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Preface

Control theory provides a large set of theoretical and computational tools
with applications in a wide range of fields, running from ”pure” branches of
mathematics, like geometry, to more applied areas where the objective is to
find solutions to ”real life” problems, as is the case in robotics, control of
industrial processes or finance.

The ”high tech” character of modern business has increased the need for
advanced methods. These rely heavily on mathematical techniques and seem
indispensable for competitiveness of modern enterprises. It became essential
for the financial analyst to possess a high level of mathematical skills. Con-
versely, the complex challenges posed by the problems and models relevant to
finance have, for a long time, been an important source of new research topics
for mathematicians.

The use of techniques from stochastic optimal control constitutes a well
established and important branch of mathematical finance. Up to now, other
branches of control theory have found comparatively less application in finan-
cial problems.

To some extent, deterministic and stochastic control theories developed as
different branches of mathematics. However, there are many points of contact
between them and in recent years the exchange of ideas between these fields
has intensified. Some concepts from stochastic calculus (e.g., rough paths)
have drawn the attention of the deterministic control theory community. Also,
some ideas and tools usual in deterministic control (e.g., geometric, algebraic
or functional-analytic methods) can be successfully applied to stochastic con-
trol.

We strongly believe in the possibility of a fruitful collaboration between
specialists of deterministic and stochastic control theory and specialists in fi-
nance, both from academic and business backgrounds. It is this kind of collab-
oration that the organizers of the Workshop on Mathematical Control Theory
and Finance wished to foster.

This volume collects a set of original papers based on plenary lectures
and selected contributed talks presented at the Workshop. They cover a wide
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range of current research topics on the mathematics of control systems and
applications to finance. They should appeal to all those who are interested in
research at the junction of these three important fields as well as those who
seek special topics within this scope.

The editors of these proceedings express their deep gratitude to those who
contributed with their work to this volume and those who kindly helped us
in peer-reviewing them.

We are thankful to the scientific and organizing committees of the Work-
shop on Mathematical Control Theory and Finance as well as the plenary
lecturers and all the participants; their presence and their work formed the
main contribution for the success of the event.

We thank the event financial supporters:

FCT – Fundação para a Ciência e a Tecnologia,
Banco de Portugal,
Fundação Calouste Gulbenkian,
REN – Rede Eléctrica Nacional,
UECE – Unidade de estudos sobre a Complexidade na Economia),
Luso–American Foundation,
Caixa Geral de Depsitos,
Fundação Oriente,
Delta Cafés.

Our gratitude goes to the academic institutions who jointly organized the
Workshop on mathematical Control Theory and Finance:

CEMAPRE – Centro de Matemática Aplicada à Previsão e Decisão
Económica,
CEOC – Centro de Estudos em Optimização e Controlo,
CIM – Centro Internacional de Matemática,
ISR – Institute of Systems and Robotics.

It goes equally to Instituto Superior de Economia e Gestão, Technical Uni-
versity of Lisbon which hosted the event and provided unreserved support on
facilities, staff and logistics.

A special word of thanks to Maria Rosário Pato and Rita Silva from
CEMAPRE for their secretary work and constant support.

Lisbon, Florence & Moscow, Maria do Rosário Grossinho
Manuel Guerra

Andrey Sarychev
Albert Shiryaev
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Extremals Flows and Infinite Horizon
Optimization

Andrei A. Agrachev and Francesca C. Chittaro

SISSA-ISAS, via Beirut 2-4, 34014 Trieste, Italia.
agrachev@sissa.it, chittaro@sissa.it

Summary. We study the existence and the structure of smooth optimal synthesis
for regular variational problems with infinite horizon. To do that we investigate the
asymptotic behavior of the flows generated by the extremals (of finite horizon prob-
lems) using curvature–type invariants of the flows and some methods of hyperbolic
dynamics.

1 Introduction

Given a smooth function ϕ : Rn × Rn → R we would like to minimize the
functional

J(γ) =

∞∫
0

ϕ(γ(t), γ̇(t)) dt

defined on the Lipschitzian curves γ : [0,+∞) → Rn such that the integral
(1) converges. More precisely, we assume that ϕ(0, 0) = 0, ∂ϕ∂q (0, 0) = 0 and
that ϕ(q, 0), ∂ϕ∂q (q, 0) do not vanish simultaneously for q different from 0; then
we take q ∈ Rn and try to find

min{
∞∫
0

ϕ(γ(t), γ̇(t)) dt : γ(0) = q, lim
t→∞

γ(t) = 0}.

Such a problem has no solutions in too many interesting cases and it
is natural to modify the functional introducing the discount or “forgetting”
factor α > 0. Namely, we set

Jα(γ) =

∞∫
0

e−αtϕ(γ(t), γ̇(t)) dt. (1)

Integral (1) may converge even in the case of an unbounded function t �→
ϕ(γ(t), γ̇(t)) and we try to minimize Jα(γ) on the curves with the initial
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condition γ(0) = q and certain asymptotic conditions as t → +∞ to be
specified later.

The restriction of a minimizing curve t �→ q(t) to the segment [0, T ] is

automatically a minimizer for the finite horizon functional
T∫
0

ϕ(γ(t), γ̇(t)) dt

with boundary conditions γ(0) = q(0), γ(T ) = q(t). Extremal paths of the
finite horizon problems are described either by the Euler–Lagrange second
order ordinary differential equation on Rn or by the Hamiltonian system on
Rn × Rn. We use the Hamiltonian approach, in the spirit of the Pontryagin
Maximum Principle.

Namely, we consider the Hamiltonian

H(p, q) = max
u∈Rn

(〈p, u〉 − ϕ(q, u)).

If (p, q) �→ H(p, q) is a well-defined smooth function on Rn × Rn then for
any solution q(t), t ∈ [0, T ], of the finite horizon problem (without discount)
there exists a Lipschitzian curve p(t), t ∈ [0, T ], such that the pair (p(t), q(t))
satisfies the Hamiltonian system{

ṗ = −∂H∂q (p, q)
q̇ = ∂H

∂p (p, q)
. (2)

In the case of the discount factor α system (2) has to be substituted by
the nonautonomous Hamiltonian system{

ṗ = −e−αt ∂H∂q (eαtp, q)
q̇ = ∂H

∂p (eαtp, q)
. (3)

It is convenient to rescale the auxiliary variable p by setting ξ = eαtp; then
we arrive to the autonomous “rescaled” system{

ξ̇ = αξ − ∂H
∂q (ξ, q)

q̇ = ∂H
∂ξ (ξ, q)

. (4)

In order to see what kind of solution we can expect, let us look at the
elementary one-dimensional model.

Example. Let n = 1, ϕ(q, q̇) = 1
2 (q̇2 − rq2)), where r is a constant. Then

H(p, q) = 1
2 (p2 + rq2) and Hamiltonian system takes the form{

ṗ = −rq
q̇ = p

. (5)

The phase portraits are saddles for r < 0 and centers for r > 0 (Fig. 1 and
Fig. 2).
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Fig. 1.

Fig. 2.

Let r < 0, then for any q0 ∈ R there exists a unique p0 such that (p0, q0)
belongs to the stable submanifold of the equilibrium (0, 0). The solution
(p(t), q(t)) of system (5) with initial conditions (p(0), q(0)) = (p0, q0) tends
to (0, 0) with the exponential rate as t→ +∞. It is easy to show that q(·) is
optimal trajectory.

If r > 0, then no one solution of system (5) tends to the equilibrium and
optimal trajectories simply do not exist. Moreover, even the finite horizon
problems do not have solutions if the horizon T is greater than one half of
the period of the trajectories of system (5) and the infimum of the functional
equals −∞. What happens if we introduce the discount factor α?

The rescaled system (4) takes the form:{
ξ̇ = αξ − rq
q̇ = p

. (6)

The phase portrait of system (6) is an unstable focus for α < 2
√
r and an

unstable node for α > 2
√
r. Optimal solutions of the finite horizon problems

do not exist for sufficiently big T while the phase portrait is a focus and
do exist for all T > 0 when the phase portrait is a node (Fig. 3). Optimal
solutions of the horizon T problem with boundary points γ(0) = q0, γ(T ) = 0
is the projection to the axis {q} (horizontal axis on Fig. 3) of the trajectory
of system (6) which starts at the line {(ξ, q0) : ξ ∈ R} and arrives to the line
{(ξ, 0) : ξ ∈ R} at the time moment T .

Let t �→ zT (t; q0) be such a trajectory of (6), zT (t; q0) =
(ξT (t; q0), qT (t; q0)). Now fix q0 and send T to +∞. It is easy to see that
there exists the limit lim

T→+∞
zT (t; q0) = z∞(t; q0) and, moreover, t �→ z∞(t; q0)

is a trajectory of system (6) which belongs to a proper invariant subspace of
this system. System (6) has two proper invariant subspaces corresponding to

the eigenvalues α
2 ±

√
α2

4 − r of the matrix
(
α −r
1 0

)
. Trajectories z∞(·; q0)

belong to the invariant subspace related to the lower eigenvalue. This sub-
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Fig. 3.

space can also be characterized as the locus of solutions to system (6) whose
norm grows slower than e

αt
2 as t→∞.

Clearly, the projection q∞(·; q0) of the curve zT (·; q0) can be treated as
optimal trajectory for the infinite horizon problem with discount factor α. It
is indeed optimal if we accept the following general definition.

Definition 1. We say that a locally Lipschitzian curve γ̃ : [0,+∞) → Rn is
an optimal trajectory for the infinite horizon problem with the discount factor
α if

Jα(γ̃) = {minJα(γ) : γ(0) = γ̃(0), lim
t→+∞

e−αt|γ̇(t)|2 = 0}.

Optimality of q∞(·; q0) in this sense is not immediately seen but easily
follows from a general result (see Theorem 2 below).

Another observation derived from our model is that optimal trajectories
corresponding to different initial conditions all together form a smooth optimal
synthesis according to the following definition.

Definition 2. We call smooth optimal synthesis a smooth complete vector
field X on Rn such that all solutions of the equation q̇ = X(q) are optimal
trajectories of the infinite horizon variational problem under consideration
(the problem may be with or without discount).

In what concerns our example,X(q) is a unique number such that (X(q), q)
belongs to the stable invariant subspace of system (5) in the case of negative
r and to the “less unstable” invariant subspace of system (6) in the case of
positive r and discount factor α > 2

√
r.

The goal of this paper is to characterize a broad class of nonlinear multi-
dimensional problems which possess a smooth optimal synthesis similarly to
the just considered elementary 1-dimensional example. The role of the param-
eter r will be played by the “curvature” of the Hamiltonian system.
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2 Curvature

Given a smooth Hamiltonian H(p, q), we denote by symbol H the correspond-
ing Hamiltonian vector field, i.e.

H =
∂H

∂p

∂

∂q
− ∂H
∂q

∂

∂p
.

In particular, system (2) is shortly described as

ż = H(z), (7)

where z = (p, q) ∈ Rn × Rn.
In this paper we deal only with complete vector fields and use exponential

notations for the flows generated by systems of ordinary differential equations.
In particular,

etH : R2n → R2n, t ∈ R,

is the Hamiltonian flow generated by system (7).
Given z ∈ (Rn × Rn) = R2n, we set

V tz = DetH(z)

(
e−tH

)
(Rn × 0) ,

a family of n-dimensional subspaces of R2n. Here DzΦ is the differential of the
diffeomorphism Φ at the point z. Note that V tz are Lagrangian subspaces of the
space Rn × Rn endowed with the standard symplectic structure σ = dp ∧ dq.
Indeed, the “vertical subspace” Rn × 0 is Lagrangian and the Hamiltonian
flow preserves symplectic structure.

The family of subspaces t �→ V tz is thus a curve in the Lagrange Grass-
mannian L(n) and V 0

z = Rn × 0. We call it the Jacobi curve at z associated
to the Hamiltonian field H.

Recall that a tangent vector to the Grassmannian ξ ∈ TV L(n) is naturally
identified with a linear mapping ξ : V → R2n/V , where ξ is defined as fol-
lows: take a curve V (t) such that ξ = V̇ (0) and set ξ(v(0)) = v̇(0) + V , for
any smooth curve v(t) ∈ V (t) coordinate computations show that the result
depends only on ξ̇ and v(0).

Now assume that we are given a splitting R2n = V 0
z ⊕W 0

z , z ∈ Rn, where
W 0
z is a smooth family of Lagrangian subspaces. We set

W t
z = DetH(z)

(
e−tH

)
W 0
z .

Obvious identifications R2n/V 0
z
∼= W 0

z , R2n/W 0
z
∼= V 0

z give us the linear
mappings

V̇ 0
z : V 0

z →W 0
z , Ẇ 0

z : W 0
z → V 0

z .

Composition of these mappings is a linear operator

Rz = −Ẇ 0
z ◦ V̇ 0

z



6 Andrei A. Agrachev and Francesca C. Chittaro

on V 0
z . Operator Rz is called the curvature of the Hamiltonian field H at z

with respect to the given splitting.
In the next sections we deal only with Hamiltonians that are strongly

convex with respect to p, i.e. ∂2H
∂p2 (z) is a positive definite quadratic form

for any z ∈ R2n. In this case, the curvature Rz is a self-adjoint operator on
V 0
z = Rn × 0 with respect to the Euclidean structure on V 0

z defined by the
quadratic form ∂2H

∂p2 (z). In particular, Rz is a diagonalizable operator and all
its eigenvalues are real. We write Rz > 0 (< 0) if all eigenvalues of Rz are
positive (negative). Similarly, we write Rz > cI (< cI) for some constant c, if
Rz − cI > 0 (Rz − cI < 0).

Any vector field Y on R2n is splitted Y = YV + YW , where YV (z) ∈
V 0
z , VW (z) ∈W 0

z , ∀z ∈ R2n. For any vector field X which takes values in the
distribution V 0

z , z ∈ R2n we have:

RzX(z) = −[H, [H, X]W ]V (z),

where [·, ·] is the Lie bracket of vector fields, [Y1, Y2] = dY2
dz Y1 − dY1

dz Y2; see [1]
for details.

The curvature, according to its definition, depends not only on the Hamil-
tonian field H but also on the choice of the Lagrangian distribution W 0

z , z ∈
R2n, that is transversal to the “vertical” distribution V 0

z . Is there any canon-
ical choice of W 0

z ? Yes, it is, under very modest regularity conditions on the
Hamiltonian H.

The construction is described in [3], [1]. Briefly, a germ of a curve t �→ Λ(t)
in the Lagrange Grassmannian L(n) is called tame if Λ(t)∩Λ(0) = 0 for small
t �= 0 and this fact can be recognized from a finite jet of Λ(·) at 0. To any tame
germ one can associate (in an intrinsic way) a derivative element Λ◦ ∈ L(n)
such that Λ(0) ∩ Λ◦ = 0. This construction, applied to the germs at 0 of the
curves t �→ V tz , defines a canonical splitting: W 0

z = (Vz)
◦.

In the case of a nondegenerate ∂2H
∂p2 (z) (the only interesting for us case in

this paper) canonical W 0
z is computed as follows: W 0

z = {(Cq, q) : q ∈ Rn},
where

2
∂2H

∂p2
C
∂2H

∂p2
=
{
H,
∂2H

∂p2

}
− ∂2H

∂p∂q

∂2H

∂p2
− ∂

2H

∂p2
∂2H

∂q∂p

and {·, } is the poisson brackets. In other words,

2
(
∂2H

∂p2
C
∂2H

∂p2

)
ij

=
n∑
k=1

(
∂H

∂pk

∂3H

∂pi∂pj∂qk
− ∂H
∂qk

∂3H

∂pi∂pj∂pk
−

∂2H

∂pi∂qk

∂2H

∂pk∂pj
− ∂2H

∂pi∂pk

∂2H

∂qk∂pj

)
, i, j = 1, . . . , n.

The formulas are drastically simplified in the case of the Hamiltonian of a
natural mechanical system: H(p, q) = 1

2 |p|2 + U(q). Then W 0
z = 0 × Rn and

Rz = ∂2U
∂q2 , the Hessian of the potential energy.
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Now for any α ∈ R we set:

Hα = H + αp
∂

∂p
,

the vector field which appears in the study of the variational problem with
discount factor α (see (4)). This vector field is not Hamiltonian; it does not
preserve symplectic form σ but satisfies the identity:(

etH
α
)∗
σ = eαtσ.

In particular, linear mappings Dz
(
etH

α)
transform Lagrangian subspaces in

the Lagrangian ones. This allows to define the curvature operator Rαz of the
field Hα in the same way as the curvature Rz of the field H: we simply
substitute the Jacobi curves V tz by the curves

V α tz = DetHα (z)

(
e−tH

α
)

(Rn × 0)

in the construction. Obviously, V α 0
z = V 0

z .
As we mentioned, the curvature is sensitive to the splitting R2n = V 0

z ⊕W 0
z .

A simple calculation gives the following formula in the case of the canonical
splitting. Let us consider Hamiltonians of the form

H(p, q) = gq(p, p) + U(q),

where for any q ∈ Rn gq(p, p) is a positive definite quadratic form on Rn. Let
Rz be defined by the canonical splitting R2n = V 0

z ⊕ (Vz)
◦ associated to the

curves V tz and Rαz defined by the canonical splitting R2n = V 0
z ⊕ (V αz )◦; then

we have:

Rαz = Rz −
α2

4
I. (8)

3 Results

In what follows, we always assume (without additional mentioning) that func-
tion u �→ ϕ(q, u), u ∈ Rn, is strongly convex for any q ∈ Rn, i.e. ∂

2ϕ
∂u2 > 0. As

stated in the introduction, we also assume that ϕ(0, 0) = 0, ∂ϕ∂q (0, 0) = 0, and
that (0, 0) is the only point where ϕ(0, 0) and ∂ϕ

∂q (0, 0) vanish simultaneously.
This implies smoothness of the Hamiltonian

H(p, q) = max
u∈Rn

(〈p, u〉 − ϕ(q, u))

on the domain of definition. Assumptions of any of Theorems 1, 2 below guar-
antee that H(p, q) is defined for all (p, q) and generates a complete Hamilto-
nian field.
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Theorem 1. Assume that there exist constants a, b, c > 0 such that

• ϕ(q, u) + c > 0;

• |u|
ϕ(q,u)+c → 0 as |u| → ∞;

•
∣∣∣∂ϕ∂q (q, u)

∣∣∣ ≤ a(ϕ(q, u) + |u|) + b, ∀q, u ∈ Rn.

If the curvature Rz of the Hamiltonian field H with respect to some Lagrangian
splitting is negative for any z ∈ R2n, then the infinite horizon variational
problem (without discount) admits a smooth optimal synthesis.

Theorem 2. Let ϕ(q, u) = gq(u, u) + f(q), where for any q ∈ Rn gq(·, ·) is
a positive definite quadratic form. Assume that there exists a nondegenerate
quadratic form φ on Rn × Rn such that∣∣∣∣ ∂i∂qi (ϕ− φ)(q, u)

∣∣∣∣→ 0 as (|q|+ |u|)→∞ (9)

for any multi-index i such that |i| ≤ 2 (i.e. ϕ is asymptotically quadratic at
infinity). If the curvature Rz of the Hamiltonian field H with respect to the
canonical splitting satisfies inequalities 0 < Rz ≤ C for some constant C and
any z ∈ R2n, then the infinite horizon variational problem without discount
does not admit optimal trajectories, while the problem with any discount factor
α > 2

√
C admits an optimal synthesis of class C1.

4 Sketch of proofs

We give only main ideas of the proofs. See [5] for the complete proof of The-
orem 1; the complete proof of Theorem 2 will appear elsewhere.

The construction of the optimal synthesis is similar to one in the elemen-
tary examples described in the introduction. We find a stable Lagrangian
submanifold of system ż = H(z) in the case of negative curvature and a “less
unstable” invariant submanifold of system ż = Hα(z). Moreover, we show
that these submanifolds have a form

{(p, q) : p = Φ(q), q ∈ Rn},

where Φ is a vector-function. In the case of the stable manifold, Φ has the same
class of smoothness as H, while in the “less unstable” case we can guarantee
only C1-smoothness. The equation

q̇ =
∂H

∂p
(Φ(q), q)

provides optimal synthesis. Optimality is proved by a straightforward gener-
alization to the infinite horizon of a standard sufficient optimality condition
(see[4, Th. 17.1]).
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Let us now explain the construction of the invariant submanifolds. To this
end we need a better understanding of the geometric meaning of the curvature
operator. Consider a splitting R2n = Λ ⊕∆, where ∆ and Λ are Lagrangian
subspace. Symplectic form σ defines a nondegenerate pairing (λ, δ) �→ σ(λ, δ)
of the subspaces Λ and ∆. We thus obtain a canonical isomorphism ∆ ∼=
Λ∗. Any transversal to ∆ n-dimensional subspace V is the graph of a linear
mapping SV : Λ → ∆ = Λ∗. Subspace V is Lagrangian if and only if SV is
self-adjoint, i.e. S∗

V = SV .
In other words, we may associate to V a quadratic form S̄V : v �→ σ(v, SV v)

on V and the relation V �→ S̄V is a one-to-one correspondence between
transversal to ∆ Lagrangian subspaces and quadratic forms on Λ. It is easy to
see that dim(V ∩W ) = dim ker(S̄V −S̄W ). Of course, the type of the quadratic
form (i.e. its signature and rank) depends on the splitting.

In fact, for any symmetric (n×n)-matrix A there exists a splitting R2n =
Λ⊕∆ and coordinates on Λ such that A is the matrix of the quadratic form S̄V .
Moreover, given a pair of Lagrangian subspaces V,W and a pair of symmetric
(n×n)-matrices A,B with the only restriction dim ker(A−B) = dim(V ∩W ),
there exists a Lagrangian splitting R2n = Λ ⊕∆ and coordinates on Λ such
that matrices of the quadratic forms S̄V and S̄W are A and B.

On the other hand, given a curve t �→ V (t) the type of the form S̄′
V (t) =

d
dt S̄V (t) does not depend on the splitting and is the same for all curves obtained
from V (·) by linear symplectic transformations of R2n. In particular, quadratic
forms S̄′

V αt
z

and S̄′
Wαt

z
are equivalent to the forms S̄′

V α0
etHα (z)

and S̄′
Wα0

etHα (z)

due

to the identities

V α t+τz =
(
DetHα (z)e

−tHα
)
V α τetHα (z), Wα t+τ

z =
(
DetHα (z)e

−tHα
)
Wα τ
etHα (z).

Finally, the curvature Rαz is negative (positive) if and only if quadratic forms
S̄′
V α0

z
and S̄′

V α0
z

are both sign-definite and have opposite (equal) signs.
The proofs and other information on geometry of Lagrangian Grassman-

nians can be found in [2], [1]. Anyway, all this implies the following

Lemma 1. If Rαz < 0 ∀z ∈ R2n, then there exist limits lim
t→±∞

V α tz = V α±z .

Proof. Quadratic form S̄′
V α0

z
is equivalent to the form −∂2H

∂p2 and is thus
negative. Hence the form S̄′

Wα0
z

is positive, ∀z ∈ R2n. Moreover, the form
S̄′
V αt

z
is negative and S̄′

Wαt
z

positive for any t ∈ R.
Now fix z ∈ R2n and a splitting R2n = Λ⊕∆ such that S̄V α0

z
− S̄Wα0

z
> 0.

Then the form S̄V αt
z

monotonically decreases with t and the form S̄Wα0
z

monotonically increases, while their difference is never degenerate (and thus
remains positive) since V α tz and Wα t

z are transversal. Hence there exists
lim
t→+∞

S̄V αt
z

= S̄V α+
z

. If we take another splitting such that S̄V α0
z
− S̄Wα0

z
< 0,

then we catch lim
t→−∞

S̄V αt
z

= S̄V α−
z
. �
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It is easy to see that the Lagrangian splitting R2n = V α+
z ⊕V α−z , z ∈ R2n,

is invariant with respect to the flow etH
α

, i. e.(
Dze

tHα
)
V α±z = V α±

etHα (z)
, ∀z ∈ R2n, t ∈ R.

Another important property of V α±z which follows directly from the construc-
tion:

V 0
z ∩ V α−z = V 0

z ∩ V α+
z = 0, z ∈ R2n. (10)

Note that H0 = H, V 0 t
z = V tz , and W 0 t

z = W t
z , so all written can be used

not only in the setting of Theorem 2 but also of Theorem 1, just put α = 0;
we also set V ±

z = V 0±
z .

A more careful study gives the following estimates.

Lemma 2. There exists an associated to H and the splitting R2n = V 0
z ⊕W 0

z

Riemannian structure (· | ·)z, z ∈ R2n, ‖ξ‖z =
√

(ξ | ξ)z and constants
ρ > 0, ε ∈ (0, α4 ) such that

• if Rz < 0 for any z ∈ R2n, then∥∥(DzetH) v−∥∥etH(z)
≤ ρe−εt‖v−‖z,

∥∥(DzetH) v+∥∥etH(z)
≥ 1
ρ
eεt‖v+‖z,

∀v± ∈ V ±
z , t > 0;

• if Rz > 0, Rαz < 0 w. r. t. canonical splittings for any z ∈ R2n, then

1
ρ
eεt‖v−‖z ≤

∥∥∥(DzetHα
)
v−

∥∥∥
etHα (z)

≤ ρe( α
2 −ε)t‖v−‖z,

∥∥∥(DzetHα
)
v+

∥∥∥
etHα (z)

≥ 1
ρ
e(

α
2 +ε)t‖v+‖z,

∀v± ∈ V ±
z , t > 0.

The proof is based on the structural equations from [1] and the hyperbolicity
test from [8].

Corollary 1. .

• The case of negative R.. Given z ∈ R2n, if H(z) ∈ V −
z then∥∥H(etH(z)

∥∥
etH(z)

→ 0 (t→ +∞)

with the exponential rate, otherwise∥∥H(etH(z)
∥∥
etH(z)

→∞ (t→ +∞)

with the exponential rate.
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• The case of positive R. and negative Rα. w. r. t. canonical splittings. We
have ∥∥∥Hα(etH

α

(z)
∥∥∥
etHα (z)

→∞ (t→ +∞)

with the exponential rate for any z ∈ R2n. Moreover, if Hα(z) ∈ V α−z then

e−
α
2 t
∥∥∥Hα(etH

α

(z)
∥∥∥
etHα (z)

→ 0 (t→ +∞),

with the exponential rate, otherwise

e−
α
2 t
∥∥∥Hα(etH

α

(z)
∥∥∥
etHα (z)

→∞ (t→ +∞)

again with the exponential rate.

Proof. This is an immediate corollary of Lemma 2 and the fact that the flow
etH

α

preserves vector field Hα. �
Another corollary of Lemma 2 in the case of negative R. is the existence of

a stable invariant Lagrangian submanifold of the flow etH that is an integral
submanifold of the distribution V −

. . This follows from the Hadamard–Perron
theorem (see [6], [7]).

Unfortunately, standard Hadamard–Perron theorem is not applicable in
the case of positive R. and negative Rα w. r. t. canonical splittings. Indeed,
the statement of Lemma 2 in this case brings us in the “partially hyperbolic”
framework with a “central distribution” V α−. . Central distributions are not
always integrable, but asymptotic condition (9) allows to reduce our study to
the case where stable and unstable foliations are quasi-isometric that guaran-
tees the integrability of the central distribution (see [7]). This implies the ex-
istence of a “less unstable” invariant Lagrangian submanifold of the flow etH

α

that is an integral submanifold of the distribution V α−. . For any z from this
submanifold, the quantity

∣∣etHα

(z)
∣∣ tends to ∞ slower than e

α
2 t as t→ +∞.

Note that stable submanifold has the same smoothness class as H, while
for the “less unstable” submanifold only C1-smoothness is guaranteed.

Relation (10) implies that both submanifolds are transversal to the distri-
bution V 0

(p,q) = Rn× q, (p, q) ∈ R2n. Hence the projection (p, q) �→ q is a local
diffeomorphism of any of these two submanifolds into Rn. It remains to prove
that this is a global diffeomorphism.

The rest of the proof runs differently for Theorems 1 and 2.
We start from Theorem 1. Let Us be the stable submanifold. First, corol-

lary 1 implies the following characterization of the points of this submanifold:
z ∈ Us if and only if H(z) ∈ V −

z . In particular, Us is a closed subset of
R2n. Moreover, Us ⊂ H−1(0) since H is a first integral of the Hamiltonian
flow. The growth condition on ϕ implies that the projection (p, q) �→ q re-
stricted to H−1(0) is a proper mapping. Hence this projection restricted to
Us is also a proper mapping. Combining this with the fact that the projection
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(p, q) �→ q, (p, q) ∈ Us is a local diffeomorphism we obtain that this projection
is a covering of Rn and hence a global diffeomorphism.

Now turn to Theorem 2. Identity (8) implies that Rαz < 0, ∀z. For any
sufficiently big N > 0 we substitute Hα by a vector field HαN which is equal to
Hα inside the ball of radius N and is equal to the linear vector field outside the
ball of radius N+1, where the linear field is obtained from the quadratic form
φ in the same way as Hα is obtained from φ. We do this modification of Hα

using a cut-off function; our asymptotic conditions imply that the modified
field has a positive, close to Rz, curvature w. r. t. the canonical splitting. Now
take a local “less unstable” submanifold U lu ofHα, i. e. an integral manifold of
the distribution V α−. which contains 0 ∈ R2n. Then U luN =

⋃
t≥0

etH
α
N (U lu) is the

global “less unstable” invariant submanifold of HαN . Note that the contained
in the radius N ball part of U luN is actually a part of the global “less unstable”
invariant submanifold of etH

α

, while the part of U luN out of the radius N + 1
ball is a part of the “less unstable” invariant submanifold of the linear flow,
that is a fixed transversal to Rn×0 n-dimensional vector subspace Elu ⊂ R2n.

Any started from U lu \ 0 trajectory of the system ż = HαN (z) leaves
the radius N + 1 ball and thus arrives to Elu. We obtain that the mapping
(p, q) �→ q, (p, q) ∈ U luN , is proper, hence it is a covering of Rn and hence a
diffeomorphism on Rn. Since N is arbitrary big, we obtain the desired global
diffeomorphism of the “less unstable” invariant Lagrangian submanifold of
etH

α

on Rn.
We have not yet explained why the problem without discount does not

admit optimal trajectories. This follows from the comparison theorem (see [3],
[1]): positivity of the curvature implies existence of an infinity of conjugate
points for any extremal.
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Summary. A partial Laplace transform is used to study the valuation of American
call options with constant dividend yield, and to derive an integral equation for the
location of the optimal exercise boundary, which is the main result of this paper.

The integral equation differs depending on whether the dividend yield is less
than or exceeds the risk-free rate.

1 Introduction

One of the defining events in mathematical finance was the publication in 1973
of the Black-Scholes-Merton model for the pricing of equity options, for which
the 1997 Nobel Prize in Economics was awarded. Using this model, in which
the volatility σ, interest rate r, and dividend yield D were assumed constant,
it was possible to obtain closed form expressions for European call and put
options, which have pay-offs at expiry of max(S − E, 0) and max(E − S, 0)
respectively, where S is the price of the stock upon which the option is written
and E is the strike price.

Although the Black-Scholes-Merton model made it possible to obtain
closed form prices for many European options, which can be exercised only
at expiry, American options, which can be exercised at or before expiry at
the discretion of the holder, are rather more difficult to price. American call
and put options have the same pay-offs when exercised early as when held
to expiry, that is max(S −E, 0) and max(E − S, 0) respectively. The right to
exercise early leads to the issue of when and if an option should be exercised,
which leads to an interesting free boundary problem similar to the Stefan
problem which arises in melting and solidification, and it is precisely this free
boundary problem which makes American options both difficult to price and
mathematically interesting. To date, a closed form pricing formula for Amer-
ican options has remained elusive, except in a couple of special cases. One
such special case is the American call with either no dividends, when exercise
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is never optimal so that the value of the option is the same as that of a Eu-
ropean call, or discrete dividends [9, 10, 23, 27]. For those cases where exact
solutions are not known, practitioners are of course able to price American
options numerically, or use one of the approximate or series solutions which
appear in the literature.

In the present study, we will consider the free boundary, or optimal exercise
boundary , for an American call option. This boundary separates the region
where it is optimal for an investor to retain an option from that where exercise
is optimal, and closed form expressions for the location of the boundary have
remained as elusive as a closed form pricing formula for American options,
although, as with the price of the option, numerical and approximate and
series solutions can be used. The location of the free boundary is key to
pricing an American option. In our analysis, we will use a partial Laplace
transform to arrive at an integral equation giving the location of the free
boundary, which we regard as a curve in (S,t) space, denoted by S = Sf (t)
or the inverse relation t = Tf (S).

We are of course not the first to apply integral equation methods to Amer-
ican options: on the contrary, it has been a very popular approach, including
such studies as the early work of [18, 26], which drew on the pioneering work
of [15] on Stefan problems, the studies by [4, 11, 13, 21], all of which looked
at the difference between European and American prices, and the recent work
of [1, 8, 14, 16, 25]. We will touch upon the differences between some of those
studies and our own in the final section.

The partial Laplace transform approach used here was developed by [7]
for diffusion problems, specifically the recrystallization of an infinite metal
slab, and an overview of the technique can be found in [6]. The solidification
problem considered in [7] was governed by the diffusion equation, and the
Black-Scholes-Merton partial differential equation used in our analysis can of
course be recast as that equation. [7] were able to use a partial Laplace trans-
form, which we shall define shortly, to give an integral equation formulation
of their problem, and were then able to find a series solution of that inte-
gral equation. For the problem considered here, the boundary conditions at
the free boundary cause the kernel in our integral equation to be much more
complicated than that in [7].

2 Analysis

Under the Black-Scholes-Merton model, in which the volatility σ, interest rate
r, and dividend yield D are assumed constant, the value V (S, t) of an option
on an equity obeys the Black-Scholes-Merton partial differential equation or
PDE [2, 19],

∂V

∂t
+
σ2S2

2
∂2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0, (1)
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where S is the price of the underlying and t < T is the time, with T being the
expiry when the holder will receive a pay-off of max(S −E, 0) for a call with
a strike of E. To simplify the analysis, we will work in terms of the remaining
life of the option, τ = T − t, so that (1) is replaced by

∂V

∂τ
=
σ2S2

2
∂2V

∂S2
+ (r −D)S

∂V

∂S
− rV. (2)

For European options, (2) is valid for τ ≥ 0. For options where early exercise
is permitted, (2) is only valid when it is optimal to hold the option, and must
be solved together with the appropriate conditions at the optimal exercise
boundary, whose location is unknown and must be solved for. We will label
the position of the free boundary as S = Sf (τ), which we can invert to give
τf (S) as the time at which early exercise should occur.

A review of the properties of the free boundary and the option price can be
found in [20]. In our analysis, we will make use of a number of these including:
(i) The price of an American call option is given by a value function. Where
it is optimal to hold the option the value function is smooth with V (S, τ) >
max (S − E, 0) and 0 ≤ ∂V/∂S < 1 [18, 26].
(ii) There is an optimal exercise policy for American options and an optimal
stopping time [12].
(iii) At the free boundary the value of the option is equal to the pay-off from
immediate exercise [11, 18], Vf (S, τ) = S − E.
(iv) At the free boundary the value of the option’s delta, or derivative of its
value with respect to the stock price, is ∂Vf/∂S = 1. This high contact or
smooth-pasting condition [24] has been shown to be both a necessary [19] and
sufficient [3] condition for the optimality of the boundary.
(v) At expiry [18, 26], the location of the free boundary is

Sf (0) = S0 =

{
Er/D > E r > D

E D ≥ r,

which we can write as τf (S0) = 0.
(vi) As τ →∞, from the perpetual American call [18, 19] we know Sf (τ)→

S1 = Eα
α−1 where α =

[
σ2

2 − (r −D) +
√(
r −D + σ2

2

)2
+ 2Dσ2

]
/σ2. We can

write this as τf (S)→∞ as S → S1 from below. As D → 0, S1 →∞ [19] and
a perpetual call on a stock with no dividends has the same value as the stock.
(vii) The free boundary is a strictly increasing function of τ [18, 26], which
enables us to define the inverse τf (S) mentioned above. The optimal exercise
boundary will move upwards as we move away from the expiration date and
will lie between the two limits, S0 ≤ Sf (τ) ≤ S1, with early exercise optimal
if S ≥ Sf (τ) and retaining the option optimal if 0 ≤ S < Sf (τ).
(viii) The free boundary is a continuous, differentiable function of τ [18, 26],
which enables us to take derivatives of τf (S).
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Having formulated the problem, we shall now attempt to solve it using a
Laplace transform in time. Because S0 differs depending on whether r > D or
D ≥ r, we will consider these two cases separately. Since (2) only holds where
it is optimal to retain the option, we will modify the usual Laplace trans-
form L(G)(p) =

∫∞
0
g(τ)e−pτdτ somewhat, and define the partial Laplace

transform for S ≤ S1,

V(S, p) =
∫ ∞

τf (S)

V (S, τ)e−pτdτ, (3)

with the lower limit of τ = τf (S) rather than τ = 0. As we mentioned in
Section 1, the partial Laplace transform is due to [7], and has been successfully
used to tackle diffusion problems in the past. This definition of the partial
Laplace transform, is of course equivalent to setting V (S, τ) = 0 in the region
where it is optimal not to hold. Because of this definition, the price of the
option V (S, τ) will obey (2) everywhere we integrate. We require the real part
of p to be positive for the integral in (3) to converge. In addition, we know
from the definition that V(S, p)→ 0 as S → S1. We can also define an inverse
transform

V (S, τ) =
1

2πi

∫ γ+i∞

γ−i∞
V(S, p)epτdp, (4)

which of course is only meaningful where it is optimal to retain the option.
From our definition, the following transforms can be derived easily,

L
[
∂V

∂τ

]
= pV − e−pτf (S)Vf (S, τf (S)),

L
[
∂V

∂S

]
=
dV
dS

+ e−pτf (S)τ ′f (S)Vf (S, τf (S)),

L
[
∂2V

∂S2

]
=
d

dS

(
L
[
∂V

∂S

])
+ e−pτf (S)τ ′f (S)

∂Vf
∂S

(S, τf (S)). (5)

In the above, we have adopted the convention that τf (S) is the location of
the free boundary for S0 < S < S1, while for S < S0, we set τf = 0 since it is
optimal to hold the option to expiry. Applying this partial Laplace transform
to (2), we arrive at the following (nonhomogeneous Euler) ordinary differential
equation for the transform of the option price,[

σ2S2

2
d2

dS2
+ (r −D)S

d

dS
− (p+ r)

]
V + F (S) = 0, (6)

where the nonhomogeneous term F (S) takes a different value in various re-
gions, as shown in Table 1:
with F0(S) =

(
1 + (r −D)Sτ ′f (S) + σ2S2

2

(
τ ′′f (S) + p0τ ′2f (S)

))
(S − E) +

σ2S2τ ′f (S) and F1(S) = −σ2S2

2 (S − E) τ ′2f (S) in region (c) and p0 = (D−r)2
2σ2 +
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Table 1. The nonhomogeneous term F (S).

Region V (Sf (τ), τ) ∂V
∂S (Sf (τ), τ) τf (S) F (S)

(a) 0 < S < E 0 0 0 0
(b) E < S < S0 S − E 1 0 S − E
(c) S0 < S < S1 S − E 1 > 0 e−pτf (S) [F0(S) + (p+ p0)F1(S)]

D+r
2 + σ2

8 . We would mention that in region (c), F (S) is fairly complicated,
being a function of τ ′f (S) and τ ′′f (S), the derivatives of the inverse of the
optimal exercise boundary, as are F0(S) and F1(S).

The three regions in Table 1 coexist when 0 < D < r. When D ≥ r, the
location of the free boundary at expiry is Sf (0) = S0 = E, so that the middle
region (b) vanishes and we are left with only two regions, (a) and (c), with
the nonhomogeneous terms in these two regions unchanged. For the moment,
we will perform our analysis for the case 0 < D < r, and explain later how
the analysis differs when D ≥ r.

2.1 0 < D < r

The general solution of (6) is

V = S
D−r+λ(p)

σ2 + 1
2

[
C1(p)−

∫
S̃−D−r+λ(p)

σ2 − 3
2F (S̃)dS̃

λ(p)

]

+ S
D−r−λ(p)

σ2 + 1
2

[
C2(p) +

∫
S̃−D−r−λ(p)

σ2 − 3
2F (S̃)dS̃

λ(p)

]
, (7)

where λ(p) =
√

2σ [p+ p0]
1/2, and C1 and C2 are constants of integration,

which may depend on the transform variable p. Since r, D and σ are all
assumed to be positive, and we assume that p has a positive real part from
the definition of the Laplace transform, then the real part of the first exponent
D−r+λ(p)

σ2 + 1
2 is assumed positive, while the real part of the second exponent,

D−r−λ(p)
σ2 + 1

2 is assumed negative.
Applying this solution (7) to the three separate regions outlined above, we

find that in region (a) we must discard the second solution in order to satisfy
the boundary condition on S = 0 that V (0, t) = 0, and the corollary that
V(0, p)→ 0 as p→∞, so in this region we have

V = C
(a)
1 (p)

(
S

E

)D−r+λ(p)
σ2 + 1

2

. (8)

In region (b), we find
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V =
S

p+D
− E

p+ r
(9)

+ C
(b)
1 (p)

(
S

E

)D−r+λ(p)
σ2 + 1

2

+ C(b)
2 (p)

(
S

E

)D−r−λ(p)
σ2 + 1

2

,

and in region (c), we have

V = S
D−r+λ(p)

σ2 + 1
2

[
C1(p)−

∫ S

S0

S̃−D−r+λ(p)
σ2 − 3

2F (S̃)dS̃
λ(p)

]

+ S
D−r−λ(p)

σ2 + 1
2

[
C2(p) +

∫ S

S0

S̃−D−r−λ(p)
σ2 − 3

2F (S̃)dS̃
λ(p)

]
, (10)

with F given in Table 1. Applying the condition that V(S, p)→ 0 as S → S1,
we require

C
(c)
1 (p) =

1
λ(p)

∫ S1

S0

S̃−D−r+λ(p)
σ2 − 3

2F (S̃)dS̃,

C
(c)
2 (p) = − 1

λ(p)

∫ S1

S0

S̃−D−r−λ(p)
σ2 − 3

2F (S̃)dS̃, (11)

so that the solution in region (c) becomes

V =
∫ S1

S

(
S̃

S

)−D−r

σ2 − 3
2
⎡⎣( S̃

S

)−λ(p)
σ2

−
(
S̃

S

)λ(p)
σ2
⎤⎦ F (S̃)dS̃
λ(p)S

. (12)

We must now match the solutions in these three regions together. We will
require that V and dV/dS are continuous across S = E and S = S0. Matching
regions (b) and (c) together at S = S0, we find we can write C(b)

1 (p) and
C

(b)
2 (p) in terms of C(c)

1 (p) and C(c)
2 (p), which were given in (11) above,

C
(b)
1 = C

(c)
1 E

D−r+λ(p)
σ2 + 1

2

+
1

2λ(p)

(
E

S0

)D−r+λ(p)
σ2 + 1

2

×

⎡⎣
(
D − r − σ2

2 − λ(p)
)
S0

p+D
−

(
D − r + σ2

2 − λ(p)
)
E

p+ r

⎤⎦ ,
C

(b)
2 = C

(c)
2 E

D−r−λ(p)
σ2 + 1

2 (13)

− 1
2λ(p)

(
E

S0

)D−r−λ(p)
σ2 + 1

2

×

⎡⎣
(
D − r − σ2

2 + λ(p)
)
S0

p+D
−

(
D − r + σ2

2 + λ(p)
)
E

p+ r

⎤⎦ .
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Similarly, matching regions (a) and (b) together at S = E, we find we can
write C(a)

1 (p) in terms of C(b)
1 (p) and C(b)

2 (p), which we just found,

C
(a)
1 (p) = E

(
1

p+D
− 1
p+ r

)
+ C(b)

1 (p) + C(b)
2 (p), (14)

but we also arrive at another expression for C(b)
2 (p),

C
(b)
2 (p) =

E

2λ(p)

[(
D − r + σ2

2 + λ(p)
p+ r

)
−
(
D − r − σ2

2 + λ(p)
p+D

)]
, (15)

and comparing this to the earlier expression we found for C(b)
2 (p), we arrive

at the following equation

C
(c)
2 =

1
2λ(p)

S
−D−r−λ(p)

σ2 − 1
2

0

×

⎡⎣S0

(
D − r − σ2

2 + λ(p)
)

p+D
−
E
(
D − r + σ2

2 + λ(p)
)

p+ r

⎤⎦
+

1
2λ(p)

E−D−r−λ(p)
σ2 + 1

2

×
[
D − r + σ2

2 + λ(p)
p+ r

−
D − r − σ2

2 + λ(p)
p+D

]
, (16)

or using (11),∫ S1

S0

S̃−D−rλ(p)
σ2 − 3

2F (S̃)dS̃

=
1
2
S
−D−r−λ(p)

σ2 − 1
2

0

×

⎡⎣E
(
D − r + σ2

2 + λ(p)
)

p+ r
−
S0

(
D − r − σ2

2 + λ(p)
)

p+D

⎤⎦
+

1
2
E−D−r−λ(p)

σ2 + 1
2

×
[
D − r − σ2

2 + λ(p)
p+D

−
D − r + σ2

2 + λ(p)
p+ r

]
, (17)

where again F (S) is given in Table 1.
We should comment on why (13), which came from matching regions (b)

and (c), appears to be more complicated than (14,15) which came from match-
ing (a) and (b). Because we wrote S/E in the homogeneous terms in (8,9), the
matching at S = E was greatly simplified. If we had instead written S/S0 in
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those terms, the matching at S = S0 would have become much simpler, while
that at S = E would have become correspondingly more complex. Another
reason for the complexity in (13) is of course that the nonhomogeneous terms
in region (c) are fairly lengthy, while those in region (a) vanish.

2.2 D ≥ r

The analysis when D ≥ r is very similar to that for D < r, so we will merely
highlight the differences and give the main results. As mentioned earlier, when
D ≥ r, the location of the free boundary at expiry is Sf (0) = S0 = E. Because
of this, instead of the three regions (a)-(c) described above, the middle region
(b) vanishes and we are left with only two regions, (a) and (c), with the
nonhomogeneous terms in these two regions unchanged, and given in Table 1.
The general solutions in these two regions are also the same, namely (8,12).
However, the matching process will lead to constants that differ from those
found earlier. When D ≥ r, we have a single boundary to match across, and
we require that V and dV

dS are continuous across S = E. This tells us that

C
(a)
1 (p) = C

(c)
1 (p)E

D−r+λ(p)
σ2 + 1

2 ,

C
(c)
2 (p) = 0, (18)

the latter of which gives∫ S1

E

S̃−D−r−λ(p)
σ2 − 3

2F (S̃)dS̃ = 0, (19)

with F (S) again given in Table 1.

3 The integral equations

The equations, (17) for 0 < D < r and (19) forD ≥ r, are integral equations in
transform space for the location of the free boundary τf (S), which appears in
equations via the nonhomogeneous term F (S). To be more specific, (17,19) are
nonlinear Fredholm integral equations, or to be even more specific, Urysohn
equations. When r = D, the integral equations for the two cases are the same.

Each of (17,19) is of course the Laplace transform of an integro-differential
equation in physical space, and we can obtain these latter equations by ap-
plying the inverse Laplace transform (4) to (17,19). The inversion process is
conceptually straightforward, but the algebra is somewhat complicated. To

invert (17), we first divide by (p+ p0)3/2S
−D−r

σ2 − 3
2

0 (Sf (τ))λ(p)/σ
2
, and rewrite

(17) as
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S0

exp

[
−
√

2(p+ p0)
σ

ln
Sf (τ)
S̃

]

×
(
S̃

S0

)−D−r

σ2 − 3
2
e−pτf (S̃)

√
p+ p0

[
F0(S̃)
p+ p0

+ F1(S̃)

]
dS̃ =

=
S0

2 (p+ p0)
exp

[
−
√

2(p+ p0)
σ

ln
Sf (τ)
S0

]

×
(

E

p+ r

[
D − r + σ2

2

(p+ p0)
1/2

+ σ
√

2

]
− S0

p+D

[
D − r − σ2

2

(p+ p0)
1/2

+ σ
√

2

])

+
S2

0

2 (p+ p0)

(
E

S0

)−D−r

σ2 + 1
2

exp

[
−
√

2(p+ p0)
σ

ln
Sf (τ)
E

]
(20)

×
(

1
p+D

[
D − r − σ2

2

(p+ p0)
1/2

+ σ
√

2

]
− 1

2p+ r

[
D − r + σ2

2

(p+ p0)
1/2

+ σ
√

2

])
,

and then use the following standard inverse transforms [22],

L−1
[
e−apG(p)

]
= H (τ − a) g (τ − a) ,

L−1 [G(p+ p0)] = e−p0τg(τ),

L−1 [G1(p)G2(p)] =
∫ τ

0

g1(τ − z)g2(z)dz,

L−1
[
p−1/2 exp

(
−ap1/2

)]
=

1√
πτ1/2

exp
[
−a

2

4τ

]
,

L−1
[
p−1 exp

(
−ap1/2

)]
= erfc

[
a

2
√
τ

]
,

L−1
[
p−3/2 exp

(
−ap1/2

)]
=

2τ1/2

√
π

exp
[
−a

2

4τ

]
− a erfc

[
a

2
√
τ

]
, (21)

where H(t) is the Heaviside step function, to obtain

∫ Sf (τ)

S0

√
τ − τf (S̃)

(
S̃

S0

)−D−r

σ2 − 3
2

e−p0(τ−τf (S̃))

×

⎡⎢⎣ 1√
π

(
2F0(S̃) +

F1(S̃)
τ − τf (S̃)

)
exp

⎛⎜⎝−
(
ln(Sf (τ)/S̃)

)2

2σ2(τ − τf (S̃))

⎞⎟⎠
−F0(S̃)

√
2 ln(Sf (τ)/S̃)

σ(τ − τf (S̃))
erfc

⎛⎝ ln(Sf (τ)/S̃)

σ
√

2(τ − τf (S̃))

⎞⎠⎤⎦ dS̃ =
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= S0

∫ τ

0

[
E

(
D − r +

σ2

2

)
e−r(τ−z) − S0

(
D − r − σ

2

2

)
e−D(τ−z)

]
e−p0z

×
(
z1/2√
π

exp

[
− [ln(Sf (z)/S0)]

2

2σ2z

]
− ln(Sf (z)/S0)

σ
√

2
erfc

[
ln(Sf (z)/S0)

σ
√

2z

])
dz

+ S2
0

(
E

S0

)−D−r

σ2 + 1
2

×
∫ τ

0

[(
D − r − σ

2

2

)
e−D(τ−z) −

(
D − r +

σ2

2

)
e−r(τ−z)

]
e−p0z

×
(
z1/2√
π

exp

[
− [ln(Sf (z)/E)]2

2σ2z

]
− ln(Sf (z)/E)

σ
√

2
erfc

[
ln(Sf (z)/E)
σ
√

2z

])
dz

+
S0σ√

2

∫ τ

0

(
Ee−r(τ−z) − S0e

−D(τ−z)
)
e−p0zerfc

[
ln(Sf (z)/S0)

σ
√

2z

]
dz

+
S2

0σ√
2

(
E

S0

)−D−r

σ2 + 1
2

×
∫ τ

0

(
e−D(τ−z) − e−r(τ−z)

)
e−p0zerfc

[
ln(Sf (z)/E)
σ
√

2z

]
dz, (22)

which is an integro-differential equation in physical space for the location of
the free boundary for the call with 0 < D < r, and is the inverse transform of
the equation in transform space (17). The equation for D ≥ r can be obtained
by setting the right-hand side of (22) to zero,

∫ Sf (τ)

S0

√
τ − τf (S̃)

(
S̃

S0

)−D−r

σ2 − 3
2

e−p0(τ−τf (S̃))

×

⎡⎢⎣ 1√
π

(
2F0(S̃) +

F1(S̃)
τ − τf (S̃)

)
exp

⎛⎜⎝−
(
ln(Sf (τ)/S̃)

)2

2σ2(τ − τf (S̃))

⎞⎟⎠
−F0(S̃)

√
2 ln(Sf (τ)/S̃)

σ(τ − τf (S̃))
erfc

⎛⎝ ln(Sf (τ)/S̃)

σ
√

2(τ − τf (S̃))

⎞⎠⎤⎦ dS̃ = 0, (23)

which is an integro-differential equation in physical space for the location of
the free boundary for the call with D ≥ r, and is the inverse transform of the
equation in transform space (19).

4 Discussion

The purpose of this study was to apply one of the tools of classical applied
mathematics, the Laplace transform, to the pricing of American options, us-
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ing the partial Laplace transform method developed by [7] for diffusion prob-
lems. The resulting integral equations for the location of the free boundary,
(17,19) in transform space and their inverses (22,23) in physical space, form
the main result of this paper. These equations were obtained by applying a
partial Laplace transform [7] to the Black-Scholes-Merton PDE and solving
the resultant ordinary differential equation in transform space. The equations
when D ≥ r are somewhat simpler than those when 0 < D < r. It should
be recalled that the nonhomogeneous term F (S) in these equations is a func-
tion of τ ′f (S) and τ ′′f (S), the derivatives of the inverse of the optimal exercise
boundary, so that (17,19,22,23) involve the first and second derivatives of the
unknown boundary and because of this, the integral equations are more com-
plicated than those in [4, 11, 13, 21] which involve the boundary but not the
derivatives.

As we mentioned briefly in section 1, integral equation methods have
been used to analyze American options before, including the studies of
[4, 8, 11, 13, 14, 16, 18, 21, 25, 26]. However, those studies tackled the problem
in very different ways to that used here, and ended up with equations of a
somewhat different form to those found by us. For example, in their recent
studies, [8, 16] used Green’s functions to solve the Black-Scholes PDE for
American options, and their results involved an integral equation for Sf (τ),
whereas we have an integral equation for the inverse of that function, τf (S).
As with our equation, those authors were unable to obtain exact solutions
of their integral equations. [25] used a Fourier transform method, while [14]
essentially took a Mellin transform with respect to the stock price, and each
obtained a (different) integral equation for Sf (τ). Obviously some connection
exists between our results and those other studies, since the integral equations
from each study describe the same boundary. It is interesting to note that
the Laplace transform, Mellin transform, and Green’s function approaches all
yield the same expression for the value of a European option but each yields
a different integral equation for the free boundary of an American option.

Moving on to the issue of the value of the option, in (8,9,12), we have a
series of expressions for V(p, S), the transform of the option price V (S, t). The
constants which appear in these expressions were also given in the previous
sections. In theory, given these expressions, we could apply the inverse trans-
form (4), and then we would arrive at the option price itself. Unfortunately,
these expressions involve τf (S), the location of the free boundary, which we
know only abstractly as the solution of the applicable integral equation; how-
ever, if τf (S) were known explicitly, taking the inverse Laplace transform
would give the value of the option.

Although the results presented in this study were for the call, it is straight-
forward to apply them to the put using the well-known put-call ‘symmetry’
condition of [5, 17], under which the prices of the American call and put are
related by

C [S,E,D, r] = P [E,S, r,D] , (24)
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and the positions of the optimal exercise boundary for the call and put are
related by

Scf [t, E, r,D] = E2/Spf [t, E,D, r] . (25)

Of course, (24,25) can also be applied to other studies of American options,
such as [4, 11, 13, 21] where the price of the option is given as a closed form
expression involving the location of the free boundary.

At this point it behooves us to mention that although we have derived the
integro-differential equations (22,23) for the location of the free boundary, we
have not addressed either the existence or the regularity or the uniqueness of
any solutions to these equations, and these issues remain open, although obvi-
ously we would expect the physical free boundary to be a solution. We would
suggest that a study addressing these important issues would be a worthwhile
endeavor. Indeed, the existence, regularity and uniqueness of solutions remain
unresolved for many of the other integral equation formulations of the Amer-
ican option pricing problem mentioned in Section 1, the noticeable exception
of course being [4, 11, 13, 21] for which these issues have been successfully
resolved. For the integral equations in [4, 11, 13, 21], which involve the bound-
ary but not the derivatives, the existence of solutions follows from the fixed
point theorem, while uniqueness has very recently finally been resolved [21].

Finally, we would address the usefulness of the equations (22,23), which
describe the location of the free boundary. Although we would not pretend to
be proficient in the numerical solution of integral equations, it is reasonable to
assume that (22,23) could be used to compute the optimal exercise boundary
numerically, as has been done for many of the other integral equation formu-
lations of the American option pricing problem, and we would suggest this,
along with a local solution close to expiry, as possible directions for future
research. Of course, with such a numerical solution, great care must be taken
to verify that any solution of the integral equations corresponds to a solution
of the underlying optimal stopping problem, and it would also be of interest
to compare the boundary computed using (22,23) with those computed using
the other integral equation formulations.
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Summary. A concept of volatility modulated Volterra processes is introduced.
Apart from some brief discussion of generalities, the paper focusses on the spe-
cial case of backward moving average processes driven by Brownian motion. In this
framework, a review is given of some recent modelling of turbulent velocities and
associated questions of time change and universality. A discussion of similarities and
differences to the dynamics of financial price processes is included.

1 Introduction

Change of time is an important concept in stochastic analysis and some of its
applications, especially in mathematical finance and financial econometrics,
with quadratic variation and its interpretation as integrated squared volatility
playing a key role. (A rather comprehensive treatment of this will be available
in [27].) On the other hand there are well known similarities, as well as impor-
tant differences, between the dynamics of financial markets and of turbulence.
From these prospects, the present paper discusses some recent modelling in
turbulence and associated questions of time change.

To set the discussion in perspective, a general concept of volatility modu-
lated Volterra processes is introduced. This would seem to be of some rather
wide interest in mathematical modelling. Here we focus on its relevance for
stochastic modelling of turbulence. For a masterly overview of the main ap-
proaches to modelling of turbulence see [51], cf. also [50].

A summary comparison of main stylized features in finance and turbulence
is given in the next Section. Of central importance is the fact that volatility
is a key concept in turbulence as well as in finance, though in turbulence the
phenomenon is referred to as intermittency.

The notion of change of time in mathematical finance and financial econo-
metrics refers to an increasing stochastic process as the time change while in
turbulence we have in mind a deterministic time change. We provide empir-
ical and theoretical evidence for the existence of an affine deterministic time
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change in turbulence in terms of which the main component of the velocity
vector in a turbulent flow behaves in a universal way over a wide range of
scales. We also discuss the limitations of this type of universality and briefly
outline the extension to a non-affine deterministic change of time and its rel-
evance for universality of velocity increments.

Section 2 provides some background on turbulence and the similarities and
differences between turbulence and finance, and recalls some features of the
Normal inverse Gaussian distribution. Section 3 discusses volatility modulated
Volterra processes and their behaviour under change of time. A more general
discussion of change of time for stationary processes is presented in Section
4. Section 5 provides empirical and theoretical evidence for the relevance of
change of time in turbulence. The potential of Volterra processes for modelling
velocity fields in turbulence is outlined in Sections 6 and 7. Section 8 relates the
concept of change of time to the particular setting of the proposed modelling
frameworks in finance and turbulence. This leads to a primitive and a refined
universality statement for turbulence in Section 9. Section 10 concludes.

2 Background

The statistics of turbulent flows and financial markets share a number of
stylized features ([36], [44], [27] and [7]). The counterpart of the velocity in
turbulence is the log price in finance, and velocity increments correspond
to log returns. The equivalent of the intermittency of the energy dissipation
in turbulence is the strong variability of the volatility in financial markets.
Subsection 2.1 briefly summarizes some basic information on turbulence, and
subsection 2.2 lists the most important similarities and differences between
turbulence and finance. The normal inverse Gaussian laws constitute a useful
tool in both fields and some of the properties of these laws are recalled in the
Appendix.

2.1 Turbulence

There is no generally accepted definition of what should be called a turbulent
flow. Turbulent flows are characterized by low momentum diffusion, high mo-
mentum convection, and rapid variation of pressure and velocity in space and
time. Flow that is not turbulent is called laminar flow. The non-dimensional
Reynolds number R characterizes whether flow conditions lead to laminar or
turbulent flow. Increasing the Reynolds number increases the turbulent char-
acter and the limit of infinite Reynolds number is called the fully developed
turbulent state.

The most prominent observable in a turbulent flow is the main component
of the velocity field Vt as a function of time t and at a fixed position in
space. A derived quantity is the temporal surrogate energy dissipation process
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describing the loss of kinetic energy due to friction forces characterized by the
viscosity ν

εt ≡
15ν

V
2

(
dVt
dt

)2

, (1)

where V denotes the mean velocity.
The temporal surrogate energy dissipation process takes into account the

experimental condition where only a time series of the main component of the
velocity vector is accessible. The temporal surrogate energy dissipation is a
substitute for the true energy dissipation process (involving the spatial deriva-
tives of all velocity components) for flows which are stationary, homogeneous
and isotropic [34]. In the sequel we call such flows free turbulent flows. We
refer to the temporal surrogate energy dissipation as the energy dissipation
unless otherwise stated.

Since the pioneering work of Kolmogorov [39] and Obukhov [43], intermit-
tency of the turbulent velocity field is of major interest in turbulence research.
From a probabilistic point of view, intermittency refers, in particular, to the
increase in the non-Gaussian behaviour of the probability density function
(pdf) of velocity increments

∆us = Vt+s − Vt

with decreasing time scale s. Here we adopt the notation ∆u for velocity
increments which is traditional in the turbulence literature. A typical scenario
is characterized by an approximate Gaussian shape for the large scales, turning
to exponential tails for the intermediate scales and stretched exponential tails
for dissipation scales ([29] and [52], see also Figure 1).

2.2 Stylized features of finance and turbulence

The most important similarities between financial markets and turbulent flows
are semiheavy tails for the distributions of log returns/velocity increments,
the evolution of the densities of log returns/velocity increments across time
scales with the heaviness of the tails decreasing as the time lag increases, and
long range dependence of log returns/velocity increments. It is important to
note that in spite of the long range dependence the autocorrelation of the
log price process is essentially zero whereas the velocity field shows algebraic
decay of the autocorrelation function. Other important differences are the
skewness of the densities of velocity increments in contrast to the symmetry
of the distribution of log returns in FX markets1 and the different behaviour
of bipower variation [25, 21]. Table 1 gives an overview of the differences and
similarities between turbulence and finance.

1 For stocks, skewness of the distribution of log returns is observed. There, leverage
is believed to be a key mechanism.
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2.3 Normal inverse Gaussian distributions

Intermittency/volatility is related to the heaviness of the tails and the non-
Gaussianity of the distribution of velocity increments and log returns. In this
respect, Normal inverse Gaussian (NIG) distributions are a suitable class of
probability distributions which fit the empirical densities in both systems to
high accuracy ([5, 6], [47], [35], [10], [17]).

Figure 1 shows, as an example, the log densities of velocity increments
∆us measured in the atmospheric boundary layer for various time scales s.
The solid lines denote the approximation of these densities within the class of
NIG distributions. NIG distributions fit the empirical densities equally well
for all time scales s.

A subsequent analysis of the observed parameters of the NIG distributions
from many, widely different data sets with Reynolds numbers ranging from
Rλ = 80 up to Rλ = 17000 (where Rλ is the Taylor based Reynolds number)
led to the formulation of a key universality law ([10] and [19]): The temporal
development of a turbulent velocity field has an intrinsic clock which depends
on the experimental conditions but in terms of which the one-dimensional
marginal distributions of the normalized velocity differences become indepen-
dent of the experimental conditions. Figure 2 provides an empirical validation
of this.

3 Volatility modulated Volterra processes

This Section is divided into three subsections. The first briefly discusses
Volterra type processes, the second introduces the concept of volatility mod-
ulated Volterra processes, and the third considers the behaviour of such pro-
cesses under a change of time.

3.1 Volterra type processes

In this paper we shall be referring to processes of the form

Yt =
∫ ∞

−∞
K (t, s) dBs + χ

∫ ∞

−∞
Q (t, s) ds, (2)

as Brownian Volterra processes (BVP). Here K and Q are deterministic func-
tions, sufficiently regular to give suitable meaning to the integrals. Further-
more, χ is a constant and B denotes standard Brownian motion.

Example 1. Fractional Brownian motion As is well known (cf, for in-
stance [49]) fractional Brownian motion can be written as

BHt =
∫ ∞

−∞

[
(t− s)H−1/2

+ − (−s)H−1/2
+

]
dBs.
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Of particular interest are the backward Volterra processes, i.e. where K(t, s)
and Q(t, s) are 0 for s > t. In this case formula (2) takes the form

Yt =
∫ t

−∞
K (t, s) dBs + χ

∫ t

−∞
Q (t, s) ds. (3)

Example 2. Fractional Brownian motion For B a Brownian motion, the
fractional Brownian motion with index H ∈ (0, 1) may alternatively, see [42],
be represented as

BHt =
∫ t

0

K (t, s) dBs (4)

where

K (t, s) = cH

{(
t

s

)
(t−s)H−1/2−

(
H− 1

2

)
s1/2−H

∫ t

s

uH−3/2 (u−s)H−1/2 du
}

and

cH =

(
2Γ

(
3
2 −H

)
Γ
(
H + 1

2

)
Γ (2− 2H)

)1/2

.

A more general type of Volterra processes are the Lévy Volterra processes
(LVP), which are of the form

Yt =
∫ ∞

−∞
K (t, s) dLs + χ

∫ ∞

−∞
Q (t, s) ds

where L denotes a Lévy process on R and K and Q are deterministic kernels,
satisfying certain regularity conditions.

Example 3. Fractional Lévy motion [40] introduces Fractional Lévy mo-
tion LH for H ∈

(
1
2 , 1

)
by the formula

LHt =
∫ ∞

−∞

[
(t− s)H−1/2

+ − (−s)H−1/2
+

]
dLs

where L is a Lévy process.

Stochastic integration in these general settings is discussed for BVP in
[37], [31], [32], cf. also [42], and for LVP in [28].

For Brownian Volterra processes we shall refer to the following three con-
ditions: For all s, t ∈ R

C1 K (t, ·) ∈ L2(R) and Q (t, ·) ∈ L2(R)

C2 K (s, s) = K0 > 0 and K (t, s) = 0 for s > t
Q (s, s) = Q0 > 0 and Q (t, s) = 0 for s > t
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C3 K and Q are differentiable with respect to their first arguments and,
denoting the derivatives by K̇ and Q̇, we have

K̇ (t, ·) ∈ L2(R) and Q̇ (t, ·) ∈ L2(R).

Under these conditions the covariance function of (3) exists and is, for
s ≤ t, given by

R (s, t) = Cov{Ys, Yt} =
∫ s

−∞
K (t, u)K (s, u) du

and the autocorrelation function may be written as

r (s, t) =
∫ s

−∞
K̄ (t, u) K̄ (s, u) du

where
K̄ (t, u) = K (t, u) / ‖K (t, ·)‖

and ‖·‖ denotes the L2 norm.

3.2 Volatility modulated Volterra processes

For modelling purposes it is of interest to consider Volatility modulated
Volterra processes (VMVP) which we define (backward case) by

Yt =
∫ t

−∞
K (t, s)σsdBs + χ

∫ t

−∞
Q (t, s)σ2

sds (5)

where σ > 0 is a stationary cadlag process on R, embodying the volatil-
ity/intermittency.

On the further assumptions that the deterministic kernels K and Q sat-
isfy conditions C1-C3, we have that Y is a semimartingale, satisfying the
stochastic differential equation

dYt = K0σtdBt + χQ0σ
2
t dt+

∫ t

−∞
K̇ (t, s)σsdBs + χ

∫ t

−∞
Q̇ (t, s)σ2

sds.

The quadratic variation of Y is then, for t ≥ 0,

[Y ]t = K2
0τt (6)

where

τt =
∫ t

0

σ2
sds (7)

is the integrated squared volatility process. For t < 0 we define [Y ]t and τt by
the same formulae (6) and (7). Then [Y ] is a continuous increasing stochastic
process with [Y ]0 = 0.

Finally, we introduce the inverse process θ of τ by

θt = inf {s : τs ≥ t} . (8)
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3.3 Time change and VMVP

We say that a process T on R is a time change provided T is increasing with
T0 = 0. The time changes on R we shall be considering are in fact continuous
and strictly increasing, with T → ±∞ as t → ±∞. (This is the case in
particular for the processes τ and θ defined above.)

For T a time change process on R and given a Volterra kernel K we define
a new Volterra kernel K ◦ T by

K ◦ T (t, s) = K (Tt, Ts) . (9)

Taking T = θ as given by (8) we may now rewrite Y of (5) as

Yt =
∫ t

−∞
K (t, s) dBτs

+ χ
∫ t

−∞
Q (t, s) dτs

=
∫ τt

−∞
K (t, θu) dBu + χ

∫ τt

−∞
Q (t, θu) du

implying

Yθt =
∫ t

−∞
K ◦ θ (t, s) dBs + χ

∫ t

−∞
Q ◦ θ (t, s) ds. (10)

In particular, if the volatility process σ is independent of B then, conditional
on [Y ], Yθ is a Volterra process with kernels (K ◦ θ,Q ◦ θ) and the same driving
Brownian motion as the VMVP Y .

Later in this paper we shall, in the context of turbulence, be concerned
with affine time changes.

Remark 1. Affine time change Suppose Tt = ct+ c0 for some c > 0 and a
constant c0. Applying this to (5) gives

Yct+c0 =
∫ ct+c0

−∞
K (ct+ c0, s)σsdBs + χ

∫ ct+c0

−∞
Q (ct+ c0, s)σ2

sds

=
∫ t

−∞
K (ct+ c0, cu+ c0)σcu+c0dBcu+c0

+ cχ
∫ t

−∞
Q (ct+ c0, cu+ c0)σ2

cu+c0du

i.e.

Yct+c0 =
∫ t

−∞
Kc,c0 (t, s)σcs+c0dB̃s + χ

∫ t

−∞
Qc,c0 (t, s)σ2

cs+c0ds (11)

with Kc,c0 (t, s) =
√
cK (ct+ c0, cs+ c0), Qc,c0 (t, s) = cQ (ct+ c0, cs+ c0)

and where B̃s = c−1/2Bcs is a Brownian motion. Thus the transformed process
follows again a VMVP but now with volatility process σc·+c0 (and kernels
Kc,c0 and Qc,c0).
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4 Time change in stationary processes

Let Y and Y ∗ be stationary stochastic processes on R and let X and X∗

be the corresponding increment processes given by Xt = Yt − Y0 and X∗
t =

Y ∗
t − Y ∗

0 . The present Section discusses distributional relations between X
and X∗ under various assumptions. Note first, however, that only affine time
changes preserve stationarity in a stationary process.

Assuming Var{Yt} = Var{Y ∗
t } = ω2, say, and denoting the autocorrela-

tion functions of Y and Y ∗ respectively by r and r∗ we have

Var{Xt} = 2ω2r̄ (t) and Var{X∗
t } = 2ω2r̄∗ (t) (12)

where r̄ (t) = 1− r (t) and r̄∗ (t) = 1− r∗ (t).
Let ψ(t) be a time change, and suppose that

Xt
law= X∗

ψ(t) for every t ∈ R. (13)

As discussed in Section 2.3 this type of behaviour has been found in free
turbulence.

Assumption (13) and the relation (12) imply

r (t) = r∗ (ψ (t)) ,

and provided both r and r∗ are strictly decreasing and continuous functions
we have that the time change ψ is expressible as

ψ (t) = ρ∗ (r (t)) , (14)

ρ∗ denoting the inverse function of r∗

In case the statistical analysis of observations from X and X∗ has shown
good agreement with the Ansatz (13), it is then natural to ask whether (13)
is simply a reflection of the more sweeping Ansatz

X·
law= X∗

ψ(·), (15)

saying that X and X∗ are equal in law as processes and not just pointwise
as in (13). This Ansatz implies, in particular, that ψ must be affine since, as
mentioned earlier, only affine time changes preserve stationarity.

In fact, the weaker assumption of second order agreement of X and X∗

already implies that ψ is affine, as we show now.
Suppose that for all 0 ≤ s ≤ t

E
{
X∗2
ψ(t)

}
= E

{
X2
t

}
(16)

E
{
X∗
ψ(s)X

∗
ψ(t)

}
= E {XsXt} . (17)
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(Note that since we have assumed that Y and Y ∗ are stationary, necessarily
E {Xt} = 0 = E

{
X∗
ψ(t)

}
.) We will then have

E
{(
X∗
ψ(t) −X∗

ψ(s)

)2
}

= E
{

(Xt −Xs)2
}
.

Further, by (12), on the one hand

E
{(
X∗
ψ(t) −X∗

ψ(s)

)2
}

= E
{(
Y ∗
ψ(t) − Y ∗

ψ(s)

)2
}

= 2ω2r̄∗ (ψ (t)− ψ (s))

while on the other

E
{

(Xt −Xs)2
}

= E
{

(Yt − Ys)2
}

= 2ω2r̄ (t− s) .

This implies
r̄∗ (ψ (t)− ψ (s)) = r̄ (t− s)

or, equivalently, by (14),

ψ (t)− ψ (s) = ψ (t− s)

which can only hold for ψ affine,

ψ (t) = ct+ c0

for some c > 0 and a constant c0.

5 Universality in turbulence

In this Section we discuss the empirical support for the existence of affine,
intrinsic (one for each experiment), time changes such that for a wide range
of time scales the densities of turbulent velocity increments obtained from
different experiments collapse. This leads to the formulation of a primitive
universality model for turbulence (see subection 9.1). At very small or very
large time scales, deviations from affinity are observed. This then leads to
the formulation of a refined universality model (see subsection 9.2). The dy-
namical aspects of this refined universality model are briefly discussed in the
concluding Section 10.

In comparing the equivalence under time change to existing theory of tur-
bulence and to empirical evidence it is illuminating to relate the discussion
to the well established fact (cf. Section 2.3) that in free turbulence the distri-
butions of velocity differences over fixed time spans are closely describable by
the NIG law.
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5.1 Empirics

The statistical analysis of a large number of different turbulent data sets re-
vealed the existence of a type of universality which states that the densities
of velocity increments are well described within the class of NIG distributions
and, moreover, the densities of the increments of the normalized velocity field
obtained from different experiments collapse as long as the intrinsic time scales
are measured in terms of the scale parameter of the approximate NIG distri-
butions. Here, the velocity field is normalized by its standard deviation. We
denote the normalized velocity component by Ṽ = V/

√
Var(V ). Then we have

the empirical result, denoting the corresponding velocity increments by ∆ũ,

∆ũt
law= ∆ũ∗ψ(t)

where
ψ(t) =

←
δ
∗

(δ(t))

and where δ(t) and δ∗(t) are the scale parameters of the approximate NIG
distributions of ∆ũt and ∆ũ∗t , respectively. Here ∆ũt refers to the velocity
increments for a given turbulent experiment and the superscript ∗ refers to
a different independent turbulent experiment, different in Reynolds number
and/or experimental set-up. The superscript ← denotes the inverse function.

Figure 3 shows the estimated time change ψ for a number of independent
turbulent experiments. For a wide range of time lags, ψ is essentially affine
in a first approximation. The degree of non-affinity increases with increasing
difference of the Reynolds numbers.

Remark 2. The collapse of the densities of velocity increments implies that the
variances Var{∆ũt} and Var{∆ũ∗t } at the corresponding time scales are the
same. Denoting the variances by c2(t) = Var{∆ũt} and c∗2(t) = Var{∆ũ∗t },
the time change ψ can, alternatively be expressed as (c.f. (14))

ψ(t) =
←
c
∗
2 (c2(t)).

Remark 3. It is important to note that the quality of the collapse of the densi-
ties of velocity increments does not depend on the degree of non-affinity of the
time change ψ. Velocity increments of widely different experiments collapse
for all amplitudes at time lags at which they have the same variance [17, 20].

5.2 Theoretical considerations

The empirically observed approximate affinity of the time change ψ for a
range of intermediate time scales can be motivated theoretically for turbulent
experiments where a clear Kolmogorov scaling is observed. Such a Kolmogorov
scaling is expected for large Reynolds numbers and for a certain range of scales,
called the inertial range [38]. In the limit of very large Reynolds numbers, the
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variance of velocity increments is expected to show a scaling behaviour of the
form

c2(t) = at2/3 (18)

where a is a flow dependent constant and the time scale t is within the inertial
range. (In practice, one defines the inertial range as the range of time scales
for which (18) holds.) For such flows the expected time change is affine (within
the inertial range).

For small and moderate Reynolds numbers, the inertial range is absent
or very small. For instance, the examples shown in Figure 3 do not show a
clear Kolmogorov scaling for an extended range of time scales. However, the
empirically estimated time change appears to be affine for a wide range of
time scales. This gives the possibility to define a non-scaling counterpart of
Kolmogorov scaling and an associated generalized inertial range where the
variances are universal in the sense that

ψ(t) =
←
c
∗
2 (c2(t)) = ct+ ψ0,

where ψ0 is a constant. A particular example are variances of the form

c2(t) = a (t+ t0)
2/3
,

where t0 is a constant. In view of Kolmogorov scaling, we then expect t0 → 0
as the Reynolds number gets very large.

6 Modelling frameworks in finance and turbulence

Volatility modulated Volterra processes of the form (5) have found applica-
tions in finance as well as for the modelling of the turbulent velocity field. In
the turbulence context, these processes capture the main idea of the Reynolds
decomposition of the velocity field into a slowly varying component (the sec-
ond term in Equation (5)) and a rapidly varying component (the first term in
Equation (5)) [16, 18].

In the following subsections, we discuss the application of volatility mod-
ulated Volterra processes in finance and turbulence with emphasis on the
empirical findings concerning time change and universality.

6.1 Finance

The basic framework for stochastic volatility modelling in finance is that of
Brownian semimartingales

Yt =
∫ t

0

σsdBs +
∫ t

0

asds (19)
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where σ and a are caglad processes and B is Brownian motion, with σ ex-
pressing the volatility. In general, Y , σ, B and a will be multidimensional but
in the present paper we shall only consider one-dimensional processes. Impor-
tantly, whatever the process a, the quadratic variation of Y satisfies [Y ] = τ
with τ given by (7).

6.2 Turbulence

Whereas Brownian semimartingales are ’cumulative’ in nature, for free tur-
bulence it is physically natural to model timewise velocity dynamics by sta-
tionary processes. In analogy to (19), the following framework for the latter
type of dynamics has recently ([16]) been proposed.

At time t and at a fixed position in the turbulent field, the velocity of the
main component of the velocity vector (i.e. the component in the mean wind
direction) is specified as Vt = µ+ Yt with

Yt =
∫ t

−∞
g(t− s)σsdBs + χ

∫ t

−∞
q(t− s)σ2

sds. (20)

Here B and σ are as above, µ and χ are constants and g and q are nonnegative
real functions on (0,∞) satisfying g (0+) > 0, q (0+) > 0,

||g||2 =
∫ ∞

0

g2 (t) dt = 1

and ∫ ∞

0

q (t) dt = 1.

Furthermore, g and q are assumed to be sufficiently regular to make the inte-
grals in (20) exist, and we require that the derivative ġ of g is square integrable.

Under these conditions, the stationary process Y is a semimartingale and
we have

[Y ] = g2 (0+) τ

where τ is given by (7).

Remark 4. Ambit processes The model type (20) is a one-dimensional limit of
a spatio-temporal modelling framework introduced under the name of Ambit
processes in [18]. In that more general context, the role of the Brownian motion
is taken over by a Gaussian white noise field (or Brownian sheet) and the
volatility is expressed as a random field, which may, for instance, be generated
from a Lévy basis as in [15]. The paper [18] gives a first discussion of the
theoretical properties of such processes and describes some applications to
turbulence and cancer growth.
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7 Increment processes

Both type of processes (19) and (20) have stationary increments. In the latter
case, letting Xt = Yt − Y0 we have

Xt =
∫ t

−∞

{
g (t− s)− 1(−∞,0) (s) g (−s)

}
σsdBs

+ χ
∫ t

−∞

{
q (t− s)− 1(−∞,0) (s) q (−s)

}
σ2
sds (21)

which we also write, on VMVP form, as

Xt =
∫ t

−∞
j (t, s)σsdBs + χ

∫ t

−∞
k (t, s)σ2

sds (22)

where
j (t, s) = g (t− s)− 1(−∞,0) (s) g (−s)
k (t, s) = q (t− s)− 1(−∞,0) (s) q (−s) .

Suppose now that B and σ are independent. Clearly, X|σ is then a Gaussian
process with

E {Xt|σ} = χ

∫ t

−∞
k (t, s)σ2

sds

Var{Xt|σ} =
∫ t

−∞
j2 (t, s)σ2

sds

and, for 0 ≤ s ≤ t,

Cov{XsXt|σ} =
∫ s

−∞
j (s, u) j (t, u)σ2

udu.

We proceed to discuss the conditional law of X given σ and its limit behaviour
for t→ 0 and t→∞.

Considering first the conditional mean we note that∫ t

−∞
k (t, s)σ2

sds =
∫ t

0

q (t− s)σ2
sds+

∫ 0

−∞
{q (t− s)− q (−s)}σ2

sds

=
∫ t

0

q (s)σ2
t−sds+

∫ 0

−∞
{q (t− s)− q (−s)}σ2

sds.

From this we find that∫ t

−∞
k (t, s)σ2

sds ∼ q (0+)σ2
0t+ t

∫ ∞

0

q′(s)σ2
−sds as t ↓ 0

and, under a mild mixing condition on σ, that
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−∞
k (t, s)σ2

sds ∼ K −K ′ as t→∞

where K and K ′ are independent and identically distributed with

K ′ =
∫ ∞

0

q (s)σ2
−sds.

Similarly, for the conditional variance we have∫ t

−∞
j2 (t, s)σ2

sds =
∫ t

0

g2 (t− s)σ2
sds+

∫ 0

−∞
{g (t− s)− g (−s)}2 σ2

sds

=
∫ t

0

g2 (s)σ2
t−sds+

∫ 0

−∞
{g (t− s)− g (−s)}2 σ2

sds.

Hence ∫ t

−∞
j2 (t, s)σ2

sds ∼ g2 (0+)σ2
0t as t ↓ 0

while ∫ t

−∞
j2 (t, s)σ2

sds ∼ G+G′ as t→∞

with
G′ =

∫ ∞

0

g2 (s)σ2
sds

and G and G′ independent and identical in law.
All in all we therefore have, conditionally on the volatility process σ,

Xt

g (0+)
√
t
∼ N

(
0, σ2

0

)
as t ↓ 0

while
Xt ∼ N (χ (K −K ′) , G+G′) as t→∞.

In particular, the law of the increment process Xt will not be normal in the
large time scale limit unless the volatility σ is constant. In the case of σ2

t

following an inverse Gaussian law we get for the small time scale limit of Xt
a Normal inverse Gaussian distribution. It has been shown in [16] that for
an inverse Gaussian volatility process, the increment process is well fitted by
a Normal inverse Gaussian law for all time scales. Moreover, the resulting
increment process also reproduces the experimentally observed statistics of
the Kolmogorov variable [39].

8 Time change in finance and turbulence

The specification, in Section 6, of the modelling frameworks in finance and
turbulence as specific types of VMVP now allows to discuss the idea of a time
change in more detail.
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8.1 Finance

Of particular interest are cases where the process a in (19) is of the form
a = βσ2 for some constant β, i.e.

Yt =
∫ t

0

σsdBs + βτt. (23)

For suitable choice of σ this type of process is generally capable of modelling
the basic dynamics of stock prices and foreign exchange rates while, at the
same time, being analytically tractable. More specifically, this is the case
when σ2 is of supOU type with σ2

t following the inverse Gaussian law; see for
instance [23], [26].

Under the specification (23) Y may, by the Dambis-Dubins-Schwartz The-
orem, be rewritten as

Yt = B′
τt

+ χτt
where B′ is a Brownian motion, which is a functional of Y itself. Equivalently,

Yθt = B′
t + χt. (24)

In the finance context, θt is thought of as ‘operational’ or ‘business’ time.
This time is, in principle, known from the quadratic variation process [Y ], and
that in turn can be estimated by the realised quadratic variation

[Yδ]t =
	t/δ
∑
j=1

(
Yjδ − Y(j−1)δ

)2
which satisfies

[Yδ]
p→ [Y ]

for t → ∞. Equation (24) is interpreted as saying that under (23), log price
returns are Gaussian when recorded in operational time. At least as a first
approximation this is close to reality, see for instance [1]. Recent, more refined,
empirical analysis takes the possibilities of jumps and of microstructure noise,
which are not covered by (23), into account; see [2].

8.2 Turbulence

In this case, i.e. (20), formula (10) takes the form

Yθt =
∫ t

−∞
g(θt − θs)dBs + χ

∫ t

−∞
q(θt − θs)ds.

Furthermore, (11) specializes to

Yct+c0 =
∫ t

−∞
gc (t− u)σcu+c0dB′

u + χ
∫ t

−∞
qc (t− u)σ2

cu+c0du

where
gc (t) =

√
cg (ct) and qc (t) = cq (ct) .
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9 Universality: Modelling

Let V = {Vt}t∈R denote the time-wise behaviour of the mean component of
the velocity vector at a fixed position in an arbitrary free turbulent field and
let U = {Ut}t∈R denote the time-wise behaviour of the increment process of
V .

9.1 Primitive universality model

We propose to consider the following as a theoretical model for the empirically
observed approximate affinity of the intrinsic time change ψ that results in
the collapse of the densities of turbulent velocity increments.

Primitive universality model (PUM) Except for a change of loca-
tion, scale and affine time change Tt = ct+ c0 (with c > 0 and c0 is a
constant), V is equivalent in law to a process Y of the form

Yt =
∫ t

−∞
g (t− s)σsdBs + χ

∫ t

−∞
q (t− s)σ2

sds

with g, q, σ and χ as specified in connection to formula (20) and with
these four quantities being universal, i.e. the same for all processes of
the type V .

Remark 5. In this framework, once (20) is specified, an arbitrary process V is
characterized by η = E {V0}, ω2 = Var{Y0} and the time change constants c
and c0.

9.2 Refined universality model

The empirically observed deviations from affinity of the time change ψ at
small and large time lags are inconsistent with the stationarity of V in free
turbulence. To account for this non-affine behaviour, we propose a refined
universality model.

Refined universality model (RUM) Except for a change of scale
and deterministic time change T , U is equivalent in law to a process
X of the form

Xt =
∫ t

−∞
j (t, s)σsdBs + χ

∫ t

−∞
k (t, s)σ2

sds (25)

with j, k, σ and χ as specified in connection to formulae (20) and (22)
and with these four quantities being universal, i.e. the same for all
increment processes U .
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Remark 6. In this framework, once (25) is specified, an arbitrary increment

process U is characterized by ω2 =
1
2

lim
t→∞

Var{Yt} and the time change T .

Remark 7. The empirical findings reported here only concern the collapse of
the marginal distributions of velocity increments after applying a deterministic
time change. The refined universality model goes beyond this equivalence in
distribution as it states an equivalence in law of the processes.

10 Concluding remarks

In this paper, we presented a review of some recent modelling of turbulent ve-
locities and financial price processes and associated questions of time change.
As a preliminary hypothesis, we proposed the existence of an affine time
change in terms of which the velocity process is universal in law, except for
change of location and scale.

The subsequent empirical findings about the non-affinity of the determin-
istic time change at very small and very large time scales led to us to propose
the existence of a refined universality model for turbulent velocity increments
and related to that an intrinsic deterministic time change, capturing the in-
dividual characteristics of each turbulent experiment. It is important to note
that the empirical verification of the collapse of the densities of the time
changed velocity increments is in fact independent of any model specification.
Without model specification, the refined universality model can be stated as
the equivalence of the law of U , except for change of location and scale and
the time change.

A natural extension of the empirical results reported here concerns the
dynamical aspect of the refined universality model, i.e. whether the empirically
observed equivalence in one-dimensional marginal distribution can indeed be
extended to an equivalence of the processes.

A first empirical result to clarify this point shows that the conditional
distributions p(∆ũt−∆ũs|∆ũs) and p(∆ũ∗ψ(t)−∆ũ∗ψ(s)|∆ũ∗ψ(s)) collapse after
an appropriate change of scale, for c2(∆ũs) = c2(∆ũ∗ψ(s)) and for a range of
time lags at which the time change ψ is essentially affine. For time lags at
which the time change ψ is essentially non-affine, i.e. at very small and very
large time scales, the conditional densities do not collapse; however, they are
only shifted by the conditional means E{∆ũt − ∆ũs|∆ũs} and E{∆ũ∗ψ(t) −
∆ũ∗ψ(s)|∆ũ∗ψ(s)}. A further clarification of this point is outside the scope of
the present paper, but will be discussed in an upcoming publication.

The definition of volatility modulated Volterra processes as given by (5)
is readily generalized to the multivariate setting, with B being d-dimensional
Brownian motion and σ being a matrix process. It is further of interest to con-
sider cases where processes expressing possible jumps or noise in the dynamics
are added.
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A central issue in these settings is how to draw inference on the volatil-
ity process σ. In cases where the processes are semimartingales, the theory
of multipower variations (see [11], [12] and references given there) provides
effective tools for this.

However, VMVP processes are generally not of semimartingale type and
the question of how to proceed then is largely unsolved and poses mathemati-
cally challenging problems. Some of these problems are presently under study
in joint work with José-Manuel Corcuera, Mark Podolski and Neil Shephard.

A The normal inverse Gaussian law

The class of NIG distributions equals the family of possible distributions at
time t = 1 of the NIG Lévy process, which is defined as Brownian motion with
drift subordinated by the inverse Gaussian Lévy process, i.e. the Lévy process
of first passage times to constant levels of (another, independent) Brownian
motion.

The normal inverse Gaussian law, with parameters α, β, µ and δ, is the
distribution on the real axis R having probability density function

p(x;α, β, µ, δ) = a(α, β, µ, δ)q
(
x− µ
δ

)−1

×K1

{
δαq

(
x− µ
δ

)}
eβx (26)

where q(x) =
√

1 + x2 and

a(α, β, µ, δ) = π−1α exp
{
δ
√
α2 − β2 − βµ

}
(27)

and where K1 is the modified Bessel function of the third kind and index 1.
The domain of variation of the parameters is given by µ ∈ R, δ ∈ R+, and
0 ≤ |β| < α. The distribution is denoted by NIG(α, β, µ, δ).

If X is a random variable with distribution NIG(α, β, µ, δ) then the cu-
mulant generating function of X, i.e. K(θ;α, β, µ, δ) = log E{eθX}, has the
form

K(θ;α, β, µ, δ) = δ{
√
α2 − β2 −

√
α2 − (β + θ)2}+ µθ. (28)

It follows immediately from this that if x1, ..., xm are independent normal
inverse Gaussian random variables with common parameters α and β but
individual location-scale parameters µi and δi (i = 1, ...,m) then x+ = x1 +
...+xm is again distributed according to a normal inverse Gaussian law, with
parameters (α, β, µ+, δ+).

Furthermore, the first four cumulants of NIG(α, β, µ, δ), obtained by dif-
ferentiation of (28), are found to be
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κ1 = µ+
δρ√

1− ρ2
, κ2 =

δ

α(1− ρ2)3/2 (29)

and

κ3 =
3δρ

α2(1− ρ2)5/2 , κ4 =
3δ(1 + 4ρ2)
α3(1− ρ2)7/2 , (30)

where ρ = β/α. Hence, the standardized third and fourth cumulants are

κ̄3 =
κ3

κ
3/2
2

= 3
ρ

{δα(1− ρ2)1/2}1/2

κ̄4 =
κ4

κ2
2

= 3
1 + 4ρ2

δα(1− ρ2)1/2 . (31)

We note that the NIG distribution (26) has semiheavy tails; specifically,

p(x;α, β, µ, δ) ∼ const. |x|−3/2 exp (−α |x|+ βx) , x→ ±∞ (32)

as follows from the asymptotic relation

Kν(x) ∼
√

2/πx−1/2e−x as x→∞. (33)

It is often of interest to consider alternative parameterizations of the nor-
mal inverse Gaussian laws. In particular, letting ᾱ = δα and β̄ = δβ, we have
that ᾱ and β̄ are invariant under location—scale changes. Note that ρ = β̄/ᾱ.

NIG shape triangle For some purposes it is useful, instead of the clas-
sical skewness and kurtosis quantities (31), to work with the alternative asym-
metry and steepness parameters χ and ξ defined by

χ = ρξ (34)

and
ξ = (1 + γ̄)−1/2 (35)

where ρ = β/α = β̄/ᾱ and γ̄ = δγ = δ
√
α2 − β2. Like κ̄3 and κ̄4, these param-

eters are invariant under location-scale changes and the domain of variation
for (χ, ξ) is the normal inverse Gaussian shape triangle

{(χ, ξ) : −1 < χ < 1, 0 < ξ < 1}.

The distributions with χ = 0 are symmetric, and the normal and Cauchy laws
occur as limiting cases for (χ, ξ) near to (0, 0) and (0, 1), respectively. Figure
4 gives an impression of the shape of the NIG distributions for various values
of (χ, ξ).

Note in this connection that κ̄3 and κ̄4 may be reexpressed as

κ̄3 = 3γ̄−1 ρ

{(1 + ρ2)(1− ρ2)1/2}1/2



48 Ole E. Barndorff-Nielsen and Jürgen Schmiegel

and

κ̄4 = 3γ̄−1 1 + 4ρ2

(1− ρ4)1/2

from which it follows that for small ρ we have approximately ξ .= (1+3/κ̄4)−1/2

and κ̄3
.= ρκ̄4 (compare to (34)); Thus the roles of χ and ξ are rather similar

to those of the classical quantities κ̄3 and κ̄4.
A systematic study of the class of normal inverse Gaussian distributions,

and of associated stochastic processes, was begun in [5, 6, 7, 8, 9]. Further
theoretical developments and applications are discussed in [47, 48, 45, 33,
46, 22, 23, 24, 14, 13, 3, 30, 35, 41]. As discussed in the papers cited and
in references given there, the class of NIG distributions and processes have
been found to provide accurate modelling of a great variety of empirical find-
ings in the physical sciences and in financial econometrics. (The wider class
of generalized hyperbolic distributions, introduced in [4], provides additional
possibilities for realistic modelling of dynamical processes, see references in
the papers cited above.)
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Finance Turbulence

varying activity volatility intermittency

semiheavy tails + +

asymmetry + +

aggregational Gaussianity + +

0 autocorrelation + −
quasi long range dependence + +

scaling/selfsimilarity [+] [+]

leverage + −
operational time + +

trend cumulative stationary

jumps + −
Table 1. Stylized features of turbulence and finance.

Fig. 1. Approximation of the pdf of velocity increments within the class of NIG
distributions (solid lines, fitting by maximum likelihood) for data from the atmo-
spheric boundary layer (kindly provided by K.R. Sreenivasan) with Rλ = 17000 and
time scales s = 4, 8, 20, 52, 148, 300, 600, 2000, 8000 (in units of the finest resolution).
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Fig. 2. Collapse of the densities of velocity increments at time scale s for various
fixed values of the scale parameter δ(s) of the approximating NIG-distributions.
The data are from the atmospheric boundary layer (data set (at) with Rλ = 17000,
kindly provided by K.R. Sreenivasan), from a free jet experiment (data set (j) with
Rλ = 190, kindly provided by J. Peinke), from a wind tunnel experiment (data set
(w) with Rλ = 80, kindly provided by B.R. Pearson) and from a gaseous helium jet
flow (data sets (h85), (h124), (h208), (h283), (h352), (h703), (h885), (h929), (h985)
and (h1181) with Rλ = 85, 124, 208, 283, 352, 703, 885, 929, 985, 1181, respectively,
kindly provided by B. Chabaud). The corresponding values of the time scales s (in
units of the finest resolution of the corresponding data set) and the codes for the
data sets are (a) (s = 116, (at)) (◦), (s = 4, (h352)) (�), (b) (s = 440, (at)) (◦),
(s = 8, (j)) (�), (s = 8, (h929)) (�), (c) (s = 192, (h885)) (�), (s = 88, (h352)) (�),
(s = 10, (w)) (+), (d) (s = 380, (h885)) (�), (s = 410, (h929)) (�), (s = 350, (h703))
(×), (s = 340, (h985)) (•), (e) (s = 420, (h703)) (×), (s = 440, (h929)) (�), (s =
180, (h352)) (�), (s = 270, (h283)) (•), (s = 108, (h124)) (∗), (s = 56, (h85)) (�), (f)
(s = 470, (h929)) (�), (s = 116, (h124)) (∗), (s = 60, (h85)) (�), (s = 188, (h352))
(�), (s = 470, (h1181)) (�), (s = 140, (h208)) (�).
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Fig. 3. Estimated time change ψ (in units of the finest resolution of the respective
data sets) resulting in a collapse of the densities of velocity increments (see Figure
2).

Fig. 4. The shape triangle of the NIG distributions with the log density functions
of the standardized distributions, i.e. with mean 0 and variance 1, corresponding to
the values (χ, ξ) = (±0.8,0.999), (±0.4,0.999), (0.0,0.999), (±0.6,0.75), (±0.2,0.75),
(±0.4,0.5), (0.0,0.5), (±0.2,0.25) and (0.0,0.0). The coordinate system of the log
densities is placed at the corresponding value of (χ, ξ).
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Summary. Theory of systems on homogeneous time scales unifies theories of
continuous-time and discrete-time systems. The characterizations of external dy-
namical equivalence known for continuous-time and discrete-time systems are ex-
tended here to systems on time scales. Under assumption of uniform observability,
it is shown that two analytic control systems with output are externally dynamically
equivalent if and only if their delta universes are isomorphic. The delta operator as-
sociated to the system on a time scale is a generalization of the differential operator
associated to a continuous-time system and of the difference operator associated to
a discrete-time system.

1 Introduction

In 1988, in his Ph.D. thesis [13], Stefan Hilger developed calculus on time
scales, which unified the standard differential calculus and the calculus of
finite differences. This allowed for a unified treatment of dynamical systems
with continuous and discrete time. The book by M. Bohner and A. Peterson
[7] contains the most important achievements in this area. But the theory is
much richer than just the unification. One can study systems for which time is
partly continuous and partly discrete. Many systems appearing in engineering,
biology and economy exhibit such features.

In the classical control theory there always have been two parallel areas
of research: the continuous-time and the discrete-time systems. Most of the
results are similar for both classes of systems, but there are also significant
differences. For example, asymptotic stability of linear time-invariant systems
is characterized by the condition that the eigenvalues of the system lie in the
specific region of the complex plane. However this region depends on the class
of systems. Another difference concerns solutions of the differential equations
(continuous time) and the difference equations (discrete time). Under some
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reasonable conditions ordinary differential equations can be solved forward
and backward, while difference equations usually can be solved only forward
and some extra assumptions are required to solve them backward. Fortu-
nately, in control theory we are mostly interested in forward solutions, so this
difference is less important.

Calculus on time scales entered control theory just a few years ago. First
results concerned basic properties of linear systems, like controllability, ob-
servability and realizations (see [4, 9, 6]). In [5] we studied dynamical feed-
back equivalence of nonlinear systems on time scales. The main result of that
paper will be used here to show a characterization of external dynamical equiv-
alence for systems on time scales. Another attempt to unify continuous-time
and discrete-time systems, without use of calculus on time scales, was made
in [11, 18].

Dynamic equivalence for nonlinear continuous-time systems was first stud-
ied by B. Jakubczyk [14, 15]. He used a dynamical state feedback to transfer
trajectories of one system onto trajectories of the other. His concept of dynam-
ical feedback linearizability was close to the property of flatness introduced
earlier by M. Fliess (see e.g. [10, 17] and [22]). The main result of [14] says that
two systems are dynamically (state) feedback equivalent if and only if their
differential algebras are isomorphic. In [2] dynamical state feedback equiv-
alence of discrete-time systems was studied. In the characterization of this
property, difference algebras were used instead of differential algebras. This
was one of the examples where the results for continuous time and discrete
time are close to each other and a clever change of language is enough to
switch between two classes of systems.

In [20, 3] external dynamical equivalence and linearization for discrete-
time systems were studied. The systems were equipped with output parts and
dynamical output feedback was used instead of dynamical state feedback. Nec-
essary and sufficient criteria of external dynamical equivalence were expressed
with the aid of the output difference universe. The concept of (function) uni-
verse, introduced by J. Johnson, is a generalization of the notion of (function)
algebra [1, 16]. Besides standard algebraic operations possible in algebras, the
structure of universe allows for substituting elements of the universe (which
are partially defined functions) into real-analytic functions of several variables
and amalgamation of partially defined functions from the universe. The re-
sults of [20, 3] were then transferred (back) to continuous-time systems, with
the output differential universe as the key tool [21].

In [5] we studied dynamical state feedback equivalence for nonlinear sys-
tems on homogeneous time scales. The results unified those obtained for
continuous-time and discrete-time systems. Instead of differential and differ-
ence operators used in earlier works, we introduced so called delta operator,
which for a particular time scale would become either a differential operator
or a difference one.

In this paper we complete the picture studying external dynamical equiv-
alence for control systems with outputs, defined on homogeneous time scales.
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The main result says that two systems are externally dynamically equivalent
if and only if their delta universes are isomorphic. This theorem may be seen
as an extension of the result of [5] to systems with output or as a unifica-
tion of our earlier results from [20] and [21]. We assume that the systems are
uniformly observable and use the main theorem of [5] to prove the present
version. In [3] and [21] we showed that for continuous-time and discrete-time
cases one can drop the observability assumptions. Only some regularity of the
space obtained by gluing up indistinguishable states of the system is assumed.
This suggests that the same could be done for systems on time scales.

