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Foreword

ETAPS 2003 was the sixth instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference that was esta-
blished in 1998 by combining a number of existing and new conferences. This year
it comprised five conferences (FOSSACS, FASE, ESOP, CC, TACAS), 14 sa-
tellite workshops (AVIS, CMCS, COCV, FAMAS, Feyerabend, FICS, LDTA,
RSKD, SC, TACoS, UniGra, USE, WITS and WOOD), eight invited lectures
(not including those that are specific to the satellite events), and several tuto-
rials. We received a record number of submissions to the five conferences this
year: over 500, making acceptance rates fall below 30% for every of them. Con-
gratulations to all the authors who made it to the final program! | hope that all
the other authors still found a way of participating in this exciting event and |
hope you will continue submitting.

A special event was held to honor the 65th birthday of Prof. Wlad Turski, one
of the pioneers of our young science. The deaths of some of our “fathers” in the
summer of 2002 — Dahl, Dijkstra and Nygaard — reminded us that Software
Science and Technology is, perhaps, no longer that young. Against this sobering
background, it is a treat to celebrate one of our most prominent scientists and
his lifetime of achievements. It gives me particular personal pleasure that we are
able to do this for Wlad during my term as chairman of ETAPS.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Dilerent blends of theory and practice are
represented, with an inclination towards theory with a practical motivation on
the one hand and soundly based practice on the other. Many of the issues invol-
ved in software design apply to systems in general, including hardware systems,
and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and independent proceedings. Its format is
open-ended, allowing it to grow and evolve as time goes by. Contributed talks
and system demonstrations are in synchronized parallel sessions, with invited
lectures in plenary sessions. Two of the invited lectures are reserved for “unify-
ing” talks on topics of interest to the whole range of ETAPS attendees. The
aim of cramming all this activity into a single one-week meeting is to create a
strong magnet for academic and industrial researchers working on topics within
its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 2003 was organized by Warsaw University, Institute of Informatics,
in cooperation with the Foundation for Information Technology Development,
as well as:

— European Association for Theoretical Computer Science (EATCS);
— European Association for Programming Languages and Systems (EAPLS);
— European Association of Software Science and Technology (EASST); and
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Foreword

ACM SIGACT, SIGSOFT and SIGPLAN.

The organizing team comprised:

Mikoldj Bojanhczyk, Jacek Chrzaszcz, Piotr Chrzastowski-Wachtel, Grze-
gorz Grudzinski, Kazimierz Grygiel, Piotr Ho[mhn, Janusz Jabldnowski,
Miroslaw Kowaluk, Marcin Kubica (publicity), Slawomir Leszczyhski (www),
Wojciech MoczydIGwski, Damian Niwihski (satellite events), Aleksy Schu-
bert, Hanna Sokoldwska, Piotr Stahczyk, Krzysztof Szafran, Marcin Szczuka,
Cukasz Sznuk, Andrzej Tarlecki (co-chair), Jerzy Tiuryn, Jerzy Tyszkiewicz
(book exhibition), Pawe[lUrzyczyn (co-chair), Daria Walukiewicz-Chrzaszcz,
Artur Zawldcki.

ETAPS 2003 received support from:!

Warsaw University

European Commission, High-Level Scientific Conferences and Information
Society Technologies

US Navy O [cebf Naval Research International Field O LCce]l

European O Lcebf Aerospace Research and Development, US Air Force
Microsoft Research

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Egidio Astesiano (Genoa), Pierpaolo Degano (Pisa), Hartmut Ehrig (Ber-
lin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris), Evelyn Duester-
wald (IBM), Hubert Garavel (Grenoble), Andy Gordon (Microsoft Research,
Cambridge), Roberto Gorrieri (Bologna), Susanne Graf (Grenoble), Gorel
Hedin (Lund), Nigel Horspool (Victoria), Kurt Jensen (Aarhus), Paul Klint
(Amsterdam), Tiziana Margaria (Dortmund), Ugo Montanari (Pisa), Mo-
gens Nielsen (Aarhus), Hanne Riis Nielson (Copenhagen), Fernando Orejas
(Barcelona), Mauro Pezzé (Milano), Andreas Podelski (Saarbriicken), Don
Sannella (Edinburgh), David Schmidt (Kansas), Bernhard Steled (Dort-
mund), Andrzej Tarlecki (Warsaw), lgor Walukiewicz (Bordeaux), Herbert
Weber (Berlin).

I would like to express my sincere gratitude to all of these people and organizati-
ons, the program committee chairs and PC members of the ETAPS conferences,
the organizers of the satellite events, the speakers themselves, and Springer-
Verlag for agreeing to publish the ETAPS proceedings. The final votes of thanks
must go, however, to Andrzej Tarlecki and Pawel[lUrzyczyn. They accepted the
risk of organizing what is the first edition of ETAPS in Eastern Europe, at a
time of economic uncertainty, but with great courage and determination. They
deserve our greatest applause.

Leicester, January 2003 José Luiz Fiadeiro

ETAPS Steering Committee Chair

1 The contents of this volume do not necessarily reflect the positions or the policies of
these organizations and no o [cial endorsement should be inferred.



Preface

This volume contains the 27 papers presented at ESOP 2003, the 12th Euro-
pean Symposium on Programming, which took place in Warsaw, Poland, April
5-13, 2003. The ESOP series began in 1986 with the goal of bridging the gap
between theory and practice. The conferences are devoted to fundamental issues
in the specification, analysis and implementation of programming languages and
systems.

The call for ESOP 2003 encouraged papers addressing the topics traditionally
covered by ESOP (but not limited to):

- programming paradigms and their integration;

- semantics;

- calculi of computation;

- security;

- advanced type systems;

- program analysis and transformation;

- practical algorithms based on theoretical developments.

The volume begins with two invited contributions, both in the area of se-
curity. The first belongs to ETAPS as a whole, and accompanies its “unifying
invited lecture” entitled Computer Security from a Programming Language and
Static Analysis Perspective, delivered by Xavier Leroy. The second contribution
is What Makes a Cryptographic Protocol Secure? The Evolution of Requirements
Specification in Formal Cryptographic Protocol Analysis, by the ESOP invited
speaker Catherine Meadows. The remaining 25 papers were selected by the Pro-
gramme Committee from the 99 submissions.

Each submission was reviewed by at least three referees, and papers were
selected in the latter stages of a one-week electronic discussion phase. | would
like to sincerely thank all members of the ESOP 2003 Programme Committee for
the excellent job they did in the very di Ccullt selection process, always carried on
in a kind, agreeable atmosphere. Also, | would like to thank all the subreferees
for their invaluable contribution. | am also grateful to Michele Curti for the help
with the conference management software. Finally, many thanks to the ETAPS
Organising Committee, chaired by Andrzej Tarlecki and Pawel Urzyczyn, and
to the Steering Committee of ETAPS, in particular to José Luiz Fiadeiro, for
their e [cieht coordination of all the activities leading up to ESOP 2003.

Pisa, January 2003 Pierpaolo Degano
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Computer Security from a Programming
Language and Static Analysis Perspective
(Extended Abstract of Invited Lecture)

Xavier Leroy

INRIA Rocquencourt and Trusted Logic S.A.
Domaine de Voluceau, B.P. 105, 78153 Le Chesnay, France
Xavier.Leroy@inria.fr

1 Introduction

Computer security [16,5] is usually defined as ensuring integrity, confidentiality,
and availability requirements even in the presence of a determined, malicious
opponent. Sensitive data must be modified and consulted by authorized users
only (integrity, confidentiality); moreover, the system should resist “denial of
service” attacks that attempt to render it unusable (availability). In more col-
orful language, computer security has been described as “programming Satan’s
computer” [6]: the implementor must assume that every weakness that can be
exploited will be.

Security is a property of a complete system, and involves many di [erknt top-
ics, both computer-related (hardware, systems, networks, programming, cryptog-
raphy) and user-related (organizational and social policies and laws). In this talk,
we discuss the impact of programming languages and static program analysis on
the implementation of access control security policies, with special emphasis on
smart cards. By lack of time, we will not discuss other relevant examples of
programming language concepts being used for computer security, such as type
systems for information flow [42,41,20,2,34,35] and validation of cryptographic
protocols using process algebras and types [4,1,3].

2 Access Control

Access control is the most basic and widespread security policy. An access control
policy provides yes/no answers to the question “is this principal (user, program,
role, ...) allowed to perform this operation (read, write, creation, deletion, ...)
on this resource (file, network connection, database record, ...)?”. Access con-
trol is e[edtive to ensure integrity, and can also ensure simple confidentiality
properties.

2.1 Preventing Direct Access to a Resource

Access control is performed by fragments of code (OS kernel, reference monitor,
privileged library) that check that access to a logical resource (file, network

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 1-9, 2003.
€-Springer-Verlag Berlin Heidelberg 2003
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connection) is allowed before performing the operation on the underlying low-
level resource (disk or network controller). Of course, access control is moot if
the program can bypass this code and operate directly on the low-level resource.

The traditional answer to this issue relies on hardware-enforced mechanisms:
the low-level resources can only be accessed while the processor is in supervisor
mode, and switching from user mode to supervisor mode can only be performed
through specific entry points that branch to the access control code. On the user
side, resources are represented indirectly by “handles”, e.g. indices into kernel
tables. Hardware memory management prevents user code from accessing kernel
data directly.

This model, while eledtive, is not always suitable. Sometimes, user-mode
programs must be further partitioned into relatively trusted (Web browser)
and completely untrusted (Web applets). Switching between user and supervisor
modes can be expensive. The required hardware support may not be present,
e.g. in small embedded devices.

An alternate, language-based approach executes all code within the same
memory space, without hardware protections, but relies on strong typing to re-
strict direct access to sensitive resources. These resources are directly represented
by pointers, but strong typing prevents these pointers from being forged, e.g. by
guessing their addresses. Thus, the typing discipline of the language can be used
to enforce security invariants on the resources.®

As a trivial example, if a resource is not reachable from the initial memory
roots of a piece of code, memory safety, also called garbage collection safety, en-
sures that this code can never access this resource. As a less trivial example, two
standard type-based encapsulation techniques can be used to provide controlled
access to a resource: procedural encapsulation and type abstraction [27].

— With procedural encapsulation, the resource is a free variable of a function
closure, or a private field of an object, and only the closure or the object
are given to the untrusted code. The latter, then, cannot fetch the resource
pointers directly from the object or the closure (this would be ill-typed), and
must call the function or a method of the object to operate on the resource;
the code of the function or the method will then perform the required access
checks before performing the operation.

— With type abstraction, the resource pointer itself can be given to the un-
trusted code, but its type is made abstract, preventing the code from op-
erating directly on it; to use the resource, the code must call one of the
operations provided in the signature of the abstract type, and this code will
then perform access checks as described before.

As outlined above, strong typing can be exploited to enforce access control.
The remaining question, then, is how to enforce a strong typing discipline during
execution of (untrusted) code. A simple approach is to perform type checks dy-
namically, during program execution. This can be achieved in many ways: direct

1 strong typing is also e[edtive at preventing other kinds of attacks such as bu[en
overflows that cause attacker-provided data to be executed as privileged code.
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interpretation of the program source (if available); compilation of the source
with insertion of run-time checks; bytecode interpretation of virtual machine
code such as the JVM [28]; just-in-time compilation of said virtual machine
code; and instrumentation of precompiled machine code with additional checks
(software fault isolation) [43].

To reduce the run-time overhead of dynamic type checking, it is desirable to
perform some of the type checks statically, during a program analysis pass prior
to actual execution. Static typing of source code is common and well understood
[8]. However, source for untrusted code is not always available. Moreover, bugs
in the source-to-executable compiler could introduce type violations after type
checking; in other terms, the compiler is part of the trusted computing base.
These drawbacks can be avoided by performing static type-checking on lower-
level, compiled code. A famous example is Java bytecode verification [18,28,
25], which performs static type-checking on JVM bytecode at dynamic loading
time. Typed Assembly Language [31,30] goes several steps below virtual machine
code: it statically type-checks assembly code for an actual microprocessor (the
Intel x86 family), including many advanced idioms such as stack unwinding for
exception handling.

Java bytecode verification and typed assembly language leave certain checks
relevant to type safety to be performed at run-time: typically, array bound
checks, or Java’s downcasts. More advanced type systems based on dependent
types were proposed to allow static verification of array bound checks (and more)
[47,46,38,13]. Proof-carrying code [32] takes this approach to the extreme by re-
placing static type checking with static proof checking in a general program
logic: the provider of the code provides not only compiled code, but also a proof
that it satisfies a certain security property; the user of the code, then, checks
this proof to make sure that the code meets the property. The property typ-
ically includes type correctness and memory safety, but can also capture finer
behavioral aspects of the code [33].

2.2 Implementing Access Control

The security policy implemented by access control checks is traditionally repre-
sented as an access control matrix, giving for each resource and each principal
the allowed operations. This matrix is often represented as access control lists
(each resource carries information on which principals can access it) or as capa-
bilities (each principal carries a set of resources that it can access). The yes/no
nature of access control matrices is sometimes too coarse: security automata
[37] can be used instead to base access control decisions on the history of the
program execution, e.g. to allow an applet to read local files or make network
connections, but not both (to prevent information leaks).

Determining the principal that is about to perform a sensitive operation
is often di Ccult. In particular, shared library code that performs operations on
behalf of an untrusted user must have lower privileges than when performing op-
erations on behalf of a trusted user. The Java security manager [17] uses stack
inspection to address this problem: each method is associated with a principal,
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and the permissions granted are those of the least privileged principal appearing
in the method call stack leading to the current operation. This model is some-
times too restrictive: an applet is typically allowed to draw text on the screen,
but not to read files; yet, to draw text on behalf of the applet, the system may
need to read fonts from files. Privilege amplification mechanisms are provided
to address this need, whereas system code can assert a permission (e.g. read a
file for the font loading code) regardless of whether its caller has it.

Access control checks are traditionally performed dynamically, during exe-
cution. The run-time overhead of these checks is generally tolerable, and can
be further reduced by partial evaluation techniques allowing for instance inline
expansion and specialization of security automata [15,12,40].

Still, it is desirable to perform static approximations of access control checks:
to guide and validate optimizations such as removal of redundant checks, but
also to help programmers determine whether their code works correctly under
a given security policy. Jensen et al. [7] develop a static approximation of the
Java stack inspection mechanism, where the (infinitely many) call stacks are
abstracted as a finite automaton, and security properties described as temporal
formulae are model-checked against this automaton. Pottier et al. [36] compose
the security-passing interpretation of stack inspection (proposed in [45] as a
dynamic implementation technique) with conventional type systems described
in the HM (X) framework to obtain type-based static security analyses. Finally,
Walker [44] describes a type system for typed assembly language where the
states of security automata are expressed within the types themselves, allowing
fine static control of the program security behavior.

3 Application to Smart Card Programming

3.1 Smart Card Architectures

Smart cards are small, inexpensive embedded computers used as security tokens
in several areas, such as credit cards and mobile phones. Traditional smart cards
such as Eurocard-Mastercard-Visa credit cards behave very much like a small
file system, with access control on directories and files, and determination of
principals via PIN codes.

The newer Java Card architecture [10] o[erk a model closer to an applet-
enabled Web browser, with several applications running in the same memory
space, and post-issuance downloading of new applications. The applications are
executed by a virtual machine that is a subset of the JVM. The security of this
architecture relies heavily on the type safety of this JVM variant. For access
control, the Java security manager based on stack inspection is replaced by a
simpler “firewall” that associates owners to Java objects and prevents an ap-
plication from accessing directly an object owned by another application. Inter-
application communications are restricted to invocation of interface methods on
objects explicitly declared as “shared”.

Formal methods are being systematically applied to many aspects of the
Java Card architecture [19]: formal specifications of the virtual machine, applet
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loading, the firewall, the APIs, and specific applications; and machine proofs
of safety properties such as type safety and non-interference. As for program
analyses, several approaches to on-card bytecode verification have been proposed
[26,14]. Static analyses of firewall access control are described in [9]. Chugunov
et al. [11] describe a more general framework for verifying safety properties of
Java Card applets by model checking.

3.2 Hardware Attacks

The software-based security techniques presented in section 2 all assume that the
programs execute on reliable, secured hardware: the best software access control
will not prevent information leaks if the attacker can simply steal the hard disk
containing the confidential data. In practice, hardware security is often ensured
by putting the computers in secured premises (locked doors, armed guards).

For smart cards and similar embedded devices, this is not possible: the hard-
ware is physically in the hands of the potential attackers. By construction, a
smart card cannot be pulled apart as easily as a PC: smart card hardware is
designed to be tamper proof to some extent. Yet, the small size and cost of a
smart card does not allow extensive tamper proofing of the kind used for hard-
ware security modules [39]. Thus, a determined attacker equipped with a good
microelectronics laboratory can mount a variety of physical attacks on a smart
card [23]:

Non-intrusive observation: perform precise timings of operations; measure
power consumption or electromagnetic emissions as a function of time.
Intrusive observation: expose the chip and implant micro-electrodes on some
data paths.

Temporary perturbation: introduce “glitches” in the power supply or the
external clock signal; “flash” the chip with high-energy particles.
Permanent modification: destroy connections and transistors within the chip.

These attacks can defeat the security of the software in several ways. Power
analysis can reveal the sequencing of instructions performed, thus reveal secret
data such as the private keys in naive implementation of public-key cryptography
[22]. Perturbations or modifications can prevent some instructions of the program
from executing normally: for instance, a taken conditional branch can be skipped,
thus deactivating a security check. Variables and registers can also be set to
incorrect values, causing for instance a loop intended to send a communication
bu [ed on the serial port to send a complete memory dump instead.

3.3 Software Countermeasures

The obvious countermeasure to these attacks is to harden the smart card hard-
ware [24]. It is a little known fact that the programs running on smart cards can
also be written in ways that complicate hardware attacks. This is surprising,
because in general it is nearly impossible for a program to protect itself from
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execution on malicious hardware. (Some cryptographic techniques such as those
described in [29] address this issue in the context of boolean circuits, but have
not been demonstrated to be practical.)

The key to making smart card software more resistant is to notice that hard-
ware attacks cannot change the behavior of the hardware arbitrarily. Permanent
modifications are precise but irreversible, thus can be detected from within the
program by running frequent self tests, and storing data in a redundant fashion
(checksums). Temporary perturbations, on the other hand, are reversible but
imprecise: they may cause all the memory to read as all zeroes or all ones for
a few milliseconds, but cannot set a particular memory location to a particular
value. Thus, their impact can be minimized by data redundancy, and also by
control redundancy. For instance, a critical loop can be double-counted, with one
counter that increases and another that decreases to zero; execution is aborted
if the sum of the two counters is not the expected constant.

Finally, hardware attacks can be made much harder by program random-
ization. Randomizing data (as in the “blinding” technique for RSA [22]) ren-
ders information gained by power analysis meaningless. Randomizing control
(e.g. calling independent subroutines in a random order, or choosing randomly
between dilerent implementations of the same function) makes it di Ccult to
perform a perturbation at a given point in the program execution.

Software hardening techniques such as the ones outlined above are currently
applied by hand on the source code, and often require assembly programming to
get su [cieht control on the execution. It is interesting to speculate how modern
programming techniques could be used to alleviate this burden. The hardening
code could possibly be separated from the main, algorithmic code using aspect-
oriented programming [21]. Perhaps some of the hardening techniques are sys-
tematic enough to be performed transparently by a compiler, or by a virtual
machine interpreter in the case of Java Card. Finally, reasoning about software
hardening techniques could require a probabilistic semantics that reflects some
of the time-precision characteristics of likely hardware attacks.
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Abstract. Much attention has been paid to the design of languages
for the specification of cryptographic protocols. However, the ability to
specify their desired behavior correctly is also important; indeed many
perceived protocol flaws arise out of a misunderstanding of the proto-
col’s requirements. In this talk we give a brief survey of the history of
requirements specification in formal analysis of cryptographic protocols.
We outline the main approaches and describe some of the open issues.

1 Introduction

It has often been pointed out, that, although it is di [cullt to get cryptographic
protocols right, what is really di [Ccullt is not the design of the protocol itself,
but of the requirements. Many problems with security protocols arise, not be-
cause the protocol as designed did not satisfy its requirements, but because the
requirements were not well understood in the first place.

Not surprisingly, the realization of this fact has lead to a considerable amount
of research in security requirements for cryptographic protocols. However, most
of this literature is scattered, and unlike the topic of cryptographic protocol
analysis in general, there is little existing survey work providing roadmaps to
readers interested in learning more about the topic. In this paper we attempt to
remedy this deficiency by providing a brief history and survey of the work that
has been done in this area, and outlining what we consider to be some of the
open problems.

Any scheme for expressing requirements should satisfy three properties:

1. It should be expressive enough to specify properties of interest.

2. It should be unambiguous, and preferably compatible with with some system
for formal analysis.

3. It should be easy to read and write.

It will helpful to keep these three properties in mind as we proceed through
our survey.
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The paper is organized as follows. We begin in the next section by describing
some of the early approaches to specifying cryptographic protocol requirements,
including that of Burrows, Abadi, and Needham. In the third section, we describe
some of the main current approaches to requirements in terms of a spectrum from
extensional to intensional requirements. In the fourth section and fifth sections,
we discuss two emerging areas of research: graphical languages for specifying
cryptographc protocol requirements, and the expression of quantitative require-
ments. In the final section, we sum up what we believe to be some of the open
problems, and conclude the paper.

2 Early Work in Cryptographic Protocol Requirements

Most of the existing approaches to applying formal methods to cryptographic
protocol analysis stem ultimately from that of Dolev and Yao [9], who developed
for the first formalization of the intruder model that is commonly used today.
However, since Dolev and Yao’s work and its immediate successors was mainly
focussed on theoretical results about the complexity of cryptographic protocol
analysis, only one type of requirement was considered, and that was the simplest:
that some term or set of terms designated as secret should not be learned by
the intruder. Some of the earlier work on automated cryptographic protocol
analysis, such as the first versions of the Interrogator [24], also restricted itself
to this limited definition of secrecy. Others, such as the earlier versions of the
NRL Protocol Analyzer[20], allowed the user to specify security in terms of the
unreachability of insecure states, in which it was possible to specify such a state
in terms of words known by the intruder and the values of local state variables
of the principles. However, the user was not given any further assistance in
constructing requirments.

Probably the first formal cryptographic protocol analysis system to provide
a real mechanism for constructing formal requirments was the belief logic of
Burrows, Abadi, and Needham [5].

BAN logic does not address secrecy at all. Rather it confines itself to questions
of authentication. Questions that BAN logic can be used to decide have to do
with beliefs the participating principals could derive about origin and use of
information such as:

1. Where does the information come from?

2. What is the information intended for?

3. Is the information new, or is it a replay?

4. Who else has these beliefs about the information?

One uses BAN logic by attempting to see which of these beliefs can be derived
from an idealization of the protocol. The BAN logic does not dictate which beliefs
a protocol should be able to satisfy; rather it is up to the protocol analyst to
decide what beliefs a protocol should guarantee, and to determine it those beliefs
can be derived from the protocol. Thus, one might require that Alice believe that
K is a good key for communicating for Bob, and that Bob believe that K is a good
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key for communicating with Alice, but one might or might not want to require
that Alice believe that Bob believes that K is a good key for communicating
with Alice, and vice versa. Thus BAN logic provides what it probably the first
formal system for specifying cryptographic protocol requirements.

3 Safety Requirements for Cryptographic Protocols:
Secrecy and Correspondence

In the early to mid-90’s the approach to cryptographic protocol verification
tended towards the application of general-purpose tools such as model-checkers
and theorem provers. With this came the need to develop means for specifying
the properties one was attempting to prove. Since, in general, researchers were
now reasoning directly about messages passed in a protocol, rather than about
beliefs that were developed as a result of receiving those messages, it now made
sense to develop requirements in terms of messages sent and received rather than
beliefs derived.

As is the case for requirements in general, requirements for cryptographic pro-
tocols tend to fall into two categories, extensional and intensional. Extensional
systems provide a small set of generic requirements that can be defined inde-
pendently of the details of any particular protocol. Intensional systems provide
languages and techniques that can be used to specify requirements for specific
protocols in terms of the protocols themselves. This concept was first discussed in
detail in the context of cryptographic protocols by Roscoe in [27]. He noted that
the earlier work in cryptographic protocol requirements, such as BAN, leaned to
the extensional side, and he showed how one might specify intensional protocol
requirements in CSP.

Requirements for cryptographic protocols also fall into two classes that are
related to the properties that such protocols are intended to enforce: secrecy and
correspondence. Secrecy requirements describe who should have access to data.
Correspondence requirements describe dependencies between events that occur
in a protocol, and are usually used to express authentication properties. These
two types of requirements later turned out to be more closely related than one
might think (both Syverson and Meadows [32] and Schneider [28] define secrecy
requirements as a type of correspondence requirement), but for the moment we
shall treat them as separate.

Of course, not all requirements can be characterized in terms of secrecy and
correspondence. In particular, they are both safety properties, so any non-safety
requirements (such as fairness and its relatives, which are relevant for many
electronic commerce protocols) will not fall into either of these two categories.
However, secrecy and correspondence cover most requirements relevant to au-
thentication and key exchange, and thus make a good starting point.

At first, correspondence requirements appeared to be the most subtle and
complex; thus the earlier work tended to concentrate on these. Moreover, the
emphasis was on extensional requirements and the ability to characterize a gen-
eral notion of correspondence in a single definition. Probably the first work in
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this area was that of Bird et al [4]. In the introduction to their paper, they de-
scribe an error-free history of a protocol runs between two prinicpals A and B to
be one in which all executions viewed by both parties match exactly one-to-one.
This is idea is refined by Di Ce,an Oorschot and Wiener in [8] to the idea of
matching protocol runs, which says that at the time Alice completes a proto-
col the other party’s record of the run matches Alice’s. This notion was further
refined and formalized by Bellare and Rogaway in [3] to the notion of match-
ing conversations, which developed the idea in terms of a complexity-theoretic
framework.

Such general of notions of correspondence can be very useful, but they do
have a drawback. They can be used to determine whether or not information
was distributed correctly, but they can not be used to determine whether or not
all information that should have been authenticated was included in the run.

To see what we mean, we consider the attack found by Lowe [18] on the
Station-to-Station protocol of [8]. The protocol is defined as follows:

1. A-B : xNa
2. B -~ A xNe Ex(Seg(xNA, xNeY)

where K is the Di [e-Hellman key generated by A and B.
3. A~ B : Ex(Sa(xNe,xNay)

Lowe’s attack runs as follows:

1. A - B : xNa
An intruder | intercepts this message and forwards it to B, as if it came
from C.

2. B = Ic : xNB Ex(Seg(xNe,xNs))
The intruder forwards this message to A.

Thus, at the end of A’s run, A believes that it shares a key with B. B, how-
ever, thinks that C is trying to establish a connection with it, and it will reject
A’s final message when it receives it, because it is expecting confirmation from
C, not A. On the other hand, the protocol does satisfy the matching protocol
runs definition of security, since A’s picture of the authenticated portions of the
messages is the same as B’s. Indeed, this is the protocol used to illustrate the
concept by Di [e, Van Oorschot, and Wiener in [8].

Lowe’s attack, of course, does not mean the Station-to-Station protocol is
insecure. (Indeed, this very feature of that protocol is seen as a desirable property
in the latest version of IKEv2, the proposed replacement to the Internet Key
Exchange protocol [17]). All it does is show that, if the name of the intended
recipient is not included in the responder’s message, a definition of security that
is specified in terms of conditions on correspondence between messages will not
catch lack of agreement on information that is never sent.

Lowe’s solution to this problem in [18] was to strengthen the matching proto-
col runs requirement to include the condition that when A completes a protocol
run with B, then not only should the two protocol runs match, but B should
believe that he has been running the protocol with A. In a later paper, [19],
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he developed this idea further, developing a hierarchy of authentication require-
ments which gave conditions of varying degrees of strictness on the conclusions
a principal A could draw about B’s view of the protocol after completing the
protocol with B. These were then formalized using the process algebra CSP.

The least restrictive requirement Lowe gave was liveness, which simply re-
quires that, when A completes a run of the protocol, apparently with B, then
B has also been running the protocol. Moving further up the hierarchy, we re-
quire A and B to agree on messages sent as well as identities (this requirement
correspondes roughly to matching protocol runs), to agree on the roles they are
playing, to agree on the values of specific data items, and so forth.

We see now that we are moving away from extensional requirements that can
be specified independently of the protocol, and more to intensional requirements.
If principals need to agree on specific data items, we need to specify what these
data items are, and where they occur in the protocol. The next step would be
to specify the conditions on events that occur in protocols. Indeed, it should
be possible to specify the types of requirements we are interested in using the
temporal logics that are generally used to provide correctness specifications for
model checkers.

This is the sort of reasoning that lay behind Syverson and Meadows’ devel-
opment of a requirements language for the NRL Protocol Analyzer [32], which
eventually became known as the NRL Protocol Analyzer Temporal Require-
ments Language (NPATRL). The idea is to develop a simple temporal language
that can be used to specify the type of requirements that are commonly used
in authentication and key distribution protocols. The atomic components of the
language correspond to events in the protocol (e.g. the sending and receiving
of messages, or the intruder’s learning a term). Besides the usual logical con-
nectives, it contains only one temporal operator, ar “happened previously.”
The use of this single logical operator reflects the fact that most correspondence
requirements can be expressed in terms of events that must have or must have
not occurred before some other events.

Although NPATRL is a very simple language, we have found it useful for
specifying some widely varying types of cryptographic protocols. These include
key distribution and key agreement protocols [30,31], complex electronic com-
merce protocols such as SET [22], and, most recently, group key distribution
protocols [23].

One interesting result of our experience is that we have found NPATRL in-
creasingly useful for specifying complex secrecy requirements as well as complex
authentication requirements. Early requirements for secrecy simply designated
some information, such as keys, as secret, and all that needed to be guaran-
teed was that these keys would not be available to an intruder. However, more
recently, requirements such as perfect forward secrecy put other conditions on
an intruder learning a term. Perfect forward secrecy requires that, if a master
key is compromised, then an intruder can only learn a session key after the
compromise, not before. Such a requirement is straightfoward to specify using a
temporal language.
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Of course, temporal logics are not necessary in order to specify these types
of requirements. Other formalisms will work as well. For example, Schneider
[28] defines authentication in terms of the messages that must precede a given
message, and secrecy in terms of another correspondence requirement, that the
intruder should not learn data unless that data was explicitly sent to the intruder.
Both of these are formalized in CSP.

Another approach to requirements, taken by Focardi et al. [12], allows one to
specify requirements of varying degree of generality. They make use of notions
derived from noninterference. Their notion of correctness, Generalized Nonde-
ducibility on Composition, or GNDC, is defined as follows.

We let P be a process representing a cryptographic protocol operating in the
absence of an intruder. Let (P ||X) denote the composition of P with an intruder
X. Let a denote a function from processes to processes where a(P) is a process
describing the “correct” behavior of P. Let = denote a preorder. Let C denote
the set of channels between honest principals, and let Q C denote the restriction
of a process Q to C. Then a process satisfies GNDCZ, if, for all intruders X

(PIIXN\C = a(P)

In the case of that a is the identity function and [Cisltrace equivalence, the
property becomes N DC, or Nondeducibility on Composition, which requires that
the traces produced by the process in composition with an intruder be the same
as the traces produced by the process in the absence of the intruder. This can be
thought of as an information-flow property in which the intruder and P play the
apart of High and Low, respectively, corresponding to the standard multilevel
application of noninterference for multilevel security [14]. NDC, since it requires
that a process behave in the presence of an intruder exactly at it would behave
in the absence, is more stringent than any of the other requirements that have
been discussed in this section. As a matter of fact, we can consider it the most
stringent definition possible, closely akin to the fail-stop definition of protocol
security of Gong and Syverson[13]. Moreover, GNDC provides a framework that
allows one to specify less restrictive requirements such as the various forms of
correspondence discussed earlier, and the types of requirements that would be
defined in a temporal language such as NPATRL. Thus GNDC can be thought
of as providing a general framework for requirements, including requirements
that go beyond the usual notions of correspondence, such as liveness.

Another technique that deserves mention is the notion of using type theory
to specify security requirements and evaluate the correctness of protocols [1,
15]. Here components making up a protocol, such as data, channels, etc. are
assigned di[erent types, such as secret or public. Rules are also developed for
deriving types from the results of applying operations, such as encryption, on
data. Security violations can be defined in terms of typing violations, such as a
piece of data type public appearing on a channel of type public. Most of this
work has been applied to the type-checking of secrecy properties, but Gordon and
Je [rely [15,16] have developed ways of applying it to correspondence properties,
specifically one-to-one ( each event of a certain type should be preceded by one
and only one event of a certain other type) and one-to-many (each event of a
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certain type should be preceded by at least one event of a certain type). Since
the types are supplied as part of the protocol specification, this application of
type theory gives a nice way of incorporating a requirements specification as an
annotation on the protocol.

4 Graphical Requirements Languages

Languages and frameworks such as NPATRL and GNDC allow us increasing
flexibility and expressiveness for specifying requirements. But, the ability to
specify more complex and subtle requirements also has a cost; the requirements
become more di Ccult to comprehend and write. In this section we discuss two
graphical approaches to increasing the ease of handling such specifications that
make use of some of the common features of cryptographic protocols and their
requirements.

The first of these is known as Strand Space Pictures [10]. Strand spaces [11]
are a well-known and popular model for cryptographic protocol analysis, in which
the actions of principals are modeled in terms of graphs. A strand represents a
principal executing a role in a protocol. The sending and receiving of messages
is represented by positive and negative nodes. Nodes that represent one event
immediately preceding another on a strand are connected by double arrows. A
bundle is a collection of strands, in which positive send nodes can be connected
to negative receive nodes via a single arrow if the message sent matches the mes-
sage received. This model facilitates the graphical representation of protocols,
and [10] actually describes a number of ways in which the graphical features of
strand spaces could be used, but the one of most interest to us is the way in
which they can be used to represent requirements. Using strand space represen-
tation of protocols, it is possible to represent correspondence requirements in
terms of relative placement of strands. Thus, if we want to specify a correspon-
dence requirement which requires that if certain messages are accepted, then
other messages were sent previously, we can represent sending and receipt of the
messages we are interested in by portions of strands, and we can use the place-
ment of the strands (so that earlier nodes appear above later ones) to indicate
which events we want to occur before others.

The strand space pictures methodology, was never, as far as we know, devel-
oped into a full-fledged procedure with well-defined ways for representing major
classes of requirements. However, in [10] the authors give several examples which
show how some standard requirements such as freshness or agreement properties
could be represented in this framework.

It is also possible to use strand spaces to provide a very convenient way of
expressing a limited type of correspondence. Strands can be parameterized by
the name of the principal executing the strand and the data it sends and re-
ceives. Thus, in the Station-to-Station protocol the initiator’s strand would be
parameterized by Init[A, B, X, Y, K], while the responder’s would be parame-
terized by Resp[B, A, X,Y,K], where X and Y are the initiator’s and respon-
der’s Di [Ce-Hellman components, respectively, and K is the key derived from
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the Di [Ce-Hellman exchange. Earlier, we described how Lowe showed that af-
ter A completed the Station-to-Station protocol, A and B would agree on B’s
identity and on the Di Ce-Hellman components and key, but not A’s identity.
We could express that fact as a requirement that, after an initiator A finishes
executing the protocol, apparently with a responder B, if the initiator’s strand
is InitfA, B, X, Y, K], then the responder’s strand is Resp[[[A, X, Y, K], where
* denotes a wild card. Unlike the strand space pictures, this notation cannot
express conditions on the relative times of occurrence of events from two dif-
ferent strands. However, since many requirements have to do not so much with
agreement on placement of events as with agreement on data such as keys, this
notation has been useful for in a number of dilerent cases. It would be inter-
esting to see how far it could be extended and still retain its compactness and
readability.

A somewhat di [erknt approach has been taken by Cervesato and Meadows [7]
in the development of a graphical representation of the NPATRL language. This
representation was based on the fact that queries in the NRL Protocol Analyzer,
for which NPATRL was designed, are couched in terms of events that should or
should not precede some specified event. Such a way of formatting queries has an
obvious connection to fault trees. A fault tree is a graphical means of represent-
ing failure modes in safety-critical systems. The root of the tree represents the
failure with which the system designer is concerned, and the branches represent
the conditions under which the fault can occur. The main dilerence between
NPA queries and fault trees is that in NPA queries the relationship is one of
precedence, while in fault trees it is one of causality. Otherwise the structure is
very similar. Moreover, the graphical representation makes it easier to under-
stand the relationships between the various events. For this reason, we found it
very helpful, in particular, to represent the GDOI requirements, especially the
more complex ones, in terms of fault trees. In [7] a fault tree semantics for the
subset of NPATRL requirements accepted by the NPA is developed, and some
sample requirements are shown.

5 Quantitative and Probabilistic Requirements

So far, with few exceptions, the requirements we have looked at have dealt
with safety requirements for discrete systems. This fits well when we want to
analyze authentication and key distribution protocols that follow the Dolev-Yao
model, where the cryptosystem is a black box, and principals communicate via
a medium controlled by a hostile intruder who can read, alter, and intercept
all tra Cc._But, since the correctness of a protocol depends on the correctness
of the cryptoalgorithm that uses as well as the way it uses those algorithms,
it would be useful to have correctness criteria that took the properties of the
cryptoalgorithms into account.

Prior to and concurrent with the explosion of formal methods approaches to
cryptographic protocol analysis, there has been a parallel e[ant in developing
correctness criteria for cryptoalgorithms and cryptographic protocols based on
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complexity-theoretic approaches. Indeed, the work of Bellare and Rogaway cited
earlier was developed in such a context. What has been lacking however, has
been a means of integrating such a complexity-theoretic approach with the logical
systems that we have been considering in this paper. However, some work in this
area is beginning to appear, such as the work of Abadi and Rogaway [2], which
considers a complexity-theory based model as a semantics for a logical system,
although it restricts itself to secrecy requirements, and the work of Mitchell et al
[25], which develops a notion of bisimulation that takes into account complexity-
theoretic and probabilistic considerations.

The use of cryptography is not the only place where quantitative require-
ments become relevant. For example, many anonymity protocols, are intended
to provide a statistical notion of security. An intruder may have a nontrivial
chance of guessing the identity of a sender or receiver of tra [c, but we do not
want that chance to exceed a certain threshold. Protocols intended to protect
against denial of service attacks may need to limit the the amount of resources
expended by a responder in the early steps of the protocol. Recently, researchers
have begun to investigate ways of applying formal methods to the analysis of pro-
tocols that must satisfy quantitative requirements. Examples include the work of
Meadows on a model for the analysis of protocols resistance to denial of service
[21] where requirements are specified in terms of a comparison between resources
expended by a responder versus resources expended by an initiator; the work
of Buttyan and Hubaux [6] on rational exchange protocols, in which a protocol
is modeled as a game in which all principals are assigned payo[s,Jand an ex-
change protocol is deemed rational if the strategies available to all participants
form a Nash equilibrium; and the work of Shmatikov on anonymity protocols
and contract signing, in which the protocols and their requirements are mod-
eled in terms of Markov chains [29,26], making them amenable to analysis by
probabilistic model checkers.

6 Conclusion

We have given a brief survey of research in expressing cryptographic protocol
requirements. We believe that it this point we have a good handle on the spec-
ification of the standard secrecy and correspondence requirements of security
protocols. It appears possible to derive techniques that are compatible with
just about any type of formal system, and we have a vast range of requirement
specification styles, from one end of the extensional-intensional spectrum to the
other.

There are of course a number of areas in which work on cryptographic pro-
tocol requirements needs to be extended. One is in making the requirements
language user-friendly. Security protocols, and thus their requirements, can be
complex; even more so when one must consider operation in partial failure modes
such as compromise of temporary session keys. Thus it makes sense to concen-
trate on ways of making requirements languages easier to use, even when the
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requirements are complex. In this paper we discussed some of the work on graphic
requirements languages that attempts to address this problem.

Another area in which work is just starting is in extending cryptographic
requirements specifications beyond secrecy and correspondence. These would
apply to protocols whose goals go beyond those of key distribution and authen-
tication that have traditionally been handled in this area. One area of particular
interest here is quantitative requirements. We have pointed out some areas in
which the ability to understand a protocol’s behavior from a quantitative point
of view appears to be crucial. In this case, not only requirements need to be
developed, but formal models for specifying the protocols that must satisfy the
requirements. We have described some of the work in this area as well.

There are some other areas which could also use more exploring. For example,
many electronic commerce protocols must satisfy various types of non-safety
requirements. Is it possible to develop ways of characterizing and specifying these
requirements in ways that are particularly relevant to security protocols, as has
been done for the safety properties of secrecy and correspondence? Another area
of research has to do with interoperability. Increasingly, many protocols will rely
upon other protocols to supply some of their security services. What is the best
way to specify services needed by one protocol in terms of requirements upon
another? We hope to see research in these and other emerging areas in the near
future.
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A Tail-Recursive Semantics for Stack Inspections
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Abstract. Security folklore holds that a security mechanism based on
stack inspection is incompatible with a global tail call optimization pol-
icy. An implementation of such a language may have to allocate memory
for a source-code tail call, and a program that uses only tail calls (and no
other memory-allocating construct) may nevertheless exhaust the avail-
able memory. In this paper, we prove this widely held belief wrong. We
exhibit an abstract machine for a language with security stack inspection
whose space consumption function is equivalent to that of the canonical
tail call optimizing abstract machine. Our machine is surprisingly simple
and suggests that tail-calls are as easy to implement in a security setting
as they are in a conventional one.

1 Stacks, Security, and Tail Calls

Over the last ten years, programming language implementors have spent signifi-
cant e [aft on security issues. This e [ant takes many forms; one is the implemen-
tation of a strategy known as stack inspection [17]. It starts from the premise
that trusted components may authorize potentially insecure actions for the dy-
namic extent of some ‘grant’ expression, provided that all intermediate calls are
made by and to trusted code.

In its conventional implementation, stack inspection is incompatible with
a traditional language semantics, because it clashes with the well-established
idea of modeling function calls with a B or B, reduction [13]. A B reduction
replaces a function’s application with the body of that function, with the func-
tion’s parameters replaced by the application’s arguments. In a language with
stack inspection, a  or B, reduction disposes of information that is necessary
to evaluate the security primitives.

For this reason, Fournet and Gordon [7] model function calls with a non-
standard B-reduction. To be more precise, B does not hold as an equation for
source terms. Abstraction bodies are wrapped with context-building primitives.
Unfortunately, this formalization prohibits a transformation of this semantics
into a tail-call optimizing (TCO) implementation. Fournet and Gordon recognize
this fact and state that “[S]tack inspection profoundly aledts the semantics of
all programs. In particular, it invalidates [...] tail call optimizations.” [7]

This understanding of the stack inspection protocol also pervades the im-
plementation of existing run-time systems. The Java design team, for example,
chose not to provide a TCO implementation in part because of the perceived
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incompatibility between tail call optimizations and stack inspection.® The .NET
e[ant at Microsoft provides a runtime system that is properly TCO—except
in the presence of security primitives, which disable it. Microsoft’s documen-
tation [12] states that “[t]he current frame cannot be discarded when control
is transferred from untrusted code to trusted code, since this would jeopardize
code identity security.”

Wallach et al. [18] suggest an alternate security model that accommodates
TCO implementations. They add an argument to each function call that repre-
sents the security context as a statement in their belief logic. Statements in this
belief logic can be unraveled to determine whether an operation is permitted.
Unfortunately, this transformation is global; it cannot be applied in isolation
to a single untrusted component, but requires the rewriting of all procedures in
all system libraries. They also fail to provide a formal language semantics that
allows a Fournet-Gordon style validation of their claims.

Our security model exploits a novel mechanism for lightweight stack inspec-
tion [6]. We demonstrate the equivalence between our model and Fournet &
Gordon’s, and prove our claims of TCO. More precisely, our abstract implemen-
tation can transform all tail calls in the source program into instructions that
do not consume any stack (or store) space. Moreover, the transformation that
adds security annotations to the untrusted code is local.

We proceed as follows. First, we derive a CESK machine from Fournet &
Gordon’s semantics. Second, we develop a dilerent, but extensionally equiva-
lent CESK machine that uses a variant of Flatt’s lightweight stack inspection
mechanism [6]. Third, we show that our machine uses strictly less space than
the machine derived from Fournet and Gordon’s semantics and that our machine
uses as much space as Clinger’s canonical tail-call optimizing CESK machine [4].

The paper consists of nine sections. The second section introduces the Agec
language: its syntax, semantics, and security mechanisms. The third section
shows how a pair of tail calls between system and applet code can allocate an
unbounded amount of space. In the fourth section, we derive an extensionally
equivalent CESK machine from Fournet and Gordon’s semantics; in the fifth
section, we modify this machine so that it implements all tail calls in a properly
optimized fashion. The sixth section provides a precise analysis of the space con-
sumption of these machines and shows that our new machine is indeed tail-call
optimizing. In the seventh section, we discuss the compatibility of our model of
Asec With Fournet and Gordon’s, using their theory of contextual equivalence.
The last two sections place our work into context.

2 The Ay Language

Fournet and Gordon use as their starting point the Agec-calculus [14,16], a sim-
ple model of a programming language with security annotations. They present
two languages: a source language, in which programs are written, and a target
language, which includes an additional form for security annotations. A trusted

! Private communication between Guy Steele and second author at POPL 1996
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annotator performs the translation from the source to the target, annotating
each A-expression with the appropriate permissions.

In this security model, all code is statically annotated with a given set of per-
missions, chosen from a fixed set P. A program fragment that has permissions R
may choose to enable some or all of these permissions. The set of enabled permis-
sions at any point during execution is determined by taking the intersection of
the permissions enabled for the caller and the set of permissions contained in the
callee’s label. That is, a permission is considered enabled only if two conditions
are met: first, it must have been legally and explicitly enabled by some calling
procedure, and second, all intervening stack frames must have been annotated
with this permission.

The source language (Ms) adds three expressions to the basic call-by-value
A-calculus. The test expression checks to see whether a given set of permissions
is currently enabled, and branches based on that decision. The grant expression
enables a privilege, provided that the context endows it with those permissions.
Finally, the fail expression causes the program to halt immediately, signaling
a security failure. Our particular source language also changes the traditional
presentation of the A-calculus by adding an explicit name to each abstraction so
that we get concise definitions of recursive procedures.

ISYNTAX
M,N =x| M N | Afx.M | grant R in M
| test R then M else N | fail | R[M]
x [CIdentifiers o
R [P1
V [Vhlues = X | A¢X.-M
The target language (M) adds a framing expression to this source language
(underlined in the grammar). A frame specifies the permissions of a component
in the source text. To ensure that these framing expressions are present as the
program is evaluated, we translate source components into target components by
annotating the result with the source-appropriate permissions. In our case, com-
ponents are A-expressions. The annotator below performs this annotation, and
simultaneously ensures that a grant expression refers only to those permissions
to which it is entitled by its source location.?

ANNOTATOR  A:2° L. Ms - M
AR[x] =x
AR[A:X.M] = AexX.R[AR[MT]
AR[M NJ = AR[M] AR[N]
AR[grant S in M] =grant S n R in AR[M]
AR[test S then M else N] = test S then AR[M] else AR[N]
AR[fail] = fail

2 Fournet and Gordon present a semantics in which this check is performed at runtime.
Section 7 discusses the di[erences between the two languages in more detail.
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The annotator A consumes two arguments: the set of permissions appropriate
for the source and the source code; it produces a target expression. It commutes
with all expression constructors except for A and grant. For a A expression, it
adds a frame expression wrapping the body. For a grant expression, it replaces
the permissions S that the expression specifies with the intersection S n R. So,
if a component containing the expression grant {a, b} in E were annotated with
the permissions {b, c}, the resulting expression would read grant {b} in E~(where
Erepresents the recursive annotation of E).

We adapt Fournet & Gordon’s semantics to our variant of Agec mutatis mu-
tandis. Evaluation of programs is specified using a reduction semantics based
on evaluation contexts. In such a semantics, every expression is divided into an
evaluation context containing a single hole (denoted by <), and a redex. An eval-
uation context is composed with a redex by replacing the context’s hole with
the redex. The choice of evaluation contexts determines where evaluation can
occur, and typically the evaluation contexts are chosen to enforce deterministic
evaluation; that is, each expression has a unique decomposition into context and
redex. Reduction rules in such a semantics take the form “E[f] B E[g],” where
f is a redex, g is its contractum, and E is the context (which may be observable,
as for instance in the test rule).

CONTEXTS
E=<|EM]|V E|grant R in E | R[E]

REDUCTION RULES

EAsx.M V] B E[[AsxX.M/F][V/X]M]
ERV]] B E[V]
Efgrant RinV] 3
E[M] if OK[RI[E]
E[N] otherwise
E[fail] B fail

E[test R then M else N] B

where
OK[OME] = true
OKI[RI][=] = true
OK[RI[E[+ M]] = OK[RI[E]
OK[R]J[E[V -]] = OK[R][E]
OK[RI[E[S[-]l] = R [SILOK[R][E]
OKJRI]IE[grant S in <]] = OK[R — S]IE]

This semantics is an extension of a standard call-by-value reduction seman-
tics. The hole and the two application contexts are standard and enforce left-to-
right evaluation of arguments. The reduction rule for applications is also stan-
dard. The added contexts and reduction rules for frame and grant expressions are
interesting in that they are largely transparent; evaluation may proceed inside
of either form, and each one disappears when its expression is a value. These
expressions aledt the evaluation only when a test expression occurs as a redex.
In this case, the result of the reduction depends on the OK predicate, which is
applied to the current context and the desired permissions.
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The OK predicate recurs over the continuation from the inside out, suc-
ceeding either when the permissions remaining to check are empty or when the
context is exhausted. The OK predicate commutes with both kinds of applica-
tion context. In the case of a frame annotation, the desired permissions must
occur in the frame, and the predicate must succeed recursively. Finally, a grant
expression removes all permissions it grants from the set of those that need to
be checked. The stack inspection protocol is, at heart, a lightweight form of
continuation manipulation [3].

In Fournet and Gordon’s framework, a program consists of a set of compo-
nents, each one a closed A-expression with its own set of permissions.

Definition 1 (Components). A [CComponents = Agx.Mg, R[]

Finally, the Eval function determines the meaning of a source program. A
program consists of a list of components. Evaluation is performed by annotating
each A-expression with the permissions of its component, and combining all
such expressions into a single application. This application uses the traditional
abbreviation of a curried application as a single one.

Definition 2 (Eval).

Eval(R¢Xx.Myo, Ro[1..) =V if (ARo[AfX.Muo] ...) BV

Since the first component is applied to the rest, it is presumed to represent
the runtime system, or at least a linker. Eval is undefined for programs that
diverge or enter a stuck state.

3 Tail-Call Optimization

Modern functional programming languages avoid looping constructs in favor of
recursion. Doing so keeps the language smaller and simplifies its implementation.
Furthermore, it empowers programmers to match functions and data structures,
which makes programs more comprehensible than random mixtures of loops and
function calls. Even modern object-oriented programmers have recognized this
fact, as indicated by the inclusion of tail-call instructions in Microsoft’s CLR [2]
and the promotion of traversal strategies such as the interpreter, composite, or
visitor patterns [8].

Of course, if function calls were implemented naively, this strategy would
introduce an unacceptably large overhead on iterative computations. Each it-
eration would consume a stack frame and long loops would quickly run out of
space. As Guy Steele pointed out in the late 1970’s, however, language designers
can have e [ciehcy and a small language if they translate so-called tail calls into
instruction sequences that do not consume any space [9]. Typically, such function
calls turn into plain jumps, and hence, the translation of a tail-recursive function
equals the translation of a looping construct. Using this reasoning, the language
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definitions for Scheme require that correct implementations must optimize all
tail-calls and thereby “support an unbounded number of active tail calls” [11].

At first glance, tail-call optimization seems inherently incompatible with
stack inspection. To see this, consider a mutually recursive loop between ap-
plet and library code.

I
ABBREVIATIONS
A
UserFn = AyserSYS.Sys user

A
SystemFn = Asysuser.user sys
ARa[UserFn] = AuserSys.Ra[sys user]
ARs[SystemFn] = Asysuser.Rs[user sys]

REDUCTION (W/ ANNOTATIONS)
ARa[UserFn] ARs[SystemFn]
5 Ra[ARs[SystemFn] ARa[UserFn]]
5 Ra[Rs[ARa[UserFn] ARs[SystemFn]]]
B Ra[Rs[RaA[ARs[SystemFn] ARa[UserFn]]]]
B Ra[Rs[Ra[Rs[ARa[UserFn] ARs[SystemFn]]]]]

REDUCTION (W/O ANNOTATIONS)
UserFn SystemFn
3 SystemFn UserFn
3 UserFn SystemFn
3 SystemFn UserFn
3 UserFn SystemFn

This program consists of two copies of a mutually recursive loop function,
one a ‘user’ component and one a ‘system’ component. Each takes the other as
an argument, and then calls it, passing itself as the sole argument. To simplify
the presentation of the looping functions, we introduce abbreviations for the user
and system procedures.

This program is a toy example, but it represents the core of many interactions
between user and system code. For instance, any co-routine-style interaction be-
tween producer and consumer exhibits this behavior—unfortunately, program-
mers are forced to avoid this powerful and natural style in Java precisely because
of the lack of tail-call optimization. Perhaps the most common examples of this
kind of interaction occur in OO-style traversals of data structures, such as the
above-mentioned patterns.

The first reduction sequence illustrates the steps taken by Asec in evaluating
the given program, where the two procedures are annotated with their permis-
sions. In this example, the context quickly grows without bound. A functional
programmer would expect to see a sequence more like the second one. This series
is also a reduction sequence in Agc, but one which is obtained by evaluating the
program’s pure source.
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As Fournet and Gordon point out in their paper, all is not lost. They intro-
duce an additional reduction into their abstract machine that explicitly removes
a frame before performing a call. Unfortunately, as they point out, indiscriminate
application of this rule changes the semantics. Thus, they impose strict condi-
tions that the machine must check before it can apply the rule. The rule and its
side conditions clarify that an improved compiler can turn some tail calls into
jumps, but Fournet and Gordon state that many tail calls cannot be optimized.

4  An Abstract Machine for Agec

Following Clinger’s work on defining tail-optimized languages via space complex-
ity classes [4], we reformulate the Asec sSemantics as a CESK machine [5]. We can
then measure the space consumed by machine configurations, programs, and ma-
chines. Furthermore, we can determine whether the space consumption function
of an implementation is in the same complexity class as Clinger’s machine.

4.1 The fg Machine

We begin with a direct translation of Ag’s semantics into a CESK machine,
which we call “frame-generating” or fg (see figure 1). A CESK machine has
four registers: the control string, the environment, the store, and the continua-
tion. The control string indicates which program instruction is being reduced.
In conventional machines, this is called the program counter. The environment
binds variable names to values, much like the current stack frame of an assembly
language machine. The store, like a heap, contains shared values.® Finally, the
continuation represents the instruction’s control context; it is analogous to the
stack.

The derivation of a CESK machine from a reduction semantics is straight-
forward [5]. In particular, the proof of equivalence of the two models is a refine-
ment of Felleisen and Flatt’s proof, which proceeds by a series of transformations
from a simple reduction semantics to a register machine. At each step, we must
strengthen the induction hypothesis by adding a claim about the value of the
OK predicate when applied to the current context.

The new Eval function is abstracted over the machine under consideration. In
particular, the definition of Evaly for a machine x depends both on the transition
function, B «, and on the empty context, emptyy.

In order to ensure that Eval and Evalgy are indeed the same function, the
Evalx function must employ a “load” function L at the beginning of an execu-
tion that coerces the target program to a valid machine configuration, and an
“unload” function U at the end, which recursively substitutes values bound in
the environment for the variables that represent them.

3 The store in our model is necessitated by Clinger’s model of tail call optimization;
a machine with no store can grow without bound due to copying.
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THE FG MACHINE

Cig = M, p, 0, k] IV, p, 0, K] IV, o ] fail

K = J fpush : M, p, k] [call : V, kO dtame : R, k] [grant : R, k]
V [\hlues = [closure : M, p]

p [Identifiers — ¢ Locations

a, 3 [ILbcations
o [Ibcations - ¢ Values

empty;, = [0

Qex.M, p, 0, KB ¢y [TElosure : AeX.M, pLp, 0, K]
X, p, 0, kD ¢ [@(p(x)), p, 0,k

M N,p,0, KB ¢y M, p, 0, [Aush : N, p, KD

[B[M], p, o, KDBfg (1, p, 0, [ftame : R, k[
@ant R in M,p,G, KDBfg I@,c, @ant: R, k[
M, p, o, kOif OKg[R][IK]
[N, p, 0, kKCdtherwise
[fail, p, o, KB ¢4 fall

[fést R then M else N, p, 0, K[IB ¢4

M, p,0, B¢ (M, ol
[V, p, 0, [push : M, pY kB ¢y M, pYo, [call : V, kD
™V, p, 0, [call : VIKB ¢ N, pFf 3 Bl[x B o], cla B V][B B VT kO
if V= [Closure : A¢x.M, pHand a, B Idbm(o)
M, p, o, tame : R, kD ¢y M, p, 0, K
M, p, 0, [grant : R, KB ¢, M, p, 0, K[

™, p,0[B,... 3 V5. ], k(B ,p,0,K]
if {B,...} is nonempty and
B,... do not occur inV, p, 0, or K
where
OKy[ O] = true
OKgw[RI[E= true
OKg[RI[Mush : M, p, k= OKy[R]IK]
OKg[R][call : V, k[J= @Ky[R][K]
0. OKgl[R]IK] if R CRF
OKg[R][Hiame : R K= falseggtggrv]vise
OKg[R][grant : RYk[I= OKg[R — RY[K]

Fig. 1.

