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Foreword

ETAPS 2003 was the sixth instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference that was esta-
blished in 1998 by combining a number of existing and new conferences. This year
it comprised five conferences (FOSSACS, FASE, ESOP, CC, TACAS), 14 sa-
tellite workshops (AVIS, CMCS, COCV, FAMAS, Feyerabend, FICS, LDTA,
RSKD, SC, TACoS, UniGra, USE, WITS and WOOD), eight invited lectures
(not including those that are specific to the satellite events), and several tuto-
rials. We received a record number of submissions to the five conferences this
year: over 500, making acceptance rates fall below 30% for every of them. Con-
gratulations to all the authors who made it to the final program! I hope that all
the other authors still found a way of participating in this exciting event and I
hope you will continue submitting.

A special event was held to honor the 65th birthday of Prof. Wlad Turski, one
of the pioneers of our young science. The deaths of some of our “fathers” in the
summer of 2002 — Dahl, Dijkstra and Nygaard — reminded us that Software
Science and Technology is, perhaps, no longer that young. Against this sobering
background, it is a treat to celebrate one of our most prominent scientists and
his lifetime of achievements. It gives me particular personal pleasure that we are
able to do this for Wlad during my term as chairman of ETAPS.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice are
represented, with an inclination towards theory with a practical motivation on
the one hand and soundly based practice on the other. Many of the issues invol-
ved in software design apply to systems in general, including hardware systems,
and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and independent proceedings. Its format is
open-ended, allowing it to grow and evolve as time goes by. Contributed talks
and system demonstrations are in synchronized parallel sessions, with invited
lectures in plenary sessions. Two of the invited lectures are reserved for “unify-
ing” talks on topics of interest to the whole range of ETAPS attendees. The
aim of cramming all this activity into a single one-week meeting is to create a
strong magnet for academic and industrial researchers working on topics within
its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 2003 was organized by Warsaw University, Institute of Informatics,
in cooperation with the Foundation for Information Technology Development,
as well as:

– European Association for Theoretical Computer Science (EATCS);
– European Association for Programming Languages and Systems (EAPLS);
– European Association of Software Science and Technology (EASST); and
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VI Foreword

– ACM SIGACT, SIGSOFT and SIGPLAN.
The organizing team comprised:

Miko�laj Bojańczyk, Jacek Chrząszcz, Piotr Chrząstowski-Wachtel, Grze-
gorz Grudziński, Kazimierz Grygiel, Piotr Hoffman, Janusz Jab�lonowski,
Miros�law Kowaluk, Marcin Kubica (publicity), S�lawomir Leszczyński (www),
Wojciech Moczyd�lowski, Damian Niwiński (satellite events), Aleksy Schu-
bert, Hanna Soko�lowska, Piotr Stańczyk, Krzysztof Szafran, Marcin Szczuka,
�Lukasz Sznuk, Andrzej Tarlecki (co-chair), Jerzy Tiuryn, Jerzy Tyszkiewicz
(book exhibition), Pawe�l Urzyczyn (co-chair), Daria Walukiewicz-Chrząszcz,
Artur Zaw�locki.

ETAPS 2003 received support from:1

– Warsaw University
– European Commission, High-Level Scientific Conferences and Information

Society Technologies
– US Navy Office of Naval Research International Field Office,
– European Office of Aerospace Research and Development, US Air Force
– Microsoft Research

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Egidio Astesiano (Genoa), Pierpaolo Degano (Pisa), Hartmut Ehrig (Ber-
lin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris), Evelyn Duester-
wald (IBM), Hubert Garavel (Grenoble), Andy Gordon (Microsoft Research,
Cambridge), Roberto Gorrieri (Bologna), Susanne Graf (Grenoble), Görel
Hedin (Lund), Nigel Horspool (Victoria), Kurt Jensen (Aarhus), Paul Klint
(Amsterdam), Tiziana Margaria (Dortmund), Ugo Montanari (Pisa), Mo-
gens Nielsen (Aarhus), Hanne Riis Nielson (Copenhagen), Fernando Orejas
(Barcelona), Mauro Pezzè (Milano), Andreas Podelski (Saarbrücken), Don
Sannella (Edinburgh), David Schmidt (Kansas), Bernhard Steffen (Dort-
mund), Andrzej Tarlecki (Warsaw), Igor Walukiewicz (Bordeaux), Herbert
Weber (Berlin).

I would like to express my sincere gratitude to all of these people and organizati-
ons, the program committee chairs and PC members of the ETAPS conferences,
the organizers of the satellite events, the speakers themselves, and Springer-
Verlag for agreeing to publish the ETAPS proceedings. The final votes of thanks
must go, however, to Andrzej Tarlecki and Pawe�l Urzyczyn. They accepted the
risk of organizing what is the first edition of ETAPS in Eastern Europe, at a
time of economic uncertainty, but with great courage and determination. They
deserve our greatest applause.

Leicester, January 2003 José Luiz Fiadeiro
ETAPS Steering Committee Chair

1 The contents of this volume do not necessarily reflect the positions or the policies of
these organizations and no official endorsement should be inferred.



Preface

This volume contains the 27 papers presented at ESOP 2003, the 12th Euro-
pean Symposium on Programming, which took place in Warsaw, Poland, April
5–13, 2003. The ESOP series began in 1986 with the goal of bridging the gap
between theory and practice. The conferences are devoted to fundamental issues
in the specification, analysis and implementation of programming languages and
systems.

The call for ESOP 2003 encouraged papers addressing the topics traditionally
covered by ESOP (but not limited to):

- programming paradigms and their integration;
- semantics;
- calculi of computation;
- security;
- advanced type systems;
- program analysis and transformation;
- practical algorithms based on theoretical developments.

The volume begins with two invited contributions, both in the area of se-
curity. The first belongs to ETAPS as a whole, and accompanies its “unifying
invited lecture” entitled Computer Security from a Programming Language and
Static Analysis Perspective, delivered by Xavier Leroy. The second contribution
is What Makes a Cryptographic Protocol Secure? The Evolution of Requirements
Specification in Formal Cryptographic Protocol Analysis, by the ESOP invited
speaker Catherine Meadows. The remaining 25 papers were selected by the Pro-
gramme Committee from the 99 submissions.

Each submission was reviewed by at least three referees, and papers were
selected in the latter stages of a one-week electronic discussion phase. I would
like to sincerely thank all members of the ESOP 2003 Programme Committee for
the excellent job they did in the very difficult selection process, always carried on
in a kind, agreeable atmosphere. Also, I would like to thank all the subreferees
for their invaluable contribution. I am also grateful to Michele Curti for the help
with the conference management software. Finally, many thanks to the ETAPS
Organising Committee, chaired by Andrzej Tarlecki and Pawel Urzyczyn, and
to the Steering Committee of ETAPS, in particular to José Luiz Fiadeiro, for
their efficient coordination of all the activities leading up to ESOP 2003.

Pisa, January 2003 Pierpaolo Degano
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Computer Security from a Programming
Language and Static Analysis Perspective

(Extended Abstract of Invited Lecture)

Xavier Leroy

INRIA Rocquencourt and Trusted Logic S.A.
Domaine de Voluceau, B.P. 105, 78153 Le Chesnay, France

Xavier.Leroy@inria.fr

1 Introduction

Computer security [16,5] is usually defined as ensuring integrity, confidentiality,
and availability requirements even in the presence of a determined, malicious
opponent. Sensitive data must be modified and consulted by authorized users
only (integrity, confidentiality); moreover, the system should resist “denial of
service” attacks that attempt to render it unusable (availability). In more col-
orful language, computer security has been described as “programming Satan’s
computer” [6]: the implementor must assume that every weakness that can be
exploited will be.

Security is a property of a complete system, and involves many different top-
ics, both computer-related (hardware, systems, networks, programming, cryptog-
raphy) and user-related (organizational and social policies and laws). In this talk,
we discuss the impact of programming languages and static program analysis on
the implementation of access control security policies, with special emphasis on
smart cards. By lack of time, we will not discuss other relevant examples of
programming language concepts being used for computer security, such as type
systems for information flow [42,41,20,2,34,35] and validation of cryptographic
protocols using process algebras and types [4,1,3].

2 Access Control

Access control is the most basic and widespread security policy. An access control
policy provides yes/no answers to the question “is this principal (user, program,
role, . . . ) allowed to perform this operation (read, write, creation, deletion, . . . )
on this resource (file, network connection, database record, . . . )?”. Access con-
trol is effective to ensure integrity, and can also ensure simple confidentiality
properties.

2.1 Preventing Direct Access to a Resource

Access control is performed by fragments of code (OS kernel, reference monitor,
privileged library) that check that access to a logical resource (file, network

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 1–9, 2003.
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connection) is allowed before performing the operation on the underlying low-
level resource (disk or network controller). Of course, access control is moot if
the program can bypass this code and operate directly on the low-level resource.

The traditional answer to this issue relies on hardware-enforced mechanisms:
the low-level resources can only be accessed while the processor is in supervisor
mode, and switching from user mode to supervisor mode can only be performed
through specific entry points that branch to the access control code. On the user
side, resources are represented indirectly by “handles”, e.g. indices into kernel
tables. Hardware memory management prevents user code from accessing kernel
data directly.

This model, while effective, is not always suitable. Sometimes, user-mode
programs must be further partitioned into relatively trusted (Web browser)
and completely untrusted (Web applets). Switching between user and supervisor
modes can be expensive. The required hardware support may not be present,
e.g. in small embedded devices.

An alternate, language-based approach executes all code within the same
memory space, without hardware protections, but relies on strong typing to re-
strict direct access to sensitive resources. These resources are directly represented
by pointers, but strong typing prevents these pointers from being forged, e.g. by
guessing their addresses. Thus, the typing discipline of the language can be used
to enforce security invariants on the resources.1

As a trivial example, if a resource is not reachable from the initial memory
roots of a piece of code, memory safety, also called garbage collection safety, en-
sures that this code can never access this resource. As a less trivial example, two
standard type-based encapsulation techniques can be used to provide controlled
access to a resource: procedural encapsulation and type abstraction [27].

– With procedural encapsulation, the resource is a free variable of a function
closure, or a private field of an object, and only the closure or the object
are given to the untrusted code. The latter, then, cannot fetch the resource
pointers directly from the object or the closure (this would be ill-typed), and
must call the function or a method of the object to operate on the resource;
the code of the function or the method will then perform the required access
checks before performing the operation.

– With type abstraction, the resource pointer itself can be given to the un-
trusted code, but its type is made abstract, preventing the code from op-
erating directly on it; to use the resource, the code must call one of the
operations provided in the signature of the abstract type, and this code will
then perform access checks as described before.

As outlined above, strong typing can be exploited to enforce access control.
The remaining question, then, is how to enforce a strong typing discipline during
execution of (untrusted) code. A simple approach is to perform type checks dy-
namically, during program execution. This can be achieved in many ways: direct
1 Strong typing is also effective at preventing other kinds of attacks such as buffer

overflows that cause attacker-provided data to be executed as privileged code.
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interpretation of the program source (if available); compilation of the source
with insertion of run-time checks; bytecode interpretation of virtual machine
code such as the JVM [28]; just-in-time compilation of said virtual machine
code; and instrumentation of precompiled machine code with additional checks
(software fault isolation) [43].

To reduce the run-time overhead of dynamic type checking, it is desirable to
perform some of the type checks statically, during a program analysis pass prior
to actual execution. Static typing of source code is common and well understood
[8]. However, source for untrusted code is not always available. Moreover, bugs
in the source-to-executable compiler could introduce type violations after type
checking; in other terms, the compiler is part of the trusted computing base.
These drawbacks can be avoided by performing static type-checking on lower-
level, compiled code. A famous example is Java bytecode verification [18,28,
25], which performs static type-checking on JVM bytecode at dynamic loading
time. Typed Assembly Language [31,30] goes several steps below virtual machine
code: it statically type-checks assembly code for an actual microprocessor (the
Intel x86 family), including many advanced idioms such as stack unwinding for
exception handling.

Java bytecode verification and typed assembly language leave certain checks
relevant to type safety to be performed at run-time: typically, array bound
checks, or Java’s downcasts. More advanced type systems based on dependent
types were proposed to allow static verification of array bound checks (and more)
[47,46,38,13]. Proof-carrying code [32] takes this approach to the extreme by re-
placing static type checking with static proof checking in a general program
logic: the provider of the code provides not only compiled code, but also a proof
that it satisfies a certain security property; the user of the code, then, checks
this proof to make sure that the code meets the property. The property typ-
ically includes type correctness and memory safety, but can also capture finer
behavioral aspects of the code [33].

2.2 Implementing Access Control

The security policy implemented by access control checks is traditionally repre-
sented as an access control matrix, giving for each resource and each principal
the allowed operations. This matrix is often represented as access control lists
(each resource carries information on which principals can access it) or as capa-
bilities (each principal carries a set of resources that it can access). The yes/no
nature of access control matrices is sometimes too coarse: security automata
[37] can be used instead to base access control decisions on the history of the
program execution, e.g. to allow an applet to read local files or make network
connections, but not both (to prevent information leaks).

Determining the principal that is about to perform a sensitive operation
is often difficult. In particular, shared library code that performs operations on
behalf of an untrusted user must have lower privileges than when performing op-
erations on behalf of a trusted user. The Java security manager [17] uses stack
inspection to address this problem: each method is associated with a principal,
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and the permissions granted are those of the least privileged principal appearing
in the method call stack leading to the current operation. This model is some-
times too restrictive: an applet is typically allowed to draw text on the screen,
but not to read files; yet, to draw text on behalf of the applet, the system may
need to read fonts from files. Privilege amplification mechanisms are provided
to address this need, whereas system code can assert a permission (e.g. read a
file for the font loading code) regardless of whether its caller has it.

Access control checks are traditionally performed dynamically, during exe-
cution. The run-time overhead of these checks is generally tolerable, and can
be further reduced by partial evaluation techniques allowing for instance inline
expansion and specialization of security automata [15,12,40].

Still, it is desirable to perform static approximations of access control checks:
to guide and validate optimizations such as removal of redundant checks, but
also to help programmers determine whether their code works correctly under
a given security policy. Jensen et al. [7] develop a static approximation of the
Java stack inspection mechanism, where the (infinitely many) call stacks are
abstracted as a finite automaton, and security properties described as temporal
formulae are model-checked against this automaton. Pottier et al. [36] compose
the security-passing interpretation of stack inspection (proposed in [45] as a
dynamic implementation technique) with conventional type systems described
in the HM (X) framework to obtain type-based static security analyses. Finally,
Walker [44] describes a type system for typed assembly language where the
states of security automata are expressed within the types themselves, allowing
fine static control of the program security behavior.

3 Application to Smart Card Programming

3.1 Smart Card Architectures

Smart cards are small, inexpensive embedded computers used as security tokens
in several areas, such as credit cards and mobile phones. Traditional smart cards
such as Eurocard-Mastercard-Visa credit cards behave very much like a small
file system, with access control on directories and files, and determination of
principals via PIN codes.

The newer Java Card architecture [10] offers a model closer to an applet-
enabled Web browser, with several applications running in the same memory
space, and post-issuance downloading of new applications. The applications are
executed by a virtual machine that is a subset of the JVM. The security of this
architecture relies heavily on the type safety of this JVM variant. For access
control, the Java security manager based on stack inspection is replaced by a
simpler “firewall” that associates owners to Java objects and prevents an ap-
plication from accessing directly an object owned by another application. Inter-
application communications are restricted to invocation of interface methods on
objects explicitly declared as “shared”.

Formal methods are being systematically applied to many aspects of the
Java Card architecture [19]: formal specifications of the virtual machine, applet
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loading, the firewall, the APIs, and specific applications; and machine proofs
of safety properties such as type safety and non-interference. As for program
analyses, several approaches to on-card bytecode verification have been proposed
[26,14]. Static analyses of firewall access control are described in [9]. Chugunov
et al. [11] describe a more general framework for verifying safety properties of
Java Card applets by model checking.

3.2 Hardware Attacks

The software-based security techniques presented in section 2 all assume that the
programs execute on reliable, secured hardware: the best software access control
will not prevent information leaks if the attacker can simply steal the hard disk
containing the confidential data. In practice, hardware security is often ensured
by putting the computers in secured premises (locked doors, armed guards).

For smart cards and similar embedded devices, this is not possible: the hard-
ware is physically in the hands of the potential attackers. By construction, a
smart card cannot be pulled apart as easily as a PC: smart card hardware is
designed to be tamper proof to some extent. Yet, the small size and cost of a
smart card does not allow extensive tamper proofing of the kind used for hard-
ware security modules [39]. Thus, a determined attacker equipped with a good
microelectronics laboratory can mount a variety of physical attacks on a smart
card [23]:

– Non-intrusive observation: perform precise timings of operations; measure
power consumption or electromagnetic emissions as a function of time.

– Intrusive observation: expose the chip and implant micro-electrodes on some
data paths.

– Temporary perturbation: introduce “glitches” in the power supply or the
external clock signal; “flash” the chip with high-energy particles.

– Permanent modification: destroy connections and transistors within the chip.

These attacks can defeat the security of the software in several ways. Power
analysis can reveal the sequencing of instructions performed, thus reveal secret
data such as the private keys in naive implementation of public-key cryptography
[22]. Perturbations or modifications can prevent some instructions of the program
from executing normally: for instance, a taken conditional branch can be skipped,
thus deactivating a security check. Variables and registers can also be set to
incorrect values, causing for instance a loop intended to send a communication
buffer on the serial port to send a complete memory dump instead.

3.3 Software Countermeasures

The obvious countermeasure to these attacks is to harden the smart card hard-
ware [24]. It is a little known fact that the programs running on smart cards can
also be written in ways that complicate hardware attacks. This is surprising,
because in general it is nearly impossible for a program to protect itself from
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execution on malicious hardware. (Some cryptographic techniques such as those
described in [29] address this issue in the context of boolean circuits, but have
not been demonstrated to be practical.)

The key to making smart card software more resistant is to notice that hard-
ware attacks cannot change the behavior of the hardware arbitrarily. Permanent
modifications are precise but irreversible, thus can be detected from within the
program by running frequent self tests, and storing data in a redundant fashion
(checksums). Temporary perturbations, on the other hand, are reversible but
imprecise: they may cause all the memory to read as all zeroes or all ones for
a few milliseconds, but cannot set a particular memory location to a particular
value. Thus, their impact can be minimized by data redundancy, and also by
control redundancy. For instance, a critical loop can be double-counted, with one
counter that increases and another that decreases to zero; execution is aborted
if the sum of the two counters is not the expected constant.

Finally, hardware attacks can be made much harder by program random-
ization. Randomizing data (as in the “blinding” technique for RSA [22]) ren-
ders information gained by power analysis meaningless. Randomizing control
(e.g. calling independent subroutines in a random order, or choosing randomly
between different implementations of the same function) makes it difficult to
perform a perturbation at a given point in the program execution.

Software hardening techniques such as the ones outlined above are currently
applied by hand on the source code, and often require assembly programming to
get sufficient control on the execution. It is interesting to speculate how modern
programming techniques could be used to alleviate this burden. The hardening
code could possibly be separated from the main, algorithmic code using aspect-
oriented programming [21]. Perhaps some of the hardening techniques are sys-
tematic enough to be performed transparently by a compiler, or by a virtual
machine interpreter in the case of Java Card. Finally, reasoning about software
hardening techniques could require a probabilistic semantics that reflects some
of the time-precision characteristics of likely hardware attacks.
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Abstract. Much attention has been paid to the design of languages
for the specification of cryptographic protocols. However, the ability to
specify their desired behavior correctly is also important; indeed many
perceived protocol flaws arise out of a misunderstanding of the proto-
col’s requirements. In this talk we give a brief survey of the history of
requirements specification in formal analysis of cryptographic protocols.
We outline the main approaches and describe some of the open issues.

1 Introduction

It has often been pointed out, that, although it is difficult to get cryptographic
protocols right, what is really difficult is not the design of the protocol itself,
but of the requirements. Many problems with security protocols arise, not be-
cause the protocol as designed did not satisfy its requirements, but because the
requirements were not well understood in the first place.

Not surprisingly, the realization of this fact has lead to a considerable amount
of research in security requirements for cryptographic protocols. However, most
of this literature is scattered, and unlike the topic of cryptographic protocol
analysis in general, there is little existing survey work providing roadmaps to
readers interested in learning more about the topic. In this paper we attempt to
remedy this deficiency by providing a brief history and survey of the work that
has been done in this area, and outlining what we consider to be some of the
open problems.

Any scheme for expressing requirements should satisfy three properties:

1. It should be expressive enough to specify properties of interest.
2. It should be unambiguous, and preferably compatible with with some system

for formal analysis.
3. It should be easy to read and write.

It will helpful to keep these three properties in mind as we proceed through
our survey.

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 10–21, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 595.276 841.889 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile (Ø¯P)
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



What Makes a Cryptographic Protocol Secure? 11

The paper is organized as follows. We begin in the next section by describing
some of the early approaches to specifying cryptographic protocol requirements,
including that of Burrows, Abadi, and Needham. In the third section, we describe
some of the main current approaches to requirements in terms of a spectrum from
extensional to intensional requirements. In the fourth section and fifth sections,
we discuss two emerging areas of research: graphical languages for specifying
cryptographc protocol requirements, and the expression of quantitative require-
ments. In the final section, we sum up what we believe to be some of the open
problems, and conclude the paper.

2 Early Work in Cryptographic Protocol Requirements

Most of the existing approaches to applying formal methods to cryptographic
protocol analysis stem ultimately from that of Dolev and Yao [9], who developed
for the first formalization of the intruder model that is commonly used today.
However, since Dolev and Yao’s work and its immediate successors was mainly
focussed on theoretical results about the complexity of cryptographic protocol
analysis, only one type of requirement was considered, and that was the simplest:
that some term or set of terms designated as secret should not be learned by
the intruder. Some of the earlier work on automated cryptographic protocol
analysis, such as the first versions of the Interrogator [24], also restricted itself
to this limited definition of secrecy. Others, such as the earlier versions of the
NRL Protocol Analyzer[20], allowed the user to specify security in terms of the
unreachability of insecure states, in which it was possible to specify such a state
in terms of words known by the intruder and the values of local state variables
of the principles. However, the user was not given any further assistance in
constructing requirments.

Probably the first formal cryptographic protocol analysis system to provide
a real mechanism for constructing formal requirments was the belief logic of
Burrows, Abadi, and Needham [5].

BAN logic does not address secrecy at all. Rather it confines itself to questions
of authentication. Questions that BAN logic can be used to decide have to do
with beliefs the participating principals could derive about origin and use of
information such as:

1. Where does the information come from?
2. What is the information intended for?
3. Is the information new, or is it a replay?
4. Who else has these beliefs about the information?

One uses BAN logic by attempting to see which of these beliefs can be derived
from an idealization of the protocol. The BAN logic does not dictate which beliefs
a protocol should be able to satisfy; rather it is up to the protocol analyst to
decide what beliefs a protocol should guarantee, and to determine it those beliefs
can be derived from the protocol. Thus, one might require that Alice believe that
K is a good key for communicating for Bob, and that Bob believe that K is a good
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key for communicating with Alice, but one might or might not want to require
that Alice believe that Bob believes that K is a good key for communicating
with Alice, and vice versa. Thus BAN logic provides what it probably the first
formal system for specifying cryptographic protocol requirements.

3 Safety Requirements for Cryptographic Protocols:
Secrecy and Correspondence

In the early to mid-90’s the approach to cryptographic protocol verification
tended towards the application of general-purpose tools such as model-checkers
and theorem provers. With this came the need to develop means for specifying
the properties one was attempting to prove. Since, in general, researchers were
now reasoning directly about messages passed in a protocol, rather than about
beliefs that were developed as a result of receiving those messages, it now made
sense to develop requirements in terms of messages sent and received rather than
beliefs derived.

As is the case for requirements in general, requirements for cryptographic pro-
tocols tend to fall into two categories, extensional and intensional. Extensional
systems provide a small set of generic requirements that can be defined inde-
pendently of the details of any particular protocol. Intensional systems provide
languages and techniques that can be used to specify requirements for specific
protocols in terms of the protocols themselves. This concept was first discussed in
detail in the context of cryptographic protocols by Roscoe in [27]. He noted that
the earlier work in cryptographic protocol requirements, such as BAN, leaned to
the extensional side, and he showed how one might specify intensional protocol
requirements in CSP.

Requirements for cryptographic protocols also fall into two classes that are
related to the properties that such protocols are intended to enforce: secrecy and
correspondence. Secrecy requirements describe who should have access to data.
Correspondence requirements describe dependencies between events that occur
in a protocol, and are usually used to express authentication properties. These
two types of requirements later turned out to be more closely related than one
might think (both Syverson and Meadows [32] and Schneider [28] define secrecy
requirements as a type of correspondence requirement), but for the moment we
shall treat them as separate.

Of course, not all requirements can be characterized in terms of secrecy and
correspondence. In particular, they are both safety properties, so any non-safety
requirements (such as fairness and its relatives, which are relevant for many
electronic commerce protocols) will not fall into either of these two categories.
However, secrecy and correspondence cover most requirements relevant to au-
thentication and key exchange, and thus make a good starting point.

At first, correspondence requirements appeared to be the most subtle and
complex; thus the earlier work tended to concentrate on these. Moreover, the
emphasis was on extensional requirements and the ability to characterize a gen-
eral notion of correspondence in a single definition. Probably the first work in
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this area was that of Bird et al [4]. In the introduction to their paper, they de-
scribe an error-free history of a protocol runs between two prinicpals A and B to
be one in which all executions viewed by both parties match exactly one-to-one.
This is idea is refined by Diffie, van Oorschot and Wiener in [8] to the idea of
matching protocol runs, which says that at the time Alice completes a proto-
col the other party’s record of the run matches Alice’s. This notion was further
refined and formalized by Bellare and Rogaway in [3] to the notion of match-
ing conversations, which developed the idea in terms of a complexity-theoretic
framework.

Such general of notions of correspondence can be very useful, but they do
have a drawback. They can be used to determine whether or not information
was distributed correctly, but they can not be used to determine whether or not
all information that should have been authenticated was included in the run.

To see what we mean, we consider the attack found by Lowe [18] on the
Station-to-Station protocol of [8]. The protocol is defined as follows:

1. A → B : xNA

2. B → A : xNB , EK(SB(xNA , xNB ))
where K is the Diffie-Hellman key generated by A and B.

3. A → B : , EK(SA(xNB , xNA))

Lowe’s attack runs as follows:

1. A → B : xNA

An intruder I intercepts this message and forwards it to B, as if it came
from C.

2. B → IC : xNB , EK(SB(xNB , xNB ))
The intruder forwards this message to A.

Thus, at the end of A’s run, A believes that it shares a key with B. B, how-
ever, thinks that C is trying to establish a connection with it, and it will reject
A’s final message when it receives it, because it is expecting confirmation from
C, not A. On the other hand, the protocol does satisfy the matching protocol
runs definition of security, since A’s picture of the authenticated portions of the
messages is the same as B’s. Indeed, this is the protocol used to illustrate the
concept by Diffie, van Oorschot, and Wiener in [8].

Lowe’s attack, of course, does not mean the Station-to-Station protocol is
insecure. (Indeed, this very feature of that protocol is seen as a desirable property
in the latest version of IKEv2, the proposed replacement to the Internet Key
Exchange protocol [17]). All it does is show that, if the name of the intended
recipient is not included in the responder’s message, a definition of security that
is specified in terms of conditions on correspondence between messages will not
catch lack of agreement on information that is never sent.

Lowe’s solution to this problem in [18] was to strengthen the matching proto-
col runs requirement to include the condition that when A completes a protocol
run with B, then not only should the two protocol runs match, but B should
believe that he has been running the protocol with A. In a later paper, [19],
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he developed this idea further, developing a hierarchy of authentication require-
ments which gave conditions of varying degrees of strictness on the conclusions
a principal A could draw about B’s view of the protocol after completing the
protocol with B. These were then formalized using the process algebra CSP.

The least restrictive requirement Lowe gave was liveness, which simply re-
quires that, when A completes a run of the protocol, apparently with B, then
B has also been running the protocol. Moving further up the hierarchy, we re-
quire A and B to agree on messages sent as well as identities (this requirement
correspondes roughly to matching protocol runs), to agree on the roles they are
playing, to agree on the values of specific data items, and so forth.

We see now that we are moving away from extensional requirements that can
be specified independently of the protocol, and more to intensional requirements.
If principals need to agree on specific data items, we need to specify what these
data items are, and where they occur in the protocol. The next step would be
to specify the conditions on events that occur in protocols. Indeed, it should
be possible to specify the types of requirements we are interested in using the
temporal logics that are generally used to provide correctness specifications for
model checkers.

This is the sort of reasoning that lay behind Syverson and Meadows’ devel-
opment of a requirements language for the NRL Protocol Analyzer [32], which
eventually became known as the NRL Protocol Analyzer Temporal Require-
ments Language (NPATRL). The idea is to develop a simple temporal language
that can be used to specify the type of requirements that are commonly used
in authentication and key distribution protocols. The atomic components of the
language correspond to events in the protocol (e.g. the sending and receiving
of messages, or the intruder’s learning a term). Besides the usual logical con-
nectives, it contains only one temporal operator, �- , or “happened previously.”
The use of this single logical operator reflects the fact that most correspondence
requirements can be expressed in terms of events that must have or must have
not occurred before some other events.

Although NPATRL is a very simple language, we have found it useful for
specifying some widely varying types of cryptographic protocols. These include
key distribution and key agreement protocols [30,31], complex electronic com-
merce protocols such as SET [22], and, most recently, group key distribution
protocols [23].

One interesting result of our experience is that we have found NPATRL in-
creasingly useful for specifying complex secrecy requirements as well as complex
authentication requirements. Early requirements for secrecy simply designated
some information, such as keys, as secret, and all that needed to be guaran-
teed was that these keys would not be available to an intruder. However, more
recently, requirements such as perfect forward secrecy put other conditions on
an intruder learning a term. Perfect forward secrecy requires that, if a master
key is compromised, then an intruder can only learn a session key after the
compromise, not before. Such a requirement is straightfoward to specify using a
temporal language.
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Of course, temporal logics are not necessary in order to specify these types
of requirements. Other formalisms will work as well. For example, Schneider
[28] defines authentication in terms of the messages that must precede a given
message, and secrecy in terms of another correspondence requirement, that the
intruder should not learn data unless that data was explicitly sent to the intruder.
Both of these are formalized in CSP.

Another approach to requirements, taken by Focardi et al. [12], allows one to
specify requirements of varying degree of generality. They make use of notions
derived from noninterference. Their notion of correctness, Generalized Nonde-
ducibility on Composition, or GNDC, is defined as follows.

We let P be a process representing a cryptographic protocol operating in the
absence of an intruder. Let (P ||X) denote the composition of P with an intruder
X. Let α denote a function from processes to processes where α(P ) is a process
describing the “correct” behavior of P . Let ≈ denote a preorder. Let C denote
the set of channels between honest principals, and let Q C denote the restriction
of a process Q to C. Then a process satisfies GNDCα

≈, if, for all intruders X

(P ||X)\C ≈ α(P )
In the case of that α is the identity function and ∼ is trace equivalence, the

property becomes NDC, or Nondeducibility on Composition, which requires that
the traces produced by the process in composition with an intruder be the same
as the traces produced by the process in the absence of the intruder. This can be
thought of as an information-flow property in which the intruder and P play the
apart of High and Low, respectively, corresponding to the standard multilevel
application of noninterference for multilevel security [14]. NDC, since it requires
that a process behave in the presence of an intruder exactly at it would behave
in the absence, is more stringent than any of the other requirements that have
been discussed in this section. As a matter of fact, we can consider it the most
stringent definition possible, closely akin to the fail-stop definition of protocol
security of Gong and Syverson[13]. Moreover, GNDC provides a framework that
allows one to specify less restrictive requirements such as the various forms of
correspondence discussed earlier, and the types of requirements that would be
defined in a temporal language such as NPATRL. Thus GNDC can be thought
of as providing a general framework for requirements, including requirements
that go beyond the usual notions of correspondence, such as liveness.

Another technique that deserves mention is the notion of using type theory
to specify security requirements and evaluate the correctness of protocols [1,
15]. Here components making up a protocol, such as data, channels, etc. are
assigned different types, such as secret or public. Rules are also developed for
deriving types from the results of applying operations, such as encryption, on
data. Security violations can be defined in terms of typing violations, such as a
piece of data type public appearing on a channel of type public. Most of this
work has been applied to the type-checking of secrecy properties, but Gordon and
Jeffrey [15,16] have developed ways of applying it to correspondence properties,
specifically one-to-one ( each event of a certain type should be preceded by one
and only one event of a certain other type) and one-to-many (each event of a
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certain type should be preceded by at least one event of a certain type). Since
the types are supplied as part of the protocol specification, this application of
type theory gives a nice way of incorporating a requirements specification as an
annotation on the protocol.

4 Graphical Requirements Languages

Languages and frameworks such as NPATRL and GNDC allow us increasing
flexibility and expressiveness for specifying requirements. But, the ability to
specify more complex and subtle requirements also has a cost; the requirements
become more difficult to comprehend and write. In this section we discuss two
graphical approaches to increasing the ease of handling such specifications that
make use of some of the common features of cryptographic protocols and their
requirements.

The first of these is known as Strand Space Pictures [10]. Strand spaces [11]
are a well-known and popular model for cryptographic protocol analysis, in which
the actions of principals are modeled in terms of graphs. A strand represents a
principal executing a role in a protocol. The sending and receiving of messages
is represented by positive and negative nodes. Nodes that represent one event
immediately preceding another on a strand are connected by double arrows. A
bundle is a collection of strands, in which positive send nodes can be connected
to negative receive nodes via a single arrow if the message sent matches the mes-
sage received. This model facilitates the graphical representation of protocols,
and [10] actually describes a number of ways in which the graphical features of
strand spaces could be used, but the one of most interest to us is the way in
which they can be used to represent requirements. Using strand space represen-
tation of protocols, it is possible to represent correspondence requirements in
terms of relative placement of strands. Thus, if we want to specify a correspon-
dence requirement which requires that if certain messages are accepted, then
other messages were sent previously, we can represent sending and receipt of the
messages we are interested in by portions of strands, and we can use the place-
ment of the strands (so that earlier nodes appear above later ones) to indicate
which events we want to occur before others.

The strand space pictures methodology, was never, as far as we know, devel-
oped into a full-fledged procedure with well-defined ways for representing major
classes of requirements. However, in [10] the authors give several examples which
show how some standard requirements such as freshness or agreement properties
could be represented in this framework.

It is also possible to use strand spaces to provide a very convenient way of
expressing a limited type of correspondence. Strands can be parameterized by
the name of the principal executing the strand and the data it sends and re-
ceives. Thus, in the Station-to-Station protocol the initiator’s strand would be
parameterized by Init[A, B, X, Y, K], while the responder’s would be parame-
terized by Resp[B, A, X, Y, K] , where X and Y are the initiator’s and respon-
der’s Diffie-Hellman components, respectively, and K is the key derived from
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the Diffie-Hellman exchange. Earlier, we described how Lowe showed that af-
ter A completed the Station-to-Station protocol, A and B would agree on B’s
identity and on the Diffie-Hellman components and key, but not A’s identity.
We could express that fact as a requirement that, after an initiator A finishes
executing the protocol, apparently with a responder B, if the initiator’s strand
is Init[A, B, X, Y, K], then the responder’s strand is Resp[∗, A, X, Y, K], where
* denotes a wild card. Unlike the strand space pictures, this notation cannot
express conditions on the relative times of occurrence of events from two dif-
ferent strands. However, since many requirements have to do not so much with
agreement on placement of events as with agreement on data such as keys, this
notation has been useful for in a number of different cases. It would be inter-
esting to see how far it could be extended and still retain its compactness and
readability.

A somewhat different approach has been taken by Cervesato and Meadows [7]
in the development of a graphical representation of the NPATRL language. This
representation was based on the fact that queries in the NRL Protocol Analyzer,
for which NPATRL was designed, are couched in terms of events that should or
should not precede some specified event. Such a way of formatting queries has an
obvious connection to fault trees. A fault tree is a graphical means of represent-
ing failure modes in safety-critical systems. The root of the tree represents the
failure with which the system designer is concerned, and the branches represent
the conditions under which the fault can occur. The main difference between
NPA queries and fault trees is that in NPA queries the relationship is one of
precedence, while in fault trees it is one of causality. Otherwise the structure is
very similar. Moreover, the graphical representation makes it easier to under-
stand the relationships between the various events. For this reason, we found it
very helpful, in particular, to represent the GDOI requirements, especially the
more complex ones, in terms of fault trees. In [7] a fault tree semantics for the
subset of NPATRL requirements accepted by the NPA is developed, and some
sample requirements are shown.

5 Quantitative and Probabilistic Requirements

So far, with few exceptions, the requirements we have looked at have dealt
with safety requirements for discrete systems. This fits well when we want to
analyze authentication and key distribution protocols that follow the Dolev-Yao
model, where the cryptosystem is a black box, and principals communicate via
a medium controlled by a hostile intruder who can read, alter, and intercept
all traffic. But, since the correctness of a protocol depends on the correctness
of the cryptoalgorithm that uses as well as the way it uses those algorithms,
it would be useful to have correctness criteria that took the properties of the
cryptoalgorithms into account.

Prior to and concurrent with the explosion of formal methods approaches to
cryptographic protocol analysis, there has been a parallel effort in developing
correctness criteria for cryptoalgorithms and cryptographic protocols based on
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complexity-theoretic approaches. Indeed, the work of Bellare and Rogaway cited
earlier was developed in such a context. What has been lacking however, has
been a means of integrating such a complexity-theoretic approach with the logical
systems that we have been considering in this paper. However, some work in this
area is beginning to appear, such as the work of Abadi and Rogaway [2], which
considers a complexity-theory based model as a semantics for a logical system,
although it restricts itself to secrecy requirements, and the work of Mitchell et al
[25], which develops a notion of bisimulation that takes into account complexity-
theoretic and probabilistic considerations.

The use of cryptography is not the only place where quantitative require-
ments become relevant. For example, many anonymity protocols, are intended
to provide a statistical notion of security. An intruder may have a nontrivial
chance of guessing the identity of a sender or receiver of traffic, but we do not
want that chance to exceed a certain threshold. Protocols intended to protect
against denial of service attacks may need to limit the the amount of resources
expended by a responder in the early steps of the protocol. Recently, researchers
have begun to investigate ways of applying formal methods to the analysis of pro-
tocols that must satisfy quantitative requirements. Examples include the work of
Meadows on a model for the analysis of protocols resistance to denial of service
[21] where requirements are specified in terms of a comparison between resources
expended by a responder versus resources expended by an initiator; the work
of Buttyán and Hubaux [6] on rational exchange protocols, in which a protocol
is modeled as a game in which all principals are assigned payoffs, and an ex-
change protocol is deemed rational if the strategies available to all participants
form a Nash equilibrium; and the work of Shmatikov on anonymity protocols
and contract signing, in which the protocols and their requirements are mod-
eled in terms of Markov chains [29,26], making them amenable to analysis by
probabilistic model checkers.

6 Conclusion

We have given a brief survey of research in expressing cryptographic protocol
requirements. We believe that it this point we have a good handle on the spec-
ification of the standard secrecy and correspondence requirements of security
protocols. It appears possible to derive techniques that are compatible with
just about any type of formal system, and we have a vast range of requirement
specification styles, from one end of the extensional-intensional spectrum to the
other.

There are of course a number of areas in which work on cryptographic pro-
tocol requirements needs to be extended. One is in making the requirements
language user-friendly. Security protocols, and thus their requirements, can be
complex; even more so when one must consider operation in partial failure modes
such as compromise of temporary session keys. Thus it makes sense to concen-
trate on ways of making requirements languages easier to use, even when the
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requirements are complex. In this paper we discussed some of the work on graphic
requirements languages that attempts to address this problem.

Another area in which work is just starting is in extending cryptographic
requirements specifications beyond secrecy and correspondence. These would
apply to protocols whose goals go beyond those of key distribution and authen-
tication that have traditionally been handled in this area. One area of particular
interest here is quantitative requirements. We have pointed out some areas in
which the ability to understand a protocol’s behavior from a quantitative point
of view appears to be crucial. In this case, not only requirements need to be
developed, but formal models for specifying the protocols that must satisfy the
requirements. We have described some of the work in this area as well.

There are some other areas which could also use more exploring. For example,
many electronic commerce protocols must satisfy various types of non-safety
requirements. Is it possible to develop ways of characterizing and specifying these
requirements in ways that are particularly relevant to security protocols, as has
been done for the safety properties of secrecy and correspondence? Another area
of research has to do with interoperability. Increasingly, many protocols will rely
upon other protocols to supply some of their security services. What is the best
way to specify services needed by one protocol in terms of requirements upon
another? We hope to see research in these and other emerging areas in the near
future.
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A Tail-Recursive Semantics for Stack Inspections
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Abstract. Security folklore holds that a security mechanism based on
stack inspection is incompatible with a global tail call optimization pol-
icy. An implementation of such a language may have to allocate memory
for a source-code tail call, and a program that uses only tail calls (and no
other memory-allocating construct) may nevertheless exhaust the avail-
able memory. In this paper, we prove this widely held belief wrong. We
exhibit an abstract machine for a language with security stack inspection
whose space consumption function is equivalent to that of the canonical
tail call optimizing abstract machine. Our machine is surprisingly simple
and suggests that tail-calls are as easy to implement in a security setting
as they are in a conventional one.

1 Stacks, Security, and Tail Calls

Over the last ten years, programming language implementors have spent signifi-
cant effort on security issues. This effort takes many forms; one is the implemen-
tation of a strategy known as stack inspection [17]. It starts from the premise
that trusted components may authorize potentially insecure actions for the dy-
namic extent of some ‘grant’ expression, provided that all intermediate calls are
made by and to trusted code.

In its conventional implementation, stack inspection is incompatible with
a traditional language semantics, because it clashes with the well-established
idea of modeling function calls with a β or βv reduction [13]. A β reduction
replaces a function’s application with the body of that function, with the func-
tion’s parameters replaced by the application’s arguments. In a language with
stack inspection, a β or βv reduction disposes of information that is necessary
to evaluate the security primitives.

For this reason, Fournet and Gordon [7] model function calls with a non-
standard β-reduction. To be more precise, β does not hold as an equation for
source terms. Abstraction bodies are wrapped with context-building primitives.
Unfortunately, this formalization prohibits a transformation of this semantics
into a tail-call optimizing (TCO) implementation. Fournet and Gordon recognize
this fact and state that “[S]tack inspection profoundly affects the semantics of
all programs. In particular, it invalidates [. . . ] tail call optimizations.” [7]

This understanding of the stack inspection protocol also pervades the im-
plementation of existing run-time systems. The Java design team, for example,
chose not to provide a TCO implementation in part because of the perceived
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incompatibility between tail call optimizations and stack inspection.1 The .NET
effort at Microsoft provides a runtime system that is properly TCO—except
in the presence of security primitives, which disable it. Microsoft’s documen-
tation [12] states that “[t]he current frame cannot be discarded when control
is transferred from untrusted code to trusted code, since this would jeopardize
code identity security.”

Wallach et al. [18] suggest an alternate security model that accommodates
TCO implementations. They add an argument to each function call that repre-
sents the security context as a statement in their belief logic. Statements in this
belief logic can be unraveled to determine whether an operation is permitted.
Unfortunately, this transformation is global; it cannot be applied in isolation
to a single untrusted component, but requires the rewriting of all procedures in
all system libraries. They also fail to provide a formal language semantics that
allows a Fournet-Gordon style validation of their claims.

Our security model exploits a novel mechanism for lightweight stack inspec-
tion [6]. We demonstrate the equivalence between our model and Fournet &
Gordon’s, and prove our claims of TCO. More precisely, our abstract implemen-
tation can transform all tail calls in the source program into instructions that
do not consume any stack (or store) space. Moreover, the transformation that
adds security annotations to the untrusted code is local.

We proceed as follows. First, we derive a CESK machine from Fournet &
Gordon’s semantics. Second, we develop a different, but extensionally equiva-
lent CESK machine that uses a variant of Flatt’s lightweight stack inspection
mechanism [6]. Third, we show that our machine uses strictly less space than
the machine derived from Fournet and Gordon’s semantics and that our machine
uses as much space as Clinger’s canonical tail-call optimizing CESK machine [4].

The paper consists of nine sections. The second section introduces the λsec
language: its syntax, semantics, and security mechanisms. The third section
shows how a pair of tail calls between system and applet code can allocate an
unbounded amount of space. In the fourth section, we derive an extensionally
equivalent CESK machine from Fournet and Gordon’s semantics; in the fifth
section, we modify this machine so that it implements all tail calls in a properly
optimized fashion. The sixth section provides a precise analysis of the space con-
sumption of these machines and shows that our new machine is indeed tail-call
optimizing. In the seventh section, we discuss the compatibility of our model of
λsec with Fournet and Gordon’s, using their theory of contextual equivalence.
The last two sections place our work into context.

2 The λsec Language

Fournet and Gordon use as their starting point the λsec-calculus [14,16], a sim-
ple model of a programming language with security annotations. They present
two languages: a source language, in which programs are written, and a target
language, which includes an additional form for security annotations. A trusted

1 Private communication between Guy Steele and second author at POPL 1996
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annotator performs the translation from the source to the target, annotating
each λ-expression with the appropriate permissions.

In this security model, all code is statically annotated with a given set of per-
missions, chosen from a fixed set P. A program fragment that has permissions R
may choose to enable some or all of these permissions. The set of enabled permis-
sions at any point during execution is determined by taking the intersection of
the permissions enabled for the caller and the set of permissions contained in the
callee’s label. That is, a permission is considered enabled only if two conditions
are met: first, it must have been legally and explicitly enabled by some calling
procedure, and second, all intervening stack frames must have been annotated
with this permission.

The source language (Ms) adds three expressions to the basic call-by-value
λ-calculus. The test expression checks to see whether a given set of permissions
is currently enabled, and branches based on that decision. The grant expression
enables a privilege, provided that the context endows it with those permissions.
Finally, the fail expression causes the program to halt immediately, signaling
a security failure. Our particular source language also changes the traditional
presentation of the λ-calculus by adding an explicit name to each abstraction so
that we get concise definitions of recursive procedures.

Syntax
M, N = x | M N | λf x.M | grant R in M

| test R then M else N | fail | R[M ]
x ∈ Identifiers
R ⊆ P

V ∈ Values = x | λf x.M

The target language (M) adds a framing expression to this source language
(underlined in the grammar). A frame specifies the permissions of a component
in the source text. To ensure that these framing expressions are present as the
program is evaluated, we translate source components into target components by
annotating the result with the source-appropriate permissions. In our case, com-
ponents are λ-expressions. The annotator below performs this annotation, and
simultaneously ensures that a grant expression refers only to those permissions
to which it is entitled by its source location.2

Annotator A : 2P → Ms → M

AR[[x]] = x
AR[[λf x.M ]] = λf x.R[AR[[M ]]]

AR[[M N ]] = AR[[M ]] AR[[N ]]
AR[[grant S in M ]] = grant S ∩ R in AR[[M ]]

AR[[test S then M else N ]] = test S then AR[[M ]] else AR[[N ]]
AR[[fail]] = fail

2 Fournet and Gordon present a semantics in which this check is performed at runtime.
Section 7 discusses the differences between the two languages in more detail.
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The annotator A consumes two arguments: the set of permissions appropriate
for the source and the source code; it produces a target expression. It commutes
with all expression constructors except for λ and grant. For a λ expression, it
adds a frame expression wrapping the body. For a grant expression, it replaces
the permissions S that the expression specifies with the intersection S ∩ R. So,
if a component containing the expression grant {a, b} in E were annotated with
the permissions {b, c}, the resulting expression would read grant {b} in E′ (where
E′ represents the recursive annotation of E).

We adapt Fournet & Gordon’s semantics to our variant of λsec mutatis mu-
tandis. Evaluation of programs is specified using a reduction semantics based
on evaluation contexts. In such a semantics, every expression is divided into an
evaluation context containing a single hole (denoted by •), and a redex. An eval-
uation context is composed with a redex by replacing the context’s hole with
the redex. The choice of evaluation contexts determines where evaluation can
occur, and typically the evaluation contexts are chosen to enforce deterministic
evaluation; that is, each expression has a unique decomposition into context and
redex. Reduction rules in such a semantics take the form “E[f ] �→ E[g],” where
f is a redex, g is its contractum, and E is the context (which may be observable,
as for instance in the test rule).

Contexts
E = • | E M | V E | grant R in E | R[E]

Reduction Rules

E[λf x.M V ] �→ E[[λf x.M/f ][V/x]M ]
E[R[V ]] �→ E[V ]

E[grant R in V ] �→ E[V ]

E[test R then M else N ] �→
{

E[M ] if OK[[R]][[E]]
E[N ] otherwise

E[fail] �→ fail

where
OK[[∅]][[E]] = true
OK[[R]][[•]] = true

OK[[R]][[E[• M ]]] = OK[[R]][[E]]
OK[[R]][[E[V •]]] = OK[[R]][[E]]
OK[[R]][[E[S[•]]]] = R ⊆ S ∧ OK[[R]][[E]]

OK[[R]][[E[grant S in •]]] = OK[[R − S]][[E]]

This semantics is an extension of a standard call-by-value reduction seman-
tics. The hole and the two application contexts are standard and enforce left-to-
right evaluation of arguments. The reduction rule for applications is also stan-
dard. The added contexts and reduction rules for frame and grant expressions are
interesting in that they are largely transparent; evaluation may proceed inside
of either form, and each one disappears when its expression is a value. These
expressions affect the evaluation only when a test expression occurs as a redex.
In this case, the result of the reduction depends on the OK predicate, which is
applied to the current context and the desired permissions.
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The OK predicate recurs over the continuation from the inside out, suc-
ceeding either when the permissions remaining to check are empty or when the
context is exhausted. The OK predicate commutes with both kinds of applica-
tion context. In the case of a frame annotation, the desired permissions must
occur in the frame, and the predicate must succeed recursively. Finally, a grant
expression removes all permissions it grants from the set of those that need to
be checked. The stack inspection protocol is, at heart, a lightweight form of
continuation manipulation [3].

In Fournet and Gordon’s framework, a program consists of a set of compo-
nents, each one a closed λ-expression with its own set of permissions.

Definition 1 (Components). A ∈ Components = 〈λf x.Ms, R〉
Finally, the Eval function determines the meaning of a source program. A

program consists of a list of components. Evaluation is performed by annotating
each λ-expression with the permissions of its component, and combining all
such expressions into a single application. This application uses the traditional
abbreviation of a curried application as a single one.

Definition 2 (Eval).

Eval(〈λf x.Mu0, R0〉 . . .) = V if (AR0[[λf x.Mu0]] . . .) ∗�→ V

Since the first component is applied to the rest, it is presumed to represent
the runtime system, or at least a linker. Eval is undefined for programs that
diverge or enter a stuck state.

3 Tail-Call Optimization

Modern functional programming languages avoid looping constructs in favor of
recursion. Doing so keeps the language smaller and simplifies its implementation.
Furthermore, it empowers programmers to match functions and data structures,
which makes programs more comprehensible than random mixtures of loops and
function calls. Even modern object-oriented programmers have recognized this
fact, as indicated by the inclusion of tail-call instructions in Microsoft’s CLR [2]
and the promotion of traversal strategies such as the interpreter, composite, or
visitor patterns [8].

Of course, if function calls were implemented näıvely, this strategy would
introduce an unacceptably large overhead on iterative computations. Each it-
eration would consume a stack frame and long loops would quickly run out of
space. As Guy Steele pointed out in the late 1970’s, however, language designers
can have efficiency and a small language if they translate so-called tail calls into
instruction sequences that do not consume any space [9]. Typically, such function
calls turn into plain jumps, and hence, the translation of a tail-recursive function
equals the translation of a looping construct. Using this reasoning, the language
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definitions for Scheme require that correct implementations must optimize all
tail-calls and thereby “support an unbounded number of active tail calls” [11].

At first glance, tail-call optimization seems inherently incompatible with
stack inspection. To see this, consider a mutually recursive loop between ap-
plet and library code.

Abbreviations
UserFn ∆= λuser sys.sys user

SystemFn ∆= λsysuser .user sys
ARA[[UserFn]] = λuser sys.RA[sys user ]

ARS[[SystemFn]] = λsysuser .RS[user sys]

Reduction (w/ Annotations)
ARA[[UserFn]] ARS[[SystemFn]]

�→ RA[ARS[[SystemFn]] ARA[[UserFn]]]
�→ RA[RS[ARA[[UserFn]] ARS[[SystemFn]]]]

�→ RA[RS[RA[ARS[[SystemFn]] ARA[[UserFn]]]]]
�→ RA[RS[RA[RS[ARA[[UserFn]] ARS[[SystemFn]]]]]]

. . .

Reduction (w/o Annotations)
UserFn SystemFn
�→ SystemFn UserFn
�→ UserFn SystemFn
�→ SystemFn UserFn
�→ UserFn SystemFn
. . .

This program consists of two copies of a mutually recursive loop function,
one a ‘user’ component and one a ‘system’ component. Each takes the other as
an argument, and then calls it, passing itself as the sole argument. To simplify
the presentation of the looping functions, we introduce abbreviations for the user
and system procedures.

This program is a toy example, but it represents the core of many interactions
between user and system code. For instance, any co-routine-style interaction be-
tween producer and consumer exhibits this behavior—unfortunately, program-
mers are forced to avoid this powerful and natural style in Java precisely because
of the lack of tail-call optimization. Perhaps the most common examples of this
kind of interaction occur in OO-style traversals of data structures, such as the
above-mentioned patterns.

The first reduction sequence illustrates the steps taken by λsec in evaluating
the given program, where the two procedures are annotated with their permis-
sions. In this example, the context quickly grows without bound. A functional
programmer would expect to see a sequence more like the second one. This series
is also a reduction sequence in λsec, but one which is obtained by evaluating the
program’s pure source.
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As Fournet and Gordon point out in their paper, all is not lost. They intro-
duce an additional reduction into their abstract machine that explicitly removes
a frame before performing a call. Unfortunately, as they point out, indiscriminate
application of this rule changes the semantics. Thus, they impose strict condi-
tions that the machine must check before it can apply the rule. The rule and its
side conditions clarify that an improved compiler can turn some tail calls into
jumps, but Fournet and Gordon state that many tail calls cannot be optimized.

4 An Abstract Machine for λsec

Following Clinger’s work on defining tail-optimized languages via space complex-
ity classes [4], we reformulate the λsec semantics as a CESK machine [5]. We can
then measure the space consumed by machine configurations, programs, and ma-
chines. Furthermore, we can determine whether the space consumption function
of an implementation is in the same complexity class as Clinger’s machine.

4.1 The fg Machine

We begin with a direct translation of λsec’s semantics into a CESK machine,
which we call “frame-generating” or fg (see figure 1). A CESK machine has
four registers: the control string, the environment, the store, and the continua-
tion. The control string indicates which program instruction is being reduced.
In conventional machines, this is called the program counter. The environment
binds variable names to values, much like the current stack frame of an assembly
language machine. The store, like a heap, contains shared values.3 Finally, the
continuation represents the instruction’s control context; it is analogous to the
stack.

The derivation of a CESK machine from a reduction semantics is straight-
forward [5]. In particular, the proof of equivalence of the two models is a refine-
ment of Felleisen and Flatt’s proof, which proceeds by a series of transformations
from a simple reduction semantics to a register machine. At each step, we must
strengthen the induction hypothesis by adding a claim about the value of the
OK predicate when applied to the current context.

The new Eval function is abstracted over the machine under consideration. In
particular, the definition of Evalx for a machine x depends both on the transition
function, �→x, and on the empty context, emptyx.

In order to ensure that Eval and Evalfg are indeed the same function, the
Evalx function must employ a “load” function L at the beginning of an execu-
tion that coerces the target program to a valid machine configuration, and an
“unload” function U at the end, which recursively substitutes values bound in
the environment for the variables that represent them.

3 The store in our model is necessitated by Clinger’s model of tail call optimization;
a machine with no store can grow without bound due to copying.



A Tail-Recursive Semantics for Stack Inspections 29

The FG Machine
Cfg = 〈M, ρ, σ, κ〉 | 〈V, ρ, σ, κ〉 | 〈V, σ〉 | fail

κ = 〈〉 | 〈push : M, ρ, κ〉 | 〈call : V, κ〉 | 〈frame : R, κ〉 | 〈grant : R, κ〉
V ∈ Values = 〈closure : M, ρ〉

ρ ∈ Identifiers →f Locations
α, β ∈ Locations

σ ∈ Locations →f Values
emptyfg = 〈〉

〈λf x.M, ρ, σ, κ〉 �→fg 〈〈closure : λf x.M, ρ〉, ρ, σ, κ〉
〈x, ρ, σ, κ〉 �→fg 〈σ(ρ(x)), ρ, σ, κ〉

〈M N, ρ, σ, κ〉 �→fg 〈M, ρ, σ, 〈push : N, ρ, κ〉〉
〈R[M ], ρ, σ, κ〉 �→fg 〈M, ρ, σ, 〈frame : R, κ〉〉

〈grant R in M, ρ, σ, κ〉 �→fg 〈M, ρ, σ, 〈grant : R, κ〉〉

〈test R then M else N, ρ, σ, κ〉 �→fg

{
〈M, ρ, σ, κ〉 if OKfg[[R]][[κ]]
〈N, ρ, σ, κ〉 otherwise

〈fail, ρ, σ, κ〉 �→fg fail

〈V, ρ, σ, 〈〉〉 �→fg 〈V, σ〉
〈V, ρ, σ, 〈push : M, ρ′, κ〉〉 �→fg 〈M, ρ′, σ, 〈call : V, κ〉〉

〈V, ρ, σ, 〈call : V ′, κ〉〉 �→fg 〈M, ρ′[f �→ β][x �→ α], σ[α �→ V ][β �→ V ′], κ〉
if V ′ = 〈closure : λf x.M, ρ′〉 and α, β 
∈ dom(σ)

〈V, ρ, σ, 〈frame : R, κ〉〉 �→fg 〈V, ρ, σ, κ〉
〈V, ρ, σ, 〈grant : R, κ〉〉 �→fg 〈V, ρ, σ, κ〉

〈V, ρ, σ[β, . . . �→ V ′, . . .], κ〉 �→fg 〈V, ρ, σ, κ〉
if {β, . . .} is nonempty and
β, . . . do not occur in V , ρ, σ, or κ

where
OKfg[[∅]][[κ]] = true

OKfg[[R]][[〈〉]] = true
OKfg[[R]][[〈push : M, ρ, κ〉]] = OKfg[[R]][[κ]]

OKfg[[R]][[〈call : V, κ〉]] = OKfg[[R]][[κ]]

OKfg[[R]][[〈frame : R′, κ〉]] =

{
OKfg[[R]][[κ]] if R ⊆ R′

false otherwise
OKfg[[R]][[〈grant : R′, κ〉]] = OKfg[[R − R′]][[κ]]

Fig. 1.

Definition 3 (Evalx).

Evalx(A, . . .) = U(V, σ) if Lx(A, . . .) ∗�→x 〈V, σ〉
where

Lx(〈λf x.Mu0, R0〉, . . .) = 〈(AR0[[λf x.Mu0]] . . .), ∅, ∅, emptyx〉
and

U(〈closure : M, {〈x1, α1〉, . . . , 〈xn, αn〉}〉, σ) =
[U(σ(α1))/x1] . . . [U(σ(αn))/xn]M
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Theorem 1 (Machine Fidelity). For all (〈M0, R0〉, . . .),

Evalfg(〈M0, R0〉, . . .) = V iff Eval(〈M0, R0〉, . . .) = V

The proof proceeds by induction on the length of a reduction sequence.

4.2 The fg Machine Is Not Tail-Call-Optimizing

To see that this implementation of the λsec language is not TCO, we show the
reduction sequence in the fg machine for the program from section 3, and validate
that the space taken by the configuration is growing without bound.

UserClo ∆= 〈closure : λuser sys.ARA[[UserFn]], ∅〉
SystemClo ∆= 〈closure : λsysuser .ARS[[SystemFn]], ∅〉

ρ0
∆= [sys �→ α, user �→ β]

σ0
∆= [α �→ SystemClo, β �→ UserClo]

〈ARA[[UserFn]] ARS[[SystemFn]], ∅, ∅, 〈〉〉
�→fg 〈ARA[[UserFn]], ∅, ∅, 〈push : ARS[[SystemFn]], ∅, 〈〉〉〉
�→fg 〈UserClo, ∅, ∅, 〈push : ARS[[SystemFn]], ∅, 〈〉〉〉
�→fg 〈ARS[[SystemFn]], ∅, ∅, 〈call : UserClo, 〈〉〉〉
�→fg 〈SystemClo, ∅, ∅, 〈call : UserClo, 〈〉〉〉
�→fg 〈RA[sys user ], ρ0, σ0, 〈〉〉
�→fg 〈sys user , ρ0, σ0, 〈frame : RA, 〈〉〉〉
�→fg 〈sys, ρ0, σ0, 〈push : user , ρ0, 〈frame : RA, 〈〉〉〉〉
�→fg 〈SystemClo, ρ0, σ0, 〈push : user , ρ0, 〈frame : RA, 〈〉〉〉〉
�→fg 〈user , ρ0, σ0, 〈call : SystemClo, 〈frame : RA, 〈〉〉〉〉
�→fg 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈frame : RA, 〈〉〉〉〉
2�→fg 〈RS[user sys], ρ0, σ0, 〈frame : RA, 〈〉〉〉

�→fg 〈user sys, ρ0, σ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉
�→fg 〈user , ρ0, σ0, 〈push : sys, ρ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
�→fg 〈UserClo, ρ0, σ0, 〈push : sys, ρ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
�→fg 〈sys, ρ0, σ0, 〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
�→fg 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
7�→fg 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈frame : RA, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉〉
7�→fg 〈SystemClo, ρ0, σ0,

〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉〉〉

5 An Alternative Implementation

5.1 How Security Inspections Really Work

A close look at λsec shows that frame and grant contexts affect the computation
only when they are observed by a test expression. That is, a program with no
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test expressions may be simplified by removing all frame and grant expressions
without changing its meaning. Furthermore, the observations possible with the
test expression are limited by the OK function.

In particular, any sequence of frame and grant expressions may be collapsed
into a canonical table that provides a partial map from the set of permissions to
one of two conditions: ‘no’, indicating that the permission is not granted by the
sequence, and ‘grant’, indicating that the permission is granted (and legally so)
by some grant frame in the sequence.

To derive update rules for this table, we consider evaluation of the OK func-
tion as the recognition of a context-free grammar over the alphabet of frame
and grant expressions. We start by simplifying the model to one with a single
permission. Then each frame is either empty or contains the desired permis-
sion. Likewise, there is only one possible grant. All other continuation frames
are irrelevant. So a full evaluation context can be seen as an arbitrary string in
the alphabet Σ = {y, n, g}, where y and n represent frames that contain or are
missing the given permission, and g represents a grant. Assume the ordering of
the letters in the word places the outermost frames at the left end of the string.

With the grammar in place, the OKfg predicate can easily be interpreted as
a finite-state machine that recognizes the regular expression Σ∗gy∗; that is, a
string ending with a grant followed by any number of y’s. The resulting FSA has
just two states, one accepting and one non-accepting. A g always transitions to
the accepting state, and a n always transitions to the non-accepting state. A y
causes a (trivial) transition to the current state.

This last observation leads us to a further simplification. Since the presence
of the character y does not affect the decision of the FSA, we may ignore the
continuation frames that generate them, and consider only the grant frames and
those security frames that do not include the desired permission. The regular
expression indicating the success of OKfg becomes simply Σ∗g.

Now consider the reduction semantics again. Although a context represents a
long string, we cannot reduce all permission information in a context to a single
state in our machine, because the context also contains expressions waiting to
be evaluated. In other words, there are many prefixes of this “permission word”
that evaluation depends on. Whenever a sequence of frame and grant expressions
occurs without interruption, however, it is safe to collapse it, and it is easy to see
how to do so. A substring ending in a g results in an accepting state, a substring
ending in an n results in a non-accepting state, and the empty substring does
not alter the decision. To extend this to the whole language, we must expand
our single-permission state to a full table of permissions.

This reasoning also provides an intuitive understanding for the componential
nature of our annotation scheme. Consider the evaluation of a program con-
taining both annotated and unannotated components. Since this computation
ignores security frames indicating the presence of a given permission, code that
has not been annotated at all is equivalent to code that has been granted all
permissions. This means that system libraries need not be recompiled to take
advantage of such a scheme.
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The CM Machine
m ∈ P →f {grant, no}

configurations : Ccm = 〈M, ρ, σ, κ〉 | 〈V, ρ, σ, κ〉 | 〈V, σ〉 | fail
κ = 〈empty : m〉 | 〈push : M, ρ, κ, m〉 | 〈call : V, κ, m〉

V ∈ Values = 〈closure : M, ρ〉
ρ ∈ Identifiers →f Locations

α, β ∈ Locations
σ ∈ Locations →f Values

emptycm = 〈empty : ∅〉
〈λf x.M, ρ, σ, κ〉 �→cm 〈〈closure : λf x.M, ρ〉, ρ, σ, κ〉

〈x, ρ, σ, κ〉 �→cm 〈σ(ρ(x)), ρ, σ, κ〉
〈M N, ρ, σ, κ〉 �→cm 〈M, ρ, σ, 〈push : N, ρ, κ, ∅〉〉
〈R[M ], ρ, σ, κ〉 �→cm 〈M, ρ, σ, κ[R �→ no]〉

〈grant R in M, ρ, σ, κ〉 �→cm 〈M, ρ, σ, κ[R �→ grant]〉

〈test R then M else N, ρ, σ, κ〉 �→cm

{
〈M, ρ, σ, κ〉 if OKcm[[R]][[κ]]
〈N, ρ, σ, κ〉 otherwise

〈fail, ρ, σ, κ〉 �→cm fail

〈V, ρ, σ, 〈empty : m〉〉 �→cm 〈V, σ〉
〈V, ρ, σ, 〈push : M, ρ′, κ, m〉〉 �→cm 〈M, ρ′, σ, 〈call : V, κ, ∅〉〉

〈V, ρ, σ, 〈call : V ′, κ, m〉〉 �→cm 〈M, ρ′[f �→ β][x �→ α], σ[α �→ V ][β �→ V ′], κ〉
if V ′ = 〈closure : λf x.M, ρ′〉 and α, β 
∈ dom(σ)

〈V, ρ, σ[β, . . . �→ V, . . .], κ〉 �→cm 〈V, ρ, σ, κ〉
if {β, . . .} is nonempty and
β, . . . do not occur in V , ρ, σ, or κ

where
〈. . . , m〉[R �→ c] = 〈. . . , m[R �→ c]〉 (pointwise extension)

and

OKcm[[∅]][[κ]] = true
OKcm[[R]][[〈empty : m〉]] = (R ∩ m−1(no) = ∅)

OKcm[[R]][[〈push : M, ρ, κ, m〉]]
OKcm[[R]][[〈call : V, κ, m〉]]

}
= (R ∩ m−1(no) = ∅) ∧ OKcm[[R − m−1(grant)]][[κ]]

Fig. 2.

5.2 The cm Machine

In the cm (continuation-marks) machine, each continuation frame contains a
table of permissions, called a mark. The evaluation steps for frame and grant
expressions update the table in the enclosing continuation, rather than increasing
the length of the continuation itself. The OKcm predicate now inspects these
marks, rather than the frame and grant elements of the continuation. Otherwise,
the cm machine is the same as the fg machine (figure 2).
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The Evalcm function is an instance of Evalx. That is, Evalcm is the same as
Evalfg, except that it uses �→cm as its transition function and emptycm as its
empty continuation.

The two machines produce the same results.

Theorem 2 (Machine Equivalence). For all (〈M0, R0〉, . . .),

Evalfg(〈M0, R0〉, . . .) = V iff Evalcm(〈M0, R0〉, . . .) = V

To prove this theorem, we must show that if the fg machine terminates, the cm
machine terminates with the same value, and that if the fg machine does not
terminate in a final state, then the cm machine also fails to terminate.

For the purposes of the proof, we will assume that no garbage collection steps
are taken, because garbage collection cannot affect the result of the evaluation.

Lemma 1 (No Garbage Collection). For every evaluation sequence in either
the fg or cm machine, removing every garbage-collection step produces another
legal sequence, and no divergent computation is made finite by such a removal.

To compare the machines, we introduce the function T .

T 〈M, ρ, σ, κ〉 = 〈M, ρ, σ, T (κ)〉
T 〈V, ρ, σ, κ〉 = 〈V, ρ, σ, T (κ)〉

T 〈V, σ〉 = 〈V, σ〉
T (fail) = fail

T 〈〉 = 〈empty : ∅〉
T 〈push : M, ρ, κ〉 = 〈push : M, ρ, T (κ), ∅〉

T 〈call : V, κ〉 = 〈call : V, T (κ), ∅〉
T 〈frame : R, κ〉 = T (κ)[R �→ no]
T 〈grant : R, κ〉 = T (κ)[R �→ grant]

The function T maps configurations of the fg machine to configurations of
the cm machine. A step in the fg machine corresponds to either no steps or one
step in the cm machine.

Lemma 2 (Simulation). Given a configuration Ccm, with Ccm = T (Cfg), one
of the following holds:

1. Cfg is either fail or 〈V, σ〉
2. Cfg and Ccm are both stuck.
3. Cfg �→fg C ′

fg and T (C ′
fg) = Ccm

4. Cfg �→fg C ′
fg and Ccm �→cm T (C ′

fg)

The proof is a case analysis on the four cases and the configurations of the
machine. The fg machine takes extra steps only when “popping” frame and
grant continuations after reducing their arguments to values.

The cm machine can always represent a sequence of frame and grant expres-
sions with a single mark. The sequence of steps below illustrates this for the
divergent mutually-recursive computation shown in section 3.
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RS
∆= {b, c}

RA
∆= {a, b}

〈ARA[[UserFn]] ARS[[SystemFn]], ∅, ∅, 〈empty : ∅〉〉
�→cm 〈ARA[[UserFn]], ∅, ∅, 〈push : ARS[[SystemFn]], ∅, 〈empty : ∅〉, ∅〉〉
�→cm 〈UserClo, ∅, ∅, 〈push : ARS[[SystemFn]], ∅, 〈empty : ∅〉, ∅〉〉
�→cm 〈ARS[[SystemFn]], ∅, ∅, 〈call : UserClo, 〈empty : ∅〉, ∅〉〉
�→cm 〈SystemClo, ∅, ∅, 〈call : UserClo, 〈empty : ∅〉, ∅〉〉
�→cm 〈RA[sys user ], ρ0, σ0, 〈empty : ∅〉〉
�→cm 〈sys user , ρ0, σ0, 〈empty : [{c} �→ no]〉〉
�→cm 〈sys, ρ0, σ0, 〈push : user , ρ0, 〈empty : [{c} �→ no]〉〉〉
�→cm 〈SystemClo, ρ0, σ0, 〈push : user , ρ0, 〈empty : [{c} �→ no]〉, ∅〉〉
�→cm 〈user , ρ0, σ0, 〈call : SystemClo, 〈empty : [{c} �→ no]〉, ∅〉〉
�→cm 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈empty : [{c} �→ no]〉, ∅〉〉
2�→cm 〈RS[user sys], ρ0, σ0, 〈empty : [{c} �→ no]〉〉

�→cm 〈user sys, ρ0, σ0, 〈empty : [{a, c} �→ no]〉〉
�→cm 〈user , ρ0, σ0, 〈push : sys, ρ0, 〈empty : [{a, c} �→ no]〉〉〉
�→cm 〈UserClo, ρ0, σ0, 〈push : sys, ρ0, 〈empty : [{a, c} �→ no]〉, ∅〉〉
�→cm 〈sys, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} �→ no]〉, ∅〉〉
�→cm 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} �→ no]〉, ∅〉〉
7�→cm 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈empty : [{a, c} �→ no]〉, ∅〉〉
7�→cm 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} �→ no]〉, ∅〉〉

6 Space Consumption

In order to apply Clinger’s analytic framework of TCO [4], we must extend his
configuration-measuring function to handle security frames (in the case of the
fg machine) and marks (in the case of the cm machine). Fortunately, we can use
the same function for configurations of both machines. Applying the function to
the configurations assumed by the fg and cm machines during the evaluation of a
program yields space functions Sfg and Scm, mapping programs to the maximum
space consumed during the evaluations on their respective machines.

With this extension, we can define space complexity classes O(Sfg) and
O(Scm) as the sets of space functions that are asymptotically similar to Sfg and
Scm. We can demonstrate the inclusion of O(Scm) in O(Sfg) by mapping config-
urations of the cm machine onto configurations of the fg machine and showing a
worst-case growth of no more than the number of permissions |P|, and the non-
inclusion of O(Sfg) in O(Scm) by choosing a program (like the example shown
earlier) that grows without bound in the fg machine but has a finite bound in
the cm machine.

To directly show that the cm machine is TCO, we must define TCO for this
language. We define an oracular machine that makes the right security decisions



A Tail-Recursive Semantics for Stack Inspections 35

with no information whatsoever, and then show that the cm machine’s space use
is asymptotically bounded by the complexity class O(So) induced by the oracle’s
space function So.

Theorem 3 (Space Complexity). O(So) = O(Scm) ⊂ O(Sfg)

7 A Note on TCO in Fournet and Gordon

Our reduction semantics differs from that presented by Fournet & Gordon [7].
In particular, our semantics omits runtime checks for grant expressions against
their source permissions. While we have justified this omission with a static
check (section 5.2), it is important to understand that our evaluator differs from
Fournet & Gordon’s on programs that do not satisfy this predicate.

The difference in the evaluators induces a further difference in the respective
contextual equivalence theories. In Fournet & Gordon’s theory, the equation

∅[ grant ∅ in test R then e else f ] ≡ ∅[ grant R in test R then e else f ]

holds. The two expressions are contextually equivalent because the permissions
enabled by the grant are dynamically reduced to the empty set at runtime. In our
system, though, this runtime check is omitted and the two expressions therefore
produce different results.

Although this difference might suggest that the results of this paper do not
apply to the semantics of Fournet & Gordon, this is not the case. To make this
point, we sketch an optimization path using their theory of contextual equiv-
alence that reduces any program to one that contains at most two frame ex-
pressions and one grant expression for each ordinary expression. This guarantees
that the amount of security information in the program is linear in the size of
the ordinary program.

Consider an expression containing an arbitrarily long (nested) sequence of
frame and grant expressions wrapped around a single ordinary expression e.
Using Fournet & Gordon’s contextual equivalence theory, it can be reduced to
at most two frame expressions wrapped around at most one grant expression
wrapped around e. Informally, this optimization path consists of three specific
optimizations, using four laws from the theory [7, pp. 311–312].

Selected Equations
(Frame Frame Frame) : R1[R2[R3[e]]] = (R1 ∩ R2)[R3[e]]

(Grant Grant) : grant R1 in grant R2 in e = grant R1 ∪ R2 in e
(Frame Grant) : R1[grant R2 in e] = R1[grant R1 ∩ R2 in e]

(Frame Grant Frame) : R1 ⊇ R2 ⇒ R1[grant R2 in R3[e]] = R1[R3[grant R2 in e]]

The first reduces a sequence of three or more frame expressions to two frame
expressions. The second reduces two or more grant expressions to a single grant
expression. The third moves a frame outward past a grant. We conjecture that
these optimizations yield a provably TCO machine semantics that is a direct
modification of Fournet & Gordon’s reduction semantics.
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8 Related Work

This paper is directly inspired by the POPL presentation of a semantics for
stack inspection by Fournet & Gordon [7], and by our earlier research on an
algebraic stepper for DrScheme [3]. In this work, we produced a portable and
provably correct algebraic stepper, based on a novel, lightweight stack inspec-
tion mechanism. Using a primitive function, a program can place continuation
marks on the stack and inquire about existing marks. If a function places two
marks on the stack, the run-time environment replaces the first with the second.
Hence, the manipulation of continuation marks automatically preserves tail-call
optimizations. The key difference between our earlier work and this paper is
that continuation marks for security permissions contain negative rather than
positive information. Once we understood this, we could derive the rest of the
ideas here in a straightforward manner.

The initial presentation of stack inspection is due to Wallach et al. [17,18].
They provide informal specifications and multiple implementations for this secu-
rity architecture. Our paper aims to bridge the gap between this implementation
work and the equational reasoning of Fournet & Gordon.

Several others [1,15] have considered the problem of adding tail calls to the
JVM, which does support stack inspection. However, none of these specifically
addressed stack inspection or security, and all of them made the simplifying
assumption that TCO was only possible between procedures of the same com-
ponent; that is, none of them considered calls between user and library code.

Karjoth [10] presents a semantics for access control in Java 2; his model
presents rules for the maintenance of access control information, but leaves the
rules for the evaluation of the language itself unspecified. Because he includes
rules for matching ‘call’ and ‘return’ expressions, his system cannot be the foun-
dation for a TCO implementation.

9 Conclusions

Our paper invalidates the widely held belief among programming language re-
searchers that a global tail-call optimization policy is incompatible with stack in-
spection for security policies. We develop an alternative implementation of stack
inspection; we prove that it preserves the observable behavior of all programs;
and we show that its notion of tail call is consistent with Clinger’s mathematical
notion of tail-call optimization. It is our belief that translating our ideas into
a compiler or a virtual machine imposes no additional cost on the implementa-
tion of any other construct. Finally, we expect that such an implementation will
perform as well or better than a conventional stack inspection implementation.

Acknowledgments. We are grateful to C. Fournet and J. Marshall for their
comments, and to M. Flatt for the design and implementation of continuation
marks.
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Abstract. Dynamic linking supports flexible code deployment: partially linked
code links further code on the fly, as needed; and thus, end-users receive updates
automatically. On the down side, each program run may link different versions
of the same code, possibly causing subtle errors which mystify end-users.
Dynamic linking in Java and C# are similar: The same linking phases are involved,
soundness is based on similar ideas, and executions which do not throw linking
errors give the same result. They are, however, not identical: the linking phases
are combined differently, and take place in a different order.
We develop a non-deterministic model, which includes the behaviour of Java and
C#. The non-determinism allows us to describe the design space, to distill the
similarities between the two languages, and to use one proof of soundness for
both. We also prove that all execution strategies are equivalent in the sense that all
terminating executions which do not involve a link error, give the same result.

1 Introduction

Dynamic linking supports flexible code deployment and update: instead of fully linking
code before execution, further code is linked on the fly, as needed. Thus, the newest
version of any imported code is always linked, and the most recent updates are auto-
matically available to users. Dynamic linking was incorporated into operating systems,
e.g., Multics, Unix, and Windows, enabling applications to share code, thus saving disk
and memory usage. Recently, Java and C# incorporated dynamic linking into the lan-
guage.

One question connected to dynamic linking is the choice of components to be linked,
when there are more than one with the same name. DLLs and .NET offer sophisticated
systems of versioning, side-by-side components, registries, etc. Difficulties in managing
DLLs led to the term “DLL Hell” [19]. The .NET architecture, with assemblies carrying
versioning information claims to have solved this problem [20]. Java, on the other hand,
links the first class with given name found in the classpath, and any more sophisticated
scheme can be implemented through custom class loaders [17].

Another question connected to dynamic linking is the type safety guarantees given
after choosing components. Breaking type safety jeopardizes the integrity of memory,
and ultimately security [7,18]. DLLs do not attempt to guarantee type safety: type errors
may occur and go undetected, or throw exceptions of an unrelated nature in unrelated
parts of the code. Conversely, in Java and C# if the components linked turn out to be
“incompatible”, link related exceptions are thrown, describing the nature of the problem.
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Thus, although Java and C# do not guarantee choice of compatible components, they
guarantee type safety and give error messages that signal the source of the problem.

Our study is concerned with how Java and C# guarantee type safety. Java and C#
dynamic linking are similar: The same linking phases are involved, i.e., loading, ver-
ification, offset calculation, and layout determination. Soundness is based on similar
ideas: i.e., consistency of the layout and virtual tables, verifying intermediate code, and
checking before calculating offsets. Executions which do not throw linking errors give
the same result. However, Java and C# dynamic linking are not identical: The linking
phases have different granularity, are combined differently and take place in a different
order. Linking errors may be detected at different times in Java and C# executions.

We develop a non-deterministic model, to describe the behaviour of both Java and
C#. We prove soundness, and that all executions that do not throw link errors give the
same results. Our model is concerned with the interplay of the phases rather than with
the particular phases themselves. It is at a higher level than the Java bytecode or the
.NET IL. It abstracts from Java multiple loaders and .NET assemblies, and describes
the verifier as a type checker, disregarding type inference and data flow analysis issues.
It models intermediate code as being interpreted, disregarding the difference between
JVM bytecode interpretation, and .NET IL code jit-compilation. It represents dynamic
linking not necessarily as it is, but as it is perceived by the source language programmer.

Section 2 introduces Java and C# dynamic linking with an example. Section 3
describes the model. Section 4 states properties, soundness, and equivalence. Section
5 concludes. At www.disi.unige.it/person/LagorioG/dart/papers/DLE02-long.ps
there is a longer version containing more examples, lemmas, and detail.

2 Introduction to the Dynamic Linking Phases

In the presence of dynamic linking, execution can be understood in terms of;

– evaluation, which is not affected by dynamic linking
– loading, which reads classes from the environment
– verification, which checks type-safety of the code
– laying out, which determines object layout and method tables,
– offset calculation, which replaces references to fields and methods through the cor-

responding offsets.

These phases apply to different units of granularity: Loading and laying out apply
to classes, whilst verification applies to method bodies, and offset calculation applies to
individual member access expressions.

Phases depend on each other: A class can only be laid out after it has been loaded.
The offset of a member from a class may only be calculated after that class has been laid
out. When verification requires some class to extend a further class it will load the two
classes – although [21] suggest a lazier approach of posting constraints instead.

The phases are organized slightly differently in Java than in C#: In Java, offset cal-
culation takes place per instruction, and only before the particular member is accessed,
whereas in C#, offset calculation takes place per method, and is combined with verifica-
tion, to give jit-compilation. In Java, all methods of a class are verified together, whereas
in C# methods are jit-compiled only before execution. The example from table 2 il-
lustrates these points in both Java and C#, (details www-dse.doc.ic.ac.uk/˜sue/
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Table 1. Execution of the program example – with verification

Java C# output
calc. offset for main

verifyFood
↪→ verify main

↪→check Meal ≤ Meal
↪→check Penne ≤ Penne

jit main
↪→ check Meal ≤ Meal

↪→load Meal
↪→ lay out Meal
↪→ check Penne ≤ Penne

↪→load Penne; Pasta
↪→LoadErr if ¬ Cls

↪→ lay out Penne
↪→lay out Pasta

↪→ calc. offset for eat (Penne)
calc. offset for main
execute main execute main

—1—
lay out Meal
verify Meal
↪→ verify eat (Penne)

↪→ check Penne ≤ Pasta
↪→load Penne; Pasta

↪→LoadErr if ¬ Cls
↪→VerifErr, if ¬ Sub

↪→ verify chew (Pasta)
create a new Meal object create a new Meal object

—2—
verify Penne
↪→ . . .
↪→verify Pasta
↪→ . . .

create a new Penne object create a new Penne object
—3—

calc. offset for eat (Penne)

jit eat (Penne)
↪→check Penne ≤ Pasta

↪→VerifErr, if ¬ Sub
↪→calc. offset for chew (Pasta)

execute eat (Penne) execute eat (Penne)

calc. offset for chew (Pasta)
jit chew (Pasta)
↪→calc. offset for int cal from Pasta

↪→NoFieldErr, if ¬ Fld
execute chew (Pasta) execute chew (Pasta)

0
—4—

execute eat (Penne) execute eat (Penne)
execute chew (Pasta) execute chew (Pasta)
calc. offset for int cal from Pasta

↪→NoFieldErr, if ¬ Fld
100
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Table 2. Example program

class Meal {
void eat (Penne p){ chew (p); }
void chew (Pasta p) {

if (p ==null) print (0);
else print (p.cal); }

}

class Food {
public static void main (String[] args) {

print ("— 1 —"); Meal m = new Meal ();
print ("— 2 —"); Penne p = new Penne ();
print ("— 3 —"); m.eat (null);
print ("— 4 —"); m.eat (p); }

}

foodexample.html) and consists of classes Meal and Food, compiled in an environ-
ment containing compiled versions of Pasta and Penne:

class Pasta { int cal = 100; } class Penne extends Pasta { }
These classes satisfy the following three requirements:

Cls: Classes Pasta and Penne are present
Sub: Penne is a subclass of Pasta
Fld: Pasta contains a field cal of type int

which are required by main in Food, e.g., Sub guarantees successful verification of the
eat method body, and Fld guarantees successful field access. If Cls, Sub and Fld hold,
execution will be successful, and Java and C# will give the same output.

