN/r 7.0	n — = 8.0	200 kN/m 9.0	— = 40 10.0	00 kN/m 11.0	<i>SPAN,</i> m 12.0
INGLE SPAN, m	4.0 KEY Ulti	imate appl = 50 kN/i	ied udl n 🗕 :	= 100 kN/r	n <u> </u>	200 kN/m	— = 40	00 kN/m	SPAN, m
INGLE SPAN, m DEPTH, mm uaudl = 50 kN/m	4.0 KEY Ulti 4.0 254	imate appl = 50 kN/n 5.0 298	ied udl m = 6.0 342	= 100 kN/r 7.0 386	n — = <u>8.0</u> 430	200 kN/m 9.0 474	— = 40 10.0	00 kN/m 11.0	<i>SPAN,</i> m 12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m	4.0 KEY Ulti 4.0 254 288 362 616	imate appl = 50 kN/n 5.0 298 346 458 920	ied udl m – – – = 6.0 342 402 690	= 100 kN/r 7.0 386 458 932	n — = <u>8.0</u> 430	200 kN/m 9.0 474	— = 40 10.0	00 kN/m 11.0	<i>SPAN,</i> m 12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m JLTIMATE LOAD TO SUP uaudl = 50 kN/m	4.0 KEY Ulti 4.0 254 288 362 616 PORTS/COL n/a (102)	imate appl = 50 kN/r 5.0 298 346 458 920 <i>UMNS INTE</i> n/a (130)	ied udl m	= 100 kN/r 7.0 386 458 932 , <u>kN ult</u> n/a (188)	n — = <u>8.0</u> 430 640 n/a (218)	200 kN/m 9.0 474 814 n/a (249)	— = 40 10.0	00 kN/m 11.0	<i>SPAN,</i> m 12.0
DEPTH, mm uaudI = 50 kN/m uaudI = 100 kN/m uaudI = 200 kN/m uaudI = 400 kN/m JLTIMATE LOAD TO SUP	4.0 KEY Ulti 4.0 254 288 362 616 PORTS/COL	imate appl = 50 kN/n 5.0 298 346 458 920 UMNS INTE	ied udl m <u>6.0</u> 342 402 690 <i>RNAL (end)</i>	= 100 kN/r 7.0 386 458 932 , kN ult	n — = 8.0 430 640	200 kN/m 9.0 474 814	— = 40 10.0 520	00 kN/m 11.0 594	<i>SPAN</i> , m 12.0 800
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m REINFORCEMENT, kg/m	4.0 KEY Ulti 4.0 254 288 362 616 PORTS/COL n/a (102) n/a (204) n/a (204) n/a (207) n/a (817) (kg/m ³)	imate appl = 50 kN/n 5.0 298 346 458 920 UMNS INTE n/a (130) n/a (257) n/a (513) n/a (1036)	ied udl m 342 402 690 RNAL (end) n/a (159) n/a (313) n/a (630)	= 100 kN/r 7.0 386 458 932 , <u>kN ult</u> n/a (188) n/a (368) n/a (752)	n — = <u>8.0</u> 430 640 n/a (218) n/a (435)	200 kN/m 9.0 474 814 n/a (249) n/a (506)	— = 40 10.0 520 n/a (282)	00 kN/m 11.0 594 n/a (319)	SPAN, m 12.0 800 n/a (373)
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m exeINFORCEMENT, kg/m uaudl = 50 kN/m	4.0 KEY Ulti 4.0 254 288 362 616 PORTS/COL n/a (102) n/a (204) n/a (204) n/a (407) n/a (817) (kg/m ³) 31 (205)	imate appl = 50 kN/n 5.0 298 346 458 920 UMNS INTE n/a (130) n/a (257) n/a (513) n/a (1036) 33 (187)	ied udl m	= 100 kN/r 7.0 386 458 932 , kN ult n/a (188) n/a (368) n/a (752) 36 (157)	n — = <u>8.0</u> 430 640 n/a (218) n/a (435) 40 (156)	200 kN/m 9.0 474 814 n/a (249) n/a (506) 44 (158)	— = 40 10.0 520	00 kN/m 11.0 594	<i>SPAN</i> , m 12.0 800
DEPTH, mm uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 400 kN/m waudl = 400 kN/m	4.0 KEY Ulti 4.0 254 288 362 616 PORTS/COL n/a (102) n/a (204) n/a (204) n/a (207) n/a (817) (kg/m ³)	imate appl = 50 kN/n 5.0 298 346 458 920 UMNS INTE n/a (130) n/a (257) n/a (513) n/a (1036)	ied udl m 342 402 690 RNAL (end) n/a (159) n/a (313) n/a (630)	= 100 kN/r 7.0 386 458 932 , <u>kN ult</u> n/a (188) n/a (368) n/a (752)	n — = <u>8.0</u> 430 640 n/a (218) n/a (435)	200 kN/m 9.0 474 814 n/a (249) n/a (506)	— = 40 10.0 520 n/a (282)	00 kN/m 11.0 594 n/a (319)	SPAN, m 12.0 800 n/a (373)
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m	4.0 KEY Ulti 4.0 254 288 362 616 PORTS/COL n/a (102) n/a (204) n/a (204) n/a (204) n/a (817) (kg/m ³) 31 (205) 38 (221) 45 (208)	imate appl = 50 kN/n 5.0 298 346 458 920 <i>UMNS INTE</i> n/a (130) n/a (257) n/a (513) n/a (1036) 33 (187) 40 (198) 49 (179)	ied udl m	= 100 kN/r 7.0 386 458 932 , kN ult n/a (188) n/a (368) n/a (752) 36 (157) 48 (174)	n — = <u>8.0</u> 430 640 n/a (218) n/a (435) 40 (156)	200 kN/m 9.0 474 814 n/a (249) n/a (506) 44 (158)	= 40 10.0 520 n/a (282) 47 (151)	00 kN/m 11.0 594 n/a (319)	SPAN, m 12.0 800 n/a (373) 46 (95)

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 100 kN/m uaudl 2 hours fire +5 mm up to 10 m only 4 hours fire +40 mm Moderate exposure Severe exposure (C40) +30 mm

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 100 kN/m uaudl

2 hours fire +5 mm

```
4 hours fire
            +35 mm up to 10 m only
             +20 mm
```

Moderate exposure

Severe exposure (C40) +25 mm up to 10 m only single span

'T' beams **2400 mm** wide web

SPAN: DEPTH CHART

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 100 kN/m uaudl

- 2 hours fire +5 mm
- 4 hours fire +35 mm up to 10 m only
- Moderate exposure +20 mm
- Severe exposure (C40) +25 mm up to 10 m only

'T' beams **300 mm** wide web multiple span

SPAN:DEPTH CHART

	800	11		•/					
	-	1		· - / - - - ·	-		/ / - -	-	
	-			· / - / - ·	-			-	
				/- / - :	-		/	-	
	700		/			/			
		' -			/			_	<u>/</u>
	4	- / -				1 layer –			
	_	-/ -				+ -	· – – – – – – –		
		1	<¥-	·		2	layers of	-	
	600					reir –	nforcement		
	1		/ +-					-	
	Ξ.	<u> </u>				<u> </u>			
	500								
	_			·			· – – – – – – –	-	
	-			· //			· – – – – – –	-	
	-			·/- ·	-		· – – – – – –	-	
	400				-		· – – – – – –	-	
	400								
_					-			-	
E									
					-			-	
É	300								
E	-			· – – – – – – ·	-		· – – – – – –	-	
	-			· – – – – – – ·	-		· – – – – – –	-	
	-			· – – – – – – ·	-		· – – – – – –	-	
Beam Depth, mm	200			·	-			-	
	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.
	4.0	5.0	0.0	7.0	0.0	5.0	10.0	11.0	SPAN, I
	-	timate app – = 50 kN		= 100 kN/	'm <u> </u>	: 200 kN/m	• <u> </u>	00 kN/m	
MILITIDIE CDAN m									
MULTIPLE SPAN, m	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.
	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.
DEPTH, mm								11.0	12.0
DEPTH, mm uaudl = 50 kN/m	284	324	376	452	8.0 576	9.0 690	10.0 824	11.0	12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m	284 356	324 452						11.0	12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	284	324 452	376	452				11.0	12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m	284 356	324 452	376	452				11.0	12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m	284 356 556	324 452 832	376 612	452 840				11.0	12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m	284 356 556 PORTS/CO	324 452 832	376 612 ERNAL (END	452 840), KN ult	576	690	824	11.0	12.
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SUPP uaudl = 50 kN/m	284 356 556 PORTS/CO 203 (102)	324 452 832 LUMNS INTE 256 (128)	376 612 ERNAL (END 311 (155)	452 840), <u>kN ult</u> 368 (184)		690	824	11.0	12.
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m	284 356 556 PORTS/CO 203 (102) 406 (203)	324 452 832 LUMNS INTE 256 (128) 513 (256)	376 612 ERNAL (END	452 840), KN ult	576	690	824	11.0	12.
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIIMATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	284 356 556 PORTS/CO 203 (102) 406 (203)	324 452 832 LUMNS INTE 256 (128)	376 612 ERNAL (END 311 (155)	452 840), <u>kN ult</u> 368 (184)	576	690	824	11.0	12.
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m	284 356 556 PORTS/CO 203 (102) 406 (203)	324 452 832 LUMNS INTE 256 (128) 513 (256)	376 612 ERNAL (END 311 (155)	452 840), <u>kN ult</u> 368 (184)	576	690	824	11.0	12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SUPI uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m	284 356 556 PORTS/CO 203 (102) 406 (203) 814 (407)	324 452 832 LUMNS INTE 256 (128) 513 (256)	376 612 ERNAL (END 311 (155)	452 840), <u>kN ult</u> 368 (184)	576	690	824	11.0	12.
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTI/MATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m REINFORCEMENT, kg/m (284 356 556 203 (102) 406 (203) 814 (407) (kg/m³)	324 452 832 <i>LUMNS INTE</i> 256 (128) 513 (256) 1032 (516)	376 612 ERNAL (END 311 (155) 625 (312)	452 840), <u>kN ult</u> 368 (184) 745 (373)	576 430 (215)	690 494 (247)	824 563 (281)	11.0	12.
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTI/MATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m REINFORCEMENT, kg/m (uaudl = 50 kN/m	284 356 556 203 (102) 406 (203) 814 (407) (kg/m ²) 23 (264)	324 452 832 <i>LUMINS INTE</i> 256 (128) 513 (256) 1032 (516) 22 (224)	376 612 311 (155) 625 (312) 25 (223)	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198)	576	690	824	11.0	12.
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTI/MATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m REINFORCEMENT, kg/m (uaudl = 50 kN/m uaudl = 100 kN/m	284 356 556 203 (102) 406 (203) 814 (407) (kg/m ³) 23 (264) 24 (229)	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205)	376 612 ERNAL (END 311 (155) 625 (312)	452 840), <u>kN ult</u> 368 (184) 745 (373)	576 430 (215)	690 494 (247)	824 563 (281)	11.0	12.
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIIMATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m	284 356 556 203 (102) 406 (203) 814 (407) (kg/m ²) 23 (264)	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205)	376 612 311 (155) 625 (312) 25 (223)	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198)	576 430 (215)	690 494 (247)	824 563 (281)	11.0	12.
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTI/MATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m REINFORCEMENT, kg/m (uaudl = 50 kN/m uaudl = 100 kN/m	284 356 556 203 (102) 406 (203) 814 (407) (kg/m ³) 23 (264) 24 (229)	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205)	376 612 311 (155) 625 (312) 25 (223)	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198)	576 430 (215)	690 494 (247)	824 563 (281)	11.0	12.
DEPTH, mm uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m ULTIMATE LOAD TO SUPI uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m uaudi = 100 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 200 kN/m uaudi = 200 kN/m	284 356 556 203 (102) 406 (203) 814 (407) (kg/m ³) 23 (264) 24 (229)	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205)	376 612 311 (155) 625 (312) 25 (223)	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198)	576 430 (215)	690 494 (247)	824 563 (281) 29 (116)		
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTI/MATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 400 kN/m	284 356 556 203 (102) 406 (203) 814 (407) 23 (264) 24 (229) 29 (174)	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205) 28 (111)	376 612 311 (155) 625 (312) 25 (223) 28 (152)	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198) 27 (107)	576 430 (215) 27 (156)	690 494 (247) 27 (133)	824 563 (281) 29 (116) <i>See</i>	11.0 Section 3.2	
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTI/MATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 400 kN/m	284 356 556 203 (102) 406 (203) 814 (407) 23 (264) 24 (229) 29 (174) acd	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205) 28 (111) K c	376 612 311 (155) 625 (312) 25 (223) 28 (152) K ac	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198) 27 (107) abd	576 430 (215)	690 494 (247)	824 563 (281) 29 (116)		
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIIMATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m	284 356 556 203 (102) 406 (203) 814 (407) 23 (264) 24 (229) 29 (174) acd K ac	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205) 28 (111) K c abd	376 612 311 (155) 625 (312) 25 (223) 28 (152)	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198) 27 (107)	576 430 (215) 27 (156)	690 494 (247) 27 (133)	824 563 (281) 29 (116) <i>See</i>		
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTI/MATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 100 kN/m	284 356 556 203 (102) 406 (203) 814 (407) 23 (264) 24 (229) 29 (174) acd	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205) 28 (111) K c abd	376 612 311 (155) 625 (312) 25 (223) 28 (152) K ac	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198) 27 (107) abd	576 430 (215) 27 (156)	690 494 (247) 27 (133)	824 563 (281) 29 (116) <i>See</i>		
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m	284 356 556 203 (102) 406 (203) 814 (407) 23 (264) 24 (229) 29 (174) acd K ac	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205) 28 (111) K c abd	376 612 311 (155) 625 (312) 25 (223) 28 (152) K ac	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198) 27 (107) abd	576 430 (215) 27 (156)	690 494 (247) 27 (133)	824 563 (281) 29 (116) <i>See</i>		
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTI/MATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 400 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m	284 356 556 203 (102) 406 (203) 814 (407) 23 (264) 24 (229) 29 (174) acd K ac d	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205) 28 (111) K c abd d	376 612 311 (155) 625 (312) 25 (223) 28 (152) K ac ad	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198) 27 (107) abd d	576 430 (215) 27 (156) ad	690 494 (247) 27 (133) ad	824 563 (281) 29 (116) <i>See</i> ad	Section 3.2	2.4 on p 4
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	284 356 556 203 (102) 406 (203) 814 (407) 23 (264) 24 (229) 29 (174) acd K ac d	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205) 28 (111) K c abd d	376 612 311 (155) 625 (312) 25 (223) 28 (152) K ac ad	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198) 27 (107) abd d	576 430 (215) 27 (156) ad	690 494 (247) 27 (133) ad	824 563 (281) 29 (116) <i>See</i> ad	Section 3.2	2.4 on p 4
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTI/MATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 400 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m	284 356 556 203 (102) 406 (203) 814 (407) 23 (264) 24 (229) 29 (174) acd K ac d	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205) 28 (111) K c abd d	376 612 311 (155) 625 (312) 25 (223) 28 (152) K ac ad	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198) 27 (107) abd d	576 430 (215) 27 (156) ad	690 494 (247) 27 (133) ad	824 563 (281) 29 (116) <i>See</i> ad	Section 3.2	2.4 on p 4
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	284 356 556 203 (102) 406 (203) 814 (407) 23 (264) 24 (229) 29 (174) acd K ac d	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205) 28 (111) K c abd d	376 612 311 (155) 625 (312) 25 (223) 28 (152) K ac ad	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198) 27 (107) abd d	576 430 (215) 27 (156) ad	690 494 (247) 27 (133) ad	824 563 (281) 29 (116) <i>See</i> ad	Section 3.2	2.4 on p 4
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTI/MATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 400 kN/m uaudl = 400 kN/m	284 356 556 203 (102) 406 (203) 814 (407) 23 (264) 24 (229) 29 (174) acd K ac d ASSUMPTI +0	324 452 832 LUMNS INTE 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205) 28 (111) K c abd d VONS (see Se mm up to 10 612	376 612 311 (155) 625 (312) 25 (223) 28 (152) K ac ad	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198) 27 (107) abd d	576 430 (215) 27 (156) ad	690 494 (247) 27 (133) ad	824 563 (281) 29 (116) <i>See</i> ad	Section 3.2	2.4 on p 4
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIIMATE LOAD TO SUP/ uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 400 kN/m	284 356 556 203 (102) 406 (203) 814 (407) 23 (264) 24 (229) 29 (174) acd K ac d ASSUMPTI +0 448	324 452 832 256 (128) 513 (256) 1032 (516) 22 (224) 28 (205) 28 (111) K c abd d WONS (see Se mm up to 10 612 610	376 612 ERNAL (END 311 (155) 625 (312) 25 (223) 28 (152) K ac ad ection 3.2.3 m only 820	452 840), <i>kN ult</i> 368 (184) 745 (373) 27 (198) 27 (107) abd d	576 430 (215) 27 (156) ad	690 494 (247) 27 (133) ad	824 563 (281) 29 (116) <i>See</i> ad	Section 3.2	2.4 on p 4

'T' beams 450 mm wide web SPAN:DEPTH CHART				n	nultiple	span			
	800								
	800 700							1 layer	
	600	/ - /						2 laye	rs of ement
	500								
	400								
Ē	-								
BEAM DEPTH mm	300			·					
R A									
	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0 <i>SPAN,</i> m
		timate app	lied udl						12.0 <i>SPAN,</i> m
	KEY UI	timate app – = 50 kN	lied udl /m —	= 100 kN/	m <u> </u>	200 kN/m	• <u> </u>	00 kN/m	SPAN, m
MULTIPLE SPAN, m DEPTH, mm		timate app	lied udl						<i>SPAN,</i> m 12.0
	KEY UI	timate app – = 50 kN	lied udl /m —	= 100 kN/	m <u> </u>	200 kN/m	• <u> </u>	00 kN/m	SPAN, m
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	KEY UI 4.0 244 306 420 642 203 (101) 406 (203) 813 (407)	timate app = 50 kN 5.0 282 362 526 898	Jied udl /m	= 100 kN/ 7.0 362 526 902), kN ult 367 (184) 735 (367)	m — = 8.0 404 664 425 (212)	200 kN/m 9.0 454	10.0 564 956 555 (278)	00 kN/m 11.0	<i>SPAN,</i> m 12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SUP uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	KEY UI 4.0 244 306 420 642 203 (101) 406 (203) 813 (407) 1627 (813)	timate app = = 50 kN 5.0 282 362 526 898 256 (128) 512 (256) 1025 (512)	Jied udl /m	= 100 kN/ 7.0 362 526 902), kN ult 367 (184) 735 (367)	m — = 8.0 404 664 425 (212)	200 kN/m 9.0 454 798 485 (242)	10.0 564 956 555 (278)	000 kN/m 11.0 666	<i>SPAN</i> , m 12.0 770
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SUP uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 100 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	KEY UI: 4.0 244 306 420 642 203 (101) 406 (203) 813 (407) 1627 (813) (kg/m ³) 28 (253) 32 (234) 40 (213)	timate app = = 50 kN 5.0 282 362 526 898 200MNS INTU 256 (128) 512 (256) 1025 (512) 2053 (1026) 30 (236) 36 (224) 49 (207)	Alied udl /m	= 100 kN/ 7.0 362 526 902), kN ult 367 (184) 735 (367) 1474 (737) 36 (221) 47 (197)	m — = <u>8.0</u> 404 664 425 (212) 856 (428) 44 (239)	200 kN/m 9.0 454 798 485 (242) 981 (491) 46 (225)	10.0 10.0 564 956 555 (278) 1114 (557) 46 (179) 50 (116)	000 kN/m 11.0 666 628 (314)	SPAN, m 12.0 770 703 (352) 47 (136) 2.4 on p 47
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SUP uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 100 kN/m uaudl = 50 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 50 kN/m	KEY UI: 4.0 244 306 420 642 203 (101) 406 (203) 813 (407) 1627 (813) (kg/m ³) 28 (253) 32 (234) 40 (213) 50 (174) acd K ac ab d ASSUMPTI	timate app = = 50 kN 5.0 282 362 526 898 2000 SINTE 256 (128) 512 (256) 1025 (512) 2053 (1026) 30 (236) 36 (224) 49 (207) 52 (129) acd K ac bd d	Jied udl /m	= 100 kN/ 7.0 362 526 902 0), kN ult 367 (184) 735 (367) 1474 (737) 36 (221) 47 (197) 50 (124) K ac bd d	m — = <u>8.0</u> 404 664 425 (212) 856 (428) 44 (239) 46 (155) K ac d	200 kN/m 9.0 454 798 485 (242) 981 (491) 46 (225) 49 (135) 46 (135)	1 - = 4 10.0 564 956 555 (278) 1114 (557) 46 (179) 50 (116) See ad d	11.0 666 628 (314) 46 (153) Section 3.2 d	SPAN, m 12.0 770 703 (352) 47 (136) 2.4 on p 47 d

'T' beams 600 mm wide web

multiple span

SPAN: DEPTH CHART

	800 –								
	000		1		/ -				
		-	/		- / -		1 la	yer	
		1	'+-	·;		>f-	· /		
	700	/	/				/		
		/ -	,	/-			/		<u> </u>
		- -	+ -	· / - - -	/		· 2	layers of 📜	
		/	/				rein	forcement _	
	600	17							
		- /- /- -		/	-		· · · · · ·	-	/-
		-/-/-	+	/	-	-/-/	·		/
		17			-	<u>/</u> /			//
	500		-						
		-	-/+-	·	/-		·		
		-	/+-						
		/							
	400								
							·		
					-			-	
Ē	300								
				· -	-		·	-	
<	300 BEAM DEVIN	-		·	-			-	
c	200 L 4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
	4.0	5.0	0.0	7.0	0.0	9.0	10.0	11.0	
									SPAN, m
	KEY Ult	timate app	lied udl						SPAN, m
	KEY Ult	timate app = = 50 kN/		= 100 kN/	'm — =	: 200 kN/n	1 — = 4	400 kN/m	SPAN, m
MULTIPLE SPAN. m	KEY Ult 			= 100 kN/ 7.0	ʻm <u>—</u> = 8.0	200 kN/n 9.0	n — = 4 10.0		<i>SPAN,</i> m
MULTIPLE SPAN, m	-	= = 50 kN/	/m —						
DEPTH, mm	4.0	= 50 kN/ 5.0	/m 6.0	7.0	8.0	9.0	10.0	11.0	12.0
DEPTH, mm uaudl = 50 kN/m	4.0 252	- = 50 kN/ 5.0 258	/m 6.0 298	7.0 340	8.0 376	9.0 418	10.0 456	11.0 498	
<i>DEPTH, mm</i> uaudl = 50 kN/m uaudl = 100 kN/m	4.0 252 278	- = 50 kN/ 5.0 258 328	/m — 6.0 298 376	7.0 340 426	8.0 376 496	9.0	10.0	11.0 498	12.0
DEPTH, mm uaudl = 50 kN/m	4.0 252	- = 50 kN/ 5.0 258	/m 6.0 298	7.0 340	8.0 376	9.0 418	10.0 456	11.0 498	12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 252 278 356	- = 50 kN/ 5.0 258 328 426	/m 6.0 298 376 540	7.0 340 426	8.0 376 496	9.0 418	10.0 456	11.0 498	12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 252 278 356 480	- = 50 kN/ 5.0 258 328 426 702	/m 6.0 298 376 540 952	7.0 340 426 704	8.0 376 496	9.0 418	10.0 456	11.0 498	12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102)	- = 50 kN/ 5.0 258 328 426 702 .UMNS INTE 256 (128)	/m 298 376 540 952 <i>ERNAL (ENE</i> 312 (156)	7.0 340 426 704), <u>kN ult</u> 371 (186)	8.0 376 496	9.0 418 618 488 (244)	10.0 456 738 551 (275)	11.0 498 880 616 (308)	12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203)	- = 50 kN/ 5.0 258 328 426 702 <i>UMNS INTE</i> 256 (128) 515 (257)	/m	7.0 340 426 704 9), <u>kN ult</u> 371 (186) 732 (366)	8.0 376 496 876 428 (214) 848 (424)	9.0 418 618 488 (244)	10.0 456 738 551 (275)	11.0 498 880	12.0 602
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406)	- = 50 kN/ 5.0 258 328 426 702 UMNS INTE 256 (128) 515 (257) 1023 (511)	/m 298 376 540 952 <i>FRNAL (ENL</i> 312 (156) 621 (311) 1241 (621)	7.0 340 426 704 9), <u>kN ult</u> 371 (186) 732 (366)	8.0 376 496 876 428 (214) 848 (424)	9.0 418 618 488 (244)	10.0 456 738 551 (275)	11.0 498 880 616 (308)	12.0 602
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406)	- = 50 kN/ 5.0 258 328 426 702 <i>UMNS INTE</i> 256 (128) 515 (257)	/m 298 376 540 952 <i>FRNAL (ENL</i> 312 (156) 621 (311) 1241 (621)	7.0 340 426 704 9), <u>kN ult</u> 371 (186) 732 (366)	8.0 376 496 876 428 (214) 848 (424)	9.0 418 618 488 (244)	10.0 456 738 551 (275)	11.0 498 880 616 (308)	12.0 602
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406) 1623 (811) 2	- = 50 kN/ 5.0 258 328 426 702 UMNS INTE 256 (128) 515 (257) 1023 (511)	/m 298 376 540 952 <i>FRNAL (ENL</i> 312 (156) 621 (311) 1241 (621)	7.0 340 426 704 9), <u>kN ult</u> 371 (186) 732 (366)	8.0 376 496 876 428 (214) 848 (424)	9.0 418 618 488 (244)	10.0 456 738 551 (275)	11.0 498 880 616 (308)	12.0 602
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406) 1623 (811) 2 6 (kg/m ³)	- = 50 kN/ 5.0 258 328 426 702 000000000000000000000000000000000	/m	7.0 340 426 704), <u>kN ult</u> 371 (186) 732 (366) 1471 (736)	8.0 376 496 876 428 (214) 848 (424) 1709 (855)	9.0 418 618 488 (244) 978 (489)	10.0 456 738 551 (275) 1109 (555)	11.0 498 880 616 (308) 1251 (625)	12.0 602 697 (349)
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU, uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406) 1623 (811) 2 1623 (811) 2 0 (kg/m ³) 27 (179)	- = 50 kN/ 5.0 258 328 426 702 UMNS INTE 256 (128) 515 (257) 1023 (511) 2051 (1025) 2 35 (227)	/m 298 376 540 952 <i>RNAL (ENE</i> 312 (156) 621 (311) 1241 (621) 2491 (1245) 38 (212)	7.0 340 426 704 9), kN ult 371 (186) 732 (366) 1471 (736) 44 (215)	8.0 376 496 876 428 (214) 848 (424) 1709 (855) 48 (211)	9.0 418 618 488 (244) 978 (489) 51 (207)	10.0 456 738 551 (275) 1109 (555) 54 (199)	11.0 498 880 616 (308) 1251 (625) 60 (201)	12.0 602
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406) 1623 (811) 2 6 (kg/m ³) 27 (179) 39 (234)	- = 50 kN/ 5.0 258 328 426 702 <i>UMNS INTE</i> 256 (128) 515 (257) 1023 (511) 2051 (1025) 2 35 (227) 47 (242)	/m 298 376 540 952 <i>FRNAL (ENE</i> 312 (156) 621 (311) 1241 (621) 2491 (1245) 38 (212) 50 (220)	7.0 340 426 704 371 (186) 732 (366) 1471 (736) 44 (215) 56 (217)	8.0 376 496 876 428 (214) 848 (424) 1709 (855) 48 (211) 60 (202)	9.0 418 618 488 (244) 978 (489)	10.0 456 738 551 (275) 1109 (555)	11.0 498 880 616 (308) 1251 (625) 60 (201)	12.0 602 697 (349)
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU, uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406) 1623 (811) 2 1623 (811) 2 0 (kg/m ³) 27 (179)	- = 50 kN/ 5.0 258 328 426 702 UMNS INTE 256 (128) 515 (257) 1023 (511) 2051 (1025) 2 35 (227)	/m 298 376 540 952 <i>RNAL (ENE</i> 312 (156) 621 (311) 1241 (621) 2491 (1245) 38 (212)	7.0 340 426 704 9), kN ult 371 (186) 732 (366) 1471 (736) 44 (215)	8.0 376 496 876 428 (214) 848 (424) 1709 (855) 48 (211)	9.0 418 618 488 (244) 978 (489) 51 (207)	10.0 456 738 551 (275) 1109 (555) 54 (199)	11.0 498 880 616 (308) 1251 (625) 60 (201)	12.0 602 697 (349)
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406) 1623 (811) 2 0 (kg/m ³) 27 (179) 39 (234) 51 (240)	- = 50 kN/ 5.0 258 328 426 702 UMNS INTE 256 (128) 515 (257) 1023 (511) 2051 (1025) 2 35 (227) 47 (242) 59 (229)	/m 298 376 540 952 <i>FRNAL (ENE</i> 312 (156) 621 (311) 1241 (621) 2491 (1245) 38 (212) 50 (220) 62 (192)	7.0 340 426 704 371 (186) 732 (366) 1471 (736) 44 (215) 56 (217)	8.0 376 496 876 428 (214) 848 (424) 1709 (855) 48 (211) 60 (202)	9.0 418 618 488 (244) 978 (489) 51 (207)	10.0 456 738 551 (275) 1109 (555) 54 (199)	11.0 498 880 616 (308) 1251 (625) 60 (201)	12.0 602 697 (349)
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406) 1623 (811) 2 0 (kg/m ³) 27 (179) 39 (234) 51 (240)	- = 50 kN/ 5.0 258 328 426 702 UMNS INTE 256 (128) 515 (257) 1023 (511) 2051 (1025) 2 35 (227) 47 (242) 59 (229)	/m 298 376 540 952 <i>FRNAL (ENE</i> 312 (156) 621 (311) 1241 (621) 2491 (1245) 38 (212) 50 (220) 62 (192)	7.0 340 426 704 371 (186) 732 (366) 1471 (736) 44 (215) 56 (217)	8.0 376 496 876 428 (214) 848 (424) 1709 (855) 48 (211) 60 (202)	9.0 418 618 488 (244) 978 (489) 51 (207)	10.0 456 738 551 (275) 1109 (555) 54 (199) 62 (138)	11.0 498 880 616 (308) 1251 (625) 60 (201)	12.0 602 697 (349) 58 (161)
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU, uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m	4.0 252 278 356 480 204 (102) 406 (203) 813 (406) 1623 (811) 2 9 (kg/m ³) 27 (179) 39 (234) 51 (240) 68 (235)	- = 50 kN/ 5.0 258 328 426 702 <i>UMNS INTE</i> 256 (128) 515 (257) 1023 (511) 2051 (1025) 2 35 (227) 47 (242) 59 (229) 66 (157) ac	/m 298 376 540 952 <i>RNAL (ENE</i> 312 (156) 621 (311) 1241 (621) 2491 (1245) 38 (212) 50 (220) 62 (192) 67 (117) C	7.0 340 426 704 2), kN ult 371 (186) 732 (366) 1471 (736) 44 (215) 56 (217) 64 (151) b	8.0 376 496 876 428 (214) 848 (424) 1709 (855) 48 (211) 60 (202) 65 (124) bd	9.0 418 618 488 (244) 978 (489) 51 (207) 60 (162)	10.0 456 738 551 (275) 1109 (555) 54 (199) 62 (138) 62 (138)	11.0 498 880 616 (308) 1251 (625) 60 (201) 63 (119) e Section 3.2 b	12.0 602 697 (349) 58 (161)
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 100 kN/m uaudl = 50 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 50 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406) 1623 (811) 2 0 (kg/m ³) 27 (179) 39 (234) 51 (240) 68 (235) acd	- = 50 kN/ 5.0 258 328 426 702 <i>UMNS INTE</i> 256 (128) 515 (257) 1023 (511) 2051 (1025) 2 35 (227) 47 (242) 59 (229) 66 (157) ac b	/m 6.0 298 376 540 952 <i>FRNAL (ENE</i> 312 (156) 621 (311) 1241 (621) 2491 (1245) 38 (212) 50 (220) 62 (192) 67 (117) c K c	7.0 340 426 704 371 (186) 732 (366) 1471 (736) 44 (215) 56 (217) 64 (151) b K ac	8.0 376 496 876 428 (214) 848 (424) 1709 (855) 48 (211) 60 (202) 65 (124) bd cd	9.0 418 618 488 (244) 978 (489) 51 (207) 60 (162)	10.0 456 738 551 (275) 1109 (555) 54 (199) 62 (138) 62 ac	11.0 498 880 616 (308) 1251 (625) 60 (201) 63 (119) e Section 3.2 b	12.0 602 697 (349) 58 (161) 2.4 on p 47
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 100 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 200 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406) 1623 (811) 2 0 (kg/m ³) 27 (179) 39 (234) 51 (240) 68 (235) acd K c	- = 50 kN/ 5.0 258 328 426 702 UMNS INTE 256 (128) 515 (257) 1023 (511) 2051 (1025) 2 35 (227) 47 (242) 59 (229) 66 (157) ac b K ac	/m 6.0 298 376 540 952 <i>FRNAL (ENE</i> 312 (156) 621 (311) 1241 (621) 2491 (1245) 38 (212) 50 (220) 62 (192) 67 (117) c K c bd	7.0 340 426 704 2), kN ult 371 (186) 732 (366) 1471 (736) 44 (215) 56 (217) 64 (151) b	8.0 376 496 876 428 (214) 848 (424) 1709 (855) 48 (211) 60 (202) 65 (124) bd	9.0 418 618 488 (244) 978 (489) 51 (207) 60 (162)	10.0 456 738 551 (275) 1109 (555) 54 (199) 62 (138) 62 (138)	11.0 498 880 616 (308) 1251 (625) 60 (201) 63 (119) e Section 3.2 b	12.0 602 697 (349) 58 (161) 2.4 on p 47
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 100 kN/m uaudl = 50 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 50 kN/m	4.0 252 278 356 480 PPORTS/COL 204 (102) 406 (203) 813 (406) 1623 (811) 2 0 (kg/m ³) 27 (179) 39 (234) 51 (240) 68 (235) acd	- = 50 kN/ 5.0 258 328 426 702 <i>UMNS INTE</i> 256 (128) 515 (257) 1023 (511) 2051 (1025) 2 35 (227) 47 (242) 59 (229) 66 (157) ac b	/m 6.0 298 376 540 952 <i>FRNAL (ENE</i> 312 (156) 621 (311) 1241 (621) 2491 (1245) 38 (212) 50 (220) 62 (192) 67 (117) c K c	7.0 340 426 704 371 (186) 732 (366) 1471 (736) 44 (215) 56 (217) 64 (151) b K ac	8.0 376 496 876 428 (214) 848 (424) 1709 (855) 48 (211) 60 (202) 65 (124) bd cd	9.0 418 618 488 (244) 978 (489) 51 (207) 60 (162)	10.0 456 738 551 (275) 1109 (555) 54 (199) 62 (138) 62 (138)	11.0 498 880 616 (308) 1251 (625) 60 (201) 63 (119) e Section 3.2 b	12.0 602 697 (349) 58 (161) 2.4 on p 47