Definition 3 (Evaly).
Evaly(A,...) = U(V,0) if Ly(A,...) Ox (9,00
where

Lx(eX.Myo, RoLd..) = [ARo[AsX.Myo] ...), L1 émpty, []

d
an U(fclosure : M, {Xy, a1 1. ., X, a, L) =
[U(o(a1))/x1]...[U(a(an))/%n]M
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Theorem 1 (Machine Fidelity). For all (Mg, Ro[J. ),
Evalfg(EN‘Io, RoCd. ) =V i EEV&'([M(), RoC1. ) =V

The proof proceeds by induction on the length of a reduction sequence.

4.2 The fg Machine Is Not Tail-Call-Optimizing

To see that this implementation of the As language is not TCO, we show the
reduction sequence in the fg machine for the program from section 3, and validate
that the space taken by the configuration is growing without bound.

UserClo £ [Closure : Auser SYS.ARa[UserFn], [T
SystemClo £ [closure : Asysuser ARs[SystemFn], [T
Po = [sys B a,user B ]
Oo = [a B SystemClo, 3 B UserClo]

[ABRa[UserFn] ARs[SystemFn], [T
By BRa[UserFn], CLdpush : ARs[SystemFn], LI
Bty MserClo, L L dpush : ARs[SystemFn], LI
B+ [BRs[SystemFn], CILIcall : UserClo, TN
B tg [SystemClo, LT Tcall : UserClo, 11T
By [Ra[sys user], po, 0o, (M
By [SYs user, po, 0o, [ftame : Ra, M
Bty [SYs, po, 0o, [push : user, po, [dtame : Ra, (I
By [SystemClo, po, 0o, [aush : user, po, fiame : Ra, I
5 g [User, po, 0o, [chll : SystemClo, [ftame : Ra, [T
By MserClo, po, 0o, [call : SystemClo, [ftame : Ra, (II1T]
Iﬁfg [Rs[user sys], po, 0o, fiame : Ra, (11T
B¢y [Uker sys, po, 0o, [ftame : Rs, ffame : Ra, 1111
B ¢y [UBer, po, 0o, [AUSsh : sys, po, (tame : Rs, dfame : Ra, I
B g M™serClo, po, 0o, [AUsh : sys, po, (tame : Rs, [tame : R, I
B9 [SYs, po, 0o, [chll : UserClo, [ftame : Rs, [ftame : R, [T
By [SystemClo, po, 0o, [call : UserClo, [ftame : Rs, dfame : Ra, [T
ijg [MserClo, po, 0o, [Chll : SystemClo, ftame : Ra, dtame : Rs, ftame : Ra, (IIIIIIT]
ﬁfg [SystemClo, po, 0o,
[chll : UserClo, [ftame : Rs, [ftame : Ra, [ftame : Rs, [ftame : Ra, [T

5 An Alternative Implementation

5.1 How Security Inspections Really Work

A close look at Agec shows that frame and grant contexts a [edt the computation
only when they are observed by a test expression. That is, a program with no
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test expressions may be simplified by removing all frame and grant expressions
without changing its meaning. Furthermore, the observations possible with the
test expression are limited by the OK function.

In particular, any sequence of frame and grant expressions may be collapsed
into a canonical table that provides a partial map from the set of permissions to
one of two conditions: ‘no’, indicating that the permission is not granted by the
sequence, and ‘grant’, indicating that the permission is granted (and legally so)
by some grant frame in the sequence.

To derive update rules for this table, we consider evaluation of the OK func-
tion as the recognition of a context-free grammar over the alphabet of frame
and grant expressions. We start by simplifying the model to one with a single
permission. Then each frame is either empty or contains the desired permis-
sion. Likewise, there is only one possible grant. All other continuation frames
are irrelevant. So a full evaluation context can be seen as an arbitrary string in
the alphabet ~ = {y, n, g}, where y and n represent frames that contain or are
missing the given permission, and g represents a grant. Assume the ordering of
the letters in the word places the outermost frames at the left end of the string.

With the grammar in place, the OKyy predicate can easily be interpreted as
a finite-state machine that recognizes the regular expression = gy ~that is, a
string ending with a grant followed by any number of y’s. The resulting FSA has
just two states, one accepting and one non-accepting. A g always transitions to
the accepting state, and a n always transitions to the non-accepting state. Ay
causes a (trivial) transition to the current state.

This last observation leads us to a further simplification. Since the presence
of the character y does not aledt the decision of the FSA, we may ignore the
continuation frames that generate them, and consider only the grant frames and
those security frames that do not include the desired permission. The regular
expression indicating the success of OK¢, becomes simply = 'g!

Now consider the reduction semantics again. Although a context represents a
long string, we cannot reduce all permission information in a context to a single
state in our machine, because the context also contains expressions waiting to
be evaluated. In other words, there are many prefixes of this “permission word”
that evaluation depends on. Whenever a sequence of frame and grant expressions
occurs without interruption, however, it is safe to collapse it, and it is easy to see
how to do so. A substring ending in a g results in an accepting state, a substring
ending in an n results in a non-accepting state, and the empty substring does
not alter the decision. To extend this to the whole language, we must expand
our single-permission state to a full table of permissions.

This reasoning also provides an intuitive understanding for the componential
nature of our annotation scheme. Consider the evaluation of a program con-
taining both annotated and unannotated components. Since this computation
ignores security frames indicating the presence of a given permission, code that
has not been annotated at all is equivalent to code that has been granted all
permissions. This means that system libraries need not be recompiled to take
advantage of such a scheme.
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ITHE CM MACHINE
m - ¢ {grant, no}

configurations : Cey = M, p, 0, K] M, p, 0, K] M, o [] fail
K = [empty : mJ [push : M, p,k, m] [call : V,k, m]
V [Vhlues = [closure : M, p[]
p [CIdentifiers - ¢ Locations
a,3 [Ibcations
o [Ibcations - ¢ Values
empty,,, = [empty : [TT

Aex.M, p, 0, KCIB cm [IElosure : Asx.M, pLp, 0, K]
IX" p’ 0, KDBCT“ (p(X)), pl o, k]

m vavchDch [M,p,c, @Sh . N,p,K, m

[R[M], p, 0, KB ¢ M1, p, 0, K[R B no] T
[grant R in M, p, 0, KB ¢ %),0, K[R B grant][]
M, p, o, KCIf OKem[RIIK]
(N, p, 0, KCdtherwise
[fail, p, 0, KB ¢, fail

(fést R then M else N, p, 0, KB ¢y

M, p, o, lempty : mMG ¢ M, o1
¥, p, 0, [ush : M, pHk, mD ¢, M, pYo, call : V, k, [
M, p, 0, [l : VI, mB ., M, pff 3 B][x B a],cla B V][R S VT kO
if V= [Eosure : A¢x.M, pand a, B Idbm(o)

M, p,0[B,...5 V,..], kB m M, p,0,k]
if {B,...} is nonempty and
B,... do not occur inV, p, g, or K
where
., mIR B c]=0L].,m[R B c]{pointwise extension)

and

OKen[ K] = true
OKem[R][EMpty : mi=y(R n m~*(no) = 0

SR MBS . 0 = 7l

Fig. 2.

5.2 The cm Machine

In the cm (continuation-marks) machine, each continuation frame contains a
table of permissions, called a mark. The evaluation steps for frame and grant
expressions update the table in the enclosing continuation, rather than increasing
the length of the continuation itself. The OKg, predicate now inspects these
marks, rather than the frame and grant elements of the continuation. Otherwise,
the cm machine is the same as the fg machine (figure 2).
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The Eval., function is an instance of Evaly. That is, Evaley, is the same as
Evalyg, except that it uses B¢y as its transition function and empty.y, as its
empty continuation.

The two machines produce the same results.

Theorem 2 (Machine Equivalence). For all (Mg, Ro[1..),
Evalfg([lmo, Rol]. ) =Vi EEVB.'cm([Mo, RolL]. ) =V

To prove this theorem, we must show that if the fg machine terminates, the cm
machine terminates with the same value, and that if the fg machine does not
terminate in a final state, then the cm machine also fails to terminate.

For the purposes of the proof, we will assume that no garbage collection steps
are taken, because garbage collection cannot al[edt the result of the evaluation.

Lemma 1 (No Garbage Collection). For every evaluation sequence in either
the fg or cm machine, removing every garbage-collection step produces another
legal sequence, and no divergent computation is made finite by such a removal.

To compare the machines, we introduce the function T .

TOM,p,0,kF M, p,0, T (k)
TM,p,0,kEF M, p,0,T(K)
TM,olF M ol]
T (fail) = fail
T I3 [empty : [T
T [push : M, p, K= [push : M, p, T (K), [T
T [call : V, k&= [call : V, T (k), T
T @tame : R, K& T (k)[R B no]
T [grant : R, k& T (K)[R B grant]
The function T maps configurations of the fg machine to configurations of
the cm machine. A step in the fg machine corresponds to either no steps or one
step in the cm machine.

Lemma 2 (Simulation). Given a configuration Ccm, with Ccy = T (Cyg), one
of the following holds:

1. Cyq is either fail or [\, o[

2. Ctg and C¢ny are both stuck.

3. Cig By CF and T (Cfg) =Ccm

4, Cfg gfg Cfg and CemBen T (Cfg)

The proof is a case analysis on the four cases and the configurations of the
machine. The fg machine takes extra steps only when “popping” frame and
grant continuations after reducing their arguments to values.

The cm machine can always represent a sequence of frame and grant expres-
sions with a single mark. The sequence of steps below illustrates this for the
divergent mutually-recursive computation shown in section 3.
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Rs £ {b,c}
Ra é {a, b}

[ARa[UserFn] ARs[SystemFn], LT Tempty : [T

5 cm [ARa[UserFn], LI Tpush : ARs[SystemFn], Clempty : (LI
B ¢m MserClo, LI Ipush : ARs[SystemFn], [ Tempty : (LI

B em [BRs[SystemFn], LI Tcall : UserClo, [empty : (LI

B cm [SystemClo, [T 1chll : UserClo, [empty : LI

B cm [Ra[sys user], po, 0o, [empty : [T

5 em [SYs user, po, 0o, [empty : [{c} B no]IO

5 em [SYs, po, 0o, [push : user, po, [EMpty : [{c} B no] M

5 cm [SystemClo, po, 0o, [Push : user, po, [EMpty : [{c} B no] LI
5 cm [Uker, po, 0o, [chll : SystemClo, [empty : [{c} B no] IO

& cm MserClo, po, 0o, [Call : SystemClo, [empty : [{c} B no] 1M
ﬁcm [Rs[user sys], po, 0o, [empty : [{c} B no]I

5 cm [Oker sys, po, 0o, [eMmpty : [{a,c} B no]

B ¢m [Uker, po, 0o, [PuUsh : sys, po, [eMmpty : [{a,c} B no]I

& cm MserClo, po, 0o, [PUsh : sys, po, [eMpty : [{a,c} B no] LI

B em [SYs, po, 0o, [call : UserClo, lempty : [{a,c} B no] LI

5 cm [QystemClo, po, 0o, [call : UserClo, lempty : [{a,c} B no] LI
B em [MserClo, po, 0o, [call : SystemClo, [empty : [{a,c} B no] LI
Iflcm [QystemClo, po, 0o, [call : UserClo, [empty : [{a,c} B no] LI

6 Space Consumption

In order to apply Clinger’s analytic framework of TCO [4], we must extend his
configuration-measuring function to handle security frames (in the case of the
fg machine) and marks (in the case of the cm machine). Fortunately, we can use
the same function for configurations of both machines. Applying the function to
the configurations assumed by the fg and cm machines during the evaluation of a
program yields space functions S¢y and S¢m, mapping programs to the maximum
space consumed during the evaluations on their respective machines.

With this extension, we can define space complexity classes O(Sgy) and
O(Scm) as the sets of space functions that are asymptotically similar to Sgy and
Scm. We can demonstrate the inclusion of O(Scm) in O(Sry) by mapping config-
urations of the cm machine onto configurations of the fg machine and showing a
worst-case growth of no more than the number of permissions |P|, and the non-
inclusion of O(Sgg) in O(Scm) by choosing a program (like the example shown
earlier) that grows without bound in the fg machine but has a finite bound in
the cm machine.

To directly show that the cm machine is TCO, we must define TCO for this
language. We define an oracular machine that makes the right security decisions
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with no information whatsoever, and then show that the cm machine’s space use
is asymptotically bounded by the complexity class O(S,) induced by the oracle’s
space function S,.

Theorem 3 (Space Complexity). O(Sy) = O(Scm) [COIStg)

7 A Note on TCO in Fournet and Gordon

Our reduction semantics di[erk from that presented by Fournet & Gordon [7].
In particular, our semantics omits runtime checks for grant expressions against
their source permissions. While we have justified this omission with a static
check (section 5.2), it is important to understand that our evaluator di[erk from
Fournet & Gordon’s on programs that do not satisfy this predicate.

The di[erknce in the evaluators induces a further di [erknce in the respective
contextual equivalence theories. In Fournet & Gordon’s theory, the equation

[Tgrant [ih test R then e else f] = [[hrant R in test R then e else f]

holds. The two expressions are contextually equivalent because the permissions
enabled by the grant are dynamically reduced to the empty set at runtime. In our
system, though, this runtime check is omitted and the two expressions therefore
produce di [erkent results.

Although this dierence might suggest that the results of this paper do not
apply to the semantics of Fournet & Gordon, this is not the case. To make this
point, we sketch an optimization path using their theory of contextual equiv-
alence that reduces any program to one that contains at most two frame ex-
pressions and one grant expression for each ordinary expression. This guarantees
that the amount of security information in the program is linear in the size of
the ordinary program.

Consider an expression containing an arbitrarily long (nested) sequence of
frame and grant expressions wrapped around a single ordinary expression e.
Using Fournet & Gordon’s contextual equivalence theory, it can be reduced to
at most two frame expressions wrapped around at most one grant expression
wrapped around e. Informally, this optimization path consists of three specific
optimizations, using four laws from the theory [7, pp. 311-312].

ISELECTED EQUATIONS
(Frame Frame Frame) : R1[R2[R3[e]]] = (R1 n R2)[Rsz[€]]
(Grant Grant) : grant Ry in grant Ry ine =grant R1 [Rb in e
(Frame Grant) : Ry[grant Rz in €] = Ri[grant R1 n Rz in €]
(Frame Grant Frame) : Ry R} [CRalgrant R, in Rz[e]] = R1[Rs[grant Rz in €]]
The first reduces a sequence of three or more frame expressions to two frame
expressions. The second reduces two or more grant expressions to a single grant
expression. The third moves a frame outward past a grant. We conjecture that
these optimizations yield a provably TCO machine semantics that is a direct
modification of Fournet & Gordon’s reduction semantics.
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8 Related Work

This paper is directly inspired by the POPL presentation of a semantics for
stack inspection by Fournet & Gordon [7], and by our earlier research on an
algebraic stepper for DrScheme [3]. In this work, we produced a portable and
provably correct algebraic stepper, based on a novel, lightweight stack inspec-
tion mechanism. Using a primitive function, a program can place continuation
marks on the stack and inquire about existing marks. If a function places two
marks on the stack, the run-time environment replaces the first with the second.
Hence, the manipulation of continuation marks automatically preserves tail-call
optimizations. The key dilerence between our earlier work and this paper is
that continuation marks for security permissions contain negative rather than
positive information. Once we understood this, we could derive the rest of the
ideas here in a straightforward manner.

The initial presentation of stack inspection is due to Wallach et al. [17,18].
They provide informal specifications and multiple implementations for this secu-
rity architecture. Our paper aims to bridge the gap between this implementation
work and the equational reasoning of Fournet & Gordon.

Several others [1,15] have considered the problem of adding tail calls to the
JVM, which does support stack inspection. However, none of these specifically
addressed stack inspection or security, and all of them made the simplifying
assumption that TCO was only possible between procedures of the same com-
ponent; that is, none of them considered calls between user and library code.

Karjoth [10] presents a semantics for access control in Java 2; his model
presents rules for the maintenance of access control information, but leaves the
rules for the evaluation of the language itself unspecified. Because he includes
rules for matching ‘call’ and ‘return’ expressions, his system cannot be the foun-
dation for a TCO implementation.

9 Conclusions

Our paper invalidates the widely held belief among programming language re-
searchers that a global tail-call optimization policy is incompatible with stack in-
spection for security policies. We develop an alternative implementation of stack
inspection; we prove that it preserves the observable behavior of all programs;
and we show that its notion of tail call is consistent with Clinger’s mathematical
notion of tail-call optimization. It is our belief that translating our ideas into
a compiler or a virtual machine imposes no additional cost on the implementa-
tion of any other construct. Finally, we expect that such an implementation will
perform as well or better than a conventional stack inspection implementation.

Acknowledgments. We are grateful to C. Fournet and J. Marshall for their
comments, and to M. Flatt for the design and implementation of continuation
marks.
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Flexible Models for Dynamic Linking
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Abstract. Dynamic linking supports flexible code deployment: partially linked
code links further code on the fly, as needed; and thus, end-users receive updates
automatically. On the down side, each program run may link different versions
of the same code, possibly causing subtle errors which mystify end-users.
Dynamic linking in Java and C# are similar: The same linking phases are involved,
soundness is based on similar ideas, and executions which do not throw linking
errors give the same result. They are, however, not identical: the linking phases
are combined differently, and take place in a different order.

We develop a non-deterministic model, which includes the behaviour of Java and
C#. The non-determinism allows us to describe the design space, to distill the
similarities between the two languages, and to use one proof of soundness for
both. We also prove that all execution strategies are equivalent in the sense that all
terminating executions which do not involve a link error, give the same result.

1 Introduction

Dynamic linking supports flexible code deployment and update: instead of fully linking
code before execution, further code is linked on the fly, as needed. Thus, the newest
version of any imported code is always linked, and the most recent updates are auto-
matically available to users. Dynamic linking was incorporated into operating systems,
e.g., Multics, Unix, and Windows, enabling applications to share code, thus saving disk
and memory usage. Recently, Java and C# incorporated dynamic linking into the lan-
guage.

One question connected to dynamic linking is the choice of components to be linked,
when there are more than one with the same name. DLLs and .NET offer sophisticated
systems of versioning, side-by-side components, registries, efc. Difficulties in managing
DLLs led to the term “DLL Hell” [19]. The .NET architecture, with assemblies carrying
versioning information claims to have solved this problem [20]. Java, on the other hand,
links the first class with given name found in the classpath, and any more sophisticated
scheme can be implemented through custom class loaders [17].

Another question connected to dynamic linking is the type safety guarantees given
after choosing components. Breaking type safety jeopardizes the integrity of memory,
and ultimately security [7,18]. DLLs do not attempt to guarantee type safety: type errors
may occur and go undetected, or throw exceptions of an unrelated nature in unrelated
parts of the code. Conversely, in Java and C# if the components linked turn out to be
“incompatible”, link related exceptions are thrown, describing the nature of the problem.

SWork partly supported by DART, EU project IST-2001-33477

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 38-53, 2003.
& Spdnger-Verlag Berlin Heidelberg 2003
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Thus, although Java and C# do not guarantee choice of compatible components, they
guarantee type safety and give error messages that signal the source of the problem.

Our study is concerned with how Java and C# guarantee type safety. Java and C#
dynamic linking are similar: The same linking phases are involved, i.e., loading, ver-
ification, offset calculation, and layout determination. Soundness is based on similar
ideas: i.e., consistency of the layout and virtual tables, verifying intermediate code, and
checking before calculating offsets. Executions which do not throw linking errors give
the same result. However, Java and C# dynamic linking are not identical: The linking
phases have different granularity, are combined differently and take place in a different
order. Linking errors may be detected at different times in Java and C# executions.

We develop a non-deterministic model, to describe the behaviour of both Java and
C#. We prove soundness, and that all executions that do not throw link errors give the
same results. Our model is concerned with the interplay of the phases rather than with
the particular phases themselves. It is at a higher level than the Java bytecode or the
NET IL. It abstracts from Java multiple loaders and .NET assemblies, and describes
the verifier as a type checker, disregarding type inference and data flow analysis issues.
It models intermediate code as being interpreted, disregarding the difference between
JVM bytecode interpretation, and .NET IL code jit-compilation. It represents dynamic
linking not necessarily as it is, but as it is perceived by the source language programmer.

Section 2 introduces Java and C# dynamic linking with an example. Section 3
describes the model. Section 4 states properties, soundness, and equivalence. Section
5 concludes. At www.disi.unige.it/person/LagorioG/dart/papers/DLEO2-1long.ps
there is a longer version containing more examples, lemmas, and detail.

2 Introduction to the Dynamic Linking Phases

In the presence of dynamic linking, execution can be understood in terms of;

— evaluation, which is not affected by dynamic linking

— loading, which reads classes from the environment

— verification, which checks type-safety of the code

— laying out, which determines object layout and method tables,

— offset calculation, which replaces references to fields and methods through the cor-
responding offsets.

These phases apply to different units of granularity: Loading and laying out apply
to classes, whilst verification applies to method bodies, and offset calculation applies to
individual member access expressions.

Phases depend on each other: A class can only be laid out after it has been loaded.
The offset of a member from a class may only be calculated after that class has been laid
out. When verification requires some class to extend a further class it will load the two
classes — although [21] suggest a lazier approach of posting constraints instead.

The phases are organized slightly differently in Java than in C#: In Java, offset cal-
culation takes place per instruction, and only before the particular member is accessed,
whereas in C#, offset calculation takes place per method, and is combined with verifica-
tion, to give jit-compilation. In Java, all methods of a class are verified together, whereas
in C# methods are jit-compiled only before execution. The example from table 2 il-
lustrates these points in both Java and C#, (details www-dse.doc.ic.ac.uk/ sue/
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Table 1. Execution of the program example — with verification

Java C# output
calc. offset for main
jit main
2 check Meal < Meal
5 load Meal
verify Food & lay out Meal
3 verify main [3 check Penne < Penne
3 check Meal < Meal 3 load Penne; Pasta
3 check Penne < Penne 3 LoadErr if = Cls
3 lay out Penne
[ lay out Pasta
& calc. offset for eat (Penne)
calc. offset for main
execute main execute main
1
lay out Meal
verify Meal
3 verify eat (Penne)
3 check Penne < Pasta
& load Penne; Pasta
3 LoadErr if = Cls
& VerifErr, if = Sub
& verify chew (Pasta)
create a new Meal object create a new Meal object
I, N
verify Penne
&...
3 verify Pasta
G ...
create a new Penne object create a new Penne object
3

calc. offset for eat (Penne)

jit eat (Penne)
5 check Penne < Pasta
& VerifErr, if = Sub
(3 calc. offset for chew (Pasta)

execute eat (Penne)

execute eat (Penne)

calc. offset for chew (Pasta)

jit chew (Pasta)
(3 calc. offset for int cal from Pasta
[3 NoFieldErr, if = FId

execute chew (Pasta)

execute chew (Pasta)

execute eat (Penne)

execute eat (Penne)

execute chew (Pasta)

execute chew (Pasta)

calc. offset for int cal from Pasta
[3 NoFieldErr, if = Fld

100
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Table 2. Example program

class Meal { class Food {
void eat (Penne p){ chew (p); } public static void main (String[] args) {
void chew (Pasta p) { print ("— 1 —"); Meal m = new Meal ();
if (p ==null) print (0); print ("— 2 —"); Penne p = new Penne ();
else print (p.cal); } print ("— 3 —"); m.eat (null);
3 print ("—4 —"); m.eat (p); }
}

foodexample.html) and consists of classes Meal and Food, compiled in an environ-
ment containing compiled versions of Pasta and Penne:

class Pasta { int cal = 100; } class Penne extends Pasta { }

These classes satisty the following three requirements:

Cls: Classes Pasta and Penne are present

Sub: Penne is a subclass of Pasta

Fld: Pasta contains a field cal of type int
which are required by main in Food, e.g., Sub guarantees successful verification of the
eat method body, and Fld guarantees successful field access. If Cls, Sub and Fld hold,
execution will be successful, and Java and C# will give the same output.

However, the versions of Pasta and Penne available at runtime might differ from
those above: Pasta or Penne may not be available, i.e., = Cls. Penne may not be a
subtype of Pasta. i.e., = Sub. Pasta may not contain a field int cal, i.e., = FId.

These situations will lead to linking errors, detected by the corresponding linking
phases. Because these take place at different times in Java and C#, the errors will be
reported at different times. This is shown in table 1. The third column contains the output,
e.g., — 1 —. The first and second column contain the linking phases as they occur in
Java or in C#, with their dependencies indicated through the [ symbol, e.g., in Java,
verification of class Meal requires verification of method eat, which in its turn checks
that Pasta < Pasta, and Penne < Penne.

The table shows execution both when Cls, Sub, and Fld hold, and when they do not.
Thus, if Cls, Sub, and FId hold, the two executions will print the same output. However:

Verification is “lazier” in C#: Thus, = Sub would cause a linking error after —1—
in Java, and after —3— in C#. Java verification checks all methods of that class, whereas
C# verifies each method when jit-compiling it before its first call.

Offset calculation is “lazier” in Java: Thus, — Fld would cause a linking error after
—3—in C#, and after —4— in Java. References to fields (or methods) are resolved in
Java only when the field is actually accessed during execution, whereas in C# references
are resolved when the method containing the reference is jit-compiled.

Subtypes are “optimistic” in Java. Thus, — CIs could cause a linking error before
—1— in C#, but only after —1— in Java. Checking that a class is a subclass of itself
causes loading of the class in C#, but does not in Java.
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3 The Model

The appendix lists all the judgments and terms of this model, and their place of definition.
All mappings are partial; dom (f), rng(f) denote the domain and range of function f
respectively, and [denotes the undefined value.

3.1 Outline of the model. Programs, P (see fig. 1), describe code in all its forms,
i.e., the “raw” classes as loaded, the method bodies before and after verification/jit-
compilation, and the class layout. P s map identifiers to classes, and addresses to method
bodies. Classes contain their superclass names, and they are either “raw”, containing the
signatures of fields and methods, and method bodies; or, they are “laid out”, containing
layout tables which map field and method signatures to offsets and virtual method tables
which map offsets to addresses. Global contexts, W , represent the context from which
“raw” classes may be loaded.

Heaps, H, map addresses to objects. Expressions, €, allow for method call, field
access and assignment. Execution reads classes from a global context W, and modifies
heaps, expressions, and programs. Therefore, it has the form: P,H,e La P OH Hel

Loading, verification and laying out of classes can be understood as enriching the
information in the program, represented through the judgement W [PI"< P. Loading
is represented through an extension of P using the contents of W . The layout tables are
required to extend those of the superclass. Verification and jit-compilation is represented
through modification of method bodies indicating that they have been verified, and
possible substitutions of symbolic references by offsets.

Offset calculation has the format e [p_dl meaning that symbolic references in €
are replaced by offsets in € according to the layout tables in P.

Verification/jit-compilation is represented through: P,e [w.g¢ P5ett which
means that e is verified/jit-compiled into expression e and has type t. The program P
may need to be extended to P using information from W . The typing needs a typing
environment E . Verification may need to check subtypes: P, t5't [y P Pmeans that
t™was established as a subtype of t, and in the process, P was extended to P

The model is highly non-deterministic, supporting the description of both languages:

Verification is “lazier” in C#. The model requires methods to have been verified/jit-
compiled before being called (fourth rule in fig. 3), thus allowing the C# lazy approach.
However, verification is part of program extension (fifth rule in fig. 2), and program
extension may take place at any time during execution (first rule in fig. 3), thus allowing
the Java approach too. Of course, it also allows further behaviour, e.g., where only some
methods are verified/jit-compiled, or where classes are verified upon loading.

Offset calculation is “lazier” in Java. The model combines verification and jit-
compilation into one judgment, P, e Lw. g P HeUt, which requires offset calculation
for its subexpressions (third to fifth rules in fig. 5). This describes C# jit-compilation.
Offset calculation may also leave the expression unmodified (last rule in fig. 4), and that
describes Java verification. Offset calculation may also take place during execution (last
rule in fig. 3), and the operational semantics for member access requires the offset to have
been calculated (fourth and fifth rules in fig. 3). This describes Java offset calculation.
The model allows many more executions, e.g., offsets may be calculated even if not
required, or only some of the symbolic references are replaced.
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Fig. 1. Expressions, programs, subtypes
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w A< p™®
w AT<p
W [P<P W [A'<P

P=c=P"

P(c) = ek, 3%, 3MaPc) = e, t7,t™,1¢ O
P(cs) = Ot5, Y, 15O

tF injective, dom(tF) = {1t &7 (f) =t}
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P(1) = @, tp,e[1 PH1) =e”

cCdom(PY :
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PYH<t,

W [P'<P

Fig. 2. Program extension

Subtypes are “‘optimistic” in Java. The model considers any class identifier a
subtype of itself (last rule in fig. 5); thus reflecting Java. However, subtype checking
may extend a program during verification (penultimate rule in fig. 5), thus reflecting C#.

Timing of link-related actions. The model allows loading, jit-compilation, verifi-
cation, and offset calculation to take place at any time (first rule in fig. 3), even if not
needed. It allows linking exceptions (not null pointer exceptions) at any time (second
rule in fig. 3), even if not necessary, and does not distinguish the reason. This does not
reflect practical implementations but simplifies the model considerably.

3.2 Programs reflect the internal representation of code. They are described in figure
1. They map identifiers to raw (ClassRaw) or to laid out classes (ClassLaidOut), and
addresses to method bodies. Raw classes correspond to *.class or *.dll files. They consist
of the superclass name, the field descriptions (37 [ZAF) consisting of field identifiers
and types, and method descriptions (8™ [ZAM) consisting of method identifier, argu-
ment type, return type and method body. Laid out classes consist of a field layout table
(tF [CTF), which determines the offset for a field with given identifier and type, the
method layout table (t™M [CTI™), which maps method signatures to offsets, and the
virtual table (1€ I:DC), which maps offsets to addresses of method bodies.

Method bodies which have not been checked consist of a signature and expression,
Typ < Typ x Exp. Bodies which have been checked consist of an expression, EXp.

3.3 Expressions. The syntax is givenin figure 1. It describes classes, subclasses, methods
and fields for an imperative language.
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W [BP<P
P,H,e Cw P H,e P,H,e LwP,H,lnkExc

FdOs(P,c) = {Ki1,... ,Kn}, LUfreeinH
P,H,newc Lw P, H1E c,1+k1 B 0,...1+ky B 0],1
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P,H,Ced™ Lw P HCe™®™
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P,H,ca3°™ 'CLw P, H,ca®™!

Fig. 3. Execution.

We use an augmented high level language, near to source code. The augmentations
are memory offsets, and type annotations, used to disambiguate fields or methods with
the same name. For example, the expression p.cal [Pasta,int] denotes the field called cal
of p, of type int, and declared in class Pasta. This symbolic reference will be replaced
during offset calculation; e.g., if int cal has offset 3 in class Pasta then the expression
will be rewritten to p[3].

Values are addresses, natural numbers denoted by 1, 1Hetc; the null pointer is 0.
When a field is accessed or a method is called on 0, the n11PExc exception is raised.
Also, 1nkExc stands for, and does not distinguish between, any link related exception,
i.e., verification errors, class not found, class circularities, absence of fields and methods.

3.4 Execution modifies the current program, expression and heap, and has the form
P,H,e CwPTHe"

expressing that the global context W may be used for program extension. It is defined
through small step semantics in figure 3.

Heaps, H, map addresses to objects, which are memory blocks consisting of class
identifier, and values for the fields. Values are object addresses, or 0. Heaps have form:

H :N* - N Classld.

If H (1) = ¢ [Classld then 1 points to an object of class c. The fields of that object are
stored at some offset, K, from 1. An address Uis freshin H iff [KI H(1+ K) =[]

The following heap, Ho, contains a Penne object at 2, and a Food object at 4:
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Ho(2) = Penne start Penne object Ho(3) =55 field int cal from Pasta
Ho(4) = Food start Food object Ho(1) = [ for all other 1 ’s
Thus, as in [4], heaps are modelled at a lower level than in verifier studies [24,10,
21], where objects are indivisible entities, and where there are no address calculations.
Our lower level model enables the description of the potential damage when executing
unverified code.

3.5 Program Extension. We define mapping extensions ("< g wrt A, g™ [givrt A),
and program equality up to class or address (P =c=P5 P =1=PY:

Definition 1 For injective mappings g, 9% set A, and for P, P5land \, and ¢ :

- g"<gwrt A iff dom(g" =dom(g) CAl and Lyl ddm(g) : g'ly) = g(y).
- g"CgWrt A, iff dom(g" = dom(g) CAl and LyTddm(g) \ A : g'y) = g(y).
- P=1=PY jff [t P(c) =Pc), and FICddmP)\{1}: P(1) =PHD.
-P=c=PYiff ¥8c: PcY=PHcY, and Xddm(P) : P(1) = P).

A program P Pextends another program P, if P Ycontains more information (through
loading of classes), or more refined information (through verification, jit-compilation or
layout calculation) than P . This relationship has the format

W A< P

c.f. figure 2, and is defined in the global context of a W which expresses the environment
(possibly a file system) from which classes are loaded.

In more detail, W [CBY< P if: 1) PYis in the reflexive, transitive closure of the
relation. 2) P™and P are identical up to ¢, a raw class read from W whose superclass
(Cs) is already in P. 3) P™and P are identical up to class ¢, and a) the field layout of
C extends that of Cg and fields introduced by ¢ get fresh offsets, b) the method layout
of ¢ extends that of Cg, ¢) all methods in ¢ which override (have the same signature as)
methods in Cs are mapped to new addresses. 4) PPand P are identical up to address t,
and P (1Y contains the verified/jit-compiled version of the method at P (1).

The first rule of figure 3 says that programs may be extended at any time. The
second rule allows linking exceptions to be thrown at any time. This is, of course, highly
non-deterministic, and does not prohibit linking phases or errors even if unnecessary.

3.6 Evaluation is not directly affected by dynamic linking. It is described by the third
through eighth rule in figure 3.

Creation of a new object, new C, allocates fresh addresses for the fields of c at the
corresponding offsets, initializing them with 0. The auxiliary function which collects
the field offsets from all superclasses:

1
FdO[S(P,c) = rng(P (cY 12)

P [cxc

Method call, 1[K](1Y, looks up the method body € in the dynamic class of the re-
ceiver L, using the offset K, and executes that body after replacing this by the actual
receiver 1, and the parameter y by the argument 1" Therefore, evaluation only ap-
plies to expressions which do not contain this, or y. The format of the call 1[K](1Y
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P(c)=0O1%,_ .0 P(c)=0_,t™,.O
tF(f,t)=«k ™(m, tr, tp) =K
flc, t] Colx] .mic, tr, t] Lo K] a [Cpal

Fig. 4. Offset calculation.

(rather than .m]c, t,, tp](l'§) means that the offset has been calculated. The require-
ment P (c) = [J_, _, T¢ [{rather than P (c) = [JJ_, _DImeans that the class ¢ has been
laid out. The requirement that P (1€ (k)) = e (rather than P (1€ (k)) = [J_, _Ddmeans
that the particular method has been verified/jit-compiled.

Field lookup retrieves the contents of the heap at the given offset, whereas field
assignment updates the heap at the given offset, as in the fifth rule. Method call and field
access for 0 throw a n11PExc, as described in the sixth rule of the figure.

Execution is propagated to its context, as described in the seventh rule. Both link
related, and unrelated exceptions (i.e., z) are propagated out of their contexts, as described
in the eighth rule. Execution contexts allow a succinct description of propagation:
C-O%€ o= 0% ma(e) | tma(c-o%¢€) |

CO®€fa=e | 1fa=c2% | -O%¢fa

3.7 Offset Calculation replaces a symbolic reference through an offset, and has format
a [pa”

where a represents a field or method annotation. Figure 4 says that for fields, we look
up the name of the field and its type in the class, whilst for methods we look up the name,
argument type and result type in the class. The last rule allows a to be left unmodified.

The last rule in 3 allows offset calculation to happen during execution, as in Java.
For this, we have defined appropriate notion of offset calculation contexts as

Cett=e ) e b Ee | e 0TR)

Offset calculation also happens during jit-compilation, (figure 5) thus modelling C#.
Combining this with the rule that leaves offsets unmodified we model Java verification
which does not calculate the offsets.

3.8 Verification and Jit-Compilation. We describe the similarities between Java veri-
fication and C# jit-compilation through verification/jit-compilation, in fig. 5:

P.e Dw g PTelt

which transforms expression e to € type checks e to type t, and possibly extends the
program P to P~ The process takes place in an environment E which maps this and
the parameter y to types, i.e., E :{this,y} - Typ, and in the global context W .

The parameter y and the receiver this have the type given in the environment E.
Verification/jit-compilation of an object creation expression requires C to be a class, and
gives it type €. The value O has any class type C.

Method call requires the receiver and argument to be well-typed, and to be of subtypes
of ¢ and tp, the receiver and argument types stored in the symbolic method annotation
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Fig. 5. Verification and Jit-compilation.

.ml[c, t, ty]. The method call has type t, the result type of the annotation. The symbolic
annotation may be replaced by an offset, thus modeling C# jit-compilation. Offset calcu-
lation also allows for the identity, thus modeling Java verification. Similar explanations
apply to the rules which access fields.

Finally, verification may require classes to be loaded, and the offset calculation may
require layout information about some classes. This is described through the sixth rule,
which allows extension of the program at any time.

Verification/jit-compilation may need to check that a type is a subtype of another
type, and while doing so may need to load further classes, as in judgment:

P,t1,t, Cw PP

also given in figure 5. Notice, that this judgment allows any identifier to be a subtype of
itself even if not loaded - this follows the “optimistic” Java approach.

4 Soundness and Equivalence of Strategies

The judgment [P defined in fig. 6 guarantees that program P is well formed, i.e., that 1)
the class Object is defined and has itself as a superclass, 2) all superclasses are present,
and the subclass relationship is acyclic except for Object, 3) for any laid out class ¢
with superclass Cg the fields and methods have distinct offsets, the methods defined in
Cs have the same offsets in €, and 3) all the methods defined in Cg have the same offsets
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P(0Object) = [@bject, -, -, -[]
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Fig. 7. Conformance

in ¢, and 4) all method bodies which are considered as already verified/jit-compiled,
i.e., for which P (1)=e, can be verified/jit compiled, albeit without program extension,
and therefore in the empty global context, []

Figure 7 defines conformance. The judgment P, H [_llexpresses that the object
stored at 1 conforms to its class, C, as stored in H (1). For all fields of c, the object
must contain appropriate values at the corresponding offsets, and no other object may be
stored between its fields. The judgment P [H requires all objects to conform to their
class, and (implicitly) that the class of any objects stored in H is defined in P. Notice,
that O conforms to any class, allowing fields initialized to O, to belong even to a class
that has not been loaded yet.

Types for runtime expressions are given by judgment P, H [el: t, from fig. 8, with
rules similar to those for verification/jit-compilation, with the difference that heaps are
taken into account (to give types to addresses), environments are not taken into account
(runtime expressions do not contain this, or y), and the program is not extended.

Runtime expressions containing field access offsets are typed using:

TypeOfFd(P,c,kK) = tif P(cYio (L, t) =k for P [Ccl<cl] [dtherwise
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P,H [ ,
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Fig. 8. Types of runtime expressions.

The above, and the inverse layout function for runtime types of method calls, are well-
defined in well formed programs, because layout functions are injective.

In the longer version we prove that verification/jit-compilation and execution extend
programs. Subtyping, conformance of heap, runtime types, verification of expressions, or
well-formedness of program, established in a program P are preserved in an extending
program P, Therefore, execution of any expression preserves well-formedness of
programs. Finally, a verified expression preserves its runtime type, when the receiver
and argument have been replaced by addresses of appropriate class.

In theorem 1 we prove subject reduction which guarantees that the heap H “preserves
conformance, uninitialized parts of the store are never dereferenced, and the expression
preserves its type. In theorem 2 we prove that nondeterminism does not affect the result
of evaluations which do not throw link related exceptions, provided we operate in the
same global context W .

Theorem 1 If P [H, and [P, and P,H [el:t, and P,H,e Cw PTHFeD
then

PUAY and

ifeDdoes not contain an exception, then i PHHUCeR tY PUIH<t.

Theorem 2 Fore, P, PUPTH, HYH ™, and v, v0 [N [{A11PExc}, if

P.H.e L POHDY, and  P,H,e Ll PTHDY

v =VIHP=H® up to renaming of addresses.

then.

Theorem 2 does not apply for intermediate results, nor if v were a link related
exception — counterexamples apeared in section 2.

5 Conclusions, Related Work, and Further Work

Dynamic linking is a relatively new, very powerful language feature with complex se-
mantics, which needs to be well understood. Our model is simple, especially considering
the complexity of the feature, and compared to an earlier model for Java [4].
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We have achieved simplicity through many iterations, and through the choice of
appropriate abstractions: 1) we do not distinguish the causes of link related exceptions,
2) we allow link-related exceptions to be thrown at any time of execution, even when
there exist other, legal evaluations, 3) we do not prescribe at which point of execution
the program will be extended, and so allow “unnecessary” loading, verification or jit-
compilations, 4) we combine in the concept of “program” loaded, verified, and laid out
code, 5) we represent programs through mapping rather than texts or data structures.
Most of these abstractions were introduced primarily to allow the model to serve for
both Java and for C#, and had the agreeable effect of significant simplification.

Non-determinism seems to have been in the the Java designers’ minds: the specifica-
tion [17], sect. 12.1.1 requires resolution errors to be thrown only when linking actions
related to the error are required. Through non-determinism we distilled the main in-
gredients of dynamic linking in both languages, and their dependencies. We prove type
soundness, thus obtaining type soundness both for the Java and the C# strategies, and
showed that different strategies within the model do not differ widely.

Extensive literature is devoted to the Java verifier [24,11]. Dynamic loading in Java
is formalized in [14], while problems with security in the presence of multiple loaders
are reported in [23], a solution presented in [16], which is found flawed and improved
upon in [21]. Type safety for a substantial subset of the .NET IL is proven in [12].

The semantics of linking is studied in [2]. Module interconnection languages, and
mixins [1,8,6] give explicit control of program composition at source code level.

Dynamic linking gave rise to the concept of binary compatible changes, [9], and [17],
sect. 13, i.e., changes which do not introduce more linking errors than the original code;
the concept is explored in [5]. Tools that load most recent binary compatible versions
of code were developed for Java [22] and C# [15]. Current JVMs go even further, and
support replacing a class by a class of the same signature, as a “fix-and-continue” feature
[3]. Dynamic software updates [13] support type safe dynamic reloading of code whose
type may have changed, while the system is running.

Further work includes a better understanding of binary compatible library develop-
ments, extension of the model to allow verification also posting constraints, as suggested
in [21], or to allow field lookup based on superclass’s tables as in some of JVMs, incorpo-
ration of C# assemblies and modules, extensions of the model so as to avoid unnecessary
linking steps, and “concretization” of the model so as to obtain Java or C# behaviour.

Acknowledgements. We are indebted to Vladimir Jurisic, Davide Ancona, Elena Zucca,
Christopher Anderson, and Mark Skipper for suggestions and feedback.
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Abstract. We propose a new methodology for synthesizing correct func-
tional logic programs. We aim to create an integrated development envi-
ronment in which it is possible to debug a program and correct it auto-
matically. We start from a declarative diagnoser that we have developed
previously which allows us to identify wrong program rules w.r.t. an in-
tended specification. Then a bug-correction, program synthesis method-
ology tries to correct the erroneous components of the wrong code.
We propose a hybrid, top-down (unfolding-based) as well as bottom-up
(induction-based), approach for the automatic correction of functional
logic programs which is driven by a set of evidence examples which are
automatically produced as an outcome by the diagnoser. The resulting
program is proven to be correct and complete w.r.t. the considered ex-
ample sets. Finally, we also provide a prototypical implementation which
we use for an experimental evaluation of our system.

1 Introduction

The main motivation for this work is to provide a methodology for developing
advanced debugging and correction tools for functional logic languages. Func-
tional logic programming is now a mature paradigm and as such there exist
modern environments which assist in the design, development and debugging of
integrated programs. However, there is no theoretical foundation for integrating
debugging and synthesis into a single unified framework. We believe that such
an integration can be quite productive and hence develop useful techniques and
new results for the process of automatically synthesizing correct programs.

In a previous work [6], a generic diagnosis method w.r.t. computed answers
which generalizes the ideas of [11] to the diagnosis of functional logic programs
has been proposed. The method works for eager (call-by-value) as well as for
lazy (call-by—name) integrated languages. Given the intended specification 1
of a program R, we can check the correctness of R w.r.t. I by a single step

“This work has been partially supported by CICYT under grant T1C2001-2705-C03-
01, by Accion Integrada Hispano-ltaliana H12000-0161 and by Generalitat Valenci-
ana under grant GV01-424.
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of a (continuous) immediate consequence operator which we associate to our
programs. This specification 1 may be partial or complete, and can be expressed
in several ways: for instance, by (another) functional logic program [6,2], by
an assertion language [10] or by equation sets (in the case when it is finite).
Our methodology is based on abstract interpretation: we construct over and
under specifications 1+ and 1~ to correctly over- (resp. under-) approximate the
intended semantics 1. We then use these two sets respectively for the functions
in the premises and the consequences of the immediate consequence operator,
and by a simple static test we can determine whether some of the clauses are
wrong. The debugging system BucGy][3] is an experimental implementation of
the method which allows the user to specify the (concrete) semantics by means
of a functional logic program. In [2], we also presented a preliminary correction
algorithm based on the deductive synthesis methodology known as example-
guided unfolding [8]. This methodology uses unfolding in order to discriminate
positive from negative examples (resp. uncovered and incorrect equations) which
are essentially obtained as an outcome by the diagnoser.

However, this pure deductive learner cannot be applied when the original
wrong program is overspecialized (that is, it does not cover all the (positive)
examples chosen to describe the pursued behavior). In this paper, we develop a
new program corrector based on, and integrated with, the declarative debugger of
[6,2], which integrates top—down as well as bottom-up synthesis techniques. The
resulting method is conceptually cleaner than more elaborated, purely deductive
or inductive learning procedures, and combines the advantages of both styles.
Furthermore, our method is parametric w.r.t. the chosen bottom-up learner.
As an instance of such parameter, we consider for the bottom-up part of the
algorithm the functional logic inductive framework of [17,20]. Informally, our
correction procedure works as follows. Starting from an overly general program
(that is, a program which covers all positive examples as well as some negative
ones), the top—down algorithm unfolds the program until a set of rules which
only occur in the refutation of the negative examples is identified, and then
they are removed from the program. When the original wrong program does not
initially cover all positive examples, we first invoke the bottom-up procedure,
which “generalizes” the program as to fulfil the applicability conditions. After
introducing the new method we prove its correctness and completeness w.r.t.
the considered example sets. Finally we present a prototypical implementation
of our system and the relative benchmarks. The following example illustrates
our method.

Example 1. Let us consider the program:
R = {0d(0) - true,o0d(s(X)) - 0d(X),z(0) - 1,z(s(X)) - z(X) }

which is wrong w.r.t. the following specification of the intended semantics (mis-
takes in R are marked in bold):

I ={ev(0) - true,ev(s(s(X))) - ev(X),
od(s(X)) - true [ev{X) =true,z(X) - 0}.



56 M. Alpuente et al.

By running the diagnosis system BucGy, we are able to isolate the wrong rules
of R w.r.t. the given specification. By exploiting the debugger outcome as de-
scribed later, the following positive and negative example sets are automatically
produced (the user is allowed to fix the cardinality of the example sets by tuning
some system parameters):

E* = {od(s%(0)) = true, 0d(s(0)) = true, z(s?(0)) = 0,z(s(0)) =0,z(0) =0}
E~ = {od(s?(0)) = true, 0d(0) = true, z(0) = 1,z(s(0)) = 1,z(s?(0)) = 1}.

We observe that unfolding the rule r = od(s(X)) - od(X) w.r.t. R results in
replacing r by two new rules r; = 0d(s(0)) — true and r, = od(s?(X)) - od(X).
Now, by getting rid of rule od(0) — true, we obtain a new recursive definition
for function od covering the positive examples while no negative example can be
proven, which corrects the bug on function od.

However, note that this approach cannot be used for correcting function z:
unfolding the rules defining z does not contribute to demonstrate the positive
examples since the original program is overspecialized and unfolding can only
specialize it further. Nevertheless, by generalizing function z as in the bottom-up
inductive framework of [20], we get the new rule z(X) - 0. Now, by eliminating
rule z(0) - 1, which does not contribute to any positive example, we obtain the
final outcome

R = {od(s(0)) - true,od(s(s(X))) - od(X),z(X) - 0,z(s(X)) - z(X)}

which is correct w.r.t. the computed example sets.

The rest of the paper is organized as follows. Section 2 summarizes some
preliminary definitions and notations. Section 3 recalls the framework for the
declarative debugging of functional logic programs defined in [2]. In Section 4, we
present the basic, top-down automatic correction procedure. Section 5 integrates
this algorithm with a bottom-up inductive learner which allows us to apply
the correction methodology when the original program is overly specialized. In
Section 6, we present an experimental evaluation of the method on a set of
benchmarks. Section 7 discusses some related work and concludes. Proofs of all
technical results can be found in [1].

2 Preliminaries

Let us briefly recall some known results about rewrite systems [7,22] and func-
tional logic programming (see [19,21] for extensive surveys). For simplicity, defi-
nitions are given in the one-sorted case. The extension to many-sorted signatures
is straightforward, see [27]. Throughout this paper, V will denote a countably
infinite set of variables and > denotes a set of function symbols, or signature,
each of which has a fixed associated arity. (= [VI) and 1(X) denote the non-
ground word (or term) algebra and the word algebra built on < V] and X,
respectively. T(X) is usually called the Herbrand universe (Hs) over = and it
will be denoted by H. B denotes the Herbrand base, namely the set of all ground
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equations which can be built with the elements of H. A equation s = tis a
pair of terms s,t [CT(X [V1). Terms are viewed as labelled trees in the usual
way. Term positions are represented by sequences of natural numbers, where A
denotes the empty sequence. O(t) denotes the set of positions of a term t, while
O(t) is the set of nonvariable positions of t. t;, is the subterm at the position
u of t. t[r]y is the term t with the subterm at the position u replaced with r.
These notions extend to sequences of equations in a natural way. By V ar(s) we
denote the set of variables occurring in the syntactic object s, while [s] denotes
the set of ground instances of s. Identity of syntactic objects is denoted by =. A
substitution is a mapping from the set of variables V to the set T(=Z V). Given
a set of equations E, mgu(E) denotes the most general unifier of E [25].

A conditional term rewriting system (CTRS for short) is a pair (=, R), where
R is a finite set of reduction (or rewrite) rule schemes of the form (A - p CC)l
A, p CI(= VD), A IV and Var(p) CVhr(A). The condition C is a (possibly
empty) sequence es,...,en, N = 0, of equations. We will often write just R
instead of (=, R). If a rewrite rule has no condition, we write A - p. A goal g1
is a rewrite rule with no head, and we simply denote it by g.

For CTRS R, r < R denotes that r is a new variant of a rule in R such
that r contains only fresh variables, i.e. contains no variable previously met
during computation (standardized apart). Given a CTRS [X, R[we assume
that the signature X~ is partitioned into two disjoint sets > = C [, where
D={f| (f® - r CC) CR}and C = =\ D. Symbols in C are called
constructors and symbols in D are called defined functions. The elements of
T(C [Y) are constructor terms. A pattern is a term f(ly, ..., 1) such that f [
and lq,...,15 are constructor terms. A term s is a normal form, if there is no
term t with s - g t, where - denotes the (conditional) rewriting relation.
We omit the subscript R when no confusion can arise. In the remainder of this
paper, a (functional logic) program is a finite CTRS. The program R is said
to be canonical if the binary one-step rewriting relation - defined by R is
noetherian and confluent [22]. A successful conditional rewriting sequence (also
called proof) for a goal g in R (extended with the rules for the equality) is a
sequence D:g=0g; - g2 - ... — true.

The standard operational semantics of functional logic programs is based
on narrowing [15,29], a combination of unification for parameter passing and re-
duction as evaluation mechanism which subsumes rewriting and SLD-resolution.
Essentially, narrowing consists of the instantiation of goal variables, followed by
a reduction step on the instantiated goal. Narrowing is complete in the sense of
functional programming (computation of normal forms) as well as logic program-
ming (computation of answers). Due to the huge search space of unrestricted
narrowing, steadily improved strategies have been proposed. A narrowing strat-
egy (or position constraint) ¢ is any well-defined criterion that obtains a smaller
search space by permitting narrowing to reduce only some chosen positions. We
denote by L4 The narrowing relation with strategy ¢ (see [19] for a survey on
narrowing strategies.) R¢ denotes the class of CTRSs which satisfy the condi-
tions for the completeness of the strategy ¢. For instance, needed narrowing is
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known to be an optimal narrowing strategy for inductively sequential programs,
a class of TRS’s following the constructor discipline with discriminating left-
hand side, that is, typical functional programs. For the completeness of “lazy
strategies” such as needed narrowing, the strict equality = is considered, which
is only defined on finite and completely determined data structures, and gives to
equality the weak meaning of identity of finite objects (e.g., see [26]). Hence, we
also assume that equations in g and C have the form s =t (where = denotes the
standard equality) whenever we consider “eager strategies” such as innermost
conditional narrowing (¢ = inn), whereas the equations have the form s = t
when we consider needed narrowing (¢ = needed).

2.1 Denotation of a Functional Logic Program

In order to formulate a semantics modeling computed answers, the usual Her-
brand base has to be extended to the set of all (possibly) non-ground equations
modulo variance [14]. Hy denotes the V -Herbrand universe which allows vari-
ables in its elements, and is defined as T(= [VI)/x, where £-islthe equivalence
relation induced by preorder < of “relative generality” between terms. For the
sake of simplicity, the elements of Hy have the same representation as the ele-
ments of T(= [VI) and are also called terms. By denotes the V -Herbrand base,
namely, the set of all equations s = t modulo variance, where s,t [CHy . Note
that the standard Herbrand base B is equal to [By ].

In non-strict languages, if the compositional character of meaning has to
be preserved in presence of infinite data structures and partial functions, then
non-normalizable terms, which may occur as subterms within normalizable ex-
pressions, also have to be assigned a denotation. Following [18,26], we introduce
a fresh constant symbol [Cinto > to represent the value of expressions which
would otherwise be undefined.

In the following we recall two useful semantics for functional logic programs
(we refer to [6] for details).

Operational Semantics. The operational success set semantics Og*(R) of a
program R w.r.t. narrowing strategy ¢ is defined by considering the answers
computed for “most general calls”:

O&;”‘(R) = [dj,;l[{lf(xl, coXn) = Xn+1)8 | (F(X1, ..., Xn) =¢ Xn+1) El
sk f/n [CD, Xn+1 and x; are distinct variables, for i = 1,...,n }, where
E?Rildenotes the set of identical equations c(Xy,...,Xn) =¢ C(X1,...,Xn), ¢/N
constructor symbol in R.

Fixpoint Semantics. The (bottom-up) fixpoint semantics Fg*(R), modeling
computed answers w.r.t. a narrowing strategy ¢, is defined as the least fixpoint
F&(R) = Tg 1w of a parametric immediate consequence operator Tg 2B
2Bv which generalizes the ground immediate consequences operator in [21] in
order to model computed answers.
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The relationship between the operational and fixpoint semantics is estab-

lished by the following theorem.

Theorem 1. [2] Og%(R) = F¢(R) \ inprogress(F¢(R)),

where, for equation set S, inprogress(S) = {A = p 3| [Codcurs in p or p
contains a defined function symbol of >}.

For the sake of clarity, let us summarize the relation among the two di Lerent
program denotations F¢(R) and Og*(R) introduced above. The compositional,
fixpoint semantics F¢(R) which models successful as well as partial (nontermi-
nating as well as intermediate computations, i.e. those equations f(t) = s where
s “has not reached its value™) is obtained by computing the least fixpoint of the
immediate consequences operator Tg. On the other hand, the operational suc-
cess set semantics Og*(R) only catches successful derivations, that is, it models
the computed answers observable.

3 Diagnosis of Declarative Programs

First we recall some basic definitions on the declarative diagnosis [11].

Definition 1. Let I, be the specification of the intended success set semantics
for R. An incorrectness symptom is an equation e such that e [COg*(R) and
e [Ik,. An incompleteness symptom is an equation e such that e [Tl and
e IAOF(R).

In case of errors, in order to determine the faulty rules, we make use of the
following definitions. We need to consider a fixpoint intended semantics Ig, that
models both successful and “in progress” computations. The relation between
I = and the intended operational meaning is given by 1.5 = I \inprogress(lg).

Definition 2. Let I be the specification of the intended fixpoint semantics for
R. If there exists an equation e I:I]?}}(IF) and e [T} , then the rule r (R
is incorrect on e. We also say that e is incorrect. Reciprocally, the equation e is
uncovered if e [Tk and e TR (IF).