However, the versions of Pasta and Penne available at runtime might differ from
those above: Pasta or Penne may not be available, i.e., ¬ Cls. Penne may not be a
subtype of Pasta. i.e., ¬ Sub. Pasta may not contain a field int cal, i.e., ¬ Fld.

These situations will lead to linking errors, detected by the corresponding linking
phases. Because these take place at different times in Java and C#, the errors will be
reported at different times. This is shown in table 1. The third column contains the output,
e.g., — 1 —. The first and second column contain the linking phases as they occur in
Java or in C#, with their dependencies indicated through the ↪→ symbol, e.g., in Java,
verification of class Meal requires verification of method eat, which in its turn checks
that Pasta ≤ Pasta, and Penne ≤ Penne.

The table shows execution both when Cls, Sub, and Fld hold, and when they do not.
Thus, if Cls, Sub, and Fld hold, the two executions will print the same output. However:

Verification is “lazier” in C#: Thus, ¬ Sub would cause a linking error after —1—
in Java, and after —3— in C#. Java verification checks all methods of that class, whereas
C# verifies each method when jit-compiling it before its first call.

Offset calculation is “lazier” in Java: Thus, ¬ Fld would cause a linking error after
—3— in C#, and after —4— in Java. References to fields (or methods) are resolved in
Java only when the field is actually accessed during execution, whereas in C# references
are resolved when the method containing the reference is jit-compiled.

Subtypes are “optimistic” in Java. Thus, ¬ Cls could cause a linking error before
—1— in C#, but only after —1— in Java. Checking that a class is a subclass of itself
causes loading of the class in C#, but does not in Java.
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3 The Model

The appendix lists all the judgments and terms of this model, and their place of definition.
All mappings are partial; dom(f), rng(f) denote the domain and range of function f
respectively, and ε denotes the undefined value.

3.1 Outline of the model. Programs, P (see fig. 1), describe code in all its forms,
i.e., the “raw” classes as loaded, the method bodies before and after verification/jit-
compilation, and the class layout. Ps map identifiers to classes, and addresses to method
bodies. Classes contain their superclass names, and they are either “raw”, containing the
signatures of fields and methods, and method bodies; or, they are “laid out”, containing
layout tables which map field and method signatures to offsets and virtual method tables
which map offsets to addresses. Global contexts, W , represent the context from which
“raw” classes may be loaded.

Heaps, H , map addresses to objects. Expressions, e , allow for method call, field
access and assignment. Execution reads classes from a global context W , and modifies
heaps, expressions, and programs. Therefore, it has the form: P ,H , e ;W P ′,H ′, e ′.

Loading, verification and laying out of classes can be understood as enriching the
information in the program, represented through the judgement W ` P ′ ≤ P . Loading
is represented through an extension of P using the contents of W . The layout tables are
required to extend those of the superclass. Verification and jit-compilation is represented
through modification of method bodies indicating that they have been verified, and
possible substitutions of symbolic references by offsets.

Offset calculation has the format e ;P e ′, meaning that symbolic references in e
are replaced by offsets in e ′, according to the layout tables in P .

Verification/jit-compilation is represented through: P , e ;W ,E P ′, e ′, t which
means that e is verified/jit-compiled into expression e ′ and has type t . The program P
may need to be extended to P ′, using information from W . The typing needs a typing
environment E . Verification may need to check subtypes: P , t ′, t ;W P ′ means that
t ′ was established as a subtype of t , and in the process, P was extended to P ′.

The model is highly non-deterministic, supporting the description of both languages:
Verification is “lazier” in C#. The model requires methods to have been verified/jit-

compiled before being called (fourth rule in fig. 3), thus allowing the C# lazy approach.
However, verification is part of program extension (fifth rule in fig. 2), and program
extension may take place at any time during execution (first rule in fig. 3), thus allowing
the Java approach too. Of course, it also allows further behaviour, e.g., where only some
methods are verified/jit-compiled, or where classes are verified upon loading.

Offset calculation is “lazier” in Java. The model combines verification and jit-
compilation into one judgment, P , e ;W ,E P ′, e ′, t , which requires offset calculation
for its subexpressions (third to fifth rules in fig. 5). This describes C# jit-compilation.
Offset calculation may also leave the expression unmodified (last rule in fig. 4), and that
describes Java verification. Offset calculation may also take place during execution (last
rule in fig. 3), and the operational semantics for member access requires the offset to have
been calculated (fourth and fifth rules in fig. 3). This describes Java offset calculation.
The model allows many more executions, e.g., offsets may be calculated even if not
required, or only some of the symbolic references are replaced.
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Programs
P ∈ Prg = (ClassId → (ClassRaw

⊎
ClassLaidOut))

× (N → Body) programs

ClassRaw = ClassId × ∆F × ∆M

δF ∈ ∆F = FieldId → Typ field descriptions
δM ∈ ∆M = MethId × Typ × Typ → Exp method descriptions

ClassLaidOut = ClassId × T F × T M × T C

τF ∈ T F = FieldId × Typ → N+ field layout tables
τM ∈ T M = MethId × Typ × Typ → N method layout tables
τC ∈ T C = N → N code tables

Body = (Typ × Typ × Exp) meth. body before jit/verif.⊎
Exp meth. body after jit/verif.

Global contexts
W ∈ ClassId → ClassRaw

Expressions
e, e ′ ∈ Exp ::= new c | instance creation

ι | address
y | parameter
e ma(e ′) | method invocation
e fa = e ′ | field assignment
e fa | field access
this | this reference
nllPExc | null-pointer exception
lnkExc linking related exception

t , t ′ ∈ Typ ::= c type (class name)
ma ∈ AnnM ::= .m[c, t , t ′] | unresolved method annotation

[κ] resolved method annotation
fa ∈ AnnF ::= .f [c, t ] | unresolved field annotation

[κ] resolved field annotation
a ∈ Ann ::= fa | field annotation

ma method annotation

c ∈ ClassId = Id class identifiers
f ∈ FieldId = Id field identifiers

m ∈ MethId = Id method identifiers
ι ∈ N addresses
κ ∈ N offsets

Subtypes

P(c1)↓1= c2

P ` c1 ≤ c1

P ` c1 ≤ c2

P ` c1 ≤ c2

P ` c2 ≤ c3

P ` c1 ≤ c3

Fig. 1. Expressions, programs, subtypes
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W ` P ≤ P

W ` P ′ ≤ P ′′

W ` P ′′ ≤ P
W ` P ′ ≤ P

P =c = P ′

P(c) = ε
P ′(c) = W (c) = 〈cs, , 〉
P(cs) 6= ε

W ` P ′ ≤ P

P =c = P ′

P(c) = 〈cs, δ
F , δM 〉, P ′(c) = 〈cs, τ

F , τM , τC〉
P(cs) = 〈 , τF

s , τM
s , τC

s 〉
τF injective, dom(τF ) = {〈f , t〉 | δF (f ) = t}
rng(τF ) ∩ FdOffs(P , cs) = ∅
τM ≤ τM

s wrt dom(δM ), τC � τC
s wrt τM (dom(δM ))

δM (m, t , t ′) = e =⇒ ∃ι :
τC(τM (m, t , t ′)) = ι,P(ι) = ε, P ′(ι) = (t , t ′, e)

W ` P ′ ≤ P

P = ι= P ′

P(ι) = 〈tr, tp, e〉, P ′(ι) = e ′

∃c ∈ dom(P ′) :
P(c′) = 〈 , , , τC

1 〉, ι ∈ rng(τC
1 ) =⇒ P ` c′ ≤ c

P ′, e ;W ,{this7→c,y7→tp} P ′, e ′, t
P ′ ` t ≤ tr

W ` P ′ ≤ P

Fig. 2. Program extension

Subtypes are “optimistic” in Java. The model considers any class identifier a
subtype of itself (last rule in fig. 5); thus reflecting Java. However, subtype checking
may extend a program during verification (penultimate rule in fig. 5), thus reflecting C#.

Timing of link-related actions. The model allows loading, jit-compilation, verifi-
cation, and offset calculation to take place at any time (first rule in fig. 3), even if not
needed. It allows linking exceptions (not null pointer exceptions) at any time (second
rule in fig. 3), even if not necessary, and does not distinguish the reason. This does not
reflect practical implementations but simplifies the model considerably.

3.2 Programs reflect the internal representation of code. They are described in figure
1. They map identifiers to raw (ClassRaw )  or to laid out classes (ClassLaidOut), and
addresses to method bodies. Raw classes correspond to *.class or *.dll files. They consist
of the superclass name, the field descriptions (δF ∈ ∆F ) consisting of field identifiers
and types, and method descriptions (δM ∈ ∆M ) consisting of method identifier, argu-
ment type, return type and method body. Laid out classes consist of a field layout table
(τF ∈ T F ), which determines the offset for a field with given identifier and type, the
method layout table (τM ∈ T M ), which maps method signatures to offsets, and the
virtual table (τC ∈ T C), which maps offsets to addresses of method bodies.

Method bodies which have not been checked consist of a signature and expression,
Typ × Typ × Exp. Bodies which have been checked consist of an expression, Exp.

3.3 Expressions. The syntax is given in figure 1. It describes classes, subclasses, methods
and fields for an imperative language.
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W ` P ′ ≤ P
P ,H , e ;W P ′,H , e P ,H , e ;W P ,H , lnkExc

FdOffs(P , c) = {κ1, . . . , κn}, ι free in H
P ,H , new c ;W P ,H [ι 7→ c, ι+κ1 7→ 0, . . . ι+κn 7→ 0], ι

H (ι) = c
P(c) = 〈 , , , τC〉
P(τC(κ)) = e
P ,H , ι[κ](ι′) ;W P ,H , e[ι/this, ι′/y]

ι 6= 0
P ,H , ι[κ] ;W P ,H ,H (ι + κ)
P ,H , ι[κ] = ι′ ;W P ,H [ι + κ 7→ ι′], ι′

P ,H , 0[κ] ;W P ,H , nllPExc
P ,H , 0[κ] = ι ;W P ,H , nllPExc
P ,H , 0[κ](ι) ;W P ,H , nllPExc

P ,H , e ;W P ′,H ′, e ′

P ,H , @eAexe ;W P ′,H ′, @e ′Aexe

z = nllPExc, or z = lnkExc
P ,H , @zAexe ;W P ′,H ′, z

a ;P a ′

P ,H , @aAoff ;W P ,H , @a ′Aoff

Fig. 3. Execution.

We use an augmented high level language, near to source code. The augmentations
are memory offsets, and type annotations, used to disambiguate fields or methods with
the same name. For example, the expression p.cal [Pasta,int] denotes the field called cal
of p, of type int, and declared in class Pasta. This symbolic reference will be replaced
during offset calculation; e.g., if int cal has offset 3 in class Pasta then the expression
will be rewritten to p[3].

Values are addresses, natural numbers denoted by ι, ι′ etc; the null pointer is 0.
When a field is accessed or a method is called on 0, the nllPExc exception is raised.
Also, lnkExc stands for, and does not distinguish between, any link related exception,
i.e., verification errors, class not found, class circularities, absence of fields and methods.

3.4 Execution modifies the current program, expression and heap, and has the form

P ,H , e ;W P ′,H ′, e ′

expressing that the global context W may be used for program extension. It is defined
through small step semantics in figure 3.

Heaps, H , map addresses to objects, which are memory blocks consisting of class
identifier, and values for the fields. Values are object addresses, or 0. Heaps have form:

H : N+ → N
⊎

ClassId .
If H (ι) = c ∈ ClassId then ι points to an object of class c. The fields of that object are
stored at some offset, κ, from ι. An address ι is fresh in H iff ∀κ : H (ι+ κ) =ε.

The following heap, H0, contains a Penne object at 2, and a Food object at 4:
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H0(2) = Penne start Penne object H0(3) =  55 field int cal from Pasta
H0(4) = Food start Food object H0(ι ) = ε for all other ι ’s

Thus, as in [4], heaps are modelled at a lower level than in verifier studies [24,10,
21], where objects are indivisible entities, and where there are no address calculations.
Our lower level model enables the description of the potential damage when executing
unverified code.

3.5 Program Extension. We define mapping extensions (g′ ≤ g wrt A, g′ � g wrt A),
and program equality up to class or address (P =c = P ′, P = ι= P ′):

Definition 1 For injective mappings g, g′, set A, and for P , P ′, and ι, and c :

– g′ ≤ g wrt A, iff dom(g′) = dom(g) ∪ A, and ∀y∈dom(g) : g′(y) = g(y).
– g′ � g wrt A, iff dom(g′) = dom(g) ∪ A, and ∀y∈dom(g) \ A : g′(y) = g(y).
– P = ι= P ′ iff ∀c : P(c) = P ′(c), and ∀ι′ ∈ dom(P) \ {ι} : P(ι′) = P ′(ι′).
– P =c = P ′ iff ∀c′ 6= c : P(c′) = P ′(c′), and ∀ι ∈ dom(P) : P(ι) = P ′(ι).

A program P ′ extends another program P , if P ′ contains more information (through
loading of classes), or more refined information (through verification, jit-compilation or
layout calculation) than P . This relationship has the format

W ` P ′ ≤ P

c.f. figure 2, and is defined in the global context of a W which expresses the environment
(possibly a file system) from which classes are loaded.

In more detail, W ` P ′ ≤ P if: 1) P ′ is in the reflexive, transitive closure of the
relation. 2) P ′ and P are identical up to c, a raw class read from W whose superclass
(cs) is already in P . 3) P ′ and P are identical up to class c, and a) the field layout of
c extends that of cs and fields introduced by c get fresh offsets, b) the method layout
of c extends that of cs, c) all methods in c which override (have the same signature as)
methods in cs are mapped to new addresses. 4) P ′ and P are identical up to address ι,
and P (ι′) contains the verified/jit-compiled version of the method at P (ι).

The first rule of figure 3 says that programs may be extended at any time. The
second rule allows linking exceptions to be thrown at any time. This is, of course, highly
non-deterministic, and does not prohibit linking phases or errors even if unnecessary.

3.6 Evaluation is not directly affected by dynamic linking. It is described by the third
through eighth rule in figure 3.

Creation of a new object, new c, allocates fresh addresses for the fields of c at the
corresponding offsets, initializing them with 0. The auxiliary function which collects
the field offsets from all superclasses:

FdOffs(P , c) =
⋃

P`c≤c′
rng(P(c′) ↓2)

Method call, ι[κ](ι′), looks up the method body e in the dynamic class of the re-
ceiver ι, using the offset κ, and executes that body after replacing this by the actual
receiver ι, and the parameter y by the argument ι′. Therefore, evaluation only ap-
plies to expressions which do not contain this, or y. The format of the call ι[κ](ι′)
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P(c) = 〈 , τF , , 〉
τF (f , t) = κ

.f [c, t ] ;P [κ]

P(c) = 〈 , , τM , 〉
τM (m, tr, tp) = κ

.m[c, tr, tp] ;P [κ] a ;P a

Fig. 4. Offset calculation.

(rather than ι.m[c, tr, tp](ι′)) means that the offset has been calculated. The require-
ment P(c) = 〈 , , , τC〉 (rather than P(c) = 〈 , , 〉) means that the class c has been
laid out. The requirement that P(τC(κ)) = e (rather than P(τC(κ)) = 〈 , , 〉) means
that the particular method has been verified/jit-compiled.

Field lookup retrieves the contents of the heap at the given offset, whereas field
assignment updates the heap at the given offset, as in the fifth rule. Method call and field
access for 0 throw a nllPExc, as described in the sixth rule of the figure.

Execution is propagated to its context, as described in the seventh rule. Both link
related, and unrelated exceptions (i.e., z) are propagated out of their contexts, as described
in the eighth rule. Execution contexts allow a succinct description of propagation:
@·Aexe ::= @·Aexe ma(e) | ιma(@·Aexe) |

@·Aexe fa = e | ι fa = @·Aexe | @·Aexe fa

3.7 Offset Calculation replaces a symbolic reference through an offset, and has format

a ;P a ′

where a represents a field or method annotation. Figure 4 says that for fields, we look
up the name of the field and its type in the class, whilst for methods we look up the name,
argument type and result type in the class. The last rule allows a to be left unmodified.

The last rule in 3 allows offset calculation to happen during execution, as in Java.
For this, we have defined appropriate notion of offset calculation contexts as

@·Aoff ::= e @·Aoff | e @·Aoff = e | e @·Aoff (e)
Offset calculation also happens during jit-compilation, (figure 5) thus modelling C#.

Combining this with the rule that leaves offsets unmodified we model Java verification
which does not calculate the offsets.

3.8 Verification and Jit-Compilation. We describe the similarities between Java veri-
fication and C# jit-compilation through verification/jit-compilation, in fig. 5:

P , e ;W ,E P ′, e ′, t

which transforms expression e to e ′, type checks e to type t , and possibly extends the
program P to P ′. The process takes place in an environment E which maps this and
the parameter y to types, i.e., E : { this, y } → Typ, and in the global context W .

The parameter y and the receiver this have the type given in the environment E .
Verification/jit-compilation of an object creation expression requires c to be a class, and
gives it type c. The value 0 has any class type c.

Method call requires the receiver and argument to be well-typed, and to be of subtypes
of c and tp, the receiver and argument types stored in the symbolic method annotation
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P , this ;W ,E P , this,E(this)
P , y ;W ,E P , y,E(y)

P , c, c ;W P ′

P , new c ;W ,E P ′, new c, c
P , 0 ;W ,E P ′, 0, c

P , e1 ;W ,E P1, e ′
1, t1

P1, e2 ;W ,E P2, e ′
2, t2

P2, t1, c ;W P3

P3, t2, tf ;W P ′

.f [c, tf ] ;P′ fa
P , e1.f [c, tf ] = e2 ;W ,E P ′, e ′

1 fa = e ′
2, tf

P , e ;W ,E P1, e ′, te

P1, te, c ;W P ′

.f [c, tf ] ;P′ fa
P , e.f [c, tf ] ;W ,E P ′, e ′ fa, tf

P , e1 ;W ,E P1, e ′
1, t1

P1, e2 ;W ,E P2, e ′
2, t2

P2, t1, c ;W P3

P3, t2, tp ;W P ′

.m[c, tr, tp] ;P′ ma
P , e1.m[c, tr, tp](e2) ;W ,E P ′, e ′

1 ma(e ′
2), tr

W ` P ′′ ≤ P
P ′′, e ;W ,E P ′, e ′, t
P , e ;W ,E P ′, e ′, t

W ` P ′ ≤ P
P ′ ` t ′ ≤ t
P , t ′, t ;W P ′ P , t , t ;W P

Fig. 5. Verification and Jit-compilation.

.m[c, tr, tp]. The method call has type tr, the result type of the annotation. The symbolic
annotation may be replaced by an offset, thus modeling C# jit-compilation. Offset calcu-
lation also allows for the identity, thus modeling Java verification. Similar explanations
apply to the rules which access fields.

Finally, verification may require classes to be loaded, and the offset calculation may
require layout information about some classes. This is described through the sixth rule,
which allows extension of the program at any time.

Verification/jit-compilation may need to check that a type is a subtype of another
type, and while doing so may need to load further classes, as in judgment:

P , t1, t2 ;W P ′

also given in figure 5. Notice, that this judgment allows any identifier to be a subtype of
itself even if not loaded - this follows the “optimistic” Java approach.

4 Soundness and Equivalence of Strategies

The judgment ` P defined in fig. 6 guarantees that program P is well formed, i.e., that 1)
the class Object is defined and has itself as a superclass, 2) all superclasses are present,
and the subclass relationship is acyclic except for Object, 3) for any laid out class c
with superclass cs the fields and methods have distinct offsets, the methods defined in
cs have the same offsets in c, and 3) all the methods defined in cs have the same offsets
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P(Object) = 〈Object, , , 〉
P ` c ≤ c′ =⇒ c′ ∈ dom(P) and P ` c′ ≤ c =⇒ c′ = c

P(c) = 〈c′, τF , τM , τC〉 =⇒



c = c′ =⇒ c = Object
τF , τM , τC injective
rng(τM ) = dom(τC), rng(τC) ⊆ dom(P ↓2)

P ` c ≤ cs, c 6= cs =⇒


P(cs) = 〈 , τF

s , τM
s , 〉

rng(τF
s ) ∩ rng(τF ) = ∅

τM ≤ τM
s wrt some set

ι ∈ rng(P(c′)↓4) ∩ rng(P(c′′)↓4) =⇒



∃c :
P ` c′ ≤ c, P ` c′′ ≤ c, ι ∈ rng(P(c)↓4)
ι∈rng(P(c′′′)↓4) =⇒ P ` c′′′ ≤ c

P(ι) = e =⇒


∃e0, τM , τC ,m, tr, tp :
P , e0 ;∅,{this 7→c,y7→tp} P , e, t
P ` t ≤ tr

P(c) = 〈 , , τM , τC〉
τC(τM (m, tr, tp)) = ι

` P

Fig. 6. Well-formed programs

P ` c′ ≤ c
H (ι) = c′

P ,H ` ι / c P ,H ` 0 / c

H (ι) = c
P(c) = 〈 , τF , , 〉
∀κ:TypeOfFd(P , c, κ) = t =⇒ P ,H ` ι + κ / t
1 ≤ κ ≤ max(FdOffs(P , c)) =⇒ H (ι + κ) 6∈ ClassId
P ,H ` ι

H (ι) ∈ ClassId =⇒ P ,H ` ι

P ` H

Fig. 7. Conformance

in c, and 4) all method bodies which are considered as already verified/jit-compiled,
i.e., for which P (ι)=e, can be verified/jit compiled, albeit without program extension,
and therefore in the empty global context, ∅.

Figure 7 defines conformance. The judgment P ,H ` ι expresses that the object
stored at ι conforms to its class, c, as stored in H (ι). For all fields of c, the object
must contain appropriate values at the corresponding offsets, and no other object may be
stored between its fields. The judgment P ` H requires all objects to conform to their
class, and (implicitly) that the class of any objects stored in H is defined in P . Notice,
that 0 conforms to any class, allowing fields initialized to 0, to belong even to a class
that has not been loaded yet.

Types for runtime expressions are given by judgment P ,H ` e : t , from fig. 8, with
rules similar to those for verification/jit-compilation, with the difference that heaps are
taken into account (to give types to addresses), environments are not taken into account
(runtime expressions do not contain this, or y), and the program is not extended.

Runtime expressions containing field access offsets are typed using:

TypeOfFd(P , c, κ) = t if P(c′)↓2 ( , t) = κ for P ` c ≤ c′, ε otherwise
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P ,H ` 0 : c
P ,H ` new c : c

P ,H ` ι
P ` c ≤ c′

H (ι) = c
P ,H ` ι : c′

P ,H ` e : c′

P ` c′ ≤ c
P ,H ` e.f [c, t ] : t

P ,H ` e : c
TypeOfFd(P , c, κ) = t
P ,H ` e[κ] : t

P ,H ` e fa : t
P ,H ` e ′ : t ′

P ` t ′ ≤ t
P ,H ` e fa = e ′ : t

P ,H ` e1 : c1

P ,H ` e2 : t2

P ` c1 ≤ c
P ` t2 ≤ tp

P ,H ` e1.m[c, tr, tp](e2) : tr

P ,H ` e1 : c1

P ,H ` e2 : t2

P ` t2 ≤ tp

P(c1) = 〈 , , τM , 〉
τM (〈..., tr, tp〉) = κ

P ,H ` e1[κ](e2) : tr

Fig. 8. Types of runtime expressions.

The above, and the inverse layout function for runtime types of method calls, are well-
defined in well formed programs, because layout functions are injective.

In the longer version we prove that verification/jit-compilation and execution extend
programs. Subtyping, conformance of heap, runtime types, verification of expressions, or
well-formedness of program, established in a program P are preserved in an extending
program P ′ . Therefore, execution of any expression preserves well-formedness of
programs. Finally, a verified expression preserves its runtime type, when the receiver
and argument have been replaced by addresses of appropriate class.

In theorem 1 we prove subject reduction which guarantees that the heap H ′ preserves
conformance, uninitialized parts of the store are never dereferenced, and the expression
preserves its type. In theorem 2 we prove that nondeterminism does not affect the result
of evaluations which do not throw link related exceptions, provided we operate in the
same global context W .

Theorem 1 If P ` H , and ` P , and P ,H ` e : t , and P ,H , e ;W P ′,H ′, e ′

then
P ′ ` H ′, and
if e ′ does not contain an exception, then ∃ t ′ : P ′,H ′ ` e ′ : t ′, P ′ ` t ′ ≤ t .

Theorem 2 For e , P , P ′, P ′′, H , H ′, H ′′, ι , and ν, ν′ ∈ N ∪ {nllPExc}, if:
P ,H , e ;∗

W P ′,H ′, ν, and P ,H , e ;∗
W P ′′,H ′′, ν′,

then:
ν = ν′,H ′ = H ′′ up to renaming of addresses.

Theorem 2 does not apply for intermediate results, nor if ν were a link related
exception – counterexamples apeared in section 2.

5 Conclusions, Related Work, and Further Work

Dynamic linking is a relatively new, very powerful language feature with complex se-
mantics, which needs to be well understood. Our model is simple, especially considering
the complexity of the feature, and compared to an earlier model for Java [4].
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We have achieved simplicity through many iterations, and through the choice of
appropriate abstractions: 1) we do not distinguish the causes of link related exceptions,
2) we allow link-related exceptions to be thrown at any time of execution, even when
there exist other, legal evaluations, 3) we do not prescribe at which point of execution
the program will be extended, and so allow “unnecessary” loading, verification or jit-
compilations, 4) we combine in the concept of “program” loaded, verified, and laid out
code, 5) we represent programs through mapping rather than texts or data structures.
Most of these abstractions were introduced primarily to allow the model to serve for
both Java and for C#, and had the agreeable effect of significant simplification.

Non-determinism seems to have been in the the Java designers’ minds: the specifica-
tion [17], sect. 12.1.1 requires resolution errors to be thrown only when linking actions
related to the error are required. Through non-determinism we distilled the main in-
gredients of dynamic linking in both languages, and their dependencies. We prove type
soundness, thus obtaining type soundness both for the Java and the C# strategies, and
showed that different strategies within the model do not differ widely.

Extensive literature is devoted to the Java verifier [24,11]. Dynamic loading in Java
is formalized in [14], while problems with security in the presence of multiple loaders
are reported in [23], a solution presented in [16], which is found flawed and improved
upon in [21]. Type safety for a substantial subset of the .NET IL is proven in [12].

The semantics of linking is studied in [2]. Module interconnection languages, and
mixins [1,8,6] give explicit control of program composition at source code level.

Dynamic linking gave rise to the concept of binary compatible changes, [9], and [17],
sect. 13, i.e., changes which do not introduce more linking errors than the original code;
the concept is explored in [5]. Tools that load most recent binary compatible versions
of code were developed for Java [22] and C# [15]. Current JVMs go even further, and
support replacing a class by a class of the same signature, as a “fix-and-continue” feature
[3]. Dynamic software updates [13] support type safe dynamic reloading of code whose
type may have changed, while the system is running.

Further work includes a better understanding of binary compatible library develop-
ments, extension of the model to allow verification also posting constraints, as suggested
in [21], or to allow field lookup based on superclass’s tables as in some of JVMs, incorpo-
ration of C# assemblies and modules, extensions of the model so as to avoid unnecessary
linking steps, and “concretization” of the model so as to obtain Java or C# behaviour.

Acknowledgements. We are indebted to Vladimir Jurisic, Davide Ancona, Elena Zucca,
Christopher Anderson, and Mark Skipper for suggestions and feedback.
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A Overview of Terms and Judgments of This Paper

e expressions fig. 1
t types fig. 1
ι addresses fig. 1
κ offsets fig. 1
nllPExc the null-pointer exception fig. 1
lnkExc link-related exception, e.g., verification, load err. etc fig. 1

fa , ma , a field, method, or any annotation fig. 1

δF field descriptions fig. 1
δM method descriptions fig. 1
τF field layout tables fig. 1
τM method layout tables fig. 1
τC code tables fig. 1

H heaps sec. 3
E environment giving types to receiver and argument sec. 3

@·Aexe execution context sect. 3
@·Aoff offset calculation context sect. 3

P ,H , e ;W P ′,H ′, e ′ execution in global context W fig 3
a ;P a ′ offset calculation fig. 4
P , e ;W ,E P ′, e ′, t verification or jit-compilation fig. 5
P , t ′, t ;W P ′ t ′ is a subtype of t , while extending program P to P ′ fig. 5
W ` P ′ ≤ P program P ′ extends program P in global context W fig. 2

P ` t ′ ≤ t in program P the type t ′ is a subtype of t fig. 1
` P well formed program fig. 6
P ` H well formed heap H for the program P fig. 7
P ,H ` e : t runtime expression e has type t in the context of P and H fig. 8
P ,H ` ι / c ι conforms class c, or subclass fig. 7

g′ ≤ g wrt A mapping g′ injectively extends g into set A, preserving dom(g) def. 1
g′ � g wrt A mapping g′ injectively extends g into set A, preserving dom(g) \ A def. 1
P = ι= P ′ P and P ′ agree up to address ι def. 1
P =c = P ′ P and P ′ agree up to class c def. 1

FdOffs(P , c) the set of all offsets allocated for the fields of c in P page 46
TypeOfFd(P , c, κ) the type of the field contained at the offset κ of c in P page 49
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1 DSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, Apdo. 22012,
46071 Valencia, Spain. alpuente@dsic.upv.es.

2 Dip. Matematica e Informatica, Via delle Scienze 206, 33100 Udine, Italy.
{demis,falaschi}@dimi.uniud.it.

3 DIS, U. EAFIT, Cra. 49 N. 7 Sur 50, 3300 Medelĺın, Colombia.
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Abstract. We propose a new methodology for synthesizing correct func-
tional logic programs. We aim to create an integrated development envi-
ronment in which it is possible to debug a program and correct it auto-
matically. We start from a declarative diagnoser that we have developed
previously which allows us to identify wrong program rules w.r.t. an in-
tended specification. Then a bug-correction, program synthesis method-
ology tries to correct the erroneous components of the wrong code.
We propose a hybrid, top-down (unfolding–based) as well as bottom-up
(induction–based), approach for the automatic correction of functional
logic programs which is driven by a set of evidence examples which are
automatically produced as an outcome by the diagnoser. The resulting
program is proven to be correct and complete w.r.t. the considered ex-
ample sets. Finally, we also provide a prototypical implementation which
we use for an experimental evaluation of our system.

1 Introduction

The main motivation for this work is to provide a methodology for developing
advanced debugging and correction tools for functional logic languages. Func-
tional logic programming is now a mature paradigm and as such there exist
modern environments which assist in the design, development and debugging of
integrated programs. However, there is no theoretical foundation for integrating
debugging and synthesis into a single unified framework. We believe that such
an integration can be quite productive and hence develop useful techniques and
new results for the process of automatically synthesizing correct programs.

In a previous work [6], a generic diagnosis method w.r.t. computed answers
which generalizes the ideas of [11] to the diagnosis of functional logic programs
has been proposed. The method works for eager (call–by–value) as well as for
lazy (call–by–name) integrated languages. Given the intended specification I
of a program R, we can check the correctness of R w.r.t. I by a single step
� This work has been partially supported by CICYT under grant TIC2001-2705-C03-

01, by Acción Integrada Hispano-Italiana HI2000-0161 and by Generalitat Valenci-
ana under grant GV01-424.
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of a (continuous) immediate consequence operator which we associate to our
programs. This specification I may be partial or complete, and can be expressed
in several ways: for instance, by (another) functional logic program [6,2], by
an assertion language [10] or by equation sets (in the case when it is finite).
Our methodology is based on abstract interpretation: we construct over and
under specifications I+ and I− to correctly over- (resp. under-) approximate the
intended semantics I. We then use these two sets respectively for the functions
in the premises and the consequences of the immediate consequence operator,
and by a simple static test we can determine whether some of the clauses are
wrong. The debugging system Buggy[3] is an experimental implementation of
the method which allows the user to specify the (concrete) semantics by means
of a functional logic program. In [2], we also presented a preliminary correction
algorithm based on the deductive synthesis methodology known as example-
guided unfolding [8]. This methodology uses unfolding in order to discriminate
positive from negative examples (resp. uncovered and incorrect equations) which
are essentially obtained as an outcome by the diagnoser.

However, this pure deductive learner cannot be applied when the original
wrong program is overspecialized (that is, it does not cover all the (positive)
examples chosen to describe the pursued behavior). In this paper, we develop a
new program corrector based on, and integrated with, the declarative debugger of
[6,2], which integrates top–down as well as bottom–up synthesis techniques. The
resulting method is conceptually cleaner than more elaborated, purely deductive
or inductive learning procedures, and combines the advantages of both styles.
Furthermore, our method is parametric w.r.t. the chosen bottom-up learner.
As an instance of such parameter, we consider for the bottom-up part of the
algorithm the functional logic inductive framework of [17,20]. Informally, our
correction procedure works as follows. Starting from an overly general program
(that is, a program which covers all positive examples as well as some negative
ones), the top–down algorithm unfolds the program until a set of rules which
only occur in the refutation of the negative examples is identified, and then
they are removed from the program. When the original wrong program does not
initially cover all positive examples, we first invoke the bottom–up procedure,
which “generalizes” the program as to fulfil the applicability conditions. After
introducing the new method we prove its correctness and completeness w.r.t.
the considered example sets. Finally we present a prototypical implementation
of our system and the relative benchmarks. The following example illustrates
our method.

Example 1. Let us consider the program:

R = {od(0) → true, od(s(X)) → od(X), z(0) → 1, z(s(X)) → z(X) }

which is wrong w.r.t. the following specification of the intended semantics (mis-
takes in R are marked in bold):

I = { ev(0) → true, ev(s(s(X))) → ev(X),
od(s(X)) → true ⇐ ev(X) = true, z(X) → 0 }.



56 M. Alpuente et al.

By running the diagnosis system Buggy, we are able to isolate the wrong rules
of R w.r.t. the given specification. By exploiting the debugger outcome as de-
scribed later, the following positive and negative example sets are automatically
produced (the user is allowed to fix the cardinality of the example sets by tuning
some system parameters):

E+ = {od(s3(0)) = true, od(s(0)) = true, z(s2(0)) = 0, z(s(0)) = 0, z(0) = 0 }
E− = {od(s2(0)) = true, od(0) = true, z(0) = 1, z(s(0)) = 1, z(s2(0)) = 1 }.

We observe that unfolding the rule r ≡ od(s(X)) → od(X) w.r.t. R results in
replacing r by two new rules r1 ≡ od(s(0)) → true and r2 ≡ od(s2(X)) → od(X).
Now, by getting rid of rule od(0) → true, we obtain a new recursive definition
for function od covering the positive examples while no negative example can be
proven, which corrects the bug on function od.

However, note that this approach cannot be used for correcting function z:
unfolding the rules defining z does not contribute to demonstrate the positive
examples since the original program is overspecialized and unfolding can only
specialize it further. Nevertheless, by generalizing function z as in the bottom-up
inductive framework of [20], we get the new rule z(X) → 0. Now, by eliminating
rule z(0) → 1, which does not contribute to any positive example, we obtain the
final outcome

Rc = {od(s(0)) → true, od(s(s(X))) → od(X), z(X) → 0, z(s(X)) → z(X) }
which is correct w.r.t. the computed example sets.

The rest of the paper is organized as follows. Section 2 summarizes some
preliminary definitions and notations. Section 3 recalls the framework for the
declarative debugging of functional logic programs defined in [2]. In Section 4, we
present the basic, top-down automatic correction procedure. Section 5 integrates
this algorithm with a bottom-up inductive learner which allows us to apply
the correction methodology when the original program is overly specialized. In
Section 6, we present an experimental evaluation of the method on a set of
benchmarks. Section 7 discusses some related work and concludes. Proofs of all
technical results can be found in [1].

2 Preliminaries

Let us briefly recall some known results about rewrite systems [7,22] and func-
tional logic programming (see [19,21] for extensive surveys). For simplicity, defi-
nitions are given in the one-sorted case. The extension to many–sorted signatures
is straightforward, see [27]. Throughout this paper, V will denote a countably
infinite set of variables and Σ denotes a set of function symbols, or signature,
each of which has a fixed associated arity. τ(Σ ∪ V ) and τ(Σ) denote the non-
ground word (or term) algebra and the word algebra built on Σ ∪ V and Σ,
respectively. τ(Σ) is usually called the Herbrand universe (HΣ) over Σ and it
will be denoted by H. B denotes the Herbrand base, namely the set of all ground
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equations which can be built with the elements of H. A equation s = t is a
pair of terms s, t ∈ τ(Σ ∪ V ). Terms are viewed as labelled trees in the usual
way. Term positions are represented by sequences of natural numbers, where Λ
denotes the empty sequence. O(t) denotes the set of positions of a term t, while
O(t) is the set of nonvariable positions of t. t|u is the subterm at the position
u of t. t[r]u is the term t with the subterm at the position u replaced with r.
These notions extend to sequences of equations in a natural way. By V ar(s) we
denote the set of variables occurring in the syntactic object s, while [s] denotes
the set of ground instances of s. Identity of syntactic objects is denoted by ≡. A
substitution is a mapping from the set of variables V to the set τ(Σ ∪V ). Given
a set of equations E, mgu(E) denotes the most general unifier of E [25].

A conditional term rewriting system (CTRS for short) is a pair (Σ, R), where
R is a finite set of reduction (or rewrite) rule schemes of the form (λ → ρ ⇐ C),
λ, ρ ∈ τ(Σ ∪ V ), λ �∈ V and V ar(ρ) ⊆ V ar(λ). The condition C is a (possibly
empty) sequence e1, . . . , en, n ≥ 0, of equations. We will often write just R
instead of (Σ, R). If a rewrite rule has no condition, we write λ → ρ. A goal ⇐ g
is a rewrite rule with no head, and we simply denote it by g.

For CTRS R, r << R denotes that r is a new variant of a rule in R such
that r contains only fresh variables, i.e. contains no variable previously met
during computation (standardized apart). Given a CTRS 〈Σ, R〉, we assume
that the signature Σ is partitioned into two disjoint sets Σ = C � D, where
D = {f | (f(t̃) → r ⇐ C) ∈ R} and C = Σ \ D. Symbols in C are called
constructors and symbols in D are called defined functions. The elements of
τ(C ∪V) are constructor terms. A pattern is a term f(l1, . . . , ln) such that f ∈ D
and l1, . . . , ln are constructor terms. A term s is a normal form, if there is no
term t with s →R t, where →R denotes the (conditional) rewriting relation.
We omit the subscript R when no confusion can arise. In the remainder of this
paper, a (functional logic) program is a finite CTRS. The program R is said
to be canonical if the binary one-step rewriting relation →R defined by R is
noetherian and confluent [22]. A successful conditional rewriting sequence (also
called proof) for a goal g in R (extended with the rules for the equality) is a
sequence D : g ≡ g1 → g2 → . . . → true.

The standard operational semantics of functional logic programs is based
on narrowing [15,29], a combination of unification for parameter passing and re-
duction as evaluation mechanism which subsumes rewriting and SLD-resolution.
Essentially, narrowing consists of the instantiation of goal variables, followed by
a reduction step on the instantiated goal. Narrowing is complete in the sense of
functional programming (computation of normal forms) as well as logic program-
ming (computation of answers). Due to the huge search space of unrestricted
narrowing, steadily improved strategies have been proposed. A narrowing strat-
egy (or position constraint) ϕ is any well-defined criterion that obtains a smaller
search space by permitting narrowing to reduce only some chosen positions. We
denote by �ϕ the narrowing relation with strategy ϕ (see [19] for a survey on
narrowing strategies.) IRϕ denotes the class of CTRSs which satisfy the condi-
tions for the completeness of the strategy ϕ. For instance, needed narrowing is
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known to be an optimal narrowing strategy for inductively sequential programs,
a class of TRS’s following the constructor discipline with discriminating left-
hand side, that is, typical functional programs. For the completeness of “lazy
strategies” such as needed narrowing, the strict equality ≈ is considered, which
is only defined on finite and completely determined data structures, and gives to
equality the weak meaning of identity of finite objects (e.g., see [26]). Hence, we
also assume that equations in g and C have the form s = t (where = denotes the
standard equality) whenever we consider “eager strategies” such as innermost
conditional narrowing (ϕ = inn), whereas the equations have the form s ≈ t
when we consider needed narrowing (ϕ = needed).

2.1 Denotation of a Functional Logic Program

In order to formulate a semantics modeling computed answers, the usual Her-
brand base has to be extended to the set of all (possibly) non-ground equations
modulo variance [14]. HV denotes the V -Herbrand universe which allows vari-
ables in its elements, and is defined as τ(Σ ∪ V )/∼=, where ∼= is the equivalence
relation induced by preorder ≤ of “relative generality” between terms. For the
sake of simplicity, the elements of HV have the same representation as the ele-
ments of τ(Σ ∪ V ) and are also called terms. BV denotes the V -Herbrand base,
namely, the set of all equations s = t modulo variance, where s, t ∈ HV . Note
that the standard Herbrand base B is equal to [BV ].

In non-strict languages, if the compositional character of meaning has to
be preserved in presence of infinite data structures and partial functions, then
non-normalizable terms, which may occur as subterms within normalizable ex-
pressions, also have to be assigned a denotation. Following [18,26], we introduce
a fresh constant symbol ⊥ into Σ to represent the value of expressions which
would otherwise be undefined.

In the following we recall two useful semantics for functional logic programs
(we refer to [6] for details).

Operational Semantics. The operational success set semantics Oca
ϕ (R) of a

program R w.r.t. narrowing strategy ϕ is defined by considering the answers
computed for “most general calls”:

Oca
ϕ (R) = �ϕ

R ∪ {(f(x1, . . . , xn) = xn+1)θ | (f(x1, . . . , xn) =ϕ xn+1) θ ∗
�ϕ

� s.t. f/n ∈ D, xn+1 and xi are distinct variables, for i = 1, . . . , n }, where
�ϕ

R denotes the set of identical equations c(x1, . . . , xn) =ϕ c(x1, . . . , xn), c/n
constructor symbol in R.

Fixpoint Semantics. The (bottom-up) fixpoint semantics Fca
ϕ (R), modeling

computed answers w.r.t. a narrowing strategy ϕ, is defined as the least fixpoint
Fca

ϕ (R) = T ϕ
R ↑ ω of a parametric immediate consequence operator T ϕ

R : 2BV →
2BV which generalizes the ground immediate consequences operator in [21] in
order to model computed answers.



Correction of Functional Logic Programs 59

The relationship between the operational and fixpoint semantics is estab-
lished by the following theorem.
Theorem 1. [2] Oca

ϕ (R) = Fϕ(R) \ inprogress(Fϕ(R)),
where, for equation set S, inprogress(S) = {λ = ρ ∈ S | ⊥ occurs in ρ or ρ
contains a defined function symbol of Σ}.

For the sake of clarity, let us summarize the relation among the two different
program denotations Fϕ(R) and Oca

ϕ (R) introduced above. The compositional,
fixpoint semantics Fϕ(R) which models successful as well as partial (nontermi-
nating as well as intermediate computations, i.e. those equations f(t̄) = s where
s “has not reached its value”) is obtained by computing the least fixpoint of the
immediate consequences operator T ϕ

R. On the other hand, the operational suc-
cess set semantics Oca

ϕ (R) only catches successful derivations, that is, it models
the computed answers observable.

3 Diagnosis of Declarative Programs

First we recall some basic definitions on the declarative diagnosis [11].
Definition 1. Let Ica be the specification of the intended success set semantics
for R. An incorrectness symptom is an equation e such that e ∈ Oca

ϕ (R) and
e �∈ Ica. An incompleteness symptom is an equation e such that e ∈ Ica and
e �∈ Oca

ϕ (R).
In case of errors, in order to determine the faulty rules, we make use of the

following definitions. We need to consider a fixpoint intended semantics IF , that
models both successful and “in progress” computations. The relation between
IF and the intended operational meaning is given by Ica = IF \inprogress(IF ).
Definition 2. Let IF be the specification of the intended fixpoint semantics for
R. If there exists an equation e ∈ T ϕ

{r}(IF ) and e �∈ IF , then the rule r ∈ R
is incorrect on e. We also say that e is incorrect. Reciprocally, the equation e is
uncovered if e ∈ IF and e �∈ T ϕ

R(IF ).
Since program denotations generally consist of an infinite number of equa-

tions, the above conditions for correctness and completeness of a program w.r.t.
to a given specification cannot be effectively computed. In [2], an abstract di-
agnosis methodology based on the abstract interpretation theory [12] was pro-
posed. Abstract diagnosis is a correct approximation of the diagnosis technique
presented so far where the semantic domains and operators are replaced by
abstract ones. First, we build a suitable abstract immediate consequences op-
erator (T �ϕ

R ), which uses an abstraction of the program rules where all infinite
computations have been removed and is also parametric w.r.t. the narrowing
strategy. The approximation is done by using a loop-checker which replaces the
calls which are (risky to be) responsible for the infinite derivations by a fresh
irreducible symbol 	. The fixpoint of T �ϕ

R correctly approximates the fixpoint
semantics of R and can be computed finitely. The abstract diagnosis process is
performed w.r.t. two abstract (finite) semantics I− and I+ which under- and
over-approximate the intended semantics I.
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4 Correction Method

In this section, we present an inductive learning methodology which is able to
repair a functional logic program containing buggy rules. The correction problem
can be stated as follows. Let R be a program, I the intended specification,
R′ ⊆ R a set of incorrect rules w.r.t. I, and E = E+ ∪E− two disjoint (ground)
example sets which model the pursued (not pursued) computational behaviour.
We denote by R � E the fact that the (ground) equation set E can be reduced
to true by using the rules of R. Then, we want to determine a set of rules
X such that Rc = (R \ R′) ∪ X , Rc � E+ and Rc �� E−. Program Rc will
be called correct program (w.r.t. E+ and E−). We will call R− = R \ R′ the
diminished program. We note that R � E can be checked, even in the case
that R is not terminating, by using the “normalization via µ–normalization”
method of [23] to compute, by levels, the ‘maximal contexts’ of the lhs’s of
the examples, and then comparing them with the ground constructor term in
the corresponding rhs. By this technique, normal forms can be obtained by
successively computing µ-normal forms and shifting computations to maximal
non-replacing subterms when a µ-normal form has been obtained. The conditions
for the completeness of this technique (csr–conditions) essentially amount to the
termination of “context–sensitive rewriting” (csr) [24], which is much easier than
the termination of rewriting. A csr practical tool for proving termination of csr
is available at http://www.dsic.upv.es/users/elp/slucas/muterm.

The automatic search for a new rule in an induction process can be performed
either bottom-up (i.e. from an overly specific rule to a more general) or top-down
(i.e. from an overly general rule to a more specific). There are some reasons to
prefer the top-down or backward reasoning process to the bottom–up or forward
reasoning process [13]. On the one hand, it eliminates the need for navigating
through all possible logical consequences of the program. On the other hand, it
integrates inductive reasoning with the deductive process, so that the derived
program is guaranteed to be correct. Unfortunately, it is known that the deduc-
tive process alone (i.e. unfolding) does not generally suffice for coming up with
the corrected program, and inductive generalization techniques are necessary
[13,28]. In [20,17], a bottom-up framework for synthesizing correct functional
logic programs (w.r.t. the ground success set, Herbrand semantics) is presented
which induces program rules from sets of equations which are respectively in-
correct and correct w.r.t. the pursued program. Their methodology, however, is
not particularly tailored for theory revision, and we need to adapt it since the
uncontrolled application of the method would produce much speculation in our
framework, which we want to avoid. Therefore, we follow a hybrid, top-down as
well as bottom-up approach, which is able to infer program corrections that are
hard, if not at all impossible, to obtain with a simple deductive learner.

4.1 Automatic Generation of Positive and Negative Example Sets

Let us present a simple method for automatically generating the example sets
which exploits the debugger outcome so that the user does not need to provide
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error symptoms, evidences or other kind of information which would require a
good knowledge of the program semantics that she probably lacks.

Consider the diminished program R−. Due to the absence of faulty rules in
R−, R− is already partially correct; however R− might be incomplete, as there
can be equations which are covered in I, but not in R−.

By applying the diagnosis method presented in Section 3, we are able to
find out the sets of uncovered and incorrect equations w.r.t. an abstraction of
the intended semantics, respectively E1 and E2. Considering equations in E1
seems a sensible way for yielding positive examples (missing proofs which should
be achieved by R). On the other hand, set E2 contains equations modeling
erroneous behaviours, thus we can take them as negative examples.

Since E1 and E2 might contain non-ground equations, we find it useful to
instantiate (a subset of) them in order to get ground positive/negative example
sets E+ and E−. This allows us to perform some standard optimizations based
on term rewriting which are very satisfactory in practice. On the other hand,
since program R and specification I might use different auxiliary functions, we
only consider ground examples of the form l = d where l is a pattern and d
is a constructor term. In this way, the inductive process becomes independent
from the extra functions contained in I, since we start synthesizing directly from
data structures d. In order to achieve this, we normalize the term in the rhs of
(the instantiated) examples. Finally, we disregard those examples which, after
normalization, do not have a constructor term at the rhs.

4.2 Specialization Operators

Roughly speaking, unfolding a program R w.r.t. a rule r delivers to a new spe-
cialized version of R in which the rule r is replaced by new rules obtained from
r by performing a narrowing step on the rhs or the conditional part of r.

Definition 3 (unfolding). Let R be a CTRS and r ≡ (λ → ρ ⇐ C) << R be a
rule. Let {g

θi
�ϕ (C ′

i, ρ′
i = y)}n

i=1 be the set of all one-step narrowing derivations
with strategy ϕ that perform an effective narrowing step for the goal g ≡ (C, ρ =
y) in R. Then, Unfϕ

R(r) = {(λθi → ρ′
i ⇐ C ′

i)|i = 1 . . . n} (that is, the derived
goal (C ′

i, ρ′
i = y) is different from g.

Definition 4 (Unfolding operator). Let R be a CTRS, r ≡ λ → ρ ⇐ C be
a rule in R. The Rule Unfolding operator Uϕ

r (R) on R w.r.t. r is defined by
Uϕ

r (R) = R \ {r} ∪ Unfϕ
R(r).

As it has been proven in [4,5], for ϕ = inn, needed, unfolding using strategy
ϕ preserves the semantics (even for the observable of computed answers) in IRϕ

programs. When needed narrowing is considered, completeness is only guaran-
teed under the condition that expressions in the rule are not unfolded beyond
their head normal form [5]. On the other hand, the absence of narrowable po-
sitions in the rule to be unfolded yields no specialization of r. We just get the
removal of r from R. Therefore, we use the following notion of “unfoldable rule”.
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Definition 5. Let R be a CTRS, r be a rule in R. The rule r is unfoldable w.r.t.
R if Uϕ

r (R) �= R \ {r}. If ϕ = needed, we also require that r is not unfolded
beyond its head normal form.

For the sake of simplicity, in the following we omit ϕ whenever this does not
compromise readability. The unfolding succession S(R) ≡ R0, R1, . . . of program
R is defined as follows: R0 = R, Ri+1 = Ur(Ri) where r ∈ Ri is unfoldable.

4.3 Top-Down Correction Algorithm

Following [9], the algorithm below works in two phases: the unfolding phase and
the deletion phase. Roughly speaking, we first perform unfolding upon (arbitrar-
ily selected) unfoldable rules, until we get a specialized version of the program R
where no negative example can be proven by applying only rules used in proofs
of positive examples. The following definition is auxiliary.

Definition 6. Given D : g ≡ g1
r1→ g2

r2→ . . .
rn→ gn, the sequence 〈r1, r2, . . . , rn〉

is called the rewriting rule sequence of D. The set OR(D) = {r1, r2, . . . , rn} is
called the set of occurring rules of D.

Given an equation e, let Dϕ
R(e) denote the successful rewrite sequence which

proves e in program R (if it exists) by using a normalizing rewriting strategy
for the class IRϕ. The key idea of the algorithm is thus applying unfolding until
we get a specialized program Ri satisfying that, for each e− ∈ E− there exists a
rule r ∈ OR(Dϕ

Ri
(e−)) such that, for each example e+ ∈ E+, r �∈ OR(Dϕ

Ri
(e+)).

Now, since the rules which only contribute to the proof of negative examples are
useless, in the subsequent phase we just remove these rules from the specialized
program Ri. By discriminable rule of Ri we mean an unfoldable rule of Ri

which occurs in the proof of, at least, one positive and one negative example.

Algorithm TD-Corrector(R, I)
(E+, E−)=GenerateExampleSets(R, I)
if R �� E+ then halt
{Unfolding phase}
let i = 0; R0 = R
while ∃ e− ∈ E− s.t. ∀r(r ∈ OR(DRi (e−)) ⇒ ∃e+ ∈ E+ s.t. r ∈ OR(DRi (e+))) do

select a discriminable rule r ∈ OR(DRi (e−)) of Ri

let Ri+1 = Ur(Ri); i = i + 1
end while
{Deletion phase}
for each e− ∈ E− do

let Ri+1 = Ri \ {r}, where r ∈ OR(DRi (e−)) ∧ ∀e+ ∈ E+ r �∈ OR(DRi (e+))
let i = i + 1

end for
let Rc = Ri
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Example 2. Consider again the program R and specification I of example 1,
with the example sets for learning function od. Since the rewriting proof for
the negative example od(s2(0)) = true ∈ E− uses the rule od(s(X)) → od(X)
(either with ϕ = inn or ϕ = needed), which is also used in the proofs of positive
examples, we enter the main loop. By unfolding od(s(X)) → od(X) we get
R1 = {od(0) → true, od(s(0)) → true, od(s2(X)) → od(X) }. Now we enter
the deletion phase which purifies R1 by removing the rule od(0) → true that
only occurs in the proof of a negative example, thus producing the expected
correction shown in Section 1.

Example 2 allows us to clarify the differences between the preliminary correction
algorithm in [2] and the one in this paper. The algorithm in [2] was based on
unfolding the rules which incorrectly cover the negative examples. In our exam-
ple, this could result in trying to unfold the rule od(0) → true, which is fruitless,
whereas the new correction procedure does consider any discriminable rule for
unfolding, which is generally needed in order to achieve the desired correction.

We prove the correctness of the top-down correction algorithm in two steps:
first we show that, provided that R covers E+, the unfolding phase produces
a specialized version R′ of R (still covering E+) such that, for each negative
example, there is a rule occurring in the corresponding proof which is not used
in the proof of any of the positive examples. Next, we demonstrate that the
deletion phase yields a corrected version of R covering E+ and not covering E−.

The following proposition states our first result: by a suitable finite number of
applications of the unfolding operator to a program in IRϕ, we get a specialized
version such that, in any successful rewriting derivation of a negative example,
there occurs a rule that is not applied in any successful rewriting derivation
for the positive examples under the same strategy. A condition is necessary for
proving this result: no negative/positive couple of the considered examples can
have the same rewriting rule sequence, as shown in the following counterexample.

Example 3. Consider the program R = {f(X) → g(X), g(X) → 0} with exam-
ple sets E+ = {f(a) = 0}, E− = {f(b) = 0}. Then f(a) = 0 and f(b) = 0
are proven by using the same rewriting rule sequence (using any of the con-
sidered rewriting strategies). By applying the top–down algorithm, we unfold
rule f(X) → g(X), which produces the outcome R1 = {f(X) → 0, g(X) → 0}
which cannot be purified (by using the rule deletion operator) as removing rule
f(X) → 0 in order to get rid of E− would cause losing E+.

Proposition 1. Let ϕ be a normalizing rewriting strategy for IRϕ and R be a
program in IRϕ. Let E+ (resp. E−) be a set of positive (resp. negative) examples.
If there are no e+ ∈ E+ and e− ∈ E− which can be proven in R by using the
same rules sequence, then, for each unfolding succession S(R), there exists k
such that ∀e− ∈ E−∃r ∈ OR(DRk

(e−)) s.t. r is not discriminable

We note that Proposition 1 holds for every unfolding succession of the original
program; this implies that the rule to be unfolded at each unfolding step can be
arbitrarily selected, provided that it is discriminable. Moreover, the termination
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of the unfolding phase is granted by the finite number k of applications of the
unfolding operator that we need to obtain specialization Rk.

After the unfolding phase, the refutation of every negative example contains
a rule from Rk not occurring in the proof of any positive example, thus we can
safely remove this rule without jeopardizing completeness. The deletion phase
purifies Rk and yields correctness w.r.t. both positive and negative examples.

Theorem 2 (Correctness). Let R ∈ IRϕ which satisfies the csr conditions,
E+ and E− be two sets of examples such that R � E+. If the rewriting rule
sequences for e+ ∈ E+ and e− ∈ E− are different, then the TD-Corrector
algorithm yields a correct specialization of R w.r.t. E+ and E−.

As in other approaches for example-guided program correction, the above
result does not generally imply that a correction for the wrong program R w.r.t.
the intended semantics is obtained as the outcome of the top-down correction
algorithm (that is, a program R with the same semantics of I, up to the extra
auxiliary function symbols which might appear in I), under the conditions re-
quired for the correctness of the algorithm, but it might happen that the output
program is only correct w.r.t. E+ and E−. Therefore, derived programs would
be newly diagnosed for correctness at the end.

5 Improving the Algorithm

In the following, we propose a bottom-up correction methodology which we
smoothly combine with the deductive one in order to correct programs which do
not fulfil the applicability condition (over–generality). Therefore, the method-
ology just consists of applying a bottom-up pre–processing to “generalize” the
initial wrong program, before proceeding to the top-down correction.

5.1 Bottom-up Generation of Overly General (Wrong) Programs

We propose a methodology which is based on extending the original program
with new rules, so that the entire set E+ succeeds w.r.t. the generalized program,
and hence the top-down corrector can be effectively applied.

Our generalization method is based on a simplified version of the bottom-
up technique for the inductive learning of functional logic programs developed
by Ferri, Hernández and Ramı́rez [17] which is able to produce an intensional
description (expressed by a functional logic program) of a set of ground examples.
The algorithm is also able to introduce functions, defined as a background theory,
in the inferred intensional description (see [17,20] for details). In the following we
recall the definitions of restricted generalization and inverse narrowing which are
the heart of the bottom-up procedure of [17,20]. The former allows to generalize
program rules, the latter is needed to introduce defined symbols in the right
hand sides of the synthesized rules.

Definition 7 (Generalization operator). The rule r′ ≡ (s′ → t′ ⇐ C ′) is a
restricted generalization of r ≡ (s → t ⇐ C) if there exists a substitution θ such
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that (i) θ(r′) ≡ r; (ii) V ar(t′) ⊆ V ar(s′). The generalization operator RG(r) is
defined as follows: RG(r) = {r′|r′ is a restricted generalization of r}.

Definition 8 (Inverse narrowing operator). The rule r ≡ s → t ⇐ C

reversely narrows into r′ ≡ s → t′ ⇐ C ′ (in symbols r
u,r′′,θ←↩ r′) iff there exist a

position u ∈ O(t) and a rule r′′ ≡ λ → ρ ⇐ C ′′ such that (i) θ = mgu(t|u, ρ);
(ii) t′ = (t[λ]u)θ; (iii) C ′ = (C ′′, C)θ.
The inverse narrowing operator INV(r, r′′) is given by:

INV(r, r′′) = {r′ | r
u,r′′,θ←↩ r′ and extra-variables in the rhs of r′

are instantiated to variables in the rhs of r}.

The extra instantiation of variables in the rhs of the derived rules is necessary,
since inverse narrowing considers the rules oriented reversely and hence extra-
variables might be introduced in the synthesized rules, which is not allowed.

The following definitions are helpful for discerning the overspecialized pro-
gram rules. DefR(f ) is the set of rules in R needed to define a function f .
This might be computed by constructing a functional dependency graph of the
program R and by statically analyzing it. Given a set E of positive examples,
Resf (E) denotes the restriction of E to the set of f -rooted examples (that is,
examples of the form f(t̃) = d). We say that a function definition DefR(f ) is over-
specialized w.r.t. the set of positive examples E+, if there exists e ∈ Resf (E +)
which is not covered by DefR(f ). An incorrect rule belonging to an overspecial-
ized function definition is called overspecialized rule.

The generalization algorithm in its initial phase discovers all function def-
initions which are overspecialized, by computing the subset of f -examples not
provable in R (and hence not provable by the corresponding function definition).
Then, overspecialized rules are deleted from R. Now, applying generalization and
inverse narrowing operators, starting from the positive examples, we try to re-
construct the missing part of the code, that is, we synthesize a functional logic
program A such that R ∪ A \ {r ∈ R | r is overspecialized} allows us to derive
the entire E+. At the end, we get an overly general hypothesis to which the top-
down corrector can be applied for repairing (incorrectness) bugs on the derived
overly general faulty rules.

The bottom-up synthesis algorithm firstly generates a set PH (Program Hy-
pothesis set) which consists of unary programs associated with the restricted
generalizations of E+, that is, PH = {{r} | r ∈ RG(s → t), s = t ∈ E+}. Then it
enters a loop in which, by means of INV and RG operators, new programs in PH

are produced. The algorithm leaves the loop when an “optimal” solution, which
covers E+ entirely, has been found in PH , or a maximal number of iterations is
reached. In the latter case no solution might be found.

Due to the huge search space which this method involves, some heuristics
must be implemented to guide the search. Following [20], Minimum Description
Length1 (MDL) and Covering Factor2 criteria could be taken into consideration,
1 length(e) = 1+nv/2+nf , where nv and nf are the number of variables and functors

in the rhs of e.
2 CovF(E) = card({e ∈ E | R � e})/card(E).
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so that inverse narrowing steps are only performed among the best programs
and equations w.r.t. these criteria. Moreover, by means of MDL and Covering
Factor, only the most concise programs are selected during the induction process.
The notion of Optimality w.r.t. programs and equations could be defined as a
linear combination of these two criteria. For a full discussion see [20]. A detailed
description of the algorithm can be retrieved in [1]. Let us consider an example,
in which we only pinpoint the relevant outcomes for the sake of clarity.

Example 4. Consider the following (wrong) program and the specification

R = { playdice(X) → double(winface(X)), dd(0) → 0, dd(s(X)) → dd(X)),
winface(s(X)) → s(winface(X)), winface(0) → 0 }

I = { playdice(X) → dd(winface(X)), dd(X) → sum(X, X),
sum(X, 0) → X, sum(X, s(Y )) → s(sum(X, Y )),
winface(s(0)) → s(0), winface(s(s(0))) → s(s(0)) }.

Program rules marked in boldface are signalled as incorrect by the diagnosis
system. The example generation procedure described in Section 4.1 produces:

E+ = { playdice(s2(0)) = s4(0), playdice(s(0)) = s2(0), dd(s4(0)) = s8(0),
dd(s3(0)) = s6(0), dd(s2(0)) = s4(0), dd(s(0)) = s2(0)
dd(0) = 0, winface(s2(0)) = s2(0), winface(s(0)) = s(0) }.

The analysis for dd and winface determines that dd is overspecialized. The
generalization algorithm removes the rule dd(s(X)) → dd(X). Note that rule
dd(s(0)) → s2(0) inversely narrows to rule rdd ≡ dd(s(0)) → s2(dd(0)) by using
rule dd(0) → 0. The following restricted generalizations of rule rdd are computed:
dd(s(0)) → s2(dd(0)), dd(s(X)) → s2(dd(0)), dd(s(X)) → s2(dd(X)).
Now, when the third rule is added to the background knowledge, all the ex-
amples in E+ are covered. Thus, the following overly general definition, which
feeds the top-down corrector in order to repair the remaining errors, is delivered

R = { playdice(X) → dd(winface(X)), dd(0) → 0, dd(s(X)) → s(s(dd(X)))),
winface(s(X)) → s(winface(X)), winface(0) → 0 }.

6 Automated Correction System

A prototypical implementation of our methodology and a full experimental eval-
uation are available at http://www.dsic.upv.es/users/elp/soft.html. We
have improved the preliminary debugging system Buggy by adding the new
features. The current implementation, called Nobug, is now able to compute
sets of positive and negative examples by using the methodology described in
Section 4.1. Besides, we have developed a full implementation of the top-down
correction method based on example-guided unfolding for the leftmost-innermost
narrowing strategy. We are currently implementing the lazy version of the algo-
rithm. The bottom-up synthesis method has not been integrated into the Nobug
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system yet. Hence, in order to compute our benchmarks also for initially over-
specialized programs, we used the inductive functional logic system FLIP[16].

We have performed some tests by means of our top-down corrector and the
bottom-up learner FLIP, in order to repair overly general as well as overspecial-
ized functional logic programs. We have taken into account programs on several
domains: naturals, lists and finite domains. In order to systematize the genera-
tion of the benchmarks, we have slightly modified correct programs in order to
obtain wrong program mutations. We were able to successfully repair incorrect
mutations, achieving, in many cases, a correction both w.r.t. the example sets
and the intended program semantics.

7 Conclusions

In this paper we have proposed a new methodology for synthesizing (partially)
correct functional logic programs which complements the diagnosis method we
developed previously in [6,2]. Our methodology is based on the combination,
in a single framework, of a diagnoser [6,2] which identifies those parts of the
code containing errors, together with a program learner which, once the bug has
been located in the program, tries to repair it starting from evidence examples
(uncovered as well as incorrect equations) which are essentially obtained as an
outcome of the diagnoser. We follow a hybrid, deductive (top-down) as well as
inductive (bottom-up) approach, which is able to infer program corrections that
are hard to obtain with a simple (pure deductive or inductive) program learner.
We plan to generalize the framework to other paradigms as future work.

Finally, we want to emphasize that this framework supersedes the preliminary
approach of [2]. In [2], recursive definitions were sometimes impossible to repair,
and no automated correction is provided for overspecialized programs either,
whereas the new methodology in this paper overcomes both drawbacks.
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Abstract. Pruning provides an important tool for control of non-
determinism in Prolog systems. Current Tabled Prolog systems improve
Prolog’s evaluation strategy in several ways, but lack satisfactory support
for pruning operations. In this paper we present an extension to the eval-
uation mechanism of Tabled Prolog to support pruning. This extension
builds on the concept of demand to select tables to prune. In particular,
we concentrate on systems based on SLG resolution. A once operator is
described, which approximates demand-based pruning, providing for an
efficient implementation in the XSB system.

1 Introduction

Prolog is a programming language in which the programmer uses Horn clauses to
specify a computation. Prolog uses a backward chaining, goal-directed, demand-
driven evaluation strategy that can give it an advantage over forward chaining
systems in that it tries to derive only subgoals that are relevant to the main
query goal. So it evaluates only those predicates which are necessary to derive
the goal. However, its strategy does allow it to derive the same (necessary)
subgoal many times, leading, for example, to unnecessary exponential behavior
when recognizing some context-free languages.

Tabled Prolog [14] improves on Prolog in that, in addition to deriving only
what is necessary for the goal, it will derive such subgoals only once, using a
table to short-circuit multiple recomputations of the same subgoal. So Tabled
Prolog tries to compute only what is necessary to the goal at hand, and for
what it does compute, it computes it only once. For example, this allows Tabled
Prolog to be polynomial when recognizing any context-free language.

So it might seem that Tabled Prolog does the minimal amount of compu-
tation possible. (Of course, this is without “foreknowledge” of which nondeter-
ministic choices would lead to a proof.) However, even Tabled Prolog still does
computation that can easily be seen to be unnecessary.

Consider Prolog and its evaluation of a goal :- p applied to the following
propositional program:
� This work has been partially supported by NSF grant EIA-9705998.
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:- table_all.
p :- q,t. q :- r.
p. q :- s.
r. s :- ...

Note that Prolog will evaluate all of s before eventually failing back to succeed
through the second clause for p. (The first clause must fail since t, having no
facts or rules, cannot succeed.) But note that it can be easily determined that s
need not be evaluated. Once q succeeds (here due to r succeeding), there is no
need to try any other clause that might lead to q succeeding again. For a ground
goal, once it succeeds, there is no reason to search further for other proofs of
that goal. That work is clearly unnecessary for proving (or failing to prove) the
main goal.

Prolog provides a way for the programmer to control the computation so
that the unnecessary evaluation of s in our example is not done. This can be
accomplished by adding a cut (!) after the call to r at the end of the first clause
for q. Alternatively, if we want to constrain somewhat how cuts are used, we
could wrap the call to q with a once operator. These operators would prune the
computation tree so that s would never be tried.

Thus we see that Prolog provides pruning operators that allow the program-
mer to eliminate this kind of unnecessary computation. But in Tabled Prolog
there are no such pruning operators. And this is not just an oversight. In the
presence of multiple tables and multiple demands on the same table, knowing
when a table is not demanded is complex. In Prolog every computation is “on
behalf of” a single chain of requesting goals, so if that chain is broken, all the
computations along that chain can safely be deleted. However with Tabled Pro-
log, a single computation that fills a table is working “on behalf of” all users of
that table. So a single user of the table may decide it no longer needs that table,
but there may be other users still depending on the computation that fills it.
Therefore a pruning operator in Tabled Prolog requires a more complex analysis
of subgoal dependencies.

In this paper we present an extension to the evaluation mechanism of Tabled
Prolog to support pruning. This extension builds on the concept of demand [9]
to select tables to prune. In particular, we concentrate on systems based on SLG
resolution [2].

Use of general demand for pruning requires an expensive reachability analysis
on the evaluation graph. In order to avoid this, we present an approximate
solution that is sound, and preserves the semantics of demand-based pruning.

1.1 Related Work

Implementation of pruning operators on systems where the evaluation strategy
differs from that of standard Prolog present a set of interesting challenges, which
have been the subject of previous study.
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One area where this subject has seen a significant amount of work is that
of parallel implementations of Prolog [6,1]. In that case, the usual goal is to
maintain a semantics that is as close to Prolog as possible. This involves, among
other requirements, the synchronization of tasks when pruning is present.

In the context of Tabled Prolog, the first attempt at providing a pruning
operator, to the best of our knowledge, is presented in [10]. There, an imple-
mentation of the cut operator for SLG0 is defined and shown to preserve Prolog
semantics for green cuts [7].

Recently, a new approach has been proposed by Guo and Gupta in [5].
This work presents an implementation of cut for an alternative Tabled Prolog
evaluation strategy called DRA [4]. This operator is defined in terms of the fixed
operational semantics of DRA, which is based on recomputation of so-called
looping alternatives. The main difference of our work is that we attempt to
create a pruning operator with a semantics that is not dependent on the specific
operational semantics of a given implementation.

2 Demand-Based Pruning

SLG resolution [2] is traditionally modeled as a forest of trees. Each tree corre-
sponds to a unique call pattern (parameter instantiation) of a tabled predicate
encountered during evaluation. Trees are expanded by performing clause resolu-
tion against the clauses of the program definitions of the table predicates. Each
resolution step is represented by a node in a tree. Other calls to tabled predicates
are represented by nodes of a special kind, called consumer nodes. Each node is
represented in the form of a Prolog rule, where the head carries the substitutions
performed on the variables of the subgoal, and the body represents the current
continuation as a list of goals to be resolved.

p(X) :- q(X)

p(d) :-

q(d) :-

q(X) :- r(X), s(X).

q(X) :- q(X).

r(X) :- r(X)

r(b) :- r(d):-

p(X) :- p(X)

q(b) :- s(b).

r(a) :-

r(X) :- e(a,X). r(X) :- e(b,X).

r(X) :- r(Y),e(Y,X).

r(c) :-

q(a) :- s(a). q(c) :- s(c).

q(d) :- s(d).

Fig. 1. Snapshot of an SLG evaluation
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Figure 1 represents a possible state of the system during evaluation of the
query :- p(X). against the program of Listing 1. Each tree is represented by
a triangle inclosing a derivation tree. Edges between trees represent the depen-
dence relation between consumer nodes and trees. In the remainder of the paper,
we will abstract away the details of derivation trees, and concentrate on the trees
in the system and the dependence relation among them, depicted in the form of
edges.

:- table p/1, q/1, r/1. e(a,b).
p(X) :- q(X). e(a,c).
q(X) :- r(X), s(X). e(b,d).
r(a). e(c,d).
r(X) :- r(Y), e(Y,X).
s(d).

Listing 1: Reachability

In fact, the dependence relation defines a multi-graph, where nodes are the
trees in the system, and there is an edge for each consumer node, connecting the
consuming tree to its supplier. We call this graph the Demand Graph, since it
denotes a relation of demand and supply between tables. A demand graph is a
weak approximation of the notion of Relevance defined in [11].

Definition 1 (Demand Graph) Given a snapshot of an SLG system, a De-
mand Graph DG(N, E, QN ) is a directed multi-graph where N is a set of nodes,
each representing a tree in the SLG system, and E is the set of edges, represent-
ing the dependencies between trees. QN is the node representing the tree for the
query being evaluated.

This multi-graph expands as evaluation progresses and new trees and consumer
nodes are created. In fact, in the absence of pruning operators, the graph only
grows monotonically, until evaluation of the query is completed. Pruning intro-
duces a non-monotonic component to the evaluation when undemanded trees
are deleted.

The desired semantics of once(P) states that P should succeed at most once.
In other words, as soon as the first successful derivation for P is found, the
associated consumer node should be marked such that the goal once(P) does
not succeed again. If P contains variables, only one possible binding for each
variable is returned. Assuming that P is a tabled predicate, applying the once
operator on P essentially amounts to removing an edge from the demand graph
of the system when P succeeds. Clearly, this removal may affect the connectivity
of the graph, rendering some trees unreachable from the query tree. This state
is captured by the concept of Demand on trees.

Definition 2 (Demand on Trees) Given a demand graph DG(N, E, QN ), a
node T1 is said to be demanded if there is a path in DG, from the query node
QN to T1. Similarly, if no such path exists, we say that T1 is undemanded.
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For performance reasons, undemanded trees should not be scheduled for fur-
ther evaluation, since there is no indication that other answers for them will be
needed to evaluate the current query. Therefore, our algorithm eagerly detects
undemanded trees when pruning occurs, and removes them from the set of active
trees.

Listing 2 shows pseudo-Prolog code for a demand-based once opera-
tor. We assume that nodes are created in a stack-like structure, so that
get next node ref returns a reference to the next node to be created. A meta-
call starts evaluation of the subgoal P, creating a new node, which is referred to
by R. After the meta-call returns, remove demand disconnects the consumer node
referred to by R from the tree that supplies it. A reference to the query table
is then obtained, and reachability from the query is computed. undemand trees
removes all trees in the system that are not demanded from the scheduling set.

once(P) :- undemand_trees(G) :-
get_next_node_ref(R), table(T),
call(P), ( not member(G,T)
remove_demand(R), -> undemand_table(T)
query(Q), ; true
reachable(Q,Reach), ),
undemand_trees(Reach). fail.

undemand_trees(_).

Listing 2: once implementation in Prolog

While it represents our desired semantics, an actual implementation of the
algorithm in Listing 2 would present a few drawbacks. First, an expensive traver-
sal of the demanded trees has to be performed each time pruning takes place.
Also, a resumption mechanism is necessary, in order to re-impose demand on
previously undemanded trees for which new consumers are created.

Another point to notice is that it may be advantageous, from the point of
view of memory management, to actually remove undemanded trees. In that
case, if new calls to undemanded trees are created, these trees will have to be
recomputed. On the other hand, if trees are never collected, memory usage may
be problematic.

We next define a safe approximation of a demand-based once operator, which
attempts to delete trees when demand on them is released.

3 Approximate Pruning

We have argued, in the previous section, that implementing a pruning operation
based on exact demand is hard, requiring a full reachability analysis over the
evaluation graph. In this section we present an approximation of this operation
aimed at preserving our desired semantics, while decreasing the implementa-
tion costs of pruning. In the following, we describe the intuitions behind our
approximation, before presenting the pruning algorithm.
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One issue related to pruning in Tabled Prolog systems is whether unde-
manded trees should be frozen, or completely deleted. Freezing trees allows for
possible future calls to benefit from results already computed, and restart eval-
uation from that point on, if necessary. On the other hand, if these trees are
never called again, deleting them is a more memory-efficient solution. The prob-
lem constitutes a tradeoff between evaluation time, which is minimized if trees
are frozen, and memory usage, minimized when trees are deleted.

The pruning operator presented here deletes trees whenever possible. When
undemanded trees are deleted, recomputation may become an issue, possibly
altering termination characteristics of programs. Even so, we believe there are
many applications where keeping undemanded trees may turn out to consume
excessive amounts of resources and adversely affect system performance. Another
advantage of this approach is its simplicity. Supporting resumption of trees,
besides requiring extra bookkeeping, impacts the scheduling mechanism in a
non-trivial way. On the other hand, it may improve long-running computations
significantly, when trees are reused, and thus recomputations avoided.

A full demand-based pruning operation, as presented in the previous section,
is able to select individual trees which become undemanded when a given edge is
removed due to pruning. The algorithm we describe next uses an approximation
to decide which trees to delete. The application of a pruning operation induces
a scope. Intuitively, the scope consists of all those trees that have been created
during the evaluation of the goal being pruned.

The notion of scope captures all those trees which could potentially be deleted
from the system as a result of this application of pruning. The fact that a table
is in the scope of a pruning operation does not directly mean that it can be
deleted, since it can still be demanded. Instead of selecting which trees continue
to be demanded, and which do not, our approximation decides whether to delete
in the level of a scope. When all trees in a scope are undemanded, then they
are all deleted. Otherwise, all trees in the scope are maintained in the system.
However, instead of freezing these trees, they are maintained as active, and new
(possibly unnecessary) answers for these trees may be computed. While this may
cause superfluous work to be done, the semantics is guaranteed by removing the
connection between the specific subgoal being pruned and the table that supplies
answers to it.

In order to support this approximate pruning algorithm based on this notion
of scope, we augment our evaluation model with timestamps that impose an
ordering in events. Based on this extended model, the notion of scope is defined
in terms of reachability over generator edges. Finally, the approximate pruning
algorithm is presented and discussed.

3.1 Timestamped Forest of Trees

First we augment the concept of demand graph by introducing timestamps on
its edges and trees. We assume a global counter of events is available, which
is incremented each time a new edge is created. When an edge is created, it is
tagged with the current value of the event counter. Also, trees are timestamped
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with the value of the event counter at the time they are created. When no
pruning takes place, each tree has the same timestamp as its oldest incoming
edge. In fact, this edge has a special significance, and is called the Generator
edge for that tree.

Definition 3 (Generator edge) An edge is said to be the Generator edge of
a tree Ti if its destination is Ti, and its timestamp coincides with that of Ti.

We denote the timestamp of an edge e (tree t) as timestamp(e)
(timestamp(t)). The source (destination) of an edge is defined in terms of the
timestamp of the tree it points from (to).

Definition 4 (Edge properties) Given an edge e, from tree Ts to tree Td, we
define:

source(e) = timestamp(Ts)
dest(e) = timestamp(Td)

Figure 2 shows the timestamps in the system depicted in Figure 1. Notice
that the query tree has always a timestamp of 0.
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Fig. 2. Timestamps

The main characteristic of approximate
pruning is that trees are only considered for
removal when their corresponding generator
edges are also removed. Removal of a non-
generator edge never causes a tree to be re-
moved. Therefore, in order to decide which
trees can be removed, we have to consider

only those trees which are reachable via generator edges.
The scope of a given application of once on a subgoal is, intuitively, the set

of trees that may potentially be undemanded after the generator edge for the
subgoal is removed. The scope is defined in terms of reachability over generator
edges. We first define the Generator-Restricted Demand Graph as a restriction
on the edges of a demand graph, such that only generator edges are included.

Definition 5 (Generator-Restricted Demand Graph) Given a demand
multi-graph DG(N, E, QN ), we define its induced generator-restricted demand
graph as the graph DG

G(N, E′, QN ), where E′ is defined by E′ = {e ∈
E | e timestamp(e) = dest(e)}.

Generator-reachability is defined as reachability over the generator-restricted
graph entailed by a given demand graph.

Definition 6 (Generator-reachability) Given a demand graph DG(N, E,
QN ), and an edge e ∈ E, we define Generator-reachability as the set of edges
reachable from e in the Generator-restricted graph induced by DG.

reachG(e, DG(N, E, QN )) = {e′ ∈ E | e′ ∈ reach(e, DG
G)}
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Finally, we define the scope of a pruning operation as the set of trees that
are Generator-reachable from the edge being removed.

Definition 7 (Scope) Given a demand graph DG(N, E, QN ) and an edge e ∈
E that is the direct subject of a once operation, we define the scope of the once
operation as

scope(e, DG) = {e′ ∈ reachG(e, DG)}
Our algorithm is based on the principle that a pruning operation can only remove
trees which appear in its scope. But the fact that a given tree t appears in a
scope does not imply that it is not demanded. It may happen that there are
other edges, in the demand graph, connecting nodes outside the scope to t, thus
creating an alternate path from the query tree to t, which does not use the edge
being removed. This alternative source of demand is called external demand.
For example, consider the situation if Figure 3, where edge number 2 is being
pruned.
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Fig. 3. External Demand

The scope, in this case, consists of trees
with timestamps 2, 3 and 4. But edge num-
ber 6 imposes an external demand on tree 4,
so that this tree cannot be deleted. In this
case, approximate pruning removes edge 2,
but does not delete any trees, since there is
external demand on the scope.

In order to detect whether a given scope
has external demand, we need to inspect all edges coming into trees in the scope.
If the source of any of these edges is a tree that is not in this scope, then there
is external demand. Otherwise, the scope is undemanded.

Definition 8 (External demand on a scope) Given a demand graph
DG(N, E, QN ) and an edge e ∈ E that is the direct subject of a once operation,
we define that the scope of this pruning operation is externally demanded as:

external demand(e, DG(N, E, QN )) ⇐⇒ ∃e′ ∈ E | source(e′) /∈ scope(e, DG)∧
dest(e′) ∈ scope(e, DG)

3.2 Approximate Pruning Algorithm

The algorithm for approximate pruning implementing the once operator is pre-
sented in Listing 3. It performs a meta-call on the subgoal being pruned, and
releases demand on it after the meta-call succeeds. The algorithm is presented in
a high-level Prolog form, and assumes the existence of the following builtin pred-
icates, which form an interface for inspecting and manipulating the internally
represented current demand graph.

edge(Source,Dest,Timestamp). A set of facts that describe the edges of the
demand graph;



Approximate Pruning in Tabled Logic Programming 77

timestamp(Timestamp). A builtin predicate that returns the current value of
the timestamp counter;

delete edge(Timestamp). Removes the edge given by Timestamp from the
graph;

delete tree(Timestamp). Removes the tree with timestamp Timestamp, and
all edges outgoing from it.

once(SubGoal) :- :- table gen_reach/2.
timestamp(Timestamp), gen_reach(Timestamp,Tree) :-
call(SubGoal), edge(Timestamp, Tree, Tree).
delete_edge(Timestamp), gen_reach(Timestamp,Tree) :-
( generator(Timestamp) gen_reach(Timestamp,Tree1),
-> ( demanded_scope(Timestamp) edge(Tree1,Tree,Tree).

-> true
; delete_scope(Timestamp) delete_scope(Timestamp) :-
) gen_reach(Timestamp,Tree),

; true delete_tree(Tree),
). fail.

delete_scope(_).
generator(Timestamp) :-

edge(_,Timestamp,Timestamp).

demanded_scope(Timestamp) :-
edge(Source, Dest, Time),
Time > Timestamp,
not gen_reach(Source),
gen_reach(Dest).

Listing 3: Pseudo-code for optimized version of once

The predicate once receives as argument a subgoal to be resolved. It starts
by recording the current timestamp, which is the timestamp of the next edge to
be created. The subgoal is called using Prolog’s meta-call builtin. Upon return
of the meta-call, the edge corresponding to the subgoal is deleted, thus enforcing
the desired semantics.

Further optimization is performed by deleting the tables created during com-
putation of the subgoal, whenever possible. The general algorithm presented in
Section 2 performs reachability from the query tree in order to select, indi-
vidually, which trees are undemanded and can be deleted. In this optimized
algorithm, tree removal is decided in terms of the scope of the once operation.
That is, if there is external demand on any tree in the scope, then no trees are
removed; otherwise, all trees in the scope are deleted.

This is performed by first checking whether the edge of the subgoal is a gener-
ator edge. In that case, demanded scope checks whether any tree in the scope of
the subgoal has external demand. If so, nothing is done, otherwise delete scope
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removes all trees in the scope from the system. Both demanded scope and
delete scope are defined in terms of gen reach, which implements generator-
reachability.

4 Implementation

We present an implementation of approximate pruning in the XSB Prolog[13]
system. XSB is based on the SLG-WAM[8] abstract machine, a specialization
of the original WAM[16]. We first provide a basic description of how XSB im-
plements the SLG-WAM architecture, followed by a presentation of how the
demand graph model is represented in the implementation.

4.1 SLG-WAM Architecture

Data areas in XSB are organized into four main stacks. The Heap maintains long-
lived structures and variables. The Local stack maintains the environments for
clause-local variables, much like activation records in imperative languages. The
Control and Trail stacks store information required to perform backtracking.