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 3.2.3 on p 46): implications on beam depths for 100 kN/m uaudl

2 hours fire +5 mm 4 hours fire +25 mm Moderate exposure +20 mm Severe exposure (C40) +25 mm

'T' beams			r	nultiple	e span				
900 mm)								
wide web									
SPAN:DEPTH CHART									
	800 –								
				/	/				
						/	′		
	700		/	/	-		layers of		
	-		/-			rei	nforcement		
	600		-//						<u> </u>
	_		-//-						
	500		<i>['</i> -		- [+		/		
	-	/							
		/			-				
	400		/		<u></u>				
E C	300								
	300 200								
	-								
	200 4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
	4.0	5.0 timate app		7.0	8.0	9.0	10.0	11.0	12.0 <i>SPAN,</i> m
2 2 2	4.0		lied udl	= 100 kN/		9.0 9.0			
MULTIPLE SPAN, m	4.0	timate app	lied udl						
	4.0 KEY UI	timate app – = 50 kN	lied udl /m —	= 100 kN/	'm — =	: 200 kN/m	• — = 4	00 kN/m	SPAN, m
MULTIPLE SPAN, m <i>DEPTH, mm</i> uaudl = 50 kN/m uaudl = 100 kN/m	4.0 KEY UI: 4.0 248 264	timate app - = 50 kN 5.0 264 286	lied udl /m – 6.0 290 320	= 100 kN/ 7.0 322 362	2 m — = 8.0 354 408	200 kN/m 9.0 386 460	10.0 = 4 10.0 428 514	00 kN/m 11.0	<i>SPAN,</i> m 12.0
MULTIPLE SPAN, m DEPTH, mm uaudl = 50 kN/m	4.0 KEY UI1 4.0 248	timate app - = 50 kN 5.0 264	lied udl /m 6.0 290	= 100 kN/ 7.0	m — = 8.0 354	200 kN/m 9.0 386	10.0 <u>– – – 4</u> 10.0 428	00 kN/m 11.0 478	<i>SPAN</i> , m 12.0 530
MULTIPLE SPAN, m DEPTH, mm uaudI = 50 kN/m uaudI = 100 kN/m uaudI = 200 kN/m uaudI = 400 kN/m ULTIMATE LOAD TO SU	4.0 KEY UI 4.0 248 264 320 406 PPORTS/COL	timate app = 50 kN 5.0 264 286 362 478 .UMNS INTE	lied udl /m – 6.0 290 320 420 640 <i>ERNAL (END</i>)	= 100 kN/ 7.0 322 362 478 834), kN ult	m — = 8.0 354 408 586	200 kN/m 9.0 386 460 720	10.0 428 514 882	00 kN/m 11.0 478 576	SPAN, m 12.0 530 682
MULTIPLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m	4.0 KEY UI: 4.0 248 264 320 406 PPORTS/COI 206 (103) 408 (204)	timate app = = 50 kN 5.0 264 286 362 478 CUMNS INTE 260 (130) 513 (257)	lied udl /m	= 100 kN/ 7.0 322 362 478 834), kN ult 376 (188) 734 (367)	m — = 8.0 354 408 586 437 (219) 850 (425)	200 kN/m 9.0 386 460 720 501 (250) 971 (485)	10.0 428 514 882 570 (285) 1094 (547)	00 kN/m 11.0 478 576	SPAN, m 12.0 530 682 716 (358)
MULTIPLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m	4.0 KEY UI: 4.0 248 264 320 406 PPORTS/COI 206 (103) 408 (204) 815 (407)	timate app = 50 kN 5.0 264 286 362 478 200 (130) 513 (257) 1024 (512)	lied udl /m 290 320 420 640 ERNAL (END) 316 (158)	= 100 kN/ 7.0 322 362 478 834), kN ult 376 (188) 734 (367) 1459 (729)	m — = 8.0 354 408 586 437 (219) 850 (425)	200 kN/m 9.0 386 460 720 501 (250) 971 (485)	10.0 428 514 882 570 (285) 1094 (547)	00 kN/m 11.0 478 576 646 (323)	SPAN, m 12.0 530 682 716 (358)
MULTIPLE SPAN, m DEPTH, mm uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m	4.0 KEY UI 4.0 248 264 320 406 PPORTS/COL 206 (103) 408 (204) 815 (407) 1625 (812)	timate app = 50 kN 5.0 264 286 362 478 200 (130) 513 (257) 1024 (512)	lied udl /m	= 100 kN/ 7.0 322 362 478 834), kN ult 376 (188) 734 (367) 1459 (729)	m — = 8.0 354 408 586 437 (219) 850 (425)	200 kN/m 9.0 386 460 720 501 (250) 971 (485)	10.0 428 514 882 570 (285) 1094 (547)	00 kN/m 11.0 478 576 646 (323)	SPAN, m 12.0 530 682 716 (358)
MULTIPLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 400 kN/m waudl = 400 kN/m	4.0 KEY UI: 4.0 4.0 248 264 320 406 PPORTS/COI 206 (103) 408 (204) 815 (407) 1625 (812) 0 (kg/m ³) 42 (186)	timate app = = 50 kN 5.0 264 286 362 478 CUMNS INTE 260 (130) 513 (257) 1024 (512) 2042 (1021) 42 (179)	Lied udl /m	= 100 kN/ 7.0 322 362 478 834), kN ult 376 (188) 734 (367) 1459 (729) 2934 (1467) 52 (179)	m — = 8.0 354 408 586 437 (219) 850 (425) 1693 (847) 54 (169)	200 kN/m 9.0 386 460 720 501 (250) 971 (485) 1942 (971) 60 (174)	1 - = 4 10.0 428 514 882 570 (285) 1094 (547) 2206 (1103) 63 (161)	00 kN/m 11.0 478 576 646 (323) 1225 (613) 64 (146)	SPAN, m 12.0 530 682 716 (358) 1375 (687) 77 (165)
MULTIPLE SPAN, m DEPTH, mm uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 400 kN/m uaudi = 50 kN/m uaudi = 50 kN/m uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m	4.0 KEY UI: 4.0 248 264 320 406 PPORTS/COI 206 (103) 408 (204) 815 (407) 1625 (812) 42 (186) 50 (209) 62 (215)	timate app = 50 kN 5.0 264 286 362 478 200 (130) 513 (257) 1024 (512) 2042 (1021) 42 (179) 59 (228) 72 (222)	Alied udl /m 6.0 290 320 420 640 640 ERNAL (END) 316 (158) 622 (311) 1240 (620) 2480 (1240) 2 48 (185) 66 (230) 82 (218)	= 100 kN/ 7.0 322 362 478 834), kN ult 376 (188) 734 (367) 1459 (729) 2934 (1467) 52 (179) 70 (215) 96 (224)	m — = 8.0 354 408 586 437 (219) 850 (425) 1693 (847)	200 kN/m 9.0 386 460 720 501 (250) 971 (485) 1942 (971)	10.0 428 514 882 570 (285) 1094 (547) 2206 (1103)	00 kN/m 11.0 478 576 646 (323) 1225 (613)	SPAN, m 12.0 530 682 716 (358) 1375 (687)
MULTIPLE SPAN, m DEPTH, mm uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m ULTIMATE LOAD TO SU uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 400 kN/m uaudi = 50 kN/m uaudi = 50 kN/m uaudi = 200 kN/m uaudi = 200 kN/m uaudi = 200 kN/m uaudi = 400 kN/m	4.0 KEY UI: 4.0 4.0 248 264 320 406 PPORTS/COI 206 (103) 408 (204) 815 (407) 1625 (812) 0 (kg/m ³) 42 (186) 50 (209)	timate app = = 50 kN 5.0 264 286 362 478 260 (130) 513 (257) 1024 (512) 2042 (1021) 42 (179) 59 (228)	Alied udl /m	= 100 kN/ 7.0 322 362 478 834), kN ult 376 (188) 734 (367) 1459 (729) 2934 (1467) 52 (179) 70 (215)	m — = 8.0 354 408 586 437 (219) 850 (425) 1693 (847) 54 (169) 77 (209)	200 kN/m 9.0 386 460 720 501 (250) 971 (485) 1942 (971) 60 (174) 86 (207)	1 - = 4 10.0 428 514 882 570 (285) 1094 (547) 2206 (1103) 63 (161) 92 (200) 102 (129)	00 kN/m 11.0 478 576 646 (323) 1225 (613) 64 (146) 97 (187)	SPAN, m 12.0 530 682 716 (358) 1375 (687) 77 (165) 98 (160)
MULTIPLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m	4.0 KEY UI: 4.0 4.0 248 264 320 406 206 (103) 408 (204) 815 (407) 1625 (812) 0 (kg/m ³) 42 (186) 50 (209) 62 (215) 85 (233) d	timate app = = 50 kN 264 286 362 478 CUMNS INTE 260 (130) 513 (257) 1024 (512) 2042 (1021) 42 (179) 59 (228) 72 (222) 103 (240)	Lied udl /m	= 100 kN/ 7.0 322 362 478 834), <i>kN ult</i> 376 (188) 734 (367) 1459 (729) 2934 (1467) 52 (179) 70 (215) 96 (224) 103 (138)	m — = 8.0 354 408 586 437 (219) 850 (425) 1693 (847) 54 (169) 77 (209) 100 (190)	200 kN/m 9.0 386 460 720 501 (250) 971 (485) 1942 (971) 60 (174) 86 (207) 102 (158) b	1 - = 4 10.0 428 514 882 570 (285) 1094 (547) 2206 (1103) 63 (161) 92 (200) 102 (129) <i>See</i>	00 kN/m 11.0 478 576 646 (323) 1225 (613) 64 (146) 97 (187) Section 3.2	SPAN, m 12.0 530 682 716 (358) 1375 (687) 77 (165) 98 (160) 77 (165) 98 (160)
MULTIPLE SPAN, m DEPTH, mm uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m ULTIMATE LOAD TO SU uaudi = 50 kN/m uaudi = 200 kN/m uaudi = 200 kN/m uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 50 kN/m uaudi = 200 kN/m	4.0 KEY UI: 4.0 248 264 320 406 PPORTS/COL 206 (103) 408 (204) 815 (407) 1625 (812) 1625 (812) 42 (186) 50 (209) 62 (215) 85 (233) d d ab cd	timate app = 50 kN 5.0 264 286 362 478 200(130) 513 (257) 1024 (512) 2042 (1021) 42 (179) 59 (228) 72 (222) 103 (240) c K c	Alied udl /m	= 100 kN/ 7.0 322 362 478 834), kN ult 376 (188) 734 (367) 1459 (729) 2934 (1467) 52 (179) 70 (215) 96 (224) 103 (138) K c K c	m — = 8.0 354 408 586 437 (219) 850 (425) 1693 (847) 54 (169) 77 (209)	200 kN/m 9.0 386 460 720 501 (250) 971 (485) 1942 (971) 60 (174) 86 (207) 102 (158)	1 - = 4 10.0 428 514 882 570 (285) 1094 (547) 2206 (1103) 63 (161) 92 (200) 102 (129)	00 kN/m 11.0 478 576 646 (323) 1225 (613) 64 (146) 97 (187)	SPAN, m 12.0 530 682 716 (358) 1375 (687) 77 (165) 98 (160) .4 on p 47
MULTIPLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 400 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 400 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 400 kN/m uaudl = 50 kN/m	4.0 KEY UI: 4.0 4.0 248 264 320 406 PPORTS/COL 206 (103) 408 (204) 815 (407) 1625 (812) 0 (kg/m ³) 42 (186) 50 (209) 62 (215) 85 (233) d ab	timate app = = 50 kN 5.0 264 286 362 478 200 (130) 513 (257) 1024 (512) 2042 (1021) 42 (179) 59 (228) 72 (222) 103 (240)	Lied udl /m	= 100 kN/ 7.0 322 362 478 834), kN ult 376 (188) 734 (367) 1459 (729) 2934 (1467) 52 (179) 70 (215) 96 (224) 103 (138) K c	m — = 8.0 354 408 586 437 (219) 850 (425) 1693 (847) 54 (169) 77 (209) 100 (190) C	200 kN/m 9.0 386 460 720 501 (250) 971 (485) 1942 (971) 60 (174) 86 (207) 102 (158) b c	1 - = 4 10.0 428 514 882 570 (285) 1094 (547) 2206 (1103) 63 (161) 92 (200) 102 (129) <i>See</i> cd	00 kN/m 11.0 478 576 646 (323) 1225 (613) 64 (146) 97 (187) Section 3.2	SPAN, m 12.0 530 682 716 (358) 1375 (687) 77 (165) 98 (160) 77 (165) 98 (160)
MULTIPLE SPAN, m DEPTH, mm uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m ULTIMATE LOAD TO SU uaudi = 50 kN/m uaudi = 200 kN/m uaudi = 200 kN/m uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 50 kN/m uaudi = 200 kN/m	4.0 KEY UI: 4.0 248 264 320 406 PPORTS/COI 206 (103) 408 (204) 815 (407) 1625 (812) 0 (Kg/m ³) 42 (186) 50 (209) 62 (215) 85 (233) d ab cd cd ASSUMPTI	timate app = = 50 kN 5.0 264 286 362 478 CUMINS INITI 260 (130) 513 (257) 1024 (512) 2042 (1021) 42 (179) 59 (228) 72 (222) 103 (240) c K c C K c C	Alied udl /m	= 100 kN/ 7.0 322 362 478 834), kN ult 376 (188) 734 (367) 1459 (729) 2934 (1467) 52 (179) 70 (215) 96 (224) 103 (138) K c K c K c K c d	m — = 8.0 354 408 586 437 (219) 850 (425) 1693 (847) 54 (169) 77 (209) 100 (190) c bd	200 kN/m 9.0 386 460 720 501 (250) 971 (485) 1942 (971) 60 (174) 86 (207) 102 (158) b c d	1 - = 4 10.0 428 514 882 570 (285) 1094 (547) 2206 (1103) 63 (161) 92 (200) 102 (129) <i>Seee</i> cd d	00 kN/m 11.0 478 576 646 (323) 1225 (613) 64 (146) 97 (187) Section 3.2 bd	SPAN, m 12.0 530 682 716 (358) 1375 (687) 77 (165) 98 (160) 77 (165) 98 (160) 4 on p 47 d d

2 hours fire +5 mm 4 hours fire +30 mm Moderate exposure +30 mm Severe exposure (C40) +30 mm

	ITU		

4 hours fire +25 mm up to 10 m only

- Moderate exposure +20 mm
- Severe exposure (C40) +20 mm up to 10 m only

			1 layer				800 mi de web N:DEPTH CHART
						r 	N:DEPTH CHARI
						r 	
							00
				/		+	
				- /+			/00
			- 4	- /-+		+	
			yers of	2 lay			
		/	rcement	reinfo			500
					/		
			/				600
					/	/	
						· · · / ·	
							100
							00
							00
SPAN, m		00 kN/m	n — = 4	- = 200 kN/ı) kN/m 🗕		EY Ultimate applie — = 50 kN/m
0 11.0 12.0 14.0 16.0	11.0	10.0	9.0	8.0	7.0	6.0	LTIPLE SPAN, m
							TH, mm
		394 452	358 410		286 330	250 290	uaudl = 50 kN/m uaudl = 100 kN/m
0 588 672 898		510	462 704		388 490	354 420	uaudl = 200 kN/m uaudl = 400 kN/m
		848					
3		848					
	588		0), <i>kN ult</i> 533 (266)	ERNAL (ENE	LUMNS INTE		MATE LOAD TO SU uaudl = 50 kN/m
) 702 (351) 797 (399) 1008 (504) 1282 (641)) 1297 (648) 1444 (722) 1803 (902) 2223 (1112)	588 702 (351) 1297 (648)	617 (309) 1152 (576)	533 (266) 1012 (506)	ERNAL (END 459 (230) 883 (442)	LUMNS INTE 386 (193) 755 (378)	<i>JPPORTS/COL</i> 319 (159) 632 (316)	MATE LOAD TO SL uaudl = 50 kN/m uaudl = 100 kN/m
) 702 (351) 797 (399) 1008 (504) 1282 (641)) 1297 (648) 1444 (722) 1803 (902) 2223 (1112)) 2458 (1229) 2743 (1371) 3391 (1696)	588 702 (351) 1297 (648) 2458 (1229) 2	617 (309) 1152 (576) 2184 (1092)	533 (266) 1012 (506) 1940 (970)	ERNAL (END 459 (230) 883 (442) 1706 (853)	UMNS INTE 386 (193) 755 (378) 1479 (739)	JPPORTS/COL 319 (159) 632 (316) 1256 (628)	MATE LOAD TO SU uaudl = 50 kN/m
) 702 (351) 797 (399) 1008 (504) 1282 (641)) 1297 (648) 1444 (722) 1803 (902) 2223 (1112)) 2458 (1229) 2743 (1371) 3391 (1696)	588 702 (351) 1297 (648) 2458 (1229) 2	617 (309) 1152 (576) 2184 (1092)	533 (266) 1012 (506) 1940 (970)	ERNAL (END 459 (230) 883 (442) 1706 (853)	UMNS INTE 386 (193) 755 (378) 1479 (739)	JPPORTS/COL 319 (159) 632 (316) 1256 (628) 2480 (1240) 2	MATE LOAD TO SL uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m
) 702 (351) 797 (399) 1008 (504) 1282 (641)) 1297 (648) 1444 (722) 1803 (902) 2223 (1112)) 2458 (1229) 2743 (1371) 3391 (1696))) 97 (126) 109 (129) 146 (143) 160 (127)	588 702 (351) 1297 (648) 2458 (1229) 2 97 (126)	617 (309) 1152 (576) 2184 (1092) 4392 (2196) 85 (119)	533 (266) 1012 (506) 1940 (970) 3874 (1937) 82 (130)	ERNAL (END 459 (230) 883 (442) 1706 (853) 3382 (1691) 78 (135)	2UMNS INTE 386 (193) 755 (378) 1479 (739) 2923 (1461) 3 78 (151)	JPPORTS/COL 319 (159) 632 (316) 1256 (628) 2480 (1240) 2 m (kg/m ³) 79 (174)	MATE LOAD TO SU uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m IFORCEMENT, kg/r uaudi = 50 kN/m
) 702 (351) 797 (399) 1008 (504) 1282 (641)) 1297 (648) 1444 (722) 1803 (902) 2223 (1112)) 2458 (1229) 2743 (1371) 3391 (1696))) 97 (126) 109 (129) 146 (143) 160 (127)) 132 (148) 162 (168) 175 (144) 185 (122)) 194 (183) 201 (166) 205 (127)	588 702 (351) 1297 (648) 2458 (1229) 2 97 (126) 132 (148) 194 (183)	617 (309) 1152 (576) 2184 (1092) 4392 (2196) 85 (119) 118 (145) 189 (208)	533 (266) 1012 (506) 1940 (970) 3874 (1937) 82 (130) 114 (156) 169 (205)	ERNAL (END 459 (230) 883 (442) 1706 (853) 3382 (1691) 78 (135) 101 (150) 153 (203)	2000 STATE 386 (193) 755 (378) 1479 (739) 2923 (1461) 78 (151) 96 (162) 132 (190)	JPPORTS/COL 319 (159) 632 (316) 1256 (628) 2480 (1240) 2 m (kg/m ²) 79 (174) 93 (180) 116 (183)	MATE LOAD TO SU uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m uaudi = 50 kN/m uaudi = 50 kN/m uaudi = 200 kN/m
) 702 (351) 797 (399) 1008 (504) 1282 (641)) 1297 (648) 1444 (722) 1803 (902) 2223 (1112)) 2458 (1229) 2743 (1371) 3391 (1696))) 97 (126) 109 (129) 146 (143) 160 (127)) 132 (148) 162 (168) 175 (144) 185 (122)) 194 (183) 201 (166) 205 (127)	588 702 (351) 1297 (648) 2458 (1229) 2 97 (126) 132 (148) 194 (183)	617 (309) 1152 (576) 2184 (1092) 4392 (2196) 85 (119) 118 (145)	533 (266) 1012 (506) 1940 (970) 3874 (1937) 82 (130) 114 (156)	ERNAL (END 459 (230) 883 (442) 1706 (853) 3382 (1691) 78 (135) 101 (150) 153 (203)	2000 STATE 386 (193) 755 (378) 1479 (739) 2923 (1461) : 78 (151) 96 (162)	JPPORTS/COL 319 (159) 632 (316) 1256 (628) 2480 (1240) 2 m (kg/m ³) 79 (174) 93 (180)	MATE LOAD TO SU uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m IFORCEMENT, kg/r uaudi = 50 kN/m uaudi = 100 kN/m
) 702 (351) 797 (399) 1008 (504) 1282 (641)) 1297 (648) 1444 (722) 1803 (902) 2223 (1112)) 2458 (1229) 2743 (1371) 3391 (1696))) 97 (126) 109 (129) 146 (143) 160 (127)) 132 (148) 162 (168) 175 (144) 185 (122)) 194 (183) 201 (166) 205 (127))) See Section 3.2.4 on p 47	588 702 (351) 1297 (648) 2458 (1229) 2 97 (126) 132 (148) 194 (183)	617 (309) 1152 (576) 2184 (1092) 4392 (2196) 85 (119) 118 (145) 189 (208)	533 (266) 1012 (506) 1940 (970) 3874 (1937) 82 (130) 114 (156) 169 (205)	ERNAL (END 459 (230) 883 (442) 1706 (853) 3382 (1691) 78 (135) 101 (150) 153 (203)	2000 STATE 386 (193) 755 (378) 1479 (739) 2923 (1461) 78 (151) 96 (162) 132 (190)	JPPORTS/COL 319 (159) 632 (316) 1256 (628) 2480 (1240) 2 m (kg/m ²) 79 (174) 93 (180) 116 (183)	MATE LOAD TO SU uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m IFORCEMENT, kg/r uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m IGN NOTES
) 702 (351) 797 (399) 1008 (504) 1282 (641)) 1297 (648) 1444 (722) 1803 (902) 2223 (1112)) 2458 (1229) 2743 (1371) 3391 (1696))) 97 (126) 109 (129) 146 (143) 160 (127)) 132 (148) 162 (168) 175 (144) 185 (122)) 194 (183) 201 (166) 205 (127))) See Section 3.2.4 on p 47 d d d d	588 702 (351) 1297 (648) 2458 (1229) 2 97 (126) 132 (148) 194 (183)	617 (309) 1152 (576) 2184 (1092) 4392 (2196) 85 (119) 118 (145) 189 (208)	533 (266) 1012 (506) 1940 (970) 3874 (1937) 82 (130) 114 (156) 169 (205)	ERNAL (END 459 (230) 883 (442) 1706 (853) 3382 (1691) 78 (135) 101 (150) 153 (203) 210 (203)	2000 STATE 386 (193) 755 (378) 1479 (739) 2923 (1461) 78 (151) 96 (162) 132 (190)	JPPORTS/COL 319 (159) 632 (316) 1256 (628) 2480 (1240) 2 m (kg/m ²) 79 (174) 93 (180) 116 (183)	MATE LOAD TO SU uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 200 kN/m uaudi = 400 kN/m
12.0 13.0 14.0 15 0 11.0 12.0 14.0			m — = 4) kN/m 🗕	— = 100	— = 50 kN/m

2 hours fire +15 mm 4 hours fire +35 mm Moderate exposure +25 mm Severe exposure (C40) +35 mm

SPAN:DEPTH CHART

+5 mm
+25 mm
+20 mm
+25 mm

3.3 Columns

3.3.1 USING IN-SITU COLUMNS

In-situ columns offer strength, economy, versatility, mouldability, fire resistance, and robustness. They are often the most obvious and intrusive part of a structure and judgement is required to reconcile position, size, shape, spans of horizontal elements and economy. Generally the best economy comes from using regular square grids and constantly sized columns. Ideally, the same size of column should be used at all levels at all locations. If this is not possible, then keep the number of profiles to a minimum, eg. one for internal columns and one for perimeter columns. Certainly up to about eight storeys, the same size and shape should be used throughout a column's height. The outside of edge columns should be flush with or inboard of the edges of slabs. Chases, service penetrations and horizontal offsets should be avoided. Offsets are the cause of costly transition beams which can be very disruptive to site progress.

High-strength concrete columns can decrease the size of columns required. Smaller columns occupy less lettable space and should be considered on individual projects. However, up to about five storeys the size of perimeter columns is dominated by moment: concrete strengths greater than 35 N/mm² appear to make little difference to the size of perimeter column required. Rectangular columns can be less obtrusive than square columns.

3.3.2 USING THE CHARTS AND DATA

The column charts give square sizes against **total ultimate** axial load for a range of steel contents for internal, edge and corner **braced** columns. Further charts and tables allow bar arrangements to be judged and reinforcement densities estimated.

The column charts 'work' on **total ultimate** axial load in kN. The user should preferably calculate, otherwise estimate, this load for the lowest level of column under consideration (see Section 8.3).

Column design is dependant upon ultimate axial load and ultimate design moment. Design moments in columns are specific to that column and can only be generalized (but with unknown certainty) by using a fair amount of conservatism. The sizes given, particularly for perimeter columns, are, therefore, **estimates** only. The charts and data relate to square columns. However, these sizes can be used, with caution, to derive the sizes of rectangular columns, with equal area and aspect ratios up to 2.0, and of circular columns of at least the same cross-sectional area.