Since program denotations generally consist of an infinite number of equa-
tions, the above conditions for correctness and completeness of a program w.r.t.
to a given specification cannot be e [edtively computed. In [2], an abstract di-
agnosis methodology based on the abstract interpretation theory [12] was pro-
posed. Abstract diagnosis is a correct approximation of the diagnosis technique
presented so far where the semantic domains and operators are replaced by
abstract ones. First, we build a suitable abstract immediate consequences op-
erator (T,Eﬁ), which uses an abstraction of the program rules where all infinite
computations have been removed and is also parametric w.r.t. the narrowing
strategy. The approximation is done by using a loop-checker which replaces the
calls which are (risky to be) responsible for the infinite derivations by a fresh
irreducible symbol [1The fixpoint of T,-\Eqi correctly approximates the fixpoint
semantics of R and can be computed finitely. The abstract diagnosis process is
performed w.r.t. two abstract (finite) semantics 1~ and 1+ which under- and
over-approximate the intended semantics 1.
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4 Correction Method

In this section, we present an inductive learning methodology which is able to
repair a functional logic program containing buggy rules. The correction problem
can be stated as follows. Let R be a program, 1 the intended specification,
RY[Rla set of incorrect rules w.r.t. I, and E = E* [EI" two disjoint (ground)
example sets which model the pursued (not pursued) computational behaviour.
We denote by R [CH the fact that the (ground) equation set E can be reduced
to true by using the rules of R. Then, we want to determine a set of rules
X such that R® = (R\ RY X, R® [CE* and R® HE~. Program R¢ will
be called correct program (w.r.t. E* and E~). We will call R~ = R\ RPthe
diminished program. We note that R [CE can be checked, even in the case
that R is not terminating, by using the “normalization via p—normalization”
method of [23] to compute, by levels, the ‘maximal contexts’ of the lhs’s of
the examples, and then comparing them with the ground constructor term in
the corresponding rhs. By this technique, normal forms can be obtained by
successively computing p-normal forms and shifting computations to maximal
non-replacing subterms when a p-normal form has been obtained. The conditions
for the completeness of this technique (csr—conditions) essentially amount to the
termination of “context—sensitive rewriting” (csr) [24], which is much easier than
the termination of rewriting. A csr practical tool for proving termination of csr
is available at http://www.dsic.upv.es/users/elp/slucas/muterm.

The automatic search for a new rule in an induction process can be performed
either bottom-up (i.e. from an overly specific rule to a more general) or top-down
(i.e. from an overly general rule to a more specific). There are some reasons to
prefer the top-down or backward reasoning process to the bottom-up or forward
reasoning process [13]. On the one hand, it eliminates the need for navigating
through all possible logical consequences of the program. On the other hand, it
integrates inductive reasoning with the deductive process, so that the derived
program is guaranteed to be correct. Unfortunately, it is known that the deduc-
tive process alone (i.e. unfolding) does not generally su Cce¥or coming up with
the corrected program, and inductive generalization techniques are necessary
[13,28]. In [20,17], a bottom-up framework for synthesizing correct functional
logic programs (w.r.t. the ground success set, Herbrand semantics) is presented
which induces program rules from sets of equations which are respectively in-
correct and correct w.r.t. the pursued program. Their methodology, however, is
not particularly tailored for theory revision, and we need to adapt it since the
uncontrolled application of the method would produce much speculation in our
framework, which we want to avoid. Therefore, we follow a hybrid, top-down as
well as bottom-up approach, which is able to infer program corrections that are
hard, if not at all impossible, to obtain with a simple deductive learner.

4.1 Automatic Generation of Positive and Negative Example Sets

Let us present a simple method for automatically generating the example sets
which exploits the debugger outcome so that the user does not need to provide
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error symptoms, evidences or other kind of information which would require a
good knowledge of the program semantics that she probably lacks.

Consider the diminished program R™. Due to the absence of faulty rules in
R™, R™ is already partially correct; however R~ might be incomplete, as there
can be equations which are covered in 1, but not in R™.

By applying the diagnosis method presented in Section 3, we are able to
find out the sets of uncovered and incorrect equations w.r.t. an abstraction of
the intended semantics, respectively E; and E,. Considering equations in E;
seems a sensible way for yielding positive examples (missing proofs which should
be achieved by R). On the other hand, set E, contains equations modeling
erroneous behaviours, thus we can take them as negative examples.

Since E; and E, might contain non-ground equations, we find it useful to
instantiate (a subset of) them in order to get ground positive/negative example
sets E* and E. This allows us to perform some standard optimizations based
on term rewriting which are very satisfactory in practice. On the other hand,
since program R and specification 1 might use di Lerent auxiliary functions, we
only consider ground examples of the form | = d where | is a pattern and d
is a constructor term. In this way, the inductive process becomes independent
from the extra functions contained in I, since we start synthesizing directly from
data structures d. In order to achieve this, we normalize the term in the rhs of
(the instantiated) examples. Finally, we disregard those examples which, after
normalization, do not have a constructor term at the rhs.

4.2 Specialization Operators

Roughly speaking, unfolding a program R w.r.t. a rule r delivers to a new spe-
cialized version of R in which the rule r is replaced by new rules obtained from
r by performing a narrowing step on the rhs or the conditional part of r.

Definition 3 (unfolding). Let Rbea CTRSandr=(A - p CCJI< R bea

rule. Let {g efﬂ]l:i'j,piD= y)}L, be the set of all one-step narrowing derivations
with strategy ¢ that perform an e [ective narrowing step for the goal g = (C,p =
y) in R. Then, Unf(r) = {(\8; - p!’ CCP|i = 1...n} (that is, the derived
goal (CHpH=y) is di[erent from g.

Definition 4 (Unfolding operator). Let R be a CTRS, r=A - p [ Che
a rule in R. The Rule Unfolding operator U?(R) on R w.r.t. r is defined by
UP(R) = R\ {r} CUNfE(r).

As it has been proven in [4,5], for ¢ = inn, needed, unfolding using strategy
¢ preserves the semantics (even for the observable of computed answers) in Ry
programs. When needed narrowing is considered, completeness is only guaran-
teed under the condition that expressions in the rule are not unfolded beyond
their head normal form [5]. On the other hand, the absence of narrowable po-
sitions in the rule to be unfolded yields no specialization of r. We just get the
removal of r from R. Therefore, we use the following notion of “unfoldable rule”.
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Definition 5. Let R be a CTRS, r be a rule in R. The rule r is unfoldable w.r.t.
R if UY(R) 2 R\ {r}. If & = needed, we also require that r is not unfolded
beyond its head normal form.

For the sake of simplicity, in the following we omit ¢ whenever this does not
compromise readability. The unfolding succession S(R) = Rg, R4, . .. of program
R is defined as follows: Ry = R, Rij+1 = Ur(R;) where r [H; is unfoldable.

4.3 Top-Down Correction Algorithm

Following [9], the algorithm below works in two phases: the unfolding phase and
the deletion phase. Roughly speaking, we first perform unfolding upon (arbitrar-
ily selected) unfoldable rules, until we get a specialized version of the program R
where no negative example can be proven by applying only rules used in proofs
of positive examples. The following definition is auxiliary.

Definition 6. Given D:g=g;'% g2 % ..."™ g, the sequence [F},ro, ..., ]
is called the rewriting rule sequence of D. The set OR(D) = {ri,r2,...,rn} is
called the set of occurring rules of D.

Given an equation e, let Dq,;(e) denote the successful rewrite sequence which
proves e in program R (if it exists) by using a normalizing rewriting strategy
for the class R¢. The key idea of the algorithm is thus applying unfolding until
we get a specialized program R; satisfying that, for each e [CH™ there exists a
rule r IZ(]R(Dgi(e_)) such that, for each example e* CH™, r [I]Z(]R(Dq,;i(e“L)).
Now, since the rules which only contribute to the proof of negative examples are
useless, in the subsequent phase we just remove these rules from the specialized
program R;. By discriminable rule of R;j we mean an unfoldable rule of R;
which occurs in the proof of, at least, one positive and one negative example.

Algorithm TD-Corrector(R, I)
(E™, E7)=GenerateExampleSets(R, I)
if R MA™ then halt
{Unfolding phase}
leti=0;,Rp =R
while Cel' [CH™ s.t. [r(r COR(Dg;(e7)) el [H" s.t. r COR(Dg;(e™))) do
select a discriminable rule r COR(Dg;(e7)) of R;
let Ri+1 =Ur(Ri);i=i+1
end while
{Deletion phase}
for each e” [CH™ do
let Ri+1 = Ri \ {r}, where r COR(Dg,(e7)) [C&T [H" r TOR(Dg; ("))
leti=i+1
end for
let R°=R;j
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Example 2. Consider again the program R and specification 1 of example 1,
with the example sets for learning function od. Since the rewriting proof for
the negative example od(s?(0)) = true B~ uses the rule od(s(X)) - od(X)
(either with ¢ = inn or ¢ = needed), which is also used in the proofs of positive
examples, we enter the main loop. By unfolding od(s(X)) - od(X) we get
R: = {od(0) - true,od(s(0)) - true,od(s?(X)) — od(X)}. Now we enter
the deletion phase which purifies R; by removing the rule od(0) - true that
only occurs in the proof of a negative example, thus producing the expected
correction shown in Section 1.

Example 2 allows us to clarify the di [erknces between the preliminary correction
algorithm in [2] and the one in this paper. The algorithm in [2] was based on
unfolding the rules which incorrectly cover the negative examples. In our exam-
ple, this could result in trying to unfold the rule od(0) — true, which is fruitless,
whereas the new correction procedure does consider any discriminable rule for
unfolding, which is generally needed in order to achieve the desired correction.
We prove the correctness of the top-down correction algorithm in two steps:
first we show that, provided that R covers E™*, the unfolding phase produces
a specialized version RYof R (still covering E™) such that, for each negative
example, there is a rule occurring in the corresponding proof which is not used
in the proof of any of the positive examples. Next, we demonstrate that the
deletion phase yields a corrected version of R covering E* and not covering E~.
The following proposition states our first result: by a suitable finite number of
applications of the unfolding operator to a program in Rg, we get a specialized
version such that, in any successful rewriting derivation of a negative example,
there occurs a rule that is not applied in any successful rewriting derivation
for the positive examples under the same strategy. A condition is necessary for
proving this result: no negative/positive couple of the considered examples can
have the same rewriting rule sequence, as shown in the following counterexample.

Example 3. Consider the program R = {f(X) - ¢g(X),g(X) - 0} with exam-
ple sets E* = {f(a) = 0}, E~ = {f(b) = 0}. Then f(a) = 0 and f(h) =0
are proven by using the same rewriting rule sequence (using any of the con-
sidered rewriting strategies). By applying the top—-down algorithm, we unfold
rule f(X) - g(X), which produces the outcome R; = {f(X) - 0,9(X) - 0}
which cannot be purified (by using the rule deletion operator) as removing rule
f(X) - 0 in order to get rid of E~ would cause losing E™*.

Proposition 1. Let ¢ be a normalizing rewriting strategy for Ry and R be a
program in Ry. Let E™ (resp. E™) be a set of positive (resp. negative) examples.
If there are no e* [H™ and e~ [CH~ which can be proven in R by using the
same rules sequence, then, for each unfolding succession S(R), there exists k
such that [eT [CH™ [FICOR(Dgr, (e7)) s.t. r is not discriminable

We note that Proposition 1 holds for every unfolding succession of the original
program; this implies that the rule to be unfolded at each unfolding step can be
arbitrarily selected, provided that it is discriminable. Moreover, the termination
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of the unfolding phase is granted by the finite number k of applications of the
unfolding operator that we need to obtain specialization Ry.

After the unfolding phase, the refutation of every negative example contains
a rule from Ry not occurring in the proof of any positive example, thus we can
safely remove this rule without jeopardizing completeness. The deletion phase
purifies Ri and yields correctness w.r.t. both positive and negative examples.

Theorem 2 (Correctness). Let R [y which satisfies the csr conditions,
E™* and E~ be two sets of examples such that R [CHE™. If the rewriting rule
sequences for e* [HE™ and e~ [HE~ are dilerent, then the TD-Corrector
algorithm yields a correct specialization of R w.r.t. E* and E™.

As in other approaches for example-guided program correction, the above
result does not generally imply that a correction for the wrong program R w.r.t.
the intended semantics is obtained as the outcome of the top-down correction
algorithm (that is, a program R with the same semantics of 1, up to the extra
auxiliary function symbols which might appear in 1), under the conditions re-
quired for the correctness of the algorithm, but it might happen that the output
program is only correct w.r.t. E* and E~. Therefore, derived programs would
be newly diagnosed for correctness at the end.

5 Improving the Algorithm

In the following, we propose a bottom-up correction methodology which we
smoothly combine with the deductive one in order to correct programs which do
not fulfil the applicability condition (over—generality). Therefore, the method-
ology just consists of applying a bottom-up pre—processing to “generalize” the
initial wrong program, before proceeding to the top-down correction.

5.1 Bottom-up Generation of Overly General (Wrong) Programs

We propose a methodology which is based on extending the original program
with new rules, so that the entire set E* succeeds w.r.t. the generalized program,
and hence the top-down corrector can be e [edtively applied.

Our generalization method is based on a simplified version of the bottom-
up technique for the inductive learning of functional logic programs developed
by Ferri, Hernandez and Ramirez [17] which is able to produce an intensional
description (expressed by a functional logic program) of a set of ground examples.
The algorithm is also able to introduce functions, defined as a background theory,
in the inferred intensional description (see [17,20] for details). In the following we
recall the definitions of restricted generalization and inverse narrowing which are
the heart of the bottom-up procedure of [17,20]. The former allows to generalize
program rules, the latter is needed to introduce defined symbols in the right
hand sides of the synthesized rules.

Definition 7 (Generalization operator). The rule rP= (sV- t“ CCY is a
restricted generalization of r = (s - t [_C)Iif there exists a substitution 6 such



Correction of Functional Logic Programs 65

that (i) 8(rY = r; (ii) Var(ty [\hr(sY. The generalization operator RG(r) is
defined as follows: RG(r) = {r'r"is a restricted generalization of r}.

Definition 8 (Inverse narrowing operator). The rule r =s - t [Cl

reversely narrows into r™/=s _ t~ CCH(in symbols r u’fﬁ r i Cihere exist a
position u [CA(t) and a rule r'™= A - p [ C¥such that (i) 8 = mgu(ty,, p);
(i) t7= (t[A]L)8; (iii) C= (C™C)e.

The inverse narrowing operator INV(r, r'y is given by:

i . i
INV(r, r = {0 r "] rPnd extra-variables in the rhs of r
are instantiated to variables in the rhs of r}.

The extra instantiation of variables in the rhs of the derived rules is necessary,
since inverse narrowing considers the rules oriented reversely and hence extra-
variables might be introduced in the synthesized rules, which is not allowed.

The following definitions are helpful for discerning the overspecialized pro-
gram rules. Defgr(f) is the set of rules in R needed to define a function f.
This might be computed by constructing a functional dependency graph of the
program R and by statically analyzing it. Given a set E of positive examples,
Res¢(E) denotes the restriction of E to the set of f-rooted examples (that is,
examples of the form f(t) = d). We say that a function definition Defg (f) is over-
specialized w.r.t. the set of positive examples E™, if there exists e [Ress(E™)
which is not covered by Defg(f). An incorrect rule belonging to an overspecial-
ized function definition is called overspecialized rule.

The generalization algorithm in its initial phase discovers all function def-
initions which are overspecialized, by computing the subset of f-examples not
provable in R (and hence not provable by the corresponding function definition).
Then, overspecialized rules are deleted from R. Now, applying generalization and
inverse narrowing operators, starting from the positive examples, we try to re-
construct the missing part of the code, that is, we synthesize a functional logic
program A such that R CA\{r R | r is overspecialized} allows us to derive
the entire E™. At the end, we get an overly general hypothesis to which the top-
down corrector can be applied for repairing (incorrectness) bugs on the derived
overly general faulty rules.

The bottom-up synthesis algorithm firstly generates a set Py (Program Hy-
pothesis set) which consists of unary programs associated with the restricted
generalizations of E™, that is, Py = {{r} | r CRG(s - t),s=t [CH"}. Then it
enters a loop in which, by means of INV and RG operators, new programs in Py
are produced. The algorithm leaves the loop when an “optimal” solution, which
covers E* entirely, has been found in Py, or a maximal number of iterations is
reached. In the latter case no solution might be found.

Due to the huge search space which this method involves, some heuristics
must be implemented to guide the search. Following [20], Minimum Description
Length! (MDL) and Covering Factor? criteria could be taken into consideration,

1 length(e) = 1+ny/2+n¢, where ny and n¢ are the number of variables and functors
in the rhs of e.
2 CovF(E) = card({e [H | R Ce})/card(E).
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so that inverse narrowing steps are only performed among the best programs
and equations w.r.t. these criteria. Moreover, by means of MDL and Covering
Factor, only the most concise programs are selected during the induction process.
The notion of Optimality w.r.t. programs and equations could be defined as a
linear combination of these two criteria. For a full discussion see [20]. A detailed
description of the algorithm can be retrieved in [1]. Let us consider an example,
in which we only pinpoint the relevant outcomes for the sake of clarity.

Example 4. Consider the following (wrong) program and the specification

R = { playdice(X) - double(winface(X)),dd(0) - 0,dd(s(X)) - dd(X)),
winface(s(X)) - s(winface(X)), winface(0) - 0}

I = { playdice(X) - dd(winface(X)),dd(X) - sum(X, X),
sum(X,0) - X,sum(X,s(Y)) - s(sum(X,Y)),
winface(s(0)) - s(0), winface(s(s(0))) - s(s(0)) }.

Program rules marked in boldface are signalled as incorrect by the diagnosis
system. The example generation procedure described in Section 4.1 produces:

E* = { playdice(s?(0)) = s*(0), playdice(s(0)) = s?(0), dd(s*(0)) = s8(0),
dd(s3(0)) = s°(0), dd(s*(0)) = s*(0), dd(s(0)) = s*(0)
dd(0) = 0, winface(s?(0)) = s?(0), winface(s(0)) = s(0) }.

The analysis for dd and winface determines that dd is overspecialized. The
generalization algorithm removes the rule dd(s(X)) - dd(X). Note that rule
dd(s(0)) — s?(0) inversely narrows to rule rgg = dd(s(0)) — s?(dd(0)) by using
rule dd(0) - 0. The following restricted generalizations of rule rgqq are computed:
dd(s(0)) — s2(dd(0)), dd(s(X)) - s2(dd(0)), dd(s(X)) - s?(dd(X)).
Now, when the third rule is added to the background knowledge, all the ex-
amples in E* are covered. Thus, the following overly general definition, which
feeds the top-down corrector in order to repair the remaining errors, is delivered

R = { playdice(X) - dd(winface(X)),dd(0) - 0,dd(s(X)) - s(s(dd(X)))).
winface(s(X)) - s(winface(X)), winface(0) - 0}.

6 Automated Correction System

A prototypical implementation of our methodology and a full experimental eval-
uation are available at http://www.dsic.upv.es/users/elp/soft.html. We
have improved the preliminary debugging system Bucay by adding the new
features. The current implementation, called NoBug, is now able to compute
sets of positive and negative examples by using the methodology described in
Section 4.1. Besides, we have developed a full implementation of the top-down
correction method based on example-guided unfolding for the leftmost-innermost
narrowing strategy. We are currently implementing the lazy version of the algo-
rithm. The bottom-up synthesis method has not been integrated into the NoBuG
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system yet. Hence, in order to compute our benchmarks also for initially over-
specialized programs, we used the inductive functional logic system FLIP[16].

We have performed some tests by means of our top-down corrector and the
bottom-up learner FLIP, in order to repair overly general as well as overspecial-
ized functional logic programs. We have taken into account programs on several
domains: naturals, lists and finite domains. In order to systematize the genera-
tion of the benchmarks, we have slightly modified correct programs in order to
obtain wrong program mutations. We were able to successfully repair incorrect
mutations, achieving, in many cases, a correction both w.r.t. the example sets
and the intended program semantics.

7 Conclusions

In this paper we have proposed a new methodology for synthesizing (partially)
correct functional logic programs which complements the diagnosis method we
developed previously in [6,2]. Our methodology is based on the combination,
in a single framework, of a diagnoser [6,2] which identifies those parts of the
code containing errors, together with a program learner which, once the bug has
been located in the program, tries to repair it starting from evidence examples
(uncovered as well as incorrect equations) which are essentially obtained as an
outcome of the diagnoser. We follow a hybrid, deductive (top-down) as well as
inductive (bottom-up) approach, which is able to infer program corrections that
are hard to obtain with a simple (pure deductive or inductive) program learner.
We plan to generalize the framework to other paradigms as future work.
Finally, we want to emphasize that this framework supersedes the preliminary
approach of [2]. In [2], recursive definitions were sometimes impossible to repair,
and no automated correction is provided for overspecialized programs either,
whereas the new methodology in this paper overcomes both drawbacks.
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Abstract. Pruning provides an important tool for control of non-
determinism in Prolog systems. Current Tabled Prolog systems improve
Prolog’s evaluation strategy in several ways, but lack satisfactory support
for pruning operations. In this paper we present an extension to the eval-
uation mechanism of Tabled Prolog to support pruning. This extension
builds on the concept of demand to select tables to prune. In particular,
we concentrate on systems based on SLG resolution. A once operator is
described, which approximates demand-based pruning, providing for an
e [Ccieht implementation in the XSB system.

1 Introduction

Prolog is a programming language in which the programmer uses Horn clauses to
specify a computation. Prolog uses a backward chaining, goal-directed, demand-
driven evaluation strategy that can give it an advantage over forward chaining
systems in that it tries to derive only subgoals that are relevant to the main
query goal. So it evaluates only those predicates which are necessary to derive
the goal. However, its strategy does allow it to derive the same (necessary)
subgoal many times, leading, for example, to unnecessary exponential behavior
when recognizing some context-free languages.

Tabled Prolog [14] improves on Prolog in that, in addition to deriving only
what is necessary for the goal, it will derive such subgoals only once, using a
table to short-circuit multiple recomputations of the same subgoal. So Tabled
Prolog tries to compute only what is necessary to the goal at hand, and for
what it does compute, it computes it only once. For example, this allows Tabled
Prolog to be polynomial when recognizing any context-free language.

So it might seem that Tabled Prolog does the minimal amount of compu-
tation possible. (Of course, this is without “foreknowledge” of which nondeter-
ministic choices would lead to a proof.) However, even Tabled Prolog still does
computation that can easily be seen to be unnecessary.

Consider Prolog and its evaluation of a goal :- p applied to the following
propositional program:
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;- table_all.
p :- q,t. q :
P q :- s.
r. s

Note that Prolog will evaluate all of s before eventually failing back to succeed
through the second clause for p. (The first clause must fail since t, having no
facts or rules, cannot succeed.) But note that it can be easily determined that s
need not be evaluated. Once q succeeds (here due to r succeeding), there is no
need to try any other clause that might lead to q succeeding again. For a ground
goal, once it succeeds, there is no reason to search further for other proofs of
that goal. That work is clearly unnecessary for proving (or failing to prove) the
main goal.

Prolog provides a way for the programmer to control the computation so
that the unnecessary evaluation of s in our example is not done. This can be
accomplished by adding a cut (!) after the call to r at the end of the first clause
for q. Alternatively, if we want to constrain somewhat how cuts are used, we
could wrap the call to g with a once operator. These operators would prune the
computation tree so that s would never be tried.

Thus we see that Prolog provides pruning operators that allow the program-
mer to eliminate this kind of unnecessary computation. But in Tabled Prolog
there are no such pruning operators. And this is not just an oversight. In the
presence of multiple tables and multiple demands on the same table, knowing
when a table is not demanded is complex. In Prolog every computation is “on
behalf of” a single chain of requesting goals, so if that chain is broken, all the
computations along that chain can safely be deleted. However with Tabled Pro-
log, a single computation that fills a table is working “on behalf of” all users of
that table. So a single user of the table may decide it no longer needs that table,
but there may be other users still depending on the computation that fills it.
Therefore a pruning operator in Tabled Prolog requires a more complex analysis
of subgoal dependencies.

In this paper we present an extension to the evaluation mechanism of Tabled
Prolog to support pruning. This extension builds on the concept of demand [9]
to select tables to prune. In particular, we concentrate on systems based on SLG
resolution [2].

Use of general demand for pruning requires an expensive reachability analysis
on the evaluation graph. In order to avoid this, we present an approximate
solution that is sound, and preserves the semantics of demand-based pruning.

1.1 Related Work

Implementation of pruning operators on systems where the evaluation strategy
di Lerk from that of standard Prolog present a set of interesting challenges, which
have been the subject of previous study.
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One area where this subject has seen a significant amount of work is that
of parallel implementations of Prolog [6,1]. In that case, the usual goal is to
maintain a semantics that is as close to Prolog as possible. This involves, among
other requirements, the synchronization of tasks when pruning is present.

In the context of Tabled Prolog, the first attempt at providing a pruning
operator, to the best of our knowledge, is presented in [10]. There, an imple-
mentation of the cut operator for SLGy is defined and shown to preserve Prolog
semantics for green cuts [7].

Recently, a new approach has been proposed by Guo and Gupta in [5].
This work presents an implementation of cut for an alternative Tabled Prolog
evaluation strategy called DRA [4]. This operator is defined in terms of the fixed
operational semantics of DRA, which is based on recomputation of so-called
looping alternatives. The main dilerknce of our work is that we attempt to
create a pruning operator with a semantics that is not dependent on the specific
operational semantics of a given implementation.

2 Demand-Based Pruning

SLG resolution [2] is traditionally modeled as a forest of trees. Each tree corre-
sponds to a unique call pattern (parameter instantiation) of a tabled predicate
encountered during evaluation. Trees are expanded by performing clause resolu-
tion against the clauses of the program definitions of the table predicates. Each
resolution step is represented by a node in a tree. Other calls to tabled predicates
are represented by nodes of a special kind, called consumer nodes. Each node is
represented in the form of a Prolog rule, where the head carries the substitutions
performed on the variables of the subgoal, and the body represents the current
continuation as a list of goals to be resolved.

r(X) :- r(X)

r(X) :- r(V),
r(a) :-

r(X) :z e(a,X). r(X) :- e(b,X).

NC N

r(b) - p(e) :- T(d:i-

) - A

q(X) :-

r(X), s(X).

a® - s\ q@ :- s
a(@ - s@. @ - o). |
a@ :-

Fig. 1. Snapshot of an SLG evaluation
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Figure 1 represents a possible state of the system during evaluation of the
query :- p(X). against the program of Listing 1. Each tree is represented by
a triangle inclosing a derivation tree. Edges between trees represent the depen-
dence relation between consumer nodes and trees. In the remainder of the paper,
we will abstract away the details of derivation trees, and concentrate on the trees
in the system and the dependence relation among them, depicted in the form of
edges.

:- table p/1, q/1, r/1. e(a,b).
p(X) :- q(X). e(a,c).
qX) - r(X), sX. e(b,d).
r(a). e(c,d).
r(X) :- r(Y), e(Y,X).

s(d).

Listing 1: Reachability

In fact, the dependence relation defines a multi-graph, where nodes are the
trees in the system, and there is an edge for each consumer node, connecting the
consuming tree to its supplier. We call this graph the Demand Graph, since it
denotes a relation of demand and supply between tables. A demand graph is a
weak approximation of the notion of Relevance defined in [11].

Definition 1 (Demand Graph) Given a snapshot of an SLG system, a De-
mand Graph Dg(N, E, Qn) is a directed multi-graph where N is a set of nodes,
each representing a tree in the SLG system, and E is the set of edges, represent-
ing the dependencies between trees. Qn is the node representing the tree for the
query being evaluated.

This multi-graph expands as evaluation progresses and new trees and consumer
nodes are created. In fact, in the absence of pruning operators, the graph only
grows monotonically, until evaluation of the query is completed. Pruning intro-
duces a non-monotonic component to the evaluation when undemanded trees
are deleted.

The desired semantics of once (P) states that P should succeed at most once.
In other words, as soon as the first successful derivation for P is found, the
associated consumer node should be marked such that the goal once (P) does
not succeed again. If P contains variables, only one possible binding for each
variable is returned. Assuming that P is a tabled predicate, applying the once
operator on P essentially amounts to removing an edge from the demand graph
of the system when P succeeds. Clearly, this removal may a[edt the connectivity
of the graph, rendering some trees unreachable from the query tree. This state
is captured by the concept of Demand on trees.

Definition 2 (Demand on Trees) Given a demand graph Dg(N,E,Qn), a
node Ty is said to be demanded if there is a path in Dg, from the query node
Qn to Ty. Similarly, if no such path exists, we say that T; is undemanded.
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For performance reasons, undemanded trees should not be scheduled for fur-
ther evaluation, since there is no indication that other answers for them will be
needed to evaluate the current query. Therefore, our algorithm eagerly detects
undemanded trees when pruning occurs, and removes them from the set of active
trees.

Listing 2 shows pseudo-Prolog code for a demand-based once opera-
tor. We assume that nodes are created in a stack-like structure, so that
get_next node_ref returns a reference to the next node to be created. A meta-
call starts evaluation of the subgoal P, creating a new node, which is referred to
by R. After the meta-call returns, remove_demand disconnects the consumer node
referred to by R from the tree that supplies it. A reference to the query table
is then obtained, and reachability from the query is computed. undemand_trees
removes all trees in the system that are not demanded from the scheduling set.

once(P) :- undemand_trees(G) :-
get_next_node_ref (R), table(T),
call(P), ( not member(G,T)
remove_demand(R) , -> undemand_table(T)
query(Q), ; true
reachable(Q,Reach), ),
undemand_trees (Reach) . fail.

undemand_trees(_).

Listing 2: once implementation in Prolog

While it represents our desired semantics, an actual implementation of the
algorithm in Listing 2 would present a few drawbacks. First, an expensive traver-
sal of the demanded trees has to be performed each time pruning takes place.
Also, a resumption mechanism is necessary, in order to re-impose demand on
previously undemanded trees for which new consumers are created.

Another point to notice is that it may be advantageous, from the point of
view of memory management, to actually remove undemanded trees. In that
case, if new calls to undemanded trees are created, these trees will have to be
recomputed. On the other hand, if trees are never collected, memory usage may
be problematic.

We next define a safe approximation of a demand-based once operator, which
attempts to delete trees when demand on them is released.

3 Approximate Pruning

We have argued, in the previous section, that implementing a pruning operation
based on exact demand is hard, requiring a full reachability analysis over the
evaluation graph. In this section we present an approximation of this operation
aimed at preserving our desired semantics, while decreasing the implementa-
tion costs of pruning. In the following, we describe the intuitions behind our
approximation, before presenting the pruning algorithm.
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One issue related to pruning in Tabled Prolog systems is whether unde-
manded trees should be frozen, or completely deleted. Freezing trees allows for
possible future calls to benefit from results already computed, and restart eval-
uation from that point on, if necessary. On the other hand, if these trees are
never called again, deleting them is a more memory-e Lcieht solution. The prob-
lem constitutes a tradeo [etween evaluation time, which is minimized if trees
are frozen, and memory usage, minimized when trees are deleted.

The pruning operator presented here deletes trees whenever possible. When
undemanded trees are deleted, recomputation may become an issue, possibly
altering termination characteristics of programs. Even so, we believe there are
many applications where keeping undemanded trees may turn out to consume
excessive amounts of resources and adversely a [edt system performance. Another
advantage of this approach is its simplicity. Supporting resumption of trees,
besides requiring extra bookkeeping, impacts the scheduling mechanism in a
non-trivial way. On the other hand, it may improve long-running computations
significantly, when trees are reused, and thus recomputations avoided.

A full demand-based pruning operation, as presented in the previous section,
is able to select individual trees which become undemanded when a given edge is
removed due to pruning. The algorithm we describe next uses an approximation
to decide which trees to delete. The application of a pruning operation induces
a scope. Intuitively, the scope consists of all those trees that have been created
during the evaluation of the goal being pruned.

The notion of scope captures all those trees which could potentially be deleted
from the system as a result of this application of pruning. The fact that a table
is in the scope of a pruning operation does not directly mean that it can be
deleted, since it can still be demanded. Instead of selecting which trees continue
to be demanded, and which do not, our approximation decides whether to delete
in the level of a scope. When all trees in a scope are undemanded, then they
are all deleted. Otherwise, all trees in the scope are maintained in the system.
However, instead of freezing these trees, they are maintained as active, and new
(possibly unnecessary) answers for these trees may be computed. While this may
cause superfluous work to be done, the semantics is guaranteed by removing the
connection between the specific subgoal being pruned and the table that supplies
answers to it.

In order to support this approximate pruning algorithm based on this notion
of scope, we augment our evaluation model with timestamps that impose an
ordering in events. Based on this extended model, the notion of scope is defined
in terms of reachability over generator edges. Finally, the approximate pruning
algorithm is presented and discussed.

3.1 Timestamped Forest of Trees

First we augment the concept of demand graph by introducing timestamps on
its edges and trees. We assume a global counter of events is available, which
is incremented each time a new edge is created. When an edge is created, it is
tagged with the current value of the event counter. Also, trees are timestamped
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with the value of the event counter at the time they are created. When no
pruning takes place, each tree has the same timestamp as its oldest incoming
edge. In fact, this edge has a special significance, and is called the Generator
edge for that tree.

Definition 3 (Generator edge) An edge is said to be the Generator edge of
a tree T; if its destination is Tj, and its timestamp coincides with that of T;.

We denote the timestamp of an edge e (tree t) as timestamp(e)
(timestamp(t)). The source (destination) of an edge is defined in terms of the
timestamp of the tree it points from (to).

Definition 4 (Edge properties) Given an edge e, from tree T to tree T4, we
define:
source(e) = timestamp(Ts)
dest(e) = timestamp(Tq)

Figure 2 shows the timestamps in the system depicted in Figure 1. Notice
that the query tree has always a timestamp of 0.
The main characteristic of approximate

1 2 e pruning is that trees are only considered for

3 removal when their corresponding generator

0 1 2 edges are also removed. Removal of a non-
generator edge never causes a tree to be re-

Fig. 2. Timestamps moved. Therefore, in order to decide which

trees can be removed, we have to consider
only those trees which are reachable via generator edges.

The scope of a given application of once on a subgoal is, intuitively, the set
of trees that may potentially be undemanded after the generator edge for the
subgoal is removed. The scope is defined in terms of reachability over generator
edges. We first define the Generator-Restricted Demand Graph as a restriction
on the edges of a demand graph, such that only generator edges are included.

Definition 5 (Generator-Restricted Demand Graph) Given a demand
multi-graph Dg(N, E, Qn), we define its induced generator-restricted demand
graph as the graph DE(N,ESQy), where EYis defined by EY = {e [
E | e timestamp(e) = dest(e)}.

Generator-reachability is defined as reachability over the generator-restricted
graph entailed by a given demand graph.

Definition 6 (Generator-reachability) Given a demand graph Dg(N, E,
Qn), and an edge e [CH, we define Generator-reachability as the set of edges
reachable from e in the Generator-restricted graph induced by Dg.

reachg (e, D (N, E, Qn)) = {e“[H | e”r#ach(e, D)}
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Finally, we define the scope of a pruning operation as the set of trees that
are Generator-reachable from the edge being removed.

Definition 7 (Scope) Given a demand graph Dg(N, E, Q) and an edge e [1
E that is the direct subject of a once operation, we define the scope of the once
operation as

scope(e, Dg) = {e” reache (e, Dg)}

Our algorithm is based on the principle that a pruning operation can only remove
trees which appear in its scope. But the fact that a given tree t appears in a
scope does not imply that it is not demanded. It may happen that there are
other edges, in the demand graph, connecting nodes outside the scope to t, thus
creating an alternate path from the query tree to t, which does not use the edge
being removed. This alternative source of demand is called external demand.
For example, consider the situation if Figure 3, where edge number 2 is being
pruned.

The scope, in this case, consists of trees
with timestamps 2, 3 and 4. But edge num-
ber 6 imposes an external demand on tree 4,
so that this tree cannot be deleted. In this
case, approximate pruning removes edge 2,
but does not delete any trees, since there is
external demand on the scope.

In order to detect whether a given scope
has external demand, we need to inspect all edges coming into trees in the scope.
If the source of any of these edges is a tree that is not in this scope, then there
is external demand. Otherwise, the scope is undemanded.

Fig. 3. External Demand

Definition 8 (External demand on a scope) Given a demand graph
Ds(N, E,Qn) and an edge e [[H that is the direct subject of a once operation,
we define that the scope of this pruning operation is externally demanded as:

external_demand(e, Dg(N, E, Qn)) [CI_Ielf[H | source(e’ ¥Stope(e, Dg)1
dest(et [sdope(e, Dg)

3.2 Approximate Pruning Algorithm

The algorithm for approximate pruning implementing the once operator is pre-
sented in Listing 3. It performs a meta-call on the subgoal being pruned, and
releases demand on it after the meta-call succeeds. The algorithm is presented in
a high-level Prolog form, and assumes the existence of the following builtin pred-
icates, which form an interface for inspecting and manipulating the internally
represented current demand graph.

edge (Source,Dest,Timestamp). A set of facts that describe the edges of the
demand graph;
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timestamp(Timestamp). A builtin predicate that returns the current value of
the timestamp counter;

delete_edge(Timestamp). Removes the edge given by Timestamp from the
graph;

delete_tree(Timestamp). Removes the tree with timestamp Timestamp, and
all edges outgoing from it.

once (SubGoal) :- :- table gen_reach/2.

timestamp (Timestamp) , gen_reach(Timestamp,Tree) :-
call(SubGoal), edge(Timestamp, Tree, Tree).
delete_edge(Timestamp), gen_reach(Timestamp,Tree) :-
(  generator (Timestamp) gen_reach(Timestamp,Treel),
-> ( demanded_scope(Timestamp) edge (Treel,Tree,Tree) .

-> true

; delete_scope(Timestamp) delete_scope(Timestamp) :-—

) gen_reach(Timestamp,Tree),
; true delete_tree(Tree),
). fail.

delete_scope( ).
generator (Timestamp) :-
edge(_,Timestamp,Timestamp) .

demanded_scope (Timestamp) :-
edge (Source, Dest, Time),
Time > Timestamp,
not gen_reach(Source),
gen_reach(Dest) .

Listing 3: Pseudo-code for optimized version of once

The predicate once receives as argument a subgoal to be resolved. It starts
by recording the current timestamp, which is the timestamp of the next edge to
be created. The subgoal is called using Prolog’s meta-call builtin. Upon return
of the meta-call, the edge corresponding to the subgoal is deleted, thus enforcing
the desired semantics.

Further optimization is performed by deleting the tables created during com-
putation of the subgoal, whenever possible. The general algorithm presented in
Section 2 performs reachability from the query tree in order to select, indi-
vidually, which trees are undemanded and can be deleted. In this optimized
algorithm, tree removal is decided in terms of the scope of the once operation.
That is, if there is external demand on any tree in the scope, then no trees are
removed; otherwise, all trees in the scope are deleted.

This is performed by first checking whether the edge of the subgoal is a gener-
ator edge. In that case, demanded_scope checks whether any tree in the scope of
the subgoal has external demand. If so, nothing is done, otherwise delete_scope
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removes all trees in the scope from the system. Both demanded _scope and
delete_scope are defined in terms of gen reach, which implements generator-
reachability.

4 Implementation

We present an implementation of approximate pruning in the XSB Prolog[13]
system. XSB is based on the SLG-WAM][8] abstract machine, a specialization
of the original WAM[16]. We first provide a basic description of how XSB im-
plements the SLG-WAM architecture, followed by a presentation of how the
demand graph model is represented in the implementation.

4.1 SLG-WAM Architecture

Data areas in XSB are organized into four main stacks. The Heap maintains long-
lived structures and variables. The Local stack maintains the environments for
clause-local variables, much like activation records in imperative languages. The
Control and Trail stacks store information required to perform backtracking.

Non-deterministic search in Prolog is implemented by backtracking. Each
time a choice is encountered during execution, a choice-point is laid down in
the Control stack. This stack works as a last-in-first-out source of alternatives.
That is, when backtracking is necessary, the topmost choice-point in the Control
stack is used. When a choicepoint is exhausted it can be discarded, and then its
predecessor is taken as the next source of alternatives.

SLG evaluation may require that a computation be suspended and other al-
ternatives be executed, before it may be resumed. Suspended computations are
represented by portions of the stacks in the system. It is left to the implemen-
tation to decide how these stack sections are to be maintained. Typically, these
are either protected and kept in the stacks, as in the original formulation of the
SLG-WAM[12], or copied to an outside area, as in CHAT [3]. In the remainder of
this paper we assume a shared stack management as in the original SLG-WAM.
Notice that, in order to recreate the context of a suspended computation, the
system may need to redo bindings undone by backtracking while this compu-
tation was suspended. Thus, the Trail is augmented to keep the values that
conditional variables are bound to [15], so that the engine can run the trail not
just backwards, but also forwards, rebinding variables needed to reconstruct an
earlier context.

The central data-structure for table management is the Subgoal Frame. Each
subgoal frame contains information about a variant call encountered during eval-
uation. Subgoal frames maintain references to the associated generator choice-
point for the call and for the answers already generated. Also, each subgoal frame
maintains a list of all consumer choicepoints which consume from its associated
table.



Approximate Pruning in Tabled Logic Programming 79
4.2 Mapping the Demand Graph onto XSB

Table management and scheduling are essentially controlled by two data-
structures in XSB. Subgoal frames centralize status information about trees in
the system, and maintain references to all answers already found for the tree.
Choicepoints represent internal nodes, and are classified into three main kinds.
Prolog choicepoints are used to maintain unexplored choices in non-tabled predi-
cate definitions. A generator choicepoint is created when the first call to a tabled
predicate is encountered, and consumer choicepoints are laid down for calls to
already-seen subgoals.

Control Stack

Program \l/ p(X)Generator
:- table_all. 9 generator
pX) - q(X),r(X),s(X). o
qg:g- (¢ )Generator
q .
r(X) :- q(X). 1 q(X)Consumer
s(X) - r(X),q(X). Sl
Query : Generator
-7 X). -
177 a® ") consumer
A q(X)Consumer
Fig. 4. XSB structures and their relationship
As noted in Section 2, we
= are interested in those tree nodes
which generate dependencies be-
tween trees. In XSB, these are rep-
resented by the consumer and gen-
0 1 4

erator choicepoints. Generator choi-
cepoints have a dual role in XSB.
P a® *® = Besides indicating that results from
a given table T4 are demanded from
the callee table T, they also serve
the purpose of performing clause resolution to generate answers for Tg.

Figure 4 shows an example of these structures during evaluation of a query,
and their relationship. The corresponding dependency graph is shown in Fig-
ure 5. Generator choicepoints are linked to their corresponding subgoal frames,

Fig. 5. Dependency Graph
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and vice-versa. All consumers of a given table are chained together, and this
chain is anchored in the subgoal frame of the table. This chain is called the
consumer chain of the table.

Summarizing, edges are represented by the choicepoints in the stack. Gen-
erator edges correspond to generator choicepoints, which are distinguished in
the system. Trees are mapped to Subgoal frames, and their auxiliary structures,
which are not presented here. We now examine how the operations necessary to
implement our algorithm can be e [ciehtly realized, and describe the changes to
the standard SLG-WAM data structures necessary to support these operations.

edge. The edge relation connects consuming trees to their suppliers. This re-
lation is realized by consumer and generator choicepoints, and the timestamps
for these edges are implicitly represented by the memory addresses of these
choicepoints. Choicepoints already maintain references to the tables they are
supplying, as shown in Figure 4 by the dashed arrows. Tables are connected to
the consumers it supplies (dotted arrows). In order to provide fast access to the
tree a given consumer is consuming from, we have augmented the SLG-WAM
structure by creating a new chain that e [edtively transforms dotted arrows in
Figure 4 into double arrows.

delete_edge. This function is responsible for ensuring that no more answers will
be returned to a given choicepoint representing a tabled call. If the choicepoint
is a consumer choicepoint, we simply delete it by removing it from the chain of
choicepoints considered for scheduling. Generator choicepoints, as observed ear-
lier, are responsible both for returning answers to a tabled call via its forward
continuation, and for generating answers to a table, through its backwards con-
tinuation. When delete_edge is applied to a generator choicepoint, it modifies
its forward continuation to a failure, so that no answers will be returned to the
tabled call, even though it remains able to generate answers to the table.

delete_tree. Given the timestamp of a table, which in SLG-WAM s repre-
sented by the address of its generator choicepoint, delete_tree deletes its data
structures and execution context. The Subgoal frame and all answers already
computed for the table are deleted, as well as its generator choicepoint, and all
consumers that supply this table. A precondition for delete_edge is that no
demand exists on the table it is applied to, so nothing is done with respect to
consumers of this table. If there are consumers, they should be deleted when the
tables they are supplying are deleted.

gen_reach. This predicate is used both to traverse all tables in the scope of the
operation (as in demanded_scope) and also as a simple check, as in demanded.
gen_reach is realized in the implementation by performing a reachability analysis
in the beginning of the algorithm, marking all choicepoints which are reachable,
and thus in the scope of pruning. This provides for an easy, constant-time check
for whether a given choicepoint is in the scope. Traversal of choicepoints in the
scope is performed, when necessary, by a linear scan of the top of the choicepoint
stack, skipping those choicepoints not marked.
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demanded_scope. This predicate essentially collects all edges younger than the
timestamp at entry of once, whose source is not in its scope. The key to imple-
ment this function is to realize that, since timestamps are implicitly represented
by the address of choicepoints, a simple traversal of the top of the Control stack
(back to the point where once started evaluation), selecting unmarked choi-
cepoints, obtains all such edges. If any of these choicepoints consumes from a
table in the scope of once, it means that the scope has external demand, and
the predicate succeeds. This information is obtained by following the links from
consumers to tables they supply (dashed lines in Figure 4.)

5 Experimental Results

In this section, we present some quantitative data that suggests that approxi-
mate pruning, with table deletion, can significantly impact execution times of
programs.
In order to illustrate these
o Proming —+— possible gains, we benchmark a
Pruning —— version of the classical Stale-
10k ] mate game depicted in Listing 4
in the form of the predicate
win. Given a directed graph, this
game states that a node is a win-
ner if there is an edge connect-
ing this node to a non-winner
‘ ‘ node. Nodes which have no possi-
10 15 20 25 30 35 ble moves are, by default, winner
Depth of binary tree nodes. The goal is to determine
if a given node is a winner node.
It is important, in general, that
the win predicate be tabled, so
that the evaluation terminates in the presence of cycles in the input graph.

100

Time (ms)
-

0.1 ¢

0.01

Fig. 6. Performance comparison for the stale-
mate game

:- table win/O0. test (Depth) :-

win(X) :- create_bin_tree(Depth),
move (X,Y), cputime(T1),
tnot (win(Y)). win(0),

cputime(T2),
Time is T2 - T1,
write(time(win(Depth),Time)).

Listing 4: The Stalemate win/not-win game

It is clear that it is uninteresting to collect alternative proofs for the winning
status of a given node. This can be easily obtained by ensuring that negation
builtins like XSB’s tnot fail early when the first counter-proof is found. Cur-
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rently, tnot does not perform pruning when it fails, so unnecessary computation
is performed.

We have adapted the tnot operator to take advantage of approximate prun-
ing, and compared execution times using the test predicate of Listing 4. The
test dynamically creates full binary trees with variable depth. Figure 6 shows
results obtained for tests run both with and without the modified tnot builtin.
It is clear that, even though pruning does not change the exponential nature of
this problem, it significantly lowers the slope of the curvel. Besides time, mem-
ory performance is important for this benchmark. In fact, we were unable to run
the non-pruning version of the benchmark for trees of depth larger than 23 on a
machine with 2Gb of memory.

Another important point when introducing new functionality is to measure
the impact the added machinery imposes when the functionality is not being
used. We have benchmarked a set of non-pruning benchmarks on XSB with and
without support for our pruning operator. The maximum overhead observed was
about 3%.

6 Summary

The backward chaining evaluation model of Prolog computes only those subgoals
that are needed in order to resolve a given query. Pruning allows for a finer
control of determinism, which can be used to further extend this concept of
performing only demanded computations. It can be used by the Prolog engine
itself, in order to improve its evaluation strategy, and also by the programmer,
so that she can annotate programs with control information.

Tabled Prolog builds on the concept of demand-driven evaluation by allow-
ing each relevant goal to be evaluated only once. But there are no satisfactory
pruning operators in Tabled Prolog, since it is hard to decide which tables are
demanded in the presence of suspension and resumption of subgoals.

We have presented an abstraction of SLG evaluation where the SLG forest
of trees is represented by a directed graph, and demand is defined in terms of
reachability from a query node. This allowed us to define a demand-based once
pruning operator.

Full demand-based pruning is costly, so we presented sound approximate
pruning in the form of a safe once operator. Approximate pruning uses a notion
of the scope of the once operation as the basic unit for which demand is deter-
mined and implemented. This allows for an e [cieht pruning mechanism, which
has been implemented in the XSB system.

One question when performing pruning on tabled systems is whether unde-
manded tables should be deleted, or whether they should be kept in a scratch
area, so that future calls could use their results, and re-impose demand on them.
Approximate pruning takes the approach of deleting undemanded tables, given
that their scope is currently undemanded. This has the advantage of early mem-
ory reclamation, but may have adverse e [edts on the termination characteristics

! Notice that the y axis of the graph is plotted in a logarithmic scale.
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of a program. We intend to study the alternative of maintaining undemanded
trees, and supporting the re-imposition of demand on them. We believe each
approach will prove e [edtive in di [erknt situations.
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Abstract. A goal-independent suspension analysis is presented that in-
fers a class of goals for which a logic program with delays can be executed
without suspension. The crucial point is that the analysis does not verify
that an (abstract) goal does not lead to suspension but rather it infers
(abstract) goals which do not lead to suspension.

1 Introduction

A logic program can be considered as consisting of a logic component and a
control component [15]. Although the meaning of the program is largely defined
by its logical specification, choosing the right control is crucial in obtaining a
correct and e Lcieht program. In recent years, one of the most popular ways of
defining control is by suspension mechanisms which delay the selection of a sub-
goal until some condition is satisfied [2]. Delays have proved to be invaluable
for handling negation, delaying non-linear constraints, enforcing termination,
improving search and modelling concurrency. However, reasoning about logic
programs with delays is notoriously di [cullt and one reoccurring problem for
the programmer is that of determining whether a given program and goal can
reduce to a state which possesses a sub-goal that suspends indefinitely. A num-
ber of abstract interpretation schemes [3,5,8] have therefore been proposed for
verifying that a program and goal cannot suspend in this fashion. These analyses
essentially simulate the operational semantics tracing the execution of the pro-
gram with collections of abstract states, and are thus said to be goal-dependent.
This paper presents a suspension analysis that is performed in a goal-independent
way. Specifically, rather than verifying that a particular goal will not lead to a
suspension, the analysis infers a class of goals that will not lead to suspension.
This new approach has the computational advantage that the programmer need
not rerun the analysis for di [erknt (abstract) queries.

The analysis also tackles suspension analysis from another new perspective
— it verifies whether a logic program with delays can be scheduled with a lo-
cal selection rule [20]. Under local selection, the selected atom is completely
resolved, that is, those atoms it directly and indirectly introduces are also re-
solved, before any other atom is selected. Leftmost selection is one example of
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local selection. Knowledge about suspension within the context of local selection
is useful within it own right [8,14] but it turns out that local selection also fits
elegantly with backward reasoning. Moreover, any program that can be shown
to be suspension-free under local selection is clearly suspension-free with a more
general selection rule (though the converse does not follow). Our analysis draws
together a number of strands in program analysis and therefore, for clarity, we
summarise our contribution:

— The analysis performs goal-independent suspension analysis.

— The analysis, though technical, reduces to two simple bottom-up fixpoint
computations — a Ifp and a gfp — which, like the backward analysis of [13],
makes it simple to implement. The rdle of the Ifp is simply to calculate
success patterns that are used within the gfp calculation to model the way
the sub-goals of a compound goal can bind variables.

— The analysis is straightforward like the simple but successful suspension
framework of Debray et al [8] that infers suspension-freeness under leftmost
selection. The analysis in this paper additionally considers all local selection
rules and therefore strikes a good balance between tractability and precision.

— The analysis is unique in that it exploits the property that Heyting closed
domains [11] possess a pseudo-complement for two e [edts. First, the pseudo-
complement which enables information flow to be reversed to obtain a goal-
independent analysis (this idea is not new [13]). Second, pseudo-complement
is used to model synchronisation. The crucial correctness result exploits a
(reordering) relationship between monotonic and positive Boolean functions
and Boolean implication.

The paper is structured as follows: Section 2 presents an example that illustrates
the ideas behind the analysis. Section 3 introduces the necessary preliminaries.
Section 4 details local selection. Section 5 explains the rdle of Boolean func-
tions in analysis. Section 6 details the analysis itself and Section 7 presents an
experimental evaluation. Section 8 reviews related work and Section 9 concludes.

2 Worked Example

Consider the Prolog program listed in the left-hand column of Figure 1. Declar-
atively, the program defines the relation that the second argument (a list) is an
in-order traversal of the first argument (a tree). Operationally, the declaration
:= block app(-,7,-) delays (blocks) app goals until their arguments are su =1
ciently instantiated. The dashes in the first and third argument positions specify
that a call to app is to be delayed until either its first or third argument are bound
to non-variable terms. Thus app goals can be executed in one of two modes. The
problem is to compute input modes which are su [cieht to guarantee that any
inorder query which satisfies the modes will not lead to a suspension under local
selection. This problem can be solved with backward analysis. Backward anal-
ysis infers requirements on the input which ensure that certain properties hold
at (later) program points [13]. The analysis reduces to three steps: a program
abstraction step; least fixpoint (Ifp) and a greatest fixpoint (gfp) computation.
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app([X|Xs], Ys, [X|Zs]) :-

inorder(L,L1I),

inorder(nil,[]). inorder(T, 1) :- inorder(T, 1) :-

inorder(tree(L,V,R),I) :- true : true : T [T true
app(LL[V|RI]D), T =nil, | =[] : true. inorder(T, 1) :-
inorder(L,L1), inorder(T, 1) :- true :
inorder(R,RI). true : T o (L @XM [R),

T = tree(L,V,R), Ao (VLR :
:- block app(-, ?, -). A = [V|RI]: app(LLAID,
app(, X, X). app(LLA,I), inorder(L,L1),

inorder(R,RI).

app(Xs,Ys,Zs). inorder(R,RI).
app(L, Ys, A) :-

app(L, Ys, A) :- L CA:
nonvar(L) [Cnbnvar(A): L C(A o Ys) : true.
L =1, A=Ys:true. app(L, Ys, A) :-

app(L, Ys, A) :- L CA:
nonvar(L) [Cnbnvar(A): L « (X X&),
L = [X]|Xs], A = [X|Zs] : Ao (XL[Z):
app(Xs,Ys,Zs). app(Xs,Ys,Zs).

Fig. 1. inorder program in Prolog, in ccp and as a P os abstraction

2.1 Program Abstraction

Abstraction in turn reduces to two transformations: one from a Prolog with de-
lay program to a concurrent constraint programming (ccp) program and another
from the ccp program to a P os abstraction. The Prolog program is re-written to
a ccp program to make blocking requirements explicit in the program as ask con-
straints. More exactly, a clause of a ccp program takes the form h :(— c¢™: ¢™: g
where h is an atom, g is a conjunction of body atoms and c”and c™are the ask
and tell constraints. The asks are guards that inspect the store and specify syn-
chronisation behaviour whereas the tells are single-assignment writes that update
the store. Empty conjunctions of atoms are denoted by true. The nonvar(x) con-
straint states the requirement that x is bound to a non-variable term. The second
transform abstracts the ask and tell constraints with Boolean functions which
capture instantiation dependencies. The ask constraints are abstracted from be-
low whereas the tell constraints are abstracted from above. More exactly, an ask
abstraction is stronger than the ask constraint — whenever the abstraction holds
then the ask constraint is satisfied; whereas an tell abstraction is weaker than
the tell constraint — whenever the tell constraint holds then so does its abstrac-
tion. For example, the function L A describes states where either L or A is
ground [1] which, in turn, ensure that the ask constraint nonvar(L) [nbnvar(A)
holds. On the other hand, once the tell A = [V|RI] holds, then the grounding
behaviour of the state (and all subsequent states) is described by A « (V [Rl).

2.2 Least Fixpoint Calculation

The second step of the analysis approximates the success patterns of the ccp
program (and thus the Prolog with delays program) by computing a Ifp of the
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abstract Pos program. A success pattern is an atom with distinct variables for
arguments paired with a Pos formula over those variables. A success pattern
summarises the behaviour of an atom by describing the bindings it can make.
The Ifp of the Pos program can be computed Tp-style [10] in a finite number
of iterates. Each iterate is a set of success patterns: at most one pair for each
predicate in the program. This gives the following Ifp:
L1 1
[fn\order(xl, X2), X1 o X[
[@pp(X1, X2, X3), (X1 [X3) « X3[]

Observe that F faithfully describes the grounding behaviour of inorder and app.

F =

2.3 Greatest Fixpoint Calculation

A gfp is computed to characterise the safe call patterns of the program. A call
pattern has the same form as a success pattern. Iteration commences with

1 L1
Omorder(xy, X2), true]

Do = (@app(x1, X2, X3), true

and incrementally strengthens the call pattern formulae until they are safe, that
is, they describe queries which are guaranteed not to violate the ask constraints.
The iterate Dj4; is computed by putting Dj.; = D; and then revising Dj+1 by
considering each p(x) :-d: f : p1(X1),...,pn(Xn) in the abstract program and
calculating a (monotonic) formula that describes input modes (if any) under
which the atoms in the clause can be scheduled without suspension under local
selection. A monotonic formula over set of variables X is any formula of the
form G} (LY;) where Yi X [7]. Let di denote a monotonic formula that
describes the call pattern requirement for p;j(Xx;) in D; and let f; denote the
success pattern formula for pj(x;) in the Ifp (that is not necessarily monotonic).
A new call pattern for p(x) is computed using the following algorithm:

— Calculate e = [} (di — i) that describes the grounding behaviour of
the compound goal p1(X1),...,pn(Xn). The intuition is that p;(x;) can be
described by dij — fj since if the input requirements hold (d;j) then p;i(X;)
can be executed without suspension, hence the output must also hold (f;).

— Compute e”= [T} d; which describes a groundness property su [cieht for
scheduling all of the goals in the compound goal without suspension. Then
e — eMdescribes a grounding property which, if satisfied, when the com-
pound goal is called ensures the goal can be scheduled by local selection
without suspension (this relies on an unusual reordering property of mono-
tonic functions that is explained in Section 5.3).