The paper is organized as follows. In Section 2 we provide the reader with
the necessary background on the calculus on time scales. Section 3 contains
setting of the problem and the precise definition of external dynamical equiv-
alence. In Section 4 we recall basic concepts of the theory of universes. The
main result of the paper is stated and proved in Section 5.

2 Calculus on time scales

We recall here basic concepts and facts of the calculus on time scales. For
more information the reader is referred to [7].

A time scale T is an arbitrary nonempty closed subset of the set of real
numbers R. The standard examples of time scales are R, hZ, h > 0, N, N0,

2N0 or Pa,b =
∞⋃
k=0

[k(a + b), k(a + b) + a]. The time scales T is a topological

space with the relative topology induced from R.
The following operators on T are often used:

• the forward jump operator σ : T→ T, defined by σ(t) := inf{s ∈ T : s > t}
and σ (sup T) = sup T, if sup T ∈ T,

• the backward jump operator ρ : T→ T, defined by ρ(t) := sup{s ∈ T : s <
t} and ρ (inf T) = inf T, if inf T ∈ T,

• the graininess functions µ, ν : T → [0,∞) defined by µ(t) := σ(t)− t and
respectively by ν(t) := t− ρ(t).

Points from the time scale can be classified as follows: a point t ∈ T is
called

• right-scattered if σ(t) > t and right-dense if σ(t) = t,
• left-scattered if ρ(t) < t and left-dense if ρ(t) = t,
• isolated if it is both left-scattered and right-scattered,
• dense if it is both left-dense and right-dense.

We define also the sets

Tκ :=

{
T \ {M}, if M is the left scattered maximum of T

T, if sup T =∞.
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Tκ :=

{
T \ {m}, if m is the right scattered minimum of T

T, otherwise.

Example 1. If T = R then ρ(t) = t = σ(t) and µ(t) = ν(t) = 0, for all t ∈ R.

Example 2. If T = hZ, h > 0, then ρ(t) = t − h, σ(t) = t + h, and µ(t) =
ν(t) = h, for all t ∈ hZ.

Example 3. If T = qZ :=
{
qk : k ∈ Z

}
∪ {0}, where q > 1, then ρ(t) = t

q ,

σ(t) = qt, ν(t) = t(q−1)
q and µ(t) = (q − 1)t, for all t ∈ T.

Definition 1. A time scale T is called homogeneous if µ and ν are constant
on respectively Tκ and Tκ.

The time scales R, hZ, [0, 1] are homogeneous, whereas qZ is not. In this
paper we will be interested in homogeneous time scales. Thus we rather want
to unify the continuous-time and discrete-time cases, and not to develop a
general theory.

Definition 2. Let f : T → R and t ∈ Tk. Then the number f∆(t) (when it
exists), with the property that, for any ε > 0, there exists a neighborhood U of
t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|, ∀s ∈ U,

is called the delta derivative of f at t.
The function f∆ : Tk → R is called the delta derivative of f on Tκ.
We say that f is delta differentiable on Tκ, if f∆(t) exists for all t ∈ Tκ.

Definition 3. Let f : T → R and t ∈ Tk. Then the number f∇(t) (when it
exists), with the property that, for any ε > 0, there exists a neighborhood U of
t such that

|[f(ρ(t))− f(s)]− f∇(t)[ρ(t)− s]| ≤ ε|ρ(t)− s|, ∀s ∈ U,

is called the nabla derivative of f at t.
The function f∇ : Tk → R is called the nabla derivative of f on Tκ.
We say that f is nabla differentiable on Tκ, if f∇(t) exists for all t ∈ Tκ.

Remark 1. If T = R, then f : R → R is both delta differentiable and nabla
differentiable at t ∈ R iff

f∆(t) = f∇(t) = lim
s→t

f(t)− f(s)
t− s = f ′(t),

i.e. f is differentiable in the ordinary sense at t.
If T = Z, then f : Z→ R is always delta differentiable and nabla differentiable
on Z and
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f∆(t) =
f(σ(t))− f(t)

µ(t)
= f(t+ 1)− f(t),

f∇(t) =
f(t)− f(ρ(t))

ν(t)
= f(t)− f(t− 1),

for all t ∈ Z.

Proposition 1. [12]

i) Assume that f : T → R is delta differentiable on Tk. Then f is nabla
differentiable at t and

f∇(t) = f∆(ρ(t)) (1)

for t ∈ Tk such that σ(ρ(t)) = t. If, in addition, f∆ is continuous on Tk,
then f is nabla differentiable at t and (1) holds for any t ∈ Tk.

ii) Assume that f : T → R is nabla differentiable on Tk. Then f is delta
differentiable at t and

f∆(t) = f∇(σ(t)) (2)

for t ∈ Tk such that ρ(σ(t)) = t. If, in addition, f∇ is continuous on Tk,
then f is delta differentiable at t and (2) holds for any t ∈ Tk.

Remark 2. If t ∈ Tκ satisfies ρ(t) = t < σ(t), then the forward jump operator
σ is not delta differentiable at t.

Remark 3. A function f : T→ R is called regulated if its right-side limits exist
(finite) at all right-dense points in T and its left-side limits exist (finite) at all
left-dense points in T.

Definition 4. A function f : T→ R is called rd-continuous if it is continuous
at the right-dense points in T and its left-sided limits exist at all left-dense
points in T.

The set of all rd-continuous functions is denoted by Crd. It may be shown
[7] (Theorem 1.60) that

• f is continuous ⇒ f is rd-continuous ⇒ f is regulated
• σ is rd-continuous.

3 External dynamical equivalence

Let T be a homogeneous time scale. Consider a system Σ of the following
form:

x∆(t) = f(x(t), u(t))
y(t) = h(x(t)) (3)
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where t ∈ T, x(t) ∈ Rn, y(t) ∈ Rp and u(t) ∈ Rm. We shall assume that f and
h are analytic, and that control u may be infinitely many times differentiated
as a function on the time scale T.

By a trajectory of the system Σ we will mean any triple of functions
(y(·), x(·), u(·)) defined on some interval [a, b) that satisfies the equations of
Σ. We assume that a ∈ T, b ∈ T or b =∞ and [a, b) contains infinitely many
points. The pair (x(·), u(·)) is an inner trajectory and the pair (y(·), u(·)) is
an external trajectory of Σ. The set of all inner (external) trajectories of the
system Σ forms the inner (external) behavior of the system. It will be denoted
by Bi(Σ) (respectively by Be(Σ)).

By J(r) we will denote the space of all infinite sequences S = (s(i))i≥0,
s(i) ∈ Rr. If z : T → Rr has infinitely many delta-derivatives, the map Z :
T → J(r) defined by Z(t) = (z(t), z∆(t), . . .) is called the (infinite) jet of
z. We shall consider real maps defined on J(r). We assume that each such
map ϕ depends only on a finite number of elements of the sequence S (but
the number of these elements depends on the given map ϕ). In this case we
say that the function ϕ is finitely presented. A map φ : J(r) → Rr̃ is finitely
presented if all its components have this property.

Let us consider two systems on the time scale T:

Σ : x
∆(t) = f(x(t), u(t))
y(t) = h(x(t)) and Σ̃ :

x̃∆(t) = f̃(x̃(t), ũ(t)
ỹ(t) = h̃(x̃(t))

where x(t) ∈ Rn, x̃(t) ∈ Rñ, y(t) ∈ Rp, ỹ(t) ∈ Rp̃, u(t), ũ(t) ∈ Rm, t ∈ T.
Consider the following dynamical transformations:

y = φe(Ỹ , Ũ), u = ψe(Ỹ , Ũ) (4)

ỹ = φ̃e(Y, U), ũ = ψ̃e(Y,U) (5)

where Y ∈ J(p), Ỹ ∈ J(p̃), U, Ũ ∈ J(m), and φe, φ̃e, ψe, ψ̃e are finitely pre-
sented maps of the class Cω.

We say that Σ and Σ̃ are externally dynamically equivalent, if there exist
transformations (4) and (5) mutually inverse on systems’ behaviors that in-
duce the following relations between the external trajectories of both systems:

y(t) = φe(ỹ(t), ỹ∆(t), . . . , ỹ∆
k

(t), ũ(t), ũ∆(t), . . . , ũ∆
k

(t))

u(t) = ψe(ỹ(t), ỹ∆(t), . . . , ỹ∆
k

(t), ũ(t), ũ∆(t), . . . , ũ∆
k

(t)) (6)

for some integer k ≥ 0, and similarly for (ỹ(t), ũ(t)).

Example 4. Let Σ be given by the equations:

x∆1 =
∫ 1

0

cosh(sinh−1(x1) + µhx2)dh · x2

x∆2 = u

y = x1.
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Then Σ is externally dynamically equivalent to the linear system Σ̃

x̃∆ = ũ, ỹ = x̃.

The equivalence transformations are given by

ỹ = sinh−1(y)

ũ =
y∆

cosh(sinh−1(y))

and

y = sinh(ỹ)

u = ũ∆.

For discrete-time systems the dynamical transformations (4) and (5) de-
pend on forward differences, which in fact means dependence on future values
of the output and the control. This is inconvenient from the practical point
of view. However the same effect may by achieved by transformations that
depend on past values of the output and the control (see [20]). This may be
extended to homogeneous time scales with the following definition.

Assume that the trajectories of Σ and Σ̃ are related by

y(t) = γe(ỹ(t), ỹ∇(t), . . . , ỹ∇
l

(t), ũ(t), ũ∇(t), . . . , ũ∇
l

(t))

u(t) = ηe(ỹ(t), ỹ∇(t), . . . , ỹ∇
l

(t), ũ(t), ũ∇(t), . . . , ũ∇
l

(t)) (7)

for some integer l ≥ 0 and

ỹ(t) = γ̃e(y(t), y∇(t), . . . , y∇
l̃

(t), u(t), u∇(t), . . . , u∇
l̃

(t))

ũ(t) = η̃e(y(t), y∇(t), . . . , y∇
l̃

(t), u(t), u∇(t), . . . , u∇
l̃

(t)) (8)

for some l̃, i.e. substituting an external trajectory of one system on the right-
hand side, we obtain an external trajectory of the other system on the left-
hand side. We say that Σ and Σ̃ are externally dynamically delay equivalent
if applying transformations (7) to (ỹ, ũ) and then transformations (8) to the
resulting pair (y, u), we finally obtain (ỹ, ũ) ◦ ρl+l̃ and the same holds the
pair (y, u) with the transformations applied in the reverse order. Thus the
transformations (7) and (8) are mutually inverse on the external trajectories
modulo the backward time shift ρl+l̃.

It can be shown that Σ and Σ̃ are externally dynamically equivalent if
and only if they are externally dynamically delay equivalent. This follows
from the fact that on a homogeneous time scale we have z∆

r

(t) = z∇
r

(σr(t))
and z∇

r

(t) = z∆
r

(ρr(t)). Thus one can replace delta derivatives with nabla
derivatives and vice versa, but some forward or backward shifts are involved
in this operation. Moreover, the backward shift may be expressed with the aid
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of the nabla derivative. As the external dynamical equivalence is simpler from
the mathematical point of view than the external delay dynamical equivalence,
we shall concentrate on the former property in the rest of the paper.

External dynamical equivalence is an equivalence relation in the set of all
control systems with output. It is a natural generalization of similar concepts
for continuous-time and discrete-time systems.

We say that the system Σ is externally dynamically linearizable if it is
externally dynamically equivalent to a linear minimal one (i.e. controllable
and observable).

To state a characterization of the external dynamical equivalence, we need
the concept of function universe.

4 Function universes

Let X,Y be sets. A partially defined function on X with values in Y is any
map ϕ : A→ Y , where A ⊆ X is called domain of ϕ and denoted by domϕ. If
domϕ = X then ϕ is global. Let YX be the set of all partially defined functions
on X. One can extend any ϕ ∈ YX to one defined on X by assigning ϕ(x) = ∅0
for x �∈ domϕ. We call ∅0 the phantom. Now domϕ = {x ∈ X : ϕ(x) �= ∅0}. If
a ∈ Y , x ∈ X then we set aX(x) := a.

Let An denote the set of functions of class Cω, partially defined on open
subsets in Rn with values in R. In particular, A0 can be identified with R∪∅0.
The topology in A0 can be defined as follows: a subset B ⊂ A0 is open if
B = A0 or B is an open subset in R.

Functions ϕ,ψ ∈ YX are matching, if they take on the same values on
domϕ ∩ domψ. Let us consider a set M ⊆ YX of functions that are matching
and define a function M ∈ YX : M(x) = ∅0 if no function in M is defined
at x and M(x) = ϕ(x) for any function ϕ ∈ M defined at x. The process of
constructing M is called amalgamation of the functions of M .

Let ϕ1, . . . , ϕk ∈ RX and F ∈ Ak. Then F ◦ (ϕ1, . . . , ϕk) is a partially
defined function on X given by

(F ◦ (ϕ1, . . . , ϕk))(x) = F (ϕ1(x), . . . , ϕk(x))

for x ∈ X. If ϕi(x) = ∅0 or (ϕ1(x), . . . , ϕk(x)) �∈ domF then
F (ϕ0(x), . . . , ϕn(x)) = ∅0. The map

(ϕ1, . . . , ϕk) �→ F ◦ (ϕ1, . . . , ϕk)

is called a substitution.
A set U ⊆ RX containing 0X and closed under substitutions and amalga-

mation is called a function universe on the set X [16]. A function subuniverse
of the universe U is a subset Û ⊂ U that is a function universe on X. If
H ⊂ U , then function subuniverse generated by H is the smallest subuniverse
of U containing H [1].
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In a natural way a function universe U on X induces a topology on X: the
open sets have the form domϕ : ϕ ∈ U .

Let U1,U2 be function universes on X1 and X2 respectively. A map τ :
U1 → U2 is a homomorphism of function universes U1 and U2 if

1. τ(F ◦ (ϕ1, . . . , ϕk)) = F (τϕ1, . . . , τϕk) for ϕ1, . . . , ϕk ∈ U1, F ∈ Ak
2. τ(M) = τ(M) for any matching set M ⊂ U1

3. τ(0X1) = 0X2

If a homomorphism τ is a bijective map then it is an isomorphism of function
universes.

5 Conditions of equivalence

We shall assume the following conditions on the dynamics of the system (3):

Condition D1. For every x, y ∈ Rn there is at most one u that satisfies the
equation

y = f(x, u). (9)

Condition D2. For any x and u the rank of the matrix

∂f

∂u
(x, u)

is full (i.e. equal m).
Condition D3. The map

Rn × Rm → Rn × Rn : (x, u) �→ (x, f(x, u))

is proper, i.e. the inverse image of a compact set in Rn ×Rn is a compact set
in Rn × Rm.

Conditions D1-D3 were first introduced in [14, 15] to prove criteria of
dynamical feedback equivalence for nonlinear continuous-time systems. Later
there were used in [2] to show a similar result for nonlinear discrete-time sys-
tems, and recently, under the same assumptions, we have unified these char-
acterizations stating the dynamical feedback equivalence criteria for nonlinear
systems on homogeneous time scales [5].

The dynamical feedback equivalence concerns only the dynamical part of
the system Σ, i.e. the equation

x∆(t) = f(x(t), u(t)).

Two systems are said to be dynamically feedback equivalent if they are ex-
ternally dynamically equivalent after replacing their output functions by the
identity maps (i.e. setting y(t) = x(t)). Then the dynamical transformations
maps φe and ψe, denoted now by φ and ψ, depend rather on delta-derivatives
of x and u and not of y and u.
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Let T be the map Rn × J(m)→ J(n) defined by

T (x0, U) := X = (x(0), x(1), . . .),

where (X,U) is the infinite jet at t = 0 of the inner trajectory (x, u) of Σ that
satisfies the initial condition x(0) = x0. One can show that such X is unique
which means that T is well defined. Moreover, Conditions D1 and D2 imply
that T is left invertible. Thus, if X is the jet of the solution x corresponding
to a control u (and the initial condition x(0) = x0 = x(0)(0)), then the jet of u
can be expressed as U = S(X), where components of S are finitely presented
and analytic. This means that the dynamical feedback equivalence is given by
the equations

x(t) = φ(x̃(t), x̃∆(t), . . . , x̃∆
k

(t))

u(t) = ψ(x̃(t), x̃∆(t), . . . , x̃∆
k

(t), ũ(t), ũ∆(t), . . . , ũ∆
k

(t)) (10)

and similarly for (x̃(t), ũ(t)).
Let A(n,m) denote the algebra of all finitely presented analytic functions

ϕ : Rn × J(m) → R and let Σ be given by (3). Let us define the operator
δΣ : A(n,m)→ A(n,m), associated with Σ, by

(δΣϕ)(x,U) :=∫ 1

0

∂ϕ

∂x
(x+ hµf(x, u(0)), U)dh · f(x, u(0))+

∞∑
i=0

∫ 1

0

∂ϕ

∂u(i)
(x,U + hµU1))dh · u(i+1)

(11)

where U1 = (u(1), u(2), . . .). It is clear that this operator depends only on the
dynamical part of Σ. It will be called the delta operator of the system Σ.

Remark 4. The delta operator has the following interpretation. Let U(·) =
(u(·), u∆(·), . . .) be the infinite jet of control u and let x(·) be the solution of
(3) corresponding to u and the initial condition x(0) = x0. Then the delta
derivative at t = 0 of t→ ϕ(x(t), U(t)) is equal to (δΣϕ)(x0, U(0)). If T = R,
then δΣ is a derivation of the algebra A(n,m), i.e. it is linear and satisfies
the Leibniz rule. This is not the case for other time scales. But because of the
above interpretation we shall often call δΣϕ the δΣ derivative of ϕ.

The algebra A(n,m) together with the operator δΣ is called the delta alge-
bra of the system Σ and denoted by AΣ . A homomorphism of delta algebras
AΣ and AΣ̃ is a homomorphism τ : A(n,m)→ A(ñ,m) of algebras that sat-
isfies the condition δΣ̃ ◦ τ = τ ◦ δΣ . An isomorphism of the delta algebras AΣ
and AΣ̃ is a homomorphism that is a bijective map.

The main result of [5] says the following
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Theorem 1. Systems Σ and Σ̃ are dynamically feedback equivalent iff their
delta algebras AΣ and AΣ̃ are isomorphic.

Now we are going to show a similar characterization of external dynamical
equivalence for systems on homogeneous time scales.

Let A(n,m) denote the function universe of all partially defined and
finitely presented analytic functions on Rn × J(m). It is generated by the
algebra A(n,m). Observe that the operator δΣ can naturally be extended
to A(n,m). For a system Σ given by (3) we define the observation universe
UΣ to be the smallest subuniverse of A(n,m) containing the components hi,
i = 1, . . . , r, of the map h, the coordinate functions uj , j = 1, . . . ,m, and
invariant under the action of δΣ .

The observation universe UΣ together with the operator δΣ is called the
delta universe of the system Σ (and will be denoted by the same symbol UΣ).
A morphism of delta universes UΣ and UΣ̃ is a morphism τ : UΣ → UΣ̃ of
function universes that satisfies the condition

δΣ̃ ◦ τ = τ ◦ δΣ .

An isomorphism of the delta universes UΣ and UΣ̃ is a morphism that is a
bijective map.

The system Σ is called uniformly observable if every coordinate function
xi, i = 1, . . . , n, belongs to UΣ .

Remark 5. Uniform observability means that locally one can express coordi-
nate functions as analytic functions of the output function h, the control u and
their δΣ ‘derivatives’. This means that for every control function u, any two
distinct initial states can be distinguished by observing the output. Moreover,
we can recover the state from the output, the control and their derivatives.
As in [20] we could assume specific conditions on h and f that guarantee uni-
form observability of the system. However we want to concentrate here on the
problem of dynamical equivalence, so we put aside all the details concerning
observability.

Proposition 2. The system Σ is uniformly observable iff UΣ = A(n,m).

Proof. If Σ is uniformly observable, then for every i = 1, . . . , n, xi belongs to
UΣ . By definition, UΣ contains also uj for j = 1, . . . ,m and all δkΣuj = u

(k)
j .

Substituting xi, i = 1, . . . , n, and u(k)
j , j = 1, . . . ,m, k ≥ 0, into analytic

partially defined functions we get all the elements of A(n,m). On the other
hand, if UΣ = A(n,m), then every xi, i = 1, . . . , n, belongs to UΣ .

Corollary 1. Assume that two systems Σ and Σ̃ are uniformly observable.
Then, AΣ and AΣ̃ are isomorphic iff UΣ and UΣ̃ are isomorphic.

Proof. From uniform observability we get UΣ = A(n,m) and UΣ̃ = A(ñ,m).
As A(n,m) and A(ñ,m) are the algebras of global functions of the universes
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A(n,m) and A(ñ,m), respectively, then the restriction of an isomorphism of
UΣ and UΣ̃ gives an isomorphism of AΣ and AΣ̃ . The other implication fol-
lows from the specific form of any isomorphism τ of AΣ and AΣ̃ (see [5]). It
is a pullback of a certain map, so it commutes with substitutions and amal-
gamations. Thus the isomorphism τ of AΣ and AΣ̃ is also an isomorphism of
the function universes UΣ and UΣ̃ . This also allows to show that the condition
δΣ̃ ◦ τ = τ ◦ δΣ can be extended to the universes UΣ and UΣ̃ .

If θ is a real function on Rn×J(m), then by Θ we denote its infinite delta-
jet : (θ, δΣ(θ), δ2Σ(θ), . . .). This, in particular, concerns the coordinate functions
xi and uj and their aggregations x and u, whose delta-jets are denoted by X
and U .

Uniform observability of Σ means that x = �(Y, U) for some finitely pre-
sented analytic map �. Thus X = R(Y,U), where R is the infinite delta-jet
of �. This equation may be rewritten on the level of jets of functions of time:
X(t) = R(Y (t), U(t)). On the other hand, from the relations y = h(x), after
applying the operator δΣ , we get Y = Γ (X,U), for some map Γ with finitely
presented components.

Proposition 3. Assume that two systems Σ and Σ̃ are uniformly observable.
Then, Σ and Σ̃ are dynamically feedback equivalent iff they are externally
dynamically equivalent.

Proof. Assume first that Σ and Σ̃ are dynamically feedback equivalent. Thus
there exist transformations φ, ψ, φ̃ and ψ̃ such that for an inner trajectory
(x̃, ũ) of Σ̃ the equations

x(t) = φ(X̃(t))

u(t) = ψ(X̃(t), Ũ(t))

define an inner trajectory of Σ, and similarly for (x̃(t), ũ(t)). Thus

y(t) = h(φ(X̃(t)))

u(t) = ψ(X̃(t), Ũ(t))

define an external trajectory of Σ. From uniform observability, X̃ = R(Ỹ , Ũ).
Thus

y(t) = h(φ(R(Ỹ (t), Ũ(t))))

u(t) = ψ(R(Ỹ (t), Ũ(t)), Ũ(t))

define the transformations φe and ψe. Similarly we get the transformations
φ̃e and ψ̃e, which gives external dynamical equivalence of Σ and Σ̃.

Now assume that Σ and Σ̃ are externally dynamically equivalent. Thus
external trajectories of both systems are related by equations
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y(t) = φe(Ỹ (t), Ũ(t))

u(t) = ψe(Ỹ (t), Ũ(t)).

They can be extended to jets

Y (t) = Φe(Ỹ (t), Ũ(t))

U(t) = Ψe(Ỹ (t), Ũ(t)).

Again from uniform observability, x = �(Y, U), so

x(t) = �(Φe(Ỹ (t), Ũ(t)), Ψe(Ỹ (t), Ũ(t))).

However Y = Γ (X,U) and U = S(X), so we finally obtain

x(t) = φ(X̃(t))

u(t) = ψ(X̃(t), Ũ(t)).

for some finitely presented maps φ and ψ. Similarly for x̃ and ũ.

We can state now the main result of this paper.

Theorem 2. Two uniformly observable systems Σ and Σ̃ are externally dy-
namically equivalent if and only if their delta universes UΣ and UΣ̃ are iso-
morphic.

Proof. The theorem follows from Corollary 1 and Proposition 3.

Example 5. The concept of external dynamical equivalence of systems on time
scales may be used to give a unified setting for external dynamical lineariza-
tion. In [21] and [19] it was shown that a continuous-time (discrete-time)
system is externally dynamically linearizable if and only if its differential out-
put universe (difference output universe, respectively) is free. To have this
result on an arbitrary homogeneous time scale, it is enough to replace differ-
ential and difference output universes by the delta universe of the system on
the time scale.

6 Conclusions and future works

6.1 Conclusions

The theory of control systems on time scales allows to use a common lan-
guage for continuous-time and discrete-time systems. The concept of external
dynamical equivalence of control systems with output unifies the earlier no-
tions introduced separately for continuous-time and discrete-time systems. It
was shown that two uniformly observable systems on a time scale are exter-
nally dynamically equivalent if and only if their delta universes are isomorphic.
This extends corresponding results for continuous-time and discrete-time sys-
tems, where differential and difference output universes were used instead of
the delta universe. The language introduced here allows to study external
dynamical linearizations for systems on time scales.
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6.2 Future works

The main assumption on the systems in this paper is uniform observability. It
was shown in [21] and [3] that for continuous-time and discrete-time systems
the criterion of external dynamical equivalence holds without this assump-
tion. Thus one can hope that also for systems on a time scale observability
can be dropped. This, however, requires a thorough study of observability of
systems on time scales. A more serious challenge is to extend the result to
nonhomogeneous time scales. In this case the delta operator may depend on
time and this requires a new language. Another interesting extension should
lead to modification of the concept of dynamical equivalence by allowing a
change of time or, more generally, time scale.
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10. Fliess M, Lévine J, Martin Ph, Rouchon P (1992) Sur les systèmes non linéaires
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On Option-Valuation in Illiquid Markets:
Invariant Solutions to a Nonlinear Model
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Summary. The present model describes a perfect hedging strategy for a large
trader. In this case the hedging strategy affects the price of the underlying secu-
rity. The feedback-effect leads to a nonlinear version of the Black-Scholes partial
differential equation. Using Lie group theory we reduce in special cases the partial
differential equation to some ordinary differential equations. The Lie group found
for the model equation gives rise to invariant solutions. Families of exact invariant
solutions for special values of parameters are described.

1 Introduction

One of the basic assumptions of the Black–Scholes option theory is that all
participants act on the market as price takers. Recently a series of papers [6],
[7], [15], [17] appeared in which this assumption has been relaxed. In these
models the hedging strategy affects the price of the underlying security. For a
large trader a hedge-cost of the claim differs from the price of the option for
price takers.

In [6], [7] Frey developed a model of market illiquidity. He describes the
asset price dynamics which results if a large trader chooses a given stock-
trading strategy (αt)t. The admissible class of stock trading strategies in-
cludes the left-continuous stock-holdings (αt)t for which the right-continuous
process with α+

t = lims→t,s>t αs is a semimartingale. If the large trader uses
a particular trading strategy α+ then, as expected, dα+

t > 0 leads to dSt > 0
and correspondingly dα+

t < 0 leads to dSt < 0, where St denotes the asset
price process. Frey’s model has the form of the stochastic differential equation

dSt = σSt−dWt + ρSt−dα+
t , (1)

where σ > 0 is a constant volatility, Wt is a standard Brownian motion, St−
denotes the left limit lims→t,s<t St, and ρ is the market illiquidity parameter
with 0 < ρ < 1. If we denote the filtration associated to the Brownian motion
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by F(t) than a hedge cost of the claim u(S, t) is given by a conditional expec-
tation u(S, t) = E[h(S)|F(t)] for any Borel–measurable function h(S). The
function h(S) is the payoff at time T of a derivative security u(S, t) whose
underlying asset price process is (1). After the Feynman–Kac theorem [16]
together with a fixed point argument [7] u(S, t) satisfies the corresponding
partial differential equation

ut +
σ2S2

2
uSS

(1− ρSuSS)2
= 0, (2)

and the terminal condition u(S, T ) = h(S) for all S where S ≥ 0, t ∈ [0, T ],
T > 0.

The value 1/(ρSt) is called the depth of the market at time t. If ρ→ 0 then
simultaneously dα+

t → 0 and the equation (2) reduces to the Black–Scholes
case.

In model (1) the parameter ρ is a characteristics of the market and does
not depend on the payoff of hedged derivatives. The value of ρ is fixed during
the trading process and can be estimated in different ways, in the papers [6],
[7] the value ρ is equal to 0.1, 0.2, 0.3, 0.4.

In the paper by Frey and Stremme, [9], a heterogeneous portfolio was
introduced, and a model with variable volatility was studied.
Later on, in [8] Frey and Patie followed another approach and examined the
feedback effect of the option replication strategy of the large trader on the
asset price process. They obtain a new model by introduction of a liquidity
coefficient which depends on the current stock price.

It means the stochastic equation now takes the form

dSt = σSt−dWt + ρλ(St−)St−dα+
t , (3)

where λ : R+ → R+ is a continuous bounded function for all S ≥ 0. In this
model the depth of the market at time t is defined as 1/(ρλ(St)St); λ(S) is
called level-depended liquidity profile.

The Feynman–Kac theorem together with a fixed point argument [8] leads
in case of (3) to a partial differential equation which is similar to the equation
(2) where the constant ρ is replaced by ρλ(S). The values of ρ and λ(S) may
be estimated from the observed option prices and depend on the payoff h(S).

The feedback-effect described in (3) leads to a nonlinear version of the
Black-Scholes partial differential equation,

ut +
σ2S2

2
uSS

(1− ρSλ(S)uSS)2
= 0, (4)

with S ∈ [0,∞), t ∈ [0, T ]. As usual, S denotes the price of the underlying
asset and u(S, t) denotes the hedge-cost of the claim with a payoff h(S) which
will be defined later. The hedge-cost is different from the price of the deriva-
tives product in illiquid markets. In the sequel t is the time variable, σ defines
the volatility of the underlying asset.
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In [8] some examples for estimates of ρ and λ(S) were matched for the call
spread and for the European call. The values ρ are equal to 0.01, 0.02, 0.05,
0.1, 0.2, 0.4 and the level-depended liquidity profile λ(S) is approximated
by a quadratic function of S. We shall concentrate our investigations on the
non-trivial case ρ �= 0.

Depending on the assumptions concerning the market, different variations
of the Black-Scholes formula can arise like in the well known models [15],
[17]. Usually the volatility term in the Black-Scholes formula will be replaced
in order to fit the behavior of the price on the market. The modeling process
is not concluded now and new models can appear. For those of the type
(2), (4), or in [17] the appearance of the small parameter multiplying the
highest derivative is crucial. The nonlinear parabolic equations with a singular
perturbation describe usually a richer class of phenomena than equations with
a regular perturbation. An analytical study of these equations may be useful
for an easier classification of models.

Frey and co-authors studied equation (4) under some restrictions and did
some numerical simulations. Our goal is to investigate this equation using
analytical methods.

We study the model equation (4) by means of Lie group theory. We used
the method of Lie group analysis to investigate other financial models given
by nonlinear partial differential equations in [3], [1], [5] [2], [4]. This method
has a long tradition beginning with the work of S. Lie [12]. Its applications
are based on local symmetries. A modern description of the method as well
as a large number of applications can be found in [14], [13], [18], [10], [11].

In Section 2 we find the Lie algebra and global equations for the symmetry
group of equation (4). For a special form of the function λ(S) it is possible to
find two functionally independent invariants of the symmetry group. Using the
symmetry group and its invariants we reduce the partial differential equation
(4) in some special cases to ordinary differential equations in Section 3. We
shell study singular points of the reduced equations in Section 4 and describe
the behavior of the invariant solutions. For a fixed set of parameters the
complete set of exact invariant solutions is given. It is important to obtain
exact solutions for the model (4) to use invariant solutions for instance as a
test case for various numerical methods.

Further, in Section 5 we study different properties of the invariant solutions
and their sensitivity with respect to the illiquidity parameter. In particular,
if any terminal conditions are fixed, u(S, T ) = h(S), then the value u(S, t)
will increase if the value of the parameter ρ increases, i.e. hedge costs of the
large trader on the market depends in expected way on the position of the
large trader. We obtain a typical terminal payoff function for these solutions
if we just fix t = T . By changing the value of the integrating constants and by
adding a linear function of S we are able to modify terminal payoff functions
for the solutions. Hence we can approximate typical payoff profiles of some
financial derivatives quite well.
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2 Lie group symmetries

Let us introduce a two-dimensional space X of independent variables (S, t) ∈
X and a one-dimensional space of dependent variables u ∈ U. We consider
the space U(1) of the first derivatives of the variable u on S and t, i.e.,
(uS , ut) ∈ U(1) and analogously we introduce the space U(2) of the second or-
der derivatives (uSS , uSt, utt) ∈ U(2). We denote by M = X ×U a base space
which is a Cartesian product of pairs (x, u) with x = (S, t) ∈ X, u ∈ U . The
differential equation (4) is of the second order and to represent this equation
as an algebraic equation we introduce a second order jet bundle M (2) of the
base space M , i.e.,

M (2) = X × U × U(1) × U(2) (5)

with a natural contact structure. We label the coordinates in the jet bundle
M (2) by
w = (S, t, u, uS , ut, uSS , uSt, utt) ∈M (2).

In the space M (2) equation (4) is equivalent to the relation

∆(w) = 0, w ∈M (2), (6)

where we denote by ∆ the following function

∆(S, t, u, uS , ut, uSS , uSt, utt) = ut +
σ2S2

2
uSS

(1− ρSλ(S)uSS)2
. (7)

We identify the algebraic equation (6) with its solution manifold L∆ defined
by

L∆ = {w ∈M (2)|∆(w) = 0} ⊂M (2). (8)

Let us consider an action of a Lie-point group on our differential equation
and its solutions. We define a symmetry group G∆ of equation (6) by

G∆ = {g ∈ Diff(M(2))| g : L∆ → L∆}, (9)

consequently we are interested in a subgroup of Diff(M(2)) which is compatible
with the structure of L∆.

As usual we first find the corresponding symmetry Lie algebra
Diff∆(M (2)) ⊂ Diff(M (2)) and then use the main Lie theorem to obtain
G∆ and its invariants.

We denote an element of a Lie-point vector field on M by

V = ξ(S, t, u)
∂

∂S
+ τ(S, t, u)

∂

∂t
+ φ(S, t, u)

∂

∂u
, (10)

where ξ(S, t, u),τ(S, t, u) and φ(S, t, u) are smooth functions of their argu-
ments, V ∈ Diff(M). The operators (10) are called as well infinitesimal
generators.

If the infinitesimal generators of g ∈ G∆(M) exist then they have the
structure of type (10) and form an Lie algebra Diff∆(M).
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A Lie group of transformations G∆(M) acting on the base spaceM induce
as well the transformations on M (2) which we denoted by G∆.

The corresponding Lie algebra Diff∆(M (2)) will be composed of vector
fields

pr(2)V = ξ(S, t, u)
∂

∂S
+ τ(S, t, u)

∂

∂t
+ φ(S, t, u)

∂

∂u

+ φS(S, t, u)
∂

∂uS
+ φt(S, t, u)

∂

∂ut
(11)

+ φSS(S, t, u)
∂

∂uSS
+ φSt(S, t, u)

∂

∂uSt
+ φtt(S, t, u)

∂

∂utt
,

which are the second prolongation of vector fields V . Here the smooth func-
tions
φS(S, t, u), φt(S, t, u), φSS(S, t, u), φSt(S, t, u) and φtt(S, t, u) are uniquely de-
fined by the functions ξ(S, t, u), τ(S, t, u) and φ(S, t, u) using the prolongation
procedure (see [14], [13], [18], [10], [11]).

Theorem 1. The differential equation (4) with an arbitrary function λ(S)
possesses a trivial three dimensional Lie algebra Diff∆(M) spanned by in-
finitesimal generators

V1 =
∂

∂t
, V2 = S

∂

∂u
, V3 =

∂

∂u
.

Only for the special form of the function λ(S) ≡ ωSk, where ω, k ∈ R equation
(4) admits a non-trivial four dimensional Lie algebra spanned by generators

V1 =
∂

∂t
, V2 = S

∂

∂u
, V3 =

∂

∂u
, V4 = S

∂

∂S
+ (1− k)u ∂

∂u
.

Proof. The symmetry algebra Diff∆(M (2)) of the second order differential
equation (6) can be found as a solution to the determining equations

pr(2)V (∆) = 0 (mod(∆ = 0)), (12)

i.e., the equation (12) should be satisfied on the solution manifold L∆.
For our calculations we will use the exact form of the coefficients φt(S, t, u)

and φSS(S, t, u) only. The coefficient φt(S, t, u) can be defined by the formula

φt(S, t, u) = φt + utφu − uSξt − uSutξu − utτt − (ut)2τu, (13)

and the coefficient φSS(S, t, u) by the expression

φSS(S, t, u) = φSS + 2uSφSu + uSSφu (14)
+ (uS)2φuu − 2uSSξS − uSξSS − 2(uS)2ξSu
− 3uSuSSξu − (uS)3ξuu − 2uStτS − utτSS
− 2uSutτSu − (utuSS + 2uSuSt)τu − (uS)2utτuu,
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where the subscripts by ξ, τ, φ denote corresponding partial derivatives.
The first equations of the set (12) imply that if V ∈ Diff∆(M) then

ξ(S, t, u) = a1S, τ(S, t, u) = a2, φ(S, t, u) = a3S + a4 + a5u, (15)

where a1, a2, a3, a4, a5 are arbitrary constants and ξ,τ , φ are coefficients in the
expression (10).

The remaining equation has a form

a1SλS(S)− (a1 − a5)λ(S) = 0. (16)

Because this equation should be satisfied for all S identically we obtain for an
arbitrary function λ(S)

a1 = a5 = 0, → ξ(S, t, u) = 0, τ(S, t, u) = a2, φ(S, t, u) = a3S + a4. (17)

Finally, Diff∆(M) admits the following infinitesimal generators

V1 =
∂

∂t
, V2 = S

∂

∂u
, V3 =

∂

∂u
, (18)

with commutator relations

[V1, V2] = [V1, V3] = [V2, V3] = 0. (19)

If the function λ(S) has a special form

λ(S) ≡ ωSk, ω, k ∈ R (20)

then the equation (16) on the coefficients of (10) is less restrictive and we
obtain

ξ(S, t, u) = a1S, τ(S, t, u) = a2, φ(S, t, u) = (1− k)a1u+ a3S + a4. (21)

Now the symmetry algebra Diff∆(M) admits four generators

V1 =
∂

∂t
, V2 = S

∂

∂u
, V3 =

∂

∂u
, V4 = S

∂

∂S
+ (1− k)u ∂

∂u
, (22)

with commutator relations

[V1, V2] = [V1, V3] = [V1, V4] = [V2, V3] = 0,
[V2, V4] = −kV2, [V3, V4] = (1− k)V3. (23)

Remark 1. In the general case the algebra (22) possesses a three dimensional
Abelian sub-algebra and one dimensional center. For the cases k = 0, 1 the
center is two dimensional (23) and we see later that the corresponding equa-
tions (44) became autonomous.
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The symmetry algebra Diff∆(M) defines by the Lie equations [12] the
corresponding symmetry group G∆ of the equation (6). To find the global
form of transformations for the solutions to equation (4) corresponding to
this symmetry group we just integrate the system of ordinary differential
equations

dS̃

dε
= ξ(S̃, t̃, u), (24)

dt̃

dε
= τ(S̃, t̃, ũ), (25)

dũ

dε
= φ(S̃, t̃, ũ), (26)

with initial conditions

S̃|ε=0 = S, t̃|ε=0 = t, ũ|ε=0 = u. (27)

Here the variables S̃, t̃ and ũ denote values S, t, u after a symmetry transfor-
mation. The parameter ε describes a motion along an orbit of the group.

Theorem 2. The action of the symmetry group G∆(M) of (4) with an arbi-
trary function λ(S) is given by (28)–(30). If the function λ(S) has the special
form (20) then the action of the symmetry group G∆(M) is represented by
(31)-(33).

Proof. The solutions to the system of ordinary differential equations (24) with
functions ξ,τ , φ defined by (17) and initial conditions (27) have the form

S̃ = S, (28)
t̃ = t+ a2ε, (29)
ũ = u+ a3Sε+ a4ε, ε ∈ (−∞,∞). (30)

The equations (28)–(30) are the global representation of the symmetry group
G∆ which corresponds to the symmetry algebra defined by (18) in case of an
arbitrary function λ(S).
If the function λ(S) has a special form given by (20) we obtain a richer sym-
metry group. The solution to the system of equations (24) with the functions
ξ,τ , φ defined by (21) and initial conditions (27) have the form

S̃ = Sea1ε, ε ∈ (−∞,∞), (31)
t̃ = t+ a2ε,

ũ = uea1(1−k)ε +
a3
a1k

Sεea1ε(1− e−a1kε)

+
a4

a1(1− k)
(ea1(1−k)ε − 1), k �= 0, k �= 1 (32)

ũ = uea1ε + a3Sεea1ε +
a4
a1

(ea1ε − 1), k = 0,

ũ = u+
a3

a1
S(ea1ε − 1) + a4ε, k = 1, (33)
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where we assume that a1 �= 0 because the case a1 = 0 coincides with the
former case (28)-(30).

We will use the symmetry group G∆ to construct invariant solutions to
equation (4). To obtain the invariants of the symmetry group G∆ we exclude
ε from the equations (28)–(30) or in the special case from equations (31)–(33).

In the first case the symmetry group G∆ is very poor and we can obtain
just the following invariants

inv1 = S, (34)
inv2 = u− (a3S + a4)/a2, a2 �= 0.

These invariants are useless because they do not lead to any reduction of (4).
In the special case (20) the symmetry group admits two functionally in-

dependent invariants of the form

inv1 = logS + at, a = a1/a2, a2 �= 0 (35)
inv2 = u S(k−1). (36)

In general the form of invariants is not unique because each function of
invariants is an invariant. But it is possible to obtain just two non-trivial
functionally independent invariants which we take in the form (35), (36). The
invariants can be used as new independent and dependent variables in order
to reduce the partial differential equation (4) with the special function λ(S)
defined by (20) to an ordinary differential equation.

3 The special case λ(S) = ωSk

Let us study a special case of equation (4) with λ(S) = ωSk, ω, k ∈ R. The
equation under investigation is now

ut +
σ2S2

2
uSS

(1− bSk+1uSS)2
= 0 (37)

with the constant b = ρω. As usual we assume that ρ ∈ (0, 1). The value of the
constant ω depends on the corresponding option type and in our investigation
it can be assumed that ω is an arbitrary constant, ω �= 0. The variables S, t
are in the intervals

S > 0, t ∈ [0, T ], T > 0. (38)

Remark 2. The case b = 0, i.e. ρ = 0 or ω = 0 leads to the well known linear
Black-Scholes model and we will exclude this case from our investigations.

We will suppose that the denominator in equation (4) (correspondingly
(37)) is non equal to zero identically.
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Let us study the denominator in the second term of the equation (37). It
will be equal to zero if the function u(S, t) satisfies the equation

1− bSk+1uSS = 0. (39)

The solution to this equation is a function u0(S, t)

u0(S, t) =
1

bk(k − 1)
S1−k + Sc1(t) + c2(t), b �= 0, k �= 0, 1,

u0(S, t) = −1
b

logS + Sc1(t) + c2(t), b �= 0, k = 1, (40)

u0(S, t) =
1
b
S logS + Sc1(t) + c2(t), b �= 0, k = 0,

where the functions c1(t) and c2(t) are arbitrary functions of the variable t.

In the sequel we will assume that the denominator in the second term of
the equation (37) is not identically zero, i.e., a solution u(S, t) is not equal to
the function u0(S, t) (40) except in a discrete set of points.

Let us now introduce new invariant variables

z = logS + at, a ∈ R, a �= 0,
v = u S(k−1). (41)

After this substitution equation (37) will be reduced to an ordinary differential
equation

avz +
σ2

2
vzz + (1− 2k)vz − k(1− k)v

(1− b(vzz + (1− 2k)vz − k(1− k)v))2
= 0, a, b �= 0. (42)

Elementary solutions to this equation we obtain if we assume that v = const.
or vz = const.. It is easy to prove that there exists the trivial solution v = 0 for
any k and vz = 0 if k �= 0, 1, and the solutions v = const. �= 0, vz = const. �= 0
if k = 0, 1 only. The condition that the denominator in (42) is non equal to
zero, i.e.,

(1− b(vzz + (1− 2k)vz − k(1− k)v))2 �= 0 (43)

corresponds to equation (39) in new variables z, v.
If the function v(z) satisfies the inequality (43) then we can multiply both

terms of equation (42) with the denominator of the second term. In equation
(42) all coefficients are constants hence we can reduce the order of the equa-
tion. We assume that v, vz �= const. We now choose as a new independent
variable v and introduce as a new dependent variable x(v) = vz(z). This vari-
able substitution reduces equation (42) to a first order differential equation
which is second order polynomial corresponding to the function x(v)v. Under
assumption (43) the set of solutions to equation (42) is equivalent to a union
of solution sets of the following equations
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x = 0 , k = 0, 1 (44)

xv = −1 + 2 k − σ2

4 a b2 x2
+

1
b x

+
k(1− k)v

x
−
√
σ2 (σ2 − 8 a b x)

4 a b2 x2
,

xv = −1 + 2 k − σ2

4 a b2 x2
+

1
b x

+
k(1− k)v

x
+

√
σ2 (σ2 − 8 a b x)

4 a b2 x2
.

Equations (44) are of an autonomous type if the parameter k is equal to
k = 0, 1 only. We see that these are exactly the cases in which the corre-
sponding Lie-algebra (23) has a three dimensional Abelian sub-algebra with
two-dimensional centrum. The case k = 0 was studied earlier in [3], [5] and in
[4]. In the next section we will study the case k = 1.

4 The special case λ = ωS

If we put k = 1 in (20) then equation (42) takes the form

vz + q
vzz − vz

(1− b(vzz − vz))2
= 0, (45)

where q = σ2

2a , a, b �= 0. It is an autonomous equation which possesses a simple
structure. We will use this structure and introduce a more simple substitution
as described at the end of the previous section to reduce the order of equation.

One family of solutions to this equation is very easy to find. We just
suppose that the value vz(z) is equal to a constant. The equation (45) admits
as a solution the value vz = (−1 ± √q)/b consequently the corresponding
solution u(s, t) to (37) with λ = ωS can be represented by the formula

u(S, t) =
1
ρω

(−1±√q) (logS + at) + c, a > 0, (46)

where c is an arbitrary constant.
To find other families of solutions we introduce a new dependent variable

y(z) = vz(z) (47)

and assume that the denominator of the equation (45) is not equal to zero,
i.e.

v(z) �= −z
b

+ c1 ez + c2, i.e. y(z) �= −1
b

+ c1 ez, (48)

where c1, c2 are arbitrary constants.
We multiply both terms of equation (45) by the denominator of the second

term and obtain

yy2z − 2
(
y2 +

1
b
y − q

2b2

)
yz +

(
y2 +

2
b
y +

(
1− q
b2

))
y = 0, b �= 0. (49)
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We denote the left hand side of this equation by F (y, yz). The equation (49)
can possess exceptional solutions which are the solutions to a system

∂F (y, yz)
∂yz

= 0, F (y, yz) = 0. (50)

The first equation in this system defines a discriminant curve which has the
form

y(z) =
q

4b
. (51)

If this curve is also a solution to the original equation (49) then we obtain an
exceptional solution. We obtain an exceptional solution if q = 4, i.e. a = σ2/8.
It has the form

y(z) =
1
b
. (52)

This solution belongs to the family of solutions (54) by the specified value
of the parameter q. In all other cases the equation (49) does not possess any
exceptional solutions.

Hence the set of solutions to equation (49) is a union of solution sets of
following equations

y = 0, (53)
y = (−1±√q) /b, (54)

yz =

(
y2 +

1
b
y − q

2b2
−
√

σ2

2ab3
( q

4b
− y

)) 1
y
, y �= 0, (55)

yz =
(
y2 +

1
b
y − q

2b2
+
√
q

b3

( q
4b
− y

)) 1
y
, y �= 0, (56)

where one of the solutions (54) is an exceptional solution (52) by q = 4. We
denote the right hand side of equations (55), (56) by f(y). The Lipschitz
condition for equations of type yz = f(y) is satisfied in all points where the
derivative ∂f

∂y exists and is bounded. It is easy to see that this condition will
not be satisfied by

y = 0, y =
q

4b
, y =∞. (57)

It means that on the lines (57) the uniqueness of solutions to equations (55),
(56) can be lost. We will study in detail the behavior of solutions in the
neighborhood of lines (57). For this purpose we look at the equation (49) from
another point of view. If we assume now that z, y, yz are complex variables
and denote

y(z) = ζ, yz(z) = w, ζ, w ∈ C, (58)

then the equation (49) takes the form

F (ζ, w) = ζw2 − 2
(
ζ2 +

1
b
ζ − q

2b2

)
w +

(
ζ2 +

2
b
ζ +

1− q
b2

)
ζ = 0, (59)
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where b �= 0. The equation (59) is an algebraic relation in C2 and defines a
plane curve in this space. The polynomial F (ζ, w) is an irreducible polyno-
mial if at all roots wr(z) of F (ζ, wr) either the partial derivative Fζ(ζ, wr) or
Fw(ζ, wr) are non equal to zero. It is easy to prove that the polynomial (59)
is irreducible.

We can treat equation (59) as an algebraic relation which defines a Rie-
mann surface Γ : F (ζ, w) = 0 of w = w(ζ) as a compact manifold over the
ζ-sphere. The function w(ζ) is uniquely analytically extended over the Rie-
mann surface Γ of two sheets over the ζ−sphere. We find all singular or branch
points of w(ζ) if we study the roots of the first coefficient of the polynomial
F (ζ, w), the common roots of equations

F (ζ, w) = 0, Fw(ζ, w) = 0, ζ, w ∈ C ∪∞. (60)

and the point ζ = ∞. The set of singular or branch points consists of the
points

ζ1 = 0, ζ2 =
q

4b
, ζ3 =∞. (61)

As expected we got the same set of points as in real case (57) by the study
of the Lipschitz condition but now the behavior of solutions at the points is
more visible.

The points ζ2, ζ3 are the branch points at which two sheets of Γ are glued
on. We remark that

w(ζ2) =
1
b

(q − 4) + t
1

4
√
−bq

+ · · · , t2 = ζ − q

4b
, (62)

where t is a local parameter in the neighborhood of ζ2. For the special value
of q = 4 the value w(ζ2) is equal to zero.

At the point ζ3 =∞ we have

w(ζ) =
1
t2

+
1
b

+ t

√
−q
4b3
, t2 =

1
ζ
, ζ →∞,

where t is a local parameter in the neighborhood of ζ3. At the point ζ1 = 0
the function w(ζ) has the following behavior

w(ζ) ∼ − q
b2

1
ζ
, ζ → ζ1 = 0, on the principal sheet, (63)

w(ζ) ∼ (1− q) ζ, ζ → ζ1 = 0, q �= 1, on the second sheet, (64)
w(ζ) ∼ −2b2ζ2, ζ → ζ1 = 0, q = 1, on the second sheet. (65)

Any solution w(ζ) to an irreducible algebraic equation (59) is meromorphic
on this compact Riemann surface Γ of the genus 0 and has a pole of the order
one correspondingly (63) over the point ζ1 = 0 and the pole of the second
order over ζ3 =∞. It means also that the meromorphic function w(ζ) cannot
be defined on a manifold of less than 2 sheets over the ζ sphere.
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To solve differential equations (55) and (56) from this point of view it is
equivalent to integrate on Γ a differential of type dζ

w(ζ) and then to solve an
Abel’s inverse problem of degenerated type∫

dζ
w(ζ)

= z + const. (66)

The integration can be done very easily because we can introduce a uniformiz-
ing parameter on the Riemann surface Γ and represent the integral (66) in
terms of rational functions merged possibly with logarithmic terms.

To realize this program we introduce a new variable (our uniformizing
parameter p) in the way

ζ =
q(1− p2)

4b
, (67)

w =
(1− p)(q(1 + p)2 − 4)

4b(p+ 1)
. (68)

Then the equations (55) and (56) will take the form

2q
∫

p(p+ 1)dp
(p− 1)(q(p+ 1)2 − 4)

= z + const, (69)

2q
∫

p(p− 1)dp
(p+ 1)(q(p− 1)2 − 4)

= z + const. (70)

The integration procedure of equation (69) gives rise to the following relations

2q log (p− 1) + (q −√q − 2) log ((p+ 1)
√
q − 2) (71)

+(q +
√
q − 2) log ((p+ 1)

√
q + 2) = 2(q − 1)z + c, q �= 1, q > 0,

1
1− p +

1
4

log
(p+ 3)3

(p− 1)5
= z + c, q = 1. (72)

2
√

(−q) arctan ((p+ 1)
√

(−q)/2)− 2q log (p− 1)
+(2− q) log (4− q(p+ 1)2) = 2(1− q)z + c, q < 0, (73)

where c is an arbitrary constant. The equation (70) leads to

2q log (p+ 1) + (q +
√
q − 2) log ((p− 1)

√
q − 2) (74)

+(q −√q − 2) log ((p− 1)
√
q + 2) = 2(q − 1)z + c, q �= 1, q > 0,

1
p+ 1

+
1
4

log
(p− 3)3

(p+ 1)5
= z + c, q = 1. (75)

−2
√

(−q) arctan ((p− 1)
√

(−q)/2)− 2q log (1 + p)
+(2− q) log (4− q(p− 1)2) = 2(1− q)z + c, q < 0. (76)

where c is an arbitrary constant.
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The relations (71)-(76) are first order ordinary differential equations be-
cause of the substitutions (58) and (47) we have

p =

√
1− 4b

q
vz. (77)

All these results can be collected to the following theorem.

Theorem 3. The equation (45) for arbitrary values of the parameters q, b �= 0
can be reduced to the set of first order differential equations which consists of
the equations

vz = 0, vz = (−1±√q)/b (78)

and equations (71)-(76). The complete set of solutions to the equation (45)
coincides with the union of solutions to these equations.

To solve equations (71)-(76) exactly we should first invert these formulas
in order to obtain an exact representation p as a function of z. If an exact
formula for the function p = p(z) is found we can use the substitution (77) to
obtain an explicit ordinary differential equation of the type vz(z) = f(z) or
another suitable type and if it possible then to integrate this equation.

But even in the first step we would not be able to do this for an arbitrary
value of the parameter q. It means we have just implicit representations for the
solutions to the equation (45) as solutions to the implicit first order differential
equations (71)-(76).

4.1 Exact invariant solutions in case of a fixed relation
between variables S and t

For a special value of the parameter q we can invert the equations (71) and
(74). Let us take q = 4, i.e., the relation between variables S, t is fixed in the
form

z = logS +
σ2

8
t. (79)

In this case the equation (71) takes the form

(p− 1)2(p+ 2) = 2 c exp (3z/2) (80)

and correspondingly the equation (74) the form

(p+ 1)2(p− 2) = 2 c exp (3z/2), (81)

where c is an arbitrary constant. It is easy to see that the equations (80) and
(81) are connected by a transformation

p→ −p, c→ −c. (82)

This symmetry arises from the symmetry of the underlining Riemann surface
Γ (59) and corresponds to a change of the sheets on Γ .
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Theorem 4. The second order differential equation

vz + 4
vzz − vz

(1− b(vzz − vz))2
= 0, (83)

is exactly integrable for an arbitrary value of the parameter b. The complete
set of solutions for b �= 0 is given by the union of solutions (87), (89) -(92)
and solutions

v(z) = d, v(z) = −3
b
z + d, v(z) =

1
b
z + d, (84)

where d is an arbitrary constant. The last solution in (84) corresponds to the
exceptional solution to equation (49).
For b = 0 equation (83) is linear and its solutions are given by v(z) = d1 +
d2 exp (3z/4), where d1, d2 are arbitrary constants.

Proof. Because of the symmetry (82) it is sufficient to study either the equa-
tions (80) or (81) for c ∈ R or both these equations for c > 0. The value
c = 0 can be excluded because it complies with the constant value of p(z) and
correspondingly constant value of vz(z), but all such cases are studied before
and the solutions are given by (84).

We will study equation (81) in case c ∈ R \ {0} and obtain on this way
the complete class of exact solutions for equations (80)-(81).

Equation (81) for c > 0 has a one real root only. It leads to an ordinary
differential equation of the form

vz(z) = −1
b

(
1 +

(
1 + c e

3 z
2 +

√
2 c e

3 z
2 + c2 e3 z

)− 2
3

+
(

1 + c e
3 z
2 +

√
2 c e

3 z
2 + c2 e3 z

) 2
3
)
, c > 0. (85)

Equation (85) can be exactly integrated if we use an Euler substitution
and introduce a new independent variable

τ = 2
(

1 + c e
3 z
2 +

√
2 c e

3 z
2 + c2 e3 z

)
. (86)

The corresponding solution is given by
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vr(z) = −1
b

((
1 + c e

3 z
2 +

√
2 c e

3 z
2 + c2 e3 z

)− 2
3

+
(

1 + c e
3 z
2 +

√
2 c e

3 z
2 + c2 e3 z

) 2
3

+ 2 log

((
1 + c e

3 z
2 +

√
2 c e

3 z
2 + c2 e3 z

)− 1
3

+
(

1 + c e
3 z!
2 +

√
2 c e

3 z
2 + c2 e3 z

) 1
3

− 2

))
+ d, (87)

where d ∈ R is an arbitrary constant.
If in the right hand side of equation (81) the parameter c satisfies the inequality
c < 0 and the variable z chosen in the region

z ∈
(
−∞,−4

3
ln |c|

)
(88)

then the equation on p possesses maximal three real roots.
These three roots of cubic equation (81) give rise to three differential

equations of type vz = (1−p2(z))/b. The equations can be exactly solved and
we find correspondingly three solutions vi(z), i = 1, 2, 3.

The first solution is given by the expression

v1(z) =
z

b
− 2
b

cos
(

2
3

arccos
(
1− |c| e 3 z

2

))
(89)

− 4
3b

log
(

1 + 2 cos
(

1
3

arccos
(
1− |c| e 3 z

2

)))
− 16

3b
log

(
sin

(
1
6

arccos
(
1− |c| e 3 z

2

)))
+ d,

where d ∈ R is an arbitrary constant. The second solution is given by the
formula

v2(z) =
z

b
− 2
b

cos
(

2
3
π +

2
3

arccos
(
−1 + |c| e 3 z

2

))
(90)

− 4
3b

log
(

1 + 2 cos
(

1
3
π +

1
3

arccos
(
−1 + |c| e 3 z

2

)))
− 16

3b
log

(
sin

(
1
6
π +

1
6

arccos
(
−1 + |c| e 3 z

2

)))
+ d,

where d ∈ R is an arbitrary constant. The first and second solutions are
defined up to the point z = − 4

3 ln |c| where they coincide (see Fig. 1).
The third solution for z < − 4

3 ln |c| is given by the formula
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v3,1(z) =
z

b
− 2
b

cos
(

2
3

arccos
(
−1 + |c| e 3 z

2

))
(91)

− 4
3b

log
(
−1 + 2 cos

(
1
3

arccos
(
−1 + |c| e 3 z

2

)))
− 16

3b
log

(
cos

(
1
6

arccos
(
−1 + |c| e 3 z

2

)))
+ d,

where d ∈ R is an arbitrary constant. In case z > − 4
3 ln |c| the polynomial

(81) has a one real root and the corresponding solution can be represented by
the formula

v3,2(z) =
z

b
− 2
b

cosh
(

2
3
arccosh

(
−1 + |c| e 3 z

2

))
(92)

− 16
3 b

log
(

cosh
(

1
6
arccosh

(
−1 + |c| e 3 z

2

)))
− 4

3 b
log

(
−1 + 2 cosh

(
1
3
arccosh

(
−1 + |c| e 3 z

2

)))
+ d.

The third solution is represented by formulas v3,2(z) and v3,1(z) for differ-
ent values of the variable z.

-4 -2 2 4 6

-40
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Fig. 1. Plot of the solution vr(z), (87), (thick solid line), v1(z), (89),
(short dashed line), v2(z), (90), (long dashed line) and the third solution
v3,1(z), v3,2(z), (91), (92), which is represented by the thin solid line. The
parameters take the values |c| = 0.5, q = 4, d = 0, b = 1 and the variable
z ∈ (−5, 4.5).

One of the sets of solutions (87), (89) -(92) for fixed parameters b, c, d is
represented in Fig. 1. The solution vr(z) (87) and the third solution given by
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both (91) and (92) are defined for any values of z. The solutions v1(z) and
v2(z) cannot be continued after the point z = − 4

3 ln |c| where they coincide.

Fig. 2. Plot of solutions ur(S, t), u1(S, t), u2(S, t), u3,1(S, t), u3,2(S, t) for the
parameters |c| = 0.25, q = 4, b = 1.0, d = 0. The variables S, t lie in intervals
S ∈ (0, 9) and t ∈ [0, 2.0]. All invariant solutions change slowly in t-direction.

If we keep in mind that z = logS+ σ2

8 t and v(z) = u(S, t) we can represent
exact invariant solutions to equation (37). The solution (87) gives rise to an
invariant solution ur(S, t) in the form

ur(S, t) = − 1
ωρ

(
1 + c S

3
2 e

3σ2
16 t +

√
2 c S

3
2 e

3σ2
16 t + c2 S3e

3σ2
8 t

)− 2
3

− 1
ωρ

(
1 + c S

3
2 e

3σ2
16 t +

√
2 c S

3
2 e

3σ2
16 t + c2 S3e

3σ2
8 t

) 2
3

(93)

− 2
ωρ

log

((
1 + c S

3
2 e

3σ2
16 t +

√
2 c S

3
2 e

3σ2
16 t + c2 S3e

3σ2
8 t

)− 1
3

+
(

1 + c S
3
2 e

3σ2
16 t +

√
2 c S

3
2 e

3σ2
16 t + c2 S3e

3σ2
8 t

) 1
3

− 2

)
+ d

where d ∈ R, c > 0.
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In case c < 0 we can obtain correspondingly three solutions if

0 < S ≤ |c|− 4
3 exp

(
−σ

2

8
t

)
. (94)

The first solution is represented by

u1(S, t) =
1
ωρ

(
logS +

σ2

8
t

)
− 2
ωρ

cos
(

2
3

arccos
(
1− |c|S 3

2 e
3σ2
16 t

))
− 4

3ωρ
log

(
1 + 2 cos

(
1
3

arccos
(
1− |c|S 3

2 e
3σ2
16 t

)))
(95)

− 16
3ωρ

log
(

sin
(

1
6

arccos
(
1− |c|S 3

2 e
3σ2
16 t

)))
+ d,

where d ∈ R, c < 0. The second solution is given by the formula

u2(S, t) =
1
ωρ

(
logS +

σ2

8
t

)
− 2
ωρ

cos
(

2
3
π +

2
3

arccos
(
−1 + |c|S 3

2 e
3σ2
16 t

))
− 4

3ωρ
log

(
1 + 2 cos

(
1
3
π +

1
3

arccos
(
−1 + |c|S 3

2 e
3σ2
16 t

)))
(96)

− 16
3ωρ

log
(

sin
(

1
6
π +

1
6

arccos
(
−1 + |c|S 3

2 e
3σ2
16 t

)))
+ d,

where d ∈ R, c < 0. The first and second solutions are defined for the variables
under conditions (94). They coincide along the curve

S = |c|−4/3 exp
(
−σ

2

8
t

)
and cannot be continued further.

The third solution is defined by

u3,1(S, t) =
1
ωρ

(
logS +

σ2

8
t

)
− 2
ωρ

cos
(

2
3

arccos
(
−1 + |c|S 3

2 e
3σ2
16 t

))
− 4

3ωρ
log

(
−1 + 2 cos

(
1
3

arccos
(
−1 + |c|S 3

2 e
3σ2
16 t

)))
(97)

− 16
3ωρ

log
(

cos
(

1
6

arccos
(
−1 + |c|S 3

2 e
3σ2
16 t

)))
+ d,

where d ∈ R and S, t satisfied the condition (94).
In case logS+ σ2

8 t > −
4
3 ln |c| the third solution can be represented by the

formula

u3,2(S, t) =
1
ωρ

(
logS +

σ2

8
t

)
− 2
ωρ

cosh
(

2
3
arccosh

(
−1 + |c|S 3

2 e
3σ2
16 t

))
− 16

3ωρ
log

(
cosh

(
1
6
arccosh

(
−1 + |c|S 3

2 e
3σ2
16 t

)))
(98)

− 4
3ωρ

log
(
−1 + 2 cosh

(
1
3
arccosh

(
−1 + |c|S 3

2 e
3σ2
16 t

)))
+ d.
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The solution ur(S, t) (93) and the third solution given by u3,1, u3,2

(97),(98) are defined for all values of variables t and S > 0. They have a
common intersection curve of type S = const. exp(−σ2

8 t). The typical behav-
ior of all these invariant solutions is represented in Fig. 2.

It should be noted that because of the symmetry properties (see Theorem
2) any solution remains a solution if we add to each solution a linear function
of S,

u(S, t)→ u(S, t) + d1S + d2, (99)

with arbitrary constants d1, d2.
It means we have two additional constants to model boundary and terminal

conditions.
We first study the non-trivial solutions, i.e., u(S, t) �= d1S + d2.
Previous results can be summed up in the following theorem describing

the set of non-trivial invariant solutions to equation (4).

Theorem 5. 1. The equation (4) possesses non-trivial invariant solutions
for the only special form of the function λ(S) given by (20).

2. In case (20) the invariant solutions to equation (4) are defined by ordinary
differential equations (44). In special cases k = 0, 1 equations (44) are of
an autonomous type.

3. If λ(S) = ωS, i.e. k = 1, then the invariant solutions to equation (4) can
be defined by the set of first order ordinary differential equations (71)–(76)
and equation (78).
If additionally the parameter q = 4, or equivalent in the first invariant
(35) we chose a = σ2/8 then the complete set of invariant solutions (4)
can be found exactly. This set of invariant solutions is given by formulas
(93)–(98) and by solutions

u(S, t) = d, u(S, t) = −3/b (logS+σ2t/8), u(S, t) = 1/b (logS+σ2t/8),

where d is an arbitrary constant. This set of invariant solutions is unique
up to the transformations of the symmetry group G∆ given by theorem 2

5 Properties of invariant solutions

All solutions (93)-(98) have the form
u(S, t) = w(S, t)/(ωρ), where w(S, t) is a smooth function of S, t. It means
that the function w(S, t) solves the equation (37) with b = ωρ = 1, i.e.

wt +
σ2S2

2
wSS

(1− S2wSS)2
= 0. (100)

In other words, if we find any solution to the above equation (100) for
any fixed boundary and terminal conditions, we can immediately obtain the



On Option-Valuation in Illiquid Markets 91

corresponding solution to the equation (37) if we just divide the function
w(S, t) by b = ωρ (the solution u(S, t) satisfies the boundary and terminal
conditions which we obtain if just divide the corresponding conditions on
the function w(S, t) by b). Therefor any ρ-dependence of a solution to (37) is
trivial. It means as well that if the terminal conditions are fixed u(S, T ) = h(S)
then the value u(S, t) will increase if the value of the parameter ρ increases.
This dependence of hedge costs on the position of the large trader on market
is very natural.

If the parameter ρ → 0 then equation (4) and correspondingly equation
(37) will be reduced to the linear Black-Scholes equation but solutions (93)-
(98) which we obtained here will be completely blown up by ρ→ 0 because of
the factor 1/b = 1/(ωρ) in the formulas (93)-(98). It means that the solutions
u(S, t) (93), u1(S, t) (95), u2(S, t) (96), u3,1(S, t) (97), u3,2(S, t) (98), have no
one counterpart in a linear case.

This phenomena is rather typical for nonlinear partial differential equa-
tions with singular perturbations and was described as well in [3], [5], [4] for
the invariant solutions to equation (37) with k = 0.

The families of exact solutions reflect the nonlinearity of this equation in
a essential way. If we take a numerical method which was developed for the
linear Black-Scholes equation or other types of parabolic equations and will
test it for a new type of a nonlinear equation we should take, if possible,
the solutions which reflect this nonlinearity in the most complete way. The
existence of non-trivial explicit solutions allows to test different numerical
methods usually used to calculate hedge-costs of derivatives (see [3]).

We obtain a typical terminal payoff function for the solutions (93)-(98)
if we just fix t = T . All these payoffs are smooth functions. Other sides
a typical payoff of derivatives similar to combination of calls and puts is a
continuous piece-wise linear function. The smooth payoffs are more convenient
for numerical calculations and usually one replaced the standard payoffs by
the corresponding solution to the Black-Scholes model for a very small time
interval. If also in that case the numerical method does not work properly,
there is no hope that it works better in a worse case and the fact that the
payoffs are smooth functions is immaterial for these purposes.

In order to illustrate how we can model some typical payoffs we investigate
asymptotic properties of solutions (93)-(98) as S → 0 and as S →∞.

Using the exact formulas for solutions we retain the first two terms and
obtain as S → 0

u1(S, t) ∼

−1
b

(
2 +

4
3

log
(
|c|22−23−3

)
+

3
8
σ2t+ 3 logS +O(S3/2)

)
, (101)
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u2(S, t) ∼
1
b

(
1 +

1
3

log
(
283−6|c|−2

)
+

23
√

2|c|
34/3

e
3
32σ

2tS3/4 +O(S3/2)

)
, (102)

u3,1(S, t) ∼
1
b

(
1 +

1
3

log
(
283−6|c|−2

)
− 23

√
2|c|

34/3
e

3
32σ

2tS3/4 +O(S3/2)

)
, (103)

ur(S, t) ∼ −
1
b

(
2 + 2 log

(
2 3−2 c

)
+

3
8
σ2t+ 3 logS +O(S5/4)

)
. (104)

Plot of solutions (93)-(98) by σ = 0.4, b = 1, |c| = 0.5, d1 = 0, d2 = 0.

0.5 1 1.5 2 2.5

2.5

5

7.5

10

12.5

15

Fig. 3. Behavior of solutions ur(z), (93), (thick solid line), u1(z),
(95), (short dashed line), u2(z), (96), (long dashed line) and u3,1(z),
(97) (thin solid line) in the neighborhood of S ∼ 0, for t = 0, where S
in (94).
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Fig. 4. The same solutions for t = 0. and t = 10. for S ∈ (0.04, 9],
ur(z), (93), (thick solid line), u1(z), (95), (short dashed line), u2(z),
(96), (long dashed line) and u3,1(z), u3,2(z), (97), (98) (thin solid line).
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In Fig. 5 we present solutions (93)-(98) in a case where both additional
constants d1 = d2 in (99) are equal to zero, i.e. without linear background.

If S is large enough we have just two solutions. The asymptotic behavior
both solutions ur(S, t),(93), and u3,2,(98), coincides in the main terms as
S →∞ and is given by formula

ur(S, t), u3,2(S, t) ∼ −
1
b

(
(2 |c|)2/3e 3σ2

8 tS + logS +O(1)
)
, S →∞. (105)

The main term in formulas (101)-(105) depends on the time and on the con-
stant c.

The families of exact solutions (93)-(98) have the following parameters
ω, c, d1, d2 which can be used to match suitable boundary and terminal
conditions to a desired accuracy. The formulas (101)-(105) can be useful for
these purposes. In Fig. 5 we represent as an example a long strip payoff and
the solution ur(S, t), (93), which partly matches this payoff.
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Fig. 5. Plot of the solution ur(S, t) for the parameters |c| = 0.5, b = 1.0, σ =
0.3, d1 = 11.5, d2 = −9.0. The variables S, t lie in intervals S ∈ (0.04, 3.7)
and t = 0., (doted line), t = 5., (short dashed line) and t = 10., (long dashed
line). Payoff for a long strip with 60 Puts and 10 Calls with exercise price 0.2
marked by thin solid line.
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Predicting the Time of the Ultimate Maximum
for Brownian Motion with Drift
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Summary. Given a standard Brownian motion Bµ = (Bµ
t )0≤t≤1 with drift µ ∈ IR,

letting Sµ
t = max 0≤s≤t Bµ

s for t ∈ [0, 1], and denoting by θ the time at which Sµ
1 is

attained, we consider the optimal prediction problem

V∗ = inf
0≤τ≤1

E|θ − τ |

where the infimum is taken over all stopping times τ of Bµ. Reducing the optimal
prediction problem to a parabolic free-boundary problem and making use of local
time-space calculus techniques, we show that the following stopping time is optimal:

τ∗ = inf {0 ≤ t ≤ 1|Sµ
t −Bµ

t ≥ b(t)}
where b : [0, 1] → R is a continuous decreasing function with b(1) = 0 that is
characterized as the unique solution to a nonlinear Volterra integral equation. This
also yields an explicit formula for V∗ in terms of b. If µ = 0 then there is a closed
form expression for b. This problem was solved in [14] and [4] using the method of
time change. The latter method cannot be extended to the case when µ �= 0 and the
present paper settles the remaining cases using a different approach. It is also shown
that the shape of the optimal stopping set remains preserved for all Lévy processes.

Key words: Brownian motion, optimal prediction, optimal stopping, ultimate-
maximum time, parabolic free-boundary problem, smooth fit, normal reflection,
local time-space calculus, curved boundary, nonlinear Volterra integral equation,
Markov process, diffusion process, Lévy process.
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1 Introduction

Stopping a stochastic process as close as possible to its ultimate maximum is
of great practical and theoretical interest. It has numerous applications in the
fields of engineering, physics, finance and medicine, for example determining
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the best time to sell an asset or the optimal time to administer a drug. In
recent years the area has attracted considerable interest (and has yielded some
counter-intuitive results), and the problems have collectively become known
as optimal prediction problems (within optimal stopping).

In particular, a number of different variations on the following prediction
problem have been studied: let B = (Bt)0≤t≤1 be a standard Brownian motion
started at zero, set St = max 0≤s≤tBs for t ∈ [0, 1], and consider the optimal
prediction problem

inf
0≤τ≤1

E(S1−Bτ )2 (1)

where the infimum is taken over all stopping times τ of B. This problem was
solved in [4] where the optimal stopping time was found to be

τ∗ = inf
{

0 ≤ t ≤ 1|St−Bt ≥ z∗
√

1−t
}

(2)

with z∗>0 being a specified constant. The result was extended in [8] where two
different formulations were considered: firstly the problem (1) above for p>1
in place of 2, and secondly a probability formulation maximizing P(S1−Bτ ≤ε)
for ε > 0. Both these were solved explicitly: in the first case, the optimal
stopping time was shown to be identical to (2) except that the value of z∗ was
now dependent on p, and in the second case the optimal stopping time was
found to be τ∗ = inf { t∗ ≤ t ≤ 1|St−Bt = ε} where t∗ ∈ [0, 1] is a specified
constant.

Setting Bµt = Bt + µt and Sµt = max 0≤s≤tB
µ
s for t ∈ [0, 1] and µ ∈ R,

one can formulate the analogue of the problem (1) for Brownian motion with
drift, namely

inf
0≤τ≤1

E(Sµ1 −Bµτ )2 (3)

where the infimum is taken over all stopping times τ of Bµ. This problem was
solved in [2] where it was revealed that (3) is fundamentally more complicated
than (1) due to its highly nonlinear time dependence. The optimal stopping
time was found to be τ∗ = inf {0 ≤ t ≤ 1| b1(t) ≤ Sµt −B

µ
t ≤ b2(t)} where b1

and b2 are two specified functions of time giving a more complex shape to the
optimal stopping set (which moreover appears to be counter-intuitive when
µ > 0).

The variations on the problem (1) summarized above may all be termed
space domain problems, since the measures of error are all based on a distance
from Bτ to S1. In each case they lead us to stop as ‘close’ as possible to the
maximal value of the Brownian motion. However, the question can also be
asked in the time domain: letting θ denote the time at which B attains its
maximum S1, one can consider

inf
0≤τ≤1

E|θ − τ | (4)

where the infimum is taken over all stopping times τ of B. This problem was
first considered in [12] and then further examined in [14] where the following
identity was derived
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E(Bθ−Bτ )2 = E|θ − τ |+ 1
2 (5)

for any stopping time τ of B satisfying 0 ≤ τ ≤ 1. Recalling that Bθ = S1

it follows that the time domain problem (4) is in fact equivalent to the space
domain problem (1). Hence stopping optimally in time is the same as stopping
optimally in space (when distance is measured in mean square). This fact,
although intuitively appealing, is mathematically quite remarkable.

It is interesting to note that (with the exception of the probability for-
mulation) all the space domain problems above have trivial solutions when
distance is measured in mean. Indeed, in (1) (with 1 in place of 2) any stopping
time is optimal, while in (3) one either waits until time 1 or stops immediately
(depending on whether µ > 0 or µ < 0 respectively). The error has to be dis-
torted to be seen by the expectation operator, and this introduces a parameter
dependence into these problems. While the mean square distance may seem
a natural setting (due to its close links with the conditional expectation),
there is no reason a priori to prefer one penalty measure over any other. The
problems are therefore all based on parameterized measures of error, and the
solutions are similarly parameter dependent.

The situation becomes even more acute when one extends these space
domain problems to other stochastic processes, since there are many processes
for which the higher order moments simply do not exist. Examples of these
include stable Lévy processes of index α ∈ (0, 2), for which (1) would only
make sense for powers p strictly smaller than α. This leads to further loss
of transparency in the problem formulation. By contrast, the time domain
formulation is free from these difficulties as it deals with bounded random
variables. One may therefore use any measure of error, including mean itself,
and it is interesting to note that even in this case the problem (4) above yields
a non-trivial solution.

Motivated by these facts, our aim in this paper will be to study the ana-
logue of the problem (4) for Brownian motion with drift, namely

inf
0≤τ≤1

E|θµ− τ | (6)

where θµ is the time at which Bµ = (Bµt )0≤t≤1 attains its maximal value Sµ1 ,
and the infimum is taken over all stopping times τ of Bµ. This problem is
interesting not only because it is a parameter free measure of optimality, but
also because it is unclear what form the solution will take: whether it will
be similar to that of (1) or (3), or whether it will be something else entirely.
There are also several applications where stopping close to the maximal value
is less important than detecting the time at which this maximum occurred as
accurately as possible.

Our main result (Theorem 1) states that the optimal stopping time in (6)
is given by

τ∗ = inf {0 ≤ t ≤ 1|Sµt −B
µ
t ≥ b(t)} (7)

where b : [0, 1]→ R is a continuous decreasing function with b(1) = 0 that is
characterized as the unique solution to a nonlinear Volterra integral equation.
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The shape of the optimal stopping set is therefore quite different from that of
the problem (3), and more closely resembles the shape of the optimal stopping
set in the problem (1) above. This result is somewhat surprising and it is not
clear how to explain it through simple intuition.

However, by far the most interesting and unexpected fact to emerge from
the proof is that this problem considered for any Lévy process will yield a
similar solution. That is, for any Lévy process X, the problem (6) of finding
the closest stopping time τ to the time θ at which X attains its supremum
(approximately), will have a solution

τ∗ = inf {0 ≤ t ≤ 1|St −Xt ≥ c(t)} (8)

where St = sup 0≤s≤tXs and c : [0, 1] → R is a decreasing function with
c(1) = 0. This result is remarkable indeed considering the breadth and depth
of different types of Lévy processes, some of which have extremely irregular
behavior and are analytically quite unpleasant. In fact, an analogous result
holds for a certain broader class of Markov processes as well, although the
state space in this case is three-dimensional (time-space-supremum). Our aim
in this paper will not be to derive (8) in all generality, but rather to focus on
Brownian motion with drift where the exposition is simple and clear. The facts
indicating the general results will be highlighted as we progress (cf. Lemma 1
and Lemma 2).

2 Reduction to standard form

As it stands, the optimal prediction problem (6) falls outside the scope of
standard optimal stopping theory (see e.g. [11]). This is because the gain
process (|θ − t|)0≤t≤1 is not adapted to the filtration generated by Bµ. The
first step in solving (6) aims therefore to reduce it to a standard optimal
stopping problem. It turns out that this reduction can be done not only for
the process Bµ but for any Markov process.

1. To see this, let X = (Xt)t≥0 be a right-continuous Markov process
(with left limits) defined on a filtered probability space (Ω,F , (Ft)t≥0,Px)
and taking values in R. Here Px denotes the measure under which X starts
at x ∈ R. Define the stochastic process S = (St)t≥0 by St = sup 0≤s≤tXs and
the random variable θ by

θ = inf {0 ≤ t ≤ 1|St = S1} (9)

so that θ denotes the first time that X “attains” its ultimate supremum over
the interval [0, 1]. We use “attains” rather loosely here, since if X is discon-
tinuous the supremum might not actually be attained, but will be approached
arbitrarily closely. Indeed, since X is right-continuous it follows that S is
right-continuous, and hence Sθ = S1 so that S attains its ultimate supremum
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over the interval [0, 1] at θ. This implies that either Xθ = S1 or Xθ− = S1

depending on whether Xθ ≥ Xθ− or Xθ < Xθ− respectively.
The reduction to standard form may now be described as follows (stopping

times below refer to stopping times with respect to the filtration (Ft)t≥0).

Lemma 1. Let X, S and θ be as above. Define the function F by

F (t, x, s) = Px(St ≤ s) (10)

for t ∈ [0, 1] and x ≤ s in R. Then the following identity holds:

Ex| θ − τ | = Ex

(∫ τ

0

(
2F (1−t,Xt, St)− 1

)
dt

)
+ Ex(θ) (11)

for any stopping time τ satisfying 0 ≤ τ ≤ 1.

Proof. Recalling the argument from the proof of Lemma 1 in [14] (cf. [12],
[13]) one has

| θ − τ | = (τ − θ)+ + (τ − θ)− = (τ − θ)+ + θ − θ ∧ τ (12)

=
∫ τ

0

I(θ ≤ t) dt+ θ −
∫ τ

0

I(θ > t) dt

= θ +
∫ τ

0

(
2I(θ ≤ t)− 1

)
dt .

Examining the integral on the right hand side, one sees by Fubini’s theorem
that

Ex

(∫ τ

0

I(θ ≤ t) dt
)

= Ex

(∫ ∞

0

I(θ ≤ t) I(t < τ) dt
)

(13)

=
∫ ∞

0

Ex
(
I(t < τ) Ex

(
I(θ ≤ t)

∣∣Ft)) dt
= Ex

(∫ τ

0

Px(θ ≤ t | Ft) dt
)
.

We can now use the Markov structure of X to evaluate the conditional prob-
ability. For this note that if St = sup0≤s≤tXs, then supt≤s≤1Xs = S1−t ◦ θt
where θt is the shift operator at time t. We therefore see that

Px(θ ≤ t | Ft) = Px
(

sup
0≤s≤t

Xs ≥ sup
t≤s≤1

Xs
∣∣Ft) (14)

= Px(S1−t ◦ θt ≤ s | Ft)
∣∣
s=St

= PXt
(S1−t ≤ s)

∣∣
s=St

= F (1−t,Xt, St)

where F is the function defined in (10) above. Inserting these identities back
into (12) after taking Ex on both sides, we conclude the proof. ��
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Lemma 1 reveals the rich structure of the optimal prediction problem (6).
Two key facts are to be noted. Firstly, for any Markov process X the problem
is inherently three dimensional and has to be considered in the time-space-
supremum domain occupied by the stochastic process (t,Xt, St)t≥0. Secondly,
for any two values x ≤ s fixed, the map t �→ 2F (1−t, x, s) − 1 is increasing.
This fact is important since we are considering a minimization problem so
that the passage of time incurs a hefty penalty and always forces us to stop
sooner rather than later. This property will be further explored in Section 4
below.

2. If X is a Lévy process then the problem reduces even further.

Lemma 2. Let X, S and θ be as above, and let us assume that X is a Lévy
process. Define the function G by

G(t, z) = P0(St ≤ z) (15)

for t ∈ [0, 1] and z ∈ R+. Then the following identity holds:

Ex| θ − τ | = Ex

(∫ τ

0

(
2G(1−t, St−Xt)− 1

)
dt

)
+ Ex(θ) (16)

for any stopping time τ satisfying 0 ≤ τ ≤ 1.

Proof. This result follows directly from Lemma 1 above upon noting that

F (1−t,Xt, St) = P0

(
sup

0≤s≤1−t
(x+Xs) ≤ s

)∣∣∣
x=Xt, s=St

(17)

= P0(S1−t ≤ z)
∣∣
z=St−Xt

since X under Px is realized as x+X under P0. ��

If X is a Lévy process then the reflected process (St−Xt)0≤t≤1 is Markov.
This is not true in general and means that for Lévy processes the optimal pre-
diction problem is inherently two-dimensional (rather than three-dimensional
as in the general case). It is also important to note that for a Lévy process we
have the additional property that the map z �→ 2G(1−t, z)−1 is increasing
for any t ∈ [0, 1] fixed. Further implications of this will also be explored in
Section 4 below.

3 The free-boundary problem

Let us now formally introduce the setting for the optimal prediction problem
(6). Let B = (Bt)t≥0 be a standard Brownian motion defined on a probability
space (Ω,F ,P) with B0 = 0 under P. Given µ ∈ R set Bµt = Bt+µt and
Sµt = max 0≤s≤tB

µ
s for t ∈ [0, 1]. Let θ denote the first time at which the

process Bµ = (Bµt )0≤t≤1 attains its maximum Sµ1 .
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Consider the optimal prediction problem

V∗ = inf
0≤τ≤1

E|θ − τ | (18)

where the infimum is taken over all stopping times τ of Bµ. By Lemma 2
above this problem is equivalent to the standard optimal stopping problem

V = inf
0≤τ≤1

E

(∫ τ

0

H(t,Xt) dt
)

(19)

where the process X = (Xt)0≤t≤1 is given by Xt = Sµt − B
µ
t , the infimum is

taken over all stopping times τ of X, and the function H : [0, 1]×R+ → [−1, 1]
is computed as

H(t, x) = 2P(Sµ1−t ≤ x)− 1 (20)

= 2
[
Φ

(
x−µ(1−t)√

1−t

)
− e2µxΦ

(
−x−µ(1−t)√

1−t

)]
− 1

using the well-known identity for the law of Sµ1−t (cf. [1, p. 397], [7, p. 526]).
Note that V∗ = V + E(θ) where

E(θ) =
∫ 1

0

P(θ>t) dt (21)

=

√
2
π

∫ 1

0

∫ ∞

0

∫ s

−∞

2s−b
t3/2

[
1− Φ

(
s−b−µ(1−t)√

1−t

)
+ e2µ(s−b)Φ

(
b−s−µ(1−t)√

1−t

)]
e−

(2s−b)2

2t +µ(b−µt
2 ) db ds dt

which is readily derived using (14), (17), (20) and (28) below.
It is known (cf. [3]) that the strong Markov process X is equal in law to

|Y | = (|Yt|)0≤t≤1 where Y = (Yt)0≤t≤1 is the unique strong solution to dYt =
−µ sign(Yt) dt+ dBt with Y0 = 0. It is also known (cf. [3]) that under Y0 = x
the process |Y | has the same law as a Brownian motion with drift −µ started
at |x| and reflected at 0. Hence the infinitesimal generator LX of X acts on
functions f ∈ C2

b

(
[0,∞)

)
satisfying f ′(0) = 0 as LXf(x) = −µf ′(x)+ 1

2f
′′(x).

Since the infimum in (19) is attained at the first entry time of X to a closed
set (this follows from general theory of optimal stopping and will be made
more precise below) there is no restriction to replace the process X in (19) by
the process |Y |.

It is especially important for the analysis of optimal stopping to see how
X depends on its starting value x. Although the equation for Y is difficult to
solve explicitly, it is known (cf. [2, Lemma 2.2], [10, Theorem 2.1]) that the
Markov process Xx = (Xxt )0≤t≤1 defined under P as Xxt = x ∨ Sµt −B

µ
t also

realizes a Brownian motion with drift −µ started at x ≥ 0 and reflected at 0.
Following the usual approach to optimal stopping for Markov processes (see
e.g. [11]) we may therefore extend the problem (19) to
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V (t, x) = inf
0≤τ≤1−t

Et,x

(∫ τ

0

H(t+s,Xt+s) ds
)

(22)

where Xt = x under Pt,x for (t, x) ∈ [0, 1]×R+ given and fixed, the infimum
is taken over all stopping times τ of X, and the process X under Pt,x can
be identified with either |Y | (under the same measure) or Xxt+s = x ∨ Sµs −
Bµs under the measure P for s ∈ [0, 1−t]. We will freely use either of these
representations in the sequel without further mention.

We will show in the proof below that the value function V is continuous
on [0, 1]×R+. Defining C = { (t, x) ∈ [0, 1]×R+|V (t, x) < 0} to be the (open)
continuation set and D = { (t, x) ∈ [0, 1]×R+|V (t, x) = 0} to be the (closed)
stopping set, standard results from optimal stopping theory (cf. [11, Corollary
2.9]) indicate that the stopping time

τD = inf {0 ≤ t ≤ 1| (t,Xt) ∈ D} (23)

is optimal for the problem (19) above. We will also show in the proof below
that the value function V : [0, 1]×R+ → R solves the following free-boundary
problem:

(Vt − µVx + 1
2Vxx +H)(t, x) = 0 for (t, x) ∈ C (24)

V (t, x) = 0 for (t, x) ∈ D (instantaneous stopping) (25)
x �→ Vx(t, x) is continuous over ∂C for t ∈ [0, 1) (smooth fit) (26)
Vx(t, 0+) = 0 for t ∈ [0, 1) (normal reflection). (27)

Our aim will not be to tackle this free-boundary problem directly, but rather
to express V in terms of the boundary ∂C, and to derive an analytic expression
for the boundary itself. This approach dates back to [6] in a general setting
(for more details see [11]).

4 The result and proof

The function H from equation (20) above and the set {H ≥ 0 } := { (t, x) ∈
[0, 1]×R+ |H(t, x) ≥ 0 } will play prominent roles in our discussion. A direct
examination of H reveals the existence of a continuous decreasing function
h : [0, 1] → R+ satisfying h(1) = 0 such that {H ≥ 0 } = { (t, x) ∈ [0, 1] ×
R+ | x ≥ h(t) }. Recall (see e.g. [5, p. 368]) that the joint density function of
(Bµt , S

µ
t ) under P is given by

f(t, b, s) =

√
2
π

(2s−b)
t3/2

e−
(2s−b)2

2t +µ(b−µt
2 ) (28)

for t > 0, s ≥ 0 and b ≤ s. Define the function



Predicting the Time of the Ultimate Maximum 103

K(t, x, r, z) = E
(
H(t+r,Xxr ) I(Xxr <z)

)
(29)

=
∫ ∞

0

∫ s

−∞
H
(
t+ r, x ∨ s− b

)
I
(
x ∨ s− b < z

)
f(r, b, s) db ds

for t ∈ [0, 1], r ∈ [0, 1−t] and x, z ∈ R+. We may now state the main result of
this paper.

Theorem 1. Consider the optimal stopping problem (22). Then there exists
a continuous decreasing function b : [0, 1] → R+ satisfying b(1) = 0 such
that the optimal stopping set is given by D = { (t, x) ∈ [0, 1]×R+|x ≥ b(t)}.
Furthermore, the value function V defined in (22) is given by

V (t, x) =
∫ 1−t

0

K
(
t, x, r, b(t+r)

)
dr (30)

for all (t, x) ∈ [0, 1]×R+, and the optimal boundary b itself is uniquely deter-
mined by the nonlinear Volterra integral equation∫ 1−t

0

K
(
t, b(t), r, b(t+r)

)
dr = 0 (31)

for t ∈ [0, 1], in the sense that it is the unique solution to (31) in the class of
continuous functions t �→ b(t) on [0, 1] satisfying b(t) ≥ h(t) for all t ∈ [0, 1].
It follows therefore that the optimal stopping time in (22) is given by

τD := τD(t, x) = inf {0 ≤ r ≤ 1− t |x ∨ Sµr −Bµr ≥ b(t+r)} (32)

for (t, x) ∈ [0, 1]×R+. Finally, the value V∗ defined in (18) equals V (0, 0)+E(θ)
where E(θ) is given in (21), and the optimal stopping time in (18) is given by
τD(0, 0) (see Figure 1).

Proof. Step 1. We first show that an optimal stopping time for the problem
(22) exists, and then determine the shape of the optimal stopping set D. Since
H is continuous and bounded, and the flow x �→ x ∨ Sµt −B

µ
t of the process

Xx is continuous, it follows that for any stopping time τ the map (t, x) �→
E
( ∫ τ

0
H(t+ s, x ∨ Sµs −Bµs ) ds

)
is continuous and thus upper semicontinuous

(usc) as well. Hence we see that V is usc (recall that the infimum of usc func-
tions is usc) and so by general results of optimal stopping (cf. [11, Corollary
2.9]) it follows that τD from (23) is optimal in (22) with C open and D closed.

Next we consider the shape of D. Our optimal prediction problem has a
particular internal structure, as was noted in the comments following Lemmas
1 and 2 above, and we now expose this structure more fully. Take any point
(t, x) ∈ {H < 0} and let U ⊂ {H < 0} be an open set containing (t, x).
Define σU to be the first exit time of X from U under the measure Pt,x where
Pt,x(Xt = x) = 1. Then clearly

V (t, x) ≤ Et,x

(∫ σU

0

H(t+s,Xt+s) ds
)
< 0 (33)



104 Jacques du Toit and Goran Peskir

C

D

Fig. 1. A computer drawing of the optimal stopping boundaries for Brownian mo-
tion with drift µ1 = −1.5, µ2 = −0.5, µ3 = 0.5 and µ4 = 1.5. The dotted line is the
optimal stopping boundary for Brownian motion with zero drift.

showing that it is not optimal to stop at (t, x). Hence the entire region below
the curve h is contained in C.

As was observed following Lemma 1, the map t �→ H(t, x) is increasing,
so that taking any s < t in [0, 1] and setting τs = τD(s, x) and τt = τD(t, x),
it follows that

V (t, x)− V (s, x) (34)

= E

(∫ τt

0

H(t+r,Xxr ) dr
)
− E

(∫ τs

0

H(s+r,Xxr ) dr
)

≥ E

(∫ τt

0

H(t+r,Xxr )−H(s+r,Xxr ) dr
)
≥ 0

for any x ≥ 0. Hence t �→ V (t, x) is increasing so that if (t, x) ∈ D then
(t+ s, x) ∈ D for all s ∈ [0, 1− t] when x ≥ 0 is fixed. Similarly, since x �→
H(t, x) is increasing we see for any x < y in R+ that

V (t, y)− V (t, x) (35)

= E

(∫ τy

0

H(t+s,Xys ) ds
)
− E

(∫ τx

0

H(t+s,Xxs ) ds
)

≥ E

(∫ τy

0

H(t+s,Xys )−H(t+s,Xxs ) ds
)
≥ 0
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for all t ∈ [0, 1] where τx = τD(t, x) and τy = τD(t, y). Hence x �→ V (t, x) is
increasing so that if (t, x) ∈ D then (t, y) ∈ D for all y ≥ x when t ∈ [0, 1]
is fixed. We therefore conclude that in our problem (and indeed for any Lévy
process) there is a single boundary function b : [0, 1]→ R separating the sets
C and D where b is formally defined as

b(t) = inf {x ≥ 0 | (t, x) ∈ D} (36)

for all t ∈ [0, 1], so that D = { (t, x) ∈ [0, 1]×R+|x ≥ b(t)}. It is also clear
that b is decreasing with b ≥ h and b(1) = 0.

We now show that b is finite valued. For this, define t∗ = sup { t ∈ [0, 1] |
b(t) =∞} and suppose that t∗ ∈ (0, 1) and that b(t∗) <∞ (the cases t∗ = 1
and b(t∗) = ∞ follow by a small modification of the argument below). Let
τx = τD(0, x) and set σx = inf { t ∈ [0, 1] |Xxt ≤ h(0)+1}. Then from the
properties of Xx we have τx → t∗ and σx → 1 as x → ∞. On the other
hand, from the properties of H and h we see that there exists ε > 0 such that
H(t, x) ≥ ε for all x ≥ h(0)+1 and all t ∈ [0, t∗]. Hence we find that

0 ≥ lim
x→∞

V (0, x) = lim
x→∞

E

[∫ τx

0

H(t,Xxt ) dt I(τx≤σx)
]

(37)

+ lim
x→∞

E

[∫ τx

0

H(t,Xxt ) dt I(τx>σx)
]
≥ ε t∗ > 0

which is a contradiction. The case t∗ = 0 can be disproved similarly by en-
larging the horizon from 1 to a strictly greater number. Hence b must be finite
valued as claimed.

Step 2. We show that the value function (t, x) �→ V (t, x) is continuous on
[0, 1]×R+. For this, take any x ≤ y in R+ and note by the mean value theorem
that for every t ∈ [0, 1] there is z ∈ (x, y) such that

0 ≤ H(t, y)−H(t, x) = (y−x)Hx(t, z) (38)

= 2(y−x)
[

2√
1−t

ϕ

(
z−µ(1−t)√

1−t

)
− 2µe2µz Φ

(
−z − µ(1− t)√

1− t

)]
≤ 4(y−x)

[
1√
1−t

+ |µ|
]
.

Since 0 ≤ y ∨ Sµt − x ∨ S
µ
t ≤ y − x it follows that

0 ≤ V (t, y)− V (t, x) ≤ E

(∫ τx

0

H(t+s,Xyx)−H(t+s,Xxs ) ds
)

(39)

≤ E

(
4
∫ τx

0

(Xys −Xxs )
[

1√
1−t−s

+ |µ|
]
ds

)
≤ E

(
8(y−x)

[√
1−t−

√
1−t−τx + |µ| τx

])
≤ 8(y−x)(1+|µ|)
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where we recall that τx = τD(t, x). Letting y−x→ 0 we see that x �→ V (t, x)
is continuous on R+ uniformly over all t ∈ [0, 1].

To conclude the continuity argument it is enough to show that t �→ V (t, x)
is continuous on [0, 1] for every x ∈ R+ given and fixed. To do this, take any
s ≤ t in [0, 1] and let τs = τD(s, x). Define the stopping time σ = τs ∧ (1− t)
so that 0 ≤ σ ≤ 1 − t. Note that 0 ≤ τs − σ ≤ t − s so that τs − σ → 0 as
t− s→ 0. We then have

0 ≤ V (t, x)− V (s, x) (40)

≤ E

(∫ σ

0

H(t+r,Xxr ) dr
)
− E

(∫ τs

0

H(s+r,Xxr ) dr
)

= E

(∫ σ

0

H(t+r,Xxr )−H(s+r,Xxr ) dr
)
− E

(∫ τs

σ

H(s+r,Xxr ) dr
)
.

Letting t− s→ 0 and using the fact that |H| ≤ 1 it follows by the dominated
convergence theorem that both expectations on the right-hand side of (40)
tend to zero. This shows that the map t �→ V (t, x) is continuous on [0, 1] for
every x ∈ R+, and hence the value function (t, x) �→ V (t, x) is continuous on
[0, 1]×R+ as claimed.

Step 3. We show that V satisfies the smooth fit condition (26). Take any
t in [0, 1), set c = b(t) and define the stopping time τε = τD(t, c−ε) for ε > 0.
Then from the second last inequality in (39) we see that

0 ≤ V (t, c)− V (t, c−ε)
ε

≤ 8 E
(√

1−t−
√

1−t−τε + |µ| τε
)

(41)

for ε > 0. We now show that τε → 0 as ε ↓ 0. To see this, consider the stopping
time σ = inf {0 ≤ s ≤ 1−t|Xt+s ≥ c} under the measure Pt,c−ε. The process
X started at c− ε at time t will always hit the boundary b before hitting the
level c since b is decreasing. Hence 0 ≤ τε ≤ σ and thus it is enough to show
that σ → 0 under Pt,c−ε as ε ↓ 0. For this, note by the Itô-Tanaka formula
that

dXt = −µdt+ sign(Yt) dBt + d!0t (Y ) (42)

where !0(Y ) = (!0t (Y ))0≤t≤1 is the local time of Y at zero. It follows that

σ = inf { 0 ≤ s ≤ 1−t | c− ε− µs+ βs + !0s(Y ) ≥ c } (43)

≤ inf { s ≥ 0 | −ε+ βs ≥ µs }

where βs =
∫ s
0

sign(Yr) dBr is a standard Brownian motion for s ≥ 0. Letting
ε ↓ 0 and using the fact that s �→ µs is a lower function of β = (βs)s≥0 at
0+, we see that σ → 0 under Pt,c−ε and hence τε → 0 as claimed. Passing to
the limit in (41) for ε ↓ 0, and using the dominated convergence theorem, we
conclude that x �→ V (t, x) is differentiable at c and Vx(t, c) = 0. Moreover,
a small modification of the preceding argument shows that x �→ V (t, x) is
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continuously differentiable at c. Indeed, for δ > 0 define the stopping time
τδ = τD(t, c−δ). Then as in (41) we have

0 ≤ V (t, c−δ+ε)− V (t, c−δ)
ε

≤ 8 E
(√

1−t−
√

1−t−τδ + |µ| τδ
)

(44)

for ε > 0. Letting first ε ↓ 0 (upon using that Vx(t, x − δ) exists) and then
δ ↓ 0 (upon using that τδ → 0) we see as above that x �→ Vx(t, x) is continuous
at c. This establishes the smooth fit condition (26).

Standard results on optimal stopping for Markov processes (see e.g. [11,
Section 7]) show that V is C1,2 in C and satisfies Vt + LXV +H = 0 in C.
This, together with the result just proved, shows that V satisfies (24)–(26)
of the free-boundary problem (24)–(27). We now establish the last of these
conditions.

