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Preface

The emergence of high throughput biological technologies in 1990s encouraged
scientists to ask bigger questions. People moved their attention from parts to interac-
tions. Though immense power was offered by modern technologies, they also posed
major challenges of data capture, analysis, integration and interpretation.

To be successful in this new kind of science, one required good understanding
of biology, mathematics and computation to address issues at the network level. In
the mid 1990s a popular opinion was that mathematizing biology would be easy
and straightforward. However, it turned out that finding patterns in biomolecular in-
formation pathways was non-trivial, due to a combination of various data types
presenting themselves in a background of highly contextual and emergent phe-
nomena. This grand challenge to connect parts behavior with network properties
and a corresponding phenotypic outcome gave rise to what we know as Systems
Biology.

In the early decade of 2000, scientists asked if it was possible to construct organ-
isms the way lego blocks were put together to design toys of various shapes. This idea
was fueled by publications that demonstrated the feasibility of running microbial ge-
netic circuits as applets. The first conference at MIT in 2004 formally announced the
emergence of Synthetic Biology. Biologists began thinking like engineers in search
of rules and standards to compose organisms. The idea of well characterized parts,
stitched together to make modules and networks found experimental support. The
science of engineering biology was born.

This book is targeted, mainly, at under-graduate and graduate students. However,
researchers who are planning to contribute in these emerging areas may also find the
information helpful. It would help to have a basic knowledge of molecular biology
to enjoy the science discussed in this book. Given the vastness of these areas, it
was difficult to do justice to everything that is important in systems and synthetic
biology. Readers are advised to consult more specialized journals and books for in
depth information on various topics.



vi Preface

We hope that this first version provides a suitable primer for extending thoughts
in search of good questions in systems and synthetic biology. We would consider our
efforts successful, if good research problems are identified by readers after reading
the chapters.

Our sincere gratitude to all the authors, critical reviewers and family members
who helped us compile this work.

January 2015 Vikram Singh
Pawan K. Dhar
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Part I
Systems Biology



Chapter 1
Introduction to Systems Biology

Bin Hu and Pawan K. Dhar

Abstract In the mid 1990s when Leroy Hood reintroduced the term “Systems Biol-
ogy”, the fusion of ideas gave rise to confusion to such an extent that there used to
be special talks on ‘what is systems biology’? Over the last decade, Systems Biology
has undergone directed evolution leading to the emergence of personalized versions
of this term. Irrespective of this, strong computational dependency and a significant
increase in the scale of investigation often appear as constant features in the systems
biology background. In our opinion, Systems Biology is an approach that involves
the following (a) experimental and computational studies describing collective be-
havior of molecules in relation to the pathway and networks, and with the higher-level
physiological outcome (b) new experimental and mathematical methods important
to study group behavior of interacting components. This chapter describes the origin
and evolution of systems biology, as a formal discipline, steps and challenges in
building models and their potential applications.

Keywords Modeling in Biology - Simulation - System - Biological complexity -
Pathways - Networks

1.1 Introduction

The traditional approach of doing science has mainly centered around the twin strat-
egy of observation and classification i.e., observe some measurable quantity, say
flower color, height of plant and so on, collect data from a large number of plants
and try to find some non-obvious pattern. At least in biology, the role of analytical
techniques has rarely been pursued as a serious scientific discipline. This is due to the
fact that in the traditional setting biological data was easily countable and available
to human analysis and interpretation. The science of taxonomy was built upon the
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foundation of finding common patterns among a large number of samples and cate-
gorizing them hierarchically. The strategy was that a higher-level abstraction should
be shared by all the members of the group, which can be further sub-sorted into
various bins based on some additional parameter. Thus, you see kingdom, families,
genus and species as a top-down flow of information in taxonomy. Charles Darwin
stretched the idea of ‘finding patterns from external observations’ further, and ended
up his long and careful study by proposing the theory of Natural selection. Lamarck
and other scientists extended the story further and tried to make his story predictive.

However, in all these situations classifying organisms did not explain how they
worked. There was a need to adopt a different approach. Mendel made the first bold
attempts to look beyond a horizontal (population-based) plane of vision and vertically
move down from phenotype to causal elements. He assumed a linear correlation
between a causal element and a phenotypic observation. It was a groundbreaking
work. In absence of any high-resolution physical device, he could generate accurate
rules and predictions of inheritance simply by looking at the external phenotypes.

After Mendelian era, the science of biology got predominately biochemical and
microscopic. Technological developments helped scientists move from external phe-
notype to cell interiors. However, due to technical complexity and cost of data
generation, biological data was mostly qualitative, studied at the level of human
analysis and did not require special mathematical techniques and computational
infrastructure for interpretation.

As the technological tools got more sophisticated, scientists moved from external
observations to the study of cells, chromosomes, DNA, protein and so on. Hav-
ing seen so many parts co-existing in a small cellular space, there was a natural
curiosity—how are these parts created, used, retired, recycled. What is the role of
these parts in determining higher order behavior?

Two parallel efforts were aggressively pursued: (i) uncover as many parts and
modules (collection of parts employed for a single purpose) as possible, and (ii) find
the role of each part in determining a given phenotype. We call this strategy as ‘reduc-
tionist biology’i.e., reduce a system to a set of components and study each component
separately. The Human Genome Sequencing Project was started precisely keeping
the first aim of reductionist biology in mind i.e., if we know our genetic blueprint,
we will figure out everything about ourselves. In parallel to this, a large body of mu-
tations and chromosomal aberrations was collected from diseased tissue to correlate
abnormal physiological/morphological conditions with the underlying genetic cause.

However, soon people realized that reductionist approach was unhelpful beyond a
point. There were so many incidences where a visible genetic variation/mutation did
not lead to a corresponding change in the phenotype. Worse still, in many instances a
so-called important gene when knocked-out did not result in the expected outcome.
Organisms employed even unrelated genes take over the function of a missing one.
Thus, to learn biological decisions there was a need to invent a novel approach.

The trigger for paradigm shift came when microarray technology was invented in
the early 1990s. Suddenly huge real-time data was generated. There was no direct
way to understand this data, the underlying hidden patterns and correlations. In-
stead of focusing on one gene, people could now study hundreds of gene expression
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events together. The impact of even one gene knock-out could be studied in relation
to hundreds of unrelated genes. The point of focus moved from sequence level to
the expression level. From low throughput human readable data, the scientific com-
munity moved to automated, high throughput, machine analyzable data. This was
a real phase shift in biology. One could ask questions about the whole system and
not about just few parts. By mid 1990s, Systems Biology had truly arrived. This is
not to suggest that Systems Biology started in the mid 1990s. The original seeds of
thoughts were sown much earlier.

In 1944, Norbert Weiner foresaw the need for systems approach. Unfortunately,
the time was not ripe for Systems Level analysis due to data scarcity. Even if all
the data were available at that time, the lack of sufficient computational resources
would have still precluded scientists to make best use of it. The idea of systems
analysis slowly moved from theoretical to practical realm. In the mid 1960s and
1970s, metabolic control analysis gained prominence. The hope was to study the
flow of metabolites through the network and find steps that exerted maximal control
over metabolic flux in the network. This came to be known as Biochemical Systems
Theory. A number of key concepts we use today in flux and control analysis can be
traced back to the earlier work (on computational analysis of metabolic networks)
by Michael Savageau and co-workers.

Probably the situation wouldn’t have changed much, but for a new technology in-
vented in the early 1990s. Dr. Stephen Fodor (later Chairman and CEO of Affymetrix)
and his colleagues published a ground-breaking work in Science in 1991. Biol-
ogy suddenly underwent a paradigm shift, from low-throughput to high-throughput
science. At the same time, computer technology got more advanced, the micropro-
cessors got faster and the storage got cheaper. Time was ripe to collect large amounts
of data and store it in computers for analysis.

In the background of technological developments, Leroy Hood formalized this
new integrated biology approach and called it ‘systems biology’. For several years
people were confused (and probably still are) about: what is systems biology? The
community has gone through significant brainstorming on how to define Systems
Biology? Though Leroy Hood projected it a specialized field of science, generally
people like to view Systems Biology as an “approach” than an independent discipline
(Haoetal. 2003). Given the existence of so many flavors of systems biology, probably
itis best to describe the properties of Systems Biology than to give it a rigid definition.

1.2 Systems Biology—A Primer
1.2.1 What Is Systems Biology?

First, we need to define the term ‘System’. A System is composed of several elements
and is defined by the scope of investigation. For example, to study photosynthesis as
a systems biology problem, one would need to describe all the genes and molecular
networks involved in the process of photosynthesis. It is not necessary for example
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to model lipid synthesis, if one is investigating photosynthesis as a systems biology
problem. Likewise, one can omit photosynthetic pathways if one is modeling lipid
metabolism. In other words, the boundary conditions of a system are determined by
the components that are directly involved in the process under study. This is not to say
that a system is a space constrained by rigid boundary conditions. In reality, a system
is a flexible term, described by the availability of data and by the kind of questions.

Systems Biology is a formal approach to understand higher-level behavior as a
result of group interaction of the constituent elementary components. As it involves
a large variety and scale of data, computational modeling and analysis is frequently
employed to store, understand and find meaningful correlations. Systems Biology
starts from experiments, goes through computational route and ends at experiments
i.e., experimental data — Statistical treatment and modeling — Correlations —
Predictions — Experiments. The key difference between systems biology and tradi-
tional biology is the focus on group behavior of molecules as against single molecular
correlation in the latter.

1.2.2 Why Is Systems Biology Necessary?

In physical sciences, modeling and simulation, in addition to theoretical and exper-
imental studies, is the third indispensable approach because not all hypotheses are
amenable for confirmation or rejection by experimental observations. In biology,
researchers are facing the same or maybe even worse situation. On one hand ex-
perimental study is unable to produce enough data for theoretical interpretation; on
the other hand, due to data insufficiency and inaccuracy, theoretical research cannot
provide substantial guidance and insights for experimentation. To meet this need,
computational modeling takes a more important role in biology.

1.2.3 What Is a Model?

A model is a formal or abstract representation of a system, usually in the form of a set
of objects and the relations between them. It is a skeleton of the real system but not a
replica, built with key components based on a combination of assumptions and exist-
ing knowledge. The key to modeling is the identification of elements that can reflect
key global properties with incomplete information. Modeling is an iterative process
that repeats until a model reaches its final stage and is validated by experiments. In
the process, different prototypes are often developed for validation. A model may
be formal, with mathematical representation, or conceptual, with diagrams or even
concepts only. It may be mechanistic (cause-effect relationship), or phenomenolog-
ical i.e., based upon a combination of observed phenomena and expert knowledge.
Mathematical models are commonly divided into deterministic (responses to given
inputs are predictable) and stochastic (responses are picked up based on probability
distribution), quantitative and qualitative, and linear and non-linear.
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1.2.4 Is Modeling in Biology New?

Biological modeling is both old and new. Originating from modeling concepts in
physical systems, it has a history of several decades. However, due to the distinctive
differences between biological systems and physical systems, biological modeling
presents itself with additional challenges and calls for new strategies and tools. To
model biological systems at various levels i.e., molecular, cell, tissue and organ
different strategies and techniques are needed.

Modeling and simulation appeared on the scientific horizon much before the emer-
gence of molecular and cellular biology. Early on the objective of modeling was to
explore the features of black boxes e.g., heart, brain, and circulation system, a con-
cept borrowed from physical systems. In such scenario, the main challenge was to
understand and predict the behavior of a system without knowing the microscopic
details. The strategy was to reproduce observed phenomena at high level with sim-
plified description of internal structures. Though inferring microscopic details was
necessarily a major goal, one needed to know how to understand the system as a
whole and utilize this understanding in clinical practice. The cases in point are: the
inverse modeling of cardioelectrical (Gulrajani et al. 1988) whose simulation results
were used to improve diagnosis of heart and brain diseases.

Two interesting methodological features emerged at this stage. First, since biolog-
ical systems were treated as physical systems or even structure-less systems, many
methods and tools were directly borrowed from engineering fields such as FEM
(finite element method) and BEM (boundary element method) to compute biologi-
cal systems (Bradley et al. 2001). Electrical activity of cardiac cells was abstracted
to dipoles with different moment and direction. The second feature was high-level
abstraction based on inverse approach. Cellular electrical activity was abstracted
as an attribute of dipoles [6]. Consequentially, complex numerical techniques for
ODE (ordinary differential equation) and PDE (partial differential equation) solu-
tion were developed. Both black box assumption and inverse modeling, though
suitable for modeling mechanical systems, suffer from major problems when applied
to biological systems. The first one is that many inverse problems are mathemati-
cally ill-posed. Even if the available data are adequate and precise, unique solution
is not always guaranteed and special techniques like regularization are employed
(Johnston and Gulrajani 1997). The second assumes that that the internal structure is
static, does hold true when a system evolves with time. Thus, this method cannot de-
scribe growth process with gene regulation, for the system undergoes state transition
while an inverse solution is searched for. Complex internal structure and evolution
are key features that differentiate biological systems from mechanical systems. The
top down approach doesn’t work very well in biological systems due to absence of
information at various levels. Even the bottom up approach (from molecular model-
ing to organs) encounters the same problem. The solution is to start at an information
level and expand vertically upwards/downwards.
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Fig. 1.1 Predominant computational approaches in biology

1.3 Modeling Pathways and Networks

Mendel used simple elementary mathematics of addition and division to obtain laws
of inheritance. However, with the arrival of large amount of biochemical and molec-
ular data, mathematical treatments and computer applications got more and more
sophisticated (Fig. 1.1). Currently, the predominant phase in biology is process anal-
ysis and systems engineering. Process analysis is what we know as Systems Biology
and Systems Engineering is commonly referred to as Synthetic Biology.

Table 1.1 describes some of the commonly used resources and tools in computa-
tional systems biology. Modeling is one of the activities in systems biology. It is easy
to understand why? Modeling helps address “what-if”” questions, facilitate rejection
of false hypothesis, and predict future system state in response to a perturbation.
Good models are experimentally validated, analyzable and open for manipulation
and optimization.

1.4 Steps in Model Building

Step One Make a parts list (collect data from literature and experiments). Take into
consideration the measurements made, protocols followed, perturbations applied,
constraints during experiment and error bar. Was the data independently confirmed?
In case of conflicting results, pick up the data from the most reliable group and iterate
with the next.

Step Two Draw an interaction map. The pathway representation should be robust
and represent events like translocation, transformation and binding. A pathway map
typically consists of nodes (molecules) and edges (interactions). In a standard text-
book diagram all the interactions drawn on a uniform background canvas, may
(a) belong to different cellular compartments and also (b) occur at different time
points. Thus, in reality a standard metabolic/signaling map represents spatially and
temporally overlapped data.
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Table 1.1 Resources and Tools for Computational Systems Biology. (This list is not exhaustive.
We recommend readers to consult relevant scientific literature for more information)

Resource

For visualizing/construction

Pathfinder (online graphical representation of cell signaling pathways)
http://www.sigmaaldrich.com/life-science/cell-biology/learning-center/pathfinder.html

ArrayXPath (mapping and visualizing microarray gene-expression data)
http://www.snubi.org/software/Array X Path/

HighChem (a suite of interconnected modules containing tools for constructing, visualizing and
analyzing biochemical and metabolic pathways)
http://www.highchem.com/leading-edge-technologies/biochemical-pathways.html

Pre-constructed pathway maps

IUBMB-Nicholson minimaps
http://www.tcd.ie/Biochemistry/IUBMB-Nicholson/

Kyoto encyclopedia of genes and genomes
http://www.genome.ad.jp/kegg/

PUMA?2 (High throughput comparative and evolutionary analysis of genomes and metabolic
networks with Grid computational backend)
http://compbio.mcs.anl.gov/puma2/

The seed (An annotation/analysis tool)
http://theseed.uchicago.edu/FIG/index.cgi

Biopathways consortium
http://www.biopathways.org

BioCyc (Collection of 507 Pathway/Genome Databases. Each database in the BioCyc collection
describes the genome and metabolic pathways of a single organism)
http://www.biocyc.org

BioCarta (Interactive graphic models of molecular and cellular pathways)
http://www.biocarta.com

Enzyme databases
BRENDA
http://www.brenda-enzymes.info/

ExPASy
http://www.expasy.ch/

Tools

170 modeling and simulation tools listed
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary

Step Three Converting map into a model. Actually, map itself is a model—a
connectivity model. However, to understand dynamic nature of the system a connec-
tivity representation must be converted to a quantitative model. Gene expressions
are stochastic and may be modeled with stochastic equations. Metabolic pathways
are modeled with Ordinary Differential Equations. Even though Michaelis Menton
kinetics is the most accepted way of modeling metabolic events, the MM equation is
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Fig. 1.2 General modeling scheme

itself based on assumptions, some of them are not true e.g., well mixed reaction cham-
ber. Figure 1.2 describes a general modeling scheme. Based on the questions asked
and system under investigation, distinct modeling approaches are used (Table 1.2).

Step Four Animate the static model. A large number of tools developed for free are
available currently (http://www.sbml.org). Most of them offer exchange of results
based on the standard SBML output (SBML—Systems Biology Markup Language).

Some of the desirable features of an effective software tool for Systems Biology
from both computational and software viewpoints are presented below.

a. Algorithmic Support. Algorithms form the core of any tool. We have seen that
there are a number of formalisms and algorithms each with its own strengths
and weaknesses. Flexibility to quickly use different algorithms from the same
environment would be critical for reducing the cycle time of building large and
complex models. We further classify algorithmic support into three divisions:

b. Modeling and Simulation Support. Abstractions of different cellular processes
require different information about the target systems such as Gene Regulatory
Network, Signal Transduction Network or spatial diffusion. These are based
on system specific inputs and implementation of the underlying algorithms.
Table I lists details of some of the processes. The whole cell modeling tool must
eventually provide support for handling and processing this information.
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Table 1.2 Commonly used kinetic modeling formalisms

Process

Input

Mathematical formalism

Gene expression

Quantitative time series data

Stochastic equation

Metabolic reaction

Concentrations, rate constants

Ordinary differential equation

Gene regulatory
networks

Network topology, stoichiometry,
rate constants, number of particles,
rules, thresholds

Boolean, rule based, stochastic
master equation

Signaling network®

Network topology, stoichiometry,
rate constants, number of particles,
rules, thresholds

Boolean, stochastic (gillespie,
stochsim, petrinets),

Metabolic pathway

Network topology, stoichiometry,
kinetic rate laws, initial
concentrations, algebraic rules

Non linear ordinary differential
equations, s-systems

Membrane transport and
other spatial processes

Initial spatial concentrations,
diffusion constants

Reaction diffusion, deterministic
partial differential equations,

spatial stochastic master equation

#Recently rule based modeling approach has gained prominence. GetBonNie is a good tool for
building rule-based models of signaling networks (http://getbonnie.cs.unm.edu/GetBonNie/). This
is particularly useful since qualitative data are the most frequent/dependable form of data obtainable
from signaling networks. As an extension, I would strongly encourage readers to go through Dr.Eric
Davidson’s work on modeling embryonic development. (http://www.its.caltech.edu/ mirsky)

c. Analysis Support. An important aspect of a typical modeling project in Systems
Biology is analysis of the qualitative and quantitative features of the network.
Parameter estimation, network optimization, flux balance analysis, bifurcation
analysis, extreme pathways and metabolic control analysis are some of the strate-
gies being used currently. Figure 1.3 shows the kind of data used in quantitative
model. Parameter estimation algorithms are indispensable for complementing
the limited knowledge that can be obtained from experimentation. These algo-
rithms can be used for estimating the unknown rate constants for reproducing
an experimentally observed time series. Flux Balance Analysis and Metabolic
Control Analysis have a long history of application to metabolic networks. Stoi-
chiometric Network analysis and Extreme Pathways are used to extract qualitative
information about a network such as the critical paths.

d. Visualization. Powerful visualization tools are necessary for improving the effi-
ciency of the modeling process and understanding the output of the simulation.
Some of the desirable features of a visualization tool are:

— Graphical User Interface for constructing the network and entering various
input parameters. A text-based input does not give a good idea of the network
topology. Graphical interface becomes particularly desirable for representing
spatial features of a model such as compartmentalization and localization.
Visualization is required for monitoring the dynamics of a model such as
evolution of the network topology through a change in the network layout or
the relative concentration of the species through a color code.
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Animal cell numerology

e DNA/cell:5pg

* RNA/cell : 10 pg

* Total protein / cell : 300 pg

* Dry weight of cell: 400 pg

* Cytosolic volume / cell: 1 pl

* Number of proteins/ cell: 5000-10000

* No. of protein molecules / cell: 5x 10e9

* 1 molecule /cell =1 pM

* 1000 molecules / cell =1 nM

* 1x 10e6 molecules / cell = 1 uM

* Diffusion co-efficients are almost always in the range from
10e-6 to 1e-5 cm2/sec

Fig. 1.3 shows typical quantities used in a kinetic model

— Powerful graph plotters. The outputs of most of the simulation algorithms are
some form of time series. As a result in-built support for powerful plotters is
very important for analysis of the output.

e. Software Architecture. Simulation and analysis of large-scale models are in-
variably computationally expensive and often need high performance distributed
computing.

Some tasks, amenable to and can benefit from distributed computing, are genetic
algorithms based parameter estimation, multiple simulations for parameter sweep
and parallel PDE solvers for spatial simulation.

f. Modeling Language. Model building is complex activity requiring collaboration
between various research groups, both experimentalists and theorists. Thus devel-
opment of a common language for smoother information exchange is imperative.
Some of the ongoing efforts in this direction are BioPAX, SBML and CellML.

1.4.1 Challenges in Building Reliable Models

* Lack of accurate and adequate biological data

* A general lack of quality control with respect to strain, culture conditions and
protocols

e A cell is a gel, shows gradients, non-uniform distribution of substances in
compartments. Frequently, a model does not consider these variables.

» Parameter values are often inaccurate or taken in special culture/harvesting condi-
tions. To fill in the gap, deterministic and stochastic parameter estimation methods
have been developed. However, none of the methods guarantees an accurate an-
swer. Also, given that good data is often less frequently available, the parameter
search space is almost always significantly large. The larger the search space, the
lesser the possibility of finding an accurate answer.
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* Unknown reaction kinetics

¢ Temporal inactivation/degradation of enzymes in generally left out during
modeling process

e Metabolic channeling effects

* Emergent phenomena

1.5 Capturing Biological Complexity

The grand challenge of twenty first century is to understand and model complexity
of biological systems. Though complexity has been extensively discussed subjects
at different levels (Lynch and Conery 2003; Yang et al. 2003), there is no oper-
ational definition of complexity for the biological systems (Adami 2002). Some
hallmarks of complexity, e.g., linearity and non-linearity, number of parameters, or-
der of equations and evolution of network, come into existence only when a system
is formalized in specific ways. Furthermore, from what has been clear, there are
two kinds of complexity in biological systems: functional and structural, or dynamic
and static; both encountered by modelers. The identification and measurement of
biological complexity is a very big task for experimental biologists.

As Adami pointed out, the popular measure of complexity for dynamical systems,
computational complexity (for example, the complexity of a sequence can be inferred
from what finite state machine can produce), is unsuitable for biological systems.
Even though it characterizes the amount of information necessary to predict the
future state of the machine it fails to address their meaning in a complex world. Yet
the meaning or semantics of molecular interaction really makes sense in signaling
processes. An alternative approach may be to think about the complexity issue at
higher level and in much larger scope. Recently, the complexity of networks has
attracted interests of researchers with different background (Bhalla and Iyenger 1999;
Strogatz 2001; Wagner and Fell 2001). Since the topological structure of molecular
network, consisting of active genes and proteins, undergoes significant evolution
within cells in biological development, to measure complexity of molecular systems,
both static and dynamic, according to such evolution may be a practical way, because
it is easier to identify and abstract information from it (Bornholdt 2001).

Features in topological structure are also helpful in identifying modularity of
molecular interaction. In a large, multicellular landscape, the speed and scope of
parallel network evolution in cells, if measured properly, can effectively reflect the
complexity of biological systems. Another widely used index of complexity in both
physical and biological systems is non-linearity, including parameter sensitivity and
initial value sensitivity (Savageau 1971). In evolvable systems, it often implicates
the speed of evolution and the appearance of emergent events. Last but not least,
the existence of stochasticity and noise increase the complexity of the system even
further by introducing issues of robustness, noise resonance and bi-model behaviour.
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1.5.1 Computational Challenges in Building Stochastic Models

Experiments have conclusively proved that molecular activity, including gene reg-
ulation, are stochastic (Elowitz 2002). The intrinsic stochasticity of biochemical
processes such as transcription and translation generated intrinsic noise; and the
fluctuations in the amounts or states of other cellular components lead indirectly to
variation in the expression of a particular gene and thus represented extrinsic noise
(Swain 2002). There are also opinions that the stochasticity contributes much to
system complexity.

To describe the stochasticity, intrinsic and/or extrinsic, two strategies have been
developed. The first is to design specific stochastic simulation algorithms that can cut
down the computational burden; the second is to use stochastic differential equations,
which are modified ODE with stochastic flavor. We first describe these two ap-
proaches, then, turn to methods of reducing time consumption of stochastic modeling.

The CME formalism employs an equation for every possible state transition and
solves all equations simultaneously. Generating one state transition trajectory is
straightforward. However, when the dimensionality of a system increases, the pos-
sible trajectories of the state transition, or the state space, explode combinatorially,
rendering the system intractable. In view of this serious limitation, Gillespie devised
a more efficient algorithm to generate all trajectories (Gillespie 1977). Instead of
writing all the master equations explicitly, he generated trajectories by picking up
reactions and time intervals according to correct probability distributions so that the
probability of generating a given trajectory is exactly the same as the solution of
the master equation. For a homogeneous, well-mixed chemical system, Gillespie
has proposed two exact Stochastic Simulation Algorithms (SSA), namely the Direct
Reaction Method and First Reaction Method to solve the chemical master equations.

Although Gillespie algorithm solves the master equation exactly, it requires sub-
stantial amount of computational effort to simulate even a small system. Each of
following three factors contributes to a considerable increase of time consumption:

¢ Increase in the number of reaction channel
¢ Increase in the number of molecules for the species
¢ Faster reaction rate of the reaction channels

These factors cause scalability problem, which is similar to the stiffness problem
in usual ODE description i.e., whenever reaction rates between different reaction
channels vary in magnitude, computation slows down considerably. In the stochastic
algorithms, whenever the complexity of a system increases through the augmentation
of any of the abovementioned factors, a smaller should be adopted to reflect the true
nature of the system, i.e., to maintain the exactness of simulation. The difference in
time scale between different reaction channels is a cause for its large computational
complexity.

In 1998, Morton-Firth and Bray developed Stochsim algorithm, treating bio- logi-
cal components, for examples, enzymes and proteins, as individual interactive objects
based on probability distribution derived from experimental data. In this scheme, in



1 Introduction to Systems Biology 15

each round of computation, a pair of molecules is checked for potential reaction. Due
to the probabilistic treatment of interactions between molecules, Stochsim is capable
of reproducing realistic stochastic phenomena in biological systems. Though both
Gillespie algorithm and Stochsim algorithm are based on the identical, fundamental
physical assumptions, an important feature of the latter is the concept of “pseudo-
molecules”, which serves as a numerical treatment to maintain the accuracy of the
algorithm. Furthermore, in this algorithm, the number of pseudo-molecules can be
optimized to overcome the stiffness problem.

In contrast to the variable time step in Gillespie algorithm, Stochsim algorithm
uses fixed time step that can be optimized to the desired accuracy. However, the
convenience of this measure comes with an additional burden of using empty time
step i.e., a time step in which zero events occur. Another limitation of the Gillespie
algorithm is its computational infeasibility for multi-state molecules. For example,
a protein with ten binding sites will have a total of 210 states and it requires the
same amount of reaction channels to simulate this multi-state protein. Considering
the scaling feature of Gillespie algorithm with the number of reaction channels, it
is impossible to perform such a simulation on with available computational power.
Stochsim algorithm can be modified to overcome this problem by associating states
to molecules without introducing much computational burden.

Several strategies have been adopted to improve the efficiency of stochastic mod-
eling. Gillespie and Gibson (2001) were the first to modify the SSA to improve
efficiency of the algorithms.

Gibson proposed the Next Reaction Method as a revised approach to Gillespie’s
First Reaction Method for simulation efficiency. The algorithm has been applied
for simulation of the Bacteriophage Lambda model. In 2001, Gillespie presented
the Tau-Leap Method to produce significant gains in the computational speed with
acceptable loss in accuracy (Gillespie 2001). In the original version of Gillespie Al-
gorithm, master equations were solved exactly to produce precise temporal behavior
of systems by generating the exact timing of the firing of each reaction channel. How-
ever, it is sometimes unnecessary to obtain so much detail from simulation. Instead
of finding out which reaction happens at which time step, one may like to know, how
many of each reaction channels are fired at certain time intervals. If the time interval
is large enough for many reactions to happen, one can expect substantial gain in the
computational speed.

However, the method still possess the inherit disadvantages of supressing stochas-
ticity in fast reaction and the computational efficiency of Implicit Tau Leap method
is still unexamined for a large biological pathway model. Another way of improving
efficiency of SSA is to adopt multi-scale integration.

1.5.2 The Rise of Hybrid Modeling

Pure stochastic modeling deals with biological systems as physical systems without
biological semantics. Besides the huge burden of time consumption, specific seman-
tic of gene/protein interaction is often buried under low level biochemical reactions.



16 B. Hu and P. K. Dhar

Hybrid modeling can have multiple meanings. First of all, a model containing
metabolic and signaling networks is a hybrid model. Actually these two networks
are not independent of each other. For example, in Type II diabetes, the weakened
transduction of insulin signal and the changed metabolism activity in cells are
closely coupled. In such model, very often, different description methods should be
employed to disclose different aspects or parts of a biological system, because, when
ODEs are used to describe deterministic events, the basic assumption on continuity
and determinism in ODE methods hamper the true representation of noise and
stochastic events in cellular environment [64]. Finally, different cellular processes,
like gene expression and biochemical reaction and different biochemical reactions,
ask for description not only different in methods but also at different time-scales.
For a successful simulation, various techniques should be implemented to ensure the
feasibility of computation, including the multiple time-scale integration of different
equations like ODE, SSA, and SDE [62].

Biological systems in nature undeniably involve multi-scale activities. Algorithms
discussed earlier tackle the problem by obtaining solution for the scale of interest
while eliminating the other scales in the problem. However, these algorithms pro-
duce results of less fidelity in the situation when different scales are heavily coupled
together. Furthermore, these algorithms may not be computationally feasible for
the scenario as well. One of the methods to reduce simulation time of these algo-
rithms will be to combine different algorithms that handle different scales (Welnan
and Engquist ? ). The idea of mixing different algorithms to handle hybrid system
is not new and has been first adopted in ODE system of equations. Anders [66]
presents multi-adaptive-galerkin methods for solving stiff ODE system. The method
showcases the possibilty of applying different time-steps and algorithms for different
equations in the system and highlights the potential of hybrid methods. However, the
method is derived for solving ODE system only and therefore insufficient in tack-
ling the problem in computational cell biology. Recently, Haseltine and Rowlings
(2002) presented a method for performing mixed ODE/SSA calculation to approxi-
mate system dynamics. The approach are theoretically based on the the equivalence
of stochastic and deterministic assumption at the thermodynamic limits, where N
and V become infinite. The methods offer insight into integration of the mesoscopic
and macroscopic timescale but fail in providing a robust control mechanism and
exact mathematical solutions. In addition to that, the methods adopt switches to
partition the system into either stochastic or deterministic regime which resulted in
sharp transition of the dynamics. This is unnature and unrealistic as compared to
the dynamics in the cells which exhibit smooth transition of states from microscopic
scale to macroscopic scale.

Integration of diffusion and biochemical pathway has been attempted recentlym
(Stundzia and Lumsden 1996). The method derives the reaction-diffusion master
equation and simulate the system with SSA. These approaches produce interesting
insight about the dynamics between diffusion and chemical reactions. However,
the computational requirement is enormous and not feasible for realistic model.
Furthermore, the methods do not consider concentration gradient and therefore are
not accurate in simulating diffusion processes.
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A recent version of Stochsim algorithms includes a 2- dimensional lattice to model
the interaction among neighboring molecules. In this approach, spatial information
is added as an attribute of each molecular species. The algorithm has been applied for
studying the dynamics of signaling proteins associated with the chemotactic receptors
of coliform bacteria. MCell [59] has also introduced another way of simulating
stochastic diffusion by directly approximate the Brownian movement of individual
molecules. In MCell, random numbers are used to determine the motion and direction
of molecules during simulation. Due to the incorporation of Monte Carlo simulation
and the individual treatment of each molecular species, the results from MCell contain
realistic stochastic noise based on the spatial arrangement and number of participating
molecules.

Unlike metabolic networks, signaling networks can undergo significant tem-
porospatial changes in embryonic development to endow cells specific identities
and to fulfill particular functions within them. For example, a fly is different from
a mouse because the molecular interactions within cells of the former produce dif-
ferent signals from the molecular interactions within cells of the latter in body plan
development. Since recent progress in developmental biology has indicated that the
pathways controlling embryonic development are highly conserved in different an-
imals in both composition and function [82-85], to reveal how slightly different
pathways, following what rules, lead to distinctively dissimilar morphogenesis is
a great challenge. This, therefore, raises issues of modeling parallel, interactive
molecular networks. We list some, but not all, issues here.

First, signaling in a cell is not autonomous in cell fate determination. In develop-
ment, a cell does not know when to divide, when to die, and when to differentiate. It
also does not know, in the absence of environmental messages, whether to differen-
tiate into a myocyte or a neuron. Thus, single cell modeling may not be enough to
reveal what we want to know.

Second, various variations can occur, which can be normal and abnormal. In fact,
cancer has been seen as aberrant developmental events. To simulate only the normal
case is insufficient to understand the properties of signaling networks.

Third, relevant to but different from context dependency is gene function poly-
morphism. Not like enzymes in metabolic networks showing high specificity, genes
in signaling networks can produce and transfer different signals. These constitute ba-
sic features of tissue scope molecular level signaling modeling. Considering a small
100 x 100 x 100 tissue cube contains 1 million cells, these issues cannot readily
be solved by available modeling platforms.

1.5.3 Re-Programming Signaling Process in a Cell

One aspect that signaling modeling can make contribute to is the re-programmability
of molecular networks, which has been an important research topic (Tada et al.
2001; Hakelien 2002). Carina Dennis, Natures Australia correspondent, describes
the technique of turning an adult human cell back to an embryonic state as cellular
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alchemy [88]. Usually, from state A, an embryonic state, to state B, a state of a fully
differentiated myocyte, more than one network configurations mush be underwent.
Among explosive combinatorial conditions, how to find a feasible path, consisting
of a series of molecular switches, really make sense for experimenters. A wealth
of knowledge on dynamics of molecular interaction is very helpful for correct re-
programming.

1.6 Practical Applications of Systems Biology

Systems Biology offers possibility of creating new opportunities for drug target
selection based on predictive models. For example, pathway based disease models
can be very helpful at the preclinical stage to identify potential toxic effects of lead
compounds. If a compound targets network hub, the possibility that such a drug will
give rise to a number of side effects is quite high. However, if drug targets turn out
to be (a) non-hubs or (b) multiple weak binders in the network collectively bringing
about the effect, such lead compounds will be preferred over the rest. Also, the
disease and population based drug response models can help lower R&D costs. A
prior assessment of side effects/toxic effects can result in speeding up drug discovery,
leading to significant savings.

By producing detailed route maps of molecular circuitry in the cell, it is possible,
in theory, to develop smarter therapeutic strategies. However, the success of this
strategy depends upon completeness and accuracy of relevant data. Systems biology
approaches have played a key role in understanding AstraZeneca’s Iressa (gefitinib)
Lliver abnormalities were identified by Pfizer, and Johnson & Johnson identified
a kinase inhibitor mechanism (extracted from Rubenstein 2008). Dr.Rubenstein’s
recent book also includes examples describing nanosystems studies to construct a
predictive model for transcription control, ChIP-on-chip technology for global tran-
scription factor identification, and methylation-specific polymerase chain reaction
(PCR) for global DNA methylation detection as an entry point to epigenetics.

Identifying systems, building biologically accurate models, with appropriate pa-
rameters, performing sensitivity analysis provides a robust ecosystem for carrying
out drug development studies. In our experience, the community will increasingly
focus on building virtual cell (e.g., virtual E. coli, virtual Pseudomonas) and whole
organ (virtual heart, virtual multi-organ diabetic model) in the near future. Professor
Dennis Nobel’s group already has significant contribution in this direction. Prof.
Nobel is one of the pioneers of Systems Biology and developed the first viable math-
ematical model of the working heart in 1960. His research focuses on using computer
models of biological organs and organ systems to interpret function from the molec-
ular level to the whole organism. Together with international collaborators, his team
has used supercomputers to create the first virtual organ, the virtual heart.

The impact of systems biology is also visible through the work of Dr. Jasin
A. Papin of the University of Virginia. Recently, his group constructed the first
Leishmania major metabolic network that accounts for 560 genes, 1,112 reactions,
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Fig. 1.4 Different levels when connected give a reasonably accurate picture

1,101 metabolites, and eight unique subcellular localizations. Also, the same group
was involved in building a genome-scale constraint-based model of the Pseudomonas
aeruginosa strain PAO1, mapping 1,056 genes whose products correspond to 833
reactions and connect 879 cellular metabolites.

1.7 Conclusion

A system is not equal to the sum of its components. This is especially true of biological
systems that show robustness and emergent properties. Due to dynamic and complex
interaction among components within and between different levels (Fig. 1.4), the
biophysical and biochemical laws that describe these components cannot explain the
collective behavior of a system. A grand challenge in systems biology is to identify
these rules at the interface and expand in either direction. It is easy to model energy
transactions as the energy transfer reactions have been well studied in physical and
chemical systems. The more challenging task is to simulate collaborative interactions
among molecules that produce and transfer signals.

As always, new challenges demand new strategies. Signaling pathways, the most
difficult to model due to a heterogenous mix of activities involved, can be seen
as a kind of molecular body language. We argue that to simulate these molecular
activities using a language at a level that matches the molecular body language is a
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preferable approach. The language should have following minimum features: time-
dependent and molecular behavior features, a switchable link between molecules,
explicitly defined semantics of interaction, dynamic logging of molecular interaction,
hardwiring cellular events with molecular events, and an extension to multicellular
modeling capability. We are currently working on building such a language, though
its effectiveness hasn’t yet been determined.

One of the challenges in Systems Biology is to identify a complete parts list of
a cell and tie them by way of equations, conditional statements that are context de-
pendent. The purpose is to move from structural knowledge to functional knowledge
of the system. One of the unsolved mysteries of science is how does the behaviour
of a cell at different scales relate to the physiological phenomenon. Constructing a
cell from its bare components calls for excellent engineering knowledge, not only
for integrating small cell parts into pathways and networks, but also for reverse engi-
neering of the parts from experimental data. The construction of a detailed cell map
has to be aided by novel experimental and computational approaches. The future of
experimental system biology lies in the invention of novel approaches that generate
high throughput and noise free data. In addition, advancement of computational sys-
tems biology depends on invention of truly integrated algorithms that are adaptive,
robust and capable of simulating multi-scale system. The algorithms will fully in-
tegrate different levels of abstractions and reconcile the basic assumptions involved
in different timescale and time-span involved. Last but not least, algorithms should
also model the smooth transition of a model from mesoscopic to macroscopic scale.

Key: Terms Commonly Used in Systems Biology

Modules are subnetworks with a specific function and which connect with
other modules often only at one input node and one output node.

Robustness describes how a network is able to maintain its functionality de-
spite environmental perturbations that affect the components. Robustness also
reduces the range of network types that researchers must consider, because
only certain types of networks are robust.

Network motifs Patterns of subgraph that recur within a network more often
than expected at random.

Path An unbroken series of linear steps. A path has one entry (input) and one
exit (output) point.

Pathway A collection of convergent, divergent and cyclic paths. A pathway
may have one entry point and many side branches as exit points. The side
branches connect a pathway with other pathways. Often, energy-consuming
pathways are coupled to energy generating pathways to maintain the overall
energy budget.

Network. A set of interacting pathways. A network has multiple entries and
multiple exits. Traditionally, pathway was more used for describing metabolic
processes and network for gene regulation and signal transduction. Yet there can
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be metabolic networks, signaling networks, and hybrid networks comprising
both metabolic and signaling pathways. The topology of networks reflects
some fundamental properties of biological systems involved, and it can be
reprogrammed in cells in response to external signals.

Module. A module is a relatively independent functional unit in a cell, which
may comprise one or several cross-interacting pathways and autonomously
performs a specific function. A functional module can have different structural
organization in different cells and at different time, reflecting the substitutabil-
ity and overlap of gene function. Some biological activities like feedback and
amplifier can be explained better in terms of module rather than of pathways
or molecules.

Modularity describes the extent to which a system is divided into modules.
Complexity. Biological complexity can be gauged in different dimension.
It may cover structural and functional interaction among elements, and the
evolution of the systems and subsystem they create. Many mathematical con-
cepts and tools, such as self-organization theory, nonlinear equations, cellular
automata and chaos, are used to describe complex biological phenomena.
Robustness. The property of system which indicates the resistance to internal
errors and external perturbations

Model. A model is a formal or abstract representation of a system, usually in
the form of a set of objects and the relations between them.

System. Consisting of more than one component physically that can be sub
systems at lower level, a system possesses more attributes and behaves more
complex than any of its component.

Systems Biology. An approach to link the constituent elements of a system
with its higher level behavior.

Systems Engineering is a methodology developed in engineering areas but
applied in biological modeling to build complex systems from a raw material
of components.

Forward Engineering follows a bottom-up approach to model a system and
its functional process with known information about its elements.

Reverse engineering is a top-down process, inferring the internal structure and
components according to systems behavior.