The charts and data for internal columns assume nominal moments only: they assume that the slabs and beams supported have equal spans in each orthogonal direction (ie. $I_{x1} = I_{x2}$ and $I_{y1} = I_{y2}$). If spans differ by more than, say 15%, consider treating internal columns as edge columns.

In order to allow for moments, the charts for edge and corner columns give sizes according to axial load and the number of storeys supported. As explained in Section 7, the sizes should, generally, prove conservative, but will not be so if imposed floor loads greater than 5.0 kN/m², floor plates less stiff than solid flat slabs or unequal adjacent spans, are required. If spans parallel to the edge are unequal by more than, say 15%, then consider treating edge columns as corner columns.

Sizes derived from the charts and data should be checked for compatibility with slabs (eg. punching shear in flat slabs) and beams (eg. widths and end bearings). The moment in the top of a perimeter column joined to a concrete roof can prove critical in final design. Unless special measures are taken (eg. by providing, effectively, a pin joint), it is suggested that this single storey load case should be checked at scheme design stage.

3.3.3 DESIGN ASSUMPTIONS

Reinforcement

Main bars: $f_y = 460 \text{ N/mm}^2$. Links: $f_y = 250 \text{ N/mm}^2$. Maximum bar size T40. Link size, maximum main bar size/4. Reinforcement weights assume 35 diameter laps and 3.6 m storey heights and links at 250 mm minimum centres. No allowance is made for wastage. With regard to reinforcement quantities, please refer to Section 2.2.4.

Concrete C35, 24 kN/m³, 20 mm aggregate.

Fire and durability Fire resistance 1 hour; mild exposure.

Other assumptions made are described and discussed in Section 7.

3.3.4 DESIGN NOTES

General

As described in Section 7, the charts and data are based on considering square braced columns supporting solid flat slabs, with panel aspect ratios of 1.00, 1.25, 1.5 and 1.75, carrying 5.0 kN/m² imposed load and 10 kN/m perimeter load. The charts and data correspond to the worst case, ie. largest size derived from considering the flat slabs described above. Generally the sizes given should prove conservative but may not be so when fully analysed and designed, or, especially, when less stiff structures, or very lightweight cladding is used.

Main bars

Feasible bar arrangements for various square column sizes and reinforcement percentages are given on pages 75 and 80. These graphs have been prepared on the basis of maximum 300 mm centres of bars or minimum 30 mm gap at laps. For perimeter columns it is assumed that in 8 bar arrangements (3 bars per face), 6 bars are effective, and that in 12 bar arrangements (4 bars per face), 8 bars are effective.

In-situ concrete columns

Size is not only dependent on load but also, especially in perimeter columns, on moment. In order to allow for moments in perimeter columns, the charts for edge and corner columns give sizes according to the number of storeys supported.

Internal columns

ULTIMATE AXIAL LOAD, ki	1000 V	1500	2000	3000	4000	5000	6000	8000	10000
SIZE, mm square									
1.0% C35	240	295	345	420	485	540	595	685	765
2.0% C35	225	270	310	380	440	490	540	620	695
3.0% C35	225	250	285	350	405	455	500	570	640
4.0% C35	225	230	270	330	380	425	465	535	595
VARIATIONS: implications of Ultimate axial load 2.5% C35	using diffe	rent grade. 255	s of concret 295						
2.3% (33)					420	470	E1E	FOF	CCE
2.5% C40	225	255	295	365 350	420 405	470 450	515 495	595 570	665 640

SIZE:PERCENTAGE REINFORCEMENT CHART, INTERNAL COLUMNS

Feasible bar arrangements for internal columns are given above. These are dependant on column sizes and required percentage of reinforcement. The graphs have been prepared on the basis of maximum 300 mm centres or minimum 30 mm gap at laps. All bars are assumed to be effective.

INTERINAL C		ւ, ուու օգս	aare							
		250	300	350	400	450	500	550	600	650
REINFORCEM	IENT, kg/m he	eight (kg/m	1 ³)			Inclu	ding laps ar	nd links. See	e Section 2	2.4 on p 6
4T16s,	804 mm ²	9 (152)	10 (111)							
4T20s,	1256 mm ²	14 (218)	14 (155)	14 (117)						
4T25s,	1964 mm ²	22 (350)	22 (249)	23 (187)	23 (146)					
4T32s,	3216 mm ²		37 (406)	37 (303)	38 (235)					
8T25s,	3928 mm ²			42 (347)	46 (285)	46 (229)	47 (189)	48 (158)	49 (135)	
4T32s + 4T20	s, 4472 mm ²			56 (455)	57 (355)	58 (286)	59 (236)	65 (216)	67 (185)	68 (161)
4T32s + 4T25	s, 5180 mm ²				64 (401)	65 (322)	66 (265)	73 (240)	74 (206)	76 (179)
8T32s,	6432 mm ²				74 (463)	75 (369)	76 (302)	76 (252)	77 (214)	78 (184)
12T32s, 8T40s,	9648 mm ² 10048 mm ²					109 (536)	109 (437)	114 (375) 125 (412)	115 (318) 126 (349)	116 (273) 127 (300)

INTERNAL COLUMN SIZE, mm square

Edge columns 1% reinforcement

LOAD:SIZE CHART

Edge columns 2% reinforcement

LOAD:SIZE CHART 4 storeys 3 storeys 2 storeys 1 storey 6 storeys 8 storeys 10 storeys SIZE, mm square ULTIMATE AXIAL LOAD, N, kN ULTIMATE AXIAL LOAD, kN 400 0 SIZE, mm square C35 concrete 2 storeys 3 storeys 4 storeys

6 storeys

Edge columns 3% reinforcement

LOAD:SIZE CHART

Edge columns 4% reinforcement

6 storeys

Corner columns 1% reinforcement

LOAD:SIZE CHART

Corner columns 2% reinforcement

LOAD:SIZE CHART

6 storeys

						UL	TIMATE A	XIAL LOA	D, N, kN
ULTIMATE AXIAL LOA	D, kN 200	400	600	800	1000	1200	1600	2000	3000
SIZE, mm square								C35	concrete
2 storeys	280	400	505	585	660				
3 storeys	250	310	395	465	530	585	683		
4 storeys	230	270	330	395	455	505	590	668	
6 storeys	225	235	275	315	360	405	485	550	682

Corner columns 3% reinforcement

LOAD:SIZE CHART

	7, KIN 200	400	600	800	1000	1200	1600	2000	3000
SIZE, mm square								C35	concrete
2 storeys	265	315	410	485	555				
3 storeys	245	255	305	375	435	485	574		
4 storeys	245	235	270	300	360	410	490	559	
6 storeys	240	225	225	240	275	315	385	450	569

Corner columns 4% reinforcement

						UL	TIMATE A	XIAL LOA	D, N, kN
ULTIMATE AXIAL LOA	D, kN 200	400	600	800	1000	1200	1600	2000	3000
SIZE, mm square								C35	concrete
2 storeys	225	265	330	400	475				
3 storeys	230	230	230	255	330	400	488		
4 storeys	230	225	225	235	275	320	400	472	
6 storeys	240	230	225	225	235	255	295	355	476

Perimeter columns

(Edge and corner columns)

SIZE:PERCENTAGE REINFORCEMENT CHART, PERIMETER COLUMNS

Feasible bar arrangements for perimeter columns are given above. These are dependant on column sizes and required percentage of reinforcement. The graphs assume maximum 300 mm centres or minimum 30 mm gaps at laps. As they are perimeter columns, ie. edge and corner columns, it is assumed that in 8 bar arrangements, 6 bars are effective and in 12 bar arrangements, 8 bars are effective. This makes the above chart slightly different from the one on p 75 which deals with internal columns; but for the same arrangement and size, reinforcement densities are the same for perimeter as internal columns.

PERIMETER	COLUMN SI	ZE, mm se	quare							
		250	300	350	400	450	500	550	600	650
REINFORCEM	ENT, kg/m he	eight (kg/m	³)			Inclu	ding laps ar	nd links. See	e Section 2	2.4 on p 6
4T16s,	804 mm ²	9 (152)	10 (111)							
4T20s,	1256 mm ²	14 (218)	14 (155)	14 (117)						
4T25s,	1964 mm ²	22 (350)	22 (249)	23 (187)	23 (146)					
4T32s,	3216 mm ²		37 (406)	37 (303)	38 (235)					
8T25s,	3928 mm ²			42 (347)	46 (285)	46 (229)	47 (189)	48 (158)	49 (135)	
4T32s + 4T20s	s, 4472 mm ²			56 (455)	57 (355)	58 (286)	59 (236)	65 (216)	67 (185)	68 (161)
4T32s + 4T25s	5, 5180 mm ²				64 (401)	65 (322)	66 (265)	73 (240)	74 (206)	76 (179)
8T32s,	6432 mm ²				74 (463)	75 (369)	76 (302)	76 (252)	77 (214)	78 (184)
12T32s, 8T40s,	9648 mm ² 10048 mm ²					109 (536)	109 (437)	114 (375) 125 (412)	115 (318) 126 (349)	116 (273) 127 (300)

4 PRECAST AND COMPOSITE CONSTRUCTION

4.1 Slabs

4.1.1 USING PRECAST AND COMPOSITE SLABS

Precast concrete flooring offers many advantages: speed of erection, small, medium and long spans, structural efficiency, economy, versatility, fire resistance, thermal capacity and sound insulation. It will readily accept fixings, floor and ceiling finishes, and small holes. Provision can be made for large holes. Handling and stacking is straightforward. Precast concrete flooring provides immediate safe working platforms and can eliminate formwork and propping.

The combination of precast concrete with in-situ concrete (or hybrid concrete construction⁽⁷⁾) harnesses the best of both materials. Structurally, these hybrids can act separately (non-compositely) or together (compositely). Hybrid floors combine all the advantages of speed and quality of precast concrete with the robustness, flexibility and versatility of in-situ construction.

Each type has implications for overall costs, speed, selfweight, storey heights and flexibility in use; some guidance is given with the charts. The relative importance of these factors should be assessed for each particular case. The units are designed to BS 8110, generally using grade C50 concrete and high tensile strand or wire prestressing steel to BS 5896 or high tensile steel to BS 4449. All prestressed precast concrete flooring systems exhibit a degree of upward camber and due allowance should be made. Minimum bearing of precast members is 40 mm plus allowances for spalling and construction inaccuracies (see BS 8110, Pt. 1, Cl 5.2.3 and Cl 5.2.4).

4.1.2 USING THE CHARTS AND DATA

The charts and data give overall depths against spans for a range of **characteristic** imposed loads assuming simply supported spans. An allowance of 1.5 kN/m² has been made for superimposed dead loads (finishes, services, etc). The range of many precast floors is considerably extended if this allowance is reduced.

Actual span/load capacities and self-weights vary between manufacturers and are subject to development and change. The user should refer to manufacturers and their current literature. The sizes, spans and weights quoted in the charts and data are selected, whenever possible, from those offered in late 1996 by at least two manufacturers. Thicknesses are measured overall of structural toppings, etc.

Precast concrete construction

The diagram above shows typical components. See Precast concrete framed structures - Design guide⁽³⁾ and Multi-storey precast concrete framed structures⁽⁹⁾ for detailed guidance on procurement and design.

Composite solid prestressed soffit slabs

Solid prestressed slabs act compositely with a structural topping (generally grade C30 with a light mesh) to create a robust composite floor. The units, usually 600 mm or 1200 mm wide, act as fully participating formwork which may be propped or unpropped during construction

ADVANTAGES

- Speed
- Elimination of formwork
- Structural efficiency
- Robustness

SPAN: DEPTH CHART

DISADVANTAGES

- Limited spans and capacities
- Propping usually required

Composite lattice girder soffit slabs

Robust

Quality soffit

- Speed
- Elimination of formwork
- Safe working platform

SPAN: DEPTH CHART

Precast plates act as permanent formwork and as precast soffits for robust, high-capacity, composite floor slabs.

The units are cast with most, if not all, of the bottom reinforcement required. Top reinforcement is fixed insitu. The lattice girders give the precast section strength during construction. The units, typically 50 mm to 100 mm thick and 1200 mm or 2400 mm wide, are usually propped during construction. The chart and data relate to 75 mm (up to 200 mm final thickness) and 100 mm thick units. Self-weight can be reduced by having the units supplied with polystyrene void-formers bonded to the upper surface.

DISADVANTAGES

Propping usually required

VARIATIONS TO DESIGN ASSUMPTIONS: for a characteristic imposed load (IL) of 5.0 kN/m²

Unpropped

75 mm unit depth 100 mm unit depth 115 to 200 mm deep max span 3.75 m 150 & 200 mm deep max span 5.00 m, 300 deep max span 4.71 m

Precast hollow-core slabs, no topping

ADVANTAGES

- Speed
 - Elimination of formwork
- High capacitiesStructural efficiency
- Short, medium and long spans
- Elimination of propping

SPAN:DEPTH CHART

Hollow-core floor slabs are precast prestressed concrete elements with continous voids provided to reduce selfweight and achieve structural efficiency. They are very popular, and economic across a wide range of spans and loadings. They are used in a wide range of buildings.

Depths range in increments from 110 mm to 450 mm; widths are generally 1200 mm. Span/load capacities may vary slightly between manufacturers. The soffit finish is suitable for exposure in car parks and industrial buildings, or for applied finishes. The top is designed to receive a levelling screed or appropriate flooring system.

DISADVANTAGES

Cranage may prove critical

Composite hollow-core slabs, with topping

ADVANTAGES

- Speed
- High capacities
 - Robustness Structural efficiency Elimination of propping

Elimination of formwork

Short, medium and long spans

SPAN:DEPTH CHART

Hollow-core floor slabs (see opposite) are used in conjunction with a structural topping where enhanced performance is required.

The units act compositely with the in-situ structural topping to creat a robust, high capacity composite floor. The structural topping overcomes possible differential camber between units, and is usually a grade C30 normal weight concrete, 50 mm thick, reinforced with a light mesh. Overall thicknesses are given.

DISADVANTAGES

• Cranage may prove critical

SINGLE SPAN, m	5.0	6.0	7.0	8.0	9.0	10.0	12.0	14.0	16.0
THICKNESS, mm								Includir	ng topping
$IL = 2.5 \text{ kN/m}^2$	150	150	190	190	250	290	350	425	525
$IL = 5.0 \text{ kN/m}^2$	150	190	190	250	290	310	360	475	
$IL = 7.5 \text{ kN/m}^2$	190	190	250	290	290	350	440		
$IL = 10.0 \text{ kN/m}^2$	190	250	250	290	350	360	440		
ULTIMATE LOAD TO SU	PPORTING BE	AMS, INTE	RNAL (END)	, kN/m					
$IL = 2.5 \text{ kN/m}^2$	53 (26)	63 (32)	78 (39)	89 (45)	107 (53)	123 (62)	162 (81)	207 (103)	290 (145)
$IL = 5.0 \text{ kN/m}^2$	73 (36)	91 (45)	106 (53)	127 (63)	147 (73)	173 (87)	210 (105)	271 (135)	
$IL = 7.5 \text{ kN/m}^2$	96 (48)	115 (57)	139 (69)	163 (81)	183 (91)	215 (108)	264 (132)		
$IL = 10.0 \text{ kN/m}^2$	116 (58)	143 (72)	167 (83)	195 (97)	230 (115)	255 (128)	312 (156)		

Precast double 'T's, no topping

ADVANTAGES

- Quick
- Long spans
- Elimination of formwork and propping
- Efficient

SPAN: DEPTH CHART

Double 'T's are used for long spans. They are relatively lightweight with a high load capacity. The units are prestressed and can be left exposed. TT2 units are intended for up to 2 hours fire resistance; TT4 for up to 4 hours. The top surface is designed to receive a levelling screed or appropriate flooring system.

Effective load sharing between units is achieved by welding cast-in plates together and brushing dry grout into the shaped longitudinal joints. Units are generally 2400 mm wide with ribs at approximately 1200 mm centres.

DISADVANTAGES

Cranage may prove critical

Composite double 'T's, with topping

- Quick
- Long spans
- Elimination of formwork and propping

Efficient

SPAN: DEPTH CHART

Double 'T's (see opposite) are used in conjunction with a structural topping where enhanced performance is required. Specifications vary between manufacturers

The units act compositely with the in-situ structural topping to create a robust composite floor. The structural topping overcomes possible differential camber between units and is usually a grade C30 normal-weight concrete, reinforced with a light mesh.

DISADVANTAGES

Cranage may prove critical

Precast beam and block floors

(Beam and pot)

These systems combine prestressed beams with either solid blocks or voided 'pots'. They are widely used in the domestic market but can be used for commercial loadings for spans up to 6.5 m. Diaphragm action can be achieved by using a structural topping. Units are manhandable and ideal where access is restricted.

Flush soffits can be achieved using 'pots'. Holes can be formed by omitting 'pots' and making good. Slip tiles facilitate service runs or solid sections of concrete.

DISADVANTAGES

Limited spans and capacities

ADVANTAGES

- Ease of use
- Elimination of formwork
- Elimination of propping

SPAN: DEPTH CHART

Composite prestressed rib floors

Structural efficiency

Robustness

ADVANTAGES

- Speed
- Long spans
- Elimination of formwork
- Elimination of propping

SPAN: DEPTH CHART

Precast, prestressed rib beams combine with precast soffit slabs or profiled metal decking and in-situ concrete to provide an economic, long-span ribbed floor. The ribs are manufactured in depths of 455 and 550 mm and used in slabs approximately 575 or 670 mm deep overall. Usually, they are at 2.0 to 2.4 m centres; closer centres increase load and span capacities. The extremes of the chart assume 0.9 m centres

The composite ribbed slab offers the advantages of a lightweight, yet efficient, floor construction, with the minimum of traditional formwork

DISADVANTAGES

Cranage may prove critical

4.2 Beams

4.2.1 USING PRECAST AND COMPOSITE BEAMS

Factory-engineered precast concrete frames are used widely in offices, car parks, commercial and industrial developments of all types. Precast beams facilitate speed of erection by eliminating formwork, propping and, in many cases, site-applied finishes and follow-on trades. They have inherent fire resistance, durability and the potential for a vast range of integral and applied finishes.

Manufacturers produce a wide range of preferred crosssections based on 50 mm increments. Designs with other cross-sections are easily accommodated. However, the economics of precasting beams depend on repetition: a major cost item is the manufacture of the base moulds. Manufacturers should be consulted at the earliest opportunity (see Section 10.4).

4.2.2 USING THE CHARTS AND DATA

The charts and data for precast reinforced beams cover a range of web widths and **ultimate** applied uniformly distributed loads (uaudl). They are divided into:

Rectangular beams, eg: isolated or upstand beams

- 'L' beams or single booted beams, eg: perimeter beams supporting hollow-core floor units
- (Inverted) 'T' beams or double booted beams, eg: internal beams supporting hollow-core floor units

The charts assume that the beams are simply supported and non-composite, ie. no flange action or benefit from temporary propping is assumed. For 'L' and inverted 'T' beams, a ledge width of 125 mm has been assumed.

From the appropriate chart(s), use the maximum span and appropriate ultimate applied uniformly distributed loads to determine depth. The user is expected to interpolate between values given in the charts and data, and round up both the depth and loads to supports in line with his or her confidence in the design criteria used and normal modular sizing.

4.2.3 DESIGN ASSUMPTIONS

Reinforcement

Main bars: maximum T32T & B, minimum T20T & B at simply supported ends, links T10. Nominal T16T in mid-span. Minimum 50 mm between bars.

Concrete

C40, 24 kN/m³, 20 mm aggregate. Fair-faced finish. Concrete grades up to C60 are commonly used to facilitate early removal from moulds. For severe exposure grade C50 concrete is assumed.

Fire and durability Fire resistance 1 hour; mild exposure.

Support

Precast beams are assumed to be supported by precast columns with compatible connection details. Refer to column charts and data to estimate sizes.

Span

For sizing precast beams, span can be taken as being centreline of support to centreline of support. For example, assuming 300 mm wide columns and, say, 100 mm from the end of beam to the centreline of support, beam span might be 500 mm less than centreline column to centreline column: however, for assessing loads to columns, the full centreline column to centreline column dimension should be used and is assumed in the charts and data.

Ledge widths

The ledge (or boot) width has been taken to be 125 mm. This allows 75 mm bearing, 10 mm fixing tolerance and 40 mm for in-situ infill.

Loads

Ultimate loads to columns assume elastic reaction factors of 1.0 to internal columns and 0.5 to end columns.

4.2.4 DESIGN NOTES

Different design criteria can be critical across the range of beams described. The sizes given in the charts and data are critical on the following parameters:

- a A_sB (area of steel, bottom) restricted by end support width or length.
- d Sizes given are close to requiring two layers of steel. The use of two layers of reinforcement in precast beams is not uncommon.
- e Compression steel required in top of span.

single span

Rectangular precast beams

300 mm

wide

SPAN: DEPTH CHART

 Moderate exposure
 300
 400
 520
 680
 870

 Severe exposure (C50)
 330
 410
 540
 690
 880

Rectangular precast beams 450 mm

single span

SPAN: DEPTH CHART

wide

	800								
	000				/		/	!/	
			+ -		·/-	+/-	2 layers reinforcem		
		-			1 layer _				
	700			7					
	/00				/ /	/	1.1.1		
			+/-						
		-	/ -		/ -/			-/	
	coo		/		¹ -,			· ·	
	600								
			/			- / -			
		/-		/		- + -			
	500								
			/-						
						<u> </u>			
			//-			4 -			
	400								
					-			· - ·	
					-			· - ·	
	5								
	300 🌽								
	b 🕨				-			· - ·	
(2				-			· - ·	
		- '			-			· - ·	
L	300 200								
	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
									SPAN, m
	KEY Ult	imate app = 25 kN/	lied udl m 🗕 =	50 kN/m	<u> </u>	kN/m —	= 100 kN	/m — =	150 kN/m
SINGLE SPAN, m	KEY Ult 4.0			50 kN/m 7.0	— = 75 8.0	kN/m 9.0	= 100 kN 10.0	/m — = 11.0	150 kN/m 12.0
	-	= 25 kN/	m <u> </u>						
DEPTH, mm	4.0	= 25 kN/	m — = 6.0		8.0			11.0	
DEPTH, mm uaudl = 25 kN/m	4.0 252	= 25 kN/ 5.0 288	m — = 6.0 332	7.0	8.0 432	9.0 482	10.0	11.0 620	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m	4.0 252 272	= 25 kN/	m — = 6.0 332 388	7.0	8.0 432 508	9.0	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m	4.0 252	= 25 kN/ 5.0 288 328	m — = 6.0 332	7.0 386 450	8.0 432	9.0 482 576	10.0 538 660	11.0 620	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m	4.0 252 272 294	= 25 kN/ 5.0 288 328 356	m = 6.0 332 388 422	7.0 386 450 498	8.0 432 508 610	9.0 482 576	10.0 538 660	11.0 620	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m	4.0 252 272 294 310	= 25 kN/ 5.0 288 328 356 388	m — = 6.0 332 388 422 482	7.0 386 450 498 610	8.0 432 508 610	9.0 482 576	10.0 538 660	11.0 620	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m	4.0 252 272 294 310 334	= 25 kN/ 5.0 288 328 356 388 490	m — = 6.0 332 388 422 482 640	7.0 386 450 498 610 824	8.0 432 508 610	9.0 482 576	10.0 538 660	11.0 620	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m	4.0 252 272 294 310 334	= 25 kN/ 5.0 288 328 356 388 490	m — = 6.0 332 388 422 482 640	7.0 386 450 498 610 824	8.0 432 508 610	9.0 482 576	10.0 538 660	11.0 620	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108)	= 25 kN/ 5.0 288 328 356 388 490 UMNS, INTE 146 (73) 274 (137)	m = 6.0 332 388 422 482 640 ERNAL (ENL 180 (90) 336 (168)	7.0 386 450 498 610 824 2), kN ult 216 (108) 398 (199)	8.0 432 508 610 754 252 (126) 462 (231)	9.0 482 576 742 290 (145) 528 (264)	10.0 538 660 896	11.0 620 782	12.0 712
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159)	= 25 kN/ 5.0 288 328 356 388 490 UMNS, INTE 146 (73) 274 (137) 402 (201)	m = 6.0 332 388 422 482 640 ERNAL (ENL 180 (90) 336 (168) 488 (244)	7.0 386 450 498 610 824 2), kN ult 216 (108) 398 (199) 578 (289)	8.0 432 508 610 754 252 (126) 462 (231) 674 (337)	9.0 482 576 742 290 (145)	10.0 538 660 896 332 (166)	11.0 620 782 378 (189)	12.0 712
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 75 kN/m uaudl = 75 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 418 (209)	= 25 kN/ 5.0 288 328 356 388 490 <i>UMNS, INTE</i> 146 (73) 274 (137) 402 (201) 526 (263)	m = 6.0 332 388 422 482 640 ERNAL (ENL 180 (90) 336 (168) 488 (244) 644 (322)	7.0 386 450 498 610 824 216 (108) 398 (199) 578 (289) 764 (382)	8.0 432 508 610 754 252 (126) 462 (231)	9.0 482 576 742 290 (145) 528 (264)	10.0 538 660 896 332 (166) 600 (300)	11.0 620 782 378 (189)	12.0 712
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159)	= 25 kN/ 5.0 288 328 356 388 490 UMNS, INTE 146 (73) 274 (137) 402 (201)	m = 6.0 332 388 422 482 640 ERNAL (ENL 180 (90) 336 (168) 488 (244) 644 (322)	7.0 386 450 498 610 824 2), kN ult 216 (108) 398 (199) 578 (289)	8.0 432 508 610 754 252 (126) 462 (231) 674 (337)	9.0 482 576 742 290 (145) 528 (264)	10.0 538 660 896 332 (166) 600 (300)	11.0 620 782 378 (189)	12.0 712
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 150 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 418 (209)	= 25 kN/ 5.0 288 328 356 388 490 <i>UMNS, INTE</i> 146 (73) 274 (137) 402 (201) 526 (263)	m = 6.0 332 388 422 482 640 ERNAL (ENL 180 (90) 336 (168) 488 (244) 644 (322)	7.0 386 450 498 610 824 216 (108) 398 (199) 578 (289) 764 (382)	8.0 432 508 610 754 252 (126) 462 (231) 674 (337)	9.0 482 576 742 290 (145) 528 (264)	10.0 538 660 896 332 (166) 600 (300) 886 (443)	11.0 620 782 378 (189) 680 (340)	12.0 712 430 (215)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 418 (209)	= 25 kN/ 5.0 288 328 356 388 490 <i>UMNS, INTE</i> 146 (73) 274 (137) 402 (201) 526 (263)	m = 6.0 332 388 422 482 640 ERNAL (ENL 180 (90) 336 (168) 488 (244) 644 (322)	7.0 386 450 498 610 824 216 (108) 398 (199) 578 (289) 764 (382)	8.0 432 508 610 754 252 (126) 462 (231) 674 (337)	9.0 482 576 742 290 (145) 528 (264)	10.0 538 660 896 332 (166) 600 (300) 886 (443) <i>See</i>	11.0 620 782 378 (189) 680 (340) Section 4.2	12.0 712 430 (215) .4 on p 90
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 150 kN/m uaudl = 150 kN/m DESIGN NOTES uaudl = 25 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 418 (209) 620 (310)	= 25 kN/ 5.0 288 328 356 388 490 <i>UMNS, INTE</i> 146 (73) 274 (137) 402 (201) 526 (263)	m = 6.0 332 388 422 482 640 ERNAL (ENL 180 (90) 336 (168) 488 (244) 644 (322)	7.0 386 450 498 610 824 2), kN ult 216 (108) 398 (199) 578 (289) 764 (382) 1138 (569)	8.0 432 508 610 754 252 (126) 462 (231) 674 (337) 892 (446)	9.0 482 576 742 290 (145) 528 (264) 776 (388)	10.0 538 660 896 332 (166) 600 (300) 886 (443) <i>See</i> a	11.0 620 782 378 (189) 680 (340) Section 4.2 a	12.0 712 430 (215)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 418 (209) 620 (310) a	 = 25 kN/ 5.0 288 328 356 388 490 UMNS, INTE 146 (73) 274 (137) 402 (201) 526 (263) 788 (394) 	m = 6.0 332 388 422 482 640 ERNAL (ENL 180 (90) 336 (168) 488 (244) 644 (322) 958 (479)	7.0 386 450 498 610 824 216 (108) 398 (199) 578 (289) 764 (382) 1138 (569) a	8.0 432 508 610 754 252 (126) 462 (231) 674 (337) 892 (446)	9.0 482 576 742 290 (145) 528 (264) 776 (388)	10.0 538 660 896 332 (166) 600 (300) 886 (443) <i>See</i> a ad	11.0 620 782 378 (189) 680 (340) Section 4.2	12.0 712 430 (215) .4 on p 90
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 418 (209) 620 (310) a a ae	 = 25 kN/ 5.0 288 328 356 388 490 UMNS, INTE 146 (73) 274 (137) 402 (201) 526 (263) 788 (394) ae 	m = 6.0 332 388 422 482 640 <i>ERNAL (ENL</i> 180 (90) 336 (168) 488 (244) 644 (322) 958 (479)	7.0 386 450 498 610 824 216 (108) 398 (199) 578 (289) 764 (382) 1138 (569) a a	8.0 432 508 610 754 252 (126) 462 (231) 674 (337) 892 (446) a a	9.0 482 576 742 290 (145) 528 (264) 776 (388)	10.0 538 660 896 332 (166) 600 (300) 886 (443) <i>See</i> a	11.0 620 782 378 (189) 680 (340) Section 4.2 a	12.0 712 430 (215) .4 on p 90
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m DESIGN NOTES uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 75 kN/m uaudl = 75 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 418 (209) 620 (310) a a ae ae	= 25 kN/ 5.0 288 328 356 388 490 UMNS, INTE 146 (73) 274 (137) 402 (201) 526 (263) 788 (394) ae ae	m = 6.0 332 388 422 482 640 <i>ERNAL (ENL</i> 180 (90) 336 (168) 488 (244) 644 (322) 958 (479) ae ae	7.0 386 450 498 610 824 216 (108) 398 (199) 578 (289) 578 (289) 764 (382) 1138 (569) a a a a a a	8.0 432 508 610 754 252 (126) 462 (231) 674 (337) 892 (446)	9.0 482 576 742 290 (145) 528 (264) 776 (388)	10.0 538 660 896 332 (166) 600 (300) 886 (443) <i>See</i> a ad	11.0 620 782 378 (189) 680 (340) Section 4.2 a	12.0 712 430 (215) .4 on p 90
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 418 (209) 620 (310) a a ae	 = 25 kN/ 5.0 288 328 356 388 490 UMNS, INTE 146 (73) 274 (137) 402 (201) 526 (263) 788 (394) ae 	m = 6.0 332 388 422 482 640 <i>ERNAL (ENL</i> 180 (90) 336 (168) 488 (244) 644 (322) 958 (479)	7.0 386 450 498 610 824 216 (108) 398 (199) 578 (289) 764 (382) 1138 (569) a a	8.0 432 508 610 754 252 (126) 462 (231) 674 (337) 892 (446) a a	9.0 482 576 742 290 (145) 528 (264) 776 (388)	10.0 538 660 896 332 (166) 600 (300) 886 (443) <i>See</i> a ad	11.0 620 782 378 (189) 680 (340) Section 4.2 a	12.0 712 430 (215) .4 on p 90
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 418 (209) 620 (310) 620 (310) a a ae aed aed	 = 25 kN/ 5.0 288 328 356 388 490 UMNS, INTE 146 (73) 274 (137) 402 (201) 526 (263) 788 (394) ae ae	m = 6.0 332 388 422 482 640 57774 180 (90) 336 (168) 488 (244) 644 (322) 958 (479) ae aed ad	7.0 386 450 498 610 824 216 (108) 398 (199) 578 (289) 764 (382) 1138 (569) a a a ad ad	8.0 432 508 610 754 252 (126) 462 (231) 674 (337) 892 (446) a a ad ad	9.0 482 576 742 290 (145) 528 (264) 776 (388) a ad	10.0 538 660 896 332 (166) 600 (300) 886 (443) See a a ad ad	11.0 620 782 378 (189) 680 (340) Section 4.2 a ad	12.0 712 430 (215) .4 on p 90 a
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 150 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 418 (209) 620 (310) 620 (310) a a ae aed aed aed ASSUMPTIC + 5 1	- = 25 kN/ 5.0 288 328 356 388 490 UMNS, INTE 146 (73) 274 (137) 402 (201) 526 (263) 788 (394) ae ae ae ad DNS (see See nm	m = 6.0 332 388 422 482 640 ERNAL (ENL 180 (90) 336 (168) 488 (244) 644 (322) 958 (479) ae aed ad ction 4.2.3	7.0 386 450 498 610 824 20), kN ult 216 (108) 398 (199) 578 (289) 764 (382) 1138 (569) a a ad ad ad ad ad	8.0 432 508 610 754 252 (126) 462 (231) 674 (337) 892 (446) a ad ad	9.0 482 576 742 290 (145) 528 (264) 776 (388) a ad	10.0 538 660 896 332 (166) 600 (300) 886 (443) See a a ad ad	11.0 620 782 378 (189) 680 (340) Section 4.2 a ad	12.0 712 430 (215) .4 on p 90 a
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 150 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 620 (310) 620 (310) a a ae aed aed aed aed 310 520 (310)	- = 25 kN/ 5.0 288 328 356 388 490 UMNS, INTE 146 (73) 274 (137) 402 (201) 526 (263) 788 (394) ae ae ae ad DNS (see Sec nm 380	m = 6.0 332 388 422 482 640 ERNAL (ENL 180 (90) 336 (168) 488 (244) 644 (322) 958 (479) ae aed ad ction 4.2.3 440	7.0 386 450 498 610 824 216 (108) 398 (199) 578 (289) 764 (382) 1138 (569) a a a ad ad on p 90): ir 530	8.0 432 508 610 754 252 (126) 462 (231) 674 (337) 892 (446) a a ad ad	9.0 482 576 742 290 (145) 528 (264) 776 (388) a ad	10.0 538 660 896 332 (166) 600 (300) 886 (443) See a ad ad	11.0 620 782 378 (189) 680 (340) Section 4.2 a ad	12.0 712 430 (215) .4 on p 90 a
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 150 kN/m	4.0 252 272 294 310 334 PPORTS/COL 116 (58) 216 (108) 318 (159) 418 (209) 620 (310) 620 (310) a a a a a a a a a a a a a a a a a a a	- = 25 kN/ 5.0 288 328 356 388 490 UMNS, INTE 146 (73) 274 (137) 402 (201) 526 (263) 788 (394) ae ae ae ad DNS (see See nm	m = 6.0 332 388 422 482 640 ERNAL (ENL 180 (90) 336 (168) 488 (244) 644 (322) 958 (479) ae aed ad ction 4.2.3	7.0 386 450 498 610 824 20), kN ult 216 (108) 398 (199) 578 (289) 764 (382) 1138 (569) a a ad ad ad ad ad	8.0 432 508 610 754 252 (126) 462 (231) 674 (337) 892 (446) a ad ad	9.0 482 576 742 290 (145) 528 (264) 776 (388) a ad	10.0 538 660 896 332 (166) 600 (300) 886 (443) See a a ad ad	11.0 620 782 378 (189) 680 (340) Section 4.2 a ad	12.0 712 430 (215) .4 on p 90 a