Non-deterministic search in Prolog is implemented by backtracking. Each
time a choice is encountered during execution, a choice-point is laid down in
the Control stack. This stack works as a last-in-first-out source of alternatives.
That is, when backtracking is necessary, the topmost choice-point in the Control
stack is used. When a choicepoint is exhausted it can be discarded, and then its
predecessor is taken as the next source of alternatives.

SLG evaluation may require that a computation be suspended and other al-
ternatives be executed, before it may be resumed. Suspended computations are
represented by portions of the stacks in the system. It is left to the implemen-
tation to decide how these stack sections are to be maintained. Typically, these
are either protected and kept in the stacks, as in the original formulation of the
SLG-WAM[12], or copied to an outside area, as in CHAT [3]. In the remainder of
this paper we assume a shared stack management as in the original SLG-WAM.
Notice that, in order to recreate the context of a suspended computation, the
system may need to redo bindings undone by backtracking while this compu-
tation was suspended. Thus, the Trail is augmented to keep the values that
conditional variables are bound to [15], so that the engine can run the trail not
just backwards, but also forwards, rebinding variables needed to reconstruct an
earlier context.

The central data-structure for table management is the Subgoal Frame. Each
subgoal frame contains information about a variant call encountered during eval-
uation. Subgoal frames maintain references to the associated generator choice-
point for the call and for the answers already generated. Also, each subgoal frame
maintains a list of all consumer choicepoints which consume from its associated
table.
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4.2 Mapping the Demand Graph onto XSB

Table management and scheduling are essentially controlled by two data-
structures in XSB. Subgoal frames centralize status information about trees in
the system, and maintain references to all answers already found for the tree.
Choicepoints represent internal nodes, and are classified into three main kinds.
Prolog choicepoints are used to maintain unexplored choices in non-tabled predi-
cate definitions. A generator choicepoint is created when the first call to a tabled
predicate is encountered, and consumer choicepoints are laid down for calls to
already-seen subgoals.

Frame
Subgoal

s(X)

r(X)

Frame
Subgoal

q(X)
Frame

Subgoal

p(X)
Frame

Program Generator
p(X)

q(X)
Generator

r(X)
Generator

q(X)
Consumer

s(X)
Generator

r(X)
Consumer

q(X)
Consumer

Subgoal

Control Stack

p(X) :- q(X),r(X),s(X).
q(a).
q(b).
r(X) :- q(X).
s(X) :- r(X),q(X).

Query
|-? q(X).

:- table all.

Fig. 4. XSB structures and their relationship
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Fig. 5. Dependency Graph

As noted in Section 2, we
are interested in those tree nodes
which generate dependencies be-
tween trees. In XSB, these are rep-
resented by the consumer and gen-
erator choicepoints. Generator choi-
cepoints have a dual role in XSB.
Besides indicating that results from
a given table Td are demanded from
the callee table Ts, they also serve

the purpose of performing clause resolution to generate answers for Td.
Figure 4 shows an example of these structures during evaluation of a query,

and their relationship. The corresponding dependency graph is shown in Fig-
ure 5. Generator choicepoints are linked to their corresponding subgoal frames,
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and vice-versa. All consumers of a given table are chained together, and this
chain is anchored in the subgoal frame of the table. This chain is called the
consumer chain of the table.

Summarizing, edges are represented by the choicepoints in the stack. Gen-
erator edges correspond to generator choicepoints, which are distinguished in
the system. Trees are mapped to Subgoal frames, and their auxiliary structures,
which are not presented here. We now examine how the operations necessary to
implement our algorithm can be efficiently realized, and describe the changes to
the standard SLG-WAM data structures necessary to support these operations.

edge. The edge relation connects consuming trees to their suppliers. This re-
lation is realized by consumer and generator choicepoints, and the timestamps
for these edges are implicitly represented by the memory addresses of these
choicepoints. Choicepoints already maintain references to the tables they are
supplying, as shown in Figure 4 by the dashed arrows. Tables are connected to
the consumers it supplies (dotted arrows). In order to provide fast access to the
tree a given consumer is consuming from, we have augmented the SLG-WAM
structure by creating a new chain that effectively transforms dotted arrows in
Figure 4 into double arrows.

delete edge. This function is responsible for ensuring that no more answers will
be returned to a given choicepoint representing a tabled call. If the choicepoint
is a consumer choicepoint, we simply delete it by removing it from the chain of
choicepoints considered for scheduling. Generator choicepoints, as observed ear-
lier, are responsible both for returning answers to a tabled call via its forward
continuation, and for generating answers to a table, through its backwards con-
tinuation. When delete edge is applied to a generator choicepoint, it modifies
its forward continuation to a failure, so that no answers will be returned to the
tabled call, even though it remains able to generate answers to the table.

delete tree. Given the timestamp of a table, which in SLG-WAM is repre-
sented by the address of its generator choicepoint, delete tree deletes its data
structures and execution context. The Subgoal frame and all answers already
computed for the table are deleted, as well as its generator choicepoint, and all
consumers that supply this table. A precondition for delete edge is that no
demand exists on the table it is applied to, so nothing is done with respect to
consumers of this table. If there are consumers, they should be deleted when the
tables they are supplying are deleted.

gen reach. This predicate is used both to traverse all tables in the scope of the
operation (as in demanded scope) and also as a simple check, as in demanded.
gen reach is realized in the implementation by performing a reachability analysis
in the beginning of the algorithm, marking all choicepoints which are reachable,
and thus in the scope of pruning. This provides for an easy, constant-time check
for whether a given choicepoint is in the scope. Traversal of choicepoints in the
scope is performed, when necessary, by a linear scan of the top of the choicepoint
stack, skipping those choicepoints not marked.
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demanded scope. This predicate essentially collects all edges younger than the
timestamp at entry of once, whose source is not in its scope. The key to imple-
ment this function is to realize that, since timestamps are implicitly represented
by the address of choicepoints, a simple traversal of the top of the Control stack
(back to the point where once started evaluation), selecting unmarked choi-
cepoints, obtains all such edges. If any of these choicepoints consumes from a
table in the scope of once, it means that the scope has external demand, and
the predicate succeeds. This information is obtained by following the links from
consumers to tables they supply (dashed lines in Figure 4.)

5 Experimental Results

In this section, we present some quantitative data that suggests that approxi-
mate pruning, with table deletion, can significantly impact execution times of
programs.
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Fig. 6. Performance comparison for the stale-
mate game

In order to illustrate these
possible gains, we benchmark a
version of the classical Stale-
mate game depicted in Listing 4
in the form of the predicate
win. Given a directed graph, this
game states that a node is a win-
ner if there is an edge connect-
ing this node to a non-winner
node. Nodes which have no possi-
ble moves are, by default, winner
nodes. The goal is to determine
if a given node is a winner node.
It is important, in general, that
the win predicate be tabled, so

that the evaluation terminates in the presence of cycles in the input graph.

:- table win/0. test(Depth) :-
win(X) :- create_bin_tree(Depth),

move(X,Y), cputime(T1),
tnot(win(Y)). win(0),

cputime(T2),
Time is T2 - T1,
write(time(win(Depth),Time)).

Listing 4: The Stalemate win/not-win game

It is clear that it is uninteresting to collect alternative proofs for the winning
status of a given node. This can be easily obtained by ensuring that negation
builtins like XSB’s tnot fail early when the first counter-proof is found. Cur-
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rently, tnot does not perform pruning when it fails, so unnecessary computation
is performed.

We have adapted the tnot operator to take advantage of approximate prun-
ing, and compared execution times using the test predicate of Listing 4. The
test dynamically creates full binary trees with variable depth. Figure 6 shows
results obtained for tests run both with and without the modified tnot builtin.
It is clear that, even though pruning does not change the exponential nature of
this problem, it significantly lowers the slope of the curve1. Besides time, mem-
ory performance is important for this benchmark. In fact, we were unable to run
the non-pruning version of the benchmark for trees of depth larger than 23 on a
machine with 2Gb of memory.

Another important point when introducing new functionality is to measure
the impact the added machinery imposes when the functionality is not being
used. We have benchmarked a set of non-pruning benchmarks on XSB with and
without support for our pruning operator. The maximum overhead observed was
about 3%.

6 Summary

The backward chaining evaluation model of Prolog computes only those subgoals
that are needed in order to resolve a given query. Pruning allows for a finer
control of determinism, which can be used to further extend this concept of
performing only demanded computations. It can be used by the Prolog engine
itself, in order to improve its evaluation strategy, and also by the programmer,
so that she can annotate programs with control information.

Tabled Prolog builds on the concept of demand-driven evaluation by allow-
ing each relevant goal to be evaluated only once. But there are no satisfactory
pruning operators in Tabled Prolog, since it is hard to decide which tables are
demanded in the presence of suspension and resumption of subgoals.

We have presented an abstraction of SLG evaluation where the SLG forest
of trees is represented by a directed graph, and demand is defined in terms of
reachability from a query node. This allowed us to define a demand-based once
pruning operator.

Full demand-based pruning is costly, so we presented sound approximate
pruning in the form of a safe once operator. Approximate pruning uses a notion
of the scope of the once operation as the basic unit for which demand is deter-
mined and implemented. This allows for an efficient pruning mechanism, which
has been implemented in the XSB system.

One question when performing pruning on tabled systems is whether unde-
manded tables should be deleted, or whether they should be kept in a scratch
area, so that future calls could use their results, and re-impose demand on them.
Approximate pruning takes the approach of deleting undemanded tables, given
that their scope is currently undemanded. This has the advantage of early mem-
ory reclamation, but may have adverse effects on the termination characteristics
1 Notice that the y axis of the graph is plotted in a logarithmic scale.
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of a program. We intend to study the alternative of maintaining undemanded
trees, and supporting the re-imposition of demand on them. We believe each
approach will prove effective in different situations.
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Abstract. A goal-independent suspension analysis is presented that in-
fers a class of goals for which a logic program with delays can be executed
without suspension. The crucial point is that the analysis does not verify
that an (abstract) goal does not lead to suspension but rather it infers
(abstract) goals which do not lead to suspension.

1 Introduction

A logic program can be considered as consisting of a logic component and a
control component [15]. Although the meaning of the program is largely defined
by its logical specification, choosing the right control is crucial in obtaining a
correct and efficient program. In recent years, one of the most popular ways of
defining control is by suspension mechanisms which delay the selection of a sub-
goal until some condition is satisfied [2]. Delays have proved to be invaluable
for handling negation, delaying non-linear constraints, enforcing termination,
improving search and modelling concurrency. However, reasoning about logic
programs with delays is notoriously difficult and one reoccurring problem for
the programmer is that of determining whether a given program and goal can
reduce to a state which possesses a sub-goal that suspends indefinitely. A num-
ber of abstract interpretation schemes [3,5,8] have therefore been proposed for
verifying that a program and goal cannot suspend in this fashion. These analyses
essentially simulate the operational semantics tracing the execution of the pro-
gram with collections of abstract states, and are thus said to be goal-dependent.
This paper presents a suspension analysis that is performed in a goal-independent
way. Specifically, rather than verifying that a particular goal will not lead to a
suspension, the analysis infers a class of goals that will not lead to suspension.
This new approach has the computational advantage that the programmer need
not rerun the analysis for different (abstract) queries.

The analysis also tackles suspension analysis from another new perspective
– it verifies whether a logic program with delays can be scheduled with a lo-
cal selection rule [20]. Under local selection, the selected atom is completely
resolved, that is, those atoms it directly and indirectly introduces are also re-
solved, before any other atom is selected. Leftmost selection is one example of
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Goal-Independent Suspension Analysis 85

local selection. Knowledge about suspension within the context of local selection
is useful within it own right [8,14] but it turns out that local selection also fits
elegantly with backward reasoning. Moreover, any program that can be shown
to be suspension-free under local selection is clearly suspension-free with a more
general selection rule (though the converse does not follow). Our analysis draws
together a number of strands in program analysis and therefore, for clarity, we
summarise our contribution:

– The analysis performs goal-independent suspension analysis.
– The analysis, though technical, reduces to two simple bottom-up fixpoint

computations – a lfp and a gfp – which, like the backward analysis of [13],
makes it simple to implement. The rôle of the lfp is simply to calculate
success patterns that are used within the gfp calculation to model the way
the sub-goals of a compound goal can bind variables.

– The analysis is straightforward like the simple but successful suspension
framework of Debray et al [8] that infers suspension-freeness under leftmost
selection. The analysis in this paper additionally considers all local selection
rules and therefore strikes a good balance between tractability and precision.

– The analysis is unique in that it exploits the property that Heyting closed
domains [11] possess a pseudo-complement for two effects. First, the pseudo-
complement which enables information flow to be reversed to obtain a goal-
independent analysis (this idea is not new [13]). Second, pseudo-complement
is used to model synchronisation. The crucial correctness result exploits a
(reordering) relationship between monotonic and positive Boolean functions
and Boolean implication.

The paper is structured as follows: Section 2 presents an example that illustrates
the ideas behind the analysis. Section 3 introduces the necessary preliminaries.
Section 4 details local selection. Section 5 explains the rôle of Boolean func-
tions in analysis. Section 6 details the analysis itself and Section 7 presents an
experimental evaluation. Section 8 reviews related work and Section 9 concludes.

2 Worked Example

Consider the Prolog program listed in the left-hand column of Figure 1. Declar-
atively, the program defines the relation that the second argument (a list) is an
in-order traversal of the first argument (a tree). Operationally, the declaration
:- block app(-,?,-) delays (blocks) app goals until their arguments are suffi-
ciently instantiated. The dashes in the first and third argument positions specify
that a call to app is to be delayed until either its first or third argument are bound
to non-variable terms. Thus app goals can be executed in one of two modes. The
problem is to compute input modes which are sufficient to guarantee that any
inorder query which satisfies the modes will not lead to a suspension under local
selection. This problem can be solved with backward analysis. Backward anal-
ysis infers requirements on the input which ensure that certain properties hold
at (later) program points [13]. The analysis reduces to three steps: a program
abstraction step; least fixpoint (lfp) and a greatest fixpoint (gfp) computation.
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inorder(nil,[]).
inorder(tree(L,V,R),I) :-

app(LI,[V|RI],I),
inorder(L,LI),
inorder(R,RI).

:- block app(-, ?, -).
app([], X, X).
app([X|Xs], Ys, [X|Zs]) :-

app(Xs,Ys,Zs).

inorder(T, I) :-
true :
T = nil, I = [] : true.

inorder(T, I) :-
true :
T = tree(L,V,R),
A = [V|RI] :
app(LI,A,I),
inorder(L,LI),
inorder(R,RI).

app(L, Ys, A) :-
nonvar(L) ∨ nonvar(A):
L = [], A = Ys : true.

app(L, Ys, A) :-
nonvar(L) ∨ nonvar(A):
L = [X|Xs], A = [X|Zs] :
app(Xs,Ys,Zs).

inorder(T, I) :-
true : T ∧ I : true

inorder(T, I) :-
true :
T ↔ (L ∧ V ∧ R),
A ↔ (V ∧ RI) :
app(LI,A,I),
inorder(L,LI),
inorder(R,RI).

app(L, Ys, A) :-
L ∨ A :
L ∧ (A ↔ Ys) : true.

app(L, Ys, A) :-
L ∨ A :
L ↔ (X ∧ Xs),
A ↔ (X ∧ Zs) :
app(Xs,Ys,Zs).

Fig. 1. inorder program in Prolog, in ccp and as a P os abstraction

2.1 Program Abstraction

Abstraction in turn reduces to two transformations: one from a Prolog with de-
lay program to a concurrent constraint programming (ccp) program and another
from the ccp program to a Pos abstraction. The Prolog program is re-written to
a ccp program to make blocking requirements explicit in the program as ask con-
straints. More exactly, a clause of a ccp program takes the form h :− c′ : c′′ : g
where h is an atom, g is a conjunction of body atoms and c′ and c′′ are the ask
and tell constraints. The asks are guards that inspect the store and specify syn-
chronisation behaviour whereas the tells are single-assignment writes that update
the store. Empty conjunctions of atoms are denoted by true. The nonvar(x) con-
straint states the requirement that x is bound to a non-variable term. The second
transform abstracts the ask and tell constraints with Boolean functions which
capture instantiation dependencies. The ask constraints are abstracted from be-
low whereas the tell constraints are abstracted from above. More exactly, an ask
abstraction is stronger than the ask constraint – whenever the abstraction holds
then the ask constraint is satisfied; whereas an tell abstraction is weaker than
the tell constraint – whenever the tell constraint holds then so does its abstrac-
tion. For example, the function L ∨ A describes states where either L or A is
ground [1] which, in turn, ensure that the ask constraint nonvar(L) ∨ nonvar(A)
holds. On the other hand, once the tell A = [V|RI] holds, then the grounding
behaviour of the state (and all subsequent states) is described by A ↔ (V ∧ RI).

2.2 Least Fixpoint Calculation

The second step of the analysis approximates the success patterns of the ccp
program (and thus the Prolog with delays program) by computing a lfp of the
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abstract Pos program. A success pattern is an atom with distinct variables for
arguments paired with a Pos formula over those variables. A success pattern
summarises the behaviour of an atom by describing the bindings it can make.
The lfp of the Pos program can be computed TP -style [10] in a finite number
of iterates. Each iterate is a set of success patterns: at most one pair for each
predicate in the program. This gives the following lfp:

F =
{〈inorder(x1, x2), x1 ↔ x2〉

〈app(x1, x2, x3), (x1 ∧ x2) ↔ x3〉
}

Observe that F faithfully describes the grounding behaviour of inorder and app.

2.3 Greatest Fixpoint Calculation

A gfp is computed to characterise the safe call patterns of the program. A call
pattern has the same form as a success pattern. Iteration commences with

D0 =
{〈inorder(x1, x2), true〉

〈app(x1, x2, x3), true〉
}

and incrementally strengthens the call pattern formulae until they are safe, that
is, they describe queries which are guaranteed not to violate the ask constraints.
The iterate Di+1 is computed by putting Di+1 = Di and then revising Di+1 by
considering each p(x) :- d : f : p1(x1), . . . , pn(xn) in the abstract program and
calculating a (monotonic) formula that describes input modes (if any) under
which the atoms in the clause can be scheduled without suspension under local
selection. A monotonic formula over set of variables X is any formula of the
form ∨n

i=1(∧Yi) where Yi ⊆ X [7]. Let di denote a monotonic formula that
describes the call pattern requirement for pi(xi) in Di and let fi denote the
success pattern formula for pi(xi) in the lfp (that is not necessarily monotonic).
A new call pattern for p(x) is computed using the following algorithm:

– Calculate e = ∧n
i=1(di → fi) that describes the grounding behaviour of

the compound goal p1(x1), . . . , pn(xn). The intuition is that pi(xi) can be
described by di → fi since if the input requirements hold (di) then pi(xi)
can be executed without suspension, hence the output must also hold (fi).

– Compute e′ = ∧n
i=1di which describes a groundness property sufficient for

scheduling all of the goals in the compound goal without suspension. Then
e → e′ describes a grounding property which, if satisfied, when the com-
pound goal is called ensures the goal can be scheduled by local selection
without suspension (this relies on an unusual reordering property of mono-
tonic functions that is explained in Section 5.3).

– Calculate g = d ∧ (f → (e → e′)) that describes a grounding property which
is strong enough to ensure that both the ask is satisfied and the body atoms
can be scheduled by local selection without suspension.

– Eliminate those variables not present in p(x), Y say, by computing
g′ = ∀Y (g) where ∀{y1...yn}(g) = ∀y1(. . . ∀yn

(g)). A single variable can be
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eliminated by ∀x(f) = f ′ if f ′ ∈ Pos otherwise ∀x(f) = 0 where f ′ = f [x 
→
0] ∧ f [x 
→ 1]. Hence ∀x(f) entails f and g′ entails g, so that a safe calling
mode for this particular clause is then given by g′.

– Compute a monotonic function g′′ that entails g′. Since g′′ is stronger than
g′ it follows that g′′ is sufficient for scheduling the compound goal by local
selection without suspension. The function g′ needs to be approximated by
a monotonic function since the e → e′ step relies on di being monotonic.

– Replace the pattern 〈p(x), g′′′〉 in Di+1 with 〈p(x), g′′ ∧ g′′′〉.
This procedure generates the following Di sequence:

D1 =
{〈inorder(x1, x2), true〉

〈app(x1, x2, x3), x1 ∨ x3〉
}

D2 =
{〈inorder(x1, x2), x1 ∨ x2〉

〈app(x1, x2, x3), x1 ∨ x3〉
}

The gfp is reached and checked in three iterations. The result asserts that a
local selection rule exists for which inorder will not suspend if either its first
or second arguments are ground. Indeed, observe that if the first argument is
ground then body atoms of the second inorder clause can be scheduled as follows
inorder(L,LI), then inorder(R,RI), and then app(LI,A,I) whereas if the second
argument is ground, then the reverse ordering is sufficient for non-suspension.

3 Preliminaries

Let ℘+(S) (S∗) denote the set of multisets (sequences) whose elements are drawn
from S. Let ε denote the empty sequence, let . denote sequence concatenation
and let ‖s‖ denote the length of a sequence s. If s is a sequence, let Π(s) denote
the set of permutations of s. Let [l, u] = {n ∈ Z | l ≤ n ≤ u}. Transitive closure
of a binary relation � is denoted ��.

3.1 Terms, Substitutions, and Equations

Let Term denote the set of (possibly infinite) terms over an alphabet of functor
symbols Func and a (denumerable) universe of variables V ar where Func ∩
V ar = ∅. Let var(t) denote the set of variables occurring in the term t.

A substitution is a (total) map θ : V ar → Term such that dom(θ) =
{u ∈ V ar | θ(u) �= u} is finite. Let rng(θ) = ∪{var(θ(u)) | u ∈ dom(θ)} and
let var(θ) = dom(θ) ∪ rng(θ). A substitution θ is idempotent iff θ ◦ θ = θ, or
equivalently, iff dom(θ) ∩ rng(θ) = ∅. Let Sub denote the set of idempotent sub-
stitutions and let id denote the empty substitution. Let θ(t) denote the term
obtained by simultaneously replacing each occurrence of a variable x ∈ dom(θ)
in t with θ(x). An equation e is a pair (s = t) where s, t ∈ Term. A finite set of
equations is denoted E and Eqn denotes the set of finite sets of equations. Also
define θ(E) = {θ(s) = θ(t) | (s = t) ∈ E}. The map eqn : Sub → Eqn is defined
eqn(θ) = {x = θ(x) | x ∈ dom(θ)}. Composition θ ◦ ψ of two substitutions is
defined so that (θ ◦ ψ)(u) = θ(ψ(u)) for all u ∈ V . Composition induces the
(more general than) relation ≤ defined by θ ≤ ψ iff there exists δ ∈ Sub such
that ψ = δ ◦θ which, in turn, defines the equivalence relation (variance) θ ≈ ψ iff
θ ≤ ψ and ψ ≤ θ. Let Ren denote the set of invertible substitutions (renamings).
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3.2 Most General Unifiers

The set of unifiers of E is defined by: unify(E) = {θ ∈ Sub | ∀(s = t) ∈ E.θ(s) =
θ(t)}. The set of most general unifiers (mgus) and the set of idempotent mgus
(imgus) are defined: mgu(E) = {θ ∈ unify(E) | ∀ψ ∈ unify(E).θ ≤ ψ} and
imgu(E) = {θ ∈ mgu(E) | dom(θ) ∩ rng(θ) = ∅}. Note that imgu(E) �= ∅ iff
mgu(E) �= ∅ [16].

3.3 Logic Programs

Let Pred denote a (finite) set of predicate symbols, let Atom denote the set
of (flat) atoms over Pred with distinct arguments drawn from V ar, and let
Goal = ℘∗(Atom). A logic program P (with dynamic scheduling assertions)
is a finite set of clauses w of the form w = h :−D : E : b where h ∈ Atom,
D ∈ ℘(Eqn) (the ask is a set of equations), E ∈ Eqn (the tell is a single
equation) and b ∈ Goal. An operational semantics (that ignores each D and
therefore synchronisation) is defined in terms of the standard transition system:
Definition 1 (standard transition system). Given a logic program P ,
�P ⊆ (Goal × Sub)2 is the least relation such that: s = 〈g, θ〉�P 〈b.g′, δ ◦ θ〉 if

– there exists p(x) ∈ g
– and there exists ρ ∈ Ren and w ∈ ρ(P ) such that var(w) ∩ var(s) = ∅ and

w = p(y) :−D : E : b
– and δ ∈ imgu({θ(x) = y} ∪ E) and g′ = g \ {p(x)}

Note that . denotes concatenation. The operational semantics is the transi-
tive closure of the relation on (atomic) goals, that is, O(P ) = {θ(p(x)) |
〈p(x), id〉 ��

P 〈ε, θ〉}. The following lemmas are useful in establishing the main
result, theorem 1, and follow from the switching lemma [17, lemma 9.1].
Lemma 1. Let 〈a.g, θ〉 �i

P 〈ε, θ′〉. Then 〈a, θ〉 �j
P 〈ε, ψ〉 and 〈g, ψ〉 �k

P 〈ε, ψ′〉
where i = j + k and θ′ ≈ ψ′.
Lemma 2. Suppose 〈g1, θ1〉 ��

P 〈g2, θ2〉 and θ1 ≈ ψ1. Then 〈g1, ψ1〉 ��
P

〈g2, ψ2〉 where θ2 ≈ ψ2.
A fixpoint semantics of P (that again ignores synchronisation) can be defined

in terms of an immediate consequences operator FP . Let Base = {θ(a) | a ∈
Atom ∧ θ ∈ Sub} and Int = {I ⊆ Base | ∀a ∈ I.∀θ ∈ Sub.θ(a) ∈ I}. Then
〈Int, ⊆, ∪, ∩, Base, ∅〉 is a complete lattice.
Definition 2. Given a logic program P , the operator FP : Int → Int is defined:

FP (I) =
{

θ(h)
∣∣∣∣ h :−D : E : a1, . . . , am ∈ P ∧
θ ∈ unify(E) ∧ θ(ai) ∈ I

}

The operator FP is continuous and hence the fixpoint semantics for a program
P can be defined as F(P ) = lfp(FP ). The relationship between the operational
and fixpoint semantics is stated below.
Theorem 1 (Partial correctness). O(P ) ⊆ F(P ).
Although the fixpoint semantics is only partially correct – it does not consider
synchronisation – it still provides a useful foundation for analysis since any safe
(superset) abstraction of F(P ) is also a safe approximation of O(P ).
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4 Local Selection

This section formalises the analysis problem, and in particular local selection, by
introducing an operational semantics for logic programs which combines delay
with local selection. A transition system is defined in terms of an augmented
notion of state, that is, State = {susp} ∪ Goal × Sub ∪ Goal × Goal × Sub.

Definition 3 (transition system for local selection with delay). Given a
logic program P , �P ⊆ State2 is the least relation such that:

– s = 〈p(x).g, θ〉�P 〈b, g′, δ ◦ θ〉 if
• there exists ρ ∈ Ren and w ∈ ρ(P ) such that var(w) ∩ var(s) = ∅ and

w = p(y) :−D : E : b
• and there exists E′ ∈ D and µ ∈ unify(E′) such that µ(p(y)) = θ(p(x))
• and δ ∈ imgu({θ(x) = y} ∪ E) and g′ = g \ {p(x)};

– s = 〈p(y).g, θ〉�P susp if
• there exists ρ ∈ Ren and w ∈ ρ(P ) such that var(w) ∩ var(s) = ∅ and

w = p(y) :−D : E : b
• and µ(p(y)) �= θ(p(x)) for all E′ ∈ D and for all µ ∈ unify(E′);

– 〈b, g, θ〉�P 〈b′.g, θ〉 if b′ ∈ Π(b).

Recall that . is concatenation and Π(b) is the set of goals obtained by permuting
of the sequence of body atoms b. These permuted body atoms ensure that the
transition system considers each local selection rule rather than a particular local
selection rule. The analysis problem can now be stated precisely: it is to infer
a sub-class of states of the form s = 〈p(x), θ〉 such that if s ��

P 〈ε, ψ〉 then
s ��

P 〈ε, χ〉 where ψ ≈ χ. Put another way, if the standard transition system
produces a computed answer then a local selection rule exists that will produce
a variant of that answer. The problem is non-trivial because local selection can
bar derivations from occurring that arise in the standard transition system. The
following proposition is an immediate consequence of this.

Proposition 1. O(P ) ⊇ {θ(p(x)) | 〈p(x), id〉��
P 〈ε, θ〉}.

5 Boolean Functions

This section reviews Boolean functions and their rôle in analysis, before moving
to introduce new properties of Boolean functions that are particularly pertinent
to suspension analysis. A Boolean function is a function f : Booln → Bool where
n ≥ 0 and Bool = {0, 1}. A Boolean function can be represented by a proposi-
tional formula over X ⊆ V ar where |X| = n. The set of propositional formulae
over X is denoted by BoolX . Boolean functions and propositional formulae are
used interchangeably without worrying about the distinction. The convention of
identifying a truth assignment with the set of variables M that it maps to 1 is
also followed. Specifically, a map ψX(M) : ℘(X) → BoolX is introduced defined
by: ψX(M) = (∧M) ∧ ¬(∨(X\M)). Henceforth suppose X is finite.
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Fig. 2. Hasse diagrams for MonX , Def X and PosX for the dyadic case X = {x, y}

Definition 4. The map modelX : BoolX → ℘(℘(X)) is defined by: modelX(f)
= {M ⊆ X | ψX(M) |= f}.

Example 1. If X = {x, y}, then the function {〈1, 1〉 
→ 1, 〈1, 0〉 
→ 0, 〈0, 1〉 
→ 0,
〈0, 0〉 
→ 0} can be represented by the formula x ∧ y. Moreover, modelX(x ∧
y) = {{x, y}}, modelX(x ∨ y) = {{x}, {y}, {x, y}}, modelX(false) = ∅ and
modelX(true) = ℘(℘(X)) = {∅, {x}, {y}, {x, y}}.

5.1 Classes of Boolean Functions

The suspension analysis is formulated with three classes of Boolean function.

Definition 5. A Boolean function f is positive iff X ∈ modelX(f); f is definite
iff M ∩ M ′ ∈ modelX(f) for all M, M ′ ∈ modelX(f); f is monotonic iff M ′ ∈
modelX(f) whenever M ∈ modelX(f) and M ⊆ M ′ ⊆ X.

Let PosX denote the set of positive Boolean functions (augmented with 0); Def X

denote the set of positive functions over X that are definite (augmented with 0);
and MonX denote the set of monotonic Boolean functions over X (that includes
0). Observe MonX ⊆ PosX and Def X ⊆ PosX . One useful representational
property of Def X is that if f ∈ Def X and f �= 0, then f = ∧m

i=1(yi ← ∧Yi)
for some yi ∈ X and Yi ⊆ X [7]. Moreover, if f ∈ MonX and f �= 0, then
f = ∨m

i=1(∧Yi) where Yi ⊆ X [6, Proposition 2.1]
The 4-tuple 〈PosX , |=, ∧, ∨〉 is a finite lattice and MonX is a sub-lattice

(whereas Def X is not a sub-lattice as witnessed by the join of x and y in
Figure 2). Existential quantification for PosX is defined by Schröder elimina-
tion, that is, ∃x.f = f [x 
→ 1] ∨ f [x 
→ 0]. Universal projection is defined
∀x(f) = f ′ if f ′ ∈ PosX otherwise ∀x(f) = 0 where f ′ = f [x 
→ 0] ∧ f [x 
→ 1].
Note that ∃x.(∃y.f) = ∃y.(∃x.f) and ∀x.(∀y.f) = ∀y.(∀x.f) for all x, y ∈ X.
Thus let ∃{y1, . . . , yn}.f = fn+1 where f1 = f and fi+1 = ∃yi.fi and define
∀{y1, . . . , yn}.f analogously. Finally let ∃Y.f = ∃(X\Y ).f and ∀Y.f = ∀(X\Y ).f .

5.2 Abstracting the Fixpoint Semantics Using Boolean Functions

Boolean functions are used to describe (grounding) properties of the program.
The construction is to formalise the connection between functions and data (syn-
tactic equations) and then extend it to semantic objects such as interpretations.
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Definition 6. The abstraction αPos : ℘(Eqn) → Pos and concretisation
γPos : Pos → ℘(Eqn) maps are defined:

αPos(D) = ∨{αDef (θ) | θ ∈ imgu(E) ∧ E ∈ D} γPos(f) = {E | αPos({E}) |= f}

where αDef (θ) = ∧{x ↔ var(t) | x 
→ t ∈ θ}.
The lifting of αPos and γPos to interpretations is engineered so as to simplify the
statement of the gfp operator, though it also suffices for defining the lfp operator.
The construction starts with BasePos = {〈a, f〉 | a ∈ Atom ∧ f ∈ Posvar(a)}. To
order these pairs, let x ↔ y = ∧n

i=1(xi ↔ yi) where x = 〈x1, . . . , xn〉 and y =
〈y1, . . . , yn〉. The entailment order on Pos can be extended to b1, b2 ∈ BasePos

where bi = 〈p(xi), fi〉, var(x) ∩ var(xi) = ∅ and f ′
i = ∃var(xi).((x ↔ xi) ∧ fi)

by defining b1 |= b2 iff f ′
1 |= f ′

2. Observe that 〈BasePos , |=〉 is a pre-order since
|= is not reflexive. Equivalence on BasePos is thus defined b1 ≡ b2 iff b1 |= b2
and b2 |= b1. Let I1, I2 ⊆ BasePos/ ≡. Then entailment lifts to ℘(BasePos/ ≡)
by I1 |= I2 iff for all [b1]≡ ∈ I1 there exists [b2]≡ ∈ I2 such that b1 |= b2.

Let IntPos denote the set of subsets I of BasePos/ ≡ such that there exists
a unique [〈p(x), f〉]≡ ∈ I for each p ∈ Pred. Since IntPos ⊆ ℘(BasePos/ ≡),
IntPos is also ordered by |=. Note, however, that |= is the point-wise ordering
on IntPos and that the lattice 〈IntPos , |=, ∨, ∧〉 is equipped with simple ∨ and
∧ operations. Specifically ∨j∈JIj = {[〈p(x), ∨j∈Jfj〉]≡ | [〈p(x), fj〉]≡ ∈ Ij} and
∧j∈JIj is analogously defined. The following definition extends αPos and γPos

to interpretations and thereby completes the domain construction.
Definition 7. The concretisation map γPos : IntPos → Int is defined:

γPos(J) = {θ(a) | [〈a, f〉]≡ ∈ J ∧ eqn(θ) ∈ γPos(f)}
whereas αPos : Int →IntPos is defined: αPos(I) = ∧{J ∈ IntPos |I ⊆ γPos(J)}.
An operator that abstracts the standard fixpoint operator FP is given below.
Definition 8. Given a logic program P , the fixpoint operator FPos

P : IntPos →
IntPos is defined by: FPos

P (I) = ∧{J ∈ IntPos | K |= J} where

K =


[〈h, f〉]≡

∣∣∣∣∣∣
h :−D : E : a1, . . . , am ∈ P ∧

[〈ai, fi〉]≡ ∈ I ∧
f = ∃var(h).(αPos({E}) ∧ ∧m

i=1fi)




The operator FPos
P is continuous, hence an abstract fixpoint semantics is defined

FPos(P ) = lfp(FP ). The following correctness result is (almost) standard.
Theorem 2. F(P ) ⊆ γPos(FPos(P )).

5.3 Monotonic Boolean Functions

One idea behind the analysis is to use implication to encode synchronisation. The
intuition is that if di expresses the required input and fi the generated output
for pi(xi), then di → fi represents the behaviour of pi(xi). One subtlety is that
∧n

i=1(di → fi) does not always correctly describe the behaviour of a compound
goal p1(x1), . . . , pn(xn) if di �∈ MonX . This is illustrated below.
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Example 2. Consider the compound goal p1(x, y, z), p2(x, y, z) for a two clause
program p1(x, y, z) :−D : z = c : true and p2(x, y, z) :−nonvar(x) : y = b : true
where D is a (bizarre) ask constraint that is satisfied if y is ground whenever
x is ground. Thus if d1 = (x → y) and d2 = x hold then D and nonvar(x)
are satisfied whereas z = c and y = b ensure that f1 = z and f2 = y hold.
Neither p1(x, y, z) can be scheduled before p2(x, y, z) or vice versa to bind z, yet
∧2

i=1(di → fi) |= z. The problem stems from the implication in d1. Ensuring
that di ∈ MonX avoids this problem as is formally asserted below.

Proposition 2. Let f, fi ∈ Def X and di ∈ MonX for all i ∈ [1, m] and suppose
f |= (∧m

i=1(di → fi)) → (∧m
i=1di). Then an injective map π : [1, m] → [1, m]

exists such that f ∧ ∧j<i
j=1fπ(j) |= dπ(i) for all i ∈ [1, m].

The force of the result is that it states that the compound goal can be reordered
as pπ(1)(xπ(1)), . . . , pπ(n)(xπ(n)) so that the input requirement of goal pπ(i)(xπ(i))
(dπ(i)) is satisfied by an initial binding (f) combined with those bindings out-
put by the previous goals (∧j<i

j=1fπ(j)). The following definitions explain how to
(minimally) strengthen a positive function so as to obtain a monotonic function.
The specification for this operation is captured in ↓.

Definition 9. The map ↓: PosX → MonX is defined ↓ f = ∨{f ′ ∈ MonX |
f ′ |= f}.

The operation ↓ arises during analysis and to construct a method for computing
↓, let ρ : X → X ′ be a bijective map where X ′ ⊆ V ar and X ∩ X ′ = ∅. The
proposition explains how � can be iteratively applied to finitely compute ↓.

Definition 10. The map �: PosX → PosX is defined � f = ∀X ′.f ′ where
f ′ = (∧n

i=1xi → ρ(xi)) → ρ(f).

Proposition 3. Let f ∈ PosX . Then ↓f = ∧i≥1fi where fi ∈ PosX is the
decreasing chain given by: f1 = f and fi+1 =�fi.

Example 3. Consider computing ↓f where X = {x, y} and f = (x → y). Suppose
ρ(x) = x′ and ρ(y) = y′. Then f ′ = ((x → x′) ∧ (y → y′)) → (x′ → y′),
f ′[x′ 
→ 1] = (y → y′) → y′ = y ∨ y′ and f ′[x′ 
→ 0] = 1 so that ∀x′.f ′ = y ∨ y′.
Put f ′′ = y ∨ y′. Then f ′′[y′ 
→ 1] = 1 and f ′′[y′ 
→ 0] = y so that � f =
∀y′.∀x′.f ′ = ∀y′.f ′′ = y. In fact �y = y so that ↓f = y. Observe that y |= f .

6 Suspension Analysis

This section draws together the previous sections to define the suspension anal-
ysis in terms of a backward fixpoint operator. To construct this operator, and
specifically model asks, it is necessary to introduce a map αPos

low : ℘(Eqn) → Pos
that returns a lower approximation to a set of equations D. Recall that αPos

yields an upper approximation in that if E ∈ D, then αPos({E}) entails αPos(D).
Conversely αPos

low , which is defined below, delivers a lower approximation with the
property that if αPos({E}) entails αPos

low (D), then E ∈ D.
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Definition 11. The (lower) abstraction map αPos
low : ℘(Eqn) → Pos is defined

by: αPos
low (D) = ∨{f ∈ Pos | γPos(f) ⊆ D}.

Example 4. Let nonvar(x) and ground(y) denote the equation sets {E ∈ Eqn |
θ ∈ imgu(E) ∧ θ(x) �∈ V ar} and {E ∈ Eqn | θ ∈ imgu(E) ∧ var(θ(y)) = ∅}.
Then αPos

low (Eqn) = 1, αPos
low (nonvar(x)) = x, αPos

low (nonvar(x)∪ground(y)) = x∨y
and αPos

low ({x = f(a)}) = αPos
low ({x = y}) = 0.

Suspension analysis can now be formalised with an abstract fixpoint operator:

Definition 12. Given a logic program P , the operator BP : IntPos → IntPos

is defined: BP (I) = ∨{J ∈ IntPos | ∀[b1]≡ ∈ K.∃[b2]≡ ∈ J.b2 |= b1} where

K =




[〈h, d′′〉]≡

∣∣∣∣∣∣∣∣∣∣

h :−D : E : a1, . . . , am ∈ P ∧
[〈ai, fi〉]≡ ∈ FPos(P ) ∧ [〈ai, di〉]≡ ∈ I ∧

d = αPos
low (D) ∧ e = αPos({E}) ∧

d′ = (∧m
i=1(di → fi)) → (∧m

i=1di) ∧
d′′ = ↓(∀var(h).(d ∧ (e → d′)))




Recall that ∧m
i=1(di → fi) captures the grounding behaviour of the goal

a1, . . . , am whereas ∧m
i=1di describes a state with variables sufficiently bound

to enable each ai to be scheduled with local selection without suspension. The
function d′ is a grounding property that, if satisfied when a1, . . . , am is called,
guarantees that a1, . . . , am can be reordered so that each ai can be scheduled by
local selection without suspension. The function d′′ is monotonic, defined only
over those variables in h, and is sufficient to ensure that both the ask is satisfied
and that a1, . . . , am can be scheduled by local selection without suspension. If
P contains a predicate p defined over n clauses, then {[p(x, fi)]≡}n

i=1 ⊆ K so in
general K �∈ IntPos . However, BP (I) contains a unique element [p(x, f)]≡ such
that f = ∧n

i=1fi. In effect, related elements of K are merged with meet.
BP is co-continuous and since IntPos is a finite lattice, it follows that gfp(BP )

exists. The value of gfp(BP ) is explained by the following theorem (or rather its
corollary). It states that gfp(BP ) characterises a set of initial states for which
if the standard transition system leads to a computed answer (in k steps) then
local selection with delay leads to a variant of that computed answer (in k steps).

Theorem 3. Suppose θ(p(x)) ∈ γPos(Bk
P (�)), s1 = 〈p(x), θ〉, s1 �k

P 〈ε, ψ〉.
Then s1 �k

P 〈ε, χ〉 where ψ ≈ χ.

Corollary 1. Suppose θ(p(x)) ∈ γPos(gfp(BP )), s1 = 〈p(x), θ〉, s1 �k
P 〈ε, ψ〉.

Then s1 �k
P 〈ε, χ〉 where ψ ≈ χ.

To emphasise the significance of gfp(BP ), the abstract backward semantics for
P is defined B(P ) = gfp(BP ). Co-continuity enables B(P ) to be computed by
lower Kleene iteration, that is, as the limit of �, BP (�), B2

P (�), . . . where
� = {[〈p(x), 1〉]≡ | p ∈ Pred}. The example illustrates how to handle builtins.

Example 5. Consider the temperature conversion program in the left column of
Fig. 3 which converts Celsius to Fahrenheit and vice versa. The block declara-
tion equates to the equation set D = (nonvar(X) ∩ nonvar(Y )) ∪ (nonvar(X) ∩



Goal-Independent Suspension Analysis 95

cf(C, F) :- mul(C, 1.8, S), add(S, 32, F).

:- block add(-, -, ?), add(-, ?, -), add(?, -, -).
add(X, Y, Z) :- ground(X+Y), Z is X+Y.
add(X, Y, Z) :- ground(Z-X), Y is Z-X.
add(X, Y, Z) :- ground(Z-Y), X is Z-Y.

:- block mul(-, -, ?), mul(-, ?, -), mul(?, -, -).
mul(X, Y, Z) :- ground(X*Y), Z is X*Y.
mul(X, Y, Z) :- ground(Z/X), Y is Z/X.
mul(X, Y, Z) :- ground(Z/Y), X is Z/Y.

cf(C, F) :- true : T1 ∧ T2 :
mul(C, T1, S), add(S, T2, F).

add(X, Y, Z) :- f : T ↔ (X ∧ Y) :
ground(T), is(Z, T).

add(X, Y, Z) :- f : T ↔ (X ∧ Z) :
ground(T), is(Y, T).

add(X, Y, Z) :- f : T ↔ (Y ∧ Z) :
ground(T), is(X, T).

mul(X, Y, Z) :- . . .

ground(X) :- true : X : true.
is(X, Y) :- true : X ∧ Y : true.

Fig. 3. conv program in Prolog and in Pos where f = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)

nonvar(Z)) ∪ (nonvar(Y ) ∩ nonvar(Z)) and αPos
low (D) = f (see Fig. 3). Note how

the builtins ground and is are modelled in the abstract version of conv listed in
the right column. For brevity, let y = 〈x1, x2〉 and z = 〈x1, x2, x3〉. Then

FPos(conv) =




[〈cf(y), x1 ∧ x2〉]≡
[〈add(z), x1 ∧ x2 ∧ x3〉]≡
[〈mul(z), x1 ∧ x2 ∧ x3〉]≡

[〈ground(x1), x1〉]≡
[〈is(y), x1 ∧ x2〉]≡




K =




[〈cf(y), 1〉]≡
[〈add(z), f〉]≡
[〈mul(z), f〉]≡

[〈ground(x1), 1〉]≡
[〈is(y), 1〉]≡




where f = (x1 ∧x2)∨ (x1 ∧x3)∨ (x2 ∧x3). Hence Bconv(�) = K. Then B2
conv(�)

differs from Bconv(�) only in [〈cf(y), x1 ∨ x2〉]≡. In fact B(conv) = B2
conv(�).

7 Experimental Evaluation

To assess the value of the analysis it has been implemented in SICStus Prolog
using the BDD package of Armstrong and Schachte [1]. The implementation
consists of two meta-interpreters – one for each fixpoint. Each abstract clause
h :− d : f : b1, . . . , bn is represented as two facts: my clause(h,[idf , b1, . . . , bn])
and assertion(h,idd) where idf and idd are identifiers for the BDDs of f and
d. Facts of the form fact(gr,p(x),idf ) and fact(ba,p(x),idg) are added and
removed from the database to record the status of the lfp and then the gfp.
Both fixpoint engines are realised as semi-naive meta-interpreters.

The analyser has been applied to a number of programs: bestpath, entails,
fact, hamming, inorder, isotrees, pascal, mm, hanoi, msort, qsort, queens, sieve,
most of which derive from the Super Monaco benchmark suite. All programs were
analysed in less than 1 second on a 500MHZ, 512MB Pentium III running RedHat
Linux 7.2 with Kernel 2.4.7-10. The Super Monaco programs are coded in kl1 –
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an early ccp language – and therefore for analysis these programs were manually
translated into SICStus Prolog with blocks. It was for these programs that the
analysis occasionally produced unexpected results (modes) and close inspection
revealed errors in the hand translation. Some errors were straightforward (block
declarations of the wrong arity) and other were subtle, but none came to light
in the testing, presumably because of the particular interleaving adopted by the
SICStus scheduler. These results suggest that the analysis has a rôle in bug
detection. The analysis also inferred non-trivial modes for all predicates except
for 6 mutually recursive predicates in bestpath for which false was returned. It
is not yet clear whether a local selection rule exists for these predicates that
avoids suspension – the synchronisation is subtle and may even be buggy. What
is clear, however, is that local selection is sufficient to infer useful modes for the
vast majority of the predicates that were analysed. An experimental analyser
can be found at http://www.cs.bgu.ac.il/cgi-bin/genaim/susweb.cgi and
the benchmarks are available from the home page of the second author.

8 Related Work

One of the most closely related works comes surprisingly from the compiling con-
trol literature and in particular the problem of generating a local selection rule
under which a program universally terminates [12]. The technique of [12] builds
on the termination inference method of [19] which infers initial modes for a query
that, if satisfied, ensure that a logic program left-terminates. The chief advance
in [12] over [19] is that it additionally infers how goals can be statically reordered
so as to improve termination behaviour. This is performed by augmenting each
clause with body atoms a1, . . . , an with n(n − 1)/2 Boolean variables bi,j with
the interpretation that bi,j = 1 if ai precedes aj in the reordered goal and bi,j = 0
otherwise. The analysis of [19] is then adapted to include consistency constraints
among the bi,j , for instance, bj,k ∧ ¬bi,k ⇒ ¬bi,j . In addition, the bi,j are used
to determine whether the post-conditions of ai contribute to the pre-conditions
of aj . Although motivated differently and realised differently (in terms of the
Boolean µ-calculus) this work also uses Boolean functions to finesse the prob-
lem of enumerating the goal reorderings. This work complements our own since
termination is a related but orthogonal requirement to non-suspension.

King and Lu [13] show how to apply backward analysis to the problem of
figuring how to query a logic program with fixed selection rule. The analysis
traces control-flow of the program (backward) right-to-left to infer the modes
in which a predicate must be called under the leftmost selection rule. Although
this analysis can be reinterpreted as a suspension analysis it cannot reason about
local selection accurately since it only considers leftmost selection.

The early work of [5] presents an and-or tree framework that applies local
reexecution to simulate the dataflow under different interleavings. A more di-
rect approach is to abstract each state in the transition system with an abstract
state to obtain an abstract transition system [3]. Finiteness is enforced through
a widening known as star-abstraction [3]. This approach achieves a degree of
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conceptual simplicity though the abstract states themselves can be unwieldy.
The work of [8] is unusual in that it attempts to detect suspension-freeness for
goals under leftmost selection. Although this approach only considers one local
selection rule, it is surprising effective because of the way data often flows left-
to-right. A particularly elegant approach to suspension analysis follows from a
confluence semantics that approximates the standard semantics in the sense that
suspension implies suspension in the confluent semantics [4]. The crucial point is
that because of confluence, an analysis based on the confluence semantics need
only consider one scheduling rule. None of these analyses, however, can infer ini-
tial queries that guarantee non-suspension – all check for non-suspension. Other
works have proposed generic abstract interpretation frameworks for dynamic
scheduling [9,18] but none of these are for goal-independent analysis.

9 Concluding Discussion

This paper has shown how suspension analysis can be tackled for a new perspec-
tive – that of goal-independence. It shows how an analysis for non-suspension
under local selection can be formulated as two simple bottom-up fixpoint compu-
tations. The analysis strikes a good balance between tractability and precision.
It avoids the complexity of goal interleaving by exploiting reordering properties
of monotonic and positive Boolean functions.

For reasons of presentation, the analysis proposed in this paper has been
specified for logic programs. To further simplify the presentation, the analysis
was formulated in terms of simple groundness dependencies. The first constraint
can be relaxed by following a standard constraint formulation [10]. The second
can be relaxed by lifting the analysis to rigidity (type) dependencies using term
extractor maps [3,10]. Another direction for future work will be to generalise the
analysis to other abstract domains that possess a pseudo-complement.
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Abstract. We consider arbitrary cryptographic protocols and security
properties. We show that it is always sufficient to consider a bounded
number of agents b (actually b = 2 in most of the cases): if there is an
attack involving n agents, then there is an attack involving at most b
agents.

1 Introduction

The task of automatically verifying cryptographic protocols has now been un-
dertaken by several research groups, because of its relevance to secure internet
transactions. Let us cite for instance (this is far from being exhaustive): CAPSL
[13], CASRUL/Datac [19], casper/FDR [26].

Though cryptographic protocols are often described in a concise way (see
e.g. [7]), the verification problem is difficult for two reasons:

1. The number of agents potentially using the protocol is unbounded, as well
as the number of protocol sessions.

2. The size of messages which can be forged by an intruder is also unbounded.

And, in fact, even for simple properties such as secrecy and for subclasses of
protocols, the verification problem is undecidable (see e.g. [15,14,9,2]).

The verification tools have either to assume stronger properties on the pro-
tocols (e.g. [20,10,27,2]) or to consider a bounded number of sessions (hence a
bounded number of agents) only [3,25,16,22], in which case the security prob-
lem becomes co-NP-complete [25]. Yet another solution is to consider an upper
approximation of the set of execution sequences, in such a way that, when no
attack is found on this upper approximation, then there is no attack on the
protocol. This is typically the approach of [6,5].

In this paper, we consider a simple reduction, which works for any protocols
and security properties typically considered for automated verification. We show
that it is always sufficient to consider a bounded number of agents b (actually
b = 2; we will discuss this point later): if there is an attack involving n agents,
then there is an attack involving at most b agents. Such a result is useful for
automatic tools: we may forget the universal quantifications on agents ids and
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consider finitely many (4 most of the time) instances of the protocol roles, with-
out loosing information. This proves actually that the instanciation techniques
in [19] are complete. This also provides completeness results for abstraction used
in [6,23]. Of course, the verification problem will remain undecidable, because we
cannot faithfully give a bound on the number of sessions. Still, approximation
techniques such as [5,6] can be simplified and when considering a bounded num-
ber of sessions we may assume w.l.o.g. that only these b agents are involved. This
reduction result also provides with a decision result for cryptographic protocols
against a passive intruder.

Our result extends and clarifies a side result of [18]. Indeed, J. Heather and
S. Schneider chow that one may consider only four agents (three honest, one
dishonest) using implicitly that an agent may talk to herself. We prove actually
that in J. Heather and S. Schneider case, only two agents are sufficient. In
addition, our reduction result holds for more general security properties and
also holds when an agent is disallowed to speak with herself.

The proof of our result is not difficult, once the protocol and its properties are
expressed as Horn clauses: given an attack against a security property, we simply
project every honest identity on one single honest identity and every dishonest
identity on one single dishonest identity. Actually, the result can be stated for
a class of Horn clauses, which encompasses protocols descriptions. Everybody
has her (his) favorite model. We do not argue that the Horn clause model is
better than others. It is simply more convenient for our proof and we claim that
most other models can be reduced to this one, hence our reduction also applies
to other models of cryptographic protocols. In order to support this claim, we
provide (in [11]) with a reduction of the Millen-Rueß model [21] to Horn clauses.
We hope that this will provide with enough evidence that the reduction result
works for other models as well. (It is not possible to show in detail all reductions
from other models to Horn clauses).

Our paper is organized as follows. We introduce our model in section 2. A
more detailed definition can be found in [11]. In section 3.1 we prove that, if there
is an attack involving n agents, then there is an attack involving at most 2 agents,
besides the constant agents which might be used in the protocol description. In
other words, we show that we have to consider only instances of the roles in a
two-element sets. This result assumes however that the same agent may play
different roles in a given protocol session: “an agent may talk to herself”. Most
of the models do not discard this ability. However, it may be considered as more
realistic that an agent cannot play several roles in the same session. Some models
[24,20] explicitly disallow this possibility. That is why we consider in section 3.2
models in which an agent cannot talk with herself. We prove in this case that, if
there is an attack involving n agents, then there is an attack involving at most
k + 1 agents where k is the number of roles in the protocol.
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2 The Model

We define a trace model by means of Horn clauses, in which terms are messages.
A similar representation can also be found in [5] for instance. The important
feature is that we only use Horn clauses, which contain at least one positive
literal. Hence there is a least Herbrand model H, which is the intended trace
semantics: the possible traces are the member of TH, the interpretation of the
unary predicate T in H.

Clauses come in two parts: the first part is protocol independent and the
second part is protocol specific. It is a bit lengthy to describe the two parts in
details: we will only show here examples and the less standard constructions.
The reader is referred to [11] for more details.

2.1 Messages and Traces

The set of messages is the set of (ground) terms built over a set of function
symbols F and basic sorts: Num, Agent, Ha, Da, Message, Event, Trace. F contains
the following function symbols:

0 : → Num ni : Agentki , Num → Message
s : Num → Num st : Agent, Num, Message → Event
h : → Ha ⊥: → Trace
d : → Da [ , ] · : Event, Num, Trace → Trace

sh : Ha → Ha srv i → Agent
sd : Da → Da

Terms of sort Agent are called agents. All other symbols, including the classical
cryptographic primitives for building keys, encryption and pairs take messages as
arguments and return a message. This set of cryptographic primitives is denoted
by:

Fmsg = {< , >, { } , pub( ), prv( ), shr( )}.

In addition, we may have e.g. hash function symbols.
We also assume that every agent is a message and every message is an event;

we have the subsort relations Agent ≤ Message ≤ Event, Ha ≤ Agent and Da ≤
Agent. Let us comment a little bit:

– Num is only used for internal representations of session numbers, nonces...
It is important to provide with one representation since we will consider
Herbrand models. However, such a representation is irrelevant in what fol-
lows. In particular, neither the intruder nor the agents have access to this
representation.

– There are two non-standard sorts Da, Ha. The terms of these sorts are re-
spectively sk

d(d) and sk
h(h) and are intended to represent compromised and

honest agents respectively. Again, this is for internal representation only. Of
course, this distinction is never used in the protocol description. It is however
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necessary in the protocol property definition: typically, we want to state that
a secret shared by honest agents remains unknown to the intruder, hence we
need a way to express that an agent is honest.

– srv i are intended to be server names.
– ni is a collection of function symbols, which are used to represent nonces

(randomly generated data): ni is intended to take as arguments some agent
ids (who generates the nonce and who are supposed to receive the nonce)
and a session number. i is intended to be the protocol step. Note that we
may also consider a single symbol n with an additionnal argument i. Then
ni( ) is simply a notation for n(i, ).

– st is intended to represent the local state of an agent. Events will consist of
either sending a message or increasing a local memory. Traces are sequences
of pairs of an event and a session number.

– We do not assume any a priori typing of messages (there is no a priori way
to distinguish between a nonce and a pair for instance), though any such
policy could be specified at the protocol description level.

By abuse of notation, we will sometimes write e.g. 2 instead of s(s(0)), < x, y, z >
instead of < x, < y, z >>, or {x, y}z instead of {< x, y >}z.

We will sometimes use unary predicate symbols instead of sort names in order
to explicitly state the sort of a variable. For instance, we may write Agent(x),
expressing that x is of sort Agent (other authors use the notation x : Agent).
Such unary predicate symbols can only be used with variable arguments.

2.2 Protocol Independent Clauses

We sketch here and in the following section how to design a set of Horn clauses
defining valid traces. We also show in [11] that this is a reasonable definition
since other models can be reduced to this one.

We use a binary predicate symbol I to describe the intruder knowledge. I
takes two arguments: a message m and a trace t; I(m, t) means that message m
is known to the intruder after executing t. Some typical clauses defining I are
displayed on figure 1. There are other clauses for e.g. (un)pairing.

Protocol independent clauses will also contain the definition of some auxiliary
predicates, which will be described when needed as well as the clause T (⊥),
which states that the empty trace is a trace. How to continue a trace is protocol-
dependent.

2.3 Protocol Dependent Clauses

We sketch here how to define the set of valid traces T on the Yahalom protocol.
In this section, a, b will stand for variables of sort Agent, x, y, z for variables of
sort Message, s, t and e for variables of sort respectively Num, Trace and Event.
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Agent(x) ⇒ I(x, t) The intruder knows all agents ids.

Da(x) ⇒ I(prv(x), t)
The intruder knows all keys of com-
promised agents.

I(x, t) ⇒ I(pub(x), t) The intruder knows all public keys.

I(x, t), I(y, t) ⇒ I({x}y, t)
The intruder can encrypt a known
message with a known key.

I({x}shr(y), t), I(shr(y), t) ⇒ I(x, t)
The intruder can retrieve the clear text
of a message encrypted with a known
symmetric key.

T ([x, s] · t) ⇒ I(x, [x, s] · t) All messages sent through the network
are available to the intruder.

I(x, t) ⇒ I(x, y · t) The intruder remembers a message
whatever is added to the trace.

Fig. 1. Some of the clauses defining I

A → B : A, Na

B → S : B, {A, Na, Nb}shr(B)

S → A : {B, Kab, Na, Nb}shr(A), {A, Kab}shr(B)

A → B : {A, Kab}shr(B), {Nb}Kab

We first state that, at any point, we may start a new session of the protocol
assigning roles to any of the agents. This is expressed by:

Fresh(t, s), T (t) ⇒ T ( [st(a, 1, < a, b, srv >), s]
·[st(b, 1, < b, srv >), s]
·[st(srv , 1, srv), s] · t)

Fresh is an auxiliary predicate (defined in figure 2), which holds when the number
s is larger than any number occurring in t. Then the trace t can be extended
accordingly.

Now, if a has started session s, and if she has not already sent the first
message of this session, she can do it, hence extending the trace, and moving to
stage 2 for this session:

T (t),
In([st(a, 1, < a, b, srv >), s], t),

NotPlayed(a, 2, s, t)


 ⇒

T ( [< a, n1(a, s) >, s]
·[st(a, 2, < a, b, srv , n1(a, b, s) >), s]
·t)

This uses the auxiliary predicates In and NotPlayed which are intended to be re-
spectively the membership test on traces and a test that this step has not already
been completed for the same session (see figure 2 for complete definitions).
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Definition of Sup: Num(x) ⇒ Sup(s(x), 0)

Sup(x, y) ⇒ Sup(s(x), s(y))

Definition of Fresh: ⇒ Fresh(⊥, s)

Fresh(t, s), Sup(s, s′) ⇒ Fresh([e, s′] · t, s)

Definition of In: Trace([e, s] · t) ⇒ In([e, s], [e, s] · t)

In(x, t) ⇒ In(x, [e, s] · t)

Definition of NotPlayed:

⇒ NotPlayed(a, i, s, ⊥)

NotPlayed(a, i, s, t), Sup(s, s′) ⇒ NotPlayed(a, i, s, [e, s′] · t)

NotPlayed(a, i, s, t), Sup(s′, s) ⇒ NotPlayed(a, i, s, [e, s′] · t)

NotPlayed(a, i, s, t), Sup(i, j) ⇒ NotPlayed(a, i, s, [st(a, j, m), s] · t)

Fig. 2. Definitions of the auxiliary predicates

Finally, let us describe how the last step of the protocol is translated: we
require a to have completed the first step and assume that she receives a message
of the expected form. This message may be forged by the intruder: we do not
include receive events in the trace since messages that are possibly received are
identical to messages that can be forged by the intruder.

T (t),
In([u1, s], t),

NotPlayed(a, 3, s, t),
I(< {b, x, n1(a, b, s), y}shr(a), z >, t)




⇒ T ([< z, {y}x >, s] · [u2, s] · t)

where u1 =st(a,2,<a,b,srv , n1(a,b,s)>) and u2 =st(a,3,<a,b,srv , n1(a,b,s), x>).

2.4 The Model

Now, we assume defined the sets of Horn clauses CI , CD for the protocol inde-
pendent clauses and the protocol dependent clauses. For a protocol P , we let CP

be CI ∪ CD. We assume that CP does not contain negative clauses (i.e. we only
specify what is possible). Then CP has a least Herbrand model HP .
Definition 1. A valid trace for the protocol P is a member of the interpretation
of T in HP .

2.5 Attacks

Let φ be the security property that we want to check. We assume that φ can be
expressed as a clause using the primitives described in previous sections. This is
not a strong restriction since, at least the trace properties can be expressed in
this way (and possibly other properties which relate different traces), as shown
by the following examples.
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Example 1. We can express that u(x, y, s) (or u(x, y) if we want to express the
secrecy of a constant data) is a (long term) secret shared by x and y by:

(∀t, x, y, s).¬T (t) ∨ ¬Ha(x) ∨ ¬Ha(y) ∨ ¬I(u(x, y, s), t)

which means that, in any trace t, if x and y are honest agents, then u(x, y, s) is
unknown to the intruder.

Example 2. We can express that u(x, y, s) is a short term secret. I does not know
u(x, y, s) as long as session s is not completed:

(∀t, x, y, s).¬T (t) ∨ ¬Ha(x) ∨ ¬Ha(y) ∨ ¬I(u(x, y, s), t) ∨ ¬NotPlayed(x, 3, s, t).

If we assume that the last message of the protocol is sent by x then we express
here that, in any trace t, if x and y are honest agents, then u(x, y, s) is unknown
to the intruder unless the session is already completed.

Example 3. We can express an authentication property: if x receives the message
m(x, y, s), then it has been sent previously by y: (∀t, x, y, s)

¬T (t) ∨ ¬Ha(x) ∨ ¬Ha(y) ∨ ¬I(m(x, y, s), t) ∨ In([st(y, m(x, y, s)), s], t).

Definition 2. A protocol P satisfies a property φ iff HP |= φ.

Dually, there is an attack when HP �|= φ. In such a case (by compactness),
there is a finite subset H0 of HP such that H0 �|= φ:

Definition 3. An attack on P for φ is a finite subset H0 of HP such that
H0 �|= φ. H0 is an attack with n agents if there are at most n distinct terms of
sorts Agent in H0.

For instance, if the property φ is a “trace property”, H0 may contain a single
predicate T (t) where t is a finite trace which violates the property.

2.6 Relevance of the Model

The model we present here is actually an extension of the Millen-Rueß model [21,
12] (hereafter referred to as the MR model), expressed in Horn clauses. The MR
model is itself inspired from Paulson’s model [24] and from the strand spaces [28].
Formally, we proved in [11] that for each protocol of the MR model, we can
associate a finite set of Horn clauses CP and a finite set of purely negative
clauses ΦP such that P is insecure if and only if there is an attack on CP for
some φ ∈ ΦP .
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3 Reduction to a Fixed Number of Agents

3.1 From n Agents to 2 Agents

We show that if there is an attack with n agents, then an attack with 2 agents
can be constructed: given an attack using n agents, we project every honest iden-
tity on one single honest identity and every dishonest identity on one dishonest
identity. Then we obtain a valid attack using only two agents. This projection
uses the fact that our model allows an agent to speak to herself, which is the
case of most of the models for cryptographic protocols [21,28,17,5,14,3]. How-
ever, a similar result holds even if an agent is disallowed to speak to herself (see
subsection 3.2). We also consider here purely negative properties, which easily
encompasses secrecy, but does not encompass authentication in a natural way.
We will discuss this in section 3.3.

We emphasize that our result holds for all models of protocols which do not
make use of our internal representation of agents ids. More precisely:

Definition 4. A set of clauses C is admissible if it does not use the symbols
sh, sd. A clause is said purely negative if it only contains negative literals.

The clauses which were proposed in the previous sections are admissible.
Furthermore, any protocol specification can not use our particular representation
of names, hence it is always represented as an admissible set of clauses.

Theorem 1. Let CP be an admissible set of clauses. Let φ be a purely negative
admissible clause. If there is an attack of P for φ, using n agents, then there is
an attack using (at most) two agents.

Proof. We first introduce some notations. Let M be the set of messages, T be the
set of all positive ground literals, and Σg be the set of mappings from variables
to ground terms, which are compatible with the sort constraints.
Given a Horn clause c = B1(x), ..., Bn(x) ⇒ A(x) where B1(x), . . . , Bn(x),
A(x) are positive literals whose free variables are contained in x, and a subset
S of T , we define c(S) as follows:

c(S) def= {A(x)σ | σ ∈ Σg, ∀i, Bi(x)σ ∈ S}.

Then, the immediate consequence relation FC is the mapping from 2T to 2T

defined by:

FC(S) def= S ∪
⋃
c∈C

c(S).

For simplicity, we will write FP for the mapping FCP
.

It is well-known that the set of positive literals H+
P of the least Herbrand

model HP is the least fixed point of FP :

H+
P =

+∞⋃
k=1

F k
P (∅)

For every L ∈ H0 there is a minimal index nL such that L ∈ F nL

P (∅).
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We define now the projection function: we map every honest agent to h and
every dishonest agent to d : for every literal L, let L be the literal L in which
every maximal subterm of sort Ha is replaced with h and every maximal subterm
of sort Da is replaced with d:

f(t1, . . . , tn) def= f(t1, . . . , tn) If f /∈ {sh, sd}
sh(t) def= h

sd(t) def= d

Our proof relies on the following lemma which ensures that if a positive literal
is in HP then its projection is also in HP .

Lemma 1. Let L be a positive literal of HP , then L is in HP .

This is prove by induction on nL. If nL = 0, there is no literal such that nL = 0
thus there is nothing to prove.

Suppose the property true for nl ≤ n and consider a positive literal L of HP

such that nL = n + 1. There exists a clause cL and positive literals L1, . . . , Lk ∈
H+

P such that L ∈ cL({L1, . . . , Lk}) with nLi
≤ n for all 1 ≤ i ≤ k. By induction

hypothesis, L1, . . . , Lk ∈ H+
P . In addition, cL is on the form B1(x), . . . , Bk(x) ⇒

A(x) | C with L = A(x)σ, Li = B1(x)σ for some σ ∈ Σg. Since cL is an
admissible clause, it does not contains the symbols sh and sd thus L = A(x)σ
and Li = B1(x)σ. Hence L ∈ cL({L1, . . . Lk) and L ∈ H+

P .
We are now ready to complete the proof. Assume that H0 is a finite subset

of HP such that H0 �|= φ. Since φ is assumed to be purely negative, we may
assume w.l.o.g. that H0 only contains positive literals.

Let H1 = {L | L ∈ H0}. The set H1 is still finite and, by lemma 1, H1 ⊂ HP .
Let us show that H1 �|= φ. Let φσ an instance of φ falsified by H0. Then φσ is
falsified by H1. Since φ is an admissible clause φσ = φσ, thus H1 �|= φ. �

Actually, this theorem does not hold when φ may contain positive literals.

Example 4. Let CP be: 


Da(x) ⇒ A(x, y)
Da(y) ⇒ A(x, y)

⇒ A(x, x)

and φ be A(x, y). ¬A(h, sh(h)) is an attack and there is no attack with a single
honest agent.

We will consider in section 3.3 an extension of theorem 1 for formulas con-
taining positive literals.

3.2 Disallowing an Agent to Speak with Herself

In the last section we used the ability for an agent to speak with herself, which
was not explicitly ruled out by the specification. There are however examples in
which the existence of an attack relies on this ability:
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Example 5. Consider the following “toy” example where an agent A sends a
secret to an agent B:

A → B : {A, B, Na}pub(B), {secret}{A,A,Na}pub(B)
.

B is able to build the compound key {A, A, Na}pub(B) and gets the secret. One
can show that Na will remain unknown to the intruder, thus {A, A, Na}pub(B) is
unknown to the intruder unless A = B. Thus this protocol is flawed only if an
honest agent sends a secret to herself.

We are now considering explicitly disallowing such self-conversations between
honest agents. Still, a dishonest agent is enabled to speak with himself, which
actually does not bring any new information to the intruder (see remark 1 below).
For, we add a predicate symbol Distinct defined by the set of clauses:

C�=
def=




Distinct(x, y), Ha(x), Ha(y) ⇒ Distinct(sh(x), sh(y))
Ha(x) ⇒ Distinct(h, sh(x))

Ha(x), Da(y) ⇒ Distinct(x, y)
Distinct(x, y) ⇒ Distinct(y, x)
Da(x), Da(y) ⇒ Distinct(x, y)

The least Herbrand model of Distinct consists of pairs (sk
h(h), sm

d (d)),
(sm

d (d), sk
h(h)), (sm

d (d), sk
d(d)) and (si

h(h), sj
h(h)) with i �= j.

We redefine the notion of an admissible clause and we introduce the definition
of protocol clauses:

Definition 5. A clause φ is admissible if

– φ does not contain the symbols sh, sd,
– Distinct occurs only negatively in φ.

We can specify that the sender a is distinct from the (expected) receiver b
with admissible clauses: it suffices to add negative literals Distinct(a, b). Note
however that such a property is not expressible in e.g. the Millen-Rueß model.
The protocol model HP is now the least Herbrand model of C�= ∪ CP . All other
definitions are unchanged.

Remark 1. If we want to specify that an agent is not allowed to speak with
herself, even for dishonest agents, we can introduce a predicate Distinct whose
semantic is exactly the pairs of distinct agents. In this case, an admissible clause
should also verify that Distinct occurs at most once, which is sufficient to express
that an agent is not allowed to speak to herself. In addition, the protocol has
to verify that the correspondence between two compromised agents does not
increase the intruder knowledge, which is the case of all “real” protocols ([7]).
This leads to a specification which can be reduced to the above one.

Our reduction result will now depend on the security property under con-
sideration: if the property φ uses k distinct agents variables then if there is an
attack, there is an attack with (at most) k + 1 agents.
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Theorem 2. Assume CP is an admissible set of clauses, which does not contain
any variable of sort Ha and φ is a purely negative admissible clause. If there is
an attack on P for φ using n agents, then there is an attack on P for φ using at
most k + 1 agents, where k is the number of variables of sort Ha occurring in φ.

Note that disallowing variables of sort Ha in CP is not a real restriction. In-
deed, the specification of the protocol itself (CD) should not distinguish between
honest and dishonest agents, while the specification of the intruder power (CI)
should not give specific knowledge depending on honest agent: either data (de-
pending on agents) are known for all agents (like agent ids) or data are known
only for compromised agents (like private keys).
Proof. We keep the notations of the proof of theorem 1. Again, we consider a
subset H0 of HP which falsifies φ. As before, since φ is purely negative, we may
assume that H0 does not contain any negative literal.

Now, we let θ be an instance of φ which is falsified by H0. If x1, . . . xk are the
variables of sort Ha in φ, we let sm1

h (h), . . . , s
mp

h (h) be the set {x1θ, . . . , xkθ}
with m1 < . . . < mp (p ≤ k). Next, we define the projection function as follows:


f(t1, . . . , tn) def= f(t1, . . . , tn) If f(t1, . . . , tn) is not of sort Ha or Da

smi

h (h) def= si−1
h (h) For i = 1, ..., p

t
def= d Otherwise

Again, we let H1 = {L | L ∈ H0} and we are going to prove that H1 ⊆ HP and
H1 falsifies φθ. This will conclude the proof since H1 will be an attack with p+1
agents: d, h, sh(h), . . . , sp−1

h (h), p ≤ k.
Actually, with the following lemma, the proof that H1 ⊆ HP is very much

the same as in theorem 1:
Lemma 2. If Distinct(u1, u2) ∈ F n

P (∅), then Distinct(u1, u2) ∈ F n
P (∅).

Proof of lemma 2:
We may assume n > 0. Let ti = xiθ. Then there are three possible situations
(let us recall that Distinct only occurs positively in C�=):

– if u1, u2 /∈ {t1, . . . , tk}, then using that the least Herbrand model of
Distinct consists of pairs (sk(h), sm(d)), (sm(d),sk(h)), (sm(d),sk(d)) and
(si(h),sj(h)) with i �= j, we have that Distinct(u1, u2) = Distinct(d, d) ∈
FP (∅);

– if u1 ∈ {t1, . . . ,tk} and u2 /∈ {t1, . . . ,tk} (or the converse), then
Distinct(u1,u2)= Distinct(sj

h(h), d) (or Distinct(d, sj
h(h))), which also belongs

to FP (∅);
– if u1, u2 ∈ {t1, . . . , tk}: u1 = smi

h (h), u2 = s
mj

h (h) with i �= j, then
Distinct(u1, u2) = Distinct(si

h(h), sj
h(h)) ∈ F

|j−i|
P (∅). In this last case, |j−i| ≤

|mj − mi| by construction, hence the result.

End of the proof of lemma 2.
As in theorem 1, we can now prove by induction on nL that for any literal
L ∈ HP , L ∈ HP : Distinct literals are handled by lemma 2. We also need here
that there is no variable of sort Ha in the clauses, in order to ensure the well-
sortedness of σ (since, now, for some terms t : Ha, t is no longer of sort Ha). �
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Note that the bound k + 1 can be reached for some protocols P and some
properties φ.
Example 6. Let k ≥ 2. Consider the following protocol, inspired from the
Needham-Schroeder public key protocol. a1, . . . , ak are variables of sort Agent.
Let u =< a1, . . . , ak >.
Initialization

Fresh(t, s), T (t) ⇒ T ([st(a1, 1, u), s] · [st(a2, 1, a2), s] · · · · · [st(ak, 1, ak), s] · t)

First message: A1 → A2 : {A1, A2, . . . , Ak, NA1}pub(A2), Ai �= Aj , for i �= j.

T (t), Distinct(ai, aj) i �= j
In([st(a1, 1, u), s], t),
NotPlayed(a1, 2, s, t)


 ⇒

T ( [{u, n1(a1, . . . , ak, s)}pub(a2), s]
·[st(a1, 2, < u, n1(a1, . . . , ak, s) >), s]
·t)

Second message: A2 → A1 : {NA1 , NA2}pub(A1)

T (t), Distinct(ai, aj) i �= j
I({u, x}pub(a2), t)

In([st(a2, 1, a2), s], t),
NotPlayed(a2, 2, s, t)




⇒
T ( [{x, n2(a1, . . . , ak, s)}pub(a1), s]

·[st(a2, 2, < u, n2(a1, . . . , ak, s) >), s]
·t)

Third message: A1 → A2 : {NA2}pub(A2)

T (t), I({n1(a1, . . . , ak, s), y}pub(a1), t)
In([st(a1, 2, < u, n >), s], t),

NotPlayed(a2, 3, s, t)


 ⇒

T ( [{y}pub(a1), s]
·[st(a1, 3, < u, n, y >), s]
·t)

where n = n1(a1, . . . , ak, s).
We could also add some other rules to make the roles of a3, . . . , ak less fictitious.
We consider the property:

φ = ¬Ha(x1) ∨ . . . ∨ ¬Ha(xk) ∨ ¬I(n2(x1, . . . , xk, s), t).

Then, following the Lowe attack, there is an attack on φ, using k + 1 agent ids.
Let us sketch why every attack on φ uses at least k+1 agent ids. Assume there is
an attack, then there exist t, s, a1, . . . , ak such that I(n2(a1, . . . , ak, s), t) ∈ HP

where HP is the least Herbrand model and a1, . . . , ak are honest agents. Since
a2 produces n2(a1, . . . , ak, s) only if Distinct(ai, aj) for i �= j holds and since
a1, . . . , ak are honest agents, we have that a1, . . . , ak are distinct. In addition,
if no dishonest identity is used, then the intruder cannot decrypt any message
thus he can not obtain n2(a1, . . . , ak, s). Consequently, at least one compromised
identity has been used, thus at least k+1 identities have been used for the attack.

3.3 Extensions

Theorems 1 and 2 assume that φ is purely negative which is necessary according
to Example 4.
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We have seen in section 2.5 that such a restriction to negative properties
is not a problem for secrecy. On the other hand, authentication is naturally
expressed as

¬T (t) ∨ ¬Ha(x) ∨ ¬Ha(y) ∨ ¬I(m(x, y, s), t) ∨ In([st(x, m(x, y, s)), s], t)

which involves a positive literal. However, it is still possible to handle such
properties. Let us extend the definition of admissible properties to a class which
encompasses authentication and secrecy properties.
Definition 6. A security property φ is admissible if φ is of the form

C ∨ In(u1, t1) ∨ · · · ∨ In(un, tn),

where C is a purely negative clause, the ti’s are variables of sort Trace and the
ui’s are terms with variables of sort Num or Ha. In addition φ must still verify
that:

– it does not contain the symbols sh, sd,
– if a ground subterm of some ui is of sort Agent then it is of sort Ha.

Then we can reduce such a case to the purely negative case and we get:
Theorem 3. Assume that CP is an admissible set of clauses, which does not
contain any variable of sort Ha, φ is an admissible security property, then if
there is an attack on P for φ using n agents, there is an attack on P for φ using
at most k + 1 agents, where k is the number of variables of sort Ha occurring
in φ.

For instance, 3 agents are sufficient if we consider the above-specified authen-
tication property.
Proof sketch:
For every positive literal L = In(ui, ti) occurring in φ, we construct a set of Horn
clauses CL defining a predicate L̃ and such that:

– the least Herbrand model HP,φ of CP ∪ C�= ∪ ⋃
L CL contains HP ;

– for every (well sorted) ground substitution σ, HP �|= Lσ iff HP,φ |= L̃σ;
– the new set of clauses CP ∪ ⋃

L CL is admissible.

We first construct CL using the complementation techniques, which yields a def-
inition of the predicates negations (see e.g. [4,8]). Let xi

1, . . . , xi
n be the variables

of ui. The set of clauses CL is defined by:

⇒ L̃(xi
1, . . . , xi

n, ⊥)

L̃(xi
1, . . . , xi

n, t), Diff(ui, y) ⇒ L̃(xi
1, . . . , xi

n, y · t)

These clauses satisfy the above two first conditions. However, they make use of
a predicate symbol Diff, whose semantics is the set of pairs of distinct terms,
and the definition of Diff is not admissible. Then, we remove clauses defining
Diff which are not admissible, and replace negative literals ¬Diff(x, y) where x, y
are of sort Agent with ¬Distinct(x, y). The resulting clauses satisfy the three
above conditions since the semantics for the new definition of Diff, restricted to
instanciations of pairs (ui, y), is still a set of pairs of distinct terms. �
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4 Conclusions

We have shown that it is possible to restrict the number of agents without loss
of generality: security properties which fail in an unbounded network, also fail
in a small limited network. This does not assume any property of the protocols.

To prove a security property for some protocol P , it is therefore sufficient to
consider finitely many instances of the roles of P , typically 2n where n is the
number of roles in P (or (k+1)n if we don’t allow an agent to be both the sender
and the receiver of a message). These numbers are small since n = 2 for most
protocols (sometimes n = 3). They can be further lowered since sessions only
involving dishonest agents are not relevant.

This reduction result also provides with a decision result if we assume a
passive attacker, i.e. an attacker who may only analyze the messages sent on the
net but who cannot forge and send new messages. Indeed, in the presence of such
an attacker (or eavesdropper), we can also assume that an agent cannot confuse
messages from different sessions: it suffices to label the messages by a session
nonce and the rule number (which is often the case for implemented protocols).
Thus there is no need to consider interleaving of sessions. In addition, given a
set of messages S and a message m, deciding whether the intruder may deduce
m from S is in PTIME (side result of [1]). Since our reduction result ensures that
only a finite number of agents have to be considered, we conclude that secrecy
is decidable in EXP(n) × PTIME where n is the number of roles of the protocol.

Acknowledgments. We would to thank Michael Périn and anonymous referees
for their helpful comments.
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{gorrieri,locatelli}@cs.unibo.it

2 Istituto di Informatica e Telematica C.N.R., Pisa, Italy.
Fabio.Martinelli@iit.cnr.it

Abstract. A real-time process algebra, enhanced with specific constructs for han-
dling cryptographic primitives, is proposed to model cryptographic protocols in
a simple way. We show that some security properties, such as authentication and
secrecy, can be re-formulated in this timed setting. Moreover, we show that they
can be seen as suitable instances of a general information flow-like scheme, called
tGNDC, parametric w.r.t. the observational semantics of interest. We show that,
when considering timed trace semantics, there exists a most powerful hostile en-
vironment (or enemy) that can try to compromise the protocol. Moreover, we hint
some compositionality results.

1 Introduction

In the last years there has been an increasing interest in the formal analysis of crypto-
graphic protocols, as they have become the basic building blocks for many distributed
services, such as home banking or electronic commerce. These analyzes have been
very successful in many cases, uncovering subtle inaccuracies in many specifications
of cryptographic protocols. However, such analyzes are usually restricted to very high
abstractions of the real protocols, where concrete information about the timing of events
are usually omitted (with the relevant exceptions of [2,16]).

Our starting point is the work on CryptoSP A [7,9], which is an extension of SPA
[4] (a CCS-like process algebra with actions belonging to two different levels of confi-
dentiality), with some new constructs for handling cryptographic primitives. On such a
language a general schema for the definition of security properties, called GNDC, has
been proposed [9]. It is based on the idea of checking the system against all the possible
hostile environments. The general schema has the following form:

P satisfies Sα
� iff ∀X ∈ Env : P ||X � α(P )

where the general property Sα
� requires that the system P satisfies (via the behavioral
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environment (or enemy) X . The problem of the universal quantification is overcome
when it is possible to show that there exists the "most powerful" enemy; hence, one
check against the most powerful enemy is as discriminating as an infinity of different
checks against all the possible enemies. This lucky case occurs when the behavioral
pre-order � is a pre-congruence, e.g., for trace semantics.

The main goal of this paper is to show that the real-time information flow theory
developed for tSPA (a real-time extension of SPA reported in [8]), can be extended to
CryptoSPA, yielding timedCryptoSPA (tCryptoSPA for short). The main results
from such an effort are the following:

– A language for describing cryptographic protocols, where information about the
concrete timing of events is necessary, e.g., because of the presence of timeouts or
time-stamps.

– A general scheme, called tGNDC, for describing uniformly the many security
properties in a real-time setting; we will present three instances of such a general
scheme, namely timed authentication, timed integrity and timed secrecy.

– Some specific results for the security properties based on semantics that are pre-
congruences, such as the existence of a (real-time) most general enemy.

Moreover, we will hint some initial compositionality results, i.e., we will show some
conditions under which secure real-time protocols can be safely composed.

The paper is organized as follows: in Section 2 we define the tCryptoSPA syn-
tax, operational and behavioral semantics. In Section 3 we define the general schema
tGNDC, hence the notion of hostile environment (or enemy) and we present some
general results, such as the existence of a real-time most general enemy. In Section 4 we
present some security properties, namely tNDC, timed authentication, timed integrity
and timed secrecy. Section 5 reports some initial results about conditions for safe com-
position of real-time security protocols. Finally in Section 6 we give some concluding
remarks and comparison with related literature.