Systems Theory is a mechanical understanding of system structure behavior.
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Chapter 2
Why Systems Biology Can Promote a New
Way of Thinking

Alessandro Giuliani

Abstract This chapter deals with the effect Systems Biology had on the Nature
of what we consider ‘an explanation’ in Biological Science. I try and demonstrate
how the most relevant change carried out by Systems Biology approach was the
shift from the molecular layer as the definitive place where causative process start to
the elucidation of the among elements (at any level of biological organization they
are located) interaction network as the main goal of scientific explanations. This
change of perspective allows to dissipate a widespread idealistic nightmare looking
at the single molecules as Maxwell-demon-like intelligent agents. The recognition
that genes work in networks has as consequence the existence of discrete ‘allowed
global modes’ of gene expression. This theoretical expectation was verified by the
incredibly narrow space of different tissues (each corresponding to a largely invariant
gene expression profile)—around 200 tissue types for all the metazoans emerging
from the transfinite number of possible combinations of the expression values of
around 30,000 genes. This is a crucial step for generating a scientifically sound
framework to address global biological regulation.

Systems Biology approach makes obsolete the debate between ‘reductionist’ and
‘holistic’ approach in favor of a ‘middle-out’ paradygm formally identical to the
time honored chemical thought. This is probably the brightest promise of Systems
Biology to scientific knowledge.

Keywords Attractor in systems biology - Maxwell’s demons - Levinthal paradox -
Network - Protein contact network (PCN) - Metabolic network

2.1 Introduction

The classical form in which biological systems are described (being they metabolic
charts, gene expression regulation pathways, protein-protein interaction maps, food
webs and so forth) corresponds to a set of nodes linked by edges in which the nodes
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are the basic elements of the described system (genes, proteins, metabolites and so
forth) and the edges connecting them some rules of the kind ‘is transformed into’ or
‘is increased by’.

The figures normally present in books and scientific papers implicitly consider
these pathways as linear causative chains in which a signal starting from a molecular
perturbation, after a sequence of if-then events, emerge as a biological end-point
(Tun et al. 2011). Normally these processes are referred as ‘cascades’ provoking
a progressive amplification of the initial stimulus (MacFarlane 1964). On the con-
trary, biological effectors (being them genes, proteins, hormones.), with only few
exceptions, work in networks, and this fact implies a completely different form of
biological regulation with respect to the ‘cascade’ model: the entire network has,
thanks to its wiring structure, few preferred modes corresponding to the stable con-
figuration of the network itself (Tun et al. 2011; Kauffman 1993; Huang et al. 2005),
any perturbation, being it pharmacologically induced or coming from a mutation in a
crucial gene, ends up into one or the other of these allowed states without any simple
relation with the features of the applied perturbation (Tun et al. 2011).

Figure 2.1, taken from (Huang 2009), depicts the change in perspective shifting
from pathway to network paradigm.

Without entering in the physical processes instantiating such intermingled (and
largely invariant) networks, Systems Biology scholars can make use of a purely
phenomenological view on biological regulation adopting some general concepts of
dynamics. This is a necessity, if we consider that, thanks to the development of high
throughput methodologies the graphs corresponding to the ‘perceived’ regulation
networks became larger and larger and ask for some form of global analysis in order
to get rid of their wild multiplicity.

The approach considering the graph as a system of differential equations in which
an entering stimulus, correspondent to a modification of a peripheral node of the
network, is progressively processed according to the wiring architecture and kinetics
constraints of the network itself, while being the most potentially exhaustive avenue
of research is severely hampered, in the case of biological systems, by a lot of prob-
lems. First of all the practical impossibility to attach to the whole set of edges reliable
kinetic-like weights for quantifying the entity of the between elements correlation.
Only in the case of very small networks this can be done by means of the statistical
estimation of the parameters from experimental data, but it is well known that in
physiological settings these weights can vary of orders of magnitude (Laughlin et al.
2000). Moreover in many cases we cannot rely on the complete knowledge of the
wiring diagram of the network. For these (and other) reasons many authors preferred
a purely topological approach to the analysis of biological networks, considering the
presence of a link between two nodes as a pure yes/no binary relation and limiting
themselves to statistical descriptions making use of the so called graph-invariants,
i.e. a collection of indexes that, relying on the simple count of nodes and edges, en-
able the analyst to identify crucial elements of the network (like the so-called hubs,
nodes engaged in a very large amount of relations) or to highlight specific features
of the entire network architecture responsible for some aspects of the studied system
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Fig. 2.1 Panel a reports the usual pathway view: a molecule produced by gene X1 acts as modulator
(positive or negative) of gene X2 that in turn acts on another gene and so forth. If we consider these
linear pathways are part of a network (panel b) we understand how the only allowable states are
those corresponding to the network configurations that occupy energy minima in the state space
having as dimensions the actual values of the nodes (panel ¢). The presence of a strong correlation
structure among the nodes (in panel d the gene expression network is reported in which the node
values correspond to the expression values of different ORFs) creates a ‘rugged energy landscape’
over the state space with only few valleys correspondent to differentiated tissues having a strongly
invariant gene expression profile expressed as GEDI (Gene Expression Dynamics Inspector) map
in which each pixel corresponds to a gene whose expression value is paralleled by a different color.
These maps, collectively correspond to observed phenotypes (panel e)

behaviour (this is the case of the so called ‘scale-free’ architecture that was demon-
strated to be at the basis of the huge resilience of biological systems) (Watts and
Strogatz 2004).
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The consideration of biological systems at the coarse-grain level of the graph
topological approach is, in my opinion, a very important first step for the develop-
ment of a sort of biological statistical mechanics in which the actual behaviour of
the global system can be predicted by a convenient statistics over its constituentparts
(Giuliani 2010).

In the case of statistical mechanics of inanimate systems this was the case with
the Boltzmann microscopic definition of entropy as a statistical index computed
over the microstates frequency distribution of the studied system (Giuliani 2010).
This deliberate coarse-grain approach that abandoned the dream of following the
trajectories of the single elements for a population level view, enabled scientists to
get a link between microscopic and macroscopic physical descriptions (Laughlin
et al. 2000; Watts and Strogatz 2004; Giuliani 2010; Karsenti 2008).

In the following I will try and describe the search for a Boltzmann-like approach
to biology by the critical analysis of different regulation network-like systems, in
the same time I hope it will be clear how this effort is strictly consistent with very
fertile lines of epistemological lines of thought, mainly chemical research tradition
and multidimensional statistics (Di Paola et al. 2012; Benigni and Giuliani 1994).

2.1.1 The Concept of Attractor in Systems Biology

The concept of attractor was developed in dynamical systems theory, where the
whole system is thought as evolving towards a preferred (minimal energy) state
called an attractor set, and represented such as a point, a curve, and a manifold in
the state space. The study of folding process in proteins, where the impossibility for
the linear chain of amino-acids to randomly explore all the possible configurations
in biologically plausible times before settling down in the native 3D structure (the so
called Levinthal paradox taking its name by the crucial observation made by Cyrus
Levinthal that in his 1969 paper (Levinthal 1969) computes in the order of millions of
years the duration of protein folding process as compared by the seconds to minutes
effective actual time) is the field of biomolecular science where a ‘goal-oriented’
trajectory driven by the existence of a preferred configuration ‘attracting’ the system
trajectories in the state space was studied more in depth.

Figure 2.2 reports a simplified view of the folding process of a protein in energetic
terms: this representation is named ‘folding funnel’ (Dill and Chan 1997) and stresses
the fact that different initial states corresponding to different positions in the upper
part of the funnel converge on the same potential well at the bottom of the funnel.

The fact the potential well bottom (equilibrium state) does not correspond to a fixed
configuration but to a set of possible states makes it possible protein dynamics that
is crucial for exerting its physiological role. The fact protein molecule behavior can
be fully interpreted as the dynamics of a network in which the amino-acid residues
are the nodes and the between-residues contacts the edges (Di Paola et al. 2012)
makes the folding funnel metaphor perfectly suited for gene expression network,
the only difference being the knowledge we have of the physical forces shaping
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Fig. 2.2 The protein folding trajectory can be represented as a descent along a potential well. At
the beginning, the fact the protein molecule is in a fully disordered state, corresponds to the width
of the well, measured by the entropy of the system (many equally probable configurations of the
polymer at the fop). The vertical axis of the figure corresponds to the total energy of the system,
the folding trajectory is driven by an energy gradient going down the funnel. Thanks to thermal
agitation, the molecule can escape local minima and reach the bottom of the funnel that in turn is
not a single point but a ‘rugged landscape’ corresponding to slightly different configurations of the
molecule allowing for protein dynamics that in turn is essential for its physiological role

protein folding behavior (Hydrophobic interaction, Van der Walls forces, Hydrogen
bonding.) and the almost complete ignorance about the force fields in which gene
expression networks are embedded.

The common experience of any experimentalist dealing with microarray data is
the fact that any two independent samples of the same cell kind when correlated over
the expression of more than 20,000 different gene products display a near to unity
correlation (see Fig. 2.3).

This marked invariance is normally ‘given for granted’ by biologists that his-
torically focused on the (small) deviations from the native tissue profile in gene
expression space looking for specific altered genes without having any perception
of the ‘elephant-in-the-room’ correspondent to the invariance. Systems Biology is
starting to look at the nature and origin of this elephant not only for knowledge
reasons, but for incredibly urgent and dramatic practical motivations. As a matter
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Fig. 2.3 The X and Y axes of the figure correspond to two independent samples of the same tissue
type (in this case macrophages). The approximately 23,000 vector points correspond to different
gene expressions coming from a microarray experiment. Notwithstanding the fact the graph spans
four order of magnitudes there is a remarkable order of gene expression level corresponding to a
Pearson correlation coefficient r = 0.99 between the profiles. This invariance comes from the fact
each tissue is an attractor in the gene expression space, the (relatively small) scattering around the
identity /ine corresponds to the motions ‘inside the attractor’, these motions are analogous to the
dynamics of a protein molecule around its native state and are the only ones eventually affected by
disease states or pharmacological perturbations. (Giuliani 2010)

of fact in two very important papers (Overington et al. 2006; Hopkins 2008) Over-
ington, Hopkins and colleagues gave a very crude (but statistically clear) picture
of the state of pharmacology research and development: the number of new drugs
arriving at the market stage dramatically decreased starting from the 80’s of the last
century and the classes of receptors they are supposed to bind were already known
since 50 years, the concept of a ‘druggable genome’ with myriads of new drug tar-
gets supposed to be revealed by genome project simply does not exist or, better, the
targets are not ‘druggable’. The same basic idea of network stable states allows to
understand what happened: the only ‘simple targets’ whose modification is expected
to give rise to a macroscopic, organism-scale observable effect are those located at
the extreme periphery of the interaction network, while the modification of a node
located in the internal position of the network is immediately buffered by the feed-
back relations so that the system cannot be modified by pharmacological intervention
(Tun et al. 2011).
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Fig. 2.4 At the cell population level, the ensemble of cells’ potency in iPS reprogramming process
can change in a probabilistic manner like rolling up and down on the epigenetic energy landscape
towards a specific valley having definite potency (attractor state). A lower potency can be pushed up
by a competent stimulus to another allowed potency level on the landscape corresponding to another
(less stable) equilibrium endowed with a higher differentiation potential energy. Figure cited from
(Yamanaka 2009)

On the contrary, the recent Nobel prize to Yamanaka and Gurdon tells us a com-
pletely different story (Yamanaka 2009; Yamanaka and Blau 2010): a bunch of
effectors, in a still largely unknown way, is able to transmit to the ‘system as a whole’
an effective stimulus able to push the entire network along a ‘counter-gradient’ tra-
jectory going back to an higher energy state corresponding to an undifferentiated,
totipotent state. It is remarkable that Yamanaka explains this effect using the Conrad
Waddington epigenetic landscape (Waddington 1957) a precursor of energy land-
scapes, in which unstable, ‘high energy’ states (and thus states in which the system
can be modified by an external modification) are represented as ridges and stable
states (attractors) by valleys, as depicted in Fig. 2.4, coming from a Yamanaka paper
(Yamanaka 2009).

The attractor view allows scientists to eliminate the need to impose the pres-
ence of ‘intelligent agents’ (Maxwell’s demons) in order to get rid of specific and
finely tuned behaviors: the system ‘lives’ in a non-uniform state space (the ensem-
ble of all the possible system configurations) characterized by a so called ‘rugged
landscape’ (Frauenfelder 1991) where the energy minima (valleys of the landscape,
quasi-equilibrium configurations) correspond to attractor states (Frauenfelder 1991).

Each system accommodates towards the energy minimum nearest to it, consis-
tently with the marked ‘context dependence’ (e.g. sensitivity to microenvironment)
of biological regulation. Metaphorically, C. H. Waddington (Waddington 1957) sug-
gested that cell fate would be determined by a trajectory toward a local minimum
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(attractor) on epigenetic energy landscape, where a series of “valleys” and “ridges”
describe stable cellular states (local minima) and barriers (local maxima) between
those states, respectively. The epigenetic landscape is a proposal for the existence
of global molecular regulation in cell fate decision. The word ‘global’ underlines
the fact ‘energy’ is computed over the entire state space (in the case of transcription
dynamics, the genome-wide expression) and not over few specific genes.

Clearly, as above stated, this is a pure phenomenological proposal that does not
enter the molecular mechanisms supporting it even if cytoskeleton organization (In-
gber 1999) or confinement by phase transitions (Hyman and Simons 2012) allowing
the selection of specific pathway in complex microenvironments are very plausible
candidates. Limiting ourselves to data analysis coming from actual biological exper-
imentation, it is sufficient to imagine these discrete states corresponding to ‘allowed
positions in the transcriptome space’, coming from the presence of a still unknown
origin field sensed by the entire genome and driving its collective behavior (Huang
etal. 2005). Itis worth noting that a very basic ‘toolbox’ made of principal component
analysis (principal components being the coordinated fluxes of variations of many
different genes), network invariant descriptors (with the assignment to each node a
set of measures related to its role in the network wiring), cluster analysis (very dense
clusters in the phase space correspond to attractors) are sufficient to undergo such
‘biological dynamics’ avenue of research (Huang et al. 2005; Huang 2009; Benigni
and Giuliani 1994).

In (Huang et al. 2005), the authors offer a very thorough proof-of-concept of the
relevance of considering a differentiated state of a cell population as an attractor
in the proper dynamical sense. They demonstrate that, after perturbation induced
by two completely different chemical stimuli (atRA and DMSO respectively) ini-
tially inducing a completely different response in terms of gene expression, the
system returns back to the same attractor point in the genome expression phase space
(see Fig. 2.5).

The above behavior corresponds exactly to the basic definition of an attractor as a
state ‘attracting’ the perturbation trajectories of the system. This stems from the fact
attractor states are stable and, if the perturbation is not sufficiently strong to push
the system outside its ‘basin of attraction’, soon or later the system will come back
to its original attractor state loosing memory of the nature of the initial perturbation.
Thus the specific differences in mechanism of action of the two effectors are not
so relevant in terms of the resulting effect that is largely dependent on the affected
system modes.

A very important consequence of the presence of an attractor-like regulation is the
impossibility to maintain the classical discrimination of house-keeping vs. specifi-
cally regulated genes and the importance of low-variance genes with the consequent
need to re-cast the idea of what a ‘pathway’ (or a ‘gene signature’) is (Tsuchiya et al.
2010; Venet et al. 2011).

Clearly it is for sure that different genes have different discrimination ability for
specific diseases, and again these specific genes could be more useful than other for
diagnostic purposes, but this has only to do with our specific discrimination goals:
the system as it is works in a self-coherent way on the whole-genome scale.
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Fig. 2.5 Attractor approaching coming from two different trajectories: principal component anal-
ysis for highly expressed 2773 genes following atRA and DMSO stimulus shows two different
trajectories on the space spanned by the first two principal components (PC1 and PC2; red cir-
cles for atRA; blue squares for DMSO). Figure comes from (Huang et al. 2005) and allows to
appreciate how two different stimuli initially make the system to go away from the same initial
state (O h) toward two different directions, when the transients settle down and the system reaches
a new stable configuration, the two trajectories converge to the same attractor state (168 h) losing
memory of their different paths. The strong between genes correlation allows to collapse the entire
multidimensional expression space into a bi-dimensional component space

Especially relevant is the fact that the genome dynamics involve both highly and
lowly expressed genes, which are generally considered noisy and insignificant in
microarray experiments.

These findings give an immediate explanation to the recent ‘iconoclastic’ results
obtained by Venet et al. (2011) thoroughly commented in (Jordan 2012) demon-
strating the practical equivalence between random collection of genes and specific
signatures for breast cancer prognosis. Along the same line is the finding of the com-
plete equivalence of different random gene selections for tracking hematopoietic
differentiation demonstrated by Felli et al. (2010). In the attractor model, lowly ex-
pressed genes are effective players in global gene regulation, given they are integral
part of collective expression modes elicited by the perturbation (treatment, mutation,
differentiation stimulus, etc.); this implies that any sufficiently dense sampling of
genetic probes gives us a relevant picture of the collective mode (Felli et al. 2010;
Censi et al. 2011).

A very recent work describing the architecture of whole genome regulation as
emerging from results coming from ENCODE project (Gerstein et al. 2012) is con-
sistent with the view of a dense interconnected network working as a whole and thus
asking for system-level description of gene expression dynamics.
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2.1.2 ‘Bottom-up’, ‘Top-down’ or (Better) ‘Middle-out’?

If we assume a classical molecular approach, we make the implicit assumption that
the ‘effective flux’ of causation starts at the most microscopic level of the biological
matter and progressively emerges at more macroscopic levels by an interaction chain.

We refer to this approach as ‘bottom-up’ and it was at the basis of molecular biol-
ogy research in these last 50 years: each disease, each general condition is approached
by looking for its molecular determinants.

On the other hand, a physician adopts a ‘top-down’ diagnostic approach, even if
he is convinced the basic causative layer of the still unknown disease he suspects
a given patient is affected is located at some fundamental level, he must orient the
search for a proof of his conjectures in a top-down way by looking for objective
data (biomarkers from blood or urine analysis, image analysis as NMR or X-rays,
biopsies.) collected starting from the goal, and then driven by the global state of
the patient that implicitly is supposed to influence the microscopic findings. The
same ‘top-down’ approach is implicitly assumed in ‘goal-driven’ phenomena like
development even if embryologists actively look for the way to turn development
into a bottom-up explanation, being the top-down approach considered as a constraint
arising from the lack of a sufficiently accurate knowledge of development.

All in all, the choice of one approach or the other is often not-decidable: from a
certain point of view the ‘ultra-reductionist’ exclusively bottom-up perspective is to-
tally unrealistic for the obvious reason any organism is subjected to a huge number of
top-down constraints coming from the fact they live in a physical world (gravity (In-
gber 1999), electromagnetism (Sebastian et al. 2001), thermodynamics (Shakhnovic
2006)) as well as from higher order perturbations affecting molecular targets (synap-
tic modifications induced by learning (Malenka and Nicoll 1993), hormonal changes
due to psychological and social stress (Catalani et al. 2011)). All these phenomena
ask for a top-down causation complementing the bottom-up mechanisms.

On the other hand, a purely top-down approach will end up into a pure descrip-
tive/diagnostic and mainly tautological body of knowledge in which any knowledge
element is at its best a ‘diagnostic marker’ of something else or, worst, a necessary
consequence of a global principle. This happens for example in some misconcep-
tions of evolutionary theory that virtually inhibit any fundamental research on the
causes of observed phenomena by simple stating ‘if it is there it means that it must
be there because it is convenient’ that is in some cases is nothing more nothing less
than tautological ‘just-so-stories’.

Network (or better graph) paradigm are located half-way between these two ex-
tremes and for their very basic nature make these two opposite epistemological
approaches obsolete.

The classic Konigsberg bridge problem introduced graph theory in eighteenth
century. The problem had the following formulation: does there exist a walk crossing
each of the seven bridges of Konigsberg exactly once? The solution to this problem
appeared in ‘Solutio Problematis ad geometriam situs pertinentis’ in 1736 by Euler
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Fig. 2.6 The Konigsberg
bridge problem: the seven
bridges (edges) extremities
are indicated by letters
(nodes)

Fig. 2.7 A Protein Contact
Network (PCN) this is a
complex graph in which each
node corresponds to an
aminoacid residue and each
edge to a physical contact
between two residues. The
nodes are variously colored
according to amionacid
chemico-physical features.
(Di Paola et al. 2012)

(Di Paola et al. 2012). This structure was called a graph and this was the first time a
problem was codified in terms of nodes and edges linking nodes (Fig. 2.6).

A graph G is a mathematical object used to model complex structures and it is
made of a finite set of vertices (or nodes) V and a collection of edges E connecting
two vertices (Fig. 2.7).

Itis relatively easy to extract from graphs many descriptors located at local (single
nodes), global (entire network) and mesoscale (clusters of nodes, optimal paths)
levels. Thus we can compute the degree of each node (how many links are attached
to a given node) thatis a local, microscopic characteristic by which we can in principle
locate the most important elements in a complex system (bottom-up approach) or we
can compute the so called ‘average shortest path’ or ‘characteristic length’ of a graph
corresponding to the average length of minimal paths connecting all the node pairs
(this corresponds to a mesoscopic feature of the system) or the general connectivity
of the network (this allows for a top-down study of the network as a whole) (Watts
and Strogatz 2004; Di Paola et al. 2012).

It is important to stress all these different view are strictly intermingled among
them, given they derive from the same basic representation (the graph) so that any
view influences (and in turn is influenced) by all the others. The necessary (and
natural) interaction of different level view is called ‘middle-out’ approach to stress
the fact the interest is focused on the mesoscopic level, i.e. on the pattern of between
elements relation and not on the fundamental features of the constituting elements
(Csermely et al. 2005).
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Fig. 2.8 Structural formulas H
are graphs in which the edges I
are covalent bonds between
atoms (nodes) H— C_H H /l_i
| h
H
Methane Water

The science that was mostly influenced by this ‘naturally systemic’ view is chem-
istry that uses since decades the most widespread (and effective) graph formalization
of all: the structural formula (Di Paola et al. 2012). Figure 2.8 reports the structural
formulas of methane and water.

Every chemistry student knows very well that an hydrogen atom embedded into
methane molecule has different features than the same hydrogen atom of a water
molecule: e.g. the hydrogen in the water molecule has a partial positive charge
much greater than the methane hydrogen for the greater electronegativity of oxygen
with respect to carbon atom. This is a clear example of top-down causation: the
properties of the most basic level (atom) depends on the features of the entire system
(molecule). In the same time both methane and water molecules derive their features
from the constituent atoms (bottom-up causation). Stressing the two ‘directions of
causality’ is in any case out-of-scope, because the chemical graph incorporates both
into a global systemic reasoning made it possible by the formula. If we shift to
more complex organic molecules formulas we can appreciate the richness of the
possibilities offered by this approach (by the way thousands of different quantitative
features of the molecules can be directly derived from structural formulas so that,
strictly speaking, properties like solubility, melting point, molar refractivity, partition
coefficients can be considered as graph descriptors (Fredenslund et al. 1979)).

What is important to stress here is that the network paradigm introduces a unique
synthesis between reductionist (all is in the molecules) and holistic (all is in the whole)
approaches. A clear example of the efficiency of this ‘graph-based’ reasoning more
linked to Systems Biology problems is the prediction of lethal mutants in yeast by
the graph analysis of metabolicnetwork (Palumbo et al. 2005; Palumbo et al. 2007).

From a purely topological point of view, each node of a network is uniquely
defined by its position in the graph. Obviously, when dealing with experimentally
derived and not abstract networks, each node has a name (a particular gene, protein,
metabolite) pointing to a rich basin of knowledge and evoking cognition resonance to
the specialist mind and the same is true for the edges. However, if we are interested in
discovering what can be inferred solely from topological information (so acquiring
a Boltzmann-like statistical attitude sacrificing the unique personality of the element
to the search of a mesoscopic principle), we should try and predict some relevant
features of the studied system without relying on the particular ‘nature’ of nodes and



2 Why Systems Biology Can Promote a New Way of Thinking 37

edges, but only taking into consideration their connectivity pattern. In other terms
all the properties relative to each node (edge) must be derived only by its pattern of
relations and thus by its peculiar location in the complete graph. In (Palumbo et al.
2005; Palumbo et al. 2007) the authors checked for the possibility to derive, from
purely topological information on the metabolic network of yeast (Saccharomyces
Cerevisiae), the lethal character of genetic mutations. The metabolic network of
microorganisms is very well understood: it can be considered as a graph having
enzymatic reactions as edges and metabolites as nodes. Since an enzymatic reaction
is catalysed by one or more enzymes, an edge can also represent the enzymes involved
in the reaction. This opens the way to a straightforward analysis of the possibility to
derive biologically meaningful features at a macroscopic scale (entire organism) from
network topology: the elimination of an enzyme by a knock-out experiment implies
the elimination from the network of the edge (or edges since the same enzyme can
catalyze different reactions) corresponding to that particular enzyme (Palumbo et al.
2005). Ifitis possible to pick up a connectivity descriptor able to unequivocally define
essential enzymes (those enzymes whose lack provoke the yeast death) we can safely
assume the biological relevance of the metabolism ‘wiring structure’, irrespective of
the specific nature of the involved enzymes, and consequently deriving a mesoscopic
biological principle (Giuliani 2010).

In the considered case of yeast metabolic network, the analysis of 36 lethal muta-
tions out of the 412 relative to enzymes involved in metabolism, reported in the Stan-
ford repository (http://www-sequence.stanford.edu/group/yeast_deletion_project
/deletions3.html href ) and in Jeong and colleagues (Giuliani 2010; Palumbo et al.
2005; Palumbo et al. 2007), allowed the authors to discover that all of the enzymes
corresponding to lethal mutations, when deleted, prevent the connections between
the separate nodes (Palumbo et al. 2005; Palumbo et al. 2007). No alternative path is
available to connect the separate nodes and this mesoscopic features based on paths
along the network explains the essential character of each specific mutation on a pure
topological basis (Fig. 2.9).

This ‘essentiality-by-location” mesoscopic principle equating the lethal charac-
ter of a mutation to the lack of an alternative path in the network, was confirmed
(Palumbo et al. 2007) demonstrating that a double mutation involving two enzymes
that per se are not essential acquires essentiality and then causes the death of the
organism, if the double knock-out provokes the ‘lack of alternative path’ condition.
This illustrates the emergent character of the ‘essentiality by location’ principle: the
arising of lethality by the summation of two non lethal events derives from the ex-
istence of a global metabolism architecture and thus cannot be inferred by going in
depth into the nature of the two enzymes, in other words is a collective emergent
property of the network system (Giuliani 2010).

It is worth noting the authors (Palumbo et al. 2005; Palumbo et al. 2007) did not
find any exception to this rule: if an alternative pathway does exist then the mutation
is not lethal. These data suggest the lack of ‘purely kinetic’ lethal mutations, i.e.
situations in which the poor kinetic properties of alternative paths do not allow
the yeast to survive. This points to a remarkable difference between metabolic and
artificial networks: if we think of a road map, an accident causing a block of a
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Fig.2.9 The metabolic network of yeast is depicted in the figure, the enzymatic reactions correspond
to edges, while the nodes point to the metabolites. The yellow signs indicate the analyzed mutations.
(Giuliani 2010)

huge highway (kinetically optimal path) causes the traffic flow to shift into much
narrower alternative roads (kinetically non-optimal paths), this will provoke soon or
later a traffic jam that will make impossible a normal traffic flux with a consequent
detrimental condition for the entire system. The fact such a situation was never
observed, allows for the speculation that kinetic constraints in biological networks are
not hard-wired in the network architecture and can be relatively easily circumvented.
There are in fact some experimental data demonstrating the possibility of many orders
of magnitudes variations of kinetic parameters of biochemical reactions (Von Dassow
et al. 2000; Russell et al. 2009).

All in all this case showed the existence of a mesoscopic level (the network)
whose behaviour cannot be simply derived by the knowledge of the constituting ele-
ments while, in an apparently counterintuitive manner with respect to the reductionist
paradigm, influencing the microscopic level.

2.2 Conclusions

If Systems Biology holds a promise to provoke a big advancement in Biology this
is not for an ancillary work of ‘intelligent data mining and storage’ enabling the
scientists to pick up what they are more interested to from those ‘Definitive Libraries’
big relational data sets are becoming. This is certainly a useful work to be done (even



2 Why Systems Biology Can Promote a New Way of Thinking 39

if this is becoming a very risky business in terms of deterioration of the possibilities
of falsification and of generation of self-sustained mythologies as aptly pointed out
by Rzhetsky and co-workers (Rzhetsky et al. 20006)) but this is not the peculiarity of
Systems Biology.

The specific role of Systems Biology is, in my opinion, to contaminate mainly
mechanistic biological thinking with a relational paradigm analogue to chemical
thought. This contamination can be hardly underestimated, mechanistic approach
already gave clear signs of having ended its possibilities to say something new and
to help to discover efficient therapies (Csermely et al. 2005). This shift of paradigm
can be symbolized by the shifting from linear chain of events (pathway, the way of
reasoning of mechanistic approach) to complex graph (network, with the corollary of
the presence of few ideal forms or stable configuration is the seal of system approach).
We made clear how this shift can by no means referred to the old ‘bottom-up’ vs.
‘holistic’ opposition but, on the contrary proposes a ‘middle-out’ approach focusing
on relational structures. These relational structures can be analyzed at any scale
of definition, given the conceptual and mathematical (very simple indeed) tools
for analyzing networks are identical whatsoever the character of the network from
between amino-acid residues contacts inside a protein, to gene expression network
and food-webs.

Acquiring this paradigm will force Biology to abandon some vitalistic concepts in
which molecules are considered as intelligent agents, one of them being the separa-
tion between ‘house-keeping’ and ‘differentiative’ genes that implies a super-natural
controller that decides which activities are good for the cell as it is (house-keeping)
and which ones are the price the cell pays for being part of a tissue, of an organ,
and of an entire organism. The existence of global regulations of gene expressions
driven by the existence of ‘attractors’, i.e. general configurations of the transcriptome
state that are more stable than others allows to insert gene regulation in the realm of
physical world. The point is that this description is till purely phenomenological: we
have no idea of the physical basis of collective regulations.

Therefore, elucidation the physical origin of collective behaviors might provide
novel insights for cell fate decisions, especially considering how well-known mas-
ter instructive genes, such as Yamanaka factors (Yamanaka 2009; Yamanaka and
Blau 2010) can drive genomes in differentiation of pluri-potent stem cells. The re-
cent Nobel prize to Shinya Yamanaka and sir John Gurdon, for their demonstration
of the possibility to reprogramming a mature cell population back to their stem state,
goes along the same ‘system’ approach to biological regulation: the simple fact that
the mature cell population can ‘go backward’” implies the presence of a collective
transcriptome state that can be pushed back by a competent stimulus to another al-
lowed location in the phase space corresponding to another (less stable) equilibrium
endowed with an higher differentiation potential energy. This kind of behavior can
be rationalized by the same methodological tools routinely used by chemical-physics
where the ‘going backward’ of a system to another equilibrium state can be achieved
by the flow of energy. This release of energy being maximally efficient when the
system occupies what we call ‘inflection points’ so opening very attractive (even
if largely futuristic) scenarios to a state-dependent (and thus maximally effective)
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therapeutic intervention on biological systems. But we remain with the huge curios-
ity about the ‘material instantiation’ of such dynamics, e.g. what ‘piece of matter’
must be maintained at a mostly invariant state (such as invariance of gene expression
profiles for a specific tissue) thus driving the entire regulation machinery.

In an enlightening work (Tompa and Rose 2011) Peter Tompa and George Rose
drove our attention to what they call the ‘central biological question of the twenty
first century’, i.e. ‘how does a viable cell emerge from the bewildering complexity of
its molecular components?’. They use as analogy the Levinthal paradox (Levinthal
1969), pointing to another (still more drastic) paradox arising from the so called
interactome, i.e. the necessity to maintain an extremely ordered pattern of relative
spatial positions (and relative concentrations) of proteins mutually interacting in the
cell. The authors (Tompa and Rose 2011) estimate a transfinite number of alternative
orderings equal to 1072% for the relatively small yeast proteome made up of 4500
protein species. The maintaining of a strict order in protein-protein interaction pattern
is mandatory for an efficient metabolism, given no ordered reaction pathways can
be achieved in a diffusive regimen. The maintaining of the interactome in its ‘native
state’ is a natural candidate to act as primary driving force influencing gene expression
regulation and generating the incredible invariance of gene expression profiles of a
given tissue.

Beside these fascinating speculations, what is really important is the re-opening
of basic science frontiers in biology after a period in which the basic dogmas were
considered already known and firmly established.
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Chapter 3
Modelling Methodologies for Systems Biology

Vikram Singh

Abstract This chapter intends to introduce various strategies for simulating the
biological systems. We start by presenting simple biological systems based on el-
ementary mono- and bimolecular chemical reactions and explain the concepts of
chemical kinetics via the Michaelis—Menten mechanism. In most of the cases, the
time evolution of a biological system can be assumed to be a continuous and deter-
ministic one. By evolving the chemical reaction system, using ordinary differential
equations (ODEs), one can reproduce the underlying dynamics of the biological
processes. We describe the essential methods of solving ODE:s like, Euler, Runge
Kutta, and their application in some models. How and under what circumstances
these methods should be used in the Systems Biology is illustrated. It is important
to note that for small systems where intrinsic fluctuations are large, the connection
between the macroscopic description of dissipative processes and the corresponding
microscopic description is not straightforward. We discuss stochasticity in the bio-
logical systems and give an outline of the Gillespie’s stochastic simulation algorithm
(SSA). By applying it to some biological systems, we show when and why it is
important to use this method over the continuous approximation.

Keywords Chemical kinetics - Michaelis—Menten kinetics - Cooperativity - Hill
equation - Deterministic modelling - Euler method - RK4 method - Stochas-
tic modelling - Gillespie’s Stochastic Simulation Algorithm (SSA)- Brusselator -
Repressilator - SBML - SBGN - BioPAX

3.1 Introduction

Studies in systems biology consist of four-fold path: (i) System structure, (ii) System
dynamics, (iii) The control method, and (iv) The design method (Kitano 2001).
Advances in biotechnology and high throughput data techniques are enabling us to
build large-scale biological networks that describe the structure of the system under
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study. A network representing any biological system can be characterised by states
that evolve over time, dynamically. These states are comprised of a set of interacting
chemical species that react via various reaction channels.

Mathematical modelling of biological systems has become an essential and inte-
gral part in the studies of biological systems and plays an important role in the study
of various levels of systems biology. Though, one need to integrate the experimenta-
tion with the theoretical framework to completely understand the interrelationships
of different components of any system, computer simulations of mathematical mod-
els and the concepts of nonlinear dynamical systems theory provide a systematic
way to describe various events of a biological process in a simple manner.

There has been a long tradition of studying the evolution of dynamical system
states as the reaction rate equations (in the form of ordinary differential equations),
but in the presence of very low number of molecules, these reactions do not follow
a continuous route but are discrete in nature. This chapter tries to review the key
concepts in modelling a biological system in both approaches, deterministic as well
as stochastic.

In this chapter we discuss the design aspects and numerical simulation techniques
of the models of biochemical reaction networks, which is organised as follows: In
Sect. 3.2, the basics of chemical kinetics is presented, and in Sect. 3.3, Michaelis—
Menten kinetics and Hill equation formalisms are described. Deterministic methods
of solving coupled nonlinear equations are explained in Sect. 3.4. Section 3.5
provides an outline of stochasticity in biological systems and Gillespie’s method.
Chapter concludes with a brief discussion on various standards and softwares used
in systems biology in Sect. 3.6.

3.2 Chemical Kinetics

Chemical kinetics provides a formal way to study, how fast the amount of reactant and
product change during a reaction. Law of Mass Action states that the rate of reaction
depends upon the molecular concentrations of the reactants. Since concentrations fall
with time, therefore rate changes. Rate of a reaction is defined as

dX . X+ 68t)— X(1)
_— = llm _—_—
dt §t—0 St

where, X(?) is the concentration of reactant at time ¢.

3.2.1 Zero-order Reaction

In this type of a reaction, product is formed without any change in the concentration
of the reactants, like:

ko

p—X
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Rate of the zeroth order reaction is constant ”;—)f = ko. Examples in biological

modelling include synthesis of mRNA molecules from the fixed pool of DNA.

3.2.2 First-order Reaction

Reaction mechanisms of irreversible first order reaction are given as following:
k
X—¢
k
X=Y
ki
X—>Y+2Z

Rate of the reaction is directly proportional to the substrate concentration and is
given by il—)f = k1 X. Examples from biological processes that can be modelled as
this type of reaction mechanism are molecular degradation, mRNA translation into a
protein, decomposition of a complex into its constituents. While molecular kinetics
is zeroth order and stable, cellular kinetics is first order and unstable (Harta et al.
2001).

For a reversible reaction of first order:

ki
N
=

k1

the rate equation is given as,

dX
— = —ki[XT+ k_1[Y]
dt
where the first term on the right is the rate of consumption of X, and the second
term is the rate of formation of Y. Example can be a reversible conformational change
of a protein from one confirmation to another.

3.2.3 Second-order Reaction

Second-order reaction is one in which either two molecules of one species or one
molecule of two different species interact to form a product. Few examples are
substrate binding to enzyme, ligand binding to receptors, and protein binding to
other proteins or nucleic acids.

Second-order irreversible reaction is given by

X+v537z
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with the reaction rate

17).¢ ol X
e 2[X1[Y]

In most cases, these reactions are reversible, so the net rate of the reaction is given
by the difference between rates of forward and reverse reactions that may be first or
second order reactions.

The reaction mechanism for a reversible second-order reaction is

ko
X+Y=Z7
ko

with the elementary reaction rate

dx
o = kelXIY]+ k2],

This type of reactions are quite common in biological systems and may be ob-
served in two scenarios: (i) two compounds X and Y synthesize a macromolecule by
the breakage and synthesis of covalent bonds, or (ii) both the interacting molecules
are held-together, by hydrogen bonds or other physio-chemical forces, to form a
complex that has specific functionality. For example binding of a transcription factor
to a DNA site, thereby forming a complex to activate or repress the transcription
process.

3.2.4 Modelling of Gene Expression

A simple model of protein translation can be given by the following set of equations
(Thattai and van Oudenaarden 2001). As the DNA sequence transcribing for mRNA
is in fixed copy numbers so it can be assumed as a constant.

DNAXS DNA + mRNA
mRNA-3 mRNA + Protein
mRNAS ¢
Proteinﬁnp

Considering that the above system follows linear kinetics, rate equations in mRNA
and Protein can be given as,

d[mRNA]
dt

d[Protein)
dt

= k1 — k3[mRNA]

= ko[mRNA] — k4| Protein]
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3.3 Michaelis—Menten Kinetics

Consider a reaction of the type

E+SNBELP

If treated with the ordinary chemical kinetics scheme, velocity of this reaction will
turn out to be linear, implying that one can get as much product as much substrate is
increased. It is true only for the limit when number of enzyme molecules are larger
than the substrate molecules. If substrates are more in numbers, they would have
occupied all the active sites of the enzyme molecules. Now reaction rate will remain
constant whatever the amount of substrates is added to the system.

In 1913, German biochemist Leonor Michaelis and Canadian physician Maud
Menten provided a way to solve it. They proposed that each molecule of substrate
will first form a complex with enzyme via a second order reversible reaction. This
complex will, then, decompose into the final product and the enzyme itself.

ki ky
S~|—Ek:ES—>P+E

—1

We want an expression for the forward rate, i.e. ko[ E S], but this cannot be solved
analytically.

Assume that k, << k; and k_;, namely that there is a quasi-equilibrium of the
enzyme-substrate complex ES. It assumes that the concentration of this reaction
intermediate is constant, i.e. its derivative is zero.

d[ES)/dt =0

If initially [E] << [S], then this means that E, = [E] 4+ [ES]. (E, stands for the
total enzyme present in the system)
From the full ordinary differential equations, we get

d[ES]/dt = ki[E][S] — (k_1 + k2)[ES]
Substituting assumptions (1) and (2), we get
0=k (Et — [ES])[S] — (k_1 + kz)[ES]

solving for [ES], we get,

s = 1S
S 1 18]
assuming % = K, it becomes,
E.[S]

[ES] = ——121
Ky + [S]
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K, 1s known as the Michaelis constant of this reaction.
As the velocity of a composite reaction depends upon the slow reaction, we get
reaction velocity as,

kyE4[S]

V= kz[ES] = m

For the case [S] = K, velocity will be maximum v,,,, = k2 E;

y = Vinax[S]
Ky +IS]

3.3.1 Cooperativity

Enzyme can bind more than one substrate molecules at different binding sites. In
general, the binding of first substrate to the enzyme changes the rate at which second
substrate will bind to it. If the binding rate of second substrate increases it is called
the positive co-operativity. If the binding rate decreases, it is called as negative
co-operativity.

ki ko
S—i—E}{\:‘ESl—)P—i—E

—1
k3 kg

S+ES1I;:‘ES2—>P+E
-3

By making the same pseudo state assumptions, one gets equations for complexes
ES) and E'S; of the following form

K> E[S] E,[S]2
[ESi] = XK 5 and [ES:] = -
1K2 + K>[ST+ [S] K1 K> + K>[ ST+ [S]

That gives the velocity function as following,

(k2 K> + ka[S1) E;[S]

V= kz[ESl] + k4[ES2] = K]KZ + KQ[S] + [S]2

For independent binding sites, above equation gives the binding rate that is just
the twice of single binding rate.
ko E,[S]
K +[S]

In the limit, when the binding of second S becomes infinitely fast, velocity
equation gives rise to Hill equation.
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Consider the case when k3 — oo and k; — 0, keeping k;k3 constant, then
velocity function will be given by

(k2Ko + ka SN ELST - Vina S°
K\ K2 Ko[S]+[SPP K2 + 82

This is the Hill equation with Hill coefficient 2. This heuristic equation is used to
describe a co-operative reaction.
For an enzyme having n binding sites

n
VinaxS

TRt

(3.1)

Hill coefficient “n” provides a quantitative measure for characterising binding
co-operativity. n > 1 corresponds to positive co-operativity, n < 1 corresponds to
negative co-operativity and n = 1 means there is no co-operation.