single span

Precast 'L' beams **300 mm** wide overall

SPAN: DEPTH CHART

Precast 'L' beams 450 mm wide overall

single span

SPAN: DEPTH CHART

	800 -								
	000					/-		//;	/
		-	+ -		/-	/-		ayer – – – – -	
						1			
	700		/					//	
		-	/-					2 layers of einforcemen	t
			/						
		-	/	/	/_ _	/	·	/ .	
	600 –				/	/			
			-71-				Coot		
			/ <u> </u> 4	/	<i>i</i>				
	F00	-/		/					
	500		- 1		1				
			4 -						
			/					· - ·	
	400								
					-				
5		/			-			· - ·	
±									
	300 🖌								
			+ -		-				
5	5								
REAM DEPTH mm	ζ	-	+ -		-				
	5 200 └─ 4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
									SPAN, m
	KEY Ult	imate app = 25 kN/		50 kN/m	— = 75	kN/m —	= 100 kN	/m — =	150 kN/m
SINGLE SPAN, m	4.0			50 kN/m 7.0	— = 75 8.0	kN/m 9.0	= 100 kN 10.0	//m — = 11.0	150 kN/m 12.0
SINGLE SPAN, m	-	= 25 kN/	m <u> </u>						
DEPTH, mm uaudl = 25 kN/m	4.0 252	= 25 kN/ 5.0 290	m — = 6.0 338	7.0	8.0 436	9.0 488	10.0 544	11.0 626	
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m	4.0 252 252	= 25 kN/ 5.0 290 304	m — = 6.0 338 352	7.0 388 414	8.0 436 480	9.0 488 564	10.0	11.0	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m	4.0 252 252 260	= 25 kN/ 5.0 290 304 312	m = 6.0 338 352 372	7.0 388 414 486	8.0 436 480 650	9.0 488	10.0 544	11.0 626	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m	4.0 252 252 260 292	= 25 kN/ 5.0 290 304 312 346	m — = 6.0 338 352 372 468	7.0 388 414 486 644	8.0 436 480	9.0 488 564	10.0 544	11.0 626	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m	4.0 252 252 260	= 25 kN/ 5.0 290 304 312	m = 6.0 338 352 372	7.0 388 414 486	8.0 436 480 650	9.0 488 564	10.0 544	11.0 626	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m	4.0 252 252 260 292 332	= = 25 kN/ 5.0 290 304 312 346 476	m — = 6.0 338 352 372 468 678	7.0 388 414 486 644 862	8.0 436 480 650	9.0 488 564	10.0 544	11.0 626	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58)	= 25 kN/ 5.0 290 304 312 346 476 UMNS, INTE 146 (73)	m = 6.0 338 352 372 468 678 ERNAL (ENL 180 (90)	7.0 388 414 486 644 862 D), kN ult 216 (108)	8.0 436 480 650 794 252 (126)	9.0 488 564 782 292 (146)	10.0 544 702 332 (166)	11.0 626 826 380 (190)	12.0
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108)	= 25 kN/ 5.0 290 304 312 346 476 UMNS, INTU 146 (73) 272 (136)	m = 6.0 338 352 372 468 678 678 ERNAL (ENL 180 (90) 332 (166)	7.0 388 414 486 644 862 2), kN ult 216 (108) 394 (197)	8.0 436 480 650 794 252 (126) 458 (229)	9.0 488 564 782 292 (146) 526 (263)	10.0 544 702	11.0 626 826	12.0 718
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158)	= 25 kN/ 5.0 290 304 312 346 476 UMNS, INTT 146 (73) 272 (136) 398 (199)	m = 6.0 338 352 372 468 678 ERNAL (ENL 180 (90) 332 (166) 484 (242)	7.0 388 414 486 644 862 2), kN ult 216 (108) 394 (197) 576 (288)	8.0 436 480 650 794 252 (126) 458 (229) 678 (339)	9.0 488 564 782 292 (146)	10.0 544 702 332 (166)	11.0 626 826 380 (190)	12.0 718
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 25 kN/m uaudl = 75 kN/m uaudl = 100 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158) 418 (209)	= 25 kN/ 5.0 290 304 312 346 476 <i>UMNS, INTI</i> 146 (73) 272 (136) 398 (199) 526 (263)	m = 6.0 338 352 372 468 678 ERNAL (ENI 180 (90) 332 (166) 484 (242) 642 (321)	7.0 388 414 486 644 862 2), <i>kN ult</i> 216 (108) 394 (197) 576 (288) 768 (384)	8.0 436 480 650 794 252 (126) 458 (229)	9.0 488 564 782 292 (146) 526 (263)	10.0 544 702 332 (166)	11.0 626 826 380 (190)	12.0 718
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158)	= 25 kN/ 5.0 290 304 312 346 476 UMNS, INTT 146 (73) 272 (136) 398 (199)	m = 6.0 338 352 372 468 678 ERNAL (ENI 180 (90) 332 (166) 484 (242) 642 (321)	7.0 388 414 486 644 862 2), kN ult 216 (108) 394 (197) 576 (288)	8.0 436 480 650 794 252 (126) 458 (229) 678 (339)	9.0 488 564 782 292 (146) 526 (263)	10.0 544 702 332 (166)	11.0 626 826 380 (190)	12.0 718
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158) 418 (209)	= 25 kN/ 5.0 290 304 312 346 476 <i>UMNS, INTI</i> 146 (73) 272 (136) 398 (199) 526 (263)	m = 6.0 338 352 372 468 678 ERNAL (ENI 180 (90) 332 (166) 484 (242) 642 (321)	7.0 388 414 486 644 862 2), <i>kN ult</i> 216 (108) 394 (197) 576 (288) 768 (384)	8.0 436 480 650 794 252 (126) 458 (229) 678 (339)	9.0 488 564 782 292 (146) 526 (263)	10.0 544 702 332 (166) 606 (303)	11.0 626 826 380 (190)	12.0 718 430 (215) <i>4 on p 90</i>
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158) 418 (209) 620 (310) a	 = 25 kN/ 5.0 290 304 312 346 476 UMNS, INTI 146 (73) 272 (136) 398 (199) 526 (263) 786 (393) 	m = 6.0 338 352 372 468 678 772 469 678 772 772 772 772 772 772 772 772 772 7	7.0 388 414 486 644 862 2), kN ult 216 (108) 394 (197) 576 (288) 768 (384) 1142 (571)	8.0 436 480 650 794 252 (126) 458 (229) 678 (339) 896 (448)	9.0 488 564 782 292 (146) 526 (263) 782 (391)	10.0 544 702 332 (166) 606 (303) <i>See</i> a	11.0 626 826 380 (190) 688 (344) Section 4.2. a	12.0 718 430 (215)
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 50 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158) 418 (209) 620 (310) a a ae	 = 25 kN/ 5.0 290 304 312 346 476 UMNS, INTE 146 (73) 272 (136) 398 (199) 526 (263) 786 (393) ae 	m = 6.0 338 352 372 468 678 678 678 678 678 648 (242) 642 (321) 962 (481) 362 (481)	7.0 388 414 486 644 862 216 (108) 394 (197) 576 (288) 768 (384) 1142 (571) aed	8.0 436 480 650 794 252 (126) 458 (229) 678 (339) 896 (448) aed	9.0 488 564 782 292 (146) 526 (263) 782 (391) aed	10.0 544 702 332 (166) 606 (303) <i>See</i>	11.0 626 826 380 (190) 688 (344) Section 4.2.	12.0 718 430 (215) <i>4 on p 90</i>
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUF uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 100 kN/m uaudl = 50 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158) 316 (158) 418 (209) 620 (310) a ae ae ae	 = 25 kN/ 5.0 290 304 312 346 476 UMNS, INTE 146 (73) 272 (136) 398 (199) 526 (263) 786 (393) ae aed 	m = 6.0 338 352 372 468 678 <i>ERNAL (ENIL</i> 180 (90) 332 (166) 484 (242) 642 (321) 962 (481) ae aed	7.0 388 414 486 644 862 216 (108) 394 (197) 576 (288) 768 (384) 1142 (571) aed aed	8.0 436 480 650 794 252 (126) 458 (229) 678 (339) 896 (448) aed ad	9.0 488 564 782 292 (146) 526 (263) 782 (391)	10.0 544 702 332 (166) 606 (303) <i>See</i> a	11.0 626 826 380 (190) 688 (344) Section 4.2. a	12.0 718 430 (215) <i>4 on p 90</i>
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m UESIGN NOTES uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 75 kN/m uaudl = 75 kN/m uaudl = 100 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158) 316 (158) 316 (158) 418 (209) 620 (310) a a ae ae ae ae	= 25 kN/ 5.0 290 304 312 346 476 UMNS, INTE 146 (73) 272 (136) 398 (199) 526 (263) 786 (393) ae aed aed	m = 6.0 338 352 372 468 678 678 678 678 678 678 678 678 678 6	7.0 388 414 486 644 862 0), kN ult 216 (108) 394 (197) 576 (288) 768 (384) 1142 (571) aed aed aed aed	8.0 436 480 650 794 252 (126) 458 (229) 678 (339) 896 (448) aed	9.0 488 564 782 292 (146) 526 (263) 782 (391) aed	10.0 544 702 332 (166) 606 (303) <i>See</i> a	11.0 626 826 380 (190) 688 (344) Section 4.2. a	12.0 718 430 (215) <i>4 on p 90</i>
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUP uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 100 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158) 418 (209) 620 (310) a a ae ae aed aed	 = 25 kN/ 5.0 290 304 312 346 476 UMNS, INTI 146 (73) 272 (136) 398 (199) 526 (263) 786 (393) ae aed aed aed 	m = 6.0 338 352 372 468 678 678 678 678 678 (180 (90) 332 (166) 484 (242) 642 (321) 962 (481) 962 (481) ae aed aed aed aed	7.0 388 414 486 644 862 D), kN ult 216 (108) 394 (197) 576 (288) 768 (384) 1142 (571) aed aed aed aed ad	8.0 436 480 650 794 252 (126) 458 (229) 678 (339) 896 (448) aed ad ad	9.0 488 564 782 292 (146) 526 (263) 782 (391) aed ad	10.0 544 702 332 (166) 606 (303) <i>See</i> a ad	11.0 626 826 380 (190) 688 (344) Section 4.2. a ad	12.0 718 430 (215) 4 on p 90 ad
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 150 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158) 418 (209) 620 (310) a a ae aed aed aed	 = 25 kN/ 5.0 290 304 312 346 476 UMNS, INTI 146 (73) 272 (136) 398 (199) 526 (263) 786 (393) ae aed aed aed aed DNS (see Se 	m = 6.0 338 352 372 468 678 678 678 678 678 (180 (90) 332 (166) 484 (242) 642 (321) 962 (481) 962 (481) ae aed aed aed aed	7.0 388 414 486 644 862 D), kN ult 216 (108) 394 (197) 576 (288) 768 (384) 1142 (571) aed aed aed aed ad	8.0 436 480 650 794 252 (126) 458 (229) 678 (339) 896 (448) aed ad ad	9.0 488 564 782 292 (146) 526 (263) 782 (391) aed ad	10.0 544 702 332 (166) 606 (303) <i>See</i> a ad	11.0 626 826 380 (190) 688 (344) Section 4.2. a ad	12.0 718 430 (215) 4 on p 90 ad
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 150 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158) 316 (158) 316 (158) 418 (209) 620 (310) 620 (310) a a ae ae aed aed 2ASSUMPTIO + 5 1	 = 25 kN/ 5.0 290 304 312 346 476 UMNS, INTE 146 (73) 272 (136) 398 (199) 526 (263) 786 (393) ae aed aed aed aed Const (see See nm 	m = 6.0 338 352 372 468 678 ERNAL (ENL 180 (90) 332 (166) 484 (242) 642 (321) 962 (481) 962 (481) ae aed aed aed acd	7.0 388 414 486 644 862 0), kN ult 216 (108) 394 (197) 576 (288) 768 (384) 1142 (571) aed aed aed aed ad on p 90): ii	8.0 436 480 650 794 252 (126) 458 (229) 678 (339) 896 (448) aed ad ad	9.0 488 564 782 292 (146) 526 (263) 782 (391) aed ad	10.0 544 702 332 (166) 606 (303) <i>See</i> a ad	11.0 626 826 380 (190) 688 (344) Section 4.2. a ad	12.0 718 430 (215) 4 on p 90 ad
DEPTH, mm uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 75 kN/m uaudl = 100 kN/m uaudl = 150 kN/m ULTIMATE LOAD TO SUF uaudl = 25 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 25 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 150 kN/m	4.0 252 252 260 292 332 PPORTS/COL 116 (58) 216 (108) 316 (158) 418 (209) 620 (310) a a ae aed aed aed	 = 25 kN/ 5.0 290 304 312 346 476 UMNS, INTI 146 (73) 272 (136) 398 (199) 526 (263) 786 (393) ae aed aed aed aed DNS (see Se 	m = 6.0 338 352 372 468 678 678 678 678 678 (180 (90) 332 (166) 484 (242) 642 (321) 962 (481) 962 (481) ae aed aed aed aed	7.0 388 414 486 644 862 D), kN ult 216 (108) 394 (197) 576 (288) 768 (384) 1142 (571) aed aed aed aed ad	8.0 436 480 650 794 252 (126) 458 (229) 678 (339) 896 (448) aed ad ad	9.0 488 564 782 292 (146) 526 (263) 782 (391) aed ad	10.0 544 702 332 (166) 606 (303) <i>See</i> a ad	11.0 626 826 380 (190) 688 (344) Section 4.2. a ad	12.0 718 430 (215) 4 on p 90 ad

single span

Precast inverted 'T' beams

600 mm

wide overall

SPAN: DEPTH CHART

	800 –								
	-	/-	/	<u>/-/-</u>					
	-		/						
	-	/ -	///	/					_/
	700	/					- <u>/</u> /		
	_	- / -	/-//-				// ↓ _	2 laver	s of
	-	//					_ 1 layer _	2 layer	ment
	600 -	<u> </u>							
	Z								
	-								
	500		/-/	<i>-</i> /					
	-	-4/	14						
	- 4	(/)	/-						
	- I								
	400 🖌								
	E F		Z						
					-				
	300 –								
					-				
	300 BEAM DEPTH, M	-			-				
-									
	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0 <i>SPAN,</i> m
		5.0 timate app		7.0	8.0	9.0	10.0	11.0	
		timate app	lied udl				10.0 = 200 kN		SPAN, m
SINGLE SPAN, m		timate app	lied udl						SPAN, m
	KEY UI	timate app = = 50 kN/	lied udl /m — =	100 kN/m	<u> </u>	kN/m —	= 200 kN	/m — =	<i>SPAN,</i> m 300 kN/m
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m	KEY UI	timate app = = 50 kN/	lied udl /m — =	100 kN/m	<u> </u>	kN/m —	= 200 kN	/m — =	<i>SPAN,</i> m 300 kN/m
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m	KEY Uli 4.0 246 268	timate app - = 50 kN/ 5.0 286 336	lied udl /m = 6.0 334 448	100 kN/m 7.0 384 616	— = 150 8.0	kN/m — 9.0	= 200 kN 10.0	/m — = 11.0	<i>SPAN,</i> m 300 kN/m
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m	KEY Uli 4.0 246 268 320	timate app - = 50 kN/ 5.0 286 336 454	lied udl /m = 6.0 334 448 656	100 kN/m 7.0 384	— = 150 8.0 450	kN/m — 9.0	= 200 kN 10.0	/m — = 11.0	<i>SPAN,</i> m 300 kN/m
<i>DEPTH, mm</i> uaudl = 50 kN/m uaudl = 100 kN/m	KEY Uli 4.0 246 268	timate app - = 50 kN/ 5.0 286 336	lied udl /m = 6.0 334 448	100 kN/m 7.0 384 616	— = 150 8.0 450	kN/m — 9.0	= 200 kN 10.0	/m — = 11.0	<i>SPAN,</i> m 300 kN/m
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m	KEY Ult 4.0 246 268 320 392 558	timate app = 50 kN/ 5.0 286 336 454 594 814	lied udl /m = 6.0 334 448 656 804	100 kN/m 7.0 384 616 834	— = 150 8.0 450	kN/m — 9.0	= 200 kN 10.0	/m — = 11.0	<i>SPAN,</i> m 300 kN/m
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m	KEY UI 4.0 246 268 320 392 558 PPORTS/COL	timate app = = 50 kN/ 5.0 286 336 454 594 814 .UMNS, INT.	lied udl /m — = 6.0 334 448 656 804 ERNAL (ENL	100 kN/m 7.0 384 616 834 D), kN ult	= 150 8.0 450 772	kN/m — 9.0 552	= 200 kN 10.0 694	/m — = <u>11.0</u> 822	<i>SPAN,</i> m 300 kN/m
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m	KEY Ult 4.0 246 268 320 392 558	timate app = 50 kN/ 5.0 286 336 454 594 814	lied udl /m = 6.0 334 448 656 804	100 kN/m 7.0 384 616 834	— = 150 8.0 450	kN/m — 9.0 552	= 200 kN 10.0	/m — = 11.0	<i>SPAN,</i> m 300 kN/m
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m	KEY Ult 4.0 246 268 320 392 558 PPORTS/COL 218 (109) 422 (211) 626 (313)	timate app = 50 kN/ 5.0 286 336 454 594 814 <i>CUMNS, INT.</i> 278 (139) 534 (267) 796 (398)	lied udl /m — = 6.0 334 448 656 804 ERNAL (ENL 340 (170) 654 (327) 980 (490)	100 kN/m 7.0 384 616 834 D), kN ult 402 (201)	= 150 8.0 450 772 472 (236)	kN/m — 9.0 552	= 200 kN 10.0 694	/m — = <u>11.0</u> 822	<i>SPAN,</i> m 300 kN/m
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m	KEY Ult 4.0 246 268 320 392 558 PPORTS/COI 218 (109) 422 (211) 626 (313) 832 (416)	timate app = 50 kN/ 5.0 286 336 454 594 814 278 (139) 534 (267) 796 (398) 1060 (530)	lied udl /m — = 6.0 334 448 656 804 ERNAL (ENL 340 (170) 654 (327) 980 (490)	100 kN/m 7.0 384 616 834 2), kN ult 402 (201) 786 (393)	= 150 8.0 450 772 472 (236)	kN/m — 9.0 552	= 200 kN 10.0 694	/m — = <u>11.0</u> 822	<i>SPAN,</i> m 300 kN/m
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m	KEY Ult 4.0 246 268 320 392 558 PPORTS/COI 218 (109) 422 (211) 626 (313) 832 (416)	timate app = 50 kN/ 5.0 286 336 454 594 814 <i>CUMNS, INT.</i> 278 (139) 534 (267) 796 (398)	lied udl /m — = 6.0 334 448 656 804 ERNAL (ENL 340 (170) 654 (327) 980 (490)	100 kN/m 7.0 384 616 834 2), kN ult 402 (201) 786 (393)	= 150 8.0 450 772 472 (236)	kN/m — 9.0 552	= 200 kN 10.0 694	/m — = <u>11.0</u> 822	<i>SPAN,</i> m 300 kN/m
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m	KEY Ult 4.0 246 268 320 392 558 PPORTS/COI 218 (109) 422 (211) 626 (313) 832 (416)	timate app = 50 kN/ 5.0 286 336 454 594 814 278 (139) 534 (267) 796 (398) 1060 (530)	lied udl /m — = 6.0 334 448 656 804 ERNAL (ENL 340 (170) 654 (327) 980 (490)	100 kN/m 7.0 384 616 834 2), kN ult 402 (201) 786 (393)	= 150 8.0 450 772 472 (236)	kN/m — 9.0 552	= 200 kN 10.0 694 640 (320)	/m — = <u>11.0</u> 822 732 (366)	<i>SPAN,</i> m 300 kN/m
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 300 kN/m DESIGN NOTES uaudl = 50 kN/m	KEY Ult 4.0 246 268 320 392 558 PPORTS/COI 218 (109) 422 (211) 626 (313) 832 (416)	timate app = 50 kN/ 5.0 286 336 454 594 814 278 (139) 534 (267) 796 (398) 1060 (530)	lied udl (m — = 6.0 334 448 656 804 ERNAL (ENL 340 (170) 654 (327) 980 (490) 1298 (649) ae	100 kN/m 7.0 384 616 834 0), kN ult 402 (201) 786 (393) 1168 (584) ae	= 150 8.0 450 772 472 (236) 924 (462) aed	kN/m — 9.0 552	= 200 kN 10.0 694 640 (320)	/m — = <u>11.0</u> 822 732 (366)	SPAN, m 300 kN/m 12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 300 kN/m DESIGN NOTES uaudl = 50 kN/m uaudl = 100 kN/m	KEY Ult 4.0 246 268 320 392 558 PPORTS/COL 218 (109) 422 (211) 626 (313) 832 (416) 1244 (622) ae ae	timate app = = 50 kN/ 5.0 286 336 454 594 814 CUMNS, INT. 278 (139) 534 (267) 796 (398) 1060 (530) 1582 (791) ae ae ae	lied udl /m — = 6.0 334 448 656 804 ERNAL (ENI 340 (170) 654 (327) 980 (490) 1298 (649) ae aed	100 kN/m 7.0 384 616 834 0), kN ult 402 (201) 786 (393) 1168 (584) ae aed	= 150 8.0 450 772 472 (236) 924 (462)	kN/m 9.0 552 550 (275)	= 200 kN 10.0 694 640 (320)	/m — = <u>11.0</u> 822 732 (366) Section 4.2	SPAN, m 300 kN/m 12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 50 kN/m uaudl = 50 kN/m	KEY Ult 4.0 246 268 320 392 558 PPORTS/COL 218 (109) 422 (211) 626 (313) 832 (416) 1244 (622) ae ae ae	timate app = = 50 kN/ 5.0 286 336 454 594 814 <i>UMNS, INT</i> 278 (139) 534 (267) 796 (398) 1060 (530) 1582 (791) ae ae ae	lied udl /m — = 6.0 334 448 656 804 340 (170) 654 (327) 980 (490) 1298 (649) 1298 (649)	100 kN/m 7.0 384 616 834 0), kN ult 402 (201) 786 (393) 1168 (584) ae	= 150 8.0 450 772 472 (236) 924 (462) aed	kN/m 9.0 552 550 (275)	= 200 kN 10.0 694 640 (320)	/m — = <u>11.0</u> 822 732 (366) Section 4.2	SPAN, m 300 kN/m 12.0
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m ULTIMATE LOAD TO SU uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 300 kN/m DESIGN NOTES uaudl = 50 kN/m uaudl = 100 kN/m	KEY Ult 4.0 246 268 320 392 558 PPORTS/COL 218 (109) 422 (211) 626 (313) 832 (416) 1244 (622) ae ae	timate app = = 50 kN/ 5.0 286 336 454 594 814 CUMNS, INT. 278 (139) 534 (267) 796 (398) 1060 (530) 1582 (791) ae ae ae	lied udl /m — = 6.0 334 448 656 804 ERNAL (ENI 340 (170) 654 (327) 980 (490) 1298 (649) ae aed	100 kN/m 7.0 384 616 834 0), kN ult 402 (201) 786 (393) 1168 (584) ae aed	= 150 8.0 450 772 472 (236) 924 (462) aed	kN/m 9.0 552 550 (275)	= 200 kN 10.0 694 640 (320)	/m — = <u>11.0</u> 822 732 (366) Section 4.2	SPAN, m 300 kN/m 12.0

VARIATIONS TO DESIGN ASSUMPTIONS (see Section 4.2.3 on p 90): implications on beam depths for 100 kN/m uaudl

2 hours fire + 5 mm 4 hours fire + 50 mm Moderate exposure + 20 mm Severe exposure (C50) + 30 mm