— Calculate g = d (A - (e — eY) that describes a grounding property which
is strong enough to ensure that both the ask is satisfied and the body atoms
can be scheduled by local selection without suspension.

— Eliminate those variables not present in p(x), Y say, by computing

9= L) where Lgl . y.3(9) = GJ(... GJ(@)). A single variable can be
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eliminated by L(f) = fUif f2[Plos otherwise L(f) = 0 where fF= f[x B
0] CFJx B 1]. Hence L(f) entails f and g entails g, so that a safe calling
mode for this particular clause is then given by g~

— Compute a monotonic function g™that entails g* Since g™is stronger than
g"it follows that g™is su [cieht for scheduling the compound goal by local
selection without suspension. The function g“needs to be approximated by
a monotonic function since the e — e'step relies on d; being monotonic.

— Replace the pattern [p(x), g™ dn Dj+1 with [p(x), g™ g

This procedure generates the following D; sequence:

1
fimorder(Xy, X2), true] lmorder(Xy, X2), X3 [X3[]
[app(x1, X2, X3), X1 [X3[1 [@App(X1, X2, X3), X1 X3

The gfp is reached and checked in three iterations. The result asserts that a
local selection rule exists for which inorder will not suspend if either its first
or second arguments are ground. Indeed, observe that if the first argument is
ground then body atoms of the second inorder clause can be scheduled as follows
inorder(L,LI), then inorder(R,RIl), and then app(LI,A,l1) whereas if the second
argument is ground, then the reverse ordering is su [cieht for non-suspension.

Dj_: D2:

3  Preliminaries

Let [C(S) (S H'denote the set of multisets (sequences) whose elements are drawn
from S. Let [denote the empty sequence, let . denote sequence concatenation
and let [sT_denote the length of a sequence s. If s is a sequence, let I (s) denote
the set of permutations of s. Let [l,u] = {n [CZI| | < n < u}. Transitive closure
of a binary relation % denoted [

3.1 Terms, Substitutions, and Equations

Let Term denote the set of (possibly infinite) terms over an alphabet of functor
symbols Func and a (denumerable) universe of variables Var where Func n
Var = [Let var(t) denote the set of variables occurring in the term t.

A substitution is a (total) map 6 : Var - Term such that dom(6) =
{u X\ar | 6(u) & u} is finite. Let rng(6) = dar(6(u)) | u Cdom(6)} and
let var(8) = dom(6) [rhg(B). A substitution 8 is idempotent iC B8 = 06, or
equivalently, i Cdbom(8) n rng(6) = [_Let Sub denote the set of idempotent sub-
stitutions and let id denote the empty substitution. Let 6(t) denote the term
obtained by simultaneously replacing each occurrence of a variable x [Cdbm(8)
in t with 8(x). An equation e is a pair (s = t) where s,t [CTlerm. A finite set of
equations is denoted E and Eqn denotes the set of finite sets of equations. Also
define 6(E) = {6(s) =08(t) | (s =1t) [H}. The map eqn : Sub - Eqn is defined
eqn(0) = {x = 6(x) | x [Cdbm(8)}. Composition 6 - ¢ of two substitutions is
defined so that (8 o ¢)(u) = 8(Y(u)) for all u M. Composition induces the
(more general than) relation < defined by 6 < ( i[CThere exists 8 [Slub such
that ¢ = 8 -0 which, in turn, defines the equivalence relation (variance) 6 = ¢ i []
B < P and P < 6. Let Ren denote the set of invertible substitutions (renamings).
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3.2 Most General Unifiers

The set of unifiers of E is defined by: unify(E) ={6 [Sub | [(d=1t) [CH.B(S) =
B(t)}. The set of most general unifiers (mgus) and the set of idempotent mgus
(imgus) are defined: mgu(E) = {6 [Cunhify(E) | Q0 Cunify(E).6 < ¢} and
imgu(E) = {6 [Cmgu(E) | dom(8) n rng(8) = [ Note that imgu(E) & [l
mgu(E) & []16].

3.3 Logic Programs

Let Pred denote a (finite) set of predicate symbols, let Atom denote the set
of (flat) atoms over Pred with distinct arguments drawn from Var, and let
Goal = [Atom). A logic program P (with dynamic scheduling assertions)
is a finite set of clauses w of the form w = h:—D : E : b where h [CAtom,
D [II(Hgn) (the ask is a set of equations), E [CHqn (the tell is a single
equation) and b [—Goal. An operational semantics (that ignores each D and
therefore synchronisation) is defined in terms of the standard transition system:
Definition 1 (standard transition system). Given a logic program P,
~p [{Goal x Sub)? is the least relation such that: s = [gl8[3~p [Mg"'s - OCf

— there exists p(x) gl
— and there exists p [Ren and w [p(P) such that var(w) n var(s) = [dnd
w=ply)—D:E:b

— and & Cihgu({8(x) =y} CED and g"= g\ {p(x)}
Note that . denotes concatenation. The operational semantics is the transi-
tive closure of the relation on (atomic) goals, that is, O(P) = {6(p(x)) |
[A(X), id(3~5TJB 3 The following lemmas are useful in establishing the main
result, theorem 1, and follow from the switching lemma [17, lemma 9.1].
Lemma 1. Let [@g,03~5 MBYIThen [@ 63~L [MiCand g YE~8 Pt
where i = j +k and 8= ("~
Lemma 2. Suppose [g,0; 57 [Gh,6,and 8; = Yi. Then [gh, Py 5
@, lng [Ovhere 92 = llJz.

A fixpoint semantics of P (that again ignores synchronisation) can be defined
in terms of an immediate consequences operator Fp. Let Base = {6(a) | a [
Atom [H1[CSJub} and Int = {I [CBlase | [al Il [EH1[Sub.6(a) CI}. Then
(Iht, [, 114, Base, [Tis a complete lattice.

Definition 2. Given a logic program P, the operator Fp : Int - Intis defined:
L1 L1

_ —D:E:ay,...,am [P [
Fe()= 8B mifyE) Coay D

The operator Fp is continuous and hence the fixpoint semantics for a program
P can be defined as F(P) = Ifp(Fp). The relationship between the operational
and fixpoint semantics is stated below.

Theorem 1 (Partial correctness). O(P) CELP).

Although the fixpoint semantics is only partially correct — it does not consider
synchronisation — it still provides a useful foundation for analysis since any safe
(superset) abstraction of F(P) is also a safe approximation of O(P).
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4 Local Selection

This section formalises the analysis problem, and in particular local selection, by
introducing an operational semantics for logic programs which combines delay
with local selection. A transition system is defined in terms of an augmented
notion of state, that is, State = {susp} [Gal < Sub [Gbal %< Goal < Sub.

Definition 3 (transition system for local selection with delay). Given a
logic program P, —p [State? is the least relation such that:

— s =[p(x).9,03»p Mg5s - OLIf
« there exists p [[Hen and w [p[P) such that var(w) n var(s) = [and
w=ply)—D:E:b
« and there exists EX'[CD and p Cahify(EY such that p(p(y)) = 8(p(x))
= and 8 Cithgu({8(x) =y} CE) and g"= g\ {p(x)};
— s = [ply).g,8Fp susp if
* there exists p [CHen and w [Cp[P) such that var(w) n var(s) = [dnd
w=ply)—D:E:b
= and p(p(y)) 2 8(p(x)) for all EFY' D and for all p Cuhify(ED;
— []g,83»p iy, 80 bY CI(b).

Recall that . is concatenation and M (b) is the set of goals obtained by permuting
of the sequence of body atoms b. These permuted body atoms ensure that the
transition system considers each local selection rule rather than a particular local
selection rule. The analysis problem can now be stated precisely: it is to infer
a sub-class of states of the form s = [p(x), 63uch that if s ~5'[JWthen
s —5 X Cwhere ¢ = X. Put another way, if the standard transition system
produces a computed answer then a local selection rule exists that will produce
a variant of that answer. The problem is non-trivial because local selection can
bar derivations from occurring that arise in the standard transition system. The
following proposition is an immediate consequence of this.

Proposition 1. O(P) [C{A(p(X)) | [A(x), id 3+ 5 0IB}

5 Boolean Functions

This section reviews Boolean functions and their rdle in analysis, before moving
to introduce new properties of Boolean functions that are particularly pertinent
to suspension analysis. A Boolean function is a function f : Bool” — Bool where
n = 0 and Bool = {0, 1}. A Boolean function can be represented by a proposi-
tional formula over X [\ hr where |X]| = n. The set of propositional formulae
over X is denoted by Bool x. Boolean functions and propositional formulae are
used interchangeably without worrying about the distinction. The convention of
identifying a truth assignment with the set of variables M that it maps to 1 is
also followed. Specifically, a map Ux (M) : [(X) - Boolx is introduced defined
by: Ux (M) = (M) C=[ [(XI\M)). Henceforth suppose X is finite.
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1 1 1
== o Sl
X X < X d
= L L—
X X X
0 0 0
Fig. 2. Hasse diagrams for Monx, Def .. and Posx for the dyadic case X = {X,y}

Definition 4. The map modelx : Boolx — [(II(X)) is defined by: model x (f)
={M [XI| yx(M) = f}.

Example 1. If X = {x,y}, then the function {1} 118 1, (I} 018 0, @ 118 O,
[@ 0B 0} can be represented by the formula x [yl Moreover, model x (x [
y) = {{x,y}}, modelx(x [¥) = {{x},{v}, {X, y}}, modelx(false) = [and
modelx (true) = LX) = {L4x}, {y} {x, y}}-

5.1 Classes of Boolean Functions

The suspension analysis is formulated with three classes of Boolean function.

Definition 5. A Boolean function f is positive i CX [model x (f);  is definite
iCW n MP Cmodel x (F) for all M, M™ Cmodel x (F); £ is monotonic i CIMP 1
model x (f) whenever M [modelx (f) and M CM" X1

Let Posx denote the set of positive Boolean functions (augmented with 0); Def 5
denote the set of positive functions over X that are definite (augmented with 0);
and Monx denote the set of monotonic Boolean functions over X (that includes
0). Observe Monx [Pbsx and Defy [Pbsx. One useful representational
property of Defy is that if f [CDefy and f E 0, then f = CT(yi ~ [Y3)
for some yj X and Y; XA [7]. Moreover, if f [CMonx and f & 0, then
T = I (Y3) where Y; X116, Proposition 2.1]

The 4-tuple [Posx, =, L1 1s a finite lattice and Monx is a sub-lattice
(whereas Defy is not a sub-lattice as witnessed by the join of x and y in
Figure 2). Existential quantification for Posx is defined by Schroder elimina-
tion, that is, IX}f = f[x B 1] CFf[x B 0]. Universal projection is defined
Gdf) = £Uif 2 [Plosx otherwise G{f) = 0 where f5= f[x O 0] CXIx O 1].
Note that XI([ylf) = Iy [XIf) and XI(OZIf) = O XxIF) for all x,y [CX.
Thus let Yy,...,Yn}.-Ff = fa1 where f; = f and fij; = [yl f; and define
Y1, ...,Yn}.F analogously. Finally let [YIf = [CX\Y).f and [YIf = [CX\Y).f.

5.2 Abstracting the Fixpoint Semantics Using Boolean Functions

Boolean functions are used to describe (grounding) properties of the program.
The construction is to formalise the connection between functions and data (syn-
tactic equations) and then extend it to semantic objects such as interpretations.
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Definition 6. The abstraction aP° : [(Hqn) - Pos and concretisation
yPos : Pos — [(Hgn) maps are defined:

a”**(D) = @ (8) | 8 Cigu(E) [El (D} y~*(f) = {E | a"*{E}) = f}

where aP¢"(8) = X - var(t) | x B t [H}.
The lifting of aP° and y"° to interpretations is engineered so as to simplify the
statement of the gfp operator, though it also su [ced for defining the Ifp operator.
The construction starts with BaseP°s = {[a f[Jla [Atom CF1CPDbS yar(ay}- TO
order these pairs, let X o y = GO (Xi « Vi) where X = X4,..., Xn[And y =
M, ..., Yn[dThe entailment order on Pos can be extended to by, b, [Base"°s
where b; = [R(X;), fi [Ivar(x) n var(x;) = Cand fP= DVar(x;).((x - x;) CH)
by defining by = b, i A= f5) Observe that [BaseF°s, =[ls a pre-order since
= is not reflexive. Equivalence on BaseP°s is thus defined by = b, iChh [ b,
and by | by. Let 11,1, [BhseP°/=. Then entailment lifts to [(BaseP°s/=)
by 1, F 1, iCTor all [b;]= [ there exists [bp]= [CIJ such that by = bs.

Let Int”°s denote the set of subsets I of BaseP°S/ = such that there exists
a unique [[A(x), fOL [Ifor each p [Ared. Since IntP°s [I[Base™%/ =),
IntPs is also ordered by [=. Note, however, that |= is the point-wise ordering
on IntP°s and that the lattice ht"°S, =, [ I3 equipped with simple [Cahd
[Coperations. Specifically G dd; = {[[p(x), Ghf; 04 | [[p(x), f; 0+ 3} and
Gl is analogously defined. The following definition extends aP°s and yFos
to interpretations and thereby completes the domain construction.

Definition 7. The concretisation map y®°s : Int”° _ Int is defined:

yPe(3) ={8(a) | [[@ fOx CJ1Cedn(8) CyFos(f)}
whereas aP° : Int - IntP°s is defined: aP°s(1) = A CIhtPos |1 [yT°5(J)}.
An operator that abstracts the standard fixpoint operator Fp is given below.

Definition 8. Given a logic program P, the fixpoint operator F5°S : IntPos _
IntPos is defined by: FE°S(1) = A CIht™*s | K = J} where

—1 C1
h—D:E:aj,...,an A O

L1
K= fd [la, fidl [T L
= = Dar(h).(a"*({E}) CIILT)

The operator FF°S is continuous, hence an abstract fixpoint semantics is defined
FPos(P) = Ifp(Fp). The following correctness result is (almost) standard.

Theorem 2. F(P) [T (FFPos(P)).

5.3 Monotonic Boolean Functions

One idea behind the analysis is to use implication to encode synchronisation. The
intuition is that if d; expresses the required input and f; the generated output
for pi(X;), then d; — f; represents the behaviour of pj(Xj). One subtlety is that
ol (di — i) does not always correctly describe the behaviour of a compound
goal p1(X1),...,pn(Xn) if di MMonx. This is illustrated below.
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Example 2. Consider the compound goal pi1(X,Y, z), p2(X,Y, z) for a two clause
program pi(X,y,z):—D:z=c:true and p(X,y,z):—nonvar(x) :y =b: true
where D is a (bizarre) ask constraint that is satisfied if y is ground whenever
X is ground. Thus if d; = (X - y) and d, = x hold then D and nonvar(x)
are satisfied whereas z = ¢ and y = b ensure that f; = z and f, = y hold.
Neither p1(X,Y, z) can be scheduled before p»(X, Yy, z) or vice versa to bind z, yet
[Z](di — i) E z. The problem stems from the implication in d;. Ensuring
that di [CMonyx avoids this problem as is formally asserted below.

Proposition 2. Let f, f; [Defy and d; [CMonx for all i 1, m] and suppose
f F (CZ(di - fi)) - (GZhdi). Then an injective map m : [1,m] - [1,m]
exists such that f Elifjlfn(j) F drgy for all i 1, m].

The force of the result is that it states that the compound goal can be reordered
as Pr) (Xn))s - - - » Preen) (Xm(ny) SO that the input requirement of goal pr iy (Xniy)
(driy) is satisfied by an initial binding (f) combined with those bindings out-
put by the previous goals (E‘J:jlfn(j)). The following definitions explain how to
(minimally) strengthen a positive function so as to obtain a monotonic function.
The specification for this operation is captured in 1.

Definition 9. The map |: Posx — Monx is defined | f = [{AY [CMonx |
U=}
The operation | arises during analysis and to construct a method for computing

L, let p: X = XUbe a bijective map where X" [Vlar and X n X"= [The
proposition explains how ¢ can be iteratively applied to finitely compute 1.

Definition 10. The map : Posx - Posx is defined O f = [XI?fPwhere
o= (CDhx; - p(xi)) - p(F).

Proposition 3. Let f [CRosx. Then | f = L=Lf; where f; [CHosx is the
decreasing chain given by: f; = f and fj+; =Of;.

Example 3. Consider computing {f where X = {x,y}and f = (x - y). Suppose
p(x) = x"and p(y) = y~ Then f= ((x - xJ ¥ - y9)) - x" - yY,
fix"0 1]1=(y - y§ - yP=y ytand fx"3 0] = 1 so that XPf =y ¥V
Put f@=y [yl Then fTy"3 1] = 1 and fGy~3 0] = y so that © f =
VT IXPF = yIf™=y. In fact Oy =y so that |f =y. Observe that y = f.

6 Suspension Analysis

This section draws together the previous sections to define the suspension anal-
ysis in terms of a backward fixpoint operator. To construct this operator, and
specifically model asks, it is necessary to introduce a map af;% : [(Hgn) — Pos
that returns a lower approximation to a set of equations D. Recall that a°s
yields an upper approximation in that if E 3, then aP°S({E}) entails a”°s (D).
Conversely a2, which is defined below, delivers a lower approximation with the
property that if aP°s({E}) entails af’%s(D), then E .

low
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Definition 11. The (lower) abstraction map af% : [{Hqn) — Pos is defined
by: of98 (D) = [{f [Pbs | yPos(f) [DF.

Example 4. Let nonvar(x) and ground(y) denote the equation sets {E [CHqn |
8 Cimmgu(E) [CH{x) Var} and {E [Hqn | 8 [Ciingu(E) Cvar(6(y)) = H
Then a9 (Egn) = 1, al% (nonvar(x)) = X, af29 (nonvar(x) Cgrbund(y)) = x [y
and oS ({x = f(a)}) = a*({x =y}) =0.

low
Suspension analysis can now be formalised with an abstract fixpoint operator:

Definition 12. Given a logic program P, the operator Bp : IntP%s _ |ntPos
is defined: Bp (1) = 3 CIhtPos | [bi]_ [CK.Obp]_ [Jlb, = by} where
C1 L1

h-—D:E:a,...,an A ]
(@, fiJlL CEPS(P) @&, d;0l (0 [CB
K= _[md%2Hd = ofs(D) [k =aP"{E})
= (O (di ~ i) - (0Zhdi)
M= 1(Dar(h).(d C@ - dY))

Recall that GTi(d;i - fi) captures the grounding behaviour of the goal
ai,...,am Whereas [Z}d; describes a state with variables su Lciehtly bound
to enable each a; to be scheduled with local selection without suspension. The
function d"is a grounding property that, if satisfied when ay, ..., an is called,
guarantees that as, ..., am can be reordered so that each a; can be scheduled by
local selection without suspension. The function d™is monotonic, defined only
over those variables in h, and is su [cieht to ensure that both the ask is satisfied
and that a3, ...,am can be scheduled by local selection without suspension. If
P contains a predicate p defined over n clauses, then {[p(X, fi)]=}L; [Klso in
general K IIht°s. However, Bp (1) contains a unique element [p(x, f)]= such
that ¥ = G f;. In e[edt, related elements of K are merged with meet.

Bp is co-continuous and since Int”°s is a finite lattice, it follows that gfp(Bp)
exists. The value of gfp(Bp) is explained by the following theorem (or rather its
corollary). It states that gfp(Bp) characterises a set of initial states for which
if the standard transition system leads to a computed answer (in k steps) then
local selection with delay leads to a variant of that computed answer (in k steps).

Theorem 3. Suppose 8(p(x)) [Y”°S(BK(D)ls: = [P(x),001s; ~K O]
Then s; —K K CWhere Y = X.

Corollary 1. Suppose 8(p(x)) LYF(gfp(Bp)), s1 = [P(X),80Ts; ~~ MWLI
Then s; —K K Cwhere Y = X.

To emphasise the significance of gfp(Bp), the abstract backward semantics for
P is defined B(P) = gfp(Bp). Co-continuity enables B(P) to be computed by
lower Kleene iteration, that is, as the limit of [_Bp (), B2 (), L..where
C={[[p(x), 10& | p [PIred}. The example illustrates how to handle builtins.

Example 5. Consider the temperature conversion program in the left column of
Fig. 3 which converts Celsius to Fahrenheit and vice versa. The block declara-
tion equates to the equation set D = (nonvar(X) n nonvar(Y )) [(donvar(X) n
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cf(C, F) :- mul(C, 1.8, S), add(S, 32, F). cf(C, F) - true : T1 TP :
mul(C, T1, S), add(S, T2, F).

:- block add(-, -, ?), add(-, ?, -), add(?, -, -).

add(X, Y, Z) :- ground(X+Y), Z is X+Y. add(X, Y, 2Z2) - f: T o X [Y) :

add(X, Y, Z) :- ground(Z-X), Y is Z-X. ground(T), is(Z, T).

add(X, Y, Z) :- ground(Z-Y), X is Z-Y. add(X, VY, 2):-f: T o X[:
ground(T), is(Y, T).

- block mul(-, -, ?), mul(-, ?, -), mul(?, -, -). add(X,Y,2):-f: T o (Y [2D:

mul(X, Y, Z) :- ground(X*Y), Z is X*Y. ground(T), is(X, T).
mul(X, Y, Z) :- ground(Z/X), Y is Z/X.
mul(X, Y, Z) :- ground(Z/Y), X is Z/Y. mul(X, Y, 2) - ...

ground(X) :- true : X : true.
is(X, Y) :- true : X [Y1: true.

Fig. 3. conv program in Prolog and in Pos where f = (X [Y) (X [ (Y @)

nonvar(Z)) C(donvar(Y ) n nonvar(Z)) and af2%$(D) = f (see Fig. 3). Note how

W
the builtins ground and is are modelled in the abstract version of conv listed in

the right column. For brevity, let y = [Xj, X, Cand z = Xy, X2, X3 [LIThen

—1 —1 1 1
[ef(y), x2 X301 [lef(y), 101
[[add(z), x: X3 301 [fadd(z), fOL
FPoS (conv) = [Mul(z), x; X3 X301 K = [mul(z), FOL1
Eground(xy), X101 Hfound(xy), 101
[O3(y), x. 301 [Os(y), 101

where f = (x; [xd) C(¥; [X3) (X, [x3). Hence Beony (D73 K. Then BZ,,, (D
di[erk from Beony ( Ddnly in [[Cf(y), x; [X30L. In fact B(conv) = BZ,,,, (D

7 Experimental Evaluation

To assess the value of the analysis it has been implemented in SICStus Prolog
using the BDD package of Armstrong and Schachte [1]. The implementation
consists of two meta-interpreters — one for each fixpoint. Each abstract clause
h :—d:f:bg,...,by is represented as two facts: my_clause(h,[idf, by, ..., bn])
and assertion(h,idyg) where id¢ and idy are identifiers for the BDDs of f and
d. Facts of the form fact(gr,p(x),idf) and fact(ba,p(X),idy) are added and
removed from the database to record the status of the Ifp and then the gfp.
Both fixpoint engines are realised as semi-naive meta-interpreters.

The analyser has been applied to a number of programs: bestpath, entails,
fact, hamming, inorder, isotrees, pascal, mm, hanoi, msort, gsort, queens, sieve,
most of which derive from the Super Monaco benchmark suite. All programs were
analysed in less than 1 second on a 500MHZ, 512MB Pentium |11 running RedHat
Linux 7.2 with Kernel 2.4.7-10. The Super Monaco programs are coded in kl1 —
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an early ccp language — and therefore for analysis these programs were manually
translated into SICStus Prolog with blocks. It was for these programs that the
analysis occasionally produced unexpected results (modes) and close inspection
revealed errors in the hand translation. Some errors were straightforward (block
declarations of the wrong arity) and other were subtle, but none came to light
in the testing, presumably because of the particular interleaving adopted by the
SICStus scheduler. These results suggest that the analysis has a rdle in bug
detection. The analysis also inferred non-trivial modes for all predicates except
for 6 mutually recursive predicates in bestpath for which false was returned. It
is not yet clear whether a local selection rule exists for these predicates that
avoids suspension — the synchronisation is subtle and may even be buggy. What
is clear, however, is that local selection is su [cieht to infer useful modes for the
vast majority of the predicates that were analysed. An experimental analyser
can be found at http://www.cs.bgu.ac.il/cgi-bin/genaim/susweb.cgi and
the benchmarks are available from the home page of the second author.

8 Related Work

One of the most closely related works comes surprisingly from the compiling con-
trol literature and in particular the problem of generating a local selection rule
under which a program universally terminates [12]. The technique of [12] builds
on the termination inference method of [19] which infers initial modes for a query
that, if satisfied, ensure that a logic program left-terminates. The chief advance
in [12] over [19] is that it additionally infers how goals can be statically reordered
S0 as to improve termination behaviour. This is performed by augmenting each
clause with body atoms as,...,an with n(n — 1)/2 Boolean variables b; j with
the interpretation that b; j = 1 if a; precedes a; in the reordered goal and b; j =0
otherwise. The analysis of [19] is then adapted to include consistency constraints
among the b; j, for instance, by« [=bjx [—=bt ;. In addition, the b;; are used
to determine whether the post-conditions of a; contribute to the pre-conditions
of a;. Although motivated dilerkntly and realised dilerently (in terms of the
Boolean p-calculus) this work also uses Boolean functions to finesse the prob-
lem of enumerating the goal reorderings. This work complements our own since
termination is a related but orthogonal requirement to non-suspension.

King and Lu [13] show how to apply backward analysis to the problem of
figuring how to query a logic program with fixed selection rule. The analysis
traces control-flow of the program (backward) right-to-left to infer the modes
in which a predicate must be called under the leftmost selection rule. Although
this analysis can be reinterpreted as a suspension analysis it cannot reason about
local selection accurately since it only considers leftmost selection.

The early work of [5] presents an and-or tree framework that applies local
reexecution to simulate the dataflow under dilerent interleavings. A more di-
rect approach is to abstract each state in the transition system with an abstract
state to obtain an abstract transition system [3]. Finiteness is enforced through
a widening known as star-abstraction [3]. This approach achieves a degree of
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conceptual simplicity though the abstract states themselves can be unwieldy.
The work of [8] is unusual in that it attempts to detect suspension-freeness for
goals under leftmost selection. Although this approach only considers one local
selection rule, it is surprising e [edtive because of the way data often flows left-
to-right. A particularly elegant approach to suspension analysis follows from a
confluence semantics that approximates the standard semantics in the sense that
suspension implies suspension in the confluent semantics [4]. The crucial point is
that because of confluence, an analysis based on the confluence semantics need
only consider one scheduling rule. None of these analyses, however, can infer ini-
tial queries that guarantee non-suspension — all check for non-suspension. Other
works have proposed generic abstract interpretation frameworks for dynamic
scheduling [9,18] but none of these are for goal-independent analysis.

9 Concluding Discussion

This paper has shown how suspension analysis can be tackled for a new perspec-
tive — that of goal-independence. It shows how an analysis for non-suspension
under local selection can be formulated as two simple bottom-up fixpoint compu-
tations. The analysis strikes a good balance between tractability and precision.
It avoids the complexity of goal interleaving by exploiting reordering properties
of monotonic and positive Boolean functions.

For reasons of presentation, the analysis proposed in this paper has been
specified for logic programs. To further simplify the presentation, the analysis
was formulated in terms of simple groundness dependencies. The first constraint
can be relaxed by following a standard constraint formulation [10]. The second
can be relaxed by lifting the analysis to rigidity (type) dependencies using term
extractor maps [3,10]. Another direction for future work will be to generalise the
analysis to other abstract domains that possess a pseudo-complement.
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Abstract. We consider arbitrary cryptographic protocols and security
properties. We show that it is always su [cieht to consider a bounded
number of agents b (actually b = 2 in most of the cases): if there is an
attack involving n agents, then there is an attack involving at most b
agents.

1 Introduction

The task of automatically verifying cryptographic protocols has now been un-
dertaken by several research groups, because of its relevance to secure internet
transactions. Let us cite for instance (this is far from being exhaustive): CAPSL
[13], CASRUL/Datac [19], casper/FDR [26].

Though cryptographic protocols are often described in a concise way (see
e.g. [7]), the verification problem is di Cculit for two reasons:

1. The number of agents potentially using the protocol is unbounded, as well
as the number of protocol sessions.
2. The size of messages which can be forged by an intruder is also unbounded.

And, in fact, even for simple properties such as secrecy and for subclasses of
protocols, the verification problem is undecidable (see e.g. [15,14,9,2]).

The verification tools have either to assume stronger properties on the pro-
tocols (e.g. [20,10,27,2]) or to consider a bounded number of sessions (hence a
bounded number of agents) only [3,25,16,22], in which case the security prob-
lem becomes co-NP-complete [25]. Yet another solution is to consider an upper
approximation of the set of execution sequences, in such a way that, when no
attack is found on this upper approximation, then there is no attack on the
protocol. This is typically the approach of [6,5].

In this paper, we consider a simple reduction, which works for any protocols
and security properties typically considered for automated verification. \We show
that it is always su [cieht to consider a bounded number of agents b (actually
b = 2; we will discuss this point later): if there is an attack involving n agents,
then there is an attack involving at most b agents. Such a result is useful for
automatic tools: we may forget the universal quantifications on agents ids and
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consider finitely many (4 most of the time) instances of the protocol roles, with-
out loosing information. This proves actually that the instanciation techniques
in [19] are complete. This also provides completeness results for abstraction used
in [6,23]. Of course, the verification problem will remain undecidable, because we
cannot faithfully give a bound on the number of sessions. Still, approximation
techniques such as [5,6] can be simplified and when considering a bounded num-
ber of sessions we may assume w.l.0.g. that only these b agents are involved. This
reduction result also provides with a decision result for cryptographic protocols
against a passive intruder.

Our result extends and clarifies a side result of [18]. Indeed, J. Heather and
S. Schneider chow that one may consider only four agents (three honest, one
dishonest) using implicitly that an agent may talk to herself. We prove actually
that in J. Heather and S. Schneider case, only two agents are su [Cieht. In
addition, our reduction result holds for more general security properties and
also holds when an agent is disallowed to speak with herself.

The proof of our result is not di Ccult, once the protocol and its properties are
expressed as Horn clauses: given an attack against a security property, we simply
project every honest identity on one single honest identity and every dishonest
identity on one single dishonest identity. Actually, the result can be stated for
a class of Horn clauses, which encompasses protocols descriptions. Everybody
has her (his) favorite model. We do not argue that the Horn clause model is
better than others. It is simply more convenient for our proof and we claim that
most other models can be reduced to this one, hence our reduction also applies
to other models of cryptographic protocols. In order to support this claim, we
provide (in [11]) with a reduction of the Millen-Ruel? model [21] to Horn clauses.
We hope that this will provide with enough evidence that the reduction result
works for other models as well. (It is not possible to show in detail all reductions
from other models to Horn clauses).

Our paper is organized as follows. We introduce our model in section 2. A
more detailed definition can be found in [11]. In section 3.1 we prove that, if there
is an attack involving n agents, then there is an attack involving at most 2 agents,
besides the constant agents which might be used in the protocol description. In
other words, we show that we have to consider only instances of the roles in a
two-element sets. This result assumes however that the same agent may play
di Cerknt roles in a given protocol session: “an agent may talk to herself”. Most
of the models do not discard this ability. However, it may be considered as more
realistic that an agent cannot play several roles in the same session. Some models
[24,20] explicitly disallow this possibility. That is why we consider in section 3.2
models in which an agent cannot talk with herself. We prove in this case that, if
there is an attack involving n agents, then there is an attack involving at most
k + 1 agents where k is the number of roles in the protocol.
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2 The Model

We define a trace model by means of Horn clauses, in which terms are messages.
A similar representation can also be found in [5] for instance. The important
feature is that we only use Horn clauses, which contain at least one positive
literal. Hence there is a least Herbrand model H, which is the intended trace
semantics: the possible traces are the member of Ty, the interpretation of the
unary predicate T in H.

Clauses come in two parts: the first part is protocol independent and the
second part is protocol specific. It is a bit lengthy to describe the two parts in
details: we will only show here examples and the less standard constructions.
The reader is referred to [11] for more details.

2.1 Messages and Traces

The set of messages is the set of (ground) terms built over a set of function
symbols F and basic sorts: Num, Agent, Ha, Da, Message, Event, Trace. F contains
the following function symbols:

0: - Num n; : Agentki, Num - Message
S :Num - Num st : Agent, Num, Message — Event
h: - Ha 1 - Trace
d: - Da [ -: Event, Num, Trace — Trace
Sh: Ha - Ha Srvi — Agent

sq:. Da - Da

Terms of sort Agent are called agents. All other symbols, including the classical
cryptographic primitives for building keys, encryption and pairs take messages as
arguments and return a message. This set of cryptographic primitives is denoted

by:
Fmsg = {< - - >, {}.,pub(), prv(-), shr(1)}.

In addition, we may have e.g. hash function symbols.

We also assume that every agent is a message and every message is an event;
we have the subsort relations Agent < Message < Event, Ha < Agent and Da <
Agent. Let us comment a little bit:

— Num is only used for internal representations of session numbers, nonces...
It is important to provide with one representation since we will consider
Herbrand models. However, such a representation is irrelevant in what fol-
lows. In particular, neither the intruder nor the agents have access to this
representation.

— There are two non-standard sorts Da, Ha. The terms of these sorts are re-
spectively s'g(d) and sﬁ(h) and are intended to represent compromised and
honest agents respectively. Again, this is for internal representation only. Of
course, this distinction is never used in the protocol description. It is however
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necessary in the protocol property definition: typically, we want to state that
a secret shared by honest agents remains unknown to the intruder, hence we
need a way to express that an agent is honest.

— srv; are intended to be server names.

— n;j is a collection of function symbols, which are used to represent nonces
(randomly generated data): n; is intended to take as arguments some agent
ids (who generates the nonce and who are supposed to receive the nonce)
and a session number. i is intended to be the protocol step. Note that we
may also consider a single symbol n with an additionnal argument i. Then
n;(_) is simply a notation for n(i, _).

— st is intended to represent the local state of an agent. Events will consist of
either sending a message or increasing a local memory. Traces are sequences
of pairs of an event and a session number.

— We do not assume any a priori typing of messages (there is no a priori way
to distinguish between a nonce and a pair for instance), though any such
policy could be specified at the protocol description level.

By abuse of notation, we will sometimes write e.g. 2 instead of s(s(0)), < x,y,z >
instead of < Xx,<vy,z >>, or {X,y}; instead of {< X,y >},.

We will sometimes use unary predicate symbols instead of sort names in order
to explicitly state the sort of a variable. For instance, we may write Agent(x),
expressing that x is of sort Agent (other authors use the notation x : Agent).
Such unary predicate symbols can only be used with variable arguments.

2.2 Protocol Independent Clauses

We sketch here and in the following section how to design a set of Horn clauses
defining valid traces. We also show in [11] that this is a reasonable definition
since other models can be reduced to this one.

We use a binary predicate symbol | to describe the intruder knowledge. |
takes two arguments: a message m and a trace t; 1(m, t) means that message m
is known to the intruder after executing t. Some typical clauses defining I are
displayed on figure 1. There are other clauses for e.g. (un)pairing.

Protocol independent clauses will also contain the definition of some auxiliary
predicates, which will be described when needed as well as the clause T ()1
which states that the empty trace is a trace. How to continue a trace is protocol-
dependent.

2.3 Protocol Dependent Clauses

We sketch here how to define the set of valid traces T on the Yahalom protocol.
In this section, a, b will stand for variables of sort Agent, X,y, z for variables of
sort Message, s, t and e for variables of sort respectively Num, Trace and Event.
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Agent(x) [CI(X,t) The intruder knows all agents ids.

The intruder knows all keys of com-
promised agents.

Da(x) [CI(drv(x),t)

1(x,t) CI{@ub(x),t) The intruder knows all public keys.

The intruder can encrypt a known
message with a known key.

I (X1 t)! | (y! t) me}w t)

The intruder can retrieve the clear text
I ({X}shrgyy, 1), 1 (shr(y), t) CI(X,t) of a message encrypted with a known
symmetric key.

All messages sent through the network
T . CIx .
(B s1-1) DSl are available to the intruder.

The intruder remembers a message
I(x,t) CIX,y-t .
>0 y0 whatever is added to the trace.

Fig. 1. Some of the clauses defining |

A - B:A Ny

B - S: B,{A, Na, Nb}shr(B)

S - A {B, Kab, Na, Nb}shr(A)’ {A, Kab}shr(B)
A - B {A Kap}shrey {Nb} ks

We first state that, at any point, we may start a new session of the protocol
assigning roles to any of the agents. This is expressed by:

Fresh(t,s), T(t) CI{[st(a,1,<a,b,srv>),9]
[st(b, 1, < b,srv >),s]
[st(srv, 1,srv),s] - t)

Fresh is an auxiliary predicate (defined in figure 2), which holds when the number
s is larger than any number occurring in t. Then the trace t can be extended
accordingly.

Now, if a has started session s, and if she has not already sent the first
message of this session, she can do it, hence extending the trace, and moving to
stage 2 for this session:

T (%), %T( [<a,ni(a,s) >,s]
In([st(a, 1, < a,b,srv >),s],t), [st(a 2,<a,h,srv,ni(a,b,s) >),s]
NotPlayed(a, 2, s, 1) Ifl '

This uses the auxiliary predicates In and NotPlayed which are intended to be re-
spectively the membership test on traces and a test that this step has not already
been completed for the same session (see figure 2 for complete definitions).
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Definition of Sup: Num(x) [Sup(s(x),0)
Sup(x,y) L-Sup(s(x), s(y))
Definition of Fresh: [FErdsh( S)

Fresh(t, s), Sup(s, s’ [Ersh([e,sT-t,s)

Definition of In: Trace(e, s] - t) [CInde, s], [e,s] - t)
In(x,t) [InQx,[e,s]-t)

Definition of NotPlayed:
[NdtPlayed(a, i,s, D1
NotPlayed(a, i, s, t), Sup(s, s [CN@tPlayed(a, i,s, [e,s'T- t)
NotPlayed(a, i, s, t), Sup(ss) [CNatPlayed(a, i,s,[e,s'T-t)
NotPlayed(a, i, s, t), Sup(i, j) [CNatPlayed(a, i, s, [st(a,j, m),s] - t)

Fig. 2. Definitions of the auxiliary predicates

Finally, let us describe how the last step of the protocol is translated: we
require a to have completed the first step and assume that she receives a message
of the expected form. This message may be forged by the intruder: we do not
include receive events in the trace since messages that are possibly received are
identical to messages that can be forged by the intruder.

=
NotPIayelzg((gu,l?;,ss]: 8 <z,{y}x >8] [uz,s] 1)

| (< {b1 X, nl(av bv S), y}shr(a)y zZ>=, t)

where u; =st(a,2,<a,b,srv, ni(a,b,s)>) and u, =st(a,3,<a,b,srv, ny(a,b,s), x>).

2.4 The Model

Now, we assume defined the sets of Horn clauses C,,Cp for the protocol inde-
pendent clauses and the protocol dependent clauses. For a protocol P, we let Cp
be C; CCH. We assume that Cp does not contain negative clauses (i.e. we only
specify what is possible). Then Cp has a least Herbrand model Hp.
Definition 1. A valid trace for the protocol P is a member of the interpretation
of T in Hp.

2.5 Attacks

Let @ be the security property that we want to check. We assume that ¢ can be
expressed as a clause using the primitives described in previous sections. This is
not a strong restriction since, at least the trace properties can be expressed in
this way (and possibly other properties which relate diLerent traces), as shown
by the following examples.
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Example 1. We can express that u(x,y,s) (or u(x,y) if we want to express the
secrecy of a constant data) is a (long term) secret shared by x and y by:

(EKX,y,s).—-T(t) [(=Ha(x) [(=Ha(y) =1 (u(X,y,s),t)

which means that, in any trace t, if X and y are honest agents, then u(x,y,s) is
unknown to the intruder.

Example 2. We can express that u(x, y, s) is a short term secret. I does not know
u(x,y,s) as long as session s is not completed:

(EX,y,s).~T(t) (=Ha(x) [(=Ha(y) =1 (u(x,y,s),t) [(=NotPlayed(X, 3, s, t).

If we assume that the last message of the protocol is sent by x then we express
here that, in any trace t, if x and y are honest agents, then u(x,y, s) is unknown
to the intruder unless the session is already completed.

Example 3. We can express an authentication property: if X receives the message
m(X, Y, s), then it has been sent previously by y: ([£X,Yy,s)

=T (t) [(=Ha(x) [(=Ha(y) =1 (m(X,Y,s), t) CIa([st(y, m(X,Y,s)), s], t).

Definition 2. A protocol P satisfies a property ¢ i CHp = 0.

Dually, there is an attack when Hp B . In such a case (by compactness),
there is a finite subset Hg of Hp such that Hgo B ¢:

Definition 3. An attack on P for ¢ is a finite subset Hy of Hp such that
Ho B ¢. Hp is an attack with n agents if there are at most n distinct terms of
sorts Agent in Hp.

For instance, if the property ¢ is a “trace property”, Hop may contain a single
predicate T (t) where t is a finite trace which violates the property.

2.6 Relevance of the Model

The model we present here is actually an extension of the Millen-Ruel8 model [21,
12] (hereafter referred to as the MR model), expressed in Horn clauses. The MR
model is itself inspired from Paulson’s model [24] and from the strand spaces [28].
Formally, we proved in [11] that for each protocol of the MR model, we can
associate a finite set of Horn clauses Cp and a finite set of purely negative
clauses ®p such that P is insecure if and only if there is an attack on Cp for

some @ (@b,
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3 Reduction to a Fixed Number of Agents

3.1 From n Agents to 2 Agents

We show that if there is an attack with n agents, then an attack with 2 agents
can be constructed: given an attack using n agents, we project every honest iden-
tity on one single honest identity and every dishonest identity on one dishonest
identity. Then we obtain a valid attack using only two agents. This projection
uses the fact that our model allows an agent to speak to herself, which is the
case of most of the models for cryptographic protocols [21,28,17,5,14,3]. How-
ever, a similar result holds even if an agent is disallowed to speak to herself (see
subsection 3.2). We also consider here purely negative properties, which easily
encompasses secrecy, but does not encompass authentication in a natural way.
We will discuss this in section 3.3.

We emphasize that our result holds for all models of protocols which do not
make use of our internal representation of agents ids. More precisely:

Definition 4. A set of clauses C is admissible if it does not use the symbols
Sh, Sq- A clause is said purely negative if it only contains negative literals.

The clauses which were proposed in the previous sections are admissible.
Furthermore, any protocol specification can not use our particular representation
of names, hence it is always represented as an admissible set of clauses.

Theorem 1. Let Cp be an admissible set of clauses. Let ¢ be a purely negative
admissible clause. If there is an attack of P for ¢, using n agents, then there is
an attack using (at most) two agents.

Proof. We first introduce some notations. Let M be the set of messages, T be the
set of all positive ground literals, and =4 be the set of mappings from variables
to ground terms, which are compatible with the sort constraints.
Given a Horn clause ¢ = B1(X),...,Bn(X) [CAlX) where B;(X),...,Bn(X),
A(X) are positive literals whose free variables are contained in X, and a subset
S of T, we define c(S) as follows:
def
c¢(S) € {A(X)o | 0 [, [,Bi(x)o [Sh.

Then, the immediate consequence relation F¢ is the mapping from 27 to 27

defined by:

def L1
Fo(S) €S [ ¢(S).

clCl
For simplicity, we will write Fp for the mapping Fc, .
It is well-known that the set of positive literals HS of the least Herbrand
model Hp is the least fixed point of Fp:

. +Ekl
Hp = Fp (D1
k=1

For every L [Ho there is a minimal index n_ such that L CER- (D]



Security Properties: Two Agents Are Su Lcieht 107

We define now the projection function: we map every honest agent to h and
every dishonest agent to d : for every literal L, let L be the literal L in which
every maximal subterm of sort Ha is replaced with h and every maximal subterm
of sort Da is replaced with d:

Tt ) & f(E,... .6 IF F I{8n,sq}
sn(® £'h
sa() E'd

Our proof relies on the following lemma which ensures that if a positive literal
is in Hp then its projection is also in Hp.

Lemma 1. Let L be a positive literal of Hp, then L is in Hp.

This is prove by induction on n_. If n_ = 0, there is no literal such that n_ =0
thus there is nothing to prove.

Suppose the property true for nj < n and consider a positive literal L of Hp
such that n. = n+1. There exists a clause ¢, and positive literals Ly,...,Lx 1
Hp such that L Ccj ({L1,...,Lk}) withn., < nforall 1 <i < k. By induction
hypothesis, L1, ..., Lx [CHZ. Inaddition, c_ is on the form By(x), ... ,Bx(x) 1
A(X) | C with L = A(X)o, Lij = Bi(x)o for some o [Ag. Since ¢ is an
admissible clause, it does not contains the symbols s, and sq thus L = A(X)T
and L; = B1(x)o. Hence L [c) ({Ly,...Lx) and L [H.

We are now ready to complete the proof. Assume that Hy is a finite subset
of Hp such that Hy B @. Since ¢ is assumed to be purely negative, we may
assume w.l.o.g. that Hg only contains positive literals.

Let H; = {L | L [Hg}. The set Hy is still finite and, by lemma 1, H; [CHb.
Let us show that H; B ¢. Let @o an instance of ¢ falsified by Ho. Then oo is
falsified by Hj. Since @ is an admissible clause o = ¢T, thus H; E 0. 1

Actually, this theorem does not hold when @ may contain positive literals.

Example 4. Let Cp be: 1
IEEx; Iﬂk,y;

y Y
s

and @ be A(X,y). =A(h, sn(h)) is an attack and there is no attack with a single
honest agent.

We will consider in section 3.3 an extension of theorem 1 for formulas con-
taining positive literals.

3.2 Disallowing an Agent to Speak with Herself

In the last section we used the ability for an agent to speak with herself, which
was not explicitly ruled out by the specification. There are however examples in
which the existence of an attack relies on this ability:
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Example 5. Consider the following “toy” example where an agent A sends a
secret to an agent B:

A - B {A,B, Na}pun(s), {s€Cret}ra A Nadune -

B is able to build the compound key {A, A, Na}pune) and gets the secret. One
can show that N will remain unknown to the intruder, thus {A, A, Na}pune) IS
unknown to the intruder unless A = B. Thus this protocol is flawed only if an
honest agent sends a secret to herself.

We are now considering explicitly disallowing such self-conversations between
honest agents. Still, a dishonest agent is enabled to speak with himself, which
actually does not bring any new information to the intruder (see remark 1 below).
For, we add a predicate symbol Distinct defined by the set of clauses:

Pigtinct(x, y), Ha(x), Ha(y) [CDidtinct(sn(X), sh(y))
Ha(x) [CDidtinct(h, sn(x))
Ce = Ha(x), Da(y) [CDidtinct(x,y)
Distinct(x,y) [Didtinct(y, X)

Da(x), Da(y) [CDidtinct(x,y)

The least Herbrand model of Distinct consists of pairs (sK(h), sg'(d)),
(sT'(d), s§(h)), (sT'(d), st5(d)) and (s}, (h), sh(h)) with i & j.

We redefine the notion of an admissible clause and we introduce the definition
of protocol clauses:

Definition 5. A clause ¢ is admissible if

— @ does not contain the symbols sy, Sq,
— Distinct occurs only negatively in @.

We can specify that the sender a is distinct from the (expected) receiver b
with admissible clauses: it su [ced to add negative literals Distinct(a,b). Note
however that such a property is not expressible in e.g. the Millen-Ruell model.
The protocol model Hp is now the least Herbrand model of Cz [C}. All other
definitions are unchanged.

Remark 1. If we want to specify that an agent is not allowed to speak with
herself, even for dishonest agents, we can introduce a predicate Distinct whose
semantic is exactly the pairs of distinct agents. In this case, an admissible clause
should also verify that Distinct occurs at most once, which is su Ccieht to express
that an agent is not allowed to speak to herself. In addition, the protocol has
to verify that the correspondence between two compromised agents does not
increase the intruder knowledge, which is the case of all “real” protocols ([7]).
This leads to a specification which can be reduced to the above one.

Our reduction result will now depend on the security property under con-
sideration: if the property ¢ uses k distinct agents variables then if there is an
attack, there is an attack with (at most) k + 1 agents.
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Theorem 2. Assume Cp is an admissible set of clauses, which does not contain
any variable of sort Ha and ¢ is a purely negative admissible clause. If there is
an attack on P for ¢ using n agents, then there is an attack on P for ¢ using at
most k + 1 agents, where k is the number of variables of sort Ha occurring in @.

Note that disallowing variables of sort Ha in Cp is not a real restriction. In-
deed, the specification of the protocol itself (Cp) should not distinguish between
honest and dishonest agents, while the specification of the intruder power (C,)
should not give specific knowledge depending on honest agent: either data (de-
pending on agents) are known for all agents (like agent ids) or data are known
only for compromised agents (like private keys).
Proof. We keep the notations of the proof of theorem 1. Again, we consider a
subset Hy of Hp which falsifies @. As before, since ¢ is purely negative, we may
assume that Hp does not contain any negative literal.

Now, we let 8 be an instance of (p which is falsified by Hg. If X4, ... X are the
variables of sort Ha in ¢, we let s;'*(h), . ,shmp(h) be the set {x10,...,xx0}
with ml <...<mp (p =Kk). Next, we deflne the projection function as follows:

@1, oo tn) d—E’ff(tl, ..., tn) I f(ty,...,ty) is not of sort Ha or Da

= s (h) :_‘*: si=1(h) Fori=1,...p
= de

t=d Otherwise

Again, we let H; = {L | L [Hy} and we are going to prove that H; [CHb and
H falsifies @8. This will conclude the proof since Hy will be an attack with p+1
agents: d, h,sh(h),...,sP~(h), p<k.

Actually, with the following lemma, the proof that H; [CHis is very much
the same as in theorem 1:
Lemma 2. If Distinct(uy, up) CEE (DL then Distinct(uq, up) CER (DA
Proof of lemma 2:
We may assume n > 0. Let t; = Xx;8. Then there are three possible situations
(let us recall that Distinct only occurs positively in Cg):

— if ug,uy F{ti,...,t}, then using that the least Herbrand model of
Distinct consists of pairs (s¥(h),s™(d)), (s™(d).s*(h)), (s™(d).s*(d)) and
(s'(h),s*(h)) with i 8 j, we have that Distinct(uy, u;) = Distinct(d,d) [
Fp (D31

—if uy CXty,... 4} and up, I Xt,... 4} (or the converse), then
Distinct(uq,uy) = Dlstmct(s (h), d) (or Distinct(d, s{1(h))), which also belongs
to Fp (O

—ifug,up Oy, ... 3 up = sp(h),up = shm_j (_h) with i 8 j, then
Distinct(uy, Uz) = Distinct(s!, (h), s! (h)) CEP™''(Oin this last case, [j—i| <
[m; — m;| by construction, hence the result.

End of the proof of lemma 2.

As in theorem 1, we can now prove by induction on n_ that for any literal

L [Hp, L [Hp: Distinct literals are handled by lemma 2. We also need here
that there is no variable of sort Ha in the clauses, in order to ensure the well-
sortedness of @ (since, now, for some terms t : Ha, t is no longer of sort Ha). [
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Note that the bound k + 1 can be reached for some protocols P and some
properties @.
Example 6. Let k = 2. Consider the following protocol, inspired from the
Needham-Schroeder public key protocol. ay, ... ,ax are variables of sort Agent.
Letu=<ay,...,ax>.
Initialization

Fresh(t,s), T (t) [T (st(ai,1,u),s]-[st(az 1,a),s] - [st(ak, 1,ak),s] - t)

First message: A1 - Az 1 {A1,Az,... , Ak, Na, Joubcas), Ai B Aj, fori 8 j.

1
T(t), Distinct(aj,a;) 18 j C_1T([{u,ni(a,...,ak,S)}pub(as): Sl

In([st(as, 1, u), s], t), [st(a,2 <u,ni(a,...,a,s) >),sl
NotPlayed(as. 2, 5. ) . B "

Second message: Ay - A;: {NAl, Na, }pubaq)

T(t), Distinct(aj,a;) 18 j

I{u, X}pub(az)yt)

In([st(az, 1,az), 5], 1), 1)
NotPlayed(ay, 2, s, t)

E T(H% M2, - - » 8k, $)puban): §]

[st(az, 2, < u,nx(ay, - - . ,ax,s) >),9]

Third message: A1 —» Az I {Na,}pub(az)

—1
T(V), |({n1(?[1,-(- , 8, S), y}pul))(all)’;) CaT( [[{y%pub(al) , 8] .
In([st(a;,2,<u,n >),s]|,t st(ai,3,<u,n,y >),s
lilotPIayed(ag,B s, t) El '

where n = ny(ay, ... ,ak,s).
We could also add some other rules to make the roles of as, ... , ax less fictitious.
We consider the property:

¢ = —Ha(x1) 1. [=Ha(xk) =1 (n2(Xy, ... , Xk, S), ).

Then, following the Lowe attack, there is an attack on @, using k + 1 agent ids.
Let us sketch why every attack on @ uses at least k+1 agent ids. Assume there is
an attack, then there exist t,s,a;, ... ,ax such that 1(nx(as,...,ax,s),t) [(Hp
where Hp is the least Herbrand model and ag, ... ,ax are honest agents. Since
a produces nx(as,... ,ax,s) only if Distinct(aj,aj) for i B j holds and since
ai,...,ax are honest agents, we have that aj,...,ax are distinct. In addition,
if no dishonest identity is used, then the intruder cannot decrypt any message
thus he can not obtain ny(ay, . .. , ak, ). Consequently, at least one compromised
identity has been used, thus at least k+1 identities have been used for the attack.

3.3 Extensions

Theorems 1 and 2 assume that ¢ is purely negative which is necessary according
to Example 4.
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We have seen in section 2.5 that such a restriction to negative properties
is not a problem for secrecy. On the other hand, authentication is naturally
expressed as

=T (t) [(=Ha(x) [(=Ha(y) =1 (m(X,Y,s),t) CIa([st(x, m(X,Y,s)),s],t)

which involves a positive literal. However, it is still possible to handle such
properties. Let us extend the definition of admissible properties to a class which
encompasses authentication and secrecy properties.

Definition 6. A security property ¢ is admissible if @ is of the form

C (ulvtl) I:I (Unatn),

where C is a purely negative clause, the t;’s are variables of sort Trace and the
u;’s are terms with variables of sort Num or Ha. In addition ¢ must still verify
that:

— it does not contain the symbols sy, Sq,
— if a ground subterm of some u; is of sort Agent then it is of sort Ha.

Then we can reduce such a case to the purely negative case and we get:
Theorem 3. Assume that Cp is an admissible set of clauses, which does not
contain any variable of sort Ha, ¢ is an admissible security property, then if
there is an attack on P for ¢ using n agents, there is an attack on P for ¢ using
at most k + 1 agents, where k is the number of variables of sort Ha occurring
in Q.

For instance, 3 agents are su [cieht if we consider the above-specified authen-
tication property.

Proof sketch:
For every positive literal L = In(u;, t;) occurring in @, we construct a set of Horn
clauses C,_ defining a predicate l.-dnd such that:

L1
— the least Herbrand model Hp o of Cp [C& [, C, contains Hp;

— for every (well sorted) groung-sybstitution o, Hp E Lo iCHip , [= Lo
— the new set of clauses Cp [, C, is admissible.

We first construct C_ using the complementation techniques, which yields a def-
inition of the predicates negations (see e.g. [4,8]). Let X}, ... , X}, be the variables
of uj. The set of clauses C, is defined by:

Lot, ... xi,b),Dil,y) CIE@, ... xi,y 1)

These clauses satisfy the above two first conditions. However, they make use of
a predicate symbol Dil[[_Whose semantics is the set of pairs of distinct terms,
and the definition of Di[i$ not admissible. Then, we remove clauses defining
Di [which are not admissible, and replace negative literals —Di[(X, y) where X,y
are of sort Agent with —Distinct(x,y). The resulting clauses satisfy the three
above conditions since the semantics for the new definition of Di[festricted to
instanciations of pairs (uj,y), is still a set of pairs of distinct terms. 1
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4 Conclusions

We have shown that it is possible to restrict the number of agents without loss
of generality: security properties which fail in an unbounded network, also fail
in a small limited network. This does not assume any property of the protocols.

To prove a security property for some protocol P, it is therefore su [cieht to
consider finitely many instances of the roles of P, typically 2" where n is the
number of roles in P (or (k+1)" if we don’t allow an agent to be both the sender
and the receiver of a message). These numbers are small since n = 2 for most
protocols (sometimes n = 3). They can be further lowered since sessions only
involving dishonest agents are not relevant.

This reduction result also provides with a decision result if we assume a
passive attacker, i.e. an attacker who may only analyze the messages sent on the
net but who cannot forge and send new messages. Indeed, in the presence of such
an attacker (or eavesdropper), we can also assume that an agent cannot confuse
messages from dilerknt sessions: it su [ced to label the messages by a session
nonce and the rule number (which is often the case for implemented protocols).
Thus there is no need to consider interleaving of sessions. In addition, given a
set of messages S and a message m, deciding whether the intruder may deduce
m from S is in PTIME (side result of [1]). Since our reduction result ensures that
only a finite number of agents have to be considered, we conclude that secrecy
is decidable in EXP(n) < PTIME where n is the number of roles of the protocol.

Acknowledgments. We would to thank Michael Périn and anonymous referees
for their helpful comments.
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Abstract. A real-time process algebra, enhanced with specific constructs for han-
dling cryptographic primitives, is proposed to model cryptographic protocols in
a simple way. We show that some security properties, such as authentication and
secrecy, can be re-formulated in this timed setting. Moreover, we show that they
can be seen as suitable instances of a general information flow-like scheme, called
tGNDC, parametric w.r.t. the observational semantics of interest. We show that,
when considering timed trace semantics, there exists a most powerful hostile en-
vironment (or enemy) that can try to compromise the protocol. Moreover, we hint
some compositionality results.