3.4 Deterministic Modelling

Associate a single state variable X(t) with each species of the system. At any time 7,
collection of population of all these state variables X, X5, ... , Xy represents the
state (or configuration) of this system. With the progress of time, due to interactions
amongst themselves, population of constituent species will change and system will
reach to another state. To understand the evolution of dynamics, one need to write a
differential equation corresponding to each species, describing its change in concen-
tration over time. If there are N species in the system, one gets a set of N coupled
differential equations, like following.

ax
d_t1=fl(X1’X2""’XN)
dXx
d_tz = f2(X19X2""’XN)
aXx
d—tN:fN(Xl,Xz,...,XN)

For small systems involving one or two species that follow simple functions,
differential equations can be solved analytically. e. g. constant synthesis, radioactive
decay, autocatalytic production of single species etc.. As the number of variables
increase, functions take non-linear complex form and finding analytical solutions
become difficult. For these systems, to know the dynamics of different variables over
time, one need to use the methods of numerical simulations to find the approximate
dynamical behaviour. In this section, we describe two widely used numerical methods
for deterministic simulation of coupled differential equations.
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3.4.1 Euler’s Method

Consider a simple case of one variable.

dX
G '
7 J(X)
with the initial condition at time t = 0, X(0) = X.
Discretization using Taylor series expansion gives the following Euler’s approx-
imation

X(t+dt) = X(@0) +dt = f(X(1 +db)) (3.2)

When time step dt is sufficiently small, this method provides a fairly good ap-
proximation to the exact analytical solution. By using the value Xy at ¢y, one can find
the value X at time f; = fy + d¢. By iterating the process over time, one can slowly
build the dynamics X, X3 ... etc. (Press et al. 2005).

In Euler’s method the local error term is of the order of 4> while global error is
of the order h.

3.4.2 Runge Kutta Method

The most widely used method for the deterministic simulations is the Runge-Kutta
fourth-order method, popularly known as RK4 method.

Unlike the Euler method this method calculates four slopes values, at the initial
point, two times at the mid point and at the end point of the time step. Updates in
the variable is then made, for the next time step, by adding their weighted average
to their previous values (Press et al. 2005).

klzh*f<n,-xn)
h ky
kz_h*f(tn—i—z,xn—i—?)
ko
k3—h*f(til+§,xl1+ 2)
k4=h>kf(,,+h,x,,+k3)
k k k k
Xnil = Xn %4_0(}15) (3.3)

As most of the biological systems are autonomous in nature, time term does
not appear in the differential equations representing change in the concentration of
species in the given biological system. Therefore, while calculating various slopes
in equation, including time in the argument of the function is not required. However
for the system of more than one variable, one must calculate all the four slopes
corresponding to every variable of the system.
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Fig. 3.1 In RK4 method, four
slopes are calculated to
decrease the error

xl\

X(t1)

X(to)

~ W

to t1

In the RK4 method the local error term is of the order of 4> while global error is
of the order 1*. Due to significant decrease in errors, with respect to Euler’s method,
RK4 method provides a better approximation of solution Fig. 3.1.

For the rest of this section, Brusselator and Repressilator are discussed as model
examples and their modelling aspects are elaborated.

3.4.3 The Brusselator

Brusselator is a theoretical model, proposed by Ilya Prigogine and Rene Lefver
in 1968, to study the systems involving autocatalytic reactions and showing os-
cillatory dynamics. Being conceptualized at the Free University of Brussels, this
oscillator model was named as Brusselator by JJ Tyson in 1976. The Belousov—
Zhabotinsky reaction (BZ reaction) is one of the examples of a chemical system
exhibiting oscillations due to autocatalytic reactions.

The brusselator system is given by,

AS x
2X + Y B33x
B+x&By+c
xXp (3.4)

The concentrations of reactants A and B, and of products C and D are assumed to
be constant. The intermediate species X and Y, whose concentrations vary over time,
are of interest in this system. Second reaction is an autocatalytic reaction, in which
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Fig. 3.2 Dynamics of brusselator system modelled via RK4 method of deterministic simulation.
Initial values of X and Y are taken as 1 and all the reaction rates are also set to 1. Concentrations of
reactants A and B are fixed at 1 and 3 respectively

two molecules of X produce three X molecules. The reaction rates for X and Y are
given as

dx ,
o= ki[A] + k[ X]7[Y] — k3[ BI[X] — ka[X]

dy )
o= —k[X]°[Y] + k3[B][X] (3.5
Figure 3.2 depicts the oscillatory dynamics of this system when simulated

deterministically, using RK4 method.

3.4.4 The Repressilator

The repressilator is a synthetic genetic oscillator (Elowitz and Leibler 2000) that uses
three genes (lacl from E. coli, tetR from tetracycline-resistance transposon Tn10 and
cl from X phase) as shown in Fig. 3.3. The gene lacl expresses repressor protein Lacl
which inhibits the transcription of zetR. TetR represses the transcription4 of ¢/ whose
protein product CI in turn represses the transcription of lacl, completing the negative
feedback cycle.

The deterministic model based on reaction rate equations for this system con-
sists of six dynamical variables, three corresponding to mRNA concentrations and
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Fig. 3.3 Repressilator
Circuit. Bars show the
repression in transcription.
Each gene can be in either of
the two states, active or
inactive, depending upon the
unbinding or binding of the
repressor protein to its
promotor region

other three corresponding to protein concentrations. To deterministically evolve the
system, following six coupled first-order differential equations have to be solved.
As discussed in the previous section about the chemical kinetics, co-operativity and
the Hill equation, reaction rate equations for the mRNAs and the proteins can be
written as following. (For details, refer to BIOMDO0000000012 hosted on Biomodels
database, Li et al. 2010)

d[mRN A;r] ap * K;ll/l
—— = —k;*mRNA,, _—
dr RN ek e Taem T
d[mRNA. * K%
M :_kd*mRNAcl+m—M+ao
dt K}y + TetR"
d[mRNAlacl] ap x K[,lll
—— = —k RNA _—
i d*m 1ac1+K1,‘,4+C1n+ao
d[TetR)]
T =k *mRNA,,;g — k) xTetR
d[CI
—[dt ] = k] *mRNAc] —k2 * CI
d[Lacl]
T = k] * mRNA[aC] — k2 x Lacl (36)

Where mRNAI represent the mRNA and Lacl, TetR and CI are representing the
proteins from the corresponding gene. n is the Hill coefficient, k, is the degradation
rate of the mRNAs, k; is the rate of formation for protein from the corresponding
mRNA and the k; is the degradation rate of the proteins. ay is a constant that deter-
mines the gene expression in the presence of saturating amount of repressor proteins,
and the constant a; corresponds to varying amount of gene expression. Deterministic
simulation of the above reaction set is shown in the Fig. 3.4. Following values of the
various constants were used in the modelling:

n=2ks=0347,k =6.931, k, = 0.069, Ky =40, ap = 0.03, a; =29.97

In the paper, Elowitz and Leibler used the following scaled versions of the above
set of detailed equations. i and j vary according to the repressilator design, such that
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Fig. 3.4 Deterministic dynamics of the constituent proteins of the repressilator
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3.5 Stochastic Simulation

3.5.1 Noise in Biological Systems

(3.7)

Gene regulation is inherently a noisy process due to stochasticity present at var-
ious steps such as promoter binding, transcription, translation, diffusion, protein

degradation and so on.

Intracellular noise or intrinsic noise is the one that results because of probabilis-
tic nature of biochemical reactions. It may arise from stochastic events during the
process of gene expression, from the level of promoter-binding to mRNA translation
to protein degradation. Intrinsic noise may play a deciding role in governing the
dynamics of the system, if the number of reacting molecules is low. If the num-
ber of these reacting molecules are high i.e. in the thermodynamic limit (N and V



3 Modelling Methodologies for Systems Biology 55

tends to infinite, while N/V remains finite), dynamics of the system can very well
approximated by the deterministic method.

Extracellular noise or extrinsic noise arises due to the differences between cells,
either in local environment (e.g. pH, temperature etc.) or in the concentration or
activity of any factor that affects gene expression (e.g. number of RNA polymerase,
ribosomes etc.).

Both intracellular and extracellular noise lead to the fluctuations in the dynamcis of
asingle cell that causes the cell-to-cell variability (Elowitz et al.2002; Rosenfeld et al.
2005). While Noise is the main reason for various imprecisions in the genetic events,
phenotype variability etc., it plays an important role in the context of regulation
(Eldar and Elowitz 2010). If the noise is below some critical value, it may result
in stochastic resonance (Hanggi 2002). Under certain circumstances it may cause
the phenotypic switching (intrinsic transition from one state to another) (Acar et al.
2008), can induce synchrony amongst a group of cells (Zhou and Kurths 2003;
Singh et al. 2010) and may even be the guiding factor for the self-organization at
sub-network level (Fange and EIf 2006).

As these stochastic effects play a crucial role in regulatory networks, itis important
to study the time evolution of the biological system as a discrete, stochastic process.
Algorithm proposed by D. T. Gillespie in 1977 provides an exact stochastic simulation
of a spatially homogeneous chemical system.

3.5.2 Gillespie’s SSA

While the differential reaction-rates equations modelling schema to chemical kinetics
assumes the time evolution of the system as the deterministic and continuous, in
nature this dynamics is neither a deterministic process nor is continuous. Population
changes in the species are always in discrete numbers and the occurrence of reactions
is probabilistic.

The dynamics of a system (e.g. a cell) consisting N chemical species that react
via M reaction channels, can be specified like following (Nandi et al. 2007),

Xit+ X+ Xig + Xig + -

where the X’s denote the various chemical species present in the system, and c;’s
are the corresponding rate of the jth reaction channel (say R;).

As the state of the system evolve stochastically, fluctuations originate in the species
population. These fluctuations are generally termed as internal noise (van Kampen
1981) and depend on the volume of the system and the reaction propensities of
various reactions. For systems having small population of species, the strength of
this noise can not be treated perturbatively.

Master equation provides a formal description of the evolution of this system in
terms of configurational probabilities (Oppenheim et al. 1977). One can define the
configuration, C, of a system by the number of molecules of various chemical species
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present, namely C =X, Xo, ... .., where X; represents the number of molecules of
ith chemical species. If P(C,t) represents the probability of configuration C at time
t and {W} are the transition probabilities between two configurations, then master
equation is written as,
%f’t) =—> PC.OWese+ Y P(C.0OWec (3.8)
¢ c
Gillespie’s stochastic simulation algorithm (SSA) (Gillespie 1977) provides an
exact method to simulate the above master equation. This algorithm assumes that
the chemical system under consideration is spatially homogeneous, system volume
is fixed and temperature is constant (i.e. thermal fluctuations are not considered).
For any given system that consists of N chemical species reacting via M reac-
tion channels, Gillespie’s SSA attempts to estimate the answers to following two
questions:

(i) When the next reaction will occur?
(i1)) Which reaction channel will it follow?

To simulate a chemical reaction system, one need to characterize each reaction
channel of the system and it can be done using following two quantities,

1. State-change vector, v;;, is defined as the change in X; molecular population due
to R; reaction event.

2. Propensity function, a;, is defined as a;(¢)dt = probability that one reaction
event, R;, will occur in next infinitesimal time interval (t, t+dt) if the system’s
configuration C = ¢ at time ¢.

Without going into the detailed mathematical description of the algorithm, in the
following, we present the essential steps to implement the Gillespie’s stochastic
simulation algorithm (SSA) (Gillespie 1977).

1. Initialize the time t = fy and the system’s configuration state C = ¢¢. Also initialize
uniform random number generator.

2. Given the system is in state ¢ at time t, calculate all @ ;(¢) and also their sum ag(c).

3. Generate two random numbers r; and r, and using following equations, get the
values of 7, time after which next reaction will occur, and j, the channel next
reaction will follow.
e 1 =(l/ag(c)) In(1/r}) .
e j =smallest value satisfying Zj‘/:l aj/(¢) > ryap(c)

4. Change the system’s configuration and increment the time

5. Record (c,t). Return to step 2 or else stop.

3.5.2.1 Brusselator Dynamics Using Gillespie’s SSA

Following the above described algorithm, Brusselator system as described in Eq.
set 3.4 is simulated using the initial conditions as X = 1000, Y = 2000. Stochastic
reaction constants used are ¢; = 5,c¢; = 0.025, 3 = 0.00005, c4 = 5. Figure 3.5
shows one such simulation.
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3.5.2.2 Repressilator Dynamics Using Gillespie’s SSA

To evolve the repressilator stochastically one need to consider all the reactions oc-
curing within the system. Elowitz and Leibler considered two operator sites present
in each promoter (Elowitz and Leibler 2000). In the following, we describe all
the reaction steps necessary to stochastically simulate repressilator dynamics using
Gillespie’s SSA. UOP represents un-occupied promoter, SOP represents a promoter

in which a single operator site is occupied and BOP is for the promoter in which
both the operator sites are occupied.

UOP,yig + Lacl — SOP,,z : SOP, g + Lacl — BOP, .z
7

€10

. SOP.; + TetR = BOP,,

C11

UOP,; + TetR = SOP,;
g

UOPye; + CI = SOPy,e; : SOPjae; + CI = BOPy,.;
c9

C12
UOP, g —2 mRNA,ur : SOPioir —5 mRNA,;ur : BOP,yr —> mRNA,x
UOP,; =% mRNA.; : SOP.; -5 mRNA. : BOP.; <% mRNA.,
UOPue1 ~2 mRNAue; : SOPiue; =2 mRNAe; :© BOPae; —> mRNA

MRNA, g —> TetR
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Fig. 3.6 Stochastic dynamics of three constituent proteins of repressilator

€23

mRNA,.; — CI

MRNA o1~ Lacl

€28

MRNA;p g -2 & : TetR 25 @

mRNA,; % & : CI 2 @

€27 €30

mRNA;,c1 — © . Lacl — @ 3.9)

One simulation of the stochastic simulation of repressilator is shown in Fig. 3.6.
Reaction constants used in the simulation are as following,

Cl=C=C3=C4=Cs5=Cg=1 nM~lg™!

c;=cg=Cog=2245""!

clp=cii=cpp=9s""

Ci3=Clg=cC19=0.5 s~

Cl4 = C15 = C17 = C18 = Ca9 = €1 =0.0005 s~!

Cop =Co3 =Coq =0.167 mRNA~!s~!

Cor5 = Cog = Cp7 = 1n(2.0)/120 s~!

Ca8 = Cp9 = C30 = In(2.0)/600 s7!
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3.5.3 Improvements and Alternative Methods for Gillespie’s SSA

One of the major limitation of the of the Gillepsie’s algorithm is that it is highly
computationally expensive. The Next-Reaction method proposed by M. A. Gibson
and J. Bruck (2000) and the Tau-Leap method proposed by D.T. Gillespie 2001
are the two algorithm that provide improvements in the computational speed with
minimal loss in the accuracy of the Gillespie’s SSA.

StochSim algorithm, proposed by Morton-Firth and Bray in 1998, attempts to
provide an alternative method for stochastic simulation of chemical reaction sys-
tem (Morton-Firth and Bray 1998). In this algorithm every interacting particle is
represented as an individual object. These objects react with another such objects
according to probability distribution function that are derived from concentrations
and rate constants, usually known from the experimental data.

Transcription, translation, export and other biochemical processes are not instan-
taneous inside a cell. It takes typically 10-20 min from transcription factor binding
to the actualization of mRNA and similarly around 1-3 min in the translation of
mRNA into the protein (Barrio et al. 2006). These delays can be upto 40—50 min
for transcription and 8—10 min for long eukaryotic genes (Cai 2007). If delays in
biochemical processes are comparable to the time scales characterizing the genetic
system, these should be incorporated in the mathematical model describing that sys-
tem. Readers are referred to (Barrio et al. 2006) and (Cai 2007) for the algorithms to
incorporate the delay in the stochastic simulation of the biological reaction system.

3.6 Standards and Tools for Systems Modelling

Systems Biology Markup Language (SBML) has become a standard for representing
biochemical reaction networks (Huck et al. 2003). It is an open-source, free to use,
XML based language that provides a framework to exchange models of biological
systems between different tools for simulation and analysis. Although it is developed
as a language researchers working in the area of Systems Biology generally use it
for exchange of data rather than writing codes for systems modelling. According to
sbml.org, currently more that 250 softwares support the SBML.

CelIML (http://www.cellml.org/) is another standard language for storing and
exchanging the mathematical models (Cuellar et al. 2003). It is also XML based and
is free to use. CellML tends to be more modular in nature while SBML is hierarchical.

Systems Biology Graphical Notation (SBGN) is a standard format for representing
biological interactions graphically (Novere et al. 2009). It has now become a standard
in the drawing of network diagrams. It is also unrestricted in use and is independent
of the underlying operating system. Three types of diagrams cover various aspects of
biological systems: (i) process description, (ii) entity relationship, and (iii) activity
flow.

Biological Pathways Exchange (BioPAX) is a language being developed with an
aim to provide a standard exchange format for the biological pathway data (Demir
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Table 3.1 A brief overview of the frequently used softwares in the modelling of biological systems

V. Singh

Software

Web-address

Summary

XPPAut

http://www.math.pitt.edu
/ bard/xpp/xpp.html

For solving ordinary differential
equations, delay differential equa-
tions, plotting phase planes and
bifurcation analysis (Ermentrout
2002)

CellDesigner

http://www.celldesigner.org/

A structured diagram editor in
which networks are drawn as per
SBGN and are stored using SBML.
Models can be simulated using
SBML ODE solver or Copasi (Fu-
nahashi et al. 2003)

Copasi

http://www.copasi.org/
tiki-view_articles.php

A stand-alone program that can
be used to simulate the models in
SBML format using ODE:s or Gille-
spie’s SSA (Hoops et al. 2006)

E-Cell

http://www.e-cell.org/

Allows user to define functions of
various proteins and interactions
and then simulates the cell be-
haviour by numerically integrating
the implicit differential equations
(Tomita et al. 1999)

MCell

http://www.mcell.cnl.salk
.edu/

A modelling tool for stochastic sim-
ulations of cellular signalling pro-
cesses in 3-D subcellular environ-
ment using Monte-Carlo algorithms
in space and time (Stiles and Bartol
2001)

StochSim

http://www.pdn.cam.ac.uk
/groups/comp-cell/StochSim.
html

Provides the implementation of
StochSim algorithm (Morton-Firth
and Bray 1998)

StochKit

http://www.engineering.ucsb
.edu/ cse/StochKit/

Allows simulations via Gillespie’s
SSA, tau-leap method etc. Also,
provides statistical analysis for the
verification of stochastic behaviour
(Sanft et al. 2011)

MATLAB

http://www.mathworks.in
/products/matlab/

ode23 for solving ordinary differ-
ential equations and direct Method,
SSA_constitutive etc. for Gille-
spie’s SSA. Several other packages
for various applications

R package

http://www.r-project.org/

deSolve package for solving or-
dinary differential equations and
GillespieSSA package for stochas-
tic simulation using Gillespie’s di-
rect method and many other appli-
cations
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et al. 2010). Biological pathways can be represented at cellular as well as molecular
level.

Table 3.1 provides a list of softwares that are most-often used in the modelling
studies of biological systems.
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Chapter 4
In silico Identification of Eukaryotic Promoters

Venkata Rajesh Yella and Manju Bansal

Abstract The identification of promoters is essential for complete annotation of
genomes and better understanding of gene regulatory networks. Experimental meth-
ods for promoter identification are costly, time-consuming and labor intensive.
Hence, in silico methods are an attractive alternative. Computational methods for pro-
moter prediction methods are easy, fast and can provide reliable results. A promoter
prediction algorithm identifies promoter regions based on the idea that, promoter
regions are different from other genomic regions in their features (sequence, context
and structure). Promoter prediction algorithms are broadly classified as ab initio,
hybrid and homology-based, depending on the information used for model design.
The different approaches used in promoter prediction are briefly described here.

Keywords Promoter prediction programs - FirstEF - CpGProD - Eponine -
PromoterInspector - PromPredict - EP3 - PromH

4.1 Introduction

Recent advances in genome sequencing techniques have provided a wealth of base
sequence information, from which the coding and regulatory sequences need to be
identified. While experimental as well as in silico tools are available for identifying
coding sequences, locating regulatory sequences like promoters is a great challenge
and the currently available methods are not very efficient. Promoter identification is
essential for several reasons: annotating genomic regions for understanding genome
architecture and understanding gene regulatory networks. Promoters are identified
on the whole genome scale, using experimental techniques like binding assays, ChiP-
chip, ChiP-seq, etc, which are costly, labor intensive and time consuming. Hence,
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it may not be feasible to characterize all genomes in detail experimentally. Alterna-
tively, computational methods are available to identify promoters, as well as coding
regions. There are several Promoter Prediction Programs (PPPs) available, which
use different features or statistical models and identify either transcription start sites
(TSSs) or promoter regions. In this chapter, we briefly describe the architecture
of Eukaryotic promoters and the different kinds of promoter prediction algorithms
currently available.

4.2 Eukaryotic Promoter Architecture

A promoter region is generally defined as any genomic DNA where the transcrip-
tion machinery assembles and initiates transcription. The promoter region consists
of protein binding regions along with the transcription start site (TSS). Promoter
architecture in Prokaryotes and Eukaryotes differs in complexity. In Prokaryotes,
a single RNA polymerase transcribes all types of RNAs and the promoter regions
are characterized by the presence of —35 and —10 elements and in some cases the
UP element as well. Overall, in the Prokaryotes, the regulatory region is located
within 100 base pairs relative to the TSS. In Eukaryotes, promoter structure is more
complex, with the complexity increasing from single celled yeast to mammals. Eu-
karyotes have several different types of RNA polymerases (usually three), with each
one responsible for the production of different subsets of RNA. RNA polymerase 11
is responsible for synthesis of all nRNAs and is well studied compared to other RNA
polymerases. Hence, only features corresponding to promoters of genes transcribed
by RNA polymerase II are discussed below.

In Eukaryotes, the promoter regions are broadly classified as core promoters,
proximal promoters and distal promoters. The core promoter region, where the actual
basal transcription machinery assembles, is 30-100 nucleotides in length. These
regions are characterized by the presence of sequence motifs such as the TATA box
and the Inr element. They may also contain downstream elements like DPE, MTE
(in humans) along with the associated TSS (Juven-Gershon et al. 2008; Thomas
and Chiang 2006). The proximal promoter regions are the sequences located within
500 base pairs relative to the TSS and contain certain proximal promoter elements,
which include the GC box, the CAAT box, cis-regulatory modules (CRM) (Lenhard
and Sandelin 2012), etc. Distal promoter elements include enhancers, insulators and
silencers. The distal promoter region does not have a well-defined length and can
extend up to 10 kb from the TSS in upstream as well as downstream regions. Distal
promoters interact with transcription activators to increase the rate of transcription. In
vertebrates, it is known that 5 % of the genes code for specific transcription activators,
which interact with proximal and distal promoter regions.

Along with the transcription factor binding elements, mammalian promoter re-
gions also contain CpG islands. In humans, it is known that 60 % of promoters belong
to the CpG island-containing class. Figure 4.1 shows a schematic representation of
different promoter elements and their activators in Eukaryotes. Recent studies have
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Fig. 4.1 A schematic representation of Eukaryotic RNA polymerase II promoter elements and basal
transcription machinery. Promoter regions are divided into three classes, namely, core promoters,
proximal promoters and distal promoters. Core promoter elements bind to basal transcription factors
like TFIID. Proximal and distal promoter elements bind to transcription activators and increase the
rate of transcription

shown that in Eukaryotes, especially in humans, each promoter is associated with
many TSSs, which are spread over 50-100 nucleotides (referred to as transcription-
ally active regions) (Carninci et al. 2006). Promoters can also be bidirectional (Xu
et al. 2009). For detailed reviews on Eukaryotic promoters refer to Juven-Gershon
et al. (2008), Lenhard and Sandelin (2012), Sandelin et al. (2007), Thomas and Chi-
ang (2006). Recent understanding of vertebrate promoters is that though promoters
differ in their motif content (with most of them lacking a consensus motifs), GC
content (with lower Eukaryotes being AT rich and mammals being GC rich), some
properties such as nucleosome free region and epigenetic features around TSSs are
quite common (Valen and Sandelin 2011).

4.3 Experimental Methods of Promoter Identification

Experimental methods for promoter identification and characterization generally
identify TSSs or DNA sequences that bind to proteins such as TFs and RNAPII
(Lenhard and Sandelin 2012; Sandelin et al. 2007). Earlier methods such as nuclease
protection and primer extension carry out promoter identification on a gene-by-gene
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basis and cannot be used for whole genome promoter identification. Current high-
throughput methods measure either products from transcription (nRNA) or promoter
activity in whole genome. They provide a snapshot of all transcribed regions or
DNA-protein interactions in the genome for given experimental conditions. Recent
advancements in promoter region identification consist of sequencing methods and
hybridization methods (Sandelin et al. 2007). Sequencing methods such as RACE,
5¢-tag sequencing and 5°-3° paired-end sequencing provide information about the
mRNA or cDNA sequences. All these methods use reverse transcription to get cDNA.
Then the cDNA is fragmented and the fragments amplified and sequenced from the
5‘end. The sequenced fragments are mapped to the genomic DNA sequence to
get information about TSS location. Hybridization methods, instead of sequencing,
use short oligonucleotides to hybridize with target DNA. Two widely used methods
are tiling arrays and ChiP-chip, which characterize TSSs and promoter elements
respectively. Oligonucleotide tiling arrays are designed with parts of contiguous
regions of sequenced genome or some times even whole genomes. They can provide
information about the whole transcriptome along with the location of TSSs. The
ChiP-chip method is an application of tiling arrays to identify protein bound regions
of genomic DNA. ChiP-chip method uses chromatin immunoprecipitation (ChiP) to
isolate DNA-bound promoter-associated proteins and then bound DNA is identified
using tiling arrays (Sandelin et al. 2007).

4.4 In silico Methods for Promoter Identification

The computational methods for identification of promoter regions are mostly based
on the basic premise that promoter regions have distinct sequences when compared
to other genomic regions. Promoter Prediction Programs (PPPs) use experimentally
identified promoter regions aligned with respect to TSSs, or transcription factor
binding site information from databases (TRANSFAC (Wingender et al. 2000), EPD
(Schmid et al. 2004) and DBTSS (Suzuki et al. 2002)) as a training dataset, to
derive principles that differentiate promoters from non-promoter regions. PPPs can
be broadly classified into three types based on the information used for promoter
characterization. They are ab initio, hybrid and homology based algorithms.

Ab initio or de novo methods use only DNA sequence information for promoter
identification. Ab initio methods are further classified (as shown in Fig. 4.2) as search-
by-signal, search-by-content and search-by-structure algorithms based on features
used for modeling (Zeng et al. 2009). Some current algorithms integrate two or more
features for efficient promoter prediction.

Hybrid methods use sequence information with other accessory information such
as epigenetic features, nucleosome occupancy and gene expression data. Homology
based PPPs use orthologous gene information to identify promoter elements. Here,
we will focus on ab initio PPPs in detail and also provide an introduction to other
methods. Detailed information on the history, feature selection, model design and
performance assessment of these PPPs is available in several excellent reviews (Abeel
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Fig. 4.2 Classification of Promoter Prediction Programs (PPPs) based on the information used for
prediction

etal. 2009; Bajic et al. 2004; Bajic et al. 2006; Fickett and Hatzigeorgiou 1997; Ohler
and Niemann 2001; Pedersen 1999; Zeng et al. 2009; Zeng 2011).

4.4.1 Ab initio Methods

Ab initio algorithms use only DNA sequence information to predict promoter regions.
They identify either putative TSSs or promoter regions or in some cases, both. Ab
initio methods may use three different kinds of features: biological signals such as
core promoter elements, TFBSs or sequence context information like oligonucleotide
composition or DNA structural features. Along with feature selection, they use differ-
ent statistical and machine learning methods such as weight matrices (Bucher 1990),
artificial neural networks (Reese 2001; Wang and Ungar 2007), Markov chains (Au-
dic and Claverie 1997), quadratic discriminant analysis (Davuluri and Grosse 2001),
genetic algorithms (Levitsky and Katokhin 2003), principle component analysis (Li
et al. 2008) and kernel methods which employ support vector machines (Abeel et al.
2008b; Gangal and Sharma 2005), etc.

These algorithms search for biological signal features of core promoter elements,
for example, the TATA box, initiator element (Inr), DPE (Downstream promoter
Element), specific TFBSs and CpG islands (in mammals). Generally, these algo-
rithms either predict core promoter elements or, in some cases, give the TSS position
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along with the distance between the binding site and the TSS. These models first
derive consensus signals from experimentally identified TSSs or promoter elements.
They then use different statistical methods like weight matrices, artificial neural
networks and discriminant models to discriminate between promoter regions and
their neighbouring sequences. Typical examples of this class of PPPs include PWMs
(Bucher 1990), NNPP (Reese 2001), CpGProD (Ponger and Mouchiroud 2002),
CpG-promoter (Ioshikhes and Zhang 2000), FirstEF (Davuluri and Grosse 2001)
and Eponine (Down and Hubbard 2002). Search-by-signal PPPs are considered to
be first generation methods. Earlier published PPPs did not use CpG-islands and
their prediction efficiency was low, where as recent improved algorithms to predict
promoters in mammalian genomes include use of CpG islands (Ioshikhes and Zhang
2000; Ponger and Mouchiroud 2002).

1. FirstEF: FirstEF (Davuluri and Grosse 2001), which uses CpG islands, is not
a pure promoter prediction program. It identifies first exons along with putative
promoter regions (Bucher 1990). The developers of this PPP observed that CpG
distribution in the vicinity of TSSs is bimodal, so there are two classes of first
exons that exist, such as CpG containing and non-CpG containing ones. It uses
a probabilistic model to identify potential first exons (splice donor sites) for
both classes of promoter regions. It considers upstream promoter region and
downstream splice donor sites (GT) and checks whether the intermediate region
is an exon or not. The algorithm is optimized to find potential first donor sites
along with CpG-related and non-CpG-related promoter regions.

2. CpGProD: CpGProD (CpG Island Promoter Detection) uses CpG islands to iden-
tify mammalian promoter regions in large genomic sequences (Pedersen 1998).
Although it is strictly dedicated to this particular promoter class, which cor-
responds to 50 % of the genes in humans, it exhibits a higher sensitivity and
specificity than the other tools used for promoter prediction.

3. Eponine: Eponine (Down and Hubbard 2002) is one of the best algorithms and
uses sequence motif signals for locating the TSS. It combines weight matrices
with discrete probability distributions of differently positioned constraints. The
Eponine DNA weight matrix model for any signal is represented by the following
equation.

+00
¢i:S) =log Y P(j).W(a+i+j:5) (4.1)

j=—00

P(j) is a discrete probability distribution; W(x;S) is the weight matrix score,
aligning the first column to position x on sequence S; a is the center position of
the distribution, relative to the TSS; and i is the position of the true TSS. These
PWM models were chosen for a set of four constraint elements in 599 mammalian
promoter regions. They are

i a diffuse preference for CpG enrichment downstream of the TSS.

ii. a TATAAA motif with focused distribution centered at position— 30

relative to the TSS.
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Fig. 4.3 A schematic representation of the Eponine core promoter model, showing four constraint
element distributions, which were used for a weight-matrix consensus. (Down and Hubbard 2002)

iii & iv.  two GC-rich matrices (GCGCG and GC) closely flanking the TATA

box and positioned upstream and downstream respectively (Fig. 4.3).
To derive an efficient model, the data was trained using a relevant vector machine
(RVM) algorithm with a Monte Carlo sampling process.

4.4.1.1 Search-by-content Algorithms

Search-by-content algorithms are considered to be more advanced compared to ear-
lier approaches, as they achieve greater sensitivity and specificity. These algorithms
are inspired by linguistics. The basic principle underlying all search-by-content
methods is that promoter and non-promoter regions differ in their grammar and
can be differentiated using certain threshold values. Context features are generally
oligonucleotides represented by a set of k-tuples (or k-mers). Promoters and non-
promoter regions are different in their tuple statistics. This characteristic statistical
property of oligonucleotide composition can be used to discriminate promoter from
non-promoter regions. Typical examples of PPPs, which use this feature, include
PromFind (Hutchinson 1996), Promoter2.0 (Knudsen 1999), PromoterInspector
(Scherf et al. 2000) and PCAHPR (Li et al. 2008). These classes of algorithms
were shown to be more discriminative compared to search by signal algorithms. All
these PPPs may differ in their statistical models but discriminate promoters from
non-promoters using k-mer (k = 2, 3, ..6) frequencies.

1. PromoterInspector: PromoterInspector uses discriminant functions to identify
promoters and was considered the best PPP at one time (Scherf et al. 2000).
This was trained using a brute-force algorithm to discover a set of sequence mo-
tifs overrepresented in promoter regions. Their models introduce IUPAC words
by incorporating wildcards in multiple positions of an oligomer, except at the
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start and end of words (AGCNGCA, AGCNNGCA). Using a certain threshold,
it classifies IUPAC words into promoter related and non-promoter related candi-
dates. From these pre-derived threshold values, PromoterInspector scans target
the genome through a sliding window to identify promoter regions. The predic-
tions are not strand-specific and do not provide information about the TSS. This
tool was developed for mammalian genomes.

4.4.1.2 Search-by-property Algorithms

It is known that DNA structural features play a role in DNA-protein recognition
(Pedersen 1998). The biological significance of different DNA structural properties
in promoter regions is described in the accompanying chapter 13. These structural
features are more conserved compared to sequence features. Search-by-property
based algorithms use DNA structural features such as flexibility/bendability, curva-
ture, base stacking and free energy to predict promoter regions. These algorithms are
more recent compared to the methods described above and are based on one or more
structural features to derive principles of learning. Generally, these kinds of models
use simple statistical methods (Abeel et al. 2009); Rangannan and Bansal 2010) or
advanced machine-learning approaches such as support vector machines (Abeel et al.
2008b) and are applicable across genomes, though genome based cut-offs may have
to be specified. McPromoter (Ohler 2000), Prostar (Goni et al. 2007), EP3 (Abeel
et al. 2008a), PromPredict (Rangannan and Bansal 2010) and ProSOM (Abeel et al.
2008b) are examples of these types of methods. Some of these algorithms (Abeel et
al. 2008b) cluster sequences using structural profiles and use these clusters to clas-
sify unknown sequence into different promoter classes. Others use derived threshold
property values to distinguish promoters from non-promoter regions (Abeel et al.
2009; Rangannan and Bansal 2010). If a given genomic sequence has a feature score
in a defined window which is greater or smaller (depending on the property) than the
pre-derived threshold, then it is classified as a promoter. These algorithms generally
identify promoter regions rather than giving TSS positions.

1. PromPredict: PromPredict (Rangannan and Bansal 2010) uses the dinucleotide
free energy values obtained from differential melting stability of DNA duplex as
a predictor of promoters (SantalLucia 1998). The idea behind using DNA duplex
stability is that promoter regions should be less stable than neighbouring regions
for easy melting at the time of transcription initiation. Compared to other structural
features, stability (or base stacking) is found to be the most prevalent feature in
the promoter region (Abeel et al. 2008a). Although it was developed for bacterial
promoter prediction, it also works well for Eukaryotes (Morey et al. 2011). The
program takes an input genome or a fragment of a sequence along with a defined
window (100 or 50) and gives the start and end of predicted promoter regions
as well as least stable nucleotide position. PromPredict can be applied to any
genome and also to fragments of genomic sequences, independent of their size
or GC composition.
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2. EP3:EP3 (Abeel et al. 2008a) is similar to PromPredict; it uses a base-stacking
property to distinguish promoter regions from other regions. For a given sequence
of DNA, it calculates inverted base-stacking values over a window size of 400
base pairs in non-overlapping fashion and calls a region as promoter when the
structural feature value crosses the threshold score, which is genome specific.

4.4.1.3 Integrated Algorithms

For ab initio promoter prediction, it is important to choose the most discriminatory
features along with the discriminative model (statistical model). Some programs
integrate different features to achieve better prediction (Zeng et al. 2010). ARTS
(Sonnenburg et al. 2006), CoreBoost (Zhao et al. 2007), PromoterExplorer (Xie et
al. 2006) and SCS (Zeng et al. 2010) are a few examples of such new-generation
algorithms. which use two or more features to predict promoters. PPPs, such as
MetaProm (Wang and Ungar 2007), integrate many algorithms to predict promoters.
The integrated algorithms are generally better discriminators of promoter regions,
compared to the algorithms described earlier.

4.4.2 Hybrid Methods

Hybrid PPPs have been developed very recently. Along with the intrinsic features of
promoter sequences, they use experimental information such as gene expression and
histone modification data (Wang et al. 2012). CoreBoost_ HM (Wang et al. 2009)
and a method using ChIP-seq Pol-II enrichment data (Gupta et al. 2010) belong to
the class of hybrid PPPs. CoreBoost_HM integrates specific histone modification
profiles and DNA sequence features (core promoter elements, TFBSs, flexibility)
to predict human Pol II promoters. Similarly another recent method integrates gene
expression data from Chip-seq and CAGE methods (average and maximum tag counts
per million) as well as DNA sequence features (10 sequence composition variables
and 22 property variables) to predict promoter regions in humans. Both these methods
have outperformed earlier methods in terms of sensitivity and specificity.

4.4.3 Homology Based

The idea behind using DNA sequence homology for promoter prediction is that, like
coding regions, regulatory regions are also evolutionarily under selective pressure
and are free of mutations, whereas non-regulatory, non-coding regions can accumu-
late mutations. Phylogenetic foot printing (Fickett and Wasserman 2000) is one of
the methods used in this type of PPP. These methods are only applicable to identify
promoter regions of orthologous genes. PromH (Solovyev and Shahmuradov 2003)
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is one PPP which uses orthologous gene information to predict promoter regions.
PromH checks the conservation of TATA boxes in the upstream region, the conser-
vation of nucleotide sequences around the TSS and the conservation of regulatory
motifs in the upstream and downstream regions of the TSS and then uses a dis-
criminator function to identify conserved promoter regions in pairs of orthologous
genes. The program was developed specifically for testing human and rodent orthol-
ogous pairs. These kinds of algorithms are not applicable to whole genome promoter
identification.

4.5 Conclusions and Future Perspectives

In silico identification of promoters is a great challenge in computational biology.
A large number of promoter prediction programs are available and they differ in
terms of the feature used for discriminating promoter regions from the large mass of
genome sequence information. Search-by-structure or integrated algorithms appear
to be promising as they are applicable to different model systems, whereas hybrid al-
gorithms are generally efficient but are restricted to the systems for which accessory
experimental information is available (such as epigenetic features and CAGE tag
counts). With the rapid development of high-throughput technologies, which pro-
vide genome wide information about transcription, our understanding of promoter
features is changing.

Current notion about vertebrate promoters is that while promoter regions differ
in their GC and motif content, some common properties are present, such as the
nucleosome free region near the TSS and epigenetic features. So, future algorithms
can use this information along with other features to design new PPPs. There is
always scope for the development of better algorithms based on new features and
high throughput data. Most of the current PPPs are focused on promoter regions of
protein coding genes. Now, with the increasing importance of non-coding RNAs in
gene regulation, it is essential to analyze them. New algorithms are needed to identify
promoter regions of these non-coding genes. Promoter prediction is required even
if we have experimental promoter data, as we need statistical models to understand
and explain promoter architecture. Up and down regulation of genes and interaction
between genes is carried out through the inherent features of promoter regions. So,
promoter identification and its characterization as weak or strong can serve as an
important input for better understanding of systems biology of diverse organisms.
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Chapter 5
Hill Equation in Modeling Transcriptional
Regulation

Silpa Bhaskaran, Umesh P. and Achuthsankar S. Nair

Abstract Quantitative analysis of the dynamics in cellular systems is a key aspect of
systems biology. Gene regulatory networks, especially transcriptional regulatory net-
work are studied widely by the community with such a focus. Mathematical models
of gene regulatory networks are developed for understanding the dynamics by quan-
tifying the interaction between the regulatory components. Hill equation is accepted
as a quite useful by means of modeling the regulatory functions of transcriptional
regulatory network. Even though its application in this scenario is constrained, the
foundation upon the basic enzyme kinetics and simplicity makes Hill equation a
well-accepted model for transcriptional regulatory interactions. In this chapter we
give an account on the role of Hill equation in modeling transcriptional regulatory
interactions mediated by the transcription factors. The Law of Mass Action and the
Michaelis- Menten Kinetics is illustrated to provide a background picture. The chap-
ter sketches out the modeling of the gene input functions in transcriptional regulatory
network based on the actions of transcription factors. The feasibilities and limita-
tions of Hill equation for modeling the transcriptional regulatory interactions is also
discussed in the chapter.

Keywords Hill equation - Transcriptional regulatory network - Transcription factors -
Cooperativity

5.1 Introduction

Transcriptional regulatory network can be considered as the principal gene regu-
latory network as gene expression is regulated mainly at the level of transcription
(Barberis and Petrascheck 2003). Initiation of the transcription process is regulated
by this network which ultimately influences the production of basic building blocks
of life, the proteins. Transcriptional regulatory network determines the rate of pro-
duction of each protein required by the cell. Mathematical models of transcriptional
regulatory network often describe the effect of the binding of transcription factors
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(regulatory proteins- activator and repressor) upon the regulatory region of the gene,
which in turn directs the rate of transcription of that particular gene. One of the
simple and popular model among them is the Hill equation. Hill equation accounts
for the cooperative binding of the transcription factors which is often observed in
biological systems for achieving maximal binding affinity. Hill equation is consid-
ered as a suitable formalism for modeling the functions of transcriptional regulatory
network as it exhibits many required characteristics that are experimentally observed
(Santillan 2008). In this chapter a brief account on Hill equation is given, based on
the transcriptional regulation.

The chapter is organized as follows: Section 2 gives an overview of the tran-
scriptional regulatory network and the regulation mechanism carried out by the
transcription factors. Section 3 discusses the modeling of gene input functions using
Hill equation based on the law of mass action and Michelis- Menten kinetics. A
detailed illustration on the derivation of Hill equation for modeling the binding of
transcription factors to the regulatory region is also included. The final section is
a discussion on the role of Hill equation in modeling the transcriptional regulatory
network along with its capabilities and limitations.