Precast inverted 'T' beams 750 mm wide overall

single span

SPAN: DEPTH CHART

	800 -				A .				
	-	-	-/	-/		/-	/ .	-	
			/ 1 -	1					
		/		/	-,	//- 2 la	ayers of		
	700		/			reinf	orcement		
		/_	/-		//	4			
	-	/	/			/	·	// -	
	600					/	/		
	-	/ -					· - / - / - ·	-	
	E							-	
	-	/	- 1 layer				.	-	
	500				/				
	F	-71	7.7						
	-	/ -	· · · - + -	1			· ·	-	
	400	/	1						
					-		.	-	
			/-+		-		· ·	-	
-									
Ē	300 🛃								
	5								
<	-				-		.	-	
4	≩ ⊢								
DEAMA DEDTL	200 4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	 12.(<i>SPAN</i> , n
2 2 2 2 2 2	4.0	timate app	lied udl					11.0	SPAN, n
	4.0	timate app	lied udl						SPAN, n
SINGLE SPAN, m DEPTH, mm	4.0 KEY Uli 4.0	timate app = = 50 kN/	lied udl /m — = 6.0	100 kN/m	<u> </u>) kN/m —	- = 200 kN 10.0	V/m — = 11.0	<i>SPAN,</i> n 300 kN/n 12.(
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m	4.0 KEY Ult 4.0 252	timate app - = 50 kN/ 5.0 300	lied udl /m = 6.0 352	100 kN/m 7.0 404	— = 150 8.0 464) kN/m — 9.0 ⁵³⁰	- = 200 kN	J/m — =	<i>SPAN,</i> n 300 kN/n
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m	4.0 KEY UI1 4.0 252 252	timate app - = 50 kN 5.0 300 304	lied udl /m — = 6.0 352 392	100 kN/m 7.0 404 530	= 150 8.0 464 660) kN/m — 9.0	- = 200 kN 10.0	V/m — = 11.0	<i>SPAN,</i> n 300 kN/n 12.(
SINGLE SPAN, m DEPTH, mm uaudi = 50 kN/m uaudi = 100 kN/m uaudi = 150 kN/m	4.0 KEY UI1 4.0 252 252 252 292	timate app - = 50 kN 5.0 300 304 396	lied udl /m = 6.0 352 392 560	100 kN/m 7.0 404 530 710	— = 150 8.0 464) kN/m — 9.0 ⁵³⁰	- = 200 kN 10.0	V/m — = 11.0	<i>SPAN,</i> n 300 kN/n 12.(
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m	4.0 KEY UI1 4.0 252 252	timate app - = 50 kN 5.0 300 304	lied udl /m — = 6.0 352 392	100 kN/m 7.0 404 530	= 150 8.0 464 660) kN/m — 9.0 ⁵³⁰	- = 200 kN 10.0	V/m — = 11.0	<i>SPAN,</i> n 300 kN/n 12.(
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m	4.0 KEY Ult 4.0 252 252 292 344 480	timate app = 50 kN/ 5.0 300 304 396 508 692	lied udl /m = 6.0 352 392 560 684	100 kN/m 7.0 404 530 710 882	= 150 8.0 464 660) kN/m — 9.0 ⁵³⁰	- = 200 kN 10.0	V/m — = 11.0	<i>SPAN,</i> n 300 kN/n 12.(
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m ULTIMATE LOAD TO SU	4.0 KEY UII 4.0 252 252 252 292 344 480 PPORTS/COL	timate app = 50 kN, 5.0 300 304 396 508 692 .UMINS, INT.	lied udl /m = 6.0 352 392 560 684 ERNAL (ENE	100 kN/m 7.0 404 530 710 882 0), kN ult	— = 150 8.0 464 660 892	0 kN/m — 9.0 530 808	 = 200 kN 10.0 596 	J/m — = <u>11.0</u> 706	SPAN, n 300 kN/n 12.(838
SINGLE SPAN, m DEPTH, mm uaudI = 50 kN/m uaudI = 100 kN/m uaudI = 150 kN/m uaudI = 200 kN/m uaudI = 300 kN/m	4.0 KEY Ult 4.0 252 252 292 344 480	timate app = 50 kN/ 5.0 300 304 396 508 692	lied udl /m = 6.0 352 392 560 684	100 kN/m 7.0 404 530 710 882	= 150 8.0 464 660 892 492 (246)) kN/m — 9.0 ⁵³⁰	 = 200 kN 10.0 596 	J/m — = <u>11.0</u> 706	SPAN, n 300 kN/n 12.(838
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m	4.0 KEY Ult 4.0 252 252 252 292 344 480 PPORTS/COL 226 (113) 426 (213) 630 (315)	timate app = 50 kN/ 5.0 300 304 396 508 692 UMNS, INT 288 (144) 538 (269) 800 (400)	lied udl /m = 6.0 352 392 560 684 ERNAL (ENL 354 (177) 660 (330) 984 (492)	100 kN/m 7.0 404 530 710 882 0), kN ult 422 (211) 794 (397) 1176 (588)	= 150 8.0 464 660 892 492 (246)	0 kN/m — 9.0 530 808 570 (285)	 = 200 kN 10.0 596 	J/m — = <u>11.0</u> 706	SPAN, n 300 kN/n 12.(838
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 200 kN/m	4.0 KEY Uli 4.0 252 252 252 292 344 480 PPORTS/COU 226 (113) 426 (213) 426 (213) 630 (315) 834 (417)	timate app = 50 kN/ 5.0 300 304 396 508 692 UMNS, INT 288 (144) 538 (269) 800 (400) 1064 (532)	lied udl /m = 6.0 352 392 560 684 ERNAL (ENL 354 (177) 660 (330) 984 (492)	100 kN/m 7.0 404 530 710 882 0), kN ult 422 (211) 794 (397) 1176 (588)	= 150 8.0 464 660 892 492 (246) 934 (467)	0 kN/m — 9.0 530 808 570 (285)	 = 200 kN 10.0 596 	J/m — = <u>11.0</u> 706	SPAN, n 300 kN/n 12.(838
5INGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m	4.0 KEY Ult 4.0 252 252 252 292 344 480 PPORTS/COL 226 (113) 426 (213) 630 (315)	timate app = 50 kN/ 5.0 300 304 396 508 692 UMNS, INT 288 (144) 538 (269) 800 (400) 1064 (532)	lied udl /m = 6.0 352 392 560 684 ERNAL (ENL 354 (177) 660 (330) 984 (492)	100 kN/m 7.0 404 530 710 882 0), kN ult 422 (211) 794 (397) 1176 (588)	= 150 8.0 464 660 892 492 (246) 934 (467)	0 kN/m — 9.0 530 808 570 (285)	 = 200 kN 10.0 596 	J/m — = <u>11.0</u> 706	SPAN, n 300 kN/n 12.(838
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m ULTIMATE LOAD TO SU/ uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 300 kN/m	4.0 KEY Uli 4.0 252 252 252 292 344 480 PPORTS/COU 226 (113) 426 (213) 426 (213) 630 (315) 834 (417)	timate app = 50 kN/ 5.0 300 304 396 508 692 UMNS, INT 288 (144) 538 (269) 800 (400) 1064 (532)	lied udl /m = 6.0 352 392 560 684 ERNAL (ENL 354 (177) 660 (330) 984 (492)	100 kN/m 7.0 404 530 710 882 0), kN ult 422 (211) 794 (397) 1176 (588)	= 150 8.0 464 660 892 492 (246) 934 (467)	0 kN/m — 9.0 530 808 570 (285)	 = 200 kN 10.0 596 650 (325) 	J/m — = <u>11.0</u> 706 746 (373)	SPAN, n 300 kN/n 12.0 834 854 (427
DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m ULTIMATE LOAD TO SU/ uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 300 kN/m	4.0 KEY Uli 4.0 252 252 252 292 344 480 PPORTS/COU 226 (113) 426 (213) 426 (213) 630 (315) 834 (417)	timate app = 50 kN/ 5.0 300 304 396 508 692 UMNS, INT 288 (144) 538 (269) 800 (400) 1064 (532)	lied udl /m = 6.0 352 392 560 684 ERNAL (ENL 354 (177) 660 (330) 984 (492)	100 kN/m 7.0 404 530 710 882 0), kN ult 422 (211) 794 (397) 1176 (588)	= 150 8.0 464 660 892 492 (246) 934 (467)	0 kN/m — 9.0 530 808 570 (285)	 = 200 kN 10.0 596 650 (325) See 	J/m — = <u>11.0</u> 706 746 (373) Section 4.2	SPAN, n 300 kN/n 12.0 834 854 (427
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 300 kN/m uaudl = 50 kN/m uaudl = 100 kN/m	4.0 KEY Ul1 4.0 252 252 292 344 480 PPORTS/COL 226 (113) 426 (213) 630 (315) 834 (417) 1248 (624)	timate app = 50 kN/ 5.0 300 304 396 508 692 UMNS, INT 288 (144) 538 (269) 800 (400) 1064 (532) 1588 (794)	lied udl /m — = 6.0 352 392 560 684 <i>ERNAL (ENL</i> 354 (177) 660 (330) 984 (492) 1304 (652)	100 kN/m 7.0 404 530 710 882 0), kN ult 422 (211) 794 (397) 1176 (588) 1556 (778)	= 150 8.0 464 660 892 492 (246) 934 (467) 1380 (690)	0 kN/m — 9.0 530 808 570 (285) 1084 (542)	 = 200 kN 10.0 596 650 (325) See 	J/m — = <u>11.0</u> 706 746 (373) Section 4.2	SPAN, n 300 kN/n 12.(834 854 (427
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 300 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 300 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 100 kN/m	4.0 KEY UII 4.0 252 252 292 344 480 PPORTS/COL 226 (113) 426 (213) 630 (315) 834 (417) 1248 (624) ae ae ae ae ae	timate app = 50 kN/ 5.0 300 304 396 508 692 UMNS, INT 288 (144) 538 (269) 800 (400) 1064 (532) 1588 (794) e ae aed	lied udl /m = 6.0 352 392 560 684 <i>ERNAL (ENL</i> 354 (177) 660 (330) 984 (492) 1304 (652) e aed ad	100 kN/m 7.0 404 530 710 882 0), kN ult 422 (211) 794 (397) 1176 (588) 1556 (778) e aed ad	= 150 8.0 464 660 892 492 (246) 934 (467) 1380 (690) e	0 kN/m — 9.0 530 808 570 (285) 1084 (542) ad	 = 200 kN 10.0 596 650 (325) See 	J/m — = <u>11.0</u> 706 746 (373) Section 4.2	SPAN, n 300 kN/n 12.(834 854 (427
SINGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 200 kN/m	4.0 KEY Uli 4.0 252 252 292 344 480 PPORTS/COL 226 (113) 426 (213) 630 (315) 630 (315) 630 (315) 834 (417) 1248 (624) ae ae ae ae ae ae	timate app = 50 kN/ 5.0 300 304 396 508 692 CUMNS, INT 288 (144) 538 (269) 800 (400) 1064 (532) 1588 (794) e e aed aed aed aed	lied udl /m = 6.0 352 392 560 684 ERNAL (ENL 354 (177) 660 (330) 984 (492) 1304 (652) 1304 (652)	100 kN/m 7.0 404 530 710 882 0), kN ult 422 (211) 794 (397) 1176 (588) 1556 (778) e aed	= 150 8.0 464 660 892 492 (246) 934 (467) 1380 (690) e ad	0 kN/m — 9.0 530 808 570 (285) 1084 (542) ad	 = 200 kN 10.0 596 650 (325) See 	J/m — = <u>11.0</u> 706 746 (373) Section 4.2	SPAN, n 300 kN/n 12.(834 854 (427
UNGLE SPAN, m DEPTH, mm uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 300 kN/m uaudl = 50 kN/m uaudl = 150 kN/m uaudl = 150 kN/m uaudl = 200 kN/m uaudl = 50 kN/m uaudl = 50 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 100 kN/m uaudl = 150 kN/m uaudl = 150 kN/m	4.0 KEY UII 4.0 252 252 292 344 480 PPORTS/COL 226 (113) 426 (213) 630 (315) 834 (417) 1248 (624) ae ae ae ae ae	timate app = 50 kN/ 5.0 300 304 396 508 692 UMNS, INT 288 (144) 538 (269) 800 (400) 1064 (532) 1588 (794) e ae aed	lied udl /m = 6.0 352 392 560 684 <i>ERNAL (ENL</i> 354 (177) 660 (330) 984 (492) 1304 (652) e aed ad	100 kN/m 7.0 404 530 710 882 0), kN ult 422 (211) 794 (397) 1176 (588) 1556 (778) e aed ad	= 150 8.0 464 660 892 492 (246) 934 (467) 1380 (690) e ad	0 kN/m — 9.0 530 808 570 (285) 1084 (542) ad	 = 200 kN 10.0 596 650 (325) See 	J/m — = <u>11.0</u> 706 746 (373) Section 4.2	SPAN, I 300 kN/r 12. 83 854 (427

VARIATIONS TO DESIGN ASSUMPTIONS (see section 4.2.3 on p 90): implications on beam depths for 100 kN/m uaudl

2 hours fire	+ 5 mm
4 hours fire	+ 50 mm
Moderate exposure	+ 20 mm
Severe exposure (C50)	+ 30 mm

4.3 Columns

4.3.1 USING PRECAST COLUMNS

Precast columns facilitate speed of erection by eliminating formwork, propping and, in many cases, siteapplied finishes and follow-on trades. They have inherent fire resistance, durability and the potential for a vast range of integral and applied finishes.

Typical precast column sizes are 300 mm square for twostorey buildings and 350 mm square for three-storey buildings. Smaller columns may be possible using higher grades of concrete and higher percentages of reinforcement. In such cases reference should be made to manufacturers as handling and connections, details of which are usually specific to individual manufacturers, may make smaller sections difficult to use. Manufacturers tend to produce preferred cross-sections based on 50 mm increments. Nonetheless, designs with other crosssections and bespoke finishes are easily accommodated. For instance, storey-height corbels are common in precast concrete car parks.

The economics of precast construction depend on repetition. As far as possible, the same section should be used throughout. Columns are often precast three or four storeys high.

4.3.2 USING THE CHARTS AND DATA

The column charts give square sizes against **ultimate** axial load for a range of steel contents for internal, edge and corner braced columns. Column design is dependant upon ultimate axial load and ultimate design moment. Design moments are specific to a project and cannot be generalized. The sizes of columns shown in the charts and data should be considered as being indicative only, until they can be confirmed at scheme design by a specialist engineer or contractor. For similar reasons, reinforcement densities are not quoted.

The user is expected to interpolate between values given in the charts and data and round up both the load and size derived in line with his or her confidence in the design criteria used and normal modular sizing. The thickness of any specialist finishes required should be added to the sizes given.

The column charts 'work' on **total ultimate** axial load (N) in kN. Preferably, this load should be calculated from first principles for the lowest level of column under consideration (see Section 8.3). However, it may suffice to estimate the load in accordance with Section 2.7.

The charts for internal columns assume equal adjacent spans in each direction.

The charts for edge and corner columns give sizes according to the number of storeys in order to allow for the effects of moments generated by the eccentricity of the beam/column connection. As explained in Section 7, the sizes should generally prove conservative. As axial load predominates, so the design is less controlled by moment. Above about five storeys, perimeter columns can be sized by using the chart for internal columns. The sizes given may prove to be inadequate when unequal spans, eccentric loads or high imposed loads are envisaged.

4.3.3 DESIGN ASSUMPTIONS

Reinforcement

Main bars: fy = 460 N/mm^2 , links fy = 250 N/mm^2 . Link size, maximum main bar size/4. Maximum bar size T40.

Concrete

C50, 24 kN/m³, 20 mm aggregate.

Fire and durability

Fire resistance 1 hour; mild exposure.

4.3.4 DESIGN NOTES

Internal columns

The charts and data for internal columns assume equal spans in each orthogonal direction (ie. $I_{x1} = I_{x2}$ and $I_{y1} = I_{y2}$). If spans are unequal by more than, say, 15%, then consider treating the column as an edge column.

Perimeter (edge and corner) columns

The charts and data for edge columns assume equal spans in the direction parallel with the edge. If these spans are unequal, by more than, say, 15%, consider treating edge columns as corner columns.

Precast internal columns

SIZE, mm	sauare									
1.0%		250	250	280	358	416	462	504	580	656
2.0%	C50	250	250	274	338	382	430	474	546	608
3.0%	C50	250	250	258	316	364	408	452	518	576
4.0%	C50	250	250	250	296	340	380	420	486	536

Precast edge columns 2% reinforcement

LOAD:SIZE CHART

SIZE, mm square								С50 с	oncrete
2 storeys	250	290	320	352	380	416	450		
3 storeys	250	254	284	312	340	372	402	460	
4 storeys	250	250	272	296	322	354	380	436	474
5 storeys	250	250	260	282	304	330	356	406	448

Precast edge columns 3% reinforcement

ULTIMATE AXIAL LOAI	D, kN 400	800	1200	1600	2000	2500	3000	4000	5000
SIZE, mm square								C50	concrete
2 storeys	250	260	292	320	350	384	414	480	
3 storeys	250	250	260	292	316	342	366	412	458
4 storeys	250	250	250	268	290	318	344	394	442
5 storeys	250	250	250	255	278	306	332	380	428

Precast corner columns 2% reinforcement

LOAD:SIZE CHART

ULTIMATE AXIAL LOAI	D, kN 400	800	1200	1600	2000	2500	3000	4000	5000
SIZE, mm square								C50	concrete
2 storeys	250	304	354	390	420	452	480		
3 storeys	250	278	310	344	374	402	426	466	514
4 storeys	250	268	292	316	342	368	392	436	482
5 storeys	250	250	266	290	314	340	364	408	450

Precast corner columns 3% reinforcement

ULTIMATE AXIAL LOAD, N, **kN**

ULTIMATE AXIAL LOA	D, kN 400	800	1200	1600	2000	2500	3000	4000	5000
SIZE, mm square								C50	concrete
2 storeys	250	272	312	346	374	406	434	484	
3 storeys	250	250	276	306	328	356	378	424	468
4 storeys	250	250	256	280	302	328	352	400	450
5 storeys	250	250	250	266	288	312	338	388	440

5.1 Notes

5.1.1 POST-TENSIONING

Compressing concrete, using tensioned high strength steel strands, reduces or even eliminates tensile stresses and cracks in the concrete. This gives rise to a range of benefits over normally reinforced sections: increased spans, stiffness and watertightness, and reduced construction depths, self-weights and deflections. Prestressing can be carried out before or after casting the concrete. Tensioning the strands before casting, (ie. pre-tensioning) tends to be used in the factory, eg, in precast floor units; and post-tensioning tends to be used on site.

In floors, where the level of prestress tends to be low, post-tensioning is usually achieved using monostrand **unbonded** tendons (typically 15.7 mm in diameter, covered in grease within a protective sheath) cast into the concrete. Once the concrete achieves sufficient strength, tendons are stressed using a simple hand-held jack and anchored off.

In beams, where the level of prestress tends to be higher and where tendon congestion is to be avoided (or in oneway slabs and beams, where large amounts of normal untensioned reinforcement are to be avoided), posttensioning is generally achieved using multi-strand **bonded** tendons (eg. 3, 4, 5, or 9 no. 15.7 mm strands in round or flattened galvanised ducts). These too are cast into the concrete and tensioned once the concrete has gained sufficient strength. The strands are then anchored off and the ducts grouted.

As post-tensioned slabs and beams are relatively easy to design and construct, they are compatible with fast construction techniques. They are also safe and adaptable. Concrete Society Technical Report No. 43, *Post-tensioned concrete floors - design handbook*⁽⁷⁰⁾ gives further details of design. *Post-tensioned floors for multi-storey buildings*⁽⁷¹⁾ gives more general guidance. For specific applications, advice should be sought from specialist engineers and contractors.

5.1.2 USING THE CHARTS AND DATA

The charts and data for slabs cover one-way solid, ribbed and flat slabs, and assume the use of unbonded tendons. They give depths and other data against spans for a range of **characteristic** imposed loads. An allowance of 1.5 kN/m^2 has been made for superimposed dead loads (SDL).

The first set of charts for post-tensioned beams assume 1000 mm wide rectangular beams with no flange action. Other web widths can be investigated on a pro-rata basis, ie. by determining the ultimate applied uniformly distributed load per metre width of web. Charts and data for 2400 mm wide 'T' beams are also presented. These assume full flange action. The beam charts 'work' on **ultimate** applied uniformly distributed loads (uaudl) in kN/m. The user must calculate or estimate this line load for each beam considered (see Section 8.2). The user is expected to interpolate between values given in the relevant charts and data, and round up both the loads and depth in line with his or her confidence in the design criteria used and normal modular sizing.

Please note that for any given load and span, there is a range of legitimate depths depending on the amount of prestress assumed. Indeed, in practice, many posttensioned elements are designed to make a certain depth work (see Section 7.3).

5.1.3 DESIGN NOTES

The charts and data assume the use of single-strand unbonded tendons. In longer spans, where single-strand unbonded tendons would become congested, consideration should be given to using bonded multistrand tendons in flat or round ducts. In such cases, appropriate allowances should be made as several design assumptions made in the derivation of the charts become invalid (eg. cover, effective depth, wobble factor, etc.). Generally sections with bonded tendons need to be deeper than the theoretical sizes indicated for sections with unbonded tendons.

Design assumptions for the individual types of slab and beams are described in the relevant data. Other assumptions made are described and discussed in Section 7. Reinforcement and tendon quantities are approximate only (see Section 2.2.4).

For specific applications, advice should be sought from specialist engineers and contractors (see Section 10.4). For examples: CDM regulations oblige designers to consider demolition during initial design, and the effects of restraint need to be assessed. The use of detailed frame analysis can lead to significant economies in an overall package.

5.2 Post-tensioned slabs

One-way slabs

One-way in-situ solid slabs are the most basic form of slab. Post-tensioning can minimize slab thickness and control deflection and cracking. Generally used in office buildings and car parks. Economical in spans up to 10 m.

ADVANTAGES

- Simple
- Minimum thickness
- Controlled deflection and cracking

	4	```	لا ب						
SINGLE SPAN, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	206	206	214	244	278	312	350	390	434
$IL = 5.0 \text{ kN/m}^2$	206	216	246	280	310	344	382	430	498
$IL = 7.5 \text{ kN/m}^2$	206	238	272	310	342	376	416	486	
$IL = 10.0 \text{ kN/m}^2$	230	264	300	334	368	402	462		
ULTIMATE LOAD TO SL	IPPORTING BE	AMS, INTE	RNAL (END)), <i>kN/m</i>					
$IL = 2.5 \text{ kN/m}^2$	n/a (39)	n/a (45)	n/a (53)	n/a (64)	n/a (77)	n/a (91)	n/a (107)	n/a (125)	n/a (145)
$IL = 5.0 \text{ kN/m}^2$	n/a (51)	n/a (61)	n/a (73)	n/a (88)	n/a (102)	n/a (116)	n/a (135)	n/a (156)	n/a (188)
$IL = 7.5 \text{ kN/m}^2$	n/a (63)	n/a (77)	n/a (93)	n/a (110)	n/a (128)	n/a (145)	n/a (167)	n/a (198)	
$IL = 10.0 \text{ kN/m}^2$	n/a (77)	n/a (94)	n/a (113)	n/a (132)	n/a (151)	n/a (173)	n/a (202)		
REINFORCEMENT (TENL	DONS), kg/m²								
$IL = 2.5 \text{ kN/m}^2$	11 (4)	10 (5)	10 (5)	10 (6)	10 (6)	11 (7)	11 (8)	12 (9)	14 (10)
$IL = 5.0 \text{ kN/m}^2$	11 (5)	10 (5)	10 (6)	11 (6)	12 (7)	13 (8)	14 (8)	15 (10)	18 (10)
$IL = 7.5 \text{ kN/m}^2$	11 (5)	11 (5)	11 (6)	11 (7)	12 (8)	14 (8)	15 (9)	17 (10)	
$IL = 10.0 \text{ kN/m}^2$	12 (5)	12 (5)	12 (6)	12 (7)	14 (8)	15 (9)	17 (10)		

DESIGN NOTES	o = lii	mited by P	/A of 2.5 N/	'mm² p	= 8 > respo	onse factor :	> 4 q =	shrinkage >	10 mm
r = 15.7 mm diam tendons	@ < 300 n	пт сс. (R	@ < 200, m	in 150, mn	n cc.) s =	overall de	flection > 2	0 mm (S > 3	30 mm)
$IL = 2.5 \text{ kN/m}^2$	р	opr	oprs	oprS	oprS	oRS	oRS	oRS	oRS
$IL = 5.0 \text{ kN/m}^2$	р	opr	opr	ors	oRs	oRS	oRS	oRS	RS
$IL = 7.5 \text{ kN/m}^2$	pr	opr	opr	oR	oRs	oRS	oRS	RS	
$IL = 10.0 \text{ kN/m}^2$	р	pr	r	R	oRs	oRs	Rs		

VARIATIONS TO DESIGN ASSUMPTIONS: differences in slab thickness for a characteristic imposed load (IL) of 5.0 kN/m²

Serviceability	Class 1 222 mm @ 6	m, 258 @ 7 n	n, 384 @ 8m	Clas	s 2 +10	mm up to 9	m; 30 mm u	p to 12 m
Fire resistance	2 hours		+0 mm	4 hc	ours		+25 mm u	p to 11 m
Exposure	Moderate		+0 mm	Seve	ere			+15 mm
Thickness, mm	Span, m	8.0	9.0	10.0	11.0	12.0	13.0	14.0
	P/A 1.5 N/mm ² max	268	310	356	408	464	524	
	P/A 3.5 N/mm ² max	218	250	286	320	362	404	498

SPAN: DEPTH CHART

DESIGN ASSUMPTION	IS									
SUPPORTED BY	BEAM	S. Refer to b	eam charts a	nd data to e	stimate size	and reinford	ement.			
DESIGN BASIS			nced load 10 to movemen		% IL . Maxim	um prestress	(P/A) = 2.5 N	l/mm². See se	ction 7. Clas	
LOADS						ishes, service for 3 span co	s, etc.) is incl ondition.	uded. For mu	Illtiple spans	
TENDONS							¹²). T2 and B2 dons (see Sec		m.	
REINFORCEMENT		$f_y = 460 \text{ N/mm}^2$. Assumed T10 T1 and T2.								
CONCRETE	C40, 2	4 kN/m³, 20	mm aggrega	ate. f _{ci} = 25	N/mm².					
FIRE & DURABILITY	Fire re	sistance 1 h	our; mild exp	osure (25 m	m cover to a	II).				
MULTIPLE SPAN, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0	14.0	16.0	
$\begin{array}{rcl} \textit{THICKNESS, mm} \\ IL = & 2.5 \text{ kN/m}^2 \\ IL = & 5.0 \text{ kN/m}^2 \\ IL = & 7.5 \text{ kN/m}^2 \end{array}$	180 180 188	180 188 226	184 216 258	210 244 290	234 272 322	262 302 352	290 334 382	352 402 458	418 520 612	
$IL = 10.0 \text{ kN/m}^2$	238	274	312	346	382	416	452	524	694	
$\label{eq:LTIMATE LOAD TO SU} \begin{split} & \text{ULTIMATE LOAD TO SU} \\ & \text{IL} = \ 2.5 \ \text{kN/m}^2 \\ & \text{IL} = \ 5.0 \ \text{kN/m}^2 \\ & \text{IL} = \ 7.5 \ \text{kN/m}^2 \\ & \text{IL} = \ 10.0 \ \text{kN/m}^2 \end{split}$	PPORTING BE 84 (31) 112 (42) 142 (54) 181 (69)	AMS, INTE 98 (37) 133 (50) 175 (67) 221 (84)	RNAL (END) 114 (42) 160 (60) 210 (80) 264 (100)), <u>kN/m</u> 137 (51) 190 (71) 248 (94) 309 (117)	161 (60) 222 (83) 288 (108) 357 (135)	189 (70) 257 (96) 329 (124) 407 (154)	219 (81) 295 (110) 373 (140) 461 (174)	290 (107) 381 (142) 476 (179) 577 (217)	372 (137) 509 (189) 640 (238) 765 (286)	
REINFORCEMENT (TEND	ONS), ka/m²									
$ IL = 2.5 \text{ kN/m}^2 \\ IL = 5.0 \text{ kN/m}^2 \\ IL = 7.5 \text{ kN/m}^2 \\ IL = 10.0 \text{ kN/m}^2 $	7 (3) 7 (4) 7 (4) 8 (3)	8 (4) 8 (4) 8 (4) 9 (4)	8 (4) 9 (5) 9 (5) 10 (4)	9 (5) 10 (6) 10 (5) 10 (5)	10 (5) 11 (6) 11 (6) 12 (6)	12 (6) 12 (7) 12 (7) 13 (7)	13 (7) 13 (8) 13 (8) 14 (8)	16 (8) 16 (9) 16 (10) 17 (10)	19 (10) 19 (10) 20 (10) 21 (10)	
DESIGN NOTES	o = limited l	hy P/A of 2	5 N/mm ²	n - 8 >	response fa	actor > A	a – shrink:	age per spa	n >10 mm	
r = 15.7 mm diam ten							deflection			
$IL = 2.5 \text{ kN/m}^2$	р	ор	ор	opr	ors	ors	ors	oRs	oqRS	
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$	р	0	or	or	or	oR R	oR oR	oRs oR	Rs	
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	р		r	r r	r r	к r	R	R	R	
VARIATIONS TO DESIGN	Α ΔΩΣΙΙΜΑΡΤΙΟ	NS: differe	nces in slah	thickness						
Fire resistance	2 hours	and. unrere	11003 111 3100			1 hours	L) 01 3.0 KN	+25 mm		
Exposure		or severe			+5 mm +5 mm		Class 2		+0 mm	
Wide beam	2.4 m wid				0 mm	1	100% sustain	ed load	+0 mm	
Two span Thickness, mm	Two span Spans, m		m up to 12 m 8.0	n, +50 mm @ 9.0	⊉ 16 m 10.0	11.0	12.0	14.0	16.0	
mickness, mill	spans, II		0.0	9.0	10.0	11.0	12.0	14.0	10.0	

258

200

294

220

332

250

370

274

412

302

500

386

596

520

SPAN: DEPTH CHART

P/A 1.5 N/mm² max

P/A 3.5 N/mm² max

Ribbed slabs

Post-tensioning can minimize slab thickness and control deflection and cracking. Generally employed in office buildings and car parks. Economical in spans from 8 to 18 m. Charts are based on 300 mm wide ribs, spaced at 1200 mm centres.