2 The Model

In this section we present the model we will use for the specification of cryptographic
protocols and security properties. It is a real-time extension of the Cryptographic Security
Process Algebra (CryptoSPA for short) proposed in [9,7], which is in turn an extension
of Security ProcessAlgebra (SPA for short) proposed in [4] where processes are explicitly
given the possibility of manipulating messages. In CryptoSPA it is possible to express
qualitative ordering among events, while quantitative timing aspects cannot be expressed.
Thus, we extend CryptoSPA with operators that permit to express the elapsing of time.

2.1 The Language Syntax

We call the language Timed Cryptographic Security Process Algebra (tCryptoSPA for
short). Its syntax is based on the following elements:

– A set Ch of channels, partitioned into a set I of input channels (ranged over by c)
and a set O of output channels (ranged over by c, the output corresponding to the
input c);
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– A set M of messages;
– A set V ar of variables, raged over by x;
– A set Const of constants, ranged over by A.

The set L of tCryptoSPA terms (or processes) is defined as follows:

P ::= 0| c(x).P | ce.P | τ.P | tick.P | P + P | P ||P | P\L |

A(e1, . . . , en) | [〈e1, . . . , er〉 �rule x]P | ι(P )

where e, e′, e1, . . . , er are messages or variables and L is a set of channels. Both the
operators c(x).P and [〈e1 . . . er〉 �rule x]P bind the variable x in P .

Besides the standard (value-passing) CCS operators [15], we have an additional
prefix action tick, used to model time elapsing, a delay operator ι(P ), used to make lazy
the initial actions of P , and the operator [〈m1 . . . mr〉 �rule x]P introduced in order to
model message handling and cryptography. Informally, process [〈m1 . . . mr〉 �rule x]P
tries to deduce a piece of information z from the tuple of messages 〈m1 . . . mr〉 through
one application of rule �rule; if it succeeds, then it behaves like P [z/x], otherwise it is
stuck. See the next subsection for a more detailed explanation of derivation rules.

The time model we use is known as the fictitious clock approach of, e.g., [17]. A
global clock is supposed to be updated whenever all the processes agree on this, by
globally synchronizing on action tick. All the other actions are assumed to take no time.
This is reasonable if we choose a time unit such that the actual time of an action is
negligible w.r.t. the time unit. Hence, the computation proceeds in lock-steps: between
the two global synchronizations on action tick (that represent the elapsing of one time
unit), all the processes proceed asynchronously by performing durationless actions.

Let Def : Const −→ L be a set of defining equations of the form

A(x1, . . . , xn)
def
= P , where P may contain no free variables except x1, . . . , xn, which

must be distinct. Constants permit us to define recursive processes, but we have to be a
bit careful in using them. A term P is closed w.r.t. Def if all the constants occurring in
P are defined in Def (and, recursively, for their defining terms). A term P is guarded
w.r.t. Def if all the constants occurring in P (and, recursively, for their defining terms)
occur in a prefix context [15].

The set Act = {c(m) | c ∈ I} ∪ {cm | c ∈ O} ∪ {τ} ∪ {tick} of actions (τ is the
internal, invisible action, tick is the special action used to model time elapsing), ranged
over by a (with abuse of notation); we let l range over Act\{tick}. We call P the set of all
the tCryptoSPA closed terms (i.e., with no free variables), that are closed and guarded
w.r.t. Def . We define sort(P ) to be the set of all the channels syntactically occurring
in the term P . Moreover, for the sake of readability, we always omit the termination 0
at the end of process specifications, e.g., we write a in place of a.0.

We give an informal overview of tCryptoSPA operators:

– 0 is a process that does nothing;
– c(x).P represents the process that can get an input m on channel c behaving like P

where all the occurrences of x are replaced by m (written P [m/x]);
– cm.P is the process that can send m on channel c, then behaving like P ;
– τ.P is the process that executes the invisible action τ and then behaves like P ;
– tick.P is a process willing to let one time unit pass and then behaving as P ;
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– P1 + P2 (choice) represents the nondeterministic choice between the two processes
P1 and P2; time passes when both P1 and P2 are able to perform a tick action – and
in such a case by performing tick a configuration where both the derivatives of the
summands can still be chosen is reached – or when only one of the two can perform
tick – and in such a case the other summand is discarded; moreover, τ prefixed
summands have priority over tick prefixed summands.

– P1||P2 (parallel) is the parallel composition of processes that can proceed in an
asynchronous way but they must synchronize on complementary actions to make a
communication, represented by a τ . Both components must agree on performing a
tick action, and this can be done even if a communication is possible;

– P\L is the process that cannot send and receive messages on channels in L, for all
the other channels it behaves exactly like P ;

– A(m1, . . . , mn) behaves like the respective defining term P where all the variables
x1, . . . , xn are replaced by the messages m1, . . . , mn;

– [〈m1, . . . , mr〉 �rule x]P is the process used to model message handling and
cryptography. The process [〈m1, . . . , mr〉 �rule x]P tries to deduce an information
z from the tuple of messages 〈m1, . . . , mr〉 through the application of rule �rule;
if it succeeds then it behaves like P [z/x], otherwise it is stuck. The set of rules that
can be applied is defined through an inference system (e.g., see Figure 1);

– ι(P ) (idling) allows process P to wait indefinitely.At every instant of time, if process
P performs an action l, then the whole system proceeds in this state, while dropping
the idling operator.

2.2 The Operational Semantics of tCryptoSPA

In order to model message handling and cryptography we use a set of inference rules.
Note that tCryptoSPA syntax, its semantics and the results obtained are completely
parametric with respect to the inference system used. We present in Figure 1 the same
inference system of [9]. This inference system can combine two messages obtaining a
pair (rule �pair); it can extract one message from a pair (rules �fst and �snd); it can
encrypt a message m with a key k obtaining {m}k and finally decrypt a message of
the form {m}k only if it has the same key k (rules �enc and �dec). In this framework,
cryptography is completely reliable, i.e., that a crypted message can be deciphered only
by knowing the suitable decryption key.

In a similar way, the inference system can contain rules for handling the basic arith-
metic operations and boolean relations among numbers, so that the value-passing CCS
if-then-else construct can be obtained via the �rule operator.

Example 1. We do not explictly define equality check among messages in the syntax.
However, this can be implemented through the usage of the inference construct. E.g.,

consider rule equal
def
= x x

Equal(x, x) . Then [m = m′]A (with the expected semantics)

may be equivalently expressed as [m m′ �equal y]A where y does not occur in A.
Similarly, we can define inequalities, e.g., ≤, among natural numbers.

We consider a function D, from finite sets of messages to sets of messages, such that
D(φ) is the set of messages that can be deduced from φ by using the inference rules. We
assume that D is decidable.
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m m′

(m, m′)
(�pair)

(m, m′)
m

(�fst)
(m, m′)

m′ (�snd)

m k

{m}k
(�enc)

{m}k k

m
(�dec)

Fig. 1. An example inference system for shared key cryptography.

The operational semantics of a tCryptoSPA term is described by means of the
labelled transition system (lts, for short) 〈P, Act, { a−→}a∈Act〉, where { a−→}a∈Act is
the least relation between tCryptoSPA processes induced by the axioms and inference
rules of Figure 2. Such a relation is well-defined even if negative premises occur in a rule
for the idling operator and in one rule for +, because the relation is strictly stratifiable
[12].
Note that tCryptoSPA is tick-deterministic i.e., the time elapsing never moves a pro-
cess to two different states. The proof of the following proposition can be easily given
by inspecting the operational rules. In particular, the first two rules of the idling operator
and the rules for nondeterministic choice are the key rules enforcing time determinacy.
Proposition 1. For every tCryptoSPA process P we have:

If P
tick−→ P ′ and P

tick−→ P ′′ then P ′ = P ′′.

Example 2. In tCryptoSPA there are processes, such as 0, that do not allow time to
proceed; hence, as rule ||3 for parallel composition forces a global synchronisation on
tick actions, the effect of composing a process P with 0 is to prevent P from letting time
pass. In other words, 0 acts as a time annihilator for its parallel context. On the contrary,
ι(0) is process that, even if functionally terminated, let time to proceed indefinitely.
Hence, ι(0) acts as a neutral element for parallel composition.

Example 3. Consider a process P = ι(a)||ι(a) that can perform any sequence (possibly
empty) of tick actions followed by a τ . It is worth-observing that, contrary to tSPA
[8], we do not assume maximal communication progress, i.e., τ ’s do not have priority
over tick actions or, equivalently, a process cannot idle if it can perform a τ . Hence in
tSPA process P can perform only the sequence τ .

Example 4. We can easily model timeout constructs in tCryptoSPA.
Assume n1 ≤ n2 and define a process

Time out(n1, n2, A, B) = tickn1 .ι(A) + tickn2 .τ.B

By looking at the rules for choice and idling, we see that Time out(n1, n2, A, B) first
performs a sequence of n1 tick actions; then, the system may perform other n2 −n1 tick
actions, unless A resolves the choice by performing an action; instead if A does nothing,
after n2 units of time, through the execution of action τ , the process is forced to act as
B. Note that rule +3 is responsible for preventing the selection of process A at timeout
expiration. This semantics for the + operator is different from the one in tSPA (a tick
action can be performed only if both summands can do so) and is motivated by the need
of a more flexible way of programming the choice between different components.
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(input)
m ∈ M

c(x).P
c(m)−→ P [m/x]

(output)
cm.P

cm−→ P

(internal)
τ.P

τ−→ P
(tick)

tick.P
tick−→ P

(||1)
P1

l−→ P ′
1

P1||P2
l−→ P ′

1||P2

(||2)
P1

c(x)−→ P ′
1 P2

cm−→ P ′
2

P1||P2
τ−→ P ′

1||P ′
2

(||3)
P1

tick−→ P ′
1 P2

tick−→ P ′
2

P1||P2
tick−→ P ′

1||P ′
2

(\L)
P

c(m)−→ P ′ c �∈ L

P \L
c(m)−→ P ′\L

(+1)
P1

l−→ P ′
1

P1 + P2
l−→ P ′

1

(+2)
P1

tick−→ P ′
1 P2

tick−→ P ′
2

P1 + P2
tick−→ P ′

1 + P ′
2

(+3)
P1

tick−→ P ′
1 P2 � tick−→ P2 � τ−→

P1 + P2
tick−→ P ′

1

(Def)
P [m1/x1, . . . , mn/xn] a−→ P ′ A(x1, . . . , xn)

def
= P

A(m1, . . . , mn) a−→ P ′

(D)
〈m1, . . . , mr〉 �rule m P [m/x] a−→ P ′

[〈m1, . . . , mr〉 �rule x]P a−→ P ′

(I1)
P � tick−→

ι(P ) tick−→ ι(P )
(I2)

P
tick−→ P ′

ι(P ) tick−→ ι(P ′)
(I3)

P
l−→ P ′

ι(P ) l−→ P ′

Fig. 2. Structured Operational Semantics for tCryptoSPA (symmetric rules for +1, +3, ||1, ||2 and
\L are omitted)

3 A General Schema for the Definition of Timed Security
Properties

In this section we propose a general schema for the definition of timed security prop-
erties. We call it Timed Generalized NDC (tGNDC for short), since it is a real-time
generalization of Generalized NDC (GNDC for short) [9], which is in turn a general-
ization of Non Deducibility on Compositions (NDC for short) [4]. The main idea is the
following: a system P is tGNDCα

� iff for every hostile environment (or enemy) X the
composition of the system P with X satisfies the timed specification α(P ). Essentially
tGNDCα

� guarantees that the timed property α is satisfied, with respect to the � timed
behavioral relation, even when the system is composed with any possible enemy.

This section is organized as follows. We first define timed trace semantics as the
behavioral semantics of interest. Then, we discuss the issue of hostile environments,
showing that it is necessary to restrict their initial knowledge. Finally, we present the
tGNDC schema and some general results on it, some of which are independent of the
chosen behavioral notion.
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3.1 Behavioural Semantics

Here we define the semantic pre-order and equivalence we will use to formalize secu-
rity properties, timed trace pre-order and equivalence, the timed version of the classic
untimed semantics.
The expression P

a⇒ P ′ is a shorthand for P ( τ−→)∗P1
a−→ P2( τ−→)∗P ′ where ( τ−→)∗

denotes a (possibly empty) sequence of transitions labeled τ . Let γ = a1, . . . , an ∈
(Act\{τ})∗ be a sequence of actions; then P

γ⇒ P ′ iff there exist P1, . . . , Pn−1 ∈ P
such that P

a1⇒ P1
a2⇒, . . . , Pn−1

an⇒ P ′.
Definition 1. For any P ∈ P the set T (P ) of timed traces associated with P is defined
as follows T (P ) = {γ ∈ (Act\{τ})∗ | ∃P ′.P

γ⇒ P ′ }. The timed trace pre-order,
denoted by ≤ttrace, is defined as follows: P ≤ttrace Q iff T (P ) ⊆ T (Q). P and Q are
timed trace equivalent, denoted by P =ttrace Q, if T (P ) = T (Q).

As an example, it is easy to see that T (P (Kab)) = {ε, tick, tick tick, tick tick tick},
where ε denotes the empty sequence.

3.2 Hostile Environments

Here we characterize the notion of admissible hostile environments similarly to what
done in [9] for the untimed setting. Such a characterization is necessary to analyze
protocols where some information is assumed to be secret, as in cryptographic protocols.
A hostile environment, or enemy, is a process which tries to attack a protocol by stealing
and faking information which is transmitted on public channels, say C. Such an agent
is modeled as a generic process X which can communicate only through channels
in C, imposing some constraints on the initial data that are known by the enemy and
requiring that such a protocol is weakly time alive, i.e., the agent may always perform tick
eventually. Otherwise X could prevent time from elapsing when composed in parallel
with some system, since in a compound system time can pass iff all components let it
pass. So the enemy could block the time flow and we want to avoid this unrealistic case.
Let Der(P ) be the set of all derivatives of P , i.e., all the P ′s reachable from P through
a sequence of actions in Act.

Definition 2. A process P is directly weakly time alive iff P
tick=⇒ P ′. P is weakly time

alive iff for all P ′ ∈ Der(P ), we have P ′ is directly weakly time alive.

Now, let ID(P ) be the set of messages that appear in P (see [5] for a formal definition)
and φ ⊆ M be the initial knowledge we would like to give to the enemies, i.e., the public
information such as the names of the entities and the public keys, plus some possible
private data of the enemies (e.g., their private key or nonces). For some enemy X , we
want that all the messages in ID(X) are deducible from φ. We thus define the set tEφI

C
of timed hostile processes as:

tEφ
C = {X ∈ P | sort(X) ⊆ C and ID(X) ⊆ D(φ) and X is weakly time alive}

3.3 The tGNDC Schema

In this section we formally define the tGNDCα
� family of properties. We will use A||CB

as a shortcut for (A||B)\C. The proposed family of security properties is as follows.
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Definition 3. P is tGNDCα
� iff ∀X ∈ tEφI

C : (P ||CX) � α(P ) where � ∈ P × P
is a pre-order, C is a set of channels and α : P �→ P is a function between processes
defining the property specification for P as the process α(P ).
We propose a sufficient criterion for a static characterization (i.e., not involving the uni-
versal quantification ∀) of tGNDCα

� properties. We will say that � is a pre-congruence
w.r.t. ||C if it is a pre-order and for every P, Q, Q′ ∈ P if Q�Q′ then P ||CQ�P ||CQ′.
Thus it is easy to prove the following:
Proposition 2. If � is a pre-congruence w.r.t. ||C and if there exist a process Top ∈ tEφI

C

such that for every process X ∈ tEφI

C we have X � Top, then ∀α:

P ∈ tGNDCα
� iff (P ||CTop) � α(P )

In particular if the hypotheses of the proposition above hold it is sufficient to check
that α(P ) is satisfied when P is composed with the most general hostile environment
Top. This permits to make only one single check, in order to prove that a property holds
whatever attacker we choose. We also have the following corollary for the congruence
induced by �:
Corollary 1. Let � be a pre-congruence w.r.t. ||C and let ≡ = � ∩ �−1. If there
exist two processes Bot, Top ∈ tEφI

C such that for every process X ∈ tEφI

C we have
Bot � X � Top then

P ∈ tGNDCα
≡ iff (P ||CBot) ≡ (P ||CTop) ≡ α(P )

Given these very general results, we show that they are instanciable in the model we
presented so far. Indeed, this is the case, at least for the trace pre-order ≤ttrace, which
is a pre-congruence.
Proposition 3. Timed trace pre-order is a pre-congruence w.r.t. ||C .
Note that in the tSPA model, timed trace pre-order is not a pre-congruence, since
the semantic rules enforce the so called maximal communication progress, i.e., when a
communication is possible it must start immediately, and it is not possible to perform a
tick [8].

Now we single out the minimal element Bot and the maximum element Top in
tEφI

C w.r.t. ≤ttrace. As for Bot it is clear that the minimum set of traces is generated
by the weakly time alive process that does nothing, that is generated by process ι(0).
As a matter of fact, (P ||ι(0)) =ttrace P for timed trace equivalence and most other
equivalences. We thus define the Top element using a family of processes TopC,φ

ttrace

each representing an instance of the enemy with knowledge φ:

TopC,φ
ttrace =

∑
c∈C

ι(c(x).T op
C,φ∪{x}
ttrace ) +

∑
c∈C,m∈D(φ)∩M

ι(cm.TopC,φ
ttrace)

The initial element of the family is TopC,φI

ttrace as φI is the initial knowledge of the enemy.
This may accept any input message to be bound to the variable x which is then added
to the knowledge set that becomes φI ∪ {x}, and may output only messages that can
pass on the channel c and that are deducible from the current knowledge set φ via the
deduction function D. Furthermore it can let time pass. Note that τ summands are not
considered, as inessential for trace pre-order. As done in [9] we prove the following:
Proposition 4. If X ∈ tEφ

C then X ≤ttrace TopC,φ
ttrace.
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4 Some Timed Security Properties

In this section we show how to redefine four timed security properties as suitable in-
stances of the tGNDCα

� schema, by suitably defining function α. As for the behavioral
semantics �, we will always consider the timed trace semantics. The four properties we
consider are:

– The timed version of Non Deducibility on Compositions [4], which has been pro-
posed to study information flow security; we will show that tNDC is the strongest
property in the tGNDCα

�family, under some mild assumptions.
– A timed notion of authentication, called timed agreement (see also [14]), according to

which agreement must be reached within a certain deadline, otherwise authentication
does not hold.

– A timed notion of secrecy, we call timed secrecy, according to which a message is
secret only within a time interval and after the deadline it can become a public piece
of information.

– A timed notion of integrity, called timed integrity, which simply requires a correct
delivery of messages within a certain amount of time.

4.1 Timed Non Deducibility on Compositions

We start with tNDC since tGNDCα
�is a generalization of such a property. Its underlying

idea is that the system behavior must be invariant w.r.t. the composition with every hostile
environment. Indeed, there is no possibility of establishing a communication (i.e. sending
information). In the CryptoSPA untimed setting the NDC 1 idea can thus be defined
as follows:

Definition 4. P ∈ NDC if and only if ∀X ∈ EφI

C , we have (P ||CX) =trace P\C.

where =trace is trace pre-order and the only difference with the definition given in SPA
is that the knowledge of process X is bounded by φI . Now we present timed NDC
(tNDC, for short) ([8]) which is the natural extension of NDC to a timed setting.

Definition 5. P ∈ tNDC if and only if ∀X ∈ tEφI

C we have (P ||CX) =ttrace P\C.

where the difference is that we use the timed hostile environment and timed trace pre-
order. Note that tNDC corresponds to tGNDCP \C

=ttrace
. It is also possible to apply

Corollary 1 obtaining the following static characterization.

Proposition 5. P ∈ tNDC if and only if (P ||CTopC,φI

ttrace) =ttrace P\C.

Now we suggest that tNDC is the most restrictive α(P ) hence inducing the strongest
property for timed trace semantics. The most restrictive α(P ) should return an en-
capsulation of protocol P , i.e., a version of P which is completely isolated from the
environment, corresponding to the execution of P in a perfectly secure network where
only the honest parties are present. In our process algebra setting, this corresponds to
the restriction of all public channels in C along which protocol messages are sent.

Note that for every process P we have (P ||ι(0)) \ C =ttrace P \ C. This means
that P restricted on C is equivalent to the protocol in composition with the enemy that

1 As for tGNDCα
�, also NDC and tNDC are implicitly parametric w.r.t. the set C of public

channels and the set φI of initial knowledge. We usually omit these parameters when clear from
the context.
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does nothing. Note also that, by definition, ι(0) ∈ tEφ
C for every φ. So it is very natural

to consider α functions and processes P such that P \ C ≤ttrace α(P ). This simply
means that the protocol P is correct (as it satisfies its specification α(P )) at least when
it is not under attack. This condition can be somehow seen as a reasonable criterion for
any good protocol: it must be correct at least when it is not under attack! Under this mild
assumption, it is clear that P ∈ tNDC implies P ∈ tGNDCα

≤ttrace
.

Another way to avoid universal quantification over all the admissible enemies is
to show the equivalence between tNDC and Timed Strong Nondeterministic Non-
Interference (tSNNI , for short); such equivalence result holds in the untimed case [4],
but that does not hold for tSPA [8] because of the maximal communication assumption
of that language.

A CryptoSPA process is SNNIφ
C if P\C, where all actions in C are forbidden,

behaves like the system P where all the actions in C are hidden (i.e., transformed into
internal τ actions). To express this second system we need to introduce first the hiding
operator P/φC:

P
a−→ P ′

P/φC
a−→ P ′/φC

(a �∈ C ∪ C)
P

cm−→ P ′ c ∈ C ∪ C

P/φC
τ−→ P ′/φ∪{m}C

P
c(m)−→ P ′ c ∈ C ∪ C m ∈ D(φ)

P/φC
τ−→ P ′/φC

Now we are ready to define the property timed SNNIφ
C as follows.

Definition 6. A process is tSNNIφ
C if P\C =ttrace P/φC.

It is rather intuitive that P/φC can be seen as P ||CTop, where Top is the top element of
the trace pre-order for CryptoSPA. Hence, such a static characterization can be seen
as a corollary of the existence of a top element in the trace pre-order (together with the
fact that trace pre-order is a pre-congruence).

Proposition 6. For every P ∈ P we have that (P ||CTopC,φ
ttrace) =ttrace P/φC.

Proposition 7. P ∈ tNDCφ
C iff P ∈ tSNNIφ

C .

4.2 Timed Agreement

We now present the Timed Agreement Property [14]:

"A protocol guarantees Timed Agreement between a responder B and an initiator
A on a set of data items ds if, whenever B (acting as responder) completes a run
of the protocol, apparently with initiator A, then A has previously been running
the protocol, apparently with B, in the last n ticks (where n is a prefixed
timeout value) and the two agents agreed on the data values corresponding to
all the variables in ds, and each such a run of B corresponds to a unique run of
A."

As done in [9] for the non real-time version of Agreement, what we do is to have for
each party an action representing the running of a protocol and another one representing
the completion of it. We consider an action commit res(B, A, d) representing a correct
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termination of B as a responder, convinced to communicate with A that agrees on data
d. On the other hand we have an action running ini(A, B, d) that represents the fact
that A is running the protocol as initiator, apparently with B, with data d. If we specify
these two actions in the protocol, the Timed Agreement property requires that when B
executes commit res(B, A, d) then A has previously executed running ini(A, B, d)
and at most n tick actions, where n is the prefixed timeout value, occurred between
these actions. We assume that the actions representing the running and the commit are
correctly specified in the protocol. We can see them as output actions over two particular
channels running ini and commit res. We assume that d can assume values in a set D.
Let NotObs(P ) = sort(P )\(C ∪{running ini, commit res}) be the set of channels
in P that are not public and are different from running ini and commit res, i.e., that
will not be observed. Function α

t(n)
tAgree can be thus defined as follows:

P ′(x, y) =
∑

d∈D,i∈0..n ι(running ini(x, y, d).tick1..ticki.commit res(y, x, d).ι(0))
P ′′ =

∑
c∈NotObs(P ) ι(c(x).P ′′) +

∑
c∈NotObs(P ),m∈M ι(cm.P ′′)

α
t(n)
tAgree(P ) = P ′′||P ′(A, B)

Note that P ′′ is essentially the process that executes every possible action over channels
in sort(P ) which are not in C and are different from running ini and commit res, or
let time pass. Given P , α

t(n)
tAgree(P ) represents the most general system which satisfies

the Timed Agreement property and has the same sort of P . In fact in α
t(n)
tAgree(P ) action

running ini(x, y, d) always precedes commit res(y, x, d) for every datum d, and ev-
ery combination of the other actions of P can be executed. Finally the number of tick
actions is at most n. In order to analyze more than one session, it suffices to consider an
extended α which has several processes P ′ in parallel.
We want that even in the presence of a hostile process, P does not execute traces that
are not in α

t(n)
tAgree(P ). So we can give the following definition:

Definition 7. P satisfies Timed Agreement iff P is tGNDC
α

t(n)
tAgree(P )

≤ttrace
, i.e.,

∀ X ∈ tEφI

C : (P ||CX) ≤ttrace α
t(n)
tAgree(P )

4.3 Timed Secrecy

We now present the Timed Secrecy Property:

"A protocol guarantees to an initiator A the property of Timed Secrecy on a set
of data items ds within a time n if, whenever a data item in ds becomes public,
at least n ticks passed since A started the protocol"

As done for Timed Agreement, what we do is to have an action representing the running
of a protocol and another one representing that a secret is revealed. We consider an
action running ini(A, d) that represents the fact that A is running the protocol as
initiator, with data d. On the other hand we have an action public(d) representing that
data item d is made public. If we specify these two actions in the protocol, the Timed
Secrecy property requires that when someone executes public(d) then A has executed
running ini(A, d) and at least n tick actions, where n is the prefixed timeout value,
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occurred between them. We assume that the actions representing the running and the
publication are correctly specified in the protocol. We can see the first as an output action
over a particular channel running ini. The second action, following the approach of
[6] is performed by a particular process called Key Expired Notifier (KEN , for short)
that reads from a public channel c not used in the protocol and performs the output of
what it has read on the channel public, i.e. KEN = c(x).public(x).

Let NotObs(P ) = sort(P )\(C ∪ {c, running ini, public}) be the set of channels
in P that are not public and are different from running ini and public, i.e., that will
not be observed. We assume that d can take values in a set of secret values D. Function
α

t(n)
tSec can be thus defined as follows:

P ′(x) =
∑

d∈D ι(running ini(x, d).tick1 . . . tickn.(ι(public(d).ι(0)) + ι(τ.ι(0))))
P ′′ =

∑
c∈NotObs(P ) ι(c(x).P ′′) +

∑
c∈NotObs(P ),m∈M ι(cm.P ′′)

α
t(n)
tSec(P ) = P ′′||P ′(A)

Given P , α
t(n)
tSec(P ) represents the most general system which satisfies the Timed Secrecy

property and has the same sort of P . In fact in α
t(n)
tSec(P ) action public(d) is always exe-

cuted at least n ticks after running ini(x, d) for every datum d, and every combination
of the other actions of P can be executed. In order to analyze more than one session, it
suffices to consider an extended α which has several processes P ′ in parallel.
We want that, even in the presence of a hostile process, P does not execute traces that
are not in α

t(n)
tSec(P ). So we can give the following definition:

Definition 8. P satisfies Timed Secrecy iff P is tGNDC
α

t(n)
tSec(P )

≤ttrace
, i.e.,

∀ X ∈ tEφI

C : (P ||CX) ≤ttrace α
t(n)
tSec(P )

4.4 Timed Integrity

We now present the Timed Integrity Property:

"A protocol guarantees to the user B the property of Timed Integrity on a set of
data items ds within a time n if B only accepts data items in ds and this may
only happen in at most n ticks since the beginning of the protocol"

For instance, imagine that you would like to receive your favorite newspaper each day
before noon. This may be expressed as an integrity property rather than an authenticity
one, since you are not actually interested in the sender but simply on the data (the
newspaper). Consider a channel out used for expressing the reception of a message and
let NotObs(P ) = sort(P )\(C ∪ {out}) be the set of channels in P that are not public
and d ranging over a set of data D. Then, Timed Integrity may be formally specified as
follows:

P ′(y, n) = ||d∈Dtick1. . . . .tickn.τ.ι(0) + ι(out(y, d).ι(0))
P ′′ =

∑
c∈NotObs(P ) ι(c(x).P ′′) +

∑
c∈NotObs(P ),m∈M ι(cm.P ′′)

α
t(n)
tInt(P ) = P ′′||P ′(B, n)
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5 Compositionality Results

In this section we illustrate some compositional proof rules for establishing that a system
enjoys a tGNDC property, in particular tSNNIφ

C . However, remember that, as it is
equivalent to tNDC, this property implies all the other ones based on trace semantics,
that are the most frequently used in security analysis.

Within the SPA theory, SNNI is compositional, i.e. if P, Q ∈ SNNI then
(P ||Q) ∈ SNNI . Unfortunately, the same does not hold when considering enemies
with limited knowledge, as for tSNNIφ

C . For instance, consider the processes:

P = c1m1.c2(x)[x = m2].c3m2 Q = c1m2.c2(x)[x = m1].c3m1

Now, assuming C = {c1, c2} and φ = ∅, we have that P, Q ∈ tSNNIφ
C . However,

P ||Q /∈ tSNNIφ. As a matter of fact, (P ||Q)\C is equivalent to 0, while (P ||Q)/φC
may perform both c3m1 and c3m2.

However, if we strengthen the assumptions we can get a compositional rule for
establishing that a process belongs to tSNNIφ

C . The stability assumption we make is
that the process cannot increment its knowledge.

Definition 9. We say that a process P is stable w.r.t. φ, whenever if P/φC =⇒ P ′/φ′
C

then D(φ) = D(φ′).

Thus, the following proposition holds.

Proposition 8. Assume that P, Q ∈ tSNNIφ
C and that P, Q are stable w.r.t. φ. Then

(P ||Q) ∈ tSNNIφ
C and P ||Q is stable w.r.t. φ.

We have another compositionality principle for the tGNDCα
≤ttrace

schema, again
under the assumption that the involved processes are stable.

Proposition 9. Given the set of initial knowledge φ and the set of public channels C,
assume Pi ∈ tGNDC

αi(Pi)
≤ttrace

, with i = 1, 2, and P1, P2 are stable w.r.t. φ. It follows

that (P1||P2) ∈ tGNDC
α1(P1)||α2(P2)
≤ttrace

and P1||P2 is stable w.r.t. φ.

One may wonder if the stability condition is too restrictive. As a matter of fact (see
[11]), the above compositional proof principles can be successfully applied for checking
integrity in stream signature protocols, as the ones in [10,3].

6 Conclusions

We have shown how to extend the GNDC schema to a real time setting while preserving
the properties of the untimed schema. In particular, we have shown the existence of a
"most powerful" timed enemy, at least for the timed trace semantics. We have also shown
how to express uniformly in this general schema some timed security properties, such
as timed Non Deducibility on Compositions, (one definition of) timed authentication,
timed secrecy and also timed integrity. We have also introduced a compositional proof
principle that allows us to compose safely two real-time security protocols, preserving
the security properties they enjoy.

Related literature on real-time security include the prominent papers [16,2]. The
former paper presents tock-CSP – a real-time language similar to tSPA – that is used
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to specify real-time crytpographic protocols. The main differences consists of a differ-
ent treatment of timed operators, in the absence of a mechanism for handling crypto-
primitives, in the lack of a uniform schema, and in the absence of compositionality
results. The latter paper [2] is mainly concerned with the model checking of the interest-
ing case study of TESLA, a protocol for stream broadcasting over the internet. The main
focus is on showing that it is possible to give a finite model for the unbounded supply
of fresh cryptographic keys used during the protocol. The so-called security condition
of the protocol is similar to timed agreement.

Compositional proof techniques for reasoning about cryptographic protocols in an
untimed setting may be found in [1,13]. In [1], a compositional proof system for an
environment-sensitive bisimulation has been developed. One main difference from ours,
is that we consider a weak notion of observation where the internal actions are not visible.
This permits us to have more abstract specifications. (As a matter of fact, the authors
of [1] leave as future work the treatment of such a form of weak equivalence.) In [13],
the authors develop the concept of disjoint encryption and, under this hypothesis, are
able to perform compositional reasoning both for secrecy and authentication properties.
While on the one hand, their approach seems to deal better with authentication properties
than ours, on the other one it seems that there are situations where stability holds while
disjoint encryption does not. (A deeper comparison deserves more time and space and
is left as future work.)

Future work will be also devoted to study other security properties in a timed setting,
such as non repudiation, for which apparently there is the need for using semantics more
discriminating than timed trace semantics.

Acknowledgments. We would like to thank the anonymous referees for their helpful
comments for the preparation of the final version of this paper.
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Abstract. We present the SBSNNI rule format. We prove that any
Process Algebra construct whose SOS-style semantics is defined by SOS
transition rules respecting such a format, preserves the well known non
interference properties Persistent BNDC, SBSNNI, and SBNDC.

1 Introduction

One of the problems in computer security is the necessity to guarantee that only
legitimate users can access some kind of information. To face this problem, one
should take into account that malicious users could attempt to access information
not only directly, but also indirectly through so called covert channels.

In multilevel systems [4], users are bound to several levels of security, and
it must be guaranteed that users at any level cannot interfere with users at
lower levels and cause different status of the system in which they operate to be
perceived. This means that information flow from high levels to lower levels must
be prevented. A drastic solution to this kind of problems is to avoid at all these
possible interferences. A lot of non interference definitions have been proposed
in the literature since [11], for several formal models of interaction between users.
In most of these papers, for simplicity multilevel systems are represented by two
level systems: Users are bound either to a high level of security, or to a low level
of security. In [6,7,8,16,3,15] some of the non interference definitions given in the
literature have been translated into the context of Process Algebras.

The most successful non interference definition in [6,7,8] is called
Bisimulation-based Non Deducibility on Compositions (BNDC, for short). In-
tuitively, a system enforces BNDC if, by interacting with any possible high level
user, the system always appears the same to low level users. Among the other
non interference definitions in [6,7,8], we mention Strong Bisimulation Strong
Non-deterministic Non Interference (SBSNNI, for short), which is stronger than
BNDC, and Strong BNDC (SBNDC, for short), which, in turn, is stronger than
SBSNNI. The mentioned properties are studied for systems specified by using
the language of Security Process Algebra (SPA, for short), which is an extension
of CCS [13] tailored to deal with two level systems. BNDC has been a successful
non interference definition for systems lying in static contexts. In [9] it has been
� Research partially supported by Progetto Cofinanziato “Metodi Formali per la Si-

curezza e il Tempo” (Mefisto)
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shown that BNDC is too weak for systems running into a dynamic environment
that can be reconfigured at run-time, or, equivalently, for systems that can mi-
grate on the web during their computation. For this reason, the more restrictive
non interference definition of Persistent BNDC (P BNDC, for short) has been
introduced. Intuitively, a system enforces P BNDC if every state that can be
reached by the system during its computation enforces BNDC. This means that
even if the environment changes during the execution of the system, the security
of the system is not compromised. P BNDC is equivalent to SBSNNI, meaning
that any system enforces P BNDC if and only if it enforces SBSNNI (see [9]).

All the mentioned non interference properties are not, in general, composi-
tional, meaning that there are constructs of SPA that do not preserve them. This
is a critical issue, since one is not guaranteed that by putting a secure system
into a SPA context, the obtained system is, in turn, secure. Another consequence
of non compositionality is that the non interference properties cannot be checked
compositionally with respect to the syntactic structure of systems [8,12].

In the present paper we argue that the non compositionality of the non in-
terference properties depends on general semantic properties of SPA constructs.
This implies that other Process Algebras having constructs with the same seman-
tic properties suffer of the same problem. This is a typical situation in Process
Algebras: A big amount of results depend on general semantic properties of the
language constructs and do not depend on the particular language that is consid-
ered. An interesting challenge is to develop a meta theory for Process Algebras
to study which semantic properties the constructs must have to preserve non
interference properties. To this purpose, we recall that since the pioneering work
[17], the concept of rule format has played a major rôle to develop meta theo-
ries for Process Algebras endowed with a Structural Operational Semantics [14]
(SOS, for short). A rule format consists of a set of restrictions on the syntax
of the SOS transition rules admitted. In particular, several rule formats have
been proposed for ensuring that a given behavioral preorder (resp. equivalence)
notion over processes is a precongruence (resp. congruence) (see [2] for a sur-
vey). Now, in the present paper we present the SBSNNI rule format, and we
prove that any Process Algebra construct preserves both SBSNNI (and, there-
fore, P BNDC) and SBNDC, provided that the operational semantics of such a
construct is given by SOS transition rules respecting the SBSNNI format.

In Section 2 we recall SPA and the various non interference properties. In
Section 3 we define our rule format. In Section 4 we prove that all constraints on
SOS transition rules are needed. In Section 5 we prove that the format is correct
for SBSNNI and SBNDC. Finally, in Section 6 we draw some conclusions.

2 Security Process Algebra

The Security Process Algebra (SPA) [6] models systems where the set Act of
the actions that can be performed by each (sub)system is partitioned into a set
of visible input actions, ranged over by a, a1, . . ., a set of visible output actions,
ranged over by a, a1, . . ., and the invisible action τ , which models an internal
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computation step that cannot be observed outside the system. A complementa-
tion function ( ) : Act → Act is defined over actions such that a = a, for each
a ∈ Act \ {τ}, and τ = τ . The intuition is that actions a and a performed by
two processes running in parallel can synchronize, thus producing action τ .

To reflect two different levels of security, the set of (input and output) visible
actions is partitioned into the set H of high actions, ranged over by h, h1, . . .,
h, h1, . . ., and the set L of low actions, ranged over by l, l1, . . ., l, l1, . . .. Both sets
H and L are closed under complementation.

The abstract syntax of SPA is given by the grammar below:
E ::= 0 | µ · E | E1 + E2 | E1|E2 | E \ A | E[f ]

where E, E1, . . . are SPA process variables, µ is an action in Act, A is a set
of actions in Act \ {τ} closed w.r.t. complementation, and f : Act → Act is a
relabeling function over actions such that f(τ) = τ .

Process 0 does nothing. Process µ · E performs action µ and then behaves
as E. Process E1 + E2 can choose nondeterministically to behave like either E1
or E2. Process E1|E2 is the parallel composition of E1 and E2, which interleave
and can synchronize on complementary actions, thus producing action τ . Process
E \ A behaves as E, but it cannot perform actions in A. Finally, process E[f ]
behaves as the process E where all actions are relabeled by function f . The SOS
style semantics of SPA is given by the SOS transition rules in Table 1.

Table 1. The SOS transition rules for SPA

µ · E
µ−→ E

E1
µ−→ E′

1

E1 + E2
µ−→ E′

1

E2
µ−→ E′

2

E1 + E2
µ−→ E′

2

E1
µ−→ E′

1

E1|E2
µ−→ E′

1|E2

E2
µ−→ E′

2

E1|E2
µ−→ E1|E′

2

E1
µ−→ E′

1 E2
µ−→ E′

2

E1|E2
τ−→ E′

1|E′
2

µ �= τ

E
µ−→ E′

E \ A
µ−→ E′ \ A

µ �∈ A E
µ−→ E′

E[f ]
f(µ)−→ E′[f ]

As in [8], for any set of actions A ⊆ Act, we denote with E/A the process

E[f ] such that f(µ) ≡
{

τ if µ ∈ A
µ otherwise.

Moreover, we denote with E the set of all processes.

Let us recall the notion of weak bisimulation [13] over SPA processes. We
need before some more notation.

Let E
µ̂

=⇒ E′ be either a shorthand for E( τ−→)∗E1
µ−→ E2( τ−→)∗E′, if

µ ∈ Act \ {τ}, or a shorthand for E( τ−→)∗E′, if µ = τ . (As usual ( τ−→)∗ denotes
a possibly empty sequence of τ transitions.)

Let E =⇒ E′ denote that E′ is reachable from E, i.e. either E
τ̂=⇒ E′, or

there is a sequence µ1 . . . µn ∈ Act∗ such that E
µ̂1=⇒ . . .

µ̂n=⇒ E′.
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Definition 1. A relation R ⊆ E × E is a weak bisimulation if (E, F ) ∈ R
implies, for all µ ∈ Act,

– whenever E
µ−→ E′ for some process E′, then there is a process F ′ such that

F
µ̂

=⇒ F ′ and (E′, F ′) ∈ R

– whenever F
µ−→ F ′ for some process F ′, then there is a process E′ such that

E
µ̂

=⇒ E′ and (E′, F ′) ∈ R.

Two SPA processes E, F are weakly bisimilar, written E ≈ F , iff there is a weak
bisimulation containing the pair (E, F ).

Let us recall the notion of BNDC [6,7,8]. Let EH denote the set of all SPA
processes in E having only actions in H ∪ {τ}.
Definition 2. A process E enforces the property of Bisimulation-based Non
Deducibility on Compositions, written E is BNDC, iff

for each process F ∈ EH , it holds that (E|F ) \ H ≈ E/H

As explained in [6,7,8], E/H is what a low level observer can see of E, i.e. the part
of E with which such an observer can synchronize. So, E is BNDC if, for each
high level process F , a low level observer cannot distinguish E from (E|F ) \ H,
i.e. what the low level observer can see of E is not modified by composing any
high level process F in parallel with E and by forcing synchronization on high
actions between E and F .

In [9] it is shown that BNDC guarantees non interference only in static con-
texts. To guarantee non interference in completely dynamic hostile environments,
the property of Persistent BNDC has been defined.
Definition 3. A process E enforces the property of Persistent BNDC, written
E is P BNDC, iff

for each process E′ ∈ E , E =⇒ E′ implies that E′ is BNDC

P BNDC requires that each state that is reachable from E is BNDC.
We recall also the property SBSNNI [6,7,8], which is equivalent to P BNDC

and does not require universal quantification over high level processes.
Definition 4. A process E enforces the property of Strong Bisimulation Strong
Non-deterministic Non Interference, written E is SBSNNI, iff

for each process E′ ∈ E , E =⇒ E′ implies that E′ \ H ≈ E′/H

Finally, we recall the property SBNDC [6,7,8].
Definition 5. A process E enforces the property of Strong BNDC, written E
is SBNDC, iff

for processes E′, E′′ ∈ E , E =⇒ E′ h−→ E′′ implies that E′ \ H ≈ E′′ \ H

SBNDC requires that before and after each high action, the system appears to
be the same, for a low level perspective.

The following results on non interference properties were proved in [6,9].
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Proposition 1. If a process is SBNDC then it is SBSNNI. A process is SBSNNI
if and only if it is P BNDC. If a process is SBSNNI then it is BNDC.

Both SBSNNI and SBNDC are preserved by operators “|” and “\” (see [6]).
Unfortunately, they are not preserved by operator “+”, as it is shown below.
Example 1. Let E ≡ h1·l1·0+l1·0 and F ≡ h2·l2·0+l2·0. Both processes E and F
are SBSNNI and SBNDC. Intuitively, in both processes, the high action guards
a low action that can be performed also without performing the high action.
The process E + F is neither SBSNNI nor SBNDC. Intuitively, by performing
the high action h1, E + F reaches a state in which it has no choice and it can
perform only action l1. Analogously, by performing the high action h2, E + F
reaches a state in which it has no choice and it can perform only action l2. Now,
without performing any high action, E + F is in a state in which it can choose
between performing l1 or l2. So, such a state cannot be simulated by the two
states reached by performing h1 or h2. Formally, the process E′ reachable from
E that violates conditions of Def. 4 is E itself. The processes E′ and E′′ that
violate conditions of Def. 5 are E and the process reachable through h1 (or that
reachable through h2), respectively.

3 The Format SBSNNI

In this section we present the format SBSNNI.
Let us return to Example 1. The reason for which process E + F is neither

SBSNNI nor SBNDC is that the high action h1 of E forces E + F to discard F
(and, symmetrically, the high action h2 of F forces E + F to discard E).

We note that a quite similar reason implies another well know problem of
operator +, i.e. that it does not preserve weak bisimulation (see [13]). In fact,
notwithstanding τ · a · 0 ≈ a · 0, it holds that τ · a · 0 + b · 0 �≈ a · 0 + b · 0. Here
the problem is that action τ of τ · a · 0 + b · 0 forces τ · a · 0 + b · 0 to discard b · 0.
To preserve weak bisimulation, operator + must be patient, meaning that, given
any process E + F , the performance of some action τ by E (resp. F ) should not
imply discarding F (resp. E). To this purpose, as it has been observed in [5,18,
10], SOS transition rules of Table 1 for operator + must require that µ is not
action τ , and, moreover, patient rules for operator + must be added as below:

E
τ−→ E′

E + F
τ−→ E′ + F

F
τ−→ F ′

E + F
τ−→ E + F ′

In order to preserve SBSNNI and SBNDC, operator + must have rules for high
actions similar to the patient rules above.

Before introducing our format, we recall that, in general, the abstract syntax
of a process algebra is given by a signature Σ, i.e. a set of function symbols
with their arities. The algebra of (open) terms freely constructed over a set
of variables Var (ranged over by E, F, . . .) by applying function symbols in Σ
is ranged over by t, s, r. Terms that do not contain variables are called closed
terms, or processes, and are ranged over by p, q. A SOS transition rule (with
only positive premises and without predicates) ρ has the form H

α , where:
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– H is a collection of premises of the form t
µ−→ t′

– α is a conclusion of the form s
µ1−→ s′, where term s is called the source of

ρ, term s′ is called the target of ρ, and µ1 is called the action of ρ.

Definition 6. A Process Algebra having operator “·” of CCS and defined by
SOS transition rules is SBSNNI if:

1. For each high action h ∈ H, the following transition rule is admitted:

h · E
h−→ E

2. Transition rules ρ of the following form are admitted:

{Ei
li−→ Fi | i ∈ I(ρ)}

f(E1, . . . , En)
µ−→ t

, where:

– I(ρ) ⊆ {1, . . . , n}
– li ∈ L for each i ∈ I(ρ), and µ ∈ L ∪ {τ}
– E1, F1, . . . , En, Fn are the only variables occurring in ρ, and no variable

Ei with i ∈ I(ρ) occurs in the target t
– no subterm h · s appears in t, for any h ∈ H.

3. Transition rules ρ of the following form are admitted:

{Ei
hi−→ Fi | i ∈ I(ρ)}

f(E1, . . . , En)
µ−→ f(F ′

1, . . . , F ′
n)

, where:

– I(ρ) ⊆ {1, . . . , n} and I(ρ) �= ∅
– hi ∈ H for each i ∈ I(ρ), and µ ∈ H ∪ {τ}
– for each i ∈ {1, . . . , n}, F ′

i ≡
{

Fi if i ∈ I(ρ)
Ei otherwise.

4. For all transition rules ρ, and all i ∈ I(ρ), there is a patient transition rule

Ei
τ−→ Fi

f(E1, . . . , En) τ−→ f(E1, . . . , Ei−1, Fi, Ei+1, . . . , En)

and, moreover, for each action h ∈ H, there is a H-patient transition rule

Ei
h−→ Fi

f(E1, . . . , En) h−→ f(E1, . . . , Ei−1, Fi, Ei+1, . . . , En)

5. No further transition rule is admitted.

Notice that, on one hand, clause 1 above implies that high prefixing cannot
preserve SBSNNI and SBNDC. On the other hand, clause 1 is reasonable and is
needed to let processes perform high actions. So, we require that all operators
except “·” preserve SBSNNI and SBNDC.
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SPA becomes SBSNNI if we modify Table 1 as follows:

– in the transition rules for operator “+” we require that µ �∈ H ∪ {τ}, and
we add the patience and H-patience transition rules for “+”

– in the transition rule for E[f ] we require that f(h) ∈ H ∪ {τ}, for each
h ∈ H, and that f(l) ∈ L ∪ {τ}, for each l ∈ L, and we add the H-patience
transition rules for E[f ]

– in the transition rule for “\” we require that A ⊆ L
– no modification for transition rules for operators “·” and “|” is needed.

Let SPA′ be SPA with these modifications. One could ask whether Def. 2 is well
defined for SPA′, since it considers process (E|F )\H and the operator \ of SPA′

admits process G \ A only if A ⊆ L. We have two (independent) explanations
that this is not a contradiction. The first explanation is that the classic \ used
in Def. 2 is defined outside the format, and Def. 2 is valid also for languages
in which the classic \ is not defined. The idea is that, also for these languages,
Def. 2 simply says that E is BNDC iff “what a low lever observer sees of E
is not modified by composing any high level process F in parallel with E and
by forcing synchronization on high actions between E and F ”, even if forcing
synchronization on high actions is not admitted inside E. Here, classic \ is simply
a tool that is used to discover whether there is some information flow in systems
(that are specified without such a tool). The second explanation is that we could
consider SPA′ with the classic operator \ and require that all operators except
\ and, obviously, · preserve non interference properties.

In the following, let us denote with ⊕ the operator + with patience and
H-patience transition rules, and with + the classic operator defined in Table 1.

We conclude by observing that the formats in the literature that are closer to
our format are simply WB format [5] and de Simone format [17]. Our format is
more restrictive than simply WB format since simply WB does not distinguish
between high and low actions and, therefore, it does not impose H-patience rules.
As de Simone format, our format admits neither premises of the form E � µ−→
(negative premises), nor variables appearing both in the left hand side of a
premise and in the right hand side of another premise (look ahead), nor variables
appearing in the left hand side of two premises (double testing), nor variables
appearing both in the left hand side of a premise and in the target. Moreover,
on one side, our format imposes H-patient rules, which are not considered by de
Simone format, since it does not distinguish between high and low actions. On
the other side, de Simone format does not admit variables to appear more than
once in the target of transition rules, which is allowed by our format.

4 Necessity of Restrictions

In this section we show that all constraints of the SBSNNI format are needed.
The necessity for having H-patience transition rules follows by Example 1.

First of all we show that SBSNNI format cannot admit transition rules where
either high actions appear in premises and the action of the rule is low, or low
actions appear in premises and the action of the rule is high.
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Example 2. Let p ≡ l1 · l2 · 0. Process p is trivially SBSNNI and SBNDC. Let f
be the function whose semantics is described by the following transition rules

E
l1−→ E′

f(E) h−→ f(E′)

E
l2−→ E′

f(E) l2−→ f(E′)

and by the patience and H-patience transition rules. Process f(p) is isomorphic
to h · l2 · 0 and is neither SBSNNI nor SBNDC, since action h guards action l2.

Let p ≡ h1 ·0 and q ≡ h2 ·0. Processes p and q are SBSNNI and SBNDC. Let
f be the function whose semantics is described by the following transition rule

E
h1−→ E′ F

h2−→ F ′

f(E, F ) l−→ f(E′, F ′)

and by the patience and H-patience transition rules. Process f(p, q) is isomorphic
to h1 · h2 · 0 + h2 · h1 · 0 + l · 0, and it is neither SBSNNI nor SBNDC. In fact
both actions h1 and h2 guard subprocesses that cannot perform the low action
l, which can be performed in the initial state.

We show now that negative premises cannot be admitted in SBSNNI format.

Example 3. Let p ≡ h · l1 · τ · l2 · 0 ⊕ l1 · l2 · 0. Process p is isomorphic to
h · (l1 · τ · l2 · 0 + l1 · l2 · 0) + l1 · l2 · 0. It can be proved that p is SBSNNI and
SBNDC. Intuitively, the reason is that the subprocess l1 · τ · l2 · 0 + l1 · l2 · 0 that
is guarded by h is weakly bisimilar to the subprocess l1 · l2 ·0 that is not guarded
by h. Let f, g be the functions whose semantics is described by the rules

E
l1−→ E′

f(E) l1−→ g(E′)

E
l2−→ E′

g(E) l2−→ E′
E � l2−→

g(E) l3−→ 0

and by the patience and H-patience transition rules. Process f(p) is neither
SBSNNI nor SBNDC. In fact, f(p) can perform l3 only in the branch guarded
by h. So, process E′ violating conditions of Def. 4 is f(p), and processes E′and
E′′ violating conditions of Def. 5 are f(p) and that reachable from f(p) through
h. Note that the subprocess l1 · τ · l2 · 0 + l1 · l2 · 0 in p that is guarded by h is
weakly bisimilar to the subprocess l1 · l2 ·0 that is not guarded by h since ≈ does
not distinguish l1 · τ · l2 · 0 and l1 · l2 · 0. On the contrary, f(l1 · τ · l2 · 0 + l1 · l2 · 0)
and f(l1 · l2 · 0) are not weakly bisimilar. In fact, the former process can perform
l1 and reach g(τ · l2 · 0), whereas if the latter process performs l1, it can reach
only g(l2 ·0). So, τ · l2 ·0 cannot perform l2, and, therefore, g(τ · l2 ·0) can perform
l3, whereas l2 · 0 can perform l2, and, therefore, g(l2 · 0) cannot perform l3.

We show now that double testing cannot be admitted in SBSNNI format.

Example 4. Let q ≡ ((l1 ·l3 ·0⊕l2 ·l4 ·0) | (l1 ·0⊕l2 ·0))\{l1, l2, l1, l2} . Process q is
isomorphic to τ · l3 ·0+τ · l4 ·0. Let p ≡ ((h ·(l3 ·0⊕ l4 ·0)⊕ l ·q) | l)\{l, l}. Process
p is isomorphic to h · (l3 ·0+ l4 ·0+τ · (τ · l3 ·0+τ · l4 ·0))+τ · (τ · l3 ·0+τ · l4 ·0). It
can be proved that p is SBSNNI and SBNDC. The reason is that the subprocess
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l3 · 0 + l4 · 0 + τ · (τ · l3 · 0 + τ · l4 · 0) that is guarded by h is weakly bisimilar
to the subprocess τ · (τ · l3 · 0 + τ · l4 · 0) that is not guarded by h. Let f be the
function whose semantics is described by the following transition rule

E
l3−→ E′ E

l4−→ E′′

f(E) l5−→ 0

and by patience and H-patience rules. Process f(p) is neither SBSNNI nor SB-
NDC, since it can perform l5 only in the branch guarded by h. As seen above,
the subprocess l3 · 0 + l4 · 0 + τ · (τ · l3 · 0 + τ · l4 · 0) in p guarded by h is weakly
bisimilar to the subprocess τ · (τ · l3 · 0 + τ · l4 · 0) that is not guarded by h. On
the contrary, f(l3 · 0 + l4 · 0 + τ · (τ · l3 · 0 + τ · l4 · 0)) and f(τ · (τ · l3 · 0 + τ · l4 · 0))
are not weakly bisimilar. In fact, since l3 · 0 + l4 · 0 + τ · (τ · l3 · 0 + τ · l4 · 0) can
perform both l3 and l4, the former process performs l5, whereas no subprocess
reachable by τ · (τ · l3 · 0 + τ · l4 · 0) can perform both l3 and l4 and, therefore,
the latter process cannot perform l5.

We show now that look ahead cannot be admitted in SBSNNI format.

Example 5. Let p ≡ h · l1 · l2 · 0 ⊕ l1 · τ · l2 · 0. Process p is isomorphic to
h · (l1 · l2 · 0 + l1 · τ · l2 · 0) + l1 · τ · l2 · 0 and is SBSNNI and SBNDC. Intuitively,
the reason is that the subprocess l1 · l2 · 0 + l1 · τ · l2 · 0 guarded by h is weakly
bisimilar to the subprocess l1 · τ · l2 · 0 not guarded by h. Let f be the function
whose semantics is described by the following transition rule

E
l1−→ E′ E′ l2−→ E′′

f(E) l3−→ 0

E
l−→ E′

f(E) l−→ E′
for any l ∈ L

and by patience and H-patience rules. The process f(p) is neither SBSNNI nor
SBNDC. In fact, f(p) can perform l3 only in the branch guarded by h. Note that
the subprocess l1 · l2 ·0+ l1 ·τ · l2 ·0 in p that is guarded by h is weakly bisimilar to
the subprocess l1 · τ · l2 · 0 that is not guarded by h since ≈ does not distinguish
between l1 · l2 · 0 and l1 · τ · l2 · 0. On the contrary, f(l1 · l2 · 0 + l1 · τ · l2 · 0) and
f(l1 · τ · l2 · 0) are not weakly bisimilar. In fact, since l1 · l2 · 0 can perform action
l1 followed by l2, the former process can perform l3, whereas actions l1 and l2 in
l1 · τ · l2 · 0 are separated by τ and, therefore, f(l1 · τ · l2 · 0) cannot perform l3.

Finally, we show that in SBSNNI format variables appearing in left hand side
of premises cannot appear in the target of the transition rule.

Example 6. Let p be the SBSNNI and SBNDC process of Example 4. Let f be
the function whose semantics is described by the following transition rule

E
l−→ E′

f(E) l−→ f(E)
for any l ∈ L

and by patience and H-patience rules. The process f(p) is neither SBSNNI nor
SBNDC, since it can perform infinite sequences of actions l3 and l4 only in
the branch guarded by h. As we have seen in Ex. 4, the subprocess l3 · 0 +
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l4 · 0 + τ · (τ · l3 · 0 + τ · l4 · 0) in p guarded by h is weakly bisimilar to the
subprocess τ · (τ · l3 · 0 + τ · l4 · 0) that is not guarded by h. On the contrary,
f(l3 ·0+ l4 ·0+ τ · (τ · l3 ·0+ τ · l4 ·0)) and f(τ · (τ · l3 ·0+ τ · l4 ·0)) are not weakly
bisimilar. In fact, since l3 · 0 + l4 · 0 + τ · (τ · l3 · 0 + τ · l4 · 0) can perform l3 and l4,
the former process can perform l3 and l4 and can remain in the same state, i.e.
it can perform an infinite sequence with both l3 and l4, whereas no subprocess
reachable by τ · (τ · l3 · 0 + τ · l4 · 0) can perform both l3 and l4 and, therefore,
the latter process cannot perform an infinite sequence with both l3 and l4.

5 The Soundness of SBSNNI Format

In this section we prove that SBSNNI operators except high prefixing preserve
SBSNNI and SBNDC. Since at first glance it could seem that SBSNNI and SB-
NDC coincide under the assumption of patience and H-patience rules, we show
that this is not the case, thus requiring a proof for each of the two properties.
Example 7. For process p ≡ h · l · 0 and the function f such that

E
µ−→ E′

f(E)
µ−→ f(E′)

for any µ ∈ Act
E

h−→ E′

f(E) τ−→ f(E′)

E
h−→ E′

f(E) l−→ f(E′)
,

f(p) is isomorphic to τ · l · 0 + l · l · 0 + h · l · 0 and it is SBSNNI but not SBNDC.
As usual, a context C(t1, . . . , tn) is a term where terms t1, . . . , tn can appear.

For context C(E1, . . . , En) and terms s1, . . . , sn, C[s1, . . . , sn \E1, . . . , En] is the
term obtained by replacing in C(E1, . . . , En) each variable Ei with si.

The second sentence of the theorem below implies that SBSNNI is preserved
by operators defined by SBSNNI format.
Theorem 1. Let R be the set of pairs

(C[r1, . . . , rk \ E1, . . . , Ek] \ H, C[r′
1, . . . , r′

k \ E1, . . . , Ek]/H)

where C(E1, . . . , Ek) is a context that does not contain any term h·s with h ∈ H,
and, for each 1 ≤ i ≤ k, ri, r′

i are SBSNNI and ri \ H ≈ r′
i/H. It holds that:

– The set R is a weak bisimulation.
– Terms C[r1, . . . , rk \ E1, . . . , Ek] and C[r′

1, . . . , r′
k \ E1, . . . , Ek] are SBSNNI.

Proof. For readability, in this proof we write E
A=⇒ E′, with A ⊆ Act, to denote

that there is a sequence E
µ̂1=⇒ . . .

µ̂n=⇒ E′ with µ1, . . . , µn ∈ A.
We prove by induction over the syntactic structure of context C(E1, . . . , Ek)

the first sentence of the thesis. The second sentence follows from the first one.
In fact, each process r̂ reachable from C[r1, . . . , rk \ E1, . . . , Ek] has the form
C ′[r̂1, . . . , r̂k \E1, . . . , Ek], for some context C ′(E1, . . . , Ek) that does not contain
any subterm h · q with h ∈ H and for some terms r̂1, . . . , r̂k that are reachable
from r1, . . . , rk, respectively (this fact can be immediately proved by induction
over the number of transitions needed to reach r̂). Now, since r̂i is reachable from
ri and since ri is SBSNNI, it holds that also r̂i is SBSNNI, and, therefore, r̂i\H ≈
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r̂i/H. So, we can consider the first sentence of the thesis and we can instantiate,
for each 1 ≤ i ≤ k, ri and r′

i with the same SBSNNI term r̂i, thus obtaining that
r̂\H ≡ C ′[r̂1, . . . , r̂k \E1, . . . , Ek]\H ≈ C ′[r̂1, . . . , r̂k \E1, . . . , Ek]/H ≡ r̂/H. So,
since each term r̂ reachable from C[r1, . . . , rk \E1, . . . , Ek] satisfies r̂ \H ≈ r̂/H,
it holds that C[r1, . . . , rk \ E1, . . . , Ek] is SBSNNI. Analogously, we can prove
that C[r′

1, . . . , r′
k \ E1, . . . , Ek] is SBSNNI.

So, let us prove by induction the first sentence of the thesis.
The base case C(E1, . . . , En) ≡ c for a constant c is immediate, since clauses

of SBSNNI format imply that each process reachable from c is a constant and
that constants cannot perform high actions, thus ensuring that c \ H ≈ c/H.

Also the base case C(E1, . . . , Ek) ≡ Ei is immediate, since Ei[r1, . . . , rk \
E1, . . . , Ek] ≡ ri, Ei[r′

1, . . . , r′
k \ E1, . . . , Ek] ≡ r′

i, and ri \ H ≈ r′
i/H by the

hypothesis.
As regards the inductive step, we assume the thesis for C1(E1, . . . , Ek), . . .,

Cn(E1, . . . , Ek), and we prove it for f(C1(E1, . . . , Ek),. . .,Cn(E1, . . . , Ek)). To
this purpose, for each 1 ≤ i ≤ n, let us denote with ti the term Ci[r1, . . . , rk \
E1, . . . , Ek], and with si the term Ci[r′

1, . . . , r′
k \E1, . . . , Ek]. We must prove that

f(t1, . . . , tn) \ H ≈ f(s1, . . . , sn)/H follows from ti \ H ≈ si/H, for 1 ≤ i ≤ n.
It suffices to prove the following properties:

1. f(t1, . . . , tn) \ H
µ−→ t implies f(s1, . . . , sn)/H

µ̂−→ s, for some term s such
that (t, s) ∈ R

2. f(s1, . . . , sn)/H
µ−→ s implies f(t1, . . . , tn) \ H

µ̂
=⇒ t, for some term t such

that (t, s) ∈ R.

We should prove both properties, since the proofs are not perfectly symmetric,
but for lack of space we prove only the first.

Let us assume that f(t1, . . . , tn)\H
µ−→ t. We have one of the following three

cases:

1. Transition f(t1, . . . , tn)\H
µ−→ t is inferred by means of the following proof:

{ti
li−→ t′

i | i ∈ I(ρ)}
f(t1, . . . , tn)

µ−→ G(t̂1, . . . , t̂n)

f(t1, . . . , tn) \ H
µ−→ G(t̂1, . . . , t̂n) \ H

where li ∈ L for each i ∈ I(ρ), µ ∈ L ∪ {τ}, t ≡ G(t̂1, . . . , t̂n) \ H and

t̂i ≡
{

t′
i if i ∈ I(ρ)

ti otherwise.
For each index i ∈ I(ρ), ti

li−→ t′
i with li ∈ L implies

ti \ H
li−→ t′

i \ H, which, in turn, implies that there is a term s′
i such that

si/H
l̂i=⇒ s′

i/H and t′
i \ H ≈ s′

i/H. Therefore, there are terms s′′
i and s′′′

i

such that si
H∪{τ}
=⇒ s′′

i
li−→ s′′′

i

H∪{τ}
=⇒ s′

i. Now, by patience and H-patience
rules we obtain that
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{si
H∪{τ}
=⇒ s′′

i | i ∈ I(ρ)}
f(s1, . . . , sn)

H∪{τ}
=⇒ f(ŝ′′

1 , . . . , ŝ′′
n)

f(s1, . . . , sn)/H
τ̂=⇒ f(ŝ′′

1 , . . . , ŝ′′
n)/H

where ŝ′′
i ≡

{
s′′

i if i ∈ I(ρ)
si otherwise.

Now, it holds that

{s′′
i

li−→ s′′′
i | i ∈ I(ρ)}

f(ŝ′′
1 , . . . , ŝ′′

n)
µ−→ G(ŝ′′′

1 , . . . , ŝ′′′
n )

f(ŝ′′
1 , . . . , ŝ′′

n)/H
µ−→ G(ŝ′′′

1 , . . . , ŝ′′′
n )/H

where ŝ′′′
i ≡

{
s′′′

i if i ∈ I(ρ)
si otherwise.

Finally, by patience and H-patience rules we

obtain
{s′′′

i

H∪{τ}
=⇒ s′

i | i ∈ I(ρ)}
G(ŝ′′′

1 , . . . , ŝ′′′
n )

H∪{τ}
=⇒ G(ŝ′

1, . . . , ŝ′
n)

G(ŝ′′′
1 , . . . , ŝ′′′

n )/H
τ̂=⇒ G(ŝ′

1, . . . , ŝ′
n)/H

where ŝ′
i ≡

{
s′

i if i ∈ I(ρ)
si otherwise.

Summarizing, it holds that f(s1, . . . , sn)/H
µ̂

=⇒
G(ŝ′

1, . . . , ŝ′
n)/H. The term G(ŝ′

1, . . . , ŝ′
n)/H is the term s we were looking

for. In fact, (G(t̂1, . . . , t̂n) \ H, G(ŝ′
1, . . . , ŝ′

n)/H) is a pair in R, since, for
each 1 ≤ i ≤ n, t̂i and ŝ′

i are reachable from ti and si, respectively, and are
SBSNNI, and since, for each i ∈ I(ρ), it holds that t̂i \ H ≡ t′

i \ H ≈ s′
i/H ≡

ŝ′
i/H, and, for each i �∈ I(ρ), it holds that t̂i \ H ≡ ti \ H ≈ si/H ≡ ŝ′

i/H.
2. Transition f(t1, . . . , tn)\H

µ−→ t is inferred by means of the following proof:

{ti
hi−→ t′

i | i ∈ I(ρ)}
f(t1, . . . , tn) τ−→ f(t̂1, . . . , t̂n)

f(t1, . . . , tn) \ H
τ−→ f(t̂1, . . . , t̂n) \ H

where hi ∈ H for each i ∈ I(ρ), µ = τ , t ≡ f(t̂1, . . . , t̂n) \ H, and t̂i ≡{
t′
i if i ∈ I(ρ)

ti otherwise.
For each i ∈ I(ρ), ti

hi−→ t′
i with hi ∈ H implies ti/H

τ−→

t′
i/H. Since ti is SBSNNI, this last fact implies that ti \ H

τ̂=⇒ t′′
i \ H for

some term t′′
i such that t′′

i \ H ≈ t′
i/H. It follows that there is a term s′

i

such that si/H
τ̂=⇒ s′

i/H and t′′
i \ H ≈ s′

i/H. Now, si/H
τ̂=⇒ s′

i/H is due to

a sequence of transitions si
H∪{τ}
=⇒ s′

i. By patience and H-patience rules we
obtain that

{si
H∪{τ}
=⇒ s′

i | i ∈ I(ρ)}
f(s1, . . . , sn)

H∪{τ}
=⇒ f(ŝ1, . . . , ŝn)

f(s1, . . . , sn)/H
τ̂=⇒ f(ŝ1, . . . , ŝn)/H
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where ŝi ≡
{

s′
i if i ∈ I(ρ)

si otherwise.
Term f(ŝ1, . . . , ŝn)/H is the term s we were

looking for. In fact, (f(t̂1, . . . , t̂n) \ H, f(ŝ1, . . . , ŝn)/H) is a pair in R, since,
for each 1 ≤ i ≤ n, t̂i and ŝi are reachable from ti and si, respectively,
and are SBSNNI, and since, for each i ∈ I(ρ), it holds that t̂i \ H ≡ t′

i \
H ≈ (since t′

i is reachable from t′
i and is SBSNNI) t′

i/H ≈ t′′
i \H ≈ s′

i/H ≡
ŝi/H, and, for each i �∈ I(ρ), it holds that t̂i \ H ≡ ti \ H ≈ si/H ≡ ŝi/H.

3. Transition f(t1, . . . , tn)\H
µ−→ t is inferred by means of the following proof:

ti
τ−→ t′

i

f(t1, . . . , tn) τ−→ f(t1, . . . , ti−1, t′
i, ti+1, . . . , tn)

f(t1, . . . , tn) \ H
τ−→ f(t1, . . . , ti−1, t′

i, ti+1, . . . , tn) \ H

where µ = τ and t ≡ f(t1, . . . , ti−1, t′
i, ti+1, . . . , tn) \ H. Since ti

τ−→ t′
i,

it holds that ti \ H
τ−→ t′

i \ H, which implies that there is some term s′
i

such that si/H
τ̂=⇒ s′

i/H and t′
i \ H ≈ s′

i/H. The sequence of transitions

si/H
τ̂=⇒ s′

i/H is inferred by a sequence si
H∪{τ}
=⇒ s′

i. By patience and H-
patience rules we obtain

si
H∪{τ}
=⇒ s′

i

f(s1, . . . , sn)
H∪{τ}
=⇒ f(s1, . . . , si−1, s′

i, si+1, . . . , sn)

f(s1, . . . , sn)/H
τ̂=⇒ f(s1, . . . , si−1, s′

i, si+1, . . . , sn)/H

The term f(s1, . . . , si−1, s′
i, si+1, . . . , sn)/H is the term s we were looking

for. In fact, the pair (f(t1, . . . , ti−1, t′
i, ti+1, . . . , tn) \ H, f(s1, . . . , si−1, s′

i,
si+1, . . . , sn)/H) is in R, since t′

i \ H ≈ s′
i/H, t′

i and s′
i are reachable from

ti and si, respectively, and are SBSNNI, and, for each j �= i, tj \ H ≈ sj/H.
�


The second sentence of the theorem below implies that SBNDC is preserved
by operators defined by SBSNNI format.
Theorem 2. Let R be the set of pairs

(C[r1, . . . , rk \ E1, . . . , Ek] \ H, C[r′
1, . . . , r′

k \ E1, . . . , Ek] \ H)

where C(E1, . . . , Ek) is a context that does not contain any term h·s with h ∈ H,
and, for each 1 ≤ i ≤ k, ri, r′

i are SBNDC and ri \ H ≈ r′
i \ H. It holds that:

– The set R is a weak bisimulation.
– Terms C[r1, . . . , rk \ E1, . . . , Ek], and C[r′

1, . . . , r′
k \ E1, . . . , Ek] are SBNDC.

6 Conclusions

We have presented the SBSNNI format. It guarantees that all operators, except
high prefixing, preserve SBSNNI and SBNDC [6,7,8], which are successful non



142 S. Tini

interference properties for systems running into dynamic environments (systems
migrating on the network). Compositionality of non interference properties is
useful since by composing secure (according to the property chosen) processes,
one obtains secure processes. Moreover, compositionality can be exploited also
to check non interference inductively with respect to the structure of the system.

We have compared our format with those in the literature. We have shown
by some examples that all the restrictions imposed by the format are needed.

Our next aim is to extend our results by proposing formats for other non
interference properties. We shall consider BNDC [6,7,8], which is a successful
property for systems running into static environments, and the properties defined
in [3,15,16]. Finally, we aim to understand what addition to our format is needed
to have compositionality also w.r.t. high prefixing. Our starting point is that it
seems natural to think that if E is secure, then h · E + τ · E is also secure, i.e.
that high prefixing could be admitted provided that a duplicate of its derivative
can be reached also through a silent action.
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Abstract. We consider the problem of implementing a security protocol in such
a manner that secrecy of sensitive data is not jeopardized. Implementation is as-
sumed to take place in the context of an API that provides standard cryptography
and communication services. Given a dependency specification, stating how API
methods can produce and consume secret information, we propose an information
flow property based on the idea of invariance under perturbation, relating observ-
able changes in output to corresponding changes in input. Besides the information
flow condition itself, the main contributions of the paper are results relating the ad-
missibility property to a direct flow property in the special case of programs which
branch on secrets only in cases permitted by the dependency rules. These results
are used to derive an unwinding-like theorem, reducing a behavioral correctness
check (strong bisimulation) to an invariant.

1 Introduction

We consider the problem of securely implementing a security protocol given an API
providing standard services for cryptography, communication, key- and buffer manage-
ment. In particular we are interested in the problem of confidentiality, that is, to show that
a given protocol implementation which uses standard features for encryption, random
number generation, input-output etc. does not leak confidential information provided to
it, either because of malicious intent, or because of bugs.

Both problems are real. Malicious implementations (Trojans) can leak intercepted
information using anything from simple direct transmission to, e.g., subliminal channels,
power, or timing channels. Bugs can arise because of field values that are wrongly
constructed, mistaken representations, nonces that are reused or generated in predictable
ways, or misused random number generators, to give just a few examples.

Our work starts from the assumption that the protocol and the API is known. The
task, then, is to ensure that confidential data is used at the correct times and in the correct
way by API methods. The constraints must necessarily be quite rigid and detailed. For
instance, a non-constant time API method which is made freely available to be applied to
data containing secrets can immediately be used in conjunction with otherwise legitimate
output to create a timing leak.

� This material is based upon work partially supported by the European Office ofAerospace Rese-
arch and Development, Air Force Office of Scientific Research, Air Force Research Laboratory,
under Contract No. F61775-01-C0006, and by the European IST project VerifiCard.
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Our approach is to formulate a set of rules, which determine the required dependen-
cies between those API method calls that produce and/or consume secrets. An example
of such a dependency rule might be

send(v, outchan) ← k := key(Bob) ∧ m := receive(inchan) ∧ v := enc(m, k)

indicating that, if upon its last invocation of the receive method with argument inchan
the protocol received m (and analogously for key, Bob, and k), then the next invoca-
tion of send with second parameter outchan must, as its first parameter, receive the
encryption of m with key k.

A dependency specification determines an information flow property. The rules de-
termine a required dependency relation between API calls. Assurance, then, must be
given that no other flows involving secrets exist. Our approach to this is based on the
notion of admissibility, introduced first in [4]. The idea is to extract from the depen-
dency specification a set of system perturbation functions g which will allow a system s
processing a secret v to act as if it is actually processing another value of that secret, v′.
Then, confidentiality is tantamount to showing that system behaviour is invariant under
perturbation, i.e. that

s[g] ∼ s,

where [g] is the system perturbation operator. One problem is that, provided this is
licensed by the dependency rules, secrets actually become visible at the external interface.
For this reason, the perturbation operator [g] must be able to identify the appropriate cases
where this applies, so that internal changes in the choice of secret can be undone.

The paper has two main contributions. First, we show how the idea can be realized
in the context of a simple sequential imperative language, IMP0. Secondly we establish
results which provide efficient (thought not yet fully automated) verification techniques,
and give credence to the claim that admissibility is a good formalisation of confidentiality
in this context. In particular, we show that, for the special case of programs which branch
on secrets only in cases permitted by the dependency rules, admissibility can be reduced
to a direct flow property (an invariant) which we call flow compatibility. Vice versa,
we show that under some additional assumptions, flow compatibility can be reduced to
admissibility.

This work clearly has strong links to previous work in the area of information flow
theory and language-based security (cf. [8]). The idea of invariance under perturbation
and logical relations underpins most work on secrecy and information flow theory, though
not always very explicitly (cf. [3,5,11,9]). The main point, in contrast e.g. to work by
Volpano [10] is that we make no attempt to address information flow of a cryptographic
program in absolute terms, but are satisfied with controlling the use of cryptographic
primitives according to some external protocol specification. This is obviously a much
weaker analysis, but at the same time it reflects well, we believe, the situation faced by
the practical protocol implementor.

The rest of the paper is structured as follows. In Section 2, we present IMP0 and
introduce the main example used in the paper, a rudimentary credit card payment proto-
col. In Section 3 we introduce an annotated semantics, used in Section 4 to formalize the
dependency rules. The notion of flow compatibility is presented in Section 5 to describe
the direct information flow required by a protocol specification. In Section 6 the main
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Table 1. IMP0: Syntax

Basic values (BVal) b ::= n | a | true | (b1, . . . , bn)

Values (Val) v ::= b | xcpt

Functions (Fun) f ::= pf | h

Expressions (Expr) e ::= v | x | (e1, . . . , en) | f e

Commands (Com) c ::= skip | throw | x := e | c0; c1 | if e then c0 else c1 |
while e do c end | try c0 catch c1

information flow condition, admissibility, is introduced. In Section 7 we state and prove
the unwinding theorem, while in Section 8 we further investigate the relation between
flow compatibility and admissibility. Finally Section 9 concludes with discussion and
related work.

2 A Sequential Imperative Language

In this section we introduce IMP0, the language we use for protocol implementation.
The intention is to formalise the basic functionality of simple protocol implementations
in as uncontroversial a manner as possible.

Table 1 defines the syntax of IMP0, with variables x ∈ Var, including the anonymous
variable , primitive function and procedure calls, and primitive data types including
natural numbers (n ∈ Nat) and channels (a ∈ Chan). The set of primitive function
symbols, ranged over by pf , includes the standard arithmetic and logical operators. Each
primitive function is assumed to execute in constant time, regardless of its arguments.
There are also non-primitive (or API) functions, ranged over by h, for encryption (enc),
decryption (dec), extracting a key from a keystore (key), and receiving resp. sending a
value on a channel (receive and send). To each (primitive or non-primitive) function
symbol f is associated a binary relation f ⊆ Val × Val⊥ so that ∀v ∈ Val. ∃v′ ∈
Val⊥. f(v, v′) (i.e. functions may be non-deterministic, and may not terminate), and
f(xcpt, v) iff v = xcpt (i.e. function invocations propagate exceptions from arguments
to results). Moreover, primitive functions are assumed not to have local side effects.
Communication effects are brought out using transition labels in the next section.

As a running example we use a greatly simplified version of the 1-Key-Protocol
(1KP), a protocol for electronic payments [2]. This example is chosen because it is
paradigmatic for many simple e-commerce applets which input a collection of data,
some sensitive, some not, performs some cryptographic operations on the data, and then
transmits the result on a public channel. In the full version of the paper [6] we use a
simple declassifier as a second example.

2.1 A Simple Payment Protocol

The protocol involves three players: A Customer, a Merchant and an Acquirer (ACQ).
The Customer possesses a credit card account (ACC) with which it places an order to the
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Prog 1 :

while true do

ACQ := receive acq; ORDER := receive order; ACC := receive acc;

try

PKA := key ACQ;

:= send((ACQ, ORDER, enc((ORDER, ACC), PKA)), lookup(merchant))

catch

:= send(“error report”, local)

end
Fig. 1. Payment protocol – sample Customer implementation

Merchant. The Acquirer is a front-end to the existing credit card clearing/authorization
network, that receives payments records from merchants and responds by either accept-
ing or rejecting the request. The Customer is required to encrypt the order and account
information with the Acquirer’s public key before sending them to the Merchant.

Figure 1 shows what a simple implementation of the Customer’s side of the payment
protocol might look like in IMP0. In general, an implementation needs to deal with a
lot more issues than what are explicitly addressed at the protocol specification level.
These include: Initialisation and use of cryptographic services, where and how data is
stored and addressed, communication services, and error handling. Further, in some
applications the protocol implementation may well be bundled with the user interface,
in which case a further set of issues arise.

It may be instructive to also show some of the means available to implementations
wishing to violate confidentiality. For instance, a hostile implementation might embed
account information in the ordering field by replacing line 5 of Figure 1 by

:= send(((ACQ, embed(ORDER, ACC), enc(. . .)), . . .), . . .) ,

or it might try to replace good nonces or keys by bad ones, for instance by replacing the
same line as before by

:= send(((. . . , enc((ORDER, ACC), PKMERCHANT)), . . .), . . .) .

There are many other simple ways of building covert channels, such as timing channels,
for instance by introducing data-dependent delays, either explicitly, or by exploiting
timing properties of library functions.

3 Annotated Semantics

The first challenge is to identify the direct flows and computations on critical data (typi-
cally: secrets, keys, nonces, or time stamps). Once this is accomplished, other techniques
based on non-interference are brought to bear to handle the indirect flows. The direct
flows are tracked using annotations. In particular, we need to identify:
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Table 2. Annotated semantics, expressions

σ � x
τ−→ σ(x)

σ � ε
α−→ ε′

σ � (. . . , ε, . . .)
α−→ (. . . , ε′, . . .)

[[w]] = xcpt

σ � (. . . , w, . . .)
τ−→ w

σ � ε
α−→ ε′

σ � f ε
α−→ f ε′

pf([[w]], v)

σ � pf w
τ−→ v : pf w

h([[w]], v)

σ � h w
v := h w−−−−−−→ v : h w

1. The operations that cause critical values to enter the system (such as execution of
receive a for some given value of a).

2. The operations that are applied to secrets, once they have been input.

To account for this we provide IMP0 with an annotated semantics. Annotations are
intended to reveal how a value has been computed, from its point of entry into the
system. For instance, the annotated value

347 : enc(717 : receive a, 101 : key 533)

is intended to indicate that the value 347 was computed by applying the primitive function
enc to the pair (717, 101) for which the left hand component was computed by evaluating
receive a, and so on.

Annotated expressions and values are obtained by changing the definition of expres-
sions (resp. values) in Table 1:

Annotated basic values (aBVal) β ::= b | (β1, . . . , βn) | b : ϕ

Annotated values (aVal) w ::= β | xcpt | xcpt : ϕ

Annotated expressions (aExp) ε ::= w | x | (ε1, . . . , εn) | fε

Annotations (Ann) ϕ ::= fw

Annotations are erased using the operation [[w]] which removes annotations in the obvious
way.

Table 2 defines the small-step semantics for expression evaluation. The transition
relation has the shape

σ � ε
α−→ ε′ ,

where α is an action of the form τ (internal computation step) or v := fw (f is applied
to the annotated value w resulting in the value v), and σ is an annotated store, a partial

function σ ∈ aStore ∆= [Var → aBVal].
Annotations give only static information in the style “the value v′ was computed

by evaluating key v : receive acq”, but not information concerning which actual
invocations of the key and receive functions were involved. However, this information
is vital to the subsequent information flow analysis, and so we introduce a notion of
context to record the last value returned by some given annotated function call (i.e.
annotation).
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Definition 1 (Context). A context is a partial function s : [Ann → Val].

So, if s is a context then s ϕ is the last value returned by the annotated function call ϕ.
Contexts form part of program configurations in the annotated semantics:

Definition 2 (Annotated Configuration).
An annotated configuration is a triple 〈c, σ, s〉 where c is a command, σ ∈ aStore and
s ∈ Context.

The annotated command-level semantics, which derives transitions of the shape

〈c, σ, s〉 α−→ 〈c′, σ′, s′〉, is standard in its treatment of commands and stores. Con-
cerning contexts, if α is the action v := ϕ, then s′ is defined as s[v/ϕ]. Details are given
in the full version of the paper [6].

4 Dependency Rules

Our approach to confidentiality is to ensure that the direct flows of information follow the
protocol specification, and then use information flow analysis to protect against indirect
flows. In this section we introduce dependency rules to formalize the permitted, direct
flows.

Definition 3 (Dependency Specification). A dependency specification is a pair P =
〈S, A〉 where S ⊆ Ann is a set of annotations, and A is a finite set of clauses of the
form

f e ← x1 := f1 e1 ∧ . . . xn := fn en ∧ ψ (1)

where none of the expressions e, e1, . . . , en mention functions or exceptions, ψ is a
boolean expression, and variables in ei do not belong to {xi, . . . , xn}.

The intention is that S represents a set of secret entry points (such as: receive acc), and
that the rules in A represent the required data flow through the program.

A clause in the policy declares a function invocation f e to be admissible if the
conditions to the right of the arrow are satisfied. Conjuncts of the form xi := fi ei

are satisfied if variable xi matches the last input from annotation fi ei. The boolean
expression ψ represents an extra condition that relates the values returned by the different
function invocations. More precisely, let a context s be given. A valid substitution for
clause (1) is an annotated store σ such that

1. σ(xi) = s(fi (eiσ)): fi (eiσ) for all i : 1 ≤ i ≤ n ,
2. for x 
= xi (∀i: 1 ≤ i ≤ n), σ(x) has not annotation in S,
3. eval(ψσ) = true .

That is, boolean conditions are true, and the value bound to xi is the last value returned by
the annotated function call fi (eiσ). By eσ we mean the annotated expression (aExpr)
that results from substituting σ(x) for every variable x in e. Notice that the restrictions
on ei in Def. 3 guarantee that eiσ is an annotated value. The function eval just evaluates
the annotated boolean expression ψσ in the expected way.