1 Introduction

In the last years there has been an increasing interest in the formal analysis of crypto-
graphic protocols, as they have become the basic building blocks for many distributed
services, such as home banking or electronic commerce. These analyzes have been
very successful in many cases, uncovering subtle inaccuracies in many specifications
of cryptographic protocols. However, such analyzes are usually restricted to very high
abstractions of the real protocols, where concrete information about the timing of events
are usually omitted (with the relevant exceptions of [2,16]).

Our starting point is the work on CryptoSP A [7,9], which is an extension of SP A
[4] (a CCS-like process algebra with actions belonging to two different levels of confi-
dentiality), with some new constructs for handling cryptographic primitives. On such a
language a general schema for the definition of security properties, called GNDC, has
been proposed [9]. It is based on the idea of checking the system against all the possible
hostile environments. The general schema has the following form:

P satisfies STff [XI [Hnv : P||X CagP)

where the general property S{rgquires that the system P satisfies (via the behavioral
pre-order [ alspecification a(P) when composed in parallel with any possible hostile
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environment (or enemy) X. The problem of the universal quantification is overcome
when it is possible to show that there exists the "most powerful" enemy; hence, one
check against the most powerful enemy is as discriminating as an infinity of different
checks against all the possible enemies. This lucky case occurs when the behavioral
pre-order [ish pre-congruence, e.g., for trace semantics.

The main goal of this paper is to show that the real-time information flow theory
developed for tSP A (a real-time extension of SP A reported in [8]), can be extended to
CryptoSP A, yielding timedCryptoSP A (tCryptoSP A for short). The main results
from such an effort are the following:

— A language for describing cryptographic protocols, where information about the
concrete timing of events is necessary, e.g., because of the presence of timeouts or
time-stamps.

— A general scheme, called tGNDC, for describing uniformly the many security
properties in a real-time setting; we will present three instances of such a general
scheme, namely timed authentication, timed integrity and timed secrecy.

— Some specific results for the security properties based on semantics that are pre-
congruences, such as the existence of a (real-time) most general enemy.

Moreover, we will hint some initial compositionality results, i.e., we will show some
conditions under which secure real-time protocols can be safely composed.

The paper is organized as follows: in Section 2 we define the tCryptoSP A syn-
tax, operational and behavioral semantics. In Section 3 we define the general schema
tGNDC, hence the notion of hostile environment (or enemy) and we present some
general results, such as the existence of a real-time most general enemy. In Section 4 we
present some security properties, namely tNDC, timed authentication, timed integrity
and timed secrecy. Section 5 reports some initial results about conditions for safe com-
position of real-time security protocols. Finally in Section 6 we give some concluding
remarks and comparison with related literature.

2 The Model

In this section we present the model we will use for the specification of cryptographic
protocols and security properties. It is a real-time extension of the Cryptographic Security
Process Algebra (CryptoSP A for short) proposed in [9,7], which is in turn an extension
of Security Process Algebra (SPA for short) proposed in [4] where processes are explicitly
given the possibility of manipulating messages. In CryptoSP A it is possible to express
qualitative ordering among events, while quantitative timing aspects cannot be expressed.
Thus, we extend CryptoSP A with operators that permit to express the elapsing of time.

2.1 The Language Syntax

We call the language Timed Cryptographic Security Process Algebra (tCryptoSP A for
short). Its syntax is based on the following elements:

— A set Ch of channels, partitioned into a set | of input channels (ranged over by )
and a set O of output channels (ranged over by T, the output corresponding to the
input C);
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— A set M of messages;
— A setV ar of variables, raged over by X;
— A set Const of constants, ranged over by A.

The set L of tCryptoSPA terms (or processes) is defined as follows:
P :=0]c(x).P |ce.P |T.P |tick.P |P +P |P||P | P\L]|

A(es,...,en) | [[EL, ..., er[Trde XIP | 1(P)

where e,e5eyq, ..., er are messages or variables and L is a set of channels. Both the
operators C(X).P and [[€} ...er[Trle X]P bind the variable X in P.

Besides the standard (value-passing) CCS operators [15], we have an additional
prefix action tick, used to model time elapsing, a delay operator 1(P), used to make lazy
the initial actions of P, and the operator [[m; ... M [Tle X]P introduced in order to
model message handling and cryptography. Informally, process [[m; ... M [CLrgle X]P
tries to deduce a piece of information zZ from the tuple of messages [m; ... m, Lthrough
one application of rule [rgle; if it succeeds, then it behaves like P [z/X], otherwise it is
stuck. See the next subsection for a more detailed explanation of derivation rules.

The time model we use is known as the fictitious clock approach of, e.g., [17]. A
global clock is supposed to be updated whenever all the processes agree on this, by
globally synchronizing on action tick. All the other actions are assumed to take no time.
This is reasonable if we choose a time unit such that the actual time of an action is
negligible w.r.t. the time unit. Hence, the computation proceeds in lock-steps: between
the two global synchronizations on action tick (that represent the elapsing of one time
unit), all the processes proceed asynchronously by performing durationless actions.

Let Def : Const — L be a set of defining equations of the form

A(X1,...,Xn) def P, where P may contain no free variables except X, . . . , Xn, which
must be distinct. Constants permit us to define recursive processes, but we have to be a
bit careful in using them. A term P is closed w.r.t. Def if all the constants occurring in
P are defined in Def (and, recursively, for their defining terms). A term P is guarded
w.r.t. Def if all the constants occurring in P (and, recursively, for their defining terms)
occur in a prefix context [15].

The set Act = {c(m) | ¢ I} [(@m | c CA} L3} C{dick} of actions (T is the
internal, invisible action, tick is the special action used to model time elapsing), ranged
over by a (with abuse of notation); we let | range over Act\{tick}. We call P the set of all
the tCryptoSP A closed terms (i.e., with no free variables), that are closed and guarded
w.r.t. Def. We define sort(P) to be the set of all the channels syntactically occurring
in the term P . Moreover, for the sake of readability, we always omit the termination O
at the end of process specifications, e.g., we write a in place of a.0.

We give an informal overview of tCryptoSP A operators:

0 is a process that does nothing;

c(x).P represents the process that can get an input m on channel ¢ behaving like P
where all the occurrences of X are replaced by m (written P [m/X]);

tm.P is the process that can send m on channel ¢, then behaving like P ;

T.P is the process that executes the invisible action T and then behaves like P;
tick.P is a process willing to let one time unit pass and then behaving as P ;
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— P41+ P; (choice) represents the nondeterministic choice between the two processes
P1 and Py; time passes when both P and P, are able to perform a fick action — and
in such a case by performing tick a configuration where both the derivatives of the
summands can still be chosen is reached — or when only one of the two can perform
tick — and in such a case the other summand is discarded; moreover, T prefixed
summands have priority over tick prefixed summands.

— P1]|P2 (parallel) is the parallel composition of processes that can proceed in an
asynchronous way but they must synchronize on complementary actions to make a
communication, represented by a T. Both components must agree on performing a
tick action, and this can be done even if a communication is possible;

— P\L is the process that cannot send and receive messages on channels in L, for all
the other channels it behaves exactly like P;

— A(my, ... ,mp) behaves like the respective defining term P where all the variables
X1, ..., Xn are replaced by the messages My, ... ,Mpy;

— [[hy,...,mCGge X]P is the process used to model message handling and
cryptography. The process [[y, ... , My [Tghe X]P tries to deduce an information
z from the tuple of messages [Mhy, ... , M, Cthrough the application of rule Lgle;
if it succeeds then it behaves like P [2/X], otherwise it is stuck. The set of rules that
can be applied is defined through an inference system (e.g., see Figure 1);

— (P) (idling) allows process P to wait indefinitely. At every instant of time, if process
P performs an action I, then the whole system proceeds in this state, while dropping
the idling operator.

2.2 The Operational Semantics of tCryptoSPA

In order to model message handling and cryptography we use a set of inference rules.
Note that tCryptoSP A syntax, its semantics and the results obtained are completely
parametric with respect to the inference system used. We present in Figure 1 the same
inference system of [9]. This inference system can combine two messages obtaining a
pair (rule [galr); it can extract one message from a pair (rules Lest and Lsgh); it can
encrypt a message m with a key K obtaining {m}x and finally decrypt a message of
the form {m}y only if it has the same key K (rules [ggl and [gel). In this framework,
cryptography is completely reliable, i.e., that a crypted message can be deciphered only
by knowing the suitable decryption key.

In a similar way, the inference system can contain rules for handling the basic arith-
metic operations and boolean relations among numbers, so that the value-passing CCS
if-then-else construct can be obtained via the L }e operator.

Example 1. We do not explictly define equality check among messages in the syntax.
However, this can be implemented through the usage of the inference construct. E.g.,

_ X X - : .
Equal(x.x)’ Then [m = mJA (with the expected semantics)

may be equivalently expressed as [m m© Leglial YJA where y does not occur in A.
Similarly, we can define inequalities, e.g., <, among natural numbers.

. def
consider rule equal =

We consider a function D, from finite sets of messages to sets of messages, such that
D (o) is the set of messages that can be deduced from @ by using the inference rules. We
assume that D is decidable.
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m m" (m,mY (m, mY

m.my ——————(palr) o (L) e (Cseh)
m k {m} k
e Y

Fig. 1. An example inference system for shared key cryptography.

The operational semantics of a tCryptoSP A term is described by means of the

labelled transition system (Its, for short) [B, Act, {—a—> }a tzet Lwhere {—a_> Yaaet is
the least relation between tCryptoSP A processes induced by the axioms and inference
rules of Figure 2. Such a relation is well-defined even if negative premises occur in a rule
for the idling operator and in one rule for +, because the relation is strictly stratifiable
[12].
Note that tCryptoSP A is tick-deterministic i.e., the time elapsing never moves a pro-
cess to two different states. The proof of the following proposition can be easily given
by inspecting the operational rules. In particular, the first two rules of the idling operator
and the rules for nondeterministic choice are the key rules enforcing time determinacy.
Proposition 1. For every tCryptoSPA process P we have:

P 8% pOyg p 8% p Moy p U= p I

Example 2. In tCryptoSP A there are processes, such as O, that do not allow time to
proceed; hence, as rule ||3 for parallel composition forces a global synchronisation on
tick actions, the effect of composing a process P with O is to prevent P from letting time
pass. In other words, O acts as a time annihilator for its parallel context. On the contrary,
1(0) is process that, even if functionally terminated, let time to proceed indefinitely.
Hence, 1(0) acts as a neutral element for parallel composition.

Example 3. Consider a process P = 1(a)]|1(2) that can perform any sequence (possibly
empty) of tick actions followed by a T. It is worth-observing that, contrary to tSP A
[8], we do not assume maximal communication progress, i.e., T’s do not have priority
over tick actions or, equivalently, a process cannot idle if it can perform a T. Hence in
tSP A process P can perform only the sequence T.

Example 4. We can easily model timeout constructs in tCryptoSP A.
Assume N1 < Ny and define a process

Time_out(ng, nz, A, B) = tick™.1(A) + tick"2.1.B

By looking at the rules for choice and idling, we see that Time_out(ny, ny, A, B) first
performs a sequence of Ny tick actions; then, the system may perform other n, —n; tick
actions, unless A resolves the choice by performing an action; instead if A does nothing,
after N units of time, through the execution of action T, the process is forced to act as
B. Note that rule +3 is responsible for preventing the selection of process A at timeout
expiration. This semantics for the + operator is different from the one in tSP A (a tick
action can be performed only if both summands can do so) and is motivated by the need
of a more flexible way of programming the choice between different components.
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m [\

) (output) - =
c(xX).P == P[m/x] cm.P == P

(input)

(internal) p = (tick) ok

P, —- P P1 C(i) P P, 21 Py
(l2)

P1IIP2 = P{fIP2 P1[|P2 = P{f|P{’

(1)

p, 8k po p, O

(Ils)
P1||P2 tlck

tick

PfIP2’ P\L

P1 — P’ (+2) P1 u% Pi’ P2 — Pz’
2)

P, +P, -1 P’ Py + P, 2% ply pf?

p, Y% po p, 8K p, g,

P1+ P> t"i( Pl

c(m)

PY cmO
UM pRL

(+1)

(+3)

PIMu/X1, ..., Mn/Xn] = PO A(X1, ... Xn) 2
A(Ma,..., M) —= PV
Mh1,..., M Lege M P[m/x] -+ pU
[-11,..., mr Chegte X]JP =% P

) gck ) PIICKPD ) P—I—> PD
1) 2)

(P) 2 (p) (P) 2% (P ey L po

(Def)

()

Fig. 2. Structured Operational Semantics for tCryptoSPA (symmetric rules for +1, +3, ||1, ||2 and
\L are omitted)

3 A General Schema for the Definition of Timed Security
Properties

In this section we propose a general schema for the definition of timed security prop-
erties. We call it Timed Generalized NDC (tGNDC for short), since it is a real-time
generalization of Generalized NDC (GN DC for short) [9], which is in turn a general-
ization of Non Deducibility on Compositions (NDC for short) [4]. The main idea is the
following: a system P is tGN DC §-iff for every hostile environment (or enemy) X the
composition of the system P with X satisfies the timed specification a(P ). Essentially
tGN DC ¢ gyparantees that the timed property d is satisfied, with respect to the [fithed
behavioral relation, even when the system is composed with any possible enemy.

This section is organized as follows. We first define timed trace semantics as the
behavioral semantics of interest. Then, we discuss the issue of hostile environments,
showing that it is necessary to restrict their initial knowledge. Finally, we present the
tGN DC schema and some general results on it, some of which are independent of the
chosen behavioral notion.



120 R. Gorrieri, E. Locatelli, and F. Martinelli

3.1 Behavioural Semantics

Here we define the semantic pre-order and equivalence we will use to formalize secu-
rity properties, timed trace pre-order and equivalence, the timed version of the classic
untimed semantics.

The expression P P s a shorthand for P (—— )1 =% P,(—= )P “where (— )™
denotes a (possibly empty) sequence of transitions labeled T. Lety = a3,... ,an [l
(Act\{1}) “Be a sequence of actions; then P P iff there exist Pq, ... ,Pn_1

such that P FPa¥ 1 ,P,_; T PT

Definition 1. For any P the set T (P) of timed traces associated with P is defined

as follows T(P) = {y [CAct\{t}H)H PP EE'I_—} The timed trace pre-order,
denoted by <ttrace, is defined as follows: P <gtrace Q iff T(P) CIA{Q). P and Q are

timed trace equivalent, denoted by P =ttrace Q, if T(P) = T(Q).

As an example, it is easy to see that T (P (Kgp)) = {[Rick, tick tick, tick tick tick},
where [denotes the empty sequence.

3.2 Hostile Environments

Here we characterize the notion of admissible hostile environments similarly to what
done in [9] for the untimed setting. Such a characterization is necessary to analyze
protocols where some information is assumed to be secret, as in cryptographic protocols.
A hostile environment, or enemy, is a process which tries to attack a protocol by stealing
and faking information which is transmitted on public channels, say C. Such an agent
is modeled as a generic process X which can communicate only through channels
in C, imposing some constraints on the initial data that are known by the enemy and
requiring that such a protocol is weakly time alive, i.e., the agent may always perform tick
eventually. Otherwise X could prevent time from elapsing when composed in parallel
with some system, since in a compound system time can pass iff all components let it
pass. So the enemy could block the time flow and we want to avoid this unrealistic case.
Let Der(P) be the set of all derivatives of P, i.e., all the P ' reachable from P through
a sequence of actions in Act.

Definition 2. A process P is directly weakly time alive iff P 8PP s weakly time
alive iff for all PP CDer(P), we have P Uis directly weakly time alive.

Now, let I D(P) be the set of messages that appear in P (see [5] for a formal definition)
and @ [CM be the initial knowledge we would like to give to the enemies, i.e., the public
information such as the names of the entities and the public keys, plus some possible
private data of the enemies (e.g., their private key or nonces). For some enemy X, we
want that all the messages in 1 D(X) are deducible from @. We thus define the set tEg'
of timed hostile processes as:

tE(‘:p ={X | sort(X) [Cland ID(X) [DI@) and X is weakly time alive}

3.3 The tGN DC Schema

In this section we formally define the tGN DC $-family of properties. We will use A]|c B
as a shortcut for (A||B)\C. The proposed family of security properties is as follows.
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Definition 3. P is tGNDCiff [XI [T : (P||cX) CalP) where [P < P
is a pre-order, C is a set of channels and a . P 3 P is a function between processes
defining the property specification for P as the process a(P).

We propose a sufficient criterion for a static characterization (i.e., not involving the uni-
versal quantification [ of tGN DC §-pyoperties. We will say that [ish pre-congruence
w.rt. ||c if it is a pre-order and for every P, Q, Q”[Plif Q [Qtthen P||cQ [PJ|c Q"
Thus it is easy to prove the following:

Proposition 2. [f Lish pre-congruence w.rt. ||c and if there exist aprocess Top [THZ'

such that for every process X I:fE[g' we have X LT op, then [al
P [CIGNDC{ i 1(P||cTop) CalP)

In particular if the hypotheses of the proposition above hold it is sufficient to check
that a(P) is satisfied when P is composed with the most general hostile environment
T op. This permits to make only one single check, in order to prove that a property holds
whatever attacker we choose. We also have the following corollary for the congruence
induced by [_1

Corollary 1. Let ["hd a pre-congruence w.rt. ||c and let = = [l 2 If there
exist two processes Bot, Top Eﬂfg' such that for every process X Eﬂfg' we have
Bot X1 [ Tdp then

P IGNDCZ iCXP||cBot) = (P||cTop) = a(P)

Given these very general results, we show that they are instanciable in the model we
presented so far. Indeed, this is the case, at least for the trace pre-order <ttrace, Which
is a pre-congruence.

Proposition 3. Timed trace pre-order is a pre-congruence w.rt. ||c.

Note that in the tSP A model, timed trace pre-order is not a pre-congruence, since
the semantic rules enforce the so called maximal communication progress, i.e., when a
communication is possible it must start immediately, and it is not possible to perform a
tick [8].

Now we single out the minimal element Bot and the maximum element T op in
tEg' W.I.t. <ttrace. As for Bot it is clear that the minimum set of traces is generated
by the weakly time alive process that does nothing, that is generated by process 1(0).
As a matter of fact, (P[|1(0)) =ttrace P for timed trace equivalence and most other
equivalences. We thus define the T op element using a family of processes Topg’r‘gce
each representing an instance of the enemy with knowledge @:

1
C, — C,o A = C,
TOpttr(gce - I(C(X)-TOPttr(gce }) + l(Cm.T 0F)ttrq)ace
c[C1 c[CIm [D{p)nM

The initial element of the family is T Opft'rq;'ce as @y is the initial knowledge of the enemy.
This may accept any input message to be bound to the variable X which is then added
to the knowledge set that becomes @, [{X}, and may output only messages that can
pass on the channel ¢ and that are deducible from the current knowledge set @ via the
deduction function D. Furthermore it can let time pass. Note that T summands are not
considered, as inessential for trace pre-order. As done in [9] we prove the following:
Proposition 4. [f X [TH then X <ttrace T OPiiyace:
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4 Some Timed Security Properties

In this section we show how to redefine four timed security properties as suitable in-
stances of the tGN DC §-sghema, by suitably defining function a. As for the behavioral
semantics [, wk will always consider the timed trace semantics. The four properties we
consider are:

— The timed version of Non Deducibility on Compositions [4], which has been pro-
posed to study information flow security; we will show that tNDC is the strongest
property in the tGN DC $fapmily, under some mild assumptions.

— Atimed notion of authentication, called timed agreement (see also [14]), according to
which agreement must be reached within a certain deadline, otherwise authentication
does not hold.

— A timed notion of secrecy, we call timed secrecy, according to which a message is
secret only within a time interval and after the deadline it can become a public piece
of information.

— A timed notion of integrity, called timed integrity, which simply requires a correct
delivery of messages within a certain amount of time.

4.1 Timed Non Deducibility on Compositions

We start with tN D C since tGN DC {is generalization of such a property. Its underlying
idea s that the system behavior must be invariant w.r.t. the composition with every hostile
environment. Indeed, there is no possibility of establishing acommunication (i.e. sending
information). In the CryptoSP A untimed setting the NDC ! idea can thus be defined
as follows:

Definition 4. P [CNIDC if and only if [XI EE@', we have (P||cX) =trace P\C.

where =trace 1S trace pre-order and the only difference with the definition given in SPA
is that the knowledge of process X is bounded by @;. Now we present timed NDC
(tNDC, for short) ([8]) which is the natural extension of NDC to a timed setting.

Definition 5. P [INDC if and only if [XI [IBE' we have (P||cX) =ttrace P\C.

where the difference is that we use the timed hostile environment and timed trace pre-
order. Note that tNDC corresponds to tGN DCEt\t?ace. It is also possible to apply

Corollary 1 obtaining the following static characterization.
Proposition 5. P (XN DC if and only if (P ||CT0ptCt‘rq;'ce) =¢trace P \C.

Now we suggest that tNDC is the most restrictive a(P) hence inducing the strongest
property for timed trace semantics. The most restrictive a(P) should return an en-
capsulation of protocol P, i.e., a version of P which is completely isolated from the
environment, corresponding to the execution of P in a perfectly secure network where
only the honest parties are present. In our process algebra setting, this corresponds to
the restriction of all public channels in C along which protocol messages are sent.
Note that for every process P we have (P |[1(0)) \ C =ttrace P \ C. This means
that P restricted on C is equivalent to the protocol in composition with the enemy that

' As for tGNDC ¥ also NDC and tNDC are implicitly parametric w.r.t. the set C of public
channels and the set @ of initial knowledge. We usually omit these parameters when clear from
the context.
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does nothing. Note also that, by definition, 1(0) I:ng for every @. So it is very natural
to consider d functions and processes P such that P \ C <ttrace 0(P). This simply
means that the protocol P is correct (as it satisfies its specification a(P)) at least when
it is not under attack. This condition can be somehow seen as a reasonable criterion for
any good protocol: it must be correct at least when it is not under attack! Under this mild
assumption, it is clear that P [N DC implies P TGN DC<maCE

Another way to avoid universal quantification over all the admissible enemies is
to show the equivalence between tNDC and Timed Strong Nondeterministic Non-
Interference (ISN N 1, for short); such equivalence result holds in the untimed case [4],
but that does not hold for tSP A [8] because of the maximal communication assumption
of that language.

A CryptoSP A process is SNN Ig if P\C, where all actions in C are forbidden,
behaves like the system P where all the actions in C are hidden (i.e., transformed into
internal T actions). To express this second system we need to introduce first the hiding
operator P/9C:

p -2 po (a [T ) PET P ¢ CALT
p/ec 2 p7eC p/eC -, peHmIC
p Y™ po CIZCII:CI m (o)

P/°C —=. P79C

Now we are ready to define the property timed SN N Ig as follows.

Definition 6. A process is tSNN Ig if P\C =ttrace P/°C.

It is rather intuitive that P/®C can be seen as P ||c T op, where T op is the top element of
the trace pre-order for CryptoSP A. Hence, such a static characterization can be seen
as a corollary of the existence of a top element in the trace pre-order (together with the
fact that trace pre-order is a pre-congruence).

Proposition 6. For every P we have that (P ||cT Opﬁ’r(gce) Zttrace P/?C.
Proposition 7. P [INDCZ iR CISNNIZ.

4.2 Timed Agreement
We now present the Timed Agreement Property [14]:

" A protocol guarantees Timed Agreement between a responder B and an initiator
A on a set of data items ds if, whenever B (acting as responder) completes a run
of the protocol, apparently with initiator A, then A has previously been running
the protocol, apparently with B, in the last n ticks (where n is a prefixed
timeout value) and the two agents agreed on the data values corresponding to
all the variables in ds, and each such a run of B corresponds to a unique run of
A"

As done in [9] for the non real-time version of Agreement, what we do is to have for
each party an action representing the running of a protocol and another one representing
the completion of it. We consider an action commit_res(B, A, d) representing a correct
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termination of B as a responder, convinced to communicate with A that agrees on data
d. On the other hand we have an action running_ini(A, B, d) that represents the fact
that A is running the protocol as initiator, apparently with B, with data d. If we specify
these two actions in the protocol, the Timed Agreement property requires that when B
executes commit_res(B, A, d) then A has previously executed running_ini(A, B, d)
and at most n tick actions, where n is the prefixed timeout value, occurred between
these actions. We assume that the actions representing the running and the commit are
correctly specified in the protocol. We can see them as output actions over two particular
channels running_ini and commit_res. We assume that d can assume values in a set D.
Let NotObs(P) = sort(P)\(C {rdunning_ini, commit_res}) be the set of channels
in P that are not public and are different from running_ini and commit_res, i.e., that

t(n)

tAgree Can be thus defined as follows:

will not be observed. Function o
PHx,y) = 2 _d togi roan W(running_ini(x, y, d).tick,...ticki.commit_res(y, X, d).1(0))
PP=3 rwtobs(e) '(C(X)-P D+ [Nbtobs(P),m rxa (CM-P 9

t
tgg)ree(P) =P ‘Iﬂp ?A B)
Note that P Mis essentially the process that executes every possible action over channels

in sort(P) which are not in C and are different from running_ini and commit_res, or

t(n)

let time pass. Given P, Ogagree

(P) represents the most general system which satisfies

the Timed Agreement property and has the same sort of P . In fact in O(tAgree(P) action

running_ini(x,y, d) always precedes commit_res(y, X, d) for every datum d, and ev-
ery combination of the other actions of P can be executed. Finally the number of tick
actions is at most N. In order to analyze more than one session, it suffices to consider an
extended o which has several processes P Hin parallel.

We want that even in the presence of a hostile process, P does not execute traces that

t(n)

are not in O (P). So we can give the following definition:

Agree
Aagree(P)
Definition 7. P satisfies Timed Agreement iff P is tGN DC;’:ﬂ: ,ie.,

EX I:tﬂgl (P ”CX) <ttrace atAgree(P)

4.3 Timed Secrecy
We now present the Timed Secrecy Property:

"A protocol guarantees to an initiator A the property of Timed Secrecy on a set
of data items ds within a time n if, whenever a data item in dS becomes public,
at least n ticks passed since A started the protocol”

As done for Timed Agreement, what we do is to have an action representing the running
of a protocol and another one representing that a secret is revealed. We consider an
action running_ini(A,d) that represents the fact that A is running the protocol as
initiator, with data d. On the other hand we have an action public(d) representing that
data item d is made public. If we specify these two actions in the protocol, the Timed
Secrecy property requires that when someone executes public(d) then A has executed
running_ini(A, d) and at least n tick actions, where n is the prefixed timeout value,
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occurred between them. We assume that the actions representing the running and the
publication are correctly specified in the protocol. We can see the first as an output action
over a particular channel running_ini. The second action, following the approach of
[6] is performed by a particular process called Key Expired Notifier (KEN, for short)
that reads from a public channel ¢ not used in the protocol and performs the output of
what it has read on the channel public, i.e. KEN = c¢(x).public(x).

Let NotObs(P) = sort(P)\(C [{d, running_ini, public}) be the set of channels
in P that are not public and are different from running_ini and public, i.e., that will
not be observed. We assume that d can take values in a set of secret values D. Function
O(tsréc can be thus defined as follows:

P x) = >, oyt (running ini(x, d).ticky . . . tickn.(1(public(d).1(0)) + 1(t.1(0))))
p= 2 wtobscp) (C(X)-P 5+ > [NbtObs(P),m rxa (CM.P
a$e(P) = PHIP(A)

GivenP, O(:g;)C(P ) represents the most general system which satisfies the Timed Secrecy
property and has the same sort of P. In fact in a:(S:)C(P) action public(d) is always exe-
cuted at least n ticks after running_ini(x, d) for every datum d, and every combination
of the other actions of P can be executed. In order to analyze more than one session, it
suffices to consider an extended o which has several processes P "in parallel.

We want that, even in the presence of a hostile process, P does not execute traces that

t(n)

are not in 0. (P). So we can give the following definition:

tSec

atdD (P)
=ttrace L.e.

Definition 8. P satisfies Timed Secrecy iff P is tGNDC

’ >

[X [T : (PllcX) <trrace Ajon.(P)

4.4 Timed Integrity
We now present the Timed Integrity Property:

"A protocol guarantees to the user B the property of Timed Integrity on a set of
data items ds within a time n if B only accepts data items in ds and this may
only happen in at most n ticks since the beginning of the protocol”

For instance, imagine that you would like to receive your favorite newspaper each day
before noon. This may be expressed as an integrity property rather than an authenticity
one, since you are not actually interested in the sender but simply on the data (the
newspaper). Consider a channel out used for expressing the reception of a message and
let NotObs(P) = sort(P)\(C [{dut}) be the set of channels in P that are not public
and d ranging over a set of data D. Then, Timed Integrity may be formally specified as
follows:

Py, np=-tHgp moticky. . .. .tickn. T.1f0)4 1(out(y, d).1(0))
P ™= ¢ [NbtObs(P) 1(c(x)-P ™ + ¢ [NbtObs(P),m [V 1(cm.P )
agm(P) = PHPYB, n)
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5 Compositionality Results

In this section we illustrate some compositional proof rules for establishing that a system
enjoys a tGNDC property, in particular tSN N Ig. However, remember that, as it is
equivalent to tN DC, this property implies all the other ones based on trace semantics,
that are the most frequently used in security analysis.

Within the SP A theory, SNNI is compositional, i.e. if P,Q [3NNI then
(P||Q) ZSNNI. Unfortunately, the same does not hold when considering enemies

with limited knowledge, as for tSN N Ig. For instance, consider the processes:

P =tim;.c2(X)[X = mz].camy Q = tima.c2(X)[x = my].camy

Now, assuming C = {c1,C2} and @ = [ Ive have that P,Q [IENN Ig. However,
P||Q FISNNI?. As a matter of fact, (P [|Q)\C is equivalent to 0, while (P ||Q)/¢C
may perform both Tzm; and Czms>.

However, if we strengthen the assumptions we can get a compositional rule for
establishing that a process belongs to tSN N Ig. The stability assumption we make is
that the process cannot increment its knowledge.

Definition 9. We say that a process P is stable w.r.t. ¢, whenever if P/®C = CPFeC

then D(@) = D(o@Y.
Thus, the following proposition holds.

Proposition 8. Assume that P,Q CISNN Ig and that P, Q are stable w.r.t. Q9. Then
(P||Q) C(IINN Ig and P ||Q is stable w.r.t. .

We have another compositionality principle for the tGNDC
under the assumption that the involved processes are stable.

a

= ttrace schema, again

Proposition 9. Given the set of initial knowledge @ and the set of public channels C,
assume P; [IGN DCY®D i i = 1,2, and Py, P, are stable w.r.t. Q. It follows

=ttrace

that (P1]|P2) CXENDCZ-PON®) 4 b, (1P, is stable w.rt. g.

=ttrac
One may wonder if the stability condition is too restrictive. As a matter of fact (see
[11]), the above compositional proof principles can be successfully applied for checking
integrity in stream signature protocols, as the ones in [10,3].

6 Conclusions

We have shown how to extend the GN DC schema to a real time setting while preserving
the properties of the untimed schema. In particular, we have shown the existence of a
"most powerful" timed enemy, at least for the timed trace semantics. We have also shown
how to express uniformly in this general schema some timed security properties, such
as timed Non Deducibility on Compositions, (one definition of) timed authentication,
timed secrecy and also timed integrity. We have also introduced a compositional proof
principle that allows us to compose safely two real-time security protocols, preserving
the security properties they enjoy.

Related literature on real-time security include the prominent papers [16,2]. The
former paper presents tock-CSP — a real-time language similar to tSPA — that is used
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to specify real-time crytpographic protocols. The main differences consists of a differ-
ent treatment of timed operators, in the absence of a mechanism for handling crypto-
primitives, in the lack of a uniform schema, and in the absence of compositionality
results. The latter paper [2] is mainly concerned with the model checking of the interest-
ing case study of TESLA, a protocol for stream broadcasting over the internet. The main
focus is on showing that it is possible to give a finite model for the unbounded supply
of fresh cryptographic keys used during the protocol. The so-called security condition
of the protocol is similar to timed agreement.

Compositional proof techniques for reasoning about cryptographic protocols in an
untimed setting may be found in [1,13]. In [1], a compositional proof system for an
environment-sensitive bisimulation has been developed. One main difference from ours,
is that we consider a weak notion of observation where the internal actions are not visible.
This permits us to have more abstract specifications. (As a matter of fact, the authors
of [1] leave as future work the treatment of such a form of weak equivalence.) In [13],
the authors develop the concept of disjoint encryption and, under this hypothesis, are
able to perform compositional reasoning both for secrecy and authentication properties.
While on the one hand, their approach seems to deal better with authentication properties
than ours, on the other one it seems that there are situations where stability holds while
disjoint encryption does not. (A deeper comparison deserves more time and space and
is left as future work.)

Future work will be also devoted to study other security properties in a timed setting,
such as non repudiation, for which apparently there is the need for using semantics more
discriminating than timed trace semantics.

Acknowledgments. We would like to thank the anonymous referees for their helpful
comments for the preparation of the final version of this paper.
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Abstract. We present the SBSNNI rule format. We prove that any
Process Algebra construct whose SOS-style semantics is defined by SOS
transition rules respecting such a format, preserves the well known non
interference properties Persistent BNDC, SBSNNI, and SBNDC.

1 Introduction

One of the problems in computer security is the necessity to guarantee that only
legitimate users can access some kind of information. To face this problem, one
should take into account that malicious users could attempt to access information
not only directly, but also indirectly through so called covert channels.

In multilevel systems [4], users are bound to several levels of security, and
it must be guaranteed that users at any level cannot interfere with users at
lower levels and cause di [erkent status of the system in which they operate to be
perceived. This means that information flow from high levels to lower levels must
be prevented. A drastic solution to this kind of problems is to avoid at all these
possible interferences. A lot of non interference definitions have been proposed
in the literature since [11], for several formal models of interaction between users.
In most of these papers, for simplicity multilevel systems are represented by two
level systems: Users are bound either to a high level of security, or to a low level
of security. In [6,7,8,16,3,15] some of the non interference definitions given in the
literature have been translated into the context of Process Algebras.

The most successful non interference definition in [6,7,8] is called
Bisimulation-based Non Deducibility on Compositions (BNDC, for short). In-
tuitively, a system enforces BNDC if, by interacting with any possible high level
user, the system always appears the same to low level users. Among the other
non interference definitions in [6,7,8], we mention Strong Bisimulation Strong
Non-deterministic Non Interference (SBSNNI, for short), which is stronger than
BNDC, and Strong BNDC (SBNDC, for short), which, in turn, is stronger than
SBSNNI. The mentioned properties are studied for systems specified by using
the language of Security Process Algebra (SPA, for short), which is an extension
of CCS [13] tailored to deal with two level systems. BNDC has been a successful
non interference definition for systems lying in static contexts. In [9] it has been
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shown that BNDC is too weak for systems running into a dynamic environment
that can be reconfigured at run-time, or, equivalently, for systems that can mi-
grate on the web during their computation. For this reason, the more restrictive
non interference definition of Persistent BNDC (P_BNDC, for short) has been
introduced. Intuitively, a system enforces P_.BNDC if every state that can be
reached by the system during its computation enforces BNDC. This means that
even if the environment changes during the execution of the system, the security
of the system is not compromised. P_BNDC is equivalent to SBSNNI, meaning
that any system enforces P_BNDC if and only if it enforces SBSNNI (see [9]).

All the mentioned non interference properties are not, in general, composi-
tional, meaning that there are constructs of SPA that do not preserve them. This
is a critical issue, since one is not guaranteed that by putting a secure system
into a SPA context, the obtained system is, in turn, secure. Another consequence
of non compositionality is that the non interference properties cannot be checked
compositionally with respect to the syntactic structure of systems [8,12].

In the present paper we argue that the non compositionality of the non in-
terference properties depends on general semantic properties of SPA constructs.
This implies that other Process Algebras having constructs with the same seman-
tic properties su[en of the same problem. This is a typical situation in Process
Algebras: A big amount of results depend on general semantic properties of the
language constructs and do not depend on the particular language that is consid-
ered. An interesting challenge is to develop a meta theory for Process Algebras
to study which semantic properties the constructs must have to preserve non
interference properties. To this purpose, we recall that since the pioneering work
[17], the concept of rule format has played a major rdle to develop meta theo-
ries for Process Algebras endowed with a Structural Operational Semantics [14]
(SOS, for short). A rule format consists of a set of restrictions on the syntax
of the SOS transition rules admitted. In particular, several rule formats have
been proposed for ensuring that a given behavioral preorder (resp. equivalence)
notion over processes is a precongruence (resp. congruence) (see [2] for a sur-
vey). Now, in the present paper we present the SBSNNI rule format, and we
prove that any Process Algebra construct preserves both SBSNNI (and, there-
fore, P_LBNDC) and SBNDC, provided that the operational semantics of such a
construct is given by SOS transition rules respecting the SBSNNI format.

In Section 2 we recall SPA and the various non interference properties. In
Section 3 we define our rule format. In Section 4 we prove that all constraints on
SOS transition rules are needed. In Section 5 we prove that the format is correct
for SBSNNI and SBNDC. Finally, in Section 6 we draw some conclusions.

2 Security Process Algebra

The Security Process Algebra (SPA) [6] models systems where the set Act of
the actions that can be performed by each (sub)system is partitioned into a set
of visible input actions, ranged over by a, as, ..., a set of visible output actions,
ranged over by @, azg, ..., and the invisible action t, which models an internal
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computation step that cannot be observed outside the system. A complementa-
tion function (-) : Act - Act is defined over actions such that a = a, for each
a [CAct\ {1}, and T = 1. The intuition is that actions a and a performed by
two processes running in parallel can synchronize, thus producing action t.

To reflect two di Lerknt levels of security, the set of (input and output) visible
actions is partitioned into the set H of high actions, ranged over by h,hy, ...,
h,hy,..., and the set L of low actions, ranged over by I, 1, ..., 1,1, .... Both sets
H and L are closed under complementation.

The abstract syntax of SPA is given by the grammar below:

E:=0| up-E | E1+Ex | E1lE2 | ENA | E[f]
where E, E;,... are SPA process variables, u is an action in Act, A is a set
of actions in Act \ {1} closed w.r.t. complementation, and f : Act - Act is a
relabeling function over actions such that f(t) = T.

Process 0 does nothing. Process u - E performs action p and then behaves
as E. Process E; + E, can choose nondeterministically to behave like either E;
or E,. Process E;|E; is the parallel composition of E; and E,, which interleave
and can synchronize on complementary actions, thus producing action T. Process
E \ A behaves as E, but it cannot perform actions in A. Finally, process E[f]
behaves as the process E where all actions are relabeled by function f. The SOS
style semantics of SPA is given by the SOS transition rules in Table 1.

Table 1. The SOS transition rules for SPA

E, E1 E, -5 EY
UE ﬁE E.+ E> HEl E. + E> PL)EZEI
E1 £ El‘j E, £, EZD E: _— Ejl_:lEZ _LL EZD =)
¥ T T o =0 T o MET
E1|E2 2L EHE, Ei|E2 . E41|ES Ei|E> —— EilES
(] (]
E-LE U A E f(ﬁ) E
E\A-L ENA Eif] = EFf

As in [8], for any sef-ef actions A [ALt, we denote with E/A the process

_ TifuCA
E[f] such that f(u) = U otherwise.

Moreover, we denote with E the set of all processes.

Let us recall the notion of weak bisimulation [13] over SPA processes. We
need before some more notation.

Let E ZT_Ef'be either a shorthand for E(—=)B; -5 Ex(-%)BY if
g CAct \ {1}, or a shorthand for E(—= )5 if p = 1. (As usual (== ) “denotes
a possibly empty sequence of T transitions.)

Let E = CE¥denote that E is reachable from E, i.e. either E = ET¥ or

there is a sequence s ...y [Act“duch that E 2T 1< ET
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Definition 1. A relation R [CElx E is a weak bisimulation if (E,F) R
implies, for all p CAkt,

— whenever E % Efor some process E then there is a process F Psuch that
F ZCEfand (EVFY

— whenever F -5 F5for some process FT then there is a process Esuch that
E 2T Effand (EVFY [R.

Two SPA processes E, F are weakly bisimilar, written E = F, i CThere is a weak
bisimulation containing the pair (E, F).

Let us recall the notion of BNDC [6,7,8]. Let E denote the set of all SPA
processes in E having only actions in H [C{1}.

Definition 2. A process E enforces the property of Bisimulation-based Non
Deducibility on Compositions, written E is BNDC, i[]

for each process F [E}4, it holds that (E[F)\H = E/H

As explained in [6,7,8], E/H is what a low level observer can see of E, i.e. the part
of E with which such an observer can synchronize. So, E is BNDC if, for each
high level process F, a low level observer cannot distinguish E from (E|F)\ H,
i.e. what the low level observer can see of E is not modified by composing any
high level process F in parallel with E and by forcing synchronization on high
actions between E and F.

In [9] it is shown that BNDC guarantees non interference only in static con-
texts. To guarantee non interference in completely dynamic hostile environments,
the property of Persistent BNDC has been defined.

Definition 3. A process E enforces the property of Persistent BNDC, written
E is P.BNDC, i[1

for each process EXCE] E = CEdimplies that E”is BNDC

P_BNDC requires that each state that is reachable from E is BNDC.
We recall also the property SBSNNI [6,7,8], which is equivalent to P_.BNDC
and does not require universal quantification over high level processes.

Definition 4. A process E enforces the property of Strong Bisimulation Strong
Non-deterministic Non Interference, written E is SBSNNI, i ]
for each process EY'CE] E = CETimplies that EAAH = E7H

Finally, we recall the property SBNDC [6,7,8].

Definition 5. A process E enforces the property of Strong BNDC, written E
is SBNDC, i[]

for processes EJETLCE] E = EF— EZimplies that EANH = ETA H

SBNDC requires that before and after each high action, the system appears to
be the same, for a low level perspective.
The following results on non interference properties were proved in [6,9].
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Proposition 1. If a process is SBNDC then it is SBSNNI. A process is SBSNNI
if and only if it is P_.BNDC. If a process is SBSNNI then it is BNDC.

Both SBSNNI and SBNDC are preserved by operators “|” and “\” (see [6]).
Unfortunately, they are not preserved by operator “+”, as it is shown below.
Example 1. LetE = h;:1;-0+1;-0and F = h,:1,:0+1,-0. Both processes E and F
are SBSNNI and SBNDC. Intuitively, in both processes, the high action guards
a low action that can be performed also without performing the high action.
The process E + F is neither SBSNNI nor SBNDC. Intuitively, by performing
the high action h;, E + F reaches a state in which it has no choice and it can
perform only action I;. Analogously, by performing the high action h,, E + F
reaches a state in which it has no choice and it can perform only action I,. Now,
without performing any high action, E + F is in a state in which it can choose
between performing I; or I,. So, such a state cannot be simulated by the two
states reached by performing h; or h,. Formally, the process E“reachable from
E that violates conditions of Def. 4 is E itself. The processes EMand E™that
violate conditions of Def. 5 are E and the process reachable through h; (or that
reachable through h,), respectively.

3 The Format SBSNNI

In this section we present the format SBSNNI.

Let us return to Example 1. The reason for which process E + F is neither
SBSNNI nor SBNDC is that the high action h; of E forces E + F to discard F
(and, symmetrically, the high action h, of F forces E + F to discard E).

We note that a quite similar reason implies another well know problem of
operator +, i.e. that it does not preserve weak bisimulation (see [13]). In fact,
notwithstandingt-a-0=a-0, itholdsthatt-a-0+b-0&a-0+b-0. Here
the problem is that action t of t-a-0+b-0 forcest-a-0+b-0 to discard b- 0.
To preserve weak bisimulation, operator + must be patient, meaning that, given
any process E + F, the performance of some action Tt by E (resp. F) should not
imply discarding F (resp. E). To this purpose, as it has been observed in [5,18,
10], SOS transition rules of Table 1 for operator + must require that p is not
action T, and, moreover, patient rules for operator + must be added as below:

E-5 EV F-— FU
E+F— E%F E+F - E+F"

In order to preserve SBSNNI and SBNDC, operator + must have rules for high
actions similar to the patient rules above.

Before introducing our format, we recall that, in general, the abstract syntax
of a process algebra is given by a signature X, i.e. a set of function symbols
with their arities. The algebra of (open) terms freely constructed over a set
of variables var (ranged over by E,F,...) by applying function symbols in >
is ranged over by t,s,r. Terms that do not contain variables are called closed
terms, or processes, and are ranged over by p,q. A SOS transition rule (with
only positive premises and without predicates) p has the form % where:
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— H is a collection of premises of the form t Ao

— o is a conclusion of the form s 2% s where term s is called the source of

p, term sHis called the target of p, and i is called the action of p.

Definition 6. A Process Algebra having operator “-”” of CCS and defined by
SOS transition rules is SBSNNI if:

1. For each high action h [CH, the following transition rule is admitted:

h-E-LE
2. Transition rules p of the following form are admitted:

{Ei -~ Fi|i CTp)}

T where:
f(Ei,....,En) —— t

- I(p) ma"'!n}

li COfor each i [CI{p), and p O L3}

E1,F1,...,En, Fn are the only variables occurring in p, and no variable
E; with i CI{p) occurs in the target t

no subterm h - s appears in t, for any h [H.

3. Transition rules p of the following form are admitted:

{Ei ™% Fi|i CT(p)}
f(Ey,...,En) =% £(FL...,FD)

—I(p) CLA,...,n}and I (p) E [
— hi [H for each i [I{p), and p—{H {1}

. F if i CIp)
_ O= i
for each i [{1,...,n}, FF= E. otherwise,

4. For all transition rules p, and all i CI{p), there is a patient transition rule

, Where:

f(Ey,...,En) — f(E1,...,Ei_1,Fi,Eiz1,...,En)

and, moreover, for each action h [CH, there is a H-patient transition rule

Ei % Fi
f(E1,...,En) =% F(E4, ..., Ei-1,Fi,Eist,...,En)

5. No further transition rule is admitted.

Notice that, on one hand, clause 1 above implies that high prefixing cannot
preserve SBSNNI and SBNDC. On the other hand, clause 1 is reasonable and is
needed to let processes perform high actions. So, we require that all operators
except “-”” preserve SBSNNI and SBNDC.



Rule Formats for Non Interference 135

SPA becomes SBSNNI if we modify Table 1 as follows:

in the transition rules for operator “+” we require that p ITH {1}, and
we add the patience and H-patience transition rules for “+”

in the transition rule for E[f] we require that f(h) [CH [{1}, for each
h [CH, and that f(I) O {1}, for each | L] and we add the H-patience
transition rules for E[f]

in the transition rule for “\” we require that A L]

no modification for transition rules for operators “-” and “|” is needed.

Let SPAMbe SPA with these modifications. One could ask whether Def. 2 is well
defined for SPAY since it considers process (E|F)\H and the operator \ of SPAP
admits process G\ A only if A [0 We have two (independent) explanations
that this is not a contradiction. The first explanation is that the classic \ used
in Def. 2 is defined outside the format, and Def. 2 is valid also for languages
in which the classic \ is not defined. The idea is that, also for these languages,
Def. 2 simply says that E is BNDC i[what a low lever observer sees of E
is not modified by composing any high level process F in parallel with E and
by forcing synchronization on high actions between E and F”, even if forcing
synchronization on high actions is not admitted inside E. Here, classic \ is simply
a tool that is used to discover whether there is some information flow in systems
(that are specified without such a tool). The second explanation is that we could
consider SPAPwith the classic operator \ and require that all operators except
\ and, obviously, - preserve non interference properties.

In the following, let us denote with [The operator + with patience and
H-patience transition rules, and with + the classic operator defined in Table 1.

We conclude by observing that the formats in the literature that are closer to
our format are simply WB format [5] and de Simone format [17]. Our format is
more restrictive than simply WB format since simply WB does not distinguish
between high and low actions and, therefore, it does not impose H-patience rules.
As de Simone format, our format admits neither premises of the form E 35
(negative premises), nor variables appearing both in the left hand side of a
premise and in the right hand side of another premise (look ahead), nor variables
appearing in the left hand side of two premises (double testing), nor variables
appearing both in the left hand side of a premise and in the target. Moreover,
on one side, our format imposes H-patient rules, which are not considered by de
Simone format, since it does not distinguish between high and low actions. On
the other side, de Simone format does not admit variables to appear more than
once in the target of transition rules, which is allowed by our format.

4 Necessity of Restrictions

In this section we show that all constraints of the SBSNNI format are needed.
The necessity for having H-patience transition rules follows by Example 1.

First of all we show that SBSNNI format cannot admit transition rules where
either high actions appear in premises and the action of the rule is low, or low
actions appear in premises and the action of the rule is high.
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Example 2. Letp=1; -1, -0. Process p is trivially SBSNNI and SBNDC. Let f
be the function whose semantics is described by the following transition rules

E -1 gV E -2, gV
f(E) -1 f(EY f(E) 2 f(EY

and by the patience and H-patience transition rules. Process f(p) is isomorphic
to h -1, -0 and is neither SBSNNI nor SBNDC, since action h guards action I,.

Letp=h;-0and g = h,-0. Processes p and g are SBSNNI and SBNDC. Let
T be the function whose semantics is described by the following transition rule

E-L gD FL2 EO
f(E,F) -~ f(EYFY

and by the patience and H-patience transition rules. Process f(p, q) is isomorphic
tohy-hy,-0+hy-hy-0+1:0, and it is neither SBSNNI nor SBNDC. In fact
both actions h; and h, guard subprocesses that cannot perform the low action
I, which can be performed in the initial state.

We show now that negative premises cannot be admitted in SBSNNI format.

Example 3. Let p = h -1y -1 1, -0 I I, - 0. Process p is isomorphic to
h-(ly-t-l-0+1y-12-0)+1y-1>-0. It can be proved that p is SBSNNI and
SBNDC. Intuitively, the reason is that the subprocess I, -T-15-0+11 -1, -0 that
is guarded by h is weakly bisimilar to the subprocess I; - I, - 0 that is not guarded
by h. Let f, g be the functions whose semantics is described by the rules

E -4 EV E -2 gV E 32
f(E) -~ g(EY g(E) = E”  g(E)-2%0

and by the patience and H-patience transition rules. Process f(p) is neither
SBSNNI nor SBNDC. In fact, f(p) can perform I3 only in the branch guarded
by h. So, process E violating conditions of Def. 4 is f(p), and processes E'and
E™violating conditions of Def. 5 are f(p) and that reachable from f(p) through
h. Note that the subprocess I; - T -1, -0+ 11 -1, -0 in p that is guarded by h is
weakly bisimilar to the subprocess I, - I, - 0 that is not guarded by h since = does
not distinguish Iy - T-1,-0and I; - 1, - 0. On the contrary, f(l;-T-12-0+11-1,-0)
and (I, -1 -0) are not weakly bisimilar. In fact, the former process can perform
I; and reach g(t - I, - 0), whereas if the latter process performs Iy, it can reach
only g(l>-0). So, T -1, -0 cannot perform I, and, therefore, g(t -1, -0) can perform
I3, whereas I, - 0 can perform |,, and, therefore, g(l, - 0) cannot perform Is.

We show now that double testing cannot be admitted in SBSNNI format.
Example 4. Letq = ((I1-13-0 CIzdl4-0) | (Iy -0 C1230)) \{l1, I, 11, Io} . Process q is
isomorphicto T-13-0+71:14-0. Let p= ((h-(I3-0 0,30) CI=4d) | ) \{l, I}. Process
p isisomorphictoh-(I3-0+14-0+T-(T:13-0+T-14-0)+71 - (T-13:0+71-l4-0). It
can be proved that p is SBSNNI and SBNDC. The reason is that the subprocess
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I3-0+14-0+1-(t:-13-0+71:14-0) that is guarded by h is weakly bisimilar
to the subprocess T - (T - 13- 0+ 1 - 14 0) that is not guarded by h. Let f be the
function whose semantics is described by the following transition rule
E-%EY E-4ED
f(E) =

and by patience and H-patience rules. Process f(p) is neither SBSNNI nor SB-
NDC, since it can perform Is only in the branch guarded by h. As seen above,
the subprocess I3 -0+ 14-0+1-(T-13-0+7T-14-0) in p guarded by h is weakly
bisimilar to the subprocess T - (1 - I3 -0+ 1 - I4 - 0) that is not guarded by h. On
the contrary, f(l3-0+14-0+T - (t-l3-0+1-14-0)) and f(T- (T I3-0+71-14-0))
are not weakly bisimilar. In fact, since I3 -0+ 14 -0+T-(t-13-0+71T-14-0) can
perform both I3 and 14, the former process performs s, whereas no subprocess
reachable by T - (t - I3 0+ 1 - 14 0) can perform both I3 and I, and, therefore,
the latter process cannot perform Is.

We show now that look ahead cannot be admitted in SBSNNI format.
Example 5. Let p = h 13 - I, - 0 [CIgd- T - I, - 0. Process p is isomorphic to
h-(Ig-12-0+1-t-12:0)+1y-T-1,-0and is SBSNNI and SBNDC. Intuitively,
the reason is that the subprocess I; - I, -0+ 11 - T - I, - 0 guarded by h is weakly
bisimilar to the subprocess I; - T - I, - 0 not guarded by h. Let f be the function
whose semantics is described by the following transition rule

E-L ED EOZ gD E - EC
f(E) 2 0 f(E) - EV

for any | [

and by patience and H-patience rules. The process f(p) is neither SBSNNI nor
SBNDC. In fact, f(p) can perform I3 only in the branch guarded by h. Note that
the subprocess I3 -1,-0+1;-T-12-0 in p that is guarded by h is weakly bisimilar to
the subprocess Iy - T - 15 - 0 that is not guarded by h since = does not distinguish
between 13 -1,-0and Iy - T -1 - 0. On the contrary, f(ly-1,-0+1;-1:1,-0) and
f(ly -1 15 -0) are not weakly bisimilar. In fact, since I, - 1, - 0 can perform action
I, followed by I, the former process can perform I3, whereas actions I; and I, in
I, -t -1, 0 are separated by T and, therefore, f(l, - T - I, - 0) cannot perform I3.

Finally, we show that in SBSNNI format variables appearing in left hand side
of premises cannot appear in the target of the transition rule.

Example 6. Let p be the SBSNNI and SBNDC process of Example 4. Let  be
the function whose semantics is described by the following transition rule

E-. ED

— for any | L1
f(E) — f(E)

and by patience and H-patience rules. The process f(p) is neither SBSNNI nor
SBNDC, since it can perform infinite sequences of actions I3 and I4 only in
the branch guarded by h. As we have seen in Ex. 4, the subprocess I3 - 0 +
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Iy O+T1-(t-l3-0+71-13-0)in p guarded by h is weakly bisimilar to the
subprocess T - (T - I3 -0+ T - I4 - 0) that is not guarded by h. On the contrary,
f(3-0+14-0+1T-(T-13:0+71:14-0)) and f(t-(t-13-0+71-14-0)) are not weakly
bisimilar. In fact, since I3-0+14-0+1T - (t-13-0+71:14-0) can perform I3 and 4,
the former process can perform I3 and I; and can remain in the same state, i.e.
it can perform an infinite sequence with both I3 and l4, whereas no subprocess
reachable by T - (t - I3- 0+ 1 - 14 - 0) can perform both I3 and I, and, therefore,
the latter process cannot perform an infinite sequence with both I3 and 1.

5 The Soundness of SBSNINI Format

In this section we prove that SBSNNI operators except high prefixing preserve
SBSNNI and SBNDC. Since at first glance it could seem that SBSNNI and SB-
NDC coincide under the assumption of patience and H-patience rules, we show
that this is not the case, thus requiring a proof for each of the two properties.

Example 7. For process p=h-1-0 and the function f such that

_H O _h_) 0 _h_) 0
% for any H [Alct ET—E %1
f(E) — f(EY f(E) — f(EY f(E) - f(EY

f(p) is isomorphictot-1-0+1-1-0+h-1-0 and it is SBSNNI but not SBNDC.
As usual, a context C(ty, ..., tn) is a term where terms ty, . .., t, can appeatr.

For context C(E4,...,En) and terms sg,...,Sn, C[S1,...,Sn \E1,...,En]is the
term obtained by replacing in C(Eg, ..., En) each variable E; with s;.

The second sentence of the theorem below implies that SBSNNI is preserved
by operators defined by SBSNNI format.

Theorem 1. Let R be the set of pairs
(C[r1,...,rk\E1,...,Ex]\H,C[rD ..., rig/\ Eg,...,Ex]/H)

where C(Eg, ..., Ex) is a context that does not contain any term h-s with h [CH,
and, for each 1 <i <Kk, r;,rMare SBSNNI and ri \H = r[7H. It holds that:

— The set R is a weak bisimulation.
— Terms C[ry,...,rk\Ey,...,Ex] and C[ri...,ri\Ey, ..., Ex] are SBSNNI.

Proof. For readability, in this proof we write E =’°EI§ with A [CAtt, to denote

that there is a sequence E 2T 1T Edwith py, ..., u, CA.

We prove by induction over the syntactic structure of context C(Eq,..., Ex)
the first sentence of the thesis. The second sentence follows from the first one.
In fact, each process  reachable from C[ry,...,rk \ Ey,..., Ex] has the form
Cf1,...,P\Eq, ..., Eg], for some context CEy, ..., Ex) that does not contain
any subterm h - q with h [CH and for some terms 7, ..., fx that are reachable
from rq, ..., r, respectively (this fact can be immediately proved by induction
over the number of transitions needed to reach 7). Now, since fj is reachable from
ri and since rj is SBSNNI, it holds that also 7 is SBSNNI, and, therefore, fj\H =
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Fi/H. So, we can consider the first sentence of the thesis and we can instantiate,
for each 1 < i <k, rj and r-with the same SBSNNI term j, thus obtaining that
F\H =CHfy,...,k\E1,...,Ex]\H = CHfy, ..., \Ey,...,Ex]J/H = f/H. So,
since each term t reachable from C[rq,...,rk\Ey,..., Ex] satisfies F\H = f/H,
it holds that C[ry,...,rcx \ E1,..., Ek] is SBSNNI. Analogously, we can prove
that C[r}..., ri\Ey, ..., Ex] is SBSNNI.