5.2 Transcriptional Regulation and Transcriptional
Regulatory Network

Transcription is the process of synthesis of mRNA from the DNA. The process
is initiated by the binding of RNA Polymerase to specific region in DNA called
promoter, which generates its complementary, single stranded mRNA. Promoter
lies in the upstream of the gene region that codes for the protein. Binding of the
enzyme to the promoter is regulated by specific proteins called transcription factors.
The gene that encodes this transcription factor proteins will be regulated by other
transcription factors which are encoded by other genes which in turn is regulated
by some other transcription factors and so on. This chain of regulatory interactions
together constitutes the transcriptional regulatory network (Fig. 5.1).

5.2.1 Transcription Factorand Binding Site

The transcription factor and its binding site assembled with the gene constitute the
elements or components of the transcriptional regulatory network. Genes transcribe
mRNA while the transcription factors or the regulatory proteins (regulators) regulate
the protein synthesis by binding to the regulatory regions in DNA. Transcription
factors are of two kinds: activators and repressors. The binding of the transcription
factors to the regulatory region influences (promotes if transcription factor is activa-
tor, blocks if it is repressor) the binding of RNA Polymerase enzyme to the initiation
site in promoter and thereby the gene expression also.
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Fig. 5.1 Representation of transcriptional regulatory network

5.2.1.1 Binding of Repressor

Repressor binds to the operator sequence and prevents the RNA Polymerase from
binding to the transcription initiation site in the promoter. Thus the transcription
process is repressed, and also the gene expression. In certain cases, a specific ligand
molecule called inducer binds to the repressor which prevents the binding of repressor
or causes the bound repressor to release from the regulatory region. Thus the gene is
expressed and this process of increased expression is called induction (Slonczewski
and Foster 2009).

Figure 5.2 shows the effect of an inducer in the transcription process. In
Figure 5.2a, the inducer inhibits the repressor from being bound to the binding
site and so transcription is activated. In Fig. 5.2b, the inducer left the repressor, so it
could bind to the site and thus transcription is repressed.

Some other repressors require a small ligand called co-repressor for making effi-
cient binding to the regulatory site (Slonczewski and Foster 2009). With the influence
of co-repressor, the repressor protein is able to bind the operator effectively and
repress gene expression (Fig. 5.3a). When this co-repressor is released from the re-
pressor, the repressor will not be able to bind to its binding site. Thus the gene gets
expressed. This process is called de-repression (Fig. 5.3b).

5.2.1.2 Binding of Activator

Activator protein binds to the operator sequence and activates the transcription pro-
cess, thereby enabling gene expression. Unlike the case of repressor, activators bind
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Fig. 5.2 a When inducer bounds to repressor. b When inducer leaves repressor

efficiently to the binding site only in the presence of the inducer molecule (Slon-
czewski and Foster 2009). The inducer- activator complex binds to the respective
site and transcription is initiated (Fig. 5.4a). When the inducer leaves the activator or
if inducer is absent, the activator cannot bind to the regulatory region which blocks
the RNA Polymerase from initiating the transcription. So the gene expression is
inhibited (Fig. 5.4b).
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5.3 Hill Equation

The Hill equation was originally formulated in 1910 by Archibald Vivian Hill in or-
der to describe the binding of oxygen to hemoglobin based on experimental findings
(Barcroft and Hill 1910). Later it was used to describe the ligand-receptor interactions
in the field of biochemistry, pharmacology etc. and were also applied in mathemati-
cal modeling of gene expression in 1960s (Griffth 1968). Hill equation was derived
from the Michaelis-Menten kinetics which describes the enzyme reaction mecha-
nism based on the law of mass-action. Michaelis-Menten kinetics failed to explain
the cooperativity shown by the ligands during their binding to the respective sites
(Wikibooks 2013). In a protein with several binding sites, the affinity for further
ligands to get bound to the protein may vary if there are already bound ligands. This
happens because of the cooperativity or the interaction among the sites. Hill equation
counts this cooperativity by adding one coefficient to the Michaelis- Menten kinetics,
i.e. the Hill coefficient.
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Fig. 5.4 a When inducer bounds the activator. b When inducer leaves the activator

A brief explanation on the law of mass action and the Michaelis-Menten Kinetics
is explained in the subsequent sections.

5.3.1 Law of Mass Action

The mass-action law was introduced by Cato M. Guldberg and Peter Waage during
the period 1864—1879 (Guldberg and Waage 1864). It states that the rate of any given
chemical reaction is proportional to the product of the concentrations of the reactants.
Consider reactants R1 and R2 react together to give the products P1 and P2,

aR1 4 bR2 = cP1 4 dP2

where a, b, ¢, and d are the number of moles of the corresponding reactants and
products. Then according to the law of mass action,

Rate of forward reaction «[R1]*.[R2]°

Rate of forward reaction = K [R1]%.[R2]°
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where Kf is the rate constant for forward reaction.

Similarly, rate of backward reaction =K. [P1]°. [P2]¢ where K, is the rate
constant for backward reaction.

At equilibrium state, the rate of forward reaction becomes equal to the rate of
backward reaction.

ie. Ki[R11%.[R2]° = Ky.[P1]°.[P2]%r Kf/Kb = ([P11°.[P2]%)/([R1]*.[R21®)

[P1I°(P2)
Therefore, K = —————— where K = Kf/Kb (5.1)
[R1] +1R2]

K is called as the equilibrium constant or more specifically the dissociation constant.
Dissociation constant measures the tendency of a larger object to fall apart into its
separate subunits or components. Its value is determined by experimental data and
gives an indication on the degree to which dissociation occurs. If the dissociation
constant is small, then there is a high affinity between the components.

5.3.2 Michaelis—Menten Kinetics

Michaelis—Menten Kinetics is one of the simplest models of enzyme kinetics. The
kinetics is named after German biochemist Leonor Michaelis and Canadian physi-
cian Maud Menten. They studied the enzymatic reaction mechanism in invertase
that catalyzes the hydrolysis of sucrose into glucose and fructose and proposed this
model (Michaelis and Menten 1913). According to Michaelis—Menten Kinetics, all
enzyme-single substrate reaction mechanism can be generalized as,

K, K,
E+S = ES - E+P
K,

where E is the enzyme and S is the substrate. E and S react together to form the
complex ES at the rate K; which dissociates at the rate K_;. At the rate K, the
complex ES form the product P.

Applying the Law of Mass Action we can derive the rate of change of each of the
reactants and products. Thus the rate equation for the dynamics of this reaction can
be derived as (Klipp et al 2009) a set of differential equations,

ds
= — K E.S+k_ES (5.2)
dt
dES
— =hE.S (ko1 +k)ES (5.3)
dE

— = ~KE.S+ (ki +k)ES (5.4)
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dP—kES (5.5)
R .

If the initial concentration of the substrate is much larger than the enzyme concen-
tration, then the concentration of the ES complex remains constant at certain state.
At this state we have to consider the conservation of enzyme only.

So, Eiyt1 = E + ES = a constant or E = Ey,) — ES (5.6)
At this steady state, d[% = 0. Substituting this in Eq. (5.2) gives,
K| E.S=(k_1 +k)ES (5.7)

Substituting Eq. (5.6) will give,

K(Eioptar — ES)S = (k1 + k2)ES (5.8)
K1.Ea.S = K1. ES. S+ (k_y + k2)ES (5.9)
K1 Eprar.S = ES. (K1S+ K_1 + K>) (5.10)
Ki. EiowarS
ES = Ll Troral® 5.11)
KiS+K_1+K;
Erora-S
ES = +Z+K (5.12)
$+(5")

The reaction rate is equal to the dissociation rate of the substrate or the formation
rate of the product. So the reaction rate,

dP ka. Etorar.S

& T2 Zrotald (5.13)
dt K_1+K
s+ (*59)
More Simpl P _ Viar-S (5.14)
ore dSimply, — = .
Py TSk,
K.i+K,

where Viax = k2. Ejory and K, = z
1

This is the expression for Michaelis- Menten kinetics. Here V,,,, is called the max-

imal velocity which is the maximum reaction rate that can be achieved when the

enzyme is completely saturated with substrate. K, is called the Michaelis- Menten

constant which is equal to the substrate concentration at which the reaction rate is
half maximal.

The binding of transcription factors to the regulatory region in promoter for reg-

ulating transcription can be considered as an enzyme-substrate reaction. The rate of

the transcription process is determined by how effectively the transcription factors
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Fig. 5.5 Transcription factor T
activity Transcription | Regulating gene
i i expression
Bm.d ng Gene 2
site

attach to the binding site of the gene. So when transcriptional regulation is mathemat-
ically modeled, we describe the input of the transcription factors on the transcription
process. This can be explained using a mathematical function which is called as
the gene input function. A gene input function describes the strength of the effect
of a transcription factor on the transcription rate of that particular gene. The input
function relates the input signals and the transcription rate. This input function will
be an increasing function, if the transcription factor is an activator and will be a
decreasing function if it is a repressor. Hill equation is regarded as a useful function
that describes any real gene input functions (Alon 2007).

5.3.3 Modeling Gene Input Functions using Hill Equation

Now let us see how Hill equation efficiently models the gene input functions in tran-
scriptional regulatory network. The given diagram (Fig. 5.5) depicts the transcription
factor binding activity that we are explaining using Hill equation. The transcription
factor (either activator or repressor) binds to the site in promoter and regulates the
gene expression which eventually determines the transcription rate of mRNA.

We illustrate how Hill equation models transcription regulation in three cases:
when (i) an activator is bound (ii) repressor is bound and (iii) an inducer is bound to
repressor.

5.3.3.1 Binding of Repressor to Promoter

Consider the reaction,
K¢
X +D = [XD]
Ky

Here, in the forward reaction, the transcription factor protein, X binds to the binding
site, D of the promoter to form the complex XD at the rate K¢ In the backward
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reaction XD is dissociating into X and D at the rate K}, Transcription of the gene
occurs only when X is not bound or when D is free. According to the conservation
equation, the total concentration of the DNA site,

[Dror] = [D] + [XD]

[XD] = [Drot] — [D] (5.15)

According to the law of mass action, the rate of change of concentration of [XD] can
be defined as,

d[X D]

T = K[ X][D] — Kp[X D] (5.16)
d[X D]
As steady state, =0 5.17)
dt
So, Ky[X][D] = K;[XD] (5.18)
K
[X][D] = K_[XD] (5.19)
f
[XI[D] = K4 [X D] (5.20)

where, K; = l% and is called as the equilibrium constant or the dissociation constant.

k= XID]
[XD]

The constant K4 has units of concentration and measures the tendency for [XD] to
fall apart into its two separate subunits. If Ky is small, then there is a high affinity
between X and D.

Substituting Eq. (5.15) in Eq. (5.20):

[X][D] = Ka([Dro] — [D])

K4[D] + [X][D] = Ka[Dro(

[D](Kg+[X]) = Ka[Dro(

Kt [X] = % (521)

[Dro] _ K.+ [X]
[D] K,
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[Dril _ | 1X]

(D] Ky
D) _ ! (5.22)
[DTm] B 1+ [l?_] .
d
% is the probability that the site D is free and is a decreasing function of the

concentration of the repressor X. If [X] =K, the probability for the site being free

is % or 50 %. Also when there is no repressor, [X] is 0 and the site will be always
free and 7k is 1 indicating high probability for the site being free. In such a case,
an RNA polymerase can bind the site and transcribe at maximum rate. This rate of
transcription from a free binding site is called maximal transcription rate, f. The
rate of mRNA production or the promoter activity is p times the probability that the

binding site is free (value of p ranges from approximately 10~ to 1 mRNA/s).

1

[X]
1+ K,

Promoter activity or Rate of mRNA production = S. (5.23)

So if [X] =K, the promoter activity is reduced to 50 % of its maximal transcrip-
tion rate. i.e. promoter activity = g This value of [X] required for repressing the
promoter activity by 50 % of its maximal transcription rate is called the repression
coefficient.

In reality, most transcription factors are composed of multiple subunits and in
order to achieve maximum activity these multiple subunits cooperatively bind the
binding site. Suppose there are n subunits, then the Hill equation of input function
of the gene bound with repressor is,

Promoter activity = . 5.24)

and n is called as the Hill coefficient.

The plot (Fig. 5.6) shows the behavior of hill equation model for repressor with-
varying values for n. It is clear that as the value of n goes higher the steeper the
plot becomes. Also as theconcentration of the repressor is increased, the rate of
transcription is decreased.

5.3.3.2 Binding of Activator to Promoter

Consider the transcription factor, X be an activator protein. As mentioned in the
previous section, the total concentration of the DNA site is,

[Dror] = [D] + [XD]

[D] = [Dro] — [XD] (5.25)



88

Rate of Transcription

S. Bhaskaran et al.

Mf2

*

] 1
Repressor Concentration ([R1/Kb)

15

Fig. 5.6 Hill equation model of repressor with varying values for n. (Alon 2007)

Substituting (5.25) in (5.20):

[X]([Dr] = [XD]) = Kq [X D]
[X][Dro] — [X][XD] = Kq4 [XD]
[X][D7] = Kq[XD] + [X][XD]
[(X][D7or] = [XD](Kq + [X])

[X1[D1o]

o = Ke+1X]

[Dror] _ Ka 4 [X]

[XD] [X]

(XxD] _ _ [X]
(D] Ka+[X]

.. Promoter activity or Rate of mRNA production =

[X]

" Kg+[X]

(5.26)
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Fig. 5.7 Hill equation model of activator with varying values for n. (Alon 2007)

Thus when an activator with n subunits is bound, the Hill equation for the input
function of the geneis,

[(X7]"

Promoter activity = . ———
Ka [XT1"

(5.27)

where n is called the Hill coefficient.

The plot (Fig. 5.7) shows the behavior of hill equation model for activator with
varying values for n. Here also it is clear that as the value of n determines the steepness
of the function.

5.3.3.3 Binding of Repressor to an Inducer

Let X be the repressor protein which binds with an inducer molecule, Sy to form the
complex [XSx]. So the total concentration of the repressor protein,

Xr = X+ [XS4]

X = X1 — [XS4] (5.28)

where X is the repressor in free form. If the formation of [XS] is at a rate k,, and
its dissociation is in the rate kg, then according to the law of mass action,

d[X 8]

7 = Kou X Sy — Kopg[XS,] (5.29)
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d[XS]
t

At steady state, = 0, which implies,

XSx = K[XS«] (5.30)

do f
Where K, = d—ff

Substituting X with Xt — [XS] from Eq. (5.28) in Eq. (5.30):

X1o:S.
(XS] = (5.31)
K.+ Sk
But as Sy is an inducer, only the X unbound to S is active since only the unbound X
can bind to the promoter binding site and repress the transcription process. So this
active repressor,

Xy S
X' =X =~ =
X
X* L (5.32)
1+ 2

where X* is the active repressor or the repressor unbound to inducer. Hill input
equation explain this as,

X — XTot

= W (5.33)

5.4 Discussion

In order to achieve maximum binding affinity while binding to the promoter binding
site, transcription factors usually exhibit cooperativity among themselves. Coopera-
tivity is a biological characteristic which can be described as a variation in the binding
affinity for other binding sites, caused by the binding of a ligand to its correspond-
ing binding site in the same molecule. This cooperativity is achieved by binding as
multiple subunits and not as monomers. It requires the interactions between multiple
binding sites also. A remarkable feature of Hill equation model is that it takes this
cooperativity into account through the Hill coefficient. Hill coefficient (here, n) is
the measure of the cooperativity among the transcription factors binding to the regu-
latory region in the promoter. It determines the steepness of the gene input function.
The larger is the value of n, the more steep-like the input function (Alon 2007). It thus
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represents the response of regulatory network to the transcriptional input. According
to the mathematical derivation, Hill coefficient denotes the number of binding sites,
but it is not often true. The fact is that Hill coefficient will always be equal to or less
than the number of binding sites (Weiss 1997).

If Hill coefficient > 1 positive cooperativity results, meaning that the binding of
a particular transcription factor to its binding site increases the binding affinity of
other transcription factors for simultaneous binding. If Hill coefficient < 1 negative
cooperativity results, meaning that the binding of that particular transcription factor
to its binding site decreases the binding affinity of other transcription factors for
simultaneous binding. If Hill coefficient = 1, it is non-cooperative, that is, the binding
of the transcription factor to its corresponding site will not alter the binding affinity
of other transcription factors.

Hill coefficient, n is introduced as a term that gives the number of binding sites
which should always be an integer. But while fitting Hill equation to experimental
data, this is arare case. It would be accurate only when extreme positive cooperativity
is present. This indicates the inability of Hill equation in providing a proper model
of the real biological system. Adding regulator molecules to the equation is also
a challenge. The Hill equation we discussed here considers irreversible reactions
only (Reversible Hill equation has also been put forwarded recently (Hofmeyr and
Cornish-Bowden 1997; Westermark et al. 2004)). Also it couldn’t easily model the
multi-reactant systems. Mechanistically, Hill equation is based on the concept that
all binding sites for a given ligand are bound at once. This is unrealistic (Sauro 2011).
It is impossible to infer all the details of DNA-transcription factor interactions from
this model. Even if the regulatory interaction details are available it is difficult to
derive the best fitting Hill function parameters simply from it. However Hill equation
is used widely for modeling the transcriptional regulation as it effectively describes
its sigmoid behavior and often fit to experimental data quite well (Sauro 2011).
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Chapter 6
Molecular Modeling
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Abstract Recent advances in theoretical methods based on quantum mechanics and
classical mechanics with visualization tools have played a very important role in
chemistry and biology. Further, computers have a profound influence on the way we
do science in the last few decades. The current chapter provides a preliminary expo-
sure to arange of molecular modeling approaches applicable to small to medium sized
molecules to proteins. Recent advances in the theoretical and computational method-
ologies which are aimed to treat large molecules are described. Emphasis is given on
methods of computer aided drug design. These are preceded by a simple introduc-
tion to quantum mechanics, classical mechanics and molecular dynamics. A major
area in modelling biomolecules is a proper quantitative treatment of non-bonded
interactions. The importance of understanding various non-bonded interactions is
highlighted. The role of these non-bonded interactions which determines the biolog-
ical structure and functions is described. Thus, the current chapter provides a brief
overview of computational methods applied to biomolecules.
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GFA Genetic function approximation
HTS High-throughput screening
Ki Inhibitory constant

LBVS Ligand-based virtual screening
MCSCF  Multi-configurational self-consistent field

MD Molecular dynamics

MLR Multi-linear regression

MM Molecular mechanics

PCR Principal component regression
PDE Phosphodiesterase

QM Quantum mechanics

QM/MM  Quantum mechanics/molecular mechanics
QSAR Quantity structure activity relationship

SBVS Structure-based virtual screening
SCF Self-consistent field

TI Thermodynamic integration

VS Virtual screening

6.1 Introduction

Models are essential to comprehend the incomprehensible reality. While biology
and chemistry are empirical sciences, which are largely based on observations and
observing, it has become necessary to develop the understanding at atomistic level.
Therefore, modeling molecules has become an indispensable tool to not only com-
plement the structural and spectroscopic attempts to characterise molecules, but also
to provide the basic tool for imaging molecular action. Thus, tools for molecular vi-
sualization on one hand and computational approaches based on rigorous theory have
occupied central stage in the computer age. When dealing with small molecules, the
objective has been to obtain highly reliable properties often comparable with those of
experiments. Quantum mechanical treatment of atoms and molecules thus provide
the most fundamental dimensions to treat small molecules (Cramer 2004; Leach
2001; Hinchliffe 2003). In natural sciences there are different kinds of theories.
While theory has been a strong and integral part of physics, the science of chemistry
has grown with experimentation and biology with observations. In addition to theory
and experiment, the entry of computations has provided another dimension to pur-
sue science. While the ab initio computational approaches have the ability to model
and obtain every possible experimental property, their applicability becomes very
limited as the size of the system increases. Consequently, for macro-molecules, the
application of quantum mechanical approaches is severely limited. When the time
dependency in solving the Schrodinger wave equation is considered, its application
is restricted still further. Also the time scales that can be probed using ab initio molec-
ular dynamics (MD) are very small. Thus application of quantum chemical methods
based on ab initio theory is practically limited to systems with very limited length and
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Fig. 6.1 Hierarchical order of molecular modeling approaches at different time and length scales.
The figure depicts typical systems and methods which can be useful for varying time and length
scales

time scales. Therefore, one needs to resort to methods based on classical mechanics
to employ computational methods with larger length and time scales (Fig. 6.1).

In addition to the quantitative theories, many qualitative theories have emerged out
of a large body of data obtained from experiments and observations. These methods
based on informatics have been extremely successful in analysing the massive data
of protein and nucleic acid sequences and thus ushering the area of bioinformatics.
Most of the data in the area of bioinformatics is experimental. However, in the area
of small molecules, computations have played a very important role and produced
a large body of data of high reliability obtained by employing computational tools.
Therefore, molecular modeling and computation have been complementary to the
experimental efforts as far as the small molecules are concerned.

In this chapter, we introduce various computational methods which may be applied
to molecular systems with varying length and time scales. Further, we discuss the
basic principles of structure and analogue based approaches briefly. Finally, a cursory
outlook on the application of these methods on biomolecules and materials has been
given.
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6.2 Quantum Mechanics

Computational chemistry is aimed at theoretically determining the properties of the
molecules based on quantum chemical or classical mechanical equations of mo-
tion. Quantum chemical approaches are needed to accurately model the systems at
atomistic scale and more importantly for obtaining electronic structure information.
According to quantum mechanics (QM), all possible information on a molecular
system can be obtained from a wavefunction, {» which is obtained by solving the
Schrodinger wave equation. However, the Schrodinger wave equation can be solved
only for one electron systems thus rendering it unsolvable for many electron systems.
The Schrodinger equation is the fundamental equation in QM and provides the basis
for providing a complete description of the electronic structure of a molecule. Due to
the difficulty associated with solving the Schrédinger equation for many electronic
systems a large number of approximations were provided. There are excellent trea-
tises available in the literature on computational QM, which deals with electronic
structure calculations based on either ab initio molecular orbital theory or density
functional theory (Cramer 2004; Jensen 2007; Levine 2013). Thus, we refrain from
providing any further details on this section for two reasons. The first being the
limitation of the space and the second and most important one is the limitation of
the applicability of quantum chemical approaches to large biomolecules in general.
However, in the following sections we discuss about the hybrid methods and multi-
scale modelling approaches, which employ and also largely based on the principle
of quantum mechanics.

Herein we provide a cursory look at the various approximations that are being
employed to solve the Schrodinger wave equation for medium sized molecules. The
primary approximation for most of the electronic structure calculations is the Born-
Oppenheimer approximation which essentially decouples the nuclear and electronic
part of the kinetic energy operator. Following this variation theorem has become ex-
tremely effective for setting a lower bound for the energy. Such a condition has played
a very important role in getting a better wavefunction through iterative procedures.
The second important approximation is perturbation theory truncated to second, third
or higher orders. However, the most effective theory based on electronic structure
methods is ab initio self-consistent field (SCF) theory, where the fundamental level
of reference wavefunction for the single determinant wavefunction is obtained by
using the Hartree-Fock method. Electron correlation, which in principle may be di-
vided into static and dynamic, is one of the most important parameter which needs to
be included for the accurate description of the wavefunction. Thus, methods which
go beyond Hartree-Fock level were warranted to obtain reliable properties of the
molecular systems. The most popular variants of these methods, where a single
Slater determinant can reasonably describe the system, are based on Moller-Plesset
perturbation theory, configuration interaction and couple cluster methods. However,
for open shell systems, the non-dynamic electron correlation becomes important,
and one needs to have more than one Slater determinant for the reference wavefunc-
tions. In such conditions the multi-configurational self-consistent field (MCSCF)
procedures become imminent.



6 Molecular Modeling 97

Methods based on these approximations have become very popular and have con-
tributed greatly to the understanding of molecular structure, function and property
relationships. The most rigorous method among these is based on the ab initio molec-
ular orbital theory. One of the main bottlenecks in the application of the rigorous
ab intio calculations to large molecules is computational capacity. In order to over-
come that, several economical semiempirical SCF methods have emerged. However,
the recent advances in the density functional theory have become very effective in
dealing with the medium to large biomolecules.

6.3 Molecular Mechanics

Molecular mechanics (MM) applies Newtonian mechanics on a molecule or a molec-
ular system to model its detailed structure and physical properties by calculating the
energy of a molecule in terms of the bonded and non bonded interactions. MM is
useful to study a broad range of molecular systems starting from small molecules to
large biological systems or material assemblies with many thousands to millions of
atoms (Field et al. 2007). The atomistic MM methods treat molecules as balls joined
by springs wherein each atom is a single particle with an assigned radius (typically
the van der Waals radius), polarizability, constant net charge (generally derived from
quantum calculations and experiment). The bonded interactions are treated as springs
with an equilibrium distance equal to the experimental or calculated bond length.
All these bonded and non bonded terms all together are represented as a functional
abstraction or force field to calculate the potential energy of a molecular system in a
given conformation.

6.3.1 Energy of a Molecule

The steric energy of a molecule is the energy due to the geometry of a molecule.
By nature, a molecule always tends to be in its lowest energy conformation to attain
stability. As stated earlier, MM assumes the steric energy of a molecule to arise from
a few, specific interactions within a molecule. These interactions include the stretch-
ing or compressing of bonds beyond their equilibrium lengths and angles, torsional
effects of twisting about single bonds, the van der Waals attractions or repulsions
of atoms that come close together, and the electrostatic interactions between partial
charges in a molecule due to polar bonds (Hirschfelder 1954). To quantify the con-
tribution of each, these interactions can be modeled by a potential function that gives
the energy of the interaction as a function of distance, angle, or charge. The total
steric energy of a molecule can be written as a sum of the energies of the interactions:

E = Eponded + Enon—bonded (61)

Ebonded = Esfretch + Ebend + Estretthfbend + Ed[hedml + Eimproper (62)
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Table 6.1 Bonded and non-bonded energy components
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S. No. |Energy

component

Energy function

Constants and
variables

Bonded

1 Stretch

Extr(r) = Z %kr(r - ',0)2
bonds

k; = force constant
for the bond, r =
actual bond length
between the two
atoms defining the
bond and ry =
equilibrium distance
for the bond

2 Bend

Ebem](@) = Z %k@(@ — @0)2

angles

® = bond angle,
®y = equilibrium
angle, kg = force
constant

3 Strech-bend

> =tk (r — 1) (© — —O)

bonds.,angles

Estr—bend

kgp= stretch-bend
force constant

4 Dihedral

> AVl +cos(ng — 8)]
dihedrals

Edginedral =

n = periodicity of the
angle, 8§ = phase of
the angle, V,, = force
constant

5 Improper

> dko(e — )’

improper

Eimpraper (a)) =

k., and wo = force
constant

Non-bonded

6 Electrostatic

4i4;

Eeec = P
1y

q; and q; = partial
atomic charges for
atoms i and j separated
by a distance rj;

7 van der Waals

A B
Epj=) —h 6

Tij

Aijj and Bij are
positive constants
whose values depend
on the depth of the
Lennard-Jones well

T

Enon—bonded = Eeleclrostatic + Evan der Waals

(6.3)

The bond stretching, bending, torsion and improper interactions are called bonded
interactions because the atoms involved must be directly bonded or bonded to a
common atom. The van der Waals and electrostatic interactions are between non-
bonded atoms (Table 6.1).

6.3.2 The Force Fields

Force field refer to a mathematical function with a set of parameters (obtained ex-
perimentally as well as theoretically from computer intensive quantum calculations)
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Fig. 6.2 Examples of various types of fields

to represent the potential energy of a molecular system. There are various types of
force fields depending upon the level of accuracy (Fig. 6.2). For example, the "coarse
grained" force fields which are used to simulate large proteins provide a crude rep-
resentation to save computational time, while the "all atom" force fields, although
computationally expensive, can accurately treat even the terminal hydrogen atoms
(Ponder 2003). The basic functional form of a typical force field is given by Eqs. 1-3
which has already been discussed. In this section we discuss the various classes of
force fields.

Apart from a representative function for the potential energy, each force field has
a set of parameters for each bonded and non-bonded terms. Also, each force field
has a particular atom typing. For example, the parameters for an oxygen atom in a
carbonyl group and in a hydroxyl group are given distinct parameters. The typical
parameter set includes values for atomic mass, van der Waals radii, and partial
charge for various atom types, and equilibrium values of bond lengths, bond angles,
dihedral angles, impropers and also the spring constants associated with them. The
parameters for given atom types are generally derived from observations on small
organic molecules that are more tractable for experimental studies and quantum
calculations and extrapolated for larger molecules like proteins and DNA.
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6.4 Molecular Dynamics

Biological processes are complex and involve a repertoire of atomic interactions.
Although experiments help to deduce the molecular level understanding of the bio-
logical processes, the atomic interactions need to be modelled computationally. Thus
MD simulations are used to estimate the microscopic properties and dynamic mo-
tions of assemblies of a biomolecular structure. MD simulations provide an access
to the thermally-accessible states and help to correlate them with the functions of
biomolecular systems (Frenkel and Smit 2002). It is thus a method, which integrates
the Newtonian equations of motion for ‘N particles of a system over a period of time
resulting in a trajectory which is used for the calculation of the micro and macro-
scopic properties. The calculation of the MD trajectories is based on the principles
of statistical mechanics (Allen and Tildesley 1987). MD simulations calculate the
microscopic properties of the system such as position and velocities of each individ-
ual atom of the system. However, the properties that are of higher practical value are
the macroscopic properties such as number of particles (V), volume (V), energy (E),
temperature (7), pressure (P), chemical potential of particles  (Rapaport 2004).
These bulk properties are used to gauge the thermodynamic modulation with time.

The positions and momenta of all the particles of a system define a microscopic
state. The positions and momenta of all the particles in the system are adjudicated as
coordinates of a 6N dimensional space also called as phase space. Thus at any given
time, the system corresponds to a point of the multidimensional space. The evolution
of a system with time therefore corresponds to a trajectory in the phase space and
can be determined by solving the equations of motion based on the potential energy
(PE). There are different ways to distribute the total energy among the N particles
of the system. An ensemble (EN) constitutes a collection of systems with similar
macroscopic properties wherein each system corresponds to a point in the phase
space. There are different types of ensembles based on the set of constant macroscopic
properties such as canonical (NVT), the grand canonical («VT), microcanonical
(NVE) and the isothermal-isobaric (NPT) ensemble.

The partition function as given in Table 6.2 defines the microscopic state of a
system explicitly. However due to the existence of large number of microscopic states
in a biomolecular system and their sampling according to Boltzmann distribution in
canonical ensemble, direct calculation of Zyvyt is not feasible. A MD simulation is
initialized with the assignment of initial positions and velocities of all particles in
the system. The initial velocities are assigned to particles in such a way that the total
momentum is ensured to be zero, whereby the Maxwellian velocity distribution law
is obeyed (Zeigler et al. 2000).

T
V2, = BT (6.4)
m
With the initial velocities assigned, the next step is the calculation of potential energy
of the system using Eqgs. (1-3). This is followed by deducing the force acting on

each particle of the system by differentiating the calculated energy with respect to
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Table 6.2 Types of statistical ensembles used in MD simulations
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S. No. |Ensemble Features Partition function Remarks

1 Microcanonical | Constant number | Q(E) Q(E) is the
of particles (N), number of
volume (V) and micro-states
energy (E). corresponding to
Entropy of the the system’s
system increases energy E
continuously

2 Canonical Number of parti- | Zyyr = ]Z e PPEC) B = ﬁ,
cles (N), volume j=1 PE(x) = energy of
(V) and tempera- thexthmicrostate
ture (T) are con- of the system
stant

3 Grand canonical | Chemical poten- | Z, v :Zewik P kg B= ﬁ

1

tial or fugacity
(), volume (V)
and temperature
(T) are constant

PE(x) = energy of
the xthmicrostate
of the system

Table 6.3 Mathematical functions used to generate velocity and position at each time step (Af)
with Verlet and Verlet-like integrators. (Frenkel and Smit 2002; Fermann and Valeev 1997)

S. |Integrators | Equation to update new position (x) | Equation to update new velocity (v)
No.
1 | Verlet x(t + At = 2x(1) — x(t — Ab) + | (1) = HER=XEZAD 4 O(Ar)
0 (A2 "
m
2 | Velocity X(t+A1) = x(O)+(OAHLE (AN | vt + A1) = () + LSOO A
Verlet
3 |LeapFrog |x(t+AD=x()—Arv(t+4) |v(t+4)=v(—4)+Arl?
4 | Velocity x(t + At) = x(t) + v(t) At v(t + At) = v(t)+
corrected 4f (D)= fU=AD) A 2 2f(+ADFS f()—f(1=AD)
Verlet + 6m At 6m A

the atomic positions (Fig. 6.3). After calculating the force on each particle, Newton’s
laws of motions are integrated to generate new positions and velocities for specified
time-steps (Table 6.3).

The behaviour of a system is determined by its thermodynamic properties such
as free energy, entropy and enthalpy. In a biomolecular system, the formation of a
protein-ligand complex involves a change in free energy (Reddy and Erion 2001).
The free energy determines the equilibrium properties of a system and is usually
considered as the Gibbs or Helmholtz free energy. The configurational Helmholtz
free energy (A) and can be represented as follows for a canonical ensemble:

A=—B"'InZyyr

(6.5)
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Fig. 6.3 Flow-chart depicting the general steps of a typical MD simulation

Calculation of absolute free energy is difficult due to inadequate sampling. There
is therefore a need for different methods to calculate free energy. The free energy
simulation techniques aim at computing ratios of partition functions using various
techniques. The most common methods include free energy perturbation, thermody-
namic integration, umbrella sampling and potential of mean force. The free energy
calculation methods thus calculate the ratio between the two partition functions Z,;
and Z,, to obtain the difference in free energy (AA). The free energy is calculated
between two states. Thus the free energy differences between states ‘al’ and ‘a2’
with partition functions Z,; and Z,, respectively can be calculated as:

Za2
AA = —B8 ' In=L 6.6
B nZal (6.6)



6 Molecular Modeling 103

The AA thus obtained, is used to calculate the binding affinity of a protein-ligand
complex. The solvation-free energy or binding-free energy is usually calculated
through alchemical transformations through addition or removal of ligand related
energy terms from the total Hamiltonian. The calculation of free energy by two most
widely used methods namely free energy perturbation (FEP) and thermodynamic
integration (TI) have been described below.

Free energy is a state function therefore the difference in free energy in the two
states can be represented as:

AA=—B""In(exp[ — B(Var — Va) )y (6.7)

In the TI approach, the difference in free energy between two states is calculated by
integrating over enthalpy changes between the transition states. These states can be
described with a parameter \ wherein )¢ and )| represent states 0 and 1 respectively
(Wang and McCammon 2012). Thus the difference in free energy between the two
states 0 and 1 is (i.e. from X to \|) obtained by as

Al
AA= | — (6.8)

6.5 Computer Aided Molecular Design

Computational approaches have become an integral and indispensable part of both
academia and industry. Deciphering of the human genome is one of the first defini-
tive accomplishments towards the molecular level understanding of biology. This
has provided a quantitative understanding of the structural and functional aspects of
biology unraveling a multitude of disease targets for drug discovery (Hopkins and
Groom 2002). New drugs are constantly required for improving the treatment of ex-
isting and the newly identified diseases, in addition to the production of safer drugs
by the reduction or removal of adverse side effects. Consequently huge investments
are being channeled from pharmaceutical industries in research and development
activities. The interdisciplinary nature of drug discovery warrants a fruitful collabo-
ration among chemists, biologists, pharmacologists, physicians, computational and
informatics scientists etc. New lead design is now more a strategic than a serendipity
driven process. Thus, in the last couple of decades, in silico approaches have become
an integral part of essentially all rational drug discovery programs. The rational ap-
proaches in drug discovery are traditionally classified as structure and analogue based
(Fig. 6.4).

Medicinal chemistry driven approaches for several decades have relayed on the
analogue based approaches wherein finding the quantity activity relationship was the
key. However the recent advances in structure and molecular biology have provided
more fundamental insights at molecular level. These approaches have been applied
to obtain insights on the binding characteristics of the drug with the target. A drug
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Fig. 6.4 A general work-flow of computer aided molecular design

contains various sub-units which contribute to the druglikeliness parameters such
as the ADMET, pK/pD, blood brain barrier, drug metabolism, human intestinal
absorption and permeability (Lipinski 1997). The long term use of a drug is however
restricted by a multitude of inter-related factors such as development of resistance due
to mutations, drug-drug interactions and most importantly target specificity. Rational
design of a target specific drug is capable of overriding the other restricting factors.
Specificity is of prime importance in the design of leads (Badrinarayan and Sastry
2013). There are different types of specificities such as target specificity, chemotype
specificity and sub-type specificity. The different kinds of enzyme specificity that
can be obtained by targeting different binding sites in a protein like the active site,
allosteric sites. An inhibitor scaffold constitutes several fragments or chemotypes
which individually can contribute to selectivity which can be used in the design of
inhibitor for the active site to obtain high efficacy. This can possibly be achieved
through molecule design or fragment based drug design (FBDD) using selectivity
rendering fragments (Ringe and Reynolds 2010). The difference in the shape and
constituency of the additional binding site called allosteric site can be exploited to
design selective inhibitors for targets which share the same active site. Most proteins
or enzymes exist in several isoforms which share high structural similarity among
themselves. In such cases, small binding pockets or sub-pockets can be detected
which are non-conserved and these can be used to obtain selectivity among the
various subtypes.

Quantum chemical calculations based on ab initio have been proved to be highly
reliable. However, the computational time rises exponentially as the number of
electrons in the system increases thereby precluding their practical application to
molecules with more than few dozens of atoms. Although it is possible to treat small
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ligand sized molecules quantum mechanically, it is expensive to apply them for
larger bimolecular systems like proteins and nucleic acids. Thus MM has become a
definitive choice of application for biomolecular targets. Computer aided drug de-
sign (CADD) focuses on understanding three essential factors for the design of drugs
namely the features which render a macromolecule druggable, the properties which
distinguish a drug from a small molecule and the interactions which facilitate an
optimal fit of a drug-like molecule into a druggable target. A disease target is one
which plays a pivotal role in the cause and expression of a disease phenotype and
can be modulated by a drug. The therapeutic targets are thus both disease modifying
and druggable. At present the currently approved drugs interact with only 2 % of
human proteins hence there still exists a repertoire of undiscovered targets (Hop-
kins and Groom 2002). CADD uses amalgamation of structure and analogue based
approaches. The structure based approaches include homology modeling, docking,
virtual screening (VS), MD, MM-PBSA/GBSA, free energy calculations (FEP, TI)
while the analogue based approaches include quantity structure activity relation-
ship (QSAR), pharmacophore mapping, toxicity prediction and chemoinformatics
methods.

6.5.1 Structure Based Drug Design

Advances in sophisticated large-scale automation were expected to generate an un-
precedented number of novel leads resulting in a substantial increase in novel drug
entities to be launched in market every year. This could not materialize as the dis-
covered hits failed to optimize into actual leads. Thus, the initial euphoria associated
with these approaches has subsided owing to the significantly high costs and dis-
appointingly low hit rates involved in high-throughput screening (HTS). This calls
for the rational application of drug design approaches such as virtual screening or
docking to obtain lead compounds, which can be optimized further as drugs.

6.5.1.1 Docking

Docking is carried out using an automated computer algorithm that determines the
binding of a compound to the active site of a protein (Stahl and Rarey 2001). This
includes determining the orientation of the compound, its conformational geome-
try, and the scoring. There are two key components of a docking program namely
the search algorithm and the scoring algorithm (Table 6.4). The search algorithm
positions molecules in a multitude of locations, orientations, and conformation
within the active site (Young 2009). The identified orientations are sampled fur-
ther through downhill minimization to obtain bioactive conformations. The choice
of the search algorithm determines the thoroughness of the program in checking the
possible positions of the molecule and time taken.
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Orientations with closely placed atoms are scored and others discarded. The ener-
getically favorable modes of binding of a ligand are stored as different poses. These
poses representing the protein-ligand interactions are scored in terms of binding
enthalpies or Gibbs free energies, or a qualitative numerical measure or from a po-
tential of mean force equation. This is concomitant to the inhibitory constant (Kj)
calculated experimentally. Most of the scoring functions correlate well with the K;
values whereas others provide a qualitative ranking of the compounds tested. Some
programs retain all the poses generated whereas some provide a scrutinized list based
on the scores. Evaluation of closely placed atom pairs using full force field equations
consumes a lot of computer time (Table 6.5).

This is overcome by using a grid based algorithm wherein potential fields are
created which can be numerically evaluated over a grid generated over the active
site. At a given point, the value of the potential on the grid is equivalent to the energy
required for placing a unit charge at that point. Thus different types of scoring
functions such as knowledge based, empirical, force field and many more have
been developed to gauge the strength of interactions between the receptor and the
small molecules. Most of the components of these scoring functions predict the non-
covalent interactions and they are hardly any accounting for the covalent interactions
(Cross etal. 2009). Considering the lacuna in individual scoring functions, consensus
scoring is in vogue. Although all the small molecules undergo a conformational
change during docking, the protein is held rigid in a fixed geometry in majority of
the cases. Some programs facilitate alteration in the conformation of the active site
as in flexible docking. This takes a longer time therefore options such as side chain
repositioning and scaling are introduced which results in an induced fit approach so
as to mimic the physiological conditions as far as possible.

In addition to search algorithms, scoring functions and flexibility, solvation is a
major issue in defining the accuracy of results obtained as it has a direct impact on the
binding energies of dissimilar molecules. An algorithm deficient of a solvation term
results in identification of charged ligands which are large in size. The free energy
of interaction relative to the free energies in solution of two molecules determines
the binding affinity of the ligand for a particular receptor. FEP techniques accurately
calculate the relative free energy however these are time consuming and are biased
for similar set of molecules and are impractical for application for screening huge
datasets of relatively diverse molecules. Therefore, energy correction for the solvent
surrounding the protein needs to be included rather than considering only those
occupying the active site (Gohlke and Klebe 2002). This has made this method as
a protocol of choice in both academia and industry prediction of binding mode of a
ligand during lead optimization as well in the identification of the potent lead itself
through virtual screening.