Step 4. We show that V satisfies the normal reflection condition (27). For
this, note first since x �→ V (t, x) is increasing on R+ that Vx(t, 0+) ≥ 0 for all
t ∈ [0, 1] where the limit exists since V is C1,2 on C. Suppose now that there
exists t ∈ [0, 1) such that Vx(t, 0+) > 0. Recalling again that V is C1,2 on C
so that t �→ Vx(t, 0+) is continuous on [0, 1), we see that there exist δ > 0
and ε > 0 such that Vx(t+s, 0+) ≥ ε for all s ∈ [0, δ] where t+ δ < 1. Setting
τδ = τD(t, 0) ∧ δ we see by Itô’s formula using (42) and (24) that

V (t+τδ, Xt+τδ
) = V (t, 0) +

∫ τδ

0

(Vt−µVx+ 1
2Vxx)(t+r,Xt+r) dr (45)

+
∫ τδ

0

Vx(t+r,Xt+r) sign(Yt+r) dBt+r

+
∫ τδ

0

Vx(t+r,Xt+r) d!0t+r(Y )

≥ V (t, 0)−
∫ τδ

0

H(t+r,Xt+r) dr +Mτδ
+ ε!0t+τδ

(Y )

where Ms =
∫ s
0
Vx(t+r,Xt+r) sign(Yt+r) dBt+r is a continuous martingale

for s ∈ [0, 1−t] (note from (44) that Vx is uniformly bounded). By general
theory of optimal stopping for Markov processes (see e.g. [11]) we know that
V (t + s ∧ τδ, Xt+s∧τδ

) +
∫ s∧τδ

0
H(t + r,Xt+r) dr is a martingale starting at

V (t, 0) under Pt,0 for s ∈ [0, 1−t]. Hence by taking Et,0 on both sides of (45)
and using the optional sampling theorem to deduce that Et,0(Mτδ

) = 0, we see
that Et,0(!0t+τδ

(Y )) = 0. Since the properties of the local time clearly exclude
this possibility, we must have Vx(t, 0+) = 0 for all t ∈ [0, 1] as claimed.

Step 5. We show that the boundary function t �→ b(t) is continuous on [0, 1].
Let us first show that b is right-continuous. For this, take any t ∈ [0, 1) and
let tn ↓ t as n→∞. Since b is decreasing we see that limn→∞ b(tn) =: b(t+)
exists, and since each (tn, b(tn)) belongs to D which is closed, it follows that
(t, b(t+)) belongs to D as well. From the definition of b in (36) we must
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therefore have b(t) ≤ b(t+). On the other hand, since b is decreasing, we see
that b(t) ≥ b(tn) for all n ≥ 1, and hence b(t) ≥ b(t+). Thus b(t) = b(t+) and
consequently b is right-continuous as claimed.

We now show that b is left-continuous. For this, let us assume that
there is t ∈ (0, 1] such that b(t−) > b(t), and fix any x ∈ (b(t), b(t−)).
Since b ≥ h we see that x > h(t) so that by continuity of h we have
h(s) < x for all s ∈ [s1, t] with some s1 ∈ (0, t) sufficiently close to t. Hence
c := inf {H(s, y)| s ∈ [s1, t], y ∈ [x, b(s)]} > 0 since H is continuous. More-
over, since V is continuous and V (t, y) = 0 for all y ∈ [x, b(t−)], it follows
that

|µV (s, y)| ≤ c
4
(
b(t−)−x

)
(46)

for all s ∈ [s2, t] and all y ∈ [x, b(s)] with some s2 ∈ (s1, t) sufficiently close to
t. For any s ∈ [s2, t] we then find by (24) and (26) that

V (s, x) =
∫ b(s)

x

∫ b(s)

y

Vxx(s, z) dz dy (47)

= 2
∫ b(s)

x

∫ b(s)

y

(
−Vt + µVx −H

)
(s, z) dz dy

≤ 2
∫ b(s)

x

[
−µV (s, y)− c(b(s)−y)

]
dy

≤ c
2
(
b(t−)−x

)(
b(s)−x

)
− c

(
b(s)−x

)2
where in the second last inequality we use that Vt ≥ 0 and in the last inequality
we use (46). Letting s ↑ t we see that V (t, x) ≤ (−c/2)(b(t−)−x)2 < 0 which
contradicts the fact that (t, x) belongs to D. Thus b is left-continuous and
hence continuous on [0, 1]. Note that the preceding proof also shows that
b(1) = 0 since h(1) = 0 and V (1, x) = 0 for x ≥ 0.

Step 6. We may now derive the formula (30) and the equation (31). From
(39) we see that 0 ≤ Vx(t, x) ≤ 8(1+|µ|) =: K for all (t, x) ∈ [0, 1]×R+. Hence
by (24) we find that Vxx = 2(−Vt+ µVx−H) ≤ 2(|µ|K−H) in C. Thus if we
let

f(t, x) = 2
∫ x

0

∫ y

0

(
1+|µ|K−H(t, z)

)
dz dy (48)

for (t, x) ∈ [0, 1]×R+, then Vxx ≤ fxx on C∪Do since V ≡ 0 in D and |H| ≤ 1.
Defining the function F : [0, 1] × R+ → R by F = V −f we see by (26) that
x �→ F (t, x) is concave on R+ for every t ∈ [0, 1]. Moreover, it is evident
that (i) F is C1,2 on C ∪Do and Fx(t, 0+) = Vx(t, 0+) = fx(t, 0+) = 0; (ii)
Ft − µFx + 1

2Fxx is locally bounded on C ∪Do; and (iii) t �→ Fx(t, b(t)±) =
−fx(t, b(t)±) is continuous on [0, 1]. Since b is decreasing (and thus of bounded
variation) on [0, 1] we can therefore apply the local time-space formula [9] to
F (t+s,Xt+s), and since f is C1,2 on [0, 1]×R+ we can apply Itô’s formula to
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f(t+s,Xt+s). Adding the two formulae, making use of (42) and the fact that
Fx(t, 0+) = fx(t, 0+) = 0, we find by (24)–(26) that

V (t+s,Xt+s) = V (t, x) (49)

+
∫ s

0

(
Vt − µVx +

1
2
Vxx

)
(t+r,Xt+r) I

(
Xt+r �= b(t+r)

)
dr

+
∫ s

0

Vx(t+r,Xt+r) sign(Yt+r) I
(
Xt+r �= b(t+r)

)
dBt+r

+
1
2

∫ s

0

(
Vx(t+r,Xt+r+)− Vx(t+r,Xt+r−)

)
× I

(
Xt+r = b(t+r)

)
d!bt+r(X)

= V (t, x)−
∫ s

0

H
(
t+r,Xt+r

)
I
(
Xt+r<b(t+r)

)
dr

+
∫ s

0

Vx(t+r,Xt+r) sign(Yt+r) dBt+r

under Pt,x for (t, x) ∈ [0, 1]×R+ and s ∈ [0, 1−t], where !bt+r(X) is the local
time of X on the curve b for r ∈ [0, 1−t]. Inserting s = 1−t and taking Et,x
on both sides, we see that

V (t, x) = Et,x

(∫ 1−t

0

H
(
t+s,Xt+s

)
I
(
Xt+s<b(t+s)

)
ds

)
(50)

which after exchanging the order of integration is exactly (30). Setting x = b(t)
in the resulting identity we obtain∫ 1−t

0

Et,b(t)

(
H
(
t+s,Xt+s

)
I
(
Xt+s<b(t+s)

))
ds = 0 (51)

which is exactly (31) as claimed.

Step 7. We show that b is the unique solution to the integral equation (31)
in the class of continuous functions t �→ b(t) on [0, 1] satisfying b(t) ≥ h(t) for
all t ∈ [0, 1]. This will be done in the four steps below.

Take any continuous function c satisfying c ≥ h which solves (51) on [0, 1],
and define the continuous function U c : [0, 1]×R+ → R by

U c(t, x) = Et,x

(∫ 1−t

0

H
(
t+s,Xt+s

)
I
(
Xt+s<c(t+s)

)
ds

)
. (52)

Note that c solving (51) means exactly that U c
(
t, c(t)

)
= 0 for all t ∈ [0, 1].

We now define the closed set Dc := { (t, x) ∈ [0, 1]× R+|x ≥ c(t)} which will
play the role of a “stopping set” for c. To avoid confusion we will denote by
Db our original optimal stopping set D defined by the function b in (36).
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We show that U c = 0 on Dc. The Markovian structure of X implies that
the process

Ns := U c(t+s,Xt+s) +
∫ s

0

H
(
t+s,Xt+s

)
I
(
Xt+s<c(t+s)

)
ds (53)

is a martingale under Pt,x for s ∈ [0, 1 − t] and (t, x) ∈ [0, 1]×R+. Take any
point (t, x) ∈ Dc and consider the stopping time

σc = inf {0 ≤ s ≤ 1−t |Xt+s /∈ Dc} (54)

= inf {0 ≤ s ≤ 1−t |Xt+s ≤ c(t+s)}

under the measure Pt,x. Since U c
(
t, c(t)

)
= 0 for all t ∈ [0, 1] and Uc(1, x) = 0

for all x ∈ R+, we see that U c(t+σc, Xt+σc) = 0. Inserting σc in (53) above
and using the optional sampling theorem (upon recalling that H is bounded),
we get

U c(t, x) = Et,x
(
U c(t+σc, Xt+σc

)
)

= 0 (55)

showing that U c = 0 on Dc as claimed.

Step 8. We show that U c(t, x) ≥ V (t, x) for all (t, x) ∈ [0, 1]×R+. To do
this, take any (t, x) ∈ [0, 1]×R+ and consider the stopping time

τc = inf {0 ≤ s ≤ 1−t |Xt+s ∈ Dc} (56)

under Pt,x. We then claim that U c(t + τc, Xt+τc
) = 0. Indeed, if (t, x) ∈ Dc

then τc = 0 and we have U c(t, x) = 0 by our preceding argument . Conversely,
if (t, x) /∈ Dc then the claim follows since U c

(
t, c(t)

)
= U(1, x) = 0 for all

t ∈ [0, 1] and all x ∈ R+. Therefore inserting τc in (53) and using the optional
sampling theorem, we see that

U c(t, x) = Et,x

∫ τc

0

H
(
t+s,Xt+s

)
I
(
Xt+s /∈ Dc

)
ds (57)

= Et,x

∫ τc

0

H
(
t+s,Xt+s

)
ds ≥ V (t, x)

where the second identity follows by the definition of τc. This shows that
U c ≥ V as claimed.

Step 9. We show that c(t) ≤ b(t) for all t ∈ [0, 1]. Suppose that this is
not the case and choose a point (t, x) ∈ [0, 1)×R+ so that b(t) < c(t) < x.
Defining the stopping time

σb = inf {0 ≤ s ≤ 1−t |Xt+s /∈ Db} (58)

under Pt,x and inserting it into the identities (49) and (53), we can take Et,x
on both sides and use the optional sampling theorem to see that
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Et,x
(
V (t+σb, Xt+σb

)
)

= V (t, x) (59)

Et,x
(
U c(t+σb, Xt+σb

)
)

= U c(t, x) (60)

− Et,x

(∫ σb

0

H
(
t+s,Xt+s

)
I
(
Xt+s /∈ Dc

)
ds

)
.

The fact that the point (t, x) belongs to both sets Dc and Db implies that
V (t, x) = U c(t, x) = 0, and since U c ≥ V we must have U c(t+σb, Xt+σb

) ≥
V (t+σb, Xt+σb

). Hence we find that

Et,x

(∫ σb

0

H
(
t+s,Xt+s

)
I
(
Xt+s /∈ Dc

)
ds

)
≤ 0 . (61)

The continuity of b and c, however, implies that there is a small enough
[t, u] ⊆ [t, 1] such that b(s) < c(s) for all s ∈ [t, u]. With strictly positive
probability, therefore, the process X will spend non-zero time in the region
between b(s) and c(s) for s ∈ [t, u], and this combined with the fact that both
Dc and Db are contained in {H ≥ 0}, forces the expectation in (61) to be
strictly positive and provides a contradiction. Hence we must have c ≤ b on
[0, 1] as claimed.

Step 10. We finally show that c = b on [0, 1]. Suppose that this is not the
case. Choose a point (t, x) ∈ [0, 1)×R+ such that c(t) < x < b(t) and consider
the stopping time

τD = inf {0 ≤ s ≤ 1−t |Xt+s ∈ Db} (62)

under the measure Pt,x. Inserting τD in (49) and (53), taking Et,xon both sides
and using the optional sampling theorem, we see that

Et,x

(∫ τD

0

H
(
t+s,Xt+s

)
ds

)
= V (t, x) (63)

Et,x
(
U c(t+τD, Xt+τD

)
)

= U c(t, x) (64)

− Et,x

(∫ τD

0

H
(
t+s,Xt+s

)
I
(
Xt+s /∈ Dc

)
ds

)
.

Since the set Db is contained in the set Dc and U c = 0 on Dc, we must have
U c(t+τD, Xt+τD

) = 0, and using the fact that U c ≥ V we get

Et,x

(∫ τD

0

H
(
t+s,Xt+s

)
I
(
Xt+s ∈ Dc

)
ds

)
≤ 0 . (65)

Then, as before, the continuity of b and c implies that there is a small enough
[t, u] ⊆ [t, 1] such that c(s) < b(s) for all s ∈ [t, u]. Since with strictly positive
probability the process X will spend non-zero time in the region between c(s)
and b(s) for s ∈ [t, u], the same argument as before forces the expectation in
(65) to be strictly positive and provides a contradiction. Hence we conclude
that b(t) = c(t) for all t ∈ [0, 1] completing the proof. ��
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12. Shiryaev AN (2002) Quickest detection problems in the technical analysis of the
financial data. Proc. Math. Finance Bachelier Congress (Paris, 2000), Springer
487–521.

13. Shiryaev AN (2004) A remark on the quickest detection problems. Statist. De-
cisions 22:79–82.

14. Urusov MA (2005) On a property of the moment at which Brownian motion
attains its maximum and some optimal stopping problems. Theory Probab.
Appl. 49:169–176.



A Stochastic Demand Model for Optimal
Pricing of Non-Life Insurance Policies

Paul Emms

Faculty of Actuarial Science and Insurance, Cass Business School, City University,
106 Bunhill Row, London EC1Y 8TZ, United Kingdom. p.emms@city.ac.uk

Summary. A model for non-life insurance pricing is developed which is a stochastic
version of that given in [4]. Two forms of stochasticity are considered: the uncer-
tainty in the future market average premium and the uncertainty in the change of
exposure from a given relative premium level. The optimal premium strategy is de-
termined using dynamic programming, and this is compared with the deterministic
model both analytically and numerically. If the market average premium is stochas-
tic then the optimization problem reduces to a set of characteristic strip equations,
which are analyzed using the phase diagram. If the change in exposure is stochastic
then an analytical expression is found for the optimal premium strategy when the
objective is to maximize the expected terminal wealth in an infinite insurance mar-
ket with an exponential utility function. As the volatility is increased the optimal
strategy changes to the breakeven premium strategy for both forms of stochasticity
and positive risk aversion. However, the terminal optimal premium is given by the
deterministic problem if the market average premium is stochastic.

1 Introduction

The daily change in the exposure of a non-life insurer increases as policies
are sold and decreases as policies are not renewed or canceled. In a highly
competitive price-conscious market the insurer’s premium relative to the rest
of the insurance market is an important factor in policy sales. The size of the
insurer as measured by its current exposure is also important, since larger
insurers tend to attract greater volumes of business than small insurers with
comparable premium rates [11]. However, there are many other factors which
influence demand: the marketing of the policies, the need for insurance, the
reputation of the insurer and the capacity of the insurer to underwrite policies.
These factors are too numerous to incorporate into a simple non-life insurance
model and they are hard to quantify, yet they all contribute to the uncertainty
in how much exposure a given pricing strategy will generate.

Taylor [11] develops an insurance model where each insurance policy gener-
ates a certain number of units of exposure and prices are measured per unit of
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this exposure. Since an insurer sells many policies, one can consider the expo-
sure of the insurer as a continuous stochastic process. The change in exposure
is then described by a stochastic differential equation, whose drift term re-
flects the demand for policies. The focus of this paper is not the uncertainty in
the frequency and size of claims on policies, but the uncertainty of gaining or
losing exposure through the setting of a premium for a non-life insurance pol-
icy. In the management science literature these are called stochastic demand
models and they are usually formulated with a Poisson process representing
the demand for retail products with its intensity taken as a regular demand
function [6]. However, in contrast to retail sales, the exposure of an insurer
decreases when policies lapse.

We study two forms of uncertainty in the demand for policies: the un-
certainty of the future market average premium for comparable policies, and
the uncertainty of gaining or losing exposure from a fixed relative premium.
For the first form of uncertainty there is some analytical reduction, which
enables us to characterize the optimal control in the same manner as the
deterministic case. For the second form of uncertainty, the control (here the
premium) explicitly scales the volatility of wealth of the insurer as in the opti-
mal asset allocation problem [10]. Consequently the volatility of the exposure
is expected to significantly alter the optimal pricing strategy in contrast to
the deterministic case.

The simple model of a non-life insurance market given in [3] is the basis for
this study. Emms & Haberman [4] extend this model to a finite deterministic
insurance market and characterize the optimal control using the phase dia-
gram. Representative results are reproduced in Figure 1 for a terminal wealth
objective, a linear demand law and an infinite and a finite insurance market.
Graph (a) is a plot of the insurer’s exposure q against the adjoint variable
Λ for a number of trajectories computed using different initial conditions. It
is shown in [4] that the relative premium increases as Λ decreases, and only
those trajectories which intersect the line Λ = 0 are optimal since this is
the transversality condition from Pontryagin’s Maximum Principle. For the
chosen parameters, phase diagram (a) shows that it is optimal to build up
exposure and possibly loss-lead if the time horizon is sufficiently large: the ar-
rows on the plots (indicating the direction of increasing time) are at half-year
intervals and trajectories which originate in the phase diagram above Λ ∼ 0.5
are loss-leading. For the finite market case shown in phase plane 1(b), the op-
timal strategy is strongly dependent on the position of the equilibrium point
(q+, Λ+) and expansion or market withdrawal is possible dependent on the
initial exposure q.

The phase diagrams in Figure 1 characterize the optimal premium strategy
for the deterministic version of the model presented in this paper. However,
when the state equations are stochastic such a characterization is not always
possible since the optimal state trajectory and the optimal control can be
stochastic. In this paper we give a qualitative description of the optimal pre-
mium strategy for two different stochastic demand models, and we compare
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Fig. 1. Phase diagrams reproduced from [4] showing the optimal premium strategy
for a terminal wealth objective in (a) an infinite market and (b) a finite market. The
upper and lower dashed lines bound the domain of the demand law. For numerical
values of the parameter set for these diagrams see [4].



116 Paul Emms

how the optimal premium strategy differs in each case from the deterministic
problem. In particular, we describe how the phase diagram of the deterministic
model changes into a state diagram characterizing the stochastic control.

We introduce the stochastic insurance market model in the next section
and suggest suitable parameterizations for this model in Section 2.1. Sec-
tion 3 formulates the pricing of non-life insurance policies as a stochastic
optimal control problem and uses dynamic programming for the solution. In
Section 3.1 we relate the deterministic dynamic programming problem to the
equivalent formulation in terms of Pontryagin’s Maximum Principle. We con-
sider the two stochastic components of the model in Sections 4 & 5, and assess
how these forms of uncertainty alter the optimal premium strategy. Finally,
conclusions are given in Section 6.

2 Stochastic demand model

Suppose the premium per unit exposure of a non-life insurance policy is pt
and the corresponding breakeven premium is πt. The premium pt is a contin-
uously adapted process set by the insurer for a policy of fixed length κ−1. A
policyholder must pay this premium at the start of the policy for the fixed
period of cover. The breakeven premium (per unit exposure) is determined
by an insurer from historical claims data and represents the cost of selling an
insurance policy including expenses. Let the market average premium for an
equivalent insurance policy be p̄t per unit of exposure. Emms & Haberman [4]
use these variables in order to calculate the optimal premium strategy using a
deterministic state model. Here, we extend that model by incorporating two
stochastic factors.

First, we suppose there is some uncertainty as to the actual exposure the
insurer gains in ∆t:

dqt = qt(G− κ) dt+ σ1 dW1,t, (1)

where G = G(qt, kt) is the demand function, σ1 = σ1(qt) ≥ 0 is the volatility
of policy sales, W1,t is a standard Brownian motion and kt = pt/pt is the
premium relative to the market average premium. The term qtG in (1) models
the increase in exposure from selling insurance at relative premium kt, while
the relative rate of loss of exposure κ models the non-renewal of policies of
length κ−1.

The second stochastic factor models the uncertainty in the market average
premium p:

dpt = µpt dt+ σ2

√
pt dW2,t, (2)

where the drift µ and volatility σ2 are constant and the standard Brownian
motion W2,t is uncorrelated with W1,t. We have chosen this form of stochastic
process since it yields a non-negative market average premium and leads to
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state space reduction in the forthcoming HJB equation. Other parameteriza-
tions are possible but our aim is to assess how the uncertainty in the market
average premium affects the optimal premium strategy for the insurer.

We suppose that the market prices non-life insurance policies according to
the expected value principle. Consequently, we define the breakeven premium
relative to the market average premium as

γ =
πt
pt

=
1

1 + θ
,

where θ > 0 is the constant market loading and generates a profit for the
market. Therefore, the market average premium and the breakeven premium
are perfectly correlated. A further stochastic factor could be incorporated to
model the uncertainty in future loading as in [3], but for simplicity this is not
attempted here.

The wealth of the insurer changes as policies are sold:

dwt = (pt − πt)(qtGdt+ σ1 dW1,t). (3)

Notice that the wealth and the exposure of the insurer are correlated stochastic
processes and the volatility of the wealth is σ1(pt − πt).

We aim to find the optimal relative premium strategy k∗t which maximizes
the expected utility of terminal wealth:

E {U2(wT )|xt = x0} , (4)

where U2 is the utility function, xt = (qt, pt, wt)T is the state vector, and T
is the planning horizon. Emms & Haberman [4] also consider a total wealth
objective, which introduces an additional utility function U1. We shall concen-
trate on the terminal wealth problem since Emms & Haberman [4] find that
the qualitative form of the optimal control is similar for comparable utility
functions.

2.1 Parameterisations

In general, there are no analytical solutions of the optimization problem and
the numerical solution is complicated by the number of state variables in the
model. In order to progress we must make a judicious choice of model parame-
terization with the aim of reducing the dimension of the optimization problem.
If the state space is of two dimensions or more it is difficult to visualize the
optimal control and hard to categorise the qualitative optimal behaviour for
the insurer. In this section we collect together those parameterizations which
allow us to simplify the problem.

We call the demand function separable if

G(q, k) = f(q)g(k), (5)
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where f, g are called the exposure and price functions respectively [7]. Both
of these parameterizations are decreasing functions of their respective ar-
guments. Following the terminology in [4], we call the market infinite if
f = a = const. or finite with saturation exposure qm if

f(q) = a

(
1− q

qm

)+

, (6)

where a > 0 is a constant.
There are many possible parameterizations for the price function [9], but

the simplest is a linear relationship:

g(k) = b− k, (7)

where k = b > 0 is the relative premium for which there is no demand for in-
surance policies. This parameterization has the benefit of leading to analytical
optimal premium strategies in some cases because there is an explicit expres-
sion for the control in terms of the value function. We require that b > γ,
otherwise from (3) there is no relative premium which generates wealth for
the insurer. This is a slightly different parameterization from the deterministic
model in Emms & haberman [4], who take g(k) = (b − k)+ since new cus-
tomers can only generate exposure. However, in a stochastic model if k � b
then exposure is always generated by the stochastic term in (1), which means
the insurer can gain wealth no matter how high its premium. In order to
prevent this behaviour we adopt (7), which has the effect of decreasing the
exposure rapidly if the relative premium is significantly above b.

If the market is finite we require the volatility of exposure σ1 to be zero
when the insurer has no exposure or when it reaches its saturation exposure
qm:

σ1(0) = σ1(qm) = 0. (8)

These requirements ensure that the exposure remains in the range 0 ≤ qt ≤
qm. A parameterization for a finite market model which satisfies these require-
ments is

σ1(q) = σ0

√
q

(
1− q

qm

)+

. (9)

For an infinite market we require σ1(0) = 0 and an attractive model is

σ1(q) = σ0
√
q, (10)

which is a similar parameterization to that employed in the Cox-Ingersoll-Ross
model of the short interest rate. This leads to model simplification because
the state variable q appears linearly in the resulting HJB equation.

The exponential terminal utility function is

U2(w) =
1
c

(
1− e−cw

)
, (11)
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Table 1. Sample data set where [q] represents the units chosen for the exposure.

Time horizon T 3.0 yr
Demand parameterization a 3 p.a.
Demand parameterization b 1.5
Market loading θ 0.1
Length of policy τ = κ−1 1 yr
Market average premium growth µ 0.1 p.a.
Saturation exposure 5.0[q]

where c ≥ 0 is the constant risk aversion. In the limit c → 0 we recover the
linear utility function as a special case. The advantage of this utility function
is that it is easier to determine the form of the value function, and this leads
to problems which are independent of the current wealth w.

In the forthcoming numerical work we adopt the parameter values given
in Table 1. These values correspond to those given in [4].

3 Optimization problem

In Emms & Haberman [4] the optimal pricing strategy was calculated using
Pontryagin’s Maximum Principle. Here, the tool for calculating the optimal
control is dynamic programming.

In order to make further progress we incorporate some of the parameteriza-
tions given in Section 2.1. Let us suppose the demand function G is separable
(5) and the premium dependence is linear (7). Based on the objective function,
an appropriate definition of the value function is

V (x, t) = sup
k

E {U2(wT )|xt = x} ,

where x is the current state vector. If V is sufficiently smooth then it satisfies
the HJB equation

Vt + 1
2σ

2
1Vqq + µpVp + 1

2σ
2
2pVpp + sup

k
{q(f(b− k)− κ)Vq+

pqf(k − γ)(b− k)Vw + 1
2σ

2
1p

2(k − γ)2Vww + pσ2
1(k − γ)Vqw

}
= 0, (12)

with boundary condition V (t = T ) = U2(w).
Let us define the interior relative premium ki by first-order condition:

ki =
qf(Vq − p(b+ γ)Vw) + σ2

1p(γpVww − Vqw)
p(σ2

1pVww − 2qfVw)
. (13)

The corresponding second-order condition for a maximum is

pσ2
1Vww ≤ 2qfVw. (14)

If the second-order condition is satisfied and the partial derivatives of V are
finite then the interior control ki yields the supremum in the HJB equation.
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3.1 Deterministic case

Emms & Haberman [4] take the deterministic form of the model (σ1 = σ2 = 0)
and calculate the optimal premium strategy using the Maximum Principle.
They find that the optimal strategy is independent of the parameterization of
the utility function U2(w) in non-degenerate cases. The Maximum Principle
leads to a set of ODEs which are the characteristics of the HJB equation
[13] and it is not immediately clear that both formulations lead to the same
premium strategy. The deterministic version of the HJB equation (12) is

Vt + µpVp + q
(
f(b− ki)− κ

)
Vq + pqf

(
ki − γ

)
(b− ki)Vw = 0, (15)

and the first-order condition reduces to

ki =
1
2

(
b+ γ − Vq

pVw

)
. (16)

Now if we partially differentiate (15) with respect to w and use the first-
order condition then we find DVw/Dt = 0 where we have used the convective
differential operator

D

Dt
:=

∂

∂t
+
dq

dt

∂

∂q
+
dw

dt

∂

∂w
, (17)

to denote the derivative along the state trajectory [1]. Consequently Vw =
U ′

2(w(T )) is constant along an optimal state trajectory. By analogy with the
adjoint variable in [4] we write

Λ(q, w, t) =
Vq
pVw

, (18)

so that the interior control is just a function of one adjoint variable. Now if
we partially differentiate (15) with respect to q we find that

DVq
Dt

+
∂

∂q
[q (f (b− k)− κ)]Vq + p

∂

∂q
[qf(k − γ)(b− k)]Vw =

DVq
Dt

+
[
1
2 (qf)′(b− γ + Λ)− κ

]
Vq + 1

4 (qf)′
(
(b− γ)2 − Λ2

)
Vw = 0.

Consequently along an optimal state trajectory

DΛ

Dt
=

1
pVw

DVq
Dt
− µΛ

= −1
4 (qf)′(b− γ)2 −

(
1
2 (qf)′(b− γ)− κ+ µ

)
Λ− 1

4 (qf)′Λ2, (19)

and we arrive back at equation (25) in Emms & Haberman [4]. This equation
and the corresponding deterministic version of (1) yield the phase diagrams
in Figure 1.
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A verification theorem such as that in [5] proves that the control ki is op-
timal providing solutions to (15) are sufficiently smooth. The phase diagrams
demonstrate that a smooth solution to the coupled (q, Λ) equations exists
(dependent on the model parameters), which also satisfies the transversality
condition Λ = 0. Therefore, the phase diagram describes the qualitative fea-
tures of the optimal control in the deterministic case providing we accept a
robust numerical solution as indicative of existence.

If σ1 = 0, σ2 �= 0 and U2 = w then it is easy to see that the value function
is of the form

V = w + pF (q, t); F (q, T ) = 0,

so that V is linear in p and the stochastic term disappears from the HJB
equation (12). Consequently, the optimal premium strategy is the certainty
equivalent control given by the phase diagram. We consider the case that the
utility function is nonlinear in the next section.

4 Stochastic market average premium

Suppose σ1 = 0, σ2 �= 0 and the terminal utility function is exponential (11).
Emms [3] examines the case that the risk aversion c is small and the loss ratio
γ is stochastic. Here we relax the assumption that the risk aversion is small,
but consider a fixed loss ratio.

The HJB equation (12) contains only linear p terms. This observation and
the form of the objective suggests we look for a value function of the form

V (t, p, q, w, t) =
1
c

(
1− e−c(w+pF (q,t))

)
,

with F (q, T ) = 0. This candidate value function satisfies the second-order
condition (14). Substituting V into the HJB equation yields

Ft − κqFq + µF − 1
2cσ

2
2F

2 + 1
4qf (b− γ + Fq)

2 = 0, (20)

which is a first-order nonlinear PDE. Let us introduce the notation P = Ft
and

Λ = Fq =
Vq
pVw

,

which is consistent with the definition (18). Using this notation the PDE
becomes

F (t, q, F, P, Λ) = P + 1
4 (qf) (b− γ + Λ)2 − κqΛ+ µF − 1

2σ
2
2cF

2 = 0.

The characteristic strip equations [2, p.78] for this PDE are then

dt

du
= FP ,

dq

du
= FΛ,

dF

du
= PFP + ΛFΛ,
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dP

du
= −Ft − PFF ,

dΛ

du
= −Fq − ΛFF ,

where the initial conditions for these equations are at t = T :

u = 0, q = s, F = 0, Λ = 0, P = − 1
4 (qf)′ (b− γ)2 .

We interpret u as the variable along a characteristic trajectory, while s pa-
rameterizes the initial curve which in this case is the line t = T .

If we substitute in the functional F then this system can be reduced to
three ODEs along the characteristics

dq

dt
= 1

2 (qf) (b− γ + Λ)− κq,
dΛ

dt
= − 1

4 (qf)′ (b− γ + Λ)2 + (κ− µ)Λ+ cσ2
2FΛ, (21)

dF

dt
= 1

2cσ
2
2F

2 − µF + 1
4 (qf)

(
Λ2 − (b− γ)2

)
,

which we integrate backwards from t = T, and then substitute the adjoint
solution into the first-order condition

ki = 1
2 (b+ γ − Λ) , (22)

in order to find the interior control.
We observe that if cσ2

2 = 0 then these equations uncouple and we retrieve
the deterministic optimal control. The transversality condition (Λ = 0) means
that the terminal interior premium is 1

2 (b+ γ) and this value is independent
of the volatility σ2 and the current exposure q. Consequently, the terminal
interior control is the same as the deterministic problem and its value is known
at time t = 0.

In general, (21) is a coupled system of nonlinear ODEs and they must be
solved numerically. Their solution leads to an open loop interior deterministic
control ki(t), which depends on the volatility of the market average premium
σ2. If qi(t), ki(t) ∈ C1[0, T ] then we can apply the verification theorem in [5]
since the control does not affect the SDE (2). Under these conditions, the
interior control ki is the optimal control k∗.

The system (21) is non-autonomous so we can study the phase space
(q, Λ, F ).

4.1 Infinite market

If the market is infinite (f = a) then the equilibrium points of (21) are given
by

q = 0, F
(

1
2cσ

2
2F − µ

)
= 0,

(κ− µ)Λ+ cσ2
2ΛF − 1

4a (b− γ + Λ)2 = 0.
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If F = 0 then there are at most two equilibrium points (0, Λ0
± (κ, µ, a, b)) given

by the real roots of

(κ− µ)Λ− 1
4a (b− γ + Λ)2 = 0.

These are the equilibrium points reported in Emms & Haberman [4] for the
deterministic problem. In addition, if F = 2µ/cσ2

2 then there are up to two
more equilibrium points (0, Λ0

± (κ,−µ, a, b)). Thus, the behaviour of the opti-
mal control may differ from the deterministic case.

In fact, the properties of the optimal control are similar for both the de-
terministic and stochastic model. In the case that the deterministic optimal
strategy is to withdraw then there are two equilibrium points in the phase
plane (corresponding to Figure 4(a) of [4]). For the stochastic case there are
two more equilibrium points, but they do not interact significantly with the
optimal trajectories because they lie in the plane F = 2µ/cσ2

2 . One finds that
withdrawal is still optimal but the change in the optimal premium is dimin-
ished as the volatility of the market average premium increases. These results
are available on request, but are merely summarized here for brevity.

The case that there are no equilibrium points in the phase plane for the
deterministic problem is shown in Figure 1(a) using the parameters in Table 1.
The optimal strategy is to build up exposure and loss-lead if the time horizon
T is sufficiently large irrespective of the initial exposure. For the stochastic
case the corresponding plot is shown in Figure 2. One can see that building up
exposure is still optimal but that the optimal trajectories are squeezed towards
the axis Λ = 0. This means the change in the optimal relative premium over
the time horizon decreases, and from (22) the relative premium is higher than
in the deterministic case.

4.2 Finite market

If the market is finite and we adopt the exposure function (6) then the equi-
librium points of the infinite market case are also equilibrium points of the
finite market case and lie on the plane q = 0 provided that they exist. If we
suppose q �= 0 then any remaining equilibrium points are given by the coupled
equations

Λ2 + (2φ− 4ζ)Λ+ φ (φ− 4ψ) + 4βFΛ = 0,

1
2βF

2 − ζF + 1
2qmψ

(Λ+ φ− 2ψ) (Λ− φ)
Λ+ φ

= 0, (23)

where we have used the same non-dimensional parameters given in Emms &
Haberman [4]:

φ = b− γ, ψ =
κ

a
, ζ =

µ

a
,

In addition, we have introduced the parameter
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Fig. 2. Projected phase plane if the market average premium is stochastic (cσ2
2 = 2)

and the market is infinite. This figure should be compared with the phase plane
for the deterministic model shown in Figure 1(a). Note that we have substantially
reduced the q scale on this plot.

β =
cσ2

2

a
, (24)

which has units per-unit exposure and determines the effect of stochasticity
on the equilibrium points. The term 1

2βF
2 suggests we write F̂ = βF and

q̂m = βqm, which are both non-dimensional, so that the non-dimensional
equilibrium equations are

Λ2 + (2φ− 4ζ)Λ+ φ (φ− 4ψ) + 4F̂Λ = 0,

1
2 F̂

2 − ζF̂ + 1
2 q̂mψ

(Λ+ φ− 2ψ) (Λ− φ)
Λ+ φ

= 0. (25)

The existence of equilibrium points depends on the values of the four pa-
rameters φ, ψ, ζ, q̂m and a simple asymptotic analysis reveals their structure.
If q̂m  1 corresponding to an almost deterministic system and all other pa-
rameters are O(1) then F̂ ∼ O(q̂m) or F̂ ∼ 2ζ. In the first case the adjoint
equation becomes at leading order

Λ2 + (2φ− 4ζ)Λ+ φ (φ− 4ψ) = 0.

Let us denote these equilibrium points by (q±(φ, ζ, ψ), Λ±(φ, ζ, ψ), O(q̂m))
where
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Λ±(φ, ζ, ψ) = 2ζ − φ± 2
(
ζ2 − φζ + φψ

)1/2
,

and q±(φ, ζ, ψ) denotes the corresponding exposure. These are the points iden-
tified by Emms & Haberman [4] in the deterministic finite market case if they
are projected onto the (q, Λ) plane. Emms & Haberman [4] show that only
one equilibrium point (q+, Λ+) exists in the relevant part of the phase plane
for the deterministic problem and an appropriate parameter set, and that this
point determines the qualitative features of the optimal control.

If F̂ ∼ 2ζ (that is F = 2µ/cσ2
2) then the adjoint equation becomes

Λ2 + (2φ+ 4ζ)Λ+ φ (φ− 4ψ) = 0,

at leading order. Accordingly, we denote the corresponding equilibrium points
by (q±(φ,−ζ, ψ), Λ±(φ,−ζ, ψ), 2ζ). Thus, in (q, Λ, F ) space there are up to
four additional equilibrium points if q̂m  1. We expect that only two of these
points (q+(φ, ζ, ψ), Λ+(φ, ζ, ψ), O(q̂m)) and (q+(φ,−ζ, ψ), Λ+(φ,−ζ, ψ), 2ζ)
are located in the part of phase space for the stochastic case which affects
the optimal premium strategies.

When q̂m ∼ O(1) we must use numerical methods to find the equilibrium
points. The position of the two equilibrium points (q1,2+ , Λ1,2

+ , F 1,2), which
correspond to (q+, Λ+), are shown in Figure 3 as the length of the policies is
varied using the parameter set in Table 1. In general, the (q1+, Λ

1
+, F

1) equi-
librium point lies close to the F = 0 plane as β → 0, whilst the (q2+, Λ

2
+, F

2)
point tends towards the plane F = ∞: these are the two cases described by
the asymptotics above. Thus, the roots are not coincident if β = 0, and there
is not a bifurcation in the usual sense as β is increased from zero. Numerical
experiments reveal that both these equilibrium points are unstable for the
range of parameters considered here. These results are not shown here, but
this behaviour is consistent with the forthcoming phase diagrams.

Now we describe Figure 3 in greater detail. Figure 3(a) shows the position
of both equilibrium points in the three-dimensional phase space (q, Λ, F ) as κ
varies from 2.0 to 0.3 with β = 1/6. We do this to compare the position of the
equilibrium points with the phase diagrams in the deterministic case shown
in Figure 5 of Emms & Haberman [4]. In order to interpret Figure 3(a), one
should note that the equilibrium points initially increase in q as κ is decreased,
which corresponds to increasing the length of policies. The projection of these
two curves onto the (q, Λ) plane is shown in graph (b) as the two outer la-
beled curves. The inner (almost linear) curves show the projected position of
the equilibrium points (q1,2+ , Λ1,2

+ , F 1,2) when β = 0. We can only show the
projection because F 2 = ∞ when β = 0. Thus we see how in the stochastic
model the equilibrium points appear pushed apart in the projection of the
phase diagram. Optimal trajectories in phase space must intersect the line
F = Λ = 0 and it is not clear how the interaction of the two equilibrium
points affect these trajectories. Thus we plot the optimal trajectories for fixed
policy lengths next.
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Fig. 3. Position of two equilibrium points (q1,2
+ , Λ1,2

+ , F 1,2) in phase space shown
as solid lines as κ is decreased from κ = 2.0 . . . 0.3 for β = 0 and β = 1

6
. The

upper graph (a) shows the full three-dimensional phase space (q, Λ, F ) with β = 1
6
,

while (b) shows the projected phase plane (q, Λ). The β = 0 curves are the inner
apparently straight solid lines on graph (b).
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Fig. 4. Optimal trajectories projected onto the (q, Λ) plane if the market average
premium is stochastic and the market is finite. Equilibrium points are denoted by
solid dots and the numerical parameters are taken as β = 1

6
where (a) κ = 1.5, (b)

κ = 1.0, and κ = 0.5. Notice that on plane (a) the q scale has been reduced.
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Figure 4 shows three projected phase diagrams with superimposed optimal
trajectories and equilibrium points. From the first phase plane (a) we can see
that the broad structure of the phase diagram is similar to the deterministic
case: the optimal strategy is to either expand or withdraw from the insur-
ance market. Phase plane (b) is the stochastic version of the deterministic
phase plane shown in Figure 1(b). The interaction of the trajectories with
the equilibrium points alters the conditions for when it is optimal to build-up
exposure or leave the market. Notice in plane (a) trajectories can cross each
other in the projection and that the position of the equilibrium point may
be unimportant if the optimal trajectory traverses through a high F value.
In plane (b) we see an optimal trajectory appear to circle near the (q2+, Λ

2
+)

equilibrium point. The circling behaviour does not necessarily occur near the
equilibrium points but is a feature of the interaction between them and it
implies that the optimal premium is not easy to categorise in a withdrawal
strategy. The plane (c) seems to indicate that it is the position of the (q2+, Λ

2
+)

equilibrium point which determines the type of optimal premium strategy at
least in this part of parameter space.

5 Stochastic exposure

Next, we examine the problem when there is uncertainty in the exposure ob-
tained for a given premium so that σ1, σ2 �= 0. Again, consider the exponential
utility function (11).

Let us look for a solution of the HJB equation (12) of the form

V =
1
c

(
1− e−c(w+F (p,q,t))

)
,

which requires that F satisfy

Ft + 1
2σ

2
1

(
Fqq − cF 2

q

)
+ µpFp + 1

2σ
2
2p
(
Fpp − cF 2

p

)
+ q

(
f(b− ki)− κ

)
Fq+

pqf
(
ki − γ

) (
b− ki

)
− 1

2σ
2
1p

2c
(
ki − γ

)2 − σ2
1pc

(
ki − γ

)
Fq = 0, (26)

and F (p, q, T ) = 0. Here, the interior control is

ki =
qf (p (b+ γ)− Fq) + σ2

1pc (γp− Fq)
p (σ2

1pc+ 2qf)
,

and V satisfies the second-order condition (14).
In general, there is no analytical solution of this problem and the numer-

ical solution is difficult to visualize because there are two independent state
variables p and q. Consequently, we focus on two specific cases which highlight
the features of the optimal control. We separate the analysis into sections on
linear and exponential utility functions because in the linear case one can
incorporate stochastic p.
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5.1 Linear utility function

The case that U2(w) is linear in wealth corresponds to c → 0+. The HJB
equation (26) now contains terms linear in p, which suggests we look for a
solution of the form

F = pH(q, t),

so that the problem simplifies to

Ht + µH − κqHq + 1
2σ

2
1Hqq + qf(b− ki)

(
ki − γ +Hq

)
= 0, (27)

ki = 1
2 (b+ γ −Hq) .

If we substitute the interior control back into the reduced HJB equation we
find the nonlinear second-order PDE

Ht + µH + 1
2σ

2
1Hqq − κqHq + 1

4qf (b− γ +Hq)
2 = 0, (28)

which has boundary condition H(q, T ) = 0, from the terminal wealth condi-
tion. In general, it is clear that the volatility of the exposure σ1 affects the
optimal control whereas the volatility of the market average premium σ2 does
not.

In an infinite market (f = a) H is linear in q, and so we retrieve the
deterministic, open-loop, interior control. If the market is finite then we must
solve the HJB equation (28) numerically. Notice that in this case the HJB
equation is second-order in contrast to (20). It is easier to solve this equation
numerically using the uncoupled form (27) because then one can account for
the direction of the characteristics as σ2 → 0.

We adopt a backward first-order time step for the time derivative, a cen-
tered second-order difference for the diffusion term, and a one-sided derivative
for the advective term. The interior control gives the sign of the coefficient of
the advective term Hq in (27) and determines which one-sided difference we
use to compute this spatial derivative. Thus we adopt the numerical param-
eters given in Table 1, and assume f(q) is given by (6), while the volatility
σ2(q) is parameterized by (9).

There is a complication with the numerical scheme at q = qm since we
do not know the derivative Hq. Consequently, we extend the domain of the
exposure to q = qmax, suppose σ1(q) = 0 for qm ≤ q ≤ qmax and take
Hq(qmax, t) = 0. The reasoning for this boundary condition is as follows. For
q(T ) > qm the volatility σ2(q(T )) = 0 which means the HJB equation is
deterministic at termination:

Ht + µH − κqHq = 0.

Thus, for sufficiently large q we obtain from the termination condition that
H ≡ 0 so that ki ≡ 1

2 (b+ γ) and the exposure decays exponentially. The
periphery of this region is determined by the characteristic which originates
from the point q = qm, t = T. Provided we take qmax sufficiently large that it
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Fig. 5. State diagram of the interior premium strategy for the deterministic model
in a finite insurance market calculated numerically using a finite difference scheme.
Optimal trajectories computed using shooting are superimposed on the plot in order
to illustrate the change in exposure for given initial exposure. These trajectories are
also projected on to the (q, t) plane.

lies in the region where H ≡ 0 then we need not explicitly calculate the line
on which H = 0. Moreover, rather than take H = 0 as the boundary condition
we use Hq = 0 because then numerical oscillations do not interact with the
fictitious boundary. Wang et al. [12] employ a similar extended domain when
solving deterministic optimal control problems.

The integration proceeds backwards from t = T using the terminal bound-
ary condition, and spatial conditions H(0, t) = Hq(qmax, t) = 0. First we show
the results with no volatility in order to compare against the deterministic
results. Figure 5 shows the results from the finite difference scheme superim-
posed with optimal trajectories computed from the maximum principle using
shooting. We call this figure the state diagram: for state q at time t we can
read off the interior control ki(q, t). It is reassuring to note that both numeri-
cal schemes lead to the same interior control ki. It can be seen that low initial
exposure leads to exposure generating strategies, while high initial exposure
leads to strategies which represent market withdrawal. Notice that the state
trajectories are functions of time whereas in the phase diagram of Figure 1(b),
which is for an identical parameter set, time parameterizes the curves.

When the exposure is stochastic σ1 �= 0 we use the finite difference scheme
to calculate the interior control. However, the results are qualitatively similar
to the deterministic case in the sense that the computed surface for the interior
control is only slightly perturbed for reasonable values of the volatility. The
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interpretation of the optimal control differs because now the state equation
is stochastic so one must read off the current value of the state variable from
the plot in order to determine the current interior control. This means the
optimal control k∗ = k∗(q, t) is in feedback form rather than open-loop. Since
0 < q∗t < qm we can safely say the optimal state trajectory is well-defined.

Figure 6 shows numerical results from the finite difference scheme for the
finite market case. The first pair of graphs (a) show the interior premium ki

and the adjoint variable Λ when the volatility σ0 is small. The shape of the
surface for the interior control is similar to the deterministic case (Figure 5)
implying that for low values of the current exposure the insurer should set
a low premium in order to build-up exposure. The instantaneous drift in the
exposure is proportional to Gi−κ = 1

2a
(
φ+ Λi

)
−κ, so that the drift is zero

when
Λi = Λ0 := 2ψ − φ.

On the plot for Λ we have superimposed the contour Λ = Λ0, which partitions
the (q, t) plane into two regions. We can use this partition to describe the
strategy based on the current value of the insurer’s exposure. If Λ0 > 0 then
we say the current optimal strategy is expansion, while if Λ < Λ0 then we
say the current optimal strategy is withdrawal. Depending on the path of
the Brownian motion, the optimal strategy can change from expansion to
withdrawal an infinite number of times along the optimal state trajectory.

Figure 6(b) shows the corresponding result if we adopt a very large volatil-
ity σ0 = 5.0. Now the interior relative premium is larger and above the market
average premium

(
ki > 1

)
. Indeed, since ki > γ = 0.91 then no value of the

current exposure leads to loss-leading. If the insurer loss-leads but does not
actually achieve the expected increase in exposure then significant losses will
occur. Consequently, when the volatility is high it is optimal to set a much
higher premium, in this case above the market average premium, so that the
change in exposure is much smaller. The contour Λ = Λ0 moves to smaller
values of exposure, so that the withdrawal strategy is enhanced as the volatil-
ity of the exposure is increased. We also observe that the profile of ki(q) for
fixed small t is almost linear in q. This is consistent with the diffusive term
dominating the HJB equation when the volatility is very large.

5.2 Exponential utility function

Now we focus on just the stochastic exposure equation and take σ2 = 0. Thus,
if we set F = pH(q, t) then the reduced HJB equation becomes

Ht + µH+ 1
2σ

2
1

(
Hqq − pcH2

q

)
+ q

(
f(b− ki)− κ

)
Hq + qf(ki − γ)(b− ki)

− 1
2cσ

2
1p
(
ki − γ

)2 − cσ2
1p
(
ki − γ

)
Hq = 0, (29)

with boundary condition H(q, T ) = 0. The interior control is
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Fig. 6. Numerical solution of the HJB equation for a terminal wealth objective
and a finite market. The plots show the interior control ki and the adjoint variable
Λ = Hq for (a) σ0 = 0.1, c = 0, (b) σ0 = 5.0, c = 0 (c) σ0 = 5.0, c = 5.0.
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ki =
qf (b+ γ −Hq) + cσ2

1p (γ −Hq)
2qf + cσ2

1p
.

At termination the interior control is

ki =
qf(b+ γ) + cσ2

1pγ

2qf + cσ2
1p

.

If cσ2
1 = 0 then the interior premium is 1

2 (b+ γ), that is the average of the
relative premium which leads to no demand, b, and the ratio of the breakeven
premium π to the market average premium p̄. If cσ2

1 � 1 then the interior
premium is γ so that the interior premium is the breakeven premium. This
behaviour of the interior control at termination is independent of the exposure
function f .

Infinite market

In an infinite market (f = a) with volatility parameterized by (10) we look
for a solution of the form

H(q, t) = qI(t),

which reduces the HJB equation to a Riccati equation:

dI

dt
+ a0(t) + a1(t)I + a2(t)I2 = 0; I(T ) = 0,

with coefficients

a0(t) =
1
2a(b−γ)

2

2+β0p
, a1(t) = a(1+β0p)(b−γ)

2+β0p
+ µ− κ− aβ0p, a2(t) =

1
2a

2+β0p
,

and β0 = cσ2
0/a. The interior control becomes

ki(t) =
(b+ γ) + β0pγ − I(t)(1 + β0)

2 + β0p
,

which is an open-loop control. Consequently, the optimal state equation is

dqt = qt( 1
2a(b− k

i(t))− κ) dt+ σ0

√
q

(
1− q

qm

)+

dW1,t.

Provided that ki(t) ∈ C1[0, T ] then this equation has a strong solution in
[0, T ] [8]. This means we can apply the verification theorem in [5] and ki(t) is
the optimal control.

An analytical expression is available for the optimal control only if p =
const., that is µ = 0, because then the coefficients a2, a1, a0 are constant.
Notice that a0, a2 → 0 as β0 →∞ so that I ≡ 0 satisfies the Riccati equation,
and so ki ≡ γ. Consequently, as gaining insurance becomes more uncertain
it is optimal for the insurer to adopt the breakeven premium over the entire
time horizon in order not to make significant losses.
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Finite market

In a finite market we adopt the parameterizations (6) and (9) so that at
termination the interior relative premium is

ki =
b+ γ + βpγ

2 + βp
,

where β is given by (24). In contrast to the case when the market average
premium is stochastic (Section 4), the volatility changes the terminal interior
control. There is no analytical solution of (29) and therefore we calculate the
interior control numerically.

If the risk aversion c is small then the results are similar to Figure 6(a).
If the volatility is small then the problem almost deterministic and so the
optimal control is independent of the utility function and also similar to that
given in Figure 6(a). Graphs for these cases are not shown.

Numerical results for the parameters given in Table 1 are shown in Fig-
ure 6(c) for large values of the risk aversion c and volatility of exposure σ0. We
can see the contour Λ = Λ0 = 0.076 no longer appears in the plots indicating
that the interior premium always leads to an expected instantaneous loss of
exposure. In addition, there is little variation of the interior premium from
k = γ = 0.91 over the entire time horizon. Consequently, when the demand for
policies is uncertain and the insurance company is risk averse it is optimal to
set premium rates at breakeven and this leads to expected market withdrawal
irrespective of the current exposure of the insurer.

6 Conclusions

We have determined the relationship between the deterministic optimal pre-
mium strategies given by the two-dimensional phase diagram shown in Fig-
ure 1, and the optimal premium strategy of the generalized stochastic model.
We have focused on the terminal wealth objective, a linear price function and
an exponential utility function. These simplifications allow us to describe the
optimal control either through a three-dimensional phase diagram or a state
diagram of one state dimension plus time.

In the deterministic problem the optimal control is independent of the
utility function if we ignore degenerate cases. This is not true for the stochastic
model: for example, Figure 4 shows how the optimal pricing strategy changes
if the risk aversion of the insurer is non-zero.

In a finite market there is a limit to the number of policies that the insurer
can sell, which also alters the qualitative form of the optimal strategy. If the
uncertainty in the model is derived solely from the market average premium
then the optimal control can be described by three-dimensional phase space
and a pair of equilibrium points. The optimal control is either expansion
(with possible loss-leading) or withdrawal and the criterion for which strategy
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is optimal is determined by the position of the two equilibrium points and
the initial conditions. The optimal relative premium is deterministic and in
open loop form because there is no explicit analytical relationship between
the optimal control and the current state.

If instead, the change in demand is explicitly stochastic then the type of
the HJB equation is parabolic so the phase space cannot be used to study
the optimal control. We cannot reduce the HJB equation to a finite system of
ODEs. Instead we examine the state diagram, which describes the evolution of
the feedback control and for which we must explicitly state the time horizon.
In this diagram the expansion strategy is delineated from the withdrawal
strategy by the premium which yields no instantaneous expected change in
the exposure. On a typical optimal state trajectory the insurer can jump from
one region to the other due to the volatility of the exposure. One can only say
at the current time whether it is optimal to expand and set a relatively low
premium or withdraw with a higher premium. The optimal relative premium
is a stochastic process.

The two forms of stochasticity lead to two similar types of optimal pre-
mium strategy when the market is very volatile. As the volatility of the market
average premium, σ1, is increased then a breakeven premium strategy is op-
timal up until near termination of the planning horizon where the optimal
premium is independent of this volatility. In contrast, as the volatility of the
demand for policies, σ2, is increased then the breakeven premium strategy is
optimal over the entire planning horizon if there is positive risk aversion.
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Summary. For single-criterion stochastic control and sequential decision problems,
optimal policies, if they exist, are typically nonrandomized. For problems with mul-
tiple criteria and constraints, optimal nonrandomized policies may not exist and,
if optimal policies exist, they are typically randomized. In this paper we discuss
certain conditions that lead to optimality of nonrandomized policies. In the most
interesting situations, these conditions do not impose convexity assumptions on the
action sets and reward functions.

1 Introduction

In many applications, the system performance is measured by multiple cri-
teria. For example, in finance, such criteria measure returns and risks, in
manufacturing such criteria may be production volumes, quality of outputs,
and costs, in service operations performance criteria include service levels and
operating costs.

For problems with multiple criteria, the natural approach is to optimize
one of the criteria subject to the inequality constraints on the other criteria.
In other words, for a problem with K + 1 criteria W0(π),W1(π), . . . ,WK(π),
where π is a policy, the natural approach is to find a policy π that is a solution
to the following problem

maximize W0(π) (1)

subject to
Wk(π) ≥ Ck, k = 1, . . . ,K, (2)

where C1, . . . , CK are given numbers. For example, since it is possible to con-
siderWk+1(π) = −Wk(π), this approach can be used to find policies satisfying
interval constraints a ≤Wk(π) ≤ b.

Optimal solutions of problem (1, 2), if they exist, are typically random-
ized with the number of randomization procedures limited by the number of
constraints K; see [1, 16]. If there are no constraints, i.e. K = 0, optimal
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policies are nonrandomized. The following simple example illustrates that it
is possible that any optimal policy for a constrained problem is randomized.

Consider a one-step problem when a decision-maker chooses among two
decisions a and b. There are two reward functions r0 and r1 defined as r0(a) =
r1(b) = 0 and r1(a) = r0(b) = 1. The decision-maker selects action a with
probability π(a) and action b with probability π(b), where π(a) + π(b) = 1.
The criteria are Wk(π) = π(a)rk(a) + π(b)rk(b), k = 0, 1. Then the problem

maximize W0(π) (3)

subject to
W1(π) ≥ 1/2 (4)

is equivalent to the following linear program (LP)

maximize π(b)

subject to
π(a) ≥ 1/2,

π(a) + π(b) = 1,

π(a) ≥ 0, π(b) ≥ 0.

This LP has the unique optimal solution π(a) = π(b) = 1/2. Therefore, the
optimal policy is randomized.

In many applications, implementation of randomized policies is not natu-
ral. In many cases, it is more natural to apply nonrandomized policies when
they are optimal. In addition, it appears that the use of randomization pro-
cedures increases the variance of the performance criteria. Also, from the
computational point of view, finding the best randomized policy in many
cases is easy, because this can be done by using linear programming. Finding
the best nonrandomized policy may be a computationally intractable prob-
lem. For example, finding the best nonrandomized stationary policy for con-
strained dynamic programming is an NP-hard problem [5]. Typically, when
nonrandomized policies are optimal, an optimal nonrandomized policy can
be computed by a simple transformation of an optimal randomized policy.
Thus, computing optimal nonrandomized policies becomes a computationally
tractable problem when nonrandomized policies are optimal.

In this article, we discuss the situations when nonradomized policies are
optimal for problems with multiple criteria and constraints. Of course, nonran-
domized policies are at least as good as randomized policies when actions sets
are convex subsets of a linear space and reward functions are concave. This
situation is trivial and we concentrate on the models when neither the con-
vexity of the action sets nor the concavity of reward functions is assumed. In
particular, we consider the following three cases: (i) unichain Markov Decision
Processes (MDPs) with average rewards per unit time, (ii) continuous-time
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MDPs, and (iii) nonatomic dynamic programming. In case (i), it is possi-
ble to achieve optimal state-action frequencies by selecting different actions
at different visits to the same state, in case (ii) it is possible to change ac-
tions between jumps instead of choosing actions randomly, and in case (iii)
the non-atomicity of initial and transition probabilities implies that the for
any randomized policy there exists a nonrandomized policy with the same
performance vector.

2 Discrete-time MDPs with average rewards per unit
time

Consider a discrete-time MDP with finite state and action sets and with av-
erage rewards per unit time [1, 16, 17]. This model is defined by the objects
{X,A,A(·), p,K, r·}, where

(i) X is a finite state space;
(ii) A is a finite action set ;
(iii) A(x) are the sets of available actions at state x ∈ X, where A(x) ⊆ A;
(iv) p(y|x, a) is the one-step transition probability, i.e. p(·|x, a) ≥ 0 is a prob-

ability distribution on X for each x ∈ X and a ∈ A(x);
(v) a finite nonnegative integer K is the number of constraints;
(vi) rk(x, a), k = 0, . . . ,K, is the one-step reward according to the kth crite-

rion if an action a ∈ A(x) is selected at a state x ∈ X.
Let Hn = X × (A×X)n be the set of trajectories up to time n = 0, 1, . . ..

A policy π is a sequence (π0, π1, . . .) of transition probabilities from Hn to A
such that πn(A(xn)|x0, a0, . . . , xn) = 1. A policy π is called nonrandomized
if πn(a|hn) ∈ {0, 1} for all n = 0, 1, . . . , hn ∈ Hn, and a ∈ A. Equivalently,
nonrandomized policy σ is defined by a sequence of measurable mappings
σn : Hn → A such that σn(x0, a0, . . . , xn) ∈ A(xn), n = 0, 1, . . . . A policy
π is called randomized stationary if πn(an|x0, a0, . . . xn) depends only on the
value of xn, i.e. there exists a transition probability π from X to A such that
πn(an|x0, a0, . . . xn) = π(an|xn). A nonrandomized stationary policy is called
stationary.

Any initial distribution µ and any policy π define a probability measure
Pπµ on the set of infinite trajectories H∞ endowed with its Borel σ-field. We
denote by Eπµ expectations with respect to this measure. We shall write Pπx
and Eπx instead of Pπµ and Eπµ if x is the initial state, i.e. µ(x) = 1.

For an initial distribution µ, and policy π, the average rewards per unit
time are defined as

Wk(µ, π) = lim inf
N→∞

1
N
Eπµ

N−1∑
n=0

rk(xn, an), k = 0, 1, . . . ,K.

For a fixed initial distribution µ, consider problem (1, 2) when Wk(π) =
Wk(µ, π), k = 0, . . . ,K. So, the goal is to maximize the expected total rewards
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W0(µ, π) subject to the constraints on the expected total rewards Wk(µ, π),
k = 1, . . . ,K. Though an optimal policy exists for this problem when the state
and action spaces are finite, it may have a complicated form. In particular,
it may be nonstationary [12, 14]. However, optimal randomized stationary
policies exist under the following condition.

Unichain Condition. Any nonrandomized stationary policy defines a Markov
chain on X with one recurrent class (and possible transient states).

According to [12, 18], if the Unichain Condition holds then there exists a
randomized stationary policy that is optimal for any initial distribution. To
find such a policy, we need to solve the following LP with variables ux,a, where
x ∈ X, a ∈ A(x) :

maximize
∑
x∈X

∑
a∈A(i)

r0(x, a)ux,a

subject to ∑
x∈X

∑
a∈A(x)

rk(x, a)ux,a ≥ Ck, k = 1, . . . ,K,

∑
a∈A(y)

uy,a −
∑
x∈X

∑
a∈A(x)

p(y, a, x)ux,a = 0, y ∈ X,

∑
x∈X

∑
a∈A(x)

ux,a = 1,

ux,a ≥ 0, x ∈ X, a ∈ A(x).

Let u be an optimal solution of the above LP. Let

ux =
∑
a∈A(x)

ux,a, x ∈ X.

Then, if the Unichain Condition holds, the following formula defines an opti-
mal randomized stationary policy π

π(a|x) =

{
ux,a

ux
if ux > 0,

arbitrary if ux = 0.

The policy π may not be nonrandomized. If ux = 0, it is natural to select
π being nonrandomized at x. If u is a basic optimal solution of the above
LP, there are at most |X| + K nonzero state-action pairs (x, a) such that
π(a|x) > 0 [18], where |E| is the number of elements of a finite set E. For a
nonrandomized stationary policy, the number of such pairs is |X|.

Ross [18] and Altman and Shwartz [2, 3] investigated approaches to con-
struct a nonrandomized stationary policy σ such that Wk(µ, σ) = Wk(µ, π)
for any reward function rk. If such a policy is constructed, then it is optimal.
Ross [18] studied the case K = 1 when the Unichain Condition holds. Altman
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and Shwartz [2, 3] also assumed the Unichain Condition and considered the
case of an arbitrary finite K. In addition, they studied MDPs with a count-
able state space X and finite state MDPs with finite action sets. Altman and
Shwartz [2, 3] introduced the concept of time-sharing policies. These policies
combine several nonrandomized policies.

For an initial state distribution µ and a policy σ, a state-action frequency
is defined as

fσµ (x, a) = lim
N→∞

1
N

N−1∑
n=0

Pσµ {xn = x, an = a}, x ∈ X, a ∈ A(x), (5)

if this limit exists for all x ∈ X and for all a ∈ A(x). In particular, state-
action frequencies exist for randomized stationary policies for countable-state
MDPs with countable action sets. If for two policies σ1 and σ2 the limits in
the definition of the vectors of state-action frequencies (5) exist for the initial
distribution µ and these vectors are equal for σ1 and σ2, then W (µ, σ1) =
W (µ, σ2) for any bounded or nonnegative reward function r. In [18, 2, 3], the
policy σ is constructed in the way that the state-action frequencies for σ exist
and equal to state-action frequencies for an optimal randomized stationary
policy π, and these frequencies do not depend on the initial distribution µ.

For a finite history hn = x0, a0, . . . , xn, define the empirical frequencies

N(hn;x, a) =
n−1∑
t=0

I{xt = x, at = a}, x ∈ X, a ∈ A(x),

N(hn, x) =
n−1∑
t=0

I{xt = x}, x ∈ X.

For the optimal solution u of the LP, define the nonrandomized policy σ by

σn(hn) = argmaxa∈A(i){ui,a −
N(hn;x, a) + 1
N(hn;x) + 1

},

where ties are broken arbitrarily. Then for finite X and A, if the Unichain
Condition holds, then σ has the same state-action frequencies as π and there-
fore σ is an optimal nonrandomized policy. Feinberg and Curry [8] used the
above form of the optimal nonrandomized policy σ in a heuristic algorithm
for a so-called Generalized Pinwheel problem, which is an NP-hard scheduling
problem.

3 Continuous-time MDPs

Consider a continuous-time MDP with a finite or countable state space [6, 7,
13]. This model is defined by the objects {X,A,A(·), p,K, r·, R·}, where



142 Eugene A. Feinberg

(i) X is a finite or countable state space;
(ii) A is a Borel action set (a measurable subset of a complete separable

metric space);
(iii) A(x) are the sets of available actions at state x ∈ X, where A(x) are

measurable subsets of A;
(iv) q(y|x, a) are jump intensities, i.e. q(y|x, a) ≥ 0, q(x|x, a) = 0, and

q(x, a) :=
∑
y∈X q(y|x, a) ≤ C < ∞ for all x ∈ X and a ∈ A(x), and, in

addition, the functions q(y|x, a) are measurable on A(x) for all x, y ∈ X;
(v) a finite nonnegative integer K is the number of constraints;
(vi) rk(x, a), k = 0, . . . ,K, is the reward rate according to the kth criterion if

an action a ∈ A(x) is selected at a state x ∈ X;
(vii) Rk(x, a), k = 0, . . . ,K, is the reward according to the kth criterion if a

jump from state x ∈ X to state y ∈ Y occurs while an action a ∈ A(x) is
selected at a state x ∈ X.

Let R+ = [0,∞) and Hn = X × (R+ × X)n, n = 0, 1, . . . . Let H =
∪0≤n<∞Hn. The sets Hn are endowed with the σ-fields Hn which are the
products of the σ-fields on X and on R+, where the σ-field on X is the set
of the subsets of X and the σ-field on R+ is the Borel σ-field on R+. Let
H be the minimal σ-field on H that contains Hn, n = 0, 1, . . .. We interpret
x0, ξ0, . . . xn ∈ Hn as the sequence of the first n + 1 states x0, . . . , xn and
the first n sojourn times ξ0, . . . , ξn−1 of a multivariate point process with the
state space X. The jump epochs are tm =

∑m−1
i=0 ξi, i = 1, . . . , n, with t0 = 0.

A randomized strategy is a regular transition probability from H × R+

to A such that π(A(xn)|x0, ξ0, . . . , xn, s) = 1 for any x0, ξ0, . . . , xn ∈ H,
n = 0, 1, . . . and for any s ≥ 0. In other words, π(·|x0, ξ0, . . . , xn, s) is a
probability measure on A(xn) for each x0, ξ0, . . . , xn ∈ H and 0 ≤ s < ∞,
and π(E|·) is a Borel function on H ×R+ for any measurable subset B of A.
We interpret s as the time elapsed since the last jump. Thus, the decision at
any time depends on the previous states and jump epochs, and on the time
elapsed since the last jump.

Let H∞ = X × R+ × X × R+ . . . be the infinite product of X and R+.
Let Hn be the countable product of the σ-fields on X and R+. We define
Ω = ∪0≤n≤∞Hn and F as the minimal σ-field containing {Hn, 0 ≤ n ≤ ∞}.

We interpret Ω as the sample space of the multivariate point process with-
out accumulation points. In particular, Hn represent the sets of trajectories
with n jumps, n = 0, 1, . . . , or n = ∞. We set tm = ∞ when m > n and
ω ∈ Hn with n <∞. In particular, the value X(t) of the process at time t > 0
is defined as X(t) =

∑
0≤n<∞ I{tn < t ≤ tn+1}xn.

A randomized strategy π and an initial state distribution µ define a unique
probability measure Pπµ on (Ω,F) such that Pπµ (x0 = x) = µ(x), x ∈ X, and
the compensator of the random measure corresponding to Pπµ is

νπ(ω; dt, j) =
∑
n≥0

I{tn < t ≤ tn+1}
∫
A

q(j|xn, a)π(da|x0, ξ0, . . . , xn, t− tn)dt,
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where tn =
∑n−1
i=0 ti; see [11, 13, 15]. The assumption q(x, a) ≤ C <∞ implies

that the process defined by Pπµ does not have accumulation points.
A nonrandomized strategy φ is defined by a measurable mapping from

H × R+ to A such that φ(x0, ξ0, . . . , xn, s) ∈ A(xn). For a nonrandomized
policy, the measure Pφµ is defined by Pφµ (x0 = x) = µ(x), x ∈ X, and by the
compensator of the random measure corresponding to Pπµ equal

νφ(ω; dt, j) =
∑
n≥0

I{tn < t ≤ tn+1}q(j|xn, φ(x0, ξ0, . . . , xn, t− tn))dt.

A nonrandomized strategy is called switching stationary if
φ(x0, ξ0, . . . , xn, s) = φ(xn, s) and, in addition, the function φ : X → R+ is
piecewise-constant in s and has a finite number of discontinuity points, where
the discrete topology is considered onX. In other words, there is a finite subset
Y of X such that the function φ(x, s) is constant in s for each x ∈ X \ Y and
φ(x, s) is piecewise-constant in s and has a finite number of jumps for each
x ∈ Y. So, the switching stationary policy may change actions between jumps
only at a finite number of states and for each such state x, where it changes
actions, there is a finite number of times 0 < S1(x) < S2(x) < . . . < Sj(x)
such that the policy changes actions when the time Si(x) elapsed since the
last jump.

Let Eπµ be the expectation with respect to the measure Pπµ . Let N(t) be
the number of jumps up to time t, N(t) = max{n ≥ 0|tn ≤ t}. Then the
assumption q(x, a) ≤ C <∞ implies that N(t) <∞ for all 0 ≤ t <∞.

Discounted total rewards. Let α > 0 be the discount rate. For a random-
ized strategy π, the expected total rewards are

Wk(µ, π) = Eπµ

∞∑
n=0

[e−αtn
∫
A(xn)

Rk(xn, a, xn+1)π(da|ω, tn+1)

+
∫ tn+1

tn

e−αt
∫
A(xn)

rk(xn, a)π(da|ω, t)], k = 0, . . . ,K,

where π(da|ω, t) =
∑
n≥0 I{tn < t ≤ tn+1}π(da|x0, ξ0, . . . , xn, t− tn)dt.

Consider problem (1, 2) with Wk(π) = Wk(µ, π) when all the action sets
A(x) are compact, the functions Rk and rk, k = 0, . . . ,K, are bounded above
and continuous in a, and the functions q(y|x, a) and q(x, a) are continuous in
a. This problem was studied in [7]. Three natural forms of optimal policies
were described in [7] when this problem is feasible. In particular, for a feasible
problem, there exists an optimal strategy that randomly selects actions at
jump epoch and keeps them unchanged between jumps. The strategies of this
type are called randomized stationary policies. A randomized stationary policy
is defined by the distributions σ(da|x) concentrated on A(x), where the action
a is always selected with the probability π(da|xn) when the process jumps to
a state xn and this action is used to control the process until the next jump
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epoch. Formula (8.6) in [7] shows how a randomized stationary policy can
be presented as a randomized strategy π described above. A nonrandomized
stationary policy φ, where φ is a function from X to A satisfying φ(x) ∈ A(x)
for all x ∈ X, always uses action φ(x) at state x ∈ X.

As was shown in [7], any m-randomized stationary policy σ can be trans-
formed into a (nonrandomized) switching stationary strategy φ such that
W (µ, φ) = W (µ, σ) for any bounded above or bounded below reward func-
tions r and R. For x ∈ X consider the actions a1, . . . , aj from A(x) such that
σ(ai|x) > 0, i = 1, . . . , j, and

∑j
i=1 σ(a

j |x) = 1. Then φ(x, s) = a1 if j = 1
and for the case j > 1

φ(x, s) = ai for Si−1(x) < s ≤ Si(x), i = 1, . . . , j, (6)

where S0(x) = 0 and Si(x) =
∑i
�=1 si(x), i = 1, . . . , j, with

si(x) = − 1
α+ q(x, ai)

ln

(
1− σ(ai|x)∑j

�=i σ(aj |x)

)
. (7)

The equality W (µ, φ) = W (µ, σ) is based on the fact that the occupation
measures for continuous-time MDPs introduced in [7] are equal for σ and φ
under any initial state distribution. The optimality of nonrandomized strate-
gies can be summarized in the following theorem based on the results from
[7].

Theorem 1. Consider a discounted continuous-time MDP. Let σ be an m-
randomized stationary policy, m = 0, 1, . . . , and φ be an m-switching station-
ary strategy defined in (6, 7). Then Wk(µ, φ) = Wk(µ, σ) for all k = 0, . . . ,K
and for all initial state distributions µ.

If problem (1, 2) is feasible, all the action sets A(x), x ∈ X, are compact,
the reward functions Rk and rk, k = 0, . . . ,K are bounded above and upper
semi-continuous in a, and the functions q(y|x, a) and q(x, a) are continuous
in a, then there exist optimal k-randomized stationary policies and optimal
k-switching stationary strategies.

Similar to the discrete time, LPs can be used to compute optimal k-randomized
stationary policies and optimal k-switching stationary strategies; see [7] for
details.

Average rewards per unit time. Let the sets X and A be finite. Consider
average rewards per unit time

Wk(µ, π) = lim inf
T→∞

1
T
Eπµ [

N(T )∑
n=0

∫
A(xn)

Rk(xn, a, xn+1)π(da|ω, tn+1)

+
∫ T

0

∫
A(xn)

rk(X(t), a)π(da|ω, t)], k = 0, . . . ,K.
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Let the Unichain Condition hold. Then for any randomized stationary
policy π and for any switching stationary strategy π,Wk(µ, π) does not depend
on µ. So, for such policies, we set Wk(π) = Wk(µ, π), k = 0, . . . ,K.

For an m-randomized stationary policy σ we can consider the m-switching
policy φ defined by (6, 7) with α = 0. Then, according to [6], W (φ) = W (σ)
for any rewards r and R. The following theorem summarizes the results on
average rewards per unit time from [6].

Theorem 2. Let X and A be finite sets and let the Unichain Condition hold.
Consider average rewards per unit time.

(i) For an m-randomized stationary policy σ consider an m-switching station-
ary strategy φ defined in (6, 7) with α = 0. Then Wk(φ) = Wk(σ) for all
k = 0, . . . ,K.

(ii) If problem (1, 2) is feasible then there exists an optimal K-switching sta-
tionary strategy.

(iii) If problem (1, 2) is feasible and q(x, a) > 0 for all x ∈ X and for all
a ∈ A(x) then there exists an optimal K-randomized stationary policy.

If q(x, a) = 0 for some x and a then optimal randomized stationary policies
may not exist even if the problem is feasible [6, Example 3.1]. Optimal K-
randomized stationary policies and optimal K-switching stationary strategies
can be found by using LPs described in [6].

4 Nonatomic MDPs

Consider an MDP {X,A,A(·), p,K, r·}, introduced in Section 2 for finite X
and A. In this section we consider the situation whenX and A are Borel spaces
(measurable subsets of complete separable metric spaces) and the standard
measurability conditions are satisfied. These conditions are:

(a) the graph of the set-valued mapping x→ A(x) ofX is a measurable subset
of X × A allowing a measurable selection, i.e. there exists a measurable
function ϕ : X → A such that ϕ(x) ∈ A(x) for all x ∈ X;

(b) p is a regular transition probability from X ×A to X;
(c) rk(x, a) are measurable functions on X ×A, k = 0, . . . ,K.

Let C+ = max{C, 0}, C− = min{C, 0} and let β be a discount factor, 0 ≤
β ≤ 1. For a policy π and for an initial probability measure µ on X, we define
for k = 0, . . . ,K the expected total rewards

Wk,+(µ, π) = Eπµ

[ ∞∑
n=0

βn(rk(xn, an))+
]
,

Wk,−(µ, π) = Eπµ

[ ∞∑
n=0

βn(rk(xn, an))−
]
,

Wk(µ, π) = Wk,+(µ, π) +Wk,−(µ, π), (8)
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where +∞−∞ = −∞.
We fix the initial probability distribution µ on X. We recall that a prob-

ability measure P on a Borel space Y is called nonatomic if P ({y}) = 0 for
any y ∈ Y.
Nonatomicity Assumption. The initial probability measure µ and all the
transition probabilities p(·|x, a), x ∈ X and a ∈ A(x) are nonatomic.

A nonrandomized policy φ is called Markov if φn(x0, a0, . . . , xn) = φn(xn)
for all n = 0, 1, . . . .

The following statement is a particular case of [9, Theorem 2.1], where a
nonhomogeneous MDP (the transition probabilities and rewards may depend
on time) was considered.

Theorem 3. If the Nonatomicity Assumption holds then for any policy π
there exists a Markov policy φ such that Wk(µ, φ) = Wk(µ, π) for all k =
0, . . . ,K.

Unlike the results in Sections 2 and 3, the Nonatomicity Assumption does not
imply that the occupation measures are equal and it is essential that K is
finite. The proof of Theorem 3 uses Lyapunov’s theorem; see [9] for details.
Combined with sufficient conditions for the existence of optimal solutions to
problem (1, 2) for Wk(π) = Wk(µ, π), Theorem 3 implies the existence of
optimal (nonrandomized) Markov policies; see [9, Section 5]

Application to Statistical Decision Theory. Let X and A be Borel sets.
Similar to MDPs, X is the state spaces and A is the decision space. For each
x ∈ X, a Borel subset A(x) of A (the set of decisions available at x) is given.
The sets A(x) satisfy the conditions described above in this section.

The initial distribution µ is not known, but it is known that it is equal to
one of the measures µ1, . . . , µN , whereN = 1, 2, . . . . For each measure µn, n =
1, . . . , N , there is a gain function ρ(µn, x, a) = (ρ1(µn, x, a), . . . , ρM (µn, x, a),
M = 1, 2, . . . , which is a Borel mapping of X ×A to RM .

A decision rule π is a regular transition probability from X to A such that
π(A(x)|x) = 1 for all x ∈ X. A decision rule is called nonrandomized if for
each x ∈ X the measure π(·|x) is concentrated at one point. A nonrandomized
decision rule π is defined by a measurable mapping ϕ : X → A such that
ϕ(x) ∈ A(x) and π(ϕ(x)|x) = 1, x ∈ X. We call such a mapping a decision
function and denote it by ϕ.

Using the same agreements as in the definitions of integrals as in (8), for
any decision rule π define

R(µn, π) =
∫
X

∫
A

ρ(µn, x, a)π(da|x)µn(dx), n = 1, . . . , N.

Theorem 4. [10, Theorem 1] If all the measures µ1, . . . , µN are nonatomic
then for each decision rule π there exists a decision function ϕ such that
R(µn, ϕ) = R(µn, π) for all n = 1, . . . , N.
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Dworetzky, Wald, and Wolfowitz [4] proved Theorem 4 when A is a finite
set and weaker results were obtained in [4] for an infinite set A.

Financial Application. The following example from [9] is based on the
version of Theorem 3 when transition probabilities and rewards may depend
on the time parameter.

An investor has an option to sell a portfolio at epoch t = 1, . . . , T, where
T = 1, 2, . . . . The value of the portfolio at epoch t = 0, 1, 2, . . . is zt ∈ R+.
Suppose that z0 ≥ 0 is given and the value of zt+1 is defined by transition
probabilities qt(dzt+1|zt), t = 0, 1, . . . . We assume that qt(·|zt) are nonatomic
and weakly continuous.

At each epoch t = 1, 2, . . . , T , the investor has two options: to sell the
whole portfolio or to keep it. We construct a Markov decision process for
this problem. Let X = {0, 1} × R and A = {0, 1}. Action 0 (1) means to
hold (to sell) the portfolio. The state of the system is xt = (0, zt+1) (xt =
(1, zt+1)) if the portfolio has not been sold (has been sold). In particular,
x0 = (0, z1) has a nonatomic distribution µ defined by µ(0 × B) = q0(B|x0)
for any measurable subset B of R+. For t = 0, 1, . . . we set At((0, z)) = {0, 1};
At((1, z)) = {0}. If at epoch t = 0, 1, . . . the system is in state xt = (0, z)
and action at = 0 is selected then the next state is xt+1 = (0, y), where y
has the distribution qt+1(dy|z). It does not matter what going on with the
system after the portfolio is sold. To satisfy the Nonatomicity Assumption,
we set that the system moves from state xt to state (1, y), where y has the
distribution qt+1(dy|z), when xt = (1, z) or xt = (0, z) and at = 1.

Suppose that N -dimensional vectors rt(x, a) of measurable additive re-
wards (or losses) with values in [−∞,∞] at steps t = 0, 1, . . . are given. The-
orem 4 implies that (nonrandomized) Markov policies for this multicriterion
problem are as good as general policies.

We consider the problem when the investor’s goal is to maximize the
expected discounted value of the sold portfolio under the constraint that
with at least probability P > 0 the discounted value of the sold portfolio
is greater (or equal) than the given level C. For t = 1, . . . , T − 1, we define
r1t ((i, z), a) = βt · (1 − i)az; r2t ((i, z), a) = (1 − i)a · I{z ≥ C/βt}, i = 0, 1;
β ∈ (0, 1] is the given discount factor. We set rnt (x, a) = 0 when t ≥ T. Then
the problem can be formulated as

maximizeπ W1(µ, π) s.t. W2(µ, π) ≥ P. (9)

Suppose that qt(·|z) are concentrated on a finite interval [0, D]. Then we
can set X = {0, 1} × [0, D] and [9, Condition 5.3] holds. Therefore, [9, Corol-
lary 5.2] implies that if this problem is feasible then there exists an optimal
(nonrandomized) Markov policy.
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1 Introduction

Calculus of variations on time scales (we refer the reader to Section 2 for a
brief introduction to time scales) has been introduced in 2004 in the papers by
Bohner [2] and Hilscher and Zeidan [4], and seems to have many opportunities
for application in economics [1]. In both works of Bohner and Hilscher&Zeidan,
the Euler-Lagrange equation for the fundamental problem of the calculus of
variations on time scales,

L[y(·)] =
∫ b

a

L(t, yσ(t), y∆(t))∆t −→ min, y(a) = ya, y(b) = yb, (1)

is obtained (in [4] for a bigger class of admissible functions and for problems
with more general endpoint conditions). Here we generalize the previously
obtained Euler-Lagrange equation for variational problems involving delta
derivatives of more than the first order, i.e. for higher-order problems.

We consider the following extension to problem (1):

L[y(·)] =
∫ ρr−1(b)

a

L(t, yσ
r

(t), yσ
r−1∆(t), . . . , yσ∆

r−1
(t), y∆

r

(t))∆t −→ min,

y(a) = ya, y
(
ρr−1(b)

)
= yb,

...
y∆

r−1
(a) = yr−1

a , y∆
r−1 (

ρr−1(b)
)

= yr−1
b ,

(2)
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where yσ
i∆r−i

(t) ∈ Rn, i ∈ {0, . . . , r}, n, r ∈ N, and t belongs to a time scale
T. Assumptions on the time scale T are stated in Section 2; the conditions
imposed on the Lagrangian L and on the admissible functions y are specified
in Section 3. For r = 1 problem (2) is reduced to (1); for T = R we get the
classical problem of the calculus of variations with higher-order derivatives.

While in the classical context of the calculus of variations, i.e. when T = R,
it is trivial to obtain the Euler-Lagrange necessary optimality condition for
problem (2) as soon as we know how to do it for (1), this is not the case on
the time scale setting. The Euler-Lagrange equation obtained in [2, 4] for (1)
follow the classical proof, substituting the usual integration by parts formula
by integration by parts for the delta integral (Lemma 2). Here we general-
ize the proof of [2, 4] to the higher-order case by successively applying the
delta-integration by parts and thus obtaining a more general delta-differential
Euler-Lagrange equation. It is worth to mention that such a generalization
poses serious technical difficulties and that the obtained necessary optimality
condition is not true on a general time scale, being necessary some restric-
tions on T. Proving an Euler-Lagrange necessary optimality condition for a
completely arbitrary time scale T is a deep and difficult open question.

The paper is organized as follows: in Section 2 a brief introduction to
the calculus of time scales is given and some assumptions and basic results
provided. Then, under the assumed hypotheses on the time scale T, we ob-
tain in Section 3 the intended higher-order delta-differential Euler-Lagrange
equation.

2 Basic definitions and results on time scales

A nonempty closed subset of R is called a time scale and it is denoted by T.
The forward jump operator σ : T→ T is defined by

σ(t) = inf {s ∈ T : s > t}, for all t ∈ T,

while the backward jump operator ρ : T→ T is defined by

ρ(t) = sup {s ∈ T : s < t}, for all t ∈ T,

with inf ∅ = sup T (i.e. σ(M) = M if T has a maximum M) and sup ∅ = inf T
(i.e. ρ(m) = m if T has a minimum m).

A point t ∈ T is called right-dense, right-scattered, left-dense and left-
scattered if σ(t) = t, σ(t) > t, ρ(t) = t and ρ(t) < t, respectively.

Throughout the paper we let T = [a, b] ∩ T0 with a < b and T0 a time
scale containing a and b.

Remark 1. The time scales T considered in this work have a maximum b and,
by definition, σ(b) = b. For example, let [a, b] = [1, 5] and T0 = N: in this case
T = [1, 5] ∩ N = {1, 2, 3, 4, 5} and one has σ(t) = t+ 1, t ∈ T\{5}, σ(5) = 5.
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Following [3, pp. 2 and 11], we define Tk = T\(ρ(b), b], Tk
2

=
(
Tk
)k and,

more generally, Tk
n

=
(
Tk

n−1
)k

, for n ∈ N. The following standard notation

is used for σ (and ρ): σ0(t) = t, σn(t) = (σ ◦ σn−1)(t), n ∈ N.
The graininess function µ : T→ [0,∞) is defined by

µ(t) = σ(t)− t, for all t ∈ T.

We say that a function f : T→ R is delta differentiable at t ∈ Tk if there
is a number f∆(t) such that for all ε > 0 there exists a neighborhood U of t
(i.e. U = (t− δ, t+ δ) ∩ T for some δ > 0) such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|, for all s ∈ U.

We call f∆(t) the delta derivative of f at t.
If f is continuous at t and t is right-scattered, then (see Theorem 1.16 (ii)

of [3])

f∆(t) =
f(σ(t))− f(t)

µ(t)
. (3)

Now, we define the rth−delta derivative (r ∈ N) of f to be the function
f∆

r

: Tk
r → R, provided f∆

r−1
is delta differentiable on Tk

r

.
For delta differentiable functions f and g, the next formulas hold:

fσ(t) = f(t) + µ(t)f∆(t),

(fg)∆(t) = f∆(t)gσ(t) + f(t)g∆(t)

= f∆(t)g(t) + fσ(t)g∆(t),

(4)

where we abbreviate here and throughout f ◦σ by fσ. We will also write f∆
σ

as f∆σ and all the possible combinations of exponents of σ and ∆ will be
clear from the context.

The following lemma will be useful for our purposes.

Lemma 1. Let t ∈ Tk (t �= min T) satisfy the property ρ(t) = t < σ(t). Then,
the jump operator σ is not delta differentiable at t.

Proof. We begin to prove that lims→t− σ(s) = t. Let ε > 0 and take δ = ε.
Then for all s ∈ (t− δ, t) we have |σ(s)− t| ≤ |s− t| < δ = ε. Since σ(t) > t,
this implies that σ is not continuous at t, hence not delta-differentiable by
Theorem 1.16 (i) of [3]. �

A function f : T → R is called rd-continuous if it is continuous in right-
dense points and if its left-sided limit exists in left-dense points. We denote
the set of all rd-continuous functions by Crd and the set of all differentiable
functions with rd-continuous derivative by C1

rd.
It is known that rd-continuous functions possess an antiderivative, i.e.

there exists a function F with F∆ = f , and in this case an integral is defined
by

∫ b
a
f(t)∆t = F (b)− F (a). It satisfies
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∫ σ(t)

t

f(τ)∆τ = µ(t)f(t). (5)

We now present the integration by parts formulas for the delta integral:

Lemma 2. (Theorem 1.77 (v) and (vi) of [3]) If a, b ∈ T and f, g ∈C1
rd, then

1.
∫ b
a
f(σ(t))g∆(t)∆t = [(fg)(t)]t=bt=a −

∫ b
a
f∆(t)g(t)∆t;

2.
∫ b
a
f(t)g∆(t)∆t = [(fg)(t)]t=bt=a −

∫ b
a
f∆(t)g(σ(t))∆t.

The main result of the calculus of variations on time scales for problem
(1) is given by the following necessary optimality condition.

Theorem 1. ([2]) If y∗ ∈ C1
rd is a weak local minimum of the problem

L[y(·)] =
∫ b

a

L(t, yσ(t), y∆(t))∆t −→ min, y(a) = ya, y(b) = yb,

then the Euler-Lagrange equation

L∆y∆(t, yσ∗ (t), y∆∗ (t)) = Lyσ (t, yσ∗ (t), y∆∗ (t)),

t ∈ Tk
2
, holds.

Remark 2. In Theorem 1, and in what follows, the notation conforms to that
used in [2]. Expression L∆y∆ denotes the ∆ derivative of a composition.

We will assume from now on that the time scale T has sufficiently many
points in order for all the calculations to make sense (with respect to this, we
remark that Theorem 1 makes only sense if we are assuming a time scale T
with at least three points). Further, we consider time scales such that:

(H) σ(t) = a1t+ a0 for some a1 ∈ R+ and a0 ∈ R, t ∈ [a, b).

Under hypothesis (H) we have, among others, the differential calculus
(T0 = R, a1 = 1, a0 = 0), the difference calculus (T0 = Z, a1 = a0 = 1)
and the quantum calculus (T0 = {qk : k ∈ N0}, with q > 1, a1 = q, a0 = 0).

Remark 3. From assumption (H) it follows by Lemma 1 that it is not possible
to have points which are simultaneously left-dense and right-scattered. Also
points that are simultaneously left-scattered and right-dense do not occur,
since σ is strictly increasing.

Lemma 3. Under hypothesis (H), if f is a two times delta differentiable func-
tion, then the next formula holds:

fσ∆(t) = a1f
∆σ(t), t ∈ Tk

2
. (6)

Proof. We have fσ∆(t) =
[
f(t) + µ(t)f∆(t)

]∆ by formula (4). By the hy-

pothesis on σ, µ is delta differentiable, hence
[
f(t) + µ(t)f∆(t)

]∆ = f∆(t) +
µ∆(t)f∆σ(t) + µ(t)f∆

2
(t) and applying again formula (4) we obtain f∆(t) +

µ∆(t)f∆σ(t) +µ(t)f∆
2
(t) = f∆σ(t) +µ∆(t)f∆σ(t) = (1 +µ∆(t))f∆σ(t). Now

we only need to observe that µ∆(t) = σ∆(t)− 1 and the result follows. �
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3 Main results

Assume that the Lagrangian L(t, u0, u1, . . . , ur) of problem (2) has (standard)
partial derivatives with respect to u0, . . . , ur, r ≥ 1, and partial delta deriva-
tive with respect to t of order r + 1. Let y ∈ C2r, where

C2r =
{
y : T→ R : y∆

2r

is continuous on Tk
2r
}
.

We say that y∗ ∈ C2r is a weak local minimum for (2) provided there exists
δ > 0 such that L(y∗) ≤ L(y) for all y ∈ C2r satisfying the constraints in (2)
and ‖y − y∗‖r,∞ < δ, where

||y||r,∞ :=
r∑
i=0

||y(i)||∞,

with y(i) = yσ
i∆r−i

and ||y||∞ := supt∈Tkr |y(t)|.

Definition 1. We say that η ∈ C2r is an admissible variation for problem
(2) if

η(a) = 0, η
(
ρr−1(b)

)
= 0

...

η∆
r−1

(a) = 0, η∆
r−1 (

ρr−1(b)
)

= 0.

For simplicity of presentation, from now on we fix r = 3.

Lemma 4. Suppose that f is defined on [a, ρ6(b)] and is continuous. Then,

under hypothesis (H),
∫ ρ5(b)
a

f(t)ησ
3
(t)∆t = 0 for every admissible variation

η if and only if f(t) = 0 for all t ∈ [a, ρ6(b)].

Proof. If f(t) = 0, then the result is obvious.
Now, suppose without loss of generality that there exists t0 ∈ [a, ρ6(b)]

such that f(t0) > 0. First we consider the case in which t0 is right-dense,
hence left-dense or t0 = a (see Remark 3). If t0 = a, then by the continuity of
f at t0 there exists a δ > 0 such that for all t ∈ [t0, t0 + δ) we have f(t) > 0.
Let us define η by

η(t) =
{

(t− t0)8(t− t0 − δ)8 if t ∈ [t0, t0 + δ);
0 otherwise.

Clearly η is a C6 function and satisfy the requirements of an admissible vari-
ation. But with this definition for η we get the contradiction∫ ρ5(b)

a

f(t)ησ
3
(t)∆t =

∫ t0+δ

t0

f(t)ησ
3
(t)∆t > 0.
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Now, consider the case where t0 �= a. Again, the continuity of f ensures the
existence of a δ > 0 such that for all t ∈ (t0 − δ, t0 + δ) we have f(t) > 0.
Defining η by

η(t) =
{

(t− t0 + δ)8(t− t0 − δ)8 if t ∈ (t0 − δ, t0 + δ);
0 otherwise,

and noting that it satisfy the properties of an admissible variation, we obtain∫ ρ5(b)

a

f(t)ησ
3
(t)∆t =

∫ t0+δ

t0−δ
f(t)ησ

3
(t)∆t > 0,

which is again a contradiction.
Assume now that t0 is right-scattered. In view of Remark 3, all the points

t such that t ≥ t0 must be isolated. So, define η such that ησ
3
(t0) = 1 and

is zero elsewhere. It is easy to see that η satisfies all the requirements of an
admissible variation. Further, using formula (5)∫ ρ5(b)

a

f(t)ησ
3
(t)∆t =

∫ σ(t0)

t0

f(t)ησ
3
(t)∆t = µ(t0)f(t0)ησ

3
(t0) > 0,

which is a contradiction. �

Theorem 2. Let the Lagrangian L(t, u0, u1, u2, u3) satisfy the conditions in
the beginning of the section. On a time scale T satisfying (H), if y∗ is a weak
local minimum for the problem of minimizing∫ ρ2(b)

a

L
(
t, yσ

3
(t), yσ

2∆(t), yσ∆
2
(t), y∆

3
(t)
)
∆t

subject to

y(a) = ya, y
(
ρ2(b)

)
= yb,

y∆(a) = y1a, y
∆
(
ρ2(b)

)
= y1b ,

y∆
2
(a) = y2a, y

∆2 (
ρ2(b)

)
= y2b ,

then y∗ satisfies the Euler-Lagrange equation

Lu0(·)− L∆u1
(·) +

1
a1
L∆

2

u2
(·)− 1

a3
1

L∆
3

u3
(·) = 0, t ∈ [a, ρ6(b)],

where (·) = (t, yσ
3

∗ (t), yσ
2∆

∗ (t), yσ∆
2

∗ (t), y∆
3

∗ (t)).

Proof. Suppose that y∗ is a weak local minimum of L. Let η ∈ C6 be an
admissible variation, i.e. η is an arbitrary function such that η, η∆ and η∆

2

vanish at t = a and t = ρ2(b). Define function Φ : R→ R by Φ(ε) = L(y∗+εη).
This function has a minimum at ε = 0, so we must have (see [2, Theorem 3.2])
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Φ′(0) = 0. (7)

Differentiating Φ under the integral sign (we can do this in virtue of the
conditions we imposed on L) with respect to ε and setting ε = 0, we obtain
from (7) that

0 =
∫ ρ2(b)

a

{
Lu0(·)ησ

3
(t) + Lu1(·)ησ

2∆(t)

+ Lu2(·)ησ∆
2
(t) + Lu3(·)η∆

3
(t)
}
∆t. (8)

Since we will delta differentiate Lui
, i = 1, 2, 3, we rewrite (8) in the following

form:

0 =
∫ ρ3(b)

a

{
Lu0(·)ησ

3
(t) + Lu1(·)ησ

2∆(t)

+ Lu2(·)ησ∆
2
(t) + Lu3(·)η∆

3
(t)
}
∆t

+ µ(ρ3(b))
{
Lu0η

σ3
+ Lu1η

σ2∆ + Lu2η
σ∆2

+ Lu3η
∆3
}

(ρ3(b)). (9)

Integrating (9) by parts gives

0 =
∫ ρ3(b)

a

{
Lu0(·)ησ

3
(t)− L∆u1

(·)ησ3
(t)

− L∆u2
(·)ησ∆σ(t)− L∆u3

(·)η∆2σ(t)
}
∆t

+
[
Lu1(·)ησ

2
(t)
]t=ρ3(b)
t=a

+
[
Lu2(·)ησ∆(t)

]t=ρ3(b)
t=a

+
[
Lu3(·)η∆

2
(t)
]t=ρ3(b)
t=a

+ µ(ρ3(b))
{
Lu0η

σ3
+ Lu1η

σ2∆ + Lu2η
σ∆2

+ Lu3η
∆3
}

(ρ3(b)).
(10)

Now we show how to simplify (10). We start by evaluating ησ
2
(a):

ησ
2
(a) = ησ(a) + µ(a)ησ∆(a)

= η(a) + µ(a)η∆(a) + µ(a)a1η∆σ(a) (11)

= µ(a)a1
(
η∆(a) + µ(a)η∆

2
(a)
)

= 0,

where the last term of (11) follows from (6). Now, we calculate ησ∆(a). By
(6) we have ησ∆(a) = a1η

∆σ(a) and applying (4) we obtain

a1η
∆σ(a) = a1

(
η∆(a) + µ(a)η∆

2
(a)
)

= 0.

Now we turn to analyze what happens at t = ρ3(b). It is easy to see that if
b is left-dense, then the last terms of (10) vanish. So suppose that b is left-
scattered. Since σ is delta differentiable, by Lemma 1 we cannot have points
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which are simultaneously left-dense and right-scattered. Hence, ρ(b), ρ2(b) and
ρ3(b) are right-scattered points. Now, by hypothesis η∆(ρ2(b)) = 0, hence we
have by (3) that

η(ρ(b))− η(ρ2(b))
µ(ρ2(b))

= 0.

But η(ρ2(b)) = 0, hence η(ρ(b)) = 0. Analogously, we have

η∆
2
(ρ2(b)) = 0⇔ η∆(ρ(b))− η∆(ρ2(b))

µ(ρ2(b))
= 0,

from what follows that η∆(ρ(b)) = 0. This last equality implies η(b) = 0.
Applying previous expressions to the last terms of (10), we obtain:

ησ
2
(ρ3(b)) = η(ρ(b)) = 0,

ησ∆(ρ3(b)) =
ησ

2
(ρ3(b))− ησ(ρ3(b))

µ(ρ3(b))
= 0,

ησ
3
(ρ3(b)) = η(b) = 0,

ησ
2∆(ρ3(b)) =

ησ
3
(ρ3(b))− ησ2

(ρ3(b))
µ(ρ3(b))

= 0,

ησ∆
2
(ρ3(b)) =

ησ∆(ρ2(b))− ησ∆(ρ3(b))
µ(ρ3(b))

=
ησ(ρ(b))−ησ(ρ2(b))

µ(ρ2(b)) − ησ(ρ2(b))−ησ(ρ3(b))
µ(ρ3(b))

µ(ρ3(b))
= 0.