So, let us prove by induction the first sentence of the thesis.

The base case C(E4,...,En) = ¢ for a constant ¢ is immediate, since clauses
of SBSNNI format imply that each process reachable from c is a constant and
that constants cannot perform high actions, thus ensuring that c\ H = c¢/H.

Also the base case C(Ey,...,Ex) = E;j is immediate, since Ej[ry,...,rx \
Ei,...,El] =i, E[rD...,rE\E1,...,Ex] = rfand ri \ H = ri/H by the
hypothesis.

As regards the inductive step, we assume the thesis for C1(E4,...,Ex), ...,
Cn(Es,...,Ex), and we prove it for f(C1(E4,...,Ek),....Cn(E1,...,Ex)). TO
this purpose, for each 1 < i < n, let us denote with t; the term Ci[ry,...,rx \

E1,...,Ex], and with s; the term Ci[rT] ..., rlAEq, ..., Ex]. We must prove that
f(ty,...,th) \H = f(s1,...,sn)/H follows from t; \H = sj/H, for 1 < i <n.
It su [ced to prove the following properties:

1. f(ty,...,ty) \H Hot implies f(s1,...,Sn)/H A, s, for some term s such
that (t,s)

2. f(s1,...,50)/H -5 s implies f(ty,...,ta) \ H =t dor some term t such
that (t,s) [R.

We should prove both properties, since the proofs are not perfectly symmetric,
but for lack of space we prove only the first.

Let us assume that f(ty,...,tn)\H -4, t. We have one of the following three
cases:
1. Transition f(ty,...,t,)\H =% tis inferred by means of the following proof:
I; .
{ti == t]i CI(p)}

fty,...,t) 5 Gy, ..., t)
f(ty,....ta) \H % G(f1,....E) \H

Whereﬁ_r‘j'IZI] for each i CIp), p CO [{t}, t = G(fy,...,tn) \H and

- _ tifi CIp) . . = L
i = t; otherwise. For each index i CI{p), t; =% tiwith I; [0 implies

t \ H =% t™\ H, which, in turn, implies that there is a term sPsuch that
si/H 2CsH and t'\ H = si/H. Therefore, there are terms s™and s/™

such that s; Hz%i]—'L sFEH:E%F Now, by patience and H-patience
rules we obtain that
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H A A
f(s1,...,8n) =EF_Lf(sE],]... S

f(s1,...,sn)/H =CF@L. .. s5/H

ok
where 8= st i L1(p) Now, it holds that

sj otherwise.
I; .
si-—5 sit|i Cp)}
§EJ?... s AG(sl,...,é‘PPi
fE&0. .., 80/H L gE™. .., sM/H
s 5
~m—  Sioifi CI{p) _. . g
where §;-'= s otherwise. Finally, by patience and H-patience rules we
obtain y
e e TR 1))}
TR R e G
= GE™. .., s9/H =CGE!...,sH/H
where §H= spif I [Ilp) Summarizing, it holds that f(sy,...,sn)/H S -

sj otherwise.
G(8L)...,85)/H. The term G(8L)...,85)/H is the term s we were looking
for. In fact, (G(fy,...,th) \ H,G(8L...,85)/H) is a pair in R, since, for
eachl<i=<n,t and §Hare reachable from t; and s;, respectively, and are
SBSNNI, and since, for each i [I{p), it holds that tj\H = tA\H =s/H =
§/H, and, for each i II{p), it holds that t; \H = t; \H = s;/H = §{/H.

2. Transition f(ty,...,tn)\H -, tis inferred by means of the following proof:

4 i CHp)}
f(tl,.. ) = F(th, ..., )
f(ty,...,ta) \H — f(ts,...,t.)\H

v@g[eh IZEllforeachiIZ[l(p)p:r t=f(t,..., th) \ H, andfiE

if i CI{(p) .
t, otherwise. FOT €ach i CIp), ti =% tPwith hi [H implies ti/H —

ti/H. Since t; is SBSNNI, this last fact implies that t; \ H =le§\ H for
some term t{such that t™™\ H = ti/H. It follows that there is a term s

such that s;/H =LS2H and ™\ H = s/H. Now, s;/H =[SAH is due to
a sequence of transitions s; Hz%ﬁ By patience and H-patience rules we

obtain that "
s =S ey
£(s1,...,5n) STCF(EL, ..., 5n)

f(s1,...,50)/H =CT@,...,8.)/H
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S Caip)

sj otherwise.

looking for. In fact, (f(t1,...,tn) \H, f(51,...,8,)/H) is a pair in R, since,

for each 1 < i < n, t; and § are reachable from t; and s;, respectively,

and are SBSNNI, and since, for each i [I{p), it holds that tj \ H = te\

H = (since t{’is reachable from t~and is SBSNNI) ti/H = tAH = s{/H =
§i/H, and, for each i [II{p), it holds that ti\H=1t;\H =s;/H =§/H.

3. Transition f(ty, ..., t,)\H —% tis inferred by means of the following proof:

where §; = Term f(81,...,8,)/H is the term s we were

ti _T—> tF‘

fty, ..., th) —— F(te, ... ti—, thtive, ..., tn)
fty,...,th) \H == f(ty, ..., ticg, tHtisa, ..., t) \H

where u = T and t = f(ty,..., ti—1, tHtiv1,...,t) \ H. Since t; —— t}]
it holds that t; \ H — tP\ H, which implies that there is some term s\
such that s;/H =_sfH and t'\ H = sl7H. The sequence of transitions

si/H :fljﬂH is inferred by a sequence s; H:%F By patience and H-
patience rules we obtain

H
Sj :%?
H
f(S1,...,Sn) :E%f(sl,...,si_l,s‘ij,siﬂ,...,sn)
f(s1,...,sn)/H =E@4,...,Si-1,5,Si+1,...,5n)/H

The term f(Sy,...,Si—1,SHSi+1,-..,Sn)/H is the term s we were looking
for. In fact, the pair (F(t1,..., ti—1, thtivs, ..., ta) \ H, F(S1,...,Si—1,S})
Si+1,---,Sn)/H) is in R, since t'\ H = s{/H, tand s are reachable from

t; and s;, respectively, and are SBSNNI, and, for each j 81, t; \H = s;/H.

1

The second sentence of the theorem below implies that SBNDC is preserved
by operators defined by SBSNNI format.

Theorem 2. Let R be the set of pairs
(C[r1,...,rk \Eg,...,Ex]\H,C[rL ..., ri/\Eyq, ..., Ex]\ H)

where C(E4, ..., Ex) is a context that does not contain any term h-s with h [H,
and, for each 1 <i <Kk, rj,rare SBNDC and r; \H = r[A H. It holds that:

— The set R is a weak bisimulation.
— Terms C[rq,...,rk\Eyg,...,Ex], and C[r{ ..., ri\Eq, ..., Ex] are SBNDC.

6 Conclusions

We have presented the SBSNNI format. It guarantees that all operators, except
high prefixing, preserve SBSNNI and SBNDC [6,7,8], which are successful non
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interference properties for systems running into dynamic environments (systems
migrating on the network). Compositionality of non interference properties is
useful since by composing secure (according to the property chosen) processes,
one obtains secure processes. Moreover, compositionality can be exploited also
to check non interference inductively with respect to the structure of the system.

We have compared our format with those in the literature. We have shown
by some examples that all the restrictions imposed by the format are needed.

Our next aim is to extend our results by proposing formats for other non
interference properties. We shall consider BNDC [6,7,8], which is a successful
property for systems running into static environments, and the properties defined
in [3,15,16]. Finally, we aim to understand what addition to our format is needed
to have compositionality also w.r.t. high prefixing. Our starting point is that it
seems natural to think that if E is secure, then h- E + 1 - E is also secure, i.e.
that high prefixing could be admitted provided that a duplicate of its derivative
can be reached also through a silent action.
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Abstract. We consider the problem of implementing a security protocol in such
a manner that secrecy of sensitive data is not jeopardized. Implementation is as-
sumed to take place in the context of an API that provides standard cryptography
and communication services. Given a dependency specification, stating how API
methods can produce and consume secret information, we propose an information
flow property based on the idea of invariance under perturbation, relating observ-
able changes in output to corresponding changes in input. Besides the information
flow condition itself, the main contributions of the paper are results relating the ad-
missibility property to a direct flow property in the special case of programs which
branch on secrets only in cases permitted by the dependency rules. These results
are used to derive an unwinding-like theorem, reducing a behavioral correctness
check (strong bisimulation) to an invariant.

1 Introduction

We consider the problem of securely implementing a security protocol given an API
providing standard services for cryptography, communication, key- and buffer manage-
ment. In particular we are interested in the problem of confidentiality, that is, to show that
a given protocol implementation which uses standard features for encryption, random
number generation, input-output etc. does not leak confidential information provided to
it, either because of malicious intent, or because of bugs.

Both problems are real. Malicious implementations (Trojans) can leak intercepted
information using anything from simple direct transmission to, e.g., subliminal channels,
power, or timing channels. Bugs can arise because of field values that are wrongly
constructed, mistaken representations, nonces that are reused or generated in predictable
ways, or misused random number generators, to give just a few examples.

Our work starts from the assumption that the protocol and the API is known. The
task, then, is to ensure that confidential data is used at the correct times and in the correct
way by API methods. The constraints must necessarily be quite rigid and detailed. For
instance, a non-constant time API method which is made freely available to be applied to
data containing secrets can immediately be used in conjunction with otherwise legitimate
output to create a timing leak.

“This material is based upon work partially supported by the European Office of Aerospace Rese-
arch and Development, Air Force Office of Scientific Research, Air Force Research Laboratory,
under Contract No. F61775-01-C0006, and by the European IST project VerifiCard.

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 144-158, 2003.
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Our approach is to formulate a set of rules, which determine the required dependen-
cies between those API method calls that produce and/or consume secrets. An example
of such a dependency rule might be

send(v, outchan) — k := key(Bob) M := receive(inchan) [OL= enc(m, k)

indicating that, if upon its last invocation of the receive method with argument inchan
the protocol received m (and analogously for key, Bob, and k), then the next invoca-
tion of send with second parameter outchan must, as its first parameter, receive the
encryption of m with key k.

A dependency specification determines an information flow property. The rules de-
termine a required dependency relation between API calls. Assurance, then, must be
given that no other flows involving secrets exist. Our approach to this is based on the
notion of admissibility, introduced first in [4]. The idea is to extract from the depen-
dency specification a set of system perturbation functions g which will allow a system S
processing a secret V to act as if it is actually processing another value of that secret, V"
Then, confidentiality is tantamount to showing that system behaviour is invariant under
perturbation, i.e. that

slg] CsJ

where [g] is the system perturbation operator. One problem is that, provided this is
licensed by the dependency rules, secrets actually become visible at the external interface.
For this reason, the perturbation operator [g] must be able to identify the appropriate cases
where this applies, so that internal changes in the choice of secret can be undone.

The paper has two main contributions. First, we show how the idea can be realized
in the context of a simple sequential imperative language, IMP0. Secondly we establish
results which provide efficient (thought not yet fully automated) verification techniques,
and give credence to the claim that admissibility is a good formalisation of confidentiality
in this context. In particular, we show that, for the special case of programs which branch
on secrets only in cases permitted by the dependency rules, admissibility can be reduced
to a direct flow property (an invariant) which we call flow compatibility. Vice versa,
we show that under some additional assumptions, flow compatibility can be reduced to
admissibility.

This work clearly has strong links to previous work in the area of information flow
theory and language-based security (cf. [8]). The idea of invariance under perturbation
and logical relations underpins most work on secrecy and information flow theory, though
not always very explicitly (cf. [3,5,11,9]). The main point, in contrast e.g. to work by
Volpano [10] is that we make no attempt to address information flow of a cryptographic
program in absolute terms, but are satisfied with controlling the use of cryptographic
primitives according to some external protocol specification. This is obviously a much
weaker analysis, but at the same time it reflects well, we believe, the situation faced by
the practical protocol implementor.

The rest of the paper is structured as follows. In Section 2, we present IMPO and
introduce the main example used in the paper, a rudimentary credit card payment proto-
col. In Section 3 we introduce an annotated semantics, used in Section 4 to formalize the
dependency rules. The notion of flow compatibility is presented in Section 5 to describe
the direct information flow required by a protocol specification. In Section 6 the main
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Table 1. IMPO: Syntax

Basic values (BVal) b = n]a|true| (by,...,bn)

Values (Val) v = b| xcpt

Functions (Fun) f :=pflh

Expressions (Expr) e = v|x]|(e1,...,en)|Fe

Commands (Com) ¢ ::= skip|throw |x:=e|co;c1|if ethencoelsec; |

while e do cend | try ¢o catch c1

information flow condition, admissibility, is introduced. In Section 7 we state and prove
the unwinding theorem, while in Section 8 we further investigate the relation between
flow compatibility and admissibility. Finally Section 9 concludes with discussion and
related work.

2 A Sequential Imperative Language

In this section we introduce IMPO, the language we use for protocol implementation.
The intention is to formalise the basic functionality of simple protocol implementations
in as uncontroversial a manner as possible.

Table 1 defines the syntax of IMPO, with variables X [VAr, including the anonymous
variable _ , primitive function and procedure calls, and primitive data types including
natural numbers (N [CNat) and channels (a [—Qhan). The set of primitive function
symbols, ranged over by pf, includes the standard arithmetic and logical operators. Each
primitive function is assumed to execute in constant time, regardless of its arguments.
There are also non-primitive (or API) functions, ranged over by h, for encryption (enc),
decryption (dec), extracting a key from a keystore (key), and receiving resp. sending a
value on a channel (receive and send). To each (primitive or non-primitive) function
symbol f is associated a binary relation f [Vhl x Val —s¢ that V1 [Mal. v [
Val —f (v, v (i.e. functions may be non-deterministic, and may not terminate), and
T (xcpt, v)iff v = xcpt (i.e. function invocations propagate exceptions from arguments
to results). Moreover, primitive functions are assumed not to have local side effects.
Communication effects are brought out using transition labels in the next section.

As a running example we use a greatly simplified version of the 1-Key-Protocol
(1KP), a protocol for electronic payments [2]. This example is chosen because it is
paradigmatic for many simple e-commerce applets which input a collection of data,
some sensitive, some not, performs some cryptographic operations on the data, and then
transmits the result on a public channel. In the full version of the paper [6] we use a
simple declassifier as a second example.

2.1 A Simple Payment Protocol

The protocol involves three players: A Customer, a Merchant and an Acquirer (ACQ).
The Customer possesses a credit card account (ACC) with which it places an order to the
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Prog1:
while true do

ACQ := receive acq; ORDER := receive order; ACC := receive acc;

try
PKA := key ACQ;
_:=send((ACQ, ORDER, enc((ORDER, ACC), PKA)), lookup(merchant))

catch
_:= send(“error report”, local)

end
Fig. 1. Payment protocol — sample Customer implementation

Merchant. The Acquirer is a front-end to the existing credit card clearing/authorization
network, that receives payments records from merchants and responds by either accept-
ing or rejecting the request. The Customer is required to encrypt the order and account
information with the Acquirer’s public key before sending them to the Merchant.

Figure 1 shows what a simple implementation of the Customer’s side of the payment
protocol might look like in IMPO. In general, an implementation needs to deal with a
lot more issues than what are explicitly addressed at the protocol specification level.
These include: Initialisation and use of cryptographic services, where and how data is
stored and addressed, communication services, and error handling. Further, in some
applications the protocol implementation may well be bundled with the user interface,
in which case a further set of issues arise.

It may be instructive to also show some of the means available to implementations
wishing to violate confidentiality. For instance, a hostile implementation might embed
account information in the ordering field by replacing line 5 of Figure 1 by

_:=send(((ACQ, embed(ORDER, ACC),enc(...)),...),...),

or it might try to replace good nonces or keys by bad ones, for instance by replacing the
same line as before by

_= send(((. - enc((ORDER, ACC), PKMERCHANT))1 .. .), .. ) .

There are many other simple ways of building covert channels, such as timing channels,
for instance by introducing data-dependent delays, either explicitly, or by exploiting
timing properties of library functions.

3 Annotated Semantics

The first challenge is to identify the direct flows and computations on critical data (typi-
cally: secrets, keys, nonces, or time stamps). Once this is accomplished, other techniques
based on non-interference are brought to bear to handle the indirect flows. The direct
flows are tracked using annotations. In particular, we need to identify:
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Table 2. Annotated semantics, expressions

a —_—
o [0-Y. 0 o IB- 3 [w] = xcpt
orQ.., )= (.., 8.y ord.w..)— w
o (TR 4 pf([w], v) h(w], v)
o CRACS f 0 O'l__hW—T—>VprW o CAw =MW hw

1. The operations that cause critical values to enter the system (such as execution of
receive a for some given value of a).
2. The operations that are applied to secrets, once they have been input.

To account for this we provide IMPO with an annotated semantics. Annotations are
intended to reveal how a value has been computed, from its point of entry into the
system. For instance, the annotated value

347 : enc(717 : receive a, 101 : key 533)

is intended to indicate that the value 347 was computed by applying the primitive function
encto the pair (717, 101) for which the left hand component was computed by evaluating
receive a, and so on.

Annotated expressions and values are obtained by changing the definition of expres-
sions (resp. values) in Table 1:

Annotated basic values (aBVal) B = b|(B1,...,Bn)|b: ¢
Annotated values (aVal) w = B | xcpt|xcpt: ¢

w|x|(&...,G)|fOO
Annotations (Ann) ¢ = fw

Annotated expressions (aEXp) 1

Annotations are erased using the operation [w] which removes annotations in the obvious
way.

Table 2 defines the small-step semantics for expression evaluation. The transition
relation has the shape

o S 4

where @ is an action of the form T (internal computation step) or v := fw (f is applied
to the annotated value w resulting in the value V), and 0 is an annotated store, a partial

function 0 [Cabtore 2 [Var - aBVall.

Annotations give only static information in the style “the value v-'was computed
by evaluating key v : receive acq”, but not information concerning which actual
invocations of the key and receive functions were involved. However, this information
is vital to the subsequent information flow analysis, and so we introduce a notion of
context to record the last value returned by some given annotated function call (i.e.
annotation).
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Definition 1 (Context). A context is a partial function s : [Ann - Val].

So, if s is a context then S ¢ is the last value returned by the annotated function call ¢.
Contexts form part of program configurations in the annotated semantics:

Definition 2 (Annotated Configuration).
An annotated configuration is a triple [€] 0, SCWhere C is a command, 0 [abtore and
s [Context.

The annotated command-level semantics, which derives transitions of the shape

a . A
[c] o, sC+— @_‘,‘ o D, Sgbls standard in its treatment of commands and stores. Con-
cerning contexts, if O is the action v := ¢, then SHs defined as S[v/@]. Details are given
in the full version of the paper [6].

4 Dependency Rules

Our approach to confidentiality is to ensure that the direct flows of information follow the
protocol specification, and then use information flow analysis to protect against indirect
flows. In this section we introduce dependency rules to formalize the permitted, direct
flows.

Definition 3 (Dependency Specification). A dependency specification is a pair P =
[S, Alvhere S [CAhn is a set of annotations, and A is a finite set of clauses of the
form

fecx:=Ffe Clx,:=Ff e, [0 (D
where none of the expressions e, €1, ..., €&, mention functions or exceptions, | is a
boolean expression, and variables in €; do not belong to {Xi, ..., Xn}.

The intention is that S represents a set of secret entry points (such as: receive acc), and
that the rules in A represent the required data flow through the program.

A clause in the policy declares a function invocation f e to be admissible if the
conditions to the right of the arrow are satisfied. Conjuncts of the form X; := f; e;
are satisfied if variable X; matches the last input from annotation fj €;j. The boolean
expression | represents an extra condition that relates the values returned by the different
function invocations. More precisely, let a context S be given. A valid substitution for
clause (1) is an annotated store 0 such that

1. a(x;) = s(fj (ejo)): fi (ejo) foralli:1<i<n,
2. for X B x; (Ol < i < n), 6(X) has not annotation in S,
3. eval(¢o) = true.

That is, boolean conditions are true, and the value bound to X; is the last value returned by
the annotated function call f; (ej0). By e0 we mean the annotated expression (aEXpr)
that results from substituting o (X) for every variable X in €. Notice that the restrictions
on e;j in Def. 3 guarantee that €;0 is an annotated value. The function eval just evaluates
the annotated boolean expression 0 in the expected way.

We can now determine whether a particular function invocation is admitted by the
dependency specification.
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Definition 4 (Admissible Invocation). Let o be an annotated action of the form v ;=
T w. A dependency specification P = [S, Alddmits annotated action d in context S iff
either

1. no annotation in W belongs to S (that is, the output does not depend directly on any
secret annotation), or

2. thereis aclause f e « x; ;= f e . [ A, := fh en in A and a valid
substitution 0 for this clause such that ec = w.

If one of these conditions holds we write P, s [Cdlok.

Observe that the concept of admissible action covers both those actions whose exe-
cution is required by the protocol specification, as well as those that do not (explicitly)

involve any sensitive data. In particular, internal T transitions are always admissible (i.e.
P,s [Tlok).

Example 1 (Dependency Specification for 1KP Clients).

In the simplified version of the 1KP protocol, the only piece of local information that
the Customer should protect is her account number. Therefore, S = {receive acc}.
Neither the key (which is public), the acquirer’s name, nor the order need to be protected.
The set A contains the clauses:

enc((y,z),k) « x:=receive acq [Z:= receive acc [K:= key x
send(u,s) « u:=enc((y,z),k)

The first clause expresses when an invocation of the encryption function is admis-
sible. In this example, encryption is used just once in each protocol run, but in general
this might not be so. Moreover, since invocation of the encryption function, as any other
function with a non-constant execution time, could be used to create a timing leak, the
dependency specification does need to say under which circumstances it may be invoked,
apart from its usage in the main input-output flow.

Notice how the variables y and S are not bound to the right of the clauses, reflecting
the fact that we do not put any requirement on the format of the order and neither
its destination (since it is intended for transmission in the clear anyway), beyond the
restriction that it should not be used to encode secret information.

Letnow P =[S, AL

— Let oy = by := receive acq. Then P,s [ ok for any S since no annotation in
acq belongs to S.

— Letay = bs :=enc((b, b, : receive acc), bz : key (by : receive acq)). Consider
a context S where s(receive acq) = by, s(receive acc) = b, and s(key b; :
receive acq) = bz. Then P, s [Cal, ok since we find the substitution 0 mapping X
to by, Z to by, k to bz and y to b, validating the condition 4.2. If on the other hand
e.g. s(receive acq) = bs & b; then the condition would be violated and a4 would
not be admissible in the context S.

As the example show, dependency specifications are very low-level objects. They
are not really meant as external specifications of confidentiality requirements, but rather
as intermediate representations of flow requirements, generated from some more user-
friendly protocol specification once a specific runtime platform has been chosen.
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5 Flow Compatibility

Dependency specifications determine, through Definition 4, when a function invocation
is admissible. In this section we tie this to the transition semantics to obtain an account
of the direct information flow required by a dependency specification.

Let the relation
[c] o, sCIC Icfo’s

be the reflexive, transitive closure of the annotated transition relation, i.e. the smallest
relation such that [€] o, sCIC e ot sH holds iff either ¢ = ¢J o = o and s = s or

. a
else ¢1, 01, S1 exists such that [€] 0, SCICIcH, 04, s, [dnd [€}, 01,5, [+ [&FoYsHd

Definition 5. Let the dependency specification P = [S, Albe given. The command
¢ [Cbm is flow compatible with P for initial store 0 and initial context S, if whenever

a
[c] o, sCIcfl, 0,1, s+ [c}, 0o, Splthen P,s; [Calok.

Example 2 (Flow Compatibility for 1KP Client). The command Prog 1 of Figure 1 is
flow compatible with the 1KP client dependency specification of Example 1 above, for
any initial store 0. This is seen by proving an invariant showing that whenever execution
of Prog 1 reaches one of the send statements of Prog 1 then for suitable choices of v1,
V2 and Vs,

s(receive acq) = v; = 0(ACQ)

s(receive acc) = v, = a((ACC))

s(key x) = vz = o(PKA)

If we attempt to use a subliminal channel by replacing line 5 (the first send statement)
of Prog 1 by a command such as

_:=send((ACQ, embed(ACC, ORDER), enc((ORDER, ACC), PKA)),
lookup(MERCHANT)),

then flow compatibility is violated, as expected. On the other hand, the command obtained
by adding after the first send statement of Prog 1 the command

if ACC = “some fixed value v’ then send(“FOUND!”, leak_channel) else skip
is flow compatible, also as expected, since the indirect leak will not be traced by the

annotation regime.

6 Admissibility

If there is an admissible flow of information from some input, say receive acc, to
some output, say, send(...,enc((...,acc),...),...) then by perturbing the input, cor-
responding perturbations of the output should result, and only those. In this section we
formalize this idea.
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In the context of multilevel security it is by now quite well understood how to
model absence of information flow (from Hi to Lo) as invariance of system behaviour
under perturbation of secret inputs (c.f. [3,5,11,9], see also [1] for application of similar
ideas in the context of protocol analysis). For instance, the intuition supporting Gorrieri
and Focardi’s Generalized Noninterference model is that there should be no observable
difference (i.e. behaviour should be invariant) whether high-level inputs are blocked
or allowed to proceed silently. So the perturbation of high-level inputs, in this case, is
whether or not they take place at all.

Here the situation is somewhat different since the multilevel security model is not
directly applicable: There is no meaningful way to define security levels reflecting the
intended confidentiality policy, not even in the presence of a trusted downgrader. On
the contrary, the task is to characterize the admissible flows from high to low in such
a manner that no trust in the downgrader (i.e. the protocol implementation) will be
required.

The idea is to map a dependency specification to a set of system perturbations. Each
such function is a permutation on actions and configurations which will make a config-
uration containing a secret, say X, appear to the external world as if it actually contains
another secret, say X" If the behaviour of the original and the permuted configuration
are the same, the external world will have no way of telling whether the secret is X or X"’

At the core of any configuration permutation there is a function permuting values
(e.g. X and xY. This leads to the following definition:

Definition 6 (Value Permutation). A bijection g: aVal — aVal is a value permutation
if it preserves the structure of annotated values:

Log(v) =v,
2. 9(B1,---,Bn) = (9(B1), ---,9(Bn)). and

3. g(v: fw) =v": f g(w), for some suitable value V5
and it preserves the meaning of functions:

4. Suppose g(v : f w) = v f wtand that there is at least a value uts.t. f([w, uY.
Then f([w'], v5, whenever f([w], v) or fu [\al. £([w], u).

We extend value permutations over transition labels and contexts. In the first case,
A A
let g(1) = tand g(v := ¢) = v&i= ¢ where g(v : ¢) = v™: ¢ For contexts, define

9(s)(F w) £ [g(v™: F g(W))], where v'= s(F g(w)).

The following lemma establishes the coherence of the above definitions. It states
that the relation between contexts S and g(S) is preserved after the execution of action

v = ¢, resp. g(v := ¢).
Lemma 1. Ifg(v : ¢) = v&: ¢ hen g(s[v/¢]) = g(s)[v7¢'T
Not all value permutations are interesting for our purposes. In fact, we are only

interested in those that permute secrets as dictated by a dependency specification.

Definition 7 (Secret Permuter). Assume given a dependency specification P . A secret
permuter for P is a value permutation ¢ satisfying the following conditions:
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if ¥ w does not contain annotations in S then g(v : fw) =v: fw,
if f w CSlthen f g(w) S,
if P, s [Calok then P, g(s) Cgla) ok,
if [SIP,s [vl:= f w ok, then

- g(xcpt: fw) = xcpt : Fg(w), and

- f[w] G flgw] Cbhere fv G AvE CVALF(v, v
.g=g1t.

As expected, a secret permuter affects only secret values. This is implied by the first
condition in Definition 7. According to the second condition, permutations must also stay
within the bounds imposed by set S. Condition (7.3) implies that a secret permuter must
respect the admissibility predicate so that actions O that are admissible in a context S
will remain admissible once both the action and the context have been permuted. On the
other hand, if a dependency specification admits a certain function call ¥ w (admissible
invocation), then we assume that it also permits the observation of f’s exceptional and
terminating behaviour. Thus, if the execution of f w raises an exception (resp. does not
terminate), we should not consider those cases where T g(w) does not raise an exception
(resp. does terminate). This is reflected by condition (7.4).

Finally we impose the requirement that g be a period 2 permutation (7.5). This seems
natural given the intuition that the role of g is to interchange values of secrets. Not only
does this requirement help simplify several results, but we conjecture that its introduction
in Def. 7 represents no loss of generality.

The following lemma and proposition further characterize the set of secret permuters
associated to a dependency specification.

Rl S

9}

Lemma 2. Let g be a secret permuter. Then
1. g(g(a)) =a, and
2.9(9(s)) =s.
Proposition 1 (Composition of Secret Permuters). Given a dependency specification,
the set of secret permuters is closed under functional composition.
Example 3 (Secret Permuter for the 1KP Example). Let g exchange values as follows:
212 : receive acc ~ 417 : receive acc

{b, 212}y, : enc((b, 212 : receive acc), bs : key b; : receive acq) -
{b, 417}y, : enc((b, 417 : receive acc), bz : key by : receive acq)

where {b}porepresents a value v [Mal such that enc((b, bY, v). On all other values,
g acts in accordance with conditions in Defs. 6 and 7. Conditions (6.1)-(6.4) and (7.X,
with X 8 3) are easily validated. To verify condition (7.3) consider the action

o = {b, 212}y, := enc((...,212 : receive acc), ...).

If P, s [Cd ok then s(receive acc) = 212, by Def. 4. To see that P, g(s) [g o) ok
observe that

g(a) = {b,417},, :=enc((...,417 : receive acc), . ..)

and g(s)(receive acc) = 417 by the definition of g(S), so we can indeed conclude that

P,g(s) gla) ok.
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We have extended secret permuters over transition labels and contexts. Stores and
commands can equally be permuted. The extension of a secret permuter g over a store
is given by the equation g(0)(X) = g(0(X)). For a command c, define g(c) to preserve
the structure of the command, down to the level of single annotated values which are
permuted according to g. For example, g(_ := enc((b, b, : receive acc), PKA)) =
_:=enc((b, g(b, : receive acc)), P KA). Commands like these occur naturally during
the course of expression evaluation, which is governed by a small-step semantics.

The idea now is to compare the behaviour of a given command on a given store and
context with its behaviour where secrets are permuted internally and then restored to their
original values at the external interface, i.e. at the level of actions. For this purpose we
introduce a new construct at the command level, perturbation c[g], somewhat reminiscent
of the CCS relabelling operator, with the following transition semantics

EG,SE—CL e ol st
[clg], o, SEIL—Q(S’ 0l lchg], o5st

where [v:=f w] = v := f [w], and g(s, a) permutes o only if it is an admissible
invocation (i.e. g(s,a) = g(a), if P,s [d ok; and g(s,a) = q, otherwise). So a
perturbed command is executed by applying the secret permuter at the external interface,
and forgetting annotations. The latter point is important since the annotations describe
data flow properties internal to the command at hand; the externally observable behaviour
should depend only on the functions invoked at the interface, and the values provided to
these functions as arguments.

Notice the use of g(s, ) in (2). The effect of this condition is that actions are only
affected by the permuter when they are “ok”. Secret input actions are generally always
“ok”, and so in general cause the internal choice of secret to be permuted. Output actions
that are not “ok”, however, are not affected by g(s, ), and so in this case a mismatch
between value input and output may arise.

Thus, if the behaviour of a command is supposed to be invariant under perturbation,
the effect is that it must appear to the external world to behave the same whether or
not a secret permuter is applied to the internal values. This is reflected in the following
definition.

2

Definition 8 (Admissibility). A command ¢ [“Oom is admissible for the store ¢ and
context S, the dependency specification P, if for all secret permuters ¢ for P:

[c]1], o, sCIIgKe)[g], 9(0), g(s) 3)

where | is the identity secret permuter and [iskhe standard Park-Milner strong bisim-
ulation equivalence.

Observe that the effect of perturbing a command with the identity secret permuter is
just to erase annotations at the interface, but keeping all values intact.

7 Local Verification Conditions

Applying the definition of admissibility out of the box can be quite cumbersome, since it
is tantamount to searching for, and checking, a bisimulation relation. In case the control
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flow is not affected by the choice of secrets one may hope to be able to do better, since
only data-related properties need to be checked. In this section we give such a local
condition.

Definition 9 (Stability for Commands). Let a dependency specification P be given.
Let < be the smallest reflexive and transitive relation over commands such that, for all
commands Cg and C1, Cp < Co; C1 and Cg < try ¢ catch ¢;. The command ¢ [CCbm is
stable if for all cP< ¢ and for all secret permuter g,

1. if cP=if B then c, else cs, then [B] = [9(B)],
2. if ¢P= r[[Thnd w is a subterm of [ then [w] = xcpt iff [g(w)] = xcpt, and
3. if ¢™= r[hnd f w is a subterm of [then f [w] IGIF f [g w] C1

where r[-] ;= x:=-|if - thencg elsec; .

For stable commands we obtain strong properties concerning the way secret per-
muters can affect the state space.

Lemma 3. Suppose that ¢ [_Qom is stable w.r.t. dependency specification P. Then,

o, s3> [hols IIJl(c),g(o),QJ(S)E'gmz [g(c, 9(c", 9(sH 3

Definition 10 (Stability for Configurations). Let a dependency specification be given.
The configuration [€) @, s[is stable if whenever [€] o, sCOLCICK o sH ¥hen cUis a
stable command.

Theorem 1. [fc [_Qom is flow compatible with dependency specification P for store
0 and context S, and [C] 0, S[is stable, then C is admissible (for 0, s, P and )1

Theorem 1 does not provide necessary conditions. In fact, there are admissible pro-
grams whose control flow is affected by the perturbations. However, the import of The-
orem 1 is that, in order to verify Admissibility it is sufficient to check that the flow of
control is not affected by the relabelling of secret inputs and of admissible outputs. Fur-
thermore, it suffices to check this for a (smaller) subset of the reachable configurations.

To formalize this, consider a dependency specification P and an initial configuration
[Ch, Op, So[Foreach configuration [€] 0, s[define g([c] g, sDhs the configuration that
results from applying g to all three components, i.e. g([c] o, sDI= [g(c), g(o), g(s)[]
Then assume the existence of a set of program configurations {&; }i crwhere 0 [C11 [N]
which satisfies the three properties below:

Pl) EO = lﬂ)y 0o, SOI_,__l
P2) forall i [I1if¢&; = [€] g, slCthen Cis a stable command,

. a
P3) for all i [Tand for all action o such that § — @, then
e there is a j [Mland a secret permuter g for P such that g = g(&;), and
e P,s [dlok, if & = [d] o, sC]

Under these conditions, we can use Lemma 3 to prove the following

Theorem 2. Consider a set {&;}i msatisfying conditions P1-P3 as above. Then, for
each reachable configuration & = [€] 0, s[]



156 P. Giambiagi and M. Dam

1. there is an i [and a secret permuter g such that & = g(&;),
2. cis a stable command, and

3. ife = qihenP,s [dlok.

To conclude, notice that statements 2 and 3 in this theorem imply that [Ch, 0p, So]
is admissible, by means of Theorem 1. In the full version of this paper [6], we show how
to apply Theorem 2 to prove that Prog 1 (Fig. 1) is admissible for all initial stores and
contexts.

8 Admissibility vs. Flow Compatibility

In general, admissibility does not imply flow compatibility. At a first glance this may
seem somewhat surprising. The point, however, is that flow compatibility provides a
syntactical tracing of data flow, not a semantical one. Consider for instance the command

SECRET :=receive a; ;
if SECRET = 0 then _:=send(SECRET, a,) else _:=send(0, a,)

in the context of a dependency specification P = {receive a; }, [T

This command is clearly admissible for P (for any store and context), but not flow
compatible for quite obvious reasons. However, if the control flow does not permit
branching on secrets, we can show that in fact flow compatibility is implied. For this
purpose some additional assumptions need to be made concerning the domains and
functions involved.

Clearly, if constant functions are allowed there are trivial examples of direct flows
which violate flow compatibility without necessarily violating admissibility.

However, we are able to establish the following result as a partial converse to Theo-
rem 1.

Lemma 4. Suppose [Ch, Og, SolLik stable and admissible for dependency specification
P. Then for all behaviours

=f
b, Oo, SoICIEl, 01, s3(3—— [}, Op, S

of minimal length such that P, s IM1:= T W ok, the set
{lg(W)] | g is a secret permuter}
is finite.
Thus, if we can guarantee infinite variability of the set in Lemma 4 (which we cannot

in general), flow compatibility does indeed follow from admissibility and stability.

9 Discussion and Conclusions

We have studied and presented conditions under which an implementation is guaran-
teed to preserve the confidentiality properties of a protocol. We first determine, using
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annotations, the direct flow properties. If all direct dependencies are admitted by the
policy, we use an extension of the admissibility condition introduced first in [4] to de-
tect the presence of any other dependencies. If none are detected we conclude that the
implementation preserves the confidentiality properties of the protocol.

As our main results we establish close relations between the direct and the indirect
dependency analysis in the case of programs which mirror the “only-high-branching-
on-secrets” condition familiar from type-based information flow analyses (cf. [11,9]). In
fact, in our setting the condition is more precisely cast as “only-permitted-branching-on-
secrets”, since branching on secrets is admissible as long as its “observational content” is
allowed by the dependency rules. The correspondence between the direct and the indirect
dependency analysis provides an “unwinding theorem” which can be exploited to reduce
a behavioral check (in our case: strong bisimulation equivalence) to an invariant.

One of the main goals of our work is to arrive at information flow analyses which
can control dependencies in a secure way, rather than prevent them altogether, since this
latter property prevents too many useful programs to be handled. Other attempts in this
direction involve the modeling of observers as resource-bounded processes following
well-established techniques in Cryptography (cf. [10]). The scope of approaches such
as this remains very limited, however.

Intransitive noninterference [7] is a generalization of noninterference that admits
downgrading through a trusted downgrader. Although it prevents direct downgrading
(i.e. flows around the downgrader), it does not prevent Trojan Horses from exploiting
legal downgrading channels to actively leak secret information. A solution is to resort to
Robust Declassification [12], which provides criteria to determine whether a downgrader
may be exploited by an attacker. Unfortunately, the observation powers of attackers are
too strong in the presence of cryptographic functions, so that the approach cannot be
applied without major changes to our examples.

One important property which our approach does not handle satisfactorily is nonce
freshness. Our formalism has, as yet, no way (except by the introduction of artificial
data dependencies) of introducing constraints such as “X was input after y”’, and thus we
must at present resort to external means for this check.

One worry of more practical concern is the amount of detail needed to be provided
by the dependency rules. It is quite possible that this problem can be managed in re-
stricted contexts such as JavaCard. In general, though, it is not a priori clear how to
ensure that the rules provide enough implementation freedom, nor that they are in fact
correct. It may be that the rules can be produced automatically from abstract protocol
and API specifications, or, alternatively, that they can be synthesized from the given
implementation and then serve as input for a manual correctness check.
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Abstract. This paper presents a program analysis for secure information flow.
The analysis works on a simple imperative programming language containing a
cryptographic primitive—encryption—as a possible operation. The analysis cap-
tures the intuitive qualities of the (lack of) information flow from a plaintext
to its corresponding ciphertext. The analysis is proved correct with respect to a
complexity-theoretical definition of the security of information flow. In contrast
to the previous results, the analysis does not put any restrictions on the structure
of the program, especially on the ways of how the program uses the encryption
keys.

1 Introduction

Executing a program causes information about its inputs to flow to its outputs. If the
inputs and outputs of a program are partitioned into public and secret ones then it is
important to be sure that the program has secure information flow — no information
about secret inputs flows to public outputs in a way that an adversary could make use of
it.

If one wants to prove correct an analysis checking programs for secure information
flow, one has to formalize when the public outputs of the program contain or do not
contain information about secret inputs that is useful for an adversary. The usual for-
malization is noninterference [9] which states that the public outputs must not contain
any information about the private inputs. In its variant for probabilistic systems [10],
noninterference means that the probability of private inputs being equal to some value
must be equal to the conditional probability of private inputs having that value, under
the condition that the public outputs have a certain value.

Consider a program that takes two inputs — an encryption key K and a message M
— and outputs Enc(k, M) — the encryption of M under key k. Obviously, Enc(k, M)
contains information about M as it is in principle possible to find M from Enc(k, M).
Hence, if M is secret and Enc(k, M) is public then the noninterference property does not
hold. On the other hand, the security of £nc requires that an adversary, whose resources
(computation time and space) have certain bounds, cannot derive anything about M
from Enc(k, M). If we consider only such bounded adversaries then we could deem
this program secure. The bounds on working time (and space) of the adversaries are lax
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enough (probabilistic polynomial time) for all realistic adversaries to satisfy them. This
example shows that for taking into account the effects of cryptographic primitives, we
need a bit weaker definition of noninterference. We give that definition in this paper.

Having given that weaker definition, we obviously want to know which programs
satisfy it and which ones do not. We use static program analysis to determine this. This
analysis is the other contribution of this paper. The analysis also takes into account the
intuitive qualities of the encryption operation.

The structure of this paper is the following. In Sec. 2 we describe some related work.
Particularly, we describe our own earlier results [11] and explain what they were lacking.
In Sec. 3 we explain what the security of an encryption scheme means. We also explain
what the sameness means in cryptography. In Sec. 4 we introduce our programming
language and give the definition of secure information flow. The information flow is
deemed secure if certain two probability distributions, containing the inputs and outputs
of the program, are “the same”. In Sec. 5 we describe the structures that the analysis
works on; these structures are abstractions of probability distributions over program
states. Sec. 6 presents the analysis itself and also gives a small example of it in action.
Sec. 7 says some words about the correctness proof. Finally, Sec. 8 concludes.

2 Related Work

Using program analysis for certification of secure information flow was pioneered by
Denning and Denning [7,8]. They annotated the program statements with the information
flow between the variables caused by that statement, and analyzed this flow. Volpano et
al. [24] gave a definition of secure information flow and accompanying analysis without
using any instrumentations.

Leino and Joshi [13] define a program to be secure if, no matter what its secret inputs
are, the public outputs always look the same for the same non-secret inputs. “Looking the
same” is not specified further, different security definitions can be obtained by plugging
in different formalizations. The security definition that we are using can be seen as an
instance of theirs.

Recently, some work has been done to define weaker notions of secure information
flow which allow analyzing programs containing cryptographic primitives without losing
the precision one intuitively assigns to these primitives. Volpano and Smith [23,22] have
presented analyses of programs containing one-way functions as primitive operations.
Unfortunately, one is quite restricted in using the one-way function if one wants to take
advantage of the weakened security definition.

Another approach has been our own [11], analyzing programs containing encryption
as a primitive operation, and having its own set of restrictions. The restriction was in the
usage of encryption keys — their only allowed usage was as an encryption key. They
were not allowed to occur in any other situations, for example in other expressions.
Particularly, the encryption keys were not allowed to be plaintexts in encryptions. Such
usage would have created dependencies (between values of different variables) that our
abstraction could not keep track of.

There was also another restriction on programs. The equality and inequality of dif-
ferent variables storing encryption keys had to be known statically at each program
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point. Making the equality of keys depend on the inputs of the program again introduced
dependencies that our abstraction could not keep track of.

There have also been attempts to precisely formalize and analyse cryptographic
protocols. Instead of the usual assumption that cryptographic primitives are perfectly
secure—they are modeled as functions for which only a very restricted set of formulas
holds ([5,1] are among the most prominent examples), one attempts to take into account
that the cryptographic primitives may be implemented by any algorithm satisfying some
complex complexity-theoretical definition; dealing with those definitions is an issue that
both the analyses for secure information flow and the analyses of cryptographic protocols
must handle. Mitchell et al. [14,15,16] extended the spi-calculus [1] with (polynomial)
bounds on message lengths and execution time, and developed a probabilistic semantics
for this extension. This has allowed them to prove the protocols correct with respect
to polynomially bounded adversaries, where the cryptographic primitives that the pro-
tocols employ are real ones. These proofs are entirely hand-crafted, though; there are
no mechanical means (like program analysis) to derive them. Pfitzmann et al. [18,19,
20,4] have given a framework to faithfully abstract the cryptographic primitives, such
that the proofs about protocols using these abstractions would also hold if the abstrac-
tions are replaced with the actual primitives. Abadi and Rogaway [3] have shown that
the formal construction of messages from simpler ones by tupling and encryption is
computationally justified—if two formal messages look the same (where “looking the
same” is defined over the formal structure; it makes the contents of the encrypted sub-
messages irrelevant), and if the encryption primitive satisfies certain requirements, then
no polynomially bounded adversary can distinguish the actual representations of these
messages as bit-strings. This work was later extended by Abadi and Jiirjens [2]. They
considered program traces instead of expressions.

3 Cryptography and Secure Encryption

Encryption plays a big part in our contribution, so let us formally explain what it is and
what its security means. In the course of this explanation we also cover the notion of
indistinguishability — the computational equivalent of sameness.

An encryption scheme is a triple of algorithms (G, €, D). They all must have running
times polynomial to the length of their arguments. The algorithm G is the key-generation
algorithm. 1t is invoked to create new encryption keys. The algorithm G takes one argu-
ment — the security parameter N (represented in unary, because of the comment
about the running times of algorithms) which determines the security of the system —
more concretely, it determines the length of the keys. Larger security parameter means
longer keys. The encryption algorithm takes as its arguments the security parameter, a
key returned by G(1") (actually, we could assume that the security parameter is con-
tained in that key but this is the usual presentation), and a plaintext — a bit-string. It
returns the corresponding ciphertext. The arguments and the return value of the decryp-
tion algorithm are similar, only the places of plaintext and ciphertext are reversed. The
key generation algorithm is obviously probabilistic, the decryption algorithm is deter-
ministic. The encryption algorithm may either be deterministic or probabilistic but for
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satisfying the security requirements stated below it has to be probabilistic. It is required
that the decryption of an encryption of a bit-string is equal to that bit-string.

The security requirement we put on the encryption scheme is the same as Abadi and
Rogaway [3] used. We want the encryption to conceal the identity of both plaintexts
and encryption keys and we want it also to hide the length of the plaintexts. The precise
definition follows.

Let A be a probabilistic polynomial-time (PPT) algorithm, let n and b {0, 1}.
Consider the following experiment Exp™ (n):

1. Generate a random bit b [{0, 1} by tossing a fair coin.

2. Define two black boxes O1 and O,. A black box is something that can be queried
with bit-strings, for each query the black box returns an answer — another bit-string.
There are no other ways to find out the implementation details of a black box. The
contents of the boxes O; and O, depends on the value of b:

— If b = 0, then generate two keys K, k=by invoking G(1") twice. Let O1 be a
box that, on input X [0, 1} 1invokes €(1", k, X) and outputs its return value.
Similarly, let O, be a box that encrypts its inputs with the key k"’

- Ifb =1, thenlet 0 [D, 1} Be a fixed (and known to all) bit-string. Generate
a key k by invoking G(1™). Let O1 be a box that, on input X [0, 1}5invokes
&(1", k, 0) and outputs its return value. Let O be identical to O5.

3. Invoke the algorithm A, giving it 1" as an argument, and also giving it (oracle)
access to the black boxes ©; and 0. Let h™Be its output.

4. If b = h™then output true, else output false.

Consider the quantity Adv”(n) = 2- Pr[Exp”(n) = true] — 1. Here the probability is
taken over the choice of b, as well as over the random choices of G (while generating the
key(s)), € (while invoking the oracles) and A. The quantity Adv” (called the advantage
of A; it shows how much better A is in guessing b, compared to simple coin-tossing) is
a function from N to R. We say that the encryption scheme is type-0 secure', if Adv*
is negligible for all PPT algorithms A. A function f : N — R is negligible if its absolute
value is asymptotically smaller than the reciprocal of any positive polynomial.

It is possible to construct type-0 secure encryption schemes (under standard assump-
tions). See [3] for details.

The security definition was an instance of demanding the indistinguishability of cer-
tain families (indexed by n [N of probability distributions. In our case, we demanded
the indistinguishability of the following families of distributions over pairs of black
boxes:

{](8(1”,k,),8(1”,k‘:,‘)) : kikD‘_ 9(1n)|}n
and
ﬂ(g(ln!kvo)!g(ln!kio)) : k - 9(1n)|}n

Here X ~ D denotes that the variable X is distributed according to the probability
distribution D. The brackets { - [} are used to construct new probability distributions.

! Alternative name of this property is: repetition-concealing, which-key concealing and message-
length concealing
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For defining the indistinguishability of two families of probability distributions D
and Dwe have to change the wording of the description of the experiment Exp™ (n)
a bit. Namely, let the 2nd and 3rd point be the following:

2. Generate a quantity X, according to one of the probability distributions Dy, or DY
If b = 0 then use Dy, else use D!
3. Invoke the algorithm A, giving it 1" as an argument, and also giving it access to X.

The meaning of the phrase “access to X’ depends on the type of X. If X is a bit-string
then it is simply given as an argument to A. If X is a black box then A is given oracle
access to it. If X is a tuple then A is given access to all components of the tuple. Again,
we consider the advantage of A and demand its negligibility for all PPT algorithms. We
let D = D"denote that D and D “are indistinguishable.

Our definition of secure information flow is given through the notion of [compu-
tational] independence, which is defined as follows. Let D be a family of probability
distributions over some set of tuples. We assume that all tuples in that set have same
arity and also same names of components. In the rest of this paper, the program state is
represented as a tuple, its components are the values of the variables. If f is a tuple and
X is a set of component names, then we let f(X) denote the sub-tuple of f, consisting
of only the components with names in X. Let X and Y be two sets of component names.
We say that X and Y are independent (or that X is independent from Y ) in the family
of distributions D, if

AFC),F(Y)) : f « Dharwr= A(FX), F(Y)) : £, Db (D)

4 Syntax, Semantics, and Security Definition

The programs whose information flow we are studying are written in the following
simple imperative programming language (the While-language):

Piu=xX:=0(Xy,...,Xk) | skip | P1; P | if b then P; else P, | while b do P".

Here X, X1, ... , Xk, b are variables from the set \VVar and 0 is an operator from the set
Op. Each operator has a fixed arity. We assume that there are two special operators in
the set Op — a binary operator £nc that denotes encryption, and a nullary operator
Gen that denotes the generation of new keys. Our analysis handles these two operators
in a more optimistic way than others. Decryption is not handled differently from other
operators, therefore it will not be mentioned any more.

Our security definition is given in terms of the inputs and outputs of the program,
therefore it is natural to use denotational semantics. The denotational semantics [P]
of the program P maps the initial state of the program to the final state, i.e. its type
is State - State —Jfor imperative programs, the state is a function mapping the
variables to their values (or alternatively, a tuple of values, indexed by variables) from
the set Val. The extra element [“ddnotes non-termination. Note that the denotational
semantics hides some aspects that may be observable in the real world — for example
the running time of the program, the power consumption of the computer executing
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the program, the electromagnetic radiation emitted by that computer etc. Our security
definition cannot take these aspects into account.

We mentioned that the encryption algorithm has to be probabilistic. If this is the
case, then the semantics of programs also has to accommodate probabilism. The range
of [P] therefore has to be D(State )gHere D(X) denotes the set of all probability
distributions over the set X. Another detail that the semantics has to incorporate is the
security parameter. For this we let [P] to be not just a single function from State to
D(State );put an entire family of functions (of the same type), indexed by n

The rest of the definition of [P ], is quite standard (see for example [17, Sec. 4.1]).
First, we need semantics [0], for each operator 0 [—Op. For a k-ary operator 0, the
semantics 0], is a function from Val® to Val. We demand that there exists a type-0 se-
cure encryption scheme (G, €, D), such that [Gen], = §(1") and [Enc], = E(", -, ).
Now the semantics [P ]n, is defined exactly as in Fig. 4.1 in [17] and we are not going
to elaborate it here any more.

The model of security that we have in mind here is the following: There is a certain
set of private variables Vars [NBr whose initial values we want to keep secret. After
the program P has run, the values of the variables in a certain set VVarp [\hAr become
public. The attacker tries to find out something about the initial values of secret variables.
It can read the final values of public variables.

The possible inputs of the program P are somehow distributed. For the security
parameter N [N let their distribution be D, [CDI(State). The (structure of the) family
of distributions D is assumed to be public knowledge.

We define security only for programs that run in (expected) polynomial time. We
claim that this decision causes us no loss of generality. Namely, before the attacker
obtains the final values of public variables, it is expected to wait for the program to
finish its execution. If the program runs for too long time and the attacker keeps waiting
then it cannot find out anything about the initial values of secret variables. Alternatively,
at a certain moment the attacker may decide that the program is taking too long time
to run and should be considered to be effectively nonterminating; the final state should
be considered to be [_We “compose” the original program and the attacker’s decision-
making process about the running time of the program. The result is a program that runs
in polynomial time. We could define the original program to be secure iff the composed
program is. This composition amounts to running a clock parallel to the program (here
“parallel to” means “interleaved with”) and terminating after having run for a long
enough time.

If the program runs in polynomial time then we no longer have to take the possible
non-termination into account. Therefore the semantics of the program [P ] transforms the
initial family of probability distributions D to a final family of probability distributions
D™= [[P ]n(Dn)]n tx(we have somewhat abused the notation here). Let us make one
more assumption — that the program does not change the values of the private variables
Vars. This assumption obviously is not a significant one — we can always add new
variables to the program and use them instead of the ones in VVars. We now say that the
program P (with inputs distributed according to D) has secure information flow if Vars
and Varp are [computationally] independent in the family of distributions D
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5 Abstract Domain

The domain of the analysis is an abstraction of the set D(State)" — the set of families
of probability distributions over State. The analysis then maps the abstraction of the
initial family of distributions D to an abstraction of the final family of distributions D"
Note that we said “an abstraction”, not “the abstraction” — the analysis is allowed to
err to the safe side. The question of secure information flow is obviously incomputable
therefore an always precise analysis cannot exist.

Let us introduce some notation first. Let S [3Jtate and X [War. Then S(X)
denotes the value of the variable X in the program state S. Additionally, we let S([X]e)
denote a black box that encrypts its inputs, using S(X) as the key. If we let Vhrdendte
the set Var [{JK]e : x [Mar} then we can assume that S is a tuple whose components
are named with the elements of \ar—-the state S contains all the values of program
variables as well as all black boxes encrypting with these values.

The abstraction A = a(D) of a family of distributions D is a pair (Aindep, Akey)
where Aindep CP(\VERED><-P(\VB)-thde P(X) denotes the power set of the set X)
and Agey [VAI (so A CH(Var) = P(P(VRE)-<P(VBEY<IP(Var)). Here the set
Aindep contains all such pairs (X, Y') e X and Y are independent in
the family of distributions D. The set Ayey contains all such variables X [\Mar where
the black box Sh([X]¢), where Sy, is distributed according to D, is indistinguishable
from a “real” encrypting black box (1", k, -) where K is distributed according to G(1").
“Erring to the safe side” while abstracting D means leaving out some elements from
these two sets.

The introduction of the encrypting black boxes [X]e allows us to track different
“kinds of dependence”. As an example, let X, k and | be variables and let D be such a
family of distributions, that the value of K is distributed as an encryption key, the value
of X is some ciphertext that has been created by encrypting something with the key Kk,
and the value of | is obtained from the value of k through a simple (and reversible)
arithmetic operation. Then neither {I} nor {x} are independent from {k} in the family
of distributions D (for detecting whether the value of X and the value of k come from
the same state or from different states, try to decrypt the value of X with the value of k
and consider, whether the result is a sensible plaintext). However, the dependence of |
and K is of quite different quality than the dependence of X and K. Someone that knows
(the value of) | can decrypt ciphertexts encrypted with K. Someone that knows only X
surely cannot do that. Independence from [K]¢ distinguishes | and X. The sets {X} and
{[K]¢} are independent in the family of distributions D. The sets {I} and {[k]< } are not.

The analysis takes the program text and an abstraction A of the initial family of
distributions D. The description of this family of distributions must be found from the
context where the program is used. This description should be precise enough, such
that a reasonable abstraction A can be deduced from it. Describing D and finding A is,
however, not the topic of this paper. In most of earlier papers, an implicit assumption
has been made that all variables are independent of each other.
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6 Analysis

The analysis A®N2D[P] is defined inductively over the structure of program P. Here \Var
denotes the set of variables currently in consideration. We have introduced it because for
computing the analysis of certain programs we may need to analyse their subprograms
with respect to more variables. For analyzing the program if b then P, else P, we need
to introduce an extra variable while analyzing Py and P,. This extra variable is used to
keep track of the dependencies of the initial value of the variable b.

Let P be an assignment X := 0(Xy, ... ,Xk) and let A [—J(\Var) be an abstract
value. In this case A= ANVaN[P](A) is defined in the following way:

— The sets A, and A{:—e‘)y contain all the elements to satisfy the rules on Fig. 1.

indep
- Aiﬁdep is symmetric: if (X,Y) CAL,.. then also (Y, X) IIIiEdep.
= Alngep is monotone: if (X,Y) Ay, and X~ "X and Y [V then also
XY D AL Gep-
- Ai%‘dep and Al[<:|ey are the smallest sets satisfying the above conditions.