6.5.1.2 Virtual Screening

Drug here is treated as a chemical substance that is used to prevent or cure diseases. In
ancient times, a wide range of natural products obtained from animal, vegetable and
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mineral sources were used for medicinal purposes but with the increase in knowledge
the focus is centered on the use of pharmaceutically active compounds as starting
point for the development of drugs. However, the increase in chemical space has
made the identification of lead a tedious and erudite process. Therefore computa-
tional based screening methods such as VS are used for the identification of these
pharmaceutically active compounds from a core set of molecules (Badrinarayan
and Sastry 2011; Reddy et al. 2007a). The approaches used can be classified as
ligand-based and structure-based methods. The availability of the physicochemical
information dictates what strategy is more likely to be applied. Existence of structural
data of the target protein calls for the application of structure-based virtual screen-
ing (SBVS) strategies. In the absence of structural information, ligand-based virtual
screening (LBVS) protocols are usually applied. Virtual screening is carried out in
concord with a number of different tools such as informatics (chemo and bio), dock-
ing, QSAR, pharmacophore mapping, machine learning tools (MLT), fingerprints,
quantum mechanics/molecular mechanics (QM/MM), QM etc.

LBVS functions on the similarity principle which considers that the molecules
which are structurally similar have similar biological activities. In the absence of
structural information, LBVS use similarity, QSAR and pharmacophore based meth-
ods to correlate the physiochemical properties of known ligands with their structural
characteristics and generate a query. LBVS methods look out for desired patterns
in molecules such as fragments, pharmacophore, and core scaffold through graph
theory like approaches or use molecular descriptors. Molecular fingerprints are how-
ever emerging as the most sought after options due to the ease of handling and speed.
Fingerprints can be formulated with both 2D and 3D features (Sastry et al. 2010).
The fingerprints are defined in the form of vectors which constitute bit strings of
ones and zeros or position vectors indicating the presence or absence of a particular
feature. A large part of the LBVS work being done is driven by informatics wherein
the similarity indices are used to scale the nature if identity between the query and
the database molecules.

With the increase in the repertoire of crystal structure data and the efficiency of
docking in deducing the binding modes of ligands, SBVS is still employed fervently.
Given a 3D structure, the SBVS approaches employ docking to generate the binding
modes of the database compounds which are then shortlisted based on their scores.
VS is a multi-step protocol and with the advent of multi-drug resistant strains and
cross-target reactions, each step of the screening process is embedded with filters
for druglikeness, Lipinski, target-selectivity, toxicity-ADME etc. in order to garner
the best of the lot at every step and curb the percentage of false positives (Klebe
2006). These filters vary in complexity and dimension (1D-3D). Time and precision
are the two endearing factors of VS. The time required depends on the type of query
used and the complexity of the databases (molecule or fragment) being screened.
The query used for screening can be simple 2D co-ordinates in the form of SMILES,
fingerprints, bit vectors or a complex 3D representation of the active site, ligand
template, pharmacophore or surface maps. The precision of the endeavor relies
greatly on the stringency of filters used. The query can be complex 3D active site,
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molecule, pharmacophore, surface-volume or simple 2D co-ordinates, and feature-
trees. SMILES, correlation vectors, bit strings and fingerprints are the simplest. The
discrepancies in scoring functions are being encountered through incorporation of
parameters extracted from MM-PBSA or QSAR calculations (Stahl and Bohm 1998).
Although such procedures increase the accuracy of the hits obtained they however
increase the overall time to get the desired outcome. The numbers of molecules that
can be screened with virtual screening are several orders of magnitude higher than
that of HTS. This number crunching ability of virtual screening and its inexpensive
execution makes it endearing. However the crux of the process lies in the development
of a screening strategy with efficient filters to obtain target specific leads.

We have developed a three step filtering strategy to identify target specific al-
losteric fragments for the inflammatory target p38 MAP kinase (Badrinarayan and
Sastry 2012; Badrinarayan and Sastry 2010). The study entails the design of two
target specific virtual screening filters based on docking score components and sub-
structure interaction fingerprints. The components of the scoring function of two
well-known docking protocols were evaluated to gauge their individual contribution
in identification of lead. Eight thresholds were identified for the active and inactive
conformations of kinase and were used in the identification of lead for the inac-
tive conformation of the target kinase. The fragments or chemotypes demonstrating
specific interactions with the study target were garnered from the known set of in-
hibitors. These interacting chemotypes were converted into substructure interaction
fingerprints. The filters were used to screen a database of 10 million compounds and
extract the interacting chemotypes from the identified leading hits. The extracted
allosteric fragments itself constitute a new library of target specific allosteric frag-
ments and are a good starting point for many lead design endeavors. Such protocols
can easily be extended for different druggable targets to ensure the retrieval of target
specific hits positively.

6.5.1.3 Fragment Based Methods

A drug or an inhibitor molecule constitutes a number of sub-parts called fragments
whose presence either enhances their efficacy or renders them synthetically feasible.
The action of drugs emancipate either from their physicochemical properties or from
their chemical structure. The former are non-specific, act in large doses by forming
a monomolecular layer over the entire cellular surface of an organism as in case
of general anaesthetics, hypnotics such as aliphatic alcohols, antiseptics and anti-
fungals (Lemke and Williams 2008). Those which are structure driven are specific
and act in small doses on specific protein molecules which are usually located in the
cell membrane to trigger a series of physiological and biochemical response. The
specific recognition of receptors is driven by a fragment called chemotype which
specifically endears the small molecule to that particular receptor (Badrinarayan and
Sastry 2010). Identification of specific low molecular weight fragments in a molecule
sets a stage for the stepwise design of new leads incorporating the identified chemo-
type. FBDD samples the chemical space to a greater extent than virtual screening of
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Table 6.6 Postulates for the design of drugs, leads, scaffolds and fragments
S. No. |Properties Drug-like | Lead-like Scaffold-like | Fragment-like
(RO5) (RO3)

1 Hydrogen bond donors | <5 <5 <3 <3
(sum of -OH and -NH)

2 Hydrogen bond <10 <8 <8 <3
acceptors (sum of O and
N)

3 Molecular weight <500 <450 <350 <300
(daltons)

4 Lipophilicity (clog P) <50 —30todS5 | <22 <3.0
Number of rotatable - <9 <6 <
bonds (NROT)

6 Polar surface area (PSA) | — - - 60
A2

molecules (Hajduk and Greer 2007). The fragments adhering to a set of properties as
specified by the ‘rule of three’ are used embellished, linked and then grown into new
leads. Identification of the right fragment through virtual screening or optimizing a
prioritized one is computationally complicated since the existing scoring functions
have been formulated for molecules and the cut offs prescribed do not suit the rule
of three (Table 6.6).

However, fragments are more rigid with lesser numbers of degrees of freedom
as compared to small molecule and are therefore can be easily docked. Majority of
the initial work in FBDD has been carried out for the kinase targets. The fragment
libraries are designed using reduced topological graph to compare the modes of the
feature tree as in LoFT (Fischer et al. 2010) or use a set of bond rules to model
ring substitution and cleavage sulphur groups as in BRICS (Degen et al. 2008).
Certain protocols such as BROOD identify the fragment similar to the query template
and design leads through bioisosteric replacements (Chen and Wang 2003). SeeDs
on the other hand use pharmacophore fingerprints to screen for fragments (Baurin
et al. 2004). The design of lead from fragments is usually carried out by linking
fragments that bind to different parts of the target active site through a linker. We have
developed a new fragment based lead design called ‘Fragment Tailoring Approach
(FTA)’ based on similar principle wherein the existing set of kinase inhibitors binding
to its highly conserved ATP site is reengineered into a target specific inhibitor by
linking it with a chemotype which binds to its non-conserved allosteric site in the
inactive conformation. The newly designed leads thus acquire efficacy from the
ATP site fragment and specificity from the allosteric fragment (Badrinarayan and
Sastry 2010). Self binding fragments as in click-chemistry on the other hand need
no linker for connecting to each other and form a lead. The leads can also be derived
by embellishing an individual fragment with function groups complementing the
target active site. This has led to the development of different FBDD protocols
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such as BREED, LUDI, RECAP, ADAPT, LEA3D, LigBuilder based on genetic
algorithm and SKELGEN, SMoG, SPROUT based on Monte Carlo simulations.
FBDD has thus popularized the concept of ‘prioritized sub-structures’. FBDD has
resulted in the successful design of leads for several important diseases such as
BACE-1, Phosphodiesterase (PDE) 4, Bcl-XL, Urokinase, Thrombin and Aurora
kinase (Loving et al. 2010) to name a few.

6.5.2 Analogue Based Drug Design

Analogue based approaches for rational drug design have also emerged in parallel to
the structure based approaches. These approaches complement the structure based
approaches where the structure of the target is unknown, but the active inhibitors for
the target are known. The main concept of analogue based drug design is based on a
belief that chemical structure and biological activity of the analogues of a drug are
often similar to the lead drug. In the last few decades, computational methods have
significantly contributed to model new analogues for an existing drug as well as to
predict the activities of new analogues. These predictive models rapidly screen large
databases to identify new hit and lead molecules with improved biological activity
profile and greater potency, thus opening up the way to new types of structures
for drug research. QSAR modeling, pharmacophore modeling is some of the most
important methods in analogue based drug design.

6.5.2.1 QSAR

The QSAR modeling is one of the analogue based computational tools, which es-
tablishes a quantitative correlation between biological activity/toxicity/property of
a molecule and its structural features. In QSAR study, the variations of biological
activity/toxicity/property within a series of compounds are correlated with changes
in a group of computed features of the molecules referred to as descriptors.

QSAR method to predict a certain property of a molecule from its structure as a
mathematical expression in the form of

y=mx;+myx+...+C (6.9)

Where, y is the predicted property (the dependent variable) and xi, x,, ... are
the known molecular properties called descriptors. QSAR uses descriptors that
are a single number describing some aspect of the molecule, such as molecular
weight, number of atoms, topological indices etc. The coefficients m |, m;. .. in the
QSAR equation are weights of the descriptors obtained by using various curve fitting
methods.

The activities and properties being modeled by QSAR/QSPR are known as de-
pendent variables (y) of the QSAR model. A dependent variable can be a biological
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property such as receptor binding, inhibition constant, permeability, pharmacokinet-
ics, biodegradation, carcinogenicity, drug metabolism and clearance, mutagenicity,
toxicity etc. or a chemical property such as boiling point, chromatographic retention
time, dielectric constant, diffusion coefficient, dissociation constant, melting point,
reactivity, solubility, stability, thermodynamic properties, viscosity etc. (Young
2009).

QSAR modeling typically describes molecular structures in terms of the descrip-
tors and then correlates these molecular descriptors with observed activities using
various statistical methods. The first step of QSAR modeling is preparation of a
dataset of molecules with their activities, which follow a uniform distribution and
calculation of descriptors. Molecular descriptors are chemical information that is
encoded within the molecular structures and are collectively responsible for a partic-
ular activity of the molecule (Todeschini and Consonni 2000). The descriptors serve
as the independent variables of a QSAR model. Various categories of descriptors
employed in QSAR (Katritzky et al. 1994; Karelson et al. 1996). Constitutional
descriptors are simple descriptors that represent only the molecular composition of
the compound independent of the geometry and electronic structure (Fig. 6.5).

Examples are number of atoms, number of bonds, molecular weight etc. Topolog-
ical descriptors/topological indices describe the atomic connectivity in the molecule.
Examples are Wiener index, Randic and Kier & Hall indices, Kier flexibility index,



114 P. Badrinarayan et al.

Information content index and its derivatives etc. (Katritzky et al. 1994). Geometrical
descriptors are dependent upon 3D-coordinates of the atoms in the given molecule.
For example, moments of inertia, shadow indices, molecular volume, molecular sur-
face area, gravitation indexes etc. Electrostatic descriptors are calculated based on
the charge distribution of the molecule. Examples are topological electronic index
and charged partial surface area descriptors. Quantum-chemical descriptors are cal-
culated from quantum chemical data at various levels of theory. For example Extreme
(maximum and minimum) values of the atomic nucleophilic (N, ), electrophilic (Ex)
and one-electron (R ) Fukui reactivity indices, e ymo and egomo etc. (Karelson et al.
1996). Hydrophobicity descriptors such as log P, aqueous solubility and chromato-
graphic parameters are also very useful for QSAR studies (Helguera et al. 2008).
However, development of simple and new descriptors is still a topic of high inter-
est (Badrinarayan et al. 2011; Srivani et al. 2007). Among the new descriptors the
density function theory (DFT) based ones are extensively studied. In many studies
DFT based descriptors show good performance in predicting the biological activities
(Parr 1983; Singh et al. 2004; Wadehra and Gosh 2005; Srivastava and Sastry 2012).
Employment of docking scores as QSAR descriptors is one of the new approaches.
The free energies of binding calculated by MMPBSA/GBSA methods are also tested
in several studies and they show excellent correlation with the bioactivities (Srivas-
tava et al. 2012). Once descriptors are computed, it is very crucial to choose the
descriptors that should be included in the QSAR model. Preprocessing of the dataset
should also be performed carefully as anomalies, errors, missing/incomplete data
may lead to severe erroneous/misleading predictions. The data should also be nor-
malized or standardized where there is a large range of variability in the dataset.
Inter-correlated descriptors should be removed from the dataset before the model
construction. (Nantasenamat et al. 2009).

Various techniques based on the multi-linear regression (MLR) analysis are em-
ployed in order to achieve the QSAR equation. This equation essentially correlates
the variation of activities of the molecules as a function of the variations of the
molecular structures present in the molecular data set (Kubinyi 1993). MLR analysis
is usually used to correlate a given bioactivity with molecular descriptors. Different
statistical methods come into play for building a QSAR model. Depending on the
type of dataset and other parameters, however, it is possible to generate nonlinear
equations that contain exponents of best fit, logarithms of descriptors, etc. MLR,
principal component regression (PCR), partial least square, artificial neural network
(ANN), genetic function approximation (GFA), factor analysis, discriminant analy-
sis, cluster analysis are a few of the statistical methods that can be employed in the
QSAR modeling (Dehmer et al. 2012).

For the linear QSAR equations the correlation coefficient r* gives a quantitative
measure of how well the descriptor describes the activity (Wold 1991). r? is calculated
as follows

1- obs — caC2
22 > Vobs — Yeale) 6.10)

Z (yobs - ymean)2
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where, Yeaic, Yobs and Ymean are predicted, actual, and mean values of the target
property respectively. Thus, the descriptors with the highest correlation coefficient
can be selected. The predictive power of a QSAR model can be verified through
statistical measures such as the correlation coefficient between actual and predicted
values. Various statistical parameters such as cross validated correlation coefficient,
Fisher statistic (F-value) values etc.

Crossvalidated 12, 1so called as q® signifies how best the model predicts. It is
calculated by omitting each compound once from the training set, then predicting
its activity using the model constructed from the remaining compounds. The model
thus built with the remaining molecules is used to predict the response of the deleted
compound/compounds. This cycle is repeated till all the molecules of the dataset
have been deleted once. The cross-validated squared correlation coefficient g is

calculated as follows
1 — V Z (yobs - ycalc)2

Z (yobs - ymean)2

where, Yeaic, Yobs and Ymean are predicted, actual, and mean values of the target prop-
erty respectively. F-value is also an important measure of the statistical significance
of the regression model, which is given by the following equation (Wold 1991).

6.11)

P
1 =2

6.12)

where r2 is the correlation coefficient. Also as an external validation, some of the
compounds with known results are left out of the training set to be used as a test of
the predictive ability of the QSAR model.

QSAR is a valuable tool for predicting molecular properties that cannot be com-
puted any other way. It is very useful or the prediction of a wide range of biological
properties, essential to identify potential leads (Nantasenamat et al. 2009). Although
it may not be a reliable tool to predict drug activity, pharmacokinetic properties,
such as blood-brain barrier permeability and passive intestinal absorption etc. can be
fairly predicted by QSAR method. Hence, QSAR models are of immense help to pre-
dict the properties of new and untested compounds possessing analogous molecular
structures as compounds used in the development of the models.

6.5.2.2 Pharmacophore Modeling

Pharmacophore modeling has gained immense importance as an analogue based ap-
proach in past few days because of its simplicity. According to IUPAC definition
(Wermuth et al. 1998), “A pharmacophore is the ensemble of steric and electronic
features that is necessary to ensure the optimal supra-molecular interactions with
a specific biological target structure and to trigger (or to block) its biological re-
sponse.” However, different researchers define it through their own view glasses
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Fig. 6.6 Steps of pharmacophore modeling

depending on the suitability. A pharmacophore can be considered as the maximal
set of common features extracted from a group of molecules exhibiting a similar
pharmacological profile on a common target protein (Guner 2000).

A pharmacophore does not represent any real molecule, but represents the com-
mon interaction pattern of a group of compounds with their target (Wermuth 2006).
The chemical signatures identified in a molecule which are actually responsible for
making a certain type of non-covalent interaction with the receptor are called as
pharmacophore features (Fig. 6.6).

A few examples of such functional features are hydrogen bond donors, hydrogen
bond acceptors, aromatic rings (may be ring atoms, ring center, or normal to the
ring), hydrophobic centers (also called neutral centers), positive charge centers,
negative charge centers, acidic groups, basic groups, bulky groups engaged in steric
interactions, planar atoms, CO, centroid (i.e., ester or carboxylic acid), metal (also
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called a metal ligator) and excluded volumes—forbidden regions, where the protein
is and the ligand cannot have functional groups (Dror et al. 2006). Pharmacophore
models provide a reasonable qualitative prediction of binding by modeling the spatial
arrangement of a small number of atoms or functional groups (Yang 2010; Ekins
et al. 2001). A detailed quantitative prediction of active molecules based upon the
binding pattern requires sophisticated computational techniques as well as lots of
computer time. Pharmacophore models are of immense use in analogue based virtual
screening. Its usefulness covers three major domains. The generation of a relevant
pharmacophore model, consistent with structure property relationship in a series of
molecules helps in design of optimal ligands. Scaffold hopping may be an important
implication of pharmacophore modeling, which consists in the design of functional
analogues by searching within large virtual compound libraries of structures with
similar activity profiles, but based on a different scaffold. New active compounds
can also be designed by combining the key pharmacophore features of two different
pharmacophore models (Langer and Hoffmann 2006; Wolber et al. 2008).

6.6 Modeling Large Molecular Systems

Large-scale biomolecular simulations are significantly important to study the
functionality of large biomolecular systems. MD simulations have substantially con-
tributed to the advancement of knowledge in biology, chemistry and material science.
Although the MD simulations are being conducted for systems with millions of atoms
and for millisecond timescale, the atomistic MD simulations fare to be too long and
large when studying a biological phenomenon. The functioning of the living cell is
a complex process, characterised by multiple interactions between macromolecules
that act across multiple levels of structural and functional organisation—from molec-
ular reactions to target-drug binding to protein-protein interactions. Since biological
systems are multiscale in nature, there should be efficient model building and biolog-
ical knowledge integration and prior data at all biological scales. Hence to explore
such multiscale systems quantitatively, one has to integrate several different simula-
tion techniques at different time and length scales. This calls for a paradigm shift in
the simulation techniques wherein the atomistic treatment of the large biomolecular
system as in MD simulations is replaced by the partitioning of the system. Such
approaches either partition the large systems based on the level of precision required
for its various components as in case of QM/MM wherein the protein is divided into
the active site region which is treated quantum mechanically and the non-active site
region which is treated with molecular mechanics. The other approaches include the
multiscale approach which constitutes a framework comprising of different levels ac-
curacy and couples them to enable a hierarchical handshake which leads to effective
transfer of information across the different scales. These approaches divergent from
the basic atomistic MD are useful in predicting the structure activity relationships
and provide a fundamental mechanistic understanding of biological process. This
facilitates efforts in predictive modeling and molecule design efforts.
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6.6.1 OM/MM

The QM methods are too complex to be applied on the large biomolecular systems
whereas MM methods fail to model the enzyme mediated reaction mechanisms.
Therefore considering the individual shortcomings of each of these methods, a hybrid
method such QM/MM employing their individual strengths is warranted (Ayton et al.
2007). The QM/MM partitions the biomolecular system into two regions. The active
site comprises the smaller region and is treated quantum mechanically while the rest
of the system is treated with the classical molecular mechanics force fields. There
are two schemes to calculate the total energy of the system namely the additive and
subtractive (Sherwood et al. 2008; Senn and thiel 2009; Sherwood et al. 2003). The
subtractive scheme consists of four components namely the total energy of the system
Eqm MM (system), Eypv (system) the MM energy of the entire system, Equm (QM) the
QM energy of the QM region andEyp (QM) the MM energy of the QM region. The
equation used to calculate the energy of the system though the subtractive scheme is
represented as follows:

Eom/mm (system) = Eyy (system) + Egu(OM) — Eyy (OM) (6.13)

The scheme encounters shortcomings due to the treatment of interactions between
the QM and MM region only at MM level which is inaccurate. The scheme requires
MM parameters for the QM region. Parameters are not usually available for those
systems which are present in excited electronic states or contain transition metals. The
additive scheme has therefore gained popularly. In this scheme, the total energy of the
system Eqm/nvm (System) comprises of only three components viz., Eyyv (MM) the
MM energy of the MM region only, Eqm (QM) the QM energy of the QM region and
the Eom—mm (QM, MM) a term which interfaces between the QM/MM through the
inclusion of bonded and non-bonded interactions. The bonded interactions account
for bond stretching, bending and torsion while the non-bonded account for the van
der Waals and electrostatic interactions.

Eommm(system) = Eypyy(MM) + Egy (OM) — Egu-umu(OM, MM)
(6.14)

The key to such QM/MM methods is the coupling between the electric field from
the surrounding and the QM Hamiltonian in the active-site region. This requires
careful treatment of the boundary between the QM and MM regions, either by using
hybrid orbitals for the connection or a linked atom approach. The calculation of free
energies from QM/MM simulations can be performed by averaging over the system’s
configurations via perturbations from a reference surface; however, such sampling
for accurate free energy evaluations as well as calculations of pKa values remain
challenging and form an active area of research.
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study atomistic level
interactions
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6.6.2 Coarse Graining

MD simulations, scaling over longer timescales, work well with biomolecular sys-
tems such as proteins, lipids and nucleic acids however they fall short in investigating
complex phenomenon such as protein-protein assembly, vesicle diffusion, membrane
deformation, DNA super coiling, DNA packaging in bacteriophage, folding of RNA
in ribosome etc. Therefore, approaches such as coarse grained simulations are used
wherein the single complex system is divided in to a couple of systems by grouping
several atoms (Saunders and Voth 2013). Coarse graining clusters groups of atoms
into beads or sites. Based on the accuracy desired either one amino acid is defined
as a bead or a group of amino acids form a bead (Fig. 6.7).

These beads which are a kind of quasi-particles interact with each other. The
combination of these interactions and the reduce degrees of freedom help to span the
spatiotemporal scales. The accuracy and utility of a coarse grained model is largely
dependent on the force field parameterization which implicitly account for the en-
thalpic and entropic contributions of free energy. The key steps in coarse graining
include development of primary models based on experimental results followed by
large scale simulation and identification of interactions influencing the energetic of
the model system. Coarse graining retains the primary physical features of the system
thus distills the atomistic scale information into simplistic but low resolution models.
The final step therefore is to link with the molecular scale through all atom MD or
Monte Carlo simulations based on the previous coarse grained simulation results so
as to bridge the atomistic and mesoscopic scales. The precision in such cases can be



120 P. Badrinarayan et al.

obtained with multiple iterations of the entire protocol. Coarse grain simulations pro-
vide information on complex phenomenon such as biomolecular self-assembly at the
mesoscopic scale and with iterative information transfer guides leverage of the atom-
istic details of the studied phenomenon through MD and Monte Carlo simulations.
Thus the property or responses which are inaccessible at the atomistic or continuum
levels of theory can be effectively simulated through coarse grained approach.

There are two main approaches to coarse graining called the inversion approach
and the multiscale approach. The inversion approach employs thermodynamics,
structural and experimental properties to developed coarse grained models. There a
gamut of inverse coarse grained methods such as the Monte Carlo inverse Newton
method (Lyubartsev and Laaksonen 1995), direct Boltzmann inversion approach
(Tschop et al. 1998), iterative Boltzmann inversion method by Muller-Plathe
(Muller-Plathe 2002). Most of these methods use reduced statistical distributions
such as radial distribution instead of calculating the many body coarse grained po-
tential mean force functions and detect the most appropriate coarse grained potential
by inversing the data. The multiscale approach builds a hierarchical ladder to bridge
atomic interactions to the mesoscale coarse grained model. In this the basic func-
tions depicting the many body coarse grained potential mean force is mapped by
atomistic scale forces. One of the earliest contributions has been made by Levitt
& Warshel who identified the essential components contributing to the problem of
protein folding and constructed a coarse grained model (Levitt and Warshel 1975).
Gholke et al. have developed a three step multiscale coarse grained approach to
model the conformational changes in proteins (Kruger et al. 2012). A high resolu-
tion coarse grained model with multiple beads per amino acid residue in protein is
can effectively delineate the atomistic level interactions. However, to decipher the
molecular scale motions occurring at the cell level necessitates simulation of large
protein assemblies using the multiscale modeling approaches.

6.6.3 Multiscale Modeling

Biological systems are made up of several individual components or strata organised
in a hierarchical manner (Schnell et al. 2007). The transfer of information among
them leads to the functioning of the system as a whole. There are two different ways
to scale the biological systems namely the spatial and temporal scales. The spatial
scales hierarchically classify the biological processes based on the organization of
biological systems. These scales are called ‘levels of organization’ and range from
quantum, molecular, cellular, tissue, organ, organism to its ecosystem (Southern
et al. 2008). Associated with the spatial levels of organization are the temporal scales
of biological processes which range from microsecond for molecular interactions
to years for an average lifespan of human being (Walker and Southgate 2009). Ac-
cording to this theory, a cell is made up of millions of molecules, while a tissue is
made up of billions of cells and the number game thus augments. These key com-
ponents of the biological system have intra- and inter-connections (Twycross 2010).
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The diversity and connectivity among these scales increase the complexity of the
biological systems. It is therefore necessary to model the individual components at
multiple scales and integrate them to understand the impact of intra- and inter-scale
interactions on the system and its surrounding ecosystem (Noble 2002). The mul-
tiscale modeling is an integrated and iterative approach which couples information
obtained from various scales.

Mathematical representation of a complex system is termed as a ‘model’. Models
representing complex systems span a wide range of time and length scales and such
models are termed as ‘multiscale models’. The use of such multiscale models in
addition with experimental data to understand the functioning of a biological system
is termed as ‘systems biology’ while the engineering of these multiscale models
to construct an artificial biological system to study its functioning comes under the
preview of ‘synthetic biology’. The modeling of biological systems is associated with
different levels of complexity and therefore it requires a laddered approach instituting
simulations at various time and length scales using methods offering varied degrees
of precision and speed. Multiscale approaches thus encompass the combined use of
computations and mathematics to obtain a simulated representation of a physiological
system at different scales of time and biomolecular organization. This is an ingrained
concept in the areas of engineering, aerodynamics and fluids associated with physics
and material science however it is still comparatively raw to chemical and biological
science.

The multiscale approach in modeling biological systems integrates the well-
established disciplines like quantum chemistry, classical MD, systems biology,
pathway modeling, and bioinformatics. They lie at the crossroads of frontier research
areas in physics, biology, chemistry, and medicine. The multiscale models integrate
(QM), molecular mechanics (MM), hybrid QM/MM, MD (MD), coarse-grained
(CG), linear scaling and heuristic approaches. Multiscale modeling of biological
systems is thus a measure to understand various scales of life at different resolutions.
Each scale offers different features and therefore it is up to the discretion of the mod-
eller to choose the appropriate strategy for the maximum abstraction of data and to
bridge the gap between the various scales. There are two main approaches in multi-
scale modeling namely the ‘top-down approach’ and ‘bottom-up approach’ (Qu et al.
2011). The top-down approach treats the system as an individual entity and studies
the macroscopic properties of the system. Hodgkin et al. created an action potential
model of the giant axion using this approach (Hodgkin and Huxley 1952). To do so
the individual ion-channels were overlooked and the voltage dependence of whole
currents was modelled based on experimental data. This simplified the process to a
great extent but they fail to account for the impact of individual components which
participate in the expression of studied phenomenon. The bottom-up approach on the
contrary simulates each individual component of a system and models their interac-
tions to understand the nature of the system as a whole. This approach is useful in
studying the behaviour of the interactive elements of a system and is therefore used
in the study of cell-transport, protein folding and working of ion-channels (Kamerlin
and Warshel 2011). The main aim of multiscale modeling is not only to model a
particular system at different scales but also to conserve the data accurately during
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its transit from a lower scale to a higher scale or vice-versa. It has been employed to
understand the functioning of important biological processes such as protein folding,
membrane remodeling, drug metabolism and nucleic acid packaging.

The main objectives of a multiscale protocol are the identification of the indi-
vidual processes constituting a complex system, the scales for modeling them and
development of a link to couple these individual processes. In a multiscale strat-
egy, the system is first decomposed into several sub-units. The temporal and spatial
scales are allocated to model each of these sub-units. For example if the diffusion
process is modelled then the temporal scale would define the rate of diffusion (Dada
and Mendes 2011). The coupling of the micro-, meso- and macro-level processes
leads to the development of multiscale model. Establishing coupling between scales
is an intricate process (Martins et al. 2010). Solutions like multiscale Simulation
Library and Environment (MUSCLE), Model Coupling Toolkit, XML based multi-
scale model management in systems biology have been developed to ensure smooth
coupling of the scaled models.

6.7 Non-covalent Interactions

The drug once taken, travels through the body and elicits a pharmacological response.
The site of drug action is the receptor while the pharmacodynamics is controlled by
the different forces of interaction which bind a drug to a specific receptor (Holtje et al.
2008). The drugs and receptors exist as an ensemble of conformers in solvent. Thus
to form a solvated complex with the receptor, the drug molecule needs to displace
the solvent molecules occupying the binding site of the receptor. This is possible
only when the interactions between the drugs and receptor are stronger than their
individual interactions with the solvent molecules (Bissantz et al. 2010). The com-
plex formation is entropically unfavorable and induces a loss in the conformational,
rotational and translational degrees of freedom of both the drug and the receptor.
The entropic loss is therefore expected to be compensated by favorable enthalpic
contacts i.e. interactions. The bonds are spontaneously formed between atoms with
a decrease in free energy (AG) i.e. when AG is negative. The activity of a small
molecule (drug) is initiated by its atomic level interaction with the macromolecule
(receptor or target). This association is stabilized by a plethora of intermolecular
drug-receptor interactions which are either covalent or non-covalent in nature. The
interaction of a drug with the binding site of a receptor depends on the complemen-
tarity of fit between the two molecules as stated in the Lock and Key Hypothesis
by Emil Fischer (Silverman 2004). The interactions comply with the law of mass
action. The binding of a drug to its receptor is therefore usually orchestrated though
a gamut of non-covalent interactions rather than the covalent ones.

One of the most important and exhaustively studied drug-receptor interactions
is the H-bond. Strong H-bonds like N-H...O, N-H...N and O-H. .. O are formed
by the Glu, Leu and His residues which interact with the donor atom of inhibitor
whereas the Leu and Gly residues interact with the acceptor atom (Sarkhel and
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Desiraju 2004). The linked heterocyclic systems of the inhibitors are stabilized by
the weak H-bonds such as C-H...N, C-H...O. Of the 20 amino acids comprising
the protein, Gly and Glu play a substantial role as H-bond donor and acceptor. The
propensity and strength to form H-bond varies with different functional groups.
Thus the constitution of protein’s active site has a substantial influence on the
desolvation effects and SAR (Foloppe et al. 2005). The ammonium groups found in
drug-receptor complexes are usually not permanently charged quaternary ions. This
leaves at least one proton on the nitrogen atom which can be used in binding. The
strength of the H-bond shows a dramatic increase when augmented with additional
H-bonds (Neela et al. 2010). The hydrophobic nature of the active site can be
attributed to a large extent to the side-chains of several aromatic residues which open
into it. The aromatic rings of Phe, Trp, Tyr, and His form cation-7 interactions with
the cationic side-chains of Lys and Arg (Reddy and Sastry 2005). The cation-7 in-
teractions in biological systems stem from the interaction of nitrogen, phosphorous,
oxygen and sulphur based onium ions (Mahadevi and Sastry 2013). The shape and
electronic properties of the aryl rings of the aromatic amino acids give rise to large
polarizabilities and a considerable quadrupole moment. The m-motifs engage in a
T-shaped edge-to-face and the parallel-displaced stacking arrangement and interact
with the heterocyclic rings of inhibitor. In proteins, the m-systems cluster into net-
works of various sizes. A database study by our group has shown that the CH-wt and
m-7 stacking interactions formed by the side-chains of the aromatic residues provide
stability to the protein hydrophobic pockets (Reddy et al. 2007b). The correlation
between m-1 stacking and hydrogen bonding is a very well studied example, owing
to its relevance in nucleic acids (Vijay et al. 2008). The t-motifs form networks and
their influence manifest strongly on the nature of inhibitor binding (Chourasia et al.
2011). The binding and stabilization is also contributed by the alkyl-aryl interactions
as well. The aromatic m-motif forms one of the strongest non-covalent interactions
on interacting with a metal ion. Such an interaction is a key player in enzyme reg-
ulation, stabilization, and functioning of nucleic acids. A subtle competition is also
seen to exist between the m and o- (in plane) approach of metal ion with the aromatic
motifs (Reddy et al. 2006). The non-covalent interactions either complement or
compete with each other in a cooperative or non-cooperative manner (Mahadevi and
Sastry 2013; Vijay and Sastry 2010). The cooperativity of non-covalent interactions
is an interesting phenomenon which is known to influence stability, conformational
transitions and allosteric interactions in addition to inhibitor binding. The array of
non-covalent interactions and their role in bio-macromolecules contribute to in the
drug-receptor interactions, stabilization, and functional reorganization necessitating
their consideration in design of leads (Fig. 6.8).

The non-covalent interactions engage in reversible binding are therefore preferred
in CNS drugs, depressants etc. where the pharmacological effect needs to be ter-
minated after some time. The role and relevance of non-covalent interactions in
biological systems and the ability of computational methods to model them makes
them a topic of high contemporary interest.
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Fig. 6.8 Non-covalent interactions at the interface of chemistry and biology

6.8 Outlook

Molecular modeling has occupied the central space in basic, applied and industrial
research. At the interface of chemistry, biology and material science, computational
modeling has played a pivotal role in understanding the structure function relation-
ships at atomistic levels. Although reliable and rigorous approaches have strong
limitations in their applicability as the size of the system increases, several practi-
cal alternatives have been steadily emerged. This chapter provides a brief overview
of the computational methods which can be applied to small and large molecules
particularly bio-molecules.
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Chapter 7
Complex Networks and Systems Biology

Ushasi Roy, Rajdeep Kaur Grewal and Soumen Roy

Abstract Modern biology has decisively moved in a direction where we scrutinise
systems holistically rather than looking at entities in different levels discretely or
in isolation. Unlike previous reductionist approaches; in this new approach called
Systems Biology, networks play a crucial role in arriving at and summing up the
holistic picture and in understanding the emergent properties of the system. In this
chapter, we give an overview of how network approaches are useful at various levels
in biology. After a conceptual introduction to networks and various network met-
rics used to quantify networks; we discuss various concepts like network motifs and
random networks. We then examine at length about how networks shed insight at vir-
tually every layer of life like gene regulatory networks, networks involving proteins
and metabolic networks. We end the chapter with a discussion of the application of
networks to epidemiology.

Keywords Network - Directed networks - Weighted networks - Degree - Degree
distribution - Assortavity - Shortest path length - Connectedness - Eccentricity -
Diameter - Closeness centrality - Betweenness centrality - Clustering coefficient -
Cliques - Community structure - Modularity - k-core decomposition - Erdos-Renyi
graphs - Small-world - Scale-free - Motifs - Feed forward loops - Gene Regulatory
Network (GRN) - Protein Structure Network (PSN) - Protein Energy Network (PEN) -
Allostery - Protein Protein Interaction network (PPI networks) - Protein folding net-
work - Metabolic networks - Epidemiology - Susceptible Infectious Recovered (SIR) -
Susceptible Infectious Susceptible (SIS)

7.1 Introduction

7.1.1 Systems Biology

The study of biological systems has historically been a largely phenomenological or
observational science. However, in the last quarter of the twentieth century; in-depth
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quantitative studies of various biological phenomena started gaining momentum.
Over the course of the last decade and half, the advent of high-throughput technolo-
gies have only made the application of quantitative techniques imperative to biology.
They also inculcated the realisation that biological systems are far too complex to
be solved by classic reductionist approaches. It was becoming increasingly apparent
that the study of biological systems need an integrated, multidisciplinary approach
whose essence is underscored by an effective cycle of modelling and experimenta-
tion. “Systems” approaches are definitely poised to occupy mainstream biology over
the course of the next decade or so. These approaches examine the structure and dy-
namics of cellular and organismal function, contrary to the study of isolated parts of
cell or organism (Kitano 2002). Thus, “Systems Biology” is a new branch of science
which integrates techniques from Mathematics, Physics, Chemistry, Computer Sci-
ence, Engineering and Information theory to model various biological phenomena
from a holistic point of view.

Intrinsic to this development, is the concept of “emergent properties” which refer
to holistic properties at the system level, since the behaviour of the system as a whole
will not merely be an agglomeration of the properties of its segregated constituents.
For studying this composite system, consolidation of the diverse interactions among
various components of the system is required. The theory of networks which is based
on a well established graph-theoretic approach; enables us to do so efficiently (Albert
et al. 2002; Newman 2010).

7.1.2 Networks

From the perspective of Graph Theory, a network can be represented by a graph. A
graph is defined as G = {V, E} where V is the set of nodes (or vertices or simply
points) and E denotes the set of edges (or links or arcs or simply lines), which
establishes an interconnection among the nodes. A real complex system can be
mapped onto a network structure where one needs to identify the major components
of the system as the nodes and the interactions among them as the edges. This
concept has been illustrated below by two simple graphs. In Fig. 7.1a, the set of
nodes V = {a,b,c,d} and the set of edges is given by E = {(el = (a,b)), (ez =
(b,0)), (e3 = (a,0)), (es = (c,d))}. Similarly, V = {vi,v2,v3,v4,vs} and E =

er = (.09)). (2 = (12,95)). e = (12,03)): &1 = (55.05)). (es = (vav5)))
correspond to the set of nodes and edges in Fig. 7.1b.

7.1.2.1 Subgraph

A subgraph G’ = {v’, e’}, having v’ vertices and ¢’ edges is defined to be a subgraph
of G ={V,E}if v is a subset of V and ¢’ is a subset of E.
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Fig. 7.1 (a) and (b): Simple graphs

7.1.2.2 Directed Networks

In a directed network, the edges have a direction, i.e., identification of the “source”
and “sink” nodes for a particular connection is important. Thus, a particular node
will have both incoming and outgoing edges and will have different in and out
degree distributions. Many important networks, viz., World Wide Web (WWW) and
metabolic networks are directed in nature.

7.1.2.3 Weighted Networks

Generally we construct binary networks with the edge weights having two possible
values, 0 and 1; representing absence and presence of connections respectively. In
contrast, many real networks are weighted in nature. In these networks, in addition
to the binary values, edge weights can have any fractional values in between 0 and
1, depending on the strength of interactions. Here all the edges are not equally
important and the edge with higher edge weight will have a higher significance in
the network. Examples are social networks, internet and cellular networks as they
are characterized by the level of acquaintance between individuals, band widths and
reaction rates which may have different values (Fig. 7.3).

7.2 Network Metrics

Network metrics help in the characterisation of a given network—both quantitatively
and qualitatively. Their significance lies in analysing both the local property, i.e., the
individual behaviour of nodes or edges, as well as the global property of the whole
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Fig. 7.2 A simple directed b

graph with node set e
V ={a,b,c,d} and the set of

directed edges E = {(el =

(b,a)), (e2 = (b,0)), (e3 =

(c,a)),(es = (c, d))} where e
the first node in the edge set

denotes origin while the

second one represents the end

of an edge

[+1]

Fig. 7.3 A simple undirected b

weighted graph with the set of e, (wy)
nodes defined as

V= {a,b,c,d} and the set of

edges E = {81,62,63,84} 32 (wz)

having edge weight e, (w,)
W= {Wl s Wo, W3, W4}

Ay )

a

network. These structural network metrics may also serve as a great tool for exploring
the unified behaviour of the network.

7.2.1 Degree

A degree of a node is defined as the number of edges incident on that node. It signifies
the number of connections made by a node i with the remaining nodes in the network,
termed as neighbours of node i. The nodes which have comparatively much higher
degree than that of the other nodes in a network correspond to the hub.

For directed networks, degree of a node is specified using two distinct centrality
measures in-degree and out-degree. In a directed network, the number of edges
directing outward from the particular node is its out-degree and the number of nodes
directing towards it correspond to the in-degree of that node in a network. In Fig. 7.1a,
the degree of each of the nodes {a,b,c,d}in the graph G are {2,2,3,1} respectively. For
the directed graph H in Fig. 7.2 the in-degree and out-degree of the nodes {a,b,c,d}
are {2,0, 1, 1} and {0, 2, 2, 0} respectively.

7.2.2 Degree Distribution

The degree distribution P(k), the probability that a randomly chosen node has degree
k or fraction of nodes in the network having degree k, of a network provides one
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of the basic topological characterisation of a network. Various types of networks
can sometimes be distinguished by their degree distribution. For instance, scale free
networks have a power law degree distribution,

Pk) ~ kY (7.1)

and it has been claimed that when 2 < y < 3; the hubs play a significant role
in the network (Barabasi and Oltvai 2004). In contrast, small random networks
follow Binomial distribution which in the limit of large N approaches the Poisson
distribution

{k)*

~ (k) M
Pl ~ e =

(7.2)
where (k) denotes the average degree of the graph. For directed networks, there might
be different distributions of in-degree, out-degree and total degree of the nodes in
the network.