In view of our previous calculations,

[
Lu1(·)ησ

2
(t)
]t=ρ3(b)
t=a

+
[
Lu2(·)ησ∆(t)

]t=ρ3(b)
t=a

+
[
Lu3(·)η∆

2
(t)
]t=ρ3(b)
t=a

+ µ(ρ3(b))
{
Lu0η

σ3
+ Lu1η

σ2∆ + Lu2η
σ∆2

+ Lu3η
∆3
}

(ρ3(b))

is reduced to1

Lu3(ρ
3(b))η∆

2
(ρ3(b)) + µ(ρ3(b))Lu3(ρ

3(b))η∆
3
(ρ3(b)). (12)

Now note that

η∆
2σ(ρ3(b)) = η∆

2
(ρ3(b)) + µ(ρ3(b))η∆

3
(ρ3(b))

1 In what follows there is some abuse of notation: Lu3(ρ
3(b)) denotes Lu3(·)|t=ρ3(b),

that is, we substitute t in (·) = (t, yσ3

∗ (t), yσ2∆
∗ (t), yσ∆2

∗ (t), y∆3

∗ (t)) by ρ3(b).
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and by hypothesis η∆
2σ(ρ3(b)) = η∆

2
(ρ2(b)) = 0. Therefore,

µ(ρ3(b))η∆
3
(ρ3(b)) = −η∆2

(ρ3(b)),

from which follows that (12) must be zero. We have just simplified (10) to

0 =
∫ ρ3(b)

a

{
Lu0(·)ησ

3
(t)− L∆u1

(·)ησ3
(t)

− L∆u2
(·)ησ∆σ(t)− L∆u3

(·)η∆2σ(t)
}
∆t. (13)

In order to apply again the integration by parts formula, we must first make
some transformations in ησ∆σ and η∆

2σ. By (6) we have

ησ∆σ(t) =
1
a1
ησ

2∆(t) (14)

and
η∆

2σ(t) =
1
a2
1

ησ∆
2
(t). (15)

Hence, (13) becomes

0 =
∫ ρ3(b)

a

{
Lu0(·)ησ

3
(t)− L∆u1

(·)ησ3
(t)

− 1
a1
L∆u2

(·)ησ2∆(t)− 1
a21
L∆u3

(·)ησ∆2
(t)
}
∆t. (16)

By the same reasoning as before, (16) is equivalent to

0 =
∫ ρ4(b)

a

{
Lu0(·)ησ

3
(t)− L∆u1

(·)ησ3
(t)

− 1
a1
L∆u2

(·)ησ2∆(t)− 1
a2
1

L∆u3
(·)ησ∆2

(t)
}
∆t

+ µ(ρ4(b))
{
Lu0η

σ3 − L∆u1
ησ

3 − 1
a1
L∆u2

ησ
2∆ − 1

a21
L∆u3

ησ∆
2
}

(ρ4(b))

and integrating by parts we obtain

0 =
∫ ρ4(b)

a

{
Lu0(·)ησ

3
(t)− L∆u1

(·)ησ3
(t)

+
1
a1
L∆

2

u2
(·)ησ3

(t) +
1
a21
L∆

2

u3
(·)ησ∆σ(t)

}
∆t

−
[

1
a1
L∆u2

(·)ησ2
(t)
]t=ρ4(b)
t=a

−
[

1
a2
1

L∆u3
(·)ησ∆(t)

]t=ρ4(b)
t=a

+ µ(ρ4(b))
{
Lu0η

σ3 − L∆u1
ησ

3 − 1
a1
L∆u2

ησ
2∆ − 1

a2
1

L∆u3
ησ∆

2
}

(ρ4(b)).

(17)



158 Rui A. C. Ferreira and Delfim F. M. Torres

Using analogous arguments to those above, we simplify (17) to

∫ ρ4(b)

a

{
Lu0(·)ησ

3
(t)− L∆u1

(·)ησ3
(t)

+
1
a1
L∆u2

(·)ησ2∆(t) +
1
a31
L∆

2

u3
(·)ησ2∆(t)

}
∆t = 0.

Calculations as done before lead us to the final expression

∫ ρ5(b)

a

{
Lu0(·)ησ

3
(t)− L∆u1

(·)ησ3
(t)

+
1
a1
L∆

2

u2
(·)ησ3

(t)− 1
a3
1

L∆
3

u3
(·)ησ3

(t)
}
∆t = 0,

which is equivalent to∫ ρ5(b)

a

{
Lu0(·)− L∆u1

(·) +
1
a1
L∆

2

u2
(·)− 1

a3
1

L∆
3

u3
(·)
}
ησ

3
(t)∆t = 0. (18)

Applying Lemma 4 to (18), we obtain the Euler-Lagrange equation

Lu0(·)− L∆u1
(·) +

1
a1
L∆

2

u2
(·)− 1

a3
1

L∆
3

u3
(·) = 0, t ∈ [a, ρ6(b)].

�

Following exactly the same steps in the proofs of Lemma 4 and Theorem 2
for an arbitrary r ∈ N, one easily obtains the Euler-Lagrange equation for
problem (2).

Theorem 3. (Necessary optimality condition for problems of the calculus of
variations with higher-order delta derivatives) On a time scale T satisfying
hypothesis (H), if y∗ is a weak local minimum for problem (2), then y∗ satisfies
the Euler-Lagrange equation

r∑
i=0

(−1)i
(

1
a1

) (i−1)i
2

L∆
i

ui

(
t, yσ

r

∗ (t), yσ
r−1∆

∗ (t), . . . , yσ∆
r−1

∗ (t), y∆
r

∗ (t)
)

= 0,

(19)
t ∈ [a, ρ2r(b)].

Remark 4. The factor
(

1
a1

) (i−1)i
2

in (19) comes from the fact that, after each
time we apply the integration by parts formula, we commute successively σ
with ∆ using (6) (see formulas (14) and (15)), doing this

∑i−1
j=1 j = (i−1)i

2
times for each of the parcels within the integral.
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Summary. In this paper, we describe a general method using the abstract non-
Abelian Fourier transform to construct ”rich” invariants of group actions on func-
tional spaces.

In fact, this method is inspired of a classical method from image analysis: the
method of Fourier descriptors, for discrimination among ”contours” of objects. This
is the case of the Abelian circle group, but the method can be extended to general
non-Abelian cases.

Here, we improve on some of our previous developments on this subject, in
particular in the case of compact groups and motion groups. The last point (motion
groups) is in the perspective of invariant image analysis. But our method can be
applied to many practical problems of discrimination, or detection, or recognition.

1 Introduction

In the paper, we consider the very general problem of finding ”rich” invariants
of the action of a (locally compact) group G on functions over G or over one of
its homogeneous spaces. We start from a very old idea coming from a classical
engineer’s technique for invariant objects recognition: the Fourier-descriptors
method. Invariant objects recognition is a critical problem in image processing.
To solve it, numerous approaches have been proposed in the literature, often
based on the computation of invariants followed by a classification method.
Considering the group of motions of the plane, Gauthier and al. [9], [12],
proposed a family of invariants, called motion descriptors, which are invariants
in translation, rotations, scale and reflections. H. Fonga [7] applied them to
grey level images. A recent survey on this question can be found in [20].
Another interesting paper closely connected to this work is [16].
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In this paper, we develop and we give final results of a general theory of
”Fourier descriptors”. The paper contains really new results that justify the
practical use of these ”generalized Fourier descriptors”.

The paper deals mostly with two cases: first, the case of compact groups,
and second, the case of certain ”motion groups”, for the purpose of image
analysis.

In a forthcoming paper [18], we show application of our results to several
problems of pattern recognition (in particular, human-face recognition). In
this last paper, a main point is that we apply 2D-invariant motion-descriptors
for 3D recognition. The justification is clear: in practice we get a number
of 2D images of the same object under several points of view. The motion
descriptors being motion-invariants, we need a single picture for each point
of view, independently of the position of the object. Also, in this paper, we
use the invariants in the context of a ”learning-machine” of Support-Vector-
Machine (SVM) type [21].

However, in another practical context (3D data for instance) we could
apply our methodology to the action of the group SO3 � R3 of 3D-motions.
Generalized motion descriptors for this group action can be computed easily
using our theory.

We obtained a long time ago the results presented here in the case of
compact groups. But proofs of them were never published. We give these
proofs here (Theorem 5). Our final (original) result (in the case of the discrete
2-D motion groups acting on the plane) is stated in Theorem 8, and we sketch
the proof.

Along the paper, we use the terminologies ”Fourier descriptors”, or ”gen-
eralized Fourier descriptors” for general groups. When we want to focus on
pattern recognition and motion groups, we use the terminology ”motion de-
scriptors”.

Many technical details are omitted here. They will appear in [18].

2 Preliminaries

Let us start with a few preliminaries about:

• The classical Fourier descriptors for contours.
• The main facts about the abstract Fourier transform from group harmonic

analysis. The example of the group M2 of motions of the plane is treated
explicitly.

• The generalization of Fourier descriptors for contours to Fourier descrip-
tors in the large.
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2.1 Classical Fourier descriptors for contours (the circle group)

The Fourier descriptors method is a very old method used for pattern analysis
from the old days on. The oldest reference we were able to find is [17]. Basically,
the method uses the good properties of standard Fourier series with respect
to translations. For the sake of completeness, let us recall this basic idea, that
has been used successfully several times for pattern recognition. For details,
see for instance [17].

The method applies to the problem of discrimination of 2D-patterns by
their exterior contour. Let the exterior contour be well defined, and regular
enough (piecewise smooth, say). Assume that it is represented as a closed
curve, arclength parameterized and denoted by s(θ). The variable θ is the
arclength, from some arbitrary reference point θ0 on the contour, and s(θ)
denotes the value of the angle between the tangent to the contour at θ and
some privileged direction (the x-axis, say). By construction, the function s(θ)
is obviously invariant under 2D translation of the pattern. Let now ŝn denote
the Fourier series of the periodic function s(θ). The only arbitrary object that
makes the function s non-invariant under motions (translations plus rotations)
of the pattern, is the choice of the initial point θ0. As it is well known, a
translation of θ0 by a, θ0 := a + θ0, changes ŝn for eianŝn, where i =

√
−1.

(Here, the total arclength is normalized to 2π). Set ŝn = ρne
iϕn . Let us define

the ”shifts of phases” Rn,m = ϕn

n −
ϕm

m . Then, it is easy to check that the
”discrete power spectral densities” Pn = |ŝn|2 and the ”shifts of phases” Rn,m
form a complete set of invariants of exterior contours, under motions of
the plane. They are also homotetic-invariants as soon as the total arclength
is normalized.

This result is extremely efficient for shape discrimination, it has been used
an incredible number of times in many areas. It is very robust and physi-
cally interesting for several reasons (in particular the fact that the Pn are
just discrete ”power spectral densities”, and that both Pn and Rn,m can be
computed very quickly using FFT algorithms). Also, the extraction of the
”exterior-contour” is more or less a standard procedure in image processing.

The main default of the method is that it doesn’t take any account of
the ”texture” of the pattern: two objects with similar exterior contours have
similar ”Fourier descriptors” Pn and Rn,m.

This apparently naive method is in fact conceptually very important: as
soon as one knows a bit about abstract harmonic analysis, one immediately
thinks about possible abstract generalizations of this method. The first paper
that we know in which this idea of ”abstract generalization” of the method
appears is the paper [4]. One of the authors here in worked on the subject,
with several co-workers ([9], [11], [7], [12]). In particular, there is a lot of
very interesting results in the theses [11] and [7]. A recent reference is [20].
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Unfortunately, our results being very incomplete, they were never completely
published. We would like here to give a series of more or less final result, not
yet completely satisfactory, but very interesting and convincing.

They lead to the ”generalized Fourier descriptors” that we use in
the paper [18], and that look extremely efficient for objects discrimination, in
addition to a standard Support-Vector-Machine technique. Moreover, at the
end, they are computed in practice with standard Fourier integrals, then with
FFT algorithms, and hence the algorithms are ”fast”.

2.2 The Fourier Transform on locally compact unimodular groups.

Classical Fourier descriptors for exterior contours will just correspond to the
case of the ”circle” group as the reader can check, i.e. the group of rotations
eiθ of the complex plane.

By a famous theorem of Weil, a locally compact group possesses a (almost
unique) Haar-measure ([24]), i.e. a measure which is invariant under (left
or right) translations. For instance the Haar measure of the circle group is
dθ since d(θ + a) = dθ. A group is said unimodular if its left and right Haar
measures can be taken equal (that is, the Haar measure associated with left or
right translations). An abelian group is obviously automatically unimodular.
A less obvious result is that a compact group is automatically unimodular.

The most pertinent examples for pattern recognition are of course the
following:

1. The circle group C.
2. The group of motions of the plane M2. It is the group of rotations and

translations (θ, x, y) of the plane. As one can check, the product law on
M2 is

(θ1, x1, y1).(θ2, x2, y2) = (1)
(θ1 + θ2, cos(θ1)x2 − sin(θ1)y2 + x1, sin(θ1)x2 + cos(θ1)y2 + y1).

It represents the geometric composition of two motions. The main differ-
ence with the circle group is that it is not Abelian (commutative). This
expresses the fact that rotations and translations of the plane do not com-
mute. However, it is unimodular: the measure dθdxdy is simultaneously
left and right invariant.

3. The group of y−homotheties and x−translations of the upper two di-
mensional half plane: (y1, x1).(y2, x2) = (y1y2, x1 + x2). Here, the y′is
are positive real numbers. Left and right Haar measure is dxdyy since

dxdyy = d(x+ a)d(by)by .
This abelian group is related to the classical Fourier-Mellin transform.
A similar group of interest is the (abelian) group of θ-rotations and λ
homotheties of the complex or two dimensional plane: (θ1, λ1).(θ2, λ2) =
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(θ1 + θ2, λ1λ2). Here again, the λi’s are positive real numbers but the
θi’s belong to the circle group. Of course, if one takes an image centered
around it’s gravity center, then, the effect of translations is eliminated,
and it remains only the action of rotations and homotheties. Applying the
theory developed in the second part of this paper to the case of this group
leads to complete invariants with respect to motions and homotheties. This
is related with the nice work of [10].
Unfortunately, in this case, the computation of all the invariants is based
upon a preliminary estimation of the gravity center of the image. Hence,
the invariants are simultaneously very sensitive to this preliminary esti-
mation.

4. The group of translations, rotations and homotheties of the 2D plane itself
(we don’t write the multiplication but it is obvious) is unfortunately not
unimodular. Hence the theory in this Section does not apply. It is why one
has to go back to the previous group M2.

5. The group SO3 of rotations of R3. It is related to the human mechanisms
of vision (see the paper [4]).

6. Certain rather unusual groups play a fundamental role in our theory
below: the groups M2,N of motions, the rotation component of which is an
integer multiple of 2π

N . They are subgroups of M2, and if N is large, M2,N

could be reasonably called the ”group of translations and sufficiently small
rotations”. In some precise mathematical sense, M2 is the limit when N
tends to infinity of the groups M2,N .

For standard Fourier series and Fourier transforms, there are several gen-
eral ingredients. Fourier series correspond to the circle group, Fourier trans-
forms to the R (or more generally Rp) group. In both cases, we have the
formulas:

ŝn =
∫
G

s(θ) e−inθ dθ (2)

f̂(λ) =
∫
G

f(x) e−iλx dx.

Formally, in these two formulas appear an integration over the group G
with respect to the Haar measure (respectively dθ, dx) of the function (respec-
tively s, f) times (the inverse of) the ”mysterious” term einθ (resp. eiλx). This
term is the ”character” term. It has to be interpreted as follows: For each n
(resp. λ), the map C→ C, z → einθz (resp. the map z → eiλxz) is a unitary
map (i.e. preserving the norm over C), and the map θ → einθ (resp. x→ eiλx)
is a continuous1 group-homomorphism to the group of unitary linear trans-
formations of C. For a general topological group G, such a mapping is called
a ”character” of G.

1 Along the paper, the topology over unitary operators on a Hilbert or Euclidian
space is not the normic, but the strong topology.
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The main basic result is the Pontryagin’s duality theorem, that claims the
following:

Theorem 1. (Pontryagin’s duality Theorem) The set of characters of an
Abelian locally-compact group G is a locally-compact abelian group (under nat-
ural multiplication of characters), denoted by Gˆ, and called the dual group of
G. The dual group (Gˆ)ˆ of Gˆ is isomorphic to G.

Then, the Fourier transform over G is defined like that: it is a mapping
from L2(G,dg) (space of square integrable functions over G, with respect to
the Haar measure dg), to the space L2(Gˆ, dĝ), where dĝ is the haar measure
over Gˆ :

f → f̂ , (3)

f̂(ĝ) =
∫
G

f(g)χĝ(g−1)dg.

Here, ĝ ∈ Gˆ and χĝ(g) is the value of the character χĝ on the element g ∈ G.

As soon as one knows that the dual group of R is R itself, and the dual
group of the circle group is the discrete additive group Z of integer numbers,
it is clear that Formulas 2 are particular cases of Formula 3.

It happens that there is a generalization of the usual Plancherel’s The-
orem: The Fourier Transform2 is an isometry from L2(G, dg) to L2(Gˆ, dĝ).
The general form of the inversion formula follows:

f(g) =
∫
G

f(ĝ)χĝ(g)dĝ. (4)

In our cases (R,C), this gives of course the usual formulas.
In the case of nonabelian groups, the generalization starts to be less

straightforward. To define a reasonable Fourier transform, one cannot consider
only characters (this is not enough for a good theory, leading to Plancherel’s
Theorem). One has to consider more general objects than characters, namely,
unitary irreducible representations of G. A (continuous) unitary representa-
tion of G consists of replacing C by a general complex Hilbert3 space H, and
the characters χĝ by unitary linear operators χĝ(g) : H → H, such that the
mapping g → χĝ(g) is a continuous4 homomorphism. Irreducible means that
there is no nontrivial closed subspace of H which is invariant under all the op-
erators χĝ(g), g ∈ G. Clearly, characters are very special cases of continuous
unitary irreducible representations. The main fact is that, for locally com-
pact nonabelian groups, to get Plancherel’s formula, it is enough to replace
characters by these representations.
2 Precisely, Haar measures can be normalized so that Fourier transform is isometric.
3 In the paper, all Hilbert spaces are assumed separable.
4 For the strong topology of the unitary group U(H).
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Definition 1. Two representations χ1,χ2 of G, with respective underlaying
Hilbert spaces H1,H2 are said equivalent if there is a linear invertible operator
A : H1 → H2, such that, for all g ∈ G :

χ2(g) ◦A = A ◦ χ1(g). (5)

More generally, a linear operator A, eventually noninvertible, meeting con-
dition 5, is called an intertwining operator between the representations
χ1,χ2.

The set of equivalence classes of unitary irreducible representations of G
is called the dual set of G, and is denoted by Gˆ.

One of the main differences with the abelian case is that Gˆ has in gen-
eral no group structure. However, in this very general setting, Plancherel’s
Theorem holds:

Theorem 2. Let G be a locally compact unimodular group with Haar measure
dg. Let Gˆ be the dual of G. There is a measure over Gˆ (called the Plancherel’s
measure, and denoted by dĝ), such that, if we define the Fourier transform over
G as the mapping:

L2(G,dg)→ L2(Gˆ,dĝ), (6)

f → f̂ ,

f̂(ĝ) =
∫
G

f(g)χĝ(g−1)dg,

then, f̂(ĝ) is a Hilbert-Schmidt operator over the underlaying space Hĝ, and
the Fourier transform is an isometry.

As a consequence, the following inverse formula holds:

f(x) =
∫
Gˆ
Trace[f̂(ĝ)χĝ(g)]dĝ. (7)

More generally, if χ is a unitary representation of G -not necessarily
irreducible- one can define the Fourier transform f̂(χ) by the same formula
6.

All this could look rather complicated. In fact, it is not at all, and we shall
immediately make it explicit in the case of main interest for our applications
to pattern recognition, namely the group of motions M2.

In the following, for the group M2, (and later on M2,N ), we take up the
notations below:

Notation 1 Elements of the group are denoted indifferently by g = (θ, x, y) =
(θ,X), where X = (x, y) ∈ R2. The usual scalar product over R2 is denoted
by < ., . >R2,or simply < ., . > if no confusion is possible. Then, the product
over M2 (resp. M2,N writes (θ,X).(α, Y ) = (θ + α,RθY + X), where Rθ is
the rotation operator of angle θ.
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Example 1. Group M2 of motions of the plane.
-In that case, the unitary irreducible representations fall in two classes: 1.

characters (one dimensional Hilbert space of the representation), 2. The other
irreducible representations have infinite dimensional underlaying Hilbert space
H = L2(C,dθ) where C is the circle group R/2πZ, and dθ is the Lebesgue
measure over C. These representations are parameterized by any ray R from
the origin in R2, R = {αV, V some fixed nonzero vector in R2, α a real number,
α > 0}. For r ∈ R (the ray), the representation χr expresses as follows, for
ϕ(.) ∈ H:

[χr(θ,X).ϕ](u) = ei<r,RuX>ϕ(u+ θ). (8)

The Plancherel’s measure has support the second class of representations,
i.e. characters play no role in that case.

It is easily computed that the Fourier transform of f ∈ L2(M2,Haar)
writes, with X = (x, y):

[f̂(r).ϕ](u) =
∫ ∫ ∫

M2

f(θ, x, y)e−i<r,Ru−θX> × ϕ(u− θ)dθdxdy. (9)

The main property of the general Fourier transform that we will
use in the paper concerns obviously its behavior with respect to translations
of the group. Let f ∈ L2(G,dg) and set fa(g) = f(ag). Due to the invariance
of the Haar measure w.r.t. translations of G, we get the crucial generalization
of a well known formula:

f̂(ĝ) ◦ χĝ(a) = f̂a(ĝ). (10)

2.3 General definition of the generalized Fourier descriptors, from
those over the circle group

In the case of exterior contours of 2D patterns, the group under consideration
is the circle group C. The set of invariants Pn, Rm,n has first to be replaced by
the (almost equivalent) set of invariants, Pn, R̃m,n, where the new ”phase
invariants” R̃m,n are defined by:

R̃m,n = ŝnŝmŝn+m. (11)

The justification of this definition is the following: it is easily checked
that at least on a residual subset of L2(C) these sets of invariants are
equivalent. This is enough for our practical purposes.

Remark 1. 1. There is a counterexample in [12] showing that the second set
of invariants is weaker (does not discriminate among all functions).
But in practice, discriminating over a very big dense subset of functions is
enough. Moreover, it is unexpected to be able to do more, in general.

2. Nevertheless, in the case of the additive groups Rn, these second invariants
discriminate completely. This is shown in [11].
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3. For complete invariants over L2(G) in the general abelian case, gener-
alizing those, see [12], [11], [7].

Now, an important fact has to be pointed out. There is a natural in-
terpretation and generalization of the ”phase-invariants” R̃m,n in terms of
representations.

We are given an arbitrary unimodular group G, with Haar measure dg.We
define the Fourier transform f̂ of f, as the map from the set of (equivalence
classes of) unitary irreducible representations of G, given by formula 6.

Let us state now a crucial definition, and a crucial theorem.

Definition 2. The following sets I1, I2, are called respectively the first and
second Fourier descriptors (or motion descriptors) of a map f ∈ L2(G). For
ĝ, ĝ1, ĝ2 ∈ Gˆ,

I ĝ1 (f) = f̂(ĝ) ◦ f̂(ĝ)∗, (12)

I ĝ1,ĝ22 (f) = f̂(ĝ1)⊗̂f̂(ĝ2) ◦ f̂(ĝ1⊗̂ĝ2)∗,

where f̂(ĝ)∗ denotes the adjoint of f̂(ĝ), and where ĝ1⊗̂ĝ2 denotes the
(equivalence class of) (Kronecker) Hilbert tensor product of the representa-
tions ĝ1 and ĝ2, and f̂(ĝ1)⊗̂f̂(ĝ2) is the Hilbert tensor product of the Hilbert-
Schmidt operators f̂(ĝ1) and f̂(ĝ2).

Then, clearly, in the particular case of the circle group, these formulas
coincide with those defining Pn, R̃m,n.

Let us temporarily say that a (grey-level) image f on G is a compactly
supported real nonzero function over G, with positive values (the grey levels).

Theorem 3. The quantity I1(f) is determined by I2(f) (by abuse, we write
I1(f) ⊂ I2(f)) and I1(f), I2(f) are invariant under translations of f by ele-
ments of G.

Proof. That I1(f) is determined by I2(f) comes from the fact that, f be-
ing an image, taking for ĝ2 the trivial character c0 of G, we get that
I ĝ1,ĝ22 (f) = av(f)I ĝ11 (f), where the ”mean value” of f, av(f) =

∫
G
f(g)dg > 0,

av(f) = (Ic0,c02 )1/3. That I ĝ1 (fa) = I ĝ1 (f) (where fa(g) = f(ag), the translate
of f by a) comes from the classical property 10 of Fourier transforms. That
I ĝ1,ĝ22 (f) = I ĝ1,ĝ22 (fa), comes from the other trivial fact, just a consequence of
the definition,

f̂a(ĝ1⊗̂ĝ2) = f̂(ĝ1⊗̂ĝ2) ◦ (χĝ1(a)⊗̂χĝ2(a)),

and from the unitarity of the representations.

Our purpose in the remaining of the paper is to compute these
invariants and to investigate about their completeness (at least on a big subset
of L2(G)) and their pertinence. We will mostly consider either an Abelian or
compact group G, or one of our motion groups M2 and M2,N .
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3 The generalized Fourier descriptors for the motion
group M2

Here, using the results stated in Example 1, let us compute the generalized
Fourier descriptors from the definition 2 for the group of motions M2.

The following series of formulas comes from straightforward computations,
using the results and notations stated in Example 1.

For r1, r2 ∈ R2 the tensor product χr1⊗̂χr2 , (denoted also by χr1⊗̂r2)
of the representations χr1 and χr2 can be written, for ϕ ∈ L2(C × C)∼
L2(C)⊗̂L2(C),

[χr1⊗̂r2(θ,X)ϕ](u1, u2) = ei<R−u2r1+R−u1r2,X> × ϕ(u1 + θ, u2 + θ). (13)

Therefore, we have the following expression for the adjoint operator:

[χr1⊗̂r2(θ,X)∗ϕ](u1, u2) = e−i<Rθ−u2r1+Rθ−u1r2,X> (14)

× ϕ(u1 − θ, u2 − θ).

A very important point: we consider functions f on the group of mo-
tions that are functions of X = (x, y) only (they do not depend on θ, i.e. they
are the ”trivial” lifts on the group M2 of functions on the plane R2). For the
Fourier transform, we get, with ϕ ∈ L2(C), r ∈ R,

[f̂(r)ϕ](u) =
∫
C

f̃(Rθ−ur)ϕ(u− θ)dθ =< ϕ(θ), f̃(R−θr) >L2(C,dθ), (15)

in which f̃(V ) denotes as before the usual Fourier transform over (the Abelian
group) R2 :

f̃(V ) =
∫

R2
f(X)e−i<V,X>R2dxdy. (16)

The adjoint of the Fourier transform is given by:

[f̂(r)∗ϕ](u) = f̃(R−ur) < ϕ, 1 >L2(C), (17)

where 1 is the constant function over C, with value 1.
It follows that:

[f̂(r1)∗⊗̂f̂(r2)∗ϕ](u1, u2) = f̃(R−u2r1)f̃(R−u1r2)×
∫ ∫

C×C
ϕ(a, b)dadb (18)

The final expression we need, to compute the generalized Fourier descrip-
tors, follows easily from (13):
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f̂(r1⊗̂r2)ϕ(u1, u2) =
∫
C

f̃(Rθ−u2r1 +Rθ−u1r2)× ϕ(u1 − θ, u2 − θ)dθ (19)

Using all these formulas, it is not hard to get our result for the generalized
Fourier descriptors:

[Ir1 (f)ϕ](u) =
∫
C

|f̃(Rθr)|2dθ < ϕ, 1 >L2(C), (20)

[Ir1,r22 (f)ϕ](u1, u2) =
∫
C

f̃(Rθ(r̂1 + r̂2))f̃(Rθ r̂1)f̃(Rθ r̂2)dθ∫ ∫
C×C

ϕ(a, b)dadb,

with r̂i = R−uiri, i = 1, 2.

Clearly, these invariants are completely determined by the following ones,
that we use in practice (in [18] for instance):

Ir1 (f) =
∫
C

|f̃(Rθr)|2dθ, r ∈ R, (21)

Iξ1,ξ22 (f) =
∫
C

f̃(Rθ(ξ1 + ξ2))f̃(Rθξ1)f̃(Rθξ2)dθ, for ξ1, ξ2 ∈ R2.

Remark 2. The generalized Fourier descriptors are real quantities (This is not
an obvious fact for the second type invariants, but it is easily checked).

Completeness of these invariants is still an open question. However in the
remaining of the paper we will prove certain completeness results in other
very close cases.

4 The case of compact (non-Abelian) groups

This is the most beautiful part of the theory, showing in a very convincing way
that the formulas 12 are really pertinent: in the compact case, (including the
classical Abelian case of exterior contours), the generalized Fourier descriptors
are weakly complete. This is due to the Tannaka-Krein duality theory. (See
[14], [15]).

4.1 Chu and Tannaka categories, Chu and Tannaka dualities

Tannaka Theory is the generalization to compact groups of Pontryagin’s du-
ality theory.
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The following facts are standard: The dual of a compact group is a dis-
crete set, and all its unitary irreducible representations are finite dimen-
sional.

The main lines of Tannaka theory is like that: we start with a compact
group G.

1. There is the notion of a Tannaka category TG, that describes the structure
of the finite dimensional unitary representations of G;

2. There is the notion of a quasi representation Q of a Tannaka category TG;
3. The set rep(G)ˆ of quasi representations of the Tannaka category TG has

the structure of a topological group;
4. The groups rep(G)ˆ and G are naturally isomorphic. (Tannaka duality).

This scheme completely generalizes the scheme of Pontryagin’s duality to the
case of compact groups.

In fact, Tannaka duality theory is just a particular case of Chu duality,
which will be the crucial form of duality needed for our purposes. Hence,
let us introduce precisely Chu duality ([14], [5]), and Tannaka duality will just
be the particular case of compact groups.

Let temporarily G be an arbitrary topological group.
For all n ∈ N the set repn(G) denotes the set of continuous unitary rep-

resentations of G over Cn. repn(G) is endowed with the following topology: a
basis of open neighborhoods of T ∈ repn(G) is given by the sets W (K,T, ε),
ε > 0, and K ⊂ G, a compact subset,

W (K,T, ε) = {τ ∈ repn(G)| ||T (g)− τ(g)|| < ε, ∀g ∈ K},

where the norm of operators is the usual Hilbert-Schmidt norm. If G is locally
compact, so is repn(G).

Definition 3. The Chu-Category of G is the category π(G), the objects of
which are the finite dimensional unitary representations of G, and the mor-
phisms are the intertwining operators.

Definition 4. A quasi-representation of the category π(G) is a function Q
over ob(π(G)) such that Q(χ) belongs to U(Hχ), the unitary group over the
underlaying space Hχ of the representation χ, with the following properties:

0. Q commutes with Hilbert direct-sum: Q(χ1

·
⊕ χ2) = Q(χ1)

·
⊕Q(χ2)

1. Q commutes with the Hilbert tensor product: Q(χ1⊗̂χ2) = Q(χ1)⊗̂Q(χ2),
2. Q commutes with the equivalence operators: for an equivalence A between
χ1 and χ2, A ◦Q(χ1) = Q(χ2) ◦A,

3. the mappings, repn(G)→ U(Cn), χ→ Q(χ) are continuous.

The set of quasi-representations of the category π(G) is denoted by rep(G)ˆ.

There are ”natural” quasi representations of G : for each g ∈ G, the
mapping Ωg(χ) = χ(g) defines a quasi-representation of π(G).
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Remark 3. rep(G)ˆ is a group with the multiplication Q1.Q2(χ) =
Q1(χ).Q2(χ). The neutral element is E, with E(χ) = Ωe(χ) = χ(e), for
e the neutral of G.

There is a topology over rep(G)ˆ such that it becomes a topological
group. A fundamental system of neighborhoods of E is given by the sets
W (Kˆ

n1
, ...,Kˆ

np, ε), ε > 0 and Kˆ
ni

is compact in repni(G), with
W (Kˆ

n1
, ...,Kˆ

np, ε) = {Q ∈ rep(G)ˆ | ||Q(χ) − E(χ)|| < ε, ∀χ ∈ ∪Kˆ
ni
}.

The first main result is that, as soon as G is locally compact, the mapping
Ω : G→ rep(G)ˆ, g → Ωg is a continuous homomorphism.

Definition 5. A locally compact G has the duality property if Ω is a topo-
logical group isomorphism.

The main result is:

Theorem 4. If G is locally compact, Abelian, then G has the duality property.
(This is no more than Pontryagin’s duality).

If G is compact, G has the duality property. (This is Tannaka-Krein the-
ory).

In the last section of the paper, for the purpose of pattern recognition,
we will use crucially the fact that another class of groups, namely the
Moore groups, have also the duality property.

4.2 Generalized Fourier descriptors over compact groups

Our result in this section is based upon Tannaka theory, and shows that the
weak-completeness -i.e. completeness over a residual subset of L2(G,dg)-
of the generalized Fourier descriptors (which holds on the circle group, and
which is crucial for pattern recognition of ”exterior contours”) generalizes
to compact separable groups.

If G is compact separable, then, we have the following crucial but obvious
lemma:

Lemma 1. The subset R of functions f ∈ L2(G,dg) such that f̂(ĝ) is invert-
ible for all χ = ĝ ∈ Gˆ is residual in L2(G,dg).

Proof. It follows from [6] that if G is compact separable, then Gˆ is countable.
For a fixed ĝ, the set of f such that f̂(ĝ) is not invertible is clearly open, dense.
Hence, R is a countable intersection of open-dense sets, in a Hilbert space.

The main theorem is:
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Theorem 5. Let G be a compact separable group. Let R be the subset of ele-
ments of L2(G,dg) on which the Fourier transform takes values in invertible
operators. Then R is residual in L2(G,dg), and the generalized Fourier de-
scriptors discriminate over R.

Proof. Let us take two functions f, h ∈ R, such that the associated generalized
Fourier descriptors are equal. The equality of the first-type Fourier descriptors
gives f̂(ĝ) ◦ f̂(ĝ)∗ = ĥ(ĝ) ◦ ĥ(ĝ)∗, for all ĝ ∈ Gˆ. Since f̂(ĝ) is invertible, we
deduce that there is u(ĝ) ∈ U(Hĝ), such that f̂(ĝ) = ĥ(ĝ) u(ĝ).

If χ is a reducible unitary representation, it is a finite direct sum of irre-
ducible representations, and therefore, the equality f̂(χ)◦f̂(χ)∗ = ĥ(χ)◦ĥ(χ)∗,
for all ĝi ∈ Gˆ also defines an invertible u(χ) = ĥ(χ)−1 f̂(χ). (By the finite
sum decomposition, ĥ(χ) = ⊕̇ĥ(ĝi), hence ĥ(χ) is invertible).

Moreover it is obvious that the mappings repn(G)→M(n,C), χ→ f̂(χ)
are continuous therefore the mapping χ → u(χ) = ĥ(χ)−1 f̂(χ) is also con-
tinuous.

Also, the equality of the (second) Fourier descriptors for the irreducible
representations, [due to the finite decomposition of any representation in a di-
rect sum of irreducible ones, plus the usual properties of Hilbert tensor prod-
uct] implies the equality of Fourier descriptors for arbitrary (non-irreducible)
unitary finite-dimensional representations, i.e., if χ, χ′ are such unitary repre-
sentations, non necessarily irreducible, we have also:

f̂(χ)⊗̂f̂(χ′) ◦ f̂(χ⊗̂χ′)∗ = ĥ(χ)⊗̂ĥ(χ′) ◦ ĥ(χ⊗̂χ′)∗. (22)

Replacing in this last equality f̂(χ) = ĥ(χ) u(χ), and taking into account the
fact that all the f̂(χ), ĥ(χ) are invertible, we get that:

u(χ⊗̂χ′) = u(χ)⊗̂u(χ′), (23)

for all finite dimensional unitary representations χ, χ′ of G.
Now, for such χ, χ′, and for A intertwining χ and χ′, we have also

Af̂(χ) =
∫
G
f(g)Aχ(g−1)dg =

∫
G
f(g)χ′(g−1)Adg = f̂(χ′)A. It follows that

Aĥ(χ)u(χ) = ĥ(χ′)u(χ′)A, hence, ĥ(χ′)Au(χ) = ĥ(χ′)u(χ′)A, in which ĥ(χ′)
is invertible. Therefore, Au(χ) = u(χ′)A. By Definition 4, u is a quasi-
representation of the category π(G). By Theorem 4, G has the duality prop-
erty, and for all ĝ ∈ Gˆ, u(ĝ) = χĝ(g0) for some g0 ∈ G. Then:

f̂(ĝ) = ĥ(ĝ)χĝ(g0),

and, by the main property 10 of Fourier transforms, f̂ = ĥa, f = ha for some
a ∈ G.
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5 The case of the group of motions with small rotations
M2,N

This section contains our final results. We will consider the action on the plane
of the group M2,N of translations and small rotations. In the case where N
is an odd number, we will be able to achieve a full theory and to get a weak-
completion result. Several intermediate technical lemmas are not proven here
in. We refer to the forthcoming paper [18]. However, these lemmas are pure
technical details, the main ideas being explained here.

5.1 Moore groups and duality for Moore groups

For details, we refer to [14]. We already know that compact groups have all
their unitary irreducible representations of finite dimension. But they are not
the only ones.

Definition 6. A Moore group is a locally-compact group, such that all its
unitary irreducible representations have finite-dimensional underlaying Hilbert
space.

Theorem 6. The groups M2,N are Moore groups.

Theorem 7. [14] (Chu duality) Moore groups (separable) have the duality
property.

Then, we will try to copy what has been done for compact groups to our
Moore groups. There are several difficulties, due to the fact that the functions
under consideration (the images) are very special functions over the group. In
fact, they are functions over the homogeneous space R2 of M2,N .

5.2 Representations, Fourier transform and generalized Fourier
descriptors over M2,N

In fact, considering ”images”, we will be interested only with functions on
M2,N that are also functions on the plane R2. One of the main problems, as
we shall see, is that there are several possible ”lifts” of the functions of L2(R2)
on L2(M2,N ), and that the ”trivial” lift is bad for our purposes.

Typical elements of M2,N are still denoted by g = (θ, x, y) = (θ,X),
X = (x, y) ∈ R2, but now, θ ∈ N̆ = {0, ..., N − 1}. Each such θ represents a
rotation of angle 2θπ

N , that we still denote by Rθ.

The Haar measure is the tensor product of the uniform measure over N̆
and the Lebesgue measure over R2. The dual space Ĝ is the union of the
finite set Z/NZ = N̆ (characters) with the ”Slice of Cake” S, corresponding
to nonzero values of r ∈ R2 of angle α(r), 0 ≤ α(r) < 2π

N . The support of the
Plancherel Measure is S (characters are of no use).
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Here ϕ ∈ CN , i.e. ϕ : N̆ → C. We have exactly the same formula as for
M2 :

[χr(θ,X).ϕ](u) = ei<r,RuX>ϕ(u+ θ), (24)

but r ∈ S and the map l2(N̆)→ l2(N̆), ϕ(u) → ϕ(u+ θ), is just the θ−shift
operator over CN.

The Fourier transform has a similar expression to formula 9:

[f̂(r).ϕ](u) =
∑
N̆

(
∫ ∫

R2
f(θ, x, y)e−i<r,Ru−θX> × ϕ(u− θ)dxdy) (25)

Similar computations to those of Section 3 lead to the final formula for
the Fourier descriptors relative to the trivial lift of functions f over R2 into
functions over M2,N (not depending on θ) :

Ir1 (f) =
∑
θ∈N̆

|f̃(Rθr)|2dθ, r ∈ R, (26)

Iξ1,ξ22 (f) =
∑
θ∈N̆

f̃(Rθ(ξ1 + ξ2))f̃(Rθξ1)f̃(Rθξ2)dθ,

for ξ1, ξ2 ∈ R2.

By Theorem 3, these generalized Fourier descriptors are invariant
under the action of M2,N on L2(R2). Let us explain the main problem
that appears when we try to generalize the theorem 5 of Section 4.2.

For this, we have to consider the special expression of the Fourier transform
of the ”trivial lift” of a function on the plane. We have a similar expression
to formula 15 in Section 3:

[f̂(r)ϕ](u) =
∑
N̆

f̃(Rθ−ur)ϕ(u− θ) =< ϕ(θ), f̃(R−θr) >l2(N̆) .

The crucial point in the proof of the main theorem 5 is that the operators
f̂(r) are all invertible. But, here, it is not at all the case since the operators
defined by the formula above are far from invertible: they always have rank
1.

To overcome this difficulty, we have to chose another lift of func-
tions on the plane to functions on M2,N , the trivial lift being too
rough. This is what we do in the next section.

5.3 The cyclic-lift from L2(R2) to L2(M2,N)

From now on, we consider functions on R2, that are square-summable, and
that have their support contained in a translate of a given compact set K (the
”screen”).
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Given a compactly supported function in L2(R2,R), we can define its av-
erage and its (weighted) centroid, as follows:

av(f) =
∫
K

f(x, y)dxdy,

centr(f) = (xf , yf ) = Xf = (
∫
K

xf(x, y)dxdy,
∫
K

yf(x, y)dxdy).

Definition 7. The cyclic-lift of a compactly supported f ∈ L2(R2,R), with
nonzero average, onto L2(M2,N ) is the function fc(θ, x, y) = f(RθX +
centr(f)
av(f) ).

Note that centr(f)
av(f) is the ”geometric center” of the image f and that

f c(0, X) is the ”centered image”.
The set of K-supported real valued functions is a closed subspace H =

L2(K) of L2(R2). The set I of elements of H with nonzero average is an
open subset of H, therefore it has the structure of a Hilbert manifold. This
is important since we shall apply to this space the parametric transversality
theorem of [1].

Definition 8. from now on, a (grey level, or one-color) ”image” f is an ele-
ment of I.

Notice that moreover, usual images have positive value. (grey or color
levels vary between zero and 1). This will be of no importance here in.

It is not so hard to check that f and g differ from a motion with
angle 4kπ

N if and only if fc and gc differ from a motion with angle
equal to 2kπ

N .
In this way we reduce the problem of equivalence with rotation of certain

multiples of a small angle to the problem of equivalence of the cyclic
lifts over M2,N .

This problem will be treated now, with the same method as in Section 4
(case of compact groups). For crucial reasons that will appear clearly below,
we will consider only the case of an odd N = 2n+ 1. Note that if N is odd,
when k varies in N̆ , 2kmodN also varies in N̆ .

5.4 Fourier transform, generalized Fourier descriptors of cyclic
lifts over M2,2n+1

Using the expression 24 of the unitary irreducible representations over M2,N ,
easy computations give the following results:

For r1, r2 ∈ S,

[χr1⊗̂r2(θ, V )ϕ](u1, u2) = ei<R−u2r1+R−u1r2,V > × ϕ(u1 + θ, u2 + θ) (27)
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Notice that this expression is exactly the same as 13. As a consequence,
again:

χr1⊗̂r2(θ,X)∗ϕ](u1, u2) = e−i<Rθ−u2r1+Rθ−u1r2,X> × ϕ(u1 − θ, u2 − θ). (28)

For the Fourier transform of a cyclic lift fc, we get:

[f̂ c(r)Ψ ](u) =
∑
α

f̃(R2α+ur)e
i<R2α+ur,

1
av(f)Xf>Ψ(−α) (29)

=
∑
α∈N̆

f̃(Ru−2αr)e
i<Ru−2αr,

1
av(f)Xf>Ψ(α).

Here, as above, f̃(V ) denotes the usual 2-D Fourier transform of f at V. We
get also:

[f̂c(r)∗Ψ ](u) =
∑
α∈N̆

f̃(Rα−2ur)e
−i<Rα−2ur,

1
av(f)Xf>Ψ(α). (30)

The last expression we need is:

[f̂c(r1⊗̂r2)ϕ](u1, u2) =
∑
α∈N̆

f̃(R2α−u2r1 +R2α−u1r2) (31)

ei<R2α−u2r1+R2α−u1r2,
1

av(f)Xf>ϕ(u1 − α, u2 − α).

Formula 30 leads to:

[f̂c(r1)∗⊗̂f̂ c(r2)∗ϕ(u1, u2) = (32)∑
(α1,α2)∈N̆×N̆

f̃(Rα2−2u2r1)f̃(Rα1−2u1r2)

e−i<Rα2−2u2r1+Rα1−2u1r2,
1

av(f)Xf> × ϕ(α1, α2).

Now, we can perform the computation of the generalized Fourier descrip-
tors. After computations based upon the formulas just established, we get for
the self adjoint matrix Ir1 (f) = f̂(r) ◦ f̂(r)∗ :

Ir1 (f)l,k =
∑
j∈N̆

f̃(Rl−2jr)f̃(Rk−2jr)e
i<(Rl−Rk)R−2jr,

1
av(f)Xf>,

and for the phase invariants Ir1,r22 (f) :

[Ir1,r22 (f)Ψ ](u1, u2) =∑
j∈N̆

∑
(ω1,ω2)∈N̆

f̃(R2j−u2r1 +R2j−u1r2)f̃(Rω2−2u2+2jr1)

f̃(Rω1−2u1+2jr2)×
ei<(I−Rω2−u2)R2j−u2r1+(I−Rω1−u1)R2j−u1r2,

1
av(f)Xf> ×

Ψ(u1, u2).
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Since N is odd, setting m = 2j, we get:

Ir1 (f)l,k =
∑
m∈N̆

f̃(Rl−mr)f̃(Rk−mr)e
i<(Rl−Rk)R−mr,

1
av(f)Xf>, (33)

and also, we see easily that Ir1,r22 (f) is completely determined by the quanti-
ties:

Ĩr1,r22 (f)(u1, u2, ω1, ω2) = (34)∑
m∈N̆

f̃(Rm−u2r1 +Rm−u1r2)f̃(Rω2−2u2+mr1)×

f̃(Rω1−2u1+mr2)×
ei<(I−Rω2−u2)Rm−u2r1+(I−Rω1−u1)Rm−u1r2,

1
av(f)Xf>

Setting u2 = −l2, ω2 − 2u2 = k2, u1 = −l1, ω1 − 2u1 = k1, we get:

Ĩr1,r22 (f)(l1, l2, k1, k2) = (35)∑
m∈N̆

f̃(Rm+l2r1 +Rm+l1r2)f̃(Rk2+mr1)

f̃(Rk1+mr2)× e
i<(Rl2−Rk2 )Rmr1+(Rl1−Rk1 )Rmr2,

1
av(f)Xf>

Remark 4. Consider the particular case l2 = k2, l1 = k1, and set ξ1 = Rk2r1,
ξ2 = Rk1r2, then, we get:

Ĩξ1,ξ22 (f)(l1, l2) =
∑
m∈N̆

f̃(Rm(ξ1 + ξ2))f̃(Rmξ1)f̃(Rmξ2). (36)

Note that this is just the discrete version of the (continuous) invari-
ants of type 2, in Formula 21. Note also that, making the change of variables
ξ1 = Rk2r1, ξ2 = Rk1r2, ξ3 = Rl2r1 +Rl1r2, we get:

˜
Iξ1,ξ2,ξ33 (f) =

∑
m∈N̆

f̃(Rmξ3)f̃(Rmξ1)f̃(Rmξ2)e
i<Rm(ξ3−ξ1−ξ2), 1

av(f)Xf>.

which is the final (discrete) form of our invariants.
Therefore, at the end, we have 3 sets of generalized Fourier descriptors

(type-1, type-2, type-3):
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Ir1 (f)l,k, Ĩξ1,ξ22 (f) ⊂ ˜
Iξ1,ξ2,ξ33 (f)

Ir1 (f)l,k =
∑
m∈N̆

f̃(Rl−mr)f̃(Rk−mr)e
i<(Rl−Rk)R−mr,

1
av(f)Xf>,

Ĩξ1,ξ22 (f) =
∑
m∈N̆

f̃(Rm(ξ1 + ξ2))f̃(Rmξ1)f̃(Rmξ2),

˜
Iξ1,ξ2,ξ33 (f) =

∑
m∈N̆

f̃(Rmξ3)f̃(Rmξ1)f̃(Rmξ2)e
i<Rm(ξ3−ξ1−ξ2), 1

av(f)Xf>.

As we shall see these descriptors are weakly complete (i.e. they discrimi-
nate over a residual subset of the set of images under the action of motions
of angle 4kπ

2n+1 , i.e. 2k
′
π

2n+1 ).

5.5 Completeness of the discrete generalized Fourier descriptors

This is a rather hard work. We try to follow the scheme of the proof of Theorem
5, and at several points, there are technical difficulties.

Here, as above, a compact K ⊂ R2 is fixed, containing a neighborhood of
the origin (K is the ”screen”), and an image is an element of I, from Definition
8.

Let us consider the subset G ⊂ I of ”generic images”, defined as follows.
For f ∈ I, f̃ t denotes the ordinary 2-D Fourier transform of f c(0, X) as
an element of L2(R2). Set as above X = (x, y) ∈ R2 (but here X should
be understood as a point of the frequency plane). The function f̃ t(X) is a
complex-valued function of X, analytic in X. (Paley-Wiener). For r ∈ R2,
denote by ωr ∈ CN the vector ωr = (f̃ t(R0r), ..., f̃ t(Rθir), ..., f̃

t((RθN−1r)).
Denote also by Ωr the circulant matrix associated to ωr. If FN denotes

the usual DFT matrix of order N (i.e. the N ×N unitary matrix representing
the Fourier Transform over the Abelian group Z/NZ), then the vector of
eigenvalues δr of Ωr meets δr = FNωr.

Definition 9. The generic set G is the subset of I of elements such that Ωr
is an invertible matrix for all r ∈ R2, r �= 0, except for a (may be countable)
set of isolated values of r, for which Ωr has a zero eigenvalue with simple
multiplicity.

The next Lemma shows that if N is an odd integer number, then G is very
big. It is proven by using parametric transversality arguments from [1].

Lemma 2. Assume that N is odd. Then, G is residual.

This lemma is false for even N, due to the special properties of usual
Fourier transforms of real-valued functions.

Now let us take f, g ∈ G, and assume that their discrete generalized Fourier
descriptors from Section 5.4 are equal.
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We can apply the reasoning of Section 4.2 to construct a quasi-represent-
ation of the category π(M2,N ) at points where Ωr(f) and Ωr(g) are invertible
only.

Recall the formula 29 for our Fourier Transform in the case of M2,N :

[f̂c(r)Ψ ](u) =
∑
α∈N̆

f̃(Ru−2αr)e
i<Ru−2αr,

1
av(f)Xf>Ψ(α)

=
∑
α∈N̆

f̃ t(Ru−2αr)Ψ(α),

with f t(x) = f(x+
Xf
av(f)

) = f c(0, x),

by the basic property of the usual 2D Fourier transform with respect to trans-
lations.

Since N is odd (a crucial point again), it is also equal to:

[f̂ c(r)Ψ ](u) =
∑
α∈N̆

f̃ t(Ru−αr)(CΨ)(α). (37)

where C is a certain universal unitary operator (permutation).
This formula can also be read, in a matrix setting, as:

f̂c(r) = Ωr(f)C. (38)

Also, by the equality of the invariants, the points where Ωr(f) and Ωr(g)
are non-invertible are the same.

Out of these isolated points, we can apply the same reasoning as in the
compact case, Section 4.2. Hence, the equality of the first invariants gives:

f̂c(r)f̂ c(r)∗ = Ωr(f)Ωr(f)∗ = ĝc(r)ĝc(r)∗ = Ωr(g)Ωr(g)∗.

Since at nonsingular points Ωr(f) and Ωr(g) are invertible, this implies that
there is a unitary matrix U(r) such that ĝc(r) = f̂c(r)U(r).

Let I = {ri|Ωri
is singular}. Out of I, U(r) is an analytic function of r,

since U(r) = [f̂ c(r)]−1ĝc(r).
Now, we will need some results about unitary representations, namely:

R1. Two finite dimensional unitary representations that are equivalent are
unitarily equivalent,

and the more difficult one, that we state in our special case only, and which
is a consequence of the ”Induction-reduction” theorem of Barut [2] (however,
once one knows the result, he can easily check it by direct computations in
the special case).

R2. For r1, r2 ∈ R2, the representation χr1⊗̂r2 is equivalent (hence uni-
tarily equivalent by R1) to the direct Hilbert sum of representations
⊕̇k∈N̆χr1+Rkr2 .
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This means that , if we take r1, r2 out of I, but r1 +Rk0r2 ∈ I, and r1 +
Rkr2 /∈ I for k �= k0 (which is clearly possible), and if A denotes the unitary
equivalence between χr1⊗̂r2 and ⊕̇k∈N̆χr1+Rkr2 , setting ξk = r1+Rkr2, we can
write that the block diagonal matrix ∆f = diag(f̂ c(ξ0), ..., f̂c(ξN−1)) satisfies:

∆f = ∆gAU(r1)∗⊗̂U(r2)∗A−1. (39)

Indeed, this comes from the equality of the second-type descriptors:

f̂c(χr1)⊗̂f̂ c(χr2) ◦ f̂ c(χr1⊗̂χr2)∗ = (40)
ĝc(χr1)⊗̂ĝc((χr2) ◦ ĝc(χr1⊗̂χr2)∗,

and since ĝc(χr1)⊗̂ĝc((χr2) = f̂c(χr1)⊗̂f̂ c(χr2) ◦ U(r1)⊗̂U(r2) and both are
invertible operators, then, replacing in 40, we get:

f̂ c(χr1⊗̂χr2) ◦ f̂ c(χr1)∗⊗̂f̂ c(χr2)∗ =

ĝc(χr1⊗̂χr2) ◦ U(r1)∗⊗̂U(r2)∗ ◦ f̂c(χr1)∗⊗̂f̂ c(χr2)∗,

which implies,

f̂ c(χr1⊗̂χr2) = ĝc(χr1⊗̂χr2) ◦ U(r1)∗⊗̂U(r2)∗.

Using the equivalence A, we get:

Af̂ c(χr1⊗̂χr2)A−1 = Aĝc(χr1⊗̂χr2)A−1A ◦ U(r1)∗⊗̂U(r2)∗A−1.

This last equality is exactly (39).

Remark 5. The following fact is important: the matrix A is a constant. This
comes again from the ”Induction-Reduction” Theorem of [2] (or from direct
computation): the equivalenceA : L2(N̆)⊗̂L2(N̆)≈ L2(N̆×N̆)→ ⊕̇k∈N̆L2(N̆),
is given by Aϕ = ⊕̇k∈N̆ϕk, with ϕk(l) = ϕ(l, l − k). Hence, its matrix is
independent of r1, r2.

Let us rewrite (39) as ∆f = ∆gH, for some unitary matrix H. Since
N − 1 corresponding blocks in ∆f and ∆g are invertible, it follows that H
is also block diagonal. Since it is unitary, all diagonal blocks are unitary. In
particular, the kth0 block is unitary. Also, H = A ◦ U(r1)∗⊗̂U(r2)∗A−1 is an
analytic function of r1, r2. Moving r1, r2 in a neighborhood moves r1 +Rk0r2
in a neighborhood. If we read the kth0 line of the equality ∆f = ∆gH, we get
∆f (χr1+Rk0r2

) = ∆g(χr1+Rk0r2
)Hk0(r1, r2), where Hk0(r1, r2) is unitary, and

analytic in r1, r2. It follows that, by analyticity outside I, that U(r) prolongs
analytically to all of R2\{0}, in a unique way. The equality ĝc(r) = f̂c(r)U(r)
holds over R2\{0}.

Now, for the characters K̂n, n ∈ Z/NZ, it is easily computed that
f̂ c(K̂n) = av (f)

∑
k e

2πink/N . In particular f̂ c (0) = Nav (f) .
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The equality of the second type invariants imply that av (f) = av (g) .
Moreover, if f̂c(K̂0) �= 0, ĝc(K̂0) = f̂ c(K̂0). This implies the choice U(K̂0) = 1

For n �= 0, note that f̂c(K̂n) and ĝc(K̂n) are zero. Hence we cannot define
U(K̂n) in the same way. In fact, we will consider the representations χn,r ≈ χr,

χn,r = K̂n ⊗ χr. (41)

The representation χn,r is equivalent to χr, the equivalence being An,

An(u) = e
2πi
N un = εun. (42)

Also, we set

U(χn,r) = U(n, r) = [f̂c(χn,r)]−1ĝc(χn,r) = A−nU(r)An. (43)

It follows that, wherever U(r) is defined, U(n, r) is also defined. We set
also:

U(K̂n)Id = U(r)∗A−nU(r)An = U(r)∗U(n, r). (44)

A-priori, U(K̂n) is ill defined, for several reasons. The crucial lemma 3
below shows not only that it is actually well defined but also:

U(K̂n) = einθ0 , for some θ0 =
2πk0
N

. (45)

Remark 6. At this point, we could already conclude from 45 directly (but
not so easily) our result, i.e. h̃t(Rθr) and f̃ t(Rθr) differ from a rotation Rθ0 .
However it is rather easy to see that this is in fact just ”Chu-duality”.

Note that, to conclude 45, we need the lemma 3, which is the most com-
plicated among the series of lemmas just below.

Let us define U(χ) for any p-dimensional representation χ (p arbitrary).

As a unitary representation χ is unitarily equivalent to
p

⊕̇
i=1
χri

k

⊕̇
i=1
K̂ni =

·
⊕χi, ri ∈ S, i.e. χ = A∆χiA

∗, where A is some unitary matrix, and ∆χi is a
block diagonal of irreducible representations χi.

We define U(χ) = A∆UχiA
∗.

The proofs of the following lemmas 3, 7, 8 are easy but rather technical.
We don’t give them here. The reader is referred to [18].

Lemma 3. U is well defined.

Lemma 4. At a point χ = A(χr1
·
⊕ .......

·
⊕ χrp

·
⊕ K̂k1

·
⊕ .......

·
⊕ K̂kl)A∗ =

A(χr
·
⊕ χK̂)A∗, where r1,.......rp /∈ I, we have:

U (χ) = A(...f̂c (χr)
−1
ĝc (χr)

·
⊕... eikθ0⊕̇...)A∗.
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Lemma 5. U(χ
·
⊕ χ′

) = U (χ)
·
⊕ U(χ

′
).

Lemma 6. If Aχ = χ
′
A, A unitary, then: AU (χ) = U(χ

′
)A.

The Lemmas 5, 6 are just trivial consequences of the definition of U (χ) .

Lemma 7. U is continuous.

Lemma 8. U(χ⊗̂χ′
) = U (χ) ⊗̂U(χ

′
).

Lemmas 3, 4, 5, 6, 7, show that U is a quasi-representation of the category
π (M2,N ) .

Since M2,N has the duality property, U (χ) = χ (g0) for some g0 ∈M2,N .
Also, we have:

ĝc (χr) = f̂c (χr)U (χr) = f̂c (χr)χr (g0) = f̂cg0 (χr) ,

by the fundamental property of the Fourier transform.
The support of the Plancherel’s measure being given by the (non-character)

unitary irreducible representations χr, by the inverse Fourier transform, we
get gc = f cg0 , for some g0 ∈M2,N , which is what we needed to prove.

Theorem 8. If the (Three types of) discrete generalized Fourier descriptors
of two images f, g ∈ G are the same, and if N is odd, then the two images
differ from a motion, the rotation of which has angle 4kπ

N (i.e. 2k
′
π

N since N
is odd) for some k. Remind that G is a residual subset of the set of images of
size K.

6 Conclusion

In this paper, we have developed a rather general theory of ”motion descrip-
tors”, based upon the basic duality concepts of abstract harmonic analysis.

We have applied this theory to several motion groups, and to the general
case of compact groups, completing previous results.

This theory leads to rather general families of invariants under group ac-
tions operating on functions (images). We have proved weak completeness -i.e.
completeness over a large (residual) subset of the set of images- in the case of
several special groups, including motion groups ”with small basic rotation”.
These invariants are at most cubic expressions of the functions (images).

A number of interesting theoretical questions remain open (such as com-
pleteness for the usual group of motions M2). Let us point out the following:

1. There is a final form of duality Theory, which is given by ”Tatsuuma dual-
ity”, see [14], [19]. This is a generalization of Chu duality, to general locally
compact (type 1) groups. In particular, it works for M2. Unfortunately,
huge difficulties appear when trying to use it in our context. However this
is a challenging subject.
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2. Computation of the generalized Fourier descriptors reduces to usual FFT
evaluations.

3. The first and second-type descriptors, that arise via the trivial or the cyclic
lift have a very interesting practical feature: they don’t depend on an
estimation of the centroid of the image. This is a strong point in practice.

4. Otherwise, the variables that appear in the generalized Fourier descriptors
have clear frequency interpretation. Hence, depending on the problem (a
high or low frequency texture), one can chose the actual values of these
frequency variables in certain adequate ranges.
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Summary. Here we present the main lines of a theory we developed in a series of
previous papers, about the motion planning problem in robotics. We illustrate the
theory with a few academic examples.

Our theory, although at its starting point, looks promising even from the ”con-
structive” point of view. It does not mean that we have precise general algorithms,
but the theory contains this potentiality.

The robot is given under the guise of a set of linear kinematic constraints (a dis-
tribution). The cost is specified by a riemannian metric on the distribution. Given
a non-admissible path for the robot, i.e. a path that does not satisfy the kinematic
constraints), our theory allows to evaluate precisely and constructively the ”metric
complexity” and the ”entropy” of the problem. This estimation of metric complexity
provides methods for approximation of nonadmissible paths by admissible ones,
while the estimation of entropy provides methods for interpolation of the nonad-
missible path by admissible.

1 Introduction, examples, position of the problems

What we call the ”motion planning problem” here is a particular case of the
very general problem of outstanding importance in control theory: given a
control system, and given a non-admissible trajectory, i.e. any curve in the
phase space, which is not a trajectory of the system, try to approximate it by
an admissible one. Do it in some optimal way.

The particular case we consider here is the case of a kinematic system
defined by a linear set of nonholonomic constraints (i.e. a nonintegrable dis-
tribution). We approximate paths in the ”Subriemannian sense”, a concept
which will be made clear later on.

The paper refers constantly to the series of works of the F. Jean [13, 14, 15]
and of the authors [6, 7, 8, 9, 10, 11].
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All along the paper, there is a small parameter ε (we want to approximate
up to ε) and certain quantities f(ε), g(ε) go to +∞ when ε tends to zero. We
say that such quantities are equivalent (f $ g) if limε→0

f(ε)
g(ε) = 1.

1.1 A few academic examples of kinematic systems subject to
motion planning

In the paper we provide a generic classification of motion planning problems
for low values of the corank k of the distribution. The three examples below
certainly belong to the ”folklore” but they describe certain generic exceptions
that appear naturally in the classification.

Example 1. (The ”car” robot)

ẋ = cos(θ)u (1)
ẏ = sin(θ)u,

θ̇ = v.

In this example, (x, y) is the position of the car on the plane, and θ is the
angle between the driving wheel and the x-axis in the (x, y) plane. The two
controls, u, v, correspond to turning the wheel (with v) and pushing in the
direction of the wheel (with u).

Example 2. (The car with a trailer)

ẋ = cos(θ)u, (2)
ẏ = sin(θ)u,

θ̇ = v,

ϕ̇ = v − sin(ϕ)
l

u.

Here, l is the length of the ”attach” between the car and the trailer, and ϕ is
the angle between the axes of the car and the trailer.

Example 3. (The ball rolling on a plate)

ẋ = u, ẏ = v,

Ṙ =

⎛⎝ 0 0 u
0 0 v
−u −v 0

⎞⎠R,
where R ∈ SO(3,R). Here, x, y are the coordinates of the contact point be-
tween the sphere and the plane on which it is rolling.
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In the example 2, let us consider the following non admissible trajectory
Γ : [0, 1]→ R2 × (S1)2, where S1 = R/2πZ,

Γ (s) = (x(s), y(s), θ(s), ϕ(s)) = (s, 0,
π

2
, 0).

It describes a sort of ”parking problem” in which we want both the car
and the trailer to move along the x-axis, while remaining perpendicular to the
x-axis.

In the example 3, we may consider a trajectory Γ (s) of the type: Γ (s) =
(x(s), y(s), R0), where (x(s), y(s)) is any curve on the plane (later we will
chose a line segment) and R0 is a constant frame. It means that a cat is
standing quietly on the ball, remaining at the top and looking in the same
direction while the ball moves along the curve (x(s), y(s)).

1.2 The subriemannian cost, the metric complexity and the
interpolation-entropy

We want to approximate nonadmissible curves in some optimal sense, but in
these purely kinematic problems, we would like the result (admissible curve) to
be ”optimal” independently of its parametrization. A natural way to do this
is to consider the subriemannian length of admissible curves. If ∆ denotes
the distribution (specifying the nonholonomic constraints) then we take a
riemannian metric g over ∆, that allows to measure the length of tangent
vectors to admissible curves, and therefore the length of admissible curves.

The couple (∆, g) is called a subriemannian metric, and the subriemannian
length of any admissible curve is actually independent of the parametrization.
Also, if ∆ is completely non-integrable, any two points x, y in phase space can
be connected by some admissible curve, and the minimum of these lengths is
the subriemannian distance d(x, y).

The motion planning problem is local around the compact curve Γ. Hence
we can always consider that the phase space is some open set in Rn. The
rank of the distribution will be denoted by p, and we can always assume
the existence of a global orthonormal frame F for the metric over ∆, F =
(F1, ...Fp) where k = n− p is the codimension (or corank) of ∆.

Then, we consider systems in ”control system form” (which is the case in
the 3 examples above):

ẋ =
p∑
i=1

Fi(x)ui. (3)

The Fi, i = 1, ..., p, form an orthonormal frame for the metric, therefore
the distribution ∆ is just span(F1, ..., Fp) and the length of an admissible
curve γ : [0, T ]→ Rn corresponding to a control u(t), t ∈ [0, T ] is just:

l(γ) =

T∫
0

√√√√ p∑
i=1

(ui)2.
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Definition 1. A motion planning problem P is a triple P = (∆, g, Γ ), where
(∆, g) is a (rank p) subriemannian metric over Rn and Γ : [0, T ] → Rn is a
smooth curve. The set of motion planning problems is endowed with the C∞

topology over compact sets.

We are interested with generic motion planning problems only. In par-
ticular, Γ and ∆ are transversal except maybe at isolated points. Also some
singularities of ∆ may appear along Γ. In that case they are always isolated
in Γ .

Given a motion planning P we consider the subriemannian tube Tε and
the subriemannian cylinder Cε around Γ, with respect to the subriemannian
distance, where ε is the small parameter.

Definition 2. The metric complexity MC(ε) (resp. the interpolation entropy
E(ε)) of the problem P is 1

ε times the minimum length of an admissible curve
connecting the endpoints Γ (0), Γ (T ) of Γ, and contained in the tube Tε (resp.
ε-interpolating Γ , that is, in any segment of length ≥ ε, there is a point of
Γ ). These quantities MC(ε), E(ε) are functions of ε that tend to +∞ when
ε tends to zero. They are of course considered up to equivalence.

Definition 3. An asymptotic optimal synthesis for complexity (resp. for
entropy) is a one-parameter family γε : [0, Tγε]→ Rn, (that we may take ar-
clength parameterized, i.e.

∑p
i=1(ui(t))

2 = 1) of admissible curves that realize
an equivalent of the metric complexity (resp. the entropy), i.e:

1. γε(0) = Γ (0), γε(Tγε) = Γ (T ),
2. γε([0, Tγε]) ⊂ Tε,
3. (for entropy only) γε is ε-interpolating, i.e. γε connects (a finite number

of) points of Γ by pieces of length less than or equal to ε.
4. MC(ε) $ l(γε)

ε (resp. E(ε) $ l(γε)
ε ).

Asymptotic optimal syntheses always do exist, and our theory is con-
structive in the sense that not only we compute the metric complexity and
entropy, but also we exhibit (more or less explicitly) the corresponding asymp-
totic optimal syntheses.

Remark 1. In robotics, usually, robots have to move from a source point to a
target point in the phase space, avoiding obstacles. The problem is solved in
two steps:

First, find a curve (nonadmissible) connecting source to target and avoid-
ing the obstacles. There are more or less standard procedures to do this, and
we don’t address this question here in.

Second, approximate this curve by an admissible one, up to sufficiently
small ε. This is the problem under discussion here. Moreover, ε very small
corresponds to the case of a phase space with a lot of obstacles.
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The asymptotics of the number of (subriemannian) balls of radius ε to
cover the curve Γ is the standard Kolmogorov’s entropy EK(ε). Clearly we
always have E(2ε) ≤ EK(ε). Some example is known where the equality is
not reached. But, it is a highly nongeneric situation.

Theorem 1. In all the (generic) situations we study, the following equality
holds: E(2ε) $ EK(ε).

Proof. It follows from our papers that in all the situations under consideration,
we produce asymptotic optimal syntheses γε for entropy, with the following
property. Let γε be arclength parameterized. Consider any interpolating in-
terval of γε of the form [t, t + a], γε(t) ∈ Γ, γε(t + a) ∈ Γ, a ≤ ε. Then, the
subriemannian ball of radius ε2 centered at γε(t+ a

2 ) covers entirely the piece
segment of Γ between γε(t) and γε(t+ a). It follows that EK( ε2 ) ≤ E(ε).

In other terms, generically there are no ”metric cusps”.

1.3 The results for examples 2 and 3

We don’t deal with Example 1, which is of the same kind but simpler than
example 2.

The distribution ∆ in Example 2 is the so called Engel’s distribution.
There is an ”abnormal flow” for the distribution. That is, there is a vector
field the trajectories of which are extremals of the Pontryagin’s maximum
principle, corresponding to zero Hamiltonian. We chose the vector field F1 to
generate this abnormal flow. Then F2 is the unit orthogonal vector field to
F1 in ∆. We set F3 = [F1, F2], and this choice defines an orthonormal frame,
hence in particular a subriemannian metric g′ in the derived distribution ∆′.
We take a one form ω which vanishes on ∆′ and which has value 1 on the
vectors Γ̇ (t). This form ω is unique up to multiplication by a smooth function
which is 1 on Γ. Then we define a field A(t) of skew-symmetric endomorphisms
of ∆ along Γ, as follows:

< A(t)X,Y >g′= dω(X,Y ), ∀X,Y ∈ ∆Γ (t).

We set δ(t) = ||A(t)||g′ . The invariant δ(t) does not depend on the choice of
ω, and there is a universal constant σ̂ ∼ 0.00580305 such that:

E(ε) $ 3
2σ̂ε3

∫
Γ

dt

δ(t)
. (4)

Moreover asymptotic optimal syntheses can be computed explicitly in terms of
the Jacobi elliptic functions. In particular, the solution of the parking problem
set in Section 1.1 is depicted on Figure 1. On this figure, the x axis along
which the system is expected to move transversely, has a magnified scale,
which makes some angle look not small. Optimal controls express in terms of
the Jacobi elliptic functions as follows:
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v(t) = 1− dn(K(1 +
4t
ε

))2, (5)

u(t) = −2dn(K(1 +
4t
ε

))sn(K(1 +
4t
ε

)) sin
ϕ0

2
,

where 2 Eam(K) = K and K(k) is the quarter period of the Jacobi elliptic
functions of modulus k = sin(ϕ0)

2 , ϕ0 ∼ 130◦ (See Love, [17]).

Fig. 1. parking of a car with a trailer.

For Example 3 there is no abnormal flow but through each point of Γ
there is some abnormal trajectory transversal to Γ (in the sense of Pon-
tryagin’s maximum principle). We chose the unit vector field F1 to gener-
ate these trajectories. The following construction will be independent of this
choice. We chose F2, F3 as in the Engel’s case, and we set F4 = [F1, F3],
F5 = [F2, F3]. We denote by ω a one form which vanishes on ∆′ and such
that 1 = ω(Γ̇ ) = ω(F5). Again the results will be independent of the choice
of ω. Set γ(t) = ω(F4). Then, the entropy is given by the same formula as 4,
namely:

E(ε) $ 3
2σ̂ε3

∫
Γ

dt

γ(t)
,

and the controls corresponding to an asymptotic optimal synthesis are still
given by the formula 5.

The trajectory of the contact point of the rolling ball with the plane is
shown on Figure 2. It is some Euler’s elastica (Love, [17]). The cross on the
ball figures the position of the cat.

1.4 Content of the paper

In the section 2, we introduce several basic concepts and tools. The first are
the notions of normal coordinates and normal form, generalizing the normal
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Fig. 2. The cat on a ball on a plane.

coordinates of riemannian geometry. These tools allow to define some ade-
quate notions of ”Nilpotent approximation along Γ”. We give also two crucial
technical lemmas: 1. Reduction to Nilpotent approximation, 2. the logarith-
mic Lemma, allowing to manage with the general situation where the curve
Γ crosses transversally a singularity of codimension 1 of the distribution ∆.

Normal coordinates come from all our previous papers, and the logarithmic
lemma is stated in [11]. The reduction to nilpotent approximation is shown
in [10].

Section 3 deals with the codimension one case. Further results and details
for this codimension one case can be found in [6, 7].

Section 4 deals with all generic cases where the corank k of ∆ is three at
most. It is a remarkable fact that, up to corank 3, in almost all cases we have
the following relation between entropy and metric complexity.

Theorem 2. If k ≤ 3 then except in the two cases described in the previous
section, i.e. Engel (p = 2, k = 2) and rolling ball (p = 2, k = 3) (in which
cases we don’t know the expression of the metric complexity), we have the
following relation, generically: E(ε) $ 2πMC(ε).

This last theorem comes from [10].
Section 5 states what we know in the cases where k =codim( ∆) ≥ 4. We

provide an almost complete generic classification up to corank k = 8, and
some extra results up to corank k = 10. These results come mostly from the
papers [9, 10, 11].

In our conclusion 6, we want in particular to point out a presumably
very important ”robustness property” of our approach. This property is a
consequence of all these results: in fact, very often, the optimal syntheses
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(after certain natural reparameterization of Γ ) depend neither on the system
nor on the metric or on the curve Γ : they depend only on the structure of the
distribution (its growth vector).

2 A few useful tools

2.1 Normal coordinates and normal form

The normal coordinates we introduce follow the old idea of ”normal coordi-
nates” in riemannian geometry. They are coordinates in which Γ and certain
subriemannian geodesics are normalized in a convenient way. Several versions
of these coordinates were previously introduced, first in [4] in a formal way
completely forgetting about geometric ideas. This paper [4] is rather impor-
tant since it provides certain power series expansion of the normal coordinates.
This expansion could be generalized here in order to approximate effectively
our normal coordinates and normal forms.

After the paper [4], the normal coordinates (and the normal form) were
interpreted in geometric terms, and extended to different other situations (see
the papers [1], [2], [3]).

Consider a motion planning problem P = (∆, g, Γ ) not necessarily one-
step-bracket-generating. Take a (germ along Γ of) parameterized k-dimens-
ional surface S, transversal to ∆,

S = {q(s1, ..., sp−1, t) ∈ Rn},with q(0, ..., 0, t) = Γ (t).

Such a germ does exist if Γ is not tangent to ∆. The exclusion of a neighbor-
hood of an isolated point where Γ is tangent to ∆, that is Γ becomes ”almost
admissible”, does not affect the estimations in this paper. Moreover, around
such a point, motion planning is trivial.

We denote by CSε = {ξ; d(S, ξ) = ε} the subriemannian cylinder of radius
ε around S, and by T Sε the corresponding tube.

Lemma 1. (Normal coordinates with respect to S). There are mappings x :
Rn → Rp, y : Rn → Rk−1, w : Rn → R, such that ξ = (x, y, w) is a coordinate
system on some neighborhood of S in Rn, such that:

0. S(y, w) = (0, y, w), Γ = {(0, 0, w)},
1. ∆|S = ker dw ∩i=1,..k−1 ker dyi, g|S =

∑p
i=1(dxi)

2,
2. CSε = {ξ|

∑p
i=1 xi

2 = ε2},
3. geodesics of the Pontryagin’s maximum principle ([18]) meeting the

transversality conditions w.r.t. S are straight lines through S, contained in
the planes Py0,w0 = {ξ|(y, w) = (y0, w0)}. Hence, they are orthogonal to S.

These normal coordinates are unique up to changes of coordinates of the
form

x̃ = T (y, w)x, (ỹ, w̃) = (y, w), (6)

where T (y, w) ∈ O(p), the p× p orthogonal group.
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Frames

A motion planning problem can be specified by a couple (Γ, F ), where F =
(F1, ..., Fp) is a g-orthonormal frame of vector fields generating ∆. Hence,
we will also write P = (Γ, F ). If a global coordinate system (x, y, w), not
necessarily normal, is given on a neighborhood of Γ in Rn, with x ∈ Rp,
y ∈ Rk−1, w ∈ R, then we write:

Fj =
p∑
i=1

Qi,j(x, y, w)
∂

∂xi
+
k−1∑
i=1

Li,j(x, y, w)
∂

∂yi
+Mj(x, y, w)

∂

∂w
, (7)

j = 1, ..., p.

Hence, the SR metric is specified by the triple (Q,L,M) of smooth x, y, w-
dependent matrices.

The general normal form

Fix a surface S as in Section 2.1 and a normal coordinate system ξ = (x, y, w).

Theorem 3. (Normal form) There is a unique orthonormal frame F =
(Q,L,M) for (∆, g) with the following properties:

1. Q(x, y, w) is symmetric, Q(0, y, w) = Id (the identity matrix),
2. Q(x, y, w)x = x,
3. L(x, y, w)x = 0,M(x, y, w)x = 0.
Conversely if ξ = (x, y, w) is a coordinate system satisfying conditions 1,

2, 3 above, then ξ is a normal coordinate system for the SR metric defined by
the orthonormal frame F with respect to the parameterized surface {(0, y, w)}.

Clearly, this normal form is invariant under the changes of normal coordi-
nates of the form (6).

Let us write:

Q(x, y, w) = Id+Q1(x, y, w) +Q2(x, y, w) + ...,
L(x, y, w) = 0 + L1(x, y, w) + L2(x, y, w) + ...,
M(x, y, w) = 0 +M1(x, y, w) +M2(x, y, w) + ...,

where Qj , Lj ,Mj are matrices depending on ξ, the coefficients of which
have order j w.r.t. x (i.e. they are in the jth power of the ideal of C∞(x, y, w)
generated by the functions xr, r = 1, ..., p). In particular, Q1 is linear in x,
Q2 is quadratic, etc... Set u = (u1, ..., up) ∈ Rp. Then

∑k−1
j=1 L1j

(x, y, w)uj
= L1,y,w(x, u) is bilinear in (x, u), and Rp−1-valued. Its ith component is the
bilinear expression denoted by L1,i,y,w(x, u). Similarly

∑k−1
j=1 M1j

(x, y, w)uj
= M1,y,w(x, u) is a quadratic form in (x, u). The corresponding matrices are
denoted by L1,i,y,w, i = 1, ..., k − 1, and M1,y,w.

The following was proved in [2], [3] for corank 1, but holds in general.

Proposition 1. 1. Q1 = 0,
2. L1,i,y,w, i = 1, ..., k − 1, and M1,y,w are skew symmetric matrices.
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2.2 Nilpotent approximations along Γ

The generic cases we care about don’t use brackets of order more than 3.
Brackets of order 3 are used at isolated points of Γ only. This is due to the
fact that either we consider the generic cases of corank ≤ 3 treated in Sections
3, 4 or only certain cases of corank more than 3 from Section 5.

First we have to chose the surface S. In the one-step-bracket-generating
case, we chose the surface S arbitrary (but transverse to ∆). The nilpotent
approximation will not depend on this choice. In the Engel case, we show
below (Example 7) how to chose S. In the cases p = 2, k = 3, we chose S
as explained in Example 8. Isolated points where third brackets are necessary
may appear.

After this choice, we assign certain weights to the variables xi, yj , w and
the operators ∂

∂xi
, ∂
∂yj
, ∂
∂w in agreement with the order of the variables w.r.t.

the small parameter ε inside the tube Tε, considering admissible trajectories
starting from Γ at time 0. For instance the weight of xi, i = 1, ..., p is 1 since
||ẋ||Rp ≤ 1 (admissible curves are arclength parameterized). Then, the weight
of the operators ∂

∂xi
is -1 since the Lie derivative of monomials with respect

to ∂
∂xi

makes them decrease of weight one. The weight of yj , j = 1, ..., k may
be 2 or 3: for instance in the one step bracket generating case, the expression
of ẏj starts with a linear term in x, then inside Tε, |yj | ≤ kε2 for a certain
constant k. Therefore the weight of yj is 2. It follows that the weight of ∂

∂yj
is

−2. If the expression of ẏj starts with a quadratic term, then yj has weight 3
and ∂

∂yj
has weight −3. After assigning in the same way a weight to ∂

∂w , we
finally set that the weight of w is zero (w is just the parameter of Γ ).

Note that the weights are constant, except may be at isolated points of Γ.

Definition 4. The nilpotent approximation P̂ of P along Γ is defined as fol-
lows.

1. On a piece segment of Γ where there is no isolated point corresponding
to a codimension one singularity of the distribution, we keep only the terms of
order -1 in the normal form (i.e. an orthonormal frame for P̂ is the normal
frame of P truncated at order -1),

2. In a neighborhood of a singular isolated point, we keep also the terms of
order ≤ -1, but taking into account the weights at the isolated point.

Example 4. The nilpotent approximation in the one-step-bracket generating
has the following form, (using control system notations):

ẋ = u; (8)

ẏi =
1
2
x′Li(w)u; i = 1, ..., k − 1;

ẇ =
1
2
x′M(w)u.
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Here x′ is the transpose of x and w is the coordinate along Γ. The matrices
Li,M, depending on w, are skew symmetric.

The y, w space identifies with the surface S. It can be also identified to the
quotient TΓ (w)R

n/∆Γ (w), and the mapping (x, u) →
(x′L1(w)u, ..., x′Lp−1(w)u, x′M(w)u) from ∆Γ (w)×∆Γ (w) to TΓ (w)R

n/∆Γ (w)

is just the coordinate form of the bracket mapping modulo distribution,
[., .]/∆, which is a tensor, as is well known.

Example 5. (Nilpotent approximation in 3-dimensional contact case).
In the 3 dimensional case the (parameterized) surface S reduces to the (pa-
rameterized) curve Γ. There is no y-variable. By [4] the normal form along Γ
can be written as:

F1 =
∂

∂x1
− x2β(x1

∂

∂x2
− x2

∂

∂x1
) +

x2

2
γ
∂

∂w
, (9)

F2 =
∂

∂x2
+ x1β(x1

∂

∂x2
− x2

∂

∂x2
)− x1

2
γ
∂

∂w
,

where β, γ are smooth functions of all variables x1, x2, w.
The distribution ∆ is contact iff γ(0, 0, w) �= 0. Then the nilpotent ap-

proximation along Γ is:

F1 =
∂

∂x1
+
x2

2
γ(0, 0, w)

∂

∂w
, (10)

F2 =
∂

∂x2
+−x1

2
γ(0, 0, w)

∂

∂w
,

Example 6. (Nilpotent approximation in Martinet case). We consider
the case of a singular isolated point w0 = 0. If γ(0, 0, 0) = 0 , then the
distribution is generically of ”Martinet type” (i.e. second brackets allow to fill
in the tangent space). In that case, in a neighborhood of such a point, the
nilpotent approximation is (since ∂

∂w has order −3):

F1 =
∂

∂x1
+
x2

2
(γ0(w) + γ1(w)x1 + γ2(w)x2)

∂

∂w
, (11)

F2 =
∂

∂x2
+−x1

2
(γ0(w) + γ1(w)x1 + γ2(w)x2)

∂

∂w
,

where γ0(0) = 0. What will be important in that case is that ∂γ0∂w (0) = σ �= 0.

In the two following examples, we keep the notations of Section 1.3.

Example 7. (The Engel’s case of Example 2). In that case we chose the
parameterized surface S as follows: S(y, w) = exp(yF3)(Γ (w)). We chose also
T (y, w) for F1 = ∂

∂x1
, F2 = ∂

∂x2
along Γ. Then, the nilpotent approximation

is:
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F1 =
∂

∂x1
+
x2

2
∂

∂y
+

1
2
x1x2δ(w)

∂

∂w
,

F2 =
∂

∂x2
− x1

2
∂

∂y
− 1

2
(x1)2δ(w)

∂

∂w
.

Note that δ(w) = ||A(w)||g′ , where A(.) has been defined in Section 1.3
and then for a generic motion planning problem P, δ(w) never vanishes.

Example 8. (The rolling ball case of Example 3). We chose:

S(y1, y2, w) = exp(y2F5)◦ exp(y1F3)(Γ (w)),

and T (y, w) for the abnormals meeting the transversality conditions of Pon-
tryagin’s maximum principle with respect to Γ be trajectories of F1. We get
the nilpotent approximation:

F1 =
∂

∂x1
+
x2

2
∂

∂y1
− (x2)2

3
∂

∂y2
+

1
2
x1x2γ(w)

∂

∂w
,

F2 =
∂

∂x2
− x1

2
∂

∂y1
+
x1x2

3
∂

∂y2
− 1

2
(x1)2γ(w)

∂

∂w
.

Note that at some isolated points γ may be zero. In that case we proceed
as in Example 6.

2.3 Two crucial lemmas

Nilpotent approximations dominate along Γ, and they give the entropy and
metric complexity of the problem as stated in the next lemma.

Lemma 2. (Reduction to nilpotent approximation) In all the cases un-
der consideration here, the entropy and metric complexity of the problem P
and its nilpotent approximation NP are equal.

This lemma is proven in [10] (for entropy only but it holds also for the
metric complexity).

In the case of generic codimension 1 singularities of the distribution ∆, we
have also the very important following lemma, proven in [11], for the specific
cases we need in this paper (i.e. brackets of maximum order 3 at generic
isolated singularities). However a similar lemma should be true in a more
general setting.

Assume that the brackets of higher order at singular isolated points have
order r + 1 (then it is r at generic points). Consider the distribution ∆(r−1)

(i.e. ∆ bracketed r − 1 times by itself). Of course, ∆(0) = ∆. Then consider
the forms ω which are zero on ∆(r−1) and which take value 1 on Γ̇ . We get
an affine family ωλ of these.

In the cases we consider, we have either r = 1 or r = 2, that is at isolated
points we need at most the third Bracket. If r = 2, then k = 3 (if k = 2, i.e.
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Engel’s case, there is generically no singular point along Γ ). Then we have a
canonical metric on ∆′/∆ : unit vector for this metric is given by the bracket
of any two unit orthogonal vectors in ∆. Via of our nilpotent approximation
along Γ, it provides a metric g′ on ∆′ (along Γ ). Then, in all cases, we have
a riemannian metric g′ on ∆(r−1). If r = 1 then g′ = g. Let us define along Γ
an affine family of operators A(w) : ∆(r−1) → ∆(r−1), skew symmetric w.r.t
g′ by:

dωλ(X,Y ) =< Aλ(w)X,Y >, for all X,Y in ∆(r−1)
Γ (w) . (12)

Set:
χ(w) = inf

λ
||Aλ(w)||. (13)

Lemma 3. (Logarithmic Lemma) In the cases under consideration in the
paper we have, at generic points of Γ, formulas for the entropy of the type

E(ε) $ 1
εp

∫
Γ

α(w)dw
χ(w) , where α is a certain other invariant, (this formula is valid

on pieces of Γ containing no singular point). Assume that there are codimen-
sion 1 singularities of ∆ at points w1, ..., wl. Then χ has a nonzero derivative

χ′ at these points, and the entropy expresses as: E(ε) $ − 2 ln(ε)
εp

l∑
i=1

a(wi)
|χ′(wi)| .

Remark 2. Note for instance that it is the case in Example 8, where γ(w)
there is equal to χ(w) here. It is also true in Martinet case, Example 6, where
σ = χ′(w).

There is one more general fact in this study that we use everywhere without
stating it: there are other generic isolated points where the curve Γ is tangent
to a certain distribution at some unavoidable points (for instance if n = 3,
p = 2 then Γ may be tangent to ∆; another case is n = 4, p = 2 where
Γ may be tangent to ∆′). In such situations, in the denominator of some

expression of the form 1
εp

∫
Γ

α(w)dw
χ(w) the invariant χ tends to infinity. However,

this expression still makes sense. In these cases, always, expressions of entropy
or metric complexity are still valid.

3 The codimension one case

In the situation where ∆ has corank one, the normal form gives every-
thing (metric complexity, entropy and explicit asymptotic optimal synthesis)
even without using any variational principle: all the results are directly
readable on the normal form. Details about this corank one case can be found
in [6, 7]. Let us summarize the main results and sketch some proofs.

The cylinder Cε is smooth (which is not true in higher corank) except in
a neighborhood of unavoidable points where Γ is tangent to ∆. But as we
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said, at these points, asymptotic optimal synthesis is trivial, and expression
of complexity and entropy is still valid. Therefore in this section we assume
that Γ is transversal to ∆.

In the normal form of Theorem 3 and inside Tε let us read the equation
of the w variable:

ẇ =
1
2
x′M(w)u+O(ε2).

This implies, since we take the admissible curves arclength parameterized
that ẇ ≤ 1

2ε||M(w)|| ||u|| + O(ε2) = 1
2ε||M(w)|| + O(ε2), then dt ≥

2
ε

dw
||M(w)||(1+O(ε)) . Hence obviously, MC(ε) ≥ 2

ε2

∫
Γ

dw
||M(w)|| . We can chose the

matrices T (w) in 6 for M(w) is in 2 × 2 block diagonal form, and the first

block
(

0 χ(w)
−χ(w) 0

)
is such that ||M(w)|| = χ(w). Then we consider the

two dimensional cylinder C1(ε) = {(x1)2 + (x2)2 = ε2, x3 = ... = xp = 0}.
The distribution ∆ being transversal to Γ, it is also transversal to C1(ε) for ε
small enough. The intersection of the distribution and the tangent bundle to
C1(ε) defines a vector field Xε on C1(ε).We take a trajectory γε of this vector
field. We complete it with two horizontal (i.e. corresponding to w=constant)
geodesics from Lemma 1 (point 3) that connect endpoints of Γ to C1(ε) at the
price 2ε (without any effect on the final estimation of the metric complexity).
The reader can compute directly with the normal form that the cost of this

strategy is equivalent to 2
ε2

∫
Γ

dw
||M(w)|| . Therefore,

MC(ε) $ 2
ε2

∫
Γ

dw

||M(w)|| ,

and this strategy provides an asymptotic optimal synthesis. It is given by
the two pieces of horizontal geodesics just described, plus a trajectory of the
vector field Xε . Then in fact, everything is reduced to the case n = 3, for
which the asymptotic optimal synthesis is described on Figure 3 (a).

The proof of theorem 2 in that case follows form the normal form and the
usual Euclidian isoperimetric inequality.

There are other cylinders C ′
ε, that are tangent to Γ and transversal to ∆,

of perimeter ε, also in the plane x3 = ... = xp = 0, such that the asymptotic
optimal synthesis for entropy is given by the vector field X

′
ε obtained by

intersecting ∆ with the tangent bundle to C ′
ε. This is shown on Figure 3 (b).

The only remaining generic situation in corank 1 is the Martinet case when
n = 3. What happens is depicted on Figure 4 for the metric complexity (there
is a similar picture for entropy): there is a limit cycle on the cylinder Cε = C1

ε .
The asymptotic optimal synthesis is like that: 1. Connect the endpoints of

Γ to Cε by horizontal geodesics. 2. Follow a trajectory of Xε as long as the
variable w varies in a monotonic way. When the derivative of w changes sign,



Nonholonomic Interpolation 201

Fig. 3. Contact case.

Fig. 4. Martinet case.

cross the cylinder by using a horizontal geodesic (given by Lemma 1 point
3). This allows to cross the singularity. 3. Continue in a symmetric way by
following a trajectory of the vector field −Xε.

The proof of the fact that this strategy is an asymptotic optimal synthe-
sis for the metric complexity follows just from explicit estimations from the
normal form 11.

It is remarkable that the same type of direct estimate for Entropy shows
the relation E(ε) $ 2πMC(ε).
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To summarize, let ω be the (unique up to multiplication by a function
which is unit on Γ ) one form such that ω(Γ̇ ) = 1, ω(∆) = 0. Let A(t) be
the one parameter family of (skew symmetric w.r.t. g) endomorphisms of ∆
along Γ, defined by dω(X,Y ) =< A(t)X,Y >g, for all X,Y in ∆Γ (t). Set
χ(t) = ||A(t)||g.

Theorem 4. Codimension k = 1. The metric complexity and entropy satisfy,
for generic problem P :

E(ε) $ 2πMC(ε),

MC(ε) $ 2
ε2

∫
Γ

dt

χ(t)
, if n > 3 or there is no Martinet point on Γ,

MC(ε) $ − ln(ε)
ε2

∑
Martinet points ti

4
|χ′(ti)|

, if n = 3 and there are Martinet
points.

Moreover, the asymptotic optimal synthesis is explicit, as described above in
this section.

There are complementary results about nongeneric cases with k = 1 in the
paper [7].

4 Codimension smaller or equal to three

4.1 One step bracket generating case

We use the reduction to nilpotent approximation (Lemma 2) and the normal
form for the nilpotent approximation (8).

Consider again the bracket tensor mapping Bw = [., .]/∆ : ∆Γ (w) ×
∆Γ (w) → TΓ (w)R

n/∆Γ (w). Set

B1,1(w) = {(X,Y ) ∈ ∆Γ (w) ×∆Γ (w); ||X||g, ||Y ||g ≤ 1},

i.e. the product of two unit balls B1(w) in ∆Γ (w). Set K(w) = Bw(B1,1(w)).

Definition 5. The set K(w) is strictly convex in the direction of Γ̇ (w) if one
of the two equivalent following statements holds:

(S1) There is x∗ = λΓ̇ (w) ∈ K(w), λ > 0, and ω ∈ (TΓ (w)R
n/∆Γ (w))∗ ≈

(Rp)∗ (dual space of TΓ (w)R
n/∆Γ (w)) such that, for all z ∈ K(w),

ω(x∗) ≥ ω(z); (14)

(S2) If V ∗ = {ω ∈ (Rp)∗, ω(Γ̇ (w)) = 1}, then there exists ω∗ ∈ V ∗, x∗ =
λΓ̇ (w) ∈ K(w), λ > 0, with:

ω∗(x∗) = sup
x∈K(w)

ω∗(x) = inf
ω∈V ∗

sup
x∈K(w)

ω(x).



Nonholonomic Interpolation 203

Then, the key observation is given by the following Lemma.

Lemma 4. (Corank 1,2,3). For a generic (open dense) motion planning prob-
lem P, for all t ∈ [0, T ], K(w) is strictly convex in the direction of Γ̇ (w).

Proof. We just sketch the proof. Technical details can be found in [8]. First,
for these values of corank, all the matrices Aλ(w) from Formula 12 have simple
nonzero eigenvalues (except at isolated points that have no influence on the
final result, if k = 3). Then we can chose the changes of normal coordinates (6)
and Γ -preserving changes of coordinates in the surface S, for the matrixM(w)
in the expression (8) of the Nilpotent approximation verifies: A0(w) = M(w),
χ(w) = ||M(w)|| (where χ(w),the main invariant, has been defined in 13).
Also, we can put M(w) in block-diagonal 2× 2 form, such that the first block

(corresponding to normal coordinates x1, x2 is
(

0 χ(w)
−χ(w) 0

)
.

Then convexity in the direction of Γ̇ just means that the skew-symmetric
matrices Li(w), i = 1, ..., p− 1, verify:

Li(w)1,2 = Li(w)2,1 = 0. (15)

Indeed, Li(w)1,2 = −Li(w)2,1 are the y-coordinates of the image of the
bracket mapping [., .]/∆ and Γ̇ mod∆ has coordinates y = 0, w = w∗. Then
(15) is necessary to get Property (14).

Now, assume this property 15 does not hold. Set P (λ) = sup||x||,||z||≤1

x′Aλz = ||Aλ||2. This sup is attained for certain unit vectors x(λ), z(λ), that
are moreover orthogonal. Then, the infλ P (λ) is attained at λ∗ = 0. Therefore,

dP (λ)
dλ = 0 for λ = 0. We rewrite P (λ) = x′(λ)(M +

k−1∑
i=1

λiLi)z(λ). We

get 0 = x′(0)Liz(0) + dx′
dλi

(0)Mz(0) + x′(0)M dz
dλi

(0). But both terms I =
dx′
dλi

(0)Mz(0) and II = x′(0)M dz
dλi

(0) vanish: indeed Mz(0) = χ(w)x(0), then
I = χ(w) dx

′
dλi

(0)x(0). But < x(λ), x(λ) >= 1. It follows that 0 = x′(0)Liz(0),
which is what we need.

Remark 3. This proof shows also that, in future situations where K(w) will be
not strictly convex in the direction of Γ̇ (w), we can chose normal coordinates
and Γ -preserving coordinates in S such that: infλ ||Aλ(w)|| is attained at
λ = 0, and A0(w) = M(w) has double eigenvalue of maximum modulus.
This will be a main fact in the next Section 5.

The lemma 4 means in fact that, as in Section 3, everything can be reduced
to the three dimensional contact case, at least for the nilpotent approximation.

Actually, with the same argument as in corank 1, we have MC(ε) ≥
2
ε2

∫
Γ

dw
||M(w)|| .We consider the normal coordinates, as in the proof of Lemma 4,
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where M(w) is block diagonal, with first block equal to
(

0 χ(w)
−χ(w) 0

)
. We

consider the cylinder C1(ε) = {(x1)2 + (x2)2 = ε2, x3 = ... = xp =
0}. Provided that ε is small enough S and C1(ε) are transversal since S
is assumed transversal to ∆. Again the intersection of ∆ with the tangent
bundle to C1(ε) provides a unit vector field denoted by Xε (two such opposite
vector fields in fact). The key point is the convexity that implies the property
(15). From this property, it follows that the vector field Xε has the form:

Xε =
p∑
i=1

Xi
∂

∂xi
+Xn

∂

∂w
.

Therefore, If we denote by C2(ε) = {(x1)2 +(x2)2 = ε2, x3 = ... = xp = 0, y =
0} the 2-dimensional sub-cylinder corresponding to y = 0, Xε is a vector field
on C2(ε). It is easy to check that trajectories of this vector field, plus two
horizontal pieces of geodesics of length ε, (to connect the endpoints of Γ to

C2(ε)) provide admissible paths with length exactly equal to 2
ε2

∫
Γ

dw
||M(w)|| .

Remark 4. In fact, for the nilpotent approximation in adequate normal coor-
dinates, using property 15, and restricting to the cylinder C2(ε) we get exactly
the 3-dimensional contact case.

We conclude:

Theorem 5. (k ≤ 3, one step bracket generating). Entropy is still given by the

formula E(ε) $ 2
ε2

∫
Γ

dw
χ(w) . In certain normal coordinates, the problem P̂ (mo-

tion planning for nilpotent approximation) reduces to the 3-dimensional con-
tact case by restriction to some subspace. Moreover again, E(ε) $ 2πMC(ε).

4.2 Remaining cases

All cases corresponding to k ≤ 3 are covered (except at logarithmic isolated
points) by the one step bracket generating case plus certain exceptions. The
logarithmic lemma may be applied at the isolated points in both the one step
bracket generating case and the exceptions.

The (generic) exceptions are:

• p = 2, k = 2, Engel’s case, treated in Section 1.3,
• p = 2, k = 3, the cat on the ball on the plane, treated also in Section 1.3.
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5 Codimension more than three

Most of the results in this Section come from [10, 11].
If P is one step bracket generating, the situation becomes very different

from the case k ≤ 3 since the sets K(w) may be not strictly convex in the
direction of Γ̇ (w). The first really wild case is the case p = 4, k = 6 (i.e. a
4-distribution in R10). In that case, consider the projectivisation PB of the
bracket mapping,

PB = [., .]/∆ : G2,4 → PR6,

where G2,4 is the grassmannian of 2-planes in R4, and PR6 is the 5-
dimensional projective plane. The dimension dim(G2,4) is 4. Hence in generic
situation K(w) never intersects the direction of Γ̇ (w)mod∆ (except maybe at
isolated points). In particular, K(w) is never convex in the direction of Γ̇ (w).

Also, due to Remark 3, we may consider that the problem P has nilpotent
approximation in normal form (8) where the skew symmetric matrices M(w)
have double eigenvalue, and

χ(w) =||M(w)|| = inf
λ
||Aλ(w)|| =

= inf
λ
||M(w) +

k−1∑
i=1

λiLi(w)|| = ||A0(w)||. (16)

Then for fixed w we have an affine pencil of skew symmetric matrices M +
k−1∑
i=1

λiLi, that we denote in abbreviated notations by M + λL. It is natural,

considering double eigenvalue matrices in the Lie algebra so(4,R), to consider
the decomposition in pure quaternions and pure skew quaternions:

so(4,R) = P ⊕ P̂ ,

where P is the vector space of pure quaternions, generated by i, j, k :

i =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠ , j =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , k =

⎛⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ ,
while P̂ is generated by ı̂, ĵ, k̂, with:

ı̂ =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , ĵ =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , k̂ =

⎛⎜⎜⎝
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠ .
As we already noticed two degrees of freedom remain in the normal form

of the nilpotent approximation:
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• we may consider Γ -preserving (linear) changes of coordinates in the surface
S.

• We may also consider changes of normal coordinates 6, that act at the level
of the nilpotent approximation via conjugation by elements of SO(4,R)
on the pencil of matrices (M + λL).

We have the following theorem:

Theorem 6. Outside an arbitrarily small neighborhood of a finite subset of
Γ, there is a choice of the normal coordinates, and a parametrization of S
(preserving the parametrization of Γ ), such that the nilpotent approximation
takes the form:

ẋ = u, (17)

ẏ1 =
1
2
x′(̂ı+ �(w)i)u,

ẏ2 =
1
2
x′ju, ẏ3 =

1
2
x′ku, ẏ4 =

1
2
x′ĵu, ẏ5 =

1
2
x′k̂u,

ẇ =
1
2
χ(w)x′iu.

Here x′ is the transpose of x and �(w) is a certain invariant of the motion
planning problem, −1 ≤ �(w) ≤ 1. The value �(w) = ±1 when K(w) is strictly
convex in the direction of Γ. Otherwise, the direction of Γ̇w avoids K(w).

Then, the invariant 1 − |�(w)| measures the ”distance to convexity” of
K(w).

Using this normal form, the Pontryagin’s maximum principle, the reduc-
tion to nilpotent approximation and using deeply the structure of quaternions
and skew quaternions, we can explicitly construct an asymptotic optimal syn-
thesis for the nilpotent approximation and prove the following theorem:

Theorem 7. (p = 4, k = 6) Generically χ vanishes at isolated points (where
∆ is only 2 steps bracket generating). On pieces of Γ containing no such point,
we have:

E(ε) $ 2π
ε2

∫
Γ

(3− |�(w)|)
χ(w)

dw, (18)

otherwise, applying the logarithmic lemma to the r singular points

E(ε) $ −4π ln(ε)
ε2

r∑
i=1

(3− |�(wi)|)
χ′(wi)

.