ADVANTAGES

- Medium and long spans
- Lightweight
- Profile can be expressed architecturally
- Holes in topping cause few structural problems

SINGLE SPAN, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0	14.0	16.0		
THICKNESS, mm											
$IL = 2.5 \text{ kN/m}^2$	278	298	298	298	316	364	416	532	668		
$IL = 5.0 \text{ kN/m}^2$	278	298	298	328	376	426	480	598	732		
$IL = 7.5 \text{ kN/m}^2$	278	312	358	402	446	496	554	690			
$IL = 10.0 \text{ kN/m}^2$	330	386	442	502	562	626	692				
ULTIMATE LOAD TO SUPPORTING BEAMS, INTERNAL (END), KN/m											
$IL = 2.5 \text{ kN/m}^2$	n/a (33)	n/a (39)	n/a (44)	n/a (50)	n/a (56)	n/a (64)	n/a (73)	n/a (92)	n/a (114)		
$IL = 5.0 \text{ kN/m}^2$	n/a (45)	n/a (53)	n/a (60)	n/a (69)	n/a (79)	n/a (89)	n/a (100)	n/a (123)	n/a (150)		
$IL = 7.5 \text{ kN/m}^2$	n/a (57)	n/a (67)	n/a (78)	n/a (90)	n/a (102)	n/a (114)	n/a (128)	n/a (157)			
$IL = 10.0 \text{ kN/m}^2$	n/a (70)	n/a (83)	n/a (97)	n/a (112)	n/a (127)	n/a (142)	n/a (159)				
REINFORCEMENT (TEND	OONS), kg/m ²										
$IL = 2.5 \text{ kN/m}^2$	14 (2)	13 (2)	13 (3)	12 (3)	12 (4)	13 (4)	14 (4)	16 (5)	19 (6)		
$IL = 5.0 \text{ kN/m}^2$	14 (2)	13 (3)	13 (3)	13 (4)	14 (4)	15 (4)	16 (4)	18 (5)	21 (6)		
$IL = 7.5 \text{ kN/m}^2$	14 (2)	14 (3)	14 (3)	15 (4)	16 (4)	16 (5)	18 (5)	21 (6)			
$IL = 10.0 \text{ kN/m}^2$	15 (2)	16 (2)	17 (3)	18 (3)	19 (4)	20 (4)	21 (5)				
DESIGN NOTES	n - show	ar links roau	ired in ribs	o – limi	ited by P/A	of 2.5 N/mm	2 n - 8		factor > A		

DESIGN NOTES	n = shear li	inks require	d in ribs	o = limited	by P/A of	2.5 N/mm ²	p = 8 > re	esponse fac	tor > 4
q = shrinkage >10 mm	r = no. ten	dons req'd.	per 300 m	m rib > 4 (l	R > 5)	s = o/a def	lection > 20	mm (S > 3	30 mm)
$IL = 2.5 \text{ kN/m}^2$	р	р	р	р	ps	ps	ps	rs	qrs
$IL = 5.0 \text{ kN/m}^2$	p	p	p	p	р			rs	Rs
$IL = 7.5 \text{ kN/m}^2$	р	р	р	р			r	r	
$IL = 10.0 \text{ kN/m}^2$	р	р					r		

VARIATIONS TO DESIGN ASSUMPTIONS: differences in slab thickness for a characteristic imposed load (IL) of 5.0 kN/m²

Fire resistance			+5 mm		4 hours (15	ig)	+15 mm		
Exposure	Moderate		+0 mm		Severe			+10 mm	
Serviceability	Class 1 @ 3.5 N/mm ² & 180% DL +0 mm			Class 2				see below	
Thickness, mm	Span, m	8.0	9.0	10.0	11.0	12.0	13.0	14.0	
	P/A 1.5 N/mm ² max	356	416	478	548	622	702	788	
	P/A 3.5 N/mm ² max	298	298	318	358	400	448	504	
	Class 2	350	386	420	462	520	580	644	
	ditto but 300 ribs @1500 cc		344	396	450	508	570	658	

SPAN: DEPTH CHART

SUPPORTED BY	BEAMS. Refer to beam charts and data to estimate sizes and reinforcement.										
DESIGN BASIS	Load balanced to 133% DL + 33% IL to maximum prestress (P/A) = of 2.5 N/mm ² . Class 3 and no restrain to movement assumed. See Section 7.										
DIMENSIONS	300 mm ribs at 1200 mm cc. 100 mm topping. Solid area to span/9.6 from internal support										
LOADS	A superimposed dead load (SDL) of 1.50 kN/m ² (for finishes, services, etc.) is included. Self weight allows fo slope on ribs and solid areas as indicated above (see Section 8.1.4 for range of values). For multiple spans ultimate loads result from moment distribution analysis for three-span condition.										
TENDONS	Unbonded 15.7 mm diam. Superstrand (Aps 150 mm², fpu 1770 N/mm²) B1 & T2. Max. 6 no. per rib										
CONCRETE	C40, 24 kN/m ³ , 20 mm aggregate. f_{d} = 25 N/mm ² .										
REINFORCEMENT	fy = 460 N/mm ² . Assumed T10 T1 distribution reinforcement at supports and R8 links. Weight of mesh (A142, T2) not included.										
FIRE & DURABILITY	Fire resistance 1 hour; mild exposure (25 mm cover to all).										
MULTIPLE SPAN, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0	14.0	16.0		
$THICKNESS, mm$ $IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	250	250	260	250 296	276 334	308 374 436	342 414	414 502	494 598		
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	250 304	288 350	326 398	362 446	398 494	436 542	478 592	580 690	692 792		
ULTIMATE LOAD TO SUN IL = 2.5 kN/m ² IL = 5.0 kN/m ² IL = 7.5 kN/m ² IL = 10.0 kN/m ²	96 (40) 96 (40) 127 (52) 157 (64)	AMS, INTEF 117 (48) 150 (61) 187 (76)	RNAL (END) 94 (38) 133 (55) 175 (71) 217 (88)), <u>kN/m</u> 108 (44) 153 (63) 200 (81) 249 (101)	123 (50) 174 (71) 225 (92) 281 (113)	139 (56) 196 (79) 252 (102) 314 (127)	155 (63) 218 (88) 280 (114) 348 (140)	191 (77) 267 (108) 341 (137) 420 (169)	231 (93) 320 (129) 407 (164) 495 (199)		
REINFORCEMENT (tendo	. ,	107 (70)	217 (00)	215 (101)	201 (115)	511(127)	510 (110)	120 (105)	155 (155)		
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	11 (2) 13 (2)	10 (3) 12 (2) 14 (2)	9 (3) 10 (3) 13 (3) 15 (3)	9 (3) 11 (3) 13 (3) 16 (3)	10 (3) 12 (4) 14 (4) 17 (3)	11 (3) 13 (4) 15 (4) 19 (4)	11 (4) 14 (4) 16 (4) 20 (4)	13 (4) 17 (5) 19 (5) 24 (5)	15 (5) 20 (5) 23 (6) 27 (6)		
DESIGN NOTES		ear links ree			nited by P/A			3 > response			
q = shrinkage > 1 IL = 2.5 kN/m ²	10 mm r = 1	no. tendons	s req'd. per op	⁻ 300 mm n op	ib > 4 (R >) op	5) s = o/a op	deflection 0	> 20 mm (5 os	5 > 30 mm oqs		
$IL = 5.0 \text{ kN/m}^2$		ор	0	0 0	0 0	0	0	or	oqr		
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	р	р				0	0	or nr	noqr noqR		
VARIATIONS TO DESIGN			nces in slab		for a charac						
Fire resistance Exposure	2 hours (1 Moderate	15 topping)		+0 mm +5 mm		4 hours (Severe	(150 mm top	ping)	+15 mm +10 mm		
Serviceability	Class 1.			n/a		Class 2			see below		
Thickness, mm	Spans, m		8.0	9.0	10.0	11.0	12.0	14.0	16.0		
	P/A 1.5 N		316	362	410	462	516	634	768		
	P/A 3.5 N/ Class 2	mm ² max	250 320	282 348	314 376	348 406	386 450	462 544	542 644		
	CIdSS Z		320	548	3/0	400	450	544	044		
	2-span		254	290	326	364	404	488	578		

SPAN: DEPTH CHART

Flat slabs with edge beams

Popular overseas for apartment blocks, office buildings, hospitals, hotels etc, where spans are similar in both directions. Economical for spans of 7 to 12 m. Square panels are most economical.

ADVANTAGES

- Simple, fast construction and formwork
- Architectural finish can be applied directly to the underside of the slab
- Minimum thickness and storey heights
- Controlled deflection and cracking
- Flexibility of partition location and horizontal service distribution

DISADVANTAGES

- Holes, especially large holes near columns, require planning
- Punching shear provision around columns may be considered to be a problem but can be offset by using larger columns, column heads, drop panels or proprietary systems. Post-tensioning improves shear capacity

SPAN: DEPTH CHART

DESIGN ASSUMPTION		Cintornall	and DEALA	C pround next	motor Def	to charte co	h data ta a-t!	mata cina-	otc
SUPPORTED BY				S around peri					
DESIGN BASIS	Effectivel	y Class 2 a	ssumed. No	8% DL + 33% restraint to m	novement as	sumed.			
DIMENSIONS				pans by three at least 50%			with columr	ns. Minimum	n column size
LOADS				sumed. Perimons and beams					oads on edg
TENDONS	Unbonde	d 15.7 mm	diam. Supe	rstrand (A _{ps} 1	50 mm², f _{pu}	1770 N/mm ²)), B1,T2, B2 8	T3. Max 5	per m.
CONCRETE	C40, 24 k	N/m³, 20 n	nm aggregat	te. $f_{ci} = 25 \text{ N/i}$	mm².				
REINFORCEMENT		min. T10@		ways at supp		2@500B both	n ways and T	8 links. 10%	allowed fo
FIRE & DURABILITY	Fire resist	ance 1 hou	ur; mild expo	osure (25 mm	cover to all).			
MULTIPLE SPAN, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	200	200	200	222	252	286	322	372	424
$IL = 5.0 \text{ kN/m}^2$	200	200	228	258	294	338	386	442	516
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	200 264	222 282	254 302	292 330	334 366	382 414	430 488	508 584	620 710
						414	400	504	/10
ULTIMATE LOAD TO SU						2.40	2 22	4 16	E 27
$IL = 2.5 \text{ kN/m}^2$ $IL = 5.0 \text{ kN/m}^2$	0.61 0.80	0.83 1.09	1.09 1.50	1.45 2.01	1.93 2.62	2.49 3.43	3.22 4.39	4.16 5.58	5.27 7.11
$IL = 7.5 \text{ kN/m}^2$	0.80	1.40	1.92	2.01	3.35	4.31	5.44	6.97	9.05
$IL = 10.0 \text{ kN/m}^2$	1.28	1.79	2.39	3.11	4.02	5.12	6.57	8.43	10.88
ULTIMATE LOADS ON E	DOE DEANAS KA	l/m							
$IL = 2.5 \text{ kN/m}^2$	48	54	59	68	78	89	102	119	137
$IL = 5.0 \text{ kN/m}^2$	59	66	77	89	101	118	135	155	181
$IL = 7.5 \text{ kN/m}^2$	70	81	94	109	126	144	164	191	227
$IL = 10.0 \text{ kN/m}^2$	86	100	114	130	148	169	196	229	270
REINFORCEMENT (TENL	OONS), kg/m²								
$IL = 2.5 \text{ kN/m}^2$	14 (8)	13 (9)	13 (9)	12 (10)	12 (11)	11 (12)	11 (13)	12 (13)	14 (13)
$IL = 5.0 \text{ kN/m}^2$	14 (8)	14 (9)	13 (10)	13 (11)	13 (13)	13 (13)	14 (13)	16 (13)	18 (13)
$IL = 7.5 \text{ kN/m}^2$ $IL = 10.0 \text{ kN/m}^2$	15 (8)	14 (10)	14 (11) 15 (12)	13 (13)	13 (13)	14 (13)	17 (13)	19 (13)	21 (13)
	15 (7)	15 (9)	15 (12)	15 (13)	16 (13)	18 (13)	19 (13)	22 (13)	24 (13)
COLUMN SIZES ASSUM				440	500	570	650	740	020
$IL = 2.5 \text{ kN/m}^2$	280	330	380	440	500	570	650	740	830
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$	320 350	370 410	440 480	510 560	580 640	660 730	750 820	840 920	950 1050
$IL = 10.0 \text{ kN/m}^2$	390	460	530	610	690	730	880	1000	1130
DESIGN NOTES	o limited by [V/A of 2 E	N/mm ²	p = 8 > res	nonco faci	tors 1 c	ı = shrinkaq		. 10 mm
	o = limited by F ndons @ < 300 n					deflection, d			
$IL = 2.5 \text{ kN/m}^2$	р	0	OS	ors	orS	orS	oRS	RS	RS
$IL = 5.0 \text{ kN/m}^2$	р	0	or	ors	ors	Rs	Rs	Rs	RS
$IL = 7.5 \text{ kN/m}^2$	р	or	or	or	R	Rs	Rs	Rs	Rs
$IL = 10.0 \text{ kN/m}^2$			r	r	R	Rs	R	R	R
LINKS, maximum numb									_ / / .
$IL = 2.5 \text{ kN/m}^2$		(0.8%)	5 (1.4%)	6 (1.6%)	7 (1.8%)	7 (1.6%)	8 (1.9%)	8 (1.7%)	7 (1.1%)
$IL = 5.0 \text{ kN/m}^2$ $IL = 7.5 \text{ kN/m}^2$		(1.7%) (2.2%)	6 (1.9%) 7 (2.4%)	7 (2.0%) 7 (2.1%)	7 (1.8%) 8 (2.3%)	8 (2.1%) 8 (1.9%)	8 (1.8%) 7 (1.2%)	7 (1.1%) 6 (0.8%)	6 (0.7%) 5 (0.5%)
$IL = 10.0 \text{ kN/m}^2$. ,	(2.2 %)	6 (2.0%)	7 (2.1%)	7 (1.7%)	7 (1.4%)	6 (0.9%)	5 (0.6%)	4 (0.4%)
VARIATIONS TO DESIGN Fire resistance	2 hours	: ameren	ces in siad	+0 mm		hours	isea ioaa (iL) 01 5.0 KN	+25 mm
Exposure	Moderate			+5 mm		evere			+15 mm
Serviceability	Class 1			n/a		olumn heads	L/10 wide		-0 mm
Two spans	2 spans by 3			see below		spans by 2 b			see below
Rectangular bays	6.0 m wide b	bay -15		and beyond		0 m wide bay			and beyond
Thickness, mm	Spans, m	2	8.0	9.0	10.0	11.0	12.0	13.0	14.0
	P/A 1.5 N/m		270	306	342	380	422	468	516
	P/A 3.5 N/mi		202	228	262	304 346	354	398	444
	2 spans by 3 2 spans by 2		230 238	260 268	294 300	346 356	400 430	496 524	608 636
	T16@350B b	,	220	200	274	306	360	424	516
	# max 7 tend								

max 7 tendons/m

5.3 Post-tensioned beams

Rectangular 1000 mm wide

Prestressing beams can give great economic benefit for spans of 8 to 16 m in a wide range of structures. Whilst the charts and data relate to 1000 mm wide rectangular beams, other widths can be investigated pro-rata.

ADVANTAGES

- Minimum thickness and storey heights
- Post-tensioning perceived to be a specialist operation

In line with the post-tensioned slab charts, the use of single-strand **unbonded** tendons is assumed. However, in practice, serious consideration whould be given to using bonded multi-strand tendons in flat or round ducts.

DISADVANTAGES

- Controlled deflection and cracking
- Tendon congestion

51						5			
SINGLE SPAN, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
DEPTH, mm									
uaudl= 25 kN/m	270	314	336	348	360	376	420	468	506
uaudl= 50 kN/m	274	318	366	416	468	524	584	644	708
uaudl= 100 kN/m	384	448	518	592	668	748	828	916	
uaudl= 200 kN/m	546	644	748	856					
ULTIMATE LOAD TO SUP	PPORTS, INTL	ERNAL (ENC), PER MET	RE WEB WI	DTH, kN/m				
uaudl= 25 kN/m	n/a (81)	n/a (101)	n/a (118)	n/a (135)	n/a (152)	n/a (170)	n/a (194)	n/a (221)	n/a (247)
uaudl= 50 kN/m	n/a (157)	n/a (189)	n/a (222)	n/a (258)	n/a (295)	n/a (335)	n/a (377)	n/a (422)	n/a (469)
uaudl= 100 kN/m	n/a (319)	n/a (379)	n/a (443)	n/a (509)	n/a (579)	n/a (651)	n/a (727)	n/a (806)	
uaudl= 200 kN/m	n/a (635)	n/a (752)	n/a (874)	n/a (999)					
REINFORCEMENT (TEND	ONS), kg/m³								
uaudl= 25 kN/m	118 (34)	99 (33)	91 (35)	87 (35)	84 (35)	80 (35)	73 (35)	67 (35)	65 (35)
uaudl= 50 kN/m	115 (35)	98 (35)	86 (35)	77 (35)	71 (35)	66 (35)	84 (35)	77 (35)	71 (36)
uaudl= 100 kN/m	178 (35)	152 (35)	105 (35)	90 (35)	78 (35)	70 (35)	65 (35)	61 (35)	
uaudl= 200 kN/m	104 (35)	88 (35)	74 (35)	100 (35)	. ,		. ,	. ,	
DECICAL MOTES			- 11-1	1 - 11			N1/		10

DESIGN NOTES	n = des	igned shear i	links req'd	o = limite	d by prestre	ess of 3.0 N/	$mm^2 q =$	shrinkage	>10 mm
			t =	tendon cong	gestion and	no. of tend	lons require	d per m w	eb width
uaudl= 25 kN/m	l		0	0	0	0	ot8	ot9	oqt10
uaudl= 50 kN/m	l				t9	t10	t12	t13	t14
uaudl= 100 kN/m	1	t9	t10	t12	t13	nt15	nt17	nt18	
uaudl= 200 kN/m	t11	nt13	nt15	nt17					

VARIATIONS TO DESIGN	ASSUMPTIONS (see above):	implicat	ions on bea	m depths fo	or 100 kN/n	n uaudl		
Fire resistance	2 hours		+10 mr	n	4	l hours		+25 mm
Exposure	Moderate		+5 mr	n	9	Severe		+10 mm
Serviceability	Class 1& P/A = 4.0 N/mm^2	+20 n	nm up to 11 r	n	(Class 2		+40 mm
	IL/DL = 1.25		+0 mr	n				
Depth, mm	Span, m	8.0	9.0	10.0	11.0	12.0	13.0	14.0
	P/A 2.0 N/mm ² max	612	700	796	900			
	P/A 4.0 N/mm ² max	460	522	588	656	724	832	
Bonded tendons	Flat-4 multistrand, approx.	+8	0 mm up to 1	10 m	Round-7	' multistrand	ສ +80 mm ເ	up to 10 m
	Flat-4 multistrand & 4.0 N/	mm ² -1(0 mm up to 1	0 m				

SPAN: DEPTH CHART

DESIGN ASSUMPT	IONS								
SUPPORTED BY	COL	UMNS							
DESIGN BASIS		S TR43. Assur imum prestre						ction 7.	
LOADS	Ultin web	nate applied u . Applied impo ibution analys	uniformly dist osed load ≤ a	tributed loads	s (uaudl) and	ultimate loa	ds to support	s are per m v	
TENDONS	Unb strar	onded 15.7 m nds in ducts) s e level of pres	im diam Sup should be cor	erstrand (A _{ps} nsidered, and	, indeed are i	necessary, wł	nere close cei		
CONCRETE		24 kN/m ³ , 20				puil see see			
REINFORCEMENT		460 N/mm ² . A	55 5			. min T16@2	50B and T10	links.	
FIRE & DURABILITY	,	resistance 1 h							
MULTIPLE SPAN, r	n 8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0
DEPTH, mm									
uaudl= 25 kN			284	314	348	386	424	464	506
uaudl= 50 kN			398	444	492	540	592	644	696
uaudl= 100 kN uaudl= 200 kN			556 892	636	720	808	904		
ULTIMATE LOAD TO							F24 (200)	F04 (222)	C 40 (2 47
uaudl= 25 kN uaudl= 50 kN	,	. ,	320 (123)	365 (140) 736 (282)	414 (158) 826 (316)	467 (179)	524 (200)	584 (223)	649 (247)
uaudi= 50 kM		1139 (437)	652 (250) 1288 (494)				1017 (389)	1120 (426)	1227 (400
uaudl= 200 kN		2268 (868)		1451 (550)	1022 (020)	1001 (000)	1552 (700)		
REINFORCEMENT (1	FNDONS) ka/m	2							
uaudl= 25 kN			150 (28)	125 (28)	113 (28)	105 (28)	98 (28)	92 (28)	87 (28
uaudl= 50 kN		113 (28)	101 (28)	93 (28)	92 (28)	87 (28)	82 (28)	78 (28)	83 (28
uaudl= 100 kN		110 (28)	102 (28)	93 (27)	85 (27)	80 (27)	77 (27)		
uaudl= 200 kN	/m 103 (27)	94 (27)	86 (27)						
DESIGN NOTES	n = designed sl	hear links re	q'd o = li	mited by pr	estress of 3	.0 N/mm ²	q = shrink	age per spa	n >10 mn
	-		t =	tendon co	ongestion a	nd no. of te	endons requ	lired per m	web width
uaudl= 25 kN		nop	no	no	no	no	noqt8	noqt9	noqt1(
uaudl= 50 kN		no	no	not9	not10	not11	noqt12	noqt13	noqt14
uaudl= 100 kN		not10	not11	not13	not14	nt16	nt18		
uaudl= 200 kN			nt18						
VARIATIONS TO DE			oove): impli		peam depth	s for 100 k			
Fire resistance	2 hours			+10 mm			4 hours		+30 mm
Exposure	Modera	te		+5 mm			Severe		+10 mm
Serviceability	Class 1	m	8.0	n/a 9.0	10.0	11.0	Class 2 12.0	13.0	+175 mm
Depth, mm	Spans,	N/mm ² max	508	580	652	724	800	880	14.0 964
		N/mm ² max N/mm ² max		580 450	504	724 588	800 664		962 # IL/DL=0.8
	IL/DL =		440	450 514	504	672	760	852	# IL/DL=0.8 956
	2 spans		440	528	592	656	700	788	856
Bonded tendor									

SPAN:DEPTH CHART

'T' beams 2400 mm wide web

Wide, shallow, post-tensioned multiple-span 'T' beams maximize the benefits of minimum construction depths, minimum deflections and less theoretical cracking. Economical for spans of 8 to 16 m.

ADVANTAGES

- Minimum thickness and storey heights
- Controlled deflection and cracking

The charts and data assume the use of single-strand unbonded tendons. However, in practice, bonded multistrand tendons in flat or round ducts are more likely to be used. This will lead to increases in depth.

DISADVANTAGES

Post-tensioning perceived to be a specialist operationTendon congestion

SINGLE SPAN, m	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0
DEPTH, mm									
uaudl= 50 kN/m	220	240	268	304	346	386	426	470	516
uaudl= 100 kN/m	310	356	404	452	502	554	612	688	780
uaudl= 200 kN/m	444	502	560	624	716	864			
uaudl= 400 kN/m	636	760	948						
ULTIMATE LOAD TO SUF	PPORTS, INT	ERNAL (ENE), MN						
uaudl= 50 kN/m	n/a (0.21)	n/a (0.24)	n/a (0.28)	n/a (0.32)	n/a (0.37)	n/a (0.42)	n/a (0.48)	n/a (0.54)	n/a (0.60)
uaudl= 100 kN/m	n/a (0.43)	n/a (0.51)	n/a (0.58)	n/a (0.66)	n/a (0.75)	n/a (0.84)	n/a (0.93)	n/a (1.05)	n/a (1.15)
uaudl= 200 kN/m	n/a (0.88)	n/a (1.01)	n/a (1.14)	n/a (1.29)	n/a (1.45)	n/a (1.65)			
uaudl= 400 kN/m	n/a (1.74)	n/a (2.00)	n/a (2.30)						
REINFORCEMENT (TEND	ONS), kg/m³	1							
uaudl= 50 kN/m	109 (46)	106 (46)	98 (46)	90 (46)	66 (46)	60 (46)	55 (45)	50 (45)	46 (45)
uaudl= 100 kN/m	91 (43)	66 (43)	59 (43)	53 (43)	49 (43)	56 (42)	50 (42)	44 (39)	45 (36)
uaudl= 200 kN/m	85 (41)	70 (41)	60 (41)	53 (41)	48 (37)	40 (31)			
uaudl= 400 kN/m	54 (39)	46 (35)	39 (28)						

DESIGN NOTES	n = desigi	ned shear	links req'd	o = limited	l by prestre	ss of 3.0 N	/mm² q =	shrinkage	>10 mm
			t =	tendon cong	estion and	no. of tend	lons require	ed per m w	eb width
uaudl= 50 kN/m	0	ор	0	0	ot21	ot24	oqt26	oqt29	oqt31
uaudl= 100 kN/m	0	ot21	ot23	ot26	ot29	ot32	oqt35	qt36	qt36
uaudl= 200 kN/m	t24	t28	t31	nt34	nt36	t36		-	
uaudl= 400 kN/m	nt34	nt36	nt36						

VARIATIONS TO DESIGN ASSUMPTIONS (see above): implications on beam depths for 100 kN/m uaudl

Fire resistance	2 hours	+10 r	nm		4	l hours		+40 mm
Exposure	Moderate	+5 r	nm		9	evere		+10 mm
Serviceability	Class 1& P/A = 4.0 N	/mm ² +15 r	nm		(Class 2		+20 mm
Depth, mm	Span, m	8.0	9.0	10.0	11.0	12.0	13.0	14.0
	P/A 2.0 N/mm ² max	356	406	458	514	576	640	712
	P/A 4.0 N/mm ² max	272	306	342	384	422	478	530
Bonded tendons	Flat-4 multistrand	+25 mm approx			Round	I-7 multistrand	+50 n	nm approx

SPAN: DEPTH CHART

DESIGN ASSUMPTIONS	5								
SUPPORTED BY	COLU	MNS							
DESIGN BASIS			hing $G_k = Q_k$ d no restraint			3% DL + 33	% LL. Maxim	um prestress	(P/A) = 3.0
LOADS			oad £ applie is for 3 spans		s. Ultimate l	oads for mul	ltiple spans a	are the result	of momen
TENDONS	strand	s in ducts) sh		sidered, and,	indeed are n	ecessary, wh	²) B2 & T2. E ere close cent on 7.		
CONCRETE	C40, 2	4 kN/m³, 20	mm aggrega	te. $f_{ci} = 25 N$	/mm²				
REINFORCEMENT	$f_y = 4$	60 N/mm ² . As	ssumed 25 m	m T1 for me	sh, bars, etc.,	min T16@25	50B and T10 I	inks.	
FIRE & DURABILITY	Fire re	sistance 1 ho	our; mild exp	osure (25 mn	n cover to all).			
MULTIPLE SPAN, m	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0
DEPTH, mm uaudl= 50 kN/m uaudl= 100 kN/m uaudl= 200 kN/m uaudl= 400 kN/m	220 276 390 554	220 310 444 626	244 350 500 706	268 390 556 796	294 434 616 886	324 478 682	362 524 754	398 570 820	436 620 888
ULTIMATE LOAD TO SUF uaudl= 50 kN/m uaudl= 100 kN/m uaudl= 200 kN/m uaudl= 400 kN/m	PORTS, INTE 0.5 (0.2) 1.0 (0.4) 2.0 (0.8) 3.9 (1.5)	RNAL (END 0.5 (0.2) 1.1 (0.4) 2.3 (0.9) 4.5 (1.7)), MN 0.6 (0.2) 1.3 (0.5) 2.6 (1.0) 5.1 (1.9)	0.7 (0.3) 1.5 (0.6) 2.9 (1.1) 5.7 (2.2)	0.8 (0.3) 1.6 (0.6) 3.2 (1.2) 6.3 (2.4)	0.9 (0.3) 1.8 (0.7) 3.6 (1.4)	1.0 (0.4) 2.0 (0.8) 3.9 (1.5)	1.1 (0.4) 2.2 (0.9) 4.3 (1.6)	1.3 (0.5) 2.5 (0.9) 4.7 (1.8)
REINFORCEMENT (TENDO uaudl= 50 kN/m uaudl= 100 kN/m uaudl= 200 kN/m uaudl= 400 kN/m	. ,	167 (32) 108 (30) 92 (29) 83 (28)	143 (32) 88 (30) 82 (29) 79 (28)	125 (32) 81 (30) 75 (29) 74 (28)	113 (32) 75 (30) 71 (29) 70 (26)	98 (32) 69 (30) 67 (29)	88 (32) 67 (30) 64 (29)	82 (32) 66 (30) 63 (28)	77 (32) 64 (30) 62 (26)
	designed she	ear links req	ı'd o = lin	nited by pre	stress of 3.		q = shrinka endons requ noqvt20 noqvt27 novt38		
VARIATIONS TO DESIGN	ASSUMPTIC 2 hours				eam depths 0 mm				+25 mm

Fire resistance	2 hours		+10	mm	4 hours			+25 mm
Exposure	Moderate		+5	mm	Severe			+10 mm
Serviceability	Class 1			n/a	Class 2			+25 mm
ULS reinforcement	No additional	+0 mm to +	40 mm @ 1	4 m	Unlimited	l -0 m	m to -30 mm	@ 14 m
Two span	Two spans +10 n	nm @ 8 m to ·	25 mm @ 1	4 m	IL/DL = 1	.25 +0 mn	n to +20 mm	@ 14 m
Depth, mm	Spans, m	8.0	9.0	10.0	11.0	12.0	13.0	14.0
	P/A 2.0 N/mm ² max	312	352	398	450	502	556	612
	P/A 4.0 N/mm ² max	246	276	304	334	364	396	428
Bonded tendons	Flat-4 multistrand +1	5 mm @ 8 m	reducing	Rou	nd-7 multistra	and +40	mm @ 8 m	reducing

SPAN:DEPTH CHART

6 WALLS AND STAIRS

6.1 Walls

Reinforced concrete walls not only take vertical load, but they also very often provide lateral stability to a structure. Whilst this publication is not intended to cover stability, the design of such walls is considered here briefly.

Walls should be checked for the worst combination of vertical loads, in-plane bending (stability against lateral loads) and bending at right angles to the plane of the wall (induced by adjoining floors, etc).

Walls providing lateral stability should be continuous throughout the height of the building or structure. In plan, the shear centre of the walls should coincide as much as possible with the centre of action of the applied horizontal loads (wind) in two orthogonal directions; otherwise twisting moments need to be considered.

For an element to be considered as a wall, the breadth (b) must be at least four times the thickness (h). To be considered as being reinforced, a wall must have at least 0.004bh of high yield reinforcement in the vertical direction and 0.0025bh of high yield reinforcement horizontally.