7.2.3 Assortativity

Assortativity refers to the affinity of nodes in a network to become linked to other
nodes having similar degree distribution. This tendency of correlation among nodes
of similar degree is also sometimes called as assortative mixing. In contrast, some-
times high degree nodes are somewhat inclined towards low degree nodes. This kind
of dissimilar preferential attachment gives rise to a disassortative network. Most
biological and technological networks exhibit disassortative mixing while social net-
works belongs to the former class, i.e., they are assortative in nature. Mathematically,
assortativity of a complex network can be expressed as

kiky) — (ki) (k
. (kika) 2( 1) (k2) (7.3)
Ok
where the averages are taken over all edges and o is the variance of the node-degree

k. For all practical purposes, calculating assortativity of real world networks, the
above equation can be modified as (Newman 2002)

1 . _ -1 (s 2
__E o deke = [E7' 3, 3 (e + k)] (7.4)

E-'Y, (2 4K2) = [EV X, 4(je + k)]’

where j., k. are the degrees of the nodes at the ends of the eth edge, with e =
1,2,......,E.
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Fig. 7.4 A graph G with two disconnected components

7.2.4 Shortest Path Length

A path is an alternate sequence of nodes and edges, starting and ending with a node,
such that each edge in the sequence is incident on the node preceding and following it.
There is no repetitions of nodes and edges in a path. In Fig. 7.1a {a,el,b,e2,c,e4,d}
represents a path connecting the nodes a and d. Shortest path between a pair of
vertices (i, j), where i, j € V,in a graph is the geodesic distance (d;;) between them
i.e the minimum number of edges traversed while moving from node i to node j.

7.2.5 Connectedness

A graph is said to be connected if there exists at least a path between any pair of
nodes constituting the graph. It may so happen that there exits a pair of nodes in
a graph having no path connecting them. Such graphs are known as disconnected
graphs. For a disconnected graphs, each connected component is termed as a cluster.
Giant cluster in a network refers to the largest connected component of the network
(Fig. 7.4).

Directed graphs, in terms of connectedness, are defined to be strongly or weakly
connected graphs. If each pair of nodes in the directed graph has at least one directed
path (each edge in the sequence is incident out- and in- on the node preceding and
following it, respectively) between them, the graph is said to be strongly connected. If
the underlying undirected graph (graph obtained from the directed graph by removing
the directions of edges from it) of the directed graph is connected, we call it as weakly
connected graph. It is quite obvious that a strongly connected graph will definitely
be a weakly connected graph (Fig. 7.5).
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Fig. 7.5 An example of a b

strongly connected graph: e
Say, for example, the set of

directed paths P from node a

to the other three nodes is

given by e
P = {(a,eS,c,e4,d,e3,b), 4

(a,es,¢), (a,es5,c,e4,d)}

The connection between a pair of nodes in a network is often represented by
adjacency matrix or connection matrix. The adjacency matrix of the graphin Fig. 7.1a
of N nodes and no parallel edges is an N by N symmetric binary matrix A = [a,-‘,»],
where

x;j = 1, if there is an edge between node i and j

= 0, if there is no edge between them

a b ¢ d
a {0 1 1 O
b1 01 0
A= (7.5)
1 1 0 1
d\0 0 1 0

7.2.6 Average Shortest Path Length

Average Shortest Path Length (I) or the characteristic path length of a network is the
sum of all the shortest path lengths between each pair of nodes in a graph averaged
over all possible edges in a network.

1

i,jeV.i#]

The above definition, however, fails in case the network has more than one connected
component. One way of dealing with it is to restrict the sum over the nodes belonging
to the largest connected component of the network. Another approach is to assign
infinite distance between the pair of disconnected nodes or the pair of nodes having
no connected path, and then take the harmonic mean of the shortest path between
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the pair of nodes in the network. The latter gives a quantitative measure, called the
Efficiency of the network, which is defined as follows

1 1

E=ywoi di;
(N — )i,jEV,i;ﬁj ij

(7.7)

7.2.7 Eccentricity

Eccentricity E(i) of anode i in a graph G is the maximum value of all the geodesic
distances calculated from that particular node i to all other nodes j in the network.

E(i) = maxd(i, j) (7.8)

The eccentricity of a node i represents how close or distant is i from the farthest
node of the network. The node with minimum eccentricity in graph G is called the
centre of G.

7.2.8 Diameter

The diameter of a graph refers to the maximal distance between any pair of its
nodes. The diameter of a disconnected network, composed of more than one isolated
components or clusters, is infinite. So, for practical purposes, in such cases, it may
be defined as the maximum diameter of its components.

7.2.9 Closeness Centrality

The closeness centrality C of a node r; is the inverse of the sum of its distances to
all other nodes, n ;. Mathematically, it is defined as
N -1
Cn) =——"" (7.9)
d(ni.n;)
j=1

Closeness of a node signifies the efficiency of a node to convey information within
the network. For example, consider a star graph as shown in Fig. 7.6. In this graph the
node i is the most centrally located node in the graph. Thus, it spreads information
much faster than any other node in the network can.
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Fig. 7.6 Star graph

Fig. 7.7 In this figure, the
node having highest
betweenness is i

7.2.10 Betweenness Centrality

The betweenness centrality of a node measures the node’s involvement in the
communication paths of other nodes in the network.

Bm =" %5 (V) (7.10)
SEVHEL Ot

where oy, is the total number of shortest paths from node s to node ¢ and oy, (v) is the
number of those paths that pass through v (Freeman 1977).

For better understanding of this centrality, consider the graph shown in Fig. 7.7.
Here, nodes in the graph can be divided into two groups. These two group of nodes
are connected by a single node i. Hence the betweenness centrality value of node i
is the highest among others. If one wants to travel from one node lying in one cluster
to another in the other cluster, then the path passing through node i is the only way.
Another important realisation of this centrality can be gained while analysing this
graph. If the node i from the network is removed (along with the edges incident on
it), the graph becomes disconnected, with two connected components. Removal of
the high betweenness nodes will result in either of the two following consequences.
In one case, the communication among different clusters may get completely lost,
as in the above mentioned example. In the other one, the cost of traveling may
get enhanced since the path will comprise of more edges than before. These high
betweenness nodes are often called as bottlenecks of the network.

7.2.11 Clustering Coefficient

It is a measure which accounts for the tendency of a node in a network to cluster
together. This behaviour is commonly observed in most real world networks, in
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particular social networks. Clustering can either be global or local, depending on the
overall clustering of nodes in the whole network or the property of the single node.
The definition of Global Clustering Coefficient (GCC) is based on the concept of
triples of nodes. A triple consists of three nodes which remain connected by either
three (closed triple) or two (open triple) undirected edges. GCC is the ratio of the
number of triangles to the number of connected triples.

, 3 x Number of triangles

(7.11)

~ Number of connected triples

The Local Clustering Coefficient (LCC) of a node in a graph gives a quantification
of the proximity of its neighbours from becoming a completely connected graph.
It can be defined in the following way. A node, i with k; neighbours, can have, at
most, ¥ C, = M number of possible edges in its neighbourhood. Suppose, the
neighbours of node i are connected by e; edges, then the LCC of that node is defined as

26,‘

T (7.12)

C; =

Therefore the Clustering Coefficient of the whole graph can be obtained by taking
average of ¢; over all the nodes in G:

C:(c):%Zc,- (7.13)

ieN

7.2.12 Cliques and Community Structure

In a complex network having large number of nodes and edges, a k-Clique is defined
as a completely connected subgraph having a set of k£ nodes in which each node is
connected to every other node by an edge in that subgraph. Two k-cliques will belong
to the same community when they share k — 1 nodes.

7.2.13 Modularity

A relatively independent unit, called modules (also called groups, clusters or commu-
nities), is often present in a complex network. Modularity is a quantitative measure
which describes the extent to which a system is divided into modules. A network
with high modularity value will be endowed with intense connections among nodes
within a module but sparse or minimal links to other modules in the network.
Mathematically, modularity is defined as

m ei (d, >2
M= =2 (=L (7.14)
P E 2E
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Fig. 7.8 a 3-clique and b 4-clique

where E is the total number of edges in the network, ¢; is the number of edges within
module 7, d; is the sum of degrees of all the nodes of module i, and the summation
runs over total number of modules m in the network (Fig. 7.8).

7.2.14 k-Core (or k-Shell) Decomposition

K-core decomposition method provides us a hierarchical representation of the net-
work. A k-core of a graph G is a maximal subgraph of G in which each node is
connected to at least k£ other nodes in the subgraph. A node i belongs to a k-shell if
and only if it belongs to the kth-core but not to the k + 1"-core.

The k-core decomposition is based on sequential removal of nodes along with its
edges. Let us consider a connected graph G. At first, all nodes with degree d = 1 are
removed from the graph G. After their removal, new nodes with degree d = 1 may
appear in G. The pruning process is continued until all the nodes with degree d = 1
are removed. These nodes together with their incident edges forms the k; = 1 shell. In
a similar fashion the higher degree nodes are removed to obtain the k; = 2 shell and so
on. The process is repeated until all the nodes from the graph G have been removed.

The network topology plays a significant role in portraying the interactions within
the nodes. Such decomposition have been used by many researchers to analyse
the real world networks (Wuellner et al. 2010). The k-core decomposition of PPI
network of yeast has revealed that the proteins belonging to the innermost core have
higher probability of being both essential and evolutionary conserved (Wuchty et
al. 2005). Judicious introduction of new parameters like synthetic accessibility have
demonstrated sufficient promise in predicting the viability of knockout strains with
accuracy comparable to approaches using biochemical parameters (like FBA etc.)
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Fig. 7.9 k-core

decomposition of a simple K=1 core
graph
K=2 core
K=3 core

Fig. 7.10 k-shells (k;) of the graph G in Fig. 7.9.ak; =1,bk; =2and ck, =3

on large, unbiased mutant data sets (Wunderlich et al. 2006). Another recent topic
where network metrics are thought to play a significant role is the controllability of
biological networks (Banerjee et al. 2012; Fig. 7.10).

In this section we have hopefully presented an elaborate introduction to network
metrics. Recent research has however conclusively shown that instead of looking at
just one or two metrics, it is imperative that we look at multiple metrics in parallel
to get the most informative picture (Filkov et al. 2009; Roy 2012, 2014).

7.3 Random Graph Theory
7.3.1 Erdos-Renyi Graphs (ER Graphs)

Erdos-Renyi Graphs are random graphs where edges are constructed between all
pairs of nodes with some equal probability (say p), independent of one another. The
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Fig. 7.11 a Positive
autoregulation: activation of
gene A by its own product,
b Negative autoregulation:
deactivation/inhibition of
gene B by its own product
a

B

degree distribution profile of ER graphs shows Poisson distribution. The ER Graphs
have low clustering coefficients and the average path length are found to be smaller
compared to the real world networks.

b

7.3.2  Small World Networks

Networks having smaller average path length comparable to the ER graphs of similar
size and order but larger clustering coefficient than ER graphs are termed as small
world networks. The average shortest path length of the small world networks scale
as logarithm of the number of nodes in the network i.e.

L «xlogN (7.15)

Most of the real networks exhibit small-wold property. The small world feature
is thus common to most biological networks such as neural network of C. elegans
and Food web.

7.4 Motifs in Network

Motifs in a network refer to a particular pattern of subgraphs that appear more
commonly than what is expected to occur in a random graph. Motifs are much more
abundantly present in biological networks than other type of networks. Self loops,
i.e., the edges which originate and terminate in the same node, can be thought of
as the simplest network motif. This will refer to autoregulation, or autogeneous
control, e.g., regulation of a gene by its own gene product, in a transcription network
(Fig. 7.11).
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Fig. 7.12 The 13 possible three-node directed subgraphs. Subgraph V, having annular nodes, is the
Feed Forward Loop (FFL), while subgraph X, with striped nodes, is the Feed Back Loop (FBL)

Autoregulatory network may be positive or negative. For instance, in the former
case, the genes activate their own transcription, while in the latter, the genes act as
repressors. Negative autoregulation has many advantages. It speeds up the response
time of gene circuits. Also, it promotes robustness of the steady-state expression
level to fluctuations in production rate. In contrast, positive autoregulation slows
down responses. In addition, the system exhibits bistability when the rate of positive
autoregulation is strong compared to the degradation/dilution rate. The next interest-
ing step will be to look at three-node patterns. There are 13 such patterns, as shown in
Fig. 7.12. Out of these thirteen patterns, the only significant one is the Feed Forward
Loop (FFL), Fig. 7.12 (V), as found in the sensory transcription network of E. coli
and yeast (Lee et al. 2002; Milo et al. 2002). It is a strong network motif which
appears more often than its randomised version. A straight forward description of
a FFL would be as follows. It is composed of a transcription factor, say X, which
regulates a second transcription factor, Y, and both X and Y regulate gene Z. It has
two parallel paths of regulation, a direct path that goes from X to Z, consisting of a
single edge, and another indirect one via Y, having a cascade of two edges. A plus
sign or a minus sign is assigned to each of the edges corresponding to activation
and repression respectively. So there are 2° = 8 possibilities, out of which four are
coherent FFL and the rest four are incoherent. This grouping is based on the com-
parison between the signs of the direct and the indirect paths. If both comes out to
be the same, then we get coherent FFLs, and incoherent ones have opposite signs.
Incoherent FFLs have an odd number of minus signs and the two paths possess an
antagonistic effect. Among all the eight different types, Coherent Type-I, followed
by the Incoherent Type-I, are the two most abundant FFLs present across various
biological networks. Feedback Loops (FBL) (Fig. 7.13).
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Fig. 7.13 The eight possible Feed Forward Loops (FFLs). The upper four are the coherent FFLs,
while lower four are incoherent FFLs. | denotes the activation (4 sign) and _L denotes inhibition
(— sign)

7.5 Gene Regulatory Network (GRN)

Genes are fragments of DNA molecules which carry the genetic code in the form of
a sequence constituting four nucleotides, viz., adenine (A), thymine (T), guanine (G)
and cytosine (C). Each individual gene has its own characteristic genetic code and
genes are collectively responsible for various functions in a living organism. The two
step process in which at first the information encoded in the nucleotide sequence of a
DNA gets decoded to messenger RNA (mRNA) and then proteins are synthesised to
perform all the essential biochemical functions is called gene expression. The former
step is called Transcription while the latter is the Translation. A number of genes
act together to perform a definite biological function. To depict this, we can think of
an interactive network of fragments of DNA or mRNA (nodes) which governs the
rate of gene expression, i.e., the rate of protein synthesis, which is known as a Gene
Regulatory Network or GRN.
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7.6 Networks of Proteins

Protein, the most important biological macromolecule, which performs almost all
the essential functions in a living organism; is a polypeptide chain formed from 20
possible amino acids. To accomplish various biological functions, the protein folds
to attain a well defined three dimensional spatial conformation (often called as the
native state). This native state correspond to the global minima of the energy land-
scape. The protein folding is driven by a number of non covalent interactions, viz.,
hydrogen bonding, van der Waals force, ionic and hydrophobic interactions, among
its constituent amino acids. To visualise this interaction, one may take recourse to
networks. Proteins can be modelled into a network containing amino acid residues
as nodes and two of the residues are linked together if they interact.

7.6.1 Protein Structure Network (PSN)

Protein Structure Networks (PSN) are based on the geometrical distance between
different amino acids. Geometrical considerations provide deep insights to protein
folding. PSN’s identify the C« atoms of the amino acid residues as nodes. Two
residues are said to interact with each other if the geodesic distance between their
Co atoms is less than a fixed cut-off value like 8.5 A° (Vendruscolo et al. 2002). Such
arepresentation mainly emphasises the backbone chain interactions of the proteins. A
few selected nodes (often called key residues), from these networks which have high
betweenness centrality; correspond to the previously known nucleation centres for
protein folding. The residues identified by such graphical properties are sometimes
investigated further for their role in providing unique structure to the protein native
structure. However such a formalism of PSN disregards the side chain interactions
of the amino acids within the polypeptide chain. Side chain interactions are essential
for maintaining the 3D structure of the protein. To encapsulate these interactions, a
different mechanism for designing PSN has been proposed. Instead of considering
the C« atoms only, connections were established for any two atoms of the amino acid
residues whose distance falls within the fixed cut-off. Many such PSNs with varying
cut-off distances to probe the long-range and short-range interactions within a protein
have been explored (Greene et al. 2003). The short-range interactions networks
show small world property while single-scale behaviour in degree distribution was
observed for long-range interactions networks. The latter was thought to confer
robustness in the overall topology of the protein structure against random mutations.
An alternative study incorporated only the non-covalent side chain interactions of
the amino acid residues (Kannan et al. 1999). The interactions were defined on the
basis of specific minimum interaction strength. The cluster profile and hubs in these
networks were identified to play a significant role in secondary structural integration
in a tertiary structure of proteins. The hubs also play a crucial role in enhancing the
thermal stability of the thermophilic proteins when compared to their mesophilic
counterparts (Brinda et al. 2005).
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7.6.2 Protein Energy Network (PEN)

Thus, we have seen that PSNs can capture the atomic interactions of proteins at
geometric level very well. Though they overlook the the basic chemistry of bonded
and non-bonded interactions. The energies of these interactions result from various
types of interactions, e.g., hydrogen bonding, hydrophobic interactions, cation-pi
interactions etc. taking place within a protein. The networks, which account only non-
bonded interaction energies, viz., van der Waals interaction (vdW) and electrostatic
interaction energy of the side chain atoms of the amino acid residues, are termed as
Protein Energy Networks (PEN) (Vijayabaskar et al. 2010).

The various amino acid residues are the nodes of the network. Edges are defined
between the residues i and j, if the non-bonded interaction energy, E;;; is less than a
cut-off energy e. Since interaction energies between different pairs vary, the resulting
PEN is an undirected weighted network. Vijayabaskar et al. had explored PEN for
six different proteins. The interaction energies were calculated from equilibrium
ensembles obtained by performing Molecular Dynamics (MD) simulations. They
observed that the networks are densely connected i.e they have more number of
interactions for small energy cut-off e (less negative, ~ —5 kJ/mol). As the cut-off
interaction energy is increased to high negative values (~ —25 kJ /mol) the network
becomes more sparsely connected i.e it has low number of interactions or edges
connecting the nodes. The fractional contribution of vdW and electrostatic energy to
the total energy was also analysed. The vdW interaction energy dominates the region
of low interaction energy (less negative values) and its value falls off to zero for
e ~ —35 kJ/mol while reverse is the case for electrostatic interaction energy which
dominates high interaction energy region (high negative values). Another important
observation was that the PEN breaks down into small independent clusters within a
small window of e. For less negative values of e, a large cluster percolates within
the network which can be quantified by the tethering together of small independent
clusters within the PEN by weak vdW interactions; as the value of e is made to
have less negative values. This provides an evidence for weak interactions (rather
than strong interactions) holding together the 3D structure of a protein. The cluster
profile of the network helps in understanding the structural integrity of the proteins.

7.6.3 Allostery and Protein Energy Network

Recently allosteric mechanism has drawn much attention in the field of research.
Allostery can be defined as the control of protein structure, function and/or flexibility
induced by the binding of a ligand or another protein, which is called an effector, at
a site away from the active site (allosteric site) (Goodey et al. 2008)

Loosely speaking, allostery is a regulation between two distant sites of a protein
caused by binding of ligands. PEN serves as a useful tool to explore this mechanism
of communication within the proteins. The communication paths between the two
functional sites of a protein can be elucidated by tracking the shortest path in the
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weighted PEN (Bhattacharya et al. 2011). The shortest paths between a pair of
residues in these networks, from energy point of view, will be the ones which are
less costly or energetically more favourable. To achieve this weights assigned to the
edges have values proportional to the reciprocal of the interaction energy among
the pair of residues. The suboptimal paths of the network with reduced efficiency
were also explored by deleting all the edges incident on any one of the residues
belonging to the optimal paths (the shortest path). An interesting observation was
the presence of these suboptimal paths as the optimal paths in less frequently accessed
conformations during MD simulations and thus effectively act as alternate paths of
communication adapted due to mutation/ligand induced perturbations. Such insights
gained by analysing PENs support theoretical as well as experimental observations
of the concept of transmission of allosteric signals through multiple, preexisting
pathways (de sol et al. 2009).

7.6.4 Protein Protein Interaction Network (PPI Networks)

Most fundamental biological processes are carried out by proteins and their in-
teractions. Proteins usually execute their functions through interactions with other
biomolecular units, rather than acting in isolation. In this type of networks, proteins
are nodes and if there is an experimental verification regarding binding between two
proteins, then an edge is drawn between the two. Previous studies have discussed
whether PPI networks are scale-free in nature. Such a study of a PPI network for
yeast shows that its degree distribution follows a power law with an exponential
cut-off (Jeong et al. 2001). In scale-free protein networks, most proteins participate
in very few interactions, while few hubs are involved in most of the interactions.
Another characteristic property is that small-world effect is also present in PPI net-
works which indicates that any two proteins are connected by a short path of very
few links. These networks are disassortative in nature, i.e., highly connected nodes
are seldom connected among themselves. The elimination of a protein often causes
functional disruption of a module in a PPI network. Such proteins are termed as
lethal. Thus lethality of a protein is the decisive factor characterising the biological
indispensability of a protein.

7.6.5 Protein Folding Network

During folding, a protein takes up consecutive conformations. Distinct conforma-
tional states are represented by nodes in the network and two of them are linked by an
edge if one can be obtained from another by an elementary move. It has been studied
that the network formed by the various conformations of a 2D lattice polymer has
small world properties (Scala et al. 2001). The degree distribution has been found to
be consistent with a Gaussian (Amaral et al. 2000)



7 Complex Networks and Systems Biology 147

7.7 Metabolic Networks

Metabolism, a set of biochemical reactions essential for sustaining life, is one of
the various life processes taking place within an organism. The metabolism of a
compound involves a sequence of reactions, termed metabolic pathway, in which
the initial compound is transformed into various other intermediary compounds to
get the product by the action of enzymes. The intermediaries and the products of
such chain reactions are termed as metabolites. It may happen that the product of
one pathway is served to initiate some other pathway.

In metabolic networks, the nodes correspond to the substrates (ADP, ATP, H20)
and the edges represent the predominantly directed chemical reactions among these
substrates. For 43 organisms, these networks have been studied (Jeong et al. 2001)
and for all of them; the degree distribution of the incoming and outgoing links have
been claimed to follow a power law, with the exponent value in the range 2.0-2.4.
There have also been alternate representation of these networks: ATP, ADP, NADH
are included as nodes only if they directly take part in the reaction (Ma et al. 2003).
Such metabolites are called current metabolites and are ignored while measuring the
average path length of the network during their indirect participation in the reaction.

It was found that the path lengths of the metabolic networks in eukaryotes are
longer than that of bacteria. Small world property was found in E. coli by representing
metabolic networks as two complementary networks—substrate graph and reaction
graph. It was hypothesised that since metabolic networks respond to perturbations
(like changes in concentration of the metabolite or the enzyme), their function could
be optimised by the small-world behaviour of the network (Wagner et al. 2001).

7.8 Networks and Epidemiology

We can get deep insights into the dynamics of disease spreading in an interacting
population of species by applying network theory. Here, we briefly describe two
well known spreading models on networks and recent developments about influential
spreaders in networks.

7.8.1 Susceptible Infectious Recovered (SIR)

In a network of N nodes, initially we assume one node is in the infectious state (I)
and the rest in the susceptible state (S). This node, denoted by I, is the origin of
Infection. The infection gets propagated in successive time steps. In each time step,
nodes of type I infects neighbours, which are susceptible to infection, with some
probability B. They then enter the recovered state (R), where they cannot be infected
again, i.e., they achieve immunity against infection.
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7.8.2 Susceptible Infectious Susceptible (SIS)

Here the immunised or recovered state of the origin, just after infecting the neigh-
bours, is absent. Infected individuals still possess the capability of infecting their
neighbours with probability . However, they may subsequently return to the
susceptible state with probability X ; thus remaining infectious with probability (1—A).

7.8.3 Influential Spreaders in Networks

A common belief related to infection or disease spreading is that the best (efficient)
spreaders will correspond to a highly connected nodes (high degree) or to the
most central nodes (having high betweenness value). It has been argued that the
network topology should naturally play an important role in infection spreading
or information spread. The position of a node in the network serves as a deciding
factor for it to be the most influential spreader. The k-shell decomposition method
was performed on a set of eight real social networks and both SIS and SIR model
were studied (Kitsak et. al. 2010). The nodes in the innermost k-shell were claimed
to be the most efficient spreaders.

7.9 Conclusion

In this chapter, we have hopefully given an overview of how complex networks
are important at every level in biology. In Sect. 7.1, we mention how biology has
shifted from a reductionist approach to holistic approach. Hence deriving a network
picture is of immeasurable value because complex networks understandably play
an integral part in this new approach. We went on to introduce the very basics of a
network or graphical representation; namely nodes, edges, weighted networks etc. In
Sect. 7.2, we dwell in-depth on common network metrics like degree, shortest path
length, connectedness, giant clusters, cliques and community structure, eccentricity,
diameter, closeness and betweenness centralities, clustering coefficient, assortativity,
k-core and modularity. In the next section, we briefly discuss about small-world
properties and random networks which serve as a good reference points in networks.
We then discuss the concepts regarding motifs and their importance in biological
networks. In Sect. 7.5, we discuss about interactive Gene Regulatory Networks of
fragments of DNA or mRNA (nodes) which governs the rate of gene expression, i.e.,
the rate of protein synthesis. In Sect. 7.6, we discuss about networks of proteins:
protein structure networks, protein energy networks and protein-protein interaction
networks and protein folding networks. In Sect. 7.7, we discuss about metabolic
networks. Finally, in Sect. 7.8 we end this chapter with a discussion of concepts and
models which deal with spread of infection on networks. Thus, we have hopefully
been able to portray the importance of complex networks to understand processes at
virtually every level of life.
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Chapter 8
Systems Approaches to Study Infectious Diseases

Priyanka Baloni, Soma Ghosh and Nagasuma Chandra

Abstract Exposure to infectious agents can either lead to active disease or contain-
ment or killing of the pathogen. Outcome of an infectious disease is determined by
the complex interplay between the host and the pathogen. Therefore, understanding
the crosstalk between the host and the pathogen during infection is crucial to
identify molecules that are important for the spread or suppression of the disease
and for identification of drug targets. Both the host and the pathogen have several
mechanisms for countering each other thereby adding layers of complexity to the
host-pathogen interplay. Reconstructing mathematical models of complex processes
such as cell regulations, signal transductions and host-pathogen interactions provide
a detailed understanding of the various interactions and crosstalks occuring in
a biological system and thus form a platform to study the system as a whole.
Various experimental methods in functional genomics and proteomics as well as
computational approaches have been developed over the years that help in building
and modeling the biological systems. These approaches have proved quite helpful in
identifying drug targets, generating hypotheses rationalizing and finally predicting
the cause andfinal outcome of diseases.
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8.1 Introduction

Infectious diseases are directly responsible for about a third of all deaths occur-
ring worldwide. Tuberculosis, pneumonia, malaria, cholera are among the most
fatal infectious diseases, responsible for 58 % child mortality in developing nations
(WHO 2012). These infectious diseases can be categorized depending upon their
frequency of occurrence into sporadic, endemic, epidemic or pandemic diseases.
Although several anti-infective drugs are available for these diseases, they continue
to be a burden to human health, a problem further compounded by the emergence
of drug resistant varieties of the pathogens (Spellberg et al. 2008), (MacPherson
et al. 2009). Discovery of newer, safer and robust drugs require the formulation
of new strategies that involve innovative ways of tackling the diseases. It has now
become increasingly clear that strategies stemming from holistic system approaches
may hold the key for effective and sustained management of infectious diseases
(Aderem et al. 2011). A wealth of molecular level data has been gathered over the
years on several causative microorganisms, which has increased substantially due to
the advances in genomics and other high-throughput technologies. The scale and the
complexity of each piece of data, is indeed quite high and requires computational
analysis to help in comprehending and making useful inferences from it.

Systems biology is the study of large scale systems, reconstructed from many
small scale interactions. This approach is based on the premise that the ‘whole is
greater than the sum of its parts’ (Hood and Perlmutter 2004). It provides a holis-
tic understanding of the biological function from molecular and cellular level to
an entire organism and serves as a platform to study and correlate the processes
occurring in a complex living system at different scales to understand a biologi-
cal phenomenon. Application of such computational methods is evident in the field
of drug discovery. Simulations using reconstructed models further aid in knowl-
edge based drug target identification, discovery of biomarkers as well as for rational
design of vaccines. Overall, studying a system as a whole rather than individual
molecular characterizations performed in isolation would be required to understand
the phenotypic behaviour of a given system.

With advances in techniques such as high-throughput sequencing, microarrays,
nuclear magnetic resonance and mass spectrometry, it is now possible to get better
insights into the field of transcriptomics, proteomics and metabolomics, and the data
generated using these techniques serve as direct inputs into development of systems
level models. The large scale omics data are analyzed using computational methods
to derive essential molecular interactions. These molecular interactions are used to
build a detailed mathematical model to represent the biological system being studied.
Once validated, these models are used to simulate a range of scenarios to predict the
behaviour of the system under various conditions. The hypotheses generated can
be taken back to the bench again and validated using focused experimental studies
(Aderem et al. 2011; Vodovotz et al. 2008). Systems biology, thus, along with
different ‘omics’ studies is being increasingly used to identify pathways involved
in specific disease conditions, establish interconnectedness of different pathways
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and understand cellular responses to variouscertain conditions including physio-
logical stress and exposure to a pathogenicorganism (da Hora Junior et al. 2012;
Day et al. 2010; Kitano 2002; Weckwerth 2003; Weston and Hood 2004).

The study of host-pathogen interactions focuses upon the interactions between
microbial or viral pathogens and their plant or animal hosts. The interactions are
multi-faceted and form a complex network including moves and counter-moves from
both species leading to one of two broad outcomes, either clearance or proliferation of
bacteria (Forst 2006; Johanns et al. 2010). Using systems biology approaches it has
become feasible to study various phenomena such as recognition of the pathogen
by the host immune system, mechanism of virulence, pathogenesis, mechanisms
of antibiotic resistance, persistence of disease all as aspects of the complex host-
pathogen interplay, the knowledge ultimately useful for biomarker and drug target
identification (Weston and Hood 2004; Wang et al. 2010a). Systems biology as a
discipline, in fact utilizes both experimental and computational approaches to build
computationally amenable mathematical models of complex biological processes.
This chapter provides an overview of various systems biology approaches available
for studying causative organisms that cause infectious diseases and also the interplay
between host and pathogen. In particular, the chapter focuses on the various modeling
approaches that are available and being utilized for such studies and summarizes
various insights obtained for a few important infectious diseases.

8.2 Modeling Methods

Deciphering functions of individual components even at a genome scale is not
sufficient to understand the complexity of the organism or the complex interplay
between the host and pathogen. Availability of large scale genomics, proteomics and
metabolomics data have led to advances in obtaining pair-wise interactions between
pairs of molecules. Different pieces of data are required to be pooled together using
mathematical formalisms to build up a biological system, which can be used to ad-
dress various biological questions. This also provides a handle to the experimentalist
to prioritize the proteins for functional studies. Various modeling methods that are
commonly used in the field of systems biology are described briefly here and are also
depicted in Fig. 8.1. The models are ordered according to the level of granularity in
the figure.

8.2.1 Networks

The parts lists obtained from individual omics level experiments starting from the
genome sequencing are assembled based on various molecular interactions ob-
tained experimentally through a number of studies documented in literature. The
list of protein-protein interactions are augmented substantially through a variety of
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knowledge-based predictions using methods based on Rosetta stone concept (Mar-
cotte etal. 1999), phylogenetic profiling (Pellegrini etal. 1999), gene-neighbourhood
and its conservation (Dandekar et al. 1998). The set of pair wise interactions and
genome-wide functional linkages (Strong et al. 2003) thus identified, ultimately lead
to network reconstructions. Databases such as STRING (Szklarczyk etal. 2011)infact
make this available to the community in a comprehensive manner.

Individual molecular constituents in the cell form nodes, while interactions be-
tween them form edges, put together forming large complex graphs. Graph theory
can then be used to understand and explore various aspects of the cell in different
conditions (Albert 2007). Depending on the system being reconstructed, directed
(eg. signalling networks), undirected (protein-protein interactions) or bipartite net-
works (metabolite-enzyme) can be generated. The edges can be further weighed
if appropriate experimental data is available. Protein-protein interaction networks
representing interactomes serve to understand the dynamics of a biological cell.
Shortest path analysis has been used to identify criticality of particular nodes in the
network (Ravasz et al. 2002). Through systematic knock-outs or node or edge dele-
tions, nodes leading to significant number of broken paths and hence their relative
importance in the network is assessed. These networks can be further divided into
sub networks based on the intra and inter connectivity and represent the different
functional modules present in the system.
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Although network analyses helps in identifying important and influential
molecules in a system and study the communication between the molecules in de-
tail, it is mostly static in nature and captures a single condition in most cases. Static
networks do not provide a complete understanding of the system, but reflect a sin-
gle snapshot of the numerous possible interactions that can occur as a result of the
various adaptive and environmental changes at that instant of time. One approach
to overcome this limitation is reported by Ideker et al., who integrated mRNA ex-
pression data into a yeast protein-protein and protein-DNA interaction network, to
identify subnetworks that were most active under different conditions (Ideker et al.
2002). Active sub networks were identified by calculating the significant fold change
of each gene in that subnetwork as a result of changing conditions. The high scoring
subnetworks correlated well with known regulatory mechanism. Such active subnet-
works that convey a systems response given an experimental condition are termed
as response networks (Forst 2006).

Reconstruction of signaling networks, where nodes are signaling components
and directional edges are the regulations, helps understand the signaling cascading
events taking place inside a cell. Interactions can be tagged as positive or negative
or stimulatory or inhibitory (Wang and Albert 2011). Importance of a node is deter-
mined by studying the effect of that node’s deletion on the propagation of the signal.
Minimal set of nodes that can perform signal transduction independently have also
been identified using this method.

Organism specific metabolic networks have been constructed and studied using
methods such as flux-balance analysis. This requires three basic types of data; (a)
enzyme, corresponding substrates and products, (b) stoichiometric matrix of all
reactions which gives the ratio in which the substrates and products participate in
the reaction and (c) cellular location of the reaction (Feist et al. 2008). Biochemical
pathways can be represented using different network types. In a metabolite network,
metabolites form nodes and two nodes are connected if they share a substrate-product
relationship. In a reaction network nodes represent reactions and two reactions are
connected if the product of one forms a substrate for the other. Bipartite networks are
useful representations to capture biochemical pathways. A bipartite network contains
two types of nodes and an edge can only be drawn between two different types of
nodes. In case of biochemical pathways, enzymes form one set of nodes, while
metabolites form another set of nodes and a connection can be made only between
an enzyme and a metabolite (Raman et al. 2006). Detailed networks can also be
built where kinetic information is incorporated as weights in the network. Metabolic
networks are analysed using the graph theory tools to identify hubs and cluster the
reactions based on their functions. Other tools such as Petri-nets (Pinney et al. 2003)
have also been used to study various properties of an organism. Cytoscape (Shannon
et al. 2003) is used widely to visualize as well as perform basic network analysis.
The Boost Graph Library (Siek et al. 2002) implementation of MATLAB is also
frequently used to perform network analysis.
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8.2.2 Constraint Based Modeling

Constraint based modeling approaches are being used widely for studying
metabolism in a cell. Metabolic reactions are represented using a stoichiometric
matrix of size m*n, where rows represent metabolites (m) and columns represent
all the reactions (n) present in an organism. Entries in the matrix represent the sto-
ichiometric coefficients of the metabolites in the reaction (Orth et al. 2010; Raman
and Chandra 2009). Given the stoichiometric matrix (S), FBA aims to calculate the
flux (v) through each reaction at steady state, such that S.v =0. These models are
further constrained to mimic biological systems such that a unique flux distribution
for the organism is obtained using linear optimization. An interesting feature of FBA
is its ability to perform single and multiple gene deletion knockouts. This is done by
constraining the bounds of all the reactions coded by that gene to zero. This analysis
helps in identifying essential genes and drug targets (Raman et al. 2005). Effect of
inhibitors can also be studied by constraining the required reaction to a fraction of
the wild type bounds. Segre et al. developed a variant of FBA known as MoMA
(Segre et al. 2002), which unlike FBA is not solely based on optimizing the objective
function. The idea being that any genetically modified organism may not achieve
optimality since the mutant strains are not subjected to long term evolutionary pres-
sures and may perhaps attempt to attain biological function via minimal changes in
the flux distribution.

A major advantage of constraint based modeling is that they do not require a
detailed understanding of the reaction mechanism or other kinetic parameters to
perform in silico simulations. Many modifications to the original methods have been
reported to incorporate gene expression data (Colijn et al. 2009) and other omics data
(Schellenberger et al. 2011) to obtain a better mimic of the biological system under
investigation. Various tools such as FAME (Boele et al. 2012), FASIMU (Hoppe
et al. 2011), COBRA toolbox (Schellenberger et al. 2011), MetaFlux (Latendresse
et al. 2012) have been developed over the years to perform FBA and its variants
(Lakshmanan et al. 2012).

8.2.3 Kinetic Modeling Using Ordinary Differential Equations

Biochemical reactions have classically been represented as differential equations
that define the rate of consumption or production of metabolites. Given the kinetic
details of any set of reactions, one can build a mathematical model by forming a
system of ordinary differential equations (de Jong 2002). Simulations from ordinary
differential equations (ODEs) are much more reliable and precise as they are built
and analysed using detailed kinetic parameters. An obvious advantage of this method
over FBA is that the time evolution of the model can be studied to obtain a detailed
understanding of the system, instead of only analysing the steady state behaviour.
However, non-availability of kinetic data limits the broad applicability of this method.
MATLAB is widely used to solve the system of ODEs contained in these models.
Other software packages such as JDesigner (Sauro 2004), Cell Designer (Funahashi
et al. 2003), and Copasi (Hoops et al. 2006)are also commonly used for this purpose.
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8.2.4 Boolean Modeling

Boolean modeling also called as logic modeling is being used to model complex
biochemical systems and capture the qualitative behaviour of the biological system.
Each component in the model can exist in two states, either on or off. Transition from
one state to another is encoded using logical operators. One of the major advantages
of logic modeling is the ease with which complex molecular interactions can be repre-
sented and therefore these are widely used to model complex biological phenomenon
such as apoptosis (Schlatter et al. 2009) or host-pathogen interactions (Raman et al.
2010). New methodologies are being continually developed that transforms Boolean
models into a continuous model so as to study the time course evolution of a biolog-
ical system. State transition rates of each nodes are calculated using mathematical
tools such as Markov processes and multivariate polynomial interpolation (Wittmann
et al. 2009; Stoll et al. 2012).

8.2.5 Rule Based Modeling

In a rule based model, the biological system is defined using a set of rules. These
rules use the notation of a simple chemical reaction and describe the local events
taking place inside a cellular system that eventually leads to the emergence of a
global property. This method is based on the principle of Gillespie’s algorithm
(Gillespie 1977), according to which a cell is considered as a well-mixed system
and interaction between any two molecules in the cell is dependent on the rate of
interaction between the two and the abundances of each molecule interacting. This
method is particularly useful when modeling any regulatory system as these sys-
tems are inherently complex in nature and have the potential to generate a variety of
distinct species as a result of the cascading events that occur in such systems. For-
mally, due to combinatorial complexity arising from the set of possible interactions
in the system, a large number of distinct species are generated, which can all be
systematically studied and outcomes of specific scenarios predicted (Hlavacek and
Faeder 2009). Rule based methods are also being explored as tools for multi-level
modeling of biological systems (Maus et al. 2011). Software tools such as BioNetGen
(Blinov et al. 2004), Kappa (Danos et al. 2008), RuleMonkey (Colvin et al. 2010)
have been used for rule based modeling. These methods are generally stochastic in
nature; however the rules can be rewritten as ODESs to build deterministic models.

8.2.6 Models of Host—Pathogen Interactions

Understanding the outcome of an infectious disease not only requires a detailed study
of the host and pathogen system individually, but more importantly, the communi-
cation and the crosstalk that occurs between the two systems. Individual models of
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host and pathogens describing different biological processes are widely available and
can be easily manipulated to obtain a host-pathogen model. Such models provide a
detailed description of the crosstalk that exists between the two systems as well as the
individual processes. This provides a realistic picture of the biological phenomenon
being studied and also helps in extrapolating the influence of such crosstalk on host
and pathogen.

Host-pathogen interactions have been modeled using several approaches, ranging
from simpler models for the prediction of protein—protein interactions between the
host and pathogen, to complex models for the metabolic and signal transduction
networks. Kirschner and co-workers have developed a virtual model of the host
immune response to M.tb using agent-based modeling methods (Marino et al. 2011).
Numerous insights about critical factors and parameters governing host-pathogen
interactions can be obtained through these studies. Integrating the host and pathogen
FBA models and further modification of the optimization function have also been
used to study host-pathogen interactions(Bordbar et al. 2010).

Different types of approaches can be integrated each of which best describes
different aspects of a biological system to obtain overall mechanistic insights. For
example, FBA is used for studying metabolic networks while Boolean modeling is
used for regulatory networks and the approaches can be clubbed to obtain a metabolic
as well as a regulatory model. This is important because the different modules of a
biological system interact with each other and influences the functioning of the mod-
ules. Covert et al. (2008) have developed a method, iIFBA, also known as integrative
FBA that integrates FBA with Boolean logic and ODEs to model the dynamics of
networks related to the carbohydrate uptake mechanism. They compared the predic-
tions of the integrated model with the individual model and showed that an integrated
model is a significant improvement over the individual models. The applications of
these methods are described using case studies of different infectious diseases and
are presented in the succeeding sections.