Note that, when |�(.)| ≡ 1, i.e. the problem is strictly convex, we get the
formulas of Section 4.

In the cases where p = 4, but k = 4 or 5, the situation is a bit more
complicated: we consider the ”body” K(w) moving along the curve Γ. It may
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happen generically that on some open intervals K(w) is convex in the direction
of Γ̇ , or it may happen that it is not. On the intervals where it is convex, we

still have the usual estimation E(ε) $ 4π
ε2

∫
Γ

dw
χ(w) . On the pieces where it is

not, we have:
4π
ε2

∫
Γ

dw

χ(w)
≤ E(ε) ≤ 6π

ε2

∫
Γ

dw

χ(w)
, (19)

To get these estimates, we use the same method as in the (4, 10) case. For this
we need invariants and normal forms for (k − 1)dimensional pencils of 4 × 4
skew symmetric matrices. We get:

• Case k = 4 : The pencil L + λM can be reduced to the form: M =
αı̂ + βĵ + γk̂, L = {i + ρ1 ı̂, j + ρ2ĵ, k + ρ3k̂}, where α, β, γ, �1, �2, �3 are
real invariants.

• case k = 5 : The pencil L + λM can be reduced to the form: M =
α(cos(θ)̂ı+ sin(θ)ĵ), L = {i+ ρ1 ı̂, j + ρ2ĵ, k, k̂}, where α > 0 and θ, �1, �2
are the invariants. The problem is strictly convex iff �21−1

1−�22
> 0. In that

case, χ = α| cos(θ + ζ)|, with tan(ζ) = (�
2
1−1

1−�22
)

1
2 . It is a case where convex

and nonconvex situation generically coexist on different open subsets of Γ.

Remark 5. In the one step bracket generating situation, there is another prin-
ciple, proven in our papers: the cases where p is odd always reduce to p = p−1.

For p = 5 and 4 ≤ k ≤ 10 as well as for p > 5 and 4 ≤ k ≤ 8 prob-
lems are generically one-step bracket generating (with possible logarithmic
points). In these cases M(w) has still double (and not triple) eigenvalue and
the quaternions remain in the picture. The estimation (19) still holds or, for
r logarithmic points:

−8π ln(ε)
ε2

r∑
i=1

dw

χ(w)
≤ E(ε) ≤ −12π ln(ε)

ε2

r∑
i=1

dw

χ(w)
.

Finally, the last exception for k ≤ 4 is k = 4, p = 3. For a generic problem
P the distribution∆′′ spans the ambient space, without generic singular point,
and in that case, we get an estimation of the type:

2
3σ̂ε3

∫
Γ

dw

ϕ(w)
≤ E(ε) ≤ 2

σ̂ε3

∫
Γ

dw

ϕ(w)
,

where ϕ is another invariant (see [11] for details).
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6 Conclusion

Of course it remains a lot of work to apply fully the results of our theory to
real problems. However, we started to realize some ”academic applications” of
the theory, both in simulation and in practice, and it looks extremely efficient.

At the step where we are since everything is constructive a precise algo-
rithm could be obtained for low corank k ≤ 10. For this, the strategy is more
or less straightforward:

• we need an algorithm to estimate nilpotent approximations along Γ. This
is just computations in formal power series, as were developed in [4] for
n = 3,

• we need to put some ”feedback” inside the strategy. This can be done in
several natural ways.

We were able check in the applications that the methodology appears
extremely robust. To justify this theoretically, let us point out the following
fact valid up to corank k = 3, which is not negligible for practical problems:

The (practical) robustness just reflects a certain (mathematical) stability
property:

On pieces of Γ without logarithmic points, the entropy (and metric com-
plexity) are of the form a

εl

∫
Γ

dw
κ(w) . This holds for the one step bracket gen-

erating but also Engel’s case and rolling ball case, that is, all generic cases.
If we reparameterize Γ by setting dw

κ(w) = dw̃, we get the same expression
but moreover: the asymptotic optimal synthesis for nilpotent approximation
is the same whatever the system (depends only on the growth vector of the
distribution). In other terms there is no invariant at all independently of the
kinematic system ∆, the metric g and the curve Γ :

• The one step bracket generating case reduces always to the contact 3-
dimensional Heisenberg case, with normal form:

F1 =
∂

∂x1
+
x2

2
∂

∂w
, (20)

F2 =
∂

∂x2
+−x1

2
∂

∂w
,

• The Engel’s case p = 2, k = 2 reduces to:

ẋ1 = u1, ẋ2 = u2,

ẏ =
1
2
(x2u1 − x1u2),

ẇ =
1
2
x1(x2u1 − x1u2),
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• Finally, the case p = 2, k = 3 also reduces to:

ẋ1 = u1, ẋ2 = u2,

ẏ1 =
1
2
(x2u1 − x1u2),

ẏ2 = −2
3
x2(x2u1 − x1u2),

ẇ =
1
2
x1(x2u1 − x1u2).

Similarly all logarithmic situations can be renormalized at the level of the
nilpotent approximation, no invariant playing any role but the growth vector
of the distribution.
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d’Analyse Mathématique, 91:231–246.

16. Laumond JP (ed) (1998) Robot Motion Planning and Control, Lecture notes in
Control and Information Sciences 229, Springer Verlag

17. Love AEH (1944) A Treatise on the Mathematical Theory of Elasticity, forth
edition. Dover, New-York

18. Pontryagin L, Boltyanski V, Gamkelidze R, Michenko E (1962) The Mathemat-
ical theory of optimal processes. Wiley, New-York



Instalment Options: A Closed-Form Solution
and the Limiting Case

Susanne Griebsch1, Christoph Kühn2, and Uwe Wystup1
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Summary. In Foreign Exchange Markets Compound options (options on options)
are traded frequently. Instalment options generalize the concept of Compound op-
tions as they allow the holder to prolong a Vanilla Call or Put option by paying
instalments of a discrete payment plan. We derive a closed-form solution to the
value of such an option in the Black-Scholes model and prove that the limiting case
of an Instalment option with a continuous payment plan is equivalent to a portfolio
consisting of a European Vanilla option and an American Put on this Vanilla option
with a time-dependent strike.
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1 Introduction

An Instalment Call or Put option works similar like a Compound Call or
Put respectviely, but allows the holder to pay the premium of the option in
instalments spread over time. A first payment is made at inception of the
trade. The buyer receives the mother option. On the following payment days
the holder of the Instalment option can decide to prolong the contract and
obtain the daughter option, in which case he has to pay the second instalment
of the premium, or to terminate the contract by simply not paying any more.
After the last instalment payment the contract turns into a plain Vanilla Call
or Put option. For an Instalment Put option we illustrate two scenarios in
Figure 1.

1.1 Example

Instalment options are typically traded in Foreign Exchange markets between
banks and corporates. For example, a company in the EUR-zone wants to
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Fig. 1. Comparison of two scenarios of an Instalment option. The first diagram
shows a continuation of all instalment payments until expiration. The second one
shows a scenario where the Instalment option is terminated after the first decision
date.

hedge receivables from an export transaction in USD due in 12 months time.
It expects a stronger EUR/weaker USD. The company wishes to be able to
buy EUR at a lower spot rate if EUR becomes weaker on the one hand, but on
the other hand be fully protected against a stronger EUR. The future income
in USD is yet uncertain but will be under review at the end of each quarter.

In this case a possible form of protection that the company can use is to
buy a EUR Instalment Call option with 4 equal quarterly premium payments
as for example illustrated in Table 1.
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Spot reference 1.1500 EUR-USD

Maturity 1 year

Notional USD 1,000,000

Company buys EUR Call USD Put strike 1.1500

Premium per quarter of the Instalment USD 12,500.00

Premium of the corresponding Vanilla Call USD 40,000.00

Table 1. Example of an Instalment Call. Four times the instalment rate sums up
to USD 50,000, which is more than buying the corresponding plain Vanilla for USD
40,000.

The company pays 12,500 USD on the trade date. After one quarter, the
company has the right to prolong the Instalment contract. To do this the
company must pay another 12,500 USD. After 6 months, the company has
the right to prolong the contract and must pay 12,500 USD in order to do
so. After 9 months the same decision has to be taken. If at one of these three
decision days the company does not pay, then the contract terminates. If all
premium payments are made, then in 9 months the contract turns into a plain
Vanilla EUR Call.

Of course, besides not paying the premium, another way to terminate the
contract is always to sell it in the market. So if the option is not needed, but
deep in the money, the company can take profit from paying the premium to
prolong the contract and then selling it.

If the EUR-USD exchange rate is above the strike at maturity, then the
company can buy EUR at maturity at a rate of 1.1500.

If the EUR-USD exchange rate is below the strike at maturity the option
expires worthless. However, the company would benefit from being able to
buy EUR at a lower rate in the market.

Compound options can be viewed as a special case of Instalment options,
and the possible variations of Compound options such as early exercise rights
or deferred delivery apply analogously to Instalment options.

1.2 Reasons for Trading Compound and Instalment Options

We observe that Compound and Instalment options are always more expen-
sive than buying the corresponding Vanilla option, sometimes substantially
more expensive. So why are people buying them? One reason may be the sit-
uation that a treasurer has a budget constraint, i.e. limited funds to spend
for foreign exchange risk management. With an Instalment he can then split
the premium over time. This would be inefficient accounting, but a situation
like this is not uncommon in practice. However, the essential motivation for a
treasurer dealing with an uncertain cash-flow is the situation where he buys a
Vanilla instead of an Instalment, and then is faced with a far out of the money
Vanilla at time t1, then selling the Vanilla does not give him as much as the
savings between the Vanilla and the sum of the instalment payments. With an
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Instalment, the budget to spend for FX risk can be planned and controlled.
This additional optionality comes at a cost beyond the vanilla price.

From a trader’s viewpoint, an instalment is a bet on the future change
of the term structure of volatility. For instance, if the forward volatility (12)
is higher than a trader’s belief of the later materializing volatility, then he
would go short an instalment. Some volatility arbitrage focussed hedge funds
are trying to identify situations like this.

1.3 Literature on Instalment Options

There is not much literature available on the valuation of Instalment options.
Here we mention the papers we know about this topic which were published
in the past years.

In the paper of Davis, Tompkins and Schachermayer [6] no-arbitrage
bounds on the price of Instalment options are derived, which are used to set
up static hedges and to compare them to dynamic hedging strategies. Ben-
Ameur, Breton and François [2] develop a dynamic programming procedure to
compute the value of Instalment options and investigate the properties of In-
stalment options through theoretical and numerical analysis. Recently Ciurlia
and Roko [3] construct a dynamic hedging portfolio and derive a Black-Scholes
partial differential equation for the initial value of an American continuous
Instalment option. In [11] Kimura and Kikuchi develop a Laplace transform
based valuation of Instalment options. The valuation and risk management
of Instalment options is related to Bermudan options as in both cases there
is a discrete time scale with time points requiring decisions. For details on
Bermudan contracts see, e.g., Baviera and Giada [1], Henrard [9] and Pietersz
and Pelsser [12].

In the next section we discuss the valuation of Instalment options in the
Black-Scholes model in closed-form. In Section 3 we examine the limiting case
of an Instalment option, where instalment rates are paid continuously over
the lifetime of the option. We will see, that this limiting case can be expressed
model-independently as a portfolio of other options. In Section 4 we analyze the
performance and convergence of our results numerically. Concluding remarks
are given in Section 5.

2 Valuation in the Black-Scholes Model

The goal of this section is to obtain a closed-form formula for the n-variate
Instalment option in the Black-Scholes model. For the cases n = 1 and n = 2
the Black-Scholes formula and Geske’s Compound option formula (see [8]) are
already well known.

We consider an exchange rate process St, whose evolution is modeled by
a geometric Brownian motion
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dSt
St

= (rd − rf )dt+ σdWt, (1)

where W is a standard Brownian motion, the volatility is denoted by σ and
the domestic and foreign interest rates are denoted by rd and rf respectively.

This means

ST = S0 exp
((
rd − rf −

σ2

2

)
T + σ

√
TZ

)
, (2)

where S0 is the current exchange rate, Z is a standard normal random variable
and T the time to maturity of the option.

Fig. 2. Lifetime of the options with value Vi

As illustrated in Figure 2 we let t0 = 0 be the Instalment option inception
date and t0 < t1 < t2 < . . . < tn = T a schedule of decision dates in the
contract on which the option holder has to decide whether to continue to
pay the premiums k1, k2, . . . , kn−1 to keep the option alive. These premiums
can be chosen to be all equal or to have different values. However, the first
premium V0 of the Instalment option is determined dependent on the other
premiums. To compute the value of the Instalment option, which is the up
front payment V0 at t0 to enter the contract, we begin with the option payoff
at maturity T

Vn(s) := [φn(s− kn)]+ := max (φn(s− kn), 0) , (3)

where s = ST is the price of the underlying currency at T , kn the strike
price and as usual φn = +1 for the underlying standard Call option, φn = −1
for a Put option. Vn is the value of the underlying option at time tn, whose
value at time tn−1 is given by its discounted expectation. And in turn we can
again define a payoff function on this value, which would correspond to the
payoff of a Compound option.

Generally, at time ti the option holder can either terminate the contract
or pay ki to continue. Therefore by the risk-neutral pricing theory, the time-
ti-value is given by the backward recursion
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Vi(s) =
[
e−rd(ti+1−ti)E[Vi+1(Sti+1) | Sti = s]− ki

]+
for i = 1, . . . , n− 1, (4)

where Vn(s) is given by (3). Following this principal the unique arbitrage-free
initial premium of the Instalment option – given k1, . . . , kn – is

k0 := V0(s) = e−rd(t1−t0)E[V1(St1) | St0 = s]. (5)

In practice, we normally want to have

k0 = k1 = · · · = kn−1. (6)

We notice that one way to determine the value of this Instalment option
is to evaluate the nested expectations in Equation (5) through multiple nu-
merical integration of the payoff functions via backward iteration. Another
numerical procedure by Ben-Ameur, Breton and François is presented in [2].
In this paper the recursive structure of the value in Equation (5), which is
illustrated in Figure 2, is used to develop a dynamic programming procedure
to price Instalment options. Thirdly, it is possible to compute the value in
closed-form, which is one of the results of this paper.

2.1 The Curnow and Dunnett Integral Reduction Technique

For the derivation of the closed-form pricing formula of an Instalment option,
we see from Equations (2) and (4) that we need to compute integrals of the
form ∫

R

[option value(y)− strike]+ n(y)dy

with respect to the standard normal density n(·). This essentially means to
compute integrals of the form∫ h

−∞
Ni(f(y))n(y) dy,

where Ni(·) is the i-dimensional cumulative normal distribution function, f
some vector-valued function and h some boundary. The following result pro-
vides this relationship.

Denote the n-dimensional multivariate normal distribution function with
upper limits h1, . . . , hn and correlation matrix Rn := (ρij)i,j=1,...,n by
Nn(h1, . . . , hn;Rn), and the univariate standard normal density function by
n(·). Let the correlation matrix be non-singular and ρ11 = 1.

Under these conditions Curnow and Dunnett [4] derive the following re-
duction formula
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Nn(h1, · · ·, hn;Rn) =
∫ h1

−∞
Nn−1

(
h2− ρ21y

(1− ρ221)1/2
, · · · , hn− ρn1y

(1− ρ2n1)1/2
;R∗
n−1

)
n(y)dy,

where the n− 1-dimensional correlation matrix R∗ is given by

R∗
n−1 := (ρ∗ij)i,j=2,...,n, ρ∗ij :=

ρij − ρi1ρj1
(1− ρ2i1)1/2(1− ρ2j1)1/2

. (7)

2.2 A Closed-Form Solution for the Value of an Instalment Option

An application of the above result of Curnow and Dunnett yields the derived
closed-form pricing formula for Instalment options given in Theorem 1. Before
stating the result, we will make an observation about its structure.

The formula in Theorem 1 below has a similar structure as the Black-
Scholes formula for Basket options, namely S0Nn(·)−knNn(·) minus the later
premium payments kiNi(·) (i = 1, . . . , n− 1). This structure is a result of the
integration of the Vanilla option payoff,∫

R

[ST (y)− strike]+ n(y)dy

which is again integrated after substracting the next instalment,∫
R

[Vanilla option value(y)− strike]+ n(y) dy

which in turn is integrated with the following instalment and so forth. By this
iteration the Vanilla payoff is integrated with respect to the normal density
function n times and the i-th payment is integrated i times for i = 1, . . . , n−1.

Theorem 1. Let k = (k1, . . . , kn) be the strike price vector, t = (t1, . . . , tn)
the vector of the exercise dates of an n-variate Instalment option and φ =
(φ1, . . . , φn) the vector of the Put/Call-indicators of these n options. The value
function of an n-variate Instalment option is given by

V0(S0,k, t,φ) =

=e−rf tnS0φ1 · . . . · φn×

×Nn

[
ln S0
S∗

1
+ µ(+)t1

σ
√
t1

,
ln S0
S∗

2
+ µ(+)t2

σ
√
t2

, . . . ,
ln S0
S∗

n
+ µ(+)tn

σ
√
tn

;Rn

]
−

− e−rdtnknφ1 · . . . · φn×

×Nn

[
ln S0
S∗

1
+ µ(−)t1

σ
√
t1

,
ln S0
S∗

2
+ µ(−)t2

σ
√
t2

, . . . ,
ln S0
S∗

n
+ µ(−)tn

σ
√
tn

;Rn

]
−

− e−rdtn−1kn−1φ1 · . . . · φn−1×

×Nn−1

⎡⎣ ln S0
S∗

1
+ µ(−)t1

σ
√
t1

,
ln S0
S∗

2
+ µ(−)t2

σ
√
t2

, . . . ,
ln S0
S∗

n−1
+ µ(−)tn−1

σ
√
tn−1

;Rn−1

⎤⎦−
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...

− e−rdt2k2φ1φ2N2

[
ln S0
S∗

1
+ µ(−)t1

σ
√
t1

,
ln S0
S∗

2
+ µ(−)t2

σ
√
t2

; ρ12

]

− e−rdt1k1φ1N

[
ln S0
S∗

1
+ µ(−)t1

σ
√
t1

]
= (8)

=e−rf tnS0

n∏
i=1

ΦiNn

⎡⎣( ln S0
S∗

m
+ µ(+)tm

σ
√
tm

)
1,...,n

⎤⎦−
−

n∑
i=1

e−rdtiki

i∏
j=1

ΦjNi

⎡⎣( ln S0
S∗

m
+ µ(−)tm

σ
√
tm

)
1,...,i

⎤⎦ , (9)

where µ(±) is defined as rd − rf ± 1
2σ

2.

The correlation coefficients in Ri of the i-variate normal distribution func-
tion can be expressed through the exercise times ti,

ρij =
√
ti/tj for i, j = 1, . . . , n and i < j. (10)

S∗
i (i = 1, . . . , n) denotes the price of the underlying at time ti for which the

price of the underlying option is equal to ki,

Vi(S∗
i )

!= ki.

Remark 1. S∗
i (i = 1, . . . , n) is determined as the largest resp. smallest

spot price St for which the initial price of the corresponding renewed i-th-
Instalment option (i = 1, . . . , n) is equal to zero. In the case of calls S∗

i

is the largest underlying price at which the renewed Instalment option be-
comes worthless. This problem can be solved by a root finding procedure, e.g.
Newton-Raphson. For a Vanilla Call the root S∗

n−1 always exists and is unique
as the Black-Scholes price of a Vanilla Call is a bijection in the starting price
of the underlying. Even for a simple Vanilla Put the root S∗

n−1 may not exist,
because the price of a Put is bounded above. In general the existence of the
S∗
i can’t be guaranteed, but has to be checked on an individual basis. If one

of the S∗
i does not exist, then the pricing formula cannot be applied. It means

that the strikes are chosen too large. In such a case the strike ki has to be
lowered. In particular, if φn = −1 we need to ensure that

∑n−1
i=0 ki < kn. This

means, that because the price of a vanilla put is bounded above by the strike
price, the sum of the future payments must not exceed the upper bound. In
practice, arbitrary mixes of calls and puts do not occur. The standard case is
a series of calls on a final vanilla product.

Remark 2. The correlation coefficients ρij of these normal distribution func-
tions contained in the formula arise from the overlapping increments of the
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Brownian motion, which models the price process of the underlying St, at the
particular exercise times ti and tj .

Proof. The proof is established with Equation (7)3.

Obviously Equation (8) readily extends to a term structure of interest rates
and volatility. Therefore we will now deal with how to compute the necessary
forward volatilities.

2.3 Forward Volatility

The daughter option of the Compound option requires knowing the volatility
for its lifetime, which starts on the exercise date t1 of the mother option and
ends on the maturity date t2 of the daughter option. This volatility is not
known at inception of the trade, so the only proxy traders can take is the
forward volatility σf (t1, t2) for this time interval. In the Black-Scholes model
the consistency equation for the forward volatility is given by

σ2(t1)(t1 − t0) + σ2
f (t1, t2)(t2 − t1) = σ2(t2)(t2 − t0), (11)

where t0 < t1 < t2 and σ(t) denotes the at-the-money volatility up to time
t. We extract the forward volatility via

σf (t1, t2) =

√
σ2(t2)(t2 − t0)− σ2(t1)(t1 − t0)

t2 − t1
. (12)

2.4 Forward Volatility Smile

The more realistic way to look at this unknown forward volatility is that the
fairly liquid market of Vanilla Compound options could be taken to back out
the forward volatilities since this is the only unknown. These should in turn
be consistent with other forward volatility sensible products like forward start
options, window barrier options or faders.

In a market with smile the payoff of a Compound option can be approx-
imated by a linear combination of Vanillas, whose market prices are known.
For the payoff of the Compound option itself we can take the forward volatil-
ity as in Equation (12) for the at-the-money value and the smile of today as a
proxy. More details on this can be found, e.g. in Schilling [14]. The actual for-
ward volatility, however, is a trader’s view and can only be taken from market
prices. More details on how to include weekend and holiday effects into the
forward volatility computation can be found in Wystup [16].

3 A variation of Formula (8) has been independently derived by Thomassen and
Wouve in [15].
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3 Instalment Options with a Continuous Payment Plan

We will now examine what happens if we make the difference between the
instalment payment dates ti smaller. This will also cause the prolongation
payments ki to become smaller. In the limiting case the holder of the contin-
uous instalment plan keeps paying at a rate p per time unit until she decides
to terminate the contract. It is intuitively clear that the above procedure con-
verges as the sum of the strikes increases and is bounded above by the price
of the underlying (a call option will never cost more than the underlying).
In the limiting case it appears also intuitively obvious that the instalment
plan is equivalent to the corresponding Vanilla plus a right to return it any
time at a pre-specified rate, which is equivalent to the somehow discounted
cumulative prolongation payment which one would have to pay for the time
after termination. We will now formalize this intuitive idea.

Let g = (gt)t∈[0,T ] be the stochastic process describing the discounted net
payoff of an Instalment option expressed as multiples of the domestic currency.
If the holder stops paying the premium at time t, the difference between the
option payoff and premium payments (all discounted to time 0) amounts to

g(t) =
{
e−rdT (ST −K)+1(t=T ) − p

rd
(1− e−rdt) if rd �= 0

(ST −K)+1(t=T ) − pt if rd = 0
, (13)

where K is the strike. Given the premium rate p, the Instalment option can
be taken as an American contingent claim with a payoff which may become
negative. Thus, the unique no-arbitrage premium P0 to be paid at time 0
(supplementary to the rate p) is given by

P0 = sup
τ∈T0,T

EQ(gτ ), (14)

where Q denotes the risk-neutral measure and T0,T denotes the set of stopping
times with values in [0, T ]. Ideally, p is chosen as the minimal rate such that

P0 = 0. (15)

Note that P0 from Equation (14) can never become negative as it is always
possible to stop payments immediately. Thus, besides (15), we need a minimal-
ity assumption to obtain a unique rate. We want to compare the Instalment
option with the American contingent claim f = (ft)t∈[0,T ] given by

ft = e−rdt(Kt − CE(T − t, St))+, t ∈ [0, T ], (16)

where Kt = p
rd

(
1− e−rd(T−t)) for rd �= 0 and Kt = p(T − t) when rd = 0. CE

is the value of a standard European Call. Equation (16) represents the payoff
of an American Put on a European Call where the variable strike Kt of the
Put equals the part of the instalments not to be paid if the holder decides to
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terminate the contract at time t. Define by f̃ = (f̃t)t∈[0,T ] a similar American
contingent claim with

f̃(t) = e−rdt
[
(Kt − CE(T − t, St))+ + CE(T − t, St)

]
, t ∈ [0, T ]. (17)

As the process t �→ e−rdtCE(T − t, St) is a Q-martingale we obtain that

sup
τ∈T0,T

EQ(f̃τ ) = CE(T, s0) + sup
τ∈T0,T

EQ(fτ ). (18)

Theorem 2. An Instalment Call option with continuous payments is the sum
of a European Call plus an American Put on this European Call, i.e.

P0 + p
∫ T

0

e−rds ds︸ ︷︷ ︸
total premium payments

= CE(T, s0) + sup
τ∈T0,T

EQ(fτ ),

where P0 is the Instalment option price and supτ∈T0,T
EQ(fτ ) is the price of

an American put with a time-dependent strike.

Proof. Define a new claim g̃ = (g̃t)t∈[0,T ] differing from g only by a constant,
namely g̃(t) = g(t) + p

∫ T
0
e−rds ds. In view of (18) we have to show that

sup
τ∈T0,T

EQ[g̃(τ)] = sup
τ∈T0,T

EQ[f̃(τ)]. (19)

The inequality with ≤ in (19) is obvious as we have g̃ ≤ f̃ pointwise. Let us
show the other direction. Denote by V = (Vt)t∈[0,T ] the Snell envelope of the
potentially larger process f̃ , i.e. V is a càdlàg process (right continuous paths
with left limits) with

Vt = ess.supτ∈Tt,T
EQ[f̃(τ) | Ft], P -a.s., t ∈ [0, T ],

where (Ft)t∈[0,T ] is the canonical filtration of the process S. Define by h =
h(u, s) the value of the Call plus the Put on the Call, if the initial price of the
underlying is s ∈ R+ and time to maturity of the contract is u ∈ R+, i.e.

h(u, s) = sup
τ∈T0,u

Es

[
e−rdτ

[[
p

rd
(1− e−rd(u−τ))− CE(u− τ, S̃τ )

]+

+

+CE(u− τ, S̃τ )
]]
,

where S̃ is again a geometric Brownian motion with the same probabilistic
characteristics as S. Using the Markov property of S we can apply Theorem
3.4 in El Karoui/Lepeltier/Millet (1992) and obtain
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Vt = ess.supτ∈Tt,T
EQ

[
f̃(τ) | Ft

]
= ess.supτ∈Tt,T

EQ
[
f̃(τ) | St

]
=

= e−rdth(T − t, St).

As f̃ has continuous paths the optimal exercise time is given by

τ̂ = inf{t ∈ [0, T ] | Vt = f̃(t)} =

= inf{t ∈ [0, T ] | e−rdth(T − t, St) = f̃(t)}. (20)

Keeping this in mind, we want to show that

h(u, s) > CE(u, s) for all u > 0, s > 0. (21)

As the process t �→ e−rdtCE(T − t, St) is a martingale we can pull it out of
the optimal stopping problem and obtain

h(u, s) = CE(u, s)+ sup
τ∈T0,u

Es

[
e−rdτ

[
p

rd
(1− e−rd(u−τ))− CE(u− τ, S̃τ )

]+
]
,

and thus h(u, s) > CE(u, s), for all u > 0, s > 0, as the underlying Call CE
can always get into the money with positive probability as long as u > 0.
Therefore, we obtain for t ∈ [0, T ) and s ∈ (0,∞) the following implication

h(T− t, s) = (Kt− CE(T− t, s))++ CE(T−t, s)⇒ Kt > CE(T− t, s). (22)

This means that by (20) f̃ is only exercised prematurely when Kt > CE(T−
t, St). But, in this case we have f̃(t) = g̃(t). As at maturity the payoffs of f̃
and g̃ coincide anyway, we have for the optimal exercise time τ̂ of the process
f̃

f̃(τ̂) = g̃(τ̂), P -a.s.

Therefore we arrive at (19) and the assertion of the theorem follows.

Remark 3. We could use the same argument to prove that an Instalment put
option is the sum of a European Put plus an American Put on this European
Put.

4 Numerical Results

4.1 Implementational Aspects

In the appendix we give a sample implementation for the discrete case of an
Instalment option in both

• Mathematica, which solves the nested integration for the value recursively
as mentioned in Section 2, and

• R, which computes the value using Equation (8) in Theorem 1.

Both implementations are used to investigate the performance and conver-
gence of Instalment option values.



Instalment Options 223

4.2 Performance

To compare the various methods to determine the value of Instalment options
– to calculate the initial premium at time 0 dependent on the remaining strikes
– we compare values of a specific trivariate Instalment option. We implement
on the same machine

1. a binomial tree method in C++,
2. the closed-form formula in the statistical language R (see [13]),
3. the dynamic programming algorithm of Breton et al. [2],
4. a numerical integration using Gauß quadrature methods with 50, 000 sup-

porting points, and
5. a recursive algorithm implemented in Mathematica for the calculation of

the value of an n-variate Instalment option.

In Table 2 the results and computation times of all these five methods are
shown for two representative examples of a 3-variate-Instalment option. The
computational times are given in seconds and lie close together for most of
the applied techniques.

Numerical Method Value of V3 CPU Time

Binomial trees for n = 4000 1.69053 0.0137335 1109

Closed-form formula for n = 3 1.69092 0.0137339 < 1

Algorithm based on [2] with p = 4000 1.69084 0.0137332 168

Numerical integration 1.69087 0.0137339 176
(50000-point Gauß-Legendre)

Numerical integration with Mathematica 1.69091 0.0137299 47

Table 2. Performance comparison of Instalment valuation algorithms. We use S0 =
100, k1 =100, k2,3 =3, σ =20%, rd =10%, rf =15%, T =1, ∆t=1/3, φ1,2,3 =1 and
S0 =1.15, k1 =1.15, k2,3 =0.02, σ=10%, rd =1%, rf =2%, T =1,t=1/3, φ1,2,3 =1.

Our experiences with the application of these methods show that

• The results using binomial tree methods oscillate heavily even with a large
depth of the tree. Our examples show variations in the fourth digit of the
value by using binomial trees with a depth of the tree from up to 7000.

• The trivariate formula is the fastest of all compared methods. Its accuracy
and computation time essentially depend on the quality of the root finding
procedure and on the calculation of the multivariate normal distribution
function.

• The techniques, which are based on numerical integration as well as the
dynamic programming approach of Breton et al. [2] lie in the middle field
of all observed computation times.
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4.3 Convergence

We illustrate the convergence of the overall Instalment premium to the limit-
ing case in Figure 3.

Fig. 3. Convergence of uniform premium in discrete case to continuous premium.
We have used the data S0 = 100, K = 95, σ = 0.2, rd = 0.05, rf = 0, T = 1.

Here we investigate our result in Theorem 2 for a practical example, where
a number of identical premiums of their corresponding n-variate-Instalment
option for n = 1, ..., 18 is evaluated. The identical premium of a 1-variate-
Instalment option is obviously the value of a standard Call option at time 0.
All other identical premiums are calculated by a root finding procedure with
respect to the strike price of the function

V0(k)− k = 0,

which is the value of the particular Instalment option at time 0 minus the
strike price. Here we use the closed-form Equation (8). It is implemented in
the statistical language R (see [13]) as it contains the multivariate normal
distribution function. The source code is listed in the appendix.

This calculation requires a high degree of accuracy and therefore takes
a long time to compute. The identical premium for a 18-variate-Instalment
option is 17.28. The limit U is calculated following Theorem 2 using the value
of a European Call plus an American Put on this Call. The Black-Scholes
formula is used to determine the value of the European Call, and for the
calculation of the American product of the portfolio we use binomial tree
methods. The limit U lies approximately at 17.51 for the parameter set in
Figure 3 and is approached here from below.
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5 Summary

We have presented a closed-form solution for Instalment Call and Put options
in the Black-Scholes model, discussed its application and numerical imple-
mentation. We proved the equivalence of the limiting case of a continuous
instalment plan with a portfolio of the corresponding Vanilla and an Ameri-
can Put on that claim with a time dependent strike.

Further research could be done to explore closed-form valuation of Instal-
ment options in models beyond Black-Scholes, such as stochastic volatility
models or behavior in interest rate models. The case of Compound options
(n = 2) has been examined in stochastic volatility models by Fouque and
Han [5].

Another approach would be to analyze Instalment options with a more
generalized payoff function at maturity, so that the Instalment plan’s final
option is a more exotic product than a Vanilla.
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A Mathematica Code

A.1 The Package instalment.m

BeginPackage["Options Instalment"]

Instalment::usage = "Instalment[S,K,T,vol,rd,rf,phi,N] \n
Black-Scholes value for European Instalment options\n
S: spot\n
K: strike list of individual options\n
T: time differences to maturity in years between individual options\n
beginning with Vanilla option maturity\n
vol: volatility\n
rd: domestic risk free rate: discounting is done as Exp[-T[[i]]*rd] \n
rf: foreign risk free rate: discounting is done as Exp[-T[[i]]*rf]\n
phi: list of +1 for Calls, -1 for Puts\n
N: number of options in Instalment option"

Begin["Private"]

ncum[x ]:=1/2*(Erf[x/Sqrt[2]]+1); (*cumulative standard normal*)

ndf[x ]:=Evaluate[D[ncum[x],x]]; (*standard normal density*)

Vanilla[x ,K ,vol ,r ,rf ,T ,fi ]:=Block[dp,dm,
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dp=(Log[x/K]+(r-rf+0.5*vol*vol)*T)/(vol*Sqrt[T]);

dm=(Log[x/K]+(r-rf-0.5*vol*vol)*T)/(vol*Sqrt[T]);

fi*(Exp[-rf*T]*x*ncum[fi*dp]-Exp[-r*T]*K*ncum[fi*dm])];

Instalment[S ,K ,T ,vol ,rd ,rf ,phi ,N ]:=Block[mu,

mu=rd-rf-0.5*vol*vol;

If[N==1,Vanilla[S,K[[1]],vol,rd,rf,T[[1]],phi[[1]]],

Exp[-T[[N]]*rd]*

NIntegrate[

Max[0,phi[[N]]*(Instalment[S*Exp[vol*Sqrt[T[[N]]]*z+mu*T[[N]]],

K,T,vol,rd,rf,phi,N-1]-

K[[N]])]*ndf[z],z,-10,10]]];

End[]

EndPackage[]

A.2 The Testing Environment instalment testenv.nb

spot = 100

vol = 0.2

tau = {1/3, 1/3, 1/3}
rd = 0.10

rf = 0.15

strike = {100, 3, 3}
phi = {1, 1, 1}

Instalment[spot, strike, tau, vol, rd, rf, phi, 3]

1.69085

B R Code

B.1 The R Functions

installments←function(spot,strikes,times,phis,rd,rf,sigma,interval){
n←length(times)

s←1:(n-1)

roots←rep(0,n)

roots[n]←strikes[n]

for(i in s){
tau←rep(0,i)

for(j in (1:i))

tau[j]←times[n-j+1]-times[n-i]

f←function(x){recur(x,strikes[(n+1-i):n],rev(tau),phis[(n+1-i):n],rd,
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rf,sigma,roots[(n-i+1):n])-strikes[i] }
roots[n-i]←uniroot(f,interval)[1] }

result←recur(spot,strikes,times,phis,rd,rf,sigma,roots)

return(result) }

recur←function(spot,k,t,phis,rd,rf,sigma,roots){

library(mnormt)

n←length(t)

s←1:n

args1←rep(0,n)

args2←rep(0,n)

multi←rep(0,n)

rho←matrix(rep(0,n^2),nrow=n,ncol=n)

for(i in s){
for(j in i:n){
rho[i,j]←sqrt(t[i]/t[j])

rho[j,i]←rho[i,j] } }

muplus←rd-rf+0.5*sigma^2

muminus←rd-rf-0.5*sigma^2

for(i in s){
args1[i]←(log(spot/roots[[i]])+muplus*t[i])/(sigma*sqrt(t[i]))

args2[i]←(log(spot/roots[[i]])+muminus*t[i])/(sigma*sqrt(t[i])) }

for(i in s){
if(i==1)

multi[i]←prod(phis[1:i]) *pmnorm(x=args2[1:i],mean=0,varcov=1,abseps=

1e-10)[1]

else

multi[i]←prod(phis[1:i]) *pmnorm(x=args2[1:i],mean=rep(0,i),varcov=

rho[1:i,1:i])[1] }

if(n==1)

part1←exp(-rf*t[n])*spot*prod(phis)

*pmnorm(x=args1,mean=0,varcov=1,abseps=1e-10)[1]

else

part1←exp(-rf*t[n])*spot*prod(phis)

*pmnorm(x=args1,mean=rep(0,i),varcov=rho[1:i,1:i])[1]

part2←sum(exp(-rd*t)*k*multi)return(part1-part2) }
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B.2 The R Testing Environment

interval←c(0,150)

strikes←c(3,3,100)

times←c(1/3,2/3,1.0)

phis←c(1,1,1)

rd=0.1

rf=0.15

sigma=0.2

spot=100

installments(spot,strikes,times,phis,rd,rf,sigma,interval)

interval←c(0,10)

strikes←c(0.02,0.02,1.15)

times←c(1/3,2/3,1.0)

phis←c(1,1,1)

rd=0.01

rf=0.02

sigma=0.1

spot=1.15

installments(spot,strikes,times,phis,rd,rf,sigma,interval)
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Summary. In this contribution we follow two main goals: to reconstruct a result
announced in [4] about existence of relaxed minimizers for (nonconvex) Lagrange
problems of optimal control (Theorem 1); to derive conditions for Lipschitzian reg-
ularity of trajectories corresponding to relaxed minimizers (Theorem 3). In passing,
elaborating on the approach used in [10], we provide a condition for Lipschitzian
regularity of non relaxed minimizers (Theorem 2).

1 Introduction

We study a Lagrange problem of optimal control with a minimized functional

J (x, v) =
∫ T

0

!(t, x, v)dt→ min (1)

and a dynamics

ẋ = f(t, x, v), v ∈ Rr. (2)

Here T ∈]0,+∞[ is fixed and for simplicity we impose fixed boundary condi-
tions

x(0) = x0, x(T ) = xT . (3)

We assume !, f to be continuous with respect to all variables.
Classical results on existence of minimizers for such problems go back to

L.Tonelli (see [4, Ch. 10,11], [6]) and references therein). These results estab-
lish existence of a minimizer under certain assumptions, the main of which
regard coercivity and convexity of the data. Loosely speaking the coercivity

∗ Supported by ”Fundação para a Ciência e a Tecnologia” FCT, cofinanced by the
European Union Fund FEDER/POCI 2010

† Supported by the research grant PRIN No. 2006019927, MIUR, Italy.
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assumption obliges ! to grow faster than f as ‖v‖ → ∞. This guarantees
weak convergence of the derivatives of the elements of a minimizing sequence.
The convexity assumption guarantees lower semicontinuity of the functional
J (x, v) with respect to this weak convergence.

Various coercivity and convexity assumptions, which could be imposed on
the data of the problem in order to guarantee existence are discussed in [4, 6].

In what follows we are interested in the nonconvex case. Although in this
case there still may exist classical minimizers (see, for example, [3]), it is
well understood that one should rather expect relaxed minimizers. Recall that
relaxed controls ([8]) take their values (at a given instant of time) in the
space of probability measures supported on the set of control parameters.
It is a rich set of generalized controls, which admit nice approximation by
classical controls (e.g., piecewise continuous, or bounded measurable, or square
integrable, or integrable controls) in the so-called ’relaxation metric’.

In the case when controls take its values in a bounded set, the correspond-
ing existence result for the relaxed controls is well known [8]. The case of
unbounded set of controls is more intricate; one of the reasons is that the
coercivity assumptions imposed on the functional and the dynamics are not
inherited by their relaxed counterparts. Still result by L.Cesari [4, Remark
3, §11.4] claims that relaxed minimizer exists under some of these coercivity
assumptions.

We start with a brief reconstruction of the corresponding proof, by tracing
the sequence of results dispersed in Chapters 8-11 of [4]. This is the contents
of Section 2.

Our main interest though centers on the Lipschitzian property of minimiz-
ing relaxed trajectories. As it is seen from the existence result of Section 2,
one gets a minimizing relaxed trajectory, which is absolutely continuous but
not necessarily Lipschitzian.

In the classical (convex and coercive) case there are many examples where
the minimizers happen to be non-Lipschitzian. Moreover in the presence of
such minimizers a Lavrentiev gap may occur: the infimum of the functional
over the space of absolutely continuous functions can be strictly less, than the
infimum over the space of Lipschitzian functions. Non-Lipschitzian minimizers
may lead to an additional irregularity - sometimes they fail to be extremals, i.e.
they do not satisfy standard necessary optimality conditions in either Euler-
Lagrange, or Hamilton-Pontryagin form. Therefore these minimizers are hard
to calculate by either analytic or numerical methods.

The first condition which provides Lipschitzian property (regularity) of the
minimizing trajectory goes back to the work of L.Tonelli at the beginning of
the last century. There have been much progress since then and an excellent
account of the results up to 1985 can be found in [6]. The subject of these
classical studies was the Basic Problem of the Calculus of Variations and,
more recently, its version with higher-order derivatives.
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The issue of Lipschitzian regularity in control-theoretic formulation has
been treated in publication by F.H.Clarke and R.Vinter [7], where the case of
time-invariant linear dynamics was considered.

Few years ago A.Sarychev and D.Torres ([10]) derived conditions of Lip-
schitzian regularity for nonrelaxed minimizers of Lagrange problems with
control-affine nonlinear dynamics. To achieve this, a new approach has been
used.

The core of this approach, was introduced by R.V.Gamkrelidze ([8]) in
the context of existence theory. It amounts to a transformation of the La-
grange problem into a time-optimal control problem. The set Rr of control
parameters of this latter is subject to (one-point) compactification. If one is
able to extend the time-optimal problem into the compactified control set
R̄r = Sr (’extend onto infinity’) then the existence result can be derived (see
[8]) from Filippov’s theorem on existence of optimal control in the bounded
case. If, moreover, the conditions imposed on the data of the problem, make
the Pontryagin Maximum Principle valid for the minimizers of the extended
problem, then one can conclude Lipschitzian regularity of minimizing tra-
jectories, which correspond to normal Pontryagin extremals. This is a brief
account of what has been accomplished in [10]. More progress in this direction
has been achieved in [12]. In Section 3 of this contribution we formulate an-
other criterion of Lipschitzian regularity of non relaxed (classical) minimizers
for Lagrange variational problem with a nonlinear dynamics (2).

In Section 4 we deal with the main subject of our interest - Lipschitzian
regularity of relaxed minimizing trajectories in nonconvex case. We readmit
the coercivity assumptions introduced in Section 2, in order to guarantee the
existence of a relaxed absolutely-continuous minimizer.

Advancing with the approach, sketched above, we show at once that one
can not employ one-point compactification of the set of control parameters
since, in general the problem does not admit a continuous extension onto
such compactification. To overcome this difficulty we invoke a compactifica-
tion introduced by P.Loeb ([9]), which succeeds the notion of unified space,
introduced earlier by G.T.Whyburn ([14]).

Roughly speaking, given a family of continuous bounded functions, this
construction provides a minimal compactification onto which these functions
can be extended by continuity in such a way that they separate the points of
the remainder. The definition is rather abstract, but in our case, under the
imposed coercivity assumptions, we are able to represent the compactification
as a fibred space. We also prove that the extended set of control parameters
can be chosen x-independent.

Formulating the Pontryagin maximum principle and the second Erdmann’s
condition for the extended problem we derive from the latter a criterion of
Lipschitzian regularity of minimizing relaxed trajectories.

The authors are grateful to D. Seabra, who read the manuscript, pointed
out several misprints and made suggestions of improvement of the text.
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2 Existence of relaxed minimizers in unbounded
nonconvex case

As we said, an existence result for relaxed minimizers of nonconvex optimal
control problems (1)-(2) with unbounded control set is referred to [4, Remark
3, §11.4].

The formulation includes one of three coercivity assumptions. In what
follows we choose a modification of one of these assumptions, namely:

• For each compact set X ⊂ Rn there exists a bounded below scalar function
φ : [0,+∞[�→ R, such that:

φ(ξ)/ξ → +∞, as ξ → +∞, !(t, x, v) ≥ φ (‖f(t, x, v)‖) (4)

holds for every (t, x) ∈ [0, T ]×X, v ∈ Rr;

• For each compact set X ⊂ Rn

!(t, x, v)→ +∞, as ‖v‖ → +∞, (5)

uniformly with respect to (t, x) ∈ [0, T ]×X.

The proof of existence passes through various intermediate results dis-
persed in the Sections 1,8-11 of [4]. We will outline the proof.

Consider a (noncovex) optimal control problem (1)-(2)-(3), where the func-
tions !, f are continuous on R × Rn × Rr and ! is bounded below. Without
lack of generality we may add a positive constant to ! and assume ! ≥ 1.

The relaxation of the problem rests upon convexification of the Lagrangian
and of the dynamic equations. Consider (for (t, x) fixed) the map

v �→ (!(t, x, v), f(t, x, v)) ,

of Rr into Rn+1. Any point in the convex hull of {(!(t, x, v), f(t, x, v), v ∈ Rr)}
(with fixed (t, x)) can be represented as (L(t, x, p, V ), F (t, x, p, V )), where
V = (v1, . . . , vn+2) ∈ Rr(n+2), and p = (p1, . . . , pn+2) ∈ Σn+1, the (n + 1)-

dimensional simplex: pj ≥ 0,
n+2∑
j=1

pj = 1,

L(t, x, p, V ) =
n+2∑
j=1

pj!(t, x, vj), F (t, x, p, V ) =
n+2∑
j=1

pjf(t, x, vj).

The convexified dynamics is defined by

ẋ = F (t, x, p, V ) =
n+2∑
j=1

pjf(t, x, vj). (6)

The relaxed problem consists of minimization of the functional
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J c(p(·), V (·)) =
∫ T

0

L(t, x(t), p(t), V (t))dt =

=
∫ T

0

n+2∑
j=1

pj(t)!(t, x(t), vj(t))dt→ min, (7)

under the ’dynamic constraint’ (6) and the boundary conditions (3). The
control V (·) takes its values in Rr(n+2), while p(·) takes its values in Σn+1.

It is known that under broad assumptions the infimum of the original
problem and of its relaxation coincide ([4]). Obviously the trajectories of the
original control system (2) are contained in a richer class of trajectories of
the relaxed dynamics (6). Still the trajectories of the relaxed dynamics can
be uniformly approximated by trajectories of (2).3

Let us introduce the sets

Q(t, x) =
{
z
∣∣∣ z = F (t, x, p, V ), p ∈ Σn+1, V ∈ Rr(n+2)

}
,

Q̃(t, x) =
{

(z0, z)
∣∣∣z0≥L(t, x, p, V ), z=F (t, x, p, V ), p∈ Σn+1, V ∈Rr(n+2)

}
.

Evidently Q(t, x) is the projection of Q̃(t, x) onto z-component:

Q(t, x) = {z| (z0, z) ∈ Q̃(t, x)}.

Following [4] we define the ”unparameterized Lagrangian”

L(t, x, z) =

{
inf{z0| (z0, z) ∈ Q̃(t, x)}, if z ∈ Q(t, x);

+∞, otherwise,
(8)

and consider the ”unparameterized variational problem”∫ T

0

L(t, x, ẋ)dt→ min, ẋ ∈ Q(t, x). (9)

It is known ([4, §1.14]) that if:

i) the sets Q̃(t, x) are closed for x ∈ Rn, and

ii) the infimum in (8) turns to be the minimum,

then for any triple (x(·), p(·), V (·)), satisfying the equation (6), the trajectory
x(·) satisfies the differential inclusion in (9) and∫ T

0

L(t, x, ẋ)dt ≤
∫ T

0

L(t, x, p, V )dt.

3 In some cases one is not able to maintain the boundary conditions for the approx-
imating trajectories and then the infimum of the relaxed system could be only
achieved by a minimizing sequence of classical trajectories whose boundary data
are loosened and converge to the data (3) of the relaxed system
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Vice versa, by the lemma on measurable selection ([4, Th. 8.2.iii]), for
any trajectory x(·) of (9) there exists a measurable pair (p(·), V (·)) taking
values in Σn+1 × Rr(n+2) such that the triple (x, p, V ) satisfies the equation
ẋ = F (t, x, p, V ) and∫ T

0

L(t, x, ẋ)dt ≥
∫ T

0

L(t, x, p, V )dt.

Therefore under the above mentioned conditions the parameterized (control-
type) and unparameterized problems are equivalent.

We proceed under the growth assumptions (4)-(5) imposed on ! and f .
These assumptions are not valid for the relaxed Lagrangian L and dynam-
ics F : after relaxation the nonconvex coercive problem (1)-(2)-(3) becomes
noncoercive. Still one is able to proceed further using the unparameterized
formulation (9).

The following property of (weakened) upper semicontinuity is valid for the
set-valued map x �→ Q(t, x) (see [4, §10.5, Lemma 10.5.iii, Remark 4]).

Lemma 1. Under coercivity assumptions (4)-(5) there holds for each x0 ∈
Rn, t ∈ [0, T ]:

Q̃(t, x0) =
⋂
δ>0

closQ̃(t,Oδ(x0)). (10)

(Here Oδ(x0) is δ-neighborhood of x0, and Q̃(t,Oδ(x0)) =
⋃
x∈Oδ(x0)

Q̃(t, x)).
�

Corollary 1. Under assumptions of the Lemma the sets Q̃(t, x0) are closed.
�

Remark 1. There also holds

Q̃(t, x0) =
⋂
δ>0

clos convQ̃(t,Oδ(x0)). �

The following result relates lower semicontinuity of the unparameterized
Lagrangian L(t, x, z) with property (10).

Lemma 2. ([4, §8.5.C]) If the infimum is attained in the definition of
L(t, x, z) (8) whenever x ∈ Q(t, x) and the map (x, z) �→ L(t, x, z) is lower
semicontinuous, then property (10) holds.

If property (10) holds then the unparameterized Lagrangian (x, z) �→
L(t, x, z) is lower semicontinuous. �

Closedness of Q̃(t, x0) implies that the infimum in (8) is attained. Un-
der condition (10) the parameterized and unparameterized optimal control
problems are equivalent.

The existence of minimizer for the unparameterized problem can be es-
tablished by virtue of [4, Th. 11.1.i]. One can assume that the trajectories, we
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consider, are contained in a bounded subset of Rn. In fact it can be proven,
that fixing the initial point of the trajectories one can establish their equi-
boundedness from the assumption (4), as it is done in [4, §11.2].

The concluding result reads as follows.

Theorem 1. Let !, f be continuous, ! bounded below and coercivity assump-
tions (4)-(5) hold. Then the problem (1)-(2)-(3) possesses a relaxed minimizer.
�

Remark 2. We believe that the existence result can be obtained on the basis
of a compactification technique, which is developed in Section 4. We will
comment on it elsewhere. �

3 Lipschitzian regularity of non relaxed minimizers for
Lagrange variational problem: brief account

Sarychev and Torres in [10] suggested an approach, which is based on:

i) transformation of a Lagrange optimal control problem with nonlinear
control-affine dynamics into an autonomous time-optimal control problem;

ii) (one-point) compactification of the set of its control parameters;
iii)application of Pontryagin maximum principle to the problem with the

compact set of controls.

The second Erdmann’s condition together with growth conditions for the La-
grangian and the dynamics of the Lagrange problem allow to conclude Lips-
chitzian regularity of its minimizing trajectories. Additional conditions need
to be imposed in order to guarantee the possibility of extending the equations
of maximum principle up to the infinity point in the set of controls.

Later D.Torres [12] used a different technique of time-reparameterization
to derive a criterion of Lipschitzian regularity of minimizers for the problems
with nonlinear controlled dynamics (see [12, Theorem 24]).

If one sticks to the techniques invoked in [10], then it is possible to derive
another condition for Lipschitzian regularity of classical (nonrelaxed) mini-
mizers of the problem with nonlinear controlled dynamics. This result is not
distant from those presented in [12, Theorem 24]). We do not provide a proof,
since it comes out as a particular case of the more general result for relaxed
minimizers discussed in the next Section.

The following differentiability and growth assumptions are made.

• the functions !, f and their partial derivatives with respect to t, x are
continuous with respect to (t, x, v);
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• For each compact set X ⊂ Rn, there exists a scalar function φ(ξ), ξ ≥ 0,
monotonically increasing in [0,+∞[, bounded below, such that
lim
ξ→+∞

φ(ξ)
ξ = +∞ and

!(t, x, v) ≥ φ (‖f(t, x, v)‖+ ‖Dxf(t, x, v)‖+ ‖Dtf(t, x, v)‖) (11)

holds for all (t, x, v) ∈ [0, T ]×X × Rr;

• For each compact set X ⊂ Rn, there are constants C1, C2 < +∞ such that
the inequality

(‖Dx!(t, x, v)‖+ ‖Dt!(t, x, v)‖) ≤ C1!(t, x, v) (12)

holds for every (t, x) ∈ [0, T ]×X whenever ‖v‖ > C2.

In the conditions above Dx, Dt denote the differentials with respect to x and
t, respectively.

The following result holds.

Theorem 2. Let !, f and their derivatives Dt!,Dx!, Dtf,Dxf be continu-
ous. Let growth assumptions (5), (11) and (12) hold. Then any non relaxed
minimizer of problem (1)-(2)-(3) satisfies the Pontryagin maximum principle.
The corresponding trajectory x̃(·) is Lipschitzian, unless the corresponding in-
tegrable control ũ(·) is a strictly abnormal extremal control. �

Being strictly abnormal extremal control for ũ(·) means satisfying an ab-
normal version of Pontryagin maximum principle and not satisfying any nor-
mal version of this principle.

Recall what are normal and abnormal versions of maximum principle like.
Introduce the (pre)Hamiltonian

H(t, x, v, λ, ψ) = λ!(t, x, v) + ψ · f(t, x, v), (13)

where λ is a nonpositive constant, ψ ∈ (Rn)∗ is a covector.
We say that a pair x̃(·), ṽ(·) satisfies Pontryagin maximum principle for

the problem (1)-(2)-(3), if there exists a nonzero pair (λ̃, ψ̃(·)) such that the
quadruple x̃(·), ṽ(·), λ̃, ψ̃(·) satisfies the equations (2)-(3) and

ψ̇ = −∂H
∂x
, (14)

and satisfies the maximality condition

H
(
t, x̃(t), ṽ(t), λ̃, ψ̃(t)

)
a.e= max

v∈Rr
H
(
t, x̃(t), v, λ̃, ψ̃(t)

)
. (15)

Note that (14) is Hamiltonian adjoint to the equation (2), which can be written
as: ẋ = ∂H

∂ψ .
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Maximum principle is normal if λ < 0 and abnormal, if λ = 0; in the latter
case the Lagrangian does not appear in (14)-(15). The respective quadruples(
x̃(·), ṽ(·), λ̃, ψ̃(·)

)
are called, normal or abnormal, extremals, while the re-

spective ṽ(·) are (normal or abnormal) extremal controls. It may happen that
to an extremal control there correspond different pairs λ̃, ψ̃(·). An extremal
control is strictly abnormal if for all such pairs λ vanishes.

Note that if the dynamics (2) is control-affine:

ẋ = f(t, x, v) = h(t, x) +G(t, x)v(t), (16)

with G being a full column rank matrix, then one can formulate a simpler
condition for Lipschitzian regularity of non relaxed minimizers.

Corollary 2. Consider a Lagrange problem (1)-(2)-(3) with the control-affine
dynamic equation (16). Let the functions !, h,G and their derivatives with
respect to t, x be continuous. Let assumption (12) hold, and assume that for
any compact X ⊂ Rn there exists a function φ1(ξ) such that:

φ1(ξ)/ξ → +∞, as ξ → +∞, and !(t, x, v) ≥ φ1(‖v‖), as ‖v‖ → +∞,

uniformly with respect to (t, x) ∈ [0, T ]×X. Then the conclusion of the Theo-
rem 2 holds and the minimizer ṽ(·) is essentially bounded unless it is a strictly
abnormal extremal. �

Remark 3. The result established by the Corollary 2 is related to a general
condition obtained in [10]. Interested readers can compare this criterion with
the conditions (H1) of [10, Theorem 2] and the first one of the conditions
listed in Remark 2 in [10]; this latter considered with µ = β− 2, β ∈ (1, 2). �

4 Lipschitzian regularity of relaxed minimizing
trajectory

4.1 Main result on Lipschitzian regularity

From now on we consider again the problem (1)-(2)-(3) and assume the func-
tions f(t, x, v), !(t, x, v) and their partial derivatives with respect to t and x
to be continuous.

We formulate our main result - a criterion of Lipschitzian regularity for
the relaxed minimizing trajectory, whose existence has been established in
Section 2.

Theorem 3. Consider a Lagrange optimal control problem (1)-(2)-(3). Let
the functions !, f and their partial differentials with respect to t, x be contin-
uous. Let the growth assumptions (5)-(11)-(12) hold. Then:
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i) there exists a relaxed minimizer of the problem;

ii) all relaxed minimizers satisfy the Pontryagin maximum principle;

iii) any minimizing relaxed trajectory is Lipschitzian and the corresponding
extremal control is essentially bounded, unless they correspond to a strictly
abnormal extremal. �

Statement i) follows from Theorem 1 of Section 2. The rest of the con-
tribution contains the proof of statements ii) and iii) of Theorem 3. For an
explanation of the notions of normality and abnormality see the previous Sec-
tion. In Subsection 4.6 we explain how normality and Lipschitzian regularity
are correlated in the relaxed case.

4.2 Reduction of the relaxed optimal control problem to a
time-optimal control problem

Let us consider the relaxed Lagrange problem, defined by the functional (7)
and the dynamics (6). We introduce the new time variable

τ(t) =
∫ t

0

L(s, x(s), p(s), V (s))ds. (17)

Recall that by our assumptions ! ≥ 1 and hence also L ≥ 1. Therefore τ(t)
is strictly increasing. Obviously τ(T ) corresponds to the value of the relaxed
functional J c calculated along the relaxed trajectory (x(·), p(·), V (·)).

Considering t as a new state variable we derive for it the dynamic equation:

dt

dτ
=

1
L(t, x, p, V )

.

The relaxed optimal control problem can be represented as time optimal con-
trol problem

τ∗ → min, (18)

with dynamics

dt

dτ
=

1
L(t, x, p(t(τ)), V (t(τ))

,
dx

dτ
=
F (t(τ), x, p(t(τ)), V (t(τ)))
L(t(τ), x, p(t(τ)), V (t(τ))

, (19)

and boundary conditions

t(0) = 0, t(τ∗) = T, x(0) = x0, x(τ∗) = xT . (20)

We denote (1, F ) by F̂ and (1, f) by f̂ . Using z to denote the pair (t, x),
the dynamics of the time-optimal control problem can be described by the
equation

dz

dτ
=
F̂ (z, p(τ), V (τ))
L(z, p(τ), V (τ))

. (21)
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4.3 Loeb’s compactification of the set of control parameters

According to the approach sketched at the beginning of the Section 3 our next
step will be compactification of our set of control parameters Σn+1×Rr(n+2).

Although Σn+1 is compact, a mere passage to the one point compactifica-
tion of Rr(n+2) will not do, as long as for example the map

(p, V ) �→ F̂ (z, p, V )
L(z, p, V )

can not be extended by continuity to such one-point compactification. Indeed
if p→ p̂, and p̂ having some vanishing component p̃j , and ‖Vj‖ → +∞, then

the limit (for z fixed) of pj!(z, V j) and hence of L(z, p, V ) and of F̂ (z,p,V )
L(z,p,V ) may

fail to exist.
To construct a proper extension we proceed with a more ”sensitive” type

of compactification following the construction suggested by P.Loeb in [9].
We can find a compact set A ⊂ Rn+1, such that int(A) contains (the points

of) the optimal trajectory z̃(·) of (18)-(19)-(20) under consideration.
Consider the functions:

F̂ (z, p, V )
L(z, p, V )

,
∂

∂x̂k

(
F̂ (z, p, V )
L(z, p, V )

)
, (k = 0, . . . , n), (22)

defined on A×Σn+1 × Rr(n+2).

Lemma 3. The functions (22) are continuous and uniformly bounded pro-
vided that the growth assumptions (5)-(11)-(12) hold. �

Proof. As long as L ≥ 1, continuity is obvious. We prove boundedness.
There holds∥∥∥∥∥ ∂

∂zk

(
F̂ (z, p, V )
L(z, p, V )

)∥∥∥∥∥ ≤
≤

∥∥∥ ∂F̂∂xk
(z, p, V )

∥∥∥
L(z, p, V )

+

∥∥∥F̂ (z, p, V )
∥∥∥

L(z, p, V )

∣∣∣ ∂L∂zk
(z, p, V )

∣∣∣
L(z, p, V )

. (23)

For the first addend in the right-hand side of (23) we derive

‖ ∂F̂∂zk
(z, p, V )‖

L(z, p, V )
=

∥∥∥∥n+2∑
i=1

pi
∂f̂
∂zk

(z, vi)
∥∥∥∥

n+2∑
i=1

pi!(z, vi)
≤
n+2∑
i=1

pi

∥∥∥ ∂f̂∂zk
(z, vi)

∥∥∥
n+2∑
j=1

pj!(z, vj)
≤

≤ %
n+2∑
i=1

∥∥∥ ∂f̂∂zk
(z, vi)

∥∥∥
!(z, vi)

≤
n+2∑
i=1

∥∥∥ ∂f̂∂zk
(z, vi)

∥∥∥
!(z, vi)

, (24)



242 Manuel Guerra and Andrey Sarychev

where %
∑n+2
i=1 stands for summation with respect to those i’s for which pi �= 0.

Analogously to (24)∥∥∥F̂ (z, p, V )
∥∥∥

L(z, p, V )
≤
n+2∑
i=1

∥∥∥f̂(z, vi)∥∥∥
!(z, vi)

,

∣∣∣ ∂L∂zk
(z, p, V )

∣∣∣
L(z, p, V )

≤
n+2∑
i=1

∣∣∣ ∂�∂zk
(z, vi)

∣∣∣
!(z, vi)

. (25)

By growth assumptions (11) and (12)∥∥∥ ∂f̂∂zk
(z, vi)

∥∥∥
!(z, vi)

,

∥∥∥f̂(z, vi)∥∥∥
!(z, vi)

−→ 0, as ‖vi‖ → ∞, (26)

and

∣∣∣ ∂�
∂zk

(z,vi)
∣∣∣

�(z,vi) is bounded by a constant. All relations are uniform with respect
to z ∈ [0, T ]×A.

This provides uniform bounds for
∥∥∥ ∂
∂zk

(
F̂ (z,p,V )
L(z,p,V )

)∥∥∥ and of F̂ (z,p,V )
L(z,p,V ) . �

Now for each z ∈ A we will define compactification of the set U = Σn+1×
Rr(n+2) of control parameters. This compactification CU is determined by the
vector-function

Ez(p, V ) : (p, V ) �→ F̂ (z, p, V )
L(z, p, V )

,

and is the minimal compactification, onto which this function is continuously
extendable in such a way that it separates points of the remainder ∆ = CU \U .
In fact the compactification CU should depend on z but we will show below
that under our assumptions it can be parameterized in z-independent way.

The construction of P.Loeb, which is close to an earlier construction of uni-
fied space by G.T.Whyburn ([14]), goes as follows. For each z ∈ [0, T ]×A, the
’vector function’ Ez(p, V ) maps U into a cube in Rn+1. The compactification
CU is defined as CU = U

⋃
∆, where the remainder

∆ =
⋂
{Ez (U \K)| K -compact, K ⊂ U} ⊂ RN . (27)

Roughly speaking points of the remainder are accumulation points of Ez(p, V )
as ‖V ‖ → +∞.

The topology in CU is defined by open sets in U and by a system of
neighborhoods NU,K(z) of points z ∈ ∆, where U is a neighborhood from a
standard base of RN and K is a compact in U :

NU,K(z) =
(
U
⋂
∆
)⋃(

E−1
z (U) \K

)
.

The extended map Eez is defined on the remainder∆ as: Eez (z) = z, ∀z ∈ ∆,
while obviously Eez = Ez on U . Evidently the vector-function Ez(p, V ) can be
extended by continuity onto CU .
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Remark 4. Another seemingly natural kind of compactification, which comes
to mind is (maximal) Stone-Cech compactification onto which any continuous
bounded function can be extended. Unfortunately this compactification lacks
many properties which are important for us. In particular it is not sequentially
compact, there are no sequences of points of U , which converge to a point of
the remainder. Besides it can not ’be modeled by a finite-dimensional space’
on the contrast to the Loeb’s compactification for which it will be done in the
next Subsection. �

By construction the compactified set of control parameters may depend
on z, but we will show in the next subsection, that it can be parameterized
in z-independent way.

Note that a priori the partial derivatives ∂
∂x̂k

(
F̂ (z,p,V )
L(z,p,V )

)
can not be ex-

tended by continuity onto CU , they are not defined on the remainder ∆. Still
by Lemma 3 they are bounded on U .

4.4 Parameterization of the compactification

According to (27) in order to construct the remainder one has to study ’limit
points of the map Ez (p, V ) at infinity. It suffices to consider sequences of
points (pj , V j) such that ‖V j‖ → ∞. Recall that pj = (pj1, . . . , p

j
n+2) ∈ Σn+1;

V j = (vj1, . . . , v
j
n+2), where each vjk belongs to Rr.

Without lack of generality we may assume pj → p̃ ∈ Σn+1 as j → ∞.
Subdivide the set I = {1, . . . , n+ 2}, which indexes the coordinates of p, into
two subsets I = I+

⋃
I0 such that

i ∈ I+ ⇔ p̃i > 0, i ∈ I0 ⇔ p̃i = 0.

Assume that the limit limj→∞
F̂ (z,pj ,V j)
L(z,pj ,V j) exists. To study this limit we

represent the function under the limit as

F̂ (z, pj , V j)
L(z, pj , V j)

=

n+2∑
i=1

pji f̂(z, v
j
i )

n+2∑
s=1

pjs!(z, vjs)
=

∑
i∈I+

pji f̂(z, v
j
i )

n+2∑
s=1

pjs!(z, vjs)
+

∑
i∈I0

pji f̂(z, v
j
i )

n+2∑
s=1

pjs!(z, vjs)
. (28)

Lemma 4.

lim
j→∞

F̂ (z, pj , V j)
L(z, pj , V j)

= lim
j→∞

∑
i∈I+

pji f̂(z, v
j
i )∑

i∈I+
pji !(z, v

j
i ) +

∑
i∈I0

pji !(z, v
j
i )
. � (29)

Proof. Consider the sum ∑
i∈I0

pji f̂(z, v
j
i )

n+2∑
s=1

pjs!(z, vjs)
.
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For each sufficiently small ε > 0 there exists Nε such that pji ≤ ε2 holds
for every j > Nε, i ∈ I0. The norm of any addend of the previous sum can be
estimated from above for j > Nε as:

pji‖f̂(z, v
j
i )‖

n+2∑
i=1

pji !(z, v
j
i )
≤
{
ε, if ‖f̂(z, vji )‖ ≤ ε−1;

ε−1/φ(ε−1), if ‖f̂(z, vji )‖ > ε−1,
(30)

where φ is the function from the coercivity assumption (11). To derive the

first estimate in (30) we took into account the lower bound
n+2∑
i=1

pji !(z, v
j
i ) ≥ 1,

while the second estimate in (30) follows from the inequality

pji f̂(z, v
j
i )

n+2∑
s=1

pji !(z, v
j
s)
≤ f̂(z, v

j
i )

!(z, vji )
≤ ε−1/φ(ε−1),

according to the growth assumption (11).
Taking ε→ 0 in (30) we conclude that the second sum in (28) tends to 0.

Lemma 5. If for some i ∈ I+, the sequence ‖vji ‖ is unbounded, then the limit
(29) vanishes. �

Proof. Indeed, if we assume (passing to a subsequence when needed) ‖vji ‖
j→∞−→

∞, then for each k ∈ I+:

pjk‖f̂(z, v
j
k)‖∑

i∈I+
pji !(z, v

j
i ) +

∑
i∈I0

pji !(z, v
j
i )
≤ min

{
‖f̂(z, vjk)‖
pji !(z, v

j
i )
,
‖f̂(z, vjk)‖
!(z, vjk)

, i ∈ I+
}
,

and for sufficiently large j one can continue:

≤ min

{
2‖f̂(z, vjk)‖
p̃i!(z, v

j
i )
,
‖f̂(z, vjk)‖
!(z, vjk)

}
. (31)

By coercivity assumption (5) ∀ε > 0 there exists Nε such that ∀j > Nε :
p̃i!(z, v

j
i ) ≥ ε−2. Then for ‖f̂(z, vjk)‖ ≤ ε−1 the first fraction in (31) is ≤ 2ε,

while for ‖f̂(z, vjk)‖ ≥ ε−1 the second expression in (31) is ≤ ε−1/φ(ε−1).
Hence the minimum of the two expressions tends to 0 as j →∞. �

Now we restrict our consideration to the case where for all i ∈ I+ the
sequences ‖vji ‖ are bounded. Passing to subsequences, if needed, we may think
that vji converge to corresponding ṽi.

In this case a nonzero limit (29) exists only if there exists
lim
j→∞

∑
i∈I0

pji !(z, v
j
i ). Recall that ∀i ∈ I0 : lim

j→∞
pji = 0.
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Using the coercivity condition (5) it is elementary to prove existence of
sequences (pji , v

j
i ) such that the latter limit equals to any preassigned value

w ∈ [0,+∞]. For w = +∞ the limit (29) turns 0.
Thus if the sequences ‖vji ‖ are bounded then possible values of the limits

of F̂ (z,p,V )
L(z,p,V ) form the set{ ∑

i∈I+ p̃if̂(z, ṽi)∑
i∈I+ p̃i!(z, ṽi) + w

, w ∈ [0,+∞]

}
. (32)

Reparameterizing w as w = ω/(1−ω), ω ∈ [0, 1] we arrive to the following
representation of the set (32){

(1− ω)
∑
i∈I+ p̃if̂(z, ṽi)

(1− ω)
∑
i∈I+ p̃i!(z, ṽi) + ω

, ω ∈ [0, 1]

}
. (33)

Therefore one concludes that (p̃, Ṽ , ω) parameterizes the compactified set
of control parameters.

We will represent this set as a fibred space over Σn+1. The topology of
fibers will depend on the number of positive components of pi.

For p ∈ int Σn+1, with all the components being positive, the space Vp is
the one-point compactification of Rr(n+2), i.e. the r(n+2)-dimensional sphere
Sr(n+2) with distinguished infinite point (north pole) ιp.

If p possesses k < n+2 positive components then the corresponding topo-
logical space Vp is obtained as follows. We take the one point compactifi-
cation Skr of Rkr with distinguished north pole ιnp . Then we construct the
cone Skr × [0, 1]/Skr × {1} over this sphere, which is homeomorphic to the
kr + 1-dimensional ball Bkr+1. After it we take the quotient over the subset
ιp × [0, 1], i.e. over the points of the radius going from the center of the ball
to the north pole ιp, and take it as the distinguished point ιp of the quotient
Vp.

In particular, if p is a vertex of the simplex Σn+1 with only one nonzero
component, then the space Vp is the quotient of the ball Br+1 over the radius
going from its center to the (north pole) ιp.

Finally we glue together the points (p, ιp) taking the quotient of the union⋃
p∈Σn+1(Vp, ιp) over the set {(p, ιp), p ∈ Σn+1}.

The distinguished point is now denoted by ι.

4.5 Solutions of the relaxed Lagrangian and of the compactified
time-optimal problems

From now on we deal with time-optimal control problem with a compact set
CU of control parameters defined by (33) or (32).

It is easy to establish correspondence between the solutions of the relaxed
Lagrangian problem (6)-(7)-(3) and the solutions of the problem (18)-(19)-
(20) with compactified set of controls CU .
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Consider any trajectory x(t) of the system (6), which: i) satisfies boundary
conditions (3), ii) is driven by an admissible relaxed control (p(t), V (t)), and
iii) provides finite value τ̄ to the functional (1).

Defining strictly monotonous function τ(t) by (17), we take the inverse
function t(τ) and put z(τ) = (t(τ), x(t(τ))), u(τ) = (p(t(τ)), V (t(τ))). As far
as V (·) is finite a.e., the control u(·) takes its values in U for almost all τ . The
trajectory z(τ) satisfies boundary conditions (20) with transfer time τ̄ .

Vice versa let trajectory z(τ) = (t(τ), x(τ)) of the system (19) satisfy (20)
for a transfer time τ̄ and let the trajectory be driven by a control u(·) with the
values in CU , such that u(τ) ∈ U a.e. The function t(τ) is strictly monotonous
and invertible. Taking x(t) = x(τ(t))) we obtain trajectory of (6) driven by the
relaxed control (p(t), V (t)) = u(τ(t)), which is defined for almost all t ∈ [0, T ].
The value of the functional (7) equals τ̄ .

It remains to prove that any control u(·), which takes values in the remain-
der CU \ U on a subset T of positive measure in [0, τ̄ ], can not be optimal.
Indeed according to (32) the extension of the differential equation (19) onto
CU can be written as

dz

dτ
=

∑
i∈I+ pi(τ)f̂(z, vi(τ))∑

i∈I+ pi(τ)!(z, vi(τ)) + w(τ)
, w ∈ (0,+∞]. (34)

Here (p(τ), V (τ), w(τ)) provides a parameterization of u(τ).
It is obvious that if one substitutes w by the zero value on T , this will

result in a reparameterization of a trajectory of (34) by a strictly smaller time
interval, i.e. u(·) can not be time-optimal.

All this means that a relaxed minimizer of the optimal control problem (1)-
(2)-(3), i.e. a minimizer (p̃(·), Ṽ (·)) of the problem (7)-(6)-(3), corresponds to
a minimizer (p̃(·), Ṽ (·), w̃(·)) of the autonomous time-optimal control problem
(18)-(19)-(20) with w̃(·) = 0 almost everywhere.

One can change the values of w̃(·) on a set of zero measure without affecting
the value of the minimal time. Therefore from now on we will assume w̃(·)
to be identically vanishing or, in other words, the time-optimal control of the
compactified problem (18)-(19)-(20) to take its values in U .

4.6 Pontryagin maximum principle, second Erdmann condition,
normality and Lipschitzian regularity

We want to write down the equations of Pontryagin’s maximum principle
(PMP) for the minimizer of the compactified time-optimal problem.

In order to ensure validity of the PMP for the time-minimizing control
(p̃(·), Ṽ (·), 0) we verify that after substitution of this control into the right-
hand side of (21) the resulting function is integrally Lipschitzian with respect
to z (cf. [11], [5, Chapter 5]) in a neighborhood of the minimizing trajectory
z̃(·). In fact the situation is ’more smooth’ and ’more classical’: after the
substitution we end up with the function which is continuously differentiable
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with respect to z for each fixed τ , and the norm of the respective Jacobians
are equibounded for all τ ∈ [0, τ∗]. This follows from Lemma 3.

It will be convenient for us now to reestablish old variables t, x in place of
z. The respective (pre)Hamiltonian of the Pontryagin maximum principle for
the time-optimal problem (18)-(19)-(20) is

H(t, x, p, V, w, λ̂) =
∑n+2
i=1 pi(λ̂ · f̂(t, x, vi))∑n+2
i=1 pi!(t, x, vi) + w

.

Splitting the covector λ̂ as λ̂ = (λ1, λ) in accordance to the splitting f̂ = (1, f),
so that λ̂ · f̂ = λ1 + λ · f , we get the Hamiltonian

H(t, x, p, V, w, λ1, λ) =
∑n+2
i=1 pi(λ1 + λ · f(t, x, vi))∑n+2

i=1 pi!(t, x, vi) + w
. (35)

According to the PMP the absolutely continuous functions
(
λ̃1(τ), λ̃(τ)

)
,

satisfy the adjoint Hamiltonian equations

dλ1/dτ = −∂H/∂t, dλ/dτ = −∂H/∂x, (36)

and the control (p̃(·), Ṽ (·), 0) maximizes the value of the Hamiltonian function
(p, V, w) �→ H(t̃(τ), x̃(τ), p, V, w, λ̃1(τ), λ̃(τ)), for almost all τ .

Since the time-optimal problem is autonomous - its dynamics does not
depend on τ - the maximized Hamiltonian is known to be constant according
to the second Erdmann’s condition.

Therefore for the minimizing control (p̃(·), Ṽ (·), 0) and for almost all τ :∑n+2
i=1 p̃i(τ)

(
λ̃1(τ) + λ̃(τ) · f(t̃(τ), x̃(τ), ṽi(τ))

)
∑n+2
i=1 p̃i(τ)!(t̃(τ), x̃(τ), ṽi(τ)))

= c ≥ 0. (37)

The proof of this condition in our case goes along the classical line. A key
point is global Lipschitzian continuity of the function M(t, x, λ1, λ) which
results from maximization of the Hamiltonian (35) with respect to (p, V ).
Recall again that due to our growth assumptions the extension of the dynam-
ics (21) onto CU is Lipschitzian. The proof of the nullity of the derivative
d
dτM

(
t̃(τ), x̃(τ), λ̃1(τ), λ̃(τ)

)
proceeds as in [8],[1].

Coming back to the condition (37) we treat first the case c > 0. In this case
the Lipschitzian property of the minimizing trajectory of the original problem
can be derived from the following

Lemma 6. Let (37) hold with c > 0. Then ∃Mc < +∞ depending only on c
such that:

p̃i(τ) �= 0⇒ ‖ṽi(τ)‖ ≤Mc (38)

holds for i = 1, 2, ..., (n+2) and almost every τ ∈ [0, τ∗]. Hence the minimizing
control ṽ(·) =

(
ṽ1(·), . . . , ṽn+2(·)

)
is essentially bounded and the minimizing

trajectory is Lipschitzian. �
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Proof. Fix τ0 satisfying (37) with c > 0, and fix i ∈ {1, 2, ..., (n + 2)} such
that p̃i(τ0) �= 0, and the maximality condition of the Pontryagin maximum
principle is satisfied at this point. To simplify, we can assume without loss of
generality that i = 1.
If p̃1(τ0) = 1, then it is clear that λ̃1(τ0)+λ̃(τ0)·f(t̃(τ0),x̃(τ0),ṽ1(τ0))

�(t̃(τ0),x̃(τ0),ṽ1(τ0))
= c. To con-

sider the case when p̃1(τ0) ∈]0, 1[, let

f1 = f(t̃(τ0), x̃(τ0), ṽ1(τ0)), !1 = !(t̃(τ0), x̃(τ0), ṽ1(τ0))

f2 =
n+2∑
i=2

p̃i(τ0)∑n+2
j=2 p̃j(τ0)

f(t̃(τ0), x̃(τ0), ṽi(τ0)),

!2 =
n+2∑
i=2

p̃i(τ0)∑n+2
j=2 p̃j(τ0)

!(t̃(τ0), x̃(τ0), ṽi(τ0))

The Hamiltonian (37) at time τ = τ0 is

H(t̃(τ0), x̃(τ0), p̃(τ0), Ṽ (τ0), λ̃1(τ0), λ̃(τ0)) =

=
p̃1(τ0)(λ̃1(τ0) + λ̃(τ0) · f1) + (1− p̃1(τ0))(λ̃1(τ0) + λ̃(τ0) · f2)

p̃1(τ0)!1 + (1− p̃1(τ0))!2
.

Hence the maximum principle implies that

p̃1(τ0)(λ̃1(τ0) + λ̃(τ0) · f1) + (1− p̃1(τ0))(λ̃1(τ0) + λ̃(τ0) · f2)
p̃1(τ0)!1 + (1− p̃1(τ0))!2

=

= max
p1∈[0,1]

p1(λ̃1(τ0) + λ̃(τ0) · f1) + (1− p1)(λ̃1(τ0) + λ̃(τ0) · f2)
p1!1 + (1− p1)!2

. (39)

Since

∂

∂p1

(
p1(λ̃1(τ0) + λ̃(τ0) · f1) + (1− p1)(λ̃1(τ0) + λ̃(τ0) · f2)

p1!1 + (1− p1)!2

)
=

=
(λ̃1(τ0) + λ̃(τ0) · f1)!2 − (λ̃1(τ0) + λ̃(τ0) · f2)!1

(p1!1 + (1− p1)!2)2
,

condition (39) implies that

λ̃1(τ0) + λ̃(τ0) · f1
!1

=
λ̃1(τ0) + λ̃(τ0) · f2

!2
= c.

Thus we proved that the equality

λ̃1(τ0) + λ̃(τ0) · f(t̃(τ0), x̃(τ0), ṽi(τ0))
!(t̃(τ0), x̃(τ0), ṽi(τ0))

= c

must hold for every i such that p̃i(τ0) �= 0. Hence
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|λ̃1(τ0)|
!(t̃(τ0), x̃(τ0), ṽi(τ0))

+ ‖λ̃(τ0)‖
‖f(t̃(τ0), x̃(τ0), ṽi(τ0))‖
!(t̃(τ0), x̃(τ0), ṽi(τ0))

≥ c

must hold for every i such that p̃i(τ0) �= 0. Since the trajectory (λ̃1, λ̃, t̃, x̃)
lies in a compact, the growth assumptions (5),(11) guarantee that ṽi(τ0) is
bounded by a constant Mc which depends only on c > 0.

What remains is to clarify what happens when c in (37) vanishes. This
gives the relationship between normality and Lipschitzian regularity.

Lemma 7. If c = 0 in (37) then
(
p̃(·), Ṽ (·)

)
is an abnormal extremal relaxed

control for the original problem, i.e.
(
p̃(·), Ṽ (·)

)
satisfies the abnormal version

of Pontryagin maximum principle for this problem. �

Proof. Recall that the denominator of (37) equals L + w and is positive.
Therefore, vanishing of c in (37) together with the maximality condition for
the Hamiltonian (35) implies that for almost all τ and all (p, V ), we have:

0 = λ̃1(τ) +
n+2∑
i=1

p̃i(τ)(λ̃(τ) · f(t̃(τ), x̃(τ), ṽi(τ))) ≥ (40)

≥ λ̃1(τ) +
n+2∑
i=1

pi(λ̃(τ) · f(t̃(τ), x̃(τ), vi)).

Introduce the Hamiltonian

h(t, x, p, V, λ) =
n+2∑
i=1

pi(λ · f(t, x, vi)). (41)

The second equation in (36) takes the form

dλ

dτ
= −∂H

∂x
= − ∂

∂x

λ1 + h
L+ w

=
−∂h∂x
L+ w

+
(λ1 + h)∂L∂x
(L+ w)2

.

Given the fact that λ1 + h(t, x, p, V, λ) vanishes along(
x̃(·), p̃(·), Ṽ (·), λ̃1(·), λ(·)

)
and also w vanishes, the latter equation takes the

form
dλ
1
Ldτ

= −∂h
∂x
, or, given (17),

dλ

dt
= −∂h

∂x
.

Besides by (40), (41)

h(t(τ), x̃(τ), p̃(τ), Ṽ (τ), λ̃(τ)) a.e.τ= −λ̃1(τ) ≥ h(t(τ), x̃(τ), p, V, λ̃(τ)).

The two latter equations mean that
(
x̃(τ), p̃(τ), Ṽ (τ)

)
satisfy the abnormal

version of Pontryagin maximum principle with the multiplier λ̃(·) and the
(abnormal) Hamiltonian (41).
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Summary. We reduce a problem of pricing continuously monitored defaultable
securities (barrier options, corporate debts) in a stochastic interest rate framework
to calculations of boundary crossing probabilities (BCP) for Brownian Motion (BM)
with stochastic boundaries. In the case when the interest rate is governed by a linear
stochastic equation (Vasicek model) we suggest a numerical algorithm for calculation
of BCP based on a piece-wise linear approximation for the stochastic boundaries.
We also find an estimation of the rate of convergence of the suggested approximation
and illustrate results by numerical examples.

1 Introduction

Practitioners often acknowledge an existence of a common problem with pric-
ing schemes of exotic (e.g. barrier, lookback) options for the contracts with
long maturities. The prices of these instruments significantly depend on an in-
terest rate term-structure. The case of deterministic interest rates have been
studied by Roberts/Shortland (1997), ([16]), Novikov/Frishling/Kordzakhia
(1999, 2003), ([12], [13], see also other references in these papers). For de-
terministic interest rates the pricing problem of barrier options is reduced to
calculations of BCP for BM with deterministic boundaries. In Section 2 we
present a modification of the algorithm from [12] and [13] to handle a general
setup of stochastic interest rates. In Sections 3 and 4 we describe the numeri-
cal algorithm in details and provide an estimation for the rate of convergence
of the suggested approximation as a function of number of nodes. In Section
5 the results are illustrated by numerical examples.
Further we use the standard notation St for a price of an underlying asset
and rt for a default-free short interest rate. We assume that St is a diffusion
process of the form

St = S0e
Yt

with the log-return process Yt governed by the equation
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dYt = µ(t)dt+ σdWt,

where Wt is a standard BM with respect to a ’real-world’ measure P and a
filtration Ft, σ is a constant volatility, µ(t) is a historical trend.
Let fT be a payoff of an option at maturity T. In this paper we concentrate on
two fundamental examples of payoff functions (there are many other examples
that may be treated in a similar way).
Case 1. The payoff of Up-and-Out European Barrier Call option is

fT = (ST −K)+I{τ > T},

where T is a maturity time, a first passage (default) time τ = inf{t : St ≥
G+(t)}, G+(t) is a continuous deterministic barrier, and I{τ > T} is an
indicator function.
Case 2. The payoff at maturity T of a defaultable zero-coupon bond St is

fT = 1− wI{τ ≤ T}, 0 < w = const < 1,

where τ = inf{t : Yt ≤ bt}, the default threshold bt is modeled as follows

bt = b0 + λ
∫ t

0

(Ys − v − bs)ds,

with some constants b0, v and λ > 0. An economic rationale behind the model
is well justified by Collin-Dufresne/Goldstein (2001), ([7]) who accounted to
the fact that firms tend to decrease the time-dependent debt level bt when
the return on a firm’s value, in this case Yt falls below bt + v, and vice-versa.
Put for convenience

lt = Yt − bt.
Then

τ = inf{t : lt ≤ 0}, dlt = µ(t)dt+ λ(v − lt)dt+ σdWt . (1)

The case of a constant threshold bt = b0 (that is when λ = 0 in (1)) has been
studied by Longstaff/Schwartz (1997), ([8]). In [8] and [7] BCP were evaluated
using the first-passage density of a two-factor Gaussian-Markov process. This
methodology has been extended by Bernard et al (2005),(2007), ([2], [3]), to
pricing of life insurance contracts and barrier options.

It must be noted that the problem of approximating of BCP for BM with
one-sided stochastic boundary has been considered by Peskir and Shiryaev
(1997) [14], Vondraĉek (2000) [17], Abundo (2003) [1] under asymptotic setting
(as T → ∞ in our notation), but their results can not be used under our
framework because the parameter T takes, typically, moderate values.

2 Pricing formulae

A fair price of an option with a payoff fT is (under a free-arbitrage assumption)
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Cf = E
∗ (
e−

∫ T
0 rsdsfT

)
, (2)

where E
∗

is a symbol of expectation with respect to the equivalent risk-neutral
(martingale) measure P ∗ such that the process

e−
∫ t
0 rsdsSt

is (P ∗,Ft)−martingale. It implies (see e.g. Liptser/Shiryaev (2003), [9]) that

Yt = σW ∗
t +

∫ t

0

rsds−
σ2

2
t, (3)

where W ∗
t is a standard BM with respect P ∗.

In general, the fair price (2) can be approximated by Monte Carlo methods via
discretization of a time parameter. However, such approximations typically
have a significant bias; this aspect is discussed in Section 5 for the case of
discretely monitored options.
The price of a risk-free zero-coupon bond with maturity T is

P (0, T ) = E∗(e−
∫ T
0 rsds).

Define the forward measure PF as follows:

PF (A) = E∗(I(A)e−
∫ T
0 rsds)/P (0, T ), A ∈ FT .

Then
Cf = E

∗ (
e−

∫ T
0 rsdsfT

)
= P (0, T )EF (fT ), (4)

where EF is a symbol of expectation with respect to PF .
For affine models (e.g. Vasicek, CIR models) the function P (0, T ) can be
calculated analytically. Therefore, a pricing problem is reduced to evaluation
of EF (fT ) . Further we assume that the risk-free short rate rt is the Ornstein-
Uhlenbeck (or, Vasicek) process governed by a linear stochastic equation

drt = ar(r̄ − rt)dt+ σrdW (r)
t , (5)

where ar > 0, W (r)
t is another standard BM with respect to the risk-neutral

measure P ∗ and given filtration Ft such that E∗(W (r)
t W ∗

t ) = 0. A general
case of correlated St and rt will be discussed elsewhere.
The solution of equation (5) has the following representation

rt = a(t) + σrξt, a(t) = r̄ + (r0 − r̄)e−art,

where
dξt = −arξtdt+ dW (r)

t , ξ0 = 0

and, therefore,



254 Nino Kordzakhia and Alexander Novikov

ξt = e−art

∫ t

0

earsdW (r)
s . (6)

By direct calculations

P (0, T ) = E
∗
(e−

∫ T
0 rsds) = e−A(T )+D2(T )/2

with

A(T ) =
∫ T

0

a(s)ds = r̄T + (r0 − r̄)(1− e−arT )/ar,

D(T ) = σ2
rV ar(

∫ T

0

ξsds) =
σ2
r

2a3
r

(
2Tar − e−2Tar − 4a2

r + 4a2re
−Tar + 1

)
.

Also, by the Girsanov theorem one could show that under the forward measure
PF the BM W

(r)
t has a drift term

q(t, T ) = −σr
ar

∫ t

0

(1− e−ar(T−u))du (7)

(see e.g. Brigo/Mercurio (2006), ([6], p. 886)).

Case 1. Using (3) we obtain

τ = inf{t : St > G+(t)} = inf{t : σW ∗
t >

σ2

2
t+ log(G+(t)/S0)−

∫ t

0

rsds}.

The fair price Cf can be written as follows

Cf = E∗[e−
∫ T
0 rsds(ST −K)I{τ > T, ST > K}].

In view of (4) and (7) we have

= S0E
∗
(
eσW

∗
T −σ2

2 T I{τ > T, ST > K}
)
− KP (0, T )PF {τ > T, ST > K} =

S0q1 − P (0, T )Kq2 (8)

with

q1 = P̃

{
σW ∗

t <
σ2

2
t+ log(G+(t)/S0)−

∫ t

0

rsds, σW
∗
T

>
σ2

2
T +

∫ T

0

rsds+ log(K/S0)

}
,

where the measure P̃ is defined as follows

P̃ (A) = E∗(I{A}eσW∗
T −σ2

2 T ) , A ∈ FT .
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Note that the BM W ∗
t has a drift σt under the measure P̃ .

The second probability in (8) has a similar form:

q2 = PF
{
σW ∗

t <
σ2

2
t+ log(G+(t)/S0)−

∫ t

0

rsds, σW
∗
T

>
σ2

2
T +

∫ T

0

rsds+ log(K/S0)

}
,

(recall that under measure PF the BM W r
t has the drift q(t, T ) defined in

(7)).

Case 2. We have

Cf = E
∗
e−

∫ T
0 rsds(1−w+wI{τ > T}) = P (0, T )[1−w+PF {lt ≥ 0, t ≤ T}],

where due to (3) and (1) we have

dlt = rtdt+ λ(v − lt)dt+ σdW ∗
t , l0 = −b0.

With a simple algebra one can show that the problem of computation of
PF {lt ≥ 0, t ≤ T} can be reduced to finding of probabilities

P{ηt < g(t)− σre−λt
∫ t

0

eλsξsds, t ≤ T},

where g(t) is a deterministic function, ξs is defined in (6) and ηt is the
Ornstein-Uhlenbeck process defined by the equation

dηt = −ληtdt+ σdWt, η0 = 0

and therefore

ηt = σe−λt
∫ t

0

eλsdWs.

Applying the change of time

u =
∫ t

0

e2λsds

we obtain ∫ t(u)

0

eλsdWs = W̃u, t(u) =
log(2λu+ 1)

2λ
,

where W̃u is another standard BM. Hence, we can reduce the pricing problem
to computation of the probability

P{σWu <
√

2λu+ 1 g(t(u))− σr
∫ t(u)

0

eλsξsds, u ≤
∫ T

0

e2λsds}.
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3 Approximations to BCP

For Cases 1 and 2 discussed above we have reduced the option pricing problem
to finding BCP of the form

P (b, h) := P{WT > b;Wt < h(t), t ≤ T},

where: b is a random variable, h(t) is a stochastic boundary such that

h(t) = g(t)− zRt, Rt =
∫ t

0

ξsds,

g(t) is a smooth deterministic function, z = const and the process ξt is defined
in (6) with a standard BM Wt.
Further we study in details Case 1. In this case the parameter λ = 0 and the
probabilities qi defined in (8) can be written in the form qi = P (bi, hi), i = 1, 2
where

σbi = σr

∫ T

0

ξsds+Hi, σhi(t) = gi(t)− σrR(i)
t ,

g1(t) = −σ
2

2
t+ log(G+(t)/S0)−

∫ t

0

a(s)ds,

H1 = −σ
2

2
T +

∫ T

0

a(s)ds+ log(K/S0)}, Rt =
∫ t

0

ξsds,

the process ξt has the representation (6) with a standard BM W
(r)
t . Further-

more,

g2(t) =
σ2

2
t+ log(G+(t)/S0)−

∫ t

0

a(s)ds,

H2 =
σ2

2
T +

∫ T

0

a(s)ds+ log(K/S0)}.

We suggest to use approximating probabilities P (b̂, ĥ) with piece-wise linear
stochastic boundaries ĥ(t) instead of h(t) = g(t) − zRt such that for some
partition {ti}, 0 = t0 < t1 < ... < tm = T,

ĥ(tj) = h(tj) = g(tj)− zRtj , j = 0, ...,m. (9)

Further we assume that z = 1.
Note that the vector R = (Rt1 , ..., Rtm) and the process W ∗

t are independent
due to the assumption on independency of St and rt.
The approximating probabilities P (b̂, ĥ) can be calculated using the following
formula

P (b̂, ĥ) = E[I{WT > b̂}
m−1∏
j=0

(1− e−
2(ĥ(tj)−Wtj

)+(ĥ(tj+1)−Wtj+1)+

tj+1−tj )]. (10)
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This formula was derived by Wang/Pötzelberger (1997), ([18]), for the special
case when b = −∞ and boundaries ĥ(t) are deterministic piece-wise linear
functions. In a more general context, including double barriers, although re-
stricted to deterministic boundaries, a similar result was derived in [12]. To
prove formula (10) for stochastic boundaries one could follow the proof in [12]
or, alternatively, Proposition 1 formulated below.
Let us consider

ηj(u) := Wtj+u−Wtj−u
Wtj+1−Wtj

∆tj
, 0 ≤ u ≤ ∆tj = tj+1−tj , j = 0, ...,m−1

and
W = {Wt1 , ...,Wtm}.

Proposition 1. For any u and v

Cov(ηi(u), ηj(v)|W) = 0, i �= j,

Cov(ηi(u), ηi(v)|W) = min(u, v)− u v/∆ti.
The proof of this result is based on standard properties of Gaussian random
variables.
As a simple consequence of Proposition 1 one can see that the random pro-
cesses {ηj(u), j = 0, ...,m− 1} are jointly independent Brownian bridges con-
ditioned on the vector W. We recall also another well-known fact that for a
linear nonrandom function h(t)

P{Wt < h(t), ti ≤ t ≤ ti+1|(Wti ,Wti+1)} = 1− e−
2(h(ti)−Wti

)+(h(ti+1)−Wti+1)+

ti+1−ti .

Now using conditioning on the vector (W,R) with R = (Rt1 , ..., Rtm) one
can derive (10) for the general case under discussion.
Note that to compute probabilities (10) we need to simulate the random
variables Wtj and Rtj , j = 1, ...,m or, alternatively, one may attempt to use
2m repeated integrations with respect to state variables.

4 Accuracy of the approximation

Our estimation of accuracy of the suggested approximation will be based on
the following result proved in Borovkov/Novikov (2005), ([5]).
Notation. Lip(κ) is the class of Lipschitz functions h(t) on [0, T ] :

|h(t+ h)− h(t)| ≤ κh, 0 = t < t+ h = T,

where κ is a finite nonrandom constant.
Proposition 2 (Borovkov-Novikov (2005)). Let stochastic boundaries
h(t) ∈ Lip(κ). Then for any ε > 0
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P (b, h+ ε)− P (b, h) ≤ (5κ/2 + 1/
√
T )ε.

This result is proved in Lemma 1 of [5]. The latter was formulated for the
case of nonstochastic boundaries but one can easily check that the result does
hold for any stochastic boundaries h(t) from the class ∈ Lip(κ).
Further we assume: T = 1, the process ξt is defined in (6) with a standard
BM W

(r)
t ,

h(t) = g(t)−
∫ t

0

ξsds,

g(t) is a twice continuously differentiable deterministic function, b is a con-
stant.
Let ĝ(t) be a piece-wise linear function such that ĝ(tj) = g(tj) , Rt be a piece-
wise linear process and the stochastic boundary ĥ be defined in (9).
Theorem 1. Let tj = j

m . Then

|P (b, ĥ)− P (b, h)| = O(
log(m)
m3/2

).

For the proof we will need the following
Proposition 3. Let xm = C

√
log(m) with a large enough constant C. Then

P{max
t≤T
|
∫ t

0

ξsds−Rt| >
xm
m3/2

} = o(
1

m3/2
).

Proof of Theorem 1. Since g(t) is a twice continuously differentiable func-
tion, for the linear piece-wise function ĝt such that ĝ(tj) = g(tj) we have3

|ĝ(t)− g(t)| ≤ C

m2
.

By virtue of Proposition 3 proved below with xm = C
√

log(m) we have

P (b, ĥ− xm
m3/2

− C

m2
)− o( 1

m3/2
) ≤ P (b, g) ≤ P (b, ĥ+

xm
m3/2

+
C

m2
)+ o(

1
m3/2

).

Now applying Proposition 2, for any κ > 0 we obtain

|P (b, g)− P (b, ĥ)| ≤ (5κ/2 + 1)(
2xm
m3/2

+
C

m2
) + P{max

s≤1
|ξs| > κ}+ o(

1
m3/2

).

(11)
Furthermore, using properties of the Gaussian distribution one can show that
for some λ > 0

P (max
s≤1
|ξs| > κ) ≤ Ce−λκ

2
/κ.

Choosing κ = κ(m) =
√

2 log(m)
λ we obtain

3 C is a generic constant



Pricing of Defaultables 259

P{max
s≤1
|ξs| > κ(m)} = O(

1
m3/2

).

Combining the latter with (11) the proof of Theorem 1 is completed.
Proof of Proposition 3. The definition of Rt implies that

max
t≤1
|
∫ t

0

ξsds−Rt| = max
j

∫ tj

tj−1

|ξs −m
∫ tj

tj−1

ξudu|ds ≤

2
m

max
j

( max
tj−1≤s≤tj

|ξs − ξtj−1 |).

Applying the Girsanov transformation, for any x > 0 we have

P{max
j

( max
tj−1≤s≤tj

|ξs − ξtj−1 |) > x} =

E[I{max
j

( max
tj−1≤s≤tj

|Ws −Wtj−1 |) > x}e−ar

∫ 1
0 WsdWs−

a2
r
2

∫ 1
0 W

2
s ds]

≤ ear/2P{max
j

( max
tj−1≤s≤tj

|Ws −Wtj−1 |) > x}, (as
∫ 1

0

WsdWs = (W 2
1 − 1)/2).

The random variables maxtj−1≤s≤tj |Ws −Wtj−1 |, j = 1, ...,m, are indepen-
dent and identically distributed (iid). Then by scaling and homogeneity prop-
erties of BM we have

max
tj−1≤s≤tj

|Ws −Wtj−1 |
d= max

0≤s≤1
|Ws|/

√
m,

Note that
max
s≤1
|Ws| ≤ max

s≤1
(Ws) + max

s≤1
(−Ws)

and
max

0≤s≤1
(−Ws) d= max

0≤s≤1
(Ws)

d= |W1|.

It implies that, for any x > 0

P{max
j

( max
tj−1≤s≤tj

|Ws −Wtj−1 |) > x} ≤ 2P{max
j
γj > x/2},

where iid r.v.’s γj
d= |W1| and, hence,

P{max
t≤1
|
∫ t

0

ξsds−Rt| >
x

m3/2
} ≤ 2ear/2P{max

j
(γj) > x/2} =

= 2ear/2(1− (2Φ(x/2)− 1)m) ≤ 2ear/2(1− (1− 2e−
x2
8

x
√

2π
)m),
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here we use the well-known inequality 1 − Φ(x) ≤ e−
x2
2

x
√

2π
for the standard

normal distribution Φ(x).
For x = xm →∞

(1− 4e−
x2

m
8

xm
√

2π
)m = e

− 4me
− x2

m
8

xm
√

2π
(1+o(1))

We select now xm = C
√

log(m) with a large enough constant C. Then

4me−
x2

m
2

xm

√
2π

= o( 1
m3/2 ), thus

1− e−
2e

− x2
m
2

xm
√

2π
m(1+o(1)) = o(

1
m3/2

).