Slender walls should be avoided, ie. the ratio of their effective height to thickness should be less than 15. From BS 8110 Pt 1 Cl 3.8.1.6, effective height factors for braced columns/walls are given as:

Condition 1 at both ends ...

walls connected monolithically to slabs either side that are at least as deep as the wall, or connected to a foundation able to carry moment ... 0.75

Condition 2 at both ends . . .

walls connected monolithically to slabs either side that are shallower but at least half as deep as the wall 0.0.85

A factor of 0.85 is commonly used for conceptual design of in-situ walls. In practice these requirements usually result in the use of 200 mm thick cantilever walls in lowrise multi-storey buildings. The walls are dispersed around the plan and, as far as possible, located in cores and stair areas. The vertical load capacities of walls, with minimum quantities of reinforcement, are usually adequate in these low-rise structures. Obviously the design of walls becomes more critical with increasing height of structures as both in-plane bending and axial loads increase.

With these caveats in mind the information in the table below is given for guidance only.

Thickness		Ма	ximun	n heig	ht,m		Cap	acity		Reinforcemen	t
mm		Effe	ctive h	eight f	actor		A _{sreq'd}	Capacity ^a	Typical ar	rangements	Densities ^b
	0.75	0.80	0.85	0.90	0.95	1.00	mm²/m	kN/m	Vertical	Horizontal	kg/m²(kg/m³)
150	3.00	2.81	2.65	2.50	2.37	2.25	600	2020	T10@200 bs	T10@250 bs	13 (86)
175	3.50	3.28	3.09	2.92	2.76	2.63	700	2360	T10@200 bs	T10@200 bs	13 (76)
200#	4.00	3.75	3.53	3.33	3.16	3.00	800	2700	T12@200 bs	T10@250 bs	16 (80)

Notes: a capacities for A_{sreq'd} assume nominal eccentricity only b includes 20% for laps and wastage, etc. # preferred thicknessbs both sides

6.2 Stairs

There are many possible configurations of stair flights, landings and supports. The charts and data consider parallel flights as illustrated opposite.

In-situ spans may be considered as being simply supported or continuous – depending upon the amount of continuity available. Precast flights are usually considered as simply supported. Landings are treated as solid slabs.

In-situ stairs provide robustness, mouldability and continuity of work for formworkers. Precast stairs provide quality, speed of construction and early access.

DESIGN ASSUMPTIONS

SUPPORTED BY	BEAM	S, WALLS or	LANDINGS.									
REINFORCEMENT	T16. T	10 @ 300 dis	stribution. 10	% allowed for	wastage and laps.							
DIMENSIONS	Flight	assumed to	be 60% of sp	oan. Going 250	mm, rise 180 mm.							
LOADS		•			nishes, services, etc.) in oans, 1.1 and 0.46 to su							
IMPOSED LOADS	1.5 kN	l/m ² - self-co	ntained dwel	lings; 4.0 kN/m	² - hotels, offices, institu	tional buildir	igs, etc.					
CONCRETE	C35, 2	4 kN/m³, 20	mm aggrega	te								
FIRE & DURABILITY	Fire re	sistance 1 ho	our; mild exp	osure.								
		SINGLE SPANS, m MULTIPLE SPANS, m										
SPANS, m	2.0	3.0	4.0	5.0	2.0	3.0	4.0	5.0				
WAIST THICKNESS, mm												
$IL = 1.5 \text{ kN/m}^2$	100	126	162	202	100	106	134	164				
$IL = 4.0 \text{ kN/m}^2$	100	134	174	216	100	112	144	176				
ULTIMATE LOAD TO INTE	RNAL (END)	SUPPORTS	, kN/m		(Equivalent to a	ultimate ap	plied udl to	o landing)				
$IL = 1.5 \text{ kN/m}^2$	n/a (10)	n/a (17)	n/a (25)	n/a (36)	21 (9)	34 (16)	51 (23)	70 (32)				
$IL = 4.0 \text{ kN/m}^2$	n/a (14)	n/a (23)	n/a (34)	n/a (47)	30 (13)	48 (22)	70 (32)	95 (43)				
REINFORCEMENT, kg/m ²												
IL = 1.5 kN/m ²	16	20	24	27	9	12	15	18				
$IL = 4.0 \text{ kN/m}^2$	18	24	26	30	11	15	17	20				
VARIATIONS TO DESIGN	ASSUMPTIC	NS: differe	nces in wais	st thickness fo	or a characteristic imp	osed load (IL) of 4.0 kl	V/m ²				
Fire resistance	2 hours, s	CUMPTIONS: differences in waist thickness for a characteristic imposed load (IL) of 4.0 kN/m² 2 hours, single span +20 mm 2 hours, multiple span +5 mm										

LANDINGS (chart only)

Reinforcement approximately 20 to 30 kg/m² extra over flight reinforcement.

7 DERIVATION OF CHARTS AND DATA

7.1 In-situ elements

7.1.1 GENERAL

For a given load and span, slabs (or beams) can be designed at different depths. Thinner slabs have proportionally more reinforcement, but require less concrete, less perimeter cladding and less support from columns and foundations. Each of these items can be ascribed a cost. The summation of these costs is a measure of overall construction cost. There is a minimum overall cost which can be identified by designing an element at different depths and pricing the resulting quantities using budget rates and comparing totals. In order to derive the charts and data in this publication, this process was automated using computer spreadsheets.

For a particular span and load, elements were designed in accordance with BS 8110 Pt. 1 (up to and including Amendment 4)⁽²⁾ and Pt 2 (up to and including Amendment 1)⁽³⁾. Unit rates were applied to the required quantities of concrete, reinforcement and formwork. Allowances were made for perimeter cladding and supporting self-weight. The resulting budget costs were summed and the most economic valid depth identified, as illustrated by the chart below. The example relates to the RCC's *Cost Model Study* ⁽⁶⁾ M4C3 building. This used solid flat slabs on a 7.5 m square grid, with 5.0 kN/m² imposed load, 1.5 kN/m² superimposed dead load and a 10 kN/m allowance for cladding. A thickness of 280 mm would appear to give best overall value. The data for a 280 mm depth would have been identified and saved.

Data for different spans and loads, and different forms of construction were obtained in a similar manner. This body of data forms the basis for all the information in this publication. The charts and data therefore represent optimum depths over a range of common spans and loadings using the methods and assumptions described.

The budget rates used in the optimization were as follows:

Concrete C35	£54.00 /m ³
Horizontal formwork (plain)	£18.60 /m ²
Horizontal formwork (ribbed)	£22.50 /m ²
Vertical formwork	£22.50 /m ²
Cladding	£275.00 /m ²
Main reinforcement	£400.00 /tonne
Links	£500.00 /tonne
Post-tensioning tendons	£2000.00 /tonne
Allowance for self-weight	£0.75 /kN

Origin of data: example showing how most economic sizes were identified

These rates, apart from post-tensioning tendons, are taken from the RCC's *Cost Model Study*, which was published in 1993. The rates have dated and will undoubtedly date further. However, the optimization process used in the derivation of the charts is not sensitive to actual rates and is not too sensitive to relative differences in rates. For instance using curtain wall cladding at, say, £750/m², would make little difference to the chart or data for flat slabs (but would probably improve the relative economics of using flat slabs compared with other forms of in-situ construction).

Had the optimisation process been carried out using concrete, reinforcement and formwork alone, slightly larger slab and beam sizes with lower amounts of reinforcement would have been found. However, whilst the concrete superstructure costs would have been less, the aggregate cost of the building, including cladding, foundations and vertical structure, would have been greater.

The allowance for self-weight is a measure of the additional cost in columns and foundations to support an additional 1 kN in slabs or beams. The figure used is derived from the *Cost Model Study* buildings and is based on the difference in supporting three storeys rather than seven storeys in terms of \pounds/kN . The foundations were simple pad foundations (safe bearing pressure 200 kN/m²). Using a higher cost per kN to allow for piling, rafts or difficult ground conditions would tend to make thinner slabs theoretically more economic, but would make their design more critical.

Construction durations and differences attributable to different types of construction tend to be project specific and are difficult to model. Time costs, therefore, were not taken into account in the optimization process.

7.1.2 DESIGN ASSUMPTIONS

Unless noted otherwise, the charts assume:

The use of BS $8110^{(2)}$ moment and shear factors (tables 3.6 and 3.13)

End spans are critical

The use of C35 concrete ($f_{cu} = 35 \text{ N/mm}^2$) and high yield steel ($f_y = 460 \text{ N/mm}^2$)

Mild exposure conditions and 1 hour fire resistance

Concrete density of 24 kN/m³

Other assumptions made in the design spreadsheets are described more fully below and within the charts and data. The implications of variations to some of these assumptions are covered in the data. Other limitations of the charts and data, especially accuracy of reinforcement quantities, are covered in Section 2.2. Whenever appropriate, reference was made to relevant texts^(12, 13, 14, 15).

Moments and shears factors given in BS 8110, Pt 1⁽²⁾ tables 3.6 and 3.13 were used. More sophisticated analysis may be appropriate during more detailed design at a later stage of the design process.

The charts and data for multiple spans assume a minimum of three spans. Theoretically, to maintain a common 20% redistribution of support moments, two-span slab elements should be subject to greater support moment and shear coefficients than those given in table 3.13 of BS 8110. Nonetheless, the sizes given in the charts and data can be used for two-span slab elements unless support moment or shear is considered critical. In this case two-span slabs should be justified by analysis and design.

In many cases, particularly with slabs, deflection is critical to design. In such instances additional tension reinforcement was provided to reduce service stress, f_{s} , and increase the modification factor for tension reinforcement (see BS 8110, table 3.11). A modification factor allowing for small amounts of compression reinforcement was used in the determination of flat slab and beam depths.

As lightweight concretes are not always readily available, they were considered to be inappropriate for this publication. Nonetheless, they might be an ideal solution for a particular project.

7.1.3 SLAB CHARTS AND DATA

Slab charts give overall depths against spans for a range of **characteristic** imposed loads assuming end spans. An allowance of 1.5 kN/m^2 has been made for superimposed dead loads (finishes, services, etc). For two-way slab systems (ie. flat slabs, troughed slabs and waffle slabs designed as two-way slabs with integral beams), an allowance of 10 kN/m has been made around perimeters to allow for the self-weight of cladding.

As BS 8110, Pt 1, Cl 3.5.2.4, the charts and data are valid where:

In a one-way slab the area of a bay (one span x full width) exceeds 30 $\ensuremath{m^2}$

The ratio of characteristic imposed loads, q_{k} , to characteristic dead loads, g_k , does not exceed 1.25

The characteristic imposed load, q_k , does not exceed 5 kN/m², excluding partitions

Additionally, for flat slabs, there are at least three rows of panels of approximately equal span in the direction being considered.

If design parameters stray outside these limits, the sizes and data given should be used with caution.

In general, slabs were assumed to have simple end supports, ie. an ultimate bending moment factor of 0.086 was used. For flat slabs, continuous end supports were assumed, but the end support moment was restricted to $M_{\mbox{tmax}}$ with possible consequential increase in span moments.

Reinforcement densities assume that the areas or volumes of slabs are measured gross, eg. slabs are measured through beams and the presence of voids in ribbed slabs is ignored.

7.1.4 BEAM CHARTS AND DATA

The beam charts and data give overall depths against span for a range of **ultimate** applied uniformly distributed loads (uaudl, see 8.2.1) and web widths. For multiple spans, sizes given result from considering the end span of three. The charts and data were derived using essentially the same optimization process as for slabs. As BS 8110, Pt 1, Cl 3.4.3, the charts and data are valid where:

Characteristic imposed loads, Q_k , do not exceed characteristic dead loads, G_k

Loads are substantially uniformly distributed over three or more spans

Variations in span length do not exceed 15% of the longest span

Where the charts stray outside these limits, the sizes and data given should be used with caution.

In the optimisation process there were slight differences in the allowances for cladding and the self-weight of beams compared with slabs. The allowance for perimeter cladding was applied only to 'T' (ie. internal) beams greater than 500 mm deep: the assumption made is that shallower internal beams, perimeter inverted 'L' beams and rectangular beams would not affect storey heights. For the purposes of self-weight, the first 200 mm depth of beam was ignored: it was assumed that the applied load included the self-weight of a 200 mm solid slab.

Different design criteria can be critical across the range of beams described. The sizes given in the charts and tables are at least 20 mm deeper than for an invalid design using BS 8110 table 3.6 for analysis. The critical criteria are given under *Design notes* in Section 3.2.4.

Particular attention is drawn to the need to check that there is adequate room for reinforcement bearing at end supports. End support/column dimensions can have a major affect on the number and size of reinforcing bars that can be curtailed over the support. Hence, the size of the end support can have a major effect on the main bending steel and therefore size of beam. The charts assume that the end support/column size is based on edge columns with 2.5% reinforcement supporting a minimum of three storeys or levels of similarly loaded beams. Smaller columns or narrower supports, particularly for narrow beams, may invalidate the details assumed and therefore size given (see Cl 3.12.9.4 of BS 8110).

Beam reinforcement densities relate to web width multiplied by overall depth.

7.1.5 COLUMN CHARTS

The column charts give square sizes against **ultimate** axial loads for a range of steel contents for **braced** internal, edge and corner columns. Column design is dependant on both ultimate axial load and ultimate design moments. In recognition of the different amounts of moment likely to be experienced by the columns, internal, edge and external corner columns are treated separately. Design moments depend on spans, loads and stiffnesses of members and are specific to a column or group of columns. Whilst the allowance made for moments is considered to be conservative, it is uncertain. The sizes given, particularly for perimeter columns, are, therefore, **estimates** only.

All data were derived from spreadsheets that designed square braced columns supporting solid flat slabs. Forces were derived in accordance with BS 8110, Pt 1, Cl 3.8.2.3; and applied moments in perimeter columns in accordance with Cl 3.2.1.2.3. Many different configurations were used: 2 to 10 storeys, panel aspect ratios (l_y/l_x) of 1.00, 1.25, 1.5 and 1.75 etc. In general, the slabs were assumed to carry 5.0 kN/m² imposed load, 1.0 kN/m² superimposed dead load, and 8.5 kN/m perimeter load (3.0 kN/m at roof level). Floor-to-floor height was set at 3.6 m and β for columns, 0.85. Checks were carried out over a limited range of aspect ratios assuming different types of slab (troughed floors and one-way slab and beams).

Internal columns

Internal column sizes are based on 'an allowable stress', p_c , where:

 $p_c = 0.384 \text{ x } f_{cu} + 3.6 \text{ x } f_y \text{ x } (\text{As}/100)/460.$

The extensive trials suggested an accuracy of ± 12 mm in square column size. The charts and data will be less accurate if unequal adjacent spans and/or imposed loads higher than 5 kN/m² are used or if other than nominal moment is envisaged.

Perimeter columns

The charts were derived from the design of square braced columns as described above: the largest square column size from the range of panel aspect ratios is quoted. As relatively flexible flat slabs were used in the derivation, these sizes should, in general, prove conservative. However, they may not be so when less stiff floor plates or very lightweight cladding is used.

In order to model design moments simply, the charts and data are presented in terms of ultimate axial load and number of storeys supported.

Comparisons of the charts with the base data suggested that the square sizes given are reasonably accurate. They appear to be an average of 12 mm (sd 25 mm) greater than those required for the desired percentage of reinforcement for the worst panel aspect ratio. Suggested sizes are less accurate for one- and two-storey columns, floor or beam spans greater than 12 m, and floor panel aspect ratios greater than 1.50.

Concrete grade

The use of concrete strengths greater than the 35 N/mm² concrete assumed can decrease the sizes of column required. Smaller columns occupy less lettable space. However, this publication is aimed at low-rise buildings where buildability issues (eg. different mixes on site, punching shear and reinforcement curtailment requirements) minimize potential gains. Also, in the range considered, the use of column concrete strengths greater than 35 N/mm² appears to make little difference to the size of perimeter column required. Higher strength columns are therefore not covered in this publication, but should be considered, particularly on high-rise projects.

Reinforcement percentages

Reinforcement percentages assume 3.6 m storey heights and 37 diameters + 100 mm laps.

7.2 Precast and composite elements

7.2.1 SLABS

The charts and data for proprietary precast and composite elements are based on manufacturers' 1996 data. The sizes given are selected, wherever possible, from those offered in late 1996 by at least two manufacturers. The ultimate loads to supporting beams are derived from the maximum self-weight quoted for the relevant size.

The units are designed to BS 8110, generally using grade C50 concrete, high tensile strand or wire prestressing steel to BS 5896 or high tensile steel to BS 4449. For specific applications the reader should refer to manufacturers' current literature.

Precast and in-situ concrete can act together to give efficient, economical and quick composite sections. For slabs, these benefits are exploited in the range of composite floors available. The data have been abstracted from manufacturers' literature.

7.2.2 COMPOSITE BEAMS

For composite beams the position is not so clear cut. During the construction of a composite beam (precast downstands acting with an in-situ topping), the precast element will usually require temporary propping until the in-situ part has gained sufficient strength. The number of variables (construction stage loading, span, propped span, age at loading, etc.) has, to date, precluded the preparation of adequate span/load charts and data for such beams. However, the combination of precast concrete with in-situ concrete (or hybrid concrete construction) has many benefits, particularly for buildability, and should not be discounted.

7.2.3 PRECAST BEAMS

The charts and data in this publication therefore concentrate on unpropped non-composite beams. They cover a range of profiles, web widths and **ultimate** applied uniformly distributed loads (uaudl).

These charts were derived from spreadsheets using the same optimisation process as in-situ beams. The design of precast beams was based on ordinary reinforced concrete design principles as covered in BS 8110⁽²⁾ and Multi-storey precast concrete framed structures ⁽⁹⁾. The single spans were measured from centreline of support to centreline of support. For 'L' and inverted 'T' beams, a ledge width of 125 mm was assumed. Upstanding concrete is therefore relatively wide and, for structural purposes, was considered part of the section. In-situ concrete infill was ignored. The depths of beams were minimized consistent with allowing suitable depth for precast floor elements.

The main complication with precast beams is the connections. The type of connection is usually specific to individual manufacturers and can affect the beams. The sizes of beams given should therefore be considered as indicative only. Other aspects, notably, connection design and details, other components, columns, floors, walls, stairs, stability, structural integrity and overall economy can influence final beam sizing.

Manufacturers produce a wide range of preferred crosssections based on 50 mm increments. Designs with other cross-sections are easily accommodated. The economics of precast beams depend on repetition: a major cost is the manufacture of the base moulds. Reinforcement is usually part of an overall package and, therefore, densities are not quoted (but they tend to be high). For specific applications, the reader should refer to manufacturers and their current literature.

7.2.4 COLUMNS

These charts were derived from spreadsheets using the same optimization process as that described for in-situ columns. The design of precast columns is based on ordinary reinforced concrete design principles as covered in BS 8110. Column design is dependant upon axial load and design moment induced. The charts and data for internal columns assume equal spans in each direction (ie. $I_{x1} = I_{x2}$ and $I_{y1} = I_{y2}$) and, therefore, nominal moments.

The charts and data for edge and corner columns are presented in terms of ultimate axial load, and, in order to model design moments simply, number of storeys. They have been derived by assuming that the floor reaction acts at a nominal eccentricity of ${\scriptstyle {f\!\!\!C}}$ $\!\!\!\!\!\!\!\!\!\!\!$ column size + 150 mm.

Grade 50 concrete suits factory production requirements and is commonly used for precast columns. Reinforcement densities are affected by connection details and are therefore not given.

Factory production and casting in a horizontal position allow much greater percentages of reinforcement to be used. This is acknowledged in BS 8110, which allows reinforcement areas of up to 8%. However, connection details can limit the amounts of reinforcement that can be used. The charts for perimeter columns, therefore, concentrate on relatively small amounts of reinforcement. Higher percentages and higher or lower grades of concrete should be checked by a specialist engineer or contractor.

For specific applications, please refer to manufacturers.

7.3 Post-tensioned elements

7.3.1 GENERAL

The charts and data are derived from spreadsheets that designed the elements in accordance with BS 8110⁽²⁾ and Concrete Society Technical Report No 43⁽¹⁰⁾. Reference was made to other material ^(11,16) as required. The effects of columns and restraint were ignored in the analysis and design.

In many respects, span:depth charts for post-tensioned elements are very subjective as, for any given load and span, there is a range of legitimate depths. Indeed, in practice, many post-tensioned elements are designed to make a certain depth work. The amount of load balanced or prestress assumed can be varied to make many depths work.

For the purposes of this publication, preliminary studies were undertaken to investigate the overall economics of slabs and beams versus amount of prestress. The studies suggested that high levels of prestress (eq. 3.0, 4.0 and 5.0 N/mm²) were, theoretically, increasingly more economic in overall terms. However, at these upper limits of stress (and span), problems of tendon and anchorage congestion and element shortening become increasingly dominant. Theoretical economies have to be balanced against issues of buildability and serviceability. The charts and data in this publication are, therefore, based on more typical mid-range levels of prestress, 2.5 N/mm² for slabs and 3.0 N/mm² for beams. The charts give an indication of the range of depth for higher and lower levels of prestress. Higher levels of pre-stress may be appropriate in certain circumstances. 2.5 N/mm² might be considered high for flat slabs.

The shape of the lines for the span:depth charts for prestressed elements is the product of a number of slopes (in order of increasing slope - vibration limitations, load balanced, limits on the amount of prestress (P/A limit), deflection and the number of tendons allowed). For longer spans, number of tendons and limiting prestress predominate. At shorter spans and lower loads, it is the amount of load balanced that is critical. The amounts of load that were used to balance loads were:

Solid slabs

100% dead load 25% imposed load

Ribbed slabs, flat slabs and beams 133% dead load 33% imposed load

The charts and data assume the use of single-strand unbonded tendons. Where these become congested, consideration should be given to using bonded multistrand tendons in flat or round ducts. The use of bonded tendons in ducts will alter assumptions made regarding cover, drapes, wobble factors, coefficient of friction, construction methods etc. and, without increasing assumed prestress, will increase depths. For beams, indications of increased depths using bonded flat-4 and round-7 multi-strand tendons are given.

The charts for multiple spans are based on a three-span condition. Normally, at the serviceability limit state for a multiple span, the two-span condition would be assumed to give the maximum moment (at support). However, preventing post-tensioned multi-span elements rising at internal supports causes secondary moments in the elements. These moments are usually beneficial to support moments and detrimental to span moments to the extent that ultimate three-span span moments (including ultimate secondary moments) are generally more critical than serviceability two-span support moments (or, indeed, ultimate or serviceability four-span span or support moments). The three-span case has therefore been used.

Special care must be taken, however, with one-way slabs over 12 m and flat slabs, where the two-span condition appears to be more critical than the three-span condition. The depths of highly loaded two-span rectangular beams may also need minor adjustment. Please refer to relevant data.

BS 8110 allows for three serviceability classes: class 1 allows no flexural tensile stresses, class 2 allows flexural tensile stresses but no visible cracking, and class 3 allows flexural tensile stresses with cracks limited to 0.2 mm (0.1 mm in severe environments). Most elements in buildings are assumed to be in an internal environment, and are designed to serviceability class 3. The charts are therefore based on class 3. (The allowable crack width in the design of untensioned bonded reinforcement is 0.3 mm.)

7.3.2 RIBBED SLABS

Charts and data for ribbed slabs are based on 300 mm wide ribs, spaced at 1200 mm centres and assume a maximum of six 15.7 mm diameter tendons per rib. The weight of (untensioned) reinforcement allows for nominal links to support the tendons, but does not allow for mesh, eg. A142, in the topping. Where four or fewer tendons are used (and apart from 2 and 4 hours fire resistance and severe exposure), the sizes are equally valid for 150 mm wide ribs at 600 centres or 225 mm wide ribs at 900 centres.

7.3.3 FLAT SLABS

The rules in Concrete Society Technical Report 43 regarding allowable tensile stresses determined the use of serviceability class 2 design. The inclusion of untensioned bonded reinforcement was assumed.

Punching shear can limit minimum thicknesses. The charts and data assume that column sizes will be at least equal to those given in the data.

7.3.4 BEAMS - RATIO OF DEAD LOAD TO LIVE LOAD

The charts and data 'work' on applied ultimate load. However, in multiple spans, the ratio of imposed load to dead load can alter span moments, and a ratio of 1.0 (ie. applied imposed load = applied dead load) was assumed.

Lower ratios, with dead loads predominating, make little difference to the sizes advocated. For a higher ratio of 1.25 (imposed:dead, eg. a 300 mm ribbed slab, average 4.5 kN/m², supporting 1.5 kN/m² SDL and 7.5 kN/m² IL), guidance is given. Still higher ratios can induce mid-span hogging and might be dealt with by assuming the beam depth tends towards being the same as those for a single span (where ratios are of little consequence).

7.3.5 DESIGN BASIS

The spreadsheets used in the preparation of the charts and data followed the method in Concrete Society Technical Report No 43, and used the load balancing method of design. Moments and shears were derived from moment distribution analysis. Both tensioned and untensioned reinforcement were designed and allowance was made for distribution steel and reinforcement around anchorages. Designs were subject to limiting amount of prestress and number of tendons. Generally, service moments were critical.

Deflection checks were based on uncracked concrete sections and limited to span/250 overall and span/500 or 20 mm after the application of finishes. Vibration was considered using the Concrete Society Technical Report 43 method of analysis assuming three bays with square panels in the orthogonal direction. Generally, response factors of less than 4 were found (4 is acceptable for special offices, 8 for general offices and 12 is acceptable for busy offices).

The following data was used in the preparation of the charts:

Bonded reinforcement $f_v = 460 \text{ N/mm}^2$

Tendons

15.7 mm diameter unbonded tendons, $A_p = 150 \text{ mm}^2$

 $\label{eq:fpu} \begin{aligned} &f_{pu} = 1770 \ \text{N/mm}^2 \\ &\text{Transfer losses} = 10\% \\ &\text{Service losses} = 20\% \\ &\text{Coefficient of friction, } \mu = 0.06 \\ &\text{Wobble factor, } \omega = 0.019 \ \text{rads/m} \\ &\text{Relaxation} = 2.5\% \\ &\text{Relaxation factor} = 1.5\% \\ &\text{Young's modulus, } E_{ps} = 195 \ \text{kN/mm}^2 \end{aligned}$

Sheath thickness = 1.5 mm

 $P_{Ap} = 150 \text{ kN}$ approx.

Inflection of tendon at 0.1 of span.

Wedge draw-in = 6mm

Whilst Superstrand tendons were used in the derivation of the charts and data, other tendons, eg. Dyform strand, may prove to be just as, or more, economic.

Concrete

Properties at transfer: characteristic compressive strength, f_{ci} = 25.0 N/mm², Young's modulus, E_{ci} = 21.7 kN/mm².

Indoor exposure; Coefficient of drying shrinkage, e_{sh} , = 300 microstrain.

Creep coefficients, ϕ , for loads applied after 7 days, 2.0; after 1 month, 1.8 and after 6 months, 1.2.

8 LOADS

8.1 Slabs

The slab charts and data give overall depths, etc. against span for a range of **characteristic** imposed loads assuming end spans and a superimposed dead load (finishes, services, etc) of 1.5 kN/m². In order to use the slab charts and data as intended, it is essential that the correct characteristic imposed load is used (if necessary modified to account for different superimposed dead loads).

8.1.1 IMPOSED LOADS, qks

The imposed load should be determined from the intended use of the building (see BS 6399 Pt 1⁽⁵⁾). The actual design imposed load used should be agreed with the client. However, the following characteristic imposed loads are typical of those applied to floor slabs.

1.5 kN/m ²	Domestic, minimum for roofs with access			
2.0 kN/m ²	Hotel bedrooms, hospital wards			
2.5 kN/m ²	General office loading, car parking			
3.0 kN/m ²	Classrooms			
4.0 kN/m ²	Corridors, high-specification office loading, shop floors			
5.0 kN/m ²	High-specification office loading, file rooms, areas of assembly			
7.5 kN/m ²	Plant rooms			
2.4 kN/m²/m	General storage per metre height			
4.0 kN/m²/m	Stationery stores per metre height			
The slab charts highlight:				

2.5 kN/m ²	General office loading, car parking
5.0 kN/m ²	High-specification office loading, file rooms, areas of assembly
7.5 kN/m ²	Plant room and storage loadings
10.0 kN/m ²	Storage loadings

In addition, an allowance of 1.0 kN/m² should be considered for demountable partitions in office buildings. A common specification is '4 + 1', ie. 4.0 kN/m² imposed load plus 1.0 kN/m² for demountable partitions. No reductions in imposed load have been made (BS 6399 Pt 1 tables 2 and 3) nor are provisions for concentrated loads considered.

8.1.2 SUPERIMPOSED DEAD LOADS (SDL), gksdl

Superimposed dead loads allow for the weight of services, finishes, etc. The IStructE/ICE publication, *Manual for the design of reinforced concrete building structures*⁽¹²⁾, recommends that allowances for dead loads on plan should be generous and not less than those shown in the opposite column.

Floor finish (screed)	1.8 kN/m ²
Ceilings & services load	0.5 kN/m ²
Demountable partitions	1.0 kN/m ²
Blockwork partitions	2.5 kN/m ²

Raised access flooring imparts loads of up to approximately 0.5 kN/m² and suspended ceilings weigh up to approximately 0.15 kN/m². BS $648^{(17)}$ schedules the weight of building materials. It can be used to derive the following typical characteristic loads:

Carpet	0.03 kN/m ²
Terrazzo tiles, 25.4mm	0.52 kN/m ²
Screed, 1:3, 50mm	1.15 kN/m ²
Gypsum plaster, 12.7 mm	0.21 kN/m ²
Gypsum plasterboard, 12.7 mm	0.11 kN/m ²

Examples of typical build-ups are given below:

0.00

Offices	
Carpet	0.03 kN/m ²
Screed, 1:3 (50 mm)	1.15 kN/m ²
Gypsum plaster ceiling,12.7 mm	0.21 kN/m ²
Services	<u>0.11 kN/m²</u>
	1.50 kN/m ²
Speculative offices	
Carpet tiles	0.03 kN/m ²
Raised access floor	0.50 kN/m ²
Suspended ceiling	0.15 kN/m ²
Services	<u>0.32 kN/m²</u>
	1.00 kN/m ²
Core areas	
Terrazzo tiles, 25.4 mm	0.52 kN/m ²
Screed, 1:3, 75 mm	1.75 kN/m ²
Gypsum plaster, 12.7 mm	0.21 kN/m ²
Blockwork partitions [#]	2.50 kN/m ²
Services	<u>0.22 kN/m²</u>
	5.20 kN/m ²

BS 6399 allows one to take ", of the line load from partitions as a uniformly distributed load. In this case, say, 3.25 m high 150 mm thick dense blockwork @ 1.90 kN/m² plus gypsum plaster 12.7 mm both sides @ 0.42 kN/m²

8.1.3 SUPERIMPOSED DEAD LOADS, g_{ksdl}: IMPOSED LOADS (IL) FOR USE WITH SLAB CHARTS AND DATA

The charts and data make an allowance of 1.50 kN/m^2 for superimposed dead loading (SDL). If the actual superimposed dead load differs from 1.50 kN/m^2 , the characteristic imposed load used for interrogating the charts and data should be adjusted by adding 1.4/1.6 x(actual SDL - 1.50) kN/m². The equivalent characteristic imposed load can be estimated from the table opposite.