8.3 Tuberculosis

According to the sixteenth global report on tuberculosis (TB), published by WHO,
an estimated 8.5 —9.2 million new cases of TB have emerged in the year 2010, while
0.9-1.2 million of the HIV-negative people have succumbed to the disease, and an
additional 0.35 million deaths have occurred from the HIV-associated TB cases.
Threat from this disease increases drastically with the advent of multidrug resistant
(MDR), extremely-drug resistant (XDR) and totally drug resistant (TDR) strains.
Unfortunately, no new drugs have come up in the last five decades and the drugs
available in the market have their inadequacies. It is thus important to think of newer
strategies and develop new classes of drugs to counter the spread of this disease.
The etiological agent of TB, Mycobacterium tuberculosis (M.tb), enters the host
primarily via aerosols containing the bacilli, and on reaching the lungs they are inter-
nalized by the alveolar macrophages and undergo phagocytosis. Pathogenesis starts
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after formation of the phagosome, wherein M.tb prevents maturation of the infected
macrophage and in this niche the pathogen is able to survive and reproduce. The
widespread nature of this disease depends upon its ability to spread easily by aerosol
transmission, which is further facilitated by immune-dependent tissue-damaging
inflammation (Pieters 2008).

Upon infection, a dynamic interplay occurs between the host and pathogen leading
to either of the four outcomes: (a) the initial host response may be completely effective
and kill the bacilli; (b) the organisms can grow and multiply immediately after infec-
tion resulting in active TB, (c) the bacilli may become dormant and never cause dis-
ease at all and (d) the latent bacilli can eventually become active and progress to dis-
ease condition (Schluger and Rom 1998). Needless to say, the difference between the
outcomes is enormous and results in extreme phenotypes between disease and health.
Various experimental as well as computational tools have been used to study the
pathogenesis of this disease and its interaction with the host, brieflysummarized here.

Deciphering the whole genome sequence of M.7b has been an important land-
mark in tuberculosis research (Cole et al. 1998). The genome sequence provided
a first comprehensive parts-list of the molecular constituents of the cell. This trig-
gered extensive amount of downstream research leading to detailed biochemical and
biophysical characterizations of a number proteins (Lew et al. 2011; Galagan et al.
2010). More importantly perhaps, it has provided an impetus for systems level stud-
ies. Genome sequence has helped tremendously in completing the gaps in knowledge
from decades of biochemical and molecular biology studies of individual molecules
in the organism. It has revealed complete lists of proteins belonging to many bio-
chemical pathways, transcription factors, two-component signalling systems (Tyagi
and Sharma 2004). It has led to comparative genomics studies through gene and
protein sequence comparisons and further to several functional genomics studies
(Tucker et al. 2007). Proteins responsible for cellular metabolism are identified com-
prehensively; indicating that, M.tb indeed has most of the standard pathways present
in other bacteria such as glycolysis, citric acid cycle, pyruvate, fatty acid, amino acid
metabolism to list a few (Cole et al. 1998). There are also interesting differences,
for example, presence of mycolic acid and arabinogalacatan pathways, the glyoxy-
late shunt and beta oxidation pathway for fatty acid metabolism. Identification of
such unique features has been useful to obtain direct explanations for phenotypic
characteristics of the organism such as the presence of a thick waxy outer cover.

Advances in high-throughput ‘omics’ technologies, that has resulted in a large
amount of omics data in the last few years, help significantly in functional char-
acterizations (Kirschner et al. 2010) of both host and pathogen’s genomes. Global
gene expression profiles of M.tb under different conditions are available. The set
of genes in M.tb required for optimal growth have been characterized by using the
transposon site hybridization (TraSH) method which provides a comprehensive idea
about functional significance and essentiality of each gene (Sassetti et al. 2003). The
proteome of M.tb has also been analyzed by 2D gel electrophoresis and mass spec-
trometry and also by the isotope-coded affinity tag reagent method coupled with mass
spectrometry (Schmidt et al. 2004). Using a guinea pig model of tuberculosis, the
bacterial proteome during the early and chronic stages of disease has been examined
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(Kruhetal. 2010) by liquid chromatography-mass spectrometry. The study identified
numerous M.tb proteins, from essential kinases to products involved in metal regu-
lation and cell wall remodeling, present throughout the course of infection. Cell wall
processes, intermediary metabolism and respiration were found to be major func-
tional classes of proteins represented in the infected lung. Recently, protein-protein
interactions in M.tb have been determined experimentally in a high-throughput
manner using a bacterial two-hybrid system (Wang et al. 2010a).

Genome scale studies are being carried out for the host systems as well. Several
gene expression profiles under different conditions of exposure to M.tb, disease and
treatment with anti-tuberculars have been obtained, which identify genes that show
maximal changes in their expression under different conditions (Boshoff et al. 2004).
siRNA screens have been used to systematically knock-out various genes and infer
their importance for survival, pathogenesis and stress response (Kumar et al. 2010).
Recently many techniques have been developed to visualize spatial features of such
interactions inside tissues, which include intravital multiphoton microscopy and four
dimensional FRET (Konjufca and Miller 2009; Hoppe et al. 2009). Although these
techniques are in their incipient stages of development, they offer promising results
and greater understanding of host—pathogen interactions.

The data thus obtained from the above described omics-data can be further used
to build computational models. One way of incorporating such large scale data
is to build a protein-protein interaction network. A comprehensive reconstruction
using crowd sourcing based curation from literature and available databases together,
capture as many as 71086 interactions in 3967 proteins (Vashisht et al. 2012) adding
substantially to the existing resources. Incorporating drug-specific gene-expression
fold changes in the network as node weights, Padiadpu et al. (2010) captured the
effect of drugs on M.tb interactome and the mechanism of triggering resistance.
Another study by Kauffman et al. (Rachman et al. 2006) identified genes that are
important for the survival and persistence of M.tb in a macrophage cell by using
a combination of approaches. Using a reconstructed protein—protein interaction
network and incorporating genome-wide DNA array into this network, pathways
such as iron metabolism, cell wall synthesis, DNA damage repair and fatty acid
degradation were identified as important to the pathogen (Rachman et al. 2006).

Yet another method of using experimental data to build computational models
is constraint based modeling. Details of this modeling method are provided in the
methods section. This method serves as an excellent tool to study genome scale
metabolic models. McFadden and co workers (Beste et al. 2007) reconstructed the
first genome scale metabolic model for M.tb, capturing all known biosynthetic path-
ways operational in a cell for synthesis of major macromolecular components. This
model was calibrated using data from chemostat cultivations of M.bovis BCG in
continuous culture and measurement of steady state growth parameters. Almost at
the same time, an independently reconstructed genome scale network model of M.tb
H37Rv named iNJ661 was reported by Palsson and coworkers (Jamshidi and Pals-
son 2007). The authors grew this bacterial model in silico on various media, and
observed that growth rates were comparable to experimental observations of dou-
bling times in the range of 12-24 h in different media. Using these models, reaction



8 Systems Approaches to Study Infectious Diseases 161

fluxes indicating substrate consumption rates were measured, which correlated well
with experimentally determined values. Raman et al. have identified putative drug
targets using in silico gene deletions for the mycolic acid pathway model in M.tb
(Raman et al. 2005).

Another classical method to study the dynamics of a cellular system is ordinary
differential Equations (ODE), wherein time courses of metabolic reactions are math-
ematically represented by ODEs. Singh et al. (Singh and Ghosh 2006) built a kinetic
model of the tricarboxylic acid cycle and the glycolytic pass of E.coli and M.tb to
compare the two systems and study the effect of enzyme inhibition and thus identify
potential drug targets. Kinetic modeling has also been carried out to study the host
immune system upon TB infection to reveal the existence of a non-infected steady
state and an endemically infected steady state, which can lead to latency or activation
of the disease (Ibargiien-Mondragén et al. 2011)

Signalling interactions in a cell can be easily represented by Boolean modeling,
also described in the methodology section. Raman et al. built a Boolean model of the
host—pathogen interactome (Raman et al. 2010), accounting for several mechanisms
of invasion by the pathogen, defense of the host, as well as the defense mechanisms of
the pathogen and was simulated under a variety of conditions. The model consisted of
75 nodes that represented the molecules involved in host and pathogen and different
states of the molecules and events were governed by logical operators or Boolean
rules. This provides a framework to understand the conditions and parameters that
favour clearance versus those that favour either active disease or contain the bacteria
in a dormant state.

Rule based modeling have also been used to represent signalling processes, espe-
cially for those events, wherein the molecule can take up different states depending
on its environment. Such models are known to best capture the environmental de-
pendencies. An et al. (An and Faeder 2009) built a rule based model of the Toll-like
receptor 4 signal transduction cascade. Simulation of the original model and ‘knock-
out’ were performed to study the behaviour of the system. Ghosh et al., have reported
a rule based model to study host-pathogen interaction for TB infection and the role
of iron for both host and pathogen during the course of infection has been studied.
Regulating the concentration of mycobactin was discussed as one of the strategies
to control bacterial infection (Ghosh et al. 2011).

Boolean network models of immunological components of the interplay of vari-
ous mechanisms of attack and defense in the host and pathogen with respect to M.tb
have been developed and provides insights into the immune responses as well as the
different outcomes of M.tb infections under different conditions (Raman et al. 2010).
Kirschner and co-workers have worked on several mathematical models for the inter-
action of M.tb with the human immune system, some examples of which are a virtual
model of the immune response to M. b that characterises the cytokine and cellular net-
work during infection, two compartmental models capturing the important processes
of cellular activation and priming capable of reproducing typical disease progres-
sion scenarios, agent-based models for simulating granuloma formation (Marino
et al. 2011) and a mathematical model describing macrophage biochemical pro-
cesses based on activation, killing and iron regulation. Host-pathogen FBA models
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enable studying the metabolic states of the system in an infected condition. Gene
essentiality studies were performed and the predictions were shown to be much more
accurate in the combined model. The models were further integrated with gene ex-
pression data for the different forms of the disease, such as latency, meningeal and
pulmonary tuberculosis, to study the subtle metabolic differences amongst the dif-
ferent forms and therefore to have much more accurate perturbation studies for the
different forms (Bordbar et al. 2010).

The above methodologies have helped in successfully identifying the different
aspects of M.tb infection. Protein-protein interactome analyses have helped in iden-
tifying highly influential proteins that can form potential drug targets (Padiadpu
et al. 2010). Metabolic reconstructions of the host and pathogen as well as the com-
bined models have provided useful insights into genes essential for the survival of
the pathogen using FBA (Jamshidi and Palsson 2007). Further, integrating host and
pathogen FBA models have provided useful insights into the metabolic changes that
occur in the host upon bacterial infection (Bordbar et al. 2010). Host-pathogen in-
teraction studies guide in identifying factors important for virulence, the different
immune responses and most importantly understanding the emergence of resistance
(Raman et al. 2010). A new concept of co-targets was proposed by Raman et al.
that inhibited two targets simultaneously to deal with resistance. All these analyses
have been integrated into a rational pipeline called targetTB to identify potential
drug targets for M.tb (Raman et al. 2008), which has yielded a list of about 450 high
confidence drug targets.

8.4 Malaria

Malaria caused by Plasmodium parasites, is transmitted through the bite of infected
Anopheles mosquito. In 2011, an estimated number of 216 million cases of malaria
were reported and 655000 deaths were caused by malaria in 2010 (World malaria
report 2011), indicating that it is one of the major contributors to global morbidity
and mortality rates. Although malaria is curable, it is still a life-threatening disease,
and with the emergence of antimalarial resistant strains it has become difficult to
tackle this disease efficiently.

Whole genome sequencing of Plasmodium falciparum was accomplished in 2002
(Gardner et al. 2002) and it has revealed that approximately 35 % of the proteins en-
coded have identifiable function and the remaining are uncharacterized. With the
availability of genomic sequence of Pfalciparum it has become easier to identify
unique enzymes involved in pathways, which are different from the humans, such that
inhibitors can be synthesized against them, thus disrupting the pathway in pathogen.
Mass spectrometric studies have been performed in order to understand the mecha-
nism by which the parasite modulates the level of different metabolites taking part
in various metabolic processes of the host so as to survive inside the host cell and
proliferate (Olszewski et al. 2009). Due to the complex life cycle of the pathogen, it
becomes necessary to identify genes expressed at different stages of infection such
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that they can be used as targets (Winzeler 2005). A combination of genomics and pro-
teomics methods were employed by Hall et al. (2005) in order to identify a conserved
set of genes in Plasmodium spp. and also emphasize upon genes which have been cho-
sen under selective pressure at different stages of pathogenesis. Flux balance model
for P.falciparum was constructed in order to study the metabolic state of the pathogen
upon perturbation and also predict the essential genes which can also be used as tar-
gets (Plata et al. 2010). The model consisted of 1001 reactions and 616 metabolites,
of which enzyme-gene associations were reported for 366 genes and 75 % of the total
enzymatic reactions known. Models were enriched by incorporating gene-expression
data and also the accuracy of the predictions to experimental results was high indi-
cating that in silico models can be used for studying the complex pathogen. An open
access database called PlasmoDB has been developed which provides information
about the transcriptome and protein expression data of Plasmodium spp. at different
stages of their life cycle, which can be used to investigate the involvement of a gene
in a defined process by correlating with gene expression profiles or proteomics or
protein-protein interactions data of the species(Aurrecoechea et al. 2009).

Plasmodium spp. is capable of surviving inside the host by synthesizing different
chemical compounds during various stages of its life cycle. Although these com-
pounds have been used as targets for vaccine development, not much success has
been achieved in eradicating malaria. Due to the complex host-pathogen interaction
and prevalence of resistance to antimalarial drugs, efforts have been made to discover
newer drugs using a systems biology approach. The immune response of the host
plays a complicated role in malaria as it not only helps in evading the pathogen but
is also responsible for causing complications in the host (McNicholl et al. 2000).
Jomaa et al. reported a non-mevalonate pathway of isoprenoid biosynthesis, located
in the apicoplast region of Plasmodium, and the drugs effective against the metabo-
lites involved in this pathway as potent antimalarials (Jomaa et al. 1999). Reverse
vaccinology approach has been employed to search for antigens in Plasmodium spp.
which when targeted will appropriately, aid in vaccine development. Systems bi-
ology has been used to anticipate the immune response of the host cells upon the
interaction with the antigen and also understand the complex life cycle of the parasite
(Rappuoli and Aderem 2011). Bioinformatics approaches have been used to annotate
the genome of Plasmodium spp., majority of which is still uncharacterized. Fed into
systems biology models, simulations help in discovering newer therapies for malaria
as the parasite has acquired resistance against known drugs. Number of potent anti-
malarials (artimesinin and its derivatives) has been synthesized and systems biology
based approaches will aid in characterizing the mechanism of action of these newly
discovered antimalarial compounds (Dharia et al. 2010).

8.5 Cholera

Reports from WHO indicate that 3.5 million suffer from diarrhoeal infections, the
causative agent being Vibrio cholerae, capable of secreting the potent cholera toxin
(Nelson et al. 2009). This acute intestinal infection is transmitted through contami-
nated food and water and if left untreated can lead to death of the patients. Although it
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is curable if treated on time, severe symptoms are observed in immune-compromised
patients. The strains of V.cholerae have been classified either as classical or El Tor.
Two sero groups, V. cholerae O1 and V. cholerae 0139, are mostly responsible for
the outbreak of cholera. Multidisciplinary approaches are being used to find new
drugs to reduce the number of deaths caused by cholera.

Top down approaches have been used to identify additional genes that are in-
volved in V.cholerae virulence and colonization inside host intestine (Kaper et al.
1995). Apart from the enterotoxin produced by V.cholerae, Asaduzzaman et al. have
also narrowed down on other essential virulence factors present in the bacterium
such as toxin-coregulated pilus that functions as a receptor for the bacteriophage
and encoding cholera toxin genes (Asaduzzaman et al. 2004). A regulator-centric
approach has been used to focus upon LysR-type transcriptional regulators (LTTRs),
one of the most diverse families of transcriptional factors in prokaryotes having role
in wide range of processes. A few LTTRs were found to be involved in intestinal col-
onization as well as metabolic regulation in vivo (Bogard et al. 2012). Mathematical
models have been developed to understand the dynamics of pathogen colonization
and indicate the contribution of host and pathogen towards bacterial gut density
(Spagnuolo et al. 2011). Such studies are essential to understand pathogenesis of the
disease. By performing a high-throughput phenotypic screen of 50,000-compound
small molecule library, Hung and coworkers tried to identify inhibitors of V.cholerae
virulence factor expression (Hung et al. 2005). The authors have reported a com-
pound named virstatin, which is capable of inhibiting virulence expression, ToxT
regulation (part of ToxR regulon, responsible for virulence) post-transcriptionally,
and also preventing colonization in the intestine of the animal model to an extent.

Although cholera is a re-emerging disease, till date no simple assay has been de-
veloped to diagnose this disease efficiently. Oral or IV rehydration are recommended
treatment and thus administering immediate oral rehydration therapy, rapid recovery
of the patients can be observed. Since the late nineteenth century till 1970s, injections
of inactivated whole bacteria were used as a vaccine. However, the limitation of these
is that they are effective only for short durations. Oral vaccines against cholera were
developed to overcome the shortcomings of parenteral vaccines. Till date two major
classes of oral cholera vaccines namely killed WC- based and genetically attenuated
live vaccines are used to treat cholera (Shin et al. 2011). Although newer vaccines
such as Dukoral and Shanchol have received WHO prequalification, these vaccines
also have their own limitations, thus keeping the problem of vaccine discovery as an
open challenge (WHO 2012).

Systems biology approaches have been used in order to analyze gene expression
of V.cholerae to identify virulence genes, which may provide a better insight to the
infectious process. Using gene-expression data, comparison of the dynamic tran-
scriptomes was carried out for the pathogen growing in different media at various
stages of growth. A set of regulatory interactions for genes involved in virulence
were identified (Kanjilal et al. 2010). Using information from different sources re-
garding the pathogen, gene response network has been constructed which is expected
to aid in design of biomarkers and therapeutics. A metabolomics approach has been
used to measure the extracellular changes in the flux of certain metabolites upon the
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administration of cholera toxin in cell lines, and this approach can be extended to
study spatial and temporal changes in the metabolites flux, thus providing a clear
picture of the metabolic activity in the cell in the presence of toxin (Eklund et al.
2006). Thus, using systems biology approaches it has become possible to identify
the genes involved in virulence, interaction of the pathogen with the host, discover
new biomarkers for the disease and also develop newer vaccines to overcome the
limitations of the already existing vaccines (Hill et al. 2006).

8.6 Staphylococcus aureus Infection

Staphylococcus aureus (S.aureus), causative agent of nosocomial infection, is a life
threatening pathogen to human population due to the wide range of diseases it causes,
especially hospital acquired infections. Apart from the number of infections that
this microbe is responsible for, it has also been observed that S.aureus is acquiring
resistance against multiple antibiotics (Kaatz et al. 2005). In some parts of the world,
methicillin resistant strains of S.aureus (MRSA) have been reported, which is posing
a major health problem. Thus, it has become essential to understand the mechanism
of pathogenesis of S.aureus and also its interaction with the host.

The global transcriptional profile of the pathogen aids in the study of regulatory
genes and also gives insight into the expression profile of the genes under different
conditions such as exposure to antibiotics (Kuroda et al. 2003) and stress (Anderson
etal. 2000). Plikat et al. have constructed a protein expression map to study proteomes
of S. aureus Mu50 and its mutants. Using GSEA (Gene set enrichment analysis), they
have carried out studies to determine the virulence factors and pathways affected in
mutants. Capsular polysaccharide of S.aureus had been earlier regarded as putative
protective antigen and hence as possible vaccine candidate. However, subsequent
studies noted that the clinical isolates lack a capsule, hence rendering the vaccine
ineffective in the clinical trials. They have also reported that multivalent-antigen
vaccine is capable of eliciting both cell-mediated and humoral immunity and in turn
induce protection against S.aureus thus preventing infections at various anatomical
sites (Plikat et al. 2007). Systems biology approaches have been used to identify
targets in order to develop multivalent-antigen vaccine and also determine host-
microbe interaction which helps in understanding the pathogenesis mechanism and
ultimately finding a solution for preventing as well as curing the disease.

8.7 Applications of Systems Biology in ‘Anti-Infective’
Drug Discovery

With the advent of large scale omics data and the development of various modeling
tools, it is possible to build large scale biological models. Although, the reductionist
approach provides detailed insights into the molecules responsible for a particular
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disease, inhibition of a given protein molecule in isolation is insufficient to pro-
vide insights into the effect of this inhibition on the system as a whole. Existence
of biologically feasible alternate paths may render this inhibition useless. Systems
biology provides a mathematical framework to understand the physiological effect
of inhibition in a network of interacting components. In the classical drug discovery
regime, a major part of it was a black box and a target was selected based on the
end result obtained. Mathematical models obtained can be used to study the effect
of inhibition of the targets or exposure of the system to the drug, so that a rational
behind the working of each drug is understood. TargetTb (Raman et al. 2008) is one
such attempt wherein a comprehensive target identification pipeline is developed for
M.tb. Many known targets were identified, thus validating the model and many more
new targets have been suggested. A total of 451 high confidence potential drug tar-
gets were listed. The success rates from such pipelines are likely to be high as target
selections are knowledge driven. Methods such as FBA have also been successful
in identifying set of essential enzymes in Pfalciparum and form a starting point
for antimalarial drug targets (Huthmache 2010). Systems vaccinology is a branch of
systems biology that helps in predicting the efficacy of vaccines in a biological sys-
tem. It is also useful in studying the immunological responses after vaccinations thus
helping in vaccine development (Trautmann and Sekaly 2011). Figure 8.2 describes
the various applications of Systems biology.

8.8 Conclusion

Understanding a biological phenomenon involves studying the system as a whole
rather than as parts. Systems biology provides us with the tools to examine different
biological aspects, such as protein-protein interactions, protein-metabolites interac-
tions, regulatory mechanisms, signaling cascades using computational means. This is
crucial because a continuous interaction exists between different biological processes
and therefore studying these processes individually, as carried out in a reductionist
approach, do not provide a holistic view of the system under study. Over the years
many computational as well as experimental tools have been developed that help in
collation, reconstruction and analysis of large-scale data.

The scale at which various molecular level studies are currently being carried out,
is yielding genome-scale and systems level data on many fronts, leading to ready
reconstructions of large systems. These can then be integrated with the deep insights
already available about individual components. Although a complete systems view
of the disease has still not been deciphered, it seems that we have at the least a coarse
grained map of the pathogen in many of these cases, helpful for obtaining an aerial
view of the disease that can be used for addressing a variety of questions. The map
of course is sufficiently fine-grained in parts enabling a more detailed zoomed in
version in some pathways especially with respect to intermediary metabolism.

Reconstruction of large scale models encompassing various processes of the bac-
terium and simulation will be extremely valuable in identifying best strategies for
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Fig. 8.2 Various applications of systems biology

intervention. Methods to study biological systems at multiple scales and levels and
virtual cells are not as yet standardized. Nor are the methods required to gener-
ate comprehensive omics scale data from multiple perspectives, particularly when
it comes to quantitative profiling. Thus, reports in literature of such cellular level
models not only for M.tb, but in general for any organism are few and far between.
Nevertheless, it is quite clear that the virtual cell approach, especially when quanti-
tative aspects are incorporated, holds a lot of promise for picking an efficient or even
an optimal strategy for killing the pathogen.
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Chapter 9
Systems Pharmacology and Pharmacogenomics
for Drug Discovery and Development

Puneet Talwar, Yamnum Silla, Sandeep Grover, Meenal Gupta,
Gurpreet Kaur Grewal and Ritushree Kukreti

Abstract Systems pharmacology involves the application of systems biology ap-
proaches, integrating high throughput experimental data from different experimental
techniques such as genomics and proteomics involving computational analytical ap-
proaches, to understand the mechanism of action of drugs, identify potential drug tar-
gets, use existing drugs for other disease indications and study adverse drug reactions.
The significance of using integrated approach is that it allows drug action and drug re-
sponse to be studied in the context of whole genome or proteome. Basically, a strong
and simplified platform for the development of systems pharmacology is provided by
information from genetic studies, disease pathophysiology, pharmacology, protein-
protein and protein-drug interactions. Network analyses of interactions involved
in disease pathophysiology and drug response will allow the integration of the
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systems-level understanding of drug action with genetic information enabling person-
alized medicine. Developments and insights from merging systems pharmacology
and pharmacogenomics studies will provide new information on the complexities
of disease associated with the identification of multiple targets for drug treatment
and understanding adverse events caused by off-targets of drugs. In this chapter, we
explored the current and future application of systems biology approaches in inte-
grating large scale data from high-throughput genomic technologies with complex
disease phenotypes, drug disposition pathways which might lead to not only newer
and more effective therapies, but safer medications with fewer side effects.

Keywords Systems biology - Genome - Network analysis - Adverse drug reactions

9.1 Introduction

Complex disorders such as cancer, type 2 diabetes, depression, stroke, schizophre-
nia and Alzheimer’s disease (AD) are some of the most prevalent, debilitating and
yet poorly treated conditions. Although over the past decade several newer drug
molecules have been introduced into the market, the drug discovery process has cur-
rently slowed down due to several reasons such as the increasing cost and duration
of bringing a drug to market, low or variable efficacy and issues of adverse drug re-
actions (ADR) (Zhao and Iyengar 2012; Hughes et al. 2011; Bhogal and Balls 2008;
Kola and Landis 2004). Furthermore, an increase in the failure rate for most new
drugs has been reported in Phase II and III clinical trials by the Centre for Medicines
Research in the UK (Arrowsmith 2011a, b). This can be attributed to the conven-
tional drug discovery approach which has several drawbacks such as identification of
new targets by linking individual cellular components to an tissue/organ-level phe-
notype which leads to lack of mechanistic understanding of how drug interactions at
the molecular and cellular level manifest themselves as alterations in tissue/organ-
level function, use of poorly predictable cell-based assay and in vivo animal models
which show variable efficacy and may not work for humans and finally an inability
to predict adverse events caused by the drug (Zhao and Iyengar 2012). Conventional
drug discovery and development approach is depicted in Fig. 9.1a. At present, it is
estimated that the average cost and time of bringing a drug from research stage to
market via the conventional drug discovery and development (DDD) route is around
$ 1 billion and from 12 to 15 years respectively (Hughes et al. 2011). Due to these
factors, it is imperative to explore for new approaches which may improve and expe-
dite the process of drug discovery. Since complex disorders are the focus of current
drug-discovery efforts, understanding the disease mechanism at systems level us-
ing systems biology approach could help in the discovery and development of drug
molecules with higher success rate in clinical trials.

An integrated approach to study and understand the function of biological systems
and how perturbations such as therapeutic drug administration affect such systems
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Fig. 9.1 a Conventional drug discovery and development approach. b Systems approach for drug
discovery and development

is provided by systems biology. The biological system can be at the molecular, sub-
cellular organelle, cell, tissue, organ or organism level. Hood et al. originally defined
systems biology as “the study of all the elements in a biological system (all genes,
mRNAs, proteins, etc) and their relationships one to another in response to pertur-
bations” (Hood 2002). Later, the same group broadened the definition to “systems
biology represents an analytical approach to the relationship among elements of a
system, with the goal of understanding its emergent properties” (Weston and Hood
2004). More recently, Naylor et al. have combined and modified the definition:
“Systems biology is the process of interrogating the genetic, genomic, biochemi-
cal, cellular, physiological and clinical properties of a system to define and create
a system pathway or network that can be used to predicatively model a biological
event(s)” (Naylor and Chen 2010; Naylor and Cavanagh 2004).

In this chapter, systems pharmacology, an emerging systems biology field, is de-
scribed that may facilitate many of the current attempts to improve the drug discovery
and development process. Systems pharmacology refers to the area of systems bi-
ology dealing with the representation of disease mechanisms of action (i.e. with
the pharmacology of drug targets) (Cucurull-Sanchez et al. 2012). Sorger et al.
defined systems pharmacology as ‘an approach to translational medicine that com-
bines computational and experimental methods to elucidate, validate and apply new
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pharmacological concepts to the development and use of small molecule and bi-
ologic drugs’ (Sorger et al. 2011). More recently, Zhao et al. described the term
systems pharmacology as * a field of study that uses experimental and computational
approaches to provide us with a broad view of drug action rooted in molecular in-
teractions between the drug and its targets in the context of such targets interacting
with and regulating other cellular components’ (Zhao and Iyengar 2012).

In recent years, system biology approaches have been increasingly used in the
pharmacology field to understand drug action at the cellular, tissue, organ and
organismal levels. The application of computational systems biology approaches
along with accumulated experimental genomic and proteomic knowledge to phar-
macology allows us to broaden the definition of systems pharmacology to include
network analyses at multiple levels of biological organization and to explain both
therapeutic and adverse effects of drugs. Network analysis essentially involves the
study of the relationship between topology at each scale (i.e., level) of organization
(atomic/molecular, cellular/tissue, organ, and organismal) and connections between
levels that give rise to organ- and organismal-level functions. This understanding
helps us to understand how drugs that interact with different components are able
to produce organ- and organismal-level effects, both therapeutic and adverse (Zhao
and Iyengar 2012; Csermely et al. 2013). Systems approach for drug discovery and
development is depicted in Fig. 9.1b.

A new dimension has come up by connecting genomic status and drug action
from the field of pharmacogenomics. This type of integration is important for under-
standing drug action and effects at different levels of organization. In recent years,
genomics has been shown to account for a considerable proportion of inter-individual
variability in the drug effect, while showing consistent intra-individual responses (Ma
and Lu 2011; Evans and McLeod 2003; Drazen et al. 2000). Pharmacogenomics is
the study of the genetic basis of individual variation in response to therapeutic agents
(Giacomini et al. 2012). It is an inter-disciplinary field involving molecular biology,
human genetics and genomics, bioinformatics, pharmacology, and internal medicine
(Yan 2010; Nebert 1999). The investigation of genetic diversity in humans can make
it possible to tailor optimal drug prescription and to bring the right drug to the right
person. This field may have a deep impact on every step of medical care, from
diagnosis to drug prescription and from drug design to clinical trials.

The purpose of this chapter is to provide an overview of the emerging system
biology approaches in the field of drug discovery and development with major focus
on systems pharmacology and pharmacogenomics.

9.2 Understanding Complex Disorders Using Systems Biology

The advent of high throughput technological platforms (genomics, proteomics, and
metabolomics) coupled with rigorous bioinformatic analyses using powerful statis-
tical, computational and network modeling tools have led to the identification and
characterization of biomolecules (DNA sequences, transcripts, proteins, lipids, and
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other metabolites) giving rise to the concept of systems biology (Naidoo et al. 2011;
Tyers and Mann 2003). The conventional approaches have failed to completely elu-
cidate the etiopathogenic mechanisms underlying complex disorders such as cancer
and neurodegenerative disorders as they have focused on a few selected genes and
proteins. Systems biology refers to an integrative analysis approach in which large
numbers of biomolecules such as genes, proteins etc are measured simultaneously
over time in cells, tissues or whole body (Kitano 2002). It integrates diverse fields
encompassing biochemistry and cell biology with genetics, proteomics and bioin-
formatics to obtain comprehensive understanding of biological systems at various
levels (Noorbakhsh et al. 2009). This understanding could lead to improved drug
development and targeting, multidrug treatments, adverse drug reaction predictions
as well as biomarker discovery.

In recent years, the focus on drug discovery has shifted from a molecular and cel-
lular level to tissue and biological system level i.e., network pharmacology (Berger
and Iyengar 2009; Boran and Iyengar 2010) to better understand the complex disor-
ders which are often caused by combined effect of multiple molecular abnormalities
rather than being the result of functional defect in a single gene or protein. In contrast
to single-target approach, the network biology approach identifies a combination of
interacting genes/proteins whose perturbation results in the clinical phenotype ob-
served. In essence, genes/proteins in a biological system form molecular networks
which eventually determine physiological or pathological functions within cells and
organisms (Oltvai and Barabasi 2002). Methodological workflow describing the steps
in network creation and analysis is depicted in Fig. 9.2. Biological systems should
therefore be viewed as a web of interacting genes or proteins to permit the understand-
ing of their complexity at ‘system level’ in terms of quantitative and spatio-temporal
changes (Csete and Doyle 2002).

High-throughput studies with focus on the pathogenesis of complex disorders can
be categorized into two methodological approaches (Kitano 2002):

1. The first approach involves global analysis of quantitative and/or qualitative
changes in biomolecules (association of genetic variants or gene expression
changes) followed by establishing pathways linking biomolecules (genes or pro-
teins), pathways (cell signalling or gene regulatory) and disease processes (cancer
etc.).

2. The second approach involves analysis of molecular networks or modules with
intricate topologies formed at different system levels (e.g. transcription and cell
signalling) within a cell.

9.2.1 Elucidating the Role of Systems Biology and Genomics
in Complex Disorders

With the completion of the Human Genome Project and advancements in high
throughput technologies, the field has entered into the post-genomic era leading to



178 P. Talwar et al.

Genome db (Ensembl, UCSC, Entrez),
Proteome db (PIR, PROSITE, UniProt, PDB)
Annotated drug db (DrugBank, METADOR)
Disease db (OMIM, Genetic disease db)
Scientific literature (PubMed, MEDLINE)

4 |

Interaction Network

Experimental Literature

data mining

Protein-protein interaction
(DIP, MINT, HPRD, BIND, IntAct)

Pharmacogenomics studies
Functional genomics studies

| Candidate gene association studies i = Drug-drug interaction (MANTRA, DrugBank)
I = Genome wide aésociatAionstudies <:> = Drug-targetinteraction
| = Pharmacogenetic studies I:> (PharmGKB, TDR, STITCH)

.

.

Drug-Disease interaction (cmap)
Drug-response/adverse effect (SIDER,GEO)

Computational approach ﬂ

| = Network modeling & analysis
| (APID2NET, Bisogenet, GeneMania )
= Network Visualization (Cytoscape, Gephi)
| = Structure Visualization (PyMol, VMD, Chimera)
| Computational Docking (AutoDock, HEX)

Fig. 9.2 Methodological workflow describing the steps in network creation and analysis: Mining
of literature data from databases and integration with experimental data such as genomic and
pharmacogenomic can be used to create an interaction network. Network creation and analysis
involves the use of various biological tools and further application of computational approaches
may help in identification of better drug targets with better efficacy

the advent of whole genome studies. A significant outcome was the systematic identi-
fication of single nucleotide polymorphisms (SNPs). SNPs are single nucleotide base
changes found commonly in the DNA sequence that can describe variation between
individuals (Penrod et al. 2011). A comprehensive catalog of all SNPs gathered from
populations with European, Asian, and, African ancestry in the initial phase has been
maintained in the HapMap database. The major initial objective of the International
HapMap Project was to map genetic variants by comparing the genetic sequences
of different individuals and identifying chromosomal regions where genetic variants
are shared (International HapMap Consortium 2005). This wealth of information on
SNPs has led to a dramatic increase in studies that seek to connect genetic polymor-
phisms with disease and individual responses to drugs and environmental factors. As
the genetic variation among individual’s averages to be about 1 in 500-1000 base
pairs (Venter et al. 2001), a significant number of genes may contain polymorphisms
that contribute to disease and that many may play a role in adverse drug responses
(ADR). Although, most of the current research focuses on the association between
phenotype/disease and SNPs, SNPs can also serve as biomarkers of ADRs because,
unlike other factors such as age, co-morbidity, and environment, an individual’s ge-
netic makeup remains static throughout their lifetime. In addition, genetic testing
also offers the potential of replacing empirical dose adjustment for many drugs that
is based upon therapeutic assessment of pharmacologic or toxic effect after initial
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Fig. 9.3 Framework depicting systems approach in drug discovery: a Disease condition, environ-
mental factors and drug response phenotypes leads to altered genetic signatures when compared
among cases and control individuals. These altered genes can be identified using genotyping SNPs
or sequencing methods. b These individual genes may not lead to mechanistic understanding of
the underlying pathway and potential therapeutic agent. ¢ Using network creation and visualization
tools, protein-protein interaction or gene interaction network can be built which will provide the
information about the altered pathways implicated in the disease conditions. To find the targets
in therapies of polygenic, complex diseases network influence strategy is required which targets
neighbours of central nodes exerting an indirect influence on the central nodes often representing
the ‘real targets’

dosing. Furthermore, predictive genetic tests could also be of value in the drug devel-
opment process by rescuing drugs that failed Phase III clinical trials due to toxicity
within a subset of participants (Weiss et al. 2008). Meanwhile, in the last decade,
development costs of new drugs has increased tremendously along with high-profile
drug withdrawals due to late stage clinical trial failures leading to fewer approvals
of new drugs (Caskey 2007). However, with approximately 25,000 genes in the hu-
man genome and 20 million SNPs, the analysis and interpretation of huge amount
of information has become a compellingly complex problem (Ma’ayan et al. 2005).
SNPs are currently used in studies with different study designs including candidate
gene association studies, genome wide association studies and pharmacogenomics
studies. Framework depicting systems approach in drug discovery is depicted in
Fig. 9.3.

Once the genetic variants or SNPs associated with the disease phenotype are
identified, the functional effect of predisposing SNP can be identified using bioin-
formatic approaches which will provide an insight into the mechanisms underlying
the disease (Ma’ayan and Iyengar 2006). Several in silico tools have characterized
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the functional effect of SNPs by assessing their effect on the protein structure or their
impact on functional sites at the protein or DNA level (Ma’ayan et al. 2007; Levy
et al. 2007; Sayers et al. 2013; Bauer-Mehren et al. 2009; Jegga et al. 2007). All
these approaches, although valuable, consider the effect at the single molecule level.
In this context, the functional significance of SNPs is better correlated if the evalu-
ation is performed at the system-wide level, for instance by determining their effect
on the dynamics of signalling pathways (Cavallo and Martin 2005). Moreover, it is
also important to consider the effect of SNPs, in particular, those having an impact
at the protein level (non synonymous SNPs, nsSNPs), in the context of biological
networks. Although synonymous SNPs and SNPs located in regions that modulate
gene expression (e.g. promoters, introns, splice sites, transcription factor binding
sites) can also alter gene or protein function and as a consequence lead to disease
(Reumers et al. 2006; Kim et al. 2008; Ryan et al. 2009; Klipp et al. 2008), nsSNPs
have a more evident effect on the protein function in the biological processes, and
are therefore better in explaining disease phenotypes. The study of protein function
is usually assessed by experiments aimed at disrupting the activity of the protein, for
instance by means of altering the protein sequence at residues suspected to be critical
for the function (e.g. in vitro mutagenesis experiments). Several databases and web
tools gather, manage and provide information about SNPs (Kimchi-Sarfaty et al.
2007; De Gobbi et al. 2006) and their association with diseases (Ma’ayan et al.
2007; Capon et al. 2004) as well as mutations of clinical relevance (Cartegni
et al. 2002). Furthermore, several databases also offer information about models
of biological networks such as PPI and signalling pathways.

9.2.2 Inferring Pathways from Genetic Association Studies Using
Network Biology

Networks have been widely used in many fields of biology to represent the relation-
ships between biological entities. Network is a collection of nodes that are joined
together in pairs by edges (Sun 2012). Networks that contain the edges representing
relationship with a specified direction are called directed networks whereas network
representing relationship between two biological entities (always bidirectional) is
called undirected network. In molecular biology and genetics, networks are often
used to represent the functional connections among large (e.g., genes, protein) and
small molecules (e.g., lipids, drugs) within cells and organisms. Several types of bi-
ological networks, such as protein—protein interaction (PPI) networks, metabolic
networks and gene interaction networks, have been constructed to illustrate the
complex relationship within the biological system. These networks represent the
functional or physical connectivity among genes or proteins. Integration of genome
wide association studies (GWAS) data with the network-based methods complement
the approach of single genetic variant analysis by taking advantage of the available
biological knowledge. These approaches play an important role in elucidation of
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the functional role of the genetic variants, in understanding the molecular mecha-
nism influencing the phenotypic traits and may in turn improve the power to identify
phenotype associated genes. The network- and pathway-based methods have been
applied successfully in past few years for understanding complex disorders and with
increasing availability of GWAS data, these approaches will become more signifi-
cant to address challenges facing the high throughput studies in the current scenario
(Yan 2008).

The availability of pathway databases and curated datasets on the phenotypic
effect of genetic variants facilitated the study of genetic factors that contribute to
complex disease phenotypes in the context of the structure and dynamics of biologi-
cal networks. This can have significant consequences for understanding mechanisms
of disease and the design of new drug discovery approaches. Several reports have
been published detailing the integration of SNP data with protein structural data and
pathways (Sherry et al. 2001; Song et al. 2007; Fredman et al. 2002). For instance,
DataBins (Song et al. 2007) is a web service for the retrieval and analysis of path-
way data from KEGG, and sequence databases such as dbSNP (Kimchi-Sarfaty et al.
2007) with the aim of mapping nsSNPs onto the proteins of a pathway. An interesting
strategy for the integration of data retrieved from public resources, such as NCBI db-
SNP, UniProt, Reactome and BioModels was put forward by Bauer-Mehren A. et al.
The methodology involves generation of attribute files containing phenotypic and
genotypic annotations to the nodes of biological networks which are then imported
into network visualization tools such as Cytoscape, NAVIGaTOR, Medusa, BioLay-
out3D, Osprey, ProViz, ONDEX, PIVOT, Pajek (Bauer-Mehren et al. 2009; Agapito
et al. 2013). These resources allow the mapping and visualization of interaction
among biomolecules and their phenotypic effect on biological networks (e.g. gene
interaction networks, protein-protein interaction networks, signalling pathways etc).
An example of systems based approach linking disease, genes and drugs interactions
through biological pathways is depicted in Fig. 9.4. However, major challenges that
exist for the integration of the phenotypic effect of SNPs in the context of biological
networks are:

1. Integration of data generated from diverse and heterogeneous experimental
technologies.

2. Visualization of information about genetic variations in the context of biological
pathways.

3. Incorporation of the effect of the alteration caused by the genetic variation in
dynamic models of the pathways.

9.2.3 Integrating Human Diseases, Genetics, Drugs and Drug
Targets

Technological advancement led to the rapid identification of disease genes which in
turn allows for the construction of a disease-gene network (Goh et al. 2007). This type
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Fig. 9.4 An example of systems based approach linking disease, genes and drugs interactions
through biological pathways: Several genes have been implicated in complex disorders such as
cancer in genome-wide association and candidate genes studies. When these genes are analyzed
for gene ontology terms such as biological process the role of associated significant pathway such
as inflammation may become evident. Further integration of protein interaction data from PPI
databases can lead to the identification of other significant gene candidates associated with cancer
and inflammation. The identification of pathways may help to screen for drug molecules both
existing and newer ones. Drug for CETP inhibitors such as Torcetrapib, Anacetrapib, and JTT705
targeting both cancer specific NF-kb pathway and specific genes in inflammatory pathway may be
more effective as compared to one targeting a single pathway genes

of network analysis may help identify functional clusters, modules or sub-networks
of interacting disease genes and can also be used to predict additional disease gene
candidates (Lage et al. 2007; Xu and Li 2006; Franke et al. 2006). Network analysis
may play an important role in increasing the power for analyzing the genetic data by
combining multiple related genes in a pathway, and to infer the biological function
underlying the disease phenotype. Network analysis has been extensively applied
to study biological networks including genetic networks (Sun 2012). Thus, new
approaches that can integrate multiple biological networks with genetic association
study may further bridge the gap between the genetic variants and complex traits. The
high-throughput analysis of genomic research has produced a large amount of data
to enable network studies. Biological interaction databases such as BioGRID, DIP,
HPRD, IntAct, IMID, and MIPS (Aranda et al. 2010; Keshava Prasad et al. 2009;
Pagel et al. 2005; Stark et al. 2006; Warde-Farley et al. 2010; Xenarios et al. 2002)
provide hundreds of thousands of physical and genetic interactions from a number
of organisms including humans. Constructed gene interaction networks from genes
within associated loci for complex diseases also showed abundant physical interac-
tions between protein products of associated genes (Rossin et al. 2011). Integrated
with the GWAS analysis, the information of PPI can help to interpret the genetic
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associations with human diseases, and provide hints to plausible functions of the
genetic variants (Hannum et al. 2009; Jia et al. 2011).