This completes the proof of Proposition 3.

5 Numerical examples

Here we consider model (5) with the parameters

T = 1, ar = 1, r̄ = 0.1, r0 = 0.15.

For the asset price St we use the same set of parameters as in [16], namely,

S0 = 10, σ = 0.1, K = 11, G+(t) = 12.

In terms of our notation from Section 2

rt = a(t)+σrξt, E(rt) = a(t) = 0.1+0.05e−t,
∫ t

0

a(s)ds = 0.1t+0.05(1−e−t),

dξt = −ξtdt+ σrdW (r)
t , ξ0 = 0,

where W (r)
t is a standard BM.

5.1 Deterministic interest rate

Roberts/Shortland (1990) have set σr = 0 in ([16]) and by using probabilistic
arguments they obtained the following bounds for the fair price of continuously
monitored Up-and-In European call option

0.516758 ≤ Cf ≤ 0.517968. (12)

Denote by Cdf (m) the fair prices of the discretely monitored options with m
monitoring dates and let Ĉdf (m) be a Monte Carlo estimation for Cdf (m).
With the number of paths N = 107 we obtained the following results
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Ĉdf (1000) = 0.5125,

Ĉdf (100) = 0.5036,

Ĉdf (50) = 0.4985. (13)

The significant difference of 0.8%, even for m = 1000, compared to the bounds
for the price of continuously monitored option from (12), can be explained by
a slow rate of convergence of prices of the discretely monitored option to con-
tinuously monitored one. The rate of convergence is known to be of order
O( 1√

m
), (it can be derived from results of Nagaev (1970), [11] and Borovkov

(1982), [4]).
Denote by Ĉf (m) a Monte Carlo estimation for the fair prices of the continu-
ously monitored options obtained through the numerical procedure described
in Section 3; here m is a number of node points for a piece-wise linear bound-
ary. With the number of paths N = 107 we obtained the following results

Ĉf (1000) = 0.5167,

Ĉf (100) = 0.5167,

Ĉf (50) = 0.5168. (14)

A disparity with the results for discretely monitored options is due to a bet-
ter rate of convergence which, according to Theorem 1, is at least of order
O( log(m)

m3/2 ). As a matter of fact, for smooth deterministic boundaries the rate
of convergence is even faster, namely, it is of order O( 1

m2 ) as shown in [15],
[5].
In practice, the sequence Cdf (m), m = 1, 2, ..., is also of interest. Based on the
known rate of convergence Cdf (m) to the limit as m → ∞, we suggest to use
the following simple approximation C̃df (m) defined by the following formula

C̃df (m) = Ĉf (50) +
A√
m
, (15)

where A is a constant; further we define the constant A from the equation

Ĉdf (50) = Ĉf (50) +
A√
50
.

The following table contains the simulated prices Ĉdf (m) and the relative error
of approximation (15) in the range m ∈ [100, 250].

Table 1. Prices of discretely monitored option, σr = 0,
Ĉf (50) = 0.51680
Price Relative

m Ĉdf (m) Error(%)
100 0.5036 0.06
150 0.5058 0.09
200 0.5073 0.08
250 0.5083 0.07
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5.2 Stochastic interest rate

For a comparison, we included results of simulation of prices Ĉdf (m) and the
relative error of approximation (15) when σr = 0.2. Note that the relative
errors of approximating formula (15) in the range [10, 250] are consistently
less than 0.1%.

Table 2. Prices of discretely monitored option,
σr = 0.2, Ĉf (50) = 0.62524

Price Relative
m Ĉdf (m) Error(%)
100 0.6148 0.05
150 0.6172 -0.04
200 0.6183 -0.03
250 0.6191 -0.03
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Spline Cubatures for Expectations of Diffusion
Processes and Optimal Stopping in Higher
Dimensions
(with Computational Finance in View)

Andrew Lyasoff

Mathematical Finance Program, Boston University, USA. alyasoff@bu.edu

Summary. We develop certain cubature (quadrature) rules for expectations of dif-
fusion processes in RN that are analogous to the well known spline interpolation
quadratures for ordinary integrals. By incorporating such rules in appropriate back-
ward induction procedures, we develop new numerical algorithms for solving free-
boundary (optimal stopping) problems, or ordinary fixed-boundary problems. The
algorithms developed in the paper are directly applicable to pricing contingent claims
of both American and European types on multiple underlying assets.

1 Preliminaries

The present paper is concerned with certain computational aspects of the
optimal stopping of a generic diffusion process (Xt ∈ D)t∈[0,∞[, D ⊆ RN ,
with a given termination payoff rule λ : D �→ R and termination deadline
0 < T <∞. The study of such problems, from both analytical and numerical
points of view, has a long history and has been crucial for many domains of
science, engineering and, of course, control theory – see [12] for one of the
most recent expositions on the subject of optimal stopping.

A concrete example of an optimal stopping problem is the exercise of
the rights guaranteed by a financial contract known as an American-style
put option. Such a contract allows its holder to sell fixed number of shares
of a particular stock at some pre-specified price K (exercise price) but no
later than the – also pre-specified – termination date T . At time t < T the
holder of such a contract observes the price Xt of the stock for which the
option was underwritten and must decide whether to exercise the option, i.e.,
sell shares at price K or take no action (if the holder of the option does
not own shares of the underlying stock he/she may purchase such shares
at price Xt and sell them immediately at price K – the right to do so is
guaranteed by the contract). The payoff from exercising (and also terminating)
this option is λ (Xt) and the termination payoff function λ(·) is given by
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λ(x) = Max[K − x, 0], x ∈ R++. At the same time financial contracts of this
type are tradable: if it has not been exercised at or prior to time t < T , the
option can be sold to an agent who would like to purchase the right (without
any obligation) to sell shares of the underlying stock at price K some time
in the future, prior to the termination date T . The problem is at what price
should such an option be sold? Intuitively, it is clear that the market price
of the option must depend on the moment in time t < T and also on the
observed price x = Xt. Consequently, to “price the option” means to construct
a family of valuation maps F (t, ·), t 	 T , that are defined on the entire range
of possible prices, so that when the observed price at time t is x = Xt then
at time t the option is priced at the amount F (t, x). It is very important
to recognize that the entire family of pricing maps x −→ F (t, x), t 	 T , is
to be calculated “ahead of time,” i.e., before the contract was underwritten.
The precise form of the maps F (t, ·) must be extracted from information
about the dynamics of the price process (Xt) and also from the principles
of pricing by arbitrage (under certain assumptions about the nature of the
financial market). Fig. 1 below shows the graphs (the solid lines) of 3 different
valuation maps for 3 different values of t 	 T against the graph (the dashed
line) of the termination payoff function λ(·), assuming that the price process
(Xt) satisfies certain conditions. These graphs are entirely consistent with
basic intuition: the option price is always greater than the termination payoff
and when the pricing date t approaches the termination date T the associated
pricing map at date t converges to the termination payoff. More importantly,
the knowledge of the family of pricing maps F (t, ·), t 	 T yields a precise
stopping rule: at time t < T the option is exercised only if the observed stock
price x is in the range where λ(x) = F (t, x) (the option is more valuable than
the immediate termination only when immediate exercise is not optimal).

It should be clear from the above example that – as general as possible –
methods for optimal stopping are rather important in the realm of finance. In
fact, the importance of such methods goes well beyond the domain of simple
stock options, of the type that we just described. Indeed, in one form or an-
other, most asset-valuation and investment issues come down to computing
the price of some contract that allows its holder to exercise an optimal stop-
ping policy with respect to some pre-specified (generally, multi-dimensional
and stochastic) price process and to collect certain random payoff(s) accord-
ing to certain pre-specified termination rules. What distinguishes the optimal
stopping problems encountered in the realm of finance from the optimal stop-
ping problems in most other areas is that, unlike the impression that the above
example may create, most financial phenomena involve diffusion processes in
spaces of a much higher dimension, well beyond the point where higher di-
mensionality can be treated as a more or less straight-forward generalization
of analogous one-dimensional situations. Several new methods were developed
recently, apparently, with high-dimensional finance in view – see [1], [2], [7],
[8], [9] and [11], for example. Conceptually, these new methods belong to the
general rubric “approximation of expectations of diffusion processes”. Even
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Fig. 1. The price of an American style put option with exercise price K = 40, shown
as a function of the observed stock price at 3 different dates prior to the expiration
date T , assuming that the stock price (Xt) is governed by dXt = σXtdWt + µXtdt,
for some fixed constants σ and µ and some standard Brownian motion (Wt). The
dashed line is the graph of the termination payoff function λ(·). The area where the
termination payoff coincides with the valuation map represents the range of stock
prices for which exercising the option is optimal (on the respective date).

the classical Monte Carlo methods had to be re-tooled and improved consid-
erably before they can be used in the context of computational finance – see
[4], [5] and [14], for example.

The method developed in the present paper has two aspects. The first one
may be viewed as a yet another variation on the theme “approximation of ex-
pectations of diffusion processes”. In this regard, the method is conceptually
similar to the methods of Longstaff and Schwartz [10], the quantization algo-
rithm of Bally and Pagès [1] and [2], and the method of Lyons and Victoir [11].
What all these methods have in common is the idea that expectations of cer-
tain functionals of diffusion processes can be expressed in terms of “universal”
quantities that can be computed, in some sense, once and for all. In the world
of computing this idea is not new. Indeed, the most common meaning of the
term “solution” is some algebraic expression that involves standard functions
like exp(x), log(x), sin(x) and so on, which are nothing but objects that have
been computed once and for all. It is to be noted that the methods of Bally
and Pagès and Longstaff and Schwartz still rely on Monte Carlo techniques,
while the method described in the present paper and the method of Lyons
and Victoir can be viewed as fully deterministic methods (in the same sense
in which the finite difference method is understood to be a fully deterministic
method).

The second aspect of the method developed in the paper is the use of cer-
tain approximation techniques for expectations of diffusion processes in the
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context of optimal stopping; more specifically, for solving certain fixed- and
free-boundary problems. In this respect, the method is similar – conceptu-
ally – to the method of Longstaff and Schwartz. It is important to recognize
that, generally, the optimal stopping problems impose severe restrictions on
the type of approximation technique for the expected values that can be used
throughout the procedure. There are two principle reasons why such restric-
tions are encountered. The first one is that in the context of optimal stopping
one must compute – dynamically – a whole cluster of expected values, which
is practical only if such expected values can be computed reasonably fast.
The second one is that – just in principle – one may be able to compute only
a finite number of expected values from which the value function has to be
restored and further integrated. In other words, merely computing expected
values of functions of the underlying diffusion process is not enough, in that
one must be able to compute – and do this reasonably fast – expected values
of special objects that arise as approximations (constructed from finite lists
of tabulated values) of the value function.

In its most general formulation, the solution to the problem for optimal
stopping of the diffusion process (Xt ∈ D)t∈[0,∞[ with termination payoff λ :
D �→ R and termination deadline 0 < T <∞, is given by the value function

]−∞, T ]×D ' (t, x) −→ F (t, x) ∈ R ,

which represents the “value” of having the underlying process in state x ∈ D
at time t < T , assuming that the optimal termination policy is exercised, with
the understanding that if termination can occur only at date T , then there is
only one “optimal” policy. Clearly, if stopping can occur at any time prior to
the termination deadline T > 0, then for any t < T one has F (t, x) 
 λ(x)
and for t = T one has F (T, x) = λ(x). In this case stopping is justified at time
t < T if and only if

Xt ∈ {x ∈ D ; F (t, x) = λ(x)} ⇐⇒ F (t,Xt) = λ(Xt) ,

i.e., once the value function F (·, ·) has been computed, the optimal stopping
policy comes down to: terminate the process and collect the termination payoff
at the first moment t when the process enters the set {x ∈ D;F (t, x) = λ(x)}.
Unfortunately, there are very few situations where the value function (t, x) −→
F (t, x) can be computed explicitly. This is especially true in higher dimensions.
As a result, one is often forced to resort to one numerical algorithm or another.
It is important to recognize that such algorithms are very different in nature
from the general Monte Carlo methods. Indeed, just in principle, the objective
of the various Monte Carlo methods is to approximate the distribution law of
the random variables F (t,Xt) for some range of values of the time-parameter
t, without providing any information whatsoever about the valuation map
F (·, ·) itself. Such a task is considerably less ambitious (and useful) than
approximating the actual valuation map F (·, ·), from which one can extract
information about the greeks and so on. This explains why financial engineers
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still prefer the finite difference technique whenever this technique is possible to
use. Thus, in terms of its principle objective and philosophy, the methodology
developed in the present paper is very different in nature from the general
Monte Carlo methods and can be viewed as a variation of a sort of the finite
difference method.

There are three levels of approximation that one must deal with when
computing the valuation map(t, x) −→ F (t, x). Level-1 approximation is sim-
ply discretization of the time-parameter, i.e., given some fixed n�, one must
replace the value function F (·, ·) with a function of the form

]−∞, T ]×D ' (t, x) −→ F (T − 2−n)(T − t)2n*, x),

or, which amounts to the same, with the sequence of functions

D ' x −→ Fi,n(x) := F (T − i 2−n, x), i = 0, 1, . . . ,

that are calculated recursively for i = 0, 1, . . .. Since, in general, the functions
Fi,n(·) are to be treated as infinite dimensional objects, in any practical sit-
uation one must use some compression algorithm that replaces these objects
with finite lists of computable symbols. Thus, instead of constructing sequen-
tially the functions F0,n(·) := λ(·), F1,n(·), F2,n(·), . . . one must construct
(sequentially) the finite lists of symbols !1, !2, . . . every one of which can be
treated as an encryption of some computable function on the domain D. This
is the level-2 approximation. Level-3 approximation occurs in the recursive
rule for constructing the list !i from the list !i−1. This calculation inevitably
involves conditional expected values of certain functions of the underlying dif-
fusion and therefore – in one form or another – requires information about
the associated transition probability density. Since closed form expressions –
i.e., algebraic expressions involving only standard functions – for that density
may exist only in some very special cases, the density must be “compressed”
into a finite list of computable symbols, too.

The key concept on which the present paper rests is to interpret each of the
finite lists !i as a representation of some interpolating function Si(·) defined
on the domain D. In general, interpolating functions are constructed from
finite lists of tabulated values (for the function and, depending on the order
of interpolation, certain derivatives) on some finite mesh in the respective
domain. We will think of each !i as being one such list of tabulated values.
Suppose that all future values are discounted at some – fixed, from now on –
discount rate r > 0. Since the interpolating function Si−1(·) is a replacement
for the value function Fi−1(·), the list !i will be computed by tabulating the
function

D ' x −→ Max
[
e−r2

−n

E[Si−1(X2−n)|X0 = x], λ(x)
]

and, possibly, some of its derivatives, at some mesh inside the set D that is
chosen accordingly. If stopping can occur only at the termination date T , then
one must tabulate the following function and, possibly, some of its derivatives



270 Andrew Lyasoff

D ' x −→ e−r2
−n

E[Si−1(X2−n)
∣∣ X0 = x] .

The reason why such a procedure happens to be practical is that, whatever
the order of interpolation, one can always write

Si(x) =
k∑
j=1

!i(j)× ej(x) ,

where ej(x) are universal interpolating functions, i.e., interpolating functions
that depend only on the mesh; in other words, any interpolating function may
be viewed as a linear combination (with weights given by the actual tabulated
values) of certain universal interpolating functions (note that, in general, !i(j)
may refer to the tabulated value of some mixed derivative). As a result, we
can write

E[Si(X2−n)|X0 = x] =
k∑
j=1

!i(j)× E[ej(X2−n)
∣∣ X0 = x] .

The key point here is that the functions x −→ E[ej(X2−n)
∣∣ X0 = x] can be

computed once and for all; in fact, one would only need the (finitely many) tab-
ulated values of these functions and, possibly, certain mixed derivatives over
the interpolation mesh. Consequently, the list !i can be obtained by acting on
the list !i−1 with some linear operator, i.e., by multiplying !i−1 with a matrix
that is computed once and for all – as long a the process (Xt) and the interpo-
lation mesh remain the same. Of course, due to the Level-3 approximation, if
no explicit formula for the distribution of the process (Xt) exists, just in prin-
ciple, one may be able to compute the functions x −→ E[ej(X2−n)

∣∣ X0 = x],
and therefore the linear operator itself, only approximately.

2 Spline cubatures for expectations of diffusion processes

Following [15], we use the term “cubatures” as a reference to integration rules
for multiple integrals and the term “quadratures” as a reference to integration
rules for single integrals. Let (Xt ∈ D)t∈[0,∞[, D ⊆ RN , be the diffusion
process introduced in the previous section. From now on we will suppose
that D is some Cartesian domain in RN – such as the orthant RN+ , or the
entire RN , for example. Consider, next, some Cartesian mesh (α) ≡ {αj ≡
{α1,j1 , . . . , αN,jN } ; j ∈ J} inside the domain D, where j stands for a generic
multi-index of the form {j1, . . . , jN}, J is the (rectangular) collection of all
such multi-indices with 0 	 ji 	 k(i), for some fixed list of strictly positive
integers {k(1), . . . , k(N)} and we have

αi,0 < αi,1 < αi,2 < . . . < αi,k(i) , 1 	 i 	 N .
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Let J++ ⊂ J denote the collection of all multi-indices {j1, . . . , jN} with 1 	
ji 	 k(i). We can identify the elements of J++ with the individual rectangular
regions (or “cells”) associated with the partition α: for each j ∈ J++, the
vector αj ∈ RN is the “top-right-up-. . .” corner of one individual cell in the
partition. This individual region (or “cell”) can be expressed as

Rj ≡ Rj1,...,jN =
{
x ∈ RN;α1,j1−1 	 x1 	 α1,j1 , . . . , αN,jN−1 	 xN 	 αN,jN

}
.

With each j ∈ J++ (i.e., with each cell in the partition) we associate some
N -linear function pj(·) and some N -cubic function Pj(·), both defined on the
unit cube

U = {x ∈ RN ; 0 	 x1 	 1, . . . , 0 	 xN 	 1} ,
respectively, by

pj(x) = ξj · {1, xN} · . . . · {1, x1} ,
and by

Pj(x) = Ξj · {1, xN , x2
N , x

3
N} · . . . · {1, x1, x

2
1, x

3
1} ,

for some real (Cartesian) tensor ξj of rank(ξj) = N and dim(ξj) = {2, . . . , 2}
and some real (Cartesian) tensor Ξj of rank(Ξj) = N and dim(Ξj) =
{4, . . . , 4}. In the above expressions “·” stands for the usual dot-product be-
tween tensors, i.e., the contraction of the last index of the tensor on the left
of the symbol “·” with the first index of the tensor on the right of the symbol
“·”, with the understanding that for rank 1 tensors (i.e., for vectors) the last
index is also the first and that the operation is performed left to right. On
each individual cell Rj, j ∈ J++, we define the N -linear function

sj(x) := pj

( x1 − α1,j1−1

α1,j1 − α1,j1−1
, . . . ,

xN − αN,jN−1

αN,jN − αN,jN−1

)
, x ∈ Rj ,

and the N -cubic function

Sj(x) := Pj

( x1 − α1,j1−1

α1,j1 − α1,j1−1
, . . . ,

xN − αN,jN−1

αN,jN − αN,jN−1

)
, x ∈ Rj ,

(for simplicity we write x ≡ {x1, . . . , xN} ∈ RN , y ≡ {y1, . . . , yN} ∈ RN , and
so on). Note that sj(·) – or, which amounts to the same, the tensor ξj – is
uniquely determined by the values that sj(·) takes at the corners of the region
Rj. In contrast, in order to determine the N -cubic function Sj(·), for each
corner of the region Rj one must obtain information not only about the value
of Sj(·), but also about the values of all mixed partial derivatives (note that
there are 2N − 1 such derivatives, and that Rj has 2N corners)

(∂i1 . . . ∂ilSj)(x) ≡
∂i1+...+il

∂xi1 . . . ∂xil
Sj(x), 1 	 i1 < . . . < il 	 N, 1 	 l 	 N .

For example, in the case N = 2, in order to construct the bi-cubic function
Sj(·) one must prescribe the values of the following 3 derivatives at each of
the four corners of the rectangle Rj:
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∂

∂x1
Sj(x),

∂

∂x2
Sj(x),

∂2

∂x1∂x2
Sj(x) ,

in addition to the actual value of Sj(·) at the four corners – this gives the total
of 16 conditions that uniquely determine all 16 entries in the 4× 4 matrix Ξj.
It is very important to recognize that the entries in the tensor ξj are universal
linear functions of the values that sj(·) takes at the corners of Rj. Similarly,
all entries in the tensor Ξj are universal linear functions of the values of Sj(·)
and the values of

hj(i1) . . . hj(il) (∂i1 . . . ∂ilSj)(·) ,

at the corners of the region Rj, where hj(i) is the length of the projection of Rj
on the ith coordinate axis. In particular, if K(Rj) stands for the collection of
all corner points of the region Rj, then there are universal constants c(1)N and
c
(3)
N for which we can write for any x ∈ Rj (these are very crude estimates!)

|sj(x)| 	 c
(1)
N ×Max [|sj(y)| ; y ∈ K(Rj)]

and

|Sj(x)| 	 c
(3)
N ×Max

[
hj(i1) . . . hj(il) |(∂i1 . . . ∂ilSj)(y)| ;

y ∈ K (Rj) , 1 	 i1 < i2 < . . . < il 	 N, 0 	 l 	 N
]
.

Now consider the region

R =
{
x ∈ RN ;α1,0 	 x1 	 α1,k(1), . . . , αN,0 	 xN 	 αN,k(N)

}
⊆ D ,

which is simply the union of the regions Rj, and let f : D �→ R be any function.
We will suppose that f can be differentiated as many times as required by the
context. Clearly, the N -linear functions sj(·), j ∈ J++, can be defined so that
the values of sj(·) at all corners of Rj coincide with the respective values of
the function f(·). With this choice, the functions sj(·) are automatically glued
along the edges of the regions Rj in such a way that the aggregate function
x −→ s(f, α;x), i.e., the function defined on D so that s(f, α;x) := sj(x) for
x ∈ Rj and s(f, α;x) = f(x) for x ∈ D\R, is continuous on R (but, obviously,
not on D). Similarly, one can define the N-cubic functions Sj(·), j ∈ J++, in
such a way that the values of all derivatives (∂i1 . . . ∂ilSj)(·) at all corners of
Rj coincide with the respective mixed derivatives (∂i1 . . . ∂ilf)(·) (note that
by “mixed derivatives” we mean derivatives in which the differentiation in
each variable occurs at most once, so that all first order derivatives and the
function itself are just special cases of “mixed derivatives”. With this choice,
the functions Sj(·) are glued along the edges of the regions Rj in such a way
that the aggregate function x −→ S(f, α;x), i.e., the function defined on D
by S(f, α;x) := Sj(x) for x ∈ Rj and by S(f, α;x) = f(x) for x ∈ D \ R, is
not only continuous, but also has continuous mixed derivatives of all orders
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everywhere in R (but obviously not in D), i.e., represents a spline-like surface
on R. In fact, if χD\R stands for the indicator of the set D \ R then for any
x ∈ D we can write

S(f, α;x) =
∑
j∈J

N∑
l=0

∑
1�i1<i2<...<il�N

(∂i1 . . . ∂ilf) (αj)× E (αj, i1, i2, . . . , il;x)

+ f(x)χD\R(x) ,

and s(f, α;x) =
∑
j∈J

f(αj)× e (αj;x) + f(x)χD\R(x) ,

where D ' x −→ E(αj, i1, i2, . . . , il;x) and D ' x −→ e(αj;x) are universal
interpolating functions that depend on the mesh α and nothing else and,
furthermore, share the following properties (this is the only place in the paper
where the symbol δ is used to denote Dirac’s delta function):(
∂m1 . . . ∂mq

E
)
(αj, i1, i2, . . . , il;αı) = δj,ıδl,qδm1,i1 . . . δml,il , e (αj;αı) = δj,ı

with E (αj, i1, i2, . . . , il;x) = 0, x ∈ D \ R, and e (αj;x) = 0, x ∈ D \ R .
In fact, the last two identities hold for all x ∈ Rı, for any region Rı for
which αj �∈ Rı. Consequently, for every multi-index j ∈ J, both functions
E (αj, i1, i2, . . . , il; ·) and e (αj; ·) are supported on the set

Q(αj) :=
⋃

ı∈J,αj∈Rı

Rı .

Given any multi-index j ∈ J++ we will write

ε(1)j (f) := max
{
|f(x)− s(f, α;x)| ;x ∈ Rj

}
,

ε(3)j (f) := max
{
|f(x)− S(f, α;x)| ;x ∈ Rj

}
,

and set

ε(1)(f, α) := max
j∈J++

ε(1)j (f) , ε(3)(f, α) := max
j∈J++

ε(3)j (f) .

As is well known the size of the error terms ε(1)j (f) and ε(3)j (f) is controlled
by the size of the region Rj, defined as

|Rj| := max
1�i�N

hj(i) ,

(recall that hj(i) is the length of the projection of Rj on the ith coordinate
axis) and by some upper bound on certain derivatives of the function f –
more precisely, for the error term ε

(1)
j (f) we need an upper bound on certain

derivatives of f of order 	 2, and for the error term ε
(3)
j (f) we need an



274 Andrew Lyasoff

upper bound on certain derivatives of f of order 	 4. These are very powerful
estimates – especially in the context in which we intend to use them. Just as
an example, with N = 1 we have

ε(1)j (f) 	 1
8
|Rj|2 max

{
|f ′′(x)| ; x ∈ Rj

}
and

ε(3)j (f) 	 1
384
|Rj|4 max

{∣∣f (4)(x)
∣∣ ; x ∈ Rj

}
.

For the sake of simplicity we will suppose that the diffusion process
(Xt ∈ D)t∈[0,∞[ admits a smooth transition density R+×D×D ' (t, x, y) −→
ψt(x, y), so that we can write

E[f(Xt)
∣∣ X0 = x] =

∫
D
f(y)ψt(x, y)dy, x ∈ D . (1)

Furthermore – again, in order to avoid the discussion of certain technical
conditions for the diffusion (Xt) – we will suppose that for a reasonably large
class of “nice” functions f(·) (i.e., for all functions that we will be dealing
with) we can write

∂k1+···+kl

∂xk1 . . . ∂xkl

E [f(Xt)|X0 = x] =
∫
D
f(y)

∂k1+···+kl

∂xk1 . . . ∂xkl

ψt(x, y)dy, x ∈ D ,

where, just as before, we write x ≡ {x1, . . . , xN} ∈ RN and y ≡ {y1, . . . , yN} ∈
RN . Consider now the functions

Θt(αj, i1, i2, . . . , il;x):=
∫
D
E(αj, i1, i2, . . . , il; y)ψt(x, y)dy

and θt(αj;x):=
∫
D
e(αj; y)ψt(x, y)dy,

for various choices of j ∈ J. These functions are universal, in the sense that
they depend only on the mesh α and the transition density ψt(x, y). Further-
more, they provide cubature rules for the integrals in (1), as stated in the
following

Proposition 1. For any finite function f : D �→ R one has∫
D
f(y)ψt(x, y)dy ≈

≈
∫
D
s(f, α; y)ψt(x, y)dy ≡

∑
j∈J

f (αj)× θt(αj;x) +
∫
D\R

f(y)ψt(x, y)dy

with error in the approximation (uniformly for all x!) no greater than
ε(1)(f, α), and, for any N -times differentiable function f : D �→ R, one has



Spline Cubatures and Optimal Stopping 275∫
D
f(y)ψt(x, y)dy ≈

∫
D
S(f, α; y)ψt(x, y)dy

=
∑
j∈J

N∑
l=0

∑
1�i1<i2<...<il�N

(∂i1 . . . ∂ilf) (αj)×Θt (αj, i1, i2, . . . , il;x)

+
∫
D\R

f(y)ψt(x, y)dy

with approximation error (uniformly for all x!) no greater than ε(3)(f, α).

Of course, as is common for most cubature (quadrature) rules, we suppose
that outside the region R, i.e., outside the region where the actual cubature
(quadrature) rule applies, the function is either null, or can be estimated or
somehow guessed.

3 Termination at fixed time: A numerical recipe for
fixed-boundary problems

Let everything be as in the previous section. If the diffusion process
(Xt ∈ D)t∈[0,∞[, D ⊆ RN , can be terminated and, consequently, the termi-
nation payoff λ(Xt) can be collected, only at some fixed date T > 0, there
is nothing left to “control.” In this case, one is only interested in the value
function

F (t, x):=e−r(T−t)E[λ (XT−t)
∣∣ X0 = x], t 	 T, x ∈ D ,

which solves the equation (here Lx denotes the infinitesimal generator for the
Markovian semi-group associated with (Xt) )

∂tF (t, x) + LxF (t, x) = rF (t, x) ,

in the domain (t, x) ∈ ]−∞, T ]×D with boundary condition F (T, x) ≡ λ(x),
x ∈ D. If we now define the operator semi-group {At ; t 
 0} that acts on
functions f : D �→ R according to the rule

Atf(x) := e−rtE [f(Xt)|X0 = x] = e−rt
∫

RN

f(y)ψt(x, y)dy, t 
 0 ,

then the value function can be expressed as F (t, x) = AT−tλ(x) ≡
AT−tF (T, x), t 	 T , x ∈ D.

Suppose that one is only interested in computing the functions

D ' x −→ Fi,n(x):=F
(
T − i2−n, x

)
≡ (A2−n)i λ(x) ,

for i = 0, 1, . . . and for some large n ∈ Z++. Consider the 1-parameter family
of operators {At ; t 
 0} defined by



276 Andrew Lyasoff

(Atf)(x) := S(Atf, α;x) or by (Atf)(x) := s(Atf, α;x) ,

depending on whether the interpolation used in the definition is N -cubic or
N -linear. Note that if N -cubic interpolation is used, then the definition of
(Atf)(x) involves the tabulated values of all mixed derivatives of the function
x −→ Atf(x) over the mesh α. In contrast, if (Atf)(x) is defined by way of N -
linear interpolation, then the definition involves only the tabulated values of
the function x −→ Atf(x) over the mesh α. In general, the family {At ; t 
 0}
will not be a semi-group and what we want to know is how far from a semi-
group it really is; more specifically, with ‖·‖∞ defined to be the usual sup-norm
for functions on the domain D, we want to estimate the differences

ρi,n :=
∥∥(A2−n)iλ(·)− (A2−n)iλ(·)

∥∥
∞ , i = 0, 1, 2, . . . ,

(we suppose that for i = 0 one has (A2−n)i λ(·) = (A2−n)i λ(·) = λ(·), so
that ρ0,n = 0). In the rest of this section we will consider only the case of
N -cubic interpolation, as the case of N -linear interpolation can be dealt with
essentially the same argument and is actually easier. In order to estimate ρi,n
we first expand the above difference as

(A2−n)iλ− (A2−n)iλ =
= A2−n((A2−n)i−1λ− (A2−n)i−1λ) + (A2−n −A2−n)(A2−n)i−1λ.

Since – just by definition – the function x −→ (A2−n)(A2−n)i−1λ(x) ≡
(A2−n)iλ(x) interpolates the function x −→ (A2−n)(A2−n)i−1λ(x), from the
last relation we can write

ρi,n 	 e−r(2
−n)ρi−1,n + ε(3)(A2−n(A2−n)i−1λ, α) . (2)

In general, the error term in the N -cubic interpolation is controlled by finitely
many derivatives of the form (for N = 1 this would be just the 4th derivative
in the case of spline interpolation and the 2nd derivative in the case of linear
interpolation):

Dx := (∂xi)
4
∂xm1

. . . ∂xml
.

Now we need to make the following assumption about the diffusion (Xt) and
the termination payoff λ(·).

Assumption 1 For each of the above derivatives Dx the functions

D ' x −→ sup
t<T

∫
D
|Dxψt(x, y)| dy and D ' x −→ sup

t<T
|DxAtλ(x)|

are globally bounded.

As a result of the above assumption, for some finite constant C we can write
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∣∣ = e−r(2

−n)

∣∣∣∣∫
RN

((A2−n)i−1
λ(y))Dxψ2−n(x, y)dy

∣∣∣∣
	 e−r(2

−n)

∣∣∣∣∫
RN

((A2−n)i−1
λ(y))Dxψ2−n(x, y)dy

∣∣∣∣+ Ce−r(2−n)ρi−1,n

= |Dx(Ai2−n)λ(x)|+ Ce−r(2−n)ρi−1,n.

Suppose, next, that ϑ > 0 is arbitrarily chosen. Due to the above rela-
tion, for any sufficiently fine mesh α, one has the following estimate, which is
uniform for all i and n (the constant C ′ below can be made arbitrarily small
by refining the mesh and, in general, refining the mesh will not violate the
estimate): ∣∣∣ε(3) (A2−n(A2−n)i−1λ, α

)∣∣∣ 	 ϑ+ C ′e−r(2
−n)ρi−1,n .

In conjunction with (2), for any sufficiently fine mesh we have (uniformly for
all i and n)

ρi,n 	 e−r(2
−n) (1 + C ′) ρi−1,n + ϑ .

This leads to the following result

Proposition 2. There is a constant C ′ for which the following claim can be
made: for any n ∈ Z++ with e−r(2

−n)(1 + C ′) < 1 and any ϑ > 0 one has,
uniformly for all i = 1, 2, . . .,

ρi,n 	 ϑ

1− e−r(2−n)(1 + C ′)
,

for any sufficiently dense interpolation mesh α.

Note that, in general, ρi,n cannot be made small uniformly for all n, i.e., a
smaller time step requires also a finer mesh.

We now turn to the study of stability issues in the procedure that we just
described. By definition, each quantity S(Atf, α;x) is a linear combination of
the universal N -cubic spline surfaces E(αj,i1, i2, . . . , il;x) and contains also
the term Atf(x)χD\R(x). Suppose next that the coefficients in this linear
combination are replaced by values that differ from the actual values by no
more than some fixed ε > 0. There are two reasons why such an inaccuracy
may occur. The most obvious one is the limitation of the numerical precision
in the computing device. The second reason is more interesting. It has to
do with the level-3 approximation: instead of computing the function Atf(x)
(and one only needs to know this function and its mixed derivatives on the
mesh α) one may be able to compute only the function

x −→ e−rt E
[
f(X̃t)

∣∣ X̃0 = x
]
, (3)

with (X̃t) being some suitable approximation of the underlying diffusion. For
example, for small t one may be able to replace
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Xt = x+
∫ t

0

σ(Xs)dWs +
∫ t

0

µ(Xs)ds ((Wt) ≡ standardBM) ,

with X̃t = x+ σ(x)Wt + µ(x)t ,

which reduces the computation of the expression in (3) to the (possibly nu-
merical) evaluation of a Gaussian integral. Now we need to make the following

Assumption 2 For some t0 < T the interpolation region R can be chosen
so that

|Atf(x)− λ(x)| 	 ε, for all t ∈ [t0, T ] and for all x ∈ D\R .

Such an assumption is certainly reasonable and is more or less unavoidable in
any approximation procedure; for example, with finite time left to expiry, the
value of a put option is very close to 0 for prices of the underlying that are
very large. In any case, we are going to denote this approximate spline-surface
by Sε(Atf, α;x) and set

(Aεtf) (x):=Sε (Atf, α;x) , t 	 T, x ∈ D ,

with the understanding that – just by definition – Sε(Atf, α;x) = λ(x) for
x ∈ D \ R. Plainly, (Aεtf)(x) is obtained by perturbing the data from which
(Atf)(x) is constructed by no more than ε. The next step is to examine the
difference

(A2−n)if − (Aε2−n)iλ = A2−n

(
(A2−n)i−1λ− (Aε2−n)i−1λ

)
+(A2−n −A2−n) (Aε2−n)i−1

λ+ (A2−n −Aε2−n) (Aε2−n)i−1
λ (4)

and we set

ρεi,n:=
∥∥(A2−n)iλ(·)− (Aε2−n)iλ(·)

∥∥
∞ , 0 	 i 	 (T − t0) 2n .

The first term in the right side of (4) cannot exceed e−r(2
−n)ρεi−1,n. Consider

next the third term. On the domain D\R, i.e., outside the interpolation region
the function A2−n

(
Aε2−n

)i−1
λ is the same as

A2−n (Aε2−n)i−1
λ = λ+A2−n

(
(Aε2−n)i−1

λ− (A2−n)i−1
λ
)
+
(
(A2−n)i λ− λ

)
,

while Aε2−n

(
Aε2−n

)i−1
λ = λ by definition. Consequently, by a very rough

estimate, on the domain D \ R the absolute value of the third term in (4)
cannot exceed

e−r(2
−n)ρεi−1,n + ε .

On the domain R the third term in (4) is simply the difference between two
interpolating functions for which the respective interpolated values differ by
no more than ε. Consequently, on the domain R one must have
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λ(x)

∣∣∣ 	 Cε

where the constant C is universal. As for the second term in the right side of
(4), it is simply the difference between the function A2−n

(
Aε2−n

)i−1
λ and its

spline-surface interpolation on the mesh α. By definition this difference is 0
in the domain D \ R, and on each region Rj it is controlled by powers of the
quantity |Rj| times quantities of the form

e−r2
−n

sup
x∈Rj

∣∣∣∣∫
D

(Aε2−n)i−1
λ(y)Dxψ2−n(x, y)dy

∣∣∣∣
= e−r2

−n

sup
x∈Rj

∣∣∣∣∫
D

(A2−n)i−1
λ(y)Dxψt(x, y)dy

∣∣∣∣
+ ρi−1e

−r2−n

sup
x∈Rj

∫
D
|Dxψ2−n(x, y)| dy.

Consequently, for any sufficiently dense mesh α one has

ρεi,n 	 e−r(2
−n)ρεi−1,n+ e−r(2

−n) (1+ρεi−1,n

)
ϑ+ (1 + C)ε+ e−r(2

−n)ρεi−1,n

= (2 + ϑ)e−r(2
−n)ρεi−1,n + e−r(2

−n)ϑ+ (1 + C)ε,

for any 0 	 i 	 (T − t0)2n. The above consideration leads to the following

Proposition 3. Given any (fixed) n ∈ Z++ with e−r2
−n

< 1/3 and any (ar-
bitrarily small) ϑ ∈ ]0, 1[ one can claim that, uniformly for 0 	 i 	 (T−t0)2n,
one has

ρεi,n 	 e−r(2
−n)ϑ+ (1 + C)ε

1− (2 + ϑ)e−r(2−n)
	 e−r(2

−n)ϑ+ (1 + C)ε
1− 3e−r(2−n)

, 1 	 i 	 (T − t0) 2n ,

for any sufficiently dense interpolation mesh α.

It is important to recognize that, while ϑ can be chosen to be arbitrarily
small after n has been fixed, the same cannot be said about the precision
level ε, which may be exogenous; to wit, there is no point in taking a smaller
time step unless one can increase the precision in the calculation. In any case,
assuming that the above estimate is acceptable, the following numerical recipe
for approximating the sequence of functions

Fi,n(x) := F
(
T − i2−n, x

)
= (A2−n)i λ(x) , x ∈ D, 0 	 i 	 (T − t0) 2n

can be prescribed: construct the sequence of spline-surfaces,

(Aε2−n)i λ(x), 1 	 i 	 (T − t0) 2n ,

or, which amounts to the same, construct the sequence of finite lists of data
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∂i1 . . . ∂il (Aε2−n)i λ

)
(αj) ; j ∈ J, 1 	 i1 < i2 < . . . < il 	 N, 0 	 l 	 N

}
,

recursively for i = 2, 3, . . . , )(T − t0)2n*, by applying a special (computed
once and for all!) linear operation to the (i − 1)st list in order to obtain the
ith list (the very first list is obtained by integrating – perhaps numerically –
the termination payoff function directly). It is particularly easy to illustrate
this recipe in the case of N -linear interpolation, i.e., when the interpolation
does not require any information about the derivatives (which is the price to
pay for having an approximation for the value function in terms of functions
that are continuous but are not C1-smooth). In this case one has to update
the lists of data {

(Aε2−n)iλ(αj) ; j ∈ J
}
,

successively, for i = 2, 3, . . ., according to the rule

(Aε2−n)iλ(αj) =
∑
ı∈J

(Aε2−n)i−1λ(αı)× θ̃2−n(αı;αj) + ζ̃2−n(αj) , (5)

where, just as before, we write

θ2−n(αı;αj) :=
∫
R
e(αı; y)ψ2−n(αj, y)dy and

ζ2−n(αj) =
∫
D\R

λ(y)ψ2−n(αj, y)dy

and assume that θ̃2−n(αı;αj) and ζ̃2−n(αj) are some approximate values
for these integrals. The important point, of course, is that all quantities
θ̃2−n(αı;αj) and ζ̃2−n(αj), which define the affine transformation in (5), can
be computed once and for all. This recipe is discussed further in the next
section. Several concrete examples of this procedure, with actual computer
code, can be found in [9].

4 Termination at arbitrary time: A numerical recipe for
optimal stopping and free-boundary problems

Let everything be as in the previous two sections, except that we now suppose
that the diffusion process (Xt ∈ D)t∈[0,∞[, D ⊆ RN , can be terminated, and,
consequently, the termination payoff λ(Xt) can be collected, at any time t 	 T ,
but no later than the termination date T . Now we define the family of non-
linear operators

Htf(x) := Max
[
(Atf) (x), λ(x)

]
, t 
 0 ,

and the associated value function
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F (t, x) := limn↗∞ (H2−n)�2
n(T−t)�

λ(x), t 	 T, x ∈ D . (6)

Not only are the operators Ht non-linear and the semi-group property Hs ◦
Ht = Hs+t fails, but, as is immediate from their definition, these operators
actually destroy smoothness. Certain types of regularity must be preserved,
however, and we now make the following

Assumption 3 The function λ(·) is piece-wise smooth and is Lipschitz con-
tinuous on the entire domain D with some finite global Lipschitz constant c.
Furthermore, this property is unharmed by the operators Ht, i.e., all func-
tions of the form Ht1(. . . (Htlλ) ) are also piece-wise smooth and Lipschitz
continuous on D with the same (global) Lipschitz constant c, for any choice
of t1, . . . , tl ∈ R++.

It was essential in the last section to suppose that, roughly speaking, the
operation At does not increase the size of the derivatives; more specifically, we
needed an uniform (with respect to t) global bound on those derivatives that
control the error term in the interpolation. Although the operators Ht cannot
have such property (as they destroy smoothness) we must still require that
the operators Ht “do not increase the size of the derivatives” in some weaker
sense. In order to formulate such a condition, define the mollified operators
H
δ

t by

H
δ

tf(x) :=
1

(2πδ)N/2

∫
D
Htf(y)e−

1
2δ ‖y−x‖

2
dy, δ > 0 ,

and make the following

Assumption 4 Given any fixed δ > 0, all functions of the form
H
δ

t0(Ht1(. . . (Htlλ))), for all possible choices of t1, . . . , tl ∈ R++, have bounded
derivatives Dx on the entire domain D, the bounds being independent from the
choice of t0, t1, . . . , tl ∈ R++.

We now state without a proof the following

Proposition 4. Suppose that the termination payoff λ(·) has the property

sup
{
Atλ(x)− λ(x);x ∈ D, Atλ(x) > λ(x)

}
= o(t) .

Then the value function F (t, x) (see 6) is finite everywhere in ]−∞, T ] × D
and satisfies the equation

∂tF (t, x) + LxF (t, x) = rF (t, x) (7)

in the interior of the continuation set

S := {(t, x); t < T, x ∈ D, F (t, x) > λ(x)} ⊆ D .

In addition, F (t, x) satisfies what is known as “the smooth fit condition”: on
the free (and unknown) boundary ∂S the function F (t, x) coincides with the
payoff λ(x) and all 1st derivatives ∂xiF (t, x) coincide with the respective first
order derivatives ∂xiλ(x).
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We refer to [12], Ch. IV, §8, for a detailed discussion of the smooth fit and the
continuous fit conditions. The classical approach to free boundary problems
is to recover – perhaps only numerically – the value function F (t, x) from
equation (7) and from the smooth fit condition on the free (and unknown)
boundary ∂S. The approach that we are going to develop is completely dif-
ferent. Setting,

(Htf)(x) := S(Max [Atf, λ] , α;x) ≡ S(Htf, α;x), t 
 0 .

we again want to obtain a uniform bound on the sequence

ρi,n :=
∥∥∥(H2−n)i λ(·)− (H2−n)i λ(·)

∥∥∥
∞
, i = 0, 1, 2, . . . .

Such a bound is now harder to obtain because of the nature of the opera-
tors Ht. In fact, strictly speaking, the spline-surfaces S(Htf, α;x) cannot be
defined, as their construction requires information about all mixed deriva-
tives of HtF on the mesh. The only exception is the case N = 1. In that
case information about the first derivative is needed only at the end-points of
the interpolation interval and the spline is uniquely determined by the values
of the function on the mesh and by the requirement for the second deriva-
tive to be continuous. There are some well known methods that allow one to
define spline-surfaces in higher dimension by guessing – as opposed explicitly
prescribing – all derivatives needed in the construction. In order to avoid com-
plications of this sort, we will work only with N -linear interpolating functions
– as stated in [13], p.123, N -linear interpolating functions are “close enough
for government work.” Thus, we now change the definition of the operators
Ht to

(Htf)(x) := s(Max
[
Atf, λ

]
, α;x) ≡ s(Htf, α;x ) , t 
 0 ,

and consider the differences

(H
δ

2−n)iλ− (H2−n)iλ =
(
H
δ

2−n(H
δ

2−n)i−1λ−Hδ2−n (H2−n)i−1
λ
)

+
(
H
δ

2−n −H2−n

)
(H2−n)i−1λ. (8)

As a consequence of the following simple relation

sup
y∈D

e−rt

(2πδ)N/2

∣∣∣∣∫
D

(
Max

[
(Atf)(y), λ(y)

]
−Max

[
(Atg)(y), λ(y)

])
e−

1
2δ ‖y−x‖

2
dy
∣∣∣∣

	 sup
y∈D

e−rt

(2πδ)N/2

∫
D
|(Atf)(y)− (Atg)(y)| e−

1
2δ ‖y−x‖

2
dy

	 e−rt‖f − g‖∞,

if we now set

di,n:=
∥∥∥(Hδ2−n)iλ(·)− (H2−n)iλ(·)

∥∥∥
∞
, i = 1, 2, . . . ,
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then the first term in the right side of (8) can be estimated by∥∥∥Hδ2−n(H
δ

2−n)i−1λ(·)−Hδ2−n(H2−n)i−1λ(·)
∥∥∥
∞

	 e−r2
−n

di−1,n .

In order to estimate the second term in (8), notice first that if f(·) is Lipschitz
continuous with constant c then

1
(2πδ)N/2

∫
D
|f(y)− f(x)|e−

‖y−x‖2

2δ dy 	 c

(2πδ)N/2

∫
RN

‖y − x‖e− 1
2δ ‖y−x‖

2
dy

= c× CN × δ.

Since the second term in (8) is nothing but the difference between a Lipschitz
continuous function and its mollification, a straight-forward application of the
last relation gives∥∥∥(Hδ2−n −H2−n

)
(H2−n)i−1

λ(·)
∥∥∥
∞

	 c× CN × δ ,

as a result of which we can write

di,n 	 e−r2
−n

di−1,n+c×CN×
√
δ =⇒ di,n 	

(
e−r2

−n)i−1
d1,n+

c× CN × δ
1− e−r2−n .

Thus, for any fixed n ∈ Z++ we can choose the mollification parameter δ so
that the sequence

(H
δ

2−n)iλ(·), i = 1, 2, . . . ,

is arbitrarily uniformly (for i) close to the sequence (H2−n)i λ(·), i = 1, 2, . . ..
Suppose now that n ∈ Z++ has already been chosen, so that, in conjunc-

tion with (6), the sequence of functions (H2−n)i λ(·), i = 1, 2, . . ., gives an
acceptable discrete time approximation for the value function F (t, x). Now
we want to estimate the differences

(H2−n)iλ− (H2−n)iλ =
(
H2−n(H2−n)i−1λ−H2−n (H2−n)i−1

λ
)

+(H2−n −H2−n) (H2−n)i−1
λ (9)

for i = 1, 2, . . . and set

ρi,n:=
∥∥∥(H2−n)i λ(·)− (H2−n)i λ(·)

∥∥∥
∞
, i = 0, 1, 2, . . .

(ρi,0 = 0 by definition). Since, given any y ∈ D, we have

|Max [(Atf) (y), λ(y)]−Max [(Atg) (y), λ(y)]| 	 |(Atf) (y)− (Atg) (y)|
	 e−rt‖f − g‖∞,

it is not hard to see that for the first term in the right side of (9) we have∥∥∥H2−n (H2−n)i−1
λ(·)−H2−n (H2−n)i−1

λ(·)
∥∥∥
∞

	 e−r2
−n

ρi−1,n .
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The second term we can express as H2−nf(·) − s(H2−nf, α; ·), with f =
(H2−n)i−1λ. Setting g = (H2−n)i−1

λ, we get

‖H2−nf(·)− s (H2−nf, α; ·)‖∞ 	 ‖H2−ng(·)− s (H2−ng, α; ·)‖∞
+ ‖H2−nf(·)−H2−ng(·)‖∞ + ‖s (H2−nf −H2−ng, α; ·)‖∞ .

The last two terms in the right side of the above inequality are dominated by

Ce−r2
−n

ρi−1,n ,

with some universal constant C, while the first term can be estimated by

‖H2−ng(·)− s (H2−ng, α; ·)‖∞ 	
∥∥∥H2−ng(·)−Hδ2−ng(·)

∥∥∥
∞

+
∥∥∥Hδ2−ng(·)− s

(
H
δ

2−ng, α; ·
)∥∥∥

∞
+
∥∥∥s(Hδ2−ng −H2−ng, α; ·)

∥∥∥
∞
.

If necessary, we can now increase n so that e−r2
−n

(1 + C) < 1 and keep n
fixed from now on. Let ϑ > 0 be arbitrarily chosen. As the function H2−ng(·)
is Lipschitz continuous with a Lipschitz constant c, we can choose the molli-
fication parameter δ so that (independently from the choice of the mesh) we
have ∥∥∥H2−ng(·)−Hδ2−n g(·)

∥∥∥
∞

+
∥∥∥s(Hδ2−ng −H2−ng, α; ·

)∥∥∥
∞

	 1
2
ϑ .

Now we keep δ fixed and remind that all second derivatives of the functions

H
δ

2−ng(·) ≡ Hδ2−n (H2−n)i−1
λ(·)

that control the error in the N -linear interpolation are bounded by some
constant that depends on δ but not on i. Consequently, we can now choose
the interpolation mesh α in such a way that∥∥∥Hδ2−ng(·)− s(Hδ2−ng, α; ·)

∥∥∥
∞

	 1
2
ϑ .

Finally, from (9) we have

ρi,n 	 (1 + C)e−r2
−n

ρi−1,n + ϑ ,

and arrive at the following counterpart of Proposition 2:

Proposition 5. There is a constant C for which the following claim can be
made: for any sufficiently large n ∈ Z++ with e−r(2

−n)(1 + C) < 1 and any
ϑ > 0 one has, uniformly for all i = 1, 2, . . .,

ρi,n 	 ϑ

1− e−r(2−n)(1 + C)
,

for any sufficiently dense interpolation mesh α.
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In this setting, too, the study of stability issues in the approximation pro-
cedure is of paramount importance. We need to show that one can approx-
imate reasonably well the (theoretically computable) sequence (H2−n)iλ(·),
i = 1, 2, . . ., with the (actually computed) sequence (Hε2−n)iλ(·), i = 1, 2, . . .,
defined from

(Hεtf)(x) := sε(Max [Atf, λ] , α;x) ≡ sε(Htf, α;x), t 
 0 ,

where, just as before, sε stands for the associated N -linear interpolating func-
tion defined from values that may differ from the prescribed ones by no more
than ε. In this regard, just as we did in the previous section, we have to assume
that the interpolation region R is chosen so that uniformly for all x ∈ D \ R
and for all i with T − i2−n ∈ [t0, T ] the quantities (H2−n)iλ(x) differ from the
termination payoff λ(x), by no more than ε and, consequently, will suppose
that sε(Htf, α;x) = λ(x) for x ∈ D\R (this is how the quantities sε(Htf, α;x)
are defined for x ∈ D\R). In conjunction with the approximation developed
in the present section, the study of all stability issues is completely analogous
to the one presented in the previous section and will be omitted.

Adapting the numerical recipe from the previous section to the case of opti-
mal stopping and free-boundary problems is now completely straight-forward:
we must update the finite lists of data{

(Aε2−n)i λ (αj) ; j ∈ J
}
,

successively, for i = 2, 3, . . ., according to the rule

(Aε2−n)iλ(αj) =

= Max
[∑
ı∈J

(Hε2−n)i−1
λ(αı)× θ̃2−n(αı;αj) + ζ̃2−n (αj) , λ (αj)

]
, (10)

where, just as before, we write

θ2−n(αı;αj) :=
∫
R
e(αı; y)ψ2−n(αj, y)dy, ζ2−n(αj) =

∫
D\R

λ(y)ψ2−n(αj, y)dy

and suppose that θ̃2−n(αıαj) and ζ̃2−n(αj) are some approximate values for
these integrals.

As it turns out, for some special choices of the diffusion process (Xt)
it becomes possible to obtain explicit formulas for the universal weights
θ2−n(αı;αj), ı, j ∈ J. Fortunately, one of the most widely used processes in fi-
nancial modeling, namely a process in which all N coordinates follow indepen-
dent geometric Brownian motions, happens to be in this category. In fact, as
we are about to illustrate, the calculation of the universal weights θ2−n(αı;αj)
for a process of this type is completely straight-forward. To see this, no-
tice first that for x ∈ Q(αı) the universal interpolating function e(αı;x),
ı ≡ {i1, . . . , iN}, can be written as
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e(αı;x) ≡ e(αı;x1, . . . , xN )

=
∑

v∈V0, ı+
⇀
1−2v ∈J

N∏
m=1

xm − αm,im+1−2vm

αm,im − αm,im+1−2vm

Iı,vm (xm),

where V0 is the collection of all vertices in the unit cube in RN , i.e., V0 is the
set of all 2N vectors v ≡ {v1, . . . , vN} ∈ RN with vm ∈ {0, 1}, 1 	 m 	 N ,
⇀
1 := {1, . . . , 1} ∈ RN and Iı,vm (·) denotes the indicator of the interval with
end-points αm,im and αm,im+1−2vm

. Consequently, for the process

Xt = X0 ·
{
eσ1W

(1)
t +(r− 1

2σ
2
1)t, . . . , eσNW

(N)
t +(r− 1

2σ
2
N )t
}
,

defined in terms of the independent Brownian motions (W (m)
t ), 1 	 m 	 N ,

and for any two multi-indices ı ≡ {i1, . . . , iN} and j ≡ {j1, . . . , jN}, we can
write

θ2−n (αı;αj) =

=
∑

v∈V0, ı+
⇀
1−2v ∈J

N∏
m=1

E
[Xm,n(Γ )− αm,im+1−2vm

αm,im − αm,im+1−2vm

× Iı,vm (Xm,n(Γ ))
]

where Γ is some standard normal N (0, 1)-random variable and

Xm,n(Γ ) = αm,jme
√

2−nσmΓ + 2−n(r− 1
2σ

2
m) .

After a somewhat tedious – but otherwise completely straight-forward – cal-
culation we arrive at the following explicit formula

θ2−n (αı;αj) =
∑

v∈V0, ı+(
⇀
1−2v)∈J

N∏
m=1

1
2 (αm,im − αm,im+1−2vm

)

×
(
αm,jme

r 2−n
(
erf
[Bı,vm√

2
− σm√

2n+1

]
− erf

[Aı,vm√
2
− σ√

2n+1

])
−αm,im+1−2vm

(
erf
[Bı,vm√

2

]
− erf

[Aı,vm√
2

]))
,

where

Aı,vm :=
1

σm
√

2−n

(
log
(αm,im+1−2vm

αm,jm

)
−
(
r − 1

2
σ2
m

)
2−n

)
,

and Bı,vm :=
1

σm
√

2−n

(
log
(αm,im
αm,jm

)
−
(
r − 1

2
σ2
m

)
2−n

)
.
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Thus – just for this special choice of the process (Xt) – the actual implemen-
tation of the numerical recipe described above comes down to evaluating some
standard functions and, of course, involves the manipulation of (possibly very
large) lists of data. Note that this method involves neither numerical inte-
gration nor Monte-Carlo simulation of any kind – just evaluation of standard
functions and manipulation of lists of data.

We conclude this section with a simple graphical illustration of the method
in dimension N = 2. In this example the process (Xt) is taken to be a two-
dimensional diffusion whose coordinates are exponents of two independent
Brownian motions. The termination payoff function is λ(x1, x2) = Max[K −
Min[x1, x2], 0] – this is the payoff from an American-style put option on the
choice of any one of two given underlying stocks. This is the simplest example
of a stock option on multiple assets.

0

50

100
0

50

100

0

10

20

30

40

Fig. 2. The termination payoff from an American-style put option with exercise
price K = 40 on the choice of any one of two underlying stocks.

Fig. 3 below shows the graph of the associated valuation map 1 year before
the termination date.

With regard to applications to finance, we stress that the technique that we
have developed here is much more than a tool for simulating the sample-paths
of the option price. Of course, once the valuation maps F (t, ·), t 	 T , have
been computed, one can certainly simulate the sample paths t −→ F (t,Xt)
by using completely straight-forward conventional methods. However, the val-
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Fig. 3. The actual price of an American-style put option on the choice of any one
of two underlying stocks with one year left to expiry.

uation maps F (t, ·), t 	 T , contain valuable information about the sensitivity
of the option price to changes in the underlying prices and such information
is difficult to obtain by way of simulation. In fact, in many practical situa-
tions this information is more valuable than the actual option price. Since
we construct the valuation maps as interpolating functions, the calculation
of the derivatives (the so called “delta” of the option) is completely straight-
forward. As an example, the plot on Fig. 4 below shows the graph of the
derivative ∂x1F (T − 1, x1, x2), associated with the above valuation map (this
is the marginal delta of the option relative to the first asset).

Other similar examples (with actual computer code) can be found in [9].

5 Concluding remarks

It can be argued that the most natural – and certainly the most common –
tool for compressing a general surface into a finite list of data is by way of
interpolation (this is what makes digital photography possible, for example).
In this regard, the method described in the present paper is quite natural
and is hardly original. Indeed, the finite element method – to give just one
example – rests on the same main idea, except that in the context of optimal
stopping one must construct interpolation surfaces dynamically. However ,
the respective dynamic procedure involves integration and the most obvious
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Fig. 4. The sensitivity to changes in the price of the first stock for an American-style
put option on the choice of any one of two underlying stocks.

way to integrate an interpolating function is to use the associated quadra-
ture rule directly, which comes down to a simple linear operation over the
interpolated data. Such methods are particularly suitable for most optimal
stopping problems that are commonly encountered in the realm of finance.
This is because, in general, the payoffs from most financial contracts can be
expressed as reasonably regular functions – nothing even close to a generic
digital image, say. To compress such objects by using zero-order interpolation
– as in the binomial model, for example – is somewhat similar to recording an
image of a circle pixel-by-pixel, as opposed to recording just 3 floating-point
numbers. Furthermore, in many situations an upper bound on certain higher
order derivatives of the value function in various parts of the state space is
not hard to guess – for example, the price of a put option should have very
low curvature away from expiry. Since these derivatives and the size of the
mesh are the only factors that control the error in the interpolation, one can
place many fewer interpolation points in those parts of the state space where
the derivatives that control the error are relatively small. To give a concrete
example, if one needs to approximate with precision ε the price of an Ameri-
can put option on a single asset by using cubic splines, then one can afford to
take interpolation intervals of width 4

√
384 ε/ 4

√
M4, where M4 is some upper

bound on the 4th derivative, which happens to be quite small, especially away
from the strike-price in the state space and away from the expiration date in
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the time domain. In fact, since there is nothing in the procedure that requires
the use of one and the same mesh throughout all iterations, there is no reason
to not take advantage of the fact that, in most situations, the 2d derivative,
which controls the error in the N -linear interpolation, and the 4th derivative,
which controls the error in the N-cubic interpolation, decrease quite rapidly
throughout the iteration process and this means that one can get away with
fewer interpolation points later in the iteration process.

Finally, it may be useful to note that the practical implementation of the
method described in the paper on several parallel processors is an essentially
trivial task. Indeed, the calculation of the expression in (10) for any partic-
ular multi-index j does not have to wait for the calculation associated with
some other multi-index j′ to finish. Similarly, the weights θ2−n(αı;αj) can be
computed simultaneously for different choices of the multi-indices ı and j, by
merely sending the tasks to several different processors. In addition, the sum-
mation in (10), which essentially comes down to computing the dot-product
between two (possibly very large) lists of data, can be executed on parallel
processors, too – in fact, the execution of dot-products on parallel processors
is a standard function in some widely available computing systems.
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Summary. In an incomplete financial market where an investor maximizes the
expected constant relative risk aversion utility of his terminal wealth, we present an
approximate solution for the optimal portfolio. We take into account a set of assets
and a set of state variables, all of them described by general diffusion processes.
Finally, we supply an easy test for checking the goodness of the approximate result.

1 Introduction

In this paper we study the problem of an investor who maximizes the expected
utility of his terminal wealth. The utility function is supposed to belong to
the CRRA (Constant Relative Risk Aversion) family. Furthermore, the values
of the financial assets are supposed to depend on a set of stochastic state
variables.

In this paper, we follow the traditional stochastic dynamic programming
approach [20, 21] leading to the Hamilton-Jacobi-Bellman (HJB) equation (for
a complete derivation of the HJB equation, see [22, 1]). For the alternative
“martingale approach” the reader is referred to [7, 8, 18].

In the literature about optimal asset allocation two main fields of research
can be found. On the one hand some authors check the existence (and unique-
ness) of a viscosity solution for the Hamilton-Jacobi-Bellman equation in a
very general framework (see for instance [10, 3, 4]). On the other hand, some
authors find a closed form solution to the optimization problem but in a
very restrictive framework. In particular, we refer to the works of Kim and
Omberg[16], Wachter[24], Chacko and Viceira[6], Deelstra et al.[11], Boulier
et al.[2], Zariphopoulou[26] and Menoncin[19]. The two last papers use a solu-
tion approach based on the Feynman-Kač theorem,1 in an incomplete market
and in a complete market with a background risk, respectively.

1 For a review of the financial applications of the Feynman-Kač theorem the reader
is referred to [12, 1, 22].



294 Francesco Menoncin

Unfortunately, the former literature is not suitable for an immediate ap-
plication since it does not provide any closed form solution to the optimal
portfolio. Instead, the latter can be easily applied but lies on the assumption
that the asset values and the state variables behave in a very particular way.

Our work is aimed at finding a “third way” to the investment problem by
supplying, on a very general framework, an approximate closed form solution
for the optimal portfolio.

Wherever a closed form solution is obtained the market structure is as fol-
lows: (i) there exists only one state variable (the riskless interest rate or the risk
premium) following a Vasiček process[23] or a Cox et al. process[9]; (ii) there
exists only one risky asset; and (iii) a bond may exist. Some works consider a
complete financial market [24, 11, 2, 19] while others deal with an incomplete
market [16, 6, 26]. Furthermore, all these articles consider a CRRA utility
function, with the exception of Kim and Omberg[16] who deal with a HARA
(Hyperbolic Absolute Risk Aversion) utility function and Menoncin[19] who
considers a CARA (Constant Absolute Risk Aversion) utility function.

In this work we take into account a quite general framework where the
prices of a set of assets are driven by a set of state variables, all of them
following general diffusion processes. We do not need the hypothesis of com-
pleteness for the financial market, and our approximate solution will keep
valid even in an incomplete market driven by some risk sources which cannot
be perfectly hedged.

We show that the optimal portfolio is a function of some matrices whose
elements are given by a combination of preference parameters, drift and dif-
fusion terms of both asset prices and state variables. We approximate the
value of these matrices through a Taylor expansion. After this approximation
the value function solving the HJB equation turns out to be log-linear in the
state variables. Thus, the optimal portfolio becomes very easy to compute and
we also present an easy way for checking the goodness of this approximate
solution.

In the literature there exists another example where an approximate solu-
tion to the optimal portfolio is computed. We refer to Kogan and Uppal[17]
who solve the HJB equation by approximating it around a given value of the
risk aversion index. Their work takes into account a CRRA utility function
and it is valid for a value of the Arrow-Pratt risk aversion index close to
zero. On the contrary, in our work, we allow for a more general pattern of
consumer preferences. In fact, we compute the Taylor approximation around
given values of the state variables.

Through this work we consider agents trading continuously in a friction-
less, arbitrage-free, and incomplete market with a finite time horizon.

The paper is structured as follows. Section 2 details the general economic
framework, presents the stochastic differential equations describing the be-
haviour of asset prices and state variables and shows the dynamic behaviour
of the investor’s real. In Section 3, both the optimal portfolio in an implicit
form and the HJB equation are computed. Finally, we show an exact solution
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in the case of a complete market. Section 4 presents our main result, i.e. an
approximate solution for the optimal portfolio. This section ends by present-
ing an easy way for computing the goodness of the approximation. Section 5
compares our approximate solution with two closed form solutions existing in
the literature for an incomplete market. Section 6 concludes.

2 The market structure

Let the financial market be described by the following stochastic differential
equations:⎧⎪⎪⎨⎪⎪⎩

dX
s×1

= f (t,X)
s×1

dt+ g (t,X)′
s×k

dW
k×1
, X (t0) = X0,

I−1
S
n×n

dS
n×1

= µ (t,X)
n×1

dt+Σ (t,X)′
n×k

dW
k×1
, S (t0) = S0,

dG = Gr (t,X) dt, G (t0) = G0,

(1)

where X is a vector containing all the state variables affecting the asset prices
which are listed in vector S. IS is a diagonal matrix containing the asset prices
(S). For a review of all variables which can affect the asset prices the reader is
referred to Campbell[5] who offers a survey of the most important contribu-
tions in this field. G is the value of a riskless asset paying the instantaneously
riskless (spot) interest rate r. Hereafter, the prime denotes transposition.

All the functions f (t,X), g (t,X), µ (t,X), Σ (t,X), and r (t,X) are sup-
posed to be Ft−measurable. The σ−algebra F is defined on a set Θ where-
through the complete probability space (Θ,F ,P) is defined. Here, P can be
considered as the “historical” probability measure.

Two sufficient conditions for a solution of (1) to exist, are that the above
mentioned functions are Lipschitz continuous and square integrable. Duffie
and Kan[13] define a different condition on the diffusion terms which may be
worth mentioning.

Definition 1. A function σ : R+ → R satisfied the Yamada condition if
bounded and measurable, and if there exists a function ρ : R+ → R+,
strictly increasing, continuous, with ρ (0) = 0,

∫ 1

0+ ρ (u)−2
du = +∞, and

|σ (u)− σ (v)| ≤ ρ (|u− v|) for all u and v.

Lemma 1. Suppose that g (X) satisfies the Yamada condition, and f (X) is
Lipschitz, then there exists a unique (strong) solution to

dX (t) = f (X) dt+ g (X) dW,
X (t0) > 0.

The stochastic equations in System (1) are driven by a set of risks listed in
dW ∈ Rk which is a vector of standard independent Brownian motions (with
zero mean and variance dt).2

2 Independence can be imposed without any loss of generality since the case of
dependent Brownian motions can be obtained via a Cholesky decomposition.
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The set of risk sources is the same for both the state variables and the
asset prices. This hypothesis is not restrictive because setting the elements of
matrices g and Σ allows us to take into account many different frameworks.
For instance, if we set dW =

[
dW1 dW2

]
, g′ =

[
g1 0

]
, and Σ′ =

[
0 σ2

]
then

X and S are instantaneously uncorrelated even if they formally have the same
risk sources.

We recall the main result concerning completeness and arbitrage in this
kind of market (for the proof of the following theorem see [22].

Theorem 1. A market {S (t,X)}t∈[t0,H] is arbitrage free (complete) if and
only if there exists a (unique) k−dimensional vector ξ (t,X) such that

Σ (t,X)′ ξ (t,X) = µ (t,X)− r (t,X) ,

and such that
E
[
e

1
2

∫ H
t0

‖ξ(t,X)‖2dt
]
<∞.

If on the market there are less assets than risk sources (n < k), then the
market cannot be complete even if it is arbitrage free. In this work, we assume
that n ≤ k and the rank of matrix Σ is maximum (i.e. it equals n). Thus,
the results we obtain in this work are valid for a financial market which is
incomplete as well as for a complete market (n = k and no redundant assets).

2.1 The investor’s wealth

Let θ (t) ∈ Rn×1 and θG (t) ∈ R be the number of risky assets and riskless
asset held, respectively. Then the investor’s wealth can be written as

R = θ (t)′ S + θG (t)G. (2)

After differentiating the budget constraint (2) and taking into account the
self-financing condition3 we obtain

dR = θ (t)′ dS + θG (t) dG,

and, after substituting the differentials from System (1), we have

dR = (θ′ISµ+ θGGr) dt+ θ′ISΣ′dW. (3)

Once the value of θG is taken from (2) and substituted into (3) we finally
obtain

dR = (Rr + w′M) dt+ w′Σ′dW, (4)

where
w ≡ ISθ, M ≡ µ− r1,

and 1 is a vector of 1s.
3 The self-financing condition can be written as

dθ′ (S + dS) + dθGG = 0.
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3 The optimal portfolio

Given the market structure (1) and the wealth differential equation (4), the
optimization problem for an investor maximizing the expected CRRA utility
of his terminal wealth over his (deterministic) time horizon H, can be written
as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

max
w

Et0

[
1

1−δR (H)1−δ
]

d

[
z
R

]
=
[

µz
Rr + w′M

]
dt+

[
Ω′

w′Σ′

]
dW,

z (t0) = z0, R (t0) = R0, ∀t0 ≤ t ≤ H,

(5)

where

z
(s+n)×1

≡
[
X
S

]
, µz

(s+n)×1

≡
[
f
ISµ

]
, Ω′

k×(s+n)
≡
[
g′

ISΣ
′

]
.

The vector z contains all the state variables but the investor’s wealth.
The parameter δ measures the investor’s (constant) relative risk aversion and,
then, it must be strictly positive. Furthermore, we assume δ ≥ 1 in order
to have a well defined associated partial differential equation for the value
function solving Problem (5).4

The form we have chosen for the objective function (a CRRA utility) and
the assumptions that must hold on the state variable differential equations,
guarantee that there exists an optimal portfolio solving Problem (5) (see [15,
Theorem 3.7.3] and [25, Theorem 3.5.2]).

The Hamiltonian of Problem (5) is

H = µ′zJz+JR (Rr + w′M)+
1
2
tr (Ω′ΩJzz)+w′Σ′ΩJzR+

1
2
JRRw

′Σ′Σw, (6)

where the subscripts on J indicate partial derivatives, and J (R, z, t) is the
value function solving the Hamilton-Jacobi-Bellman partial differential equa-
tion (see Section 3.1) and verifying

J (R, z, t) = sup
w

Et

[
1

1− δR (H)1−δ
]
.

The first order condition on H is5

4 We will explain the reason for this choice better in the next section.
5 The second order condition holds if the Hessian matrix of H

∂H
∂w′∂w

= JRRΣ′Σ

is negative definite. Because Σ′Σ is a quadratic form it is always positive definite
and so the second order conditions are satisfied if and only if JRR < 0, that is if
the value function is concave in R. This is actually the case if the utility function
is strictly concave (as in our framework).
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∂H
∂w

= JRM +Σ′ΩJzR + JRRΣ′Σw = 0,

from which we obtain the optimal portfolio

w∗ = − JR
JRR

(Σ′Σ)−1
M︸ ︷︷ ︸

w∗
(1)

− 1
JRR

(Σ′Σ)−1
Σ′ΩJzR︸ ︷︷ ︸

w∗
(2)

. (7)

In order to have a unique solution to the optimization problem, the matrix
Σ′Σ ∈ Rn×n must be invertible. This condition is satisfied if Σ′ ∈ Rn×k has
rank equal to n and n ≤ k, as we have already assumed in the previous section.

We just outline that w∗
(1) increases if the net returns on assets (M) increase

and decreases if the risk aversion (−JRR/JR) or the asset variance (Σ′Σ)
increase. ¿From this point of view, we can argue that this optimal portfolio
component has just a speculative role.

The second optimal portfolio component w∗
(2) is the only one which explic-

itly depends on the diffusion of the state variables (Ω). We will investigate
the precise role of this component after computing the functional form of the
value function.

We recall that Kogan and Uppal[17] call w∗
(1) the “myopic” component

and w∗
(2) the “hedging” component of the optimal portfolio. In fact, in the

next section we will see that w∗
(2) is the only part of w∗ depending on the

financial time horizon (H). From this point of view w∗
(1) can be properly called

“myopic”. Instead, the hedging nature of w∗
(2) depends on its characteristics to

contain the volatility matrix of state variables. Accordingly, we can say that
the second portfolio component w∗

(2) can hedge the optimal portfolio against
the risk of changes in the state variables.

3.1 The value function

In order to study the exact form of the portfolio components we have called
w∗

(1) and w∗
(2) (see Equation (7)), we need to compute the value function

J (R, z, t). By substituting the optimal value of w into the Hamiltonian (6)
we have

H∗ = µ′zJz + JRRr −
1
2
J2
R

JRR
M ′ (Σ′Σ)−1

M − JR
JRR

M ′ (Σ′Σ)−1
Σ′ΩJzR

+
1
2
tr (Ω′ΩJzz)−

1
2

1
JRR

J ′
zRΩ

′Σ (Σ′Σ)−1
Σ′ΩJzR,

from which we can formulate the PDE whose solution is the value function.
This is the so-called Hamilton-Jacobi-Bellman equation (hereafter HJB) and
it can be written as follows:{

Jt +H∗ = 0,
J (H,R, z) = 1

1−δR (H)1−δ .
(8)
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One of the most common ways to solve this kind of PDE is to try a
separability condition (through a so-called guess function). In the literature
[20, 21], a separability by product is generally found. Here, we suppose that
the value function J (z,R, t) inherits the form of the utility function according
to the following form:

J (z,R, t) =
1

1− δ h (z, t)δ R (t)1−δ , (9)

where h (z, t) is a function that must be computed. After substituting this
functional form into the HJB equation (8) and dividing by J we obtain

0 = ht +
(
µ′z −

δ − 1
δ
M ′ (Σ′Σ)−1

Σ′Ω

)
hz +

1
2
tr (Ω′Ωhzz) (10)

−δ − 1
δ

(
r +

1
2

1
δ
M ′ (Σ′Σ)−1

M

)
h

+
1
2
δ − 1
h
h′zΩ

′
(
I −Σ (Σ′Σ)−1

Σ′
)
Ωhz,

and the boundary condition becomes h (z,H) = 1. Equation (10) can be
written as{

ht + a (z, t)′ hz + b (z, t)h+ 1
2 tr (Ω′Ωhzz) + 1

2
1
hh

′
zC (z, t)hz = 0,
h (z,H) = 1,

(11)

where

a (z, t)′ ≡ µ′z −
δ − 1
δ
M ′ (Σ′Σ)−1

Σ′Ω, (12)

b (z, t) ≡ −δ − 1
δ

(
r +

1
2

1
δ
M ′ (Σ′Σ)−1

M

)
, (13)

C (z, t) ≡ (δ − 1)Ω′
(
I −Σ (Σ′Σ)−1

Σ′
)
Ω. (14)

In the usual economic setting, the coefficient b (z, t) takes the role of a
discount rate and it must be non positive. Here, it is evident that the coefficient
b (z, t) is non positive if and only if δ ≥ 1.

By using the separability condition, we can write the optimal portfolio as
in the following proposition.

Proposition 1. The optimal portfolio solving Problem (5) is given by

w∗ =
R

δ
(Σ′Σ)−1

M︸ ︷︷ ︸
w∗

(1)

+
R

h (z, t)
(Σ′Σ)−1

Σ′Ω
∂h (z, t)
∂z︸ ︷︷ ︸

w∗
(2)

, (15)

where h (z, t) solves the HJB equation (11).



300 Francesco Menoncin

If we want to compute the optimal portfolio in a closed form, we accord-
ingly have to compute the function h (z, t) solving Equation (11). We are
going to present both a closed form solution for a complete market and an
approximate solution for an incomplete market.

We just underline that the optimal portfolio (15) is a linear transformation
of wealth. This means that the percentage of wealth invested in each asset does
not depend on the wealth level itself.

Menoncin[19] takes into account a framework where there exists also a set
of background risks. He shows that if a CARA utility function is taken into
account in an incomplete financial market (where the matrix Σ−1 does not
exist) then the HJB equation (11) can be solved thanks to the Feynman-Kač
theorem.

3.2 An exact solution for complete market

When the financial market is complete then the volatility matrix Σ is invert-
ible and so we have

I −Σ (Σ′Σ)−1
Σ′ = 0.

Accordingly, Equation (11) becomes{
ht + a (z, t)′ hz + b (z, t)h+ 1

2 tr (Ω′Ωhzz) = 0,
h (z,H) = 1,

and its solution can be represented through the Feynman-Kač theorem as
stated in the following proposition. Here, we stress that a Feynman-Kač type
representation holds even for non linear PDE’s as demonstrated in [25] (see,
in particular, Chapter 7, Section 4, and Theorem 7.4.6).

Proposition 2. When the financial market is complete (i.e. ∃!Σ−1) the func-
tion h (z, t) solving Equation (11) can be written as

h (z, t) = Et

[∫ H

t

e
∫ s

t
b(Z(u),u)duds

]

where b (Z, u) is as in (13) and Z (u) solves the stochastic differential equation

dZ (u) = a (Z (u) , u) du+Ω (Z (u) , u)′ dW,
Z (t) = z.

4 A general approximate solution for an incomplete
market

In order to find an approximate solution to the HJB equation (11) we propose
to develop in Taylor series the matrices a (z, t), b (z, t), Ω (z, t)′Ω (z, t), and
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C (z, t) as defined in (12)-(14). In particular, our proposal in based on the
literature computing the optimal portfolio in a closed form and in a particular
market framework. In this literature (see for instance [6, 11, 2]) all the above-
mentioned matrices are linear in z. In [16] the scalar b (z, t) is a second order
polynomial in z but, on the other way, Ω (z, t)′Ω (z, t) and C (z, t) are both
constant.

Accordingly, we propose the following simplification, based on the expan-
sion in Taylor series around the value z0:

a (z, t) ≈ a (z0, t) +
∂a (z, t)
∂z

∣∣∣∣
z=z0

(z − z0) ≡ a0 (t) +A1 (t)′ z,

b (z, t) ≈ b (z0, t) +
∂b (z, t)
∂z′

∣∣∣∣
z=z0

(z − z0) ≡ b0 (t) + b1 (t)′ z,

Ω (z, t)′Ω (z, t) ≈ Ω (z0, t)
′
Ω (z0, t) ≡ Ω0 (t) ,

C (z, t) ≈ C (z0, t) ≡ C0 (t) .

The choice of approximating the matrices Ω (z, t)′Ω (z, t) and C (z, t) to
order zero in z allows us to avoid the problem of solving a matrix Riccati
equation. Since we let all the matrices depend on time, then we would not
be able to solve this Riccati matrix equation without knowing a particular
solution to it, and this is not the case.

It is worth noting that Boulier et al. (2001) take into account a financial
market where the matrices a (z, t), b (z, t), Ω (z, t)′Ω (z, t), and C (z, t) have
exactly the form we use here as an approximation (i.e. the two first functions
are linear in z while the last two do not depend on z).

After substituting the Taylor approximations in (11), our guess function
is6

h (z, t) = eF0(t)+F1(t)
′z, (16)

where F0 (t) ∈ R and F1 (t) ∈ Rs+n solve

0 =
∂F0 (t)
∂t

+ z′
∂F1 (t)
∂t

+
(
a0 (t)′ + z′A1 (t)

)
F1 (t) + b0 (t) + b1 (t)′ z

+
1
2
F1 (t)′ (Ω0 (t) + C0 (t))F1 (t) .

This polynomial equation in z can be split into two equations: one con-
taining all the constant terms with respect to z and one containing the terms
in z. Thus, we can write down the following system:{

∂F0(t)
∂t + a0 (t)′ F1 (t) + b0 (t) + 1

2F1 (t)′ (Ω0 (t) + C0 (t))F1 (t) = 0,
∂F1(t)
∂t +A1 (t)F1 (t) + b1 (t) = 0,

(17)

6 This kind of guess function is quite usual in the optimization frameworks where
the state variables follow affine processes.
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and the original boundary condition on h (z, t) is now defined on the two new
functions F0 (t) and F1 (t) as follows:{

F0 (H) = 0,
F1 (H) = 0. (18)

Accordingly, F1 (t) is the (unique) solution of the second equation in (17),
i.e.

F1 (t) =
∫ H

t

e
∫ s

t
A1(τ)dτ b1 (s) ds, (19)

where the exponential matrix is computed, as usual, as7

e
∫ s

t
A1(τ)dτ =

∞∑
n=0

1
n!

(∫ s

t

A1 (τ) dτ
)n
.

Once the value of F1 (t) is obtained, the value of F0 (t) can be easily com-
puted by solving the first equation in (17).

Since the solutions F0 (t) and F1 (t) to system (17) are unique, then the
function h (z, t) is unique too. Furthermore, since h (z, t) is a classical solution
to the HJB approximate equation, then it is also a viscosity solution. Yong
and Zhou demonstrate such a result together with a uniqueness theorem [25,
Sections 5 and 6 of Chapter 4]. The differentiability of the function h (z, t)
allows us to write the optimal portfolio hedging component as

w∗
(2) = R (Σ′Σ)−1

Σ′Ω
1

h (z, t)
∂h (z, t)
∂z

= R (Σ′Σ)−1
Σ′ΩF1 (t) ,

and its approximate value can be formulated as in Proposition 3.

Proposition 3. The second component (w∗
(2)) of the optimal portfolio solving

Problem (5) can be approximated as follows:

w∗
(2) ≈ R (Σ ′Σ )−1

Σ ′Ω

∫ H

t

e
∫ s

t
A1(τ)dτ b1 (s) ds, (20)

where
7 Thus, for instance, if

A1 (t) =

[
1 2
2 1

]
,

then ∫ s

t

A1 (τ) dτ =

[
1 2
2 1

]
(s − t) ,

and

e
∫ s

t A1(τ)dτ = e(s−t)

[
cosh (2 (s − t)) sinh (2 (s − t))
sinh (2 (s − t)) cosh (2 (s − t))

]
.
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A1 (t) ≡ ∂

∂z

(
µz −

δ − 1
δ
Ω′Σ (Σ ′Σ )−1

M

)∣∣∣∣
z=z0

,

b1 (t) ≡ −δ − 1
δ

∂

∂z

(
r +

1
2

1
δ
M ′ (Σ′Σ)−1

M

)∣∣∣∣
z=z0

.

The approximate solution for w∗
(2) given in Equation (20) is very simple

to apply and to implement with a mathematical software. The weak point of
this approximate solution lies on the difference z − z0. When this difference
increases the approximation becomes more and more inaccurate. Nevertheless,
the integrals in Equation (20) can be easily computed numerically, and so the
strategy of recomputing the optimal portfolio when z becomes farther off z0
does not seem to be too expensive.

We are now going to present how to estimate the approximation error
implied in Proposition 3.

4.1 The maximum error

In the previous section we have presented the approximate optimal portfolio
solving Problem 5. Here, we recall that the Taylor approximation of the ma-
trices a (z, t), b (z, t), Ω (z, t)′Ω (z, t), and C (z, t) implies a maximum error
(ε) which is respectively:8

εai
(t, z) ≡ max

λ∈[0,1]

{
1
2

(z − z0)′
(
∂2ai (z, t)
∂z′∂z

∣∣∣∣
z=z0+λ(z−z0)

)
(z − z0)

}
, (21)

εb (t, z) ≡ max
λ∈[0,1]

{
1
2

(z − z0)′
(
∂2b (z, t)
∂z′∂z

∣∣∣∣
z=z0+λ(z−z0)

)
(z − z0)

}
, (22)

εΩ (t, z) ≡ max
λ∈[0,1]

{
∂

∂z
(Ω′ (z, t)Ω (z, t))

∣∣∣∣
z=z0+λ(z−z0)

(z − z0)
}
, (23)

εC (t, z) ≡ max
λ∈[0,1]

{
∂C (z, t)
∂z

∣∣∣∣
z=z0+λ(z−z0)

(z − z0)
}
, (24)

where ai is the ith element (i ∈ [1, ..., s+ n+ 1]) of vector a. Now, after setting

εa (z, t) = {εai
(z, t)}i=1,...,s+n+1 , (25)

we can substitute the error values into the HJB equation and conclude what
follows.

Proposition 4. Let function h (z, t) be as in (16) where F0 (t) and F1 (t) solve
the system (17) with boundary conditions (18), and the maximum error terms
εa (z, t), εb (z, t), and εC (z, t) as in (21)-(25), then

8 We consider here the so-called Lagrange’s error term.
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lim
z→z0

(
εa (z, t)′ hz + εb (z, t)h+

1
2
tr (εΩ (z, t)hzz) +

1
2

1
h
h′zεC (t, z)hz

)
= 0.

(26)

Proof. Let us substitute the values a (z, t), b (z, t),Ω (z, t)′Ω (z, t), and C (z, t),
by their approximations augmented by the maximum error. Then, the HJB
equation (11) can be written as

0 = ht +
(
a0 (t) +A1 (t)′ z + εa (z, t)

)′
hz +

(
b0 (t) + b1 (t)′ z + εb (z, t)

)
h

+
1
2
tr (Ω0 (t)hzz + εΩ (z, t)hzz) +

1
2

1
h
h′z (C0 (t) + εC (t, z))hz,

or

0 = ht +
(
a0 (t) +A1 (t)′ z

)′
hz +

(
b0 (t) + b1 (t)′ z

)
h+

1
2
tr (Ω0 (t)hzz)

+
1
2

1
h
h′zC0 (t)hz + εa (z, t)′ hz + εb (z, t)h+

1
2
tr (εΩ (z, t)hzz)

+
1
2

1
h
h′zεC (t, z)hz.

Since the function h (z, t) is as in (16) and solves (17), then it makes the first
five terms of this equation equal to zero. The remaining terms just contain
the error terms. As it is well known, these terms tend to zero while z tends to
z0 according to the Taylor expansion with the so-called Peano’s remainder.

Thus, after choosing an initial level z0 for approximating the matrices
a (z, t), b (z, t), Ω (z, t)′Ω (z, t), and C (z, t), the goodness of these approxi-
mations can be easily checked by computing the absolute value of (26).

From what we have presented in Proposition 4, the convergence of the
matrices a (z, t), b (z, t), Ω (z, t)′Ω (z, t), and C (z, t), implies the convergence
of the function h. Because of the form (9) of the value function, then we also
know that the convergence of h implies the convergence of the value function
itself.

5 Two incomplete markets displaying an exact solution

5.1 Stochastic volatility

The market structure studied in [6] can be summarized as⎧⎪⎨⎪⎩
dX = k (θ −X) dt+ σ

√
XdWX , X (t0) = X0,

dS
S = µdt+ σSX

σ
√
X
dWX + 1√

X

√
1− σ2

SX

σ2 dWS , S (t0) = S0,

dG = Grdt, G (t0) = G0,

where k, θ, σ, µ, and r are positive constant. dWX and dWS are two indepen-
dent Wiener processes and σSXdt is the covariance between dX and dS

S (here,
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we do not impose any sign on σSX)9. The correlation index between dX and
dS
S is given by σSX

σ . The only acceptable values for σSX are those verifying

−σ ≤ σSX ≤ σ,

for which the correlation index belongs to the set [−1, 1].
Since the variance of dSS is 1

X dt, then this is a stochastic volatility model
where the (inverse of the) stock volatility follows a diffusion process.

This is also an incomplete market since we have two risk sources (driven
by dWX and dWS) but just one tradeable risky asset (we recall that volatility
cannot be traded and, accordingly, cannot be hedged).

This model can be traced back to ours by setting

z ≡ X, µz ≡ k (θ −X) , M ≡ (µ− r) ,

Ω ≡
[
σ
√
X

0

]
, Σ ≡

[ σSX

σ
√
X

1√
X

√
1− σ2

SX

σ2

]
.

The functions a (z, t) and b (z, t) as in (12) and (13) are, respectively,

a (X, t) = kθ −
(
k +

δ − 1
δ

(µ− r)σSX
)
X,

b (X, t) = −δ − 1
δ
r − δ − 1

δ

1
2

1
δ

(µ− r)2X,

and so we have

A1 = −
(
k +

δ − 1
δ

(µ− r)σSX
)
,

b1 = −δ − 1
δ

1
2

1
δ

(µ− r)2 .

Since A1 and b1 do not depend on time, and the time horizon in [6] tends
towards infinity (i.e. H →∞), then Equation (20) simplifies to10

w∗
(2)

R
≈ − (Σ ′Σ )−1

Σ ′Ω
b1
A1

= −XσSX
1
2
δ − 1
δ

1
δ

(µ− r)2

k + δ−1
δ (µ− r)σSX

.

9 In the original paper by Chacko and Viceira[6] the two Wiener processes are
correlated. Here, we have accordingly changed the volatility coefficient in order
to keep the same statistics property as Chacko and Viceira’s and to adapt their
model to our framework.

10 In order to have a convergent integral, it must be true that

k +
δ − 1

δ
(µ − r) σSX > 0.
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The exact solution shown in [6] is

w∗∗
(2)

R
= XσSX

1
δ
y,

where y is the negative root11 of

1
2

(
δ − 1
δ
σ2
SX − σ2

)
y2 +

(
k +

δ − 1
δ

(µ− r)σSX
)
y +

1
2
δ − 1
δ

(µ− r)2 = 0.

We can define the difference

φ ≡
w∗∗

(2) − w∗
(2)

R
= X

σSX
δ

(
y +

1
2

δ−1
δ (µ− r)2

k + δ−1
δ (µ− r)σSX

)
,

which is of course 0 when the approximation perfectly matches the true solu-
tion. A trivial case when φ = 0 is that with σSX = 0, i.e. when the stochastic
volatility process is not correlated with the risky asset price.

Now, we study the value of φ with respect to σSX by neglecting the value
of X and given all the other parameters. In particular, we assume that

µ− r = 0.07, σ = 0.2, δ = 3, k = 0.2.

The behaviour of the function φ is drawn in Figure 1 where we see that
the maximum error is of the order 10−7.

5.2 Stochastic market price of risk

The market structure studied in [16] can be summarized as⎧⎨⎩
dX = k (θ −X) dt+ σXdWX , X (t0) = X0,
dS
S = (r + σSX) dt+ σSρdWX + σS

√
1− ρ2dWS , S (t0) = S0,

dG = Grdt, G (t0) = G0,

where k, θ, σX , σS , and r are positive constant. dWX and dWS are two
independent Wiener processes and ρ is the correlation coefficient between dX
and dS

S . Here, X measures the (stochastic) market price of risk.
This model can be traced back to ours by setting

z ≡ X, µz ≡ k (θ −X) , M ≡ σSX,

Ω ≡
[
σX
0

]
, Σ ≡

[
σSρ

σS
√

1− ρ2
]
.

The functions a (z, t) and b (z, t) as in (12) and (13) respectively are

11 This holds for δ > 1. If δ < 1, instead, we must take the positive root.
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Fig. 1. Value of the difference between the actual and the approximate solution as
a function of σSX

a (X, t) = kθ −
(
k +

δ − 1
δ
ρσX

)
X,

b (X, t) = −δ − 1
δ
r − 1

2
1
δ

δ − 1
δ
X2,

and so we have

A1 = −
(
k +

δ − 1
δ
ρσX

)
,

b1 = −1
δ

δ − 1
δ
X0,

where X0 is the value of X around which we have approximated.
Since A1 and b1 do not depend on time the Equation (20) simplifies to

w∗
(2)

R
≈ (Σ ′Σ )−1

Σ ′Ωb1
eA1τ − 1
A1

= −1
δ

ρσX
σS

δ − 1
δ
X0

1− e−(k+ δ−1
δ ρσX)τ

k + δ−1
δ ρσX

,

where τ ≡ H − t.
The exact solution shown in [16] is

w∗∗
(2)

R
=
ρσX
σS

1
δ

(B (τ) + C (τ)X) ,

where
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B (τ) ≡
41−δ
δ kθ

(
1− e− η

2 τ
)2

2η2 − η
(
η + σ2

X

(
1 + 1−δ

δ ρ
2
))

(1− e−ητ )
,

C (τ) ≡
2 1−δ
δ (1− e−ητ )

2η −
(
η + σ2

X

(
1 + 1−δ

δ ρ
2
))

(1− e−ητ )
,

η ≡ 2k

√
1− 1− δ

δ

(
σ2
X

k2
+ 2ρ

σX
k

)
.

Since the optimal strategy we have found is in the feed-back form, then we
can assume X0 = X at each time. In fact, we can adjust our approximation
at each instant.

The index φ, in this case, has the form

φ ≡
w∗∗

(2) − w∗
(2)

R
=

1
δ

ρσX
σS

(
B (τ) + C (τ)X +X

1− e−(k+ δ−1
δ ρσX)τ

k + δ−1
δ ρσX

)
.

In Figure 2 we show the behaviour of φ with respect to ρ and X given the
following values:

X = 0.35, σS = 0.2, δ = 3, k = 0.2, σX = 0.1, θ = 0.35.

As in the previous example, the closer the correlation to 0, the better
the approximation. Furthermore, in this case, there exists a time horizon τ
for which the approximation is best. We underline that our approximation
does not work well for any time horizon. In particular, while the time horizon
becomes longer, our approximation becomes worse.

6 Conclusion

In this paper we have studied the problem of an investor maximizing the ex-
pected CRRA utility of his terminal wealth (for a deterministic time horizon).
All the variables taken into account are supposed to follow general diffusion
processes. In particular, we consider a set of financial assets and a set of state
variables in a incomplete financial market.

We have computed the Hamilton-Jacobi-Bellman (HJB) equation solving
the investor’s dynamic programming problem and we have proposed an ap-
proximate solution to it. In particular, we have approximated in Taylor series
some matrices whose values are given by combinations of preference param-
eters and drift and diffusion terms for both asset prices and state variables.
After substituting the approximations into the HJB equation, the value func-
tion solving it has turned out to be a log-linear function of the state variables.

Finally, we have presented both an easy test for checking the goodness
of the approximate optimal portfolio and the comparison of our approximate
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Fig. 2. Value of the difference between the actual and the approximate solution as
a function of τ and ρ

solution with two exact solutions presented in the literature for two particular
cases of incomplete markets.

With respect to the literature, our model presents a higher degree of gener-
ality in terms of financial market structure it deals with. In particular, while
the literature is mainly concerned with the problem of the existence of a
solution without providing an actual form for it, our model supplies an ap-
proximation which can be useful for computing the actual optimal portfolio
for the proposed problem.
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Summary. Carleman linearization is used to transform a polynomial control sys-
tem with output, defined on n-dimensional space, into a linear or bilinear system
evolving in the space of infinite sequences. Such a system is described by infinite ma-
trices with special properties. Linear observability of the original system is studied.
It means that all coordinate functions can be expressed as linear combinations of
functions from the observation space. It is shown that this property is equivalent to
a rank condition involving matrices that appear in the Carleman linearization. This
condition is equivalent to observability of the first n coordinates of the linearized
system.

1 Introduction

Carleman linearization is a procedure that allows to embed a finite dimen-
sional system of differential equations, with analytic or polynomial data, into
a system of linear differential equations on an infinite dimensional space. Thus
we trade polynomials (or analytic functions) that describe the system for the
infinite matrices of the Carleman linearization. The reader may consult [12],
which gives a general introduction to the subject.

There were several attempts to apply Carleman linearization in control
theory. Let us mention [19], where this technique was used for linear systems
with polynomial output. We consider a more general situation, where also the
system’s dynamics is polynomial. Our goal is to relate observability of the
original system and its Carleman linearization. We study linear observability
of a polynomial system on Rn, which means that all the coordinate functions
can be expressed as linear combinations of functions from the observation
space of the system. Two cases are studied. The simpler one concerns a system
without control, which leads to a linear system with output, also without
control. We show that the original system is linearly observable if and only
if the first n coordinates of its Carleman linearized system are observable,
and express this property by a rank condition involving the matrices of the
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linearized system. The other case, where the original system contains control,
leads to a bilinear infinite dimensional system. A similar rank condition for
linear observability is presented.

Checking observability of infinite dimensional linear systems is not easy
as we have to deal with infinite matrices. Though the Kalman condition of
observability holds for this class of systems, it must be expressed in a differ-
ent way and there is no finite algorithm to check this. Here we have a simpler
task, as only finitely many coordinates are to be observed. Several results on
observability of systems described by infinite matrices were given in our pa-
pers [3, 4] and duality between observability and controllability was studied in
[17]. In [3] we considered discrete-time systems, which are easier to study since
existence and uniqueness of solutions is always guaranteed. The continuous-
time case, examined in [4], is much harder as even for linear infinite systems
of differential equations, solutions of initial value problems may not exist or
be nonunique. Concerning this subject more can be found in [10, 13, 14]. In
the next section we provide the reader with basic definitions and facts. The
Banach space case, studied in [6, 7], is more regular. Observability of nonlin-
ear infinite dimensional systems was studied in [15, 16]. Such systems may
appear as infinite extensions of finite dimensional nonlinear control systems
(see e.g. [11]). One can be also interested in an embedding or an immersion of
a finite-dimensional nonlinear system into a linear finite-dimensional system.
Fliess and Kupka [9] constructed such immersion under the assumption that
the observation space of the system without control is finite-dimensional. For
systems with control this led to state-affine or bilinear systems. If we replace
this assumption by the condition that the observation algebra is finitely gen-
erated, the nonlinear system can be immersed into a polynomial (with respect
to state) finite-dimensional system (see [2]).

2 Preliminaries

Let R∞ denote the linear space of all real sequences denoted by infinite
columns. Let Πn : R∞ → Rn denotes the projection on the first n coordi-
nates, that is if z = (z1, . . . , zn, . . .)T ∈ R∞ then Πn(z) = (z1, . . . , zn)T . We
say that a function f : R∞ → R is finitely presented on R∞ if there is n ∈ N
and a function f̃ : Rn → R such that f = f̃ ◦ Πn. If we consider R∞ as
a topological space we use the product (Tikhonov) topology. A basis of this
topology consists of the sets U =

∏
i∈N Ui, where Ui is the open subset of R

and Ui = R for all i, but finite number values of i. It is the weakest topology
for which projections Πn are continuous.

From [1] we have the following:

Proposition 1. Let L(R∞,R) be the space of linear and continuous functions
on R∞. If f ∈ L(R∞,R) then f is finitely presented and there are nf ∈ N and

c1, . . . , cnf
∈ R such that for all z ∈ R∞, f(z) =

nf∑
i=1

cizi.
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We deal with differential systems described by infinite matrices which can
be interpreted as functions from R∞ × R∞ to R. We say that a matrix A =
(aij)i,j∈N is row-finite if for each i ∈ N there is n(i) ∈ N such that for j > n(i),
aij = 0. The matrix is upper-diagonal if aij = 0 for j < i. The set of row-finite
matrices forms an algebra over R with a unit E = (δij)i,j∈N. Hence if A is a
row-finite matrix, then for each k ∈ N, Ak is well defined and it is a row-finite
matrix as well.

Let A be an infinite row-finite matrix. Then the system of differential
equations ż(t) = dz

dt = Az(t) is called a row-finite system. If together with this
system we consider the initial condition z(0) = z0 ∈ R∞ then the discussion
of existence and uniqueness of solutions of the initial value problem can be
found, e.g., in [4, 7, 15, 16]. In particular the concept of formal solutions is
there presented.

Proposition 2. Let dz
dt = Az, z(0) = z0 ∈ R∞, be the initial value prob-

lem with A being a row-finite matrix. Then it has the unique formal solution
Γz0,A :=

∑∞
k=0

tk

k!A
kz0.

We are concerned with the system with output:

(Σ) :
ż(t) = Az(t)
y(t) = Cz(t), (1)

where z : [0,∞)→ R∞, y : [0,∞)→ Rp, and A ∈ R∞×R∞ and C ∈ Rp×R∞

are row–finite. Let z0 ∈ R∞. Given a formal solution Γz0,A of the dynamical
part of the system and corresponding to the initial condition z0 we define the
formal output: Yz0 = CΓz0,A.

Definition 1. We say that z1, z2 ∈ R∞ are indistinguishable (with respect
to (Σ)) if Yz1 = Yz2 . Otherwise z1, z2 are distinguishable. We say that the
system (Σ) is observable if any two distinct points are distinguishable.

Proposition 3. ([4])
The points z1, z2 ∈ R∞ are indistinguishable iff for all k ∈ N∪{0} : CAkz1 =
CAkz2.

Corollary 1. ([4])
System (Σ) is observable if and only if ∀ n ∈ N ∃k ∈ N ∪ {0} :

rank

⎛⎜⎝ C
...

CAk

⎞⎟⎠ = rank

⎛⎜⎜⎜⎝
C
...

CAk

ETn

⎞⎟⎟⎟⎠ , (2)

where ETn denotes the infinite row with 1 at the n-th position.
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Let D :=

⎛⎜⎝ C
CA
...