We can now determine whether a particular function invocation is admitted by the
dependency specification.
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Definition 4 (Admissible Invocation). Let α be an annotated action of the form v :=
f w. A dependency specification P = 〈S, A〉 admits annotated action α in context s iff
either

1. no annotation in w belongs to S (that is, the output does not depend directly on any
secret annotation), or

2. there is a clause f e ← x1 := f1 e1 ∧ . . . ∧ xn := fn en ∧ b in A and a valid
substitution σ for this clause such that eσ = w.

If one of these conditions holds we write P, s � α ok.

Observe that the concept of admissible action covers both those actions whose exe-
cution is required by the protocol specification, as well as those that do not (explicitly)
involve any sensitive data. In particular, internal τ transitions are always admissible (i.e.
P, s � τ ok).

Example 1 (Dependency Specification for 1KP Clients).
In the simplified version of the 1KP protocol, the only piece of local information that
the Customer should protect is her account number. Therefore, S = {receive acc}.
Neither the key (which is public), the acquirer’s name, nor the order need to be protected.
The set A contains the clauses:

enc((y, z), k) ← x := receive acq ∧ z := receive acc ∧ k := key x

send(u, s) ← u := enc((y, z), k)

The first clause expresses when an invocation of the encryption function is admis-
sible. In this example, encryption is used just once in each protocol run, but in general
this might not be so. Moreover, since invocation of the encryption function, as any other
function with a non-constant execution time, could be used to create a timing leak, the
dependency specification does need to say under which circumstances it may be invoked,
apart from its usage in the main input-output flow.

Notice how the variables y and s are not bound to the right of the clauses, reflecting
the fact that we do not put any requirement on the format of the order and neither
its destination (since it is intended for transmission in the clear anyway), beyond the
restriction that it should not be used to encode secret information.

Let now P = 〈S, A〉.

– Let α1 = b1 := receive acq. Then P, s � α1 ok for any s since no annotation in
acq belongs to S.

– Let α4 = b4 := enc((b, b2 : receive acc), b3 : key (b1 : receive acq)). Consider
a context s where s(receive acq) = b1, s(receive acc) = b2 and s(key b1 :
receive acq) = b3. Then P, s � α4 ok since we find the substitution σ mapping x
to b1, z to b2, k to b3 and y to b, validating the condition 4.2. If on the other hand
e.g. s(receive acq) = b5 
= b1 then the condition would be violated and α4 would
not be admissible in the context s.

As the example show, dependency specifications are very low-level objects. They
are not really meant as external specifications of confidentiality requirements, but rather
as intermediate representations of flow requirements, generated from some more user-
friendly protocol specification once a specific runtime platform has been chosen.
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5 Flow Compatibility

Dependency specifications determine, through Definition 4, when a function invocation
is admissible. In this section we tie this to the transition semantics to obtain an account
of the direct information flow required by a dependency specification.

Let the relation
〈c, σ, s〉 ⇒ 〈c′, σ′, s′〉

be the reflexive, transitive closure of the annotated transition relation, i.e. the smallest
relation such that 〈c, σ, s〉 ⇒ 〈c′, σ′, s′〉 holds iff either c = c′, σ = σ′ and s = s′ or

else c1, σ1, s1 exists such that 〈c, σ, s〉 ⇒ 〈c1, σ1, s1〉 and 〈c1, σ1, s1〉 α−→ 〈c′, σ′, s′〉.

Definition 5. Let the dependency specification P = 〈S, A〉 be given. The command
c ∈ Com is flow compatible with P for initial store σ and initial context s, if whenever

〈c, σ, s〉 ⇒ 〈c1, σ1, s1〉 α−→ 〈c2, σ2, s2〉 then P, s1 � α ok.

Example 2 (Flow Compatibility for 1KP Client). The command Prog 1 of Figure 1 is
flow compatible with the 1KP client dependency specification of Example 1 above, for
any initial store σ. This is seen by proving an invariant showing that whenever execution
of Prog 1 reaches one of the send statements of Prog 1 then for suitable choices of v1,
v2 and v3,

s(receive acq) = v1 = σ(ACQ)
s(receive acc) = v2 = σ((ACC))

s(key x) = v3 = σ(PKA)

If we attempt to use a subliminal channel by replacing line 5 (the first send statement)
of Prog 1 by a command such as

:= send((ACQ, embed(ACC, ORDER), enc((ORDER, ACC), PKA)),
lookup(MERCHANT)) ,

then flow compatibility is violated, as expected. On the other hand, the command obtained
by adding after the first send statement of Prog 1 the command

if ACC = “some fixed value v” then send(“FOUND!”, leak channel) else skip

is flow compatible, also as expected, since the indirect leak will not be traced by the
annotation regime.

6 Admissibility

If there is an admissible flow of information from some input, say receive acc, to
some output, say, send(. . . , enc((. . . , acc), . . .), . . .) then by perturbing the input, cor-
responding perturbations of the output should result, and only those. In this section we
formalize this idea.
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In the context of multilevel security it is by now quite well understood how to
model absence of information flow (from Hi to Lo) as invariance of system behaviour
under perturbation of secret inputs (c.f. [3,5,11,9], see also [1] for application of similar
ideas in the context of protocol analysis). For instance, the intuition supporting Gorrieri
and Focardi’s Generalized Noninterference model is that there should be no observable
difference (i.e. behaviour should be invariant) whether high-level inputs are blocked
or allowed to proceed silently. So the perturbation of high-level inputs, in this case, is
whether or not they take place at all.

Here the situation is somewhat different since the multilevel security model is not
directly applicable: There is no meaningful way to define security levels reflecting the
intended confidentiality policy, not even in the presence of a trusted downgrader. On
the contrary, the task is to characterize the admissible flows from high to low in such
a manner that no trust in the downgrader (i.e. the protocol implementation) will be
required.

The idea is to map a dependency specification to a set of system perturbations. Each
such function is a permutation on actions and configurations which will make a config-
uration containing a secret, say x, appear to the external world as if it actually contains
another secret, say x′. If the behaviour of the original and the permuted configuration
are the same, the external world will have no way of telling whether the secret is x or x′.

At the core of any configuration permutation there is a function permuting values
(e.g. x and x′). This leads to the following definition:

Definition 6 (Value Permutation). A bijection g: aVal → aVal is a value permutation
if it preserves the structure of annotated values:

1. g(v) = v ,
2. g(β1, . . . , βn) = (g(β1), . . . , g(βn)), and
3. g(v : f w) = v′ : f g(w), for some suitable value v′;

and it preserves the meaning of functions:

4. Suppose g(v : f w) = v′ : f w′ and that there is at least a value u′ s.t. f([[w′]], u′).
Then f([[w′]], v′), whenever f([[w]], v) or �u ∈ Val. f([[w]], u).

We extend value permutations over transition labels and contexts. In the first case,

let g(τ) ∆= τ and g(v := ϕ) ∆= v′ := ϕ′, where g(v : ϕ) = v′ : ϕ′. For contexts, define

g(s)(f w) ∆= [[g(v′ : f g(w))]], where v′ = s(f g(w)) .

The following lemma establishes the coherence of the above definitions. It states
that the relation between contexts s and g(s) is preserved after the execution of action
v := ϕ, resp. g(v := ϕ).

Lemma 1. If g(v : ϕ) = v′ : ϕ′ then g(s[v/ϕ]) = g(s)[v′/ϕ′].

Not all value permutations are interesting for our purposes. In fact, we are only
interested in those that permute secrets as dictated by a dependency specification.

Definition 7 (Secret Permuter). Assume given a dependency specification P . A secret
permuter for P is a value permutation g satisfying the following conditions:



On the Secure Implementation of Security Protocols 153

1. if f w does not contain annotations in S then g(v : f w) = v : f w ,
2. if f w ∈ S then f g(w) ∈ S ,
3. if P, s � α ok then P, g(s) � g(α) ok ,
4. if ∃s. P, s � v := f w ok, then

– g(xcpt : f w) = xcpt : f g(w), and
– f [[w]] ⇑ iff f [[g w]] ⇑, where f v ⇑ iff �v′ ∈ Val.f(v, v′)

5. g = g−1 .

As expected, a secret permuter affects only secret values. This is implied by the first
condition in Definition 7.According to the second condition, permutations must also stay
within the bounds imposed by set S. Condition (7.3) implies that a secret permuter must
respect the admissibility predicate so that actions α that are admissible in a context s
will remain admissible once both the action and the context have been permuted. On the
other hand, if a dependency specification admits a certain function call f w (admissible
invocation), then we assume that it also permits the observation of f ’s exceptional and
terminating behaviour. Thus, if the execution of f w raises an exception (resp. does not
terminate), we should not consider those cases where f g(w) does not raise an exception
(resp. does terminate). This is reflected by condition (7.4).

Finally we impose the requirement that g be a period 2 permutation (7.5). This seems
natural given the intuition that the role of g is to interchange values of secrets. Not only
does this requirement help simplify several results, but we conjecture that its introduction
in Def. 7 represents no loss of generality.

The following lemma and proposition further characterize the set of secret permuters
associated to a dependency specification.

Lemma 2. Let g be a secret permuter. Then

1. g(g(α)) = α , and

2. g(g(s)) = s .

Proposition 1 (Composition of Secret Permuters). Given a dependency specification,
the set of secret permuters is closed under functional composition.

Example 3 (Secret Permuter for the 1KP Example). Let g exchange values as follows:

212 : receive acc ↔ 417 : receive acc
{b, 212}b3 : enc((b, 212 : receive acc), b3 : key b1 : receive acq) ↔

{b, 417}b3 : enc((b, 417 : receive acc), b3 : key b1 : receive acq)

where {b}b′ represents a value v ∈ Val such that enc((b, b′), v). On all other values,
g acts in accordance with conditions in Defs. 6 and 7. Conditions (6.1)–(6.4) and (7.x,
with x 
= 3) are easily validated. To verify condition (7.3) consider the action

α = {b, 212}b3 := enc((. . . , 212 : receive acc), . . .) .

If P, s � α ok then s(receive acc) = 212, by Def. 4. To see that P, g(s) � g(α) ok
observe that

g(α) = {b, 417}b3 := enc((. . . , 417 : receive acc), . . .)

and g(s)(receive acc) = 417 by the definition of g(s), so we can indeed conclude that
P, g(s) � g(α) ok.
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We have extended secret permuters over transition labels and contexts. Stores and
commands can equally be permuted. The extension of a secret permuter g over a store
is given by the equation g(σ)(x) = g(σ(x)). For a command c, define g(c) to preserve
the structure of the command, down to the level of single annotated values which are
permuted according to g. For example, g( := enc((b, b2 : receive acc), PKA)) =
:= enc((b, g(b2 : receive acc)), PKA). Commands like these occur naturally during

the course of expression evaluation, which is governed by a small-step semantics.
The idea now is to compare the behaviour of a given command on a given store and

context with its behaviour where secrets are permuted internally and then restored to their
original values at the external interface, i.e. at the level of actions. For this purpose we
introduce a new construct at the command level, perturbation c[g], somewhat reminiscent
of the CCS relabelling operator, with the following transition semantics

〈c, σ, s〉 α−→ 〈c′, σ′, s′〉
〈c[g], σ, s〉 [[g(s, α)]]−−−−−−→ 〈c′[g], σ′, s′〉

(2)

where [[v := f w]] = v := f [[w]], and g(s, α) permutes α only if it is an admissible
invocation (i.e. g(s, α) = g(α), if P, s � α ok; and g(s, α) = α, otherwise). So a
perturbed command is executed by applying the secret permuter at the external interface,
and forgetting annotations. The latter point is important since the annotations describe
data flow properties internal to the command at hand; the externally observable behaviour
should depend only on the functions invoked at the interface, and the values provided to
these functions as arguments.

Notice the use of g(s, α) in (2). The effect of this condition is that actions are only
affected by the permuter when they are “ok”. Secret input actions are generally always
“ok”, and so in general cause the internal choice of secret to be permuted. Output actions
that are not “ok”, however, are not affected by g(s, α), and so in this case a mismatch
between value input and output may arise.

Thus, if the behaviour of a command is supposed to be invariant under perturbation,
the effect is that it must appear to the external world to behave the same whether or
not a secret permuter is applied to the internal values. This is reflected in the following
definition.

Definition 8 (Admissibility). A command c ∈ Com is admissible for the store σ and
context s, the dependency specification P , if for all secret permuters g for P :

〈c[I], σ, s〉 ∼ 〈g(c)[g], g(σ), g(s)〉 (3)

where I is the identity secret permuter and ∼ is the standard Park-Milner strong bisim-
ulation equivalence.

Observe that the effect of perturbing a command with the identity secret permuter is
just to erase annotations at the interface, but keeping all values intact.

7 Local Verification Conditions

Applying the definition of admissibility out of the box can be quite cumbersome, since it
is tantamount to searching for, and checking, a bisimulation relation. In case the control
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flow is not affected by the choice of secrets one may hope to be able to do better, since
only data-related properties need to be checked. In this section we give such a local
condition.

Definition 9 (Stability for Commands). Let a dependency specification P be given.
Let � be the smallest reflexive and transitive relation over commands such that, for all
commands c0 and c1, c0 � c0; c1 and c0 � try c0 catch c1. The command c ∈ Com is
stable if for all c′ � c and for all secret permuter g,

1. if c′ = if β then c2 else c3, then [[β]] = [[g(β)]] ,
2. if c′ = r[ε] and w is a subterm of ε, then [[w]] = xcpt iff [[g(w)]] = xcpt, and
3. if c′ = r[ε] and f w is a subterm of ε, then f [[w]] ⇑ iff f [[g w]] ⇑ ,

where r[·] ::= x := · | if · then c0 else c1 .

For stable commands we obtain strong properties concerning the way secret per-
muters can affect the state space.

Lemma 3. Suppose that c ∈ Com is stable w.r.t. dependency specification P . Then,

〈c, σ, s〉 α−→ 〈c′, σ′, s′〉 iff 〈g(c), g(σ), g(s)〉 g(α)−−−→ 〈g(c′), g(σ′), g(s′)〉 .

Definition 10 (Stability for Configurations). Let a dependency specification be given.
The configuration 〈c, σ, s〉 is stable if whenever 〈c, σ, s〉 ⇒ 〈c′, σ′, s′〉, then c′ is a
stable command.

Theorem 1. If c ∈ Com is flow compatible with dependency specification P for store
σ and context s, and 〈c, σ, s〉 is stable, then c is admissible (for σ, s, P and ∼).

Theorem 1 does not provide necessary conditions. In fact, there are admissible pro-
grams whose control flow is affected by the perturbations. However, the import of The-
orem 1 is that, in order to verify Admissibility it is sufficient to check that the flow of
control is not affected by the relabelling of secret inputs and of admissible outputs. Fur-
thermore, it suffices to check this for a (smaller) subset of the reachable configurations.

To formalize this, consider a dependency specification P and an initial configuration
〈c0, σ0, s0〉. For each configuration 〈c, σ, s〉 define g(〈c, σ, s〉) as the configuration that
results from applying g to all three components, i.e. g(〈c, σ, s〉) = 〈g(c), g(σ), g(s)〉.
Then assume the existence of a set of program configurations {ξi}i∈I where 0 ∈ I ⊆ N,
which satisfies the three properties below:

P1) ξ0 = 〈c0, σ0, s0〉,
P2) for all i ∈ I, if ξi = 〈c, σ, s〉 then c is a stable command,
P3) for all i ∈ I and for all action α such that ξi

α−→ q, then
• there is a j ∈ I and a secret permuter g for P such that q = g(ξj), and
• P, s � α ok, if ξi = 〈c, σ, s〉 .

Under these conditions, we can use Lemma 3 to prove the following

Theorem 2. Consider a set {ξi}i∈I satisfying conditions P1–P3 as above. Then, for
each reachable configuration ξ = 〈c, σ, s〉,
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1. there is an i ∈ I and a secret permuter g such that ξ = g(ξi),
2. c is a stable command, and

3. if ξ
α−→ q then P, s � α ok .

To conclude, notice that statements 2 and 3 in this theorem imply that 〈c0, σ0, s0〉
is admissible, by means of Theorem 1. In the full version of this paper [6], we show how
to apply Theorem 2 to prove that Prog 1 (Fig. 1) is admissible for all initial stores and
contexts.

8 Admissibility vs. Flow Compatibility

In general, admissibility does not imply flow compatibility. At a first glance this may
seem somewhat surprising. The point, however, is that flow compatibility provides a
syntactical tracing of data flow, not a semantical one. Consider for instance the command

SECRET := receive a1 ;
if SECRET = 0 then := send(SECRET, a2) else := send(0, a2)

in the context of a dependency specification P = 〈{receive a1}, ∅〉.
This command is clearly admissible for P (for any store and context), but not flow

compatible for quite obvious reasons. However, if the control flow does not permit
branching on secrets, we can show that in fact flow compatibility is implied. For this
purpose some additional assumptions need to be made concerning the domains and
functions involved.

Clearly, if constant functions are allowed there are trivial examples of direct flows
which violate flow compatibility without necessarily violating admissibility.

However, we are able to establish the following result as a partial converse to Theo-
rem 1.

Lemma 4. Suppose 〈c0, σ0, s0〉 is stable and admissible for dependency specification
P . Then for all behaviours

〈c0, σ0, s0〉 ⇒ 〈c1, σ1, s1〉 v := f w−−−−−−→ 〈c2, σ2, s2〉
of minimal length such that P, s1 
� v := f w ok, the set

{[[g(w)]] | g is a secret permuter}
is finite.

Thus, if we can guarantee infinite variability of the set in Lemma 4 (which we cannot
in general), flow compatibility does indeed follow from admissibility and stability.

9 Discussion and Conclusions

We have studied and presented conditions under which an implementation is guaran-
teed to preserve the confidentiality properties of a protocol. We first determine, using
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annotations, the direct flow properties. If all direct dependencies are admitted by the
policy, we use an extension of the admissibility condition introduced first in [4] to de-
tect the presence of any other dependencies. If none are detected we conclude that the
implementation preserves the confidentiality properties of the protocol.

As our main results we establish close relations between the direct and the indirect
dependency analysis in the case of programs which mirror the “only-high-branching-
on-secrets” condition familiar from type-based information flow analyses (cf. [11,9]). In
fact, in our setting the condition is more precisely cast as “only-permitted-branching-on-
secrets”, since branching on secrets is admissible as long as its “observational content” is
allowed by the dependency rules. The correspondence between the direct and the indirect
dependency analysis provides an “unwinding theorem” which can be exploited to reduce
a behavioral check (in our case: strong bisimulation equivalence) to an invariant.

One of the main goals of our work is to arrive at information flow analyses which
can control dependencies in a secure way, rather than prevent them altogether, since this
latter property prevents too many useful programs to be handled. Other attempts in this
direction involve the modeling of observers as resource-bounded processes following
well-established techniques in Cryptography (cf. [10]). The scope of approaches such
as this remains very limited, however.

Intransitive noninterference [7] is a generalization of noninterference that admits
downgrading through a trusted downgrader. Although it prevents direct downgrading
(i.e. flows around the downgrader), it does not prevent Trojan Horses from exploiting
legal downgrading channels to actively leak secret information. A solution is to resort to
Robust Declassification [12], which provides criteria to determine whether a downgrader
may be exploited by an attacker. Unfortunately, the observation powers of attackers are
too strong in the presence of cryptographic functions, so that the approach cannot be
applied without major changes to our examples.

One important property which our approach does not handle satisfactorily is nonce
freshness. Our formalism has, as yet, no way (except by the introduction of artificial
data dependencies) of introducing constraints such as “x was input after y”, and thus we
must at present resort to external means for this check.

One worry of more practical concern is the amount of detail needed to be provided
by the dependency rules. It is quite possible that this problem can be managed in re-
stricted contexts such as JavaCard. In general, though, it is not a priori clear how to
ensure that the rules provide enough implementation freedom, nor that they are in fact
correct. It may be that the rules can be produced automatically from abstract protocol
and API specifications, or, alternatively, that they can be synthesized from the given
implementation and then serve as input for a manual correctness check.
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Abstract. This paper presents a program analysis for secure information flow.
The analysis works on a simple imperative programming language containing a
cryptographic primitive—encryption—as a possible operation. The analysis cap-
tures the intuitive qualities of the (lack of) information flow from a plaintext
to its corresponding ciphertext. The analysis is proved correct with respect to a
complexity-theoretical definition of the security of information flow. In contrast
to the previous results, the analysis does not put any restrictions on the structure
of the program, especially on the ways of how the program uses the encryption
keys.

1 Introduction

Executing a program causes information about its inputs to flow to its outputs. If the
inputs and outputs of a program are partitioned into public and secret ones then it is
important to be sure that the program has secure information flow — no information
about secret inputs flows to public outputs in a way that an adversary could make use of
it.

If one wants to prove correct an analysis checking programs for secure information
flow, one has to formalize when the public outputs of the program contain or do not
contain information about secret inputs that is useful for an adversary. The usual for-
malization is noninterference [9] which states that the public outputs must not contain
any information about the private inputs. In its variant for probabilistic systems [10],
noninterference means that the probability of private inputs being equal to some value
must be equal to the conditional probability of private inputs having that value, under
the condition that the public outputs have a certain value.

Consider a program that takes two inputs — an encryption key k and a message M
— and outputs Enc(k, M) — the encryption of M under key k. Obviously, Enc(k, M)
contains information about M as it is in principle possible to find M from Enc(k, M).
Hence, if M is secret and Enc(k, M) is public then the noninterference property does not
hold. On the other hand, the security of Enc requires that an adversary, whose resources
(computation time and space) have certain bounds, cannot derive anything about M
from Enc(k, M). If we consider only such bounded adversaries then we could deem
this program secure. The bounds on working time (and space) of the adversaries are lax
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enough (probabilistic polynomial time) for all realistic adversaries to satisfy them. This
example shows that for taking into account the effects of cryptographic primitives, we
need a bit weaker definition of noninterference. We give that definition in this paper.

Having given that weaker definition, we obviously want to know which programs
satisfy it and which ones do not. We use static program analysis to determine this. This
analysis is the other contribution of this paper. The analysis also takes into account the
intuitive qualities of the encryption operation.

The structure of this paper is the following. In Sec. 2 we describe some related work.
Particularly, we describe our own earlier results [11] and explain what they were lacking.
In Sec. 3 we explain what the security of an encryption scheme means. We also explain
what the sameness means in cryptography. In Sec. 4 we introduce our programming
language and give the definition of secure information flow. The information flow is
deemed secure if certain two probability distributions, containing the inputs and outputs
of the program, are “the same”. In Sec. 5 we describe the structures that the analysis
works on; these structures are abstractions of probability distributions over program
states. Sec. 6 presents the analysis itself and also gives a small example of it in action.
Sec. 7 says some words about the correctness proof. Finally, Sec. 8 concludes.

2 Related Work

Using program analysis for certification of secure information flow was pioneered by
Denning and Denning [7,8]. They annotated the program statements with the information
flow between the variables caused by that statement, and analyzed this flow. Volpano et
al. [24] gave a definition of secure information flow and accompanying analysis without
using any instrumentations.

Leino and Joshi [13] define a program to be secure if, no matter what its secret inputs
are, the public outputs always look the same for the same non-secret inputs. “Looking the
same” is not specified further, different security definitions can be obtained by plugging
in different formalizations. The security definition that we are using can be seen as an
instance of theirs.

Recently, some work has been done to define weaker notions of secure information
flow which allow analyzing programs containing cryptographic primitives without losing
the precision one intuitively assigns to these primitives. Volpano and Smith [23,22] have
presented analyses of programs containing one-way functions as primitive operations.
Unfortunately, one is quite restricted in using the one-way function if one wants to take
advantage of the weakened security definition.

Another approach has been our own [11], analyzing programs containing encryption
as a primitive operation, and having its own set of restrictions. The restriction was in the
usage of encryption keys — their only allowed usage was as an encryption key. They
were not allowed to occur in any other situations, for example in other expressions.
Particularly, the encryption keys were not allowed to be plaintexts in encryptions. Such
usage would have created dependencies (between values of different variables) that our
abstraction could not keep track of.

There was also another restriction on programs. The equality and inequality of dif-
ferent variables storing encryption keys had to be known statically at each program
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point. Making the equality of keys depend on the inputs of the program again introduced
dependencies that our abstraction could not keep track of.

There have also been attempts to precisely formalize and analyse cryptographic
protocols. Instead of the usual assumption that cryptographic primitives are perfectly
secure—they are modeled as functions for which only a very restricted set of formulas
holds ([5,1] are among the most prominent examples), one attempts to take into account
that the cryptographic primitives may be implemented by any algorithm satisfying some
complex complexity-theoretical definition; dealing with those definitions is an issue that
both the analyses for secure information flow and the analyses of cryptographic protocols
must handle. Mitchell et al. [14,15,16] extended the spi-calculus [1] with (polynomial)
bounds on message lengths and execution time, and developed a probabilistic semantics
for this extension. This has allowed them to prove the protocols correct with respect
to polynomially bounded adversaries, where the cryptographic primitives that the pro-
tocols employ are real ones. These proofs are entirely hand-crafted, though; there are
no mechanical means (like program analysis) to derive them. Pfitzmann et al. [18,19,
20,4] have given a framework to faithfully abstract the cryptographic primitives, such
that the proofs about protocols using these abstractions would also hold if the abstrac-
tions are replaced with the actual primitives. Abadi and Rogaway [3] have shown that
the formal construction of messages from simpler ones by tupling and encryption is
computationally justified—if two formal messages look the same (where “looking the
same” is defined over the formal structure; it makes the contents of the encrypted sub-
messages irrelevant), and if the encryption primitive satisfies certain requirements, then
no polynomially bounded adversary can distinguish the actual representations of these
messages as bit-strings. This work was later extended by Abadi and Jürjens [2]. They
considered program traces instead of expressions.

3 Cryptography and Secure Encryption

Encryption plays a big part in our contribution, so let us formally explain what it is and
what its security means. In the course of this explanation we also cover the notion of
indistinguishability — the computational equivalent of sameness.

An encryption scheme is a triple of algorithms (G, E, D). They all must have running
times polynomial to the length of their arguments. The algorithm G is the key-generation
algorithm. It is invoked to create new encryption keys. The algorithm G takes one argu-
ment — the security parameter n ∈ N (represented in unary, because of the comment
about the running times of algorithms) which determines the security of the system —
more concretely, it determines the length of the keys. Larger security parameter means
longer keys. The encryption algorithm takes as its arguments the security parameter, a
key returned by G(1n) (actually, we could assume that the security parameter is con-
tained in that key but this is the usual presentation), and a plaintext — a bit-string. It
returns the corresponding ciphertext. The arguments and the return value of the decryp-
tion algorithm are similar, only the places of plaintext and ciphertext are reversed. The
key generation algorithm is obviously probabilistic, the decryption algorithm is deter-
ministic. The encryption algorithm may either be deterministic or probabilistic but for
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satisfying the security requirements stated below it has to be probabilistic. It is required
that the decryption of an encryption of a bit-string is equal to that bit-string.

The security requirement we put on the encryption scheme is the same as Abadi and
Rogaway [3] used. We want the encryption to conceal the identity of both plaintexts
and encryption keys and we want it also to hide the length of the plaintexts. The precise
definition follows.

Let A be a probabilistic polynomial-time (PPT) algorithm, let n ∈ N and b ∈ {0, 1}.
Consider the following experiment ExpA(n):

1. Generate a random bit b ∈ {0, 1} by tossing a fair coin.
2. Define two black boxes O1 and O2. A black box is something that can be queried

with bit-strings, for each query the black box returns an answer — another bit-string.
There are no other ways to find out the implementation details of a black box. The
contents of the boxes O1 and O2 depends on the value of b:

– If b = 0, then generate two keys k, k′ by invoking G(1n) twice. Let O1 be a
box that, on input x ∈ {0, 1}∗, invokes E(1n, k, x) and outputs its return value.
Similarly, let O2 be a box that encrypts its inputs with the key k′.

– If b = 1, then let 0 ∈ {0, 1}∗ be a fixed (and known to all) bit-string. Generate
a key k by invoking G(1n). Let O1 be a box that, on input x ∈ {0, 1}∗, invokes
E(1n, k, 0) and outputs its return value. Let O2 be identical to O1.

3. Invoke the algorithm A, giving it 1n as an argument, and also giving it (oracle)
access to the black boxes O1 and O2. Let b∗ be its output.

4. If b = b∗ then output true, else output false.

Consider the quantity AdvA(n) = 2 ·Pr[ExpA(n) = true]−1. Here the probability is
taken over the choice of b, as well as over the random choices of G (while generating the
key(s)), E (while invoking the oracles) and A. The quantity AdvA (called the advantage
of A; it shows how much better A is in guessing b, compared to simple coin-tossing) is
a function from N to R. We say that the encryption scheme is type-0 secure1, if AdvA

is negligible for all PPT algorithms A. A function f : N → R is negligible if its absolute
value is asymptotically smaller than the reciprocal of any positive polynomial.

It is possible to construct type-0 secure encryption schemes (under standard assump-
tions). See [3] for details.

The security definition was an instance of demanding the indistinguishability of cer-
tain families (indexed by n ∈ N) of probability distributions. In our case, we demanded
the indistinguishability of the following families of distributions over pairs of black
boxes:

{|(E(1n, k, ·), E(1n, k′, ·)) : k, k′ ← G(1n)|}n∈N

and

{|(E(1n, k, 0), E(1n, k, 0)) : k ← G(1n)|}n∈N .

Here x ← D denotes that the variable x is distributed according to the probability
distribution D. The brackets {| · |} are used to construct new probability distributions.

1 Alternative name of this property is: repetition-concealing, which-key concealing and message-
length concealing
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For defining the indistinguishability of two families of probability distributions D
and D′ we have to change the wording of the description of the experiment ExpA(n)
a bit. Namely, let the 2nd and 3rd point be the following:

2. Generate a quantity x, according to one of the probability distributions Dn or D′
n.

If b = 0 then use Dn, else use D′
n.

3. Invoke the algorithm A, giving it 1n as an argument, and also giving it access to x.

The meaning of the phrase “access to x” depends on the type of x. If x is a bit-string
then it is simply given as an argument to A. If x is a black box then A is given oracle
access to it. If x is a tuple then A is given access to all components of the tuple. Again,
we consider the advantage of A and demand its negligibility for all PPT algorithms. We
let D ≈ D′ denote that D and D′ are indistinguishable.

Our definition of secure information flow is given through the notion of [compu-
tational] independence, which is defined as follows. Let D be a family of probability
distributions over some set of tuples. We assume that all tuples in that set have same
arity and also same names of components. In the rest of this paper, the program state is
represented as a tuple, its components are the values of the variables. If f is a tuple and
X is a set of component names, then we let f(X) denote the sub-tuple of f , consisting
of only the components with names in X . Let X and Y be two sets of component names.
We say that X and Y are independent (or that X is independent from Y ) in the family
of distributions D, if

{|(f(X), f(Y )) : f ← D|}n∈N ≈ {|(f(X), f ′(Y )) : f, f ′ ← D|}n∈N . (1)

4 Syntax, Semantics, and Security Definition

The programs whose information flow we are studying are written in the following
simple imperative programming language (the While-language):

P ::= x := o(x1, . . . , xk) | skip | P1; P2 | if b then P1 else P2 | while b do P′ .

Here x, x1, . . . , xk, b are variables from the set Var and o is an operator from the set
Op. Each operator has a fixed arity. We assume that there are two special operators in
the set Op — a binary operator Enc that denotes encryption, and a nullary operator
Gen that denotes the generation of new keys. Our analysis handles these two operators
in a more optimistic way than others. Decryption is not handled differently from other
operators, therefore it will not be mentioned any more.

Our security definition is given in terms of the inputs and outputs of the program,
therefore it is natural to use denotational semantics. The denotational semantics [[P]]
of the program P maps the initial state of the program to the final state, i.e. its type
is State → State⊥. For imperative programs, the state is a function mapping the
variables to their values (or alternatively, a tuple of values, indexed by variables) from
the set Val. The extra element ⊥ denotes non-termination. Note that the denotational
semantics hides some aspects that may be observable in the real world — for example
the running time of the program, the power consumption of the computer executing
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the program, the electromagnetic radiation emitted by that computer etc. Our security
definition cannot take these aspects into account.

We mentioned that the encryption algorithm has to be probabilistic. If this is the
case, then the semantics of programs also has to accommodate probabilism. The range
of [[P]] therefore has to be D(State⊥). Here D(X) denotes the set of all probability
distributions over the set X . Another detail that the semantics has to incorporate is the
security parameter. For this we let [[P]] to be not just a single function from State to
D(State⊥), but an entire family of functions (of the same type), indexed by n ∈ N.

The rest of the definition of [[P ]]n is quite standard (see for example [17, Sec. 4.1]).
First, we need semantics [[o]]n for each operator o ∈ Op. For a k-ary operator o, the
semantics [[o]]n is a function from Valk to Val. We demand that there exists a type-0 se-
cure encryption scheme (G, E, D), such that [[Gen]]n = G(1n) and [[Enc]]n = E(1n, ·, ·).
Now the semantics [[P ]]n is defined exactly as in Fig. 4.1 in [17] and we are not going
to elaborate it here any more.

The model of security that we have in mind here is the following: There is a certain
set of private variables VarS ⊆ Var whose initial values we want to keep secret. After
the program P has run, the values of the variables in a certain set VarP ⊆ Var become
public. The attacker tries to find out something about the initial values of secret variables.
It can read the final values of public variables.

The possible inputs of the program P are somehow distributed. For the security
parameter n ∈ N, let their distribution be Dn ∈ D(State). The (structure of the) family
of distributions D is assumed to be public knowledge.

We define security only for programs that run in (expected) polynomial time. We
claim that this decision causes us no loss of generality. Namely, before the attacker
obtains the final values of public variables, it is expected to wait for the program to
finish its execution. If the program runs for too long time and the attacker keeps waiting
then it cannot find out anything about the initial values of secret variables. Alternatively,
at a certain moment the attacker may decide that the program is taking too long time
to run and should be considered to be effectively nonterminating; the final state should
be considered to be ⊥. We “compose” the original program and the attacker’s decision-
making process about the running time of the program. The result is a program that runs
in polynomial time. We could define the original program to be secure iff the composed
program is. This composition amounts to running a clock parallel to the program (here
“parallel to” means “interleaved with”) and terminating after having run for a long
enough time.

If the program runs in polynomial time then we no longer have to take the possible
non-termination into account. Therefore the semantics of the program [[P ]] transforms the
initial family of probability distributions D to a final family of probability distributions
D′ = [[[P ]]n(Dn)]n∈N (we have somewhat abused the notation here). Let us make one
more assumption — that the program does not change the values of the private variables
VarS. This assumption obviously is not a significant one — we can always add new
variables to the program and use them instead of the ones in VarS. We now say that the
program P (with inputs distributed according to D) has secure information flow if VarS
and VarP are [computationally] independent in the family of distributions D′.



Handling Encryption in an Analysis for Secure Information Flow 165

5 Abstract Domain

The domain of the analysis is an abstraction of the set D(State)N — the set of families
of probability distributions over State. The analysis then maps the abstraction of the
initial family of distributions D to an abstraction of the final family of distributions D′.
Note that we said “an abstraction”, not “the abstraction” — the analysis is allowed to
err to the safe side. The question of secure information flow is obviously incomputable
therefore an always precise analysis cannot exist.

Let us introduce some notation first. Let S ∈ State and x ∈ Var. Then S(x)
denotes the value of the variable x in the program state S. Additionally, we let S([x]E)
denote a black box that encrypts its inputs, using S(x) as the key. If we let Ṽar denote
the set Var∪{[x]E : x ∈ Var} then we can assume that S is a tuple whose components
are named with the elements of Ṽar — the state S contains all the values of program
variables as well as all black boxes encrypting with these values.

The abstraction A = α(D) of a family of distributions D is a pair (Aindep, Akey)
where Aindep ⊆ P(Ṽar) × P(Ṽar) (here P(X) denotes the power set of the set X)
and Akey ⊆ Var (so A ∈ F(Var) = P(P(Ṽar) × P(Ṽar)) × P(Var)). Here the set
Aindep contains all such pairs (X, Y ) ∈ Ṽar × Ṽar where X and Y are independent in
the family of distributions D. The set Akey contains all such variables x ∈ Var where
the black box Sn([x]E), where Sn is distributed according to Dn, is indistinguishable
from a “real” encrypting black box E(1n, k, ·) where k is distributed according to G(1n).
“Erring to the safe side” while abstracting D means leaving out some elements from
these two sets.

The introduction of the encrypting black boxes [x]E allows us to track different
“kinds of dependence”. As an example, let x, k and l be variables and let D be such a
family of distributions, that the value of k is distributed as an encryption key, the value
of x is some ciphertext that has been created by encrypting something with the key k,
and the value of l is obtained from the value of k through a simple (and reversible)
arithmetic operation. Then neither {l} nor {x} are independent from {k} in the family
of distributions D (for detecting whether the value of x and the value of k come from
the same state or from different states, try to decrypt the value of x with the value of k
and consider, whether the result is a sensible plaintext). However, the dependence of l
and k is of quite different quality than the dependence of x and k. Someone that knows
(the value of) l can decrypt ciphertexts encrypted with k. Someone that knows only x
surely cannot do that. Independence from [k]E distinguishes l and x. The sets {x} and
{[k]E} are independent in the family of distributions D. The sets {l} and {[k]E} are not.

The analysis takes the program text and an abstraction A of the initial family of
distributions D. The description of this family of distributions must be found from the
context where the program is used. This description should be precise enough, such
that a reasonable abstraction A can be deduced from it. Describing D and finding A is,
however, not the topic of this paper. In most of earlier papers, an implicit assumption
has been made that all variables are independent of each other.
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6 Analysis

The analysis A
(Var)[[P]] is defined inductively over the structure of program P. Here Var

denotes the set of variables currently in consideration. We have introduced it because for
computing the analysis of certain programs we may need to analyse their subprograms
with respect to more variables. For analyzing the program if b then P1 else P2 we need
to introduce an extra variable while analyzing P1 and P2. This extra variable is used to
keep track of the dependencies of the initial value of the variable b.

Let P be an assignment x := o(x1, . . . , xk) and let A ∈ F(Var) be an abstract
value. In this case A′ = A

(Var)[[P]](A) is defined in the following way:

– The sets A′
indep and A′

key contain all the elements to satisfy the rules on Fig. 1.
– A′

indep is symmetric: if (X, Y ) ∈ A′
indep then also (Y, X) ∈ A′

indep.
– A′

indep is monotone: if (X, Y ) ∈ A′
indep and X ′ ⊆ X and Y ′ ⊆ Y then also

(X ′, Y ′) ∈ A′
indep.

– A′
indep and A′

key are the smallest sets satisfying the above conditions.

Let us explain this definition a bit. The requirements of symmetry and monotonicity
have been added to decrease the number of different cases that the rules must cover.
It is obvious (from the definition of independence) that it is safe to state that A′

indep is
symmetric. It is almost as obvious that monotonicity is also a safe requirement — if X ′

and Y ′ are not independent, i.e. there exists an algorithm that can distinguish the two
distributions in (1) for X ′ and Y ′, then the same algorithm can also distinguish these
two distributions for X and Y .

As next we will explain what is the basis of the rules in Fig. 1. The rule (2) says that
if the program P does not change the values of certain variables (namely those in sets
X and Y ) then their independence before the execution of the program implies their
independence after the execution. The rule (3), as well as its variants say that if a certain
set of variables (the set Y ) is independent from another one then everything that can be
computed from the values of these variables is still independent of that other set.

The rule (4) makes use of the type-0 security of the encryption scheme. Consider,
what do we need for the independence of X and Y ∪ {x} in the final family of distribu-
tions.

First, by monotonicity X and Y must be independent in the final family of distribu-
tions, and by the rule (2) also in the initial family. Obviously, the variable k must be an
encryption key. And if we want the value of x to appear like a random bit-string, then
everything else in our possession (the values of variables and encrypting black boxes in
X and Y ) must not help us in decrypting it. We also have to add the value of y to the
things that do not help us in decrypting x because the security definition of the encryption
scheme does not cover the case where something that is related to the encryption key is
encrypted with it (Abadi and Rogaway [3, Sec. 4.2] explain this case in more detail). As
we have explained in Sec. 5, this non-relatedness corresponds to the last antecedent in
the rule (4).

The rule (5) states that a “real” encrypting black box (which [x]E in this case is)
is independent of itself. This is a simple consequence of the security definition of the
encryption scheme. The rules (6) and (6’) state that if some value is distributed as
an encryption key before the execution then the same value is still distributed as an
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P is x := o(x1, . . . , xk)
(X, Y ) ∈ Aindep

x, [x]E �∈ X ∪ Y

(X, Y ) ∈ A′
indep

(2)

P is x := o(x1, . . . , xk)
(X, Y ) ∈ Aindep

x, [x]E �∈ X ∪ Y
x1, . . . , xk ∈ Y

(X, Y ∪ {x, [x]E}) ∈ A′
indep

(3)

P is x := Enc(k, y)
(X, Y ) ∈ Aindep

x, [x]E �∈ X ∪ Y
y, [k]E ∈ Y

(X, Y ∪ {x, [x]E}) ∈ A′
indep

(3’)

P is x := y
(X, Y ) ∈ Aindep

x, [x]E �∈ X ∪ Y
X ′ := X ∪ 〈〈y ∈ X ? {x} : ∅〉〉 ∪ 〈〈[y]E ∈ X ? {[x]E} : ∅〉〉
Y ′ := Y ∪ 〈〈y ∈ Y ? {x} : ∅〉〉 ∪ 〈〈[y]E ∈ Y ? {[x]E} : ∅〉〉

(X ′, Y ′) ∈ A′
indep

(3”)

P is x := Enc(k, y)
(X, Y ) ∈ Aindep

x, [x]E �∈ X ∪ Y
k ∈ Akey

({[k]E}, X ∪ Y ∪ {y}) ∈ Aindep

(X, Y ∪ {x, [x]E}) ∈ A′
indep

(4)

P is x := Gen()
(X, Y ) ∈ Aindep

x �∈ X ∪ Y

(X ∪ {[x]E}, Y ∪ {[x]E}) ∈ A′
indep

(5)

P is x := o(. . . )
k ∈ Akey\{x}

k ∈ A′
key

(6)

P is x := y
y ∈ Akey

x ∈ A′
key

(6’)

P is x := Gen()
x ∈ A′

key
(7)

Fig. 1. The analysis A
(Var)[[P]] for assignments
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encryption key afterwards. Last, the rule (7) states that the operation Gen generates
encryption keys.

Let us go on with the definition of A
(Var)[[P]]. The analysis A

(Var)[[skip]] is the
identity function over F(Var). Also, A

(Var)[[P1; P2]] is the composition of A
(Var)[[P2]]

and A
(Var)[[P1]]. Consider now the program if b then P1 else P2. Let Varasgn ⊆ Var

be the set of variables that are assigned to in at least one of the programs P1 and P2. Let N
be a variable that is not an element of Var and let Var′ = Var�{N}. Given an abstract
value A ∈ F(Var), representing the abstraction of the initial family of distributions,
compute

A(1) = A
(Var′)[[N := b; P1]](A)

A(2) = A
(Var′)[[N := b; P2]](A) .

So, we have used the extra variable N to “save” the initial value of b. In the analyses of
P1 and P2, the variable N appears where the initial value of b would have appeared.

The next step is to take the meet of the analyses of P1 and P2. The order on F(Var)
is defined so that larger values are more precise and smaller values more conservative,
therefore the meet of two values is the most precise value that is at least as conservative
as any of them. Let A′′ ∈ F(Var′) be such, that A′′

indep = A
(1)
indep ∩ A

(2)
indep and A′′

key =

A
(1)
key ∩ A

(2)
key. As the last step, we have to record the flow of information from N to the

variables in Varasgn. The analysis result A′ = A
(Var)[[if b then P1 else P2]] is defined

as follows:

– The sets A′
indep and A′

key contain all the elements to satisfy the rules on Fig. 2. Here

Ṽarasgn denotes the set Varasgn ∪ {[x]E : x ∈ Varasgn}.
– A′

indep is symmetric and monotone.
– A′

indep and A′
key are the smallest sets satisfying the above conditions.

Some explanation is in order for the rules in Fig. 2, too. In the rule (8), the only
entities that may have been modified in one of the branches are the encrypting black
boxes [x1]E, . . . , [xm]E.They are distributed in the same way at the ends of both branches
— no matter what the branch was, they are “real” encrypting black boxes. As they also
are independent of everything else (this is stated by the first group of antecedents and by
the antecedent just above it), their values cannot give away which of the branches was
taken. The second group of antecedents states that for having [xi]E independent of itself
after the if -statement, it also has to be independent of itself at the end of both branches.

The rule (9) says that if something is independent of N (the initial value of the guard
variable b) and Y at the end of both branches then it is also independent of Y after the if -
statement. This follows from the possibility to find the values of the variables and black
boxes in Y after the if -statement, if we know their values at the end of both branches and
we also know which branch was taken. The additional black boxes [x1]E, . . . , [xm]E
that are in the other side of the pair of variables and encrypting black boxes, have to
satisfy similar conditions as in the previous rule.

The rule (10) is the same as the rule (6). But if k may have been changed in the
branches then its distribution as a key at the end of both branches does not necessarily
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(X, Y ) ∈ A′′
indep

x1, . . . , xl, xl+1, . . . , xm ∈ Varasgn

({[x1]E , . . . , [xm]E}, X ∪ Y ∪ {N}) ∈ A′′
indep





({[x1]E}, {[x2]E , . . . , [xm]E}) ∈ A′′
indep

({[x2]E}, {[x3]E , . . . , [xm]E}) ∈ A′′
indep

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
({[xm−1]E}, {[xm]E}) ∈ A′′

indep










({[xl+1]E}, {[xl+1]E}) ∈ A′′

indep

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
({[xm]E}, {[xm]E}) ∈ A′′

indep





x1, . . . , xm ∈ A′′
key

(X ∪ Y ) ∩ (Ṽarasgn ∪ {N}) = ∅
(X ∪ {[x1]E , . . . , [xm]E}, Y ∪ {[xl+1]E , . . . , [xm]E}) ∈ A′

indep

(8)

x1, . . . , xl, xl+1, . . . , xm, y1, . . . , yr, yr+1, . . . , ys ∈ Varasgn(
X ∪ {[x1]E , . . . , [xm]E},

Y ∪ {N, [xl+1]E , . . . , [xm]E , y1, [y1]E , . . . , yr, [yr]E , [yr+1]E , . . . , [ys]E}
)

∈ A′′
indep

(X, {[x1]E , . . . , [xm]E}) ∈ A′′
indep





({[x1]E}, {[x2]E , . . . , [xm]E}) ∈ A′′
indep

({[x2]E}, {[x3]E , . . . , [xm]E}) ∈ A′′
indep

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
({[xm−1]E}, {[xm]E}) ∈ A′′

indep







x1, . . . , xm ∈ A′′
key

(X ∪ Y ) ∩ (Ṽarasgn ∪ {N}) = ∅(
X ∪ {[x1]E , . . . , [xm]E},
Y ∪ {[xl+1]E , . . . , [xm]E , y1, [y1]E , . . . , yr, [yr]E , [yr+1]E , . . . , [ys]E}

)

∈ A′
indep

(9)

k ∈ A′′
key

k �∈ Varasgn

k ∈ A′
key

(10)

k ∈ Varasgn

k ∈ A′′
key

({[k]E}, {N}) ∈ A′′
indep

k ∈ A′
key

(11)

Fig. 2. Merging the branches together

guarantee its distribution as a key at the end of the if -statement. Namely, the value of
k may have influenced, which of the branches was taken. But if the value of k has
not influenced the chosen branch (i.e. k is independent of the initial value of the guard
variable) then its distribution as a key at the end of both branches is sufficient for its
distribution as a key at the end of the if -statement.
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Consider now the program while b do P and let A ∈ F(Var). Let A(0) = A and

A(i) = A
(Var)[[if b then P else skip]](A(i−1)) .

Finally, the analysis value A
(Var)[[while b do P]](A) is defined as the meet (i.e. com-

ponentwise intersection) of all A(i). It is computable because the sequence of abstract
values A(0), A(1), A(2), . . . stabilizes at some point. Stabilization is caused by the finite-
ness of the lattice F(Var) and by the monotonicity of the analysis.

Let us give an example of the analysis in action. Consider the following program.

1: k1 := Gen()
2: if b then k2 := k1 else k2 := Gen()
3: x1 := Enc(k1, y1)
4: x2 := Enc(k2, y2)

With the help of the presented analysis, we can derive that {b} is independent of {x1, x2}
at the end of the program (without making any assumptions about the initial distribution
of values of variables). This program is a sequence of four statements (the second of
which is an if -statement), let A(0) be the abstraction of the initial family of distributions
and let A(i), where 1 ≤ i ≤ 4 be the abstract value computed by the analysis after the
i-th statement. We have

(A). (∅, {b, y1, y2}) ∈ A
(0)
indep, because ∅ is independent of everything else.

(B). (∅, {b, y1, y2}) ∈ A
(i)
indep, where i ∈ {1, . . . , 4}, from 6 and rule (2).

We are not any more going to mention the use of rules (2), (6) and (10) below. Basically,
if some pair of sets of variables or some variable belongs to a component of A(i), and
if none of these variables are changed in the statements i + 1, . . . , j, then the same pair
of sets of variables or the same variable also belongs to the same component of A(j).

(C). ({[k1]E}, {b, y1, y2, [k1]E}) ∈ A
(1)
indep by 6 and rule (5).

(D). k1 ∈ A
(1)
key by rule (7).

As next we have to analyse the if -statement. Let N be a new variable and let Var′ =
Var ∪ {N}. According to the description of the analysis, we have to compute

B(0) = A
(Var′)[[N := b]](A(1))

Btrue = A
(Var′)[[k2 := k1]](B(0)) Bfalse = A

(Var′)[[k2 := Gen()]](B(0))

A′′ = Btrue ∧ Bfalse

and A(2) from A′′ by using the rules in Fig. 2. We have

(E). ({[k1]E, {b, N, y1, y2, [k1]E) ∈ B
(0)
indep by 6 and rule (3).

(F). ({[k2]E, {b, N, y1, y2, [k1]E) ∈ Btrue
indep by 6 and rule (3”).

(G). k2 ∈ Btrue
key by 6 and rule (6’).

(H). ({[k2]E, {b, N, y1, y2, [k1]E) ∈ Bfalse
indep by 6, rule (5) and monotonicity.

(I). k2 ∈ Bfalse
key by rule (7).

(J). ({[k2]E, {b, N, y1, y2, [k1]E) ∈ A′′
indep by 6 and 6.
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(K). k2 ∈ A′′
key by 6 and 6.

(L). ({[k2]E}, {b, y2}) ∈ A
(2)
indep by 6, 6, 6 and rule (8).

(M). ({[k2]E, b, y1, y2}, {[k1]E}) ∈ A
(2)
indep by 6, 6, 6 and rule (8).

(N). k2 ∈ A
(2)
key by 6, 6 and rule (11).

(O). ({b}, {x1}) ∈ A
(3)
indep by 6, 6, 6 and rule (4).

(P). ({[k2]E}, {b, x1, y2}) ∈ A
(3)
indep by 6, 6, 6 and rule (4).

(Q). ({b}, {x1, x2}) ∈ A
(4)
indep by 6, 6, 6 and rule (4).

The domain of the analysis — F(Var) — is quite large, therefore we may ask,
whether the analysis can be implemented in a way that does not cause prohibitive running
times. It turns out that it can indeed be implemented in such a way. The set P(P(Ṽar) ×
P(Ṽar)) is isomorphic to the set of formulas of propositional calculus, where the set of
variables is Ṽar � Ṽar. Indeed,

P(P(Ṽar) × P(Ṽar)) ∼= P(P(Ṽar � Ṽar)) ∼= {0, 1}Ṽar�Ṽar → {0, 1} .

These formulas can be implemented as binary decision diagrams (BDD). The analysis
will then transform one BDD to another one. The rules on Fig. 1 and Fig. 2 are such,
that these transformations can be efficiently implemented on BDD-s. We believe from
our experimentation with the implementation that the size of the abstract domain will
not be the cause of long running times — small programs like above example can be
analyzed in split-second on a modern computer.

7 About the Proof of Correctness

The correctness of the analysis means that if the analysis says that two sets of variables
are independent of each other at the end of the execution of the program, then it really
is so.

Proving the rules in Fig. 1 and Fig. 2 correct is simple, it takes some elementary
cryptography. However, these proofs alone are not enough for the correctness of the
entire analysis. They are enough for the correctness of everything but the analysis of
loops.

For using the standard results [6] about the approximation of fixed points (the se-
mantics of loops is defined through a fix-point operation, the same holds for the analysis
of loops), we need the continuity of the abstraction function α from D(State⊥)N to
F(Var). However, as we show in [12, Sec. 3.3], there are no non-trivial (abstraction)
functions α from D(State⊥)N with the following properties:

1. α is continuous;
2. if D, D̃ ∈ D(State⊥)N are such that D ≈ D̃, then α(D) = α(D̃).

The second requirement should come as something obvious, we want to abstract away
everything that does not affect polynomial-time computations.

In [12, Sec. 3.3] we show that for all D, D̃ ∈ D(State⊥)N there exist D(i), D̃(i) ∈
D(State⊥)N (here i ∈ N), such that the least upper bound of the family {D(i)}i∈N is
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D, the least upper bound of the family {D̃(i)}i∈N is D̃, and D(i) ≈ D̃(i) holds for each
i ∈ N. Therefore α(D(i)) = α(D̃(i)) by the second condition on α and α(D) = α(D̃)
by the first.

Our abstraction function α cannot therefore be continuous. We have devised an ad
hoc proof of the correctness of the analysis. If D is the initial family of distributions,
A = α(D) and A′ = A

(Var)[[P]](A), then to show that (X, Y ) ∈ A′
indep implies the

independence of X and Y in the final distribution D′, we first fix the security parameter
n. Then we construct two “slices” of the program P, whose output distributions are the
left and right distribution in (1), respectively. We then introduce a number of possible
steps for transforming these slices. We show that

1. The first slice can be transformed to second in a number of steps polynomial in n.
This sequence of steps can be efficiently constructed.

2. Each step has only a negligible effect on the output distribution.

This construction and transformation are described in [12, Chapter 4].

8 Conclusions

We have devised an analysis for secure information flow for programs containing en-
cryptions. We believe that we have found the right abstractions this time, as the analysis
puts no restrictions at all on the program structure. We do not even have the restriction
that Abadi and Rogaway [3] had — we also allow encryption cycles — cases where
encryption keys are encrypted with other keys, and where the relation “is encrypted
with” is circular. This relation is defined by the program structure, therefore it is even a
bit surprising that an analysis that does not keep track of the program structure is able
to gracefully handle encryption cycles.

The main future direction for extending this work should be the inclusion of authen-
tication primitives (signatures, MACs, etc.) and active adversaries. It may be hard to
extend the full analysis, if we do not have convenient means for approximating fixed
points, but we may try to devise the analysis for some kind of language that does not
contain a looping construct. There exist simple intuitive formalisms (without a looping
construct) for expressing cryptographic protocols, for example strand spaces [21].

Another extension would be the handling of other primitives for ensuring confiden-
tiality. It should be quite easy to add public-key encryption to our language and analysis.
In the analysis, the public keys would behave similarly to the encrypting black boxes —
one can encrypt with them, but not decrypt.
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Abstract. In complex systems, like robot plants, applications are built
on top of a set of components, or devices. Each of them has particular
individual constraints, and there are also logical constraints on their in-
teractions, related to e.g., mechanical characteristics or access to shared
resources. Managing these constraints may be separated from the appli-
cation, and performed by an intermediate layer.
We show how to build such property-enforcing layers, in a mixed im-
perative/declarative style: 1) the constraints intrinsic to one component
are modeled by an automaton; the product of these automata is a first
approximation of the set of constraints that should be respected; 2) the
constraints that involve several components are expressed as temporal
logic properties of this product; 3) we use general controller synthesis
techniques and tools in order to combine the set of communicating par-
allel automata with the global constraint.

1 Introduction

Consider the programming of a small robot made of two devices: an elevator
table and a rotating arm placed on it. The elevator has a motor than can be
switched on and off, in either direction, and two sensors at its extreme positions.
The rotating arm also has a motor with commands on and off, and a choice
between two speeds. The requests for moving up or down, and rotating the arm,
come from an application program in charge of performing some given sequence
of tasks with the robot.

At a low level, independently of any particular application, the programming
of the robot has to ensure safety properties related to the characteristics of
the devices composing the robot, and the way they interact. These can concern
the mechanics, or the access to shared resources. For instance, the motor of
the elevator should be turned off when the elevator reaches one of its extreme
positions. This type of local constraint can be specified independently of the
behavior of the arm. Similarly, the arm motor should be turned off before a
change of speeds can be performed.
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We may also have to take into account some global constraints, concern-
ing their interactions, like “the arm should not be turning at its highest speed
while the elevator is moving up”. There are several methods we can think of for
ensuring such properties in the running application:

– The responsibility could be left to the application; the code ensuring the
safety properties related to the mechanics of the robot has to be included in
all application programs; it may be difficult to intertwine with the proper
code of the application. Even if we can provide powerful static verification
tools to check the properties before running the application on the actual
robot, this solution should be avoided, because it makes writing the appli-
cation very difficult.

– A solution that allows to separate the code of the application and the code
that is in charge of ensuring the safety properties, is to introduce an inter-
mediate layer. The application does not talk directly to the robot but to this
layer, that may delay or reject its requests to the actuators of the robot.
This layer is in charge of enforcing the safety properties, and may be reused
with various applications. Using this architecture means that the application
is aware of the fact that its requests may be postponed or canceled. This is
where an acknowledge mechanism is needed.

In all cases, note that we cannot rely on monitoring techniques and dynamic
checks, because we are mainly interested in embedded systems. These systems
should not raise exceptions at runtime. Our aim is not to reject faulty programs,
either statically or dynamically, but to help in designing them correctly.

In this paper we formalize the general intermediate layer approach, thereby
allowing for the automatic generation of such property-enforcing layers from a
mixed-style description of the properties: several automata for the individual
properties of the devices, and temporal-logic formulas for the global properties.
Controller synthesis techniques are used as a compilation technique here.

2 The Approach

Expressing Individual Constraints and Global Constraints. The individual con-
straints on the behavior of the devices can be conveniently modeled as simple
reactive state machines with the sensors from the physical devices and requests
from the application (sensor, req) as inputs and the commands to the actuators
(start, stop) as outputs (see figure 1-a). Each automaton records significant
states of the corresponding device, e.g., I for idle, and A for active. The au-
tomaton of figure 1-a enforces the following property: “a request is ignored if it
happens while a previous request is being treated.”. Note that we may think of
various protocols between the application and the intermediate layer: it may be
useful to send an acknowledgment (ack) on the transition that stops the motor,
meaning: “the request has been executed”. In particular, it is not sent when a
request is ignored.
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Fig. 1. Expressing Individual Constraints

The parallel composition of all the individual automata models all the in-
dividual constraints. In terms of these parallel automata, a global property like
“the arm should not be turning at its highest speed while the elevator is moving
up” means that one particular global state (or, perhaps, a set of global states)
should be unreachable. More generally, we are interested in safety properties of
the parallel composition (see [9] for the distinction between safety and liveness
properties).

Mixing the two kinds of Constraints. Of course, if we start from a set of automata
A = A1||A2|| ... ||An that were designed in isolation, and impose a global safety
property φ, it is very likely that A does not satisfy φ. For example, if the appli-
cation requires that the arm motor be switched on, while the elevator is moving
up, nothing can be done to avoid the faulty situation.

When global constraints appear, due to the joint use of several devices, the
automaton describing one component has to be designed in a more flexible way.
For instance, if obeying a request from the application immediately is forbidden
by a global constraint, given the states of the other devices, the request has to
be either rejected or delayed.

We choose to introduce an additional component (i.e. a controller), that
knows about the global safety property to be ensured, and may constrain the
individual automata about the transitions they take in order to ensure this
property. Then, we re-design the individual automata in a more controllable way,
allowing them to respond to events from the application, the physical device,
and the controller. The transitions that were labeled by “req” are now labeled
by “req AND ok”, meaning that the request is taken into account only if the
controller allows it (see Figure 1-b). But then, what happens when “req AND
NOT ok”? The missing transition may be a loop, meaning that the request is
simply canceled. In this case, the application is likely to apply a protocol that
maintains the request as long as it is not taken into account.

Another solution is to memorize the request. Instead of responding directly
to a request by the appropriate command to the physical device, the automaton
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enters a waiting state W, hence postponing the request until it can be obeyed
without violating the global safety property. This gives the machine of Figure 1-
c, where label “GO” corresponds to the controller releasing the waiting request.

We could model even more sophisticated behaviors. For instance, the appli-
cation might cancel its requests; or several requests might be queued, etc.

Again, writing the controller by hand may be hard to do if there are a lot
of individual devices and global properties. It can even be the case that such a
controller does not exist.

The solution we propose is to let the general controller synthesis technique
do the job for us. Instead of programming the controller and the communica-
tions between the machines by hand, we state this control objective in a very
declarative way (as a logical formula on the set of states). Then we let the con-
troller synthesis technique generate the controller that, put in parallel with the
individual machines, will ensure the global property.

Summarizing the Method. Consider an application program A and a physical
system under control, e.g., a robot R. The latter requires that a property φ be
respected, i.e. A||R |= φ. Our method is the following:

– First, design A with a software architecture that introduces an intermediate
layer Iφ to ensure φ: A = A′||Iφ. The problem becomes: A′||Iφ||R |= φ. A′

is easier to write, and Iφ is reusable.
– Iφ includes properties that can be expressed for each component or device

independently of the others, and also global constraints. φ is of the form
φ1 ∧ φ2 ... ∧φn ∧ φglob:

– For the individual constraints, propose a set of automata A1, A2, ... An (like
the ones presented in Figure 1), composable with a controller, i.e. able to
respond to an application and to a controller, and corresponding to the
properties φ1, φ2, ... φn.

– For the global constraints φglob, express them as safety properties, and let
the controller synthesis technique build the controller. This gives the most
permissive controller, that has to be made deterministic since we want to use
it as a program. We will use techniques from optimal controller synthesis [14]
to reduce the non-determinism and to impose some kind of progress.

If a controller exists, the final picture is: Iφ = A1||A2|| ... ||An||Cφglob
, and

A′||Iφ||R |= φ, by construction, for all A′. If there exists no controller, it means
that some of the automata have to be redesigned, introducing more “controlla-
bility” (e.g., OK and GO inputs, waiting states) so that the controller should be
able to ensure the property.

The paper. Section 3 sets a formal framework in which our approach can be
explained together with the main results of controller synthesis. An example
taken from robotics is described in section 4, with a list of global constraints one
may want to ensure for this kind of systems. Section 5 gives some quick hints
on the implementation of the approach. Section 6 comments on the method.
Section 7 reviews related work, and section 8 is the conclusion.



178 K. Altisen et al.

3 Framework

Our work uses general controller synthesis results (see [18]): we present them
in a unified formal framework by using synchronous Mealy machines from syn-
chronous languages (see, for instance, [11]), augmented with state weights. A
presentation of controller synthesis with Mealy machines can also be found in [2],
with similar motivations: Mealy machines give programs straightforwardly.

3.1 Synchronous Automata with Outputs and Weights

Definition 1 (Automaton). An automaton A is the tuple A =
(Q, sinit, I, O, T , W) such that Q is the set of states, sinit ∈ Q is the initial
state, I and O are the sets of Boolean input and output variables respectively,
T ⊆ Q × Bool(I) × 2O × Q is the set of transitions, and W : Q −→ N is a func-
tion that labels states with natural weights. Bool(I) denotes the set of Boolean
formulas with variables in I. For t = (s, �, O, s′) ∈ T , s, s′ ∈ Q are the source
and target states, � ∈ Bool(I) is the triggering condition of the transition, and
O ⊆ O is the set of outputs emitted whenever the transition is triggered. We
consider that the Boolean formulas used as input labels are conjunctions of liter-
als and their negation. Disjunctions lead to several transitions between the same
two states.

Definition 2 (Reactivity and Determinism). Let A = (Q, sinit, I, O, T , W)
be an automaton. A is reactive iff ∀s ∈ Q,

∨
(s,�,O,s′)∈T �. A is deterministic iff

∀s ∈ Q, ∀ti = (s, �i, Oi, si) ∈ T , i = 1, 2 . �1 = �2 =⇒ (O1 = O2) ∧ (s1 = s2) . 1

Every automaton in this paper is reactive but is not necessarily deterministic.
The automata of figure 1 are of this kind. However, in the concrete syntax, we
often omit the transitions that are loops and do not emit anything. When the
weights on states are omitted, they are 0.

The semantics of an automaton A = (Q, sinit, I, O, T , W) is given in terms
of input/output/state traces.

Definition 3 (Trace). Let A = (Q, sinit, I, O, T , W) be an automaton. A se-
quence of tuples t = {(vi, Oi, si)}i where the vi are valuations of the inputs, the
Oi are subsets of outputs, and the si are states, is a trace of A iff

{
s1 = sinit

∀n ∃(sn, �, On, sn+1) ∈ T such that � has value true in vn .

In state si, upon reception of input valuation vi, the automaton emits Oi and
goes to si+1. We note Trace(A) the set of all traces of A.

Definition 4 (Trace with hidden inputs). Let A = (Q, sinit, I, O, T , W) be
an automaton, and let J ⊆ I be a set of input variables to be hidden. A trace
of A with hidden values J is a sequence of tuples tI\J = {(v′

i, Oi, si)}i where
1 The equality �1 = �2 stands for syntactical equality since there is no disjunction in

labels.
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∀i . v′
i : I \ J −→ {true, false}, Oi ⊆ O and si ∈ Q such that there exists a

trace t = {(vi, Oi, si)}i ∈ Trace(A) and ∀i . ∀x ∈ I \ J . v′
i(x) = vi(x).

The trace with hidden inputs J built from a trace t ∈ Trace(A) is noted t(I\J)
as above. And we note the set of all traces with hidden inputs J : Trace(I\J)(A).

Definition 5 (Synchronous Product). Let A1 = (Q1, sinit1, I1, O1, T1, W1)
and A2 = (Q2, sinit2, I2, O2, T2, W2) be automata. The synchronous product of
A1 and A2 is the automaton A1||A2 = (Q1 × Q2, (sinit1sinit2), I1 ∪ I2, O1 ∪
O2, T , W) where T is defined by: (s1, �1, O1, s′

1) ∈ T1 ∧ (s2, �2, O2, s′
2) ∈ T2 ⇐⇒

(s1s2, �1 ∧ �2, O1 ∪ O2, s′
1s′2) ∈ T ; W is defined by: W(s1s2) = W1(s1) + W2(s2)

(more general composition of weights may be defined if needed).

The synchronous product of automata is both commutative and associative, and
it is easy to show that it preserves both determinism and reactivity.
Encapsulation makes variables local to some subprogram and enforces synchro-
nization; the following definition is taken from Argos [11]. In general, the encap-
sulation operation does not preserve determinism nor reactivity. This is related to
the so-called “causality” problem intrinsic to synchronous languages (see, for in-
stance [3]). However, these problems can appear only if two parallel components
communicate in both directions, in the same instant. We will use encapsulation
only in simple cases for which this is not necessary.

Definition 6 (Encapsulation). Let A = (Q, sinit, I, O, T , W) be an automa-
ton and Γ ⊆ I ∪ O be a set of inputs and outputs of A. The encapsulation of A
w.r.t. Γ is the automaton A\Γ = (Q, sinit, I\Γ, O\Γ, T ′, W) where T ′ is defined
by: (s, �, O, s′) ∈ T ∧ �+ ∩ Γ ⊆ O ∧ �− ∩ Γ ∩ O = ∅ ⇐⇒ (s, ∃Γ . �, O \ Γ, s′) ∈ T ′ .

�+ is the set of variables that appear as positive elements in the monomial �
(i.e. �+ = {x ∈ I | (x∧�) = �}). �− is the set of variables that appear as negative
elements in the monomial l (i.e. �− = {x ∈ I | (¬x ∧ �) = �}).

Example 1. In figure 2 two automata A and B are composed by a synchronous
product, and then {b} is encapsulated. The typical use of an encapsulation is
to enforce the synchronization between two parallel components, by means of a
variable which is an input on one side, and an output on the other side. In the
product, this variable appears in both the triggering condition and the output
set of transitions.

b

not b

a/b

not a

1

2

x

y

1x

2y

a

not a

(A||B) \ {b}A B
b

Fig. 2. An encapsulation example
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Definition 7 (Temporal Properties of the Automata). Let A =
(Q, sinit, I, O, T , W) be an automaton, let S ⊆ Q be a set of states and let
t = {(vi, Oi, si)}i ∈ Trace(A) be a trace of A. The properties φ we are interested
in are the two CTL [7] formulas defined below.

Invariance of S: φ = ∀�(S). A trace t satisfies �(S) (noted t � �(S)) iff
∀i . si ∈ S. For automata: A � ∀�(S) ⇐⇒ ∀t ∈ Trace(A) . t � �(S) .

Reachability of S: φ = ∀�(S). A trace t satisfies �(S) iff ∃s ∈ S . ∃i . s = si.
For automata: A � ∀�(S) ⇐⇒ ∀t ∈ Trace(A) . t � �(S) .

3.2 Controllers and Controller Synthesis

Controllers. Let A = (Q, sinit, I, O, T , W) be an automaton. We partition the
set I of inputs into a set Iu of uncontrollable inputs (those coming from the
application or from the physical devices, like req, sensor in figure 1) and a set
Ic of controllable inputs (i.e. inputs coming from the controller, like OK, GO).

Definition 8 (Controller of an Automaton). A controller of A is an au-
tomaton C = (Q, sinit, Iu, O ∪ Ic, T ′, W ′) such that ∃t = (s, �u ∧ �c, O, s′) ∈
T ⇐⇒ ∃γ ⊆ Ic ∧ ∃t′ = (s, �u, O ∪ γ, s′) ∈ T ′, where �u (resp. �c) is only writ-
ten with variables in Iu (resp. Ic) and γ ⊆ Ic at most contains the controllable
inputs involved in �c (i.e., �+

u ∪ �−
u ⊆ Iu, and γ ⊆ �+

c ∪ �−
c ⊆ Ic). Moreover

∀s ∈ Q . W ′(s) = 0.

Notice that one t ∈ T may define several t′ ∈ T ′ as defined above. The con-
troller C of an automaton A has the same structure (states and transitions). The
controllable variables are inputs in A, whereas they are outputs of the controller.
This means that the role of the controller is to choose whether controllable vari-
ables should be emitted, depending on uncontrollable inputs and states.

The automaton (A||C) \ Ic represents the controlled automaton of A by C :
the interaction between the controller and its automaton is formalized by a syn-
chronous product (A and C execute in parallel, communicating via Ic variables)
and the Ic variables are kept as local variables (and so encapsulated).

Properties 1 Let A = (Q, sinit, I, O, T , W) and let its input variables I be
partitioned into the two subsets Ic and Iu. Let C be a controller of A.

1. Trace((A||C) \ Ic) ⊆ TraceIu
(A).

2. If A is reactive, then C is reactive, by construction. But C may not be deter-
ministic even if A is deterministic.

3. (A||C) \ Ic is reactive and, if C is deterministic, then so is (A||C) \ Ic. This
holds because the encapsulation is used in a case for which causality problems
do not occur.

The first property means that every trace of the controlled automaton of A by C
is also a trace of A with hidden variables Ic: the controller restricts the execution
of the automaton. 2 and 3 are specific to the way we build controllers. Reactivity
and determinism are required if we want to obtain programs with this method.



Using Controller-Synthesis Techniques to Build Property-Enforcing Layers 181

Example 2. Let us observe figure 3. The right part of the figure depicts a con-
troller C: the set of controllable inputs is Ic = {OK}, whereas req and stop
are uncontrollable. The controller shown here enforces the fact that the task
always has to wait before executing. This is done by deciding which of the con-
troller transitions do emit OK, in such a way that the transition to wait remains,
whereas the transition to EX disappears, in the product.

The controlled automaton (A||C) \ Ic is shown in figure 4, where the syn-
chronous product of the automaton A and of its controller C has been performed
(left part), and where the encapsulation of the controllable input OK has been
realized (right part).

In the transition from stopped to wait, OK appears as a negative element in
the triggering condition of A; the controller chooses not to emit it in the corre-
sponding transition, hence the transition remains in the encapsulated product.
Conversely, from stopped to execute, OK appears as a positive element in A;
since the controller does not emit it, the transition disappears in the encapsu-
lated product.

stop

true/OK,ack

req
req and OK/ackST

EX
W

stop

req and
not OK

OK/ack

OK

req/ack

Fig. 3. An automaton and a controller for it

stop

true/ack

req
req and OK/ackST

EX
W

stop

req and
not OK

OK/OK, ack

OK (a) (b)

ST

W
EX

Fig. 4. The controlled automaton obtained from figure 3

Controller Synthesis Problem. Let A = (Q, sinit, I, O, T , W) be a deter-
ministic and reactive automaton I = Ic ∪ Iu. Let φ be one of the two CTL
properties on A given by definition 7.

Problem 1 (Controller Synthesis). The controller synthesis problem consists in
finding a controller C of A such that the controlled automaton of A by C, satisfies
the property φ: (A||C) \ Ic � φ.
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The problem may have several solutions but has a greatest solution, called
the most permissive controller: if φ = ∀�(S) (resp. φ = ∀�(S)), the controller
C is the most permissive iff if ∃t ∈ Trace(A) such that t � �(S) (resp. t � �(S))
then t(Iu) ∈ Trace((A||C) \ Ic).

Reducing Non-determinism in the Controller. We are interested in de-
terministic controllers because our aim is to build a program.

Let A = (Q, sinit, I, O, T , W) be a deterministic and reactive automaton
with I = Ic ∪ Iu. Let φ be one of the two CTL properties on A defined in
definition 7. Let C be a solution of the controller synthesis given by A and φ.

We are looking for a controller C′ which is a solution of the same controller
synthesis problem, and which is more deterministic. First, we impose that C and
C′ have the same set of states and outputs but not necessarily the same set of
transitions and inputs.

Second, we want to ensure the property TraceIu(C′) ⊆ TraceIu
(C) since

it guarantees that: TraceIu
((A||C′) \ Ic) ⊆ TraceIu

((A||C) \ Ic) and then
(A || C)\ Ic � φ =⇒ (A||C′) \ Ic � φ, i.e. if C is a solution of the above
controller synthesis problem then also is C′. We give two ways of building C′

from C: static or dynamic reduction of non-determinism.
Static reduction of non-determinism: C′ only differs from C by its transition

set, TC′ : TC′ ⊆ TC , where TC is the set of transitions of C. In this paper, we
use a very particular case of this approach: TC′ may be obtained from TC by
a local optimization based on state weights: ∀t = (s, �, O, s′) ∈ TC′ . W(s′) =
min{W(s′′) | ∃(s, �, O′′, s′′) ∈ TC}. Notice that this operation may not completely
suppress the non-determinism of the controller.

Dynamic reduction of non-determinism: C′ differs from C by its set of inputs
IC′ such that Iu ⊆ IC′ , and by its triggering conditions. The idea is to add
special inputs called oracles: from a state S, if there are two transitions labeled
by the same input �, then one of them becomes � . i and the other one becomes
� . i, where i is the oracle. In general we need several oracles (see [10]). We obtain
a deterministic automaton (or a “program”) that has to be run in a environment
that decides on the values of the oracle inputs. See sections 5 and 6.

4 Example System and Methodology

4.1 A Robot System

We illustrate the proposed methodology with a case study [5] concerning a robot
system: an automated mobile cleaning machine, designed by ROBOSOFT2. It
can learn a mission, with trajectories to be followed, and starting and stopping
of cleaning tools at pre-recorded points. It can play them back, using sensors like
odometry, direction angle and laser sensors to follow the trajectories and detect
beacons. One of the tools is a brush, mounted on an articulated arm, under the
robot body, that can achieve vertical translation (in order to be in contact with
the floor or not), horizontal translation (in order to reach corners), and rotation.
2 www.robosoft.fr
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The constraints are the following: 1) the brush should rotate only when on
the floor, in low position, because otherwise, when in high position, it might
damage the lower part of the mobile robot; 2) it can be moved laterally only
when on the floor, and not rotating, for the same reason.

4.2 Modeling the Brush Individual Constraints

The brush individual constraints are modeled in terms of three automata, each
one representing the activation of control laws for one degree of freedom of the
brush: vertical movement, horizontal movement and rotation.

Vertical movement: the initial state up in Figure 5(a) represents the brush
being in high position. Upon reception of a request from the application to move
down, r down, either the controller accepts it, in the absence of any conflict
at global level, by okV, or not. If yes, then the going down state is reached,
with emission of the acknowledgement start down. Otherwise, the request is
memorized by going to state wait down. The controller may then authorize the
activation from state wait down to state going down, by okV with emission of
start down. When the uncontrollable event sensor down occurs from the phys-
ical device, corresponding to the reaching of the low position, the state down
is reached, with emission of stopV. Movement upwards follows a symmetrical
scheme, also subject to controller authorization.

Horizontal movement: the automaton for horizontal movements follows
exactly the same scheme as for vertical movement.

Rotation: the automaton for rotation follows a different scheme (fig-
ure 5(b)): there is no intermediate state going to the rotation state. State imm
designates an immobile brush. A request for rotating, r rot, is either accepted
directly by okR, which leads into the rotate state, or not, which leads to the
wait rot state. Going back from rotation to immobility is done through a request
r imm, and follows the same scheme as before, with a waiting state wait imm in
case not authorized, and a deceleration state going imm.

4.3 Safety Properties to Be Ensured by the Controller

We introduce a notation to define sets of global states in terms of local states. Let
A1, ..., An be n automata. (Ai = (Qi, siniti, Ii, Oi, Ti, Wi). Let A = A1||A2 ...
||An = (Q, sinit, I, O, T , W). Let si ∈ Qi be a state of automaton Ai. We note
si for all the states of A whose projection of Qi is equal to si: si = {s ∈ Q |
s = (s′

1, s′
2, ..., s′

n) . s′
i = si} The set of global states excluding si is noted si for

Q \ si. The set of global states excluding S ⊆ Q is noted S.
Global states must be avoided where the properties mentioned in section 4.1

are violated. To define them, we identify states where:

– the brush turns, which can happen when in states rotate, wait imm and
going imm, as a decelerating brush is still in motion. This is expressed by
the set of states: Rotating = rotate ∪ wait imm ∪ going imm;

– the brush arm is in low position, i.e. in state down and also wait up: Low =
down ∪ wait up;



184 K. Altisen et al.

– the brush arm is moving laterally i.e., in states going out and going back:
Lateral = going out ∪ going back .

The set of safe states wrt properties described in section 4.1 is then given by:
S = (Rotating ∪ Low) ∩ (Lateral ∪ Rotating ∩ Low). Finally, we compute a
controller for the property ∀�(S).

Fig. 5. The brush control tasks.

4.4 Result of the Controller Synthesis Phase

The result is a non-deterministic controller (see section 3.2). In particular, the
choice remains between staying in a wait state and moving to the active state,
both being safe with respect to the property. This is the usual problem when
specifying a system by safety properties: a very simple way of respecting them is
to do nothing. Hence, some progress should be expressed and taken into account.

We propose to use the weights associated with states. The weight of the
waiting states is set to 1, and the weight of all other states is set to 0. The
static reduction of non-determinism produces a controller where, whenever there
are two transitions sourced in the same state, with the same inputs, only the
transitions that go to the states with minimal weight are kept.

In the example, this is sufficient for ensuring that at least one component
leaves its waiting state when it is possible. This does not yield a deterministic
automaton, as some global states might have the same weight due to the com-
position of local weights. Dynamic reduction of non-determinism can then be
used. In the framework of our case study, we worked in a context of interactive
simulation: the values for the oracles are given by the end-user.

5 Implementation

The current implementation of the method, which has been used for the example,
relies on the chain of Figure 6: the individual constraints are described using a
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synchronous formalism called “mode-automata” [12]; Yann Rémond provided
the compiler into z3z, the input format of the synthesis tool Sigali. The global
properties and the weights are expressed into z3z by the means of Sigali macros.
Sigali [13] is a tool that performs model-checking, controller synthesis for logical
goals, and optimal controller synthesis.

The result of Sigali is a controller, in the form of an executable black-box. Y.
Rémond and K. Altisen developed the tool SigalSimu, to simulate the behavior
of the controlled system. This corresponds to a dynamic resolution of the non-
determinism, where the human being plays the role of the oracle.

The next step will be to transform the interpretation chain into a compilation
chain, producing the controlled system as an explicit automata that can then be
compiled into C code (see below).

properties
weights

components
system model Mode

Automata

encoding
z3z

Sigali

controller

SigalSimu
interactive
simulation

Fig. 6. Implementation of the approach: the tools involved.

6 Evaluation of the Method

Patterns for the individual constraints: The whole approach requires that
the mechanical devices (or, more generally, the “resources” for which we build
an application program) be modeled as small automata. We suggest that a set
of reusable patterns — in the spirit of “design patterns” [8] — be designed for
that purpose. It is likely to be specific of a domain.

Cost: The algorithms involved in controller synthesis techniques are expen-
sive. If the whole intermediate layer had to be built as the result of a synthesis,
starting from a declarative specification only, it could be too costly to be con-
sidered as a viable implementation technique. The reason why it is reasonable
in our case is that part of the specification is already given as a set of automata.
Controller synthesis is used only to further restrict the possible behaviors of the
product.

Towards a compilation chain (non-determinism, progress and fair-
ness): First, we want programs, so we have to determinize the controllers.
Second, a specification S made of safety properties only, leads to trivial solu-
tions that do not progress. Hence we have to specify progress properties, and to
remove transitions in the controller obtained from S, so that only progressing be-
haviors remain. Third, what about fairness? Our example system is an instance
of a mutual exclusion problem, and we defined critical sections as sets of states
in each of the individual automata. In some sense, the effect of the controller-
synthesis phase is to add the protocol between the components, so that mutual
exclusion is respected. This is a typical case where a non-deterministic choice
remains, for choosing the component to serve. Usually, a dynamic scheduler is
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used to ensure fairness between the concurrent processes willing to access the
shared resource.

In our case, we would like to obtain a deterministic controller and to compile
it into a single program. This can be done by 1) determinizing the controller
with oracles (see section 3.2); 2) adding in parallel an automaton Or that sends
the oracle values, and encapsulating the oracle variables. Or is responsible for
the fairness of the whole system.

7 Related Work

Previous Work. In previous work [15,16], an approach is proposed for the model-
ing of robot control tasks, using simple pre-defined control patterns, and generic
logical properties regarding their interactions. A teleoperation application is con-
sidered, as an illustration of a safety-critical interactive system. An extension of
this work concerns multi-mode tasks [14], where each task has several activity
modes or versions, distinguished by weights capturing quality (as in e.g., im-
age processing) and cost (typically: execution time). Optimal control synthesis
is then used to obtain the automatic control of mode switchings according to
objectives of bounded time and maximal quality. The approach in this paper is
a generalization of this more specialized work.

On “Property-Enforcing” techniques. A number of approaches has been pro-
posed for enforcing properties of programs, but they mainly rely on dynamic
checks. In [6], a program transformation technique is presented, allowing to equip
programs with runtime checks in a minimal way. Temporal properties are taken
into account, and abstract interpretation techniques are used in order to avoid
the runtime checks whenever the property can be proven correct, statically. In
the general case, the technique relies on runtime checks, anyway.

The approach described in [17] is a bit different because it does not rely on
program transformation. The authors propose the notion of security automaton.
Such a security automaton is an observer for a safety property, that can be run
in parallel with the program (performing an on-the-fly synchronous product).
When the automaton reaches an error state, the program is stopped.

On the use of Controller-Synthesis Techniques. In [4], the authors use controller
synthesis techniques to help in designing component interfaces.

In their sense, an interface is a (possibly synchronous) black box that is
specified by input and output conditions (input and output behaviors). Inter-
faces may be composed as far as they are compatible, i.e. as far as there exist
some inputs for which the composition works. Compatibility is computed by a
controller synthesis algorithm which finds the most permissive application (wrt
input and output conditions) under which the composed interfaces may work.

The unusual thing here (regarding the use of controller synthesis) is that they
constrain the application, i.e. the environment of the interfaces, in order to fit
input and output conditions, whereas, in usual controller synthesis framework,
we use it to make the system work whatever the application/environment does.
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In [1], the authors use controller synthesis techniques to build real-time sched-
ulers. A layered modeling methodology is also provided here. First, real-time
processes are individually modeled by timed transition systems; then a syn-
chronization layer is built ensuring functional properties; finally, a scheduler is
computed by controller synthesis, ensuring the non functional properties of the
layer.

8 Conclusion and Further Work

We presented a method that automates partially the development of property-
enforcing layers, to be used between an application program and a set of resources
for which safety properties are defined and should be respected by the global
system (the application, plus the intermediate layer, plus the set of resources).