Let us explain this definition a bit. The requirements of symmetry and monotonicity
have been added to decrease the number of different cases that the rules must cover.
It is obvious (from the definition of independence) that it is safe to state that Aﬁdep is
symmetric. It is almost as obvious that monotonicity is also a safe requirement — if X
and Y Mare not independent, i.e. there exists an algorithm that can distinguish the two
distributions in (1) for X~and Y 1 then the same algorithm can also distinguish these
two distributions for X and Y .

As next we will explain what is the basis of the rules in Fig. 1. The rule (2) says that
if the program P does not change the values of certain variables (namely those in sets
X and Y') then their independence before the execution of the program implies their
independence after the execution. The rule (3), as well as its variants say that if a certain
set of variables (the set Y ) is independent from another one then everything that can be
computed from the values of these variables is still independent of that other set.

The rule (4) makes use of the type-0 security of the encryption scheme. Consider,
what do we need for the independence of X and Y [{X} in the final family of distribu-
tions.

First, by monotonicity X and Y must be independent in the final family of distribu-
tions, and by the rule (2) also in the initial family. Obviously, the variable k must be an
encryption key. And if we want the value of X to appear like a random bit-string, then
everything else in our possession (the values of variables and encrypting black boxes in
X and Y ) must not help us in decrypting it. We also have to add the value of y to the
things that do not help us in decrypting X because the security definition of the encryption
scheme does not cover the case where something that is related to the encryption key is
encrypted with it (Abadi and Rogaway [3, Sec. 4.2] explain this case in more detail). As
we have explained in Sec. 5, this non-relatedness corresponds to the last antecedent in
the rule (4).

The rule (5) states that a “real” encrypting black box (which [X]¢ in this case is)
is independent of itself. This is a simple consequence of the security definition of the
encryption scheme. The rules (6) and (6°) state that if some value is distributed as
an encryption key before the execution then the same value is still distributed as an
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Pisx :=o0(X1,...,Xk)
(ny) |Endep
X, [X]e X Y]
(X,Y) Iﬂl%]dep

Pisx:=o(X1,...,Xk)
(X,Y) Imndep
X, [X]e X Y]
X1,...,Xk Y]
(X:Y |:{}, [X]S}) I]ilﬁldep

Pisx = &nc(k,y)
(X,Y) II‘ndep
X, [X]e X [Y]
y, [kle Y]
(X:Y E{X [X]S}) Imlﬁ[dep

Pisx:=y
(ny) mndep
X, [X]e X [Y]
X=X ¥ X ? {x} : I T§]e X ? {[x]c}: O
YU=v OO0 CY1? {x} : OOCI]e Y12 {[x]c} : OO

(X Ele g I]Edep

Pis x := &nc(k,y)
(X, Y) IIkndep
X, [X]e X Y]
k IExey
({[Kle}, X Y1 L3¥}) CBngep
(X,Y E{Ek, [X]E}) I]Edep

Pisx := Gen()
(X,Y) IEndep
x X Y]

(X OKe}, Y EKe}) Tl

Pisx:=o(..)
k CAey\{x}

K AN}
K CAL,

Pisx:=y
y [Akey

Y Doy
x CAl,

Pisx = Gen()
X CAG,

Fig. 1. The analysis A2P[P] for assignments
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encryption key afterwards. Last, the rule (7) states that the operation §en generates
encryption keys.

Let us go on with the definition of ACV2D[P]. The analysis AN [skip] is the
identity function over F(Var). Also, AV2D[Py; P,] is the composition of ANV2N[P,]
and ACVaD[P,]. Consider now the program if b then P else P,. Let Varasgn [MAr
be the set of variables that are assigned to in at least one of the programs P; and P2. Let N
be a variable that is not an element of Var and let Var~= Var [({N }. Given an abstract
value A [CJ(Var), representing the abstraction of the initial family of distributions,
compute

AD = ANVarS[N = b; P1](A)
A® = AVaDIN := b; PJ(A)

So, we have used the extra variable N to “save” the initial value of b. In the analyses of
P; and P, the variable N appears where the initial value of b would have appeared.
The next step is to take the meet of the analyses of P; and P». The order on F(\Var)
is defined so that larger values are more precise and smaller values more conservative,
therefore the meet of two values is the most precise value that is at least as conservative

as any of them. Let A™ [F(Var') be such, that Al = AL 1 AR

indep indep indep
AS)), n Aﬁg),. As the last step, we have to record the flow of information from N to the

variables in Varasgn. The analysis result AF= ANVaN[if b then Py else P,] is defined
as follows:

and Akey =

|
— The sets Aindep

Varasgn denotes the set Varasgn L{X]e : X [Marasgn}-
- A is symmetric and monotone.
- A and AkDey are the smallest sets satisfying the above conditions.

and AEey contain all the elements to satisfy the rules on Fig. 2. Here

Eh

inde
) p
indep

Some explanation is in order for the rules in Fig. 2, too. In the rule (8), the only
entities that may have been modified in one of the branches are the encrypting black
boxes[X1]e, - - - , [Xm]e - They are distributed in the same way at the ends of both branches
— no matter what the branch was, they are “real” encrypting black boxes. As they also
are independent of everything else (this is stated by the first group of antecedents and by
the antecedent just above it), their values cannot give away which of the branches was
taken. The second group of antecedents states that for having [Xj]e independent of itself
after the if -statement, it also has to be independent of itself at the end of both branches.

The rule (9) says that if something is independent of N (the initial value of the guard
variable b) and Y at the end of both branches then it is also independent of Y after the if -
statement. This follows from the possibility to find the values of the variables and black
boxesin Y after the if-statement, if we know their values at the end of both branches and
we also know which branch was taken. The additional black boxes [X1]e, ... ,[Xm]e
that are in the other side of the pair of variables and encrypting black boxes, have to
satisfy similar conditions as in the previous rule.

The rule (10) is the same as the rule (6). But if kK may have been changed in the
branches then its distribution as a key at the end of both branches does not necessarily
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(X,Y) CANG
X1, .oy XL Xl#1, - - -, Xm [EMarasgn
({[Xl]s,-- yXmle}, X Y1 CIIN}) IIlmdep
{xale} {[x2le, ... . [Xmle D) II'indep
{xale} Alxsle, . .. [Xmled) TR
. '1'1;'}”'{'[%};]'; Y) CAlG, ®)
{xi+1le} {xi+1le}) CARG,
Axmle} {Demle ) Ty
X1, oy Xm IIlkey
X YD) n (Varasgn LN} =
X ale, ..., [Xmle}, Y CXivle, ... [Xmle}) Tl

X1y s XL X142y oo Xma Y1, e 5 Y Yr+1, -2, Ys [EMarasgn
(X qﬂxl]ev ey [Xm]g},
Y N, Xi+a]e, .o Xmle, Yo, Yales oo e Yeles Yeeales [YS]S})
Iﬂndep
X Axale, ... [xmle}) mndeﬁm
({xale }, {[X2]e---- [Xm]e}) IIkndep
(el {lxsle, . .. [Xmled) B
({xXm-1le} {[Xm]e}) IIlindep
X1,. Xm I]Key
(X YD n (Va"asgn LIN}) =
(X I:{—[b(l]51 CE [Xm]g},
Y Ijk[l>(|+1]€1 LR [Xm]€7y11 [y1]€1 s Y, [yr]51 [yr+1]S, ] [yS]E}
II‘ndep

©

k CAG,
k MMarasgn (10)
k |Exey
k Ijaralsgn
k [Algy
({[Kle} AN} CAG,,
K AL,

an

Fig. 2. Merging the branches together

guarantee its distribution as a key at the end of the if-statement. Namely, the value of
k may have influenced, which of the branches was taken. But if the value of k has
not influenced the chosen branch (i.e. K is independent of the initial value of the guard
variable) then its distribution as a key at the end of both branches is sufficient for its
distribution as a key at the end of the if -statement.
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Consider now the program while b do P and let A CT(Var). Let A = A and
A® = ANVaD[if b then P else skip](AC™D) .

Finally, the analysis value A2 [while b do PJ(A) is defined as the meet (i.e. com-
ponentwise intersection) of all A(_ Tt is computable because the sequence of abstract
values A, A AR stabilizes at some point. Stabilization is caused by the finite-
ness of the lattice F(Var) and by the monotonicity of the analysis.

Let us give an example of the analysis in action. Consider the following program.

ki := Gen()

if bthen k, := Kk; else ko := Gen()
Xy := &nc(ky, y1)

Xz := &nc(kz, y2)

bl o

With the help of the presented analysis, we can derive that {b} is independent of {X1, X2}
at the end of the program (without making any assumptions about the initial distribution
of values of variables). This program is a sequence of four statements (the second of
which is an if -statement), let AO be the abstraction of the initial family of distributions
and let A where 1 < i < 4 be the abstract value computed by the analysis after the
i-th statement. We have

(A). (C3b,y1,¥2}) IIIi(:gep, because [13 independent of everything else.
B). (Cb,y1,¥2}) IIIi(rzep, where i [{1,...,4}, from 6 and rule (2).

We are not any more going to mention the use of rules (2), (6) and (10) below. Basically,
if some pair of sets of variables or some variable belongs to a component of AM, and
if none of these variables are changed in the statements i + 1, ... , j, then the same pair
of sets of variables or the same variable also belongs to the same component of AG).

©). {lkale}. {0, y1. Yz, [ki)e}) LA, by 6 and rule (5).
(D). ky CALL) by rule (7).
As next we have to analyse the if-statement. Let N be a new variable and let Var =
Var [{IN }. According to the description of the analysis, we have to compute
BO@ = AVari[N = p)(AD)
Btrue — A(Vars‘l[kz = kl]I(B(O)) Bfalse — A(Var‘:)\l[kz = 9en()](B(0))
A[IZI]: Btrue EBIfalse

and A® from ATy using the rules in Fig. 2. We have

(BE). ({[ka]e,{b,N,y1,y2,[Ki]e) i(r%)ep by 6 and rule (3).

F). ({[kg]g ) {b, N, Y1,Y2, [k]_]g) itr:algp by 6 and rule (3”).

(G). ka ;g‘)‘,e by 6 and rule (6’).

H). ({[kz]e,{b,N,y1,¥2,[ki]e) ifr?('jsfp by 6, rule (5) and monotonicity.
(D). kz B by rule (7).

A {[k2]e, {b, N, y1, Y2, [Kile) CALTGe, by 6 and 6.
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(K). ke CALZ by 6 and 6.

@L). ({[kale} {b,y2}) ndep by 6, 6, 6 and rule (8).

M). ({[kzle, b y1, Y2} {[kile}) m(ndep by 6, 6, 6 and rule (8).
(N). ko CAZ) by 6, 6 and rule (11).

0). ({v}, {X1}) Ek(ndep by 6, 6 6 and rule (4).
(P). ({lkale} {b, X1,y2}) ndep by 6, 6, 6 and rule (4).
Q). (b}, {x1,x2}) Ijgl,(,f(}ep by 6, 6, 6 and rule (4).

The domain of the analysis — F(Var) — is quite large, therefore we may ask,
whether the analysis can be implemented in a way that does not cause prohibitive running
times. It turns out that it can indeed be implemented in such a way. The set ?(T(\W‘
T(Wsomorphic to the set of formulas of propositional calculus, where the set of
variables is - ed,

P(PVRE) < PR LIplp(Var kr)) £1{d, 1} Var™ar _ 1o 13} |

These formulas can be implemented as binary decision diagrams (BDD). The analysis
will then transform one BDD to another one. The rules on Fig. 1 and Fig. 2 are such,
that these transformations can be efficiently implemented on BDD-s. We believe from
our experimentation with the implementation that the size of the abstract domain will
not be the cause of long running times — small programs like above example can be
analyzed in split-second on a modern computer.

7 About the Proof of Correctness

The correctness of the analysis means that if the analysis says that two sets of variables
are independent of each other at the end of the execution of the program, then it really
1S SO.

Proving the rules in Fig. 1 and Fig. 2 correct is simple, it takes some elementary
cryptography. However, these proofs alone are not enough for the correctness of the
entire analysis. They are enough for the correctness of everything but the analysis of
loops.

For using the standard results [6] about the approximation of fixed points (the se-
mantics of loops is defined through a fix-point operation, the same holds for the analysis
of loops), we need the continuity of the abstraction function o from D(State )4 to
F(Var). However, as we show in [12, Sec. 3.3], there are no non-trivial (abstraction)
functions a from D(State )Y with the following properties:

1 O is continuous;
2. ifD,D [Di(State Y are such that D = D, then a(D) = CX(D)

The second requirement should come as something obvious, we want to abstract away
everything that does not affect polynomial-time computations.

In [12, Sec. 3.3] we show that for all D, D [D(State )Y there exist D@, D® [
D(State )Y (here i [CN), such that the least upper bound of the family {D¢ )}. (RS
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D, the least upper bound of the family {D®3}; s D, and D® = D® holds for each
i [N Therefore a(D®) = a(D®) by the second condition on a and a(D) = a(D)
by the first.

Our abstraction function o cannot therefore be continuous. We have devised an ad
hoc proof of the correctness of the analysis. If D is the initial family of distributions,
A = a(D) and A¥= AVaN[P](A), then to show that (X,Y) AL, implies the
independence of X and Y in the final distribution D we first fix the security parameter
Nn. Then we construct two “slices” of the program P, whose output distributions are the
left and right distribution in (1), respectively. We then introduce a number of possible

steps for transforming these slices. We show that

1. The first slice can be transformed to second in a number of steps polynomial in n.
This sequence of steps can be efficiently constructed.
2. Each step has only a negligible effect on the output distribution.

This construction and transformation are described in [12, Chapter 4].

8 Conclusions

We have devised an analysis for secure information flow for programs containing en-
cryptions. We believe that we have found the right abstractions this time, as the analysis
puts no restrictions at all on the program structure. We do not even have the restriction
that Abadi and Rogaway [3] had — we also allow encryption cycles — cases where
encryption keys are encrypted with other keys, and where the relation “is encrypted
with” is circular. This relation is defined by the program structure, therefore it is even a
bit surprising that an analysis that does not keep track of the program structure is able
to gracefully handle encryption cycles.

The main future direction for extending this work should be the inclusion of authen-
tication primitives (signatures, MACs, etc.) and active adversaries. It may be hard to
extend the full analysis, if we do not have convenient means for approximating fixed
points, but we may try to devise the analysis for some kind of language that does not
contain a looping construct. There exist simple intuitive formalisms (without a looping
construct) for expressing cryptographic protocols, for example strand spaces [21].

Another extension would be the handling of other primitives for ensuring confiden-
tiality. It should be quite easy to add public-key encryption to our language and analysis.
In the analysis, the public keys would behave similarly to the encrypting black boxes —
one can encrypt with them, but not decrypt.
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Abstract. In complex systems, like robot plants, applications are built
on top of a set of components, or devices. Each of them has particular
individual constraints, and there are also logical constraints on their in-
teractions, related to e.g., mechanical characteristics or access to shared
resources. Managing these constraints may be separated from the appli-
cation, and performed by an intermediate layer.

We show how to build such property-enforcing layers, in a mixed im-
perative/declarative style: 1) the constraints intrinsic to one component
are modeled by an automaton; the product of these automata is a first
approximation of the set of constraints that should be respected; 2) the
constraints that involve several components are expressed as temporal
logic properties of this product; 3) we use general controller synthesis
techniques and tools in order to combine the set of communicating par-
allel automata with the global constraint.

1 Introduction

Consider the programming of a small robot made of two devices: an elevator
table and a rotating arm placed on it. The elevator has a motor than can be
switched on and o [h either direction, and two sensors at its extreme positions.
The rotating arm also has a motor with commands on and o[L_&nd a choice
between two speeds. The requests for moving up or down, and rotating the arm,
come from an application program in charge of performing some given sequence
of tasks with the robot.

At a low level, independently of any particular application, the programming
of the robot has to ensure safety properties related to the characteristics of
the devices composing the robot, and the way they interact. These can concern
the mechanics, or the access to shared resources. For instance, the motor of
the elevator should be turned o[wWhen the elevator reaches one of its extreme
positions. This type of local constraint can be specified independently of the
behavior of the arm. Similarly, the arm motor should be turned o[—Hefore a
change of speeds can be performed.

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 174-188, 2003.
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We may also have to take into account some global constraints, concern-
ing their interactions, like “the arm should not be turning at its highest speed
while the elevator is moving up”. There are several methods we can think of for
ensuring such properties in the running application:

— The responsibility could be left to the application; the code ensuring the
safety properties related to the mechanics of the robot has to be included in
all application programs; it may be di Ccult to intertwine with the proper
code of the application. Even if we can provide powerful static verification
tools to check the properties before running the application on the actual
robot, this solution should be avoided, because it makes writing the appli-
cation very di Cculit.

— A solution that allows to separate the code of the application and the code
that is in charge of ensuring the safety properties, is to introduce an inter-
mediate layer. The application does not talk directly to the robot but to this
layer, that may delay or reject its requests to the actuators of the robot.
This layer is in charge of enforcing the safety properties, and may be reused
with various applications. Using this architecture means that the application
is aware of the fact that its requests may be postponed or canceled. This is
where an acknowledge mechanism is needed.

In all cases, note that we cannot rely on monitoring techniques and dynamic
checks, because we are mainly interested in embedded systems. These systems
should not raise exceptions at runtime. Our aim is not to reject faulty programs,
either statically or dynamically, but to help in designing them correctly.

In this paper we formalize the general intermediate layer approach, thereby
allowing for the automatic generation of such property-enforcing layers from a
mixed-style description of the properties: several automata for the individual
properties of the devices, and temporal-logic formulas for the global properties.
Controller synthesis techniques are used as a compilation technique here.

2 The Approach

Expressing Individual Constraints and Global Constraints. The individual con-
straints on the behavior of the devices can be conveniently modeled as simple
reactive state machines with the sensors from the physical devices and requests
from the application (sensor, req) as inputs and the commands to the actuators
(start, stop) as outputs (see figure 1-a). Each automaton records significant
states of the corresponding device, e.g., I for idle, and A for active. The au-
tomaton of figure 1-a enforces the following property: “a request is ignored if it
happens while a previous request is being treated.”. Note that we may think of
various protocols between the application and the intermediate layer: it may be
useful to send an acknowledgment (ack) on the transition that stops the motor,
meaning: “the request has been executed”. In particular, it is not sent when a
request is ignored.
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reqand no
not OK

(b) ©

Fig. 1. Expressing Individual Constraints

The parallel composition of all the individual automata models all the in-
dividual constraints. In terms of these parallel automata, a global property like
“the arm should not be turning at its highest speed while the elevator is moving
up” means that one particular global state (or, perhaps, a set of global states)
should be unreachable. More generally, we are interested in safety properties of
the parallel composition (see [9] for the distinction between safety and liveness
properties).

Mixing the two kinds of Constraints. Of course, if we start from a set of automata
A = Aq||Az]l ... I]An that were designed in isolation, and impose a global safety
property o, it is very likely that A does not satisfy @. For example, if the appli-
cation requires that the arm motor be switched on, while the elevator is moving
up, nothing can be done to avoid the faulty situation.

When global constraints appear, due to the joint use of several devices, the
automaton describing one component has to be designed in a more flexible way.
For instance, if obeying a request from the application immediately is forbidden
by a global constraint, given the states of the other devices, the request has to
be either rejected or delayed.

We choose to introduce an additional component (i.e. a controller), that
knows about the global safety property to be ensured, and may constrain the
individual automata about the transitions they take in order to ensure this
property. Then, we re-design the individual automata in a more controllable way,
allowing them to respond to events from the application, the physical device,
and the controller. The transitions that were labeled by “req” are now labeled
by “req AND ok”, meaning that the request is taken into account only if the
controller allows it (see Figure 1-b). But then, what happens when “req AND
NOT ok”? The missing transition may be a loop, meaning that the request is
simply canceled. In this case, the application is likely to apply a protocol that
maintains the request as long as it is not taken into account.

Another solution is to memorize the request. Instead of responding directly
to a request by the appropriate command to the physical device, the automaton
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enters a waiting state W, hence postponing the request until it can be obeyed
without violating the global safety property. This gives the machine of Figure 1-
¢, where label “G0” corresponds to the controller releasing the waiting request.

We could model even more sophisticated behaviors. For instance, the appli-
cation might cancel its requests; or several requests might be queued, etc.

Again, writing the controller by hand may be hard to do if there are a lot
of individual devices and global properties. It can even be the case that such a
controller does not exist.

The solution we propose is to let the general controller synthesis technique
do the job for us. Instead of programming the controller and the communica-
tions between the machines by hand, we state this control objective in a very
declarative way (as a logical formula on the set of states). Then we let the con-
troller synthesis technique generate the controller that, put in parallel with the
individual machines, will ensure the global property.

Summarizing the Method. Consider an application program A and a physical
system under control, e.g., a robot R. The latter requires that a property ¢ be
respected, i.e. A|[R | @. Our method is the following:

— First, design A with a software architecture that introduces an intermediate
layer 1, to ensure @: A = A|l,. The problem becomes: A|I4[|IR [ @. AP
is easier to write, and Iy, is reusable.

— Iy includes properties that can be expressed for each component or device
independently of the others, and also global constraints. @ is of the form
01 L@} ... Lod L@)iob:

— For the individual constraints, propose a set of automata A;, Az, ... An (like
the ones presented in Figure 1), composable with a controller, i.e. able to
respond to an application and to a controller, and corresponding to the
properties @1, @2, ... Pn.

— For the global constraints @gion, express them as safety properties, and let
the controller synthesis technique build the controller. This gives the most
permissive controller, that has to be made deterministic since we want to use
it as a program. We will use techniques from optimal controller synthesis [14]
to reduce the non-determinism and to impose some kind of progress.

If a controller exists, the final picture is: 1y = Ag||Az]| ... [|An[ICqpqp. and
A|14]IR [E @, by construction, for all AT If there exists no controller, it means
that some of the automata have to be redesigned, introducing more “controlla-
bility” (e.g., OK and GO inputs, waiting states) so that the controller should be
able to ensure the property.

The paper. Section 3 sets a formal framework in which our approach can be
explained together with the main results of controller synthesis. An example
taken from robotics is described in section 4, with a list of global constraints one
may want to ensure for this kind of systems. Section 5 gives some quick hints
on the implementation of the approach. Section 6 comments on the method.
Section 7 reviews related work, and section 8 is the conclusion.
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3 Framework

Our work uses general controller synthesis results (see [18]): we present them
in a unified formal framework by using synchronous Mealy machines from syn-
chronous languages (see, for instance, [11]), augmented with state weights. A
presentation of controller synthesis with Mealy machines can also be found in [2],
with similar motivations: Mealy machines give programs straightforwardly.

3.1 Synchronous Automata with Outputs and Weights

Definition 1 (Automaton). An automaton A is the tuple A =
(Q, sinit, 1,0, T, W) such that Q is the set of states, Sjnit [_Q is the initial
state, 1 and O are the sets of Boolean input and output variables respectively,
T [CQIxBool(l)x2° xQ is the set of transitions, and W : Q — N is a func-
tion that labels states with natural weights. Bool(1) denotes the set of Boolean
formulas with variables in I. For t = (s, [O,sY [T, s,s”[Q are the source
and target states, [T Blool(l) is the triggering condition of the transition, and
O [A is the set of outputs emitted whenever the transition is triggered. We
consider that the Boolean formulas used as input labels are conjunctions of liter-
als and their negation. Disjunctions lead to several transitions between the same
two states.

Definition 2 (Reactivity and Determinism). Let A = (Q, Sinit, 1,0, T, W)
be an automaton. A is reactive iLIEILQ, o 5 goyrLIA is deterministic i[]

LS——":(J! EEI: (Srmoi!si) |:|:|,i=l,2 l—]_.—|: Izl:lj:c.l:OZ) leSZ)' !

Every automaton in this paper is reactive but is not necessarily deterministic.
The automata of figure 1 are of this kind. However, in the concrete syntax, we
often omit the transitions that are loops and do not emit anything. When the
weights on states are omitted, they are 0.

The semantics of an automaton A = (Q, Sinit, 1, O, T, W) is given in terms
of input/output/state traces.

Definition 3 (Trace). Let A = (Q, Sinit, 1,0, T, W) be an automaton. A se-
quence of tuples t = {(v;, Oi, Si)}i where the v; are valuations of the inputs, the
O; are subsets of outputs, and the s; are states, is a trace of A i[]

1
S1 = Sinit
1 [{Sh, LOn,Sn+1) [T1such that [has value true in v, .

In state sj, upon reception of input valuation v;j, the automaton emits O; and
goes to sj+1. We note Trace(A) the set of all traces of A.

Definition 4 (Trace with hidden inputs). Let A = (Q, Sinit, 1,0, T, W) be
an automaton, and let J [Tlbe a set of input variables to be hidden. A trace
of A with hidden values J is a sequence of tuples ty\; = {(vOi,si)}i where

1 The equality 1= [Istands for syntactical equality since there is no disjunction in
labels.
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G vP: 1\J — {true, false}, O; and s; [Q such that there exists a
trace t = {(vi, Oi, si)}i [CTrace(A) and [ XICTN\ J . vi(x) = vi(X).

The trace with hidden inputs J built from a trace t [Trace(A) is noted t(\y)
as above. And we note the set of all traces with hidden inputs J: Trace(\g)(A).

Definition 5 (Synchronous Product). Let A; = (Qy, Sinit1, 11,01, T1, Wq)
and A; = (Qz2, Sinit2, 12, 02, T2, W5) be automata. The synchronous product of
A1 and A; is the automaton Aql|Azx = (Q1 < Q2, (Sinit1Sinit2), 11 [1},01 [
0., T,W) where T is defined by: (s1, [1JO1,s]) [Tl (8, [1]O,s5) CTp LI 11
(s1S2, ICTA O; [Ob,sis2) [CT1; W is defined by: W(s1S2) = W1(S1) + Wa(s2)
(more general composition of weights may be defined if needed).

The synchronous product of automata is both commutative and associative, and
it is easy to show that it preserves both determinism and reactivity.
Encapsulation makes variables local to some subprogram and enforces synchro-
nization; the following definition is taken from ArGos [11]. In general, the encap-
sulation operation does not preserve determinism nor reactivity. This is related to
the so-called “causality” problem intrinsic to synchronous languages (see, for in-
stance [3]). However, these problems can appear only if two parallel components
communicate in both directions, in the same instant. We will use encapsulation
only in simple cases for which this is not necessary.

Definition 6 (Encapsulation). Let A = (Q, Sinit, 1,0, T, W) be an automa-
ton and ' CICQAl be a set of inputs and outputs of A. The encapsulation of A
w.r.t. [ is the automaton A\I" = (Q, Sinit, 1 \I', O\I', T W) where T Uis defined
by: (s, CO,sY L[NNI COILTINT nO = CIL @I CO\r,sY 1

M is the set of variables that appear as positive elements in the monomial ]
(i.e. 1= {x O] (x CDI= [}). (O is the set of variables that appear as negative
elements in the monomial | (i.e. O = {x | (-x D= ).

Example 1. In figure 2 two automata A and B are composed by a synchronous
product, and then {b} is encapsulated. The typical use of an encapsulation is
to enforce the synchronization between two parallel components, by means of a
variable which is an input on one side, and an output on the other side. In the
product, this variable appears in both the triggering condition and the output
set of transitions.

nota 1 not b

< nota

I

| x>
a/b | b — a

I Qy >

I

A B (AlIB) \ {b}

b

Fig. 2. An encapsulation example
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Definition 7 (Temporal Properties of the Automata). Let A =
(Q, Sinit, 1,0, T, W) be an automaton, let S [Q be a set of states and let
t = {(vi, Oj,si)}i [Trace(A) be a trace of A. The properties ¢ we are interested
in are the two CTL [7] formulas defined below.

Invariance of S: @ = [IIS). A trace t satisfies [{S) (noted t £ [(S)) i[1]
[l sj Sl For automata: A F [CIIS) LI Trace(A) . tF [(S) .

Reachability of S: ¢ = [II(S). A trace t satisfies [(S) i CIEICSI. [is =s;.
For automata: A F [I1S) LTI Trace(A) . tF (S) .

3.2 Controllers and Controller Synthesis

Controllers. Let A = (Q, Sinit, 1,0, T, W) be an automaton. We partition the
set 1 of inputs into a set Iy of uncontrollable inputs (those coming from the
application or from the physical devices, like req, sensor in figure 1) and a set
I. of controllable inputs (i.e. inputs coming from the controller, like OK, GO).

Definition 8 (Controller of an Automaton). A controller of A is an au-
tomaton C = (Q, Sinit, lu, O I}, THWY such that = (s, [J CJO,sH [
T Y 9= (s, 1O Oy)shY 1Y where [ (resp. [g) is only writ-
ten with variables in 1, (resp. 1) and y [IJ at most contains the controllable
inputs involved in [(i.e., ] L 1, and y I3 T [C13). Moreover
Q. wis) = 0.

Notice that one t [CT1 may define several t~ [CT1"as defined above. The con-
troller C of an automaton A has the same structure (states and transitions). The
controllable variables are inputs in A, whereas they are outputs of the controller.
This means that the role of the controller is to choose whether controllable vari-
ables should be emitted, depending on uncontrollable inputs and states.

The automaton (A]|C) \ I represents the controlled automaton of A by C :
the interaction between the controller and its automaton is formalized by a syn-
chronous product (A and C execute in parallel, communicating via 1. variables)
and the 1. variables are kept as local variables (and so encapsulated).

Properties 1 Let A = (Q, Sinit, 1,0, T, W) and let its input variables I be
partitioned into the two subsets 1. and I. Let C be a controller of A.

1. Trace((A[IC)\ Ic) [THace,,(A).

2. If A is reactive, then C is reactive, by construction. But C may not be deter-
ministic even if A is deterministic.

3. (A|IC)\ I is reactive and, if C is deterministic, then so is (A]|C) \ 1. This
holds because the encapsulation is used in a case for which causality problems
do not occur.

The first property means that every trace of the controlled automaton of A by C
is also a trace of A with hidden variables I.: the controller restricts the execution
of the automaton. 2 and 3 are specific to the way we build controllers. Reactivity
and determinism are required if we want to obtain programs with this method.



Using Controller-Synthesis Technigques to Build Property-Enforcing Layers 181

Example 2. Let us observe figure 3. The right part of the figure depicts a con-
troller C: the set of controllable inputs is I = {0K}, whereas req and stop
are uncontrollable. The controller shown here enforces the fact that the task
always has to wait before executing. This is done by deciding which of the con-
troller transitions do emit OK, in such a way that the transition to wait remains,
whereas the transition to EX disappears, in the product.

The controlled automaton (A]|C) \ 1. is shown in figure 4, where the syn-
chronous product of the automaton A and of its controller C has been performed
(left part), and where the encapsulation of the controllable input 0K has been
realized (right part).

In the transition from stopped to wait, OK appears as a negative element in
the triggering condition of A; the controller chooses not to emit it in the corre-
sponding transition, hence the transition remains in the encapsulated product.
Conversely, from stopped to execute, 0K appears as a positive element in A;
since the controller does not emit it, the transition disappears in the encapsu-
lated product.

req/ack

true/OK,ack

true/ack
OK €) (b)

Fig. 4. The controlled automaton obtained from figure 3

Controller Synthesis Problem. Let A = (Q, Sinit, 1,0, T, W) be a deter-
ministic and reactive automaton 1 = 1. [1l,. Let ¢ be one of the two CTL
properties on A given by definition 7.

Problem 1 (Controller Synthesis). The controller synthesis problem consists in
finding a controller C of A such that the controlled automaton of A by C, satisfies
the property @: (A[|IC)\ I¢ E 0.
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The problem may have several solutions but has a greatest solution, called
the most permissive controller: if ¢ = CIIS) (resp. ¢ = CI{S)), the controller
C is the most permissive i (il (T _Trace(A) such that t E [{S) (resp. t E [(S))
then t(, y CTrace((A||C) \ I¢).

Reducing Non-determinism in the Controller. We are interested in de-
terministic controllers because our aim is to build a program.

Let A = (Q,Sinit, I,0,T,W) be a deterministic and reactive automaton
with I = 1. [Il,. Let @ be one of the two CTL properties on A defined in
definition 7. Let C be a solution of the controller synthesis given by A and ¢.

We are looking for a controller CPwhich is a solution of the same controller
synthesis problem, and which is more deterministic. First, we impose that C and
CHBhave the same set of states and outputs but not necessarily the same set of
transitions and inputs.

Second, we want to ensure the property Tracey,(CY [Tracey,(C) since
it guarantees that: Tracey,((A[|CY \ 1) [Trace;,((A|IC) \ I¢) and then
(AlJCN I F o =C_AJICHY\ I E o, ie. if C is a solution of the above
controller synthesis problem then also is C& We give two ways of building CP
from C: static or dynamic reduction of non-determinism.

Static reduction of non-determinism: C™only di[ers from C by its transition
set, Tc Tco LIk, where Tc is the set of transitions of C. In this paper, we
use a very particular case of this approach: Tcomay be obtained from T¢ by
a local optimization based on state weights: 1= (s, D,sYy [Tko. W(H =
min{W (s | [(8, CO™s") [Tt}. Notice that this operation may not completely
suppress the non-determinism of the controller.

Dynamic reduction of non-determinism: Cdi [ers from C by its set of inputs
Icosuch that 1, [CItg and by its triggering conditions. The idea is to add
special inputs called oracles: from a state S, if there are two transitions labeled
by the same input [ Ithen one of them becomes [1i and the other one becomes
i, where i is the oracle. In general we need several oracles (see [10]). We obtain
a deterministic automaton (or a “program’) that has to be run in a environment
that decides on the values of the oracle inputs. See sections 5 and 6.

4 Example System and Methodology

4.1 A Robot System

We illustrate the proposed methodology with a case study [5] concerning a robot
system: an automated mobile cleaning machine, designed by ROBOSOFT?. It
can learn a mission, with trajectories to be followed, and starting and stopping
of cleaning tools at pre-recorded points. It can play them back, using sensors like
odometry, direction angle and laser sensors to follow the trajectories and detect
beacons. One of the tools is a brush, mounted on an articulated arm, under the
robot body, that can achieve vertical translation (in order to be in contact with
the floor or not), horizontal translation (in order to reach corners), and rotation.

2 yww.robosoft.fr
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The constraints are the following: 1) the brush should rotate only when on
the floor, in low position, because otherwise, when in high position, it might
damage the lower part of the mobile robot; 2) it can be moved laterally only
when on the floor, and not rotating, for the same reason.

4.2 Modeling the Brush Individual Constraints

The brush individual constraints are modeled in terms of three automata, each
one representing the activation of control laws for one degree of freedom of the
brush: vertical movement, horizontal movement and rotation.

Vertical movement: the initial state up in Figure 5(a) represents the brush
being in high position. Upon reception of a request from the application to move
down, r_down, either the controller accepts it, in the absence of any conflict
at global level, by okVv, or not. If yes, then the going down State is reached,
with emission of the acknowledgement start_down. Otherwise, the request is
memorized by going to state wait_down. The controller may then authorize the
activation from state wait_down to state going down, by okV with emission of
start_down. When the uncontrollable event sensor_down occurs from the phys-
ical device, corresponding to the reaching of the low position, the state down
is reached, with emission of stopV. Movement upwards follows a symmetrical
scheme, also subject to controller authorization.

Horizontal movement: the automaton for horizontal movements follows
exactly the same scheme as for vertical movement.

Rotation: the automaton for rotation follows a dilerkent scheme (fig-
ure 5(b)): there is no intermediate state going to the rotation state. State imm
designates an immobile brush. A request for rotating, r_rot, is either accepted
directly by okR, which leads into the rotate state, or not, which leads to the
wait_rot state. Going back from rotation to immobility is done through a request
r_imm, and follows the same scheme as before, with a waiting state wait_imm in
case not authorized, and a deceleration state going_imm.

4.3 Safety Properties to Be Ensured by the Controller

We introduce a notation to define sets of global states in terms of local states. Let
As, ..., An be n automata. (A; = (Qi, Siniti, 1i, Oi, Ti, Wj). Let A = Aq||A2 ...
IAnr = (Q, Sinit, 1,0, T,W). Let s; [Q; be a state of automaton A;. We note
si for all the states of A whose projection of Q; is equal to s;: si = {s [Q |
s = (sps5!...,sh) . sF'=s;} The set of global states excluding s; is noted sj for
Q\'si. The set of global states excluding S [Qlis noted S.

Global states must be avoided where the properties mentioned in section 4.1
are violated. To define them, we identify states where:

— the brush turns, which can happen when in states rotate, wait_imm and
going imm, as a decelerating brush is still in motion. This is expressed by
the set of states: Rotating = rotate Cwhit_imm [gdéing_imm;

— the brush arm is in low position, i.e. in state down and also wait_up: Low =
down [Cwhit_up;
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— the brush arm is moving laterally i.e., in states going_out and going back:
Lateral = going_out [gding_back .

The set of safe states wrt properties described in section 4.1 is then given by:
S = (Rotating [IThbw) n (Lateral [Rotating n Low). Finally, we compute a
controller for the property [CTIS).

r-down okV /

Staxt_down s_imimn

r_imm
not ok

re _“E
not okV

start_up

(a) vertical move (b) rotation

Fig. 5. The brush control tasks.

4.4 Result of the Controller Synthesis Phase

The result is a non-deterministic controller (see section 3.2). In particular, the
choice remains between staying in a wait state and moving to the active state,
both being safe with respect to the property. This is the usual problem when
specifying a system by safety properties: a very simple way of respecting them is
to do nothing. Hence, some progress should be expressed and taken into account.

We propose to use the weights associated with states. The weight of the
waiting states is set to 1, and the weight of all other states is set to 0. The
static reduction of non-determinism produces a controller where, whenever there
are two transitions sourced in the same state, with the same inputs, only the
transitions that go to the states with minimal weight are kept.

In the example, this is su [cieht for ensuring that at least one component
leaves its waiting state when it is possible. This does not yield a deterministic
automaton, as some global states might have the same weight due to the com-
position of local weights. Dynamic reduction of non-determinism can then be
used. In the framework of our case study, we worked in a context of interactive
simulation: the values for the oracles are given by the end-user.

5 Implementation

The current implementation of the method, which has been used for the example,
relies on the chain of Figure 6: the individual constraints are described using a
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synchronous formalism called “mode-automata” [12]; Yann Rémond provided
the compiler into z3z, the input format of the synthesis tool Sigali. The global
properties and the weights are expressed into z3z by the means of Sigali macros.
Sigali [13] is a tool that performs model-checking, controller synthesis for logical
goals, and optimal controller synthesis.

The result of Sigali is a controller, in the form of an executable black-box. Y.
Rémond and K. Altisen developed the tool SigalSimu, to simulate the behavior
of the controlled system. This corresponds to a dynamic resolution of the non-
determinism, where the human being plays the role of the oracle.

The next step will be to transform the interpretation chain into a compilation
chain, producing the controlled system as an explicit automata that can then be
compiled into C code (see below).

properties

weights
23z
system model Mode }—V encoding controller —5( o interactive
components Automata) 5| Sigasimu simulation

g
Fig. 6. Implementation of the approach: the tools involved.

6 Evaluation of the Method

Patterns for the individual constraints: The whole approach requires that
the mechanical devices (or, more generally, the “resources” for which we build
an application program) be modeled as small automata. We suggest that a set
of reusable patterns — in the spirit of “design patterns” [8] — be designed for
that purpose. It is likely to be specific of a domain.

Cost: The algorithms involved in controller synthesis techniques are expen-
sive. If the whole intermediate layer had to be built as the result of a synthesis,
starting from a declarative specification only, it could be too costly to be con-
sidered as a viable implementation technique. The reason why it is reasonable
in our case is that part of the specification is already given as a set of automata.
Controller synthesis is used only to further restrict the possible behaviors of the
product.

Towards a compilation chain (non-determinism, progress and fair-
ness): First, we want programs, so we have to determinize the controllers.
Second, a specification S made of safety properties only, leads to trivial solu-
tions that do not progress. Hence we have to specify progress properties, and to
remove transitions in the controller obtained from S, so that only progressing be-
haviors remain. Third, what about fairness? Our example system is an instance
of a mutual exclusion problem, and we defined critical sections as sets of states
in each of the individual automata. In some sense, the e[edt of the controller-
synthesis phase is to add the protocol between the components, so that mutual
exclusion is respected. This is a typical case where a non-deterministic choice
remains, for choosing the component to serve. Usually, a dynamic scheduler is
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used to ensure fairness between the concurrent processes willing to access the
shared resource.

In our case, we would like to obtain a deterministic controller and to compile
it into a single program. This can be done by 1) determinizing the controller
with oracles (see section 3.2); 2) adding in parallel an automaton Or that sends
the oracle values, and encapsulating the oracle variables. Or is responsible for
the fairness of the whole system.

7 Related Work

Previous Work. In previous work [15,16], an approach is proposed for the model-
ing of robot control tasks, using simple pre-defined control patterns, and generic
logical properties regarding their interactions. A teleoperation application is con-
sidered, as an illustration of a safety-critical interactive system. An extension of
this work concerns multi-mode tasks [14], where each task has several activity
modes or versions, distinguished by weights capturing quality (as in e.g., im-
age processing) and cost (typically: execution time). Optimal control synthesis
is then used to obtain the automatic control of mode switchings according to
objectives of bounded time and maximal quality. The approach in this paper is
a generalization of this more specialized work.

On “Property-Enforcing” techniques. A number of approaches has been pro-
posed for enforcing properties of programs, but they mainly rely on dynamic
checks. In [6], a program transformation technique is presented, allowing to equip
programs with runtime checks in a minimal way. Temporal properties are taken
into account, and abstract interpretation techniques are used in order to avoid
the runtime checks whenever the property can be proven correct, statically. In
the general case, the technique relies on runtime checks, anyway.

The approach described in [17] is a bit di [erknt because it does not rely on
program transformation. The authors propose the notion of security automaton.
Such a security automaton is an observer for a safety property, that can be run
in parallel with the program (performing an on-the-fly synchronous product).
When the automaton reaches an error state, the program is stopped.

On the use of Controller-Synthesis Techniques. In [4], the authors use controller
synthesis techniques to help in designing component interfaces.

In their sense, an interface is a (possibly synchronous) black box that is
specified by input and output conditions (input and output behaviors). Inter-
faces may be composed as far as they are compatible, i.e. as far as there exist
some inputs for which the composition works. Compatibility is computed by a
controller synthesis algorithm which finds the most permissive application (wrt
input and output conditions) under which the composed interfaces may work.

The unusual thing here (regarding the use of controller synthesis) is that they
constrain the application, i.e. the environment of the interfaces, in order to fit
input and output conditions, whereas, in usual controller synthesis framework,
we use it to make the system work whatever the application/environment does.
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In [1], the authors use controller synthesis techniques to build real-time sched-
ulers. A layered modeling methodology is also provided here. First, real-time
processes are individually modeled by timed transition systems; then a syn-
chronization layer is built ensuring functional properties; finally, a scheduler is
computed by controller synthesis, ensuring the non functional properties of the
layer.

8 Conclusion and Further Work

We presented a method that automates partially the development of property-
enforcing layers, to be used between an application program and a set of resources
for which safety properties are defined and should be respected by the global
system (the application, plus the intermediate layer, plus the set of resources).

We illustrated the approach with a case-study where the set of resources is
a robot. However, the method can be generalized to other kinds of applications.

The method relies on two ideas. First, the specification of the properties
to be respected often comes in a mixed form: simple and “local” properties,
typically those imposed by one mechanical device in isolation, are better given as
simple automata; on the contrary, the interferences between the devices, and the
situations that should be avoided, are better described in a declarative way, for
instance with trace properties in a temporal logic. Second, mixing the two parts
of the specification is not easy, and we show how to use very general controller-
synthesis techniques to do so. The technique that enforces the safety part of
the specification has to be complemented, in order to ensure some progress. We
adapted the notion of optimal synthesis to obtain progress properties.

Further work has to be devoted to the notion of “progress” in layers that
enforce safety properties. We encountered the problem and solved it only in a
very particular case. The first questions are: what kind of progress properties do
we need? How can they be expressed in terms of optimal synthesis goals?

We really believe that optimal control synthesis is the appropriate method
because, in the contexts we are interested in, the “progress” properties are often
related to a notion of “quality”. The states in the individual automata might
be labeled by weights related to CPU time, memory use, energy consumption,
quality of service, etc. (additivity of weights in parallel components may not fit
all the needs, of course). In these cases, progress means “improve the quality”.

Acknowledgments. The authors would like to thank Hervé Marchand, the
author of Sigali, and Yann Rémond, the author of mode-automata, for their
work on the implementation.
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Automatic Software Model Checking Using CLP
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Abstract. This paper proposes the use of constraint logic programming
(CLP) to perform model checking of traditional, imperative programs.
We present a semantics-preserving translation from an imperative lan-
guage with heap-allocated mutable data structures and recursive pro-
cedures into CLP. The CLP formulation (1) provides a clean way to
reason about the behavior and correctness of the original program, and
(2) enables the use of existing CLP implementations to perform bounded
software model checking, using a combination of symbolic reasoning and
explicit path exploration.

1 Introduction

Ensuring the reliability of software systems is an important but challenging prob-
lem. Achieving reliability through testing alone is di Ccult, due to the test cover-
age problem. For finite state systems, model checking techniques that explore all
paths have been extremely successful. However, verifying software systems is a
much harder problem, because such systems are inherently infinite-state: many
variables are (essentially) infinite-domain and the heap is of unbounded size.

A natural method for describing and reasoning about infinite-state systems
is to use constraints. For example, the constraint afi] > y describes states in
which the ith component of a is greater than y. The close connection between
constraints and program semantics is illustrated by Dijkstra’s weakest precondi-
tion translation [10]. This translation expresses the behavior of a code fragment
that does not use iteration or recursion as a boolean combination of constraints.
Fully automatic theorem provers, such as Simplify [9], provide an e [cieht means
for reasoning about the validity of such combinations of constraints. These tech-
niques provide the foundation of the extended static checkers ESC/Modula-3 [8]
and ESC/Java [14].

Unfortunately, iterative and recursive constructs, such as while loops, for
loops, and recursive procedure calls, cannot be directly translated into boolean
combinations of constraints. Instead, extended static checkers rely on the pro-
grammer to supply loop invariants and procedure specifications to aid in this
translation.® The need for invariants and specifications places a significant bur-
den on programmer, and is perhaps the reason these checkers are not more widely
used, even though they catch defects and improve software quality [14].

1 Loops without invariants are handled in a manner that is unsound but still useful.

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 189-203, 2003.
€-Springer-Verlag Berlin Heidelberg 2003
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This paper presents a variant of the extended static checking approach that
avoids the need for programmer-supplied invariants and specifications. Instead,
we start with an unannotated program, which may include iterative and recur-
sive constructs, and asserted correctness properties. We translate this program
into in an extended logic called constraint logic programming (CLP) [19,21,20,
22]. Essentially, a constraint logic program consists of the sequence of rules,
each of which defines a particular relation symbol as a boolean combination of
constraints. Since constraints may refer to relation symbols, these rules can be
self- and mutually-recursive. By expressing iterative and recursive constructs of
the original imperative program as recursive CLP rules, we avoid the need for
programmer-supplied invariants and specifications.

This paper presents a semantics-preserving translation into CLP from an
imperative language that is infinite-state and that supports global and local
variables, heap-allocated mutable data structures, and recursive procedure calls.
We use this translation to illustrate the connection between imperative programs
and CLP, between program executions and depth-first CLP derivations, between
procedure behaviors and sets of ground atoms, and between erroneous program
executions and satisfiable CLP queries.

Our translation enables the use of e [cieht CLP implementations, such as
SICStus Prolog [27], to check correctness properties of software. This implemen-
tation performs a depth-first search for a satisfying assignment, using e [cieht
constraints solvers to symbolically reason about boolean variables, linear arith-
metic, and functional maps. This search strategy corresponds to explicitly ex-
ploring all program execution paths, but symbolically reasoning about data val-
ues. That is, instead of explicitly enumerating all possible values for an integer
variable x, the CLP implementation symbolically reasons about the consistency
of a collection of constraints or linear inequalities on xX. This symbolic analysis
provides greater coverage and more e [cieht checking.

The depth-first search strategy may diverge on software with infinitely long
or infinitely many execution paths. To cope with such systems, we bound the
depth of the CLP search, thus producing a bounded software model checker. Our
translation also facilitates software model checking using other CLP implementa-
tion techniques, such as breadth-first search, tableaux methods, or subsumption,
which may provide stronger termination and error detection properties.

The remainder of the paper proceeds as follows. The next section provides
a review of CLP. Section 3 illustrates our CLP translation by applying it to
an example program, and uses the CLP representation to detect defects in the
program. Section 4 presents the imperative language that is the basis for our
formal development, and section 5 translates this language into CLP. Section 6
uses the CLP representation for program checking and defect detection. Section 7
discusses related work, and we concluded in Section 8.
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2 A Review of Constraint Logic Programming

In this section, we provide a brief review of the constraint logic programming
paradigm [19,21,20,22]. A term t is either a variable or the application of a
primitive function f to a sequence of terms. An atom r(£-s the application of
a user-defined relation r to a term sequence t-A primitive constraint p(B-s the
application of a primitive predicate p to a term sequence. Constraints include
primitive constraints and their negations, conjunction, disjunction, and atoms.
A rule r(B-- cis an (implicitly universally quantified) implication, and provides
a definition of the relational symbol r. For example, the rule r(X,y) « x=y
defines r as the identity relation.

Primitive functions include binary functions for addition and subtraction,
nullary constants, and the select and store operations, which are explained
in Section 5. Primitive predicates include equality, disequality, inequalities, and
the nullary predicates true and false. We sometimes write binary function and
predicate applications using infix instead of prefix notation.

CLP Syntax

'(terms) to=x| f(EJ (variables) XY,z !

(atoms) a = r(! (constants) k [{0,1,2,...}

(constraints) ¢ = p(B —p(EH (primitive fns) f Ik, +, —, select, store}
| ¢ CccCcla (primitive preds) p [{arue, false, =, &, <,...}

I(rules) R:i=a«~c (relation names) r

A CLP program R-i a sequence of rules. These rules may be self- or mutually-
recursive, and so the CLP program R-nay yield multiple models. We are only
interested in the least model of R-that is compatible with the intended interpreta-
tion D of the primitive functions and predicates. In particular, we are interested
in the question of whether this least compatible model of Iﬂmplles a particu-
lar goal or atom a, which we write as Im(R-D) T3 where Iﬁlexwtentlally
quantifies over all free variables in a.

Much work on the implementation and optimization of CLP programs has
focused on answering such queries e [ciehtly. In the following section, we leverage
this e [ont to check correctness properties of an example program, without the
need for procedure specifications or loop invariants.

3 Overview

To illustrate our method, consider the example program shown in Figure 1, col-
umn 1. This program is a variant of the locking example used by the BLAST
checker [18]. The procedures 1ock and unlock acquire and release the lock L, re-
spectively, where L = 1 if the lock is held, and is zero otherwise. The correctness
property we wish to check is that (1) the procedure lock is never called when
the lock is already held, and (2) the procedure unlock is never called unless the
lock is already held. These correctness properties are expressed as assertions in
the lock and unlock procedures. Hence, checking these properties reduces to
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Program

[Transfer relations

Error relations

lock() {

assert L = 0;
L :=1;

}

unlock() {
assert L = 1;
L := 0;

}

main() {
loop();
unlock();

}

loop() {
lock();
D :=N;
unl();

loopQ);
} else {
// skip
}
}
unl () {
if (%) {
unlock();
/] N++;
} else {
// skip
}
}

if (N !'=D) {

Tlock(L,N, D, L;,N, D) —
Co=0
[y =1

Tunlock(L,N,D,L;,N,D) ~
Mm=1
|:|:|1 =0

Tmain(L, N, D, Ly, N2, D2) «
[Tloop(L, N, D, L3, N1, Dj)
[Tunlock(Ly, N1, D1, L2, N2, D2)

Tloop(L, N, D, La, Ng, Ds)
|j||OCk(|_, N, D, L1, N1, Dl)
|:D2 = N1
CTuni(L1, Ny, D2, L3, N3, D3)
[TIMN3 £ D3
|:|]|00p(L3, N3, D3, L4, N4, D4)
[TIN3 = D3

I =Lz
EN4:N3
|:D4=D3

Tunl(L,N,D, L1,N1,D1) «
[Tunlock(L, N, D, L1, Ny, D1)
O, =L

[N; =N
., =D

Elock(L, N, D) ~
LEO

Eunlock(L, N, D) ~
LE1

Emain(L, N, D) ~
[Hioop(L, N, D)
COMloop(L, N, D, L3, N1, Dy)
[Hunlock(L1, N1, D1)

Eloop(L, N, D) —
[Block(L, N, D)
[CIImlock(L, N, D, L1, N1, Dj)
EDZ = N1
[COB8unl(L1, N1, D2)
CIImuni(L1, Ny, D2, L3, N3, D3)
[N3 & D3
[Hloop(Lz, N3, D3)

Eunl(L,N, D) ~
Eunlock(L, N, D)

Fig. 1. The example program and the corresponding error and transfer relations.

checking whether the example program goes wrong by violating either of these

assertions.

The example contains three other routines, which manipulate two additional
global variables, N and D. Thus, the state of the store is captured by the triple

(O, N, DJThe example uses the notation if (*)

istic choice.

... to express nondetermin-

Our method translates each procedure m into two CLP relations:

1. the error relation Em(L, N, D), which describes states [, N, D (from which
the execution of m may go wrong by failing an assertion, and
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2. the transfer relation Tm(L, N, D, L5N5'DY, which, when m terminates nor-
mally, describes the relation between the pre-state [II, N, D[and post-state
mMYN 5 DYof m.

The transfer and error relations for the example program are shown in Fig-
ure 1, columns 2 and 3, respectively. The relation Elock says that lock goes
wrong if L is not initially 0, and Tlock says that lock terminates normally
if L is initially 0, where L = 1 and N and D are unchanged the post-state.
The relation Emain says that main goes wrong if either lLoop goes wrong, or
loop terminates normally and unlock goes wrong in the post-state of loop. The
other relation definitions are similarly intuitive. Automatically generating these
definitions from the program source code is straightforward.

We use these relation definitions to check if an invocation of main may go
wrong by asking the CLP query Emain(L, N, D). This query is satisfiable in the
case where L = 1, indicating that the program may go wrong if the lock is held
initially, and an inspection of the source code shows that this is indeed the case.

If we provide the additional precondition that the lock is not initially held,
then the corresponding CLP query

L =0 CHmain(L, N, D)

is still satisfiable. An examination of the satisfying CLP derivation shows that it
corresponds to the following execution trace: main calls 1oop, which calls 1ock,
which returns to loop, which calls unl, which calls unlock, which returns to
unl, which returns to loop, which returns to main, which calls unlock, which
fails its assertion, since there are two calls to unlock without an intervening call
to lock.

The reason for this bug is that the increment operation N++ in unl (which is
present in the original BLAST example) is commented out. After uncommenting
this increment operation, the modified transfer relation for unl is:

Tunl(L,N, D, L1, N2,D1) «
OTunlock(L, N, D, L1, Ny, Dj)

[N, =N;+1
1L =L
2=N
ED1:D

The above CLP query is now unsatisfiable, indicating that the fixed example
program does not go wrong and thus satisfies the desired correctness property.

4 The Source Language

This section presents the syntax and semantics of the imperative language that
we use as the basis for our formal development.
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4.1 Syntax

A program is a sequence of procedure definitions. Each procedure definition con-
sists of a procedure name and a sequence of formal parameters, which are bound
in the procedure body, and can be a-renamed in the usual fashion. The procedure
body is an expression. Expressions include variable reference and assignment,
let-expressions, application of primitive functions and user-defined procedures,
conditionals, and assertions. To illustrate the handling of heap-allocated data
structures, the language includes mutable pairs, and provides operations to cre-
ate pairs and to access and update each field i of a pair, for i = 1, 2. Although
our language does not include iterative constructs such as while or for loops,
they can easily being encoded as tail-recursive procedures. In addition to lo-
cal variables bound by let-expressions and parameter lists, programs may also
manipulate the global variables gJFor simplicity, the language is untyped, al-
though we syntactically distinguish boolean expressions, which are formed by
the application of a primitive predicate to a sequence of arguments.

Programming Language Syntax

'(programs) P = DB (procedure names) m '
(definitions) D ::= m(X)Ke} (global variables) g1
(expressions) e:=X|x:=e|letx=eine (special variables) k= h.hi.hy

| (& m(&] if p(&)k e
| assert p(& [Ele[Je.i|ei:=e

Throughout this paper, we assume the original program and the desired cor-
rectness property have already been combined into an instrumented program,
which includes assert statements that check that the desired correctness prop-
erty is respected by the program. We say an execution of the instrumented
program goes wrong if it fails an assertion because the original program fails the
desired correctness property. The focus of this paper is to statically determine
if the instrumented program can go wrong.

Notation. We use X—to denote a sequence of entities, X-¥—Henotes sequence
concatenation, and [is the empty sequence. We sometimes interpret sequences
as sets, and vice-versa. If M is a (partial) map, then the map M[X :=Y ] maps
X to Y and is otherwise identical to M, and the map M[—X] is undefined on
X and is otherwise identical to M. The operations M [X-= ¥Hand M[—X}are
defined analogously. We use %—& ¥—to abbreviate X; = Y; 1. X, = Yn.
We use e; ; e, to abbreviate 1et x =e; in e,, where X is not free in e,.