⎞⎟⎠ . Since the rows of D correspond to derivatives of the

output, one can characterize observability as possibility to compute every state
variable as a linear combination of finitely many outputs and their derivatives.

As using formal solutions and formal outputs brought us to the character-
ization of observability based on matrices of the systems, we extend now this
concept by defining some kind of observability of infinite bilinear systems.

Definition 2. Let us consider an infinite bilinear system

ż = (A+ uB)z,
y = Cz,

(3)

where z : [0,∞)→ R∞, y : [0,∞)→ Rp, A,B ∈ R∞ × R∞ and C ∈ Rp × R∞

are row–finite matrices. Let

Γ (C,A,B)k := col[C,CA,CB,CA2, CAB,CBA,CB2, . . . , CBk].

System (3) is said to be formally observable if ∀ n ∈ N ∃k ∈ N ∪ {0} such
that

rankΓ (C,A,B)k = rank
(
Γ (C,A,B)k

ETn

)
. (4)

Remark 1. Condition (4) becomes the same as (2) for B = 0.

We will consider the situation when condition (4) is satisfied only for some
number of variables.

Definition 3. We say that system (3) is observable with respect to the vari-
able zi if for n = i there is k such that (4) holds.

Remark 2. System (3) is formally observable iff it is observable with respect
to each variable.

3 Carleman linearization

By M(m,n) we denote the set of matrices of dimensions m × n with real
elements.

Let the function x : R ⊃ J → Rn, x ∈ C1(J), be a solution of the first
order system of ordinary differential equations:

Σ :
dx

dt
= F (x), (5)

where F = (f1, . . . , fn)T is a vector field whose components are polynomials
without constant term, i.e. F (0) = 0. Then we can write F (x) =

∑m
k=1 Fk(x),
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where each Fk is a vector of homogeneous polynomials of degree k and m ∈ N,
m ≥ max

i
deg fi.

For every integer k ≥ 1, let Hk denote the space of homogeneous polyno-
mials of degree k in n variables x1, x2, . . . , xn. In Hk we choose the canon-
ical bases {xq = xq11 . . . x

qn
n } with q = (q1, . . . , qn), where qi ∈ N and

|q| =
∑n
i=1 qi = k. We use the lexicographic order in the set of monomials xq

induced by the order x1 < x2 < . . . < xn. We use the following notation:

ek1 = xk1 , e
k
2 = xk−1

1 x2, . . . , e
k
dk

= xkn
ζk =

(
ek1 , . . . , e

k
dk

)T , (6)

where dk =
(
n+k−1
k

)
= dimHk. Hence if ϕ ∈ Hk then ϕ(x) =

∑
|q|=k βqx

q =
dk∑
i=1

αie
k
i . Let H∞ be the space of all polynomials (without constant term)

in variables x1, . . . , xn. Then H∞ may be represented by the direct sum of
the family {Hk}k∈N of the spaces of homogeneous polynomials, i.e. H∞ :=⊕
k∈NHk. Let us mention that the direct sum of an infinite family of modules

is defined to be the set of all functions w with domain N such that w(k) ∈ Hk
for all k ∈ N and w(k) = 0 for all but finitely many indices k.

Let P be a polynomial of degree r with P (0) = 0. So P ∈ H∞ and
there are homogeneous polynomials ϕk ∈ Hk, k = 1, . . . ,m, such that P (x) =
r∑
k=1

ϕk(x). Using the above notation we can write that

P (x) =
r∑
k=1

dk∑
i=1

pkie
k
i =

r∑
k=1

(pk1, . . . , pkdk
)ζk. (7)

Then system (5) can be written in the form

dx

dt
= A11ζ1 + · · ·+A1mζm, (8)

where Fk(x) = A1kζk and matrices A1k ∈ M(n, dk), i = 1, . . . ,m. Let us
observe that F1(x) = A11ζ1, where the matrix A11 ∈ M(n, n), forms the
linear part of system (5). Additionally we can obtain matrices A1k by the
formula A1k =

(
1

q1!···qn!
∂kfi

∂x
q1
1 ···∂xqn

n
(0)
)
, where qi ∈ N and

∑n
i=1 qi = k.

Let ζ = (ζT1 , ζ
T
2 , . . .)

T be the infinite vector of elements of the basis of H∞.
Then by (7)

P (x) = (p11, . . . , p1d1 , . . . , pr1, . . . , prdr
, 0, . . .)ζ. (9)

The Lie derivative in the direction of the vector field F of system (5) defines the
linear mapDΣ : H∞ → H∞ by (DΣP ) (x) = ∇P (x)·F (x). Let P (x) be in the

form (7). Then we have DΣP (x) =
m∑
k=1

dk∑
i=1

pkiDΣe
k
i =

m∑
k=1

dk∑
i=1

pki∇eki · F (x).
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As in particular DΣxi = fi(x) then

⎛⎜⎝DΣx1

...
DΣxn

⎞⎟⎠ =
m∑
j=1

A1jζj and there are

uniquely determined matrices Akj ∈M(dk, dj) such that⎛⎜⎝ DΣe
k
1

...
DΣe

k
dk

⎞⎟⎠ =
m+k−1∑
j=k

Akjζj . (10)

Applying (10) to DΣP (x) we obtain

DΣP (x) =
r∑
k=1

(pk1, . . . , pkdk
)
m+k−1∑
j=k

Akjζj . (11)

This yields
DΣP (x) = (p11, . . . , p1d1 , . . . , prdr

, 0 . . .)MF ζ, (12)

where

MF =

⎛⎜⎝A11 A12 . . . A1m 0 0 . . .
0 A22 . . . A2m A2,m+1 0 . . .

. . . . . . . . . . . . . . .

⎞⎟⎠ . (13)

In the following example we show how matrices Akj could be determined
for the case n = 2.

Example 1. We have that A1k =
(

1
q1!q2!

∂kfi

∂x
q1
1 ∂x

q2
2

(0)
)
, where qi ∈ N and q1 +

q2 = k. For calculating matrices A2k, k = 1, . . . ,m+1 we can use the following.
Let us observe that

ζ̇2 =

⎛⎝DΣx2
1

DΣx1x2

DΣx
2
2

⎞⎠ =

⎛⎝ 2x1 0
x2 x1

0 2x2

⎞⎠ ζ̇1 =

⎛⎝2x1 0
x2 x1

0 2x2

⎞⎠ m∑
k=1

A1kζk.

The last equality can be written as

ζ̇2 =

⎛⎝2 0
0 1
0 0

⎞⎠ m∑
k=1

A1kx1ζk +

⎛⎝ 0 0
1 0
0 2

⎞⎠ m∑
k=1

A1kx2ζk =
m+1∑
k=2

A2kζk,

where:

A22 =

⎛⎝2 0
0 1
0 0

⎞⎠A11

(
I3 0

)
+

⎛⎝0 0
1 0
0 2

⎞⎠A11

(
0 I3

)
,

where I3 is the identity matrix of the degree 3. And for k = 2, . . . ,m :

A2,k+1 =

⎛⎝ 2 0
0 1
0 0

⎞⎠A1k

(
Idk

0
)

+

⎛⎝ 0 0
1 0
0 2

⎞⎠A1m

(
0 Idk

)
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with Idk
being identity matrices also. Next matrices can be produced in a

similar way.

Definition 4. Let MF denotes matrix given by (13). The system of equations

dz

dt
= MF z (14)

for an infinite sequence of functions z = (z1, z2, . . .)T with zi ∈ C1(J), i ∈ N
and with J an open interval, is called the associated infinite linear system to
the finite nonlinear system (5). The setting up the associated infinite linear
system to a given finite system is called the Carleman linearization procedure
(Carleman embedding).

Definition 5. Let s =
∑k
i=1 dimHi. By the truncation of the order s ≥ 1 of

system (14) we mean the following finite dimensional system:

d

dt

⎛⎜⎝ z1...
zs

⎞⎟⎠ =

⎛⎜⎜⎜⎝
A11 A12 . . . A1k

0 A22 . . . A2k

. . .
...
Akk

⎞⎟⎟⎟⎠
⎛⎜⎝ z1...
zs

⎞⎟⎠ . (15)

Remark 3. [12] Each solution x of system (5) gives a solution of (14). And
conversely each solution z of (14) gives x = (z1, . . . , zn) as a solution of the
system (8).

Remark 4. If dxdt = x + a2x
2 + · · · + amxm, a2, . . . , am ∈ R, then the matrix

MF in the system (14) is triangular, with m − 1 filled diagonal lines above
the main diagonal.

Example 2. Let us consider one-dimensional system: dxdt = −x + x2 with the
initial condition: x(0) = c ∈ R. The solution of the initial value problem is
the following: x(t) = c

c+(1−c) exp(t) . Using the Carleman technique we take

z1 := x, z2 := x2, . . . , zn = xn, . . .. Then dzn

dt = dxn

dt = nxn−1 dx
dt and dzn

dt =
−nzn + nzn+1. Hence dz

dt = MF z, where the matrix

MF =

⎛⎜⎜⎜⎝
−1 1 0 0 0 0 . . .

0 −2 2 0 0 0 . . .
0 0 −3 3 0 0 . . .
...

...
. . . . . . . . .

⎞⎟⎟⎟⎠
is infinite-dimensional, triangular and row-finite. Additionally zn(0) = cn and
x(t) = z1(t) = c

c+(1−c) exp(t) . We can look at truncated versions of the Carle-
man linearization, e.g. the system

d

dt

⎛⎝ z1z2
z3

⎞⎠ =

⎛⎝−1 1 0
0 −2 2
0 0 −3

⎞⎠⎛⎝ z1z2
z3

⎞⎠
is an approximation of ẋ = −x+ x2.
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Now the vector field of system (14) defines the map

DΣ̃ : L(R∞,R)→ L(R∞,R)

by
DΣ̃f(z) = CMF z, (16)

where f(z) = Cz and C = (c1, c2, . . . , cnf
, 0, . . .).

Let ζ = (ζT1 , ζ
T
2 , . . .)

T be a basis in H∞. Let us consider P ∈ H∞ in the
form (9). Then we define the map α : H∞ → L(R∞,R) in the following way

α(P )(z) =
l∑
s=1

cszs = Cz, (17)

where l =
∑dm

j=1 dj and cs = pki for s = i+
k−1∑
j=1

dj .

Proposition 4. The map α defined by (17) is a linear bijective mapping from
H∞ to L(R∞,R).

Proposition 5. Let α be the map defined by (17). Then

DΣ̃ ◦ α = α ◦DΣ . (18)

Proof. Let P ∈ H∞ be a polynomial of degree r in n-variables, in the form
(9). Then by the definition (17) of the map α and the definition (16) of DΣ̃
we get (DΣ̃ ◦α)(P )(z) = (p11, . . . , prdr , 0, . . .)MF z. Hence by (12) we get that
(18) is true.

Let D0
ΣP := P and DkΣP := DΣ(Dk−1

Σ P ). Then by induction we conclude
that

Corollary 2. α(DkΣP )(z) = CMk
F z.

4 Linear observability of polynomial dynamical system

Let (Σ) be a polynomial system with output:

ẋ = F (x) (19)
y = h(x), (20)

where x ∈ Rn, y ∈ Rp and F = (f1, f2, . . . , fn)T , h = (h1, . . . , hp)T are
vectors of polynomials without constant terms. Let F (x) = A11ζ1 + · · · +
A1mζm =

∑m
k=1 Fk(x), where Fk(x) = A1kζk and hj(x) = Cjζ, where

Cj = (βj11, . . . , β
j
rdr
, 0, . . .).
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Definition 6. By O (Σ) we denote the smallest linear subspace of H∞ con-
taining hj , j = 1, . . . , p, the components of h, and invariant under the map
DΣ, the action of the vector field F of the system (Σ) . The system (Σ) is
said to be linearly observable if for each i = 1, . . . , n: xi ∈ O (Σ) .

Example 3. Let (Σ) be the following :(
ẋ1

ẋ2

)
=
(
−x2 − x1x2

x1 + x1x2

)
y = x1 + x2,

where the dynamics is the same as in the Lotka-Volterra model. Then
O (Σ) (x) = span{(DkΣy)(x), k = 0, 1, . . .} = span{x1+x2, x1−x2, . . .}. Hence
x1 = 1

2 (y +DΣy) and x2 = 1
2 (y −DΣy) and (Σ) is linearly observable.

By (Σ̃) we denote the associated with (Σ) (by Definition 4) infinite-
dimensional system:

ż = MF z (21)
y = Cz, (22)

where z ∈ R∞, y ∈ Rp and the matrix C =

⎛⎜⎝C1

...
Cp

⎞⎟⎠ .
Corollary 3.

1. For each k = 0, 1, . . . the following holds: α(DkΣhj)(z) = CjM
k
F z, where

for j = 1, . . . , p and hj(x) = Cjζ are components of the output of (Σ).
2. α (O (Σ)) = span{CjMk

F z, j = 1, . . . , p and k = 0, 1, . . .}.

Proposition 6. Let Ei = (0, . . . , 0, 1, 0, . . .)T be the vector from R∞ with 1
at the i-th position. The finite-dimensional polynomial system (Σ) is linearly
observable iff there is k ∈ N ∪ {0} such that

rank

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C
CMF

...
CMk

F

ET1
...
ETn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= rank

⎛⎜⎜⎜⎝
C

CMF

...
CMk

F

⎞⎟⎟⎟⎠ . (23)

Proof. Let i = 1, . . . , n. As, by Proposition 4, α is a bijective mapping from
H∞ to L(R∞,R), we have that xi ∈ O (Σ) ⇔ α(xi) = Eiz ∈ α (O (Σ)) .
Moreover ETi z ∈ α(O (Σ)) = span{CjMk

F z, j = 1, . . . , p, k ≥ 0} iff ETi ∈
span{CjMk

F , j = 1, . . . , p, k = 0, 1, . . .}. It holds for all i = 1, . . . , n iff the
condition (23) is satisfied.
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Remark 5. Using Definition 3 we can formulate Proposition 6 as follows: sys-
tem (Σ) is linearly observable iff its Carleman linearization is observable with
respect to variables z1, . . . , zn.

Corollary 4. If the system (Σ) is linearly observable then there is k ≥ deg h
such that the truncation of the order k of associated infinite linear system is
observable on Rk.

5 Carleman bilinearization for polynomial control system

Let (Λ) denote the finite dimensional polynomial system with one-dimensional
input u:

ẋ = F (x) +G(x)u (24)
y = h(x), (25)

where F,G are vectors of polynomials without constant term and u ∈ U ,
where U denotes the set of piece wise constant functions u : [0, Tu] → R
and Tu depends on u, Tu ≥ 0. Using the same description as for sys-
tems without control, equation (24) of (Λ) can be written in the follow-
ing form: ẋ =

∑m
j=1 (A1j + uB1j) ζj , where m = maxnj=1 deg(fj , gj) and

F = (f1, . . . , fn)T , G = (g1, . . . , gn)T . Let DuΛ denote the derivation in
the direction of the vector field F + Gu, for fixed u ∈ R. Moreover let
DuΛ = D0 + Du, where by D0 we mean the derivation in the direction of
the vector field F while the derivation Du is defined by the vector field uG.
Let DΛ = {DuΛ = D0 + Du : u ∈ R}. Then the observability of this system
depends on properties of the space O(Λ), which is the smallest subspace of
H∞ that contains all functions hj , j = 1, . . . , p, and is invariant under the
action of the maps from DΛ. Hence, according to Definition 6, (Λ) is linearly
observable if for each i = 1, . . . , n : xi ∈ O(Λ).

Similarly as in the case of system Σ, we consider the action of the
derivation DuΛ on a polynomial P ∈ H∞ given by (7). By (10) and (12):

DuΛP (x) =
r∑
k=1

(pk1, . . . , pkdk
)
m+k−1∑
j=k

(Akj + uBkj) ζj . Let

MG =

⎛⎜⎝B11 B12 . . . B1m 0 0 . . .
0 B22 . . . B2m B2,m+1 0 . . .

. . . . . . . . . . . . . . .

⎞⎟⎠ . (26)

By (Λ̃) we denote the infinite system associated (by Carleman embedding) to
the system (Λ).

Remark 6. (Λ̃) has the form:
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dz

dt
= (MF + uMG)z (27)

y = Cz, (28)

where z ∈ R∞, y ∈ Rp. (Λ̃) is a bilinear infinite-dimensional system.

Example 4. Let (Λ) be as follows:
{
ẋ = −x+ x2 + xu
y = x2 .

Then let for zi = xi, i ∈ N we have dzi

dt = −izi + izi+1 + iziu.
Hence

(Λ̃) :
d

dt

⎛⎜⎜⎜⎝
z1
z2
z3
...

⎞⎟⎟⎟⎠ =

=

⎛⎜⎜⎜⎝
−1 1 0 0 0 0 . . .

0 −2 2 0 0 0 . . .
0 0 −3 3 0 0 . . .
...

...
. . . . . . . . .

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
z1
z2
z3
...

⎞⎟⎟⎟⎠+ u

⎛⎜⎜⎜⎝
1 0 0 0 0 0 . . .
0 2 0 0 0 0 . . .
0 0 3 0 0 0 . . .
...

...
. . . . . . . . .

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
z1
z2
z3
...

⎞⎟⎟⎟⎠ ,
y = (0, 1, 0, . . .)z.

Proposition 7. Let

Γ (C,MF ,MG)k =

= col[C,CMF , CMG, CM
2
F , CMFMG, CMGMF , CM

2
G, . . . , CM

k
G].

System (Λ) is linearly observable iff there is k ∈ N ∪ {0} :

rankΓ (C,MF ,MG)k = rank

⎛⎜⎜⎜⎝
Γ (C,MF ,MG)k

ET1
...
ETn

⎞⎟⎟⎟⎠ . (29)

Proof. Let us observe that similarly as in the proof of Proposition 6 we con-
clude the thesis by the fact that the map α is bijective and α(Dl0D

k
uhj)(z) =

CjM
l
FM

k
Gz.

Example 5. Let (Λ) : ẋ1 = −x2u, ẋ2 = x1u, y = x2
1+x2

2. (Λ) is not observable.
Let z1 = x1, z2 = x2, z3 = x2

1, z4 = x1x2, z5 = x2
2. Then from the truncation

of the order s = 5:

d

dt

⎛⎜⎜⎜⎜⎝
z1
z2
z3
z4
z5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 −1 0 0 0
1 0 0 0 0
0 0 0 −2 0
0 0 1 0 −1
0 0 0 2 0

⎞⎟⎟⎟⎟⎠ z̃u,
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y =
(
0 0 1 0 1

)
z̃, z̃ = (z1, z2, z3, z4, z5)T of the corresponding system (Λ̃) we

can establish that CMF = CMG = 0. Hence the equation (29) is not satisfied.

Example 6. Let (Λ) : ẋ = x2 + xu, y = −x+ x2. Then (Λ̃):

ż =

⎛⎜⎝0 1 0 0 . . .
0 0 2 0 . . .
...

...
. . . . . . . . .

⎞⎟⎠ z +

⎛⎜⎝1 0 . . .
0 2 . . .

. . . . . .

⎞⎟⎠ zu, y = (−1, 1, 0, . . .)z.

Hence it is enough to take k = 1 to have the equality (29) true.
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Observability of Nonlinear Control Systems on
Time Scales - Sufficient Conditions

Ewa Paw�luszewicz∗

Bia�lystok Technical University, Faculty of Computer Sciences,
Wiejska 45A, Bia�lystok, Poland. epaw@pb.edu.pl

Summary. In the paper the problem of observability of nonlinear control systems
defined on time scales is studied. For this purpose it is introduced a family of op-
erators which in the continuous-time case coincides with Lie derivatives associated
to the given system. Then it is shown that set of functions generated by this opera-
tor distinguishes states that are distinguishable. The proved sufficient condition for
observability is classical, but it works not only for continuous-time case but also for
the other models of time.

Keywords: time scale, indistinguishability relation, observability sets, observability,
rank condition on time scales.

1 Introduction

”A major task of mathematics today is to harmonize the continuous and dis-
crete, to include them in one comprehensive mathematics and eliminate ob-
scurity from both.”, E.T. Bell, 1937

It is known that in engineering practice there are situations in which one
cannot measure the state function but some of its parts, i.e. output function.
This means that all information about the state should in principle be recov-
erable from knowledge of output and control. The key tool to study such issue
is the notion of observability introduced by Kalman for linear control systems
[2] and extended to nonlinear systems by Herman and Krener [7]. In the lin-
ear case necessary and sufficient conditions for observability as well in the
continuous- as for discrete-time systems look very similar. In [5] it is shown
that the standard Kalman conditions are still valid for linear time-invariant
systems defined on any time scale. In [6] it is shown that these conditions
are also valid for linear time-variant systems on time scales. Some interesting
results concerning unification of linear continuous- and discrete-time systems
∗ Supported by Bia�lystok Technical University grant No W/WI/18/07
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were obtained by Goodwin at al. [10], but restricted to the time sets R, Z and
hZ.

A time scale is a model of time. It is an arbitrary closed subset of the real
line. Besides the standard cases of whole line (continuous-time case) and the
set of integers (discrete-time case), there are many examples of time models,
that may be partly continuous and partly discrete. Calculus on time scales,
originated in 1988 by S. Hilger [12], seems to be a perfect language for unifying
the continuous- and the discrete-time cases. One of the main concepts in
the time scale theory is the delta derivative, which is a generalization of the
classical (time) derivative for continuous time and the finite forward difference
for the discrete time. Similarly the integral of real functions defined on time
scale is an extension of the Riemann integral in the continuous-time and the
finite sum in the discrete-time. Consequently, differential equations as well as
difference equations are naturally accommodated into this theory.

For nonlinear systems the main tool for studying observability problem
is given by the indistinguishability relation and by a family of functions that
distinguish states that are distinguishable. Well known Herman-Krener condi-
tion, roughly speaking, says that if the dimension of the space spanned by Lie
derivatives of outputs with respect to the vector fields of the control system
coincides with the state space dimension, then this system is observable.

For studying observability of nonlinear control systems on time scales we
introduce operators acting on real functions on Rn which in the continuous-
time case coincide with Lie derivatives associated to the given control system.
Using this operator we construct observability sets of functions that distin-
guish states that are distinguishable. In the last step we show that classical
Herman-Krener condition for observability of control system can be extended
to systems defined on time scales.

The paper is organized as follows: in Section 2 there is given a short in-
troduction to differential calculus on time scales. In Section 3 we define and
studied the indistinguishability relation for nonlinear control systems defined
on time scales. In Section 4 a sufficient condition for observability of nonlinear
systems on time scales is proved.

2 Calculus on time scales

We give here a short introduction to differential calculus on time scales. This is
a generalization on one hand, of the standard differential calculus, and of the
other hand the calculus of finite differences. This will allow to solve differential
equations on time scales. More on this subject can be found in [1, 4]. It can
be also stressed that differential calculus on time scales can be implemented
in MATHEMATICA [11].

A time scale T is an arbitrary nonempty closed subset of the set R of real
numbers. The standard cases comprise T = R, T = Z, T = hZ for h > 0. We
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assume that T is a topological space with the relative topology induced from
R.

For t ∈ T we define

• the forward jump operator σ : T→ T by σ(t) := inf{s ∈ T : s > t}
• the backward jump operator ρ : T→ T by ρ(t) := sup{s ∈ T : s < t}
• the graininess function µ : T→ [0,∞) by µ(t) := σ(t)− t

Using these operators we can classified points in real line. Namely

• if σ(t) > t, then t is called right-scattered
• if ρ(t) < t is called left-scattered
• if t < sup T and σ(t) = t then t is called right-dense
• if t > inf T and ρ(t) = t, then t is left-dense.

We define also the set Tk as:

Tk :=
{

T \ (ρ(sup T), sup T] if sup T <∞
T if sup T =∞

i.e. Tk does not contains maximal points.

Definition 1. Let f : T → R and t ∈ Tk. The delta derivative of f at t,
denoted by f�(t) (or by ∆

∆tf), is the real number (provided it exists) with
the property that given any ε there is a neighborhood U = (t − δ, t + δ) ∩ T
(for some δ > 0) such that

|(f(σ(t))− f(s))− f�(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U . We say that f is delta differentiable on Tk provided f�(t) exists
for all t ∈ Tk.

Proposition 1. [1] Let f : T→ R, g : T→ R be delta differentiable functions
at t ∈ Tk. Let t ∈ T. Then

1. if t ∈ Tk then f has at most one ∆-derivative at t
2. if f� exists, then f(σ(t)) = f(t) + µ(t)f�(t)
3. for any constants a, b holds (af(t) + bg(t))� = af�(t) + bg�(t)
4. ((f(t)g(t))� = f�(t)g(σ(t)) + f(t)g�(t) = f(σ(t))g� + f�(t)g(t)

5. if g(t)g(σ(t)) �= 0, then
(
f
g

)�
(t) = f�(t)g(t)−f(t)g�(t)

g(t)g(σ(t))

Remark 1. In general the function σ need not be differentiable (σ need not be
continuous).

Example 1.

• If T = R, then for any t ∈ R we have σ(t) = t = ρ(t) and the graininess
function µ(t) ≡ 0. A function f : R→ R is delta differentiable at t ∈ R if
and only if f�(t) = lim

s→t
f(t)−f(s)
t−s = f ′(t) i.e. if and only if f is differentiable

in the ordinary sense at t.
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• If T = Z, then for every t ∈ Z we have σ(t) = t + 1, ρ(t) = t − 1 and
the graininess function µ(t) ≡ 1. A function f : Z → R is always delta
differentiable at every t ∈ Z with f�(t) = f(σ(t))−f(t)

µ(t) = f(t+ 1)− f(t) =
-f(t) where - is the usual forward difference operator defined by the last
equation above.

• Let q > 1. We define the time scale T = qZ := {qk : k ∈ Z} ∪ {0}. Then
σ(t) = qt, ρ(t) = t

q and µ(t) = (q − 1)t for all t ∈ T. Any function

f : qZ → R is differentiable and f�(t) = f(qt)−f(t)
(q−1)t for all t ∈ T \ {0}.

A function f : T→ R is called regulated provided its right-sided limits exist
(finite) at all right-dense points at T and its left-sided limits exist (finite) at all
left-dense points in T. A function f : T→ R is called rd-continuous provided it
is continuous at right-dense points in T and its left-sided limits exist (finite) at
left-dense points in T. A function f is piecewise rd-continuous if it is regulated
and if it is rd-continuous at all, except possibly many, right-dense points t ∈ T
(see [9]). It can be shown that

f is continuous ⇒ f is rd-continuous ⇒ f is regulated

A continuous function f : T → R is called pre-differentiable with (the
region of differentiation)D, providedD ⊂ Tk, Tk\D is countable and contains
no right-scattered elements of T. It can be proved [1](Th.1.70) that if f is
regulated then there exists a function F that is pre-differentiable with region
of differentiation D such that F�(t) = f(t) for all t ∈ D. Any such function
is called pre-antiderivative of f . Then indefinite integral of f is defined by∫
f(t)-t := F (t) + C where C is an arbitrary constant. Cauchy integral is
s∫
r

f(t)-t = F (s) − F (r) for all r, s ∈ Tk. A function F : T → R is called an

antiderivative of f : T→ R provided F�(t) = f(t) holds for all t ∈ Tk. It can
be shown that every rd-continuous function has an antiderivative.

Example 2.

• If T = R, then
b∫
a

f(τ)-τ =
b∫
a

f(τ)dτ where the integral on the right is the

usual Riemann integral.

• If T = hZ, h > 0, then
b∫
a

f(τ)-τ =
b
h−1∑
t= a

h

f(th)h for a < b.

Corollary 1. For any rd-continuous function f we have

∆

∆t

t∫
t0

f(τ)-τ = f(t)

Proof. Because of
t∫
t0

f(τ)-τ = F (t) − F (t0), then from the properties of

antiderivative follows that ∆
∆t (F (t)− F (t0)) = f(t).
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3 Indistinguishability relation

If t0, t1 ∈ T and t ≤ t0, then [t0, t1] denotes the intersection of the ordinary
closed interval with T. Similar notation is used for open, half-open or infinite
intervals.

Let Ω be an arbitrary set. It will called the set of control values. Let ω ∈ Ω
and t0, t1 ∈ T, t0 < t1. A rd-piecewise constant function u : [t0, t1] → Ω
defined by u(t) = ω is called a piecewise constant control and denoted by
[ω, t0, t1]. The set of all controls will be denoted by U .

Let us consider a nonlinear control system with the output defined on time
scale T, denoted by Σ:

x�(t) = f(x(t), u(t))
y(t) = h(x(t)) (1)

where f : Rn×Ω → Rn, Ω ⊆ R, h : Rn → Rp. We assume that x(t0) = x0 for
a fixed t0 ∈ T. The dynamics of the system Σ, given by relation x� = f(x, u),
may be represented by the set DΣ = {fω : ω ∈ Ω} where fω := f(·, ω).

Let us choose an initial point x0 ∈ Rn and a control u. The trajectory of Σ
from x0 corresponding to the control u is a function x = x(·, x0, u) : [t0, t1]→
Rn defined as follows: if u = [ω, t0, t1], then x is the unique solution to the
initial value problem:

x�(t) = fω(x(t)), x(t0) = x0 (2)

provided it is defined.

Remark 2. Initial value problem (2) has a local unique forward solution on
time scale T. It is the particular case of the theorem 8.16 in [1]. For more
details see also [8]

A control u is called admissible for x0 ∈ Rn if there exists a trajectory
of Σ from x0 corresponding to a control u. If it exists, such a trajectory is
unique. The set of all controls admissible for x0 will be denoted by UΣ,x0 .

Let us consider the system Σ given by (1). We say that points x1, x2 ∈ Rn,
x1 �= x2, are indistinguishable by the control u ∈ UΣ if

h(x(t, x1, u)) = h(x(t, x2, u)) (3)

for any t ∈ T, t ≥ t0, if both sides of (3) are defined. If two points x1, x2 are
not indistinguishable, then they are distinguishable by the control u ∈ UΣ .

Remark 3. From the definition of indistinguishability it follows that if states
x1, x2 are indistinguishable by the control u, then for every t0 ∈ T also x1 +
µ(t0)fu(x1) and x2 + µ(t0)fu(x2) are indistinguishable by this control.
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Let ϕ : Rn → R, f : Rn → Rn be analytic real valued functions. Then, for
the fixed t0 ∈ T, the operator Γ t0f is defined as follows:

(Γ t0f ϕ)(x) :=

1∫
0

ϕ′(x+ hµ(t0)f(x))dh · f(x), (4)

where ϕ′ is the gradient of the function ϕ. Thus Γ t0f ϕ is again a real analytic
function on Rn. Moreover, Γ t0f is a family of operators parameterized by time
t0. In general, when operator Γ t0f ϕ does not depend on t0, we will denote it
by Γfϕ.

From definition follows that Γ t0f dϕ = dΓ t0f ϕ . It can be noticed also that
if µ(t0) �= 0 then

(Γ t0f ϕ)(x) =
1

µ(t0)

1∫
0

d

dh
(ϕ(x+ hµ(t0)f(x)))dh =

=
1

µ(t0)
(ϕ(x+ µ(t0)f(x))− ϕ(x))

For µ(t0) = 0 we have

(Γ t0f ϕ)(x) = ϕ′(x)f(x) = Lfϕ

where Lfϕ denotes the Lie derivative of the function ϕ with respect to f .

Example 3.

• If T = R, then Γf = Lf .
• If T = Z, then (Γfϕ)(x) = ϕ(x+ f(x))− ϕ(x)
• If T = qN, q > 1, then

(Γ t0f ϕ)(x) =
ϕ(x+ t0(q − 1)f(x))− ϕ(x)

(q − 1)t0

Remark 4. Let ϕ(x) = xi be the i-th coordinate function on Rn. Then (xi)′ =
ei - the vector of the standard basis of Rn with 1 at the i-th position. For any
t0 ∈ T we have (Γ t0f x

i)(x) = ϕ(x) ◦ f(x) = fi(x).

For h = (h1, . . . , hp) and fω ∈ DΣ let us put

O0(x) = {h1(x), . . . , hp(x)}
O1(x) = {h1(x), . . . , hp(x), Γ t0fu

h1(x), . . . , Γ t0fu
hp(x)}

... (5)
Oj(x) = Oj−1(x) ∪ {Γ t0fu

g(x) : g(x) ∈ Oj−1(x)}

where t0 ∈ T is fixed and u ∈ UΣ . The pair Σu,j = (DΣ ,Oj), j = 0, 1, . . ., will
be called the family of the observability sets of the system Σ corresponding
to the control u ∈ UΣ .
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Example 4. Let us consider a linear system defined on time scale T

x�(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, A,B,C are constant matrices. Let us observe
that

• If T = R or T = Z then we have Γ t0AxCx = CAx,. Then O0(x) =
{c1, . . . , cp} and Oj(x) = Oj−1(x) ∪ {c1Ajx, . . . , cpAjx} where c1, . . . , cp
are columns of the matrix C. Hence, it coincides with classical observation
space of the linear control system.

• If T = qZ , q > 1, then

Γ t0AxCx =
C(x+ µ(t0)Ax)− Cx

(q − 1)t0
= CAx

so Oj(x) = Oj−1(x) ∪ {c1Ajx, . . . , cpAjx}, j = 0, 1, . . .

• If T =
∞⋃
k=0

[2k, 2k + 1], then

µ(t) =

⎧⎪⎪⎨⎪⎪⎩
0 for t ∈

∞⋃
k=0

[2k, 2k + 1)

1 for t ∈
∞⋃
k=0

{2k + 1}

Hence Γ t0AxCx = CAx and again Oj(x) = Oj−1(x) ∪ {c1Ajx, . . . , cpAjx},
j = 0, 1, . . .

Example 5. Let us consider nonlinear system defined on time scale T

x�(t) = u(t)
y1(t) = sinx(t) (6)
y2(t) = cosx(t)

with x ∈ R and u ∈ R. We have fu = u.

• If T = R then

Γ t0u sinx = u cosx, Γ t0u cosx = −u sinx

Hence Oj(x) = {(−u)j sin(π2 j + x), (−u)j cos(π2 j + x)} for j = 0, 1, . . ..
• If T = Z, then

Γ t0u sinx = a cos(x+
u

2
), Γ t0u cosx = −a sin(x+

u

2
)

where a = 2 sin u2 . Hence,
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O0(x) = {sinx, cosx}
O1(x) = {sinx, cosx,−a sin(x+

u

2
), a cos(x+

u

2
)}

...
Oj(x) = {(−1)jaj sin(x+

u

2
), (−1)j+1aj cos(x+

u

2
)}

for j = 1, 2, . . ..
• If T = qZ, q > 1, then

Γ t0u ◦ . . . ◦ Γ t0u︸ ︷︷ ︸
j − times

sinx =
(−2)jaj

(q − 1)jtj0
sin(

π

2
j + x+

(q − 1)jt0u
2

)

and

Γ t0u ◦ . . . ◦ Γ t0u︸ ︷︷ ︸
j − times

cosx =
(−2)jaj

(q − 1)jtj0
cos(

π

2
j + x+

(q − 1)jt0
2

)

where a = sin q−1t0
2 u. So,

O0(x) = {sinx, cosx}
...

Oj(x) =
{ (−2)jaj

(q − 1)jtj0
sin(

π

2
j + x+

(q − 1)jt0u
2

);

(−2)jaj

(q − 1)jtj0
cos(

π

2
j + x+

(q − 1)jt0
2

)
}
, j = 0, 1, . . .

Hence, for the system defined on any time scale T, the family Oj , j = 0, 1, . . .,
can be bigger then for classical continuous time systems.

Lemma 1. If states x1, x2 are indistinguishable by the control u ∈ UΣ, then
for all t ∈ T and any ν ∈ Oj, j = 0, 1, . . . the following equation holds

ν(x(t, x1, u)) = ν(x(t, x2, u)) (7)

Proof. We shall use induction with respect to j. For j = 0 the statement is
obvious. Let as assume that g(x(t, x1, u)) = g(x(t, x2, u)) for g ∈ Oj−1. Then,
for µ(t0) �= 0

Γ t0fu
g(x(t, x1, u)) =

g(x(t, x1, u) + µ(t0)fu(x(t, x1, u)))− g(x(t, x1, u))
µ(t0)

=

=
g(x(t, x2 + µ(t0)fu(x2), u)))− g(x(t, x2, u)))

µ(t0)
.
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Because of indistinguishability of x(t, x1, u) + µ(t0)fu(x(t, x1, u) and
x(t, x2, u) + µ(t0)fu(x(t, x2, u) we have

g(x(t, x1, u)) + µ(t0)fu(x(t, x1, u)) = g(x(t, x2, u)) + µ(t0)fu(x(t, x2, u))

Defining
ν(x(t, x1, u)) = g(x(t, x1, u) + µ(t0)fu(x(t, x1, u)))

and
ν(x(t, x2, u)) = g(x(t, x2, u) + µ(t0)fu(x(t, x2, u)))

we have our result.
For µ(t0) = 0 operator Γ t0fu

coincides with Lie derivative, so the statement
(7) is obvious.

Corollary 2. If states x1, x2 are indistinguishable by the control u ∈ UΣ, then
they are indistinguishable by the family Σu,j, j = 0, 1, . . ..

Proof. Proof follows from lemma 1.

Example 6. It can be noticed that for the system Σ defined in the example 5
family Σu,j , j = 0, 1, . . ., does not distinguish states that are distinguishable
on the given time scales.

4 Observability

The system Σ defined by (1) is observable if any two distinct points are not
distinguishable by the control u ∈ UΣ . System Σ is locally observable at
point x = x(t, x0, u) if there exists a neighborhood V of x such that any point
x1 = x1(t, x0, u) ∈ V , x1 �= x, is distinguishable from x by the control u ∈ UΣ .
System Σ is locally observable, if it is locally observable at each point of the
state space Rn.

For j = 0, 1 . . . , p− 1 let us define

dOj(x) :=

{(
∂g(x)
∂x1

, . . . ,
∂g(x)
∂xn

)T
: g ∈ Oj , x ∈ Rn

}

where (. . .)T denotes a transposition of a vector (. . .). By dim dOj we will
denote the maximal number of linearly independent vectors in dOj(x).

Theorem 1. Let us assume that for the system Σ given by (1) holds that

dim dOn−1(x0) = n, x0 = x(t0). (8)

for fixed t0 ∈ T. Then for any t ≥ t0, t ∈ T, the system Σ is locally observable
at point x0 with respect to the control u ∈ UΣ.
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Proof. The classical proof works well for all times scales. Let us assume
that dim dOn−1(x) = n and Σ is not observable at x0. Then there exists
a neighborhood of point x0 such that the state x1, x1 �= x0, from this neigh-
borhood such that h(x(t, x0, u)) = h(x(t, x1, u)) for t ≥ t0, t, t0 ∈ T. So,
g(x(t, x0, u)) = g(x(t, x1, u)) for any g ∈ On−1.

Let us consider a map ξ : Rn → Rn, ξ(x) = (g̃1, . . . , g̃n)T (x) for g̃i ∈
Oi, i = 0, 1, . . . , n − 1. Assumption dim dOn−1(x) = n implies that in each
neighborhood of point x0 matrix [ ∂ξ∂x ](x0) is not singular. In particular there
exists x1 close to x0 such that det[ ∂ξ∂x ](x1) �= 0. Then there exists i, i < n,
such that g̃i(x(t, x0, u)) �= g̃i(x(t, x1, u)) for g̃i ∈ Oi. So

g̃i(x(t, x0, u)) = Γ tfu
◦ . . . ◦ Γ t0fu

h(x(t0, x0, u)) �=
�= Γ t0fu

◦ . . . ◦ Γ t0fu
h(x(t0, x1, u)) = g̃i(x(t, x1, u))

Hence contradiction.

Condition (8) is called the rank condition.

Remark 5. Theorem 1, for the fixed initial time t0, unifies Herman-Krener [7]
condition given in the literature for continuous-time and discrete-time cases
and extends it to other more general cases on time scales.

5 Remarks

In previous sections, for simplicity, we defined indistinguishability relation
with respect to the fixed control u ∈ UΣ . This definition can be extended
for any set of controls u1, . . . , uk from the set of admissible controls UΣ of
the considered system. For this purpose the sets Oj , j = 0, 1, . . ., should be
defined as follows

O0(x) = {h1(x), . . . , hp(x)}
O1(x) = {h1(x), . . . , hp(x), Γ t0fu1

h1(x), . . . , Γ t0fu1
hp(x)}

O2(x) = O1(x) ∪ {Γ t0fu2
g1(x) : g1(x) ∈ O1(x)}

...
Oj(x) = Oj−1(x) ∪ {Γ t0fuj−1

gj−1(x) : gj−1(x) ∈ Oj−1(x)}

For such defined sets Oj , j = 0, 1, . . ., lemma 1 and theorem 1 are still true.

6 Conclusions and future works

We generalize the notation of observability for nonlinear control systems de-
fined on time scales. It means that sufficient condition for the observability can



Observability on Time Scales 335

be applied to the bigger class of control systems not only for the continuous-
time one. To this aim we introduce the family of operators Γ t0f parameterized
by fixed t0, t0 ∈ T. This family can be viewed, roughly speaking, as generaliza-
tion of Lie derivative for any model of time. Using this operators we construct
the sets Oj , j = 0, 1, . . ., that distinguish the distinguishable states.

Necessary conditions for nonlinear control systems on time scales require
some studies on polynomials and on delta differential equations with analytic
right hand side.
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Summary. This paper gives sufficient conditions for a class of bang-bang extremals
with multiple switches to be locally optimal in the strong topology. The conditions
are the natural generalizations of the ones considered in [4, 11] and [12]. We require
both the strict bang-bang Legendre condition, a non degeneracy condition at multiple
switching times, and the second order conditions for the finite dimensional problems
obtained by moving the switching times of the reference trajectory.

1 Introduction

We consider a Bolza problem on a fixed time interval [0, T ], where the control
functions are bounded and enter linearly in the dynamics. Namely:

minimize C(ξ, u) := β(ξ(T )) +
∫ T

0

(
f0
0 (ξ(t)) +

m∑
i=1

uif
0
i (ξ(t))

)
dt (1a)

subject to ξ̇(t) = f0(ξ(t)) +
m∑
i=1

uifi(ξ(t)) (1b)

ξ(0) = x̂0; u = (u1, . . . , um) ∈ L∞([0, T ], [−1, 1]m). (1c)

The state space is a n–dimensional manifoldM , x̂0 is a given point, the vector
fields f0, f1, . . . , fm and the functions f0

0 , f
0
1 , . . . , f

0
m, β are C∞.

Optimal control problems in Economics with the above structure have
been considered in [6] and references therein.

The authors aim at giving second order sufficient conditions for a reference
bang-bang couple (ξ̂, û) to be a local optimizer in the strong topology; the strong
topology being the one induced by C([0, T ],M) on the set of the admissible
trajectories. Therefore optimality is with respect to neighboring trajectories,
independently of the values of the associated controls.

Recall that a control û (a trajectory ξ̂) is bang-bang if there is a finite
number of switching times 0 < t̂1 < · · · < t̂r < T such that each control
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function ûi is constantly either −1 or 1 on each interval (t̂k, t̂k+1). A switching
time t̂k is called simple if only one control function changes value at t̂k, while
it is called multiple if at least two control functions change value.

Second order conditions for the optimality of a bang-bang extremal with
simple switches only are given in [4, 8, 11, 12], and references therein, while
in [13] the author gives sufficient conditions, in the case of the minimum time
problem, for L1–local optimality of a bang bang extremal having both simple
and multiple switches with the extra assumption that the Lie brackets of the
switching vector fields is annihilated by the adjoint covector.

Here we consider the problem of local strong optimality in the case of a
Bolza problem, when at most one double switch occurs, but there are finitely
many simple ones. More precisely we extend the conditions in [4, 11, 12]
requiring the sufficient second order conditions for the finite dimensional sub–
problems obtained by allowing the switching times to move. We remark that,
while in the case of simple switches the only variables are the switching times,
each time when a double switch occurs we have to consider the two possible
combinations of the switching controls. In order to complete the proof, the
investigation of the invertibility of some Lipschitz continuous, piecewise C1

operators has been done via topological methods described in the Appendix.
To apply such methods it is necessary to assume a “non–degeneracy” condition
at the double switching time.

2 The result

The result is based on some regularity assumption on the vector fields associ-
ated to the problem and on a second order condition for a finite dimensional
sub–problem.

2.1 Notation and regularity

Assume we are given an admissible reference couple
(
ξ̂, û

)
satisfying Pontrya-

gin maximum principle (PMP) with adjoint covector λ̂. Remark that, since
no constraint is given on the final point of admissible trajectories, then (ξ̂, û)
must satisfy PMP in normal form. We assume the reference control is regular
bang–bang with a finite number of switching times t̂1, . . . , t̂K such that only
two kinds of switchings appear:

• simple switching time: only one of the control functions û1, . . . , ûm
switches at time t̂i;

• double switching time: two of the control functions û1, . . . , ûm switch at
time t̂i.

We assume that there is just one double switching time, which we denote by τ̂ .
Without loss of generality we may assume that the controls switching at time
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τ̂ are û1 and û2. In the interval (0, τ̂), J0 simple switches occur (if no simple
switch occurs in(0, τ̂), then J0 = 0), while J1 simple switches occur in the
interval (τ̂ , T ) (if no simple switch occurs in (τ̂ , T ), then J1 = 0). We denote
the simple switching times by θ̂ij , j = 1, . . . , Ji, i = 0, 1 with a self–evident
meaning of the double index. In order to simplify the notation, we also define
θ̂00 := 0, θ̂0,J0+1 := θ̂10 := τ̂ , θ̂1,J1+1 := T , i.e. we have

θ̂00 := 0 < θ̂01 < . . . < θ̂0J0 < τ̂ := θ̂0,J0+1 := θ̂10 <

< θ̂11 < . . . < θ̂1 J1 < T := θ̂1,J1+1.

For any m–uple u = (u1, . . . , um) ∈ Rm let us denote

hu : ! ∈ T ∗M �→
〈
!, f0(π!) +

m∑
i=1

uifi(π!)

〉
−
(
f0
0 (π!) +

m∑
i=1

uif
0
i (π!)

)
∈ R

and let f̂t, f̂0
t and Ĥt be the reference vector field, the reference running cost

and the reference Hamiltonian function, respectively, i.e.

f̂t(x) := f0(x) +
m∑
i=1

ûi(t)fi(x) f̂0
t (x) := f0

0 (x) +
m∑
i=1

ûi(t)f0
i (x)

Ĥt(!) :=
〈
!, f̂t(π!)

〉
− f̂0

t (π!) = hû(t)(!).

Throughout the paper, for any Hamiltonian function K : T ∗M → R,
−→
K will

denote the associated Hamiltonian vector field. Also, let x̂d := ξ̂(τ̂) and x̂f :=
ξ̂(T ). In our situation PMP reads as follows:
There exists an absolutely continuous function λ̂ : [0, T ]→ T ∗M such that

πλ̂(t) = ξ̂(t) ∀t ∈ [0, T ] λ̂(T ) = −dβ(x̂f )

˙̂
λ(t) =

−→
Ĥ t(λ̂(t)) a.e. t ∈ [0, T ],

Ĥt(λ̂(t)) = max
{
hu(λ̂(t)) : u ∈ [−1, 1]m

}
∀t ∈ [0, T ]. (2)

Maximality condition (2) implies ûi(t)
( 〈
λ̂(t), fi(ξ̂(t))

〉
− f0

i (ξ̂(t))
)
≥ 0 for

any t ∈ [0, T ]. We assume the following regularity condition holds:

Regularity. If t is not a switching time for the control ûi, then

ûi(t)
( 〈
λ̂(t), fi(ξ̂(t))

〉
− f0

i (ξ̂(t))
)
> 0. (3)

Notice that (3) implies that argmaxhu(λ̂(t)) = û(t) for any t that is not
a switching time. Let

kij = f̂t|(θ̂ij ,θ̂i,j+1)
, k0

ij = f̂0
t |(θ̂ij ,θ̂i,j+1)

i = 0, 1 j = 0, . . . , Ji



340 Laura Poggiolini and Marco Spadini

be the restrictions of f̂t, and f̂0
t to each of the time intervals where the refer-

ence control û is constant. LetKij(!) := 〈!, kij(π!)〉−k0
ij(π!) be the associated

Hamiltonian function. Then, from maximality condition (2) we get

d
dt

(K10 −K0J0) ◦ λ̂|τ̂ ≥ 0 and
d
dt

(Kij −Ki,j−1) ◦ λ̂|θ̂ij
≥ 0

for any i = 0, 1, j = 1, . . . , Ji. We assume that the strong inequality holds
at each simple switching time θ̂ij :

Strong bang–bang Legendre condition for simple switching times.

d
dt

(Kij −Ki,j−1) ◦ λ̂|θ̂ij
> 0 i = 0, 1, j = 1, . . . , Ji. (4)

We make a stronger assumption at the double switching time τ̂ . Denoting
by ∆ν := ûν(τ̂ + 0)− ûν(τ̂ − 0), ν = 1, 2, the jumps at τ̂ of the two switching
components, we have

k10 = k0J0 +∆1f1 +∆2f2 , k0
10 = k0

0J0 +∆1f
0
1 +∆2f

0
2 .

Define the new vector fields and functions

kν := k0J0 +∆νfν , k0
ν := k0

0J0 +∆νf0
ν , ν = 1, 2,

with associated hamiltonian functions Kν(!) := 〈!, kν(π!)〉 − k0
ν(π!). We as-

sume that all the following one–side derivatives are strictly positive:

Strong bang–bang Legendre condition for double switching times.

d
dt

(Kν −K0J0) ◦ λ̂|τ̂−0 > 0,
d
dt

(K10 −Kν) ◦ λ̂|τ̂+0 > 0, ν = 1, 2. (5)

Equivalently, conditions (4) and (5) can be expressed in terms of the canon-
ical symplectic structure σ (·, ·) on T ∗M :

σ
(−→
K i,j−1,

−→
K ij

)
(λ̂(θ̂ij)) > 0 i = 0, 1, j = 1, . . . , Ji, (6)

σ
(−→
K0J0 ,

−→
Kν

)
(λ̂(τ̂)) > 0, σ

(−→
Kν ,
−→
K10

)
(λ̂(τ̂)) > 0 ν = 1, 2. (7)

We also assume the following condition holds at the double switching time:

Non degeneracy.

∆1f1(x̂d)

σ
(−→
K0J0 ,

−→
K1

)
(λ̂(τ̂))

�= ∆2f2(x̂d)

σ
(−→
K0J0 ,

−→
K2

)
(λ̂(τ̂))

. (8)
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2.2 The finite dimensional sub–problem

By allowing the switching times of the reference control function to move we
can define a finite dimensional sub–problem of the given one. In doing so we
must distinguish between the simple switching times and the double switching
time. Moving a simple switching time θ̂i j to time θi j := θ̂i j + δi j amounts to
using the values û|(θ̂i,j−1,θ̂i,j) and û|(θ̂i,j ,θ̂i,j+1) of the control function in the

time intervals
(
θ̂i,j−1, θi j

)
and

(
θi j , θ̂i,j+1

)
, respectively. On the other hand,

when we move the double switching time τ̂ we change the switching time of
two different components of the reference control function and we must allow
for each of them to change its switching time independently of the other.
This means that between the values of û|(θ̂0J0 ,τ̂) and û|(τ̂ ,θ̂01) we introduce
a value of the control function which is not assumed by the reference one
at least in a neighborhood of τ̂ , and which may assume two different values
according to which component switches first between the two available ones.
Let τν := τ̂ + εν , ν = 1, 2. We move the switching time of û1 from τ̂ to
τ1 := τ̂ + ε1, and the switching time of û2 from τ̂ to τ2 := τ̂ + ε2.

Defining θij := θ̂ij + δij , j = 1, . . . , Ji, i = 0, 1; θ0,J0+1 := min{τν , ν =
1, 2}, θ10 := max{τν , ν = 1, 2}, θ00 := 0 and θ1,J1+1 := T , we have two
finite–dimensional sub–problems Pν , ν = 1, 2 given by

minimize β(ξ(T )) +
1∑
i=0

Ji∑
j=0

∫ θi,j+1

θij

k0
ij(ξ(t))dt +

∫ θ10

θ0,J0+1

k0
ν(ξ(t))dt (Pνa)

subject to ξ̇(t) =

⎧⎪⎨⎪⎩
k0j(ξ(t)) t ∈ (θ0j , θ0,j+1) j = 0, . . . , J0,

kν(ξ(t)) t ∈ (θ0,J0+1, θ10),
k1j(ξ(t)) t ∈ (θ0j , θ0,j+1) j = 0, . . . , J1

(Pνb)

and ξ(0) = x̂0. (Pνc)

where kν = k1, k0
ν = k0

1 if θ0,J0+1 = τ1, and kν = k2, k0
ν = k0

2 if θ0,J0+1 = τ2.
We shall denote the solution, evaluated at time t, of (Pνb) emanating from

a point x ∈ Rn at time 0 as St(x, δ, ε). We remark that St(x, 0, 0) is the flow
associated to the reference control. We shall denote it by Ŝt(x).

Notice that P1 is defined only for ε1 ≤ ε2, while P2 is defined only for
ε2 ≤ ε1, and the reference control is the one we obtain when every δij and εk
is zero, i.e. in a point on the boundary of the domain of Pν . From PMP we
get that the first variation of both these problems at δij = 0, ε1 = ε2 = 0 is
null, hence we can consider the second variation for the constrained problems
P1 and P2. We shall ask for their second order variations to be positive and
prove the following theorem:

Theorem 1. Let (ξ̂, û) be a bang–bang regular extremal (3) for problem (1)
with associated covector λ̂. Assume all the switching times of (ξ̂, û) but one
are simple, while the only non–simple switching time is double.
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Assume the Legendre conditions (6) and (7) hold. Also, assume the non
degeneracy condition (8) holds at the double switching time. Assume also that
each second variation J ′′

ν is positive definite on the kernel of the first variation
of problem Pν . Then (ξ̂, û) is a strict strong local optimizer for problem (1).

3 Proof of the result

The proof will be carried out by means of Hamiltonian methods. Namely
we shall define a time–dependent maximized Hamiltonian H in T ∗M with
flow H : [0, T ] × T ∗M → T ∗M and consider the restriction of H to a suit-
able Lagrangian manifold Λ0 containing !̂0 := λ̂(0). We shall prove that
ψ := id × π ◦ H : (t, !) ∈ [0, T ] × Λ0 �→ (t, πHt(!)) ∈ [0, T ] × M is locally
invertible around [0, T ]× {!̂0} and we will take advantage of the exactness of
ω := H∗ (pdq −Hdt) on {(t,Ht(!)) , ! ∈ Λ0} (see Section 3.4) to reduce our
problem to a local optimization problem for a function F defined in a neigh-
borhood of x̂T . Finally we shall conclude the proof of Theorem 1 showing that
such problem has a local minimum in x̂T . In proving both the invertibility of
ψ and the minimality of x̂T for F we shall exploit the positivity of the second
variations J ′′

ν . See [1, 2, 3] for a general introduction to Hamiltonian methods.

3.1 The maximized flow

We are now going to define the maximized Hamiltonian and the flow of its
associated Hamiltonian vector field. Such flow will turn out to be Lipschitz
continuous and piecewise–C1. Define

θ00(!) := 0 φ00(!) := !

for j = 1, . . . , J0

θ0j(!) :=

{
θ0j(!̂0) = θ̂0j

(K0j −K0,j−1) ◦ exp θ0j(!)
−→
K0,j−1 (φ0,j−1(!)) = 0

(10a)

φ0j(!) := exp
(
− θ0j(!)

−→
K0j

)
◦ exp θ0j(!)

−→
K0,j−1 (φ0,j−1(!)) (10b)

for ν = 1, 2

τν(!) :=

{
τν(!̂0) = τ̂

(Kν −K0J0) ◦ exp τν(!)
−→
K0J0(φ0J0(!)) = 0

(10c)

θ0,J0+1(!) := min {τ1(!), τ2(!)} (10d)

K ′(!) :=

{
K1(!) if θ0,J0+1(!) = τ1(!)
K2(!) if θ0,J0+1(!) = τ2(!)

φ′(!) := exp
(
− θ0,J0+1(!)

−→
K ′) ◦ exp θ0,J0+1(!)

−→
K0J0 (φ0J0(!)) (10e)
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θ10(!) :=

{
θ10(!̂0) = θ̂10 = τ̂

(K10 −K ′) ◦ exp θ10(!)
−→
K ′ (φ′(!)) = 0

(10f)

φ10 := exp
(
− θ10(!)

−→
K10

)
exp θ10(!)

−→
K ′ (φ′(!)) (10g)

for j = 1, . . . , J1

θ1j(!) :=

{
θ1j(!̂0) = θ̂1j

(K1j −K1,j−1) ◦ exp θ1j(!)
−→
K1,j−1 (φ1,j−1(!)) = 0

(10h)

φ1j(!) := exp
(
− θ1j(!)

−→
K1j

)
exp θ1j(!)

−→
K1,j−1 (φi,j−1(!)) (10i)

θ1,J1+1(!) = T. (10j)

To prove that such flow is well defined, we need to show that the switching
times θij(!), τ(!) are themselves well defined and that they are ordered as
follows θ0,j−1(!) < θ0j(!) . . . < θ0J0(!) < θ0,J0+1(!) ≤ θ10(!) < θ11(!) < . . .

The proof that the switching times θ0j are well defined can be carried out
as in [4]. Here we show that θ0,J0+1 and θ10 are also well defined. Let

Ψν(t, !) = (Kν −K0J0) ◦ exp t
−→
K0J0 ◦ φ0J0(!)

then
∂Ψν
∂t

∣∣∣∣
(τ̂ ,�̂0)

= σ
(−→
K0J0 ,

−→
Kν

)
(λ̂(τ̂)) which is positive by (7). Now, let

Φ10(t, !) = (K10 −K ′) ◦ exp t
−→
K ′ ◦ φi(!)

then
∂Φ10

∂t

∣∣∣∣
(τ̂ ,�̂0)

= σ
(−→
K ′,
−→
K10

)
(λ̂(τ̂)) which is positive by (7).

Since, by assumption θ̂i,j−1 < θ̂ij and θ̂0J0 < τ̂ , then, by continuity,
θi,j−1(!) < θij(!) and θ0J0(!) < θ0,J0+1(!) for any ! in a sufficiently small
neighborhood of !̂0. Therefore, it suffices to show that θ0,J0+1(!) ≤ θ10(!).
Notice that if τ1(!) = τ2(!), then θ10(!) = θ0,J0+1(!), so there is nothing to
prove and the choice of K ′(!) either as K1(!) or as K2(!) gives no contribu-
tion to the flow of such !’s, since for these !’s the interval (θ0,J0+1(!), θ10(!))
is empty.

Let us assume θ0,J0+1(!) = τ1(!) < τ2(!); at time θ0,J0+1(!) we have

0 = (K1 −K0J0) ◦ exp θ0,J0+1(!)
−→
K0J0 ◦ φ0J0(!), (11)

0 > (K2 −K0J0) ◦ exp θ0,J0+1(!)
−→
K0J0 ◦ φ0J0(!). (12)

Since K2 −K0J0 = K10 −K1, equation (12) can be written as

0 > (K10 −K1) ◦ exp 0
−→
K1 ◦ exp θ0,J0+1(!)

−→
K0J0 ◦ φ0J0(!),

i.e. θ10(!) − τ1(!) > 0. Analogous proof holds if θ0,J0+1(!) = τ2(!) < τ1(!).
The proof for the θ1j ’s can again be done as in [4].
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The maximized flow is thus defined as follows:

H : (t, !) ∈ [0, T ]× T ∗M �→ Ht(!) ∈ T ∗M

Ht(!) :=

⎧⎪⎨⎪⎩
exp t

−→
K0j(φ0j(!)) t ∈ (θ0j(!), θ0,j+1(!)], j = 0, . . . , J0

exp t
−→
K ′(φ′(!)) t ∈ (θ0,J0+1(!), θ10(!)]

exp t
−→
K1j(φ1j(!)) t ∈ (θ1j(!), θ1,j+1(!)], j = 0, . . . , J1.

(13)

3.2 The second variations

In order to write the second variations of the finite dimensional sub–problems
Pν we write them in Mayer form introducing an auxiliary variable x0, as in
[11]. The new state space is R×M whose elements we denote by x̃ := (x0, x).
Let

k̃ij :=
(
k0
ij

kij

)
i = 0, 1, j = 0, . . . , Ji, k̃ν :=

(
k0
ν

kν

)
ν = 1, 2.

Then problem Pν is equivalent to

minimize β(ξ(T )) + ξ0(T ) subject to (14a)

˙̃
ξ(t) =

(
ξ̇0(t)
ξ̇(t)

)
=

⎧⎪⎨⎪⎩
k̃0j(ξ(t)) t ∈ (θ0j , θ0,j+1) j = 0, . . . , J0,

k̃ν(ξ(t)) t ∈ (τ, θ10),
k̃1j(ξ(t)) t ∈ (θ0j , θ0,j+1) j = 0, . . . , J1

(14b)

ξ̃(0) = (0, x̂0). (14c)

We denote the solutions of (14b) evaluated at time t, emanating from a
point x̃ = (x0, x) at time 0, as S̃t(x̃, δ, ε) =

(
S0
t (x

0, x, δ, ε), St(x, δ, ε)
)

and

by ˜̂
St(x̃) =

(
Ŝ0
t (x

0, x), Ŝt(x)
)

=
(
S0
t (x

0, x, 0, 0), St(x, 0, 0)
)

we denote the
flow associated to the reference control. Define

a00 := δ01; aij := δij+1 − δij i = 0, 1 j = 1, . . . , Ji − 1;
a0J0 := ε1 − δ0J0 ; b := ε2 − ε1; a10 := δ11 − ε2; a1J1 := −δ1J1 .

Then b+
1∑
i=0

Ji∑
j=0

aij = 0. Let

gij(x) =
(
DŜθ̂ij

)−1
kij ◦ Ŝθ̂ij

(x), g0ij(x) = k0
ij ◦ Ŝθ̂ij

(x)− gij · S0
θ̂ij

(x),

hν(x) =
(
DŜτ̂

)−1
kν ◦ Ŝτ̂ (x), h0

ν(x) = f0
ν ◦ Ŝτ̂ (x)− hν · Ŝ0

τ̂ (x)

and put β̂(x) := β◦ŜT (x), B̂0(x) :=
∫ T
0
f̂t(Ŝt(x))dt, α := −β̂ and γ̂ := α+β̂+

B̂0. Also define Λ0 := {dα(x), x ∈M} . Let ζ̃t(x̃, δ, ε) :=
( ˜̂
St

)−1

◦ S̃t(x, δ, ε).
We consider the second–order variations of
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Jν(x, a, b) := α(x) + β̂(ζνT (x, a, b)) + Ŝ0
T

(
ζ̃T (0, x, a, b)

)
at the reference triplet (x, a, b) = (x̂0, 0, 0). By assumption, for each ν = 1, 2,
J ′′
ν is positive definite on

N ν0 :=
{

(δx, a, b) ∈ Tx̂0M × RJ0+J1 × R : δx = 0, b+
1∑
i=0

Ji∑
j=0

aij = 0
}
.

Possibly redefining α by adding a suitable second–order penalty at x̂0, we may
assume that each second variation J ′′

ν is positive definite on

N ν :=
{

(δx, a, b) ∈ Tx̂0M × RJ0+J1 × R : b+
1∑
i=0

∑Ji

j=0 aij = 0
}
.

Let Gij , Hν be the Hamiltonian functions associated to (gij , g0ij) and (hν , h0
ν)

respectively, and introduce the anti–symplectic isomorphism i as in [4],

i : (δp, δx) ∈ T ∗
x̂0
M × Tx̂0M �→ −δp+ d (−β̂ − B̂0)∗δx ∈ T (T ∗M) . (15)

Defining
−→
G ′′
ij = i−1

(−→
G ij(!̂0)

)
,
−→
H ′′
ν = i−1

(−→
H ν(!̂0)

)
, we have that

−→
G ′′
ij and

−→
H ′′
ν are the Hamiltonian vector fields associated to the following linear Hamil-

tonian functions defined in T ∗
x̂0
M × Tx̂0M

G′′
ij(ω, δx) = 〈ω,gij(x̂0)〉+δx ·

(
gij ·

(
β̂ + B̂0 − Ŝ0

θ̂ij

)
+ g0ij ◦ Ŝθ̂ij

)
(x̂0), (16)

H ′′
ν (ω, δx) = 〈ω, hν(x̂0)〉+ δx ·

(
hν ·

(
β̂ + B̂0 − Ŝ0

τ̂

)
+ h0

ν ◦ Ŝτ̂
)

(x̂0). (17)

Moreover L′′
0 := i−1T�̂0Λ0 =

{
δ! =

(
−D2γ̂(x̂0)(δx, ·), δx

)
: δx ∈ Tx̂0M

}
and

the bilinear form J ′′
ν associated to the second variation can be written in a

rather compact form: for any δe := (δx, a, b) ∈ N ν let

ω0 := −D2γ̂(x̂0)(δx, ·), δ! := (ω0, δx) = i−1 (dα∗δx) ,

(ων , δxν) := δ!+
1∑
i=0

Ji∑
j=0

aij
−→
G ′′
ij + b

−→
H ′′
ν and δ!ν := (ων , δxν).

Then J ′′
ν can be written as

J ′′
ν

(
(δx, a, b), (δy, c, d)

)
= −

〈
ων , δy +

J0∑
s=0

c0sg0s + d hν +
J1∑
s=0

c1sg1s

〉

+
J0∑
j=0

c0j G
′′
0j

(
δ!+

j−1∑
s=0

a0s
−→
G ′′

0s

)
+ dH ′′

ν

(
δ!+

J0∑
s=0

a0s
−→
G ′′

0s

)

+
J1∑
j=0

c1jG
′′
1j

(
δ!+

J0∑
s=0

a0s
−→
G ′′

0s + b
−→
H ′′
ν +

j−1∑
s=0

a1s
−→
G ′′

1s

)
.

(18)
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We shall study the positivity of J ′′
ν as follows: consider the increasing

sequence of sub–spaces of

V ν :=
{

(δx, a, b) ∈ N ν : δx+
1∑
i=0

Ji∑
j=0

aijgij(x̂0) + b hν(x̂0) = 0
}
.

defined as

V ν0j := {(δx, a, b) ∈ V ν : a0s = 0 ∀s = j + 1, . . . , J0, a1s = 0

∀s = 0, . . . , J1, b = 0},
V ν1j := {(δx, a, b) ∈ V ν : a1s = 0 ∀s = j + 1, . . . , J1}.

Then V 1
0j = V 2

0j for any j = 0, . . . , J0, so we denote these sets as V0j . Moreover

dim
(
V0j ∩ V

⊥J′′
ν

0,j−1

)
= dim

(
V ν1k ∩ V

⊥J′′
ν

1,k−1

)
= 1, dim

(
V ν10 ∩ V

⊥J′′
ν

0J0

)
= 2

for any j = 2, . . . , J0 and any k = 0, . . . , J1.
Using the first order approximations of the quantities θij(!), φij(!), defined

in equations (10) and proceeding as in [4] we can prove the following lemmata

Lemma 1. δe = (δx, a, b) ∈ V0j ∩ V
⊥J′′

ν
0,j−1 if and only if δe ∈ V0j and

G′′
0s(δ!+

s−1∑
µ=0

a0µ
−→
G ′′

0µ) = G′′
0,j−1(δ!+

j−2∑
s=0

a0s
−→
G ′′

0s) , ∀ s = 0, . . . , j − 2 (19)

i.e. a0s = d (θ0,s+1 − θ0s) (dα∗δx) ∀s = 0, . . . , j − 2.

In this case J ′′[δe]2 = a0j σ
(
δ!+

j−1∑
s=0

a0s
−→
G ′′

0s,
−→
G ′′

0j −
−→
G ′′

0,j−1

)
.

Lemma 2. δe = (δx, a, b) ∈ V ν10 ∩ V
⊥J′′

ν

0J0
if and only if δe ∈ V ν10 and

G′′
0s(δ!+

s−1∑
µ=0

a0µ
−→
G ′′

0µ) = G′′
0,J0(δ!+

J0−1∑
s=0

a0s
−→
G ′′

0s) , ∀ s = 0, . . . , J0 − 1 (20)

i.e. a0s = d (θ0,s+1 − θ0s) (dα∗δx) ∀s = 0, . . . , J0 − 1.
In this case

J ′′[δe]2 = b σ
(
δ!+

J0∑
s=0

a0s
−→
G ′′

0s,
−→
H ′′
ν −
−→
G ′′

0,J0

)
+ a10 σ

(
δ!+

J0∑
s=0

a0s
−→
G ′′

0s + b
−→
H ′′
ν ,
−→
G ′′

10 −
−→
H ′′
ν

)
.
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Lemma 3. δe = (δx, a, b) ∈ V ν1j ∩ V
⊥J′′

ν
1,j−1 if and only if δe ∈ V ν1j and

G′′
0s(δ!+

s−1∑
i=0

a0i
−→
G ′′

0i) = H ′′
ν (δ!+

J0∑
i=0

a0i
−→
G ′′

0i)

= G′′
1k(δ!+

J0∑
i=0

a0i
−→
G ′′

0i + b
−→
H ′′
ν +

k−1∑
i=0

a1i
−→
G ′′

1i)

∀ s = 0, . . . , J0 ∀ k = 0, . . . , j − 2

i.e. if and only if δe ∈ V ν1j and

a0s = d (θ0,s+1 − θ0s) (dα∗δx) ∀s = 0, . . . , J0

b = d (θ10 − θ0,J0+1) (dα∗δx)
a1s = d (θ1,s+1 − θ1s) (dα∗δx) ∀s = 0, . . . , j − 2.

In this case

J ′′[δe]2 = a1j σ

(
δ!+

J0∑
s=0

a0s
−→
G ′′

0s + b
−→
H ′′
ν +

j−1∑
i=0

a1i
−→
G ′′

1i,
−→
G ′′

1j −
−→
G ′′

1,j−1

)
.

Lemma 4. δe = (δx, a, b) ∈ N ν ∩ V
⊥J′′

ν

1J1
if and only if δe ∈ N ν and

G′′
0s(δ!+

s−1∑
i=0

a0i
−→
G ′′

0i) = H ′′
ν (δ!+

J0∑
i=0

a0i
−→
G ′′

0i)

= G′′
1k(δ!+

J0∑
i=0

a0i
−→
G ′′

0i + b
−→
H ′′
ν +

k−1∑
i=0

a1i
−→
G ′′

1i)

∀ s = 0, . . . , J0 ∀ k = 0, . . . , J1

i.e. if and only if δe ∈ N ν and

a0s = d (θ0,s+1 − θ0s) (dα∗δx) ∀s = 0, . . . , J0

b = d (θ10 − θ0,J0+1) (dα∗δx)
a1s = d (θ1,s+1 − θ1s) (dα∗δx) ∀s = 0, . . . , J1 − 1.

In this case

J ′′[δe]2 = −
〈
ων , δx+

1∑
i=0

Ji∑
s=0

aisgis + b hν

〉

= σ

((
0, δx+

1∑
i=0

Ji∑
s=0

aisgis + bhν

)
,−D2γ̂(δx, ·) +

1∑
i=0

Ji∑
s=0

ais
−→
G ′′
is + b

−→
H ′′
ν

)
.
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3.3 The invertibility of the flow

Lemma 1 allows us to prove the following property (whose proof can be found
in [4]) for the linearization of the maximized flow:

Lemma 5. Let j ∈ {1, . . . , J0} and δx1, δx2 ∈ Tx̂0M such that dθ0j(δx2) <
0 < dθ0j(δx1). Then

(
π ◦ Hθ̂0j

)
∗dα∗δx1 �=

(
π ◦ Hθ̂0j

)
∗dα∗δx2.

Lemma 5 implies that the application

ψ : (t, !) ∈ [0, T ]× Λ0 �→ (t, π ◦ Ht(!)) ∈ [0, T ]×M (21)

is locally invertible around [0, τ̂ − ε] ×
{
!̂0
}
. In fact, ψ is locally one–to–one

if and only if π ◦ Ht is locally one–to–one in !̂0 for any t. On the other hand
π ◦ Ht is locally one–to–one for any t < τ̂ if and only if it is one–to–one at
any θ̂0j . This property is granted by Lemma 5.

We now want to show that such procedure can be carried out also on
[τ̂ − ε, T ] ×

{
!̂0
}
, so that ψ will turn out to be locally invertible from a

neighborhood [0, T ] × O ⊂ [0, T ] × Λ0 of [0, T ] ×
{
!̂0
}

onto a neighborhood
U ⊂ [0, T ]×M of the graph Ξ̂ of ξ̂.

The first step will be proving the invertibility of π ◦ Hτ̂ at !̂0. In a neigh-
borhood of !̂0, π ◦ Hτ̂ has the following piecewise representation

M1 min
{
τ1(�), τ2(�)

} ≥ τ̂ π exp τ̂
−→
K0J0 ◦ φ0J0(�)

M2 min
{
τ1(�), τ2(�)

}
=

τ1(�) ≤ τ̂ ≤ θ10(�)
π exp τ̂

−→
K1 ◦ exp(−τ1(�)

−→
K1) ◦ exp τ1(�)

−→
K0J0 ◦

φ0J0(�)

M3 min
{
τ1(�), τ2(�)

}
=

τ2(�) ≤ τ̂ ≤ θ10(�)
π exp τ̂

−→
K2 ◦ exp(−τ2(�)

−→
K2) ◦ exp τ2(�)

−→
K0J0 ◦

φ0J0(�)

M4 min
{
τ1(�), τ2(�)

}
=

τ1(�) ≤ θ10(�) ≤ τ̂
π exp

(
τ̂ − θ10(�)

)−→
K10 ◦ exp θ10(�)

−→
K1 ◦

exp(−τ1(�)
−→
K1) ◦ exp τ1(�)

−→
K0J0 ◦ φ0J0(�)

M5 min
{
τ1(�), τ2(�)

}
=

τ2(�) ≤ θ10(�) ≤ τ̂
π exp

(
τ̂ − θ10(�)

)−→
K10 ◦ exp θ10(�)

−→
K2 ◦

exp(−τ2(�)
−→
K2) ◦ exp τ2(�)

−→
K0J0 ◦ φ0J0(�)

The invertibility of π ◦ Hτ̂ will be proved by the means of Theorem 3 in
the Appendix. Notice that the non degeneracy condition (8) implies that the
second order penalty on α can be chosen so that dτ1(dα∗(·)) �= dτ2(dα∗(·)).
In order to apply Theorem 3 we write the piecewise linearized map (π ◦Hτ̂ )∗.
(π ◦ Hτ̂ )∗δ! is given by

M1′ if min{dτ1(δ!), dτ2(δ!)} ≥ 0

exp(τ̂
−→
K0J0)∗φ0J0δ! (22a)

M2′ if dτ1(δ!) ≤ 0 ≤ dθ10(!), dτ1(δ!) ≤ dτ2(δ!)

−dτ1(δ!)
[
exp(τ̂

−→
K1)∗

−→
K1 −

−→
K0J0

]
+ exp(τ̂

−→
K0J0)∗φ0J0∗δ! (22b)
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M3′ if dτ2(δ!) ≤ 0 ≤ dθ10(δ!), dτ2(δ!) ≤ dτ1(δ!)

−dτ2(δ!)
[
exp(τ̂

−→
K2)∗

−→
K2 −

−→
K0J0

]
+ exp(τ̂

−→
K0J0)∗φ0J0∗δ! (22c)

M4′ if dτ1(δ!) ≤ dθ10(δ!) ≤ 0, dτ1(δ!) ≤ dτ2(δ!)

dθ10(δ!)
(−→
K10 + dθ10(δ!) exp(τ̂

−→
K10)∗

−→
K1

)
+ exp(τ̂

−→
K1)∗

(
− dτ1(δ!)

−→
K1 + exp(−τ̂1

−→
K1)∗dτ1(δ!)

−→
K0J0

+ exp(−τ̂−→K1)∗ exp(τ̂
−→
K0J0)φ0J0∗δ!

)
(22d)

M5′ if dτ2(δ!) ≤ dθ10(δ!) ≤ 0, dτ2(δ!) ≤ dτ1(δ!)

dθ10(δ!)
(−→
K10 + dθ10(δ!) exp(τ̂

−→
K10)∗

−→
K2

)
+ exp(τ̂

−→
K2)∗

(
− dτ2(δ!)

−→
K2 + exp(−τ̂2

−→
K2)∗dτ2(δ!)

−→
K0J0

+ exp(−τ̂−→K2)∗ exp(τ̂
−→
K0J0)φ0J0∗δ!

)
(22e)

According to Theorem 3, in order to prove the invertibility of our map it is
sufficient to prove that both the map and its linearization are continuous in a
neighborhood of !̂0 and of 0 respectively, that they maintain the orientation
and that there exists a point δx whose preimage is a singleton not belonging
to the above boundaries.

Notice that the continuity of π ◦Hτ̂ follows from the very definition of the
maximized flow. Discontinuities of (π◦Hτ̂ )∗ may occur only at the boundaries
described above. A direct computation in formulas (22) shows that this is not
the case. Let us now prove the last assertion.

Throughout the rest of the section, all the Hamiltonian vector fields
−→
G ij

and
−→
H ν are computed in !̂0. For “symmetry” reasons it is convenient to look

for δx among those which belong to the image of the set {δ! ∈ T�̂0Λ0 : 0 <
dτ1(δ!) = dτ2(δ!)}. Observe that this implies that dθ10(δ!) = dτ1(δ!) =
dτ2(δ!): Introducing the quantity ητ̂ (δ!) := Ĥ−1

τ̂∗ exp(τ̂
−→
K0J0)∗φ0J0∗(δ!), the

assertion dτ1(δ!) = dτ2(δ!) can be written as

σ
(
ητ̂ (δ!),

−→
H 1 −

−→
G0J0

)
σ
(−→
G0J0 ,

−→
H 1

) =
σ
(
ητ̂ (δ!),

−→
H 2 −

−→
G0J0

)
σ(
−→
G0J0 ,

−→
H 2)

thus, dθ10(δ!)σ
(−→
H 2,
−→
G10

)
is given by

−σ
(
ητ̂ (δ!),

−→
G10 −

−→
H 2

)
+ dτ2(δ!)σ

(−→
H 2 −

−→
G0J0 ,

−→
G10 −

−→
H 2

)
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and, using that dτ1(δ!) = dτ2(δ!) and
−→
G10 −

−→
H 2 =

−→
H 1 −

−→
G0J0 , this is equal

to dτ1(δ!)σ
(−→
H 2,
−→
G10

)
.

Thus, we consider δx = π∗ exp(τ̂
−→
K0J0)∗φ0J0∗δ!1 with 0 < dτ1(δ!1) =

dτ2(δ!1). Clearly δx has at most one preimage per each of the above sectors.
Let us prove that actually its preimage is the singleton {δ!1}.

Assume by contradiction that there is δ!2 in sector M2′ such that

π∗ exp(τ̂
−→
K0J0)∗φ0J0∗(δ!1) =π

(
exp τ̂

−→
K1)∗

(
− dτ1(δ!2)

−→
K1

)
+ π∗dτ1(δ!2)

−→
K0J0 + π∗ exp(τ̂

−→
K0J0)∗φ0J0∗(δ!2)

Taking the pull-back we get

δx1 − δx2 +
J0−1∑
s=1

d (θ0,s+1 − θ0s)
(
dα∗(δx1 − δx2)

)
g0s

−
(
dθ0J0

(
dα∗(δx1 − δx2)

)
+ dτ1(dα∗δx2)

)
g0J0 + dτ1(dα∗δx2)h1 = 0.

Consider δe := (δx1 − δx2, a, b), where, for j = 0, . . . , J1, a1j = 0 and, for
s = 0, . . . , J0,

a0s =

{
d (θ0,s+1 − θ0s)

(
dα∗(δx1 − δx2)

)
s = 0, . . . , J0 − 1

−dθ0J0
(
dα∗(δx1 − δx2)

)
+ dτ1(dα∗δx2) s = J0,

and b = dτ1(dα∗δx2) < 0. Thus δe ∈ V 1
10 ∩ V

⊥J′′
1

0J0
, therefore Lemma 2 applies:

σ
(
δ!+

J0∑
s=0

a0s
−→
G ′′

0s,
−→
H ′′

1 −
−→
G ′′

0J0

)
< 0

where δ! =
(
−D2γ̂(x0)(δx1 − δx2, ·), δx1 − δx2

)
. Thus, applying i,

σ
(
dα∗(δx1 − δx2) +

J0∑
s=0

a0s
−→
G0s,

−→
H 1 −

−→
G0J0

)
> 0

or, linearizing the formula for τ1(δ!) in (10),

σ
(
ητ̂ (dα∗(δx1 − δx2)),

−→
H 1 −

−→
G0J0

)
− dτ1(dα∗δx2)σ

(−→
G0J0 ,

−→
H 1

)
> 0

which implies −dτ1
(
dα∗(δx1 − δx2)

)
− dτ1(dα∗δx2) > 0 or dτ1(dα∗δx1) < 0

a contradiction.
Let us now assume by contradiction that there is δ!4 in sector M4′ whose

image under the linearized map coincides with δx.
Thus, proceeding in the same way as between sectors M1′ and M2′, we get
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δx1−δx4+
J0−1∑
s=1

d (θ0,s+1−θ0s)
(
dα∗(δx1−δx4)

)
g0s−

(
dθ0J0

(
dα∗(δx1−δx4)

)
+ dτ1(dα∗δx4)

)
g0J0 − d (θ10 − τ1)(dα∗δx4)h1 + dθ10(dα∗δx4)g10 = 0.

Consider δe := (δx1 − δx4, a, b), where, for j = 1, . . . , J1, a1j = 0, a10 =
dθ10(δx4) < 0 and, for s = 0, . . . , J0,

a0s =

{
d (θ0,s+1 − θ0s)

(
dα∗(δx1 − δx4)

)
s = 0, . . . , J0 − 1

−dθ0J0
(
dα∗(δx1 − δx4)

)
+ dτ1(dα∗δx4) s = J0,

and b = d (θ10−τ1)(dα∗δx4) < 0. Thus δe ∈ V 1
10∩V

⊥J′′
1

0J0
, and Lemma 3 applies

b σ

(
dα∗(δx1 − δx4) +

J0∑
s=0

a0s
−→
G0s,

−→
H 1 −

−→
G0J0

)

+ a10 σ

(
dα∗(δx1 − δx4) +

J0∑
s=0

a0s
−→
G0s + b

−→
H 1,
−→
G10 −

−→
H 1

)
< 0

The coefficient of b is equal to

σ
(
ητ̂ (dα∗(δx1 − δx4))− dτ1(δx4)

−→
G0J0 ,

−→
H 1 −

−→
G0J0

)
= −dτ1

(
dα∗(δx1 − δx4)

)
σ
(−→
G0J0 ,

−→
H 1

)
− dτ1(dα∗δx4)σ

(−→
G0J0 ,

−→
H 1

)
= −dτ1(dα∗δx1)σ

(−→
G0J0 ,

−→
H 1, )

)
< 0

On the other hand, taking the first order approximations in (10), one can
show that the coefficient of a10 is:(
− dτ1(dα∗(δx1)) + dθ10(dα∗(δx4))

(
− dτ1(dα∗(δx1))

))
σ
(−→
G0J0 ,

−→
H 2

)
− d (θ10 − τ1)(dα∗(δx4))

(
− dτ1(dα∗(δx1))

)
σ
(−→
G0J0 ,

−→
H 1

)
< 0

which is impossible.
The orientation preserving condition can be proved by the means of

Lemma 6: consider any pair of adjacent cones M ′
i and M ′

j . They are sep-
arated by a hyperplane. A similar argument to the one used above shows
that any pair of points lying on opposite sides of the separating hyperplane
have different images under the maps used in M ′

i and M ′
j , extended to the

corresponding half space.
This proves the invertibility of π ◦ Hτ̂ , hence ψ is one–to–one in a neigh-

borhood of [0, θ̂10 − ε]×
{
!̂0
}
.
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We only sketch the idea of the proof of the invertibility of π ◦ Hθ̂1j
, j =

1, . . . , J1. Given j, there are four regions N1j , . . . , N4j in Λ0, characterized by
the following properties

(N1j) θ1j(!) ≥ θ̂1j and θ0,J0+1(!) = τ1(!),

(N2j) θ1j(!) ≥ θ̂1j and θ0,J0+1(!) = τ2(!),

(N3j) θ1j(!) < θ̂1j and θ0,J0+1(!) = τ1(!),

(N4j) θ1j(!) < θ̂1j and θ0,J0+1(!) = τ2(!);

as for π ◦ Hτ̂ , π ◦ Hθ̂1j
turns out to be a Lipschitz continuous, piecewise C1

application. Its invertibility can be proved applying again Theorem 3. We will
consider first the case j = 1 and the following linearization of π ◦ Hθ̂11 . Here,
for the sake of brevity we have already passed to the pullback

N ′
1j where dθ11(δ!) ≥ 0 and dτ1(δ!) ≤ dτ2(δ!),

−dθ10(δ!)g10 + d (θ10 − τ1)(δ!)h1 + dτ1(δ!)g0J0 + ητ̂ (δ!)

N ′
2j where dθ11(δ!) ≥ 0 and dτ2(δ!) ≤ dτ1(δ!),

−dθ10(δ!)g10 + d (θ10 − τ2)(δ!)h2 + dτ2(δ!)g0J0 + ητ̂ (δ!)

N ′
3j where dθ11(δ!) ≤ 0 and dτ1(δ!) ≤ dτ2(δ!),

−dθ11(δ!)g11+d (θ11−θ10)(δ!)g10+d (θ10−τ1)(δ!)h1+dτ1(δ!)g0J0 +ητ̂ (δ!)

N ′
4j where dθ11(δ!) ≤ 0 and dτ2(δ!) ≤ dτ2(δ!),

−dθ11(δ!)g11+d (θ11−θ10)(δ!)g10+d (θ10−τ2)(δ!)h2+dτ2(δ!)g0J0 +ητ̂ (δ!)

As above, according to Theorem 3, we only have to prove that both the
map and its linearization are continuous in a neighborhood of !̂0 and of 0
respectively, that the linearized pieces are orientation preserving and that
there exists a point δx whose preimage is a singleton. The only nontrivial
part is the last statement which can be proved by picking δx ∈ N ′

11 ∩N ′
12.

3.4 Reduction to a finite–dimensional problem

In this section, in order to shorten the notation, for any (t, !) ∈ [0, T ]×Λ0, let
us define ψt(!) := π ◦ Ht(!). Also we recall that the maximized Hamiltonian
function is a lift: Ht(!) = 〈!, f(t, π!)〉 − f0(t, π!)

In the product space [0, T ]×M consider the path obtained with the con-
catenation of the graph of a generic trajectory, Ξ := {(t, ξ(t)) : t ∈ [0, T ]}
(ran backward) contained in U and the graph of the reference trajectory
Ξ̂ := {(t, ξ̂(t)) : t ∈ [0, T ]}. We can obtain a close circuit with a path γ from
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(T, x̂T ) to (T, ξ(T )) whose image is contained in {T} ×M .
Consider the following sets in [0, T ]× T ∗M :

O0j = {(t, !) : ! ∈ O, t ∈ [θ0,j−1(!), θ0j(!)]} j = 1, . . . , J0

and, for ν = 1, 2 define

Oν0,J0+1 = {(t, !) : ! ∈ O, θ0,J0+1(!) = τν(!), t ∈ [θ0J0(!), θ0,J0+1(!)]}
Oν10 = {(t, !) : ! ∈ O, θ0,J0+1(!) = τν(!), t ∈ [θ0,J0+1(!), θ10(!)]}
Oνij = {(t, !) : ! ∈ O, θ0,J0+1(!) = τν(!),

t ∈ [θ1,j−1(!), θ1j(!)]} j = 1, . . . , J1 + 1.

The one–form ω := H∗(pdq −Htdt) is closed on each of these sets, it is con-
tinuous on [0, T ]×O hence it is exact on [0, T ]×O (without loss of generality
we may assume O to be simply connected) and we have

0 =
∮
ω =

∫
ψ−1(Ξ̂)

ω +
∫
ψ−1(γ)

ω −
∫
ψ−1(Ξ)

ω.

From the maximality properties of H we get∫
ψ−1(Ξ̂)

ω =
∫ T

0

f̂0
t (ξ̂(t))dt

∫
ψ−1(Ξ)

ω ≤
∫ T

0

f0(ξ(t), u(t))dt; (23)

so that ∫ T

0

f0(ξ(t), u(t))dt−
∫ T

0

f̂0
t (ξ̂(t))dt ≥

∫
ψ−1(γ)

ω.

If we now evaluate the difference of the costs associated to the generic pair
(ξ, u) and to the reference pair (ξ̂, û) we have

C(ξ, u)− C(ξ̂, û) ≥ β(ξ(T ))− β(x̂T ) +
∫
ψ−1(γ)

ω. (24)

Evaluating this last integral we get∫
ψ−1(γ)

ω = α(πψ−1
T (ξ(T ))− α(πψ−1

T (x̂T ))

+
∫ T

0

f0(ψ(r, ψ−1
T ξ(T )))dr −

∫ T

0

f0(ψ(r, ψ−1
T x̂T ))dr.

Defining F : y ∈M �→ α(π ◦ψ−1
T (y))+β(y)+

∫ T
0
f0(ψ(r, ψ−1

T (y)))dr equation
(24) simplifies to C(ξ, u) − C(ξ̂, û) ≥ F (ξ(T )) − F (x̂T ) i.e. we have reduced
optimal control problem (1) to a finite–dimensional one. Thus in order to
prove that (ξ̂, û) is a minimum it now suffices to prove that F has a local
minimum in x̂T .
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Theorem 2. F has a strict local minimum in x̂T .

Proof. It suffices to prove that

dF (x̂T ) = 0 D2F (x̂T ) > 0 . (25)

The first equality in (25) is an immediate consequence of the definition of α
and PMP. Let us prove that also the second one holds.
Since d

(
α ◦ π ◦ ψ−1

T +
∫ T
0
f(r, ψr ◦ ψ−1

T )dr
)

= HT ◦ ψ−1
T , we also have

dF = HT ◦ ψ−1
T + dβ (26)

D2F (x̂T )[δxT ]2 =
(
(HT ◦ ψ−1

T )∗ + D2β
)
(x̂T )[δxT ]2

= σ
(
(HT ◦ ψ−1

T )∗δxT , d (−β)∗δxT
)
.

(27)

From Lemma 4 we get

0 < σ

((
0, δx+

1∑
i=0

Ji∑
j=0

aijgij+bhν
)
,−D2γ̂(δx, ·)+

1∑
i=0

Ji∑
j=0

aij
−→
G ′′
ij+b
−→
H ′′
ν

)
. (28)

Applying ĤT∗ ◦ i−1 we get 0 < σ (HT∗dα∗δx, d (−β)∗(ψT∗dα∗δx)) which is
exactly (27) with δx := π∗ψ

−1
T∗δxT . Since π∗ψ−1

T ∗ is one–to–one, such a choice
is always possible.

To conclude the proof of Theorem 1 we have to prove that ξ̂ is a strict
minimizer. Assume C(ξ, u) = C(ξ̂, û). Since x̂T is a strict minimizer for F ,
then ξ(T ) = x̂T and equality must hold in (23):〈

Hs(ψ−1
s (ξ(s))), ξ̇(s)

〉
− f0(ξ(s), u(s)) = Hs(Hs(ψ−1

s (ξ(s)))).

By regularity assumption, u(s) = û(s) for any s at least in a left neighborhood
of T , hence ξ(s) = ξ̂(s) and ψ−1

s (ξ(s)) = !̂0 for any s in such neighborhood. u
takes the value û|(θ̂1J1 ,T ) until Hsψ−1

s (ξ(s)) = Hs(!̂0) = λ̂(s) hits the hyper-

surface K1,J1 = K1,J1−1, which happens at time s = θ̂1,J1 . At such time, again
by regularity assumption, u must switch to û(θ̂1,J1−1,θ̂1,J1 ), so that ξ(s) = ξ̂(s)

also for s in a left neighborhood of θ̂1,J1 . Proceeding backward in time, with an
induction argument we finally get (ξ(s), u(s)) = (ξ̂(s), û(s)) for any s ∈ [0, T ].

4 Appendix: Invertibility of piecewise C1 maps

The straightforward proof of the following fact is left to the reader.

Lemma 6. Let A and B be linear automorphisms of Rn. Assume that for
some v ∈ Rn, A and B coincide on the space {x ∈ Rn : 〈x, v〉 = 0}. Then, the
map LAB defined by x �→ Ax if 〈x, v〉 ≥ 0, and by x �→ Bx if 〈x, v〉 ≤ 0, is a
homeomorphism if and only if det(A) · det(B) > 0.
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Let G : Rn → Rn be a continuous, piecewise linear map at 0, in the
sense that G is continuous and there exists a decomposition S1, . . . , Sk of Rn

in closed polyhedral cones (intersection of half spaces, hence convex) with
common vertex in the origin and such that ∂Si ∩ ∂Sj = Si ∩ Sj , i �= j, and
linear maps L1, . . . , Lk with

G(x) = Lix x ∈ Si, i = 1, ..., k

with Lix = Ljx for any x ∈ Si ∩ Sj .
It is easily shown that G is proper, and therefore deg(G,Rn, p) is well-

defined for any p ∈ Rn (the construction of [9] is still valid if the assumption
on the compactness of the manifolds is replaced with the assumption that G
is proper). Moreover deg(G,Rn, p) is constant with respect to p. So we shall
denote it by deg(G).

We shall also assume that detLi > 0 for any i = 1, . . . , k.

Lemma 7. If G is as above, then deg(G) > 0. In particular, if there exists
q �= 0 such that its preimage belongs to at most two of the convex polyhedral
cones Si and G−1(q) is a singleton, then deg(G) = 1.

Proof. Let us assume in addition that q /∈ ∪ki=1G
(
∂Si

)
. Observe that the set

∪ki=1G
(
∂Si

)
is nowhere dense hence A1 := G(S1)\∪ki=1G

(
∂Si

)
is non–empty.

Take x ∈ A1 and observe that if y ∈ G−1(x) then y /∈ ∪ki=1∂Si. Thus

deg(G) =
∑

y∈G−1(x)

sign det dG(y) = #G−1(x). (29)

Since G−1(x) �= ∅ the first part of the assertion is proved. The second part of
the assertion follows taking x = q in (29).

Let us now remove the additional assumption. Let {p} = G−1(q) be such
that p ∈ ∂Si ∩ ∂Sj for some i �= j. Thus one can find a neighborhood V of
p, with V ⊂ int(Si ∪ Sj \ {0}). By the excision property of the topological
degree deg(G) = deg(G,V, p). Let LLiLj

be a map as in Lemma 6. Observe
that, the assumption on the signs of the determinants of Li and Lj imply
that LLiLj is orientation preserving. Also notice that LLiLj |∂V = G|∂V . The
multiplicativity, excision and boundary dependence properties of the degree
yield 1 = deg(LLiLj

) = deg(LLiLj
, V, p) = deg(G,V, p). Thus, deg(G) = 1, as

claimed.

Let σ1, . . . , σr be a family of C1–regular pairwise transversal hyper-
surfaces in Rn with ∩ri=1σi = {x0} and let U ⊂ Rn be an open and bounded
neighborhood of x0. Clearly, if U is sufficiently small, U \∪ri=1σi is partitioned
into a finite number of open sets U1, . . . , Uk.

Let f : U → Rn be a continuous map such that there exist Fréchet differ-
entiable functions f1, . . . , fk in U with the property that

f(x) = fi(x) x ∈ U i, i = 1, ..., k, (30)
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with fi(x) = fj(x) for any x ∈ U i∩U j . Notice that such a function is PC1(U),
hence locally Lipschitz continuous (see [7]).

Let S1, . . . , Sk be the tangent cones at x0 to the sets U1, . . . , Uk, (by the
transversality assumption on the hyper–surfaces σi each Si is a convex poly-
hedral cone with non empty interior) and assume dfi(x0)x = dfj(x0)x for
any x ∈ Si ∩ Sj . Define

F (x) = dfi(x0)x x ∈ Si. (31)

so that F is a continuous piecewise linear map (compare [7]).
One can see that f is Bouligand differentiable and that its B-derivative

is the map F (compare [7, 10]). Let y0 := f(x0). There exists a continuous
function ε, with ε(0) = 0, such that f(x) = y0 +F (x−x0)+ |x−x0|ε(x−x0).

Lemma 8. Let f and F be as in (30)–(31), then there exists ρ > 0 such that
deg

(
f,B(x0, ρ), y0

)
= deg

(
F,B(0, ρ), 0

)
. In particular, if det dfi(x0) > 0,

then F is proper and deg
(
f,B(x0, ρ), y0

)
= deg(F ).

Proof. Consider the homotopy H(x, λ) = F (x − x0) + λ |x− x0| ε(x − x0),
λ ∈ [0, 1] and observe that m := inf{|F (v)| : |v| = 1} > 0, F being invertible.
Thus,

|H(x, λ)| ≥
(
m− |ε(x− x0)|

)
|x− x0| .

This shows that in a conveniently small ball centered at x0, homotopy H is
admissible. The assertion follows from the homotopy invariance property of
the degree.

Let f and F be as in (30)–(31) and assume det dfi(x0) > 0. Assume also
that there exists p ∈ Rn \ ∪ki=1F (∂Si) such that F−1(p) is a singleton. From
Lemmas 7–8, it follows that deg(f,B(x0, ρ), y0) = 1 for sufficiently small
ρ > 0. By Theorem 4 in [10], we immediately obtain

Theorem 3. Let f and F be as in (30)–(31) and assume det dfi(x0) > 0.
Assume also that there exists p ∈ Rn \ ∪ki=1F (∂Si) such that F−1(p) is a
singleton. Then f is a Lipschitzian homeomorphism in a sufficiently small
neighborhood of x0.
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Modelling Energy Markets with Extreme
Spikes
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Summary. This paper suggests a new approach to model spot prices of electricity.
It uses a shot-noise model to capture extreme spikes typically arising in electricity
markets. Moreover, the model easily accounts for seasonality and mean reversion. We
compute futures prices in closed form and show that the resulting shapes capture a
large variety of typically observed term structures. For statistical purposes we show
how to use the EM-algorithm. An estimation on spot price data from the European
Energy Exchange illustrate the applicability of the model.

1 Motivation

It is well-known that as many other commodities electricity prices exhibit
strong seasonalities. Besides this, due to the difficulty of storing electricity
and inelastic demand, electricity spot prices show extremely strong spikes.
The spot price data shown in Figure 1 clearly confirms this. In this paper, we
propose a model which naturally captures this spiking behaviour. The model
uses a type of shot-noise which is particularly suited for electricity spikes. It
is furthermore simple enough to allow for closed-form solutions of futures and
other power derivatives.

It is important to mention that electricity markets are young and small
markets. For example, in Germany it is possible to trade electricity since 2000
and currently there are about 150 market participants trading at the European
Energy Exchange, Leipzig1. Electricity prices have a number of features which
are necessary to capture by a good model.

First, the necessity for using a model incorporating jumps is underlined
in [7] or [20]. There are two approaches, which are closely related to the
model presented here. In [10] a model is proposed, where the jump component
jumps up until a exogenously level is reached and thereafter jumps down. The
approach of [4] is a special case of ours. The authors use a jump-diffusion
1 158 participants from 19 countries, cited from the webpage www.eex.de on Jan-

uary 2007.
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to capture the spikes and the mean reversion. For an overview of existing
literature on electricity models we refer to these papers. An approach using
Lévy processes may be found in [2]. In contrast to the Lévy approach, the shot-
noise modelling allows for an easier estimation: an efficient tool for estimating
shot-noise models is the EM-algorithm. We derive the necessary densities and
apply the model to electricity prices in Section 4.

Fig. 1. The spot prices of energy (base load) quoted from the European Energy
Exchange (www.eex.de).

The proposed model generalizes [4] and offers more flexibility in capturing
the statistical properties of the spot price as well as in calibrating to the
futures curve. On the other side, the approach to modelling spikes seems
more natural as in [10], and in contrast to this model, we are able to compute
prices of derivatives in closed form.

It seems important to note the specific characteristics of futures traded
on electricity markets in contrast to futures, for example, from interest rate
markets2. Electricity futures offer delivery of electricity over a certain period,
typically a month, a quarter or a year. In a certain way this is a practica-
ble approach to insure against extreme price fluctuations, because the payoff
smoothes singular effects like spikes. On the other side, futures with a yearly

2 See, for example, the European Energy Exchange (EEX) Contract Specifications,
downloadable from www.eex.de.
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delivery period also loose the dependence on the seasonalities. We take this
into account and derive prices of futures on electricity markets.

2 Setup

Consider a filtered probability space (Ω,F , (Ft)t≥0,P) which admits a Brow-
nian motion (Wt)t≥0, a Poisson process (Nt)t≥0 and iid rvs Yi, i = 1, 2, . . . , all
independent of each other. We generalize simple shot-noise approaches as eg
in [1] in a way suitable for electricity spot prices. A close analysis of electricity
prices reveals that the arising spikes either have an up-jump and then a strong
decline or a sharp rise followed by a strong decline. The following function h
will be able to capture this behaviour. For more general types of shot-noise
processes we refer to [16].

For a, b > 0 define h : (R+)2 × R :�→ R+ by3

h(t, γ, Y ) := Y ·
{

exp(a(t− γ)) if 0 ≤ t < γ,
exp(−b(t− γ)) if t ≥ γ.