We illustrated the approach with a case-study where the set of resources is
a robot. However, the method can be generalized to other kinds of applications.

The method relies on two ideas. First, the specification of the properties
to be respected often comes in a mixed form: simple and “local” properties,
typically those imposed by one mechanical device in isolation, are better given as
simple automata; on the contrary, the interferences between the devices, and the
situations that should be avoided, are better described in a declarative way, for
instance with trace properties in a temporal logic. Second, mixing the two parts
of the specification is not easy, and we show how to use very general controller-
synthesis techniques to do so. The technique that enforces the safety part of
the specification has to be complemented, in order to ensure some progress. We
adapted the notion of optimal synthesis to obtain progress properties.

Further work has to be devoted to the notion of “progress” in layers that
enforce safety properties. We encountered the problem and solved it only in a
very particular case. The first questions are: what kind of progress properties do
we need? How can they be expressed in terms of optimal synthesis goals?

We really believe that optimal control synthesis is the appropriate method
because, in the contexts we are interested in, the “progress” properties are often
related to a notion of “quality”. The states in the individual automata might
be labeled by weights related to CPU time, memory use, energy consumption,
quality of service, etc. (additivity of weights in parallel components may not fit
all the needs, of course). In these cases, progress means “improve the quality”.

Acknowledgments. The authors would like to thank Hervé Marchand, the
author of Sigali, and Yann Rémond, the author of mode-automata, for their
work on the implementation.
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1. K. Altisen, G. Gößler, and J. Sifakis. Scheduler modelling based on the controller
synthesis paradigm. Journal of Real-Time Systems, 23(1), 2002.



188 K. Altisen et al.

2. S. Balemi. Control of Discrete Event Systems: Theory and Application. PhD the-
sis, Automatic Control Laboratory, Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland, May 1992.

3. G. Berry. The foundations of esterel. Proof, Language and Interaction: Essays in
Honour of Robin Milner, 2000. Editors: G. Plotkin, C. Stirling and M. Tofte.

4. A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Synchronous and
bidirectional component interfaces. In CAV 2002: 14th International Conference
on Computer Aided Verification, LNCS. Springer Verlag, 2002.
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Abstract. This paper proposes the use of constraint logic programming
(CLP) to perform model checking of traditional, imperative programs.
We present a semantics-preserving translation from an imperative lan-
guage with heap-allocated mutable data structures and recursive pro-
cedures into CLP. The CLP formulation (1) provides a clean way to
reason about the behavior and correctness of the original program, and
(2) enables the use of existing CLP implementations to perform bounded
software model checking, using a combination of symbolic reasoning and
explicit path exploration.

1 Introduction

Ensuring the reliability of software systems is an important but challenging prob-
lem. Achieving reliability through testing alone is difficult, due to the test cover-
age problem. For finite state systems, model checking techniques that explore all
paths have been extremely successful. However, verifying software systems is a
much harder problem, because such systems are inherently infinite-state: many
variables are (essentially) infinite-domain and the heap is of unbounded size.

A natural method for describing and reasoning about infinite-state systems
is to use constraints. For example, the constraint a[i] > y describes states in
which the ith component of a is greater than y. The close connection between
constraints and program semantics is illustrated by Dijkstra’s weakest precondi-
tion translation [10]. This translation expresses the behavior of a code fragment
that does not use iteration or recursion as a boolean combination of constraints.
Fully automatic theorem provers, such as Simplify [9], provide an efficient means
for reasoning about the validity of such combinations of constraints. These tech-
niques provide the foundation of the extended static checkers ESC/Modula-3 [8]
and ESC/Java [14].

Unfortunately, iterative and recursive constructs, such as while loops, for
loops, and recursive procedure calls, cannot be directly translated into boolean
combinations of constraints. Instead, extended static checkers rely on the pro-
grammer to supply loop invariants and procedure specifications to aid in this
translation.1 The need for invariants and specifications places a significant bur-
den on programmer, and is perhaps the reason these checkers are not more widely
used, even though they catch defects and improve software quality [14].
1 Loops without invariants are handled in a manner that is unsound but still useful.
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This paper presents a variant of the extended static checking approach that
avoids the need for programmer-supplied invariants and specifications. Instead,
we start with an unannotated program, which may include iterative and recur-
sive constructs, and asserted correctness properties. We translate this program
into in an extended logic called constraint logic programming (CLP) [19,21,20,
22]. Essentially, a constraint logic program consists of the sequence of rules,
each of which defines a particular relation symbol as a boolean combination of
constraints. Since constraints may refer to relation symbols, these rules can be
self- and mutually-recursive. By expressing iterative and recursive constructs of
the original imperative program as recursive CLP rules, we avoid the need for
programmer-supplied invariants and specifications.

This paper presents a semantics-preserving translation into CLP from an
imperative language that is infinite-state and that supports global and local
variables, heap-allocated mutable data structures, and recursive procedure calls.
We use this translation to illustrate the connection between imperative programs
and CLP, between program executions and depth-first CLP derivations, between
procedure behaviors and sets of ground atoms, and between erroneous program
executions and satisfiable CLP queries.

Our translation enables the use of efficient CLP implementations, such as
SICStus Prolog [27], to check correctness properties of software. This implemen-
tation performs a depth-first search for a satisfying assignment, using efficient
constraints solvers to symbolically reason about boolean variables, linear arith-
metic, and functional maps. This search strategy corresponds to explicitly ex-
ploring all program execution paths, but symbolically reasoning about data val-
ues. That is, instead of explicitly enumerating all possible values for an integer
variable x, the CLP implementation symbolically reasons about the consistency
of a collection of constraints or linear inequalities on x. This symbolic analysis
provides greater coverage and more efficient checking.

The depth-first search strategy may diverge on software with infinitely long
or infinitely many execution paths. To cope with such systems, we bound the
depth of the CLP search, thus producing a bounded software model checker. Our
translation also facilitates software model checking using other CLP implementa-
tion techniques, such as breadth-first search, tableaux methods, or subsumption,
which may provide stronger termination and error detection properties.

The remainder of the paper proceeds as follows. The next section provides
a review of CLP. Section 3 illustrates our CLP translation by applying it to
an example program, and uses the CLP representation to detect defects in the
program. Section 4 presents the imperative language that is the basis for our
formal development, and section 5 translates this language into CLP. Section 6
uses the CLP representation for program checking and defect detection. Section 7
discusses related work, and we concluded in Section 8.
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2 A Review of Constraint Logic Programming

In this section, we provide a brief review of the constraint logic programming
paradigm [19,21,20,22]. A term t is either a variable or the application of a
primitive function f to a sequence of terms. An atom r(�t) is the application of
a user-defined relation r to a term sequence �t. A primitive constraint p(�t) is the
application of a primitive predicate p to a term sequence. Constraints include
primitive constraints and their negations, conjunction, disjunction, and atoms.
A rule r(�t) ← c is an (implicitly universally quantified) implication, and provides
a definition of the relational symbol r. For example, the rule r(x, y) ← x = y
defines r as the identity relation.

Primitive functions include binary functions for addition and subtraction,
nullary constants, and the select and store operations, which are explained
in Section 5. Primitive predicates include equality, disequality, inequalities, and
the nullary predicates true and false. We sometimes write binary function and
predicate applications using infix instead of prefix notation.

CLP Syntax
(terms) t ::= x | f(�t)
(atoms) a ::= r(�t)
(constraints) c ::= p(�t) | ¬p(�t)

| c ∧ c | c ∨ c | a
(rules) R ::= a ← c

(variables) x, y, z
(constants) k ∈ {0, 1, 2, . . .}
(primitive fns) f ∈ {k, +, −, select, store}
(primitive preds) p ∈ {true, false, =, �=, <, . . .}
(relation names) r

A CLP program �R is a sequence of rules. These rules may be self- or mutually-
recursive, and so the CLP program �R may yield multiple models. We are only
interested in the least model of �R that is compatible with the intended interpreta-
tion D of the primitive functions and predicates. In particular, we are interested
in the question of whether this least compatible model of �R implies a particu-
lar goal or atom a, which we write as lm( �R, D) |= ∃̃ a, where ∃̃ a existentially
quantifies over all free variables in a.

Much work on the implementation and optimization of CLP programs has
focused on answering such queries efficiently. In the following section, we leverage
this effort to check correctness properties of an example program, without the
need for procedure specifications or loop invariants.

3 Overview

To illustrate our method, consider the example program shown in Figure 1, col-
umn 1. This program is a variant of the locking example used by the BLAST
checker [18]. The procedures lock and unlock acquire and release the lock L, re-
spectively, where L = 1 if the lock is held, and is zero otherwise. The correctness
property we wish to check is that (1) the procedure lock is never called when
the lock is already held, and (2) the procedure unlock is never called unless the
lock is already held. These correctness properties are expressed as assertions in
the lock and unlock procedures. Hence, checking these properties reduces to
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Program Transfer relations Error relations

lock() {
assert L = 0;
L := 1;

}

unlock() {
assert L = 1;
L := 0;

}

main() {
loop();
unlock();

}

loop() {
lock();
D := N;
unl();
if (N != D) {

loop();
} else {

// skip
}

}

unl() {
if (*) {

unlock();
// N++;

} else {
// skip

}
}

Tlock(L, N, D, L1, N, D) ←
∧ L = 0
∧ L1 = 1

Tunlock(L, N, D, L1, N, D) ←
∧ L = 1
∧ L1 = 0

Tmain(L, N, D, L2, N2, D2) ←
∧ Tloop(L, N, D, L1, N1, D1)
∧ Tunlock(L1, N1, D1, L2, N2, D2)

Tloop(L, N, D, L4, N4, D4) ←
∧ Tlock(L, N, D, L1, N1, D1)
∧ D2 = N1
∧ Tunl(L1, N1, D2, L3, N3, D3)
∧ ∨ ∧ N3 �= D3

∧ Tloop(L3, N3, D3, L4, N4, D4)
∨ ∧ N3 = D3

∧ L4 = L3
∧ N4 = N3
∧ D4 = D3

Tunl(L, N, D, L1, N1, D1) ←
∨ Tunlock(L, N, D, L1, N1, D1)
∨ ∧ L1 = L

∧ N1 = N
∧ D1 = D

Elock(L, N, D) ←
L �= 0

Eunlock(L, N, D) ←
L �= 1

Emain(L, N, D) ←
∨ Eloop(L, N, D)
∨ ∧ Tloop(L, N, D, L1, N1, D1)

∧ Eunlock(L1, N1, D1)

Eloop(L, N, D) ←
∨ Elock(L, N, D)
∨ ∧ Tlock(L, N, D, L1, N1, D1)

∧ D2 = N1
∧ ∨ Eunl(L1, N1, D2)

∨ ∧ Tunl(L1, N1, D2, L3, N3, D3)
∧ N3 �= D3
∧ Eloop(L3, N3, D3)

Eunl(L, N, D) ←
Eunlock(L, N, D)

Fig. 1. The example program and the corresponding error and transfer relations.

checking whether the example program goes wrong by violating either of these
assertions.

The example contains three other routines, which manipulate two additional
global variables, N and D. Thus, the state of the store is captured by the triple
〈L, N, D〉. The example uses the notation if (*) ... to express nondetermin-
istic choice.

Our method translates each procedure m into two CLP relations:

1. the error relation Em(L, N, D), which describes states 〈L, N, D〉 from which
the execution of m may go wrong by failing an assertion, and
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2. the transfer relation Tm(L, N, D, L′, N ′, D′), which, when m terminates nor-
mally, describes the relation between the pre-state 〈L, N, D〉 and post-state
〈L′, N ′, D′〉 of m.

The transfer and error relations for the example program are shown in Fig-
ure 1, columns 2 and 3, respectively. The relation Elock says that lock goes
wrong if L is not initially 0, and Tlock says that lock terminates normally
if L is initially 0, where L = 1 and N and D are unchanged the post-state.
The relation Emain says that main goes wrong if either loop goes wrong, or
loop terminates normally and unlock goes wrong in the post-state of loop. The
other relation definitions are similarly intuitive. Automatically generating these
definitions from the program source code is straightforward.

We use these relation definitions to check if an invocation of main may go
wrong by asking the CLP query Emain(L, N, D). This query is satisfiable in the
case where L = 1, indicating that the program may go wrong if the lock is held
initially, and an inspection of the source code shows that this is indeed the case.

If we provide the additional precondition that the lock is not initially held,
then the corresponding CLP query

L = 0 ∧ Emain(L, N, D)

is still satisfiable. An examination of the satisfying CLP derivation shows that it
corresponds to the following execution trace: main calls loop, which calls lock,
which returns to loop, which calls unl, which calls unlock, which returns to
unl, which returns to loop, which returns to main, which calls unlock, which
fails its assertion, since there are two calls to unlock without an intervening call
to lock.

The reason for this bug is that the increment operation N++ in unl (which is
present in the original BLAST example) is commented out. After uncommenting
this increment operation, the modified transfer relation for unl is:

Tunl(L, N, D, L1, N2, D1) ←
∨ ∧ Tunlock(L, N, D, L1, N1, D1)

∧ N2 = N1 + 1
∨ ∧ L1 = L

∧ N2 = N
∧ D1 = D

The above CLP query is now unsatisfiable, indicating that the fixed example
program does not go wrong and thus satisfies the desired correctness property.

4 The Source Language

This section presents the syntax and semantics of the imperative language that
we use as the basis for our formal development.
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4.1 Syntax

A program is a sequence of procedure definitions. Each procedure definition con-
sists of a procedure name and a sequence of formal parameters, which are bound
in the procedure body, and can be α-renamed in the usual fashion. The procedure
body is an expression. Expressions include variable reference and assignment,
let-expressions, application of primitive functions and user-defined procedures,
conditionals, and assertions. To illustrate the handling of heap-allocated data
structures, the language includes mutable pairs, and provides operations to cre-
ate pairs and to access and update each field i of a pair, for i = 1, 2. Although
our language does not include iterative constructs such as while or for loops,
they can easily being encoded as tail-recursive procedures. In addition to lo-
cal variables bound by let-expressions and parameter lists, programs may also
manipulate the global variables �g. For simplicity, the language is untyped, al-
though we syntactically distinguish boolean expressions, which are formed by
the application of a primitive predicate to a sequence of arguments.

Programming Language Syntax
(programs) P ::= �D
(definitions) D ::= m(�x) {e}
(expressions) e ::= x | x := e | let x = e in e

| f(�e) | m(�e) | if p(�e) e e
| assert p(�e) | 〈e, e〉 | e.i | e.i := e

(procedure names) m
(global variables) �g

(special variables) �h = h.h1.h2

Throughout this paper, we assume the original program and the desired cor-
rectness property have already been combined into an instrumented program,
which includes assert statements that check that the desired correctness prop-
erty is respected by the program. We say an execution of the instrumented
program goes wrong if it fails an assertion because the original program fails the
desired correctness property. The focus of this paper is to statically determine
if the instrumented program can go wrong.

Notation. We use �X to denote a sequence of entities, �X.�Y denotes sequence
concatenation, and ε is the empty sequence. We sometimes interpret sequences
as sets, and vice-versa. If M is a (partial) map, then the map M [X := Y ] maps
X to Y and is otherwise identical to M , and the map M [−X] is undefined on
X and is otherwise identical to M . The operations M [ �X := �Y ] and M [− �X] are
defined analogously. We use �X = �Y to abbreviate X1 = Y1 ∧ . . . ∧ Xn = Yn.
We use e1 ; e2 to abbreviate let x = e1 in e2, where x is not free in e2.

4.2 Semantics

We formalize the meaning of programs using a “big step” operation semantics. A
store σ is a partial mapping from variables to values. The set of values includes
constants and maps. To represent pairs, the store σ maps three special variables,
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P � e : σ → σ′, v P � e : σ wr

P � x : σ → σ, σ(x)

P � e : σ wr

P � x := e : σ wr

P � e : σ → σ′, v

P � x := e : σ → σ
′[x := v], v

P � e1 : σ wr

P � let x = e1 in e2 : σ wr

P � e1 : σ → σ′, v1

P � e2 : σ′[x := v1] wr
P � let x = e1 in e2 : σ wr

P � e1 : σ → σ′, v1

P � e2 : σ′[x := v1] → σ′′, v2

P � let x = e1 in e2 : σ → σ
′′[−x], v2

P � �e : σ wr

P � f(�e) : σ wr

P � �e : σ → σ′, �v

P � f(�e) : σ → σ
′
, Mf (f, �v)

P � �e : σ wr

P � m(�e) : σ wr

P � �e : σ → σ′, �v
m(�x) {e} ∈ P

�x ∩ dom(σ′) = ∅
P � e : σ′[�x := �v] wr

P � m(�e) : σ wr

P � �e : σ → σ′, �v
m(�x) {e} ∈ P

�x ∩ dom(σ′) = ∅
P � e : σ′[�x := �v] → σ′′, v

P � m(�e) : σ → σ
′′[−�x], v

P � �e : σ → σ′, �v
if Mp(p,�v) then i = 1 else i = 2

P � ei : σ′ → σ′′, v

P � if p(�e) e1 e2 : σ → σ
′′

, v

P � �e : σ wr

P � if p(�e) e1 e2 : σ wr

P � �e : σ → σ′, �v
if Mp(p,�v) then i = 1 else i = 2

P � ei : σ′ wr
P � if p(�e) e1 e2 : σ wr

P � �e : σ wr

P � assert p(�e) : σ wr

P � �e : σ → σ′, �v
Mp(p,�v) = false

P � assert p(�e) : σ wr

P � �e : σ → σ′, �v
Mp(p,�v) = true

P � assert p(�e) : σ → σ, 0

P � e1.e2 : σ wr

P � 〈e1, e2〉 : σ wr

P � e1.e2 : σ → σ′, v1.v2 σ′(h)(l) = 0
σ′′ = σ′[h := σ′(h)[l := 1], hi := σ′(hi)[l := vi]i∈1,2]

P � 〈e1, e2〉 : σ → σ
′′

, l

P � e : σ wr

P � e.i : σ wr

P � e : σ → σ′, l

P � e.i : σ → σ
′
, σ(hi)(l)

P � e1.e2 : σ wr

P � e1.i := e2 : σ wr

P � e1.e2 : σ → σ′, v1.v2

σ′′ = σ′[hi := σ′(hi)[v1 := v2]]
P � e1.i := e2 : σ → σ

′′
, v2

P � �e : σ → σ′, �v P � �e : σ wr

P � ε : σ → σ, ε

P � e : σ wr

P � e.�e : σ wr

P � e : σ → σ′, v
P � �e : σ′ wr
P � e.�e : σ wr

P � e : σ → σ′, v
P � �e : σ′ → σ′′, �v

P � e.�e : σ → σ
′′

, v.�v

Fig. 2. Evaluation rules.
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h, h1, and h2, to maps. The map σ(h) describes which locations have been allo-
cated, and σ(h1) and σ(h2) describe the components of allocated pairs. For any
heap location l, if σ(h)(l) = 0 then the location l is not allocated, otherwise the
components of the pair at location l are given by σ(h1)(l) and σ(h2)(l), respec-
tively. This representation of pairs significantly simplifies the correspondence
proof between imperative programs and constraint logic programs.

The judgment P � e : σ → σ′, v states that, when started from an initial store
σ, the evaluation of expression e may terminate normally yielding a result value
v and resulting store σ′. The judgment P � e : σ wr states that, when started
from an initial store σ, the evaluation of expression e may go wrong by failing an
assertion. Similarly, the judgments P � �e : σ → σ′, �v and P � �e : σ wr describes
whether an expression sequence �e terminates normally, yielding value sequence
�v, or goes wrong, respectively. The rules defining these judgments are shown
in Figure 2. These rules rely on the function Mf : FnSym × Value∗ → Value
and the relation Mp ⊆ PredSym × Value∗ to provide the meaning of primitive
functions and predicates, respectively.

5 Translating Imperative Programs into CLP

We now describe the translation of imperative programs into CLP. At each step
in the translation, the environment Γ maps each program variable x into a CLP
term that provides a symbolic representation of the value of x. Given the initial
environment Γ for an expression e, the judgment

Γ � e → w | n·Γ ′ ·t

describes the behavior of e. The wrong condition w is a constraint describing
initial states from which e may go wrong by failing an assertion. For example,
the wrong condition of assert x = 0 is Γ (x) 	= 0, i.e., the assertion goes wrong
if x is not initially 0. Similarly, the normal condition n describes the initial
states from which e may terminate normally. In this case, the environment Γ ′

symbolically describes values of variables in the post-state, and the term t is a
symbolic representation of the result of e. The judgment Γ � �e → w | n ·Γ ′ ·�t
behaves in a similar manner on expression sequences, which may go wrong or
may terminate normally producing a value sequence represented by �t.

The rules defining these judgements are shown in Figure 3. The rule [exp var]
states that the variable access x never goes wrong and always terminate normally
without changing the program state. The rule retrieves a symbolic representation
Γ (x) for the value of x from the environment. The rule [exp assign] for an
assignment x := e determines a symbolic representation t for e, and updates
the environment to record that t represents of the current value of x. The rule
[exp let] states that let x = e1 in e2 goes wrong if either e1 goes wrong or if
e1 terminates normally and e2 goes wrong.

Some translation rules are more complicated. For example, the rule [exp if]
for the conditional if p(�e) e1 e2 needs to merge the environments Γ ′

i produced by
the translation of ei, for i = 1, 2. To accomplish this merge, the rule determines
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Γ � e → w | n·Γ ′ ·t Γ � �e → w | n·Γ ′ ·�t

[exp var]

Γ � x → false | true ·Γ ·Γ (x)

[exp assign]
Γ � e → w | n·Γ ′ ·t

Γ � x := e → w | n·Γ ′[x := t]·t
[exp let]

Γ � e1 → w1 | n1 ·Γ1 ·t1

Γ1[x := t1] � e2 → w2 | n2 ·Γ2 ·t2

Γ � let x = e1 in e2 → w1 ∨ (n1 ∧ w2) | n1 ∧ n2 ·Γ2[−x]·t2

[exp fn]
Γ � �e → w | n·Γ ′ ·�t

Γ � f(�e) → w | n·Γ ′ ·f(�t)

[exp call]
Γ � �e → w | n·Γ ′ ·�t

z, �g′, �h′ fresh
w′ ≡ w ∨ (n ∧ Em(�t, Γ ′(�g), Γ ′(�h)))
n′ ≡ n ∧ Tm(�t, Γ ′(�g), Γ ′(�h), �g′, �h′, z)

Γ ′′ ≡ Γ ′[�g := �g′,�h := �h′]
Γ � m(�e) → w′ | n′ ·Γ ′′ ·z

[exp if]
Γ � �e → w | n·Γ ′ ·�t Γ ′ � ei → wi | ni ·Γ ′

i ·ti

z fresh �y = {y | Γ ′
1(y) �= Γ ′

2(y)}

Γ ′′(x) =

{
Γ ′

1(x) if x �∈ �y
fresh var if x ∈ �y

w′ ≡ w ∨ (n ∧ p(�t) ∧ w1) ∨ (n ∧ ¬p(�t) ∧ w2)
n′

1 ≡ n ∧ p(�t) ∧ n1 ∧ z = t1 ∧ Γ ′′(�y) = Γ ′
1(�y)

n′
2 ≡ n ∧ ¬p(�t) ∧ n2 ∧ z = t2 ∧ Γ ′′(�y) = Γ ′

2(�y)
Γ � if p(�e) e1 e2 → w′ | (n′

1 ∨ n′
2)·Γ ′′ ·z

[exp assert]
Γ � �e → w | n·Γ ′ ·�t

Γ � assert p(�e) → w ∨ (n ∧ ¬p(�t)) | n ∧ p(�t)·Γ ′ ·0
[exp pair]

Γ � e1.e2 → w | n·Γ ′ ·t1.t2

Γ ′′ ≡ Γ ′[hi := store(Γ ′(hi), l, ti)i∈1,2, h := store(h, l, 1)]
l fresh n′ ≡ n ∧ select(Γ (h), l) = 0)

Γ � 〈e1, e2〉 → w | n′ ·Γ ′′ ·l

[exp field ref]
Γ � e → w | n·Γ ′ ·t

Γ � e.i → w | n·Γ ′ ·select(Γ ′(hi), t)

[exp field assign]
Γ � e1.e2 → w | n·Γ ′ ·t1.t2

Γ ′′ ≡ Γ ′[hi := store(Γ ′(hi), t1, t2)]
Γ � e1.i := e2 → w | n·Γ ′′ ·t2

[exps none]

Γ1 � ε → false | true ·Γ ·ε

[exps some]
Γ � e → w | n·Γ ′ ·t Γ ′ � �e → w′ | n′ ·Γ ′′ ·�t

Γ � e.�e → w ∨ (n ∧ w′) | n ∧ n′ ·Γ ′′ ·t.�t

� D → �R � P → �R

[def]
Γ ≡ [�x := �x,�g := �g,�h := �h]

Γ � e → w | n·Γ ′ ·t
�R =

{
Em(�x,�g,�h) ← w

Tm(�x,�g,�h, Γ ′(�g), Γ ′(�h), t) ← n

}

� m(�x) {e} → �R

[defs]
P = D1. · · · .Dn � Di → �Ri

� P → �R1. · · · . �Rn

Fig. 3. Translation rules.
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the set �y of variables assigned in either e1 or e2, and introduces an environment
Γ ′′ that maps �y to fresh variables. Then, having determined that the branch
ei of the conditional is executed, the rule asserts that the Γ ′′(�y) = Γ ′

i (�y), thus
recording that the representation of �y in the resulting environment Γ ′′ come from
the branch ei. This translation of conditionals avoids the exponential blow-up of
traditional VC generation algorithms [10], and is analogous to the compact VC
generation algorithm of ESC/Java [16].

Our translation for pairs relies on the primitive functions select and store,
where store(a, i, v) extends a functional map a at index i with value v, and
select(a, i) selects the element at index i from map a. These two functions
satisfy the select-of-store axioms:

select(store(a, i, v), i) = v
i 	= j ⇒ select(store(a, i, v), j) = select(a, j)

To aid in the translation, the environment Γ maps the special variables h, h1, h2
into CLP terms that symbolically model of the current state of the heap. The
rule [exp pair] for the pair creation expression 〈e1, e2〉 introduces a fresh vari-
able l and asserts that select(Γ (h), l) = 0, which means that the location l
is not yet allocated. The rule then updates the environment (1) to map h to
store(Γ (h), l, 1), indicating that location l is now allocated, and (2) to map
each hi to store(Γ (hi), l, ti), where the term ti represents the value of ei, for
i = 1, 2. Thus, the rule records the contents of the pair in the new terms for h1
and h2. The rules for accessing and updating pairs operate in a similar manner.

The most novel aspect of our translation concerns its handling of procedure
calls. Earlier approaches translated procedure calls using user-supplied specifi-
cations. However, since writing specifications for all procedures imposes a signif-
icant burden on the programmer, we use a different approach that leverages the
ability to define relation symbols recursively in CLP.

We translate each procedure definition m(�x) {e} into two rules. The first rule
defines an error relation Em that describes pre-states from which an invocation of
m may go wrong; the second rule defines a transfer relation Tm that, in situations
where m terminates normally, describes the pre-state/post-state relation of m.
The arguments to the error relation Em are the formal parameters �x, the global
variables �g, plus the three special variables �h = h.h1.h2 that model the heap. The
arguments to Tm are again the formal parameters �x, the globals �g, the special
variables �h, followed by �g′, which represents the post-state of the global variables,
followed by �h = h′.h1

′.h2
′, which represents the post heap state, followed by a

term representing the return value of m. The rule [exp call] for a procedure call
m(�e) generates a wrong condition w′ that uses Em to express states from which
the execution of m(�e) may go wrong, and generates a normal condition n′ that
uses Tm to describe how m(�e) may terminate normally.

5.1 Correctness of the Translation

Given an imperative program P , we translate it into error and transfer rela-
tions �R according to the translation rule � P → �R. For any expression e, the
judgement
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Γ � e → w | n·Γ ′ ·t

describes the behavior of that expression from any initial state σ that is com-
patible with Γ , i.e., where dom(Γ ) ⊆ dom(σ) and lm( �R, D) |= ∃̃ (σ = Γ ). We
use the notation σ = Γ to abbreviate

∧
x∈dom(σ) σ(x) = Γ (x), where σ(x) means

the ground term representing the value σ(x).
To determine if e goes wrong from σ (i.e., P � e : σ wr), we check

lm( �R, D) |= ∃̃ (σ = Γ ∧ w) .

Similarly, to check if e terminates normally, yielding post-store σ′ and result v,
we check

lm( �R, D) |= ∃̃ (σ = Γ ∧ n ∧ σ′ = Γ ′ ∧ v = t) .

Thus, to check if the program’s initial procedure main goes wrong, we use the
CLP query:

lm( �R, D) |= ∃̃ Emain(�g,�h) .

If this query is satisfiable, the CLP implementation returns a satisfying assign-
ment for �g and �h, describing the initial state of an erroneous execution. If the
CLP implementation also returns a CLP derivation, then this derivation corre-
sponds in a fairly direct manner to a trace of the erroneous execution.

6 Applications

We next consider the example program shown in Figure 4, which, for clarity,
is presented using Java syntax. This class implements rational numbers, where
a rational is represented as a pair of integers for the numerator and denomina-
tor. The class contains a constructor for creating rationals and a method trunc
for converting a rational to an integer. The example also contains a test har-
ness, which reads in two integers, n and d, ensures that d is not zero, creates
a corresponding rational, and then repeatedly prints out the truncation of the
rational.

We wish to check that a division-by-zero error never occurs. We express this
correctness property as an assertion in the trunc method, and translate the
instrumented program into CLP rules. The CLP query Emain() is satisfiable,
indicating an error in the program. An investigation of a satisfying CLP deriva-
tion reveals the source of the error: the arguments are passed to the Rational
constructor in the wrong order. Note that since both arguments are integers,
Java’s type system does not catch this error.

After fixing this bug, the query Emain() is now unsatisfiable, indicating that
a division-by-zero error cannot occur. However, the CLP implementation that
we use, SICStus Prolog [27], requires several seconds to answer this query, since
its depth-first search strategy explicitly iterates through the loop in main 10,000
times.

To avoid this inefficiency, we are currently developing a CLP implementa-
tion optimized towards software model checking. This implementation uses lazy
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class Rational {

int num, den;

Rational(int n, int d) {
num = n;
den = d;

}

int trunc() {
assert den != 0;
return num/den;

}
}

public static void main(String[] a) {
int n = readInt(), d = readInt();
if( d == 0 ) {

return;
}
Rational r = new Rational(d,n);
for(int i=0; i<10000; i++) {

print( r.trunc() );
}

}

Fig. 4. The example program Rational.

predicate abstraction and counter-example driven abstraction refinement. Our
prototype implementation determines the unsatisfiability of the Rational ex-
ample in just two iterations. We are currently extending this implementation to
handle more realistic benchmarks.

7 Related Work

This paper can be viewed as a synthesis of ideas from extended static check-
ing [8,14] and model checking [5,24,3,23]. An extended static checker translates
the given program into a combination of constraints over program variables, and
uses sophisticated decision procedures to reason about the validity of these con-
straints, thus performing a precise, goal-directed analysis. However, the transla-
tion of (recursive) procedure calls requires programmer-supplied specifications.
We build on top of the ESC approach, but avoid the need for procedure specifica-
tions by targeting the extended logic of CLP, in which we can express recursion
directly.

The depth-first search of standard CLP implementations [27] corresponds to
explicit path exploration, much like that performed by software model checkers,
such as Bandera [11]. However, whereas Bandera relies on programmer-supplied
abstractions to abstract (infinite-state) data variables, the CLP implementation
reasons about data values using collections of constraints, thus providing a form
of automatic data abstraction. The programmer-supplied abstractions of Ban-
dera do provide stronger termination guarantees, but may yield false alarms.

The software checkers SLAM [1] and BLAST [18] use a combination of predi-
cate abstraction [17] and automatic predicate inference to avoid false alarms and
the need for programmer-supplied abstractions, though they may not terminate.
These tools have been successfully applied to a number of device drivers. Both
tools abstract the given imperative program to a finite-state boolean program,
which is then model checked. This paper suggests that the well-studied logic of
CLP may also provide a suitable foundation for the development of such tools.
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Delzanno and Podelski [7] also explore the use of CLP for model checking.
They focus on concurrent systems expressed in the guarded-command specifica-
tion language proposed by Shankar [26], which does not provide explicit support
for dynamic allocation or recursion. The performance of their CLP-based model
checking approach is promising.

Bruening [2] has built a dynamic assertion checker based on state-space ex-
ploration for multithreaded Java programs. Stoller [28] provides a generalization
of Bruening’s method to allow model checking of programs with either message-
passing or shared-memory communication. Both of these approaches operate on
the concrete program without any abstraction. Yahav [30] describes a method to
model check multithreaded Java programs using a 3-valued logic [25] to abstract
the store.

Abstract interpretation [6] is a standard framework for developing and de-
scribing program analyses. It provides the semantics basis for the abstractions
in the above model checking tools and it has been applied successfully in many
applications, including rocket controllers [29].

Instead of avoiding the need for loop invariants and specifications, another
approach is to infer such annotations automatically. The Houdini annotation
inference system [15,13] re-uses ESC/Java as a subroutine in a generate-and-
test approach to annotation inference. Daikon uses an empirical approach to
find probable invariants [12].

Symbolic execution is the underlying technique of the successful bug-finding
tool PREfix for C and C++ programs [4]. For each procedure in the given
program, PREfix synthesizes a set of execution paths, called a model. Models
are used to reason about calls, which makes the process somewhat modular,
except that fixpoints of models are approximated iteratively for recursive and
mutually recursive calls.

8 Conclusion

This paper explores the connection between two programming paradigms:
the traditional imperative paradigm and the constraint logic programming
paradigm. We have expressed the correctness of imperative programs in terms
of CLP satisfiability, based on a novel, semantics-preserving translation from
imperative programs to CLP programs. The resulting CLP programs provide a
clean way to reason about the behavior and correctness of the original imperative
program.

This connection has immediate practical applications: it enables us to use ex-
isting CLP implementations to check correctness properties of imperative pro-
grams. For depth-first CLP implementations, this approach yields an efficient
method for bounded model checking of software, using a combination of sym-
bolic reasoning for data values and explicit path exploration.

Finally, the logic of CLP is well-studied [19,21,20,22], and may provide op-
timizations and implementation techniques such as tableaux methods and sub-
sumption [22], which offer the promise of complete model checking on certain
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classes of infinite-state programs. More experience on practical examples is cer-
tainly necessary, and may provide intuition and motivation to develop specialized
CLP implementations optimized for software model checking.

References

1. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties
of interfaces. In M. B. Dwyer, editor, Model Checking Software, 8th International
SPIN Workshop, volume 2057 of Lecture Notes in Computer Science, pages 103–
122. Springer, May 2001.

2. D. Bruening. Systematic testing of multithreaded Java programs. Master’s thesis,
Massachusetts Institute of Technology, 1999.

3. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, 1992.

4. W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dynamic
programming errors. Software—Practice & Experience, 30(7):775–802, June 2000.

5. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Workshop on Logic of Programs, Lecture
Notes in Computer Science, pages 52–71. Springer-Verlag, 1981.

6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analyses of programs by construction or approximation of fixpoints. In Proceedings
of the Symposium on the Principles of Programming Languages, pages 238–252,
1977.

7. G. Delzanno and A. Podelski. Model checking in CLP. Lecture Notes in Computer
Science, 1579:223–239, 1999.

8. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking.
Research Report 159, Compaq Systems Research Center, Dec. 1998.

9. D. L. Detlefs, G. Nelson, and J. B. Saxe. A theorem prover for program analysis.
Manuscript in preparation, 2002.

10. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs,
NJ, 1976.

11. M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser,
and H. Zheng. Tool-supported program abstraction for finite-state verification. In
Proceedings of the 23rd International Conference on Software Engineering, 2001.

12. M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting
relevant program invariants. In Proceedings of the 22nd International Conference
on Software Engineering (ICSE 2000), Limerick, Ireland, June 2000.

13. C. Flanagan, R. Joshi, and K. R. M. Leino. Annotation inference for modular
checkers. Inf. Process. Lett., 77(2–4):97–108, Feb. 2001.

14. C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata. Extended
static checking for Java. In Proceedings of the Conference on Programming Lan-
guage Design and Implementation, pages 234–245, June 2002.

15. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java.
In J. N. Oliveira and P. Zave, editors, FME 2001: Formal Methods for Increasing
Software Productivity, volume 2021 of Lecture Notes in Computer Science, pages
500–517. Springer, Mar. 2001.

16. C. Flanagan and J. B. Saxe. Avoiding exponential explosion: Generating compact
verification conditions. In Conference Record of the 28th Annual ACM Symposium
on Principles of Programming Languages, pages 193–205. ACM, Jan. 2001.



Automatic Software Model Checking Using CLP 203
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Abstract. This paper addresses the problem of establishing temporal properties
of programs written in languages, such as Java, that make extensive use of the
heap to allocate—and deallocate—new objects and threads. Establishing liveness
properties is a particularly hard challenge. One of the crucial obstacles is that heap
locations have no static names and the number of heap locations is unbounded. The
paper presents a framework for the verification of Java-like programs. Unlike clas-
sical model checking, which uses propositional temporal logic, we use first-order
temporal logic to specify temporal properties of heap evolutions; this logic allows
domain changes to be expressed, which permits allocation and deallocation to be
modelled naturally. The paper also presents an abstract-interpretation algorithm
that automatically verifies temporal properties expressed using the logic.

1 Introduction

Modern programming languages, such as Java, make extensive use of the heap. The
contents of the heap may evolve during program execution due to dynamic allocation
and deallocation of objects. Moreover, in Java, threads are first-class objects that can be
dynamically allocated. Statically reasoning about temporal properties of such programs
is quite challenging, because there are no a priori bounds on the number of allocated
objects, or restrictions on the way the heap may evolve. In particular, proving liveness
properties of such programs, e.g., that a thread is eventually created in response to each
request made to a web server, can be a quite difficult task.

The contributions of this paper can be summarized as follows:

1. We introduce a first-order modal (temporal) logic [9,8] that allows specifications of
temporal properties of programs with dynamically evolving heaps to be stated in a
natural manner.

2. We develop an abstract interpretation [4] for verifying that a program satisfies such
a specification.

3. We implemented a prototype of the analysis using the TVLA system [11] and ap-
plied it to verify several temporal properties, including liveness properties of Java
programs with evolving heaps.
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the Academy of Science Israel, by the RTD project IST-1999-20527 “DAEDALUS” of the
European FP5 programme, by ONR under contract N00014-01-1-0796, and by the A. von
Humboldt Foundation.
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We have used the framework to specify and verify the following:
Specify general heap-evolution properties: The framework has been used to specify

in a general manner, various properties of heap evolution, such as properties of garbage-
collection algorithms.

Verify termination of sequential heap-manipulating programs: Termination is shown
by providing a ranking function based on the set of items reachable from a variable
iterating over the linked data structure. In particular, we have verified termination of all
example programs from [6].

Verify temporal properties of concurrent heap-manipulating programs: We have used
the framework to verify temporal properties of concurrent heap-manipulating programs
— in particular, liveness properties, such as the absence of starvation in programs using
mutual exclusion, and response properties [13].We have applied this analysis to programs
with an unbounded number of threads.

Due to space limitations, the prototype implementation is only discussed in [17,20].
The remainder of this paper is organized as follows: Section 2 gives an overview of

the verification method and contrasts it with previous work. Section 3 introduces trace
semantics based on first-order modal logic, and discusses how to state trace properties
using the language of evolution logic. Section 4 defines an implementation of trace
semantics via first-order logic. Section 5 shows how abstract traces are used to conser-
vatively represent sets of concrete traces. Section 6 summarizes related work. Finally,
Section 7 concludes the paper.

2 Overview

2.1 A Temporal Logic Supporting Evolution

The specification language, Evolution Temporal Logic (ETL), is a first-order linear tem-
poral logic that allows specifying properties of the way program execution causes dy-
namically allocated memory (“the heap”) to evolve. It is natural to consider the concrete
semantics of a program as the set of its execution traces [5,16], where each trace is an
infinite sequence of worlds. First-order logical structures provide a natural representa-
tion of worlds with an unbounded number of objects: an individual of the structure’s
domain (universe) corresponds to an anonymous, unique store location, and predicates
represent properties of store locations. Such a representation allows properties of the
heap contents to be maintained while abstracting away any information about the actual
physical locations in the store.

This gives rise to traces in which worlds along the trace may have different domains.
Such traces can be seen as models of a first-order modal logic with a varying-domain
semantics [8]. This could be equivalently, but less naturally, modelled using constant-
domain semantics.

This framework generalizes other specification methods that address dynamic allo-
cation and deallocation of objects and threads. In particular, its descriptive power goes
beyond Propositional LTL and finite-state machines (e.g., [1]).

Program properties can be verified by showing that they hold for all traces. Techni-
cally, this can be done by evaluating their first-order modal-logic formulae against all
traces. We use a variant of Lewis’s counterpart theory [12] to cast modal models (and
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formula evaluation) in terms of classical predicate logic with transitive closure (FOT C)
[3].

Program verification using the above concrete semantics is clearly non-computable
in general. We therefore represent potentially infinite sets of infinite concrete traces
by one abstract trace. Infinite parts of the concrete traces are folded into cycles of the
abstract traces. Termination of the abstract interpretation on an arbitrary program is
guaranteed by bounding the size of the abstract trace. Two abstractions are employed:
(i) representing multiple concrete worlds by a single abstract world, and (ii) creating
cycles when an abstract world reoccurs in the trace.

Because of these abstractions, we may fail to show the correctness of certain pro-
grams, even though they are correct. Fortunately, we can use reduction arguments and
progress monitors as employed in other program-verification techniques (e.g., [10]).

As in finite-state model checking (e.g., [16]), we let the specification formula affect
the abstraction by making sure that abstract traces that fulfill the formula are distinguished
from the ones that do not. However, our abstraction does not fold the history of the trace
into a single state. This idea of using the specification to affect the precision of the
analysis was not used in [15,18], which only handle safety properties.

2.2 Overview of the Verification Procedure

First, the property ϕ is specified in ETL. The formula is then translated in a straight-
forward manner into an FOT C logical formula, (ϕ)†, using a translation procedure
described in Appendix A. An abstract-interpretation procedure is then applied to explore
finite representations of the set of traces, using Kleene’s 3-valued logic to conservatively
interpret formulae. The abstract-interpretation procedure essentially computes a great-
est fixed point over the set of traces, starting with an abstract trace that represents all
possible infinite traces from an initial state, and gradually increasing the set of abstract
traces and reducing the set of represented concrete traces. Finally, the formula (ϕ)† is
evaluated on all of the abstract traces in the fixed point. If (ϕ)† is satisfied in all of them,
then the original ETL formula ϕ must be satisfied by all (infinite) traces of the program.
However, it may be the case that for some programs that satisfy the ETL specification,
our analysis only yields “maybe”.

2.3 Running Example

Consider a web server in which a new thread is dynamically allocated to handle each
http request received. Each thread handles a single request, then terminates and is
subject to garbage collection. Assume that worker threads compete for some exclusively
shared resource, such as exclusive access to a data file. Figure 1 shows fragments of a
Java program that implements such a naive web server.

A number of properties for the naive web-server implementation are shown in Tab. 1
as properties P1–P4. For now you may ignore the formulae in the third column; these
will become clear as ETL syntax is introduced in Sec. 3.

Due to the unbounded arrival of requests to the web server, and the fact that a thread
is dynamically created for each request, absence of starvation (P2) does not hold in
the naive implementation. To guarantee absence of starvation, we introduce a scheduler
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public class Worker implements Runnable {
Request request;
Resource resource; ...
public void run() { ...
synchronized(resource) { lw1

resource.processRequest(request); lwc

} lw2

}}
Fig. 1. Java fragment for worker thread in a web server with no explicit scheduling.

thread into the web server. The web server now consists of a listener thread (as before)
and a queue of worker threads managed by the scheduler thread. The listener thread
receives an http request, creates a corresponding worker thread, and places the new
thread on a scheduling queue. The scheduler thread picks up a worker thread from the
queue and starts its execution (which is still a very naive implementation).

When using a web server with a scheduler, a number of additional properties of in-
terest exist, labeled P5–P8 (for additional properties of interest see [17]). Figure 2 shows
fragments of a web-server program in which threads use an explicit FIFO scheduler.

The ability of our framework to model explicit scheduling queues provides a mech-
anism for addressing issues of fairness in the presence of dynamic allocation of threads.
(Further discussion of fairness is beyond the scope of this paper).

public class Scheduler
implements Runnable {

protected Queue schedQ;
protected Resource resource; ...
public void run() {
while(true) { ... ls1
synchronized(resource) { ls2
while(resource.isAcquired())
resource.wait(); ls3
// may block until
// queue not empty

worker=schedQ.dequeue(); ls4
worker.start(); ls5

}
}

}
}

public class Listener
implements Runnable {

protected Queue schedQ; ...
public void run() {
while(true) { ... la1
req=rqStream.readObject(); la2
worker=
new Thread(new Worker(req)); la3

schedQ.enqueue(worker); la4
... }

}}
public class Worker

implements Runnable {
Request req;
Resource resource; ...
public void run() {
synchronized(resource) { ... lw1
resource.processRequest(req); lwc

resource.notifyAll();
} lw2

}}

Fig. 2. Java code fragment for a web server with an explicit scheduler.

3 Trace-Based Evolution Semantics

In this section, we define a trace-based semantic domain for programs that manipulate
unbounded amounts of dynamically allocated storage. To allow specifying temporal
properties of such programs, we employ first-order modal logic [8]. Various such logics
have been defined, and in general they can be given a constant-domain semantics, in
which the domain of all worlds is fixed, or a varying-domain semantics, in which the
domains of worlds can vary and domains of different worlds can overlap. In the most
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Table 1. Web server ETL specification using predicates of Tab. 2.

Pr. Description Formula

P1 mutual exclusion over the shared resource
�∀t1, t2: thread.(t1 �= t2)

→ ¬(at[lwc](t1) ∧ at[lwc](t2))
P2 absence of starvation for worker threads �∀t: thread.at[lw1](t) → �at[lwc](t)

P3
a thread only created when
a request is received

�(∀t: thread.¬ � t)∨
(∀t: thread.¬ � t) U (∃v: request. � v)

P4 each request is followed by thread creation �∃v: request. � v → �∃t: thread. � t

P5
mutual exclusion of listener and scheduler
over scheduling queue

�∀t1, t2: thread.(t1 �= t2)
→ ¬(at[ls2](t1) ∧ at[la3](t2))

P6
each created thread is eventually
inserted into the scheduling queue

�∀t: thread. � t
→ �∃q: queue.rval[head.next∗](q, t)

P7
each scheduled worker thread was
removed from the scheduling queue

�∀t: thread.at[lw1](t)
→ ¬∃q: queue.rval[head.next∗](q, t)

P8
each worker thread waiting in the queue
eventually leaves the queue

∃q: queue.�∀t: thread.
(rval[head.next∗](q, t))
→ �¬(rval[head.next∗](q, t))

general setting, in both types of semantics an object can exist in more than a single world,
and an equality relation is predefined to express global equality between individuals.

To model the semantics of languages such as Java, and to hide the implementa-
tion details of dynamic memory allocation, we use a semantics with varying domains.
However, the semantics is deliberately restricted because of our intended application
to program analysis. By design, our evolution semantics has a notion of equality in the
presence of dynamic allocation and deallocation, without the need to update a prede-
fined global-equality relation. Evolution semantics is adapted from Lewis’s counterpart
semantics [12]. In both evolution and counterpoint semantics, an individual cannot exist
in more than a single world; each world has its own domain, and domains of different
worlds are non-intersecting. Under this model, equality need only be defined within a
single world’s boundary; individuals of different worlds are unequal by definition.To
relate individuals of different worlds, an evolution mapping is defined; however, unlike
Lewis, we are interested in an evolution mapping that is reflexive, transitive, and sym-
metric, which models the fact that, during a computation, an allocated memory cell does
not change its identity until deallocated. In Sec. 5.3, we show how to track statically, in
the presence of abstraction, the equivalence relation induced by the evolution mapping.

As is often done, we add a skip action from the exit of the program to itself, so that
all terminating traces are embedded in infinite traces. The semantics of the program is
its set of infinite traces.

In the rest of this paper, we work with a fixed set of predicates (or vocabulary)
P = {eq, p1, . . . , pk}. We denote by Pk the set of predicates from P with arity k.

Definition 1. A world (program configuration) is represented via a first-order logical
structure W = 〈Uw, ιw〉, where Uw is the domain (universe) of the structure, and ιw

is the interpretation function mapping predicates to their truth values; that is, for each
p ∈ Pk, ιw(p) : Uk

w → {0, 1}, such that for all u ∈ Uw, ιw(eq)(u, u) = 1, and for all
u1, u2 ∈ Uw such that u1 and u2 are distinct individuals ιw(eq)(u1, u2) = 0.
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Definition 2. A trace is an infinite sequence of worlds π1
Dπ1 ,eπ1 ,Aπ2−−−−−−−−→ π2

Dπ2 ,eπ2 ,Aπ3−−−−−−−−→
. . . , where: (i) each world represents a global state of the program, π1 is an initial state,
and for each πi, its successor world πi+1 is derived by applying a single program
action to πi; (ii) Dπi ⊆ Uπi is the set of individuals deallocated at πi, and Aπi+1 ⊆
Uπi+1 is the set of individuals newly allocated at πi+1; (iii) each pair of consecutive
worlds πi, πi+1 is related by a stepwise evolution function, a bijective renaming function
eπi : Uπi \ Dπi → Uπi+1 \ Aπi+1 .

Extracting Trace Properties

To extract trace properties, we need a language that can relate information from different
worlds in a trace. We define the language of evolution logic (ETL), which is a first-order
linear temporal logic with transitive closure, as follows:

Definition 3. [ETL Syntax] An ETL formula is defined by

ϕ ::= 0|1|p(v1, . . . , vn)| � v1| � v1|ϕ1 ∨ ϕ2|¬ϕ1|∃v1.ϕ1|(TC v1, v2 : ϕ1)(v3, v4)
|ϕ1 U ϕ2|χϕ1

where vi are logical variables.
The set of free variables in a formula ϕ denoted by FV (ϕ) is defined as usual. In

a transitive closure formula, FV ((TC v1, v2 : ϕ1)(v3, v4)) = (FV (ϕ1) \ {v1, v2}) ∪
{v3, v4}.

The operators � and � allow the specification to refer to the exact moments of birth
and death (respectively) of an individual.1

Shorthand Formulae: For convenience, we also allow formulae to contain the short-
hand notations (v1 = v2) � eq(v1, v2), (v1 �= v2) � ¬eq(v1, v2), ϕ1 ∧ ϕ2 �
¬(¬ϕ1∨¬ϕ2), ϕ1 → ϕ2 � ¬ϕ1∨ϕ2, ∀v.ϕ1 � ¬(∃v.¬ϕ1), �ϕ1 � 1 U ϕ1, and �ϕ1 �
¬(1 U ¬ϕ1). We also use the shorthand p∗(v3, v4) for (TC v1, v2 : p(v1, v2))(v3, v4) ∨
(v3 = v4), when p is a binary predicate.

In our examples, the predicates that record information about a single world
include the predicates of Tab. 2, plus additional predicates defined in later sec-
tions. The set of predicates {at[lab](t) : lab ∈ Labels} is parameterized by the
set of program labels. Similarly, the set of predicates {rval[fld](o1, o2) : fld ∈
Fields} is parameterized by the set of selector fields. We use the shorthand notation
rval[x.fld∗](v1, v2) � ∃v′.rval[x](v1, v′) ∧ rval[fld]∗(v′, v2). The transitive closure
allows specifying properties relating to unbounded length of heap-allocated data struc-
tures (e.g., in rval[fld]∗(v′, v2)).

We use unary predicates, such as thread(t), to represent type information. This
could have been expressed using a many-sorted logic, but we decided to avoid this for
expository purposes. Instead, for convenience we define the shorthands ∃v: type.ϕ �
∃v.type(v) ∧ ϕ and ∀v: type.ϕ � ∀v.type(v) → ϕ.

1 These operators could be extended to handle allocation and deallocation of a (possibly un-
bounded) set of individuals.
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Table 2. Predicates used to record information about a single world

Predicates Intended Meaning
thread(t) t is a thread
{at[lab](t) : lab ∈ Labels} thread t is at label lab

{rval[fld](o1, o2) : fld ∈ Fields} field fld of the object o1 points to the object o2

heldBy(l, t) the lock l is held by the thread t

blocked(t, l) the thread t is blocked on the lock l

waiting(t, l) the thread t is waiting on the lock l

Example 1. Property P2 of Tab. 1 specifies the absence of starvation for worker threads
(Fig. 1). The formula ∃t: thread.�at[lwc](t) states that some thread eventually enters
the critical section. The formula �∃t: thread.�at[lwc](t) expresses the fact that globally
some thread eventually enters the critical section.

The property �(∀v. � v → � � v) states that globally, each individual that is
allocated during program execution is eventually deallocated. Note that the universal
quantifier quantifies over individuals of the world in which it is evaluated. This property
is an instance of the commonly used “Response structure” [13,7], in which an allocation
in a world has a deallocation response in some future world.

The properties

∀t: thread.�(at[llh](t) → ∃v.rval[i.next∗](t, v) ∧ �(at[llh](t) ∧ ¬rval[i.next∗](t, v)))
∀t: thread.�(∀v.at[llh](t) ∧ ¬rval[i.next∗](t, v) → �¬at[llh](t) ∨ ¬rval[i.next∗](t, v))

establish a ranking function for linked data structures based on transitive reachability.
These properties state that at the loop head llh, the set of individuals transitively reachable
from program variable i decreases on each iteration of the loop. (Typically i is a pointer
that traverses a linked data structure during the loop.) Note that these properties relate
an unbounded number of individuals of one world to another.

The property �(∀v.��∀t: thread.
∧

x ∈ V ar
fld ∈ F ields

¬rval[x.fld∗](t, v) → � � v) is a

desired property of a garbage collector — that all non-reachable items are eventually
collected.

Evolution Semantics. In the following definitions, head(π) denotes the first world in a
trace π, tail(π) denotes the suffix of π without the first world, and πi denotes the suffix
of π starting at the i-th world. We also use last(τ) to denote the last world of a finite
trace prefix τ .

Definition 4. [Evolution mapping] Let τ be the finite prefix of length k of the trace π.
We say that an individual u ∈ Uhead(τ) evolves into an individual u′ ∈ Ulast(τ) in the
trace π in k steps, and write π |=k u � u′ when there is a sequence of individuals
u1, . . . , uk such that u1 = u and uk = u′ and for each two successive worlds in τ ,
ui+1 = eτi(ui).

Definition 5. [Assignment evolution] Let τ be the finite prefix of length k of the trace
π. Given a formula ϕ and an assignment Z mapping free variables of ϕ to individuals
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of a domain Uhead(τ), we say that π |=k Z � Z ′ (Z evolves into Z ′ in π in k steps)
if for each free variable fvi of ϕ, π |=k Z(fvi) � Z ′(fvi), Z(fvi) ∈ Uhead(τ), and
Z ′(fvi) ∈ Ulast(τ).

Definition 6. [ETL evolution semantics] We define inductively when an ETL formula ϕ
is satisfied over a trace π with an assignment Z (denoted by π, Z |= ϕ) as follows:

– π, Z |= 1, and not π, Z |= 0.
– π, Z |= p(v1, . . . , vk) when ιhead(π)(p)(Z(v1), . . . , Z(vk)) = 1
– π, Z |= ¬ϕ when not π, Z |= ϕ
– π, Z |= ϕ ∨ ψ when π, Z |= ϕ or π, Z |= ψ
– π, Z |= ∃v.ϕ(v) when there exists u ∈ Uhead(π) s.t. π, Z[v �→ u] |= ϕ(v)
– π, Z |= (TC v1, v2 : ϕ)(v3, v4) when there exists u1, . . . , un+1 ∈ Uhead(π), such

that Z(v3) = u1, Z(v4) = un+1, and for all 1 ≤ i ≤ n,
π, Z[v1 �→ ui, v2 �→ ui+1] |= ϕ.

– π, Z |= �v when Z(v) ∈ Ahead(tail(π)).
– π, Z |= �v when Z(v) ∈ Dhead(π).
– π, Z |= χϕ when there exists Z ′ such that tail(π), Z ′ |= ϕ and π |=1 Z � Z ′.
– π, Z |= ϕ U ψ when there exists k ≥ 1, Z ′, and Z ′′ s.t.,

πk, Z ′ |= ψ and π |=k Z � Z ′

and for all 1 ≤ j < k, πj , Z ′′ |= ϕ and π |=j Z � Z ′′,

We write π |= ϕ when π, Z |= ϕ for every assignment Z.

It is worth noting that the first-order quantifiers in this definition only range over
the individuals of a single world, yet the overall effect achieved by using the evolution
mapping is the ability to reason about individuals of different worlds, and how they
relate to each other. In essence, the assignment Z[v �→ u] binds v to (the evolution of)
an individual from the domain of the world over which the quantifier was evaluated (cf.
the semantics of χ and U ).

The combination of first-order quantifiers and modal operators creates complications
that do not occur in propositional temporal logics. In particular, the quantification domain
of a quantifier may vary as the domain of underlying worlds varies. Verification of
ETL properties therefore requires a mechanism for recording the domain related to
each quantifier, and for relating members of quantification domains to individuals of
future worlds. For ETL, this mechanism is provided by evolution-mappings, which relate
individuals of a world to the individuals of its successor world. Transitively composing
evolution-mappings captures the evolution of individuals along a trace.

currWorld

succ succx x x

currWorld

succ succx x
x

(a) (b)

Fig. 3. Interaction of first-order quantifiers and temporal operators
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Example 2. The formula ∃v.�x(v) states that the pointer variable x remains constant
throughout program execution, and points to an object that existed in the program’s
initial world. On the other hand, the formula �∃v.x(v) merely states that x never has
the value null; however, x is allowed to point to different objects at different times in
the program’s execution, and in particular x can point to objects that did not exist in
the initial world. Examples illustrating the two situations are shown in Fig. 3, where in
(a) x points to the same object in all worlds, and in (b) it points to different objects in
different worlds.

Definition 7. We say that a program satisfies an ETL formula ϕ when all (infinite) traces
of the program satisfy ϕ.

The evolution semantics allows each world to have a different domain, thus concep-
tually representing a varying-domain semantics, which allows dynamic allocation and
deallocation of objects and threads. In Section 4, we give a possible implementation of
this semantics in terms of evolving first-order logical structures.

Separable Specifications. It is interesting to consider subclasses of ETL for which the
verification problem is somewhat easier. Two such classes are: (i) spatially separable
specifications — do not place requirements on the relationships between individuals of
one world; this allows each individual to be considered separately, and the verification
problem can be handled as a set of propositional verification problems; (ii) temporally
separable specifications — do not relate individuals across worlds. Essentially, this
corresponds to the extraction of propositional information from each world, and having
temporal specifications over the extracted propositions. This class was addressed in [2,
19].

4 Expressing Trace Semantics Using First-Order Logic

In this section, we use first-order logic to express a trace semantics; we encode temporal
operators using standard first-order quantifiers. This allows us to automatically derive
an abstract semantics in Section 5. This approach also extends to other kinds of temporal
logic, such as the µ-calculus. Our initial experience is that we are able to demonstrate
that some temporal properties, including liveness properties, hold for programs with
dynamically allocated storage.

4.1 Representing Infinite Traces via First-Order Structures

We encode a trace via an infinite first-order logical structure using the set of designated
predicates specified in Tab. 3. Successive worlds are connected using the succ predicate.
Each world of the trace may contain an arbitrary number of individuals. The predicate
exists(o, w) relates an individual o to a world w in which it exists. Each individual only
exists in a single world. The evolution(o1, o2) predicate relates an individual o1 to its
counterpart o2 in a successor world. The predicates isNew and isFreed hold for newly
created or deallocated individuals and are used to model the allocation and deallocation
operators.
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Definition 8. A concrete trace is a trace encoded as an infinite first-order logical struc-
ture T = 〈UT , ιT 〉, where UT is the domain of the trace, and ιT is the interpretation
function mapping predicates to their truth value in the logical structure, i.e., for each
p ∈ Pk, ιT (p) : Uk

T → {0, 1}. To exclude structures that cannot represent valid traces,
we impose certain integrity constraints [15]. For example, we require that each world
has at most one successor (predecessor), and that equality (eq) is reflexive.

Table 3. Trace predicates.

Predicate Intended Meaning
world(w) w is a world
currWorld(w) w is the current world
initialWorld(w) w is the initial world
succ(w1, w2) w2 is the successor of w1

Predicate Intended Meaning
exists(o, w) object o is in world w
evolution(o1, o2) object o1 evolves to o2

isNew(o) object o is new
isFreed(o) object o is freed

rval[r]

rval[r]

rval[r]

succsucc

rval[r]

rval[r]

rval[r]

heldBy

rval[r]

rval[r]

rval[r]

heldBy

blocked

at[lw_1]

at[lw_1]

at[lw_1]

at[lw_c]

at[lw_1]

at[lw_1]

at[lw_c]

at[lw_1]

at[lw_1]

currWorld

rval[r]

rval[r]

rval[r]

heldBy

blocked

at[lw_c]

at[lw_1]

at[lw_1]

blocked

succ

…

initialWorld

succ

Fig. 4. A concrete trace T �

4.

Example 3. Figure 4 shows four worlds of the trace T �

4 where each world is depicted as
a large node containing other nodes and worlds along the trace are related by successor
edges. Information in a single world is represented by a first-order logical structure,
which is shown as a directed graph. Each node of the graph corresponds to a heap-
allocated object. Hexagon nodes correspond to thread objects, and small round nodes
to other types of heap-allocated objects. Predicates holding for an object are shown
inside the object node, and binary predicates are shown as edges. For brevity, we use the
label rval[r] to stand for rval[resource]. Grey edges, crossing world boundaries, are
evolution edges, which relate objects of different worlds. Note that these are the only
edges that cross world boundaries.

4.2 Exact Extraction of Trace Properties

Once traces are represented via first-order logical structures, trace properties can be
extracted by evaluating formulae of first-order logic with transitive closure.

We translate a given ETL formula ϕ to an FOT C formula (ϕ)† by making the
underlying trace structure explicit, and translating temporal operators to FOT C claims
over worlds of the trace. The translation procedure is straightforward, and given in
Appendix A.
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Example 4. The property ∃t : thread.�at[lwc](t) of Example 1 is translated to

∃w : world.∃t : thread.initialW orld(w) ∧ exists(t, w) ∧ ∃w′∃t′ : thread.succ∗(w, w′)∧
exists(t′, w′) ∧ evolution∗(t, t′) ∧ at[lwc](t′)

which evaluates to 1 for the trace prefix of Fig. 4.

Definition 9. The meaning of a formula ϕ over a concrete trace T , with respect to an
assignment Z, denoted by [[ϕ]]T2 (Z), yields a truth value in {0, 1}. The meaning of ϕ is
defined inductively as follows:

[[l]]T
2 (Z) = l (where l ∈ {0, 1}) [[p(v1, . . . , vk)]]T

2 (Z) = ιT (p)(Z(v1), . . . , Z(vk))
[[ϕ1 ∨ ϕ2]]T

2 (Z) = max([[ϕ1]]T
2 (Z), [[ϕ2]]T

2 (Z)) [[¬ϕ1]]T
2 (Z) = 1 − [[ϕ1]]T

2 (Z)
[[∃v1.ϕ1]]T

2 (Z) = maxu∈UT [[ϕ1]]T
2 (Z[v1 �→ u])

[[(T C v1, v2 : ϕ1)(v3, v4)]]T
2 (Z) =

max n ≥ 1, u1, . . . , un+1 ∈ U,
Z(v3) = u1, Z(v4) = un+1

min
n
i=1[[ϕ1]]T

2 (Z[v1 �→ ui, v2 �→ ui+1])

We say that T and Z satisfy ϕ (denoted by T, Z |= ϕ) if [[ϕ]]T2 (Z) = 1. We write T |= ϕ
if for every Z we have T, Z |= ϕ.

The correctness of the translation is established by the following theorem:

Theorem 1. For every closed ETL formula ϕ and a trace π, π |= ϕ if and only if
rep(π) |= (ϕ)†, where rep(π) is the first-order representation of π, i.e., the first-order
structure that corresponds to π, in which every world in π is mapped to a world in
rep(π), with the succ predicate holding for consecutive worlds.

4.3 Semantics of Actions

Informally, a program action ac consists of a precondition acpre under which the action
is enabled, which is expressed as a logical formula, and a set of formulae for updating the
values of predicates according to the effect of the action. An enabled action specifies that
a possible next world in the trace is one in which the interpretations of every predicate
p of arity k is determined by evaluating a formula ϕp(v1, v2, . . . , vk), which may use
v1, v2, . . . , vk and all predicates in P (see [15]).

5 Exploring Finite Abstract Traces via Abstract Interpretation

In this section, we give an algorithm for conservatively determining the validity of a
program with respect to an ETL property. A key difficulty in proving liveness properties
is the fact that a liveness property might be violated only by an infinite trace. Therefore,
our procedure for verifying liveness properties is a greatest fixed-point computation,
which works down from an initial approximation that represents all infinite traces. In
this section, we present our abstract-interpretation algorithm; procedure explore of
Figure 8.

Our approach uses finite representations of infinite traces. Finite representations
are obtained by abstraction to three-valued logical structures. The third logical value,
1/2, represents “unknown” and may result from abstraction. The abstract semantics
conservatively models the effect of actions on abstract representations.



Verifying Temporal Heap Properties Specified via Evolution Logic 215

5.1 A Finite Representation of Infinite Traces

The first step in making the algorithm of Figure 8 feasible is to define a finite represen-
tation of sets of infinite traces. Technically, we use 3-valued logical structures to finitely
represent sets of infinite traces.

Definition 10. An abstract trace is a 3-valued first-order logical structure T =
〈UT , ιT 〉, where UT is the domain of the abstract trace, and ιT is the interpretation, map-
ping predicates to their truth values, i.e., for each p ∈ Pk, ιT (p) : Uk

T → {0, 1, 1/2}.
We refer to the values 0 and 1 as definite values, and to 1/2 as a non definite value.

An individual u for which ιT (eq)(u, u) = 1/2 is called a summary individual;2 a
summary individual may represent more than one concrete individual.

The meaning of a formula ϕ over a 3-valued abstract trace T , with respect to an
assignment Z, denoted by [[ϕ]]T3 (Z), is defined exactly as in Def. 9, but interpreted over
{0, 1, 1/2}.

We say that a trace T with an assignment Z potentially satisfies a formula ϕ when
[[ϕ]]T3 (Z) ∈ {1, 1/2} and denote this by T, Z |=3 ϕ.

We now define how concrete traces are represented by abstract traces. The idea is
that each individual of a concrete trace is mapped by the abstraction into an individual
of an abstract trace. The new two definitions permit an (abstract or concrete) trace to be
related to a less-precise abstract trace. Abstraction is a special case of this in which the
first trace is a concrete trace. First, the following definition imposes an order on truth
values of the 3-valued logic:

Definition 11. For l1, l2 ∈ {0, 1, 1/2}, we define the information order on truth values
as follows: l1 � l2 if l1 = l2 or l2 = 1/2.

The embedding ordering of abstract traces is then defined as follows:

Definition 12. Let T = 〈U, ι〉 and T ′ = 〈U ′, ι′〉 be abstract traces encoded as first-
order structures. A function f : T → T ′ such that f is surjective is said to embed T into
T ′ if for each predicate p ∈ Pk, and for each u1, . . . , uk ∈ U :

ι(p(u1, u2, . . . , uk)) � ι′(p(f(u1), f(u2), . . . , f(uk)))

We say that T ′ represents T when there exists such an embedding f .

One way of creating an embedding function f is by using canonical abstraction.
Canonical abstraction maps individuals to an abstract individual based on the values
of the individuals’ unary predicates. All individuals having the same values for unary
predicate symbols are mapped by f to the same abstract individual. We denote the
canonical abstraction of a trace T by t embed(T ). Canonical abstraction guarantees
that each abstract trace is no larger than some fixed size, known a priori.

Example 5. Figure 5 shows an abstract trace, with four abstract worlds, that represents
the concrete trace of Fig. 4. An individual with double-line boundaries is a summary

2 Note that for all u ∈ UT , ιT (eq)(u, u) = 1 or ιT (eq)(u, u) = 1/2.
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rval[r]

succ

succ

rval[r]

heldBy

currWorld

rval[r]

rval[r]

heldBy

blocked
at[lw_1]

at[lw_1]

at[lw_c]

at[lw_c]

rval[r]

rval[r]

at[lw_1]

at[lw_1]

succ

initialWorld

at[lw_1]
rval[r]

succ

succ

Fig. 5. An abstract trace T4 that represents the concrete trace T �

4.

individual representing possibly more than a single concrete individual. Similarly, the
worlds with double-line boundaries are summary worlds that possibly represent more
than a single world. Dashed edges are 1/2 edges, that represent relations that may or may
not hold. For example, a 1/2 successor edge between two worlds represents the possible
succession of worlds. The summary world following the initial world represents the two
concrete worlds between the initial and the current world of T �

4, which have the same
values for their unary predicates. Similarly, the summary node labeled at[lw1] represents
all thread individuals in these worlds that reside at label lw1.

Note that this abstract trace also represents other concrete traces besides T �

4, for
example, concrete traces in which in the current world some threads are blocked on the
lock and some are not blocked.

5.2 Abstract Interpretation

The abstract semantics represents abstract traces using 3-valued structures. Intuitively,
applying an action to an abstract trace unravels the set of possible next successor worlds
in the trace. That is, an abstract action elaborates an abstract trace by materializing a
world w from the summary world at the tail of the trace; w becomes the definite successor
of the current world currWorld, and w’s (indefinite) successor is the summary world
at the tail of the trace. currWorld is then advanced to w, which often causes the former
currWorld to be merged with its predecessor. When a trace is extended, we evaluate
the formula’s precondition and its update formulae using 3-valued logic (as in Def. 10).

Example 6. Figures 5, 6, and 7 illustrate the application of the action that releases a
lock. Figure 6 shows the materialization of the next successor world for the trace T4 of
Figure 5. In the successor world, the thread that was at label lwc no longer holds the
lock and has advanced to label lw2. The currWorld predicate is then advanced, and the
former currWorld is merged with its predecessor, resulting in the abstract trace shown
in Figure 7.

The abstract-interpretation procedure explore is shown in Figure 8. It computes a
greatest fixed point starting with the set {T 


1 , T 

2 }; these two abstract traces represent

all possible concrete (infinite) traces that start at a given initial state. T 

1 and T 


2 each
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rval[r]

heldBy

currWorld
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rval[r]
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Fig. 6. An intermediate abstract trace, which represents the first stage of applying an action to T4.

rval[r]
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rval[r]
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currWorld

rval[r]

rval[r]

blockedat[lw_1]

at[lw_1]

at[lw_2]

at[lw_c]

rval[r]

rval[r]

at[lw_1]

at[lw_1]
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initialWorld

at[lw_1]
rval[r]

succ

succ

Fig. 7. The resulting abstract trace after applying an action over T4 (after advancing currW orld).

have two worlds: an initial world that represents the initial program configuration con-
nected by a 1/2-valued successor edge to a summary world that represents the unknown
possible suffixes. The summary world ws1 of T 


1 has a summary individual us1 related
to it. The summary individual us1 has 1/2 values for all of its predicates, including
exists(us1, ws1) = 1/2, meaning that future worlds of the trace do not necessarily con-
tain any individuals. The summary world of T 


2 has no summary individual related to

explore() {
Traces = {T 


1 , T 

2 }

while changes occur {
select and remove τ from Traces
for each action ac enabled for τ
Traces = Traces

⋃{ac(τ)}
}
for each τ ∈ Traces
if τ �|=3 (ϕ)† report possible error

}

Fig. 8. Computing the set of abstract traces
and evaluating the property (ϕ)†.

rval[r]

succ

at[lw_1]

initialWorld

succ

currWorld
ws1

us1

Fig. 9. An initial abstract
trace T �

1 .
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it and represents suffixes in which all future worlds are empty. Figure 9 shows an initial
abstract trace (corresponding to T 


1 ) representing all traces starting with an arbitrary
number of worker threads at label lw1 sharing a single lock.

The procedure explore accumulates abstract traces in the set Traces until a fixed
point is reached. Throughout this process, however, the set of concrete traces represented
by the abstract traces in Traces is actually decreasing. It is in this sense that explore
is computing a greatest fixed point.

Once a fixed point has been reached, the property of interest is evaluated over abstract
traces in the fixed point. Formula evaluation over an abstract trace exploits values of
instrumentation predicates when possible (this is explained in the following section).
This allows the use of recorded definite values, whereas re-evaluation might have yielded
1/2.

We now show the soundness of the approach. We extend mappings on individuals
to operate on assignments: If f : UT → UT ′

is a function and Z : V ar → UT is
an assignment, f ◦ Z denotes the assignment f ◦ Z : V ar → UT ′

such that (f ◦
Z)(v) = f(Z(v)). One of the nice features of 3-valued logic is that the soundness
of the analysis is established by the following theorem (which generalizes [15] for the
infinite case):

Theorem 2. [Embedding Theorem] Let T = 〈UT , ιT 〉 and T ′ = 〈UT ′
, ιT ′〉 be two

traces encoded as first-order structures, and let f : UT → UT ′
be a function such that

T �f T ′. Then, for every formula ϕ and complete assignment Z for ϕ, [[ϕ]]T3 (Z) �
[[ϕ]]T

′
3 (f ◦ Z).

The algorithm in Figure 8 must terminate. Furthermore, whenever it does not report
an error, the program satisfies the original ETL formula ϕ.

It often happens that this approach to verifying temporal properties yields 1/2, due
to an overly conservative approximation. In the next section, we present machinery for
refining the abstraction to allow successful verification in interesting cases.

Example 7. Space precludes us from showing a real application, such as the web server.
Instead, we use an artificial example, which is also used in the next section. Figure 10
shows an abstract trace in which the property ∃v.P (v) U Q(v) holds for all the concrete
traces represented by the abstract trace, but the formula ∃v.P (v) U Q(v) evaluates to
1/2 because the successor and evolution edges have value 1/2.

5.3 Property-Guided Instrumentation

To refine the abstraction, we can maintain more precise information about the correctness
of temporal formulae as traces are being constructed. This principle is referred to in [15]
as the Instrumentation Principle. This work goes beyond what was mentioned there, by
showing how one could actually obtain instrumentation predicates from the temporal
specification.

Trace Instrumentation. The predicates in Tab. 4 are required for preserving properties
of interest under abstraction. The instrumentation predicate current(o) denotes that
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P P Q

initialWorld

succ succ

succ succ succ

Fig. 10. ∃v.P (v) U Q(v) holds in all concrete traces that the abstract trace T10 represents, yet
∃v.P (v) U Q(v) evaluates to 1/2 on T10 itself.

o is a member of the current world and should be distinguished from individuals of
predecessor worlds. This predicate is required due to limitations of canonical embedding.
The predicate twe(o1, o2) records equality across worlds and is required due to the loss
of information about concrete locations caused by abstraction.

Table 4. Trace instrumentation predicates.

Predicate Intended Meaning Formula

twe(o1, o2)
object o1 is equal to object o2

possibly across worlds
(o1 = o2) ∨ evolution∗(o1, o2)
∨evolution∗(o2, o1)

current(o) object o is a member of current world ∃w : world(o, w) ∧ currWorld(w)

Transworld Equality: In the evolution semantics, two individuals are considered to
be different incarnations of the same individual when one may transitively evolve into
the other. We refer to this notion of equality as transworld equality and introduce an
instrumentation predicate twe(v1, v2) to capture this notion.

Because the abstraction operates on traces (and not only single worlds), individu-
als of different worlds may be abstracted together. Transworld equality is crucial for
distinguishing a summary node that represents different incarnations of the same indi-
vidual in different worlds from a summary node that may represent a number of different
individuals.

Transworld equality is illustrated in Fig. 11; the 1-valued twe self-loop to the sum-
mary thread-node at label lwc records the fact that this summary node actually represents
multiple incarnations of a single thread, and not a number of different threads.

Temporal Instrumentation. Given an ETL specification formula, we construct a cor-
responding set of instrumentation predicates for refining the abstraction of the trace
according to the property of interest. The set of instrumentation predicates corresponds
to the sub-formulae of the original specification.

Example 8. In Example 7, the property ∃v.P (v) U Q(v) evaluated to 1/2 although it is
satisfied by all concrete traces that T10 represents. We now add the temporal instrumen-
tation predicates Ip(v) and Iq(v) to record the values of the temporal subformulae P (v)
and Q(v). The predicates are updated according to their value in the previous worlds.
Note the use of transworld equality instrumentation to more precisely record transitive
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Fig. 11. Abstract trace with transworld equality instrumentation (Only 1-valued transworld equal-
ity edges are shown).

evolution of objects. In particular, this provides the information that the summary node
of the second world is an abstraction of different incarnations of the same single object.
This is shown in Fig. 12.

P P Q

initialWorld

succ succ

succ

twetwe

twe twe
twe

Ip Ip
Iq

succ

succ

Fig. 12. In the abstract trace T12, ∃v.P (v) U Q(v) evaluates to 1.

6 Related Work

The Bandera Specification Language (BSL) [2] allows writing specifications via com-
mon high-level patterns. In BSL, it is impossible to relate individuals of different worlds,
and impossible to refer to the exact moments of allocation and deallocation of an object.

In [14], a special case of the abstraction from [18,19], named “counter abstraction”,
is used to abstract an infinite-state parametric system into a finite-state one. They use
static abstraction, i.e., they have a preceding model-extraction phase. In contrast, in our
work abstraction is applied dynamically on every step of state-space exploration, which
enables us to handle dynamic allocation and deallocation of objects and threads.

In [19], we have used observing-propositions defined over a first-order configuration
to extract a propositional Kripke structure from a first-order one. The extracted structure
was then subject to PLTL model-checking techniques. This approach is rather limited,
because individuals of different worlds could not be specifically related.

7 Conclusion

We believe this work provides a foundation for specifying and verifying properties of
programs manipulating the heap with dynamic allocation and deallocation of objects and
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threads. In the future, we plan to develop more scalable approaches, and in particular
abstract-interpretation algorithms that are tailored for ETL.
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A Translation of ETL to F OT C

We say that a ETL sub-formula is temporally-bound if it appears under a temporal
operator. Translations for temporally-bound and non-temporally-bound formulae are
different, since non-temporally-bound formulae should be bound to the initial world of
the trace.

Definition 13. [ETL translation to FOT C] We denote by (ϕ)†w the bounded translation
of a formula ϕ in a world w and by (ϕ)† the non-bounded translation.

– (ϕ)† = ∃w: world.initialWorld(w) ∧ (ϕ)†w

– if ϕ is an atomic formula other than �x and �x then (ϕ)†w = ϕ. If ϕ = �x then
(ϕ)†w = isNew(x). If ϕ = �x then (ϕ)†w = isFreed(x).

– (ϕ ∧ ψ)†w = (ϕ)†w ∧ (ψ)†w, (ϕ ∨ ψ)†w = (ϕ)†w ∨ (ψ)†w, (¬ϕ)†w = ¬(ϕ)†w

– (∃x ϕ)†w = ∃x.exists(w, x) ∧ (ϕ)†w

– ((TC x1, x2 : ϕ)(x3, x4))†w = (TC x1, x2 : (ϕ)†w ∧ exists(w, x1) ∧
exists(w, x2))(x3, x4)

– (ϕ(x1, . . . , xn) U ψ(y1, . . . , yk))†w =
∃w′: world.∃y′

1, . . . , y′
k.succ∗(w, w′) ∧ (ψ(y′

1, . . . , y′
k))†w′

∧ ∧
1≤i≤k evolution∗(yi, y′

i) ∧ ∀w̃: world.∃x′
1, . . . , x′

n.(succ∗(w, w̃)
∧ succ∗(w̃, w′) → (ϕ(x′

1, . . . , x′
n))†w̃ ∧ ∧

1≤j≤n evolution∗(xj , x′
j))

– (χϕ(x1, . . . , xn))†w =
∃w′: world.∃x′

1, . . . , x′
n.succ(w, w′)

∧ (ϕ(x′
1, . . . , x′

n)†w′ ∧ ∧
1≤j≤n evolution(xj , x′

j) ∧ exists(x′
j , w′)

Note that xi and yi are not necessarily distinct. Simplified translations may be used
for the � and � temporal operators.
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Abstract. While the semantics of local variables in programming
languages is by now well-understood, the semantics of pointer-addressed
heap variables is still an outstanding issue. In particular, the commonly
assumed relational reasoning principles for data representations have not
been validated in a semantic model of heap variables. In this paper, we
define a parametricity semantics for a Pascal-like language with pointers
and heap variables which gives such reasoning principles. It is found
that the correspondences between data representations are not simply
relations between states, but more intricate correspondences that also
need to keep track of visible locations whose pointers can be stored and
leaked.

1 Introduction

Programming languages with dynamically allocated storage variables (“heap
variables”) date back to Algol W [27] and include the majority of languages
in use today: imperative languages like C, Pascal and Ada, object-oriented
languages ranging from Simula 67 to Java, and functional languages like Scheme,
Standard ML, and variants of Haskell [6]. However, the semantic structure of
these languages is not yet clear. In particular, the oft-used principles for data
representation reasoning, involving invariants or simulation relations, have not
been validated. While remarkable progress has been made in understanding local
variables (cf. the collection [15]), none of this theory is directly applicable to heap
variables because the shape of the heap storage dynamically varies.

A number of attacks have been made on the problem: Stark’s thesis [25,
24], which deals with dynamic allocation but not pointers, and Ghica’s and
Levy’s theses [4,5,7,8], which address the general semantic structure but not data
representation reasoning. The recent paper of Banerjee and Naumann [2] is the
first to address data representation correctness with heap variables and pointers.
While their work is remarkably successful in dealing with a Java-like language
with dynamically allocated objects, their treatment falls short of explicating
the semantic structure of the language relying instead on a strong notion of
“confinement” to simplify the problem.

In this paper, we define a parametricity semantics for a Pascal-like language
with dynamically allocated variables, pointers, and call-by-value procedures. The
validity of simulation-based reasoning principles follows from the structure of the
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semantics (similar to Tennent’s treatment in [26] for local variables). The type
structure of the semantics makes explicit where information hiding is going on,
while the formal parametricity conditions back up one’s intuitions and allow
one to produce formal proofs. We do not use any confinement conditions in
our definitions. Where there is information leakage, our semantics explicates the
breakdown of the data encapsulation, so that faulty conclusions are avoided.

Our treatment bears a close relationship with the ongoing work on separation
logic for local reasoning about heap storage [22,11,28]. In particular, our relations
are “local” in the same sense as the assertions of separation logic. We use
the ideas of partial heaps and heap-splitting developed there to formulate the
relations. We envisage that in future work, these connections with local reasoning
will be further strengthened.

2 Motivation

Local variables get hidden in program contexts due to scope restrictions in the
programming language. This gives rise to information hiding which is exploited
in devising data representations. Since dynamically allocated heap variables can
only be accessed through entry points given by local variables, the same scope
restrictions also give rise to information hiding for heap data structures. In this
section, we give an informal introduction to these information hiding aspects
through a series of examples.
Example 1. Consider the following program block adapted from Meyer and
Sieber [9]:

{ local var int x; x := 0; p(); if x = 0 then diverge }
Here, p is an arbitrary non-local procedure with no arguments, and diverge is
a diverging command. The program block should be observationally equivalent
to diverge for the following reason: The local variable x is not visible to the
non-local procedure p. Hence, if x is 0 before the procedure call, it should be 0
after the procedure call too.

Next consider a similar program using pointer-addressed variables:1

{ x :=new int; x↑ := 0; p(); if x↑ = 0 then diverge }
Here, x is a non-local variable (of type ↑int) that can store pointers to integer
variables in the heap. The command x :=new int allocates a new integer
variable on the heap and sets x to point to this variable. Unlike in the local
variable case, we cannot expect this program block to be equivalent to diverge.
The reason is that the heap variable is accessible to p via the non-local variable
x and p has the ability to modify it. There is no information hiding for the heap
variable.