Equivalent imposed loads, kN/m²

Imposed load	Su 0.0	perim 1.0	posed c	lead loa	ad, kN/i 4.0	m ² 5.0
kN/m ²	0.0	1.0	2.0	5.0	4.0	J.0
2.5	1.2	2.1	2.9	3.8	4.7	5.6
5.0	3.7	4.6	5.4	6.3	7.2	8.1
7.5	6.2	7.1	7.9	8.8	9.7	10.6
10.0	8.7	9.6	10.4	11.3	12.2	n/a

8.1.4 SELF-WEIGHTS OF SLABS, gks

In order to use the beam and column charts and data as intended, it may be necessary to calculate beam and column loads from first principles, or, as in the case of post-tensioned beams, it may be necessary to know the proportion of dead load to imposed load. All slab charts and data include allowances for self-weight at a density of 24 kN/m^2

The following self-weights are indicative. Values for ribbed and waffle slabs may differ, depending upon mould manufacture. Values for precast slabs also may differ between manufacturers.

Characteristic self-weight of slabs, gks, kN/m²

	-		-			
Slab thickness, mm	100	200	300	400	500	600
Solid slabs ¹	2.4	4.8	7.2	9.6	12.0	
Ribbed slabs ² 100% ribbed 75% ribbed, 25% solie	d		3.5 4.4			
Waffle slabs ³ 100% waffle 75% waffle, 25% solio	ł		4.0 4.8		6.2 7.7	
Slab thickness, mm	110	150	200	250	300	400
Hollow-core slabs without topping	2.2	2.4	2.9	3.7	4.1	4.7
Slab thickness, mm	150	190	240	290	340	440
Hollow-core slabs with 40 mm topping ⁴	3.2					5.7
Slab thickness, mm	325	425	525	625	725	825
Double 'T's without topping⁵	2.6	2.9	3.3	3.7	4.1	4.5
Slab thickness, mm	400	500	600	700	800	900
Double 'T's with 75 mm topping ⁶		4.4	4.7	5.1	5.5	6.3

Notes

- 1 including in-situ, precast and composite solid slabs
- 2 bespoke moulds, 150 mm ribs at 750 mm cc, 100 mm topping
- 3 bespoke moulds, 125 mm ribs at 900 mm cc, 100 mm topping
- $4 \quad \mbox{for slabs with 50 mm structural topping, add 0.2 \ kN/m^2 \label{eq:kN/m^2}$
- 5 for slabs 300, 400, 500 mm, etc. thick, deduct 0.6 kN/m²
- 6~ for slabs with 100 mm topping, add 0.6 kN/m²

8.1.5 ULTIMATE SLAB LOAD, ns

Ultimate loads are summations of characteristic loads multiplied by appropriate partial load factors, ie:

 $n_{s}~=~ultimate~self\text{-weight~of~slab},~g_{ks}\times\gamma_{fgk}$

ultimate superimposed dead loads, g_{ksdl} \times \gamma_{fgk}

in at in

ultimate imposed load, $q_{ks} \times \gamma_{fgk}$

where

 $g_{ks},\,g_{ksd}$ and q_{ks} are as explained above and measured in kN/m^2

 $\gamma_{\text{fgk}} = \text{load}$ factor for dead loads = 1.4

 $\gamma_{fqk=}$ = load factor for dead loads = 1.6

Example

What is the ultimate load of a 300 mm solid slab supporting 1.5 kN/m² superimposed dead loads and 5.0 kN/m² imposed load?

$$n_s = 7.2 \times 1.4 + 1.5 \times 1.4 + 5.0 \times 1.6 \\ = 20.46 \text{ kN/m}^2$$

8.2 Beams

8.2.1 CALCULATING ULTIMATE APPLIED UNIFORMLY DISTRIBUTED LOADS (uaudl) TO BEAM, nb

The beam charts give overall depths against span for a range of **ultimate** applied loads and web widths, assuming end spans. This load can be calculated as follows:

Ultimate applied udl to beam,

- $n_{b} \hspace{1.5cm} = ultimate \hspace{1.5cm} applied \hspace{1.5cm} load \hspace{1.5cm} from \hspace{1.5cm} slabs, \hspace{1.5cm} n_{s} \times \hspace{1.5cm} l_{s} \times \hspace{1.5cm} erf$
 - .

+

ultimate line loads, n₁₁

8.2.2 ULTIMATE APPLIED LOAD FROM SLABS, $n_s \times l_s \times erf$

Ultimate applied load from slabs should be calculated by multiplying the following terms:

 $n_s \times I_s \times erf$

where

- ns ultimate slab load, kN/m2, as described above.
- Is = slab span perpendicular to the beam, m. In the case of multiple-span slabs, take the average of the two spans perpendicular to the beam.
- erf = elastic reaction factor =
- 0.46 for end support of continuous slabs (0.45 for beams)
- 0.5 for end support of simply supported slabs (or beams)

- for interior supports of multiple-span continuous slabs (eg. in-situ slabs) or for all interior supports of discontinuous slabs (eg. precast slabs)
- 1.1 for the first interior supports of continuous slabs of three or more spans
- 1.2 for the internal support of continuous slabs of two spans

Adjustments for elastic reactions

The data for slabs include ultimate applied loads from slabs to beams. These figures may need to be adjusted to account for actual conditions, eg. for an in-situ slab of two spans rather than that for the three spans assumed, consider increasing loads to beams by 1.2/1.1, ie. approximately 10%. NB: data for post-tensioned slabs is the result of analysis and therefore includes elastic reactions.

8.2.3 ULTIMATE LINE LOADS, n_{II}

Ultimate line load,

- $n_{II} ~=~ ultimate~cladding~loads,~g_{kc} \times \gamma_{fgk} \times h$
 - other ultimate line loads, $g_{ko} \times \gamma_{fgk}$
 - +
- $r_{\rm r}$ and $r_{\rm r}$ and $r_{\rm r}$ and $r_{\rm r}$

adjustment for ultimate beam self-weight, $g_{kbm} \times \gamma_{fgk}$

where

- g_{kc} = characteristic dead load of cladding, kN/m², see opposite
- h = supported height of cladding
- $g_{ko} \ = \ characteristic \ dead \ load \ of \ other \ line \ loads, \\ kN/m$
- g_{kbm} = characteristic dead load, kN/m. Beam selfweight is allowed for in the charts but the user may wish to make adjustments.
- γ_{fgk} = partial safety factor for dead load, 1.4

Ultimate cladding loads, g_{kc} x h x Yfgk

Ultimate cladding loads should be determined by multiplying characteristic cladding loads by the partial load factor and supported height. Cladding loads can be estimated from the following tables.

Ultimate applied load from cladding, $g_{kc} \times h \times \gamma_{fgk}$, kN/m

Char. cladding load, g _{kc,} kN/m ²		ght s 2.6							
0.5	2	2	2	2	2	2	3	3	3
1.0	3	4	4	4	4	5	5	5	6
1.5	5	5	6	6	7	7	8	8	8
2.0	7	7	8	8	9	10	10	11	11
2.5	8	9	10	11	11	12	13	13	14
3.0	10	11	12	13	13	14	15	16	17
3.5	12	13	14	15	16	17	18	19	20
4.0	13	15	16	17	18	19	20	21	22
4.5	15	16	18	19	20	21	23	24	25
5.0	17	18	20	21	22	24	25	27	28

Typical characteristic cladding loads, gkc

kN/m ²
2.34 2.17 1.95 2.30
3.20 1.90 0.85 1.13
2.35 1.67
0.21 0.11
0.35 0.50
2.40
0.15 0.15 0.02

Example

Determine typical line loads from traditional brickand-block cavity wall cladding onto a perimeter beam.

Determine load/m²

102.5 mm brickwork, solid high density clay

		= 2.34 kN/m ²
50 mm insulation		$= 0.02 \text{ kN/m}^2$
150 mm lightweight (800	kg/m³) blocl	kwork
		= 1.13 kN/m ²
12.7 mm gypsum plaster		= <u>0.21</u> kN/m ²
Subtotal		= 3.70 kN/m ²
2 no. × 6 mm double glazi	ng c/w fram	ning
	5	= 0.35 kN/m ²
Assuming minimum 25%	glazing, ave	rage =
75% × 3.70 + 25% × 0	.35	= 2.86 kNm ²
Determine load/m		
Assuming the height of cla	adding to be	e supported is
3.5 m then, the characteris	stic load per	r metre run =
2.86 × 3.5		= 10 kN/m ²
and the ultimate load per	metre run =	=
10 × 1.4		= 14 kN/m

Ultimate line loads from other sources, $g_{ko X Yfak}$

Any other applied loads on a particular beam must be determined. For example, characteristic partition loads:

150 mm blockwork, solid, stone aggregate	$= 3.20 \text{ kN/m}^2$
2 no. \times 12 mm plaster, gypsum, two coat	$= 0.42 \text{ kN/m}^2$

Total $= 3.62 \text{ kN/m}^2$

If the height of cladding to be supported is 3.0 m then ultimate cladding load, $q_{kp} \times h \times \gamma f_{qk} =$

$$3.62 \times 3.0 \times 1.4$$
 = 15 kN/m

The ultimate applied load from partitions can be determined from characteristic loads and supported heights from the tables opposite.

Adjustment for self-weight of beam, $g_{kb} \propto \gamma_{fak}$

The beam charts assume that in-situ slab loads are imparted by a 200 mm thick solid slab. Where the slab is not 200 mm thick some adjustment can be made as follows:

Additional ultimate load per metre width of beam web, kN/m/m

Depth of slab, mm	Internal 'T' beams	Perimeter 'L' beams
100	3	2
200	0	0
300	-3	-2
400	-7	-3
500	-10	-5

Example

Determine the ultimate applied load to a 300 mm wide perimeter beam supporting a 250 mm oneway solid slab, IL 5.0 kN/m², SDL 1.5 kN/m², spanning 6.0 m, and 3.5 m of cladding, average 3.0 kN/m².

Ultimate slab load, kN/m².

\mathbf{n}_{s}	$= (6.0 + 1.5) \times 1.4 + 5.0 \times 1.6$
	= 18.5 kN/m ²

Ultimate applied load from slabs, $n_s \times l_s \times erf =$ $18.5 \times 6.0 \times 0.5$

= 55.5 kN/m

Ultimate line load from cladding =

 $3.5 \times 3.0 \times 1.4$ = 14.7 kN/m

Adjustment for self-weight of beam, = $(0.25 - 0.20) \times 0.30/2 \times 24 \times 1.4$ = -0.2 kN/m

Total, ie. ultimate applied udl to beam, $n_b = 70.0 \text{ kN/m}$

8.2.4 **BEAMS SUPPORTING TWO-WAY SLABS**

The loads outlined in the two-way slab data are derived in accordance with BS 8110 assuming square corner panels and assuming that these loads will be treated as uniformly distributed loads over 75% of the beam span. Treating the load as though it were applied to 100% of the beam span overestimates the moment by approximately 5%, making little practical difference for the purposes of sizing beams.

For non-square panels, it is suggested that the loads on the longer supporting beams should be determined from the loads for a square panel of the longer dimension. Using this load over 100% of the beam's span overestimates the span moment by an additional amount dependant on the slab panel aspect ratio:

Aspect ratio 1.00 1.25 1.33 1.50 2.00 Overestimate on moment 0% 6% 9% 15% 32%

Assuming that deflection is proportional to moment, these percentages can be used to modify the loads used in determining the beam sizes. The user may or may not choose to use this approximate method.

Example

What loads should be used in sizing the internal beams supporting bespoke waffle slabs designed as two-way slabs (SDL 1.5 kN/m², IL 5.0 kN/m²) on a 13.5 by 9.0 m grid?

For the 9.0 m span, from p 31 (bespoke moulds, multiple span, 9.0 m span, 5.0 kN/m²) load to internal beam = 108 kN/m

Allow 5% for overestimate of moment due to using load over 100% of length of beam 108/1.05

108/1.05

= 103 kN/m

For the 13.5 m span, from p 31 (bespoke moulds, multiple span, 13.5 m span, 5.0 kN/m²) load to internal beam = 197 kN/m

Allow 5% for overestimate of moment due to using load over 100% of length and 15% for overestimate of moment due to overestimating load for an aspect ratio of 1.5. Therefore, for the purposes of sizing beam only use: = 163 kN/m

197/(1.05×1.15)

8.2.5 POST-TENSIONED BEAMS

The first set of charts for post-tensioned beams assume 1000 mm wide rectangular beams. Other post-tensioned beam widths can be investigated on a pro-rata basis, ie. by determining the ultimate applied uniformly distributed load (uaudl) per metre width of web. The following table may help.

Equivalent uaudl per metre width of web, kN/m width/m run

		Beam width, mm						
		300	450	600	900	1200	1800	2400
Ultimate	25	83	56	42				
applied	50	167	111	83	56	42		
uniformly	75	250	167	125	83	63	42	31
distributed	100	333	222	167	111	83	56	42
load	150		333	250	167	125	83	63
(uaudl) per	200			333	222	167	111	83
metre run,	250				278	208	139	104
kN/m	300				333	250	167	125

8.3 Columns

8.3.1 CALCULATING ULTIMATE AXIAL LOAD, N

In design calculations, it is usual to determine the **characteristic** loads on a column on a floor-by-floor basis, assuming simple supports (see BS 8110, Pt 1, Cl 3.8.2.3) and keeping dead and imposed loads separate. Load factors, γ_{f_i} are applied to the summation of these loads to obtain **ultimate** loads used in the design. BS 6399⁽⁵⁾ allows some reduction in imposed load depending on usage, area supported and number of storeys.

Hence, the ultimate axial load can be expressed as

 $N = \sum \{g_{ks} \times I_x X |_y + g_{kbx} \times I_x + g_{kby} \times I_x + g_{kc} \} \times \gamma_{fgk}$ + $\sum \{g_{ks} \times I_x \times I_y \} \times \gamma_{fnkx} \times i \| rf$

where

- Σ {...} = summation from highest to lowest level
- g_{ks} = characteristic slab self-weight and superimposed dead loads
- g_{kbx} = characteristic extra over beam, cladding loads and any other dead loads supported
- g_{kc} = characteristic self-weight of column
- qks = characteristic imposed load for the slab
- I_x = supported span in the × direction, taken to be half of the sum of the two adjacent spans (but see Section 8.3.2, elastic reaction factors, below)
- ly = supported span in the y direction, taken to be half of the sum of the two adjacent spans (but see Section 8.3.2, elastic reaction factors, below)

 γ_{fgk} = partial safety factor for dead load, 1.4

- γ_{fqk} = partial safety factor for imposed load, 1.6
- ilrf = imposed load reduction factor

Imposed load reduction factors

In accordance with BS 6399 table 2, imposed loads may be reduced in accordance with the number of floors, including roof, being supported. Generally, live load reduction is unwarranted in the pre-scheme design of low-rise structures: a factor of 1.00 may be used

Imposed load reduction factors

No. of floors carried by member	1	2	3	4	5-10	10+
Reduction in imposed load in member	0	10%	20%	30%	40%	50%

8.3.2 ELASTIC REACTION FACTORS

To allow for the effects of continuity when calculating column loads, many engineers use elastic reactions or summation of ultimate shears rather than simply supported (single span) reactions of beams or slabs. According to BS 8110, Pt 1, Cl 3.8.2.3, this precaution is unnecessary - simple supports may be assumed.

However, if required to avoid anomalies with more rigorous analysis or to reflect serviceability foundation loads more accurately, beam or slab loads to columns may be increased. The amount by which beam loads are increased depends on the circumstance (see Section 8.2.2 and BS 8110 tables 3.6 and 3.13) and engineering judgement. Often an increase of 10% (1.1/1.0) is used for penultimate columns supporting a beam of three or more spans. In the case of two-span beams an increase of 20% might be warranted. In the case of flat slabs, troughed slabs, etc. allowance might be made for each orthogonal direction.

8.3.3 ULTIMATE SELF-WEIGHT OF COLUMNS, kN

Ultimate self-weight of columns can be estimated from the following table

Ultimate self-weight of columns per storey, kN

		ł	leig	ht (e	g. flo	oor-t	o-flo	or),n	n		
		2.4	2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0								
	250	5	5	6	6	7	7	8	#8	#8	
Size,	300	7	8	8	9	10	10	11	11	12	
mm	400	13	14	15	16	17	18	19	20	22	
square	500	20	22	24	25	27	29	30	32	34	
	600	29	31	34	36	39	41	44	46	48	
	700	40	43	46	49	53	56	59	63	66	
	800	52	56	60	65	69	73	77	82	86	

slenderness may exceed 15, ie. may be a slender column in a braced frame.

8.3.4 ESTIMATING ULTIMATE AXIAL LOAD

See Section 2.7.

8.3.5 EXAMPLES

See Sections 2.11.4 and 2.11.5.

9 THE CASE FOR CONCRETE

9.1 General

Primarily, clients expect three things from building structures -

- · low cost of construction
- short construction times
- excellent functional performance and quality.

Concrete frames fit the bill.

9.2 Costs

Construction costs

In comparison with steel frames, reinforced concrete can

- save up to 24% in frame costs
- save 5.5% in overall construction costs⁽⁶⁾

Finance costs

All other things being equal, concrete construction's 'pay as you pour' principle saves on finance costs. This could amount to saving 0.3% of overall construction cost compared with structural steel-framed buildings.

Thermal mass

Concrete's thermal mass tends to reduce excessive diurnal temperature fluctuations and causes a useful delay between peak external and peak internal temperatures. It can therefore, reduce cooling requirements in buildings, thereby reducing both initial and running costs of services. Concrete can be formed into appropriate shapes to aid the transfer of heat from circulating air to the structure.

Foundations

Foundations for concrete-framed buildings may cost up to 30% more than those for steel-framed buildings. However, this is more than compensated by up to 24% saving in superstructure costs⁽⁶⁾. Superstructures cost 5 to 15 times as much as foundations.

Fees

The advent of fixed fees has tended to eliminate traditional additional engineers' fees for the detailing of reinforced concrete. Now however, reinforced concrete detailing is considered an additional service under the 1995 ACE *Conditions of engagement*. Fees for consultants are a small proportion of total costs, but their work has a great effect on buildability, functionality and value.

Specialist concrete contractors, notably members of *Construct*, are able to offer contractor detailing. Contractor detailing can offer many benefits. These include lower overall costs, faster construction, less adversarial relationships, increased buildability, more opportunity to innovate and to control safety within the requirements of the design.

9.3 Time

Speed

Overall, in-situ concrete-framed buildings generally take no longer to construct than steel-framed buildings: indeed they can be faster⁽⁶⁾.

Perceptions about fast steel-frame construction must be balanced against the availability of suitable areas for follow-on trades. With no secondary application of fireproofing, and apart from propping of in-situ frames, concrete construction gives follow-on trades the opportunity of working on completed floors. Enlightened specifications and a willingness to adopt specialist contractors' methods, where appropriate, can have a remarkable effect on concrete construction programmes.

Buildability

The prerequisites for fast construction in any material are design discipline, repetition, integration, simplification and standardization of design details. Rationalising reinforcement, designing and detailing for prefabrication, precasting or part-precasting are some of the techniques that can help progress on site.

Many contractors appreciate the opportunity to discuss buildability and influence designs for construction.

Forms of contract

Construction management and design-and-build forms of contract are becoming more popular. Lack of lead-in times and concrete's ability to accommodate late information and variations are especially useful under these forms of contract (as the work can be let without finalising the design of following elements).

Weather

Cold and hot weather working need some preparation and planning. Precautions should be taken to ensure that progress is not impeded by rain or snow.

Striking times and propping

Striking times and propping are a part of traditional insitu concrete construction. When critical to programme, contractors, with the co-operation of designers, can mitigate their effects.

Late changes

By its nature, concrete allows alteration at a very late stage. It is important that this attribute is not abused or productivity will suffer.

9.4 Performance

Quality

Quality requires proper motivation and committed management from the outset. Success is dependant on the use of skilled and motivated personnel and quality materials. Overspecification is both costly and wasteful.

Accuracy

Overall accuracy of concrete framed buildings is not markedly different from other forms of construction. BS 5606⁽¹⁸⁾ gives 95% confidence limits as follows:

Variation in plane for beams: concrete +22 mm, steel +20 mm

Position in plan: concrete +12 mm, steel +10 mm.

Lettable areas

Concrete-framed buildings can give up to 1.5% more net lettable area than steel-framed buildings⁽⁶⁾. This is due to the flexibility of concrete construction, the dual use of structural concrete walls as partitions (and not needing to allow for steel bracing zones) and fewer stair treads due to lower floor-to-floor heights.

Adaptability

Like no other construction material, concrete can deal with complex geometry. Concrete structures are amenable to many alteration techniques and adaptability can be designed in. Ribbed floor construction gives obvious soft spots for later holes with minimal disruption.

Service integration

Flat soffits allow simple, flexible service routes to access all parts of a floor. Forming openings for risers is relatively easy, although the size of openings adjoining columns in flat slabs may be restricted.

Deflections

Generally, deflections are not large.

Long spans

The chart on p 8 gives many examples of reinforced concrete floors and many options for spans greater than 12 m. Beyond about 7.5 m, prestressing or post-tensioning becomes economic, particularly if construction depth is critical. Traditional reservations about post-tensioning are very often misconceived.

Vibration

Except for extremely thin slabs, vibration is imperceptible.

Stability

In low- to medium-rise buildings, it is most economic to use the inherent moment-resisting frame action of the slab (and beams) and columns. Otherwise, discrete cantilever shear walls should be used around permanent openings such as lifts and stairs.

Corrosion

Corrosion is a problem only in concrete in external or damp environments. Provided that prescribed covers to reinforcement are achieved, and the concrete is of appropriate quality, concrete structures should have no corrosion problems.

Fire protection

Concrete provides inherent fire resistance.

10 REFERENCES

10.1 References

- REINFORCED CONCRETE COUNCIL. CONCEPT, a conceptual design program for cast in-situ reinforced concrete structures. Reinforced Concrete Council, Crowthorne, 1995. (Interactive computer program on floppy disc for PCs).
- 2 BSI. BS 8110, Structural use of concrete, Pt 1.Code of practice for design and construction. British Standards Institution, London, 1985. (up to and including Amendment No.4). 125 p. (See note on inside front cover.)
- 3 BSI. BS 8110, Structural use of concrete, Pt 2. Code of practice for special circumstances. British Standards institution, London, 1985 (up to and including Amendment No.1). 50 p.
- 4 BURGE, M & SCHNEIDER, J. Variability in professional design. *Structural Engineering International*, 4/94. pp 247-250.
- 5 BSI. BS 6399, Design loadings for buildings, Pt 1. Code of practice for dead and imposed loads. British Standards Institution, London, 1984. 10 p.
- 6 GOODCHILD, C H. *Cost model study.* Reinforced Concrete Council, Crowthorne, 1993. 48 p.
- 7 GOODCHILD, C H. *Hybrid concrete construction*. Reinforced Concrete Council, Crowthorne, 1995. 65 p.
- ELLIOTT, K S, & TOVEY, A K. Precast concrete framed structures - Design guide. British Cement Association, Slough (now Crowthorne), 1992. 88 p.
- 9 ELLIOTT, K S. Multi-storey precast concrete framed structures. Blackwell Science, Oxford, 1996. 601 p.
- 10 CONCRETE SOCIETY. Post-tensioned concrete floors - Design handbook. TR 43. Concrete Society, Slough, 1994. 162 p.
- 11 STEVENSON, A M. *Post-tensioned floors for multistorey buildings*. Reinforced Concrete Council, Slough (now Crowthorne), 1992. 20 p.
- 12 ICE AND ISE. Manual for the design of reinforced concrete building structures. ISE, London, 1985. 88 p.
- 13 ROWE, R E, ET AL. Handbook to British Standard BS8110: 1985, Structural use of concrete. Palladian Publications, London, 1987. 206 p.
- 14 CONCRETE SOCIETY. *Trough and waffle floors.* TR 42. Concrete Society, Slough, 1991. 34 p.
- 15 WHITTLE, R T. *Design of reinforced concrete flat slabs to BS 8110*, CIRIA Report 110 (revised edition 1994). CIRIA, London, 1994. 55 p.
- 16 KHAN, S & WILLIAMS, M. Post-tensioned concrete floors. Butterworth Heinemann, Oxford, 1995. 312 p.

- 17 BSI. BS 648, Schedule of weights of building materials. British Standards Institution, London, 1964.
 49 p.
- 18 BSI. *BS 5606, Guide to accuracy in building.* British Standards Institution, London, 1980. 60 p.

10.2 Further reading

- 1 CONCRETE SOCIETY. Concrete detail design. Architectural Press. London, 1986. 127 p.
- 2 FITZPATRICK, A, JOHNSON, R, MATHYS, J, & TAYLOR,A. An assessment of the imposed loading needs for current commercial office buildings in Great Britain. Stanhope, 1992. 10 p.
- ACI. Building Code requirements for reinforced concrete. (ACI 318-95) and Commentary (ACI 318R-95). American Concrete Institute, Detroit, 1995. 369p.
- 4 MATTHEW, P W, & BENNETT, D F H. Economic longspan concrete floors. Reinforced Concrete Council, Slough (now Crowthorne), 1990. 48 p.
- 5 ACI. *Elevated slabs. Compilation* 21. American Concrete Institute, Detroit, 1993. 72 p.
- 6 FINTEL, M & S GHOSH, S. Economics of long-span concrete slab systems for office buildings - a survey. Portland Cement Association, Skokie, Illinois, 1982. 36 p.
- 7 DOMEL, A W JNR & GHOSH, S. Concrete floor systems: Guide to estimating and economizing. Portland Cement Association, Skokie, Illinois, 1990. 33 p.
- 8 MORTIMER, T J. Long-span concrete floors: Reinforced concrete as a viable option. Steel Reinforcement Promotion Group, Adelaide, 1988. 35 p.
- 9 ANTHONY, R W. Concrete buildings new formwork perspectives. Analysis and design of high-rise concrete buildings. American Concrete Institute, Detroit, 1985. pp 303 - 321.
- 10 READY-MIXED CONCRETE BUREAU, *Preparing for quality*. British Cement Association, Crowthorne, 1995. 106 p.

10.3 Abbreviations

1/rb	curvature at mid-span	m	metre
A_{ps}	area of prestressing steel reinforcement	mm	millimetre
As	area of steel reinforcement	n	ultimate load per unit area or length
B1, B2	bottom layers, B1 = lowest layer (excluding	Ν	total ultimate load
	links), $B2 =$ second layer from bottom	n/a	not applicable
C35	grade 35 concrete	o/a	overall
CC	centres	P/A	load per unit area - a measure of prestress
DL	dead load (characteristic uno.), eg. for slabs self-weight + superimposed dead load	R8, etc.	8 mm diameter, mild steel reinforcement, $f_y = 250 \text{ N/mm}^2$, etc
E	elastic modulus (Young's modulus)	SDL	superimposed dead load - allowance for
erf	elastic reaction factor		services and finishes, or that part of dead
f _{pu}	characteristic yield strength of prestressing		loads that are not self-weight
	steel reinforcement.	T10 etc.	10 mm diameter, high yield reinforcement,
fy	characteristic yield strength of		fy = 460 N/mm2, etc
	reinforcement.	T1, T2	top layers, T1 = top layer (excluding links),
I	inertia		T2 = second layer from top
IL	imposed load (characteristic uno.)	uaudl	ultimate applied uniformly distributed load
		uno.	unless noted otherwise

10.4 Organisations

Initials	Name	Telephone	Fax
BCA	British Cement Association	(01344) 762 676	(01344) 761 214
BPCF	British Precast Concrete Federation	(0116) 253 6161	(0116) 251 4568
Construct	Concrete Structures Group	(01344) 725 744	(01344) 761 214
CS	Concrete Society	(01753) 693 313	(01753) 692 333
PFF	Precast Flooring Federation	(0116) 253 6161	(0116) 251 4568
PTA	Post-tensioning Association	(0113) 270 1221	(0113) 276 0138
RCB	Ready-mixed Concrete Bureau	(01344) 725 732	(01344) 761 214
RCC	Reinforced Concrete Council	(01344) 725 733	(01344) 761 214
SPA	Structural Precast Association	(0116) 253 6161	(0116) 251 4568

A C K N O W L E D G E M E N T S

The ideas and illustrations come from many sources. The help and guidance received from many individuals are gratefully acknowledged. Special thanks are due to:

Andrew Beeby	University of Leeds
David Bennett	David Bennett Associates
Farhad Birjandi	Concrete Research and Innovation Centre at Imperial College
Michael Flynn	Reinforced Concrete Council
Sami Khan	Bunyan Meyer & Partners Ltd
David Ramsay	White Young Consulting Engineers
Simon Robinson	A C Robinson
Tony Threlfall	Concrete Design and Detailing
Michael Webster	British Cement Association

for their enthusiasm, work on spreadsheets, work on charts for post-tensioned concrete, their illumination and interpretation of BS 8110 and checking.

Thanks are also due to EGB, GC, JC, KSE, RR, DMR, AMS and MFS for comments, suggestions and checks.

Photographs: front cover – Bennetts Associates (PowerGen Headquarters, Coventry); p14 – Swift Structures Ltd (Combined Operations Centre, Heathrow).

The RCC extends its appreciation to the following organisations for their financial contributions towards the cost of producing this publication; Concrete Structures Group, Precast Flooring Federation and the Structural Precast Association.

ECONOMIC CONCRETE FRAME ELEMENTS

C H Goodchild

BRITISH CEMENT ASSOCIATION PUBLICATION 97.358

CI/Sfb UDC 624.072.33-033.37