Y is the jump height and typically will be positive, while not necessarily. For
γ = 0 this resembles simple shot-noise as a special case. If γ > 0, then h
jumps at zero to Y exp(−aγ), then rises to Y at γ and thereafter it declines
exponentially. For the shot-noise component we propose

Jt :=
∑
τi≤t

h(t− τi, γi, Yi). (1)

Example 1. A simple example would be to assume that γi ∈ {0, γ̃} with pγ :=
P(γ1 = 0). In this case one has classical shot-noise with probability pγ and
the “steep rise followed by sharp decline” case with probability 1− pγ .

The diffusive part is responsible for mean-reversion and seasonalities. As
the focus of the paper is mainly on the jump part, we stay quite simple in the
assumptions on the diffusion. Assume that D is the strong solution of

dDt = κ(θ(t)−Dt)dt+ σdBt, (2)

where B is a standard Brownian motion. Under the above specification we
say that

S = D + J

follows a Vasicek/shot-noise process with parameters (a, b, fγ , fY , λ, κ, θ(·), σ).
The process given in (2) is the well-known dynamics proposed by [19] for

interest rate models. This process has a stochastic mean-reversion to the level
θ(t). A different form of mean-reversion is obtained, ifDt = θ(t)+D̃t is chosen,
3 We set R+ := {x ∈ R : x ≥ 0}.
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where D̃t is mean-reverting to the level 0. This was done in [4]. Contrary, in the
stochastic mean-reversion, as chosen here, the mean reversion speed depends
on the distance of D to the mean reversion level. Thus, if |θ(t)−Dt| is large,
the process is pulled strongly back towards (θ), while if this difference is low,
the mean-reversion is not so strong.

It is straightforward to extend the given setup to more general dynamics
of D. For example, using the formulas obtained in [9], one immediately ob-
tains closed-form solutions for electricity futures using generalized quadratic
models for the diffusive part. For example, the well-known CIR-Modell (see
[5]) moreover guarantees positivity of D. In contrast to interest rate-models,
polynomials of order higher than two can also be considered4.

2.1 Changing measure

On one side, statistical estimation, as we consider in Section 4, is always done
under the real-world measure P while on the other side pricing of derivatives
takes place under the risk-neutral measure Q. There is a vast of literature
on specific choices of the risk-neutral measure. However, in this paper we
consider a rather pragmatic approach which serves the need of applicability
on one side and retains a reasonable amount of flexibility on the other side:
we assume that the chosen model retains its structure while changing from P
to Q although it of course will have different parameter values under Q.

The Girsanov theorem5 gives all possible changes of measure. For our
purposes, we restrict to a sufficiently flexible measure change. Define Lt :=
e(dQdP |Ft), t ≥ 0 and assume that L is given by

Lt =
∏
τi≤t

( λ̃f̃Y (Yi)
λfY (Yi)

)
exp

(
−
∫ t

0

a(s)dWs +
∫ t

0

(b− 1
2
a2(s))ds

)
, (3)

where a(s) = (θ(t) − θ̃(t))σκ−1 for a deterministic function θ̃(t) and b =∫
(λ̃f̃Y (z)−λfY (z))dz. The following result precisely states the obtained model

under Q.

Proposition 1. Assume that S is a Vasicek/shot-noise process with parame-
ters (a, b, fγ , fY , λ, κ, θ(·), σ) under P and the measure change dQ/dP is given
by the likelihood process in (3). Then S is a Vasicek/shot-noise process under
Q with parameters (a, b, fγ , f̃Y , λ̃, κ, θ̃(·), σ).

Intuitively spoken, this means that under Q, (Wt+
∫ t
0
a(s)ds)t≥0 is a stan-

dard Brownian motion, N is a Poisson process with intensity λ̃. The distribu-
tion of Y may be changed in a quite general fashion, provided they are still
equivalent. For practical purposes it might be reasonable to choose a para-
metric family and assume that the parameters change from P to Q while the
4 The degree problem in interest rate models was observed in [8].
5 Compare [14] for a suitably general version.



Modelling Energy Markets 363

Y stays in the parametric family. We assume the distribution of γ does not
change to retain the shot-noise type. However, it is straightforward to also
incorporate a change of the distribution of γ.

Proof. The claim follows directly from the Girsanov theorem. First, note that
a, b, σ and κ do not change under equivalent measure changes. Second, (Wt+∫ t
0
a(s)ds)t≥0 is a Q-Brownian motion and hence

dDt = κ(θ(t)− σθ(t) + θ̃(t)
σ

−Dt)dt+ σ(dWt + a(t)dt)

= κ(θ̃(t)−Dt)dt+ σ(dWt + a(t)dt).

Furthermore, the jump component of L immediately reveals that Yi, i ≥ 1 are
again i.i.d. under Q with densities f̃Y ; moreover N is a Poisson process with
intensity λ̃ (see, for example, [3], Section VIII.3, Theorem T10). This yields
the claim. ��

It is important to note that there is no kind of no-arbitrage restriction on
Q as the spot price, which is modeled here, is not a traded asset; see also the
next section for further details. Any other asset what we consider later on will
be an expectation of its discounted payoffs under Q and hence by definition
be in line with no-arbitrage.

Thanks to Proposition 1, we can consider from now on Vasicek/shot-noise
processes under P as well as under Q. Note that, still, estimated parameters
are under P while parameters for pricing as well as calibrated parameters are
under Q throughout and typically do not coincide. A comparison analysis of
calibrated prices with estimated parameters could clarify on the market prices
or risk chosen by the market and would make a link possible.

2.2 Pricing of electricity futures

To price electricity futures we mainly follow Teichmann (2005), hence we
assume that futures are traded for time-to-maturity of at least a small value,
say ε. As fluctuations in electricity markets are quite large in comparison to
interest rate markets, it is reasonable to assume zero interest rates. Then the
futures price of a contingent claim X is eQ(X|Ft), where the expectation is
taken under an equivalent martingale measure Q.

The futures actually traded in electricity markets are not futures on a
single spot rate. Instead, they offer electricity for a certain period of length L.
More precisely, the future offers delivery of electricity in the period [T, T +∆],
with the value ∑

Ti∈[T,T+∆]

STi

where Ti ∈ [T, T +∆] refers to the respective trading days in the period under
consideration. We assume that the mesh of the trading days is equidistant,
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i.e. Ti − Ti−1 := δ for all i. In the following, we approximate the sum by an
integral,

∑
Ti∈[T,T+∆] STi

≈ 1
δ

∫ T+∆

T
Su du. This is not necessary and is just

used to simplify the formulas. It is an easy exercise to compute the explicit
formulas for

∑
Ti∈[T,T+∆] STi

instead of the integral.
Using the approximation we consider the following futures price:

F (t, T,∆) =
1
δ

eQ
(∫ T+∆

T

Sudu|Ft
)
.

We take this formula as a starting point and compute futures prices under
the proposed shot-noise model. First, notice that as S is a sum of a diffusive
and a shot-noise part, for pricing the futures it is sufficient to price the diffu-
sive and the shot-noise part separately. As already mentioned, it is therefore
straightforward to incorporate more general dynamics for D. Later on, in Ex-
ample 2 case (3.) we also show how to consider an exponential model for D.
In particular in the german market, spot prices show higher volatilities for
higher prices, which can be captured well by an exponential model. This is
not the case in the model considered in [2].

From now on, assume that S is a Vasicek/shot-noise model with param-
eters (a, b, fγ , fY , λ, κ, θ(·), σ) under Q. First, we give an auxiliary lemma. It
basically shows how to compute certain expectations of shot-noise processes
on different levels of generality. For an U [0, 1]-distributed rv, independent of
γ1 and Y1, define

S̄(t) := eQ
(
h
(
t(1− U1), γ1, 1

))
.

Furthermore, we set Ȳ := e(Y1). Throughout we assume Ȳ , S̄(t) < ∞ for all
t ≥ 0.

Lemma 1. Consider t,∆ > 0 and a function h : [0,∞)2 × R �→ R. For the
shot-noise process J , defined in (1) we have that

eQ(Jt) = λtȲ S̄(t), eQ

(∫ t+∆

t

Judu

)
= λȲ

∫ t+∆

t

uS̄(u) du.

This small lemma illustrates the typical procedure for computing expectations
of shot-noise processes. First, one conditions on the number of jumps in the
desired interval. Second, under this condition the jump-times are distributed
as order statistics of i.i.d. uniformly distributed random variables Ui. Third,
using the i.i.d. property of the other ingredients, on can interchange the order
of the Ui and finally ends up with a nice formula.

Proof. We have that

eQ(Jt) =
∑
k≥0

e−λt
(λt)k

k!
eQ

( k∑
i=1

h
(
t− tUi:k, γi, Yi

))
,
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where U1, U2, . . . are i.i.d. U [0, 1]. As the random variables γi and Yi are also
i.i.d. one can interchange the order of the second sum and obtains

eQ(Jt) =
∑
k≥0

e−λt
(λt)k

k!
eQ

( k∑
i=1

Yi h
(
t− tUi, γi, 1

))
.

The expectation equals kȲ S̄(t) and the first result follows. The second asser-
tion follows by interchanging expectation and the integral. ��

Denote the Laplace-Transform of γ1 by ϕγ(c) := eQ(exp(−cγ1)) and as-
sume φγ(c) <∞ at least for c ∈ {a,−b}.

Theorem 1. The price of the electricity future offering electricity in the time-
period [T, T +∆] at t ≤ T − ε, which we denote by F (t, T, T +∆), computes
according to:

δ · F (t, T, T +∆) = F̃ (t, T, T +∆)

+ λ∆Ȳ
[
∆
(1− ϕγ(a)

a
+

1
b

)
+
ϕγ(−b)e−b(T−t)

b2

(
e−b∆ − 1

)]

− Dt
κ

(
e−κ(T+∆) − e−κT

)
+ κ

T+∆∫
T

∫ u

t

eκsθ(s) ds du, (4)

where we denote the Ft-measurable part of shot-noise component by

F̃ (t, T, T +∆) :=
∫ T+∆

T

∑
τi≤t

h(u− τi, γi, Yi)du.

The term F̃ captures the part of the past shot-noise effects. In practice, if the
market at t is not in a extreme spike, F̃ can be safely neglected.

Proof. Following [18], the price of the future is given by an expectation under
the risk-neutral martingale measure Q. Hence6,

δ · F (t, T, T +∆) = et
( T+∆∫
T

Su du
)

= et
( T+∆∫
T

Du du
)

+ et
( T+∆∫
T

Ju

)
.

We first consider the expectation of the diffusive part and second the expecta-
tion of the shot-noise part. It is well-known7 that (2) has the following explicit
solution:

Dt = e−κt
(
D0 + κ

∫ t

0

eκsθ(s)ds
)

+ σ
∫ t

0

eκ(s−t)dBs.

6 We use the short notation et(·) for eQ(·|Ft).
7 For example, see [17].
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Then, for u > t we obtain Du = e−κu(Dt+κ
∫ u
t
eκsθ(s)ds)+σ

∫ u
t
eκ(s−u)dBs,

such that∫ T+∆

T

et(Du) du = −Dt
κ

(
e−κ(T+∆) − e−κT

)
+ κ

∫ T+∆

T

∫ u

t

eκsθ(s) ds du.

Second, consider the shot-noise part. Observe that

et
(∫ T+∆

T

Ju du
)

=
∫ T+∆

T

et
(∑
τi>t

h(u− τi, γi, Yi)
)
du

+
∫ T+∆

T

∑
τi≤t

h(u− τi, γi, Yi)du.

As a Poisson process has independent and stationary increments, the expec-
tation on the r.h.s. computes to

et
( ∑
t<τi≤u

h(u− τi, γi, Yi)
)

= eQ
( Nu∑
i=Nt+1

h(u− τi, γi, Yi)
)

= eQ
(Nu−t∑
i=1

h(u− t− τi, γi, Yi)
)

= e(Ju−t).

This expectation can be computed using Lemma 1. We therefore compute S̄:

S̄(t) = eQ

(
ea[t(1−U1)−γ1]1{t(1−U1)∈[0,γ1]} + e−b[t(1−U1)−γ1]1{t(1−U1)>γ1}

)
=
∫ ∞

0

[ ∫ 1−v/t

0

e−b[t(1−u)−v]du+
∫ 1

1−v/t
ea[t(1−u)−v]du

]
Fγ(dv),

where the distribution of γ is denoted by Fγ . Computing the integrals we
obtain that

S̄(t) =
∫ ∞

0

[
1
bt

(
1− e−b(t−v)

)
+

1
at

(
1− e−av

)]
Fγ(dv)

=
1
bt

(
1− e−btϕγ(−b)

)
+

1
at

(
1− ϕγ(a)

)
.

Finally, we have to compute the following integrals of S̄:∫ T−t+∆

T−t
uS̄(u) du =

∫ T−t+∆

T−t

[1− e−buϕγ(−b)
b

+
1− ϕγ(a)

a

]
du

= ∆
(1− ϕ(a)

a
+

1
b

)
+
ϕγ(−b)e−b(T−t)

b2

(
e−b∆ − 1

)
.

Using Lemma 1 with the above expressions proves the theorem.
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Coming back to the simple case in Example 1 where γ was zero with
probability pγ and γ̃ otherwise, we obtain a simple Laplace transform as
ϕγ(c) = pγ + (1− pγ) exp(−cγ̃). Of course, there are many other possibilities
where the Laplace transform is obtained in closed form (eg. Beta distribution,
log-normal distribution or others).

Example 2. There are several interesting special cases or modifications of the
above setting:

1. If θ(u) = θ, then the second line in (4) simplifies considerably to

θ∆− Dt − θ
κ

(
e−κ(T+∆−t) − e−κ(T−t)

)
.

2. For incorporating seasonalities one frequently uses a mean-reversion level
similar to θ(s) = sin(ωs). In this case we have that

κ

∫ T+∆

T

∫ u

t

eκsθ(s) ds du =
κ

(κ2 + ω2)2

(
ω∆ cos(ωt)eκt(κ2 + ω2)

+ eκ(∆+T )
(
(κ2 − ω2) sin((T +∆)ω)− 2κω cos(ω(T +∆))

)
− κ∆ sin(ωt)eκt

(
κ2 − ω2

)
+ eκT

(
2κω cos(ωT ) + sin(ωT )(ω2 − κ2)

))
.

And hence we also obtain a closed-form expression for θ(s) = ω0 +
sin(ω1s) + sin(ω2s).

3. The chosen Gaussian mean-reverting Diffusion may become negative. If
the parameters are suitably chosen this probability might be small, but
still positive. To overcome this difficulty one can use St = exp(Dt) + Jt.
It is also straightforward to compute the price of the future in this case
as then

et(Du) = exp(Dt)et
(
exp(Dt −Du)

)
= exp

(
− Dt
κ

(
e−κ(T+∆) − e−κT

)
+ κ

∫ T+∆

T

∫ u

t

eκsθ(s) ds du

+
1
2
σ2

∫ T+∆

t

(∫ T+∆

T∨s
eκ(s−u)du

)2

ds

)
,

where the last line computes to

1
2
σ2

{
4e−κ(T+∆−t) − 3− e−2κ(T+∆−t) +

(
e∆κ − 1

)2 (1− e−2κ(T+∆−t))
2κ3

+
T +∆− t

κ2

}
.
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3 Illustration

Fig. 2. Simulations of the proposed shot-noise process over a horizon of 5 years.
The parameters are as given above. The jump height Yi ∼ 10 + 5 ∗ Ỹ 2

i , where Ỹi are
i.i.d. t-distributed with 3 degrees of freedom. Note that this specification does not
include any seasonalities.
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In this section we give some simulated paths, which illustrate the prop-
erties of the model. It should be noted that if the model is used for pricing,
the specification under the risk-neutral measure matters. As used in Propo-
sition 1, from a practical viewpoint it is reasonable that the model follows a
Vasicek/shot-noise process under P as well as under Q, of course with different
parameters.

We assume constant θ, i.e. no seasonality. The seasonalities have been
discussed deeply in the literature, compare for example [12], [4] or [10]. As
noted in [10], it might be profitable to choose a non-constant λ.

In Figure 2 we give several paths of the proposed model under the speci-
fications in (1) and (2). It is clearly seen that the shot-noise model is mean-
reverting (in this case to the constant level θ = 20) and the spikes capture the
empirically observed up-and-down shape.

In Figure 3 we give examples of computed futures price which illustrate
the large variety of shapes which can be captured by the proposed model.
Here we use θ(t) = ω0 + sin(ω1t) which in turn leads to the wavy structure
of the futures curves. The left picture gives an example of a decreasing term
structure. This is due to the different diffusion levels D0. Note that the effect
of F̃ , thus the effect of past spikes declines rapidly due to the fast decay rate
of the shot noise. Therefore the influence of a high spot electricity due to a
spike on the futures curve is quite low, as it should be. The right plot shows
an example of an increasing term structure. This is due to an increasing mean
reversion level, such that the spot prices are expected to increase and therefore
also the futures.

4 Estimation

One of the main points is of course estimation of the proposed model from his-
torical data. This sections explores the use of the EM-algorithm for estimating
shot-noise processes. The estimation of seasonalities is quite standard and we
refer to [11] for further reading. It therefore remains to estimate the shot-noise
as well as the diffusive part; a plot of the data after removal of seasonalities
is given in Figure 4. We first give a short outline of the EM-algorithm in
our setting, and provide the estimation results on daily data provided by the
EEX8. Note that estimation always takes place under the real-world measure
P.

4.1 The EM-algorithm

Consider a pair of r.v. X = (Y,Z), Y ∈ Rn, Z ∈ Rm. Think of Y as observable
quantities, and Z of unobservable quantities. The aim is to estimate the dis-
tribution of Y w.r.t. a parametric family {fY (·;φ) : φ ∈ Θ ⊂ Rd}. However,

8 EEX- European Energy Exchange, www.eex.de
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Fig. 3. Computed futures prices F (0, T, ∆) with ∆ = 1 month for the model as in
Figure 2, but with seasonality of the type θ(t) = ω0 + sin(ω1t). Maturity T varies
from 0 to 5 years. Left: futures price for varying D0 = 5, 10, . . . , 30. Right: futures
price for varying ω0 = 0.02, . . . , 0.1.

the ML-estimate of Y might not always be at hand, such that we need to
make use of Z. The EM-algorithm maximizes the density of X = (Y,Z) w.r.t.
the distribution of Z which is iteratively improved.

To this, let

L(φ; φ̃) := eφ̃
(

ln fX(y, z;φ)|Y = y
)

=
∫

ln fX(y, z;φ) fZ|Y (z|y; φ̃)dz.

By Bayes’ rule we are able to compute the conditional density of Z given Y :

fZ|Y (z|Y ;φ) ∝ fY |Z(y|z;φ) fZ(z;φ).

With this notation at hand we are able to state the EM-algorithm. Fix an
initial value φ0. The iteration φk → φk+1 consists of two steps:

E-Step Compute L(φ;φk)
M-Step Choose φk+1 as maximizer of L(φ;φk):

φk+1 := arg max
φ∈Θ

L(φ;φk).
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Fig. 4. The spot prices of energy (base load) after removal of seasonalities. Compare
also Figure 1.

These steps are repeated until |fY (φk+1)− fY (φk)| < ε.
Of course, the computation of L(φ;φk) might be far from trivial depending

on the considered model. For a large number of examples and applications we
refer to [13]. The convergence of the EM-algorithm is proved in [21].

4.2 Application to the proposed model

The application of the EM-algorithm to the proposed model is done as follows.
We consider Example 1 and are interested in estimating the parameter vector
φ = (κ, σ, a, b, c, λ, pγ)� and we assume that the distribution of Y1 is described
by a parameter c, i.e. Y1 ∼ fY (·; c). The observation consists of spot prices9,
for which we write S = (S1, . . . , Sn). Meanwhile Si is a sum of a diffusive
part and a shot-noise part, s.t. Si = Di + Ji. In the formulation of the EM-
algorithm we therefore consider X = (S,N, J), with Nt =

∑
τi≤t. Note that

S is observable and N, J are not. Clearly, D = S − J .
We make the assumption that jumps occur directly at the considered time

points and at a specific time point at most one jump occurs. This is reasonable
if the chosen time grid is fine enough. Denote the time step by ∆. To compute
the likelihood function L it is sufficient to have the common density of S, N
and J . Due to the dynamic nature of the processes we compute the density
iteratively by

9 Formally, we of course observe data on a certain time scale t1, . . . , tn such that the
observations are St1 , . . . , Stn , which we do not consider for expository purposes.
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fXn
=

n∏
i=1

fXi|Xi−1,...,X1(xi|xi−1, . . . , x1).

First, observe that the Euler discretisation of (2) immediately gives that

Di|Di−1 ∼ N (Di−1(1− κ∆), σ2∆).

Second, as N is a Poisson(λ)-process, we have that

P(Ni = Ni−1|Ni−1) = exp(−λ∆).

As the third and last step we give the distribution of J given N . Note that the
process is piecewise deterministic. The process J is not Markovian if a �= 0.
In the literature techniques for piecewise deterministic Markov processes have
been applied to shot-noise processes of this type, compare [6]. We treat the
two cases separately.

Markovian case

Assume that a = 0. Then J is Markovian. Note that Ji is a deterministic
function of Ji−1 if no jump occurs, as in this case Ji = Ji−1 exp(−b∆). Oth-
erwise, if a jump occurred at time i, which is equivalent to Ni > Ni−1, then
Ji = Ji−1 exp(−b∆) + Y·, where the Y· are i.i.d. with density fY . We obtain

dfJi|Ji−1(ji) =

{
δ{ji=ji−1 exp(−b∆)}, if Ni = Ni−1

fY
(
ji − ji−1 exp(−b∆)

)
dji, otherwise.

Non-Markovian case

If a is not zero, the case is more complicated. We just consider the case of
Example 1, more general cases following similarly. Now we have to distinguish
more cases. To begin with, note that there are two kinds of jumps. Jumps,
where also γ· = 0 (which we call jumps of type 1) and jumps where γ· = γ̃
(called jumps of type 2). We additionally assume that γ̃ is sufficiently small
such that we may neglect two jumps of type 2 in any interval of length up to
γ̃. This leads to the following cases: first, if no jump of type 1 occurred at i
and the last jump of type 2 is before i− γ̃. Then Ji = Ji−1 exp(−b∆). Second,
if a jump of type 1 occurred at i, hence Ji = Ji−1 exp(−b∆) + Y·. Third, if a
jump of type 2 occurred at j ∈ {i− γ̃, . . . , i}. Then Ji = Jj exp(−b∆(i− j))+
Y· exp(a∆(i− j)). Summarizing we obtain that dfJi|Ji−1(ji) equals⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fY
(
ji − ji−1 exp(−b∆)

)
dji, if Ni > Ni−1 and γNi = 0

fY

((
ji − ji−1 exp(−b∆)

)
exp(−a∆)

)
dji if Ni > Ni−1 and γNi

= γ̃

δ{ji=jj exp(−b∆(i−j))+YNj
exp(a∆(i−j))} if Ni = Nj > Nj−1, γNj = γ̃

δ{ji=ji−1 exp(−b∆)}, otherwise.

With the above densities at hand the EM-algorithm is easily implemented.
In the following section we apply the suggested method to electricity prices
obtained from the EEX.
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4.3 Estimation of the model on EEX data

We directly work on data where the seasonalities have been removed with
standard methods, to illustrate the applicability of the method. A full statis-
tical analysis and comparison with other models is beyond the scope of the
article and will be pursued in future work ([15]).

Fig. 5. Filtered shot-noise process from electricity data. The data consists of spot
prices for base load from the European Energy Exchange, Leipzig.

Parameter κ σ σY µY π1 π2 π3 c

Estimate 0.2865 4.5762 60.34 17.4122 0.838 0.054 0.108 0.95

Table 1. Estimation results for the shot-noise model. See the text for details.

In Figure 5 the analyzed data is plotted as well as the filtered shot-noise
parts. The graph on the top shows the data decomposed in the diffusive part
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(lines) as well as the shot-noise part (circles). The graph on the bottom shows
the shot-noise part only. As there are negative as well as positive jumps in the
time series we assume that the jumps Yi are normally distributed with mean
µY and standard deviation σY .

For simplicity we consider the case with pγ = 0 only. A further simplifica-
tion speeds up the estimation process significantly: assuming that the decay
rate c is high enough (which is reasonable as the intention is to model extreme
spikes by the shot-noise part) the effect of a jump is negligible after a small
number of time steps. Then the diffusive and the jump part can be treated in
one step distinguishing three cases: first, no jump occurs (exponential decay
with rate κ); second, a jump occurred (exponential decay plus jump); third, a
small time interval after the jump (exponential decay at rate κ of the diffusive
part plus exponential decay at rate c of the jump part). Denote the probabil-
ities to be in either case by π1, π2 and π3, respectively. The estimation results
are given in Table 1. π̂1 = 0.838, which corresponds to a jump intensity of
0.77, i.e. an average number of 13 jumps per year. In particular in the end
of 2006 and the beginning of 2007 a large number of spikes were identified.
The volatility of the diffusive part, σ = 4.57, shows the high variation in the
data set. The standard deviation of the jumps, σY = 60.34, is of course much
higher, reflecting the extreme shocks captured by the shot-noise part. Finally,
the decay rate of the jump part, c = 0.95, shows that the shot-noise part
indeed drifts back very fast after occurring jumps.

Of course, the above analysis mainly suffices for an illustration of the con-
cept and shows applicability of the proposed model as well as the estimation
procedure. A deeper statistical analysis as well as a comparison to other mod-
els will be covered in [15].

5 Conclusion

This paper introduces a new model for spot electricity prices which easily cap-
tures the typical properties of electricity prices, namely seasonalities, extreme
spikes and stochastic mean reversion. Moreover, the model allows for closed-
form solutions of futures prices. Due to the flexibility of the model a large
variety of shapes for the term structure of futures prices can be captured. It
is shown how to use the EM-algorithm for statistical estimation of the model.
The model is estimated using data from the European Energy Exchange.
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Generalized Bayesian Nonlinear Quickest
Detection Problems: On Markov Family of
Sufficient Statistics

Albert N. Shiryaev∗

Steklov Mathematical Institute of the Russian Academy of Sciences,
Moscow, Russia. albertsh@mi.ras.ru.

Summary. We consider generalized Bayesian “nonlinear delay penalty” problems
of the quickest detection of spontaneous appearing of “time-change” point θ ∈ [0,∞]
when the observable process changes its probability characteristics. For some classes
of observable processes and penalty functions we describe the structure of the
Markov family of “sufficient statistics” that gives a possibility to apply the meth-
ods of the general Markovian optimal stopping theory to solving of the quickest
detection problems with a “nonlinear delay penalty”.

1 Brownian motion model

To make the main ideas clearer let us consider first a Brownian case, where
observable process X = (Xt)t≥0 has the following structure:

Xt = µ(t− θ)+ + σBt, t ≥ 0, (1)

or

Xt

{
σBt, t ≤ θ,
µ(t− θ) + σBt, t > θ,

(2)

where µ �= 0 and σ > 0 are known constants and θ belongs to the set [0,∞].
We interpret “time-change point” θ as a time when the “disorder” (the “spon-
taneous effect”) has been appeared [1], [2].

In (1), (2) the process B = (Bt)t≥0 is a standard Brownian motion defined
on a filtered probability space (Ω,F , (Ft)t≥0,P). Without loss of generality we
may assume that (Ω,F) is the measurable space (C,C) of continuous functions
ω = (ωt)t≥0, Bt(ω) = ωt, P is the Wiener measure, Ft = Ct = σ{ω : ωs, s ≤
t}. Assuming the canonical setting (Xt(ω) = ωt, t ≥ 0), denote, for fixed θ,
∗ Supported by the Organizing Committee of the Workshop on Mathematical Con-

trol Theory and Finance (Lisbon, April 10–14, 2007) and by Russian Foundation
for Basic Research (grant 05-01-00944).
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by Pθ the distribution of the process X described by (1). Then the system
(Ω, F , (Ft)t∈[0,∞), (Pθ)θ∈[0,∞]) is called a probability-statistical experiment.

If θ = ∞, then the law P∞ is the distribution of the process X under
assumption that the “disorder” never happened, i.e., P∞ = Law(σBt, t ≥ 0).
The law P0 is the distribution of the σ-Brownian motion with (local) drift µ,
i.e., P0 = Law(µt+ σBt, t ≥ 0).

Denote by τ = τ(ω) a finite stopping time with respect to the filtration
(Ft)t≥0, where Ft = σ(ωs, s ≤ t). For every T > 0 we consider the set

MT = {τ : E∞τ ≥ T}, (3)

where E∞τ is the expected time of “sounding of the false alarm”.
The generalized (linear) Bayesian problem as it was defined in [3] is, for

given T > 0, to find a stopping time τ∗T , if it exists, such that∫ ∞

0

Eθ
(
τ∗T − θ

)+
dθ = inf

τ∈MT

∫ ∞

0

Eθ(τ − θ)+ dθ. (4)

This problem of the quickest detection was called in [3] generalized Bayes-
ian, since in (4) parameter θ can be interpreted as a generalized random
variable with the uniform distribution on [0,∞) (with respect to the Lebesgue
measure on [0,∞)).

Remark 1. In the paper [3, Remark 1.1] we explained how the generalized
Bayesian problems can be obtained from Bayesian problems, where θ = θ(ω)
is a random variable with exponential distribution P(θ > t | θ > 0) = e−λt,
P(θ = 0) = π, π ∈ [0, 1), under the special limit transition λ→ 0, α→ 1 such
that (1− α)/λ→ T , where α is a probability of false alarm.

2 Linear-penalty case

For the Brownian model (1) we proved in [3, Lemma 2.1] that in the case of
linear delay penalty ((τ − θ)+, see (4)) for any stopping time τ∫ ∞

0

Eθ(τ − θ)+ dθ = E∞

∫ τ

0

ψt dt, (5)

where the Markov process ψ = (ψt)t≥0 satisfies the stochastic differential
equation

dψt = dt+
µ

σ2
ψt dXt, ψ0 = 0. (6)

Hence the linear delay penalty problem (4) can be reduced to the following
conditional optimal stopping problem for the Markov process ψ = (ψt)t≥0: to
find for every T > 0

inf E∞

∫ τ

0

ψt dt, (7)
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where infimum is taken over the class of stopping times MT = {τ : E∞τ ≥ T}.
From (5)–(7) we see that for the linear case the process ψ = (ψt)t≥0 plays a

role of the Markov “sufficient statistics”. The main aim of the present paper is
to describe the family of sufficient statistics, for some cases of nonlinear delay
penalty (G

(
(τ − θ)+

)
), taking instead of (4) the following criteria: to find a

stopping time τ∗T , if it exists, such that∫ ∞

0

EθG
(
(τ∗T − θ)+

)
dθ = inf

τ∈MT

∫ ∞

0

EθG
(
(τ − θ)+

)
dθ. (8)

3 Nonlinear-penalty case

We assume here that penalty function G = G(t), t ≥ 0, in (8) has the repre-
sentation

G(t) =
∫ t

0

g(s) ds, (9)

where g(s) ≥ 0 is a Lebesgue-measurable function with g(s) = 0 when s < 0.
For τ > θ

G(τ − θ) =
∫ τ−θ

0

g(s) ds =
∫ ∞

0

I(0 ≤ s < τ − θ)g(s) ds

=
∫ ∞

0

I(u < τ)g(u− θ) du.

Therefore,

EθG
(
(τ − θ)+

)
= EθI(τ > θ)G(τ − θ)

= EθI(τ > θ)
∫ ∞

θ

I(u < τ)g(u− θ) du

=
∫ ∞

θ

g(u− θ)EθI(u < τ) du. (10)

For θ ≤ u, taking into account that {u < τ} ∈ Fu, Pθ ∼ Pu, we get

EθI(u < τ) = Eu
dPθ
dPu

I(u < τ) = Eu
d(Pθ|Fu)
d(Pu|Fu)

I(u < τ). (11)

Let

Lt =
d(P0|Ft)
d(P∞|Ft)

be the likelihood (a Radon–Nikodým derivative) of the measure P0|Ft with
respect to the measure P∞|Ft. (Notice that measures P0 and P∞ are singular,
P0 ⊥ P∞, but for each t ≥ 0 the measures P0|Ft and P∞|Ft are equivalent,
P0|Ft ∼ P∞|Ft.) It is well known (see, for example, [4], [5]) that for the
Brownian model (1) (P∞-a.s.)
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Lt = exp
{
µ

σ2
Xt −

1
2
µ2

σ2
t

}
, t ≥ 0, (12)

and, by Itô’s formula,

dLt =
µ

σ2
Lt dXt, t ≥ 0, L0 = 1. (13)

Since Pu(A) = P∞(A) for all A ∈ Fu, we get for θ ≤ u

d(Pθ|Fu)
d(Pu|Fu)

=
d(Pθ|Fu)
d(P∞|Fu)

=
d(Pθ|Fu)
d(P0|Fu)

d(P∞|Fu)
d(P0|Fu)

=
Lu

d(P0|Fu)
d(Pθ|Fu)

. (14)

Note now that in the Brownian model (1) for θ ≤ u

d(P0|Fu)
d(Pθ|Fu)

=
d(P0|Fθ)
d(Pθ|Fθ)

= Lθ. (15)

Hence from (11), (14), and (15) we get that for θ ≤ u

EθI(u < τ) = Eu
Lu
Lθ
I(u < τ) = E∞

Lu
Lθ
I(u < τ). (16)

From (10) and (16) we obtain the following representations:

EθG
(
(τ − θ)+

)
=
∫ ∞

θ

g(u− θ)Eu
Lu
Lθ
I(u < τ) du

=
∫ ∞

0

g(u− θ)E∞
Lu
Lθ
I(u < τ) du

and ∫ ∞

0

EθG
(
(τ − θ)+

)
dθ =

∫ ∞

0

[∫ ∞

0

g(u− θ)E∞
Lu
Lθ
I(u < τ) du

]
dθ

= E∞

∫ τ

0

[∫ ∞

0

g(u− θ)Lu
Lθ
dθ

]
du

= E∞

∫ τ

0

[∫ u

0

g(u− θ)Lu
Lθ
dθ

]
du. (17)

Introduce the notation

Ψu(g) =
∫ u

0

g(u− θ)Lu
Lθ
dθ, u ≥ 0. (18)

Then we see that

inf
τ∈MT

∫ ∞

0

EθG
(
(τ − θ)+

)
dθ = inf

τ∈MT

E∞

∫ τ

0

Ψu(g) du. (19)
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To say more about the structure of the process (Ψu(g))u≥0 for the Brown-
ian model, let us make some additional assumptions about function g = g(t),
t ≥ 0.

We assume that

g(t) =
M∑
m=0

N∑
n=0

cmne
λmttn, (20)

where λ0 = 0. (Cf. the representation for g(t) in [6].)
Consider first the case N = 0:

g(t) =
M∑
m=0

cm0e
λmt = c00 +

M∑
m=1

cm0e
λmt. (21)

From (18) for this case we get

Ψu(g) =
∫ u

0

Lu
Lθ
g(u− θ) dθ

= c00

∫ u

0

Lu
Lθ
dθ +

M∑
m=1

cm0

∫ u

0

eλm(u−θ) Lu
Lθ
du. (22)

Denote
ψu =

∫ u

0

Lu
Lθ
dθ. (23)

From (13) we find

dψu = dLu ·
∫ u

0

dθ

Lθ
+ du =

(
µ

σ2

∫ u

0

Lu
Lθ
dθ

)
dXu + du.

Therefore,
dψu = du+

µ

σ2
ψu dXu. (24)

Similarly, for

ψ(m,0)
u

def=
∫ u

0

eλm(u−θ) Lu
Lθ
du =

∫ u

0

L
(m)
u

L
(m)
θ

du, where L(m)
u = eλmuLu,

we find that

dψ(m,0)
u = dL(m)

u

∫ u

0

dθ

L
(m)
θ

+ du =
(
λm du+

µ

σ2
dXu

)∫ u

0

L
(m)
u

L
(m)
θ

dθ + du.

Hence
dψ(m,0)
u =

(
1 + λmψ(m,0)

u

)
du+

µ

σ2
ψ(m,0)
u dXu. (25)

Thus, if the function g = g(t), t ≥ 0, admits the representation (21), then
the family of sufficient statistics
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ψu, ψ

(1,0)
u , . . . , ψ(M,0)

u

)
u≥0

(26)

forms a Markov system with⎧⎨⎩ dψu = du+
µ

σ2
ψu dXu,

dψ(m,0)
u =

(
1 + λmψ(m,0)

u

)
du+

µ

σ2
ψ(m,0)
u dXu

(27)

and ψ0 = ψ
(m,0)
0 = 0, m = 1, . . . ,M .

Consider now the case M = 0:

g(t) =
N∑
n=0

c0nt
n = c00 +

N∑
n=1

c0nt
n. (28)

If 1 ≤ n ≤ N , we find for

ψ(0,n)
u

def=
∫ u

0

Lu
Lθ

(u− θ)n dθ

that

dψ(0,n)
u = dLu ·

∫ u

0

(u− θ)n
Lθ

dθ + Lu d
(∫ u

0

(u− θ)n
Lθ

dθ

)
=
µ

σ2
ψ(0,n)
u dXu + nψ(0,n−1)

u du, (29)

where ψ(0,0)
u = ψu.

So, in the case (28) we have the following family of sufficient statistics:(
ψu, ψ

(0,1)
u , . . . , ψ(0,N)

u

)
u≥0

,

with ⎧⎨⎩ dψu = du+
µ

σ2
ψu dXu,

dψ(0,n)
u = nψ(0,n−1)

u du+
µ

σ2
ψ(0,n)
u dXu,

(30)

where ψ0 = ψ
(0,n)
0 = 0, 1 ≤ n ≤ N , ψ(0,0)

u = ψu.
This family forms a Markov system.
For general case (20) denote

ψ(m,n)
u =

∫ u

0

Lu
Lθ
eλmu(u− θ)n du. (31)

Then

ψ(m,n)
u =

∫ u

0

L
(m)
u

L
(m)
θ

(u− θ)n du

and for 1 ≤ n ≤ N and 1 ≤ m ≤M

dψ(m,n)
u =

(
λm + nψ(m,n−1)

u

)
du+

µ

σ2
ψ(m,n)
u dXu. (32)

All these considerations lead to the following statement.
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Theorem 1. For the Brownian model (1) and nonlinear delay penalty func-
tion G(u) =

∫ u
0
g(t) dt with g = g(t) given by (20) the system(
ψu, ψ

(m,n)
u , 0 ≤ m ≤M, 0 ≤ n ≤ N

)
u≥0

(33)

forms the Markov family of sufficient statistics.
These statistics are diffusion processes satisfying the stochastic differential

equations (27), (30), (32). The process Ψu(g) =
∑M
m=0

∑N
n=0 cmnψ

(m,n)
u .

4 Examples

(a) If G(t) = t, t ≥ 0 (linear penalty), then there exists only one Markov
sufficient statistics (ψu)u≥0.

(b) If G(t) = t2, t ≥ 0, then g(t) = 2t and

Ψu(g) = 2
∫ u

0

Lu
Lθ

(u− θ) dθ = 2ψ(0,1)
u ,

where
dψ(0,1)
u = ψu du+

µ

σ2
ψ(0,1)
u dXu.

Hence for the quadratic penalty function G(t) = t2 we have a pair of sufficient
statistics (ψu, ψ

(0,1)
u )u≥0 which form a diffusion Markov process.

(c) If G(t) = (eλt − 1)/λ, t ≥ 0, λ > 0, then g(t) = eλt, t ≥ 0. For this
exponential delay penalty function G(t), t ≥ 0, we have one sufficient statistics
ψ

(1,0)
u with

dψ(1,0)
u = (1 + λψ(1,0)

u ) du+
µ

σ2
ψ(1,0)
u dXu.

Remark 2. The Bayesian quickest detection problems with exponential
delay penalty were considered in [7], [8] (for discrete and continuous time,
respectively).

5 Some extensions

Let us analyze the considered Brownian model (1) from the standpoint of its
properties used in the proof of Theorem.

First of all we see that the two “extreme” measures P∞ and P0 play an
essential role. These measures are the distributions of two processes X(∞) =
(X(∞)
t )t≥0 and X(0) = (X(0)

t )t≥0 with

X
(∞)
t = σBt

and
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X
(0)
t = µt+ σBt.

By analogy with these processes introduce for each θ ∈ (0,∞) the process
X(θ) = (X(θ)

t )t≥0 with

X
(θ)
t

{
X

(∞)
t , t ≤ θ,

X
(∞)
θ +

[
X

(0)
t −X

(0)
θ

]
, t > θ.

(34)

Then we see that X(θ) is exactly the process X introduced in (1) under as-
sumption that the “disorder” occurs at time θ.

In our extensions of the Brownian model we make the assumption that,
firstly, there are two (càdlàg) processes X(∞) = (X(∞)

t )t≥0 and X(0) =
(X(0)
t )t≥0 interpreted as the observable processes when θ = ∞ and θ = 0,

respectively, and, secondly, if a “disorder” occurs at time θ ∈ (0,∞), then the
observable process has the structure given in (34).

Remark 3. This is only one (among others) natural (constructive) model
for the description of the structure of the observable process in the presence
of “disorder”. Sometimes it is reasonable to formulate the “disorder” problem
as a problem of the change of some probabilistic characteristics of observable
processes.

For the case of the Brownian model the likelihood process

Lt =
d(P0|Ft)
d(P∞|Ft)

, t ≥ 0,

in whose terms the process Ψu(g), u ≥ 0, was expressed in (18), (22), has the
following structure (see (13)):

dLt = Lt dNt, (35)

where Nt = (µ/σ2) dXt (= (µ/σ2) dBt with respect to the measure P∞).
For the general model (34), where X(∞) and X(0) are càdlàg processes, it

is natural to assume, instead of (35), that the process L = (Lt)t≥0 satisfies
the stochastic differential equation

dLt = Lt− dNt, (36)

where N = (Nt)t≥0 is a (local) martingale (with respect to the measure P∞).
Remark 4. Generally speaking, the question about the possibility to have

the representation (36) for the process L = (Lt)t≥0 is rather complicated. In [5,
Chap. III, §§ 5a–5c] one can find many results about structure of the process L
under different assumptions on measures P0 and P∞. By Theorem 5.35 in [5,
Chap. III] the representation (36) does hold if the (canonical) processes X(∞)

and X(0) have independent increments.
It is well known [5] that if N = (Nt)t≥0 is a semimartingale, then (36)

has (in the class of semimartingales) a unique solution which is given by the
stochastic exponential:
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Lt = L0E(N)t, (37)

where
E(N)t = eNt− 1

2 〈N
c〉t

∏
0<s≤t

(1 +∆Ns)e−∆Ns (38)

and 〈N c〉 is a quadratic characteristic of the continuous martingale part N c

of N .
At the same time, if we start with the process L = (Lt)t≥0, then a process

N = (Nt)t≥0 satisfying (37) can be obtained as a stochastic logarithm Log(L)
of L:

Nt = Log(L)t, (39)

where

Log(L)t =
∫ t

0

dLs
Ls−

. (40)

If L0 = 1, then for Log(L)t we have the following representation [5]:

Log(L)t = logLt +
∫ t

0

d〈Lc〉s
2L2
s−
−

∑
0<s≤t

(
log

Ls
Ls−

+ 1− Ls
Ls−

)
. (41)

For example, suppose, that X(∞) and X(0) are two Poisson processes with
intensities λ(∞) and λ(0). Then (P(∞)-a.s.)

Lt = exp
{
Xt log

λ(0)

λ(∞)
− t

(
λ(0) − λ(∞)

)}
(42)

and

dLt =
(
λ(0)

λ(∞)
− 1

)
Lt−

(
dXt − λ(∞) dt

)
. (43)

Therefore, by (40),

Nt =
(
λ(0)

λ(∞)
− 1

)(
Xt − λ(∞)t

)
. (44)

Analysis of the proof of the identity∫ ∞

0

EθG
(
(τ − θ)+

)
dθ = E∞

∫ τ

0

Ψu(g) du (45)

presented above for the Brownian case (1) shows that this formula also hold,
if in the model (34) the processes X(∞) and X(0) have stationary independent
increments (are PIIS in terminology of [5]) and are such that for each t ≥
0 the measures P0|Ft and P∞|Ft are equivalent. In this case we have also
the representation (36), where N = (Nt)t≥0 is a process with independent
increments [5, Chap. III, Theorem 5.35].
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Assume, in addition to the PIIS assumption for processes X(∞) and X(0),
that function g(t) admits the representation (20). Then for

ψu =
∫ u

0

Lu
Lθ
dθ

we get by Itô’s formula that

dψu = dLu ·
∫ u

0

dθ

Lθ
+ du = Lu−dNu ·

∫ u

0

dθ

Lθ
+ du

= ψu−dNu + du. (46)

Since N = (Nu)u≥0 is the process with independent increments, we see that
the stochastic differential equation

dψu = du+ ψu−dNu (47)

defines a Markov process.
Similarly, for statistics ψ(m,n)

u (see (31)) we get

dψ(m,n)
u =

(
λm + nψ(m,n−1)

u

)
du+ ψ(m,n)

u− dNu. (48)

Therefore, if in the model (34) the processes X(∞) and X(0) are processes with
stationary independent increments such that P0|Ft ∼ P∞|Ft, t ≥ 0, then the
system of statistics (33) (with ψ(m,n)

u dNu instead of (µ/σ2)ψ(m,n)
u dXu) forms

a Markov family of sufficient statistics for optimal stopping problem

inf
τ∈MT

E∞

∫ τ

0

Ψu(g) du.
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Summary. We obtain necessary optimality conditions for a semi-discretized opti-
mal control problem for the classical system of nonlinear partial differential equations
modelling the water-oil (isothermal dead-oil model).
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1 Introduction

We study an optimal control problem in the discrete case whose control system
is given by the following system of nonlinear partial differential equations,⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu−∆ϕ(u) = div (g(u)∇p) in QT = Ω × (0, T ) ,
∂tp− div (d(u)∇p) = f in QT = Ω × (0, T ) ,
u|∂Ω = 0 , u|t=0 = u0 ,

p|∂Ω = 0 , p|t=0 = p0 ,

(1)

which result from a well established model for oil engineering within the frame-
work of the mechanics of a continuous medium [3]. The domain Ω is an open
bounded set in R2 with a sufficiently smooth boundary. Further hypotheses
on the data of the problem will be specified later.

At the time of the first run of a layer, the flow of the crude oil towards
the surface is due to the energy stored in the gases under pressure in the
natural hydraulic system. To mitigate the consecutive decline of production
and the decomposition of the site, water injections are carried out, well before
the normal exhaustion of the layer. The water is injected through wells with
high pressure, by pumps specially drilled to this end. The pumps allow the dis-
placement of the crude oil towards the wells of production. More precisely, the
problem consists in seeking the admissible control parameters which minimize
a certain objective functional. In our problem, the main goal is to distribute
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properly the wells in order to have the best extraction of the hydrocarbons.
For this reason, we consider a cost functional containing different parameters
arising in the process. To address the optimal control problem, we use the
Lagrangian method to derive an optimality system: from the cost function we
introduce a Lagrangian; then, we calculate the Gâteaux derivative of the La-
grangian with respect to its variables. This technique was used, in particular,
by A. Masserey et al. for electromagnetic models of induction heating [1, 7],
and by H.-C. Lee and T. Shilkin for the thermistor problem [5].

We consider the following cost functional:

J(u, p, f) =
1
2
‖u− U‖22,QT

+
1
2
‖p− P‖22,QT

+
β1

2
‖f‖2q02q0,QT

+
β2

2
‖∂tf‖22,QT

. (2)

The control parameters are the reduced saturation of oil u, the pressure p,
and f . The coefficients β1 > 0 and β2 ≥ 0 are two coefficients of penaliza-
tion, and q0 > 1. The first two terms in (2) allow to minimize the difference
between the reduced saturation of oil u, the global pressure p and the given
data U and P . The third and fourth terms are used to improve the quality of
exploitation of the crude oil. We take β2 = 0 just for the sake of simplicity. It
is important to emphasize that our choice of the cost function is not unique.
One can always add additional terms of penalization to take into account
other properties which one may wish to control. Recently, we proved in [8]
results of existence, uniqueness, and regularity of the optimal solutions to the
problem of minimizing (2) subject to (1), using the theory of parabolic prob-
lems [4, 6]. Here, our goal is to obtain necessary optimality conditions which
may be easily implemented on a computer. More precisely, we address the
problem of obtaining necessary optimality conditions for the semi-discretized
time problem.

In order to be able to solve problem (1)-(2) numerically, we use discretiza-
tion of the problem in time by a method of finite differences. For a fixed real
N , let τ = T

N be the step of a uniform partition of the interval [0, T ] and
tn = nτ , n = 1, . . . , N . We denote by un an approximation of u. The discrete
cost functional is then defined as follows:

J(un, pn, fn) =

τ

2

N∑
n=1

∫
Ω

{
‖un − U‖22,Ω + ‖pn − P‖22,Ω + β1 ‖fn‖2q02q0,Ω

}
dx. (3)

It is now possible to state our optimal control problem: find (ūn, p̄n, f̄n) which
minimizes (3) among all functions (un, pn, fn) satisfying
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un+1−un

τ −∆ϕ(un) = div (g(un)∇p) in Ω ,
pn+1−pn

τ − div (d(un)∇pn) = fn in Ω ,
u|∂Ω = 0 , u|t=0 = u0 ,

p|∂Ω = 0 , p|t=0 = p0 .

(4)

The soughtafter necessary optimality conditions are proved in §3 under suit-
able hypotheses on the data of the problem.

2 Notation, hypotheses, and functional spaces

Our main objective is to obtain necessary conditions for a triple
(
ūn, p̄n, f̄n

)
to minimize (3) among all the functions (un, pn, fn) verifying (4). In the sequel
we assume that ϕ, g and d are real valued functions, respectively of class C3,
C2 and C1, satisfying:

(H1) 0 < c1 ≤ d(r), ϕ(r) ≤ c2; |d′(r)|, |ϕ′(r)|, |ϕ′′(r)| ≤ c3 ∀r ∈ R.

(H2) u0, p0 ∈ C2
(
Ω̄
)
, and U, P ∈ L2(Ω), where u0, p0, U, P : Ω → R, and

u0|∂Ω = p0|∂Ω = 0.

We consider the following spaces:

W 1
p (Ω) := {u ∈ Lp(Ω), ∇u ∈ Lp(Ω)} ,

endowed with the norm ‖u‖W 1
p (Ω) = ‖u‖p,Ω + ‖∇u‖p,Ω ;

W 2
p (Ω) :=

{
u ∈W 1

p (Ω), ∇2u ∈ Lp(Ω)
}
,

with the norm ‖u‖W 2
p (Ω) = ‖u‖W 1

p (Ω) +
∥∥∇2u

∥∥
p,Ω

; and the following notation:

W :=
◦
W

2

2q (Ω) ;

Υ := L2q(Ω) ;

H := L2q(Ω)×
◦
W

2− 1
q

2q (Ω) .

3 Main results

We define the following nonlinear operator corresponding to (4):

F : W ×W × Υ −→ H ×H
(un, pn, fn) −→ F (un, pn, fn) ,

where

F (un, pn, fn) =

(
un+1−un

τ −∆ϕ(un)− div(g(un)∇pn), γ0un − u0
un+1−un

τ − div (d(un)∇pn)− fn, γ0p
n − p0

)
,

γ0 being the trace operator γ0un = u|t=0. Our hypotheses ensure that F is
well defined.
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3.1 Gâteaux differentiability

Theorem 1. In addition to the hypotheses (H1) and (H2), let us suppose that

(H3) |ϕ′′′| ≤ c.

Then, the operator F is Gâteaux differentiable and for all (e, w, h) ∈ W ×
W × Υ its derivative is given by

δF (un, pn, fn)(e, w, h) =
d

ds
F (un + se, pn + sw, fn + sh) |s=0

= (δF1, δF2) =
(
ξ1, ξ2
ξ3, ξ4

)
,

ξ1 = e − div (ϕ′(un)∇e) − div (ϕ′′(un)e∇un) −div (g(un)∇w)
−div (g′(un)e∇pn), ξ2 = γ0e, ξ3 = w−div (d(un)∇w)−div (d′(un)e∇pn)−h,
ξ4 = γ0w. Furthermore, for any optimal solution

(
ūn, p̄n, f̄n

)
of the problem of

minimizing (3) among all the functions (un, pn, fn) satisfying (4), the image
of δF

(
ūn, p̄n, f̄n

)
is equal to H ×H.

To prove Theorem 1 we make use of the following lemma.

Lemma 1. The operator δF (un, pn, fn) : W ×W × Υ −→ H × H is linear
and bounded.

Proof (Lemma 1). For all (e, w, h) ∈W ×W × Υ

δunF1(un, pn, fn)(e, w, h)
= e− div (ϕ′(un)∇e)− div (ϕ′′(un)e∇un)
− div (g(un)∇w)− div (g′(un)e∇pn)

= e− ϕ′(un)-e− ϕ′′(un)∇un.∇e− ϕ′′(un)e-un

− ϕ′′(un)∇e.∇un − ϕ′′′(un)e|∇un|2 − g(un)-w − g′(un)∇un.∇w
− g′(un)e-pn − g′(un)∇e.∇pn − g′′(un)e∇un.∇pn ,

where δunF is the Gâteaux derivative of F with respect to un. Using our
hypotheses we have

‖g′′(un)e∇un.∇pn‖2q,Ω ≤ ‖e‖∞,Ω‖∇un.∇pn‖2q,Ω
≤ ‖e‖∞,Ω‖∇un‖ 4q

2−q ,Ω
‖∇pn‖4,Ω

≤ c‖un‖W ‖pn‖W ‖e‖W .

Evaluating each term of δunF1, we obtain

‖δunF1(un, pn, fn)(e, w, h)‖2q,QT

≤ c (‖un‖W , ‖pn‖W , ‖fn‖Υ ) (‖e‖W + ‖w‖W + ‖h‖Υ ) . (5)
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In a similar way, we have for all (e, w, h) ∈W ×W × Υ that

δpnF2(un, pn, fn)(e, w, h) = w − div (d(un)∇w)− div (d′(un)e∇pn)− h
= w − d(un)-w − d′(un)∇un.∇w − d′(un)e-pn

− d′(un)∇e.∇un − d′(un)e∇un.∇pn − h ,

with δpnF the Gâteaux derivative of F with respect to pn. Then, using again
our hypotheses, we obtain that

‖δpnF2(un, pn, fn)(e, w, h)‖2q,Ω ≤ ‖w‖2q,Ω + ‖∇w‖2q,Ω + c‖-w‖2q,Ω
+ c‖∇un.∇w‖2q,Ω + c‖e-pn‖2q,Ω
+ c‖∇e.∇un‖2q,Ω + c‖e∇un.∇pn‖2q,Ω + ‖h‖2q,Ω . (6)

Applying similar arguments to all terms of (6), we then have

‖δpnF2(un, pn, fn)(e, w, h)‖2q,Ω
≤ c (‖un‖W , ‖pn‖W , ‖fn‖Υ ) (‖e‖W + ‖w‖W + ‖h‖Υ ) . (7)

Consequently, by (5) and (7) we can write

‖δF (un, pn, fn)(e, w, h)‖H×H×Υ

≤ c (‖un‖W , ‖pn‖W , ‖fn‖Υ ) (‖e‖W + ‖w‖W + ‖h‖Υ ) .

��

Proof (Theorem 1). In order to show that the image of δF (u, p, f) is equal to
H ×H, we need to prove that there exists (e, w, h) ∈W ×W × Υ such that

e− div (ϕ′(un)∇e)− div (ϕ′′(un)e∇un)
−div (g(un)∇w)− div (g′(un)e∇pn) = α,

w − div (d(un)∇w)− div (d′(un)e∇pn)− h = β,

e|∂Ω = 0 , e|t=0 = b,

w|∂Ω = 0 , w|t=0 = a,

(8)

for any (α, a) and (β, b) ∈ H. Writing the system (8) for h = 0 as

e− ϕ′(un)-e− 2ϕ′′(un)∇un.∇e− ϕ′′(un)e-un − ϕ′′′(un)e|∇un|2,
−g(un)-w − g′(un)∇un.∇w − g′(un)e-pn
−g′(un)∇pn.∇e− g′′(un)e∇un.∇pn = α,

w − d(un)-w − d′(un)∇un.∇w − d′(un)e-pn
−d′(un)∇un.∇e− d′(un)e∇un.∇pn = β,

e|∂Ω = 0, e|t=0 = b,

w|∂Ω = 0, w|t=0 = a,

(9)
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it follows from the regularity of the optimal solution that ϕ′′(un)-un,
ϕ′′′(un)|∇un|2, g′(un)-pn, g′′(un)∇un.∇pn, d′(un)-pn, and d′(un)∇un.∇pn
belong to L2q0(Ω); ϕ′′(un)∇un, g′(un)∇un, g′(un)∇pn, and d′(un)∇un be-
long to L4q0(Ω). This ensures, in view of the results of [4, 6], existence of a
unique solution of the system (9). Hence, there exists a (e, w, 0) verifying (8).
We conclude that the image of δF is equal to H ×H. ��

3.2 Necessary optimality condition

We consider the cost functional J : W ×W × Υ → R (3) and the Lagrangian
L defined by

L (un, pn, fn, p1, e1, a, b) = J (un, pn, fn) +
〈
F (un, pn, fn),

(
p1 a
e1, b

)〉
,

where the bracket 〈·, ·〉 denotes the duality between H and H ′.

Theorem 2. Under hypotheses (H1)–(H3), if
(
un, pn, fn

)
is an optimal solu-

tion to the problem of minimizing (3) subject to (4), then there exist functions
(e1, p1) ∈W 2

2 (Ω)×W 2
2 (Ω) satisfying the following conditions:

e1 + div (ϕ′(un)∇e1)− d′(un)∇pn.∇p1 − ϕ′′(un)∇un.∇e1

−g′(un)∇pn.∇e1 = τ
N∑
n=1

(un − U) ,

e1|∂Ω = 0 , e1|t=T = 0 ,

p1 + div (d(un)∇p1) + div (g(un)∇e1) = τ
N∑
n=1

(pn − P ) ,

p1|∂Ω = 0 , p1|t=T = 0 ,

q0β1τ
N∑
n=1

|fn|2q0−2fn = p1 .

(10)

Proof. Let
(
un, pn, fn

)
be an optimal solution to the problem of minimizing

(3) subject to (4). It is well known (cf. e.g. [2]) that there exist Lagrange
multipliers

(
(p1, a), (e1, b)

)
∈ H ′ ×H ′ verifying

δ(un,pn,fn)L
(
un, pn, fn, p1, e1, a, b

)
(e, w, h) = 0 ∀(e, w, h) ∈W ×W × Υ,

with δ(un,pn,fn)L the Gâteaux derivative of L with respect to (un, pn, fn).
This leads to the following system:
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τ
N∑
n=1

∫
Ω

(
(un − U)e+ (pn − P )w + q0β1|fn|2q0−2fnh

)
dx

−
∫
Ω

((
e− div (ϕ′(un)∇e)− div (ϕ′′(un)e∇un)

−div (g(un)∇w)− div (g′(un)e∇pn)
)
e1

)
dx

−
∫
Ω

(w − div (d(un)∇w)− div (d′(un)e∇pn)− h) p1 dx

−〈γ0e, a〉+−〈γ0w, b〉 = 0 ∀(e, w, h) ∈W ×W × Υ.

The above system is equivalent to the following one:∫
Ω

(
τ

N∑
n=1

(un − U)e− div (d′(un)e∇pn) p1 + e e1 − div (ϕ′(un)∇e) e1

−div (ϕ′′(un)e∇un) e1 − div (g′(un)e∇pn) e1

)
dx

+
∫
Ω

(
τ

N∑
n=1

(pn − P )w + w p1 − div (d(un)∇w) p1 − div (g(un)∇w) e1

)
dx

+
∫
Ω

(
q0β1τ

N∑
n=1

|fn|2q0−2fnh− p1h
)
dx

+〈γ0e, a〉+ 〈γ0w, b〉 = 0 ∀(e, w, h) ∈W ×W × Υ.
(11)

In others words, we have∫
Ω

(
τ

N∑
n=1

(un − U) + d′(u)∇pn.∇p1 − e1 − div (ϕ′(un)∇e1)

+ϕ′′(un)∇un.∇e1 + g′(un)∇pn.∇e1

)
e dx

+
∫
Ω

(
τ

N∑
n=1

(pn − P ) + p1 − div (d(un)∇p1)− div (g(un)∇e1)
)
w dx

+
∫
Ω

(
q0β1τ

N∑
n=1

|fn|2q0−2fnh− p1h
)
dx

+〈γ0e, a〉+ 〈γ0w, b〉 = 0 ∀(e, w, h) ∈W ×W × Υ.

(12)

Consider now the system
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e1 + div (ϕ′(un)∇e1)− d′(un)∇pn.∇p1 − ϕ′′(un)∇un.∇e1

−g′(un)∇pn.∇e1 = τ
N∑
n=1

(un − U) ,

p1 + div (d(un)∇p1) + div (g(un)∇e1) = τ
N∑
n=1

(pn − P ),

e1|∂Ω = p1|∂Ω = 0 , e1|t=T = p1|t=T = 0 ,

(13)

with unknowns (e1, p1) which is uniquely solvable in W 2
2 (Ω) × W 2

2 (Ω) by
the theory of elliptic equations [4]. The problem of finding (e, w) ∈ W ×W
satisfying

e− div (ϕ′(un)∇e)− div (ϕ′′(un)e∇un)− div (g(un)∇w)
−div (g′(un)e∇pn) = sign(e1 − e1) ,

w − div (d(un)∇w)− div (d′(un)e∇pn) = sign(p1 − p1) ,
γ0e = γ0w = 0 ,

(14)

is also uniquely solvable onW 2
2q(Ω)×W 2

2q(Ω). Let us choose h = 0 in (12) and
multiply (13) by (e, w). Then, integrating by parts and making the difference
with (12) we obtain:∫

Ω

(
e− div (ϕ′(un)∇e)− div (ϕ′′(un)e∇un)− div (g(un)∇w)

−div (g′(un)e∇pn)
)
(e1 − e1) dx

+
∫
Ω

(w − div (d(un)∇w)− div (d′(un)e∇pn)) (p1 − p1) dx

+〈γ0e, γ0e1 − a〉+ 〈γ0w, γ0p1 − b〉 = 0 ∀(e, w) ∈W ×W.

(15)

Choosing (e, w) in (15) as the solution of the system (14), we have∫
Ω

sign(e1 − e1)(e1 − e1) dxdt+
∫
Ω

sign(p1 − p1)(p1 − p1) dx = 0 .

It follows that e1 = e1 and p1 = p1. Coming back to (15), we obtain γ0e1 = a
and γ0p1 = b. On the other hand, choosing (e, w) = (0, 0) in (12), we get∫

Ω

(
β1τ

N∑
n=1

|fn|2q0−2fn − p1

)
h dx = 0, ∀h ∈ Υ.

Then (10) follows, which concludes the proof of Theorem 2. ��

We claim that the results we obtain here are useful for numerical im-
plementations. This is still under investigation and will be addressed in a
forthcoming publication.
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Summary. In the present paper we describe a combined methodology used for
modelling and measuring operational risk. Our basic aim is to choose and adjust an
efficient combination of techniques in order to cover a range of problems associated
with OpRisk and justify our choice. We analyze each part of the methodology and
briefly overview some recent results, as well as the prospects of the future research.

1 Operational risk data: models for severity and
frequency

1.1 Introduction. Motivation of the work

During latter decades, the problem of operational risk measurement has been
staying under a thorough attention of practitioners and theorists of actuarial
sciences. Lots of scientific papers devoted to operational risk appeared since
early nineties; quite a number of textbooks and monographs highlight the
whole spectrum of problems associated with OpRisk. Among recently pub-
lished books, [23] can be mentioned as a detailed overview of methods for
OpRisk analysis with examples. Another detailed survey can be found in [7]
which is rather a practical guide to the management of OpRisk.

A variety of methods in the frame of the problem of OpRisk may appear
rather confusing for an analyst facing the problem in practice. That’s why
the choice of the right combination of methods becomes very important. In
the present paper we briefly describe and justify the methodology which we
find effective and appropriate to cover the wide range of problems associated
∗ This work has been done under the financial support by Christian Doppler Labor

http://www.prismalab.at.
The present paper complements and extends basic results included in the arti-
cle by G. Temnov and R. Warnung (2008) ”A Comparison of Loss Aggregation
Methods for Operational Risk”, the Journal of Operational Risk, 3(1):3–23.
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with OpRisk, from the basic capital allocation problem to the problems of the
insurance of OpRisk. We illustrate the application of this methodology basing
on realistic data and analyze the efficiency of the proposed algorithms.

Each part of the combined methodology that we propose was investigated
by different authors, and our contributions can found in [14], [32], [27]. In
the present work we refer to these results and briefly describe the main of
them. Besides, some new problems are outlined and some brief outlook for the
future work is made. Still, the main purpose of the present work is to propose
a combined methodology for the OpRisk measurement which a practitioner
could find useful and efficient.

1.2 Description of the data and points of investigation

Dealing with the OpRisk management, one is usually interested in the char-
acteristics of the yearly aggregate loss distribution. Database of historical
OpRisk losses occurred during some period normally serves as an information
basis which the estimation should rely upon. The characteristics in interest
are often called risk measures. Depending on the particular task, one may
choose such common risk measures as Value-at-Risk or Expected Shortfall.

In the present work we deal with exactly such type of problems. The
historical data available to us is divided by business lines (BL) and types of
events (ET) which is a usual classification for OpRisk data. BL’s are encoded
as follows: corporate finance (BL 1), trading and sales (BL 2), retail banking
(BL 3), commercial banking (BL 4), clearing (BL 5), agency services (BL 6),
asset management (BL 7), retail brokerage (BL 8), and private banking (BL
9). Note that these notations can differ from one association for collecting
OpRisk data to another.

According to this classification, each loss value corresponds to one particu-
lar BL and a particular ET. The division by BL’s is important for the problem
of the calculation of regulatory capital for OpRisk. Particularly, according to
the Basel II recommendations, the Value-at-Risk estimators, defining the reg-
ulatory capital, should be done for every BL separately.

Concerning the division of the data by ET’s, it becomes crucial dealing
with such problems as insurance, when a financial institution wishes to insure
losses corresponding to certain BL’s and ET’s (we shall say that such losses
belong to a particular BL-ET cell).

Let us make some preliminary comments on the quality of the data before
passing to the description of the methodology. Usually, OpRisk data is heavy
tailed in loss severities, which means the essential role of rare but very se-
vere losses, especially for some particular BL’s. Our case is not an exclusion.
Consequently, extreme value theory (EVT) is used in our investigation as an
important and powerful tool for the analysis of heavy tailed data. We make
some remarks on the application of EVT in our work in paragraph 1.3.

As usual for OpRisk, two historical databases of loss data are available: the
internal data of our selected financial institution (in the following the Bank),
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and the external data. The latter contains the OpRisk data from a group of
banks and could be an important contribution for the loss analysis.

As counting processes of occurrences, homogeneous and inhomogeneous
Poisson processes are used, as well as negative binomial distributions arising
from mixing the intensity of a Poisson process with a gamma distribution.
However, the class of stochastic processes eligible as models for the process of
occurrences is much wider and may include e.g. some models used normally
in financial mathematics. We describe some prospects and outline the ideas
for future work concerning the models for OpRisk frequency in paragraph 1.4.

In some cases, say for some particular BL’s, internal data may be enough
to produce a reliable fit for the parameters of severity and frequency distribu-
tions. Yet, if internal data is insufficient, then the external data can be used
to estimate prior distributions of severity and frequency parameters. As a tool
for a proper mixing of internal and external data, the bayesian inference is
used in our investigation. It allows to obtain posterior distributions of the
parameters with respect to the internal data. The application of the bayesian
inference to our problem is described in paragraph 1.5.

Separate section is devoted to the analysis of methods for precise loss
aggregation. Finally, we discuss how the whole methodology can be applied
to other problems in interest, such as the insurance of OpRisk.

1.3 Applying extreme value theory

Extreme value theory, originated in the 1920’s in the works of Fisher and Tip-
pett [9], plays an important role in actuarial problems. It has been highlighted
in series of books: [8], [21] to mention some. A number of papers on applica-
tions of extreme value theory particularly to OpRisk also appeared recently,
see e.g. [22], [4] and others.

One of the main subjects of these investigations is the analysis of the
parameters’ estimation. It is no wonder that the parameters’ estimators for
heavy tailed distributions often lack precision. Furthermore, some certain dif-
ficulties arise in comparison and selection of models and distributions within
the EVT. In particular, say two different distributions (even within one class)
may both produce a satisfactory fit for the loss severity data. However, one
may observe a multiple difference in resulting estimators for the VaR of the
aggregate loss distributions depending on which of those distributions were
chosen as a model for the single loss distributions.

Practically all authors who describe and contribute EVT, make a note that
this theory must be applied very carefully, as it deals with extrapolating to
the area of very large losses. The authors of [8], in their comprehensive review
often address to the statement made by Richard Smith: ”There is always going
to be an element of doubt, as one is extrapolating into areas one doesn’t know
about”. Here we present an example that illustrates the exclusive importance
of choice of the appropriate model for the severity distribution and make a
brief outlook for the work which we intend to do in this direction.
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In order to obtain severity distributions we use the peaks-over-threshold
(POT) method, see e.g. [8]. For modelling the distribution of exceedances over
a certain threshold mainly two probability distributions were used: generalized
Pareto distribution (GPD) and three-parameters Weibull distribution. The cdf
for GPD is given by

Gξ,µ,β(x) = 1−
(

1 + ξ
x− µ
β

)−1/ξ

, for x > µ, (1)

where µ ≥ 0 is the location parameter (in our modelling scheme it coincides
with the selected threshold), β is the scale parameter and ξ is the shape
parameter.

The cdf of the Weibull distribution, in its generalized form — with shape
parameter ξ > 0, scale parameter β > 0 and location parameter µ ≥ 0 — can
be written as

Wξ,µ,β(x) = 1− e−((x−µ)/β) ξ

, for x > µ. (2)

GPD plays a major role in EVT as it is often used as the limit distribution
of scaled excesses over a high threshold. In the frame of our investigation, we
notice that for certain business lines GPD overestimates the heavy–tailedness
of the real loss distribution. For such BL’s we compare GPD with Weibull
distribution, see Figure 1.3.

For BL 2, the value of Kolmogorov-Smirnov test for the goodness of fit is
0.044 with the corresponding p-value 0.05 for the GPD with fitted parameters
(ξ, µ, β) = (1.28, 20000, 21050), while for the fitted Weibull with parameters
(ξ, µ, β) = (0.61, 105, 3.13 · 106) this test gives 0.025 with the corresponding
p-value equal to 0.028.

To illustrate the possible effect of using Pareto instead of Weibull with
these parameters, one may calculate the difference between 0.999-quantiles
of the corresponding single-loss distributions. In our case, the quantile for
GPD is 113.8 ·106 which is 53% larger in relation to Weibull model, for which
we have 74.4 · 106. For the aggregate loss distribution, the difference can be
much more significant. Note that GPD with the shape parameter equal to
1.28 corresponds to the case of infinite expectation.

What could one do in order to reduce the risk of choosing the wrong dis-
tribution? A reasonable answer could be: introduce an additional backtesting
of parameters’ estimators corresponding to different models. We tend to con-
tribute this problem by considering the so-called generalized moment fit, which
could be used together with MLE and may serve as an additional indicator
of goodness-of-fit. The work on this issue [19] is currently in progress.

1.4 Models for loss occurrences and trends testing

As already mentioned, we model counting processes with homogeneous and
inhomogeneous Poisson processes, as well as negative binomial distributions.
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Fig. 1. Top right: BL 1 — GPD fit with error bounds (based on error bounds of
severity parameters estimated via MLE), bottom right — tail of BL 1 fit, Left: BL2
— Comparison of GPD (grey) and Weibull (black) for the tail.

Remark 1. Working with the negative binomial distribution we use the follow-
ing parameterization:

P(N = k) =
(
k + r − 1

k

)(
1

1 + b

)r (
b

1 + b

)k
, (3)

with r > 0 , b > 0. The expectation and the variance are equal to E(N) = rb
and Var(N) = rb(b+ 1).

Graphical diagnostics can be applied for checking the hypothesis that the
number of losses follows a Poisson process. Specifically, if the counting process
of losses follows a Poisson law with intensity λ, then the scaled inter-occurrence
times

Zi = λ× (Ti − Ti−1), (4)

with T0 = 0, should be unit exponentially distributed. This could be checked
graphically with the corresponding QQ-plot. A scatterplot of the Zi also gives
a notion about the evolution in time.

We find it useful to apply additional diagnostics in order to figure out how
precisely the data follows the GPD law with estimated parameters, and also
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Fig. 2. Diagnostics for GPD-Poisson model, BL 3

to trace the possible evolution of the data in time within the selected time
interval. Namely, residuals in the sense of [6]

Wi =
1
ξ

log
(

1 + ξ
Xi − µ
β

)
(5)

should be also i.i.d. unit exponentially distributed, if the hypothesis that the
distribution of data XUi exceeding the threshold U follows GPD is right. This
could also be checked using graphical diagnostics, if we construct a QQ-plot
of the ordered data Wi against exponential quantiles. Besides, the plot of
the residuals Wi against the order of occurrences, superimposed by a smooth
curve fit (see Figure 1.3), allows to determine whether some evolution of the
residuals Wi in time exists (here we follow the methodology proposed in [22]).

Figure 1.3 shows some trend in the frequency of occurrences for BL 3.
Note that, at the same time, ordered severity residuals don’t show any evident
trend, hence for BL 3 losses are becoming more frequent without consequent
change of the severity. However, joint trends in the severity and frequency can
be observed quite often in OpRisk data, and the modelling of joint trends is
intensively discussed in the literature, see e.g. [22, 28].
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If some trend in the frequency is detected, then we have to extrapolate it to
the future time period over which the aggregate loss has to be considered and
to estimate the expected frequency over this period. Hereafter we assume that
the constant frequency parameter entering the formulae for the distribution of
the aggregate losses is either the estimated constant or the predicted expected
value.

We would like to give some references to the recent work and the work in
progress dealing with trends in severity and joint trends. Particularly, [13] is
devoted to the analysis of the impact of not taking the trend in severity into
account. In [30], the problem of the parameters’ estimation in the presence of
joint trends is considered for the case when the threshold for the scaled losses
is also varying in time.

Alternative models

As noticed, the analysis of the loss frequency processes often shows the change
of the frequency in time, so that loss events become more or less frequent in
average (see Figure 1.3). Observing trends in the frequency, one might be
interested in finding the models which would be flexible enough to reflect
both the general tendency in frequency change and the latest fluctuations.

In our opinion, one of the models deserving attention in the frame of
this problem could be the so called ”Nested-volatility model”, introduced
in [33], which incorporates short-memory, long-memory and jump dynamics
in the volatility of asset returns. Though such kind of processes are used in
application to finance, we find it interesting to apply this particular process to
the risk problem. The Nested-volatility model can be represented as follows. It
is assumed that the process of the arrival of occurrences (following the original
notation, we shall call them ”jumps” is this model) is a Poisson process with
intensity changing from one occurrence to another as

λt = λ0 + ρλt−1 + ηζ(t). (6)

So the current jump of the intensity depends on both its previous value and
the intensity residual, with the intensity residual being defined as

ζ(t) ≡ E[Nt−1 | It−1]− λt−1, (7)

where E[Nt−1 | It−1] is the ex-post expected number of jumps occurring from
t− 2 to t− 1. In this model, the parameters ρ and η are to be estimated (e.g.,
by the maximum likelihood method).

More detailed consideration of the these models is beyond the scope of
the present paper. However, implementations in practice and comparison to
standard models, with respect to e.g. Akaike information criterion, show that
such models can fit the OpRisk data quite well.

Obviously, the model (7) can be modified in order to fit the needs of OpRisk
modelling better. Say, the homogeneous Poisson process can be replaced by
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an inhomogeneous one. Another way is to build a similar model on a base of
negative binomial distribution. Besides, there is a possibility to combine the
model like (7) with bayesian inference. We plan to devote a separate work to
the frequency models in OpRisk.

1.5 Internal and external data: introduction to the bayesian
methodology

The task of mixing internal and external data properly poses a very impor-
tant and non-trivial problem. The use of external data becomes essential when
there are not sufficient internal loss records to produce satisfactory distribu-
tion fits. At the same time, external data must not hide possible peculiarities
of the internal data.

The problem of mixing the data from different sources has been addressed
quite a lot in the literature, see e.g. [11], [10], [18]. Some authors found
bayesian inference to be a preferable approach to this task. In particular, the
works [31] and [18] deal with the application of bayesian approach to the task
of combining internal loss data with expert opinions, as well as with external
data. In [31] the common methodology of combining the bank data with expert
opinions is described and some special cases including lognormal and classical
Pareto distributions for loss severity are considered. Some important results
concerning bayesian methodology for Pareto-type distributions were obtained
in [16] and [25]. Here we make just a brief description of the bayesian inference
(see e.g. [17] for more details) in application to the problem of mixing internal
data with external data. Besides, we consider an example when the desired
distributions can be calculated analytically (this example complements the re-
sults of [31]) and overview the methods for numerical modelling for all other
cases.

Let us recall some assumptions and notations of the theory based on Bayes’
theorem. The basic idea of this approach is to consider the parameter of the
distribution as a random variable (if there are several parameters, then we
deal with a random vector). Then the prior distribution π(θ) is defined as a
probability distribution over the space of possible parameter values. Assume
that a random variable X has a distribution depending on the parameter
vector θ. Then the model distribution fX |Θ(x|θ ) is the probability density for
the observed sample given a particular value of the parameter (it is identical to
the likelihood function). The posterior distribution denoted by πΘ |X(θ |x) is
the conditional probability distribution of the parameters given the observed
data.

According to Bayes’ theorem the posterior distribution of parameters is
related to the prior distribution in the following way:

πΘ |X(θ |x) ∝ fX |Θ(x | θ)π(θ). (8)

Let us consider how this theory can be applied to the problem of estimating
severity distributions of operational losses. We should take into account both
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the internal data from the Bank and the external database, in which the loss
data from many banks are accumulated. Values of parameters, estimated from
the external data, correspond to the expectation under the prior distribution
of the parameter vector while the variance of the prior distribution includes
a measure of uncertainty of the estimate. Evaluating the model fX |Θ(x|θ )
at the internal data points corresponding to the selected BL and plugging
the result into (8), one is able to compute the posterior distribution of the
parameters.

Applying this theory to the present problem, we have, first of all, to choose
appropriate prior distributions. Under the assumption that the loss severity
distribution is GPD and that the loss frequency follows a Poisson process, we
need distributions for the shape and scale parameters of the GPD, as well as
for the Poisson intensity of the occurrences.

Recall one of the key concepts of the bayesian theory: a prior distribution is
said to be a conjugate prior distribution for a given model if the resulting
posterior distribution is of the same type as the prior. Consider the Pareto
distribution with the cdf given by

G̃ξ,β(y) = 1−
(

1 +
y

β

)−1/ξ

, for y > 0. (9)

Remark 2. Compare this to the GPD distribution (1). The difference between
these two forms for Pareto distribution is important for us here, as they should
be handled differently while applying bayesian inference. Often the Pareto

distribution is used in the form ˜̃
Gξ,β(y) = 1 −

(
y
β

)−1/ξ

, (for y ≥ β). That
is the form which was considered in [31].

Well known results (see e.g. [17]) tell us that if the model distribution is
the Pareto distribution of the form (9) with the scale parameter β equal to
one, then the gamma distribution for the shape parameter ξ is a conjugate
prior. The same is true for the gamma distribution as prior for the Poisson
intensity. In this case estimation of posterior parameters becomes rather sim-
ple. Unfortunately, for the scaled Pareto distribution with β �= 1, as well as
for the GPD given in (1), such a convenient choice for the prior distribution
of ξ does not exist.

In certain cases the model and the prior distribution can be chosen such
that the joint distribution of the parameters (as a product of the likelihood
function and the prior distribution) can be split into marginal distributions
of each parameter. Then the posterior distribution of each parameter can be
calculated directly. This is for example the case when the model distribution
is the Pareto (9). If, moreover, the prior for the shape parameter is the gamma
distribution then an explicit representation can be derived (see [25] for details):

λ∗ =
a+ k
b+ T

, (10)
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ξ∗ =

⎡⎢⎣∫ c+ k
d+

∑
i≤k

log(1 +Xi/β)
p̃(β)dβ

⎤⎥⎦
−1

, (11)

β∗ =
∫
βp̃(β)dβ, (12)

where k is the sample size, T defines the period of the observation (expressed in
the number of years), a and b are the parameters of the prior distribution of the
intensity λ, which, in this model, has the gamma density γa,b. The parameters
c and d come from the prior distribution of the shape parameter, where we
assume that 1/ξ is distributed following γc,d. The posterior distribution of the
scale parameter β, denoted by p̃(β), is connected with the prior distribution
p(β) by the following expression

p̃(β) = β−k

⎛⎝d+
∑
i≤k

log(1 + Yi/β)

⎞⎠−(c+k)

·exp

⎛⎝−∑
i≤k

log(1 + Yi/β)

⎞⎠·p(β).

In most other cases, however, no evident way to obtain an explicit expres-
sion for posterior parameters can be found. In these cases numerical methods
such as Monte Carlo Markov chain (MCMC) have to be used to calculate
marginal distributions from the joint distribution. We used MCMC for the
calculation of posterior distributions for both GPD and Weibull model distri-
butions.

Considering MCMC, both Gibbs sampler and Metropolis-Hastings algo-
rithm (see e.g. [26]) are appropriate for the implementation of bayesian in-
ference. Probably the most efficient for the tasks like this is the so-called
Random walk Metropolis-Hastings within Gibbs algorithm. Its description and
properties can also be found in [26].

Criticism about the bayesian approach often concerns the uncertainty of
the choice of prior distributions. In situations like ours, when there is a sep-
arate database that serves for the prior parameters’ estimation, it is natural
to consider priors as random variables distributed according to the data that
served for their estimation. When MLE is used for the estimation of priors,
there are several well known methods to approximate the distribution of an
MLE estimator. Particularly, one could apply the bootstrapping techniques
or use the asymptotical distribution of the MLE estimator. However, each of
these ways has its disadvantages. Besides, the distribution of the prior esti-
mator should be obtained in a form convenient to link it with the numerical
procedure of the bayesian estimation for posterior distributions. Altogether, it
forms a complex of problems of parameter uncertainty in the frame of bayesian
estimation within EVT. We briefly overview the existing results in Appendix,
leaving some important problems for the future work.

In the present work, we used MLE estimator and its asymptotic variance
(see Appendix) as the mean and the variance for the distribution of a corre-
sponding prior. However, we didn’t use normal distributions arising from the
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asymptotics of MLE as priors, but rather the distributions which are more
convenient in the frame of the bayesian inference implementation. Though
this is not strictly accurate approach and may lead to additional uncertainty,
the loss of precision of the final result cannot be too crucial. As mentioned,
we plan to address these matters in the future work in more details.

2 Estimation of the aggregate loss distribution and its
characteristics

We pass to the brief description of the methods for loss aggregation which
we used in our work. Besides the Monte Carlo technique and the method based
on fast Fourier transform (FFT) which we deal with, the recursive methods
are also quite effective techniques for the loss aggregation. We do not review
the recursive methods here, as their detailed overview and comparison with
FFT was made in [32].

The methodology described below is applied to separate BL’s in order to
calculate aggregate loss distribution for each stand-alone BL. However, if the
number of internal loss events belonging to a particular cell of the BL-ET
matrix is sufficient to produce satisfactory parameter adjustment, then we
are also able to calculate the distribution of the aggregate loss for separate
ET’s within each BL. This issue will be mentioned once again in the frame of
insurance.

We are interested in yearly aggregate loss distributions for given BL’s, and
in particular, the risk measure that we need to calculate for each BL is the
Value-at-Risk:

VaRα(S) = inf{ s ∈ R : P(S > s) ≤ 1− α}.

The quantile level used is α = 99.9%, which corresponds to the usual capital
charge under the Advanced Measurement Approach of the Basel II guidelines.

2.1 Monte Carlo simulations for aggregating operational risk

Monte Carlo simulation is widely used for operational risk aggregation. Due to
its technical simplicity, it plays an important role in the problem of calculating
aggregated risk and its results can be compared to the ones obtained by other
methods. For each BLi i = 1, . . . ,m we proceed as follows:

• Simulate n yearly losses, for short we denote them by L̃1, . . . , L̃n, by the
following procedure:
– Simulate the number of loss occurrences in this BL i.e. a realization of
Ni.

– Subsequently simulate the corresponding loss sizes from the chosen
severity distribution for each of these occurrences.
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Dealing with heavy–tailed distributions, one usually needs quite a large
number of simulations (normally, ≥ 105 simulations for each BL).

• Put the obtained sample in increasing order to get the order statistics
L̃1:n ≤ · · · ≤ L̃n:n, where L̃1:n denotes the smallest of the n simulations
and L̃n:n the biggest simulated loss.

• The element at position [αn+ 1] of the ordered sample, where [·] denotes
rounding downwards, is an estimator of the quantile to the level α for the
BLi — thus an estimator of VaR to the level α (e.g. choose α = 0.999).

The estimation of high quantiles and thus also of the VaR by Monte Carlo
techniques suffers from high variances. Monte Carlo techniques nevertheless
provide a higher degree of flexibility when complicated structures appear,
e.g. in the framework of insurance problems. However, FFT and recursive
procedures, as deterministic methods, give in general more reliable results for
comparably simple tasks such as calculating the VaR.

2.2 Fast Fourier transformation

Working with characteristic functions (for a fundamental overview see, e.g.,
[20]) instead of cdf’s or densities allows to significantly simplify the calcu-
lation of compound distributions and therefore the calculation of the VaR.
The application of characteristic functions (chf’s) to the loss aggregation is
discussed in the literature, e.g. in the presence of heavy tailed distributions
(see, for example, [24]). While performing a series of convolutions of the sever-
ity distribution is clearly not feasible, under the assumption of independence
between loss occurrences and loss sizes one can easily calculate the chf of the
aggregate loss.

We shortly recall the derivation of the characteristic function of a com-
pound sum of the form

S =
N∑
i=1

Xi , (13)

where N is the loss counting variable independent of the i.i.d. sequence {Xi}.
We denote the cdf of the loss sizes by FX(x) := P[X ≤ x].

For a random variable N taking only nonnegative integer values consider
the probability generating function (pgf) PN (z) = E[zN ] =

∑∞
n=0 P[N = n]zn

which is defined and analytic at least for |z| ≤ 1. Considering the power series
expansion of this function PN (z) =

∑∞
n=0 pnz

n one is able to retrieve the
distribution P[N = n] = pn for n ≥ 0 by calculating the coefficients of PN (z).

Denoting the chf of the loss size distribution as

f̂X(u) = E[eiuX ] =
∫ ∞

−∞
eiuxdFX(x) , for u ∈ R ,

and the chf of the distribution of the compound sum as f̂S(u), we have the
well known representation
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f̂S(u) = PN (f̂X(u)). (14)

For the occurrences following a Poisson distribution with intensity λ formula
(14) becomes

f̂S(u) = exp(λ(f̂X(u)− 1))

and for the negative binomial distribution with parameters r and b the corre-
sponding expression is

f̂S(u) =
1

(1 + b− bf̂X(u))r
.

Hence, an obvious approach to compute the pdf of the aggregate loss for
a fixed BL is to calculate the (14) and then to invert it numerically using
the discrete Fourier transformation (DFT). Note that in many cases such
as GPD the chf of loss sizes f̂Li,1(u) can not be calculated explicitly, but it
can be computed via DFT as well. An efficient algorithm is provided by the
Fast Fourier transformation (FFT) which is available in most statistical or
mathematical computer packages.

Thus, the scheme for calculating the density of the aggregate loss is the
following:

• Choose an equidistant grid of points at which you want to approximate
the loss density say x0 ≤ . . . ≤ xn−1 := qM where qM denotes some upper
bound.

• Calculate the density of the severity distribution at these points fX(xj)
for j = 1, . . . , n.

• From this sequence, compute the sequence f̂X for l = 0, . . . , n − 1 using
the FFT:

f̂l =
n−1∑
k=0

e
2πi
n klf(xk). (15)

• Plug the result into the expression for the chf of the aggregate loss (14)
and perform the inverse Fourier transform in order to calculate an approx-
imation of the density of the aggregate loss on this grid.

Using this calculated density we get an approximate quantile and thereby the
Value-at-Risk.

Remark 3. Dealing with heavy–tailed distributions such as GPD, one faces
the problem of properly choosing the right endpoint qM , up to which one
considers the loss size distributions. Obviously, fixing n and choosing qM too
high causes a coarser grid leading to an increase of the discretization error.
On the other hand, qM should be chosen high enough in order to capture the
desired quantile, e.g. in our case the aggregate loss cdf at qM must exceed
0.999.
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Aliasing reduction

It is well known that FFT, especially applied to heavy tailed distributions,
produces some typical errors, with so-called aliasing error being the most
significant and dangerous for the final result.

Artificially adding zeros to the initial input sequence – so called padding by
zeros – is, perhaps, the simplest tool for reducing the aliasing error. However,
it is very time demanding. So, for the n-fold convolution one would have to
use {f̃k}, k := 0, . . . , (nN − 1) with f̃k = fk for k ≤ N − 1 and f̃k = 0 for
k > N − 1 to eliminate the aliasing error completely.

In order to reduce the aliasing error significantly without a loss of the
speed of calculations, another method was proposed in [27]. Specifically, one
can apply a transformation which decreases the input values at the right-hand
end of the grid and which can be easily inverted. Probably the simplest of such
transformations is the exponential one. Obviously, if fτ (x) := f(x)e−x/τ then

(f ∗ g)(x) = ex/τ (fτ ∗ gτ )(x).

The use of exponential window for aliasing reduction allows to increase
the precision of the FFT significantly, as shown in [27]. We used this method
in the present work as well.

3 An overview of the combined methodology and its
results

In this chapter we present numerical results of the VaR calculation for all
business lines. Since confidentiality does not allow us to present real values,
absolute values of all results are fictitious, but the relative proportions are
real.

3.1 Overview of results

Numerical results presented here concern at first hand Values-at-Risk for sepa-
rate BL’s, as due to the Basel II regulation rules [1], the basic recommendation
for the OpRisk capital charge calculation is given by

C =
K∑
l=1

VaRlα,

where l = 1, . . . ,K denotes BL’s, and VaRlα denotes the Value-at-Risk of the
loss of the corresponding BL l. As already mentioned, the quantile level we
need to capture is α = 99.9%.
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Remark 4. Surely, simply summing up quantiles over the BL’s to obtain the
quantile of the total loss distribution might be too conservative, as it corre-
sponds to the special case of perfect dependence between risks (see e.g. [2] for
details). Accurate quantification of the dependencies between risks, including
BL’s, is a non-trivial problem. It has been discussed quite intensively in liter-
ature, see e.g. [21]. A contribution to this topic is also a subject for the future
research.

Besides the numerical results concerning VaR, we also find it illustrative to
present some graphical results for the computed aggregate loss distributions.
On Figure 3.1, different shapes of the aggregate density of BL 1 and BL 7
are due to the difference in severity and frequency parameters: BL 7 is more
heavy tailed in severity, but the frequency is higher for BL 1: the mean for
observed loss frequency is 29.8, in contrast to 3.2 for BL7.

Fig. 3. Aggregate loss density plots for two selected BL’s. Solid line — FFT results,
histogram-type — Monte-Carlo.

In Table 1, we present results for Values-at-Risk, obtained with FFT and
compare them with Monte Carlo results. Using the results of [27], we are
able to estimate the absolute error of FFT results. To estimate approximate
confidence intervals for Monte Carlo results, a well known method based on
the sample order statistics and using Binomial distribution (see e.g. [12]) was
used. This method allows to calculate approximate standard errors of Monte
Carlo estimates and to estimate approximate error bounds at a selected level.
In our analysis, we used the level 0.95 for confidence intervals.
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As one observes from Table 1, Monte Carlo results for practically all BL’s
are far from the bounds of the true results, while FFT calculations have sat-
isfactory precision.

Remark 5. The ”true” results for the Value-at-Risk meant here are, of course,
dependent on the estimated model parameters. To obtain a realistic picture
of the absolute error bounds, one has to take into account confidence intervals
for the estimated parameters. This complex problem is briefly outlined in
Appendix.

Severity Frequency1 MC MC error FFT FFT error
bounds bounds

Line 1 µ = 3500
GPD-NB ξ = 1.12 (33.07, 0.9) 662 (646, 691) 656.12 (655.5, 656.7)

β = 7460

Line 2 µ = 5 · 105

W-P ξ = 0.61 44.7 67.4 (65.9, 69.6) 68.34 (68.0, 68.6)
β = 3.13 · 106

Lines 3,8,9 µ = 7500
GPD-NB ξ = 0.71 (23.69, 2.9) 33.5 (31.3, 36.2) 32.33 (32.0, 32.7)

β = 7375

Line 4 µ = 4 · 105

W-P ξ = 0.52 7.1 26 (24.6, 28.8) 27.3 (27.22, 27.29)
β = 1.38 · 106

Line 6 µ = 104

GPD-P ξ = 1.15 2.2 108.5 (95, 129) 110.17 (109.93, 110.4)
β = 18100

Line 7 µ = 104

GPD-P ξ = 1.2 3.2 212 (197, 234) 209.47 (209.0, 209.9)
β = 15600

Table 1. Fitted parameters and VaR for various business lines. The entries in the
first column tell the models used for the severity, as well as for the frequency, where
”W” stands for Weibull distribution, ”P” for Poisson distribution and ”NB” for
negative binomial distribution

Business lines 3, 8 and 9 (retail banking, retail brokerage and private bank-
ing) are put together due to the advice by experts of the Bank who consider
the mechanism of loss generation in these three BL’s to be very similar. For
BL’s 2, 4, 6 and 7 external data were used to obtain prior estimates of the
severity parameters first, and then bayesian inference was applied to adjust
the parameters with respect to the internal data according to the bayesian

1 For the negative binomial case we use the parametrization (r, b) defined according
to Remark 1.
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methodology. In order to model losses below the thresholds which were used
to fit the severity parameters, empirical distributions based on the internal
data were used for all BL’s (which is of special importance for BL 2 and BL
4 due to relatively high thresholds).

3.2 A note on the insurance of operational losses

We make a brief remark on how the described methodology for the capital
charge calculation can be applied to the problem of the OpRisk insurance in
its simple form.

As already mentioned, bayesian methodology allows us to make the pa-
rameters’ adjustment with respect not only to separate BL’s, but also w.r.t.
selected ET’s, i.e. for any cell of the BL-ET matrix, which contains enough
data (so that the variance of the posterior parameter estimator would not be
too large). While working with BL’s only, the prior distribution of parameters
is provided by the external data for this selected BL, and the internal data for
this BL serves for the posterior parameters’ estimation. If one needs to work
also with separate ET’s, then the estimated (posterior) parameters for the
selected BL play a role of the prior estimators, and the internal losses within
a particular cell of the BL-ET matrix are used in the bayesian inference to
obtain posterior estimators.

In the frame of the insurance problem one is no longer that much in-
terested in the high quantiles, but rather in such values as the mean of the
distribution of aggregate insurance payments for particular cells of the BL-ET
matrix, in order to estimate the fair insurance premium. Dealing with heavy
tailed distributions, we can’t work with such values as the mean. Instead, we
were interested in calculating the median of the aggregate payments distri-
butions, i.e. their 50%-quantiles. The calculation of the 50%-quantiles claims
less computational efforts, for it is not necessary to calculate the aggregate
distribution up to the very tail. Consequently, the single-loss distribution can
be truncated at a lower level.

Parameters of the frequency of losses within a single BL and a single ET
can also be calculated using the bayesian inference, whether we use the Poisson
process or the model based on the negative binomial distribution. As soon as
the parameters for both severity and frequency distributions are estimated,
we then work with the usual model for the insurance payments Yi

Yi =

⎧⎨⎩0 if 0 < Xi < d
Xi − d if d ≤ Xi < U
U − d if U ≤ Xi <∞

, (16)

where Xi are the loss sizes, d is the deductible level and U is the upper limit.
The procedure of the calculation of aggregate insurance payments for the

selected cell of the BL-ET matrix is analogous to the calculation of the ag-
gregate for the single BL, described above. As in our investigation of the
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insurance problem the aim was the calculation of the median of the aggregate
distribution, this resulting value is considered as the ideal value of the fair in-
surance premium and is used in the negotiations with an insurance company
about the possible adjustment of the conditions of selected insurance policies.

3.3 Conclusions and outlook

In the present paper we highlighted several aspects of the methodology for
modelling and measuring operational risk. We made some remarks on the use
of EVT in the context of OpRisk and outlined some prospects concerning
models for the frequency. Besides, a short overview of the bayesian inference
as a tool for mixing internal and external operational loss data is made. In the
frame of the problem of the loss aggregation we adapted the algorithm based
of the FFT and found this method to be efficient and precise enough to our
purpose. We have shown that, using this combined methodology for the risk
modelling, a financial institution can cover quite a wide range of problems
concerning operational risk, such as the calculation of regulatory capital and
of the fair insurance premium for separate lines of business and types of events.

Quite a lot of opened questions mentioned in the paper form the field of
the future research.

A Error bounds estimation

Analysis of the impact of parameters’ uncertainty of the aggregate loss char-
acteristics is a very important problem. It has been discussed a lot in the
literature, see e.g. [29], [3] for recent overviews.

Confidence intervals according to asymptotic normality

Recall that we used MLE estimation of parameters and combined it with
bayesian inference for some BL’s. In general, there are three common ways to
estimate the errors in the situation like ours: to use the bootstrapping, the
approach based on the asymptotic normality of MLE or to estimate the errors
directly from the bayesian procedure. In the present work, we used mostly the
method based on the asymptotic normality. The development of the technique
for the accurate and strict estimation of parameters’ uncertainty is also the
field for the future research.

The problem of calculating approximate confidence intervals for MLE esti-
mators is a classical problem of statistics. Estimating the variance of an MLE
in the context of EVT is of particular interest, as the influence of the estimated
parameter errors on the VaR is very strong for heavy–tailed distributions. The
precision of MLE estimators for GPD was discussed, e.g., in [5, 17, 8, 15]. The
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well known way to calculate confidence intervals for MLE estimators using
asymptotic normality (see [17] for details) allows to estimate the 0.95 confi-
dence interval for the parameter θ as(

θ̂ − 1.96
√

var(θ̂); θ̂ + 1.96
√

var(θ̂)
)
, (17)

where θ̂ is the corresponding maximum likelihood estimator and var(θ̂) de-
notes the variance which can be estimated by the inverse of the Fisher infor-
mation matrix [17].

In cases when the bayesian methodology is used, one needs to take into
account the errors associated with posterior distribution of the parameters.
In [29], a simple approximation was proposed for this case. It was shown
that the posterior distribution πΘ |X(θ |x) which one calculates according to
the relation (8) can be approximated by a multivariate normal distribution
with covariance matrix calculated as the inverse of the Fisher information
matrix with the elements (I)ij = −∂2 lnπΘ |X(θ |x)/∂θi∂θj

∣∣∣
θ=θ

, where θ is
the corresponding mean.

Applied to our problem, this method allows us to compute confidence
intervals for the estimated parameters for each of the BL’s in question. Then,
in order to estimate the error bounds for corresponding Values-at-Risk, we can
again apply one of MCMC algorithms. The results are presented in Table 2.

Parameters VaR lower upper
Line No (shape, scale) Error bounds (via FFT) bound bound

Line 1 ξ = 1.12 (0.95 , 1.29) 656.12 115 3738
β = 7460 (6326 , 8594)

Line 2 ξ = 0.61 (0.65 , 0.57) 68.34 54.2 88.2
β = 3.13 · 106 (2.93 , 3.13) · 106

Lines 3,8,9 ξ = 0.71 (0.66 , 0.76) 32.33 19.2 55
β = 7815 (7268 , 8362)

Line 4 ξ = 0.52 (0.58 , 0.46) 27.3 18 44
β = 1.38 · 106 (1.21 , 1.55) · 106

Line 6 ξ = 1.15 (1.07 , 1.23) 110.17 59.6 203.8
β = 18100 (16833 , 19140)

Line 7 ξ = 1.2 (1.1 , 1.3) 209.47 94 468
β = 15600 (14352 , 16848)

Table 2. VaR bounds from confidence intervals

Remark 6. The lower and upper bounds for VaR displayed in Table 2 are cal-
culated considering the uncertainty of the severity parameters only. In order to
determine strict bounds for VaR the uncertainty of the frequency parameters,
as well as the error of the procedure of loss aggregation should also be taken
into account. However, as shown above, the error of the loss aggregation via
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FFT is relatively low in comparison to the error stemming from the parameter
uncertainty. Concerning the uncertainty of the frequency parameters, one has
to keep in mind that a future evolution is extrapolated.
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tional risk with Lévy copulas. Submitted for publication in PRMIA 2007 En-
terprise Risk Management Symposium Award for Best Paper: New Frontiers
in Risk Management Award. Available at http://www-m4.ma.tum.de/Papers/

3. Borowicz J, Norman J (2006) The effects of parameter uncertainty in extreme
event frequency-severity model. In: Proceedings of 28th International Congress
of Actuaries. Available at http://www.ica2006.com/Papiers/3093/3093.pdf.
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