On the other hand, the following variant does implement information hiding:

{ local var (↑int) x; x :=new int; x↑ := 0; p(); if x↑ = 0 then diverge }
1 The notation for pointers is borrowed from Pascal. For any data type δ, ↑δ is the

type of pointers to δ-typed variables. If p is a pointer, p↑ denotes the variable that
p points to. (In the syntax of C, ↑δ would be written as δ∗ and p↑ as ∗p.)
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Here, the pointer variable x is local. Since it is the only access point to the heap
variable, the procedure p has no access to the heap variable. If x↑ is 0 before the
procedure call, it should remain 0 after the procedure call. Hence, this block is
equivalent to diverge. �

We give an indication of how this form of selective information hiding can be
modelled in the semantics. Using a possible world form of semantics as in [21,16,
13], we take worlds to be sets of typed locations (or equivalently record types)
of the form W = {l1 : δ1, . . . , lk : δk}. We write X <: W to mean that X is an
extension of W with additional locations (or a “subtype” of W ). All program
terms are given meanings with reference to a possible world W denoting the set
of locations available in a particular (dynamic) context of execution. Now, in
a world W , the procedure p denotes a parametrically polymorphic function of
type:

[[p]] : ∀X<:W St(X) → St(X)

where St(X) means the set of states for the location world X. Here, X refers to
the set of locations available when p may be called, which will include all the
locations of W plus any additional locations allocated before the call. However,
since p has been defined before these new locations are allocated, it should have
no direct access to these new locations. The parametric interpretation of ∀X<:W
captures information hiding for all parts of X that are not accessible from W .
This is defined via relation-preservation for appropriate kinds of relations. The
definition of these relations is the main technical contribution of this paper.

Corresponding to the subtyping X <: W , there is a relation-subtyping S <: R
that says that a relation S between potential instantiations of X is an extension
of a relation R between potential instantiations of W . Intuitively the relation-
subtyping S <: R says that the S relation expects the contents of all W -accessible
locations to be related by R and imposes new constraints for the other new
locations that are inaccessible from W . The parametric interpretation of ∀X<:W
implies that [[p]] must preserve all relations S that extend the identity relation
IW , i.e., preserve all additional conditions that can be stated for W -inaccessible
locations. Using this intuition, we can explain how the three program blocks in
Example 1 are treated. In each case, we choose W to be the set of all locations
allocated before the entry of the program block:

– In the first program block with a local variable x, the extended relation S
can impose the condition that the new location for x contains a specific value
such as 0. Since the binding of p preserves all such relations, it follows that
p cannot affect x.

– In the second program block, where the heap location is accessible via
a non-local pointer variable x, recall that the extended relation S can
impose additional conditions only for W -inaccessible locations. Since the
new location is accessible from W before the procedure call to p, there is no
requirement that p should preserve its value.

– In the third program block where the heap location is accessible via a local
pointer variable x, both x and the heap location are inaccessible from W .
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Hence the extended relation S can impose the additional condition x↑ = 0
and p must preserve it.

The second example, due to Peter O’Hearn, illustrates information leakage:

Example 2. Consider the program block that calls a non-local procedure h of
type ↑int → com:

{ local var (↑int) x; x :=new int;
h(x); x↑ := 0; p(); if x↑ = 0 then diverge }

As in the previous example, x and x↑ are not directly visible to the non-local
procedures. However, h is given as argument the pointer value of x. It has the
ability to dereference x and modify x↑. It can also store the pointer x in a
non-local variable. In other words, the access to the local data structure x↑ has
been leaked and encapsulation is lost. It is not guaranteed that the later call to p
will not affect x↑ because p can receive access to x↑ from h via a shared variable.
This block is not equivalent to diverge in general.

If, however, h were to be passed x↑ as an argument, instead of the pointer
value x, it would not have the ability to store x and information leakage would
be avoided.2 �

To model information leakage, we split the relations mentioned previously
into two parts: one part that relates visible heap locations, given by a partial
bijection between the location sets ρ : W ↔ W ′, and a second part that
relates the contents of hidden locations, given by a relation R between partial
states. A pair consisting of the two parts (ρ, R) : W ↔ W ′ will be referred to
as a “relational correspondence.” Such a correspondence determines a relation
between state sets expressed as EQρ ∗ R, where EQρ means that the ρ-related
locations have equal values (modulo ρ) and the ∗ connective, adapted from
separation logic [22,11,28], means that the two parts of the relation access disjoint
sets of locations. Now, a state transformation that preserves EQρ ∗ R is allowed
to look up and update ρ-related locations. It is also allowed to store pointers
to ρ-related locations in other locations. However, it cannot store pointers to
locations not related by ρ. The parametricity constraints imply that only the
ρ-related locations can be leaked.

The information leakage in Example 2 is then explained as follows: The
procedure call to h must preserve all relational correspondences (σ, S) <: IW

that allow its argument x to be interpreted. Since the argument is a pointer to a
heap location, the extended partial bijection σ must contain a pair (l, l), where
l is the heap location that x points to. Hence h(x) can store pointers to l in
W -accessible locations with the result that l itself becomes W -accessible. This
has an effect for the later procedure call p(), which can modify any W -accessible
location including l.
2 Because of the subtle distinction between pointer values x and the pointed variables
x↑, we prefer to work with an explicit pointer language like Pascal. Languages
like Java, where pointers are treated implicitly, do not make this distinction and
consequently lack the facility to control access. Surreptitious leakage is pervasive in
the programs of such languages.
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Both of our previous examples have to do with data abstraction, albeit in a
veiled form. (The program blocks create local data structures which they attempt
to hide from the client procedures in varying ways.) Our programming language
also contains a class construct, previously studied in [18,19], providing a more
direct form of data abstraction. The next example uses this to illustrate relational
reasoning:
Example 3. Consider a list class implemented using linked lists in heap:

List = class : listsig
local var (↑node) head; init head := nil; meth ...

end

Here, listsig is the interface type of the List class and node is a recursively-
defined storable data type: node = int × ↑node. We omit the details of the
methods which include the usual operations for insertion, deletion and look-up.

To verify the correctness of such a class, one can prove its equivalence with
another class that uses mathematical sequences as the internal representation:

List’ = class : listsig
local var (int∗) s; init s := 〈 〉; meth ...

end

Here int∗ represents the set of integer sequences regarded as a data type, and the
methods update the variable s to achieve the same effect as the methods in the
concrete class. Intuitively, one reasons about the equivalence of the two classes
by considering a relation between their states to the effect that the variable s in
List’ holds exactly the sequence of elements stored in the linked list starting at
head, and showing that all the methods preserve this relation. Such a relation
is formalized in our setting as follows.

The two representation worlds contain one location each, for the local
variables of the classes: W = {l : ↑node} and W ′ = {l′ : int∗}. The partial
bijection part of the correspondence is the empty relation ∅ : W ↔ W ′ because
only visible locations need be included in the partial bijection but l and l′ are not
visible to the clients of the classes. The state relation part of the correspondence
is a relation R defined as follows:

s [R] s′ ⇐⇒ rep(s, l, s′(l′))
rep(s, l, α) ⇐⇒ (s(l) = nil ∧ α = 〈〉) ∨ ∃n, k, β.(s(l) = (n, k) ∧ α = 〈n〉·β ∧ rep(s, k, β))

�

The important point to notice is that R is not simply a relation between St(W )
and St(W ′). In fact, the world W does not contain any locations that can be
used for the nodes of the linked list. Rather R should be viewed as a relation
that applies not only to the states for W and W ′ but also to all their future
extensions with additional locations. This is one of the key technical issues that
is addressed in the definitions to follow.

3 Definitions

Let δ range over a collection of data types. In particular, we assume that ↑δ is
a data type for any data type δ.
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Let Loc = �δLocδ be a countable set, countable for each δ, whose elements
are regarded as names of “typed locations.” A location world is a finite subset
W ⊆fin Loc. It is also intuitive to think of a location world as a record type
[l1: δ1, . . . , ln: δn]. A subtype X <: W is a superset X ⊇ W of locations. In terms
of records, X is a longer record type than W .

Fix a set of values Val(δ) for each data type δ such that Val(↑δ) = Locδ�{nil}.
We use the following technical notion of a “heap” (or a partial state with

pointers) from the work on separation logic [11]. A heap is a pair 〈L, s〉 where
L ⊆fin Loc and s :

∏
lδ∈L Val(δ) is a mapping of locations to values. We simply

denote a heap 〈L, s〉 by s, and denote L by dom(s). If s(l) is a data value
involving another location l′, l′ may or may not be in dom(s). If l′ �∈ dom(s)
then its occurrence in s(l) is called a “dangling pointer.” A heap with no dangling
pointers is said to be total.

Whenever s1 and s2 are heaps with disjoint domains, s1 ∗ s2 denotes their
join with dom(s1 ∗s2) = dom(s1)�dom(s2). Much use is made of this operation
in the separation logic [11] and the Banerjee-Naumann work [2]. It will play a
central role in our work as well.

A state for a world W is a heap s such that dom(s) = W and there are no
dangling pointers in s. The set of states for a world W is denoted St(W ).

Definition 1. A renaming relation is a triple ρ = 〈W, W ′, ρ〉 where

– W and W ′ are location worlds, and
– ρ ⊆ W × W ′ is a type-respecting relation that is single-valued and injective.

(That is, ρ is a type-respecting bijection between some subsets L ⊆ W and
L′ ⊆ W ′.) We refer to W as dom(ρ), W ′ as cod(ρ) and the relation as the
“graph” of ρ.

If X <: W and X ′ <: W ′ are extended worlds and σ = 〈X, X ′, σ〉 and
ρ = 〈W, W ′, ρ〉 are renaming relations, we say that σ is an extension of ρ and
write σ <: ρ if σ ∩ (W × W ′) = ρ. �

As mentioned in the context of Example 2, the purpose of renaming relations
is to identify the visible locations. Since the pointers to such locations can be
stored in other visible locations, we define the following notation. For d, d′ ∈
Val(δ), we say that d and d′ are equivalent modulo ρ, and write d ≡ρ d′, if d and
d′ denote the same data value assuming that all ρ-related locations are deemed
to be equal.

In the following definitions, we make crucial use of relations between partial
heaps. Even though we are, in the end, interested in relations between total
states, these relations will be defined using those on heaps.

– If ρ is a renaming relation, EQρ relates heaps that have equal values in
ρ-related locations (where ρ � i denotes projection of i’th components):

s [EQρ] s′ ⇐⇒ dom(s) = ρ � 1 ∧ dom(s′) = ρ � 2 ∧ ∀(l, l′) ∈ ρ. s(l) ≡ρ s′(l′).

– The relation emp relates empty heaps: s [emp] s′ ⇐⇒ dom(s) = ∅ = dom(s′)
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– The relation R ∗ S puts together two relations R and S side by side:

s [R ∗ S] s′ ⇐⇒ ∃s1, s2, s′
1, s′

2. s = s1 ∗ s2 ∧ s′ = s′
1 ∗ s′

2 ∧ s1 [R] s′
1 ∧ s2 [S] s′

2

This is the binary version of the ∗ connective in separation logic [11] and is
extremely powerful. Its power owes to the fact that we do not have to specify
in advance which parts of the heaps R and S run between. In a manner of
speaking, R and S are “untyped” relations even if R ∗ S may be a “typed”
relation.

Definition 2. A relational correspondence between location worlds is a pair
(ρ, R) : W ↔ W ′ where

– ρ is a renaming relation between W and W ′ and
– R is a function mapping all extensions π <: ρ to relations between heaps,

such that, whenever π2 <: π1 <: ρ, R(π1) ⊆ R(π2).
The extension relation for correspondences is defined by (σ, S) <: (ρ, R) if

and only if (i) σ <: ρ, and (ii) for any π <: σ, there is a relation P such that
S(π) = R(π) ∗ P . �

This is the key definition of this paper. We explain it in detail. The intuition
is that the state consists of

– visible locations, identified by ρ, which must allow look-up, update and
storage, and

– hidden locations, related by R(π), which contain representations for abstract
data and, so, can only be modified by invariant-preserving operations.

The visible locations and the hidden locations are disjoint. The visible locations
must have equal values in related states. The hidden locations, on the other hand,
are related by some relation R(π) that captures the data representation invari-
ants. The relation R(π) is parameterized by renamings π so that information
about visible locations mentioned in π can be incorporated in its formulation.
The condition R(π1) ⊆ R(π2) means that related states continue to be related
if the states are extended with additional visible locations. The intuition for
the definition of (σ, S) <: (ρ, R) is that S extends R by imposing additional
conditions for new locations but does not alter R for the part of the heap that
R deals with. This is the same intuition as that in [16,14] for local variables.

The identity correspondence for a world W is IW = (ιW , empW ) : W ↔ W ,
where ιW is the diagonal relation for W and empW maps every π <: ιW to emp.

Fact 1. Whenever X <: W , IX <: IW .

Having defined relational correspondences, we must specify how these are
used to relate states. Note that the relation EQρ ∗ R(ρ) relates heaps (or partial
states with arbitrary domains). The corresponding relation for states is obtained
by restricting the heap relation to states:

St(ρ, R) : St(W ) ↔ St(W ′)
St(ρ, R) = (EQρ ∗ R(ρ)) ∩ (St(W ) × St(W ′))
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The idea is that in order to define a typed relation between states, we transit
to the untyped world of partial heaps where we have the powerful ∗ connective
available and coerce the results back to the typed world. Defining the required
relations without the ∗ connective would be extremely awkward.

Fact 2. St(IW ) is the identity relation on St(W ).

To make these definitions concrete, we give an example:
Example 4. Consider the list data structure from Example 3 but now adapted to
contain pointers to integer cells instead of just integers. The type of nodes is given
by node = ↑int×↑node. For the worlds W = {l : ↑node} and W ′ = {l′ : (↑int)∗},
we define a correspondence (∅, R) where the relation function R(π) is defined
by:

s [R(π)] s′ ⇐⇒ repπ(s, l, s′(l′))
repπ(s, l, α) ⇐⇒ (s(l)=nil ∧ α=〈〉) ∨

∃n, n′, k, β.(s(l)=(n, k) ∧ α=〈n′〉·β ∧ (n, n′) ∈ π ∧ repπ(s, k, β))

Notice the use of π argument in relating the contents of the list cells. The
corresponding definition for Example 3 would use a constant function R(π)
because no pointers are to be related. �

Categorical Matters

We use the setting of reflexive graph categories [14,23,3] to explicate the
categorical structure that we use.

Proposition 3. There is a reflexive graph of categories World with the
following data: worlds as vertices, extensions X <: W as vertex morphisms,
correspondences (ρ, R) : W ↔ W ′ as edges and extensions (σ, S) <: (ρ, R) as
edge morphisms. The identity edges are the identity correspondences.

Let Set denote the reflexive graph with sets and functions forming the vertex
category and binary relations and relation-preserving squares forming the edge
category. We will be working with the functor category SetWorldop

whose objects
are reflexive graph-functors Worldop → Set and morphisms are parametric
natural transformations. (To deal with divergence and recursion, we must really
use Cpo in place of Set. We omit the treatment of recursion in this version of
the paper, but it can be treated the same way as in [14].)

Definitions of parametric limits ∀XF (X) and parametric colimits ∃XF (X) for
arbitrary reflexive graph-functors F may be found in [3]. In our case, we will be
using these with nonvariant functors F : World◦ → Set (where World◦ is the
discrete reflexive graph corresponding to World with only identity morphisms).
We will also use parametric ends

∫
X

F (X, X) for functors F of type World ×
Worldop → Set. See below for explicit constructions for these limits, colimits
and ends.

The notation ∀X<:W F (X) is used to denote the parametric limit of the
functor F ◦J◦ : (World<:W )◦ → Set where World<:W is the reflexive subgraph
of World with vertices X <: W and edges (σ, S) <: IW , and J is its inclusion
in World. It is to be noted that the type expression ∀X<:W F (X) forms a
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contravariant functor T (W ). The notation ∃X<:W F (X) similarly refers to the
parametric colimit of F ◦ J◦ (covariantly in W ) and

∫
X<:W F (X, X) refers to

the parametric end of F ◦ (J × Jop) (contravariantly in W ).
The functor category SetWorldop

is cartesian closed with products given
pointwise and exponents F ⇒ G given by (F ⇒ G)(W ) =

∫
X<:W F (X) →

G(X) [14,3].

Explicit Constructions

For the benefit of the reader unfamiliar with parametric limits, we give direct
definitions of these constructions (which may be seen to be special cases of the
definitions in [3]).

Let F be a type operator that associates, to every world W , a set F (W ) and,
to every correspondence (ρ, R) : W ↔ W ′, a relation F (ρ, R) : F (W ) ↔ F (W ′)
such that F (IW ) = ∆F (W ). Then,

–
∏

X F (X) is the set of families of the form {pX ∈ F (X)}X indexed by all
worlds X.

∏
X<:W F (X) is similar except that the families are indexed only

by subtypes of W .
– ∀XF (X) is a subset of

∏
X F (X) consisting of families satisfying the

parametricity condition: for all correspondences (ρ, R) : X ↔ X ′ between
different worlds, the components pX and pX′ are related by F (ρ, R).

– ∀X<:W F (X) is a subset of
∏

X<:W F (X) with a parametricity condition that
applies only to correspondences (ρ, R) <: IW . We say that the families are
parametric with respect to W .

–
∑

X F (X) is the set of pairs of the form 〈X, a〉 where X is a world and
a ∈ F (X). Such pairs should be viewed as “implementations” of abstract
data types, where X denotes the representation type and a is the collection
of operations. The set

∑
X<:W F (X) is similar except that the worlds X are

restricted to subtypes of W .
– ∃XF (X) is the quotient of

∑
X F (X) under a behavioral equivalence relation.

First, if 〈X, a〉 and 〈X ′, a′〉 are pairs in
∑

X F (X), a simulation relation
between them is a correspondence (ρ, R) : X ↔ X ′ such that a and a′ are
related by F (ρ, R). Two pairs 〈X, a〉 and 〈X ′, a′〉 are behaviorally equivalent,
written 〈X, a〉 ≈ 〈X ′, a′〉, if there is a sequence of pairs 〈X, a〉, 〈X1, a1〉, . . . ,
〈Xn−1, an−1〉, 〈X ′, a′〉 with simulation relations between successive pairs.
The equivalence class of a pair 〈X, a〉 under the behavioral equivalence
relation is denoted 〈|X, a|〉. These equivalence classes denote true “abstract
data types” [10,19].

– ∃X<:W F (X) is a quotient of
∑

X<:W F (X) where the allowed simulations
between pairs are restricted to correspondences (ρ, R) <: IW . The induced
behavioral equivalence relation with respect to W is denoted ≈W and the
equivalence class of a pair 〈X, a〉 is denoted 〈|X, a|〉W . These equivalence
classes should be viewed as “partially abstract” types whose representations
X are hidden except for the knowledge that they form subtypes of W .
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The intuitive reading of ∃X<:W St(X) is that all the locations in X that are not
accessible from W are hidden. This intuition can be clearly seen in the following
“garbage collection” lemma:
Lemma 4. Let GCW : ∃X<:W St(X) → ∃X<:W St(X) be defined by

GCW (〈|X, s|〉) = 〈|reachX(W, s), s � reach(W, s)|〉
where reachX(W, s) is the subset of X consisting of all locations reachable from
W in the heap s. Then GCW is the identity function on ∃X<:W St(X).
This result signifies that reachability of locations has been properly captured by
the relational correspondences.

A reflexive graph-functor F : Worldop → Set is a type operator that also
has an associated contravariant action on the morphisms of World. That means
that, for all subtypings X <: W , there are functions F (X<:W ) : F (W ) →
F (X) preserving identity and composition. Moreover, if (σ, S) <: (ρ, R) then the
functions F (X<:W ) and F (X ′<:W ′) map F (ρ, R)-related arguments to F (σ, S)-
related results.

We note two general cases of functors arising in our setting:

– The type expression T (W ) = ∀X<:W F (X) forms a contravariant functor in
W , independent of whether F is functorial. The morphism part T (V <:W )
sends {pX}X<:W to {pX}X<:V . The relation action T (ρ, R): T (W ) ↔ T (W ′)
is given by

{pX}X<:W [T (ρ, R)] {p′
X′}X′<:W ′ ⇐⇒

for all (σ, S): X ↔ X ′ such that (σ, S) <: (ρ, R), pX [F (σ, S)] p′
X′

We write this relation as ∀(σ,S)<:(ρ,R)F (σ, S).
– The type expression T (W ) = ∃X<:W F (X) determines a covariant functor in

W . If V <: W , we have the morphism part T (V <:W ) : T (V ) → T (W ) which
sends 〈|X, a|〉V to 〈|X, a|〉W . Since any simulation relation with respect to V is
also a simulation relation with respect to W , this function is well-defined. We
use the notation hideV <:W to denote it. The relation action T (ρ, R): T (W ) ↔
T (W ′) is given by

〈|X, a|〉W [T (ρ, R)] 〈|X ′, a′|〉W ′ ⇐⇒
there exist 〈Y, b〉 ≈W 〈X, a〉, 〈Y ′, b′〉 ≈W ′ 〈X ′, a′〉
and (σ, S) : Y ↔ Y ′ such that (σ, S) <: (ρ, R) and b [F (σ, S)] b′

We write this relation as ∃(σ,S)<:(ρ,R)F (σ, S).

The ∀ quantifier uses relational parametricity to capture uniformity and
information hiding. The categorical condition of natural transformation is
an alternative condition for uniformity. In [17,3], it is argued that ideally
naturality should be subsumed under parametricity. However, our relational
correspondences for heap worlds are not rich enough to subsume naturality. So,
for the present paper, we treat naturality separately. If F, G : Worldop → Set
are functors, we use the notation ∀XF (X) → G(X) to mean families of functions
that are parametric as well as natural (which would be written more formally
as

∫
X

F (X) → G(X) in the notation of [3].) Similarly, ∀X<:W F (X) → G(X)
denotes families that are parametric as well as natural in X with respect to W .
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Table 1. Type syntax of terms

Γ, x : ν � x : exp ν

Γ � C1 : com Γ � C2 : com

Γ � C1; C2 : com

Γ, x : var δ � C : com

Γ � {local var δ x; C} : com
Γ � V : exp(var δ)

Γ � read V : exp δ

Γ � V : exp(var δ) Γ � E : exp δ

Γ � V := E : com Γ � skip : com

Γ � E : exp(δ1 × · · · δn)

Γ � E.i : exp δi

Γ � V : exp(var(δ1 × · · · × δn)) Γ � E : exp δi

Γ � V.i := E : com

Γ � nil : exp(↑δ)

Γ � E : exp(↑δ)

Γ � E↑ : exp(var δ)

Γ � V : exp(var(↑δ))

Γ � V := new δ : com
Γ, x : ν � M : π

Γ � λx. M : exp (ν → π)

Γ � M : exp(ν → π) Γ � N : exp ν

Γ � M(N) : π

Γ, x : var δ � A : com Γ, x : var δ � M : exp ν

Γ � class : ν local var δ x init A meth M end : exp (cls ν)
Γ � K : exp (cls ν) Γ, x : ν � C : com

Γ � {local K x; C} : com

Notation. We use convenient notation borrowed from the polymorphic lambda
calculus [20] to denote polymorphic families. A family {P (X)}X<:W is written
as ΛX<:W. P (X) and, if φ is such a family, then component selection φX is
written as φ[X].

4 Semantics

We consider a Pascal-like language with types given by the following syntax:

(data types) δ ::= int | ↑δ | δ1 × · · · × δn

(value types) ν ::= δ | var δ | ν1 × · · · × νn | ν → π | cls ν
(phrase types) π ::= exp ν | com

Data types identify storable values, and value types identify bindable values (or
values that can be passed to procedures). Phrase types are the types of terms.

The term syntax for our language is given in Table 1. We use a sample of
command forms. Other forms can be accommodated in a similar fashion. The
notation for classes is borrowed from [18,19].

The types are interpreted as reflexive graph-functors Worldop → Set. The
interpretation comes in three parts: the set part [[τ ]] maps worlds to sets, the
relation part 〈〈τ〉〉 maps correspondences (ρ, R) : W ↔ W ′ to relations [[τ ]](W ) ↔
[[τ ]](W ′) and the morphism part gives, for every subtyping X <: W , a function
[[τ ]](X<:W ) : [[τ ]](W ) → [[τ ]](X) such that correspondences are preserved.

[[int]](W ) = Int
[[↑δ]](W ) = (Locδ ∩ W ) + {nil}

[[var δ]](W ) = [[δ → com]](W ) × [[exp δ]](W )
[[ν1 × · · · × νn]](W ) = [[ν1]](W ) × · · · × [[νn]](W )
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Table 2. Semantic combinators

unitν
W : [[ν]](W ) → [[exp ν]](W )

unitW d = ΛX<:W. λs. d ↑X
W

bindν,π
W : [[exp ν]](W ) × [[ν → π]](W ) → [[π]](W )

bindW (e, f) = ΛX<:W. λs. let d = e [X] s
in if d = fault then fault else f [X] d [X] s

bindν1,ν2,π
W : [[exp ν1]](W ) × [[exp ν2]](W ) × [[ν1 × ν2 → π]](W ) → [[π]](W )

bindW (e1, e2, f) = ΛX<:W. λs. let d1 = e1 [X] s, d2 = e2 [X] s
in if d1 = fault ∨ d2 = fault then fault

else f [X] (d1, d2) [X] s

hideY <:X : [(∃Z<:Y St(Z)) + {fault}] → [(∃Z<:XSt(Z)) + {fault}]
hideY <:X r = case r of 〈|Z, s|〉Y ⇒ 〈|Z, s|〉X | fault ⇒ fault
seqW : [[com]](W ) × [[com]](W ) → [[com]](W )

seqW (c, c′) = ΛX<:W. λs.

{
fault if c [X] s = fault
hideY <:X

(
c′ [Y ] s′

)
if c [X] s = 〈|Y, s′|〉X

[[ν → π]](W ) = ∀X<:W [[ν]](X) → [[π]](X)
[[cls ν]](W ) = ∀X<:W ∃Z<:X [[exp ν]](Z) × [St(X) → ∃Y <:ZSt(Y ) + {fault}]

[[exp ν]](W ) = ∀X<:W St(X) → [[ν]](X) + {fault}
[[com]](W ) = ∀X<:W St(X) → ∃Y <:XSt(Y ) + {fault}

The position of the type quantifications ∀ and ∃ in the type interpretations has
been recognized in earlier work [25,4,8]. Intuitively, a command defined for a
world W should be prepared to accept additional locations (represented by X)
in its input state, and it might itself allocate new locations during the execution
(represented by Y ). The parametricity interpretation of the type quantifiers
means that the command does not have direct access to the extra locations in
its input state and the successor commands will not have direct access to the
locations allocated by the present command.

Variables are interpreted as pairs of “put” and “get” methods, as in Reynolds
[21]. Indeed, if l ∈ W is a δ-typed location, we can map it to a pair of methods
varδ

W (l) = (putδ
W (l), getδ

W (l)) defined as follows:

putδ
W (l) [Y ] k [Z] s = 〈|Z, s[l → k]|〉Z , and getδ

W (l) [Y ] s = s(l).

The relation interpretation of types 〈〈τ〉〉 is straightforward: 〈〈int〉〉(ρ, R) =
∆Int , 〈〈↑δ〉〉(ρ, R) = ρ+∆{nil} and, for all other cases, it follows from the structure
of [[τ ]]. For the morphism part, [[int]](X<:W ) is idInt , [[↑δ]](X<:W ) is the evident
inclusion, and for all other cases, it follows from the structure of the types. We
use the shorthand notation a↑X

W for [[τ ]](X<:W )(a) when a ∈ [[τ ]](W ).
The semantics of a term with typing x1: ν1, . . . , xn: νn � M : π is a parametric

natural transformation of type ∀W [[ν1]](W )×· · ·×[[νn]](W ) → [[π]](W ). (As usual
values of the type [[ν1]](W ) × · · · × [[νn]](W ) will be regarded as “environments”
ranged over by the symbol η.)

We use the semantic combinators from Table 2. We also assume that there is
a family of functions newlocδ(X) that give, for each world X, a δ-typed location
that is not in X.
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[[x]]W η = unitW (η(x))
[[skip]]

W
η = ΛX<:W. λs. 〈|X, s|〉X

[[C1; C2]]
W

η = seqW ([[C1]]
W

η, [[C2]]
W

η)
[[{local var δ x; C}]]W η =

ΛX<:W. λs. hideX+<:X

(
[[C]]

X+ (η↑X+

W [x→varδ
X+ (l)]) [X+] (s ∗ [l→initδ])

)

where l = newlocδ(X) and X+ = X � {l}
[[read V ]]

W
η = bindW ([[V ]]

W
η, ΛX<:W. λ(p, g). g)

[[V := E]]W η = bindW ([[V ]]W η, [[E]]W η, ΛX<:W. λ((p, g), k). p[X]k)
[[E↑]]

W
η = bindW ([[E]]W η, deref δ

W )
[[V := new δ]]W η = bindW ([[V ]]

W
η, allocδ

W )

[[λx. M ]]W η = unitW (ΛX<:W. λd. [[M ]]X(η↑X
W [x→d]))

[[M(N)]]
W

η = bindW ([[M ]]
W

η, [[N ]]
W

η, ΛX<:W. λ(f, d). f [X](d))
[[class : ν local var δ x init A meth M end]]W η =

unitW (ΛX<:W. 〈|X+, [[M ]]
X+ η+, λs. [[A]]

X+ (η+)(s ∗ [l→initδ])|〉X)
where l = newlocδ(X), X+ = X � {l}, and η+ = η↑X+

W [x→varδ
X+ (l)]

[[{local K x; C}]]W η =

bindW









[[K]]W η,

ΛX<:W. λk. ΛY <:X. λs.
let 〈|Z, m, i|〉Y = k[Y ]
in if 〈|Z′, s′|〉Z = i(s) ∧ m[Z′]s′ �= fault

then hideZ′<:Y ([[C]]Z′ (η↑Z′
W [x→m[Z′]s′]) s′)

else fault









These definitions are expressed using operations allocδ
W : [[var(↑δ) → com]](W )

and deref δ
W : [[↑δ → exp (var δ)]](W ):

allocδ
W [X] (p, g) [Z] s = hideZ+<:Z(p [Z+] l [Z+] (s ∗ [l→initδ]))

where l = newlocδ(Z) and Z+ = Z � {l}
deref δ

W [X] l [Z] s = if l �= nil then varδ
Z(l) else fault

5 Results

The most basic result to be proved about our semantics is that it satisfies an
abstraction theorem. (Really, this is not a separate result from the semantic
definition, but rather an integral part of checking that the semantics is well-
defined.)

Theorem 5. The meaning of every term [[Γ � M : θ]] is a parametric natural
transformation of type [[Γ ]] → [[θ]]. That is,

1. for all worlds W and all environments η ∈ [[Γ ]](W ), [[M ]]W η ∈ [[θ]](W );
2. for all (ρ, R): W ↔ W ′, and all related environments η[〈〈Γ 〉〉(ρ, R)]η′,

[[M ]]W η [〈〈θ〉〉(ρ, R)] [[M ]]W ′η′; and
3. for all extensions X <: W and all η ∈ [[Γ ]](W ), ([[M ]]W η)↑X

W = [[M ]]X(η↑X
W ).

The abstraction theorem immediately implies the soundness of the simulation
principle for data representation reasoning. Suppose {〈|F (Y ), mY , iY |〉}Y and
{〈|F ′(Y ), m′

Y , i′
Y |〉}Y are two similar implementations of a class, i.e., for any
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world Y , there is a simulation relation (σ, S): F (Y ) ↔ F ′(Y ) such that
(σ, S) <: IY and mY [〈〈exp ν〉〉(σ, S)] m′

Y and iY and i′
Y are related by

St(IY ) → ∃(τ,T )<:(σ,S)St(τ, T ) + ∆{fault}. Then in any command term of the
form Γ, C: cls ν � {local C x; M} : com, we get the same results independent
of which implementation is used for C. This is because when iY s = 〈|Z, s1|〉F (Y )
and i′

Y s = 〈|Z ′, s′
1|〉F ′(Y ),

hideZ<:Y
(
[[M ]]Z(η↑Z

W [x→m[Z]s1])[Z]s1
)

=
hideZ′<:Y

(
[[M ]]Z′(η↑Z′

W [x→m′[Z ′]s′
1])[Z ′]s′

1
)

for all η ∈ [[Γ ]]W and Y <: W , which follows from the abstraction theorem.
The separation logic for reasoning about heap data structures [22,11,28]

contains an important rule called the “frame rule,” which is central to the local
reasoning methodology developed there. The frame rule is supported by the
frame property of commands which says that if a command is safe in a given
state, then the result of executing it in a larger state can be predicted based on
an execution on the smaller state. This property is satisfied by our semantics. Say
that a command c ∈ [[com]](W ) is safe for world X <: W and state s ∈ St(X)
if c[X](s) �= fault.
Theorem 6. Let c ∈ [[com]](W ) be safe for world X <: W and state s. Then
for all extended worlds X � Z and states s ∗ t ∈ St(X � Z),

1. c is safe for X � Z and s ∗ t, and
2. there exist world Y <: X and state s′ ∈ St(Y ) such that Y ∩Z = ∅, c [X]s =

〈|Y, s′|〉X , and c [X � Z] (s ∗ t) = 〈|Y � Z, s′ ∗ t|〉X�Z .

We expect that this connection will pave the way for integrating the data
representation reasoning studied here and the state-based reasoning developed
with separation logic.
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Abstract. Programmers confront a minefield when they design interactive Web
programs. Web interactions take place via Web browsers. With browsers, con-
sumers can whimsically navigate among the various stages of a dialog and can
thus confuse the most sophisticated corporate Web sites. In turn, Web services can
fault in frustrating and inexplicable ways. The quickening transition from Web
scripts to Web services lends these problems immediacy.
To address this programming problem, we develop a foundational model of Web
interactions and use it to formally describe two classes of errors. The model sug-
gests techniques for detecting both classes of errors. For one class we present
an incrementally checked record type system, which effectively eliminates these
errors. For the other class, we introduce a dynamic safety check, which catches
the mistakes relative to programmers’ simple annotations.

1 Introduction

Over the past decade, the Web has become an interactive medium. Far more than half of
all Web transactions are interactive [4]. While this rapid growth suggests that Web page
developers and programmers have mastered the mechanics of interactive Web content,
consumers still encounter many, and sometimes costly, program errors as they utilize
these new services. In short, designing interactive Web programs poses interesting and
complex problems.

To understand these problems, let us briefly recall how Web programs work. When a
Web browser submits a request whose path points to a Web program, the server invokes
the program with the request via any of a number of protocols (cgi [16], Java servlets [6],
or Microsoft’s asp.net [15]). It then waits for the program to terminate and turns the
program’s output into a response that the browser can display. Put differently, each
individual Web program simply consumes an http request and produces a Web page
in response. It is therefore appropriate to call such programs “scripts” considering that
they only read some inputs and write some output. This very simplicity, however, also
makes the design of multi-stage Web dialogs difficult.

First, multi-stage interactive Web programs consist of many scripts, each handling
one request. These scripts communicate with each other via external media, because the
participants in a dialog must remember earlier parts of a conversation. Not surprisingly,
forcing the scripts to communicate this way causes many problems, considering that
such communications rely on oft-unstated, and therefore easily violated, invariants.
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Second, the use of a Web browser for the consumer’s side of the dialog introduces
even more complications. The primary purpose of a Web browser is to empower con-
sumers to navigate among a web of hyperlinked nodes in a graph at will. A consumer
naturally wants this same power to explore dialogs on the Web. For example, a con-
sumer may wish to backtrack to an earlier stage in a dialog, clone a page with choices
and explore different possibilities in parallel, bookmark an interaction and come back
to it later, and so on. Hence, a programmer must be extremely careful about the invari-
ants that govern the communication among the scripts that make up an interactive Web
program. What appears to be invariant in a purely sequential dialog context may not be
so in a dialog medium that allows whimsical navigation actions.

In this paper, we make three contributions to the problem of designing reliable inter-
active Web programs. First, we develop a simple but formal model of Web interactions.
Using this model, we can explain the above problems concisely. Second, we develop
a type system that solves one of these problems in a provable manner (relative to the
model). Third, because not all the checks can be performed statically, we suggest run-
time checks to supplement the type system.

2 A Sample Problem

Let us illustrate one of the Web programming problems with a commercial example.
Figure 1 contains snapshots from an actual interaction with Orbitz,1 which sells travel
services from many vendors. It naturally invites comparison shopping. In particular, a
customer may enter the origin and destination airports to look for some flights between
cities, receive a list of flight choices, and then conduct the following actions:

1. Use the “open link in new window” option to study the details of a flight that leaves
at 5:50pm. The consumer now has two browser windows open.

2. Switching back to the choices window, the consumer can inspect a different option,
e.g., a flight leaving at 9:30am. Now the consumer can perform a side-by-side
comparison of the options in two browser windows.

3. After comparing the flight details, the customer decides to take the first flight after
all. The consumer switches back to the window with the 5:50pm flight. Using this
window (form), the consumer submits the request for the 5:50pm flight.

At this point, the consumer expects the reservation system to respond with a page con-
firming the 5:50pm flight. Alarmingly, even though the page says a click on some link
would reserve the 5:50pm flight, Orbitz instead chooses the 9:30am flight. A customer
who doesn’t pay close attention may end up reserving the wrong flight.

The Orbitz problem dramatically illustrates our case. Sadly, this is not an isolated
error. Rather it exists in other services (such as hotel reservations) on the Orbitz site. Fur-
thermore, as plain consumers, we have stumbled across this and related problems while
using several vendor’s sites, including Apple, Continental Airlines, Hertz car rentals,
Microsoft, and Register.com. Clearly, an error that occurs repeatedly across organiza-
tions suggest not a one-time programming fault but rather a systemic problem. Hence,
we believe that it is time to develop a foundational model. Before we do so, however,
we review related attempts at overcoming such programming problems.

1 The screenshots were produced on June 28, 2002, but the problems persist as of October 24.
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3 Prior Work

The Bigwig project [2] (a descendant of Bell Lab’s Mawl project [1]) provides a radical
solution to the problem. The main purpose of the project is to provide a domain-specific
language for composing interactive Web sessions. The language’s runtime system en-
forces the (informal) model of a session as a pair of communicating threads [3]. For
example, clicking on the back button takes the consumer back to the very beginning of
the dialog. While such a runtime system prevents damage, it is also overly draconian,
especially when compared to other approaches to dealing with Web dialogs.

John Hughes [14], Christian Queinnec [18], and Paul Graham [11] independently
had the deep insight that a browser’s navigation actions correspond to the use of first-
class continuations in a program. In particular, they show that an interaction with the
consumer corresponds to the manipulation of a continuation. If the underlying language
and server support these manipulations, a program doesn’t have to terminate to interact
with a consumer but instead captures a continuation and suspends the evaluation. Every
time a consumer submits a response, the computation resumes the proper continuation.
Put differently, the communication among scripts is now internalized within one program
and can thus be subjected to the safety mechanisms of the language.

Our prior work explored the implications of Queinnec’s in two ways. First, we
built a Web server that enables Web programs to interact directly with consumers [13].
Programming in this world eliminates many of the Web design problems in a natural
manner. Second, after we realized that this solution doesn’t apply to languages without
such mechanisms, we explored the automatic generation of robust Web programs via
functional compilation techniques [12].While this idea works in principle, we recognized
that a full-fledged implementation requires a re-engineered library system and runtime
environment for the targeted language (say Perl).

Thiemann [21] started with Hughes’s ideas and provides a monad-based library for
constructing Web dialogs. In principle, his solution corresponds to our second approach;
his monads take care of the “compilation” of Web scripts into a suitable continuation
form. Working with Haskell, Thiemann can now use Haskell’s type system to check
the natural communication invariants between the various portions of a Web program.
Haskell, however, is also a problem because Thiemann must accommodate effects (inter-
actions with file systems, data bases, etc) in an unnatural manner. Specifically, for each
interaction, his cgi scripts are re-executed from the beginning to the current point of
interaction. Even though his monad-based approach avoids the re-execution of effects,
it is indicative of the problems with Thiemann’s approach. Like our second solution,
Thiemann’s approach won’t easily apply to other languages.

4 Modeling the Web

To study the problems of designing interactive Web programs, we formulate a model with
four characteristics. First, it consists of a single server and a single client, because we
wish to study the problems of simple sequential Web dialogs. Second, it deals exclusively
with dynamically generated Web pages, called forms, to mirror html’s sub-language of
requests. Third, the model allows the consumer to switch among Web pages arbitrarily; as
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we show later, this suffices to represent the “Orbitz problem” and similar errors. Finally,
the model is abstracted over the programming language so that we can experiment with
alternatives; here we use a λ calculus for forms and basic data.

Our model lacks several properties that are orthogonal to our goals. First, the model
ignores client-side storage, a.k.a. “cookies,” which primarily addresses customization
and storage optimizations. Server-side storage suffices for our goals. Second, Web pro-
grammers must address concurrency via locking, possibly relying on a server that seri-
alizes each session’s requests or relying on a database. Distributing the server software
across multiple machines complicates concurrency further. Third, monitoring and restart-
ing servers improves fault tolerance. The model neither addresses nor introduces any
security concerns, so existing solutions for ensuring authentication and privacy apply [7,
9].

4.1 Server and Client

Figure 2 describes the components of our model. Each Web configuration (W ) consists
of a single server (S) and a single client (C). The server consists of storage (Σ) and
a dispatcher (see figure 3). The latter contains a table (P) that associates urls with
programs and an evaluator that applies programs from the table to the submitted form.
Programs are closed terms (M◦) in a yet to be specified language.

W = S × C
S = Σ × P
P = Url 7→ M◦

M◦ = programs
C = F × −→

F

F = (form Url
−−−−→
(Id V[))

V[ = Int | String

{ “”, “x”, “why”, “zee” } ⊂ String
{ x, y, z } ⊂ Id
{ www.drscheme.org, www.plt-scheme.org } ⊂ Url

Fig. 2. The Web

The client consists of the current Web form and a set of all previously visited Web
forms. The set of previously visited forms starts as a singleton set: the home page. It then
grows as the consumer visits additional pages. The model assumes that the consumer
can freely (non-deterministically) replace the current page with some previously visited
page. Since the current page is always an element of all previously visited pages, the
consumer can also return to this page. We claim that this model of a consumer represents
all interesting browser navigation actions, including those not yet conceived by current
browser implementors.

The model distills a Web page to a minimal representation. Every page is simply a
form (F). It contains the url to which the form is submitted and a set of form fields. A
field names a value that the consumer may edit at will.

Figure 3 illustrates how the pieces of the model interact. The server and client may
run on different machines, connected by a network. The client sends its current form
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Fig. 3. The Web Picture

to the server. The server applies a program to the form and then produces a response,
possibly accessing the store in the process. Finally, the response replaces the current
form on the client and appears in the client’s set of visited forms.

fill-form : W −→ W

〈s, 〈(form u
−−−→
(k v0)), −→

f 〉〉 ↪→ 〈s, 〈(form u
−−−→
(k v1)), {(form u

−−−→
(k v0))} ∪ −→

f 〉〉

switch : W −→ W

〈s, 〈f0,
−→
f 〉〉 ↪→ 〈s, 〈f1,

−→
f 〉〉 wheref1 ∈ −→

f

submit : W −→ W

〈〈σ0, p〉, 〈f0,
−→
f 〉〉 ↪→ 〈〈σ1, p〉, 〈f1, {f1} ∪ −→

f 〉〉
where 〈σ1, f1〉 = dp(σ0, f0)

Fig. 4. Transitions

To specify behavior, we use rewriting rules to relate Web configurations. Figure 4
contains rules that determine the behavior of the client and server as far as Web programs
are concerned. The fill-form rule allows the client to edit the values of fields in the current
form. The switch rule brings a different Web form to the foreground. In practice, this
happens in a number of ways: switching active browser windows, revisiting a cached
page2 using the back or forward buttons, or selecting a bookmark. The submit rule
dispatches on the current form’s url to run the program found in table p, resulting in
a new current client form and updated server storage. The actual dispatching and the
evaluation are specific to the chosen programming language, which we introduce next.

4.2 Functional Web Programming

Figure 5 specifies the WrForm programming language. WrForm extends the call-by-
value λ-calculus with integers, strings, andWeb forms, which are records with a reference
to a program. The programming language connects to the Web model (figure 2) in three
ways: the syntax for forms, the syntax for terms (M), and the dispatch function dp.

2 Returning to a non-cached page falls under the submit rule.
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The form construct creates Web forms. The M.Id construct extracts the value of
a form field with the name Id. We specify the semantics of WrForm with a reduction
semantics [8]. There are two reductions: βv and select.

The bottom half of figure 5 specifies dispatching. It shows how dp processes a
submitted form form0. First, it uses the url in form0 to extract a program from its table
p. Second, it applies the program to the form and reduces this application to a value
form1. The store σ0 remains the same.

Syntax

M = V
| (M M)
| Id

| (form Url
−−−−→
(Id M))

| M.Id

V = V[ | (λ (Id) M) | F

Semantics

E = [] | (E M) | (V E)
| (form url

−−−−→
(id V ) (id E)

−−−−→
(id M))

| E.Id

(βv) E[((λ (x) body) v)] −→v E[body[x\v]]
(select) E[(form url

−−−−→
(ni vi) (nj vj)

−−−−→
(nk vk)) . nj] −→v E[vi]

Language to Web Connection

dp : Σ × F −→ Σ × F
dp(σ0, (form url

−−−→
(id v))) = 〈σ0, form1〉

where prog = p(url) and (prog (form url
−−−→
(id v))) −→∗

v form1

Fig. 5. Web Programming Language

4.3 Stateful Web Programming

Up to this point, scripts in our model can only communicate with each other through
forms. In practice, however, Web scripts often communicate not only via forms but also
through external storage (files, session objects). To model such stateful communications,
we extend WrForm with read and write primitives. Figure 6 presents these language
extensions. The two primitives empower programs to read flat values from and to write
flat values to store locations. The reduction relation −→vσ is the natural extension of
the relation −→v . The extended relation relates pairs of terms and stores rather than just
terms. Consequently the dispatcher starts a reduction with the invoked program and the
current store. At the end it uses the modified store to form the next Web configuration.
Thus, the server model remains sequential and does not include any concurrency.

5 Problems with the Web

Our model of Web interactions can represent some common Web programming problems
concisely. The first problem is that a Web script expects a different kind of form than
is delivered. We dub this problem the “(script) communication problem.” The second
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Syntax

M = · · · | (read Id) | (write Id M)

Semantics

e0 −→v e1

〈σ, e0〉 −→vσ 〈σ, e1〉
〈σ, E[(write id v)]〉 −→vσ 〈σ[id\v], E[v]〉
〈σ, E[(read id)]〉 −→vσ 〈σ, E[σ(id)]〉
where id ∈ dom(σ)

Language to Web Connection

Σ v (Id −→ V[)

dp(σ0, (form url
−−−→
(id s))) = 〈σ1, form1〉

where prog = p(url)
〈σ0, (prog (form url

−−−→
(id s)))〉

−→∗
vσ 〈σ1, form1〉

Fig. 6. Language Extensions for Storage

problem reveals a weakness of the hypertext transfer protocol. Due to the lack of an
update method, information on client Web pages becomes obsolete and misleads the
consumer. We dub this problem the “(http) observer problem” indicating that the http
protocol does not permit a proper implementation of the Observer pattern [10].

5.1 The Communication Problem

Since standard Web programs must terminate to interact with a consumer, non-trivial in-
teractive software consists of many small Web programs. If the software needs to interact
N times with the client, it consists of N + 1 scripts, and all scripts must communicate
properly with their successors.3 Worse, since the client can arbitrarily resubmit pages,
the programmer cannot assume anything about the scripts’ execution sequence.

Even without the difficulties of unusual execution sequences, splitting Web programs
into pieces can introduce errors. Consider the example in figure 7. The server’s table
contains two programs: start.ss and next.ss. The start.ss program prompts for the user’s
name and directs this information to next.ss. This second program attempts to verify
some properties about the consumer. In doing so, it assumes that the input form contains
both name and phone fields, and attempts to extract both. The attempt to extract the
non-existent phone field results in a runtime error. The diagram illustrates the problem
graphically. When programmers mistakenly encode such assumptions into the store—a
mistake that is easily made with Java servlet and asp.net session objects—these safety
errors concerning form field accesses become even more nefarious.

By now, programmers are well-aware of this problem and employ extensive dynamic
testing to find these mistakes. In the next section, we present a type system that discovers
such problems statically and still allows programmers to develop complex interactive
Web programs in an incremental manner.

3 A good programmer may recognize opportunities for aggregating some of the programs. It is
also possible to use a “multiplexer” technique that merges all these scripts into one single file
and uses a dispatcher to find the proper subroutine. The problems remain the same.
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plt-scheme.org/cgi/start.ss 7→
(λ (x)

(form plt-scheme.org/cgi/next.ss
(name "Your Name")))

plt-scheme.org/cgi/next.ss 7→
(λ (x)

(form plt-scheme.org/cgi/done.ss
(confirm-name x.name)
(confirm-phone x.phone)))

Σ0

start

Σ1

next
phone

submit

()

response

submit

(name)

(form start.ss)

(form next.ss
(name ""))

fill-form

(form next.ss
(name "Ed"))

�

?

-

?

Y

?

Fig. 7. Collaborating Programs

5.2 The Observer Problem

In a model-view-controller (mvc) architecture, each change to the model notifies all the
views to update their display. Web programs do not enjoy this privilege, because http
does not provide for an update (or “push”) method. Once a browser receives a page, it
becomes outdated when the model changes on the server, which may be due to additional
form submissions from the consumer.

The Observer problem is often, but not always, due to a confusion of environments
and stores, or form and server-side storage. Clearly, a program that reserves flights
needs both. Unfortunately, programmers who don’t understand the difference may place
information into the store when it really belongs in the Web form.

Figure 8 shows a reformulation of Orbitz’s problem (see section 2) in WrForm.
The first of these programs, pick-flight, asks the customer for a preferred flight time.
The second program, confirm-flight, writes the selected flight time into external storage
before asking the user to confirm the flight time. The third program, receipt-flight, reads
the selected flight from storage and charges the customer for a ticket.

It is easy to see that the WrForm program models the problem in section 2. Submitting
two requests for the confirm-flight program results in two pages displaying different
flight times on the client, yet only one flight time resides in the server’s external storage.
Submitting the outdated form that no longer matches the storage produces the mistake.

6 Type Checking Communication

Trying to extract a field from a form fails in WrForm if the form does not contain the
named field. To prevent such errors, languages often employ a type system (and/or safety
checks). Our Web model shows, however, that straightforward type checking doesn’t
work, because programs consist of many separate scripts loosely connected via forms
and storage. Checking all the scripts together is infeasible. Not only are these scripts
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pick-flight 7→ (λ (empty-form) (form confirm-flight (departure-time "hh:mm")))

confirm-flight 7→ (λ (first-form)
(write your-flight first-form.departure-time)
(form receipt-flight (confirm-time (read your-flight))))

receipt-flight 7→ (λ (confirmed-form)
(buy-flight (read your-flight))
(form next-action (itinerary (read your-flight))))

Fig. 8. Stateful Web Programs

developed and deployed in an incremental manner, they may also reside on different
Web servers and/or be written in different programming languages.

We, therefore, provide an incremental type system for Web applications. When the
server receives a request for an unknown url, it installs a program into its table to handle
the request. Before installing the new program, the server type checks the program
for “internal consistency.” In addition, the server also derives constraints that this new
program imposes on other Web programs. We refer to this second step as “external
consistency” checking. If either step fails, the program is rejected, resulting in an error.
In practice, a programmer may register several programs of one application and have
them typed checked before they are deployed.

The type system for internal consistency checking heavily borrows from simply-
typed λ-calculi with records [5,17,19]. Figure 9 defines the type system. In addition to
the usual function type (−→) and primitive types Int and String, the type language also
includes types for Web forms. Similar to record types, form types contain the names
and types of the form fields, which—according to their intended usage—must have flat
(marshallable) types. We overload the type environment to map both variables and store
locations to types. An initial type environment Γ0 maps locations in the external storage
to flat types.4 Typed WrForm differs from WrForm only by requiring types for function
arguments. That is, (λ (x) M) becomes (λ (x : τ ) M) in typed WrForm.

The type system also serves as the basis for external consistency checking. As it
traverses the program, it generates constraints on external programs. Each type judgment,
as shown in figure 9, includes a set of constraints. A constraint url : (form

−−−−→
(id τ[)) insists

that the program associated with url consumes Web forms of type (form
−−−−→
(id τ[)).

Most type rules in figure 9 handle constraints in a straightforward manner. Checking
atomic expressions yields the empty set of constraints. Checking most expressions that
contain subexpressions simply propagates the constraints from checking the subexpres-
sions. The only expressions that generate constraints are form expressions.

The expression (form url
−−−−→
(id m)) constructs a form value, so its type is similar to

a record type. This form expression also indirectly connects the program associated
with url to the form the consumer will submit later. If the type-checker looked up

4 The environment Γ0 is fixed when beginning to check an individual program, but programmers
may add extra locations for new programs.
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Types
Type = Type −→ Type

| (form
−−−−−−−→
(Id Type[))

| Type[

Type[ = String | Int

Type Judgments

Γ ` M : Type, Ξ
where

Ξ = {url : (form
−−−→
(id τ))}

Type Derivation Rules

Γ ` string : String,{}

Γ ` n : Int,{}

Γ (x) = τ

Γ ` x : τ, {}

Γ, x : τx ` m : τ, ξ

Γ ` (λ (x : τx) m) : τx −→ τ, ξ

Γ ` m0 : τx −→ τ, ξ0

Γ ` m1 : τx, ξ1

Γ ` (m0 m1) : τ, ξ0 ∪ ξ1

Γ ` m : (form
−−−−−→
(ida τ[a) (idx τ[x)

−−−−−→
(idb τ[b)), ξ

Γ ` m.idx : τ[x, ξ

−−−−−−−−−−→
Γ ` m : τ[, ξm

Γ ` (form url
−−−−→
(id m)) : (form

−−−−→
(id τ[)),

{url : (form
−−−−→
(id τ[))} ∪ −→

ξm

Γ (l) = τ[

Γ ` (read l) : τ[, {}

Γ (l) = τ[ Γ ` m : τ[, ξ

Γ ` (write l m) : τ[, ξ

Fig. 9. Internal Types for WrForm

the program associated with url immediately and compared the form type with the
function’s argument type, this would suffice. It would not, however, allow for independent
development of connected Web programs. Instead, type checking the form expression
generates the constraint url : (form

−−−−→
(id τ[)), which must be checked later.

Figure 10 extends the definition of the server state S with a set of constraints Ξ . The
function Install-program adds a new program m to the server’s table p at a given url if
the program is okay. That is, the program must type check and the generated constraints
must be consistent with the constraints already on the server. A set of constraints is
consistent iff the set is a function from urls to types.5 The Constrain function ensures
that the program m is well typed, and it extends the existing set of constraints ξ0 to
include constraints generated during type checking ξ1.

With type annotations, type checking, constraint generation, and constraint checking
in place, the system provides three levels of guarantees. The first theorem shows that
individual Web scripts respond to appropriately typed requests without getting stuck.

Theorem 1. For all m in M, τ in Type, and set of Constraints ξ, if Γ0 ` m : τ , ξ then
for some v in V, m −→∗

v v.

The second theorem shows that the server does not apply Web programs to forms
of the wrong type, as long as the server starts in a good state. Before we can state the
theorem, though, we need to explain what it means for a server state to be well-typed

5 Relaxing this restriction could allow forms to contain extra, unanticipated fields.
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Server Extension and Additional Functions
S = Σ × P × Ξ

Install-program : URL M W −→ W
Install-program(url, m, 〈〈σ, p, ξ〉, c〉) = 〈〈σ, p[url\m], Constrain(ξ, url, m)〉, c〉
when Consistent(Constrain(ξ, url, m))

Consistent : Ξ −→ boolean
Consistent(ξ) ≡

(url : (form
−−−−−→
(id0 τ0))) ∈ ξ ∧

(url : (form
−−−−−→
(id1 τ1))) ∈ ξ =⇒

−−−−−→
(id0 τ0) =

−−−−−→
(id1 τ1)

Constrain : Ξ url M −→ Ξ
Constrain(ξ0, url, m) =

ξ0 ∪ ξ1 ∪ {url : (form
−−−−−−→
(idin τin))}

where
Γ0 ` m : (form

−−−−−−→
(idin τin))

−→ (form
−−−−−−−→
(idout τout)), ξ1

Fig. 10. Constraint Checking

and for a submitted form to be well-typed. A server is well typed when all the programs
have function types that map forms to forms and when all the constraints are consistent:

server-typechecks(〈σ, p, ξ〉) iff Consistent(ξ) and for each url in dom(p),
Γ0 ` p(url) : (form

−−−−−→
(id1 τ[1)) −→ (form

−−−−−→
(id2 τ[2)), ξurl and

ξurl ∈ ξ and url : (form
−−−−→
(id τ[1)) ∈ ξ

A form is well typed with respect to a server if it refers to a program on the server that
accepts that type of form.
form-typechecks(〈σ, p, ξ〉, (form url

−−−−→
(id v[))) iff

there are types −→τ[ such that
−−−−−−−−−−→
Γ0 ` v[ : τ[, {} and url : (form

−−−−→
(id τ[)) is in ξ

Theorem 2. If server-typechecks(s0) and form-typechecks(s0, f0) then for some
〈s1, 〈f1,

−→
f 〉〉, 〈s0, 〈f0,

−→
f 〉〉 ↪→submit 〈s1, 〈f1,

−→
f 〉〉.

If the server’s set of constraints is closed, the resulting configuration also guarantees
the success of the next submission.

Theorem 3. If 〈〈σ, p, ξ〉, 〈f0,
−→
f 〉〉 ↪→submit 〈s1, 〈f1,

−→
f 〉〉,

server-typecheck(〈σ, p, ξ〉), form-typechecks(〈σ, p, ξ〉, f0),
and for each constraint url : (form

−−−→
(id τ)) in ξ, url is in dom(p) then

server-typecheck(s1) and form-typechecks(s1, f1).

Alternative Web Programming Languages. It is not necessary to instantiate our model
with a functional programming language. Instead, we could have used a language such
as <bigwig>, which is the canonical imperative while-loop language over a basic data
type of Web documents [20]. Furthermore, the <bigwig> language already provides an
internal type system that derives and checks information about Web documents. Its type
system is stronger than ours, allowing programmers to use complex mechanisms for
composing Web documents.

The<bigwig> project and our analysis differ with respect to the ultimate goal. First,
our primary goal is to accommodate the existing Web browser mechanisms. In contrast,
<bigwig>’s runtime system disables the back button. Second, we wish to accommodate
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an open world, where scripts in asp.net, Perl, or Python can collaborate. Our theorems
show how type checks in the language and in the server can accommodate just this kind
of openness. The <bigwig> project does not provide a model and therefore does not
provide a foundation for investigating Web interactions in general.

Separating constraints on collaborating programs from the type checking of individ-
ual programs lends the system flexibility. For WrForm, the set of forms produced could
more easily be computed by examining the program’s return type. For other languages
the local type checking and the constraint generation may be less connected. Extending
our constraint checking to dynamically typed languages requires a type inference system
capable of determining the types of all possible forms a program might produce.

7 Notifying Outdated Observers

When a script creates a form, it reflects the server’s current state. Due to http’s short-
comings, a form can lose currency with the server’s state. Submitting such a form may,
from the consumer’s perspective, result in incomprehensible or erroneous behavior.

One way to avoid such errors is to reload pages periodically. Since pages are gen-
erated with scripts, reloading implies re-executing scripts. Of course, the re-execution
must avoid a duplication of effects on the state of the server, which is precisely what
Thiemann’s work enables [21]. Unfortunately, this solution doesn’t work in general for
a number of reasons, some of which were discussed in the section on prior work.6

An alternative and general method is to modify the server so that it detects when
a submitted form does not reflect the server state. Roughly speaking, this corresponds
to the execution of a safety check like the one for array indexing or list destructuring.
If the “up-to-date” test fails, the server informs the consumer of the situation, which
prevents the erroneous computation from causing further damage. Again, in analogy
to safety checks, the server signals an exception and thus informs the consumer at
the earliest opportunity that something went wrong. We believe that this approach is
general, because it is independent of the scripting language, and that dynamic checking
is the appropriate compromise, because these kinds of situations depend on dynamic
configurations rather than statically predictable properties.

To check on the datedness of a submitted form, the server must perform some addi-
tional bookkeeping. Specifically, determining if something is outdated requires a notion
of time, and therefore the server must keep track of time. For us, time is the number of
processed submissions. The external storage changes so that it maps locations not only
to flat values but also to a timestamp for the last write: Σ v Id −→ Time × V[.

In addition, the server maintains a carrier set of all storage locations read or written
during the execution of a script. When it sends each page to the consumer, the server
adds the current time stamp and this set of locations as an extra hidden field on the page.

With this additional bookkeeping, the server can now check whether each request is
up-to-date. When a request arrives, the server extracts both the carrier set and the page

6 A WASH-CGI program with the problem demonstrated in figure 1, built using WASH-CGI-1.0
downloaded on October 8, 2002, compiled without complaint using GHC-5.02.2 and “reserved”
the wrong flight when run. Unfortunately, the program is too long to include in (the margin of)
this paper.
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creation time. If any of the timestamps attached to the locations in the carrier set are out
of date, then the submitted form may be inconsistent with the current server storage:

A form with carrier set CS and time stamp T submitted to a server with current
state σ is out of date if and only if any of the locations in CS have a time stamp
in σ that is larger than T .

Clearly, a naı̈ve use of this test produces many false positives. For example, a script
may use and modify the server state to compute a page counter, a set of advertisements, or
other information irrelevant to the consumer. If a form is out of date only for “irrelevant”
storage locations, the consumer should clearly not receive a warning. We therefore
allow programs to specify whether reading or writing a location in the server state is a
relevant or irrelevant action from the consumer’s perspective. Assuming that language
implementors make this change, the Web server can reduce the carrier set that it collects
during a script execution and the number of warnings it issues.

8 Conclusion

Our paper introduces a formal model of sequential interactive Web programs. We use the
model to describe classes of errors that occur when consumers interact with programs
using the natural capabilities of Web browsers. The analysis pinpoints two classes of
problems with scripting languages and servers.

To remedy the situation, languages used for scripting should come with type checkers
that compute the shape of expected forms on the input side and the shape of forms that
the scripts may produce. These languages should also allow scripts to specify which
actions on the server’s state are relevant for the consumer. Furthermore, servers should
be modified to integrate the type information from the scripts. In particular, servers
should only submit forms to a script if the form is well-typed and up-to-date.

In short, the formal model helps us to understand what the problems are and which
components of the Web should change to avoid such interactions. We have implemented
a first prototype of our results and hope to report on experiments with the improved
server and servlet language in the near future.

References

1. Atkins, D. L., T. Ball, G. Bruns and K. C. Cox. Mawl: A domain-specific language for
form-based services. Software Engineering, 25(3):334–346, 1999.

2. Brabrand, C., A. Møller, A. Sandholm and M. Schwartzbach. A language for developing
interactive Web services, 1999. Unpublished manuscript.

3. Brabrand, C., A. Møller, A. Sandholm and M. I. Schwartzbach. A runtime system for inter-
active Web services. In Journal of Computer Networks, pages 1391–1401, 1999.

4. BrightPlanet. DeepWeb.
http://www.completeplanet.com/Tutorials/DeepWeb/.

5. Cardelli, L. Type systems. In Handbook of Computer Science and Engineering. CRC Press,
1996.

6. Coward, D. Java servlet specification version 2.3, October 2000.
http://java.sun.com/products/servlet/.



252 P. Graunke et al.

7. Dierks, T. and C. Allen. The transport layer security protocol, January 1999.
http://www.ietf.org/rfc/rfc2246.txt.

8. Felleisen, M. and R. Hieb. The revised report on the syntactic theories of sequential control
and state. Theoretical Computer Science, 102:235–271, 1992. Original version in: Technical
Report 89-100, Rice University, June 1989.

9. Freier, A. O., P. Karlton and P. C. Kocher. Secure socket layer 3.0, November 1996. IETF
Draft http://wp.netscape.com/eng/ssl3/ssl-toc.html.

10. Gamma, E., R. Helm, R. Johnson and J. Vlissides. Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

11. Graham, P. Beating the averages. http://www.paulgraham.com/avg.html.
12. Graunke, P., R. B. Findler, S. Krishnamurthi and M. Felleisen. Automatically restructuring

programs for theWeb. In IEEE International Conference on Automated Software Engineering,
pages 211–222, 2001.

13. Graunke, P., S. Krishnamurthi, S. van der Hoeven and M. Felleisen. Programming the Web
with high-level programming languages. In European Symposium on Programming, pages
122–136, 2001.

14. Hughes, J. Generalising monads to arrows. Science of Computer Programming, 37(1–3):67–
111, May 2000.

15. Microsoft Corporation. http://www.microsoft.com/net/.
16. NCSA. The Common Gateway Interface. http://hoohoo.ncsa.uiuc.edu/cgi/.
17. Pierce, B. C. Types and Programming Languages. MIT Press, 2002.
18. Queinnec, C. The influence of browsers on evaluators or, continuations to program Web

servers. In ACM SIGPLAN International Conference on Functional Programming, pages
23–33, 2000.
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Abstract. We study the type inference problem for a distributed π-
calculus with explicit notions of locality and migration. Location types
involve names that may be bound in terms. This requires some accurate
new treatments. We define a notion of principal typing. We provide a
formal description of sound and complete type inference algorithm.

1 Introduction

In wide area distributed systems, such as the Internet, sensitive administrative
domains have to be protected against malicious agents, and tools are required
for the analysis of security properties. In this paper we focus on this topic using
Hennessy and Riely’s distributed π-calculus dπ [6]. It is based on the polyadic
asynchronous π-calculus, involving explicit and simple notions of locality and
migration. The distribution is one dimensional: in contrast with Djoin [5] or
Mobile Ambients [4], locations do not contain sub-locations (as in π� [1]). As
in Mobile Ambients, communication is purely local: only co-located processes
can communicate. Mobility is weak in the sense that we migrate code instead of
computations (as it is the case in Mobile Ambients and Djoin). Thus, this cal-
culus provides a simple but powerful framework to model fundamental features
of distributed computations.

In [6] a type system is proposed for dπ. It does not only deal with arity
mismatch of communications as sorts do for the polyadic π-calculus. It also
investigates an important issue of distributed systems: the controlled access to
system resources. There, a resource is represented by a communication channel
bound to a particular location. Hence, a location type is the set of channels
available to a process at a location. It is of the form:

{a1 : γ1, . . . , an : γn}
where each ai is a channel name and γi a channel type. Locations can be sent
through channels that have a type Ch(ψ) where ψ is a location type. For instance,
a process knowing of a location � with type {a : γ, b : γ′} has permission to use
channels a and b at � and only these. In [2], this type system is required to
guarantee the message deliverability property.
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Even though it checks crucial properties, this type system assumes that all
agents are well-typed. However, in networks such as the Internet, only few lo-
cations may be statically typed, and a dynamic type checking is necessary for
agents coming from untyped or unknown locations. A fundamental question
arises: does a type checking algorithm exist ?

We design a type inference algorithm à la ML for dπ with undecorated terms
(à la Curry). Usually, such an algorithm proceeds in two steps:

– given a term S and its initial typing context Γ (associating a type variable to
each location name of S), generate type constraints involving type variables;

– produce a substitution µ of type variables for types solving the constraints.

If the algorithm succeeds, then the application of the substitution to the initial
context µΓ is a valid typing context for S. Otherwise, S is not typable. Despite
this simple scheme, we have to face two major difficulties described below
together with the solutions worked out in this paper.
Principal typing. Basically, a principal typing is a typing context which repre-
sents all possible types by ground instantiation of type variables. Unfortunately,
this definition is not suitable here because our type system involves subtyping
on location types.

Indeed, consider the term a� | a(k).P that sends the location name � over the
channel a and binds k to � in P , and suppose that a has type Ch({b : γ, c : γ′}).
Then P is allowed to use at most b and c at the received location, that is k has
a type ψ ⊆ {b : γ, c : γ′}. And, all location names sent through a, must have a
type that declares at least b and c, that is � has a type ψ′ ⊇ {b : γ, c : γ′}. We
see that the types of � and k are related to the one of a, and all valid typings
for that term have to satisfy this relation.

Therefore, we define a principal typing for a term S as a pair (Γ ; A) where
Γ is a typing context involving type variables and A is a set of subtyping
constraints. And an instance µΓ is a valid typing for S if and only if µ
satisfies A. Thus, our algorithm generates not only equations of types but also
inequations.
Dependant types. The second and most important difficulty comes from the
fact that location types are so-called dependant types: they involve names that
may be bound in terms. For instance, consider the term Q = a(b).(ν�) P that
receives a name b, creates a location �, and triggers P . Here b is bound to (ν�) P ,
and � may be given a type {b : γ}. If we create the location � before the reception
as in R = (ν�) a(b).P , then � cannot have a type where b occurs. Otherwise typing
would not be preserved by α-equivalence of terms. However, the type inference
algorithm cannot find a type for � before the exploration of P where there is not
anymore difference between the creation of � before the reception of b and the
reverse. Thus, a naive algorithm may assign types to untypable terms!

Our solution introduces a novel notion of binding relation that, intuitively,
keeps track of the order in which channels are bound. It relates channel names
and type variables such that if (a, α), is in the relation, then it is forbidden to
substitute type variable α by a type in which name a occurs. In the first step
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u, v . . . ::= a | � | a@� values

P, Q, R . . . ::= 0 | au | a(u).P | (P | Q) | (νu) P | go �.P | !P processes

S, T, . . . ::= 0 | �[[P ]] | (S | T ) | (νa@�) S | (ν�) S networks

Fig. 1. Syntax of terms

of the algorithm, this relation is updated each time a bound channel is met.
For instance, consider R above, and suppose that � is given a type variable α.
When the algorithm treats the reception, it updates the binding relation by
associating b to each current type variable. In particular, the pair (b, α) is added
to the binding relation, thus preventing � to be assigned a type where b occurs.
In Q, � is given a fresh type variable α when the creation is met, i.e. after the
reception of b. Hence, α is not associated to b and may be substituted by {b : γ}.

We give a sound and complete type inference algorithm that produces a
principal typing. We express our algorithm in the form of a rewriting system,
which allows for neat formal proofs that can be found in [8].
Related works. Our calculus is actually a variant of the one in [6]: the latter
uses a synchronous communication and an explicit typing (terms involve types).
However, we could easily treat synchronous and decorated terms. For instance,
consider the term Q = (νa : τ ) P . Applied to (νa) P , either our algorithm fails
and Q is not typable. Or it succeeds and produces a type σ for a. And Q is
typable if and only if τ is an instance of σ. Our location types are very similar
to record types of [13,10,11,7]. However, using techniques developed in these
papers, the use of a binding relation requires some accurate new treatments. To
our knowledge, the type inference algorithm presented in this paper is the first
one dealing with these kind of dependant types.

2 A Calculus with Localities

In this section we introduce our distributed calculus, we give the operational
semantics and the syntax of types. For the sake of simplicity, this calculus is
presented in its monadic version. Apart from that, it is the usual asynchronous π-
calculus with some primitives for spatial distribution and migration of processes
organised as a two-levels model: the processes (or thread) one and the network (or
configuration) one. As in [6] communication is local, that is we cannot directly
send a message from a location � to a remote process at location k: we must
migrate the message to k, and then we can communicate.

In order to state the syntax, we consider a denumerable set N of (simple)
names which is assumed to be partitioned into two sets: the channel names
Nchan = {a, b, . . .} and the location names Nloc = {�, k, . . .}. The objects of
communications may be compound that is a channel name a together with a
location name � denoted by a@� and meaning “the channel a (to be) used at
location �”. We can also abstract and restrict location names. The grammar of
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terms is given in figure 1. We denote by U, V . . . a process or a network, fn(U)
(resp. bn(U), nm(U)) the set free (resp. bound, all) names occurring in U .

Before describing types, we briefly present the operational semantics in the
“chemical style” of Berry and Boudol [3]. To this aim, we define the structural
equivalence as the least equivalence satisfying the commutative monoid laws for
parallel composition, containing the α-equivalence and satisfying the following:

((νu) U | V ) ≡ (νu) (U | V ) if subj(u) �∈ fn(V )

�[[(νu) P ]] ≡ (νu@�) �[[P ]] if subj(u) �= �

!P ≡ (P | !P ) �[[P | Q]] ≡ �[[P ]] | �[[Q]] U ≡ V ⇒ E[U ] ≡ E[V ]

where

u@� =
{

a@� if u = a
u otherwise subj(u) =

{
a if u = a or u = a@�
� if u = �

and E is any evaluation context, defined by: E ::= • | (E | U) | (νu) E | �[[E]]

As usual, in an evaluation context • stands for a “hole” and E[U ] denotes the
substitution of the hole for the term U in E providing that the resulting term is
valid. The reduction is built upon two laws, that is the standard communication
one plus a law of movement for migration:

(av | a(u).P ) → [v/u]P �[[go k.P ]] → k[[P ]]
up to structural equivalence and under evaluation context.

3 The Type System

Let V = {α, β, . . .} be a denumerable set of type variables partitioned into three
sets: the set of general type variables (t, t′, . . .), the set of channel type variables
(h, h′, . . .), and the set of location type variables (or row variables) ranged over by
ρL, ρ′

L, . . . where L ∈ Pfin(Nchan). Types are based on the following grammar:

τ, σ, . . . ::= ψ | γ | γ@ψ | t types
γ, δ, . . . ::= Ch(τ) | h channel types

ψ, φ, . . . ::= {a : γ, ψ} | {} | ρL location types

We denote by var(τ) the set of the type variables occurring in τ. We denote by
τ, γ, ψ, . . . the ground types that is the types τ such that var(τ) = ∅. We will
often note {a1 : γ1, . . . , an : γn, ψ} for {a1 : γ1, {. . . , {an : γn, ψ}} . . .}. Typing
a location name means: “recording the names and types of channels on which
a communication is possible inside the location”. That is, a location type is a
record of channel names together with their types: this a dependant type since
it contains terms, viz. channel names. Extension of location type is achieved
by means of a row variable that may be substituted with a location type. A
location type that ends with a row variable is called an extensible location type.
In the latter, the row variable is obtained by means of the partial function
ρvar (e.g. ρvar({a : γ, ρL}) = ρL). We also denote the set of names typed in a
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k : ψ �� k : ψ � : {a : γ} �� a : γ � : {a : γ, ψ} �k a@� : γ@ψ

Γ �� u : τ

Γ, ∆ �W
� u : τ

Fig. 2. Type system for names

Γ, ∆ �� P , ∆ �� u : τ

� : {a : Ch(τ)}, Γ �� a(u).P

� : {a : γ}, Γ �� P

Γ �� (νa) P

k : {a : γ}, Γ �� P

Γ �� (νa@k) P

k : ψ, Γ �� P

Γ �� (νk) P

Γ �W
� u : τ

� : {a : Ch(τ)}, Γ �� au

Γ �� P , Γ �� Q

Γ �� P | Q

Γ �k P

Γ �� go k.P

Γ �� P

Γ ��!P Γ �� 0

Fig. 3. Type system for processes

Γ � 0

Γ �� P

Γ � �[[P ]]

Γ � S , Γ � T

Γ � S | T

� : {a : γ}, Γ � S

Γ � (νa@�) S

� : ψ, Γ � S

Γ � (ν�) S

Fig. 4. Type system for networks

location type ψ by dom(ψ) (e.g. dom({a : γ, b : δ, ψ}) = {a, b}). As for record
types in {a1 : γ1, . . . , an : γn, ρL} the names a1, . . . , an have to be distinct, an
assumption we will take throughout the paper. In order to preserve this property
by instantiation, the row variable of a type ψ is equipped with a subscript, that
is a set of names which is meant to contain at least dom(ψ). Intuitively, the
subscript L of a row variable ρL allows one to substitute it for a location type
defining channels that do not occur in L, thus avoiding duplicated assignments.
However, in the section 4 we show that with dependant types this is not sufficient.

The type of a compound name a@� is a “located channel type” γ@ψ meaning:
“a has the type γ at a remote location with a type at least ψ”. These types are
existential because γ@ψ should be read as ∃a.{a : γ, ψ}. We assume that in a(u).P
we have u �= a, and in {a1 : γ1, . . . , an : γn, ρL} we have ρL �∈ var(γ1, . . . , γn).

The type system is given in figures 2 to 4. We give a formal definition of
well-formed types in the next section. The type system deals with sequents of
the form Γ 
� P , for checking that the process P , placed at the current location
�, conforms to the typing assumption Γ , and similarly Γ 
 S for systems. We
have two kinds of sequents for names: Γ 
W

� u : τ to type names with weakening
of hypotheses and sequents Γ 
� u : τ without weakening. The latter are used to
type formal parameters in input.
A typing context Γ is a mapping from a finite subset dom(Γ ) of Nloc into the set
of ground location types. We use of a partial operation of union ∆, Γ of typing
contexts, defined as follows:
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(∆, Γ )(x) =




∆(�) if � ∈ dom(∆) − dom(Γ )
φ � ψ if ∆(�) = φ & Γ (�) = ψ

Γ (�) if � ∈ dom(Γ ) − dom(∆)

where ψ�φ denotes the union of ψ and φ, which is only defined if ψ and φ assign
the same types to the names they share. As usual, we assume that bound names
are renamed such that no collision with other bound or free names arises.

We comment the rules and note some elementary properties. In the rules
for names without weakening the conclusion determines the context. Namely, if
Γ 
� u : τ and ∆ 
� u : τ then Γ = ∆. The rule for output involves a form of
subtyping for localities: for instance, the judgement

� : {b : γ, c : δ} , k : {a : Ch({b : γ})} 
k a�

is valid, even though the type of � given by the context is more generous than the
one carried by the channel a. As usual, to type the body of an input the context
is enriched with the information necessary for the typing the formal parameters.
There are three cases for typing a name generation (νu) P and the rules follow
the same pattern as these for typing names. To type a migrating process go �.P ,
one must type P at locality �, while the resulting current locality is immaterial.

The main result concerning this type system is the subject reduction prop-
erty: if Γ 
 S and S → T , then Γ 
 T . The proof can be found in [8].

4 Managing the Dependant Types

In this section, we define and motivate the notions of principal typing and
binding relations. Our type inference algorithm consists, as usual, of two steps:

1. from a term and an initial typing context, generate type schemes constraints,
2. then we search the most general solution to the constraints such that its

application to the initial typing context provides a principal typing. This is
so-called constraint unification.

Let us begin with substitutions. A substitution (µ, λ, . . .) is a finite mapping
from type variables to types. For µ = [τ1/α1, . . . , τn/αn] we denote by dom(µ)
the set {α1, . . . , αn} and by vrang(µ) the set

⋃
i∈{1...n} var(τi). We consider

idempotent substitutions, in particular we have dom(µ) ∩ vrang(µ) = ∅. Outside
its domain a substitution is intended to be the identity. They are trivially
extended to homomorphisms on types and other objects (as contexts, subtyping
assertions, etc.). We note λµ the composition of λ and µ, and ∅ the empty
substitution.

Principal Typing. Usually, by principal typing for a term U , we mean a context
involving type schemes (denoted by Γ, ∆, . . . and called context schemes) and
whose all ground instantiations are valid typing contexts for U . However, this
definition is too permissive because such a principal typing could involve invalid
instantiations as the following example emphasises.
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Example 4.1. Consider S = �[[a� | bc]] where c has some type γ. Then � has type
{a : Ch(ψ), b : Ch(γ), c : γ}

where ψ can be either {b : Ch(γ), c : γ}, {b : Ch(γ)}, {c : γ} or {}. One might
expect the context scheme Γ = � : {a : Ch(ρ′

∅), b : Ch(γ), c : γ, ρ{a,b,c}} to be
a most general typing for �. Obviously this is not case since, for instance, the
application of the substitution [{b : Ch(Ch(γ))}/ρ′

∅] does not give a valid type
for �. This happens because b is used as a channel of type Ch(Ch(γ)) whereas a
actually sends � where b has the type Ch(γ). �

We introduce a relation ψ <: φ on location types (similar to the one of [6]) that
can be understood as φ ⊆ ψ, seeing location types as sets. More formally,
Definition 4.1. We define the relation <: on location types as follows:

ψ <: {} ψ <: ρL ψ <: φ ⇒ {a : τ, ψ} <: {a : τ, φ}
This relation defines subtyping assertions. The subtyping assertions of the form
ψ <: ρL are called atomic. Moreover, we write ψ ≡ φ if ψ <: φ and φ <: ψ. 1

We can observe subtyping in receptions and emissions of location names. For
instance, if P in a(�).P uses channels a1, . . . , an at location � then a must have
a type Ch(ψ) where ψ assigns at least a type to each ai. Therefore, in P , � has
a type φ such that ψ <: φ. Symmetrically, when emitting k on a, k must have a
type φ′ that assigns to each ai the same type as ψ does; that is φ′ <: ψ.
Example 4.2. Let us consider the term S = �[[ak | a(�′).go �′.bd]] | k[[cd]] where
d has some type γ. After the input of k on a, S migrates to k a message on b.
Then any location transmitted on a has to define at least a channel b with type
Ch(γ). Then, S can be associated with the following context scheme:

� : {a : Ch({b : Ch(γ), ρ{b}}), ρ′
{a}}, k : {b : Ch(γ), c : Ch(γ), ρ′′

{b,c}}
a may also have the type Ch({b : Ch(γ), c : Ch(γ)}) that can be obtained by the
ground substitution [{c : Ch(γ)}/ρ{b}]. Not all substitutions of ρ{b} give valid
typings for a (as for instance [{c : Ch(Ch(γ))}/ρ{b}]). However, whether or not
a substitution gives valid types for S is easily decidable: any substitution µ that
preserves the atomic subtyping assertion {c : Ch(γ), ρ′′

{b,c}} <: ρ{b} (that is such
that µ{c : Ch(γ), ρ′′

{b,c}} <: µρ{b} is still valid), preserves the typing of S. This
leads to the following definition of principle typing. �

Definition 4.2. Let A be a set of atomic subtyping assertions, we say that Γ; A
is a principal typing for S if 1) for all ground substitution λ that preserves A, we
have λΓ 
 S, 2) for all ∆ such that ∆ 
 S, there exists a ground substitution λ
that preserves A such that ∆ =dom(Γ) λΓ and λΓ 
 S.

Binding relations. In order to keep the names of a location type distinct, as in
[11], a row variable of a type ψ is equipped with a subscript. It is a set of names
which is meant to contain at least dom(ψ). In this case ψ is said well-formed.
Substitutions have to satisfy the following requirements: (i) if µρL = ψ, then
1 We assume that this should not be confused with structural equivalence. Intuitively,

ψ ≡ φ means that ψ and φ are identical modulo their row variables.
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dom(ψ) ∩ L = ∅, (ii) and if ρvar(ψ) = ρ′
L′ then L ⊆ L′. Condition (i) forbids

the substitution of a row variable with a type that contains a label belonging
to the subscript. However, in presence of dependant types, those subscripts are
not anymore sufficient. Indeed, the names occuring in location types belongs
to the same syntactic category of the names that may be bound in the terms.
Moreover, the latter are not supposed to occur in the principal typing produced
for it. However, the algorithm “deconstructs” the term, and names that were
initially bound appear later free. For instance, associating the context scheme
� : ρ∅, k : ρ′

∅ to the network S = �[[a(b).go k.bc]], after two deconstructions the
term go k.bc appears in which b is free and supposed by known at k. So, we
may substitute ρ′

∅ with a location type that assigns a type to b. However, S is
not typable since it tries to use the name b local to � at a remote location k.
To amend this, we could declare that if the generated substitution has bound
names in its range, then it is not a valid one, and conclude that the term is not
typable. However, this would be too strong. Indeed, consider the term

T = �[[d(b).(νa) Q]] where Q = (a� | a(k).go k.bc)

that waits at location � for a channel b, then it creates a channel a carrying the
location �. Since b and c are used by a process spawned at a location received
along a, a must have at least the type Ch({b : Ch(γ), c : γ}). A bound name
(b) appears in the type of a. However, this is not at variance with the fact
that bound names do not appear in the typing context of a term because T is
actually typable with the context � : {d : Ch(Ch(γ))} in which the type of a does
not appear. But in the type inference we have to compute all the types and
produce a substitution that may contains bound names in its range. Therefore,
we generalise the notion of subscripts of row variables to all type variables in a
stronger form. Intuitively, we associate to each variable α, a set L representing
the names not compatibles with α. That is, substitution are not allowed to map
α into a type containing elements from L. Contrary to the row variables, those
generalised subscripts have to be dynamically updated along the type inference.
We formalised this notion by means of finite relations of Nchan × V.

Definition 4.3. A binding relation B is a finite subset of Nchan × V. We note
B(α) the set {a | (a, α) ∈ B} and im(B) the set {a | ∃α.(a, α) ∈ B}.