4.2 Semantics

We formalize the meaning of programs using a “big step” operation semantics. A
store ¢ is a partial mapping from variables to values. The set of values includes
constants and maps. To represent pairs, the store o maps three special variables,
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P [elo - oSv

P el o wr

P [Cel: 0 wr

P Celio - oYv

P [Xl:0 - 0,0(x)

P [Xl:=e:0 wr

P IIJ:ze:oao'_[&:v],v

PLel:o-aov:

P [el:0wr P [e}:ofx:=vi]wr
P [1¢t X =e; in e : 0 wr P [1dt X =e; in €2 : O wr
P [el:o - ofwy
P [e:ofx:=vi] = c®vy
P [I¢t x=e; inex: 0 — UEF—X],VZ
P [C&do wr P [&o - o N1 P [C&ldo wr
PLFEIcwr P CRELIC - o' Me(F, )0 P C(ED O wr
P [E&o - o] P [C&do — o]
m(x){e} CPI m(x){e} P P [&o - o N1
x4 dom(cY = I x4 dom(c = if Mp(p, Qdthen i =1elsei=2
P (el o= hr P [CelofcE vl oy P [g:0". v

P (&)t o wr

P Cm@Elo - oK

P I__pr(melez:aaamfv

P &Moo - oV

if Mp(p,¥)dtheni=1elsei=2

P [C&Ldo wr

P e : o r

P [if p(&) k1 €2 : 0 wr

P [C&lo - o5\
Mo (p,

P [Cé&do wr

P [if p(&) k1 €2 : 0 wr
P [C&lo - oS\

) = false M (p, )= true

P [assert p(&)t o wr

P [eler:0 - avive

P [ele:owr cT=c'th

P [Cassert p(€)1 o wr

P [assert p(&)t o - 0,0

athy(1) =0
= o'th)[l := 1], hi == o"thi)[I := vi]' 3]

P [I&},ex[0 wr

P [Cel: o wr

P [I#),ex00 - ol

P Celo - ol

P Celi:o wr

P [&i:o - oahi)®)

P [ele;:0 - advive

P Cel.ex:0wr

o™= o'thi = ohi)[vi := v2]]

P [el.i:=ex:0 wr

PIreli=e:0-dv,

P [&o - o1 P IIEIO'wr‘

P el o wr

P [elo - aYv
P C&rlo wr

P [elo - aYv
P Cerlo”- o™

P [IIlo - o, 0 P [CeléZlo wr

P [CElEdo wr P &&Edo - oMy

Fig. 2. Evaluation rules.
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h, hy, and h,, to maps. The map o(h) describes which locations have been allo-
cated, and o(h;) and o(h;) describe the components of allocated pairs. For any
heap location I, if a(h)(I) = 0 then the location | is not allocated, otherwise the
components of the pair at location I are given by a(h;)(l) and a(h,)(l), respec-
tively. This representation of pairs significantly simplifies the correspondence
proof between imperative programs and constraint logic programs.

The judgment P [Cel: ¢ — o5v states that, when started from an initial store
o, the evaluation of expression e may terminate normally yielding a result value
v and resulting store ¢ The judgment P [&l: ¢ wr states that, when started
from an initial store g, the evaluation of expression e may go wrong by failing an
assertion. Similarly, the judgments P [&o — oS\ and P [C&do wr describes
whether an expression sequence € fierminates normally, yielding value sequence
. Jor goes wrong, respectively. The rules defining these judgments are shown
in Figure 2. These rules rely on the function My : FnSym x Value . Value
and the relation My [PtedSym x Value “to provide the meaning of primitive
functions and predicates, respectively.

5 Translating Imperative Programs into CLP

We now describe the translation of imperative programs into CLP. At each step
in the translation, the environment ' maps each program variable x into a CLP
term that provides a symbolic representation of the value of x. Given the initial
environment I for an expression e, the judgment

rcel- w|nrtt

describes the behavior of e. The wrong condition w is a constraint describing
initial states from which e may go wrong by failing an assertion. For example,
the wrong condition of assert x =0 is'(X) 8 0, i.e., the assertion goes wrong

if x is not initially 0. Similarly, the normal condition n describes the initial
states from which e may terminate normally. In this case, the environment "™
symbolically describes values of variables in the post-state, and the term t is a
symbolic representation of the result of e. The judgment I C&1. w|n-r“¢]
behaves in a similar manner on expression sequences, which may go wrong or
may terminate normally producing a value sequence represented by -

The rules defining these judgements are shown in Figure 3. The rule [ExpP VAR]
states that the variable access x never goes wrong and always terminate normally
without changing the program state. The rule retrieves a symbolic representation
I (x) for the value of x from the environment. The rule [Exp assian] for an
assignment x := e determines a symbolic representation t for e, and updates
the environment to record that t represents of the current value of x. The rule
[Exp LET] states that 1let X = e; in e, goes wrong if either e; goes wrong or if
e; terminates normally and e, goes wrong.

Some translation rules are more complicated. For example, the rule [exp 1¥]
for the conditional if p(€)®; e, needs to merge the environments " -produced by
the translation of e;, for i = 1,2. To accomplish this merge, the rule determines
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I 1
‘r Cel- w|n-rtt r m;w|n-rL-‘EP

[EXP VAR] [EXP ASSIGN]
r Cel- winrt
I X - false|true-T T (x) rx:=e - w|nrix:=1-t
[EXP LET]

r |_—E_]_ — W1|n1-F1-t1
Mx:=t1] e} - wa|n2-Ma-t2
[ Ikt X=e€; inex > W3 ml m2)|n1 |_—ﬂlz-r2[—X]-t2
[EXP FN]
r Ced winr=gd
r CR@1- w|nr=fE-]

[ExP 1F]
rred winr8) rore - wini- Mt
[EXP CALL] z fresh By | Tily) 8ry)}
r Ces winr=gd if
F Tx) = rifx) if x Iym
z, 40 Fresh fresh var if x Y11

wisw C CHaEREIr kYY) wl=w o Cpfruh) Coh Cop(ruk)
n"=n CTh(ER @I (BYd5hT2) nP=n Cp@Irm Cz=t CO%YI= rHgn
r7=r g doh-= hy ny'=n C=p(EIrnb (2=t CO%YE rity)
r Co@El- win~r™z I Cif p(€ k1 ex — W (nT Cnb)-Tz

[EXP ASSERT]
r Ces win-r“gd
I Cabksert p(€1- w C(h C=p(®Y|n CpHI -0

[EXP PAIR]

M Cele; - winT .t
I ®= 1 Gh; := store(T hi), I, t;)' =%, h := store(h, 1, 1)]
| fresh n“=n Csklect(r (h),l) =0)
r C18, e[ w[n=r™
[EXP FIELD ASSIGN]

[EXP FIELD REF] r Cele — w|n-l'E-'t1.t2
r e- wlnr5t ™= 1 bh; := store(I" (hi), t1, t2)]
I Cali - w|nT Pselect(r hi), t) r Celi:=e - w[nI ™t
[EXPS NONE] [EXPS SOME]
rcel-winr rces wyn r®=d
r, [ false [true-T -1 r Celed w C(h W) |n CaFr Peid

‘I:Dalgl ﬁﬂ]

[DEF]
r s[@zmﬁ:mg:@
1 r Cel- w|n-F “t 1
el Em(GE, B« w [DEFS]
Tm(CE A @IT Y]t — n P=Dy.--.Dn [Di - Ry
CmE) e} - R s R Ry

Fig. 3. Translation rules.
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the set Y df variables assigned in either e; or e,, and introduces an environment
I ™that maps Yo fresh variables. Then, having determined that the branch
e; of the conditional is executed, the rule asserts that the I My)1= I ¢y)] thus
recording that the representation of ¥ih the resulting environment I Mcome from
the branch e;. This translation of conditionals avoids the exponential blow-up of
traditional VC generation algorithms [10], and is analogous to the compact VC
generation algorithm of ESC/Java [16].

Our translation for pairs relies on the primitive functions select and store,
where store(a,i,Vv) extends a functional map a at index i with value v, and
select(a, i) selects the element at index i from map a. These two functions
satisfy the select-of-store axioms:

select(store(a,i,v),i) =v
i Bj [ sellect(store(a,i,V),]) = select(a,])

To aid in the translation, the environment ' maps the special variables h, hy, hy
into CLP terms that symbolically model of the current state of the heap. The
rule [exp pair] for the pair creation expression [g}, e, Cintroduces a fresh vari-
able | and asserts that select(I" (h),l) = 0, which means that the location |
is not yet allocated. The rule then updates the environment (1) to map h to
store(l" (h),1,1), indicating that location I is now allocated, and (2) to map
each h; to store(I" (h;), 1, ti), where the term t; represents the value of e;, for
i =1,2. Thus, the rule records the contents of the pair in the new terms for hy
and h,. The rules for accessing and updating pairs operate in a similar manner.

The most novel aspect of our translation concerns its handling of procedure
calls. Earlier approaches translated procedure calls using user-supplied specifi-
cations. However, since writing specifications for all procedures imposes a signif-
icant burden on the programmer, we use a di [erknt approach that leverages the
ability to define relation symbols recursively in CLP.

We translate each procedure definition m(X)¥e} into two rules. The first rule
defines an error relation E, that describes pre-states from which an invocation of
m may go wrong; the second rule defines a transfer relation T, that, in situations
where m terminates normally, describes the pre-state/post-state relation of m.
The arguments to the error relation E,,, are the formal parameters X, the global
variables @, blus the three special variables R h.hy.h, that model the heap. The
arguments to T, are again the formal parameters X, Ithe globals §, ithe special
variables h—¥ollowed by d5lwhich represents the post-state of the global variables,
followed by k= hth;th,5 which represents the post heap state, followed by a
term representing the return value of m. The rule [exp carr] for a procedure call
m(&)enerates a wrong condition w™that uses E, to express states from which
the execution of m(&dmay go wrong, and generates a normal condition n“that
uses T to describe how m(&may terminate normally.

5.1 Correctness of the Translation

Given an imperative program P, we translate it into error and transfer rela-
tions R-According to the translation rule CH - RJFor any expression e, the
judgement
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rcel- w|nrtt

describes the behavior of that expression from any initial state ¢ that is com-
patible with I, i.e., where dom(I") [£88in(0) and Im(R-D) = T@ =T). We
use the notation g = I' to abbreviate | 5, ©) o(X) = I (x), where o(x) means
the ground term representing the value a(x).

To determine if e goes wrong from o (i.e., P [el: ¢ wr), we check

Im(RD) FT@=r Cw).

Similarly, to check if e terminates normally, yielding post-store a™and result v,
we check

ImMRD)ET@=r CAlCa=r"cu=t).

Thus, to check if the program’s initial procedure main goes wrong, we use the

CLP query: B
|m(|:@,:)) |: [:Emain(m-

If this query is satisfiable, the CLP implementation returns a satisfying assign-
ment for §-and hdescribing the initial state of an erroneous execution. If the
CLP implementation also returns a CLP derivation, then this derivation corre-
sponds in a fairly direct manner to a trace of the erroneous execution.

6 Applications

We next consider the example program shown in Figure 4, which, for clarity,
is presented using Java syntax. This class implements rational numbers, where
a rational is represented as a pair of integers for the numerator and denomina-
tor. The class contains a constructor for creating rationals and a method trunc
for converting a rational to an integer. The example also contains a test har-
ness, which reads in two integers, n and d, ensures that d is not zero, creates
a corresponding rational, and then repeatedly prints out the truncation of the
rational.

We wish to check that a division-by-zero error never occurs. We express this
correctness property as an assertion in the trunc method, and translate the
instrumented program into CLP rules. The CLP query Emain() is satisfiable,
indicating an error in the program. An investigation of a satisfying CLP deriva-
tion reveals the source of the error: the arguments are passed to the Rational
constructor in the wrong order. Note that since both arguments are integers,
Java’s type system does not catch this error.

After fixing this bug, the query Emain() is now unsatisfiable, indicating that
a division-by-zero error cannot occur. However, the CLP implementation that
we use, SICStus Prolog [27], requires several seconds to answer this query, since
its depth-first search strategy explicitly iterates through the loop in main 10,000
times.

To avoid this ine [ciehcy, we are currently developing a CLP implementa-
tion optimized towards software model checking. This implementation uses lazy



200 C. Flanagan

class Rational { public static void main(String[] a) {
int n = readInt(), d = readInt();
int num, den; if(d==0) {
return;
Rational(int n, int d) { }
num = n; Rational r = new Rational(d,n);
den = d; for(int i=0; i<10000; i++) {
} print( r.trunc() );
}
int trunc() { }
assert den != 0;
return num/den;
}
}

Fig. 4. The example program Rational.

predicate abstraction and counter-example driven abstraction refinement. Our
prototype implementation determines the unsatisfiability of the Rational ex-
ample in just two iterations. We are currently extending this implementation to
handle more realistic benchmarks.

7 Related Work

This paper can be viewed as a synthesis of ideas from extended static check-
ing [8,14] and model checking [5,24,3,23]. An extended static checker translates
the given program into a combination of constraints over program variables, and
uses sophisticated decision procedures to reason about the validity of these con-
straints, thus performing a precise, goal-directed analysis. However, the transla-
tion of (recursive) procedure calls requires programmer-supplied specifications.
We build on top of the ESC approach, but avoid the need for procedure specifica-
tions by targeting the extended logic of CLP, in which we can express recursion
directly.

The depth-first search of standard CLP implementations [27] corresponds to
explicit path exploration, much like that performed by software model checkers,
such as Bandera [11]. However, whereas Bandera relies on programmer-supplied
abstractions to abstract (infinite-state) data variables, the CLP implementation
reasons about data values using collections of constraints, thus providing a form
of automatic data abstraction. The programmer-supplied abstractions of Ban-
dera do provide stronger termination guarantees, but may yield false alarms.

The software checkers SLAM [1] and BLAST [18] use a combination of predi-
cate abstraction [17] and automatic predicate inference to avoid false alarms and
the need for programmer-supplied abstractions, though they may not terminate.
These tools have been successfully applied to a number of device drivers. Both
tools abstract the given imperative program to a finite-state boolean program,
which is then model checked. This paper suggests that the well-studied logic of
CLP may also provide a suitable foundation for the development of such tools.
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Delzanno and Podelski [7] also explore the use of CLP for model checking.
They focus on concurrent systems expressed in the guarded-command specifica-
tion language proposed by Shankar [26], which does not provide explicit support
for dynamic allocation or recursion. The performance of their CLP-based model
checking approach is promising.

Bruening [2] has built a dynamic assertion checker based on state-space ex-
ploration for multithreaded Java programs. Stoller [28] provides a generalization
of Bruening’s method to allow model checking of programs with either message-
passing or shared-memory communication. Both of these approaches operate on
the concrete program without any abstraction. Yahav [30] describes a method to
model check multithreaded Java programs using a 3-valued logic [25] to abstract
the store.

Abstract interpretation [6] is a standard framework for developing and de-
scribing program analyses. It provides the semantics basis for the abstractions
in the above model checking tools and it has been applied successfully in many
applications, including rocket controllers [29].

Instead of avoiding the need for loop invariants and specifications, another
approach is to infer such annotations automatically. The Houdini annotation
inference system [15,13] re-uses ESC/Java as a subroutine in a generate-and-
test approach to annotation inference. Daikon uses an empirical approach to
find probable invariants [12].

Symbolic execution is the underlying technique of the successful bug-finding
tool PREfix for C and C++ programs [4]. For each procedure in the given
program, PREfix synthesizes a set of execution paths, called a model. Models
are used to reason about calls, which makes the process somewhat modular,
except that fixpoints of models are approximated iteratively for recursive and
mutually recursive calls.

8 Conclusion

This paper explores the connection between two programming paradigms:
the traditional imperative paradigm and the constraint logic programming
paradigm. We have expressed the correctness of imperative programs in terms
of CLP satisfiability, based on a novel, semantics-preserving translation from
imperative programs to CLP programs. The resulting CLP programs provide a
clean way to reason about the behavior and correctness of the original imperative
program.

This connection has immediate practical applications: it enables us to use ex-
isting CLP implementations to check correctness properties of imperative pro-
grams. For depth-first CLP implementations, this approach yields an e [cieht
method for bounded model checking of software, using a combination of sym-
bolic reasoning for data values and explicit path exploration.

Finally, the logic of CLP is well-studied [19,21,20,22], and may provide op-
timizations and implementation techniques such as tableaux methods and sub-
sumption [22], which o[en the promise of complete model checking on certain
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classes of infinite-state programs. More experience on practical examples is cer-
tainly necessary, and may provide intuition and motivation to develop specialized
CLP implementations optimized for software model checking.
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Abstract. This paper addresses the problem of establishing temporal properties
of programs written in languages, such as Java, that make extensive use of the
heap to allocate—and deallocate—new objects and threads. Establishing liveness
properties is a particularly hard challenge. One of the crucial obstacles is that heap
locations have no static names and the number of heap locations is unbounded. The
paper presents a framework for the verification of Java-like programs. Unlike clas-
sical model checking, which uses propositional temporal logic, we use first-order
temporal logic to specify temporal properties of heap evolutions; this logic allows
domain changes to be expressed, which permits allocation and deallocation to be
modelled naturally. The paper also presents an abstract-interpretation algorithm
that automatically verifies temporal properties expressed using the logic.

1 Introduction

Modern programming languages, such as Java, make extensive use of the heap. The
contents of the heap may evolve during program execution due to dynamic allocation
and deallocation of objects. Moreover, in Java, threads are first-class objects that can be
dynamically allocated. Statically reasoning about temporal properties of such programs
is quite challenging, because there are no a priori bounds on the number of allocated
objects, or restrictions on the way the heap may evolve. In particular, proving liveness
properties of such programs, e.g., that a thread is eventually created in response to each
request made to a web server, can be a quite difficult task.
The contributions of this paper can be summarized as follows:

1. We introduce a first-order modal (temporal) logic [9,8] that allows specifications of
temporal properties of programs with dynamically evolving heaps to be stated in a
natural manner.

2. We develop an abstract interpretation [4] for verifying that a program satisfies such
a specification.

3. We implemented a prototype of the analysis using the TVLA system [11] and ap-
plied it to verify several temporal properties, including liveness properties of Java
programs with evolving heaps.
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the Academy of Science Israel, by the RTD project IST-1999-20527 “DAEDALUS” of the
European FP5 programme, by ONR under contract N00014-01-1-0796, and by the A. von
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We have used the framework to specify and verify the following:

Specify general heap-evolution properties: The framework has been used to specify
in a general manner, various properties of heap evolution, such as properties of garbage-
collection algorithms.

Verify termination of sequential heap-manipulating programs: Termination is shown
by providing a ranking function based on the set of items reachable from a variable
iterating over the linked data structure. In particular, we have verified termination of all
example programs from [6].

Verify temporal properties of concurrent heap-manipulating programs: We have used
the framework to verify temporal properties of concurrent heap-manipulating programs
— in particular, liveness properties, such as the absence of starvation in programs using
mutual exclusion, and response properties [ 13]. We have applied this analysis to programs
with an unbounded number of threads.

Due to space limitations, the prototype implementation is only discussed in [17,20].

The remainder of this paper is organized as follows: Section 2 gives an overview of
the verification method and contrasts it with previous work. Section 3 introduces trace
semantics based on first-order modal logic, and discusses how to state trace properties
using the language of evolution logic. Section 4 defines an implementation of trace
semantics via first-order logic. Section 5 shows how abstract traces are used to conser-
vatively represent sets of concrete traces. Section 6 summarizes related work. Finally,
Section 7 concludes the paper.

2  Overview

2.1 A Temporal Logic Supporting Evolution

The specification language, Evolution Temporal Logic (ETL), is a first-order linear tem-
poral logic that allows specifying properties of the way program execution causes dy-
namically allocated memory (“the heap”) to evolve. It is natural to consider the concrete
semantics of a program as the set of its execution traces [5,16], where each trace is an
infinite sequence of worlds. First-order logical structures provide a natural representa-
tion of worlds with an unbounded number of objects: an individual of the structure’s
domain (universe) corresponds to an anonymous, unique store location, and predicates
represent properties of store locations. Such a representation allows properties of the
heap contents to be maintained while abstracting away any information about the actual
physical locations in the store.

This gives rise to traces in which worlds along the trace may have different domains.
Such traces can be seen as models of a first-order modal logic with a varying-domain
semantics [8]. This could be equivalently, but less naturally, modelled using constant-
domain semantics.

This framework generalizes other specification methods that address dynamic allo-
cation and deallocation of objects and threads. In particular, its descriptive power goes
beyond Propositional LTL and finite-state machines (e.g., [1]).

Program properties can be verified by showing that they hold for all traces. Techni-
cally, this can be done by evaluating their first-order modal-logic formulae against all
traces. We use a variant of Lewis’s counterpart theory [12] to cast modal models (and
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formula evaluation) in terms of classical predicate logic with transitive closure (FOTC)
[3].

Program verification using the above concrete semantics is clearly non-computable
in general. We therefore represent potentially infinite sets of infinite concrete traces
by one abstract trace. Infinite parts of the concrete traces are folded into cycles of the
abstract traces. Termination of the abstract interpretation on an arbitrary program is
guaranteed by bounding the size of the abstract trace. Two abstractions are employed:
(i) representing multiple concrete worlds by a single abstract world, and (ii) creating
cycles when an abstract world reoccurs in the trace.

Because of these abstractions, we may fail to show the correctness of certain pro-
grams, even though they are correct. Fortunately, we can use reduction arguments and
progress monitors as employed in other program-verification techniques (e.g., [10]).

As in finite-state model checking (e.g., [16]), we let the specification formula affect
the abstraction by making sure that abstract traces that fulfill the formula are distinguished
from the ones that do not. However, our abstraction does not fold the history of the trace
into a single state. This idea of using the specification to affect the precision of the
analysis was not used in [15,18], which only handle safety properties.

2.2 Overview of the Verification Procedure

First, the property ¢ is specified in ETL. The formula is then translated in a straight-
forward manner into an FOTC logical formula, (¢)', using a translation procedure
described in Appendix A. An abstract-interpretation procedure is then applied to explore
finite representations of the set of traces, using Kleene’s 3-valued logic to conservatively
interpret formulae. The abstract-interpretation procedure essentially computes a great-
est fixed point over the set of traces, starting with an abstract trace that represents all
possible infinite traces from an initial state, and gradually increasing the set of abstract
traces and reducing the set of represented concrete traces. Finally, the formula (¢)" is
evaluated on all of the abstract traces in the fixed point. If ()" is satisfied in all of them,
then the original ETL formula ¢ must be satisfied by all (infinite) traces of the program.
However, it may be the case that for some programs that satisfy the ETL specification,
our analysis only yields “maybe”.

2.3 Running Example

Consider a web server in which a new thread is dynamically allocated to handle each
http request received. Each thread handles a single request, then terminates and is
subject to garbage collection. Assume that worker threads compete for some exclusively
shared resource, such as exclusive access to a data file. Figure 1 shows fragments of a
Java program that implements such a naive web server.

A number of properties for the naive web-server implementation are shown in Tab. 1
as properties P1-P4. For now you may ignore the formulae in the third column; these
will become clear as ETL syntax is introduced in Sec. 3.

Due to the unbounded arrival of requests to the web server, and the fact that a thread
is dynamically created for each request, absence of starvation (P2) does not hold in
the naive implementation. To guarantee absence of starvation, we introduce a scheduler
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public class Worker implements Runnable {
Request request;

Resource resource;

public void run() { ...

synchronized(resource) { Iwq

resource.processRequest (request) ; lwe

} w2
i3

Fig. 1. Java fragment for worker thread in a web server with no explicit scheduling.

thread into the web server. The web server now consists of a listener thread (as before)
and a queue of worker threads managed by the scheduler thread. The listener thread
receives an http request, creates a corresponding worker thread, and places the new
thread on a scheduling queue. The scheduler thread picks up a worker thread from the
queue and starts its execution (which is still a very naive implementation).

When using a web server with a scheduler, a number of additional properties of in-
terest exist, labeled P5—P8 (for additional properties of interest see [17]). Figure 2 shows
fragments of a web-server program in which threads use an explicit FIFO scheduler.

The ability of our framework to model explicit scheduling queues provides a mech-
anism for addressing issues of fairness in the presence of dynamic allocation of threads.
(Further discussion of fairness is beyond the scope of this paper).

public class Scheduler public class Listener
implements Runnable { implements Runnable {
protected Queue schedQ; protected Queue schedQ; ...
protected Resource resource; ... public void run() {
public void run() { while(true) { ... laz
while(true) { ... Is1 req=rqStream.readObject(); laz
synchronized(resource) { Iso worker=
while(resource.isAcquired()) new Thread(new Worker(req)); las
resource.wait(); Is3 schedQ. enqueue (worker) ; lag
// may block until e
// queue not empty 3
worker=schedQ.dequeue() ; Isa public class Worker
worker.start(); Iss implements Runnable {
} Request req;
} Resource resource; ...
¥ public void run() {

} synchronized(resource) { ... lwg
resource.processRequest (req); Iwc
resource.notifyAl1();

} Iwy
1}

Fig. 2. Java code fragment for a web server with an explicit scheduler.

3 Trace-Based Evolution Semantics

In this section, we define a trace-based semantic domain for programs that manipulate
unbounded amounts of dynamically allocated storage. To allow specifying temporal
properties of such programs, we employ first-order modal logic [8]. Various such logics
have been defined, and in general they can be given a constant-domain semantics, in
which the domain of all worlds is fixed, or a varying-domain semantics, in which the
domains of worlds can vary and domains of different worlds can overlap. In the most
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Table 1. Web server ETL specification using predicates of Tab. 2.

Pr.|Description Formula
[T, to: thread.(tl =4 tg)

- ~(atflwe](ty) Cat{lwe](tz))
P2 | absence of starvation for worker threads [TfIthread.at[lw.](t) —» [Caflw:](t)
p3|@ thread only created when [(Ifthread.—~ COT 1
a request is received (O0xhread.— DU (Ozrequest. [
P4 | each request is followed by thread creation | [IMlIrequest. [ 1» [Tflthread. [T 1

mutual exclusion of listener and scheduler | [T t,: thread.(t; & to)

P1 | mutual exclusion over the shared resource

P5

over scheduling queue - =(atlsz](t1) Cat[laz](t2))
P6 each created thread is eventually [Tfthread. 11

inserted into the scheduling queue - [Igllqueue.rval[head.nextJ{g, t)
P7 each scheduled worker thread was [THthread.at[Iw;](t)

removed from the scheduling queue - = [glqueue.rval[head.next{q, t)

[qqueue. [TIthread.
(rval[head.nextJ{q, t))
~ [=(rvallhead.nextTq, t))

each worker thread waiting in the queue

P8 eventually leaves the queue

general setting, in both types of semantics an object can exist in more than a single world,
and an equality relation is predefined to express global equality between individuals.

To model the semantics of languages such as Java, and to hide the implementa-
tion details of dynamic memory allocation, we use a semantics with varying domains.
However, the semantics is deliberately restricted because of our intended application
to program analysis. By design, our evolution semantics has a notion of equality in the
presence of dynamic allocation and deallocation, without the need to update a prede-
fined global-equality relation. Evolution semantics is adapted from Lewis’s counterpart
semantics [12]. In both evolution and counterpoint semantics, an individual cannot exist
in more than a single world; each world has its own domain, and domains of different
worlds are non-intersecting. Under this model, equality need only be defined within a
single world’s boundary; individuals of different worlds are unequal by definition.To
relate individuals of different worlds, an evolution mapping is defined; however, unlike
Lewis, we are interested in an evolution mapping that is reflexive, transitive, and sym-
metric, which models the fact that, during a computation, an allocated memory cell does
not change its identity until deallocated. In Sec. 5.3, we show how to track statically, in
the presence of abstraction, the equivalence relation induced by the evolution mapping.

As is often done, we add a skip action from the exit of the program to itself, so that
all terminating traces are embedded in infinite traces. The semantics of the program is
its set of infinite traces.

In the rest of this paper, we work with a fixed set of predicates (or vocabulary)
P = {eq,p1, ..., Pk} We denote by P the set of predicates from P with arity k.

Definition 1. A world (program configuration) is represented via a first-order logical
structure W = My, W LWwhere Uy, is the domain (universe) of the structure, and 1,
is the interpretation function mapping predicates to their truth values; that is, for each
p CPX w(p): UK — {0,1}, such that for all u ULy, w(eq)(u,u) = 1, and for all
Ug, Uz Uy such that Uy and Uy are distinct individuals 1, (eq)(uz, uz) = 0.
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Dnl 1€y VATTZ Dn2 e, yAn3
— —

Definition 2. Afrace is an infinite sequence of worlds Ty o
..., where: (i) each world represents a global state of the program, Ty is an initial state,
and for each T;, its successor world Tj+1 is derived by applying a single program
action to M, (ii) Dy, U}, is the set of individuals deallocated at T, and Ay,,, [1
Un,;., Is the set of individuals newly allocated at Tlj+1; (iii) each pair of consecutive
worlds Ty, Tlj+1 is related by a stepwise evolution function, a bijective renaming function
en, U, \Dr; - Uny,, VAn,,.

Extracting Trace Properties

To extract trace properties, we need a language that can relate information from different
worlds in a trace. We define the language of evolution logic (ETL), which is a first-order
linear temporal logic with transitive closure, as follows:

Definition 3. [ETL Syntax] An ETL formula is defined by

¢ = 0[1p(v1, ..., vn)| [l [Ngldy Chb|—dy| Dl b1 |(TC vy, va: d1)(va, Va)
|¢1 U b2[XP1

where Vi are logical variables.

The set of free variables in a formula ¢ denoted by FV (0) is defined as usual. In
a transitive closure formula, FV ((T C vy,V2: ¢1)(V3,Va)) = (FV (¢1) \ {vi,Vvo}) [
{vs,va}.

The operators [and [ allow the specification to refer to the exact moments of birth
and death (respectively) of an individual.!

Shorthand Formulae: For convenience, we also allow formulae to contain the short-
hand notations (Vi = V3) = eq(vy, v2), (v1i B vo) = —eq(vy, v2), o1 Chb =
(=1 [502). ¢1 —» G2 £ —d1 [, (1 2 ~([hdy), [dal= 1U d1,and [dal 2
(1 U —¢1). We also use the shorthand p“(V3, v4) for (T C v1,V2: p(V1,V2))(v3, Vvs) [
(V3 = v4), when p is a binary predicate.

In our examples, the predicates that record information about a single world
include the predicates of Tab. 2, plus additional predicates defined in later sec-
tions. The set of predicates {at[lab](t): lab [—ILabels} is parameterized by the
set of program labels. Similarly, the set of predicates {rval[fld](0o1,02): fld [
Fields} is parameterized by the set of selector fields. We use the shorthand notation
rval[x.fldJév,, vo) £ Ovtrval[x](vq, vy Coval[fld] (V5 v,). The transitive closure
allows specifying properties relating to unbounded length of heap-allocated data struc-
tures (e.g., in rval[fId]"(V5vy)).

We use unary predicates, such as thread(t), to represent type information. This
could have been expressed using a many-sorted logic, but we decided to avoid this for
expository purposes. Instead, for convenience we define the shorthands [Vtype.¢p =

Vype(v) Cqland Oitype.¢ £ Liltype(v) — 6.

! These operators could be extended to handle allocation and deallocation of a (possibly un-
bounded) set of individuals.
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Table 2. Predicates used to record information about a single world

Predicates Intended Meaning

thread(t) tis a thread

{at[lab](t) : lab Tkbels} thread t is at label lab

{rval[fld](0o1, 0,) : fld [Hlields} |field fld of the object 0; points to the object 02
heldBy(l, t) the lock | is held by the thread t

blocked(t, I) the thread t is blocked on the lock |

waiting(t, 1) the thread t is waiting on the lock |

Example 1. Property P2 of Tab. 1 specifies the absence of starvation for worker threads
(Fig. 1). The formula [fXhread. [afflw;](t) states that some thread eventually enters
the critical section. The formula [THthread. [atfflw:](t) expresses the fact that globally
some thread eventually enters the critical section.

The property [(I¥] V1 [TIV) states that globally, each individual that is
allocated during program execution is eventually deallocated. Note that the universal
quantifier quantifies over individuals of the world in which it is evaluated. This property
is an instance of the commonly used “Response structure” [13,7], in which an allocation
in a world has a deallocation response in some future world.

The properties

[Exhread. [@[LK](t) — Oarvalli.nextSt, v) CIXal[lin](t) C=rvalli.next 5L, v)))
[Exhread. [(Ozkt[LK](t) C=rvalfi.next(t, v) — [=at[lin](t) C=rval[i.next e, v))

establish a ranking function for linked data structures based on transitive reachability.
These properties state that at the loop head lj, the set of individuals transitively reachable
from program variable i decreases on each iteration of the loop. (Typically i is a pointer
that traverses a linked data structure during the loop.) Note that these properties relate
an unbounded number of individuals of orld to another.

The property C(IVILCTIHIkhread. cver —rvalx.fldgt,v) - CII)is a

fld CEldelds
desired property of a garbage collector — that all non-reachable items are eventually

collected.

Evolution Semantics. In the following definitions, head(m) denotes the first world in a
trace T, tail(1) denotes the suffix of T without the first world, and 1! denotes the suffix
of T starting at the i-th world. We also use last(T) to denote the last world of a finite
trace prefix T.

Definition 4. [Evolution mapping] Let T be the finite prefix of length K of the trace .
We say that an individual U [Ukeaq(ry evolves into an individual ut CUhastr) in the
trace T in K steps, and write T |Ex U ~ USwhen there is a sequence of individuals
Uq,...,Ux such that Uy = U and Ux = uDandfor each two successive worlds in T,
Uj+1 = eg (Uj).

Definition 5. [Assignment evolution] Let T be the finite prefix of length K of the trace
T. Given a formula ¢ and an assignment Z mapping free variables of ¢ to individuals
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of a domain Uneaq(r), we say that U |y Z ~ Z™(Z evolves into Z in  in K steps)
if for each free variable fv; of &, T Ex Z(fv;) ~ Z4;), Z(fi) [CUhead(r), and
Z%i) II‘ast(r)-

Definition 6. [ETL evolution semantics] We define inductively when an ETL formula ¢
is satisfied over a trace T with an assignment Z (denoted by M, Z = ¢) as follows:

-mZELandnotn,Z EO.
- T, Z EpV1, ..., Vk) when theadmy (P)(Z(V1), ..., Z(W)) =1
- T, Z E-dwhennotn,Z E b
-, ZF ¢ when,Z Edorn,Z E Y
- N, Z | DLp(v) when there exists U [Uheaqemy s-t. T, Z[v B u] FE ¢(v)
- ,Z | (TC vy, Va2: §)(Va,Vs) when there exists Uy, ... ,Un+1 TOhead(m), such
that Z(V3) = U1, Z(V4) = Un+1, and forall1 < i <n,
m,Z[vi B uj,v2 B uUjr1] E ¢.
- N, Z | Dbhen Z(V) [Bhead(tail(m))-
-m,Z |= v When Z(V) EDhead(n).
- T, Z |E X when there exists Z such that tail(n), ZY= ¢ and n |1 Z ~~ ZY
- M,Z E O U Y when there exists k = 1, Z5 and ZDs.1.,
€, Z= Y andn Eg Z ~» ZP
andforalll<j <k m,ZM=dandn |5 Z ~ 2T

We write U |= ¢ when 1, Z = § for every assignment Z.

It is worth noting that the first-order quantifiers in this definition only range over
the individuals of a single world, yet the overall effect achieved by using the evolution
mapping is the ability to reason about individuals of different worlds, and how they
relate to each other. In essence, the assignment Z[v B u] binds V to (the evolution of)
an individual from the domain of the world over which the quantifier was evaluated (cf.
the semantics of X and U ).

The combination of first-order quantifiers and modal operators creates complications
that do not occur in propositional temporal logics. In particular, the quantification domain
of a quantifier may vary as the domain of underlying worlds varies. Verification of
ETL properties therefore requires a mechanism for recording the domain related to
each quantifier, and for relating members of quantification domains to individuals of
future worlds. For ETL, this mechanism is provided by evolution-mappings, which relate
individuals of a world to the individuals of its successor world. Transitively composing
evolution-mappings captures the evolution of individuals along a trace.

curiWorld curWorld

(@) (b)

Fig. 3. Interaction of first-order quantifiers and temporal operators
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Example 2. The formula DZ1IX(Y) states that the pointer variable x remains constant
throughout program execution, and points to an object that existed in the program’s
initial world. On the other hand, the formula [TVIX(v) merely states that x never has
the value null; however, X is allowed to point to different objects at different times in
the program’s execution, and in particular X can point to objects that did not exist in
the initial world. Examples illustrating the two situations are shown in Fig. 3, where in
(a) X points to the same object in all worlds, and in (b) it points to different objects in
different worlds.

Definition 7. We say that a program satisfies an ETL formula ¢ when all (infinite) traces
of the program satisfy .

The evolution semantics allows each world to have a different domain, thus concep-
tually representing a varying-domain semantics, which allows dynamic allocation and
deallocation of objects and threads. In Section 4, we give a possible implementation of
this semantics in terms of evolving first-order logical structures.

Separable Specifications. It is interesting to consider subclasses of ETL for which the
verification problem is somewhat easier. Two such classes are: (i) spatially separable
specifications — do not place requirements on the relationships between individuals of
one world; this allows each individual to be considered separately, and the verification
problem can be handled as a set of propositional verification problems; (ii) temporally
separable specifications — do not relate individuals across worlds. Essentially, this
corresponds to the extraction of propositional information from each world, and having
temporal specifications over the extracted propositions. This class was addressed in [2,
19].

4 Expressing Trace Semantics Using First-Order Logic

In this section, we use first-order logic to express a trace semantics; we encode temporal
operators using standard first-order quantifiers. This allows us to automatically derive
an abstract semantics in Section 5. This approach also extends to other kinds of temporal
logic, such as the p-calculus. Our initial experience is that we are able to demonstrate
that some temporal properties, including liveness properties, hold for programs with
dynamically allocated storage.

4.1 Representing Infinite Traces via First-Order Structures

We encode a trace via an infinite first-order logical structure using the set of designated
predicates specified in Tab. 3. Successive worlds are connected using the succ predicate.
Each world of the trace may contain an arbitrary number of individuals. The predicate
exists(0, w) relates an individual 0 to a world W in which it exists. Each individual only
exists in a single world. The evolution(oy, 02) predicate relates an individual 0; to its
counterpart 03 in a successor world. The predicates iSN ew and iSF reed hold for newly
created or deallocated individuals and are used to model the allocation and deallocation
operators.
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Definition 8. A concrete trace is a trace encoded as an infinite first-order logical struc-
ture T = [y, it Lwhere Ut is the domain of the trace, and \t is the interpretation
function mapping predicates to their truth value in the logical structure, i.e., for each
p CPK 11 (p): UX - {0,1}. To exclude structures that cannot represent valid traces,
we impose certain integrity constraints [15]. For example, we require that each world
has at most one successor (predecessor), and that equality (eq) is reflexive.

Table 3. Trace predicates.

Predicate Intended Meaning Predicate Intended Meaning
world(w) w is a world exists(o, w) object 0 is in world w
currworld(w) |w is the current world evolution(o1, 02)|object 01 evolves to 02
initialWorld(w)|w is the initial world isNew(0) object 0 is new
succ(wa, W) W is the successor of wy ||isF reed(o) object 0 is freed

walli

atfw_1]

wallq]
atfw_1]
blocked

initialWorld curtworld

blocked

h\dB
succ — succ heldBy succ
) ~N )\
@ o

Fig. 4. A concrete trace T 4E'

Example 3. Figure 4 shows four worlds of the trace T Hvhere each world is depicted as
a large node containing other nodes and worlds along the trace are related by successor
edges. Information in a single world is represented by a first-order logical structure,
which is shown as a directed graph. Each node of the graph corresponds to a heap-
allocated object. Hexagon nodes correspond to thread objects, and small round nodes
to other types of heap-allocated objects. Predicates holding for an object are shown
inside the object node, and binary predicates are shown as edges. For brevity, we use the
label rval[r] to stand for rval[resource]. Grey edges, crossing world boundaries, are
evolution edges, which relate objects of different worlds. Note that these are the only
edges that cross world boundaries.

4.2 Exact Extraction of Trace Properties

Once traces are represented via first-order logical structures, trace properties can be
extracted by evaluating formulae of first-order logic with transitive closure.

We translate a given ETL formula ¢ to an FOT€ formula (¢)" by making the
underlying trace structure explicit, and translating temporal operators to FOTC claims
over worlds of the trace. The translation procedure is straightforward, and given in
Appendix A.
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Example 4. The property [Tthread. [afflwc](t) of Example 1 is translated to

0wl: world. 03 thread.initialW orld(w) CeXists(t,w) CIWITT: thread.succ (W, wy 1
exists(t5'wY Cevolution @, t9 Cat[lwe](tY

which evaluates to 1 for the trace prefix of Fig. 4.

Definition 9. The meaning of a formula & over a concrete trace T, with respect to an
assignment Z, denoted by [§]1 (2), yields a truth value in {0, 1}. The meaning of ¢ is
defined inductively as follows:

12 (Z) =1 (where | [30,1}) [p(va, ... . vi)l3 (Z) = " (P)(Z (V1) ... , Z(Vi))
[$1 CHEID (Z2) = max([$113 (2). [$213 (Z2)) [~$113 (Z) = 1 — [$1]3 (Z)
[04Q.$113 (2) = max,, 7 [$213 (Z[v1 B u])
[(TCvi,v2: 1)(vs,va)l] (Z2) =
MaX =1 Uy une, £, MiNsI$al; ZIvi B Ui vz B Uisal)
Z(V3) = ug, Z(V4) = Un+1

We say that T and Z satisfy & (denoted by T,Z |= ¢) if [§13 (Z) = 1. We write T |= ¢
if for every Z we have T,Z £ ¢.

The correctness of the translation is established by the following theorem:

Theorem 1. For every closed ETL formula ¢ and a trace M, T |E & if and only if
rep(n) | (), where rep(n) is the first-order representation of T, i.e., the first-order
structure that corresponds to M, in which every world in T is mapped to a world in
rep(m), with the succ predicate holding for consecutive worlds.

4.3 Semantics of Actions

Informally, a program action ac consists of a precondition aCpre under which the action
is enabled, which is expressed as a logical formula, and a set of formulae for updating the
values of predicates according to the effect of the action. An enabled action specifies that
a possible next world in the trace is one in which the interpretations of every predicate
p of arity K is determined by evaluating a formula ¢p(v1,V2, ..., Vi), which may use
V1,V2,...,Vk and all predicates in P (see [15]).

5 Exploring Finite Abstract Traces via Abstract Interpretation

In this section, we give an algorithm for conservatively determining the validity of a
program with respect to an ETL property. A key difficulty in proving liveness properties
is the fact that a liveness property might be violated only by an infinite trace. Therefore,
our procedure for verifying liveness properties is a greatest fixed-point computation,
which works down from an initial approximation that represents all infinite traces. In
this section, we present our abstract-interpretation algorithm; procedure explore of
Figure 8.

Our approach uses finite representations of infinite traces. Finite representations
are obtained by abstraction to three-valued logical structures. The third logical value,
1/2, represents “unknown” and may result from abstraction. The abstract semantics
conservatively models the effect of actions on abstract representations.
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5.1 A Finite Representation of Infinite Traces

The first step in making the algorithm of Figure 8 feasible is to define a finite represen-
tation of sets of infinite traces. Technically, we use 3-valued logical structures to finitely
represent sets of infinite traces.

Definition 10. An abstract trace is a 3-valued first-order logical structure T =
W+, 17 Ldvhere Ut is the domain of the abstract trace, and \t is the interpretation, map-
ping predicates to their truth values, i.e., for each p TP, 11 (p): UX - {0,1,1/2}.
We refer to the values 0 and 1 as definite values, and to 1/2 as a non definite value.

An individual u for which 17 (€q)(u, u) = 1/2 is called a summary individual;’> a
summary individual may represent more than one concrete individual.

The meaning of a formula ¢ over a 3-valued abstract trace T, with respect to an
assignment Z, denoted by [0]3 (2), is defined exactly as in Def. 9, but interpreted over
{0,1,1/2}.

We say that a trace T with an assignment Z potentially satisfies a formula & when
[611 (Z) T, 1/2} and denote this by T,Z =3 ¢.

We now define how concrete traces are represented by abstract traces. The idea is
that each individual of a concrete trace is mapped by the abstraction into an individual
of an abstract trace. The new two definitions permit an (abstract or concrete) trace to be
related to a less-precise abstract trace. Abstraction is a special case of this in which the
first trace is a concrete trace. First, the following definition imposes an order on truth
values of the 3-valued logic:

Definition 11. Forly, |, [0, 1, 1/2}, we define the information order on truth values
as follows: |1 CIalifl; =l or l; = 1/2.

The embedding ordering of abstract traces is then defined as follows:

Definition 12. Let T = [0, 1\Ldnd TP= W51 Y be abstract traces encoded as first-
order structures. A function ¥ : T = T Such that T is surjective is said to embed T into
T Yif for each predicate p TPK, and for each uy, . .. ,u, CUOI:

1(p(U1, Uz, ..., Uk)) CIP(F(ua), F(Uz), ..., F(uK)))
We say that T “represents T when there exists such an embedding T.

One way of creating an embedding function f is by using canonical abstraction.
Canonical abstraction maps individuals to an abstract individual based on the values
of the individuals’ unary predicates. All individuals having the same values for unary
predicate symbols are mapped by f to the same abstract individual. We denote the
canonical abstraction of a trace T by t_embed(T). Canonical abstraction guarantees
that each abstract trace is no larger than some fixed size, known a priori.

Example 5. Figure 5 shows an abstract trace, with four abstract worlds, that represents
the concrete trace of Fig. 4. An individual with double-line boundaries is a summary

% Note that for all u [k, 17 (eq)(u, u) = 1 or 11 (eq)(u, u) = 1/2.
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atiw_c)

atlw_1]

Wa‘m

initiaWorld curWorld

Fig. 5. An abstract trace T, that represents the concrete trace T 4':.'

individual representing possibly more than a single concrete individual. Similarly, the
worlds with double-line boundaries are summary worlds that possibly represent more
than a single world. Dashed edges are 1/2 edges, that represent relations that may or may
not hold. For example, a 1/2 successor edge between two worlds represents the possible
succession of worlds. The summary world following the initial world represents the two
concrete worlds between the initial and the current world of T 4E,]Which have the same
values for their unary predicates. Similarly, the summary node labeled at[lw; ] represents
all thread individuals in these worlds that reside at label Iwy.

Note that this abstract trace also represents other concrete traces besides T 4|:,' for
example, concrete traces in which in the current world some threads are blocked on the
lock and some are not blocked.

5.2 Abstract Interpretation

The abstract semantics represents abstract traces using 3-valued structures. Intuitively,
applying an action to an abstract trace unravels the set of possible next successor worlds
in the trace. That is, an abstract action elaborates an abstract trace by materializing a
world w from the summary world at the tail of the trace; w becomes the definite successor
of the current world currWorld, and w’s (indefinite) successor is the summary world
at the tail of the trace. currWorld is then advanced to w, which often causes the former
currWorld to be merged with its predecessor. When a trace is extended, we evaluate
the formula’s precondition and its update formulae using 3-valued logic (as in Def. 10).

Example 6. Figures 5, 6, and 7 illustrate the application of the action that releases a
lock. Figure 6 shows the materialization of the next successor world for the trace T4 of
Figure 5. In the successor world, the thread that was at label lw. no longer holds the
lock and has advanced to label Iw,. The currW orld predicate is then advanced, and the
former currW orld is merged with its predecessor, resulting in the abstract trace shown
in Figure 7.

The abstract-interpretation procedure explore is shown in Figure 8. It computes a
greatest fixed point starting with the set {T, T, F;'these two abstract traces represent
all possible concrete (infinite) traces that start at a given initial state. T,"ahd T,"ehch
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heldgy

‘ Ky
\
oy
=7

atfw_1]

initialWorld curiWorld

Fig. 7. The resulting abstract trace after applying an action over T4 (after advancing currWorld).

have two worlds: an initial world that represents the initial program configuration con-
nected by a 1/2-valued successor edge to a summary world that represents the unknown
possible suffixes. The summary world Ws; of Tl%s a summary individual Ug; related
to it. The summary individual Us; has 1/2 values for all of its predicates, including
exists(Usy, Ws1) = 1/2, meaning that future worlds of the trace do not necessarily con-
tain any individuals. The summary world of T,"-hhs no summary individual related to

explore() {

Traces = {T,5 .-

while changes occur {
select and remove T from Traces
for each action nabled for T
Traces = Traces {ac(t)}

}

for each T [Tlraces
if T B3 (¢)" report possible error

¥

succ 28
o\

initialworld
curWorld

Fig. 8. Computing the set of abstract traces Fig.9. An initial abstract
and evaluating the property (¢)". trace T,~—
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it and represents suffixes in which all future worlds are empty. Figure 9 shows an initial
abstract trace (corresponding to T,;5fepresenting all traces starting with an arbitrary
number of worker threads at label Iw; sharing a single lock.

The procedure explore accumulates abstract traces in the set T races until a fixed
point is reached. Throughout this process, however, the set of concrete traces represented
by the abstract traces in T races is actually decreasing. It is in this sense that explore
is computing a greatest fixed point.

Once a fixed point has been reached, the property of interest is evaluated over abstract
traces in the fixed point. Formula evaluation over an abstract trace exploits values of
instrumentation predicates when possible (this is explained in the following section).
This allows the use of recorded definite values, whereas re-evaluation might have yielded
1/72.

We now show the soundness of the approach. We extend mappings on individuals
to operate on assignments: If £: UT - UT"'is a function and Z: Var — UT is
an assignment, T o Z denotes the assignment ¥ o Z: Var - UT “such that (f -
Z)(v) = T(Z(v)). One of the nice features of 3-valued logic is that the soundness
of the analysis is established by the following theorem (which generalizes [15] for the
infinite case):

Theorem 2. [Embedding Theorem] Let T = @’ (" Cand TDDZ IDTE,I " The two
traces encoded as first-order structures, and let ¥: UT — UT be a function such that
T =TT Then, for every formula & and complete assignment Z for ¢, [¢13(2) 1

[o13 (F - 2).

The algorithm in Figure 8 must terminate. Furthermore, whenever it does not report
an error, the program satisfies the original ETL formula ¢.

It often happens that this approach to verifying temporal properties yields 1/2, due
to an overly conservative approximation. In the next section, we present machinery for
refining the abstraction to allow successful verification in interesting cases.

Example 7. Space precludes us from showing a real application, such as the web server.
Instead, we use an artificial example, which is also used in the next section. Figure 10
shows an abstract trace in which the property VP (v) U Q(V) holds for all the concrete
traces represented by the abstract trace, but the formula VP (v) U Q(V) evaluates to
1/2 because the successor and evolution edges have value 1/2.

5.3 Property-Guided Instrumentation

To refine the abstraction, we can maintain more precise information about the correctness
of temporal formulae as traces are being constructed. This principle is referred to in [15]
as the Instrumentation Principle. This work goes beyond what was mentioned there, by
showing how one could actually obtain instrumentation predicates from the temporal
specification.

Trace Instrumentation. The predicates in Tab. 4 are required for preserving properties
of interest under abstraction. The instrumentation predicate current(o) denotes that
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succ succ succ
VRN __ (2
-
O - - O ©
~——— S——
initialworld

Fig.10. [V.P (v) U Q(V) holds in all concrete traces that the abstract trace Ty () represents, yet
LZP (v) U Q(v) evaluates to 1/2 on Ty itself.

0 is a member of the current world and should be distinguished from individuals of
predecessor worlds. This predicate is required due to limitations of canonical embedding.
The predicate twe(01, 02) records equality across worlds and is required due to the loss
of information about concrete locations caused by abstraction.

Table 4. Trace instrumentation predicates.

Predicate Intended Meaning Formula
object 07 is equal to object 0 (01 = 0,) [evolution™d4,0,)
twe(0y, 02) . ~
possibly across worlds [evblution4,, 01)
current(o)| object 0 is a member of current world | Dwl: world(o, w) CcdrrWorld(w)

Transworld Equality: In the evolution semantics, two individuals are considered to
be different incarnations of the same individual when one may transitively evolve into
the other. We refer to this notion of equality as fransworld equality and introduce an
instrumentation predicate twe(vy, V2) to capture this notion.

Because the abstraction operates on traces (and not only single worlds), individu-
als of different worlds may be abstracted together. Transworld equality is crucial for
distinguishing a summary node that represents different incarnations of the same indi-
vidual in different worlds from a summary node that may represent a number of different
individuals.

Transworld equality is illustrated in Fig. 11; the 1-valued twe self-loop to the sum-
mary thread-node at label lw; records the fact that this summary node actually represents
multiple incarnations of a single thread, and not a number of different threads.

Temporal Instrumentation. Given an ETL specification formula, we construct a cor-
responding set of instrumentation predicates for refining the abstraction of the trace
according to the property of interest. The set of instrumentation predicates corresponds
to the sub-formulae of the original specification.

Example 8. In Example 7, the property DZP (V) U Q(V) evaluated to 1/2 although it is
satisfied by all concrete traces that Ty represents. We now add the temporal instrumen-
tation predicates I, (V) and I (V) to record the values of the temporal subformulae P (v)
and Q(V). The predicates are updated according to their value in the previous worlds.
Note the use of transworld equality instrumentation to more precisely record transitive
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ativ_1]

blocked
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Fig. 11. Abstract trace with transworld equality instrumentation (Only 1-valued transworld equal-
ity edges are shown).

evolution of objects. In particular, this provides the information that the summary node
of the second world is an abstraction of different incarnations of the same single object.
This is shown in Fig. 12.

initiaWorld e e

Fig. 12. In the abstract trace Tp, VP (v) U Q(V) evaluates to 1.

6 Related Work

The Bandera Specification Language (BSL) [2] allows writing specifications via com-
mon high-level patterns. In BSL, it is impossible to relate individuals of different worlds,
and impossible to refer to the exact moments of allocation and deallocation of an object.

In [14], a special case of the abstraction from [18,19], named “counter abstraction”,
is used to abstract an infinite-state parametric system into a finite-state one. They use
static abstraction, i.e., they have a preceding model-extraction phase. In contrast, in our
work abstraction is applied dynamically on every step of state-space exploration, which
enables us to handle dynamic allocation and deallocation of objects and threads.

In [19], we have used observing-propositions defined over a first-order configuration
to extract a propositional Kripke structure from a first-order one. The extracted structure
was then subject to PLTL model-checking techniques. This approach is rather limited,
because individuals of different worlds could not be specifically related.

7 Conclusion

We believe this work provides a foundation for specifying and verifying properties of
programs manipulating the heap with dynamic allocation and deallocation of objects and
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threads. In the future, we plan to develop more scalable approaches, and in particular
abstract-interpretation algorithms that are tailored for ETL.
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Pnueli for helpful discussions and insightful comments. We would also like to thank the
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A Translation of ETL to F OT¢

We say that a ETL sub-formula is temporally-bound if it appears under a temporal
operator. Translations for temporally-bound and non-temporally-bound formulae are
different, since non-temporally-bound formulae should be bound to the initial world of
the trace.

Definition 13. [ETL translationto F OT € ] We denote by ()™ the bounded translation
of a formula ¢ in a world W and by (§)' the non-bounded translation.

- (¢)' = dworld.initialWorld(w) C{$)™
— if & is an atomic formula other than TXadnd [Xthen ($)™W = ¢. If = Xdhen
(®)™ = isNew(X). If ¢ = Xdhen ($)™ = isF reed(x).
- (¢ W™ = (@)™ Ca)™, (¢ COH™ = ()™ C@)™, (~¢)™ = =()™
- (X¥)™ = Xlexists(w, x) [{$)™
- ((TC Xy, X2: P)(X3, %)™ = (TC xp,%2: ($)™W [axists(w,x;) [
exists(w, X2))(Xz, X4)
= (O X)) UL, - )™ = .
Dalwordd. v .. ., yi'suce ", Wy CQ@(YL ..., yi))™ ~
T, _;— evolution™(¥;, y5y Wi worl L. XG.(succ v, W)
Cstiee "W, w5 — (d(x-.. . x)™ I, evolution(k;, X))
- (X001, ... X)) =
mwi-'world. X} . ... ,)é?.slac_c(lw,wq
C@(XE - xp)™ [, evolution(x;, xj) Cexists(xj;w’)

Note that X; and Y; are not necessarily distinct. Simplified translations may be used
for the [Cand [telporal operators.
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Abstract. While the semantics of local variables in programming
languages is by now well-understood, the semantics of pointer-addressed
heap variables is still an outstanding issue. In particular, the commonly
assumed relational reasoning principles for data representations have not
been validated in a semantic model of heap variables. In this paper, we
define a parametricity semantics for a Pascal-like language with pointers
and heap variables which gives such reasoning principles. It is found
that the correspondences between data representations are not simply
relations between states, but more intricate correspondences that also
need to keep track of visible locations whose pointers can be stored and
leaked.

1 Introduction

Programming languages with dynamically allocated storage variables (“heap
variables) date back to Algol W [27] and include the majority of languages
in use today: imperative languages like C, Pascal and Ada, object-oriented
languages ranging from Simula 67 to Java, and functional languages like Scheme,
Standard ML, and variants of Haskell [6]. However, the semantic structure of
these languages is not yet clear. In particular, the oft-used principles for data
representation reasoning, involving invariants or simulation relations, have not
been validated. While remarkable progress has been made in understanding local
variables (cf. the collection [15]), none of this theory is directly applicable to heap
variables because the shape of the heap storage dynamically varies.

A number of attacks have been made on the problem: Stark’s thesis [25,
24], which deals with dynamic allocation but not pointers, and Ghica’s and
Levy’s theses [4,5,7,8], which address the general semantic structure but not data
representation reasoning. The recent paper of Banerjee and Naumann [2] is the
first to address data representation correctness with heap variables and pointers.
While their work is remarkably successful in dealing with a Java-like language
with dynamically allocated objects, their treatment falls short of explicating
the semantic structure of the language relying instead on a strong notion of
“confinement” to simplify the problem.

In this paper, we define a parametricity semantics for a Pascal-like language
with dynamically allocated variables, pointers, and call-by-value procedures. The
validity of simulation-based reasoning principles follows from the structure of the

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 223-237, 2003.
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