The biological interaction network based methods essentially represent a frame-
work to incorporate biological knowledge into the genetic studies of complex
disorders. Current methods utilize networks to preselect genetic variants for targeted
analysis, to enrich the statistical associations and to identify functional modules
based on statistical significance, but mostly focus on a single type of integration
using one source of biological networks. Furthermore, the analysis of networks of
interacting gene products (PPI) and therapeutic agents (drugs) represents a logical
and more accurate extension of our understanding of disease, treatments, and their
responses (Azuaje et al. 2012). Similarly, networks of drugs and drug targets can
also be developed (Ma’ayan et al. 2007; Jia et al. 2011). Combined analysis of such
networks can be a valuable initial step towards finding novel approach to identify
use of approved drugs for other disease indications and better understand side effects
caused by drugs through off target identification in network.

9.3 Understanding Systems Pharmacology, Pharmacogenomics
and Drug Development

In the past few years, the field of biomedical science has felt the need for a transforma-
tion in approach from reductionism toward a holistic paradigm, from one-drug-fits-all
toward personalized medicine. The emerging disciplines, systems biology and phar-
macogenomics may help in solving the current problems and guiding the future of
drug therapy.

While pharmacogenomics may help achieve personalized medicine, the appli-
cation of systems biology may help us understand the major issues in pharmacoge-
nomics at different levels. These key issues include the correlations between genotype
and phenotype, the associations between structure and function, and the interactions
among genes, drugs, and the environment (Yan 2003). Systems biology investigates
the roles genes and/or proteins play in the context of complex pathways and interac-
tions and enables the understanding of disease and drug mechanisms at the system
level (Kitano 2002). Using computational methods, systems biology may help us
simulate large networks of interacting components, organize biological knowledge,
and create predictive models. The integration of pharmacogenomics and systems bi-
ology may help to understand the disease specific molecular mechanism and mode of
drug actions at cellular, molecular and tissue levels and connect information between
different levels. For example, variation in genetic structure may cause alterations at
the molecular level, which would influence the downstream interactions, pathways,
and networks. On the other hand, interactions among genes/proteins, drugs, and
the environmental factors at higher levels may also affect the structure and function
of genes/proteins at the molecular level, which would in turn change downstream
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reactions and phenotypes, forming a feedback loop. The analysis of such an interac-
tome may serve as the ultimate key in accurately identifying drug targets, understand
drug—response phenotypes and to avoid adverse reactions.

9.3.1 Modelling Drug Action Using Systems Pharmacology
Approach

Systems pharmacology is an evolving area that studies drug action across multiple
scales of complexity, from molecular and cellular to tissue and organismal levels. The
conventional ‘one-target one-drug’ drug design paradigm initially allowed bringing
new drugs to the market. However, a significant decrease in the rate of new drug
candidates has been observed due to several reasons:

1. Most drugs interact with multiple targets. For example, anti-diabetic drug
rosiglitazone, not only stimulates the peroxisome proliferator activated receptor
gamma (PPARY), but also blocks interferon gamma (INFy)—induced chemokine
expression in Graves’s disease or ophthalmopathy (Antonelli et al. 2011).

2. Lack of efficacy and clinical safety or toxicology (Hopkins 2008). For instance,
two drugs- cisapride and astemizole have both been withdrawn from markets due
to the risk of fatal cardiac arrhythmia associated with their blockade of the hRERG
potassium ion channel.

There is an urgent requirement for the development of network or pathway based
approaches to integrate the accumulating knowledge of chemical biology with sys-
tems biology. In silico computational approaches can be used at the various stages
of the drug discovery process and, for instance, can involve querying genomic data,
running comparative genomics, investigating protein folding, defining protein inter-
action networks, analyzing the impact of genetic variants, and assisting in clinical
trial design, to name only a few (Mah et al. 2011; Pierri et al. 2010; Fernald et al.
2011; Thusberg et al. 2011; Tsai et al. 2009; Tuncbag et al. 2011; Villoutreix 2002;
Woollard 2010; Woollard et al. 2011). A practical application of this approach is re-
ported by Yildirim et al. (Yildirim et al. 2007) wherein they combined FDA -approved
drugs with a human PPI network (human interactome) in order to analyze the inter-
relationships between drug targets and disease—gene products i.e. disease—proteins.
Identification of therapeutic target and off target using network based approach is
depicted in Fig. 9.5.
Key steps in systems pharmacology approach:

1. From a drug or a protein, profiling of multiple annotated (from the literature) or
predicted (from the web-tools) targets is performed.

2. Integration of “genomics” data associated with the ensemble of proteins altered
by the drug (interactomic, pathway, and genomics) is performed.

3. Finally, analysis of potential clinical effects (therapeutic and adverse effects)
associated with the drug is carried out.
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Fig. 9.5 Identification of therapeutic target and off target using network based approach: Pharma-
cogenomics studies can provide drug response status of individual patients based on their individual
genetic architecture leading to identification of poor metabolizer, intermediate metabolizer and ul-
tra metabolizer phenotype. It will also help in elucidation of genes involved in causing adverse
drug reactions. Systems pharmacology and network based approach can used to identify off-targets
of existing drugs showing variable efficacy and toxicity. For instance, in this figure drug primary
target interacts with two proteins—one responsible for therapeutic response and other for adverse
reaction. Changing primary target (in gray) to existing therapeutic target (blue node) may help
overcome the side effects of the drug

Systems pharmacology involving network biology approach has emerged as an al-
ternative for accurate predictions of drugs with multiple targets that can cause ADRs
(Mendrick 2011). For example, connecting drugs by side effect similarity based on
the assumption that drugs with common side-effects are likely to interact with com-
mon target proteins can provide insights into the molecular basis of the drug’s side
effects and allow predicting novel off-targets involved in negative clinical outcomes
(Campillos et al. 2008; Yang et al. 2011; Brouwers et al. 2011).

Several databases such as PubChem, CheBI and ChEMBL exist for retrieval of
biological information for a large set of chemical compounds. Using PubChem,
the ADRs have also been analyzed at the organ level (Pouliot et al. 2011). Sev-
eral repositories can also be used to extract data related to toxicological effects
of small molecules such as Sider (Kuhn et al. 2010), Actor (Judson et al. 2008),
or Dailymed (http://dailymed.nih.gov/dailymed). Open Phacts, a public-private
partnership will also provide the pharmacological, PK, ADMET (absorption, dis-
tribution, metabolism, and excretion—toxicity) and clinical profiles of drugs and
small molecules in the near future (http://www.openphacts.org/). In silico approach
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allows to explore drug repositioning and associations of drugs, targets, and thera-
peutic responses into an integrated network (Ekins et al. 2011; Kinnings et al. 2009;
Oprea et al. 2011; Xie and Bourne 2011). Recent advances include a human disease
network (diseasome) linking disorders and disease genes to various known pheno-
types (Goh et al. 2007) and a PPI network based on the toxicology of environmental
chemicals (Audouze et al. 2010).

9.3.2 Dissecting Variability in Therapeutic Response Through
Systems Pharmacology and Pharmacogenomics

Classical pharmacology involves the study of mechanism of drug action at the cell
and tissue levels, with major emphasis on identifying targets and understanding drug—
target interaction through structure—activity relationships (i.e., the effect of variation
in chemical structure on drug activity). However, interindividual variations in drug
responses largely form the area of study of pharmacogenomics, a branch of “person-
alized medicine” that has gained momentum in the post-human project genomic era.
It is able to provide explanation for patient-to-patient variation in drug metabolism
based on polymorphisms in genes encoding cytochrome P450. In chronic complex
diseases such as cancer, variation in drug response at the level of the individual patient
is a matter of great concern as large interpatient variability is observed for virtually all
targeted and cytotoxic agents, even with drug-naive tumors. This essentially reflects
the synergistic effects of the genetic heterogeneity of tumors and common polymor-
phisms in individual patients. Due to largely unknown origin of genetic variation
which appear to be patient specific, their effect on drug response cannot easily be
understood and overcome through multi-therapy or differential dosing—at least not
without patient-specific rationales, which do not yet exist for most drugs or diseases.

Pharmacogenomics represents a unique opportunity for prediction of drug re-
sponse by identifying patterns of genetic variation that will guide design of optimal
medication regimens in individual patients (Evans and McLeod 2003). In an ideal
condition, the application of pharmacogenomics based on the patient’s genetic profile
would enable the prediction of a patient’s response to particular drugs and empower
physicians to make right decisions for the treatment. A very useful source of high-
quality clinically relevant information about the impact of human genetic variation
on drug responses including dosing guidelines, annotated drug labels, and potentially
actionable gene-drug associations and genotype-phenotype relationships can be ac-
cessed from The Pharmacogenomics Knowledgebase (PharmGKB) (Whirl-Carrillo
et al. 2012).

Approaches to understand the variations in drug response can be classified broadly
as either correlative or mechanistic. The basic idea of correlative approaches is to
match patients with drugs empirically, and to correlate responses with measurable
parameters of disease such as histological diagnosis and with clinical factors such as
family history, tumor size, and lymph node metastasis. On the other hand, mecha-
nistic studies of drug response seek a detailed understanding of interactions between
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drugs and their targets, the consequences of binding for downstream proteins, and,
ultimately, the impact on cell fate (Yang et al. 2010).

Systems biology can play a major role in understanding precisely how complex
cellular networks respond to drugs at a mechanistic level which is extremely chal-
lenging. For example, development of MM-121, a therapeutic antibody against the
ErbB3 receptor followed careful computational analysis of signaling pathways in tu-
mor cells (Schoeberl et al. 2009). However, physiological drug response is a complex,
time-dependent, and probabilistic process at the single-cell level and requires compu-
tational tools for elucidating the biochemistry of cell signaling networks, dissecting
gene regulatory networks and for advance network-oriented analysis of drug mecha-
nisms. The other challenges include drug response monitoring at multiple time points
using quantitative, single-cell assays and integrating this data into pharmacological
response genetic signatures (SNPs). In addition, transition from a qualitative level
to a quantitative component, including concentration level and kinetic parameters
governing the interactions will be another major hurdle.

These challenges can be addressed with a systems approach to pharmacology
that is

a. quantitative to predict the behaviours of interacting genes or proteins through
knowledge of their individual functional characteristics;

b. mechanistic in explaining disease phenotypes in terms of the comprehensive
background of disease genes, genetic variants and drug targets;

c. probabilistic in accounting for the variability between cells and tissues with
respect to drug response,

d. postgenomic in analyzing diverse endophenotypes in the light of knowledge of
their genetic differences and

e. integrative in assuming that determinants of drug response are multifactorial,
that physiological, morphological, and genetic features are important, and that
multiple interacting pathways rather than single genes or proteins must be studied.

Overall, systems pharmacology approaches and pharmacogenomics will play a major
role in linking drug response phenotype with genetic signatures collected from pa-
tients and integrating them with in vitro/in vivo data using system biology approaches,
thus contributing to better establish personalized medicine.

Systematic and quantitative studies of adverse side effects have become increas-
ingly important due to rising concerns about the cytotoxicity of drugs in development
(Huang et al. 2011). There is an urgent need to design new and accurate models by
researchers to assess unwanted side effects and drug actions before initiating costly
human clinical trials. Incorporating prior knowledge, including genetic and pro-
teomics can significantly enhance the predictive accuracy of ADR of drugs under
development or in clinical trials. Systems approach can play a major role in the anal-
ysis of biomolecules and drug entities in a variety of functional network contexts
allowing researchers to understand how drugs act in a complex biological system (Li
et al. 2009), predict drug safety issues in advance (Butcher et al. 2004; Ekins et al.
2005), identify ADR events early (Mutsumi Fukuzaki et al. 2009; Pouliot et al. 2011),
and design personalised diagnostic tests with tailored drug treatments (Barabasi et al.
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2011). The use of PPI networks can increase the prediction specificity and the use
of GO annotations can increase the prediction sensitivity. The following approach
can be followed for the ADR prediction using network pharmacology (Huang et al.
2011):

1. Drug target interactions are expanded in global human PPI networks to build drug
target expanding PPI networks.

2. Drug targets are enriched by their gene ontology (GO) annotations to build drug
target expanding GO networks.

3. ADR information for each drug is combined with drug target expanding PPI
networks and drug target expanding GO networks.

4. Statistics and machine learning are applied to build ADR classification/prediction
models.

5. Cross validation and feature selection are used to train prediction models.

9.4 Summary

In the past decade, although a considerable advancement in the high-throughput
genome and proteome based experimental technologies has been made, the drug
discovery and development slowed down mainly due to high costs, low efficacy
and toxicity issues. Systems biology has shown the direction for addressing these
problems by showing ability to integrate interdisciplinary research fields such as
pharmacology and genomics using network biology. Both genome medicine and
systems pharmacology fields are in their infancy but can provide a platform leading
to the ultimate goal of personalized medicine i.e. to treat each patient on the basis
of the individual’s genome. However, success in personalized medicine will require
new conceptual and technological developments, integration of different fields using
network analysis. This integration will provide a systems-level understanding of drug
action and disease complexity ultimately leading to mechanism based understanding
of disease and therapy across scales of biological organization. In conclusion, the
systems biology applications in future lead to not only newer and more effective
therapies, but safer medications with fewer side effects.
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Chapter 10
Switching Mechanism in the p53 Regulatory
Network

Mohammad Jahoor Alam, Vikram Singh and R. K. Brojen Singh

Abstract p53 is one of the most important signaling molecule which regulates a
number of metabolic biochemical pathways. It has a wide role in cellular homeostasis
and prevent cellular integrity. p53 prevent the cellular transition from normal to
cancer phase. Under the higher cellular stress condition, which is due to the cellular
response to different stress inducer viz. Heat shock, DNA damage, rNTP depletion,
hypoxia, spindle damage, oncogenic activation, toxic chemicals, the concentration
of p53 rises in the cell. In normal state, p53 regulates cell cycle by checking it at G1
phase where cell takes decision either continued the cycle or stop the cycle. Several
studies reported that p53 also act as stress suppressor. It helps in transcription of
a number of proteins, which has anti-stress effect. It controls the DNA damage by
inducing DNA repair proteins. In normal condition, the concentration of p53 is low.
The concentration of p53 within the cell fluctuates under the stress condition. p53
has many feedback loops which are responsible for oscillatory behaviour of p53
within the cell. One of major feedback loops which most widely studied is p53-
MDM?2 feedback loop. P53 positively induced the MDM?2 protein but MDM?2 act
as a negative regulator of p53. In the present study we have shown how the p53
switching behavior at the molecular level is affected by stress induced by Nitric
oxide. Nitric oxide is a very important signaling molecule which has a very less half
life. We have obtained various transition phases i.e from normal to stress and stress
to normal which signify the role of nitric oxide on p53 and cellular dynamics. We
have also studied and elaborated the role of Ca®* on the p53-MDM2-NO model.
The impact of noise on the system is also studied and well explained.
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10.1 Introduction

p53 is an important tumour suppressor protein in the cell. It is a well-conserved
phosphoprotein. The human p53 protein consists of 393 amino acids which are
structurally and functionally differentiated into four domains: (1) Acidic N-terminal
region which contains the 42 amino acids transactivation domain and Hydrophobic
proline-rich region (amino acids 64-92) (2) Central sequence-specific DNA-binding
domain (amino acids 102-292) (3) Tetramerization domain (amino acids 324-355),
and (4)A highly basic C-terminal region regulatory domain (amino acids 363-393).
p53 is phosphorylated on different residues which are distributed on different do-
mains of it. The phosphorylation of p53 is generally seen on its serine residues. Many
experimental studies suggest that the phosphorylation of p53 leads to the activation
and stabilisation of it. It maintains genomic integrity by triggering the production of
DNA repair protein. More than 50 % of the human cancers are related with p53. It
controlled many key metabolic pathway such as tumor suppression, cell cycle arrest,
DNA repair and apoptosis (Lane 1992; Shih 2008). Due to participation in various
pathways its concentration level in the cell is frequently varied. Several research
work have been done to understand the p53 dynamics and stability. There are several
proteins which are directly or indirectly interact with p53. Many experimental studies
have proved that a number of protein which interact with p53, either downregulates
or upregulates it. The most studied downregulator protein of pS3 is MDM?2. p53 act
as a transcription factor which interact with MDM2 gene due to result of this the
sysnthesis of MDM?2 increases and this enhances the rate of production of MDM2
protein. MDM?2 protein act as a ubiquitin ligase for pS3 protein. So, MDM?2 leads to
the proteosomal degradation of p53 (Lane 1992; Geva-Zatorsky et al. 2006). In an
unstressed cell the p53 levels is controlled by Mdm?2 via a negative feedback loop
(Momand et al. 1992). In a stressed cell the activation and stabilisation of p53 is
observed. Experimental studies suggest that the p53 is freed from zinc finger domain
of MDM2 due to phosphorylation of a serine residue embeded on it.

Nitric oxide (N O) is a short lived (~ 1 — 10 s) and a bioactive molecule (Schmidt
and Walter 1994; Stern 2004). Various experimental studies shown that it can trigger
various physiological and pathological processes in mammalian cell types Wang et
al. 2002. It is synthesized by various N O synthase enzymes (NOS), namely neuronal
(nNOS), inducible (iNOS) (Lowenstein and Padalko 2004) or endothelial (eNOS)
(Li et al. 2002; Werner et al. 2003) such that these isoforms convert arginine to N O
and citruline (Marletta and Spiering 2003; Dina 2005). Recent experimental studies
has reported that NO exhibit two contrast roles in different single cell types, (1)it
induces apoptosis (programmed cell death) in some cell types such as macrophages,
neurons, pancreatic B-cells, thymocytes, chondrocytes, hepatocytes (Chung et al.
2001; Brune et al. 1999; Kim et al. 2001) etc, whereas (2) it inhibits apoptosis
in other cell types such as B-lymphocytes, eosinophils, ovarian follicles, neuronal
PC12 cells, embryonic motor neurons (Li and Billiar 1999; Wang et al. 2002; Taylor
et al. 2003; Kim et al. 1999) etc. N O has ability to induce cellular stress, activation
of p53 via DNA damage and disruption of energy metabolism, calcium homeostasis
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and mitochondrial function which can be taken as toxic action that leads to cell death
(Hofseth et al. 2003; Hussain et al. 2003; Chun-Qi and Wogen 2005; Murphy 1999).
Various experimental studies reported that NO can upregulats p53 (Brune et al. 1999;
Messmer et al. 1994) via downregulating Mdm2 (Wang et al. 2002; Hofseth et al.
2003; Messmer et al. 1994). Extremely excess of NO may lead p53 to cause cell
apoptosis (Brune et al. 1999).

Ca** is aversatile molecule that plays important role in many biological pathways
(Cerella et al. 2003; Samali et al. 2010). Calcium can induces creation of various va-
soactive substances in the endothelium which includes nitric oxide, prostacyclin and
other prostanoids (Lopez-Jaramillo et al. 1990). Ca?* induces nitric oxide synthase
which leads to the production of activated Nitric Oxide Synthase (NOS) (Hansen et
al. 2005; Dedkova et al. 2004; Dedon and Tannenbaum 2004; Manser and Houghton
2006). Activated Nitric Oxide Synthase binds with arginine (Jenkins et al. 1995).
This interaction leads to the production of nitric oxide and citruline as a by-product
(Knowles and Moncada 1994). Recent experimental studies suggest that there are
three isoform of nitric oxide synthases, namely, endothelial(eNOS), neuronal(nNOS)
and inducible(iNOS) forms (Manser and Houghton 2006; Knowles and Moncada
1994). These nitric oxide synthases are activated through different extra and intra
stimuli. Recent studies suggest that NO produced by nNOS and eNOS has a sig-
nalling role and are under the strict control of intracellular calcium ions (Silvagno et
al. 1996; Wagner et al. 2005).

Recent experimental studies reported that NO is an excellent intercellular signaling
molecule (Marletta and Spiering 2003; Dina 2005). NO is a small and hydropho-
bic molecule which can pass through cell membrane easily and it is actively and
abundantly created inside the cell by the metabolic pathway (Dina 2005; Murphy
1999). Further, it can also diffuse through several cell diameters from its site of syn-
thesis (Murphy 1999; Lancaster 1994, 1997). The diffusion of NO leads to various
intracellular signal processing and intercellular communication. Moreover, cellular
diffusion of nitric oxide and intracellular consumption are supposed to be the two
main factors which control NO concentration level in cells (Dedkova et al. 2004;
Chen and Deen 2001).

Several issues still need to be resolved. For example even if N O induce toxic
to cells, how does it activate p53 leading which is due to cellular stress induced by
nitric oxide and also excess stress cause apoptosis, is still need to be investigated.
Further, even if N O is considered as synchronizing molecule, what could be its role
in coupling p53 — Mdm?2 oscillators at different stress conditions, is still need to be
investigated and resolved. The roles of Ca®* in providing various state conditions and
the role of noise in cellular organization is also important and needs to be investigated
systematically. We aim to study an integrated model consisting of two different
oscillators, namely calcium and p53 — M dm?2 oscillators and investigate the influence
of ionic calcium to identify the dynamical behaviour of the variables in single cell.
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10.2 A p53-MDM2-NO Autoregulatory Network

Nitric oxide (NO) is a diffusible molecule (Stern 2004). It is constantly produced in
the cell due to cellular metabolism (Stern 2004; Wood and Garthwaite 1994). Experi-
mental studies prove that nitric oxide down regulates the MDM 2 protein (Wang et al.
2002; Schonhoff et al. 2002). The down regulation of MDM?2 protein affect the stabil-
ity of p53 protein (Stern 2004) . MDM?2 protein as well as p53 proteins are supposed
tobe localize in and out of the nucleus (Chen et al. 1995; Liang and Clarke 1999). p53
act as a transcription factor. It activates MDM?2 gene to form MDM?2_mRNA due to
which synthesis of MDM?2 protein increases in the cells. MDM?2 binds p53 (Proctor
and Gray 2008). After complex formation MDM?2 ubiquitinates p53 due to which the
p53 concentration level decreases in the cell (Haupt et al. 1997; Kubbutat et al. 1997,
Momand et al. 2000). NO binds with cytosolic MDM?2 protein and forms NO_MDM?2
complex due to which the concentration level of MDM?2 protein is decreases (Wang
et al. 2002; Schonhoff et al. 2002). The downregulation of MDM?2 protein, leads to
the oscillatory behaviour of p53 (Alam et al. 2013). The half life of p53 is found to
be short (around 30 minutes) (Finlay 1993). Further the half life of MDM?2 protein,
MDM?2_mRNA and NO are very short respectively, 30 min (Finlay 1993; Pan and
Haines 1999), 60— 120 min (Hsing and Faller 2000; Mendrysaetal. 2001) and 5-10s
(Wood and Garthwaite 1994; Wang et al. 2002). p53 is an integral protein in the cell
and constantly synthesize inside the cell (Mcbride et al. 1986). Due its huge network
in the biological cell its population inside normal cell stabilized at low level. More-
over, the half life of proteins are varied in biological system which is depends upon
the nature of biochemical reaction network. The p53-MDM2-NO model is shown in
Fig. 10.1 generated is based upon the above biological interaction. The Table 10.1
shows number of molecule participate in this biochemical network. The molecu-
lar species is symbolized in terms of x ’s for the shake of simplicity. All reaction
channel involved in the model with their respective transition rates are described in
Table 10.2.

10.3 A Mathematical Description of the Model

At first we mathematically described the model using deterministic approach. For
the deterministic approach, the biochemical reactions shown in Fig. 10.1 can be
transformed into a set of coupled ordinary differential equations using simple Mass-
action kinetic law. Now, we have following set of coupled equations,

dX1

W =ks — k7x1x, + kgx3 (10.1)
dX2
T =kix4 — kaxo + kexz — k7x1x2 + kgx3

— kioxsx2 (10.2)
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Fig. 10.1 A schematic diagram of p53 network which is induced by nitric oxide
Table 10.1 Molecular species, their description and notation
S.no | Species name Description Notation
1. pS3 Unbound p53 protein X1
2. Mdm2 Unbound MDM2 protein | x;
3. MDM?2_p53 MDM?2/p53 complex X3
4. MDM2 mRNA | MDM2 messenger RNA | x4
5. NO Unbound nitric oxide X5
6. NO_MDM?2 NO/MDM2 complex X6
dx
R kexs + kyx1x0 — kgxs (10.3)
dt
dx
I oxy — kaxy (10.4)
dt
d X5
rie kg — kioxsx2 + ki1x6 — k12Xs (10.5)
d X6
= k10X5x2 — k11x6 (106)

dr
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Table 10.2 Chemical reaction, propensity function, rate constant values and references

S.No | Reaction Propensity | Values of rate constant References
function

1 X4 A) X4+ x2 | kixg 4.95 x 10~ *sec™! (Proctor and Gray 2008;
Finlay 1993)

2 X N X1+ x4 | kaxy 1.0 x 107 4sec™! (Proctor and Gray 2008;
Finlay 1993)

3 X4 LN 1) kaxa 1.0 x 10~ %sec™! (Proctor and Gray 2008;
Finlay 1993)

4 Xo & kaxo 4.33 x 10~ %sec—1 (Proctor and Gray 2008;
Finlay 1993)

5 ¢ i X ks 0.78sec™! (Proctor and Gray 2008)

6 X3 LN X kex3 8.25 x 10™*sec™! (Proctor and Gray 2008)

7 X1+ X2 LN x3 | kxixo 11.55 x 10~*mol~'sec™" | (Proctor and Gray 2008)

8 X3 ﬁ> X1+ x| kgxs 11.55 x 107 %sec™! (Proctor and Gray 2008;
Finlay 1993)

9 ) LN Xs ko 1 x 10~ 2mol~'sec™! (Wang et al. 2002;
Alam et al. 2013)

10 X5 + X ﬂ) x6 | kioxsx2 1 x 103 mol 'sec™! (Alam et al. 2013)

11 X6 ﬂ) X5 ki1xe 3.3 x 10~ *sec™! (Wang et al. 2002;
Alam et al. 2013)

12 Xs ﬂ) ¢ ki2xs 1 x 1073sec™! (Wang et al. 2002;

Alam et al. 2013)

Cellular systems are found to be a complex system so that molecular interaction
in the system is stochastic or noise induced processes due to random molecular inter-
action in the system (Rao and Wolf 2002). Moreover, there are several other factors
which are responsible to induce noise in the system such as thermodynamics limit
etc. (McAdams and Arkin 1997; Blake et al. 2003). The stochastic system is sup-
posed to be real system with qualitative and quantitative prescriptions and it can be
well described by taking each and every molecular interaction systematically to find
their trajectories in configuration space (Gillespie 1977). One can mathematically
described stochastic system by constructing a Master equation of the interaction
network, which is mathematically the time evolution of configurational probability
P(x,t) with x = (xl,xz, o ,x6)71. The Master equation is based on decay and
creation of each molecular species at each molecular interaction (Gillespie 1977;
McQuarrie 1967). However, Solution of Master equation for a complex system is
very difficult to obtained and required huge computational cost. One can compute
the trajectory of each and every molecular species in the system using stochastic sim-
ulation algorithm (SSA) due to Gillespie (Gillespie 1977) by taking every possible
interaction in the complete system. Further, one can simplify this Master equation
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based on some realistic assumptions which are small time interval of any two con-
secutive interactions and large molecular population limit (Gillespie 2000). Master
equation can be reduce to Chemical Langevin equations (CLE). For our system, we
have following CLEs,

dx
L ks — kyx1x2 + kgx3
dt
1
+ W [\/ ks — Vkyx1x28 + ks x3 3] (10.7)
d)CQ
W = kixg — kaxo + kexs — kyx1x0 + kgxs
1
— kioxsxy + W [\/ kixs&s — v kaxy 5]
1
t o [Vkersts = Vit + Visngs - Viorsns | (108)
dX3 1
e —kex3 + kyx1x2 — kgx3 — W [\/ k6x3$10:|
1
+—= [\/ kyx1x2811 — vk8x3§12] (10.9)
Na%
d
% = kz)C] — k3)€4
1
+—= [\/ kox1§13 — v kaxa 14] (10.10)
Na%
D5 ko — koxsxa + kixe — Kiax +L[\/k_§ ]
7 = Ko = kioxsxz + kiixe — kios Nz o&15
1
+ — [—\/ kioxsx2816 + v ki1x6 17]
Na%
1
-7 [Viksés (10.11)
d
% = kioxsx — ki1 X6
1
+ v [\/kloxsxzéw - \/knxs%'zo] (10.12)
where, V is the system size and &;,i = 1,2,...,20 are random noise parameters

which are given by, &(#)&;(¢)) = 8;;6(t — t'). The noise term varies with order
ow~172),
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10.4 Impact of Nitric Oxide on pS3 and Its Network

The deterministic approach is used to show the dynamics of the system when the sys-
tem size N = finite. It assumed the temporal behaviour of the chemically reacting
systems is both continuous and deterministic or predictable (Gillespie 1977). In this
approach, one can first construct a mathematical model, by translating chemical re-
action channels into a set of ordinary differential equations (ODE) using mass action
kinetic law. In the present p53-MDM2-NO model, there are six differential equation
which is already discuss above Egs. (1-6). Then solving it by using standard 4th order
Runge-Kutta algorithm for numerical integration (Press et al. 1992). The simulation
results are plotted in Fig. 10.2. From panels of Fig. 10.2, it is observed that when
the concentration of NO is very high k = 0.2 level reach to the higher stability. This
suggest that at higher level of NO cell moves towards apoptosis due to increase of p53
concentration (Vogelstein et al. 2000). The parameter values taken for this single cell
simulation are given in Table 10.2, and the value of ky o ( = ky), creation rate con-
stant, is allowed to vary. Since N O « ky ¢, the value of k¢ indicates the population
of N O in the system. This means that when the value of ky ¢ is small the N O present
in the system is low and when the value of ky ¢ increases, N O present in the system
is also increased. The results show that at lower value of N O (kNO < 0.001), the
two-dimensional plots of pairs of molecular species (proteins and their complexes)
show fixed point oscillations indicating stabilization of the dynamics of these molec-
ular species exhibiting normal behaviours of the respective molecular species in the
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system. However, further increase in N O (0.001 (knvo < 0.1) leads to the transition
from fixed point oscillations to nearly limit cycle oscillation (limit cycle oscillation
having certain thickness due to fluctuation in the dynamics) takes place. This indi-
cates that p53 is activated with the increase in N O showing the enability of N O
to cause DNA damage which leads to p53 activation (Hofseth et al. 2003). If we
further increase N O (k No)O. 1), reverse transition i.e transition from the nearly limit
cycle oscillations to fixed point oscillations takes place. This could be due to the fact
that extremely increase in N O can cause enormous decrease in Mdm?2 and increase
in p53 correspondingly in the system (i.e. too much toxic to the cell) leading to cell
death (Wang et al. 2002; Brune et al. 1999). So we have obtained two stabilization
states in p53, one for normal like condition and the other for too much toxic leading
to killing of cellular functions. In between these two stabilized states we get acti-
vated regime of p53 which consists of damped and sustained oscillatory behaviours
depending on the values of ky¢. The term fixed point oscillation means oscillation
death dynamics which is different from damped oscillation. Similar behaviour is
obtained for dynamics of MDM2 protein as shown in Fig. 10.3.

‘We next present the stochastic results corresponding to the deterministic results by
using the Chemical Langevin Equation (CLE) formalism due to Gillespie (Gillespie
2000) as shown in Fig. 10.4. Here we have fix the stress due to NO (i.e ky 0=0.003)
and allowed system size to vary. In the upper panel of Fig. 10.4 it is observed that
when the system size is very low (i.e., 0.01) we obtained a fix point oscillation. This
suggests that when the system size is very low impact of the upon the system is very
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high and noise played a destructive role. Further, when the system size increases, the
system moves toward from noisy environment to noise free environment. Hence it is
observed from panels that as the system size increases the system attains its normal
stress condition.

A similar observation is found when we plot the MDM?2 temporal dynamics in
Fig. 10.5, by providing similar parameter as in case of p53. This is supposed to be
due the counter effect of p53.

10.5 An Integrated p53-MDM2-NO-Ca*t Network Model

Nitric oxide is produced in cell due to enzyme metabolism (Stern 2004; Wood and
Garthwaite 1994). Calcium ion acts as a precursor to induce nitric oxide synthetase
enzymes (Silvagno etal. 1996; Wagner et al. 2005). The calcium level in an individual
cell is considered to be obtained from two sources, one from internal Ca?* pool (from
calcium oscillator) (k7), and the other from extracellular calcium influx (k6) by the
direct diffusion from outside the cell. The overall calcium level binds with nitric
oxide synthase (xj9) and nitric oxide synthase gets activated (x;3). The activated
nitric oxide synthase interact with arginine (xlg) to produce nitric oxide and citruline
as a by-product (Hansen et al. 2005; Dedkova et al. 2004; Manser and Houghton
2006). The level of nitric oxide formed in the cell depends on the level of calcium, and
can interact with p53 — Mdm?2 oscillator via Mdm?2 protein forming N O_Mdm?2
complex (xs) (Fig. 10.6; Wang et al. 2002; Schonhoff et al. 2002). Even if the half
life period of nitric oxide is too short about 5-10 s only (Wood and Garthwaite 1994;
Wang et al. 2002), it can move a distance of few hundreds of cells from the site of its
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synthesis. Hence, nitric oxide molecule is believed to be one of the most important
intracellular and intercellular signaling molecules. In this model, the extracellular
influx of nitric oxide molecule is not considered by assuming the amount of nitric
oxide created in the cell via calcium is much more as compared to the extracellular
influx nitric oxide. Since nitric oxide downregulates Mdm?2, it eventually affects
the dynamics of the p53 that leads to the fluctuation of p53 level and stabilization
(Wang et al. 2002; Schonhoff et al. 2002). Nitric oxide molecule is considered
to be unidirectional signaling molecule (from calcium oscillator to p53 — Mdm2
oscillator) to study the impact of calcium ion on p53 dynamics and regulation. If we
consider S(t) = [ X0, .. ..X13]T = [x10, .. .,x13]T as the state of the system that
connects the two oscillators (calcium and p53 — Mdm?2 oscillators) unidirectionally
at any instant of time ¢, the dynamics of the system is given by,

ds(t)

1
di = H()Cl(), .. .,)C13) + —HL(xlo, .. .,)C13;é;'i) (1013)

Vv

where, the functional vectors H and Hy, are given by,
H(xi0,...,x13) =

k12 — k14x*x10
’
—ki3x2x11 + kj3X5 + kisxiox13 — kisx11
kin — kisxix13

kiax*x10 — kisx12x13
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Fig. 10.6 A schematic diagram of the impact of calcium ion upon p53-MDM2 network via nitric
oxide

Hy (x10,....x13;&) =

Vkiz — Vkiax*x1062
[ — Vkizxaxi1830 + Vkj3x5E + VEisxinxi3&s
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Table 10.3 Molecular species, their description and notation

207

S.No | Molecular species | Description Notation
1. p53 Unbound p53 protein X
2. Mdm2 Unbound Mdm?2 protein X5
3. pS3_Mdm?2 p53/Mdm?2 protein X3
4. Mdm2 mRNA Mdm?2 messenger RNA X4
5. NO_Mdm?2 Mdm?2/NO complex Xs
6. Cazt Extracellular calcium X
7. Ca*t Released calcium from internal stored calcium | X7
8. Calcium-S Stored calcium in pool Xg
9. 1P Unbound p53 protein Xo
10. NOS Nitric oxide synthase X0
11. NO Unbound nitric oxide X1
12. Ar Unbound arginine X1z
13. NOS_act Activated nitric oxide synthase X3

The Table 10.3 shows number of molecule participate in this biochemical network.
The molecular species is symbolized in terms of x’s for the shake of simplicity.
All reaction channel involved in the model with their respective transition rates are
described in Table 10.4.

10.6 Impact of Calcium Ion on Integrated pS3-MDM2-NO
Network

The numerical simulation result of the p53 is plotted in Fig. 10.6. In lower panel of
Fig. 10.6 we observed that there no activation of p53 molecule. This suggest that
when the concentration of calcium ion is very low it has no any effect on system.
Further it is noticed as the concentration of calcium ion increases from 0.00001
to 0.05, the behaviour is shifted from normal to stress. Further it is observed that
when the concentration of calcium ion is very high i.e. 0.05 the p53 shows steady
state. This steady of the p53 signifies that due to higher concentration of calcium
ion it trigger synthesis of higher production of NO in the system and due to this cell
moved towards the apoptosis. The above observation shows very much agreement
with experimental results.

Similarly when we plot the MDM?2 temporal dynamics in Fig. 10.7, by providing
similar parameter as in case of p53. This is supposed to be due the counter effect of
pS3.

Next, We have shown the stochastic results corresponding to the deterministic
results by using the Chemical Langevin Equation (CLE) formalism due to Gillespie
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Fig. 10.7 The impact of
calcium ion upon p53 in
p53-MDM2-NO network is
shown at different
concentration of calcium ion
(i.e., 0.00001, 0.003, 0.003,
0.05)

Fig. 10.8 The impact of
calcium ion upon MDM2 in
p53-MDM2-NO network is
shown at different
concentration of calcium ion
(i.e., 0.00001, 0.003, 0.003,
0.05)

(Gillespie 2000) as shown in Fig. 10.8. Here we have fix the stress due to NO (i.e
= 0.004) and allowed system size to vary (100, 300, 500, 1000). In the upper

kyO
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panel of Fig. 10.8 it is observed that when the system size is comparatively very low
(i.e., 100) we obtained a fix point oscillation. This suggests that when the system size
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Fig. 10.9 The impact of noise

upon p53 in —
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Fig. 10.10 The impact of 20 . . . . . .
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is low impact of noise upon the system is very high and noise played a destructive
role. Further, when the system size increases, the system moves toward from noisy
environment to noise free environment. Hence it is observed from panels in Fig. 10.8
that as the system size increases the system attains its normal stress condition. This
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Fig. 10.11 Two dimensional recurrence plot for showing impact of noise upon p53-MDM2-NO-Ca
network components are shown at different system size (i.e., 100, 300, 500, 1000)

suggest that when the system size increases system switches from stochastic system
to deterministic system.

A similar observation is found when we plot the MDM?2 temporal dynamics in
Fig. 10.9, by providing similar parameter as in case of p53. This is supposed to be
due the counter effect of p53 (Figs. 10.10 and 10.11).

We have also shown a two dimensional recurrence plot for the system for stochas-
tic system. We have varied the system size from low to high as taken above (i.e.
100,300,500,1000). The two dimensional quantitative plot again supported above
qualitative plot as shown in Figs. 10.8 and 10.9.
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10.7 Conclusion

The impact of nitric oxide on the p53 — Mdm?2 regulatory network in single cell as
well as in coupled cells are studied on a model designed based on various experimen-
tal reports. Nitric oxide is being synthesize due to protein-protein interaction inside
the cell and is supposed to be toxic in normal cells when its concentration is high.
The nitric oxide is maintained at low in normal cell. Nitric oxide directly influence
(p53 — Mdm?2) network via Mdm?2. This leads to the oscillatory behaviour of p53.
In the single cell model, the p53 is found to be normal keeping it low and stabilized
when N O is low. Again when the N O is increased significantly, p53 protein is acti-
vated indicated by its oscillatory behaviour. However excess N O leads to the higher
stability of p53 and this condition lead to the to cell apoptosis.

The Ca?* ion acts as an activator of p53. The simulation results of p53-MDM2-
NO-Ca network model suggest that Ca®* activate nitric oxide which in turn affects
the p53 — Mdm?2 network through direct interaction with Mdm?2. We observed that
activation of p53 by Ca®* in a cell lifts the cell from normal to stress state. An excess
Ca** level in a cell leads to higher synthesis of nitric oxide switching the cell from
normal to apoptotic phase.

The intrinsic noise due to random molecular interaction in the system can be
correlated qualitatively with system size such that noise in small system size is large
and vice versa (Nandi et al. 2007). The single cell study reveals that the oscillating
(damped or sustained) temporal dynamics of p53 at negligibly small noise (large V)
becomes stabilized (fixed point oscillation) as increase in noise (small V).

There are various issues need to be solved in future for example information trans-
fer among a large number of cells. Since the p53 protein is a hub of various biological
network so the influences of signaling molecules from various sub-networks need to
be considered simultaneously.
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