Binding relations appears as subscripts of row variables: {a : γ, b : δ, ρ{b}} can
be considered well-formed with respect to the binding relation B = {(a, ρ{b})}.
Indeed, a substitution that respects B never substitutes ρ{b} by a type containing
a and therefore never duplicates its typing. However, we must keep the subscripts
of the row variables because the binding relations are stronger constraints. For
instance, we want to be able to extend {b : γ, α} with {a : Ch({b : γ})}. This
would be allowed by subscripts (that is if α = ρ{b}), but not by binding relations
(that is if α = ρ∅ and B(ρ∅) = {b}) because subscripts are only concerned with
the domains of location types, while binding relations are concerned with the
types (in this sense binding relations are stronger). The consequence is that the
well-formedness of types depends on binding relations. We say that ψ is well-
formed with respect to B if the names of dom(ψ) are all distinct, and, if ψ is
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t :: B h :: B
τ :: B

Ch(τ) :: B

γ :: B , ψ :: (L, B)

γ@ψ :: B

ψ :: (L, B)

ψ :: B {} :: (L, B)

γ :: B , ψ :: (L � {a}, B)

{a : γ, ψ} :: (L, B)

L′ = L ∪ B(ρL)

ρL :: (L′, B)

Fig. 5. Well-formedness of types with respect to a binding relation

extensible with row variable ρL, then dom(ψ) ⊆ L ∪ B(ρL). More formally, a
type τ is well-formed with respect to B if there exists a proof of the judgement
τ :: B in the inference system given in figure 5 where L is finite set of names.
Definition 4.4. We say that a substitution µ respects a binding relation B if

1. ∀α ∈ dom(µ), nm(µα) ∩ B(α) = ∅ and µα :: B,
2. ∀ρL ∈ dom(µ), dom(µρL) ∩ L = ∅, and if ρvar(µρL) = ρ′

L′ , then B(ρL) ⊆
B(ρ′

L′) and L ⊆ L′ ∪ B(ρ′
L′).

The first point of this definition simply says that µ assigns types to variables
according to what the binding relation allows, and that those types are still
well-formed. The second point is a generalisation of the requirements (i) and (ii)
given above to guarantee that substitution preserves the well-formedness.
Lemma 4.1. 1. if τ :: B and µ respects B, then µτ :: B,
2. if B ⊆ B′ and τ :: B then τ :: B′.

Unfortunately, the composition of two substitutions that respect B does not
necessarily respect B. For instance, µ = [ρ∅/t] and λ = [{a : γ, ρ′

{a}}/ρ∅] respect
B = {(a, t)}. However, the composition λµ = [{a : γ, ρ′

{a}}/ρ∅, {a : γ, ρ′
{a}}/t]

does not respect B, because a ∈ nm(λµt) whereas a ∈ B(t).
Definition 4.5. B is µ-closed if ∀α ∈ dom(µ), ∀β ∈ dom(µα).B(α) ⊆ B(β).

Lemma 4.2. Let µ be a substitution that respects B and B be µ-closed, then
for all substitution λ that respects B, λµ respects B.
It is easy, from a binding relation to construct an another one that is µ-closed.
Definition 4.6. We define the µ-closure of B as the following binding relation:

B ∪ ⋃
α∈dom(µ)

⋃
β∈var(µα) B(α) × {β}

The reader can easily check that if µ respects B, then µ still respects its µ-closure.

5 Solving Type Constraints

In this section we give an algorithm solving type constraints in terms of a rewrit-
ing system. The usual unification problem is: given equations between types, does
there exist a substitution for type variables that equates types ? As for unifica-
tion of record types, all type equality is supposed to be modulo the equation E:
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{a : h, {b : h′, ρL}} =E {b : h′, {a : h, ρL}}
That is, the ordering of the fields of location types doesn’t matter. For instance,
{a : γ, b : γ′, ρ{a,b}} and {b : γ′, a : γ, ρ{a,b}} define the same location type.
Definition 5.1. A typing constraint is a set E of equations between type schemes
{τ1

.= σ1, . . . , τn
.= σn}. A subtyping constraint is a set I of inequations between

location types {ψ1 � φ1, . . . , ψn � φn}. We say that µ is a solution of E (resp. I)
if µτi = µσi (resp. µψi <: µφi) for all 1 ≤ i ≤ n. We note E :: B if τi :: B and
σi :: B for all 1 ≤ i ≤ n and similarly for I :: B. We write ψ≡̇φ for ψ�φ∧φ�ψ.
We write µ =X λ where X is a set of type variables if µα = λα for all α ∈ X .

Definition 5.2. µ is more general on X than λ if and only if there exists a
substitution µ′ such that λ =X µ′µ. In this case we write µ ≤X λ.

Definition 5.3. A constraint is a tuple (E , I)B such that E :: B and I :: B. A
substitution µ is a principal solution of (E , I)B on X , if for all ground solution λ
of E and I that respects B, we have µ ≤X λ.

In figure 6 we define a reduction relation � on tuples (E , I, µ)X
B . We make

use of the abbreviation ψ � ρL for [ρL/ρvar(ψ)]ψ. The idea is that starting from
(E , I, ∅)X

B – that is a constraint (E , I)B, a set of type variables X containing
those occuring in E and I and the empty substitution – we apply the reduction
relation until we reach either a configuration (∅ A, µ)Y

B where µ is a principal
solution of (E , I)B on X , or the failure configuration ⊥ if E and I have no
common solution. This relation almost consists of the decompositions of pairs
of types until one of these is a type variable. Then (rule (elim)), the current
substitution µ is composed with the substitution of the type variable for the
other type (the latter being also applied to the remaining constraint) provided
that it respects the current binding relation. The condition α �∈ var(τ) ensures
that there is no remaining occurrence of the eliminated variable in the resulting
constraint, thus avoiding infinite reductions. If this condition fails, the occurs
check rule (oc) leads to the failure configuration. The rule (triv) removes trivial
equations. The rules (chan) and (at) simply decompose types. Rule (loc2) unifies
location types with disjoint domains: it extends each location by means of an
appropriate substitution of their row variables.

Rules (st1) and (st2) are used to solve subtyping inequations. The first one
asserts that {a : γ, ψ} � {a : δ, φ} has a solution if we can unify γ with δ and if
ψ � φ has a solution. Rule (st2) applies on ψ � φ when the channels defined in
φ are not in ψ. We then extend ψ with the channels typed in φ with respect to
the current binding relation.

Definition 5.4. We say that (E , I, µ)X
B is a well-formed configuration if

dom(µ) ∩ var(E , I) = ∅, var(E , I, µ) ⊆ X , µ respects B that is µ-closed, E :: B
and I :: B.

This definition gives some invariants for the reduction relation of unification.
Lemma 5.1. The property of well-formed configuration is preserved by �.
The following lemma states the preservation of solutions by the reductions.
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(triv) ({α
.= α} ∪ E , I , µ)X

B � (E , I , µ)X
B

(elim) ({α
.= τ} ∪ E , I , µ)X

B � ([τ/α]E , [τ/α]I , [τ/α]µ)X
B′

(chan) ({Ch(τ) .= Ch(σ)} ∪ E , I , µ)X
B � ({τ .= σ} ∪ E , I , µ)X

B

(at) ({γ@ψ .= δ@φ} ∪ E , I , µ)X
B � ({γ .= δ, ψ .= φ} ∪ E , I , µ)X

B

(loc1) (
{

{a : γ, ψ} .= {a : δ, φ}
}

∪ E , I , µ)X
B � ({γ .= δ} ∪ {ψ .= φ} ∪ E , I , µ)X

B

(loc2) ({ψ .= φ} ∪ E , I , µ)X
B � (λE , λI , λµ)Y

B′

(clash) ({σ .= τ} ∪ E , I , µ)X
B � ⊥

(oc) ({α
.= τ} ∪ E , I , µ)X

B � ⊥

(st1) (E ,
{

{a : γ, ψ} � {a : δ, φ}
}

∪ I , µ)X
B � ({γ .= δ} ∪ E , {ψ � φ} ∪ I , µ)X

B

(st2) (E , {ψ � φ} ∪ I , µ)X
B � (λE , {ψ � ρ′′

L′′ � ρ′
L′ } ∪ λI , λµ)Y

B′

where in
(elim) α �∈ var(τ) ∪ Vloc, , α �∈ dom(µ), nm(τ) ∩ B(α) = ∅, B′ is the [τ/α]-closure of B.

(loc2) Y = X � {ρ′′
L′′ }, ψ′ = ψ � ρ′′

L′′ , φ′ = φ � ρ′′
L′′ and λ = [ψ′

/ρ′
L′ , φ′

/ρL] with

ρL = ρvar(ψ), ρ′
L′ = ρvar(φ), and L′′ = (L − B(ρ′

L′ )) ∪ (L′ − B(ρL)) and if

• dom(ψ) ∩ dom(φ) = ∅, L′ ∩ dom(ψ) = ∅ and L ∩ dom(φ) = ∅
• nm(ψ) ∩ B(ρ′

L′ ) = ∅ and nm(φ) ∩ B(ρL) = ∅
• ρL �∈ var(φ) − ρ′

L′ and ρ′
L′ �∈ var(ψ) − ρL

• B′ is the λ-closure of B.

(clash) σ and τ are not type variables and have distinct top symbols, or are
locality types with disjoint domains and conditions of (loc2) fail.

(oc) α ∈ var(τ).

(st2) Y = X � {ρ′′
L′′ }, λ = [φ � ρ′′

L′′ /ρL] with ρL = ρvar(ψ), ρ′
L′ = ρvar(φ), and

if φ �∈ Vloc, dom(ψ) ∩ dom(φ) = ∅, L ∩ dom(φ) = ∅, ρL �∈ var(φ) − ρ′
L′ ,

nm(φ) ∩ B(ρL) = ∅, L′′ = (L − B(ρ′
L′ )) ∪ (L′ − B(ρL)),

B′ = B′′ ∪ B(ρ′
L′ ) × {ρ′′

L′′ } where B′′ is the λ-closure of B.

Fig. 6. Reduction relation for unification

Lemma 5.2. If (E , I, µ)X
B �∗ (E ′, I ′, µ′)Y

B′ and (E , I, µ)X
B is a well-formed con-

figuration, then µ′ = µµ′′ and,

1. for all λ ground solution of E and I that respects B, then there exists λ′ such
that λ =X λ′µ′′ and λ′ is a ground solution of E ′ and I ′ that respects B′.

2. For all solution λ of E ′ and I ′ that respects B′, λµ′′ is a solution of E and
I that respects B′.
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Lemma 5.3 (Termination). All sequence of reductions
(E , I, ∅)X

B � (E ′, I ′, µ′)Y
B′ � . . . terminates either with ⊥ or with (∅, A, µ)Y

B′′

where A is a set of atomic subtyping assertions.

We can finally state the soundness and completeness of our unification algorithm.

Proposition 5.1 (Soundness). If (E , I, ∅)X
B is a well-formed and (E , I, ∅)X

B
�∗ (∅, A, µ)Y

B′ ��, then µ is a principal solution of (E , I)B on X and µ respects
B′.

Lemma 5.4. (E , I, ∅)X
B �∗⊥ iff E and I have no solution that respects B.

Proposition 5.2 (Completeness). If E and I have a solution that respects
B, if E :: B and I :: B, then (E , I, ∅)X

B �∗ (∅, A, µ)Y
B′ �� where X = var(E , I).

6 Constraint Generation

In this section we describe the inference of types, that is starting from a network
term and a minimal typing context, we generate a constraint whose principal
solution applied to the initial context gives a principal typing. By initial context,
for a term S, we mean the set of location names occurring free in S, associated
with a row variable as type. The idea of the algorithm is to build incrementally
the inference tree of the typing of a term, i.e. is the inference tree in the inference
system described in section 3. This is done by means of a rewriting system which
acts on tuples (J , E , I)X

B where J is a set of sequents involving context schemes
and (E , I)B is the constraint being generated. The reduction is very close to
the inference system. Indeed, given a sequent in the tuple, the reduction mostly
consists in replacing it by the sequents that are premises of the corresponding
rule in the inference system. Possibly, constraints are also generated accordingly.

The rules are collected in figures 7 where an underscore ( ) denotes an ir-
relevant component. We just comment the rules for the binding constructs, the
others being relatively straightforward. For an input process the type system
uses the auxiliary type system without weakening for names. Since it is very
simple and completely deterministic, given a name u, a type τ and a location
� we can easily determine Γ such that Γ 
� u : τ. Actually, τ only needs to be
a type variable and u a location or a compound name. We use gen(u : α, �) to
generate adequate context schemes and typing constraints for the typing of u.

Definition 6.1. We define the function gen(u : t, �) = (Γ, E , X ) as follows:

gen(k : t, �) = (k : ρ∅, {t
.= ρ∅}, {ρ∅})

gen(a@k : t, �) = (k : {a : h, ρ∅}, {t
.= h@ρ∅}, {h, ρ∅})

where � �= k, ρ∅ and h are fresh type variables.

In the rule (p2b), the body of an input (of a location or a compound name) is
typed in the initial context extended with the context provided by gen. This
extension is allowed since the name(s) received does not already occur in the
context and all type variables of the extending context are assumed to be fresh.
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(n1) ({Γ �W
� k : t} ∪ J , E , I)X

B � (J , E ∪ {t
.= ρ∅}, I ∪ {Γ(k) � ρ∅})X �{ρ∅}

B

(n2) ({Γ �W
� a : t} ∪ J , E , I)X

B � (J , E ∪ {t
.= h}, I ∪

{
Γ(�) � {a : h, ρ{a}}

}
)

X �{ρ{a},h}
B

(n3) ({Γ �W
� a@k : t} ∪ J , E , I)X

B � (J , E ∪ {t
.= h@ρ′

∅},

I ∪
{

ρ{a}≡̇ρ′
∅, Γ(k) � {a : h, ρ{a}}

}
)

X �{h,ρ{a},ρ′
∅}

B
(p0) ({Γ �� 0} ∪ J , , )X

B � (J , , )X
B

(p1) ({Γ �� au} ∪ J , E , )X
B � (J ∪ {Γ �W

� u : t} ,

E ∪
{

Γ(�) .= {a : Ch(t), ρ{a}}
}

, )
X �{t,ρ{a}}
B

(p2a) ({Γ �� a(b).P } ∪ J , E , I)X
B � ({∆ �� P } ∪ J ,

{
Γ(�) .= {a : Ch(h), ρ′′

{a}}
}

∪ E ,

{ρ∅≡̇ρ′
∅} ∪ I)Y

B′

(p2b) ({Γ �� a(u).P } ∪ J , E , I)X
B � ({Γ, ∆ �� P } ∪ J ,

{
Γ(�) .= {a : Ch(t), ρ{a}}

}
∪ E ∪ E ′, I)Y

B′

(p3) ({Γ �� P | Q} ∪ J , , )X
B � ({Γ �� P, Γ �� Q} ∪ J , , )X

B

(p4) ({Γ �� (νa) P } ∪ J , , I)X
B � (∆ �� P } ∪ J , , {ρ∅≡̇ρ′

∅} ∪ I)
X �{ρ′

∅,h}
B′

(p5) ({Γ �k (νa@�) P } ∪ J , , I)X
B � ({∆ �k P } ∪ J , , {ρ∅≡̇ρ′

∅} ∪ I)
X �{ρ′

∅,h}
B′

(p6) ({Γ �� (νk) P } ∪ J , , )Y
B � ({k : ρ∅, Γ �� P } ∪ J , , )X �{ρ∅}

B
(p7) ({Γ �� go k.P } ∪ J , , )X

B � ({Γ �k P } ∪ J , , )X
B

(p8) ({Γ ��!P } ∪ J , , )X
B � ({Γ �� P } ∪ J , , )X

B
(s0) ({Γ � 0} ∪ J , , )X

B � (J , , )X
B

(s1) ({Γ � �[[P ]]} ∪ J , , )X
B � ({Γ �� P } ∪ J , , )X

B
(s2) ({Γ � S | S′} ∪ J , , )X

B � ({Γ � S, Γ � S′} ∪ J , , )X
B

(s3) ({Γ � (νa@�) S} ∪ J , , I)X
B � ({∆ � S} ∪ J , , {ρ∅≡̇ρ′

∅} ∪ I)
X ∪{t,ρ′

∅,h}
B′

(s4) ({Γ � (ν�) S} ∪ J , E , )X
B � ({� : ρ∅, Γ � S} ∪ J , E , )X �{ρ∅}

B
(f) (J , , )X

B � ⊥
where in
(p2a) ∆ =dom(Γ)−�

Γ, ∆(�) = [{b : h, ρ′
∅}/ρ∅]Γ(�) with ρ∅ = ρvar(Γ(�)),

Y = X � {h, ρ′
∅, ρ′′

{a}}, and B′ = B ∪ (B(ρ∅) × {ρ′
∅}) ∪ ({b} × Y)

(p2b) (∆, E ′, X ′) = gen(u : t, �), Y = X � X ′ � {t, ρ{a}}, B′ = B ∪ (chan(u) × Y),

(p4,5) (s3) ∆ =dom(Γ)−�
Γ and ∆(�) = [{a : h, ρ′

∅}/ρ∅]Γ(�) with ρ∅ = ρvar(Γ(�)),

and B′ = B ∪ (B(ρ∅) × {ρ′
∅}) ∪ ({a} × X � {ρ′

∅, h})

(f) ∃Γ ∈ J that is not legal or if conditions of the previous rules fail.

Fig. 7. Constraints generation for processes and networks

Moreover, the binding relation is updated in order to forbid the substitution
of any current type variables with a type in which the bound channel occurs.
When the name received is simple (say b, in rule (p2a)), the type ψ assigned to
the current location � in Γ have to be extended with a type assignment for b. This
is performed by the substitution of the row variable ρ∅ of ψ with a location type
assigning a type (variable) to b. We have to maintain the coherence between the
fresh row variable of the type assigned to � in the new context (∆) and the one in
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Γ (that may still occurs in the remains tuple). This is achieved by equating those
two row variables. As in (p2b), we update the binding relation but so as to keep
∆ well-formed with respect to the new binding relation. Rules for restrictions
(p4, p5 and s3) are very similar.

We give some invariants and states the termination of the reduction. We
denote by bn(J ) the set of bound names of terms in J .

Definition 6.2. We say that (J , E , I)X
B is a well-formed configuration if:

1. var(J , E , I) ⊆ X ,
2. E :: B, I :: B and all types in J are well-formed with respect to B.
3. bn(J ) ∩ im(B) = ∅,
4. for all Γ ∈ J we have dom(Γ) ∩ bn(J ) = ∅ and for all � ∈ dom(Γ) we have

Γ(�) has the form {a1 : h1, . . . , an : hn, ρ∅} with B(ρ∅) = im(B).

Lemma 6.1. The property of well-formed configuration is preserved by �.

Lemma 6.2. All sequence of reductions (J , E , I)X
B � (J ′, E ′, I ′)X ′

B′ � . . .
terminates either with ⊥ or with (∅, E ′′, I ′′)Y

B′′ .

We say that a substitution λ is solution of (J , E , I) if it is a solution of E and
I, and if it validates the sequents in J .

Proposition 6.1. Let (J , E , I)X
B be well-formed, and (J , E , I)X

B �∗

(J ′, E ′, I ′)Y
B′

1. if λ is a ground solution of (J , E , I) that respects B with nm(im(λ)) ∩
bn(J ) = ∅, then there exists µ =X λ with nm(im(µ)) ∩ bn(J ′) = ∅, and
µ is a solution of (J ′, E ′, I ′) that respects B′.

2. if λ is a ground solution of (J ′, E ′, I ′) that respects B′, then λ is also a
solution of (J , E , I).

The unification combined with this reduction provide a sound and complete type
inference algorithm.

Theorem 6.1 (Soundness). Let Γ be an initial context for S, and X = var(Γ),
if ({Γ 
 S}, ∅, ∅)X

∅ �∗ (∅, E , I)Y
B and (E , I, ∅)Y

B �∗ (∅, A, µ)Z
B′ �� then µΓ; A is

a principal typing for S.

Lemma 6.3. Let Γ be an initial context for S, if ({Γ 
 S}, ∅, ∅)var(Γ)
∅ �∗⊥

then S is not typable.

Theorem 6.2 (Completeness). Let Γ be a initial context for S, if S is
typable then ({Γ 
 S}, ∅, ∅)var(Γ)

∅ �∗ (∅, E , I)X
B and (E , I, ∅)X

B �∗ (∅, A, µ)Y
B′ ��.

This completeness theorem combined with the soundness one allows us to say
that, whenever a term is typable our algorithms of constraint generation and
unification compute a principal typing for it.
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7 Conclusion

In this paper we studied the problem of type inference for a distributed π-calculus
with code migration and local communication. Using an explicit subtyping rela-
tion on location types we define a notion of principal typing leading to a practical
type inference problem à la ML.

Technically, we proposed a unification algorithm that computes the principal
solution of a constraint. We gave a sound and complete algorithm that, given a
system S, generates a constraint whose solution yields a principal typing for S.
Since we considered dependant types, we showed how to manage substitutions
carefully with respect to bound names. To this aim we introduced the novel
notion of binding relation. For the sake of simplicity, in this paper we considered a
monadic calculus, however we could easily extend our results to the full polyadic
version. In [8], we also deal with (mis)matching of values and recursion. We have
not yet addressed the simplification of the atomic subtyping assertions generated
by the algorithm ([9]).

We believe that this work could be easily adapted to the type system of [6].
Moreover, the presentation of algorithms by means of reduction relations, and
the fact that we compute a principal type, should be useful for a formal definition
of “dynamic” typing and its integration in process reduction. For instance, in
[12], Hennessy and Reily, study a partial typing for open systems where only
some sites may be typed. However, they informally assume the existence of a
type checker, and their terms are explicitly typed. We think that their work
could be extended to allow dynamic computation of type information.
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Abstract. Many software maintenance problems are caused by using
text editors to change programs. A more systematic and reliable way
of performing program updates is to express changes with an update
language. In particular, updates should preserve the syntax- and type-
correctness of the transformed object programs.
We describe an update calculus that can be used to update lambda-
calculus programs. We develop a type system for the update language
that infers the possible type changes that can be caused by an update
program. We demonstrate that type-safe update programs that fulfill
certain structural constraints preserve the type-correctness of lambda
terms.

1 Introduction

A major fraction of all programming activities is spent in the process of updating
programs in response to changed requirements. The way in which these updates
are performed has a considerable influence on the reliability, efficiency, and costs
of this process. Text editors are a common tool used to change programs, and
this fact causes many problems: for example, it happens quite often that, after
having performed only a few minor changes to a correct program, the program
consists of syntax and type errors. Even worse, logical errors can be introduced
by program updates that perform changes inconsistently. These logical errors are
especially dangerous because they might stay in a program undetected for a long
time. These facts are not surprising because the “text-editor method” reveals
a low-level view of programs, namely that of sequences of characters, and the
operation on programs offered by text editors is basically just that of changing
characters in the textual program representation.

Alternatively, one can view a program as an element of an abstract data type
and program changes as well-defined operations on the program ADT. Together
with a set of combinators, these basic update operations can then be used to write
arbitrarily complex update programs. Update programs can prevent certain kinds
of logical errors, for example, those that result from “forgetting” to change some
occurrences of an expression. Using string-oriented tools like awk or perl for this
purpose is difficult, if not impossible, since the identification of program structure
generally requires parsing. Moreover, using text-based tools is generally unsafe
since these tools have no information about the languages of the programs to be
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transformed, which makes the correct treatment of variables impossible because
that requires knowledge of the languages’ scoping rules. In contrast, a promising
opportunity offered by the ADT approach is that effectively checkable criteria
can guarantee that update programs preserve properties of object programs to
which they are applied; one example is type correctness. Even though type errors
can be detected by compilers, type-safe update programs have the advantage
that they document the performed changes well. In contrast, performing several
corrective updates to a program in response to errors reported by a compiler
leaves the performed updates hidden in the resulting changed program.

Generic updates can be collected in libraries that facilitate the reuse of up-
dates and that can serve as a repository for executable software maintenance
knowledge. In contrast, with the text-editor approach, each update must be
performed on its own. At this point the safety of update programs shows an
important advantage: whereas with the text-editor approach the same (or dif-
ferent) errors can be made over and over again, an update program satisfying
the safety criteria will preserve the correctness for all object programs to which
it applies. In other words, the correctness of an update is established once and
for all. One simple, but frequently used update is the safe (that is, capture-free)
renaming of variables. Other examples are extending a data type by a new con-
structor, changing the type of a constructor, or the generalization of functions.
In all these cases the update of the definition of an object must be accompanied
by corresponding updates to all the uses of the object. Many more examples of
generic program updates are given by program refactorings [10] or by all kinds
of so-called “cross-cutting” concerns in the fast-growing area of aspect-oriented
programming [1], which demonstrates the need for tools and languages to express
program changes.

The update calculus presented in this paper can serve as an underlying model
to study program updates and as a basis on which update languages can be
defined and into which they can be translated.

Our goal is not to replace the use of text editors for programming; rather, we
would like to complement it: there will always be small or simple changes that
can be most easily accomplished by using an editor. Moreover, programmers
are used to writing programs with their favorite editor, so we cannot expect
that they will instantly switch to a completely new way of performing program
updates. However, there are occasions when a tedious task calls for automatic
support. We can add safe update programs for frequently used tasks to an editor,
for instance, in an additional menu.1

Writing update programs, like meta programming, is in general a difficult
task—probably more difficult than creating “normal” object programs. The pro-
posed approach does not imply or suggest that every programmer is supposed to
write update programs. The idea is that update programs are written by a ex-
perts and used by a much wider audience of programmers (for example, through
1 This integration requires resolving a couple of other non-trivial issues, such as how

to preserve the layout and comments of the changed program and how to deal with
syntactically incorrect programs.
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a menu interface for text editors as described above). In other words, the update
programming technology can be used by people who do not understand all the
details of update programs.

In the next section we illustrate the idea of update programming with a
couple of examples. In Section 3 we discuss related work. In Section 4 we define
our object language. The update calculus is introduced in Section 5, and a type
system for the update calculus is developed in Section 6. Conclusions given in
Section 7 complete this paper.

2 Update Programming

To give an impression of the concept of update programming we show some
updates to Haskell programs and how they can be implemented in HULA, the
Haskell Update LAnguage [8] that we are currently developing.

Suppose a programmer wants to extend a module for binary search trees by
a size operation giving the number of nodes in a tree. Moreover, she wants
to support this operation in constant time and therefore plans to extend the
representation of the tree data type by an integer field for storing the information
about the number of nodes contained in a tree. The definition of the original tree
data type and an insert function are as follows:

data Tree = Leaf | Node Int Tree Tree

insert :: Int -> Tree -> Tree
insert x Leaf = Node x Leaf Leaf
insert x (Node y l r) = if x<y then Node y (insert x l) r

else Node y l (insert x r)

The desired program extension requires a new function definition size, a
changed type for the Node constructor (since a leaf always contains zero nodes,
no change for this constructor is needed), and a corresponding change for all
occurrences of Node in patterns and expressions. Adding the definition for the
size function is straightforward and is not very exciting from the update pro-
gramming point of view. The change of the Node constructor is more interesting
since the change of its type in the data definition has to be accompanied by cor-
responding changes in all Node patterns and Node expressions. We can express
this update as follows.

con Node : {Int} t in
(case Node {s} -> Node {succ s}

| Leaf -> Node {1}); Node {1}

The update can be read as follows: the con update operation adds the type Int
as a new first parameter to the definition of the Node constructor. The notation
a {r} b is an abbreviation for the rewrite rule a b�a r b. So {Int} t means extend
the type t on the left by Int. The keyword in introduces the updates that apply
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to the scope of the Node constructor. Here, a case update specifies how to change
all pattern matching rules that use the Node constructor: Node patterns are
extended by a new variable s, and to each application of the Node constructor in
the return expression of that rule, the expression succ s is added as a new first
argument (succ denotes the successor function on integers, which is predefined
in Haskell). The Leaf pattern is left unchanged, and occurrences of the Node
constructor within its return expression are extended by 1. As an alternative to
the case update, the rule Node {1} extends all other Node expressions by 1.

The application of the update to the original program yields the new object
program:

data Tree = Leaf | Node Int Int Tree Tree

insert :: Int -> Tree -> Tree
insert x Leaf = Node 1 x Leaf Leaf
insert x (Node s y l r) =

if x<y then Node (succ s) y (insert x l) r
else Node (succ s) y l (insert x r)

It is striking that with the shown definition the case update is applied to all
case expressions in the whole program. In our example, this works well since we
have only one function definition in the program. In general, however, we want
to be able to restrict case updates to specific functions or specify different case
updates for different functions. This can be achieved by using a further update
operation that performs updates on function definitions:

con Node : {Int} t in
fun ‘insert x y:

(case Node {s} -> Node {succ s}
| Leaf -> Node {1}); Node {1}

This update applies the case update only to the definition of the function
insert. Here the backquote is used to distinguish Haskell variables from meta
variables of the update language.2 Uses of the function insert need not be
updated, which is indicated by the absence of the keyword in and a following
update. We can add further fun updates for other functions in the program to
be updated each with its own case update. Note that the variables x and y of
the update language are meta variables with respect to Haskell that match any
object (that is, Haskell) variable.

We can observe a general pattern in the shown program update: a constructor
is extended by a type, all patterns are extended at the (corresponding position)
by a new variable, and expressions built by the constructor are extended either
by a function which is applied to the newly introduced variable (in the case that
2 The backquote is not needed for succ and s since they appear as free variables in

RHSs of rules, which means that they cannot reasonably be meta variables since they
would be unbound. Therefore they are automatically identified as object variables.
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the expression occurs in the scope of a pattern for this constructor) or by an
expression. We can define such a generic update, say extCon, once and store it
in an update library, so that constructor extensions as the one for Node can be
expressed as applications of extCon [8]. For example, the size update can then
be expressed by:

extCon Node Int succ 1

which would have exactly the effect as the update shown above. We plan to
implement extensions to text editors like Emacs or Vim that offer generic type-
correctness preserving updates like renaming or extCon via menus.

Of course, it is very difficult (if not generally impossible) to write generic up-
date programs that guarantee overall semantic correctness. Any change to a pro-
gram requires careful consideration by the programmer, and this responsibility is
still required when using update programs. We do not claim to free the update
process from any semantics consideration; however, we do claim that update
programs make the update process more reliable by offering type-preservation
guarantees and consistency in updates.

Other examples, such as generalizing function definitions or a collection of
updates to maintain variations of a lambda-calculus implementation are dis-
cussed in [9] where we also indicate how update programming could be applied
to Java.

3 Related Work

There is a large body of work on impact analysis that tries to address the prob-
lems that come with performing changes to software [2,4]. However, we know of
no work that attempts to exploit impact analysis to perform fully automated
software changes.

Performing structured program updates is supported by program editors that
can guarantee syntactic or even type correctness and other properties of changed
programs. Examples for such systems are Centaur [6], the synthesizer generator
[11], or CYNTHIA [15]. The view underlying these tools are either that of syntax
trees or, in the case of CYNTHIA, proofs in a logical system for type information.

We have introduced a language-based view of program updates in [7]. Viewing
programs as abstract data types goes beyond the idea of syntax-directed program
editors because it allows a programmer to combine basic updates into update
programs that can be stored, reused, changed, shared, and so on. The update
programming approach has, in particular, the following two advantages: First,
we can work on program updates offline, that is, once we have started a program
change, we can pause and resume our work at any time without affecting the
object program. Although the same could be achieved by using a program editor
together with a versioning tool, the update program has the advantage of much
better reflecting the changes performed so far than a partially changed object
program that only shows the result of having applied a number of update steps.
Second, independent updates can be defined and applied independently. For
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example, assume an update u1 followed by an update u2 (that does not depend
on or interfere with u1) is applied to a program. With the editor approach, we
can undo u2 and also u2 and u1, but we cannot undo just u1 because the changes
performed by u2 are only implicitly contained in the final version that has to be
discarded to undo u1. In contrast, we can undo each of the two updates with
the proposed update programming approach by simply applying only the other
update to the original program.

Programs that manipulate programs are also considered in the area of
meta programming [12]. However, existing meta programming systems, such
as MetaML [13], are mainly concerned with the generation of programs and do
not offer means for analyzing programs (which is needed for program transfor-
mation). Refactoring [10] is an area of fast-growing interest. Refactoring (like
the huge body of work on program optimization and partial evaluation) leaves
the semantics of a program unchanged. Program transformations that change
the behavior of programs are also considered in the area of aspect-oriented pro-
gramming [1], which is concerned with performing “cross-cutting” changes to a
program.

Our approach is based in part on applying update rules to specific parts of
a program. There has been some work in the area of term rewriting to address
this issue. The ELAN logical framework introduced a strategy language that
allows users to specify their own tactics with operators and recursion [5]. Visser
has extended the set of strategy operators and has put all these parts together
into a system for program transformation, called Stratego [14]. These proposals
allow a very flexible specification of rule application strategies, but they do not
guarantee type correctness of the transformed programs.

A related approach that is concerned with type-safe program transformations
is pursued by Bjørner who has investigated a simple two-level lambda calculus
that offers constructs to generate and to inspect (by pattern matching) lambda
calculus terms [3]. In particular, he describes a type system for dependent types
for this language. However, in his system symbols must retain their types over
transformations whereas in our approach it is possible that symbols change their
type (and name).

4 The Object Language

To keep the following description short and simple, we use lambda calculus
together with a standard Hindley/Milner type system as the working object lan-
guage. The syntax of lambda-calculus expressions and types is shown in Figure
1. In addition to expressions e, types t, and type schemas s, we use c to range
over constants, v to range over variables, and b over basic types. The definition
of the type rules is standard and is omitted for lack of space.

Since the theory of program updates is independent of the particular dynamic
semantics of the object language (call-by-value, call-by-need, ...), we do not have
to consider a dynamic semantics.
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e ::= c | v | e e | λv.e | let v = e in e
t ::= b | a | t → t
s ::= t | ∀ā.t

Fig. 1. Syntax and types of lambda calculus.

The main idea to achieve a manageable update mechanism is to perform
somehow “coordinated” updates of the definition and all corresponding uses of
a symbol in a program. We therefore consider the available forms of symbol
definitions more closely. In general, a definition has the following form:

let v = d in e

where v is the symbol (variable) being defined, d is the defining expression, and
e is the scope of the definition, that is, e is an expression in which v will be
used with the definition d (unless hidden by another nested definition for v). We
call v the symbol, d the defining expression, and e the scope of the definition.
If no confusion can arise, we sometimes refer to d also as the definition (of v).
β-redexes also fit the shape of a definition since a (non-recursive) let v = d in e
is just an abbreviation for (λv.e) d.

Several extensions of lambda calculus that make it a more realistic model for
a language like Haskell also fit the general pattern of a definition, for example,
data type/constructor definitions and pattern matching rules. We will comment
on this in Section 5.2.

5 The Update Calculus

The update calculus basically consists of rewrite rules and a scope-aware update
operation that is able to perform updates of the definition and uses of a sym-
bol. In addition, we need operations for composing updates and for recursive
application of updates.

5.1 Rules

A rewrite rule has the form l� r where l and r are expressions that might contain
meta variables (m), that is, variables that are different from object variables
and can represent arbitrary expressions. Expressions that possibly contain meta
variables are called patterns. The type system for lambda calculus has to be
extended by a rule for meta variables that is almost identical to the rule for
variables (except that meta variables have monomorphic types).

An update can be performed on an expression e by applying a rule l� r to
e which means to match l against e, which, if successful, results in a binding σ
(called substitution) for the meta variables in l. The fact that a pattern like l
matches an expression e (under the substitution σ) is also written as: l � e (l �

σ
e).

We assume that l is linear, that is, l does not contain any meta variable twice.
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The result of the update operation is σ(r), that is, r with all meta variables
being substituted according to σ. If l does not match e, the update described by
the rule is not performed, and e remains unchanged.

We use the matching definitions and notations also for types. If a type t
matches another type t′ (that is, t � t′), then we also say that t′ is an instance
of t.

5.2 Update Combinators

We can build more complex updates from rules by alternation and recursion. For
example, the alternation of two updates u1 and u2, written as u1 ; u2, first tries
to perform the update u1. If u1 can be applied, the resulting expression is also
the result of u1 ; u2. Only if u1 does not apply, the update u2 is tried. Recursion
is needed to move updates arbitrarily deep into expressions. For example, since
a rule is always tried at the root of an expression, an update like 1� 2 has
no effect when applied to the expression 1+(1+1). We therefore introduce a
recursion operator ↓ that causes its argument update to be applied (in a top-
down manner) to all subexpressions. For example, the update ↓(1� 2) applied
to 1+(1+1) results in the expression 2+(2+2). (We use the recursion operator
only implicitly in scope updates and do not offer it to the user.)

In a scope update, each element of a definition let v = d in e, that is, v, d,
or e, can be changed. Therefore, we need an update for each part. The update
of the variable can just be a simple renaming, but the update of the definition
and of the scope can be given by arbitrarily complex updates. We use the syntax
{v�v′: ud}uu for an update that renames v to v′, changes v’s definition by ud,
and all of its uses by uu. (We also call ud the definition update and uu the use
update.) Note that uu is always applied recursively, whereas ud is only applied to
the root of the definition. However, to account for recursive let definitions we
apply uu also recursively to the result obtained by the update ud. We use x to
range over variables (v) and meta variables (m), which means that we can use a
scope update to update specific bindings (by using an object variable) or to apply
to arbitrary bindings (by using a meta variable). Either one of the variables (but
not both) can be missing. These special cases describe the creation or removal
of a binding. In both cases, we have an expression instead of a definition update.
This expression is required in the case of binding removal where it is used to
replace all occurrences of the removed variable. (Note that e must neither contain
x nor a possible object variable that matches x in case x is a meta variable.) In
the case of binding creation, e is optional and is used, if present, to create an
expression let v = e in e′′ where e′′ is the result of applying u to e′. Otherwise,
the result is λv.e′′. The syntax of updates is shown in Figure 2.

We use an abbreviated notation for scope updates that do not change names,
that is, we write {v: ud}uu instead of {v�v: ud}uu. The updates of either the
defining expression or the scope can be empty, which means that there is no
update for that part. The updates are then simply written as {v: ud} and {v}uu,
respectively, and are equivalent to updates {v: ud}ι and {v: ι}uu, respectively.
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u ::= ι Identity (No Update)
| p� p Rule
| {x�x: u}u Change Scope
| {�v[= e]}u Insert Scope
| {x�e}u Delete Scope
| u ; u Alternative
| ↓u Recursion

Fig. 2. Syntax of updates.

Let us consider some examples. We already have seen examples for rules. A
simple example for change scope is an update for consistently renaming variables
{v� w}v� w. This update applies to a lambda- or let-bound variable v and
renames it and all of its occurrences that are bound by that definition to w.
The definition of v is usually not changed by this update. However, if v has a
recursive definition, references to v in the definition will be changed to w, too,
because the use update is also applied to the definition of a symbol.

A generalization of a function f can be expressed by the update u =
{f:{�w}1�w}f�f 1. u is a change-scope update for f, which does not rename
f, but whose definition update introduces a new binding for w and replaces all
occurrences of a particular constant expression (here 1) by w in the definition
of f. u’s use update makes sure that all uses of f are extended by supplying a
new argument for the newly introduced parameter. Here we use the same ex-
pression that was generalized in f’s definition, which preserves the semantics of
the program.

To express the size update example in the update calculus we have to ex-
tend the object language by constructors and case expressions and the update
calculus by corresponding constructs, which is rather straightforward (in fact,
we have already implemented it in our prototype). An interesting aspect is that
each alternative of a case expression is a separate binding construct that in-
troduces bindings for variables in the pattern. The scope of the variables is the
corresponding right hand side of the case alternative. Since these variables do
not have their own definitions, we can represent a case alternative by a lambda
abstraction—just for the sake of performing an update. A case update can
then be translated into an alternative of change-scope updates. For example,
the translation of the size update yields:

{Node:t � Int->t}
({Node}({�s}Node�Node (succ s));
{Leaf}Node�Node 1);

Node�Node 1

The outermost change-scope update expresses that the definition of the Node
constructor is extended by Int. The use update is an alternative whose second
part expresses to extend all Node expressions by 1 to accommodate the type
change of the constructor. The first alternative is itself an alternative of two
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change-scope updates. (Since the ; operation is associative, the brackets are
strictly not needed.) The first one applies to definitions of Node which (by way
of translation) can only be found in lambda abstractions representing case al-
ternatives. The new-scope update will add another lambda-binding for s, and
the use update extends all Node expressions by the expression succ s. The other
alternative applies to lambda abstractions representing Leaf patterns.

This last example demonstrates that the presented update calculus is not
restricted to deal just with lambda abstractions or let bindings, but rather can
serve as a general model for expressing changes to binding constructs of all kinds.

Due to space limitations we omit here the formal definition of the semantics
that defines judgments of the form [[u]]ρ(e) = e′, see the extended version of this
paper [9].

6 A Type System for Updates

The goal of the type system for the update calculus is to find all possible type
changes that an update can cause to an arbitrary object program. We show that
if these type changes “cover” each other appropriately, then the generated object
program is guaranteed to be type correct.

6.1 Type Changes

Since updates denote changes of expressions that may involve a change of their
types, the types of updates are described by type changes. A type change (δ)
is essentially given by a pair of types (t�t), but it can also be an alterna-
tive of other type changes (δ|δ). For example, the type change of the up-
date 1� True is Int� Bool, while the type change of 1� True ; odd� 2 is
Int� True|Int->Bool� Int.

Recursively applied updates might cause type changes in subexpressions that
affect the type of the whole expression. Possible dependencies of an expression’s
type on that of its subexpressions are expressed using the two concepts of type
hooks and context types. For example, the fact that the type of odd 1 depends
on the type of 1 is expressed by the hook Int↪→Bool, the dependency on odd
is Int->Bool↪→Bool. The dependency on the whole expression is by definition
empty (ε), and a dependency on any expression that is not a subexpressions is
represented by a “constant hook” ↪→Bool.

The application of a type hook C to a type t yields a context type denoted
by C〈t〉 that exposes t as a possible type in a type derivation. The meaning of
a context type is given by the following equations.

ε〈t〉 = t
↪→t2〈t〉 = t2

t1↪→t2〈t〉 =
{

t2 if t � t1
error otherwise
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δ ::= τ� τ
∣
∣ δ|δ

τ ::= b | a | τ → τ | C〈τ〉 | τ|C
C ::= ε | ↪→t | t↪→t

Fig. 3. Type changes.

The rationale behind context types is to capture changes of types that possibly
happen only in subexpressions and do not show up as a top-level type change.
Context types are employed to describe the type changes for use updates in scope
updates. For example, the type change of the update u′ = 1� w is Int� a.
However, when u′ is used as a use update of a scope update u = {�w}1� w,
it is performed recursively, so that the type change is described using a context
type C〈Int〉�C〈a〉.

To describe the type change for u, the type for the newly introduced abstrac-
tion has to be taken into account. Here we observe that the type of w cannot be
a in general, because w might be, through the recursive application of the rule,
placed into an expression context that constrains w’s type. For example, if we
apply u to odd 1, we obtain λw.odd w where w’s type has to be Int. In general,
the type of a variable is constrained to the type of the subexpression that it
replaces. We can use a type hook that describes a dependency on a type of a
subexpression e to express a constraint on a type variable that might replace e.
Such a constraint type is written as a|C . Its meaning is to restrict a type variable
a by the type of a subexpression (represented by the left part of a type hook):

a|t1↪→t2 = t1
t|C = t

The type change for u is therefore given by C〈Int〉� a|C->C〈a|C〉.
To see how type hooks, context types, and constrained types work, consider

the application of u to 1, which yields λw.w. The corresponding type change
Int� a->a is obtained using the type hook ε. However, applied to odd 1, u
yields λw.odd w with the type change Bool� Int->Bool, which is obtained from
the type hook Int↪→Bool. As another example consider the renaming update
u = {x� y}x� y. For the update we obtain a type change C〈a|C〉�C〈b|C〉
(which is the same as C〈a|C〉�C〈a|C〉). The type hook C results for the same
reason as in the previous example. Applying u to the expression λx.1 yields λy.1
with a type change a->Int� a->Int, which can be obtained by using the type
hook ↪→a->Int. Similarly, u changes λx.odd x to λy.odd y with a type change
Int->Bool� Int->Bool. This type change is u’s type change specialized for the
type hook Int↪→Int->Bool.

The syntax of contexts and type changes is summarized in Figure 3. Since
the inference rules generate, in general, context constraints for arbitrary type
changes, we have to explain how contexts are propagated through type changes
to types:

C〈τ� τ ′〉 := C〈τ〉�C〈τ ′〉
C〈δ|δ′〉 := C〈δ〉|C〈δ′〉
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Types and type changes can be applicative instances of one another. This rela-
tionship says that a type t is an applicative instance of a function type t′ → t,
written as t

→≺ t′ → t. The rationale for this definition is that two updates u and u′

of different types t1� t2 and t′
1� t′

2, respectively, can be considered well typed
in an alternative u ; u′ if one type change is an applicative instance of the other,
that is, if t1� t2

→≺ t′
1� t′

2 or t′
1� t′

2
→≺ t1� t2, because in that case one update

is just more specific than the other. For example, in the update

{f: succ� plus}f x� f x 1 ; f� f 1

the first rule of the alternative f x� f x 1 has the type change Int� Int
whereas the second rule f� f 1 has the type change Int->Int�Int->Int.
Still both updates are compatible in the sense that the first rule applies to more
specific occurrences of f than the second rule. This fact is reflected in the type
change Int� Int being an applicative instance of Int->Int� Int->Int. The
applicative instance relationship extends in a homomorphic way to all kinds of
type changes and contexts.

Finally, note that a type change t� t′ does not necessarily mean that an
update u : t� t′ maps an expression e of type t to an expression of type t′,
because u might not apply to e and thus we might get [[u]](e) = e of type t.
Thus, the information about an update causing some type change is always to
be interpreted as “optional” or “contingent on the applicability of the update”.

6.2 Type-Change Inference

The type changes that are caused by updates are described by judgments of the
form ∆ 
 u :: δ where ∆ is a set of type-change assumptions, which can take one
of three forms:

(1) x�x′ :: t�t′ expresses that x of type t is changed to x′ of type t′. The
following constraint applies: if x′ is a meta variable, then x′ = x and t′ = t.

(2) v :r t expresses that v is a newly introduced (object) variable of type t.
(3) x :� t expresses that x is a (object or meta) variable of type t that is only

bound in the expression to be changed.

Type-change assumptions can be extended by assumptions using the “comma”
notation as in the type system.

The type-change system builds on the type system for the object language.
In the typing rule for rules we make use of projection operations that project
on the left and right part of a type-change assumption. These projections are
defined as follows:

∆� := {x : t | x�x′ :: t�t′ ∈ ∆} ∪ {x : t | x :� t ∈ ∆}
∆r := {x′ : t′ | x�x′ :: t�t′ ∈ ∆} ∪ {x′ : t′ | x′ :r t′ ∈ ∆}

The type-change rules are defined in Figure 4. The rules for creating or deleting
a binding have to insert a function argument type on either the right or the left
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��
∆� � p : t ∆r � p′ : t′

∆ � p� p′ :: t� t′ ι�
∆ � ι :: t� t

;�
∆ � u :: δ ∆ � u′ :: δ′ δ

→≺ δ′′ δ′ →≺ δ′′

∆ � u ; u′ :: δ′′
∆ � u :: δ ∆ � u′ :: δ′

∆ � u ; u′ :: δ|δ′

{:}chg
�

∆[, x�x′ :: t|C�t′
|C ] � ud :: t[|C]� t′

[|C] ∆[, x�x′ :: t|C�t′
|C ] � uu :: δ

∆ � {x�x′: ud}uu :: C〈δ〉

{:}ins
�

{ā} = FV(t) − FV(∆r) ∆[, w : t[|C]] � e : ∀ā.t[|C] ∆[, w :r t|C ] � u :: δ

∆ � {�w = e}u :: t[|C]→r
C〈δ〉

∆[, w :r t|C ] � u :: δ

∆ � {�w}u :: t[|C]→r
C〈δ〉

{:}del
�

∆[, x :� t|C ] � u :: δ ∆r � e : t[|C]

∆ � {x�e}u :: t[|C]→�
C〈δ〉

Fig. 4. Type change system.

part of a type change. This type insertion works across alternative type changes;
we use the notation τ→� δ (τ→r δ) to extend the argument (result) type of a type
change to a function type. The definition is as follows.

τ→� (τl� τr) := (τ → τl)� τr

τ→r (τl� τr) := τl� (τ → τr)
τ→� (δ|δ′) := (τ→� δ)|(τ→� δ′)
τ→r (δ|δ′) := (τ→r δ)|(τ→r δ′)

The inference rule �� connects the type system of the underlying object lan-
guage (lambda calculus) with the type-change system.

We have several rules for scope updates. To save space we combine two rules
for each case by using square brackets for optional rule parts. For example, in the
rule {:}ins

� if and only if the premise can be proved without using the assumption
for w, then there is no type hook C on the type t in the conclusion.

6.3 Soundness of the Update Type System

In this section we define a class of well-structured updates that will preserve the
well-typing of transformed object-language expressions. An update that, when
applied to a well-typed expression, yields again a well-typed expression is called
safe. In other words, we will show that typeable well-structured updates are safe.
The structure condition captures the following two requirements:

(A) An update of the definition of a symbol that causes a change of its type or
its name is accompanied by an update for all the uses of that symbol (with
a matching type change).

(B) No use update can introduce a non-generalizing type change, that is, for
each use update that has a type change t�t′|δ we require that t is a generic
instance of t′ or that one type, t or t′, is an applicative instance of the other.
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Condition (A) prevents ill-typed applications of changed symbols as well as un-
bound variables whereas (B) prevents type changes from breaking the well typing
of their contexts. An intuitive explanation of why these conditions imply safety
for well-typed updates can be obtained by looking at all the possible ways in
which an update can break the type correctness of an expression and how these
possibilities are prevented by the type system or the well-structuring constraints.
For a detailed discussion, see [9].

Let us now define the well-structuring constraint formally. We first iden-
tify some properties of change-scope updates. Let u = {x�x′: ud}uu and let
x�x′ :: t�t′ be the assumption that has been used in rule {:}chg

� to derive its
type change, say t1�t2|δ.

(1) u is self-contained iff x 	= x′ ∨ t 	= t′ =⇒ ∃u, u′, p : uu = u ; x� p ; u′.
(2) u is smooth iff t′ � t or t

→≺ t′ or t′ →≺ t

(3) u is (at most) generalizing iff t2 � t1

An update u is well structured iff it is well typed and all of its contained change-
scope updates are self-contained, smooth, and generalizing.

When we consider the application of a well-structured update u to a well-
typed expression e, the following two cases can occur: (1) u does not apply to e.
In this case e is not changed by u and remains well typed. (2) u applies to e and
changes it into e′. In this case we have to show that from the result type of u we
can infer the type of e′. We collect the results in the following two lemmas.

Lemma 1. u does not apply to e ∧ Γ � e : t =⇒ Γ � [[u]](e) : t

Lemma 2 (Soundness). If u is well structured and applies to e, then

∆ 
 u :: τ�τ ′|δ ∧ ∆� � e : τ =⇒ ∆r � [[u]](e) : τ ′

The lemma expresses that the derivation of a type change that includes an
alternative τ�τ ′ ensures for any expression e of type τ that u transforms e into
an expression of type τ ′. We have to use τ in the lemma because the type change
for u is generally given by context types. For a concrete expression e, the type
inference will fix any type hooks, which allows τ to be simplified to a type t.
Finally, we can combine both lemmas in the following theorem.

Theorem 1. If u is well structured, then

∆ 
 u :: τ�τ ′|δ ∧ ∆� � e : τ =⇒ ∆r � [[u]](e) : t ∧ (t = τ ∨ t = τ ′)

Let us consider the safety of some of the presented example updates. The function
generalization update from Section 5.2 is safe, which can be checked by applying
the definitions of “well structured” and the rules of the type-change system.
The first size update (Section 2) is also safe, although to prove it we need the
extension of lambda calculus by constructors and case expressions. In contrast,
the second size update is not safe since the case update will be applied only to
the definition of insert (and not to other functions).
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7 Conclusions and Future Work

We have introduced an update calculus together with a type-change system that
can guarantee the safety of well-structured updates, that is, well-typed, safe
updates preserve the well typing of lambda-calculus expressions. The presented
calculus can serve as the basis for type-safe update languages. Currently, we are
working on the design and implementation of an update language for Haskell.

One area of future work is to relax the rather strict well-structuring con-
ditions and facilitate larger classes of update programs under the concept of
conditional safety, which means to infer constraints for object programs that are
required for their type preservation under the considered update.
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6. P. Borras, D. Clèment, T. Despereaux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. Centaur: The System. In 3rd ACM SIGSOFT Symp. on Software Develop-
ment Environments, pages 14–24, 1988.

7. M. Erwig. Programs are Abstract Data Types. In 16th IEEE Int. Conf. on Auto-
mated Software Engineering, pages 400–403, 2001.

8. M. Erwig and D. Ren. A Rule-Based Language for Programming Software Updates.
In 3rd ACM SIGPLAN Workshop on Rule-Based Programming, pages 67–77, 2002.

9. M. Erwig and D. Ren. An Update Calculus for Type-Safe Program Changes.
Technical Report TR02-60-09, Department of Computer Science, Oregon State
University, 2002.

10. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Reading, MA, 1999.

11. T. W. Reps and T. Teitelbaum. The Synthesizer Generator: A System for Con-
structing Language-Based Editors. Springer-Verlag, New York, 1989.

12. T. Sheard. Accomplishments and Research Challenges in Meta-Programming. In
2nd Int. Workshop on Semantics, Applications, and Implementation of Program
Generation, LNCS 2196, pages 2–44, 2001.

13. W. Taha and T. Sheard. MetaML and Multi-Stage Programming with Explicit
Annotations. Theoretical Computer Science, 248(1–2):211–242, 2000.

14. E. Visser. Stratego: A Language for Program Transformation Based on Rewriting
Strategies. In 12th Int. Conf. on Rewriting Techniques and Applications, 2001.

15. J. Whittle, A. Bundy, R. Boulton, and H. Lowe. An ML Editor Based on Proof-
as-Programs. In 9th PLILP, LNCS 1292, pages 389–405, 1997.



Type Error Slicing in Implicitly Typed
Higher-Order Languages�

Christian Haack and J.B. Wells

Heriot-Watt University
http://www.cee.hw.ac.uk/ultra/

Abstract. Previous methods have generally identified the location of a
type error as a particular program point or the program subtree rooted
at that point. We present a new approach that identifies the location of
a type error as a set of program points (a slice) all of which are necessary
for the type error. We describe algorithms for finding minimal type error
slices for implicitly typed higher-order languages like Standard ML.

1 Introduction

1.1 Previous Approaches to Identifying Type Error Locations

There has been a large body of work on explaining type errors in implicitly typed,
higher-order languages with let-polymorphism (Haskell, Miranda, O’Caml, Stan-
dard ML (SML), etc.) [26,19,18,30,28,2,3,9,1,15,8,20,29]. This is much harder
than in monomorphic, explicitly typed, first-order languages. None of the previ-
ous work on this is entirely satisfactory. In particular, the previous approaches
do a poor job of identifying the location of type errors.

As an example, consider the following SML program fragment:

val f = fn x => fn y => let val w = x + 1 in w::y end

This defines a function f such that the function call (f 1 [2]) should compute
the list [2,2]. Suppose the programmer erroneously typed this instead, making
an error at the indicated spot:

val f = fn x => fn y => let val w = y + 1 in w::y end

When the W [6], M [18], or the UAE [28,30] type inference algorithms are
used to identify the error location, the type inference algorithm traverses the
program’s abstract syntax tree and when it fails, the node of the tree currently
being visited is blamed. The algorithms differ in how eagerly they check the
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various type constraints, so they may fail at different nodes. When using either
W or UAE for the example, this error location is identified:

val f = fn x => fn y => let val w = y + 1 in w::y end

Although UAE was designed with the intention that unlike W it would blame a
location containing the error, it handles let-bindings in the same way as W so
it fails in the same way on this error. It has been proposed to use M instead of
W because this would yield more “accurate” error locations. For the example,
M identifies this error location:

val f = fn x => fn y => let val w = y + 1 in w::y end

This example illustrates the general fact that W, M, and UAE often fail to
identify the real location of the error. They identify one node of the program
tree which participates in the type error, but will often be the wrong node to
blame. These approaches also often identify program subtrees that include many
locations that do not participate in the type error, e.g., in the example both
W and UAE include the occurrence of w in the blamed subtree. This problem
can also happen for M in some cases, although it does not happen as often. For
W and M, this is not necessarily wrong because only the root of the subtree
is being blamed, not necessarily all of the other nodes in the subtree, but the
programmer will often not understand this distinction.

1.2 A New Notion of Type Error Location

In contrast, this paper locates errors not at single nodes or subtrees of the
abstract syntax tree, but at program slices. For the example, our implementation
finds this error location:

val f = fn x => fn y => let val w = y + 1 in w::y end

This correctly includes all of the parts of the program where changes can be made
to fix the type error. Importantly, it also correctly excludes all of the parts of the
program where changes can not fix the type error. The occurrences of + and ::
are highlighted differently to show they are the “endpoints” of a clash between
the int and list type constructors. As an alternative, the erroneous slice of the
program can be presented separately by displaying a very small program that
contains the same type error as the source program, and nothing but this type
error. In many cases, this will make it easier for the programmer to understand
the error, especially when the error spans multiple source files. Here is actual
output from our implementation in this style for the example:1

Type of error: type constructor clash, endpoints int vs. list.
(.. y => (.. y + (..) .. (..)::y ..) ..)

1 The fn keyword is missing because SML has the match syntax. That x is bound in
a fn-match as opposed to a case-match is irrelevant for the error.
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Formally, a type error slice is a set of program points. It is complete if these
program points together “form a type error”. It is accurate if none these program
points is irrelevant for the type error. Examples of incomplete type error slices
include the locations that are returned in most error messages of, for example,
the SML/NJ compiler. They consist of a single program point, namely the point
where the type inference algorithm detects a failure. This program point by
itself does not form a type error. As an example of an inaccurate type error
slice, one could take the entire program if it contains a type error. If the type
error locations produced by the W, M, or UAE algorithms are taken to be
identifying a program subtree, then they will usually be inaccurate.

1.3 Related Work

Dinesh and Tip have applied slicing techniques for locating sources of type errors
[8]. Their techniques are applicable to explicitly typed languages. Their approach
depends on the fact that the type system can be expressed as a rewrite system,
and they use techniques for origin and dependency tracking in rewrite systems
to find error locations. Although type inference algorithms for implicitly typed
languages can be phrased as rewrite systems, a large part of the rewrite rules
would concern auxilliary functions, i.e., unification and constraint solving. For
this reason, we do not believe that a direct application of Dinesh and Tip’s
methods results in accurate location of type error sources in languages with
type inference.

Our work is based on Damas’ type inference system [7]. This system dif-
fers from the more widely know type scheme inference system (i.e., the Hind-
ley/Milner system) in the typing rule for let-expressions, but admits the same
set of well-typed closed expressions. It can be seen as a restriction of a sys-
tem of rank-2 intersection types. Jim [14] has proposed using rank-2 intesection
types for accurate type error location. Bernstein and Stark [2] use Damas’s type
inference system for type error debugging of open terms.

Wand has presented an algorithm for finding the source of type errors in
implicitly typed languages [26]. Similar methods have been used by Duggan and
Bent [9]. Wand’s algorithm uses a modified unification procedure that keeps track
of constraint sets that have been used in the derivation of unsolvable constraints.
However, there is no attempt to present the corresponding program slices and
these constraint sets need not be minimally unsolvable. We use a similar method
as a subroutine, but in addition, we minimize constraint sets and present the
resulting minimal type error slices. Our slices are minimal in the sense that the
omission of further program points yields a non-error. Johnson and Walz have a
method which attempts to choose the location to blame by counting the number
of sites which prefer one type over another [15].

Chopella and Haynes study type error diagnosis in a simply typed language
[5,4]. Unlike our work, they do not actually treat let-polymorphism. They pro-
pose to present type error locations as program slices, but have no notation
for slices. Moreover, they present a graph-based unification framework, based on
work by Port [23], which could be used for finding minimal unsolvable constraint
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sets. However, the diagnostic unification algorithm that is eventually presented
in [4] only computes a single unsolvable constraint set that is not necessarily
minimal. In contrast, our algorithms are not graph-based but based on run-
ning a unification algorithm multiple times. A big advantage of our approach is
simplicity of presentation and implementation. Unlike Chopella and Haynes, we
give a detailed presentation of an algorithm that enumerates minimal unsolvable
constraint sets. On the other hand, while our algorithm enumerates some mini-
mal unsolvable subsets of a given constraint set, the algorithm is impractical for
exhaustively enumerating all such sets. In the worst case, enumerating all such
sets is intractable [27]. In some cases an algorithm based on Port’s idea may find
all minimal unsolvable subsets, whereas ours does not. In the future, we may
adopt the algorithm that is sketched by Port.

Heeren and others propose constraint-based type inference for improved type
error messages [13,12,11]. They treat let-polymorphism, and their type system is
between a type inference system and a type scheme inference system. In addition
to equality constraints, their inference algorithm generates type scheme instance
constraints. As a result, the constraint solving order is restricted. We believe
that a type inference system without type schemes would simplify their system
and sometimes permit more accurate error messages. They do not attempt to
compute type error slices.

MrSpidey is a static debugger for Scheme that is distributed with some ver-
sions of the DrScheme programming environment [10]. It is based on set-based
flow analysis, constructs and, on demand, displays parts of flow graphs, and
highlights critical program points at which runtime errors may occur.

Much related work on type error analysis has spent a great deal of effort on
sophisticated ways for automatically generating type error explanations [3,9,20,
26,29,1,19]. Such explanations tend to be complicated and lengthy. We believe
that it is most important to accurately locate type errors, and display type error
locations in a user-friendly way. For understanding errors, programmers typi-
cally use additional semantic knowledge that cannot be provided automatically
anyways. Our work is intended to be a step into this direction.

1.4 Outline of Paper

Section 3 gives an overview of Damas’ type inference system. The methods for
type error slicing proceed in three steps. The first step consists of assigning con-
straints to program points. In order to obtain accurate type error slices, it is
important to follow a certain strategy. This strategy is described in section 4.
The second step consist of finding minimal unsolvable subsets in the set of all
constraints. Section 5 describes algorithms for doing this. Finally, section 6 de-
scribes how type error slices are computed from the results obtained in the
previous step.

For concreteness, we describe our methodology in detail for the small model
language shown in figure 1. The labels that superscript expressions mark pro-
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l ∈ Label a fixed infinite set of labels
L ∈ LabelSet all finite subsets of Label
x ∈ Var a fixed infinite set of variables
n ∈ Int the set of integers

lexp ∈ LExp ::= xl | nl | (lexp + lexp)l | (fn xl => lexp)l

| (lexp lexp)l | (let val xl = lexp in lexp end)l

Restriction: The labels that occur in a labeled expression must be distinct.

Fig. 1. Labeled expressions

gram points. The labeled expression language is a sublanguage of Standard ML
(SML) [21]. We have an implementation for a larger sublanguage of SML.2

Acknowledgments. We thank Sébastien Carlier for his help in making the
web demonstration interface and Greg Michaelson, Phil Trinder, and Jun Yang
for stimulating discussions.

2 Some Definitions and Notations

The symbols 〈 and 〉 denote tuple braces. We use the terms “tuple” and “list”
interchangeably. For a list xs = 〈x1, . . . , xn〉, the expression y :: xs denotes the
list 〈y, x1, . . . , xn〉. For each natural number i, the symbol πi denotes the i-th
projection operator, i.e., if xs = 〈x1, . . . , xn〉 and i ∈ {1, . . . , n}, then πi(xs) = xi.
If f is a function, then f [x �→ y] denotes the function (f \ {〈x, f(x)〉})∪ {〈x, y〉}.
If X is a set and → is a subset of X × X, then →∗ denotes its reflexive and
transitive closure. An element x is called irreducible with respect to →, if there
is no element y such that x → y. If X is a set of sets, then min(X) denotes
the set of all elements of X that are minimal with respect to set inclusion. Two
sets are called incomparable if neither of them is a subset of the other one. In
definitions of rewrite systems, we use a form of pattern matching. The symbol ·
denotes a wildcard and is matched by any element of the appropriate domain. A
disjoint union pattern is of the form pat1 � pat2 and is matched by a set X, iff
there are sets X1, X2 such that X1 ∪ X2 = X, X1 ∩ X2 = ∅, X1 matches pat1
and X2 matches pat2. Usually, X matches pat1 � pat2 in more than one way.

3 Damas’s Type Inference System

Types are defined as follows:

ty ∈ Ty ::= a | int | ty -> ty ity ∈ IntTy ::= ∧S

a ∈ TyVar a fixed infinite set of type variables
S ∈ TySet the set of all finite subsets of Ty

2 http://www.cee.hw.ac.uk/ultra/compositional-analysis/type-error-slicing
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Γ [x �→ ∧{ty , . . .}] � xl : ty
Γ � n : int

(Γ � lexp1 : int) and (Γ � lexp2 : int) ⇒ Γ � (lexp1 + lexp2)l : int
Γ [x �→ ∧{ty}] � lexp : ty ′ ⇒ Γ � (fn xl => lexp)l′

: ty -> ty ′

(Γ � lexp1 : ty ′ -> ty) and (Γ � lexp2 : ty ′) ⇒ Γ � (lexp1 lexp2)l : ty

(n ≥ 1) and (∀i ∈ {1, . . . , n}. Γ � lexp : ty i) and (Γ [x �→ ∧{ty1, . . . , tyn}] � lexp′ : ty)
⇒ Γ � (let val xl = lexp in lexp′ end)l′

: ty

Fig. 2. Damas’s typing rules

The elements of IntTy are called intersection types. The symbol ∧ is syntax. For
example, ∧{a -> int, int -> a} ∈ IntTy. A type environment is a total function
from Var to IntTy. Let Γ range over Env, the set of all type environments. Let
empty be the type environment that maps all variables to ∧{}.

Damas’s type inference system is defined in figure 2. We will call it Damas’s
System T because it is used with Damas’s algorithm T. It differs in the rule
for let-expressions from the usual system for SML, which Damas called the type
scheme inference system. Whereas the type scheme inference system requires the
types of all occurrences of a let-bound variable to be substitution instances of a
common type scheme, System T does not require this. However, Damas showed
that the two approaches accept the same expressions. The following fact is a
variation of proposition 2 in Damas’s Ph.D. thesis [7, p. 85].

Fact 3.1 For closed lexp, (empty � lexp : ty) iff lexp has type ty in SML.3

We use the system, because it is good for accurately locating sources of type
errors. The use of closely related systems has been proposed previously for type
error analysis [2,14] as well as separate compilation [24,14].

4 Assigning Constraints to Program Points

This section explains how constraints are assigned to program points. We will
define a function that maps labeled expressions to finite sets of constraints asso-
ciated with program points. An expression is typable if and only if the associated
constraint set is solvable. The association between constraints and particular pro-
gram points is important for an untypable expression lexp. All program points
in lexp associated with a minimal unsolvable subset of the set of constraints gen-
erated for lexp jointly cause a type error, and we display these program points
as the location of the type error.

A labeled constraint is a triple 〈ty , ty ′, L〉, which will be written as ty =L== ty ′.
Such a labeled constraint is called atomically labeled, if L is a one-element set.
3 Formally, some minor syntactic adjustments (omitted here) are needed to translate

lexp into an exp of the SML definition [21].
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Let ty =l== ty ′ stand for ty =
{l}
== ty ′. Let C range over AtConstraintSet, the set of

all finite sets of atomically labeled constraints. Let D range over ConstraintSet,
the set of all finite sets of labeled constraints. A type substitution is a function
from TyVar to Ty. If s is a type substitution and ty a type, then s(ty) denotes
the type that results from ty by replacing each type variable occurrence a in ty
by s(a). A solution to a constraint ty =L== ty ′ is a type substitution s such that
s(ty) and s(ty ′) are syntactically equal. A solution to a set of constraints is a
type substitution that solves all constraints in the constraint set simultaneously.
The projection operator ΠL is defined by ΠL(C) = {(ty =l== ty ′) ∈ C | l ∈ L}.
Let Πl stand for Π{l}.

The total function ⇓ from LExp to Env × Ty × AtConstraintSet is defined as
the least relation that satisfies the rules in figure 3. This function is a variation
of Damas’s type assignment algorithm T. We use the term “fresh variant” of an
object involving type variables to denote the result of renaming the type variables
occurring in it by fresh type variables. We define (∧S) ∧ (∧S′) = ∧(S ∪ S′). The
operation ∧ on type environments is defined by (Γ ∧Γ ′) (x) = Γ (x)∧Γ ′(x). We
define (∧S) � (∧S′), iff S ⊆ S′, and Γ � Γ ′, iff Γ (x) � Γ ′(x) for all x in Var.
The following facts are variations of propositions 7 and 8 on pages 39 and 44 in
Damas’s Ph.D. thesis [7].

Fact 4.1 Suppose (lexp ⇓ 〈Γ, ty , C〉).
1. If s is a solution of C, then (s(Γ ) � lexp : s(ty)).
2. If (Γ ′ � lexp : ty ′), then there is a solution s of C such that s(Γ ) � Γ ′ and

s(ty) = ty ′.

Example 4.1. Consider the following partially labeled expression. (We have
omitted all labels that are irrelevant for this example.)

lexp = (fn xl1 => f (xl2 0)l3 (xl4 + 0)l5)

Note that this expression has an obvious type error. The bound variable x is
used both as a function and as an integer. Formally, it is the case that (lexp ⇓
〈empty[f �→ a], a′, C〉) for some type variables a, a′ and some constraint set C
that has the following subset C ′.

C′ =
{

a1 =
l2== a2, a2 =

l3== a3 -> a4, a5 =
l4== a6, a6 =

l5== int, a7 =
l1== a1, a7 =

l1== a5

}

It is not hard to see that C ′ is unsolvable. Moreover, it is minimally unsolvable,
i.e., every proper subset of C ′ is solvable. As a type error message, our imple-
mentation displays a program slice that contains all program points that are
associated with C ′. When applied to the declaration

val = fn x => f (x 0) (x + 0)

it displays a message like this one:

type constructor clash, endpoints: function vs. int
(.. fn x => (.. x (..) .. x + (..) ..) ..)
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xl ⇓ 〈 empty[x �→ ∧{ax}], a, {ax =
l
== a} 〉

where ax, a fresh

nl ⇓ 〈 empty, a, {int =
l
== a} 〉

where a fresh

lexp1 ⇓ 〈Γ1, ty1, C1〉; lexp2 ⇓ 〈Γ2, ty2, C2〉
(lexp1 + lexp2)l ⇓ 〈 Γ1 ∧ Γ2, a, Cnew ∪ C1 ∪ C2 〉
where a fresh, Cnew = {ty1 =

l
== int, ty2 =

l
== int, int =

l
== a}

lexp ⇓ 〈Γ [x �→ ∧{ty1, . . . , tyn}], ty , C〉
(fn xl => lexp)l′ ⇓ 〈 Γ [x �→ ∧{}], a, Cnew ∪ C 〉
where ax, a fresh, Cnew = { ax =

l
== ty1, . . . , ax =

l
== tyn, ax -> ty =

l′
== a }

lexp1 ⇓ 〈Γ1, ty1, C1〉; lexp2 ⇓ 〈Γ2, ty2, C2〉
(lexp1 lexp2)l ⇓ 〈 Γ1 ∧ Γ2, a, Cnew ∪ C1 ∪ C2 〉
where a, a1, a2 fresh, Cnew = { ty1 =

l
== a1 -> a2, ty2 =

l
== a1, a =

l
== a2 }

lexp1 ⇓ 〈Γ1, ty1, C1〉; lexp2 ⇓ 〈Γ2[x �→ ∧{ty ′
1, . . . , ty ′

n}], ty2, C2〉
(let val xl = lexp1 in lexp2 end)l′ ⇓ 〈 Γ ′

1 ∧ Γ2[x �→ ∧{}], a, Cnew ∪ C′
1 ∪ C2 〉

where 〈Γ1,1, ty1,1, C1,1〉, . . . , 〈Γ1,k, ty1,k, C1,k〉 are fresh variants of 〈Γ1, ty1, C1〉,
Γ ′

1 = Γ1,1 ∧ . . . ∧ Γ1,k, C′
1 = C1,1 ∪ . . . ∪ C1,k, C = {ty1,1 =

l
== ty ′

1, . . . , ty1,n =
l
== ty ′

n},

a fresh, Cnew = {a =
l′
== ty2} ∪ C, k = max(n, 1)

Fig. 3. Algorithm T

Unlike Damas’s original algorithm, in our variation of algorithm T every ex-
pression’s result type is a fresh type variable a equated to a type ty by a separate
constraint. The additional constraints and type variables are vital for obtaining
complete type error slices. For example, if the variable rule were replaced by

xl ⇓ 〈empty[x �→ ∧{ax}], ax, ∅〉 where ax fresh

then in example 4.1 the generated constraint set would not mention the labels l2
or l4. Thus, these relevant program points would be wrongly omitted from the
type error location. The resulting type error slice would be incomplete:

(.. fn x => (.. (..) (..) .. (..) + (..) ..) ..)

The let-expression rule copies the constraint set C1 for lexp1 for each use of
the variable x in lexp2. In bad cases, the number of copies of a constraint set
can be exponential in the size of the program. Consider, this example program:
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let val x1 = lexp in
let val x2 = f x1 x1 in
...
let val xn = f xn−1 xn−1 in f xn xn end ... end

The resulting constraint set contains 2n variants of lexp’s constraint set. Note,
however, that this family of expressions is notorious also for algorithm W: If
lexp = (fn x => x) and f ’s type scheme is assumed to be (∀a.∀b. a -> b -> a -> b),
then the principal type scheme of the entire expression contains 2(n+1) distinct
type variables. Remember also that Hindley/Milner (SML) typability in our
small expression language is exponential time complete [16,17].

5 Finding Minimal Unsolvable Constraint Sets

We define a function that maps sets of atomically labeled constraints to sets
of associated labels by labels(C) = { l | (∃ty , ty ′)((ty =l== ty ′) ∈ C) }. A set
of labels L is called an error with respect to C, if C has an unsolvable subset
C ′ such that L = labels(C ′). We denote the set of all such errors by errors(C).
Moreover, minErrors(C) denotes the set of all those elements of errors(C) that are
minimal with respect to set inclusion. This section shows how to find minimal
errors in an unsolvable constraint set. We will present a greedy minimization
algorithm that, given an unsolvable constraint set C, finds a single element of
minErrors(C). This algorithm is reasonably efficient for practical purposes. It
is not practical to always exhaustively enumerate all elements of minErrors(C),
because this set has a worst-case size exponential in the size of C [27]. However,
our simple enumeration algorithm seems to always find a few good candidates
for some (but not all) minimal errors. These candidates are close to minimal and
can be minimized with the minimization algorithm.

5.1 Labeled Unification

Unification can be viewed as a rewrite system on constraints. Our algorithms
label each derived constraint with the labels of constraints used in deriving it.
Our unification algorithm is similar to the one in [26]. Our labeled unification
algorithm is a set of state transformation rules given in figure 4 which define the
state transformation relation →. Initial states are of the form unify(C) and final
states of the form Success(E ) or Error(L, l). Intermediate states are of the form
unify(C, E ) or unify(C, E , D , l) where the state components are as follows:

C ∈ AtConstraintSet initial constraints not yet considered
E ∈ TyVar → ((Ty × LabelSet) ∪ {⊥}) environment, contains derived bindings
D ∈ ConstraintSet derived constraints that are not bindings yet
l ∈ Label the label whose constraints are currently

under inspection

Proposition 5.1 (Termination of unify). Each state transformation sequence
terminates. A state is irreducible iff it is a final state.
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We define a function app that maps environments to partial functions from
TyVar to Ty. For every fixed E, the binary relation app(E)( · ) = · is defined
inductively as the least relation that satisfies the following conditions:

(E(a) = ⊥) ⇒ (app(E)(a) = a)
(E(a) = 〈ty , L〉) ⇒ (app(E)(a) = app(E)(ty))

(app(E)(ty1) = ty ′
1) ∧ (app(E)(ty2) = ty ′

2) ⇒ (app(E)(ty1 -> ty2) = ty ′
1 -> ty ′

2)
(app(E)(int) = int)

app(E) is a partial function for every E . Although app(E) is not always total,
because the second equation (for variables) is not size decreasing, it is only used
in defined cases. For type substitutions s and s′, their composition s′ ◦ s is the
type substitution that satisfies (s′ ◦ s)(a) = s′(s(a)) for all type variables a. A
type substitution s is called a most general unifier of C, iff for every solution s′

of C there exists a type substitution s′′ such that s′ = s′′ ◦ s.

Theorem 5.1 (Correctness of unify).

1. If unify(C) →∗ Success(E), then app(E) is a total function and a most gen-
eral unifier of C.

2. If unify(C) →∗ Error(L, l), then L ∈ errors(C) and L \ {l} �∈ errors(C).

If one ignores the labels, the labeled unification algorithm looks very much
like standard presentations of unification. Note that the transformation system
in figure 4 is non-deterministic. Arbitrary choices can be used for the label l in
the fourth unify rule, the labeled constraint (ty =L== ty ′) in the last ten unify rules,
and the label set associated with an occurs-check failure in the last unify rule.
Different choices may yield different final results. This is not a surprise, because
the label sets that get returned in case of failure record parts of the histories of
transformation sequences.
Example 5.1.

C = { a1 =
l1== a2 -> a3, a2 =

l2== int -> a4, a1 =
l3== (a5 -> (a6 -> a7)) -> int,

a2 =
l4== a8 -> int }

Both unify(C) →∗ Error({l1, l2, l3, l4}, l4) and unify(C) →∗ Error({l1, l3, l4}, l4).
The first result is obtained, for instance, if the constraints are inspected in the
order l1, l2, l3, l4; the second result is obtained, for instance, if they are inspected
in the order l1, l3, l4. Note that this example shows that unify(C) →∗ Error(L, l)
does not imply that L is minimal.

Example 5.2.

C = { a1 =
l1== a2 -> a3, a1 =

l2== (a4 -> (a5 -> a6)) -> int,

a1 =
l3== (a7 -> (a8 -> a9)) -> int, a2 =

l4== int -> int }

Then, unify(C) →∗ Error({l1, l2, l4}, l4). The result is obtained, for instance, if
the constraints are inspected in the order l1, l2, l3, l4. Note that, although l3 is
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dummy is some arbitrarily chosen fixed label

unify(C) → unify(C, (λa ∈ TyVar.⊥))
unify(C, E) → unify(C, E , ∅, dummy)
unify(∅, E, ∅, l) → Success(E)

unify(C, E , ∅, l′) → unify(C \ Πl(C), E , Πl(C), l),
if Πl(C) �= ∅

unify(C, E , {ty =L== ty} � D , l) → unify(C, E , D , l)

unify(C, E , {ty1 -> ty2 =
L
== int} � D , l) → Error(L, l)

unify(C, E , {int =
L
== ty1 -> ty2} � D , l) → Error(L, l)

unify(C, E , {int =
L
== a} � D , l) → unify(C, E , {a =

L
== int} ∪ D , l)

unify(C, E , {ty1 -> ty2 =
L
== a} � D , l) → unify(C, E , {a =

L
== ty1 -> ty2} ∪ D , l)

unify(C, E , {ty1 -> ty2 =
L
== ty ′

1 -> ty ′
2} � D , l)

→ unify(C, E , {ty ′
1 =

L
== ty1, ty2 =

L
== ty ′

2} ∪ D , l)

unify(C, E [a �→ 〈ty ′, L′〉], {a =
L
== ty} � D , l)

→ unify(C, E [a �→ 〈ty ′, L′〉], {ty ′ =
L∪L′
=== ty} ∪ D , l)

unify(C, E [a �→ ⊥], {a =L== ty} � D , l)

→






unify(C, E [a �→ 〈ty , L〉], D , l) if occurs(E , L, a, ty , 0) = ∅
Error(L′, l) if 〈L′, n〉 ∈ occurs(E , L, a, ty , 0) and n ≥ 1
unify(C, E [a �→ ⊥], D , l) otherwise

occurs(E [a′ �→ 〈ty , L′〉], L, a, a′, i) = occurs(E [a′ �→ 〈ty , L′〉], L ∪ L′, a, ty , i)
occurs(E [a′ �→ ⊥], L, a, a, i) = {〈L, i〉}
occurs(E [a′ �→ ⊥], L, a, a′, i) = ∅ if a �= a′

occurs(E , L, a, int, i) = ∅
occurs(E , L, a, ty1 -> ty2, i)

= occurs(E , L, a, ty1, i + 1) ∪ occurs(E , L, a, ty2, i + 1)

Fig. 4. A non-deterministic labeled unification algorithm

inspected before the error is discovered, l3 is not an element of the return set.
This is so, because the constraint that is labeled by l3 does not increment the
knowledge that has already been accumulated as a result of inspecting l1 and l2.

It is also the case that unify(C) →∗ Error({l1, l3, l4}, l4). This result is ob-
tained, for instance, if the constraints are inspected in the order l1, l3, l2, l4. It
happens to be the case that minErrors(C) = {{l1, l2, l4}, {l1, l3, l4}}

5.2 Error Minimization

Both our minimization and enumeration algorithms are based on the labeled
unification algorithm; they execute it multiple times on different subsets of the
initial constraint set. The minimization algorithm is based on the following idea:
Remember that if unify(C) →∗ Error(L, l), then L is an error and L \ {l} is not
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minimize(C, L, l) → minimize(C, λa ∈ TyVar.⊥, L, l, ∅)

unify( Πl(C), E ) →∗ Error(·, ·)
minimize(C, E , L, l, L′) → MinError(L′ ∪ {l})

unify( Πl(C), E ) →∗ Success(Enew );
unify( ΠL\{l}(C), Enew ) →∗ Error(Lnew , lnew )

minimize(C, E , L, l, L′) → minimize(C, Enew , Lnew , lnew , L′ ∪ {l})

Fig. 5. A non-deterministic error slice minimization algorithm

an error. It follows that l is an element of every minimal error that is contained
in L. The minimization algorithm exploits this fact repetitively, and iteratively
builds a minimal error.

In figure 5, the algorithm is presented as a set of state transformation rules.
Initial states are of the form minimize(C, L, l) and final states of form MinError(L).
Intermediate states are of the form minimize(C, E , L, l, L′). The intention is that,
if, initially, L ∈ errors(C) and L \ {l} �∈ errors(C), and if minimize(C, L, l) →∗

MinError(L′), then L′ is a minimal error that is contained in L.

Proposition 5.2. Suppose Lin ∈ errors(Cin), Lin \ {lin} �∈ errors(Cin)
and minimize(Cin , Lin , lin) →∗ minimize(C, E , L, l, L′). Then all of these hold:

1. C = Cin , l ∈ L, lin ∈ L′, L ∩ L′ = ∅ and L ∪ L′ ⊆ Lin .
2. app(E) is a most general unifier of ΠL′(C).
3. app(E)(ΠL(C)) is not solvable.
4. app(E)(ΠL\{l}(C)) is solvable.

Proposition 5.3 (Termination of minimize). Let L ∈ errors(C) and L \ {l} �∈
errors(C). Every transformation sequence starting from minimize(C, L, l) termi-
nates. If minimize(C, L, l) →∗ s, then s is irreducible iff it is a final state.

Lemma 5.1. Suppose Lin ∈ errors(C), Lin \ {lin} �∈ errors(C)
and minimize(C, Lin , lin) →∗ minimize(C ′, E , L, l, L′). Then:

∀L0 ∈ errors(C). ((L0 ⊆ L ∪ L′) ⇒ (L′ ∪ {l} ⊆ L0))

Theorem 5.2 (Correctness of minimize). If L ∈ errors(C), L\{l} �∈ errors(C)
and minimize(C, L, l) →∗ MinError(L′), then L′ ∈ minErrors(C) and L′ ⊆ L.

The transformation sequence minimize(C, L, l) →∗ MinError(L′) requires at
most 2n calls to the labeled unification algorithm, where n is the size of ΠL(C).
In the worst case, our labeled unification algorithm takes exponential time in the
the size of the constraint set, but linear time unification algorithms exist. Using
a linear time unification algorithm, minimization would take quadratic time in
the size of ΠL(C). We apply the minimization algorithm only to label sets L
returned by an initial run of labeled unification. Even for large input programs
we expect these label sets, and also ΠL(C), to be small.
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5.3 Error Enumeration

Enumerating all minimal errors is harder than finding just one. In the worst case,
the number of minimal errors is exponential in the size of the constraint set [27].
We use a simple algorithm that quickly finds a number of different errors that
are close to minimal. In principle (but not in practice), this algorithm eventually
returns the set of all minimal errors. However, we interrupt its execution after
a short time. The interrupted algorithm returns an intermediate state that con-
tains a list of candidates. These candidates are errors that are not guaranteed
to be minimal yet. However, they are close to minimal and the minimization
algorithm can be used to minimize them. Our algorithm has the property that
it finds a few minimal errors fast, at the expense of behaving badly in the hypo-
thetical limit case.4 We do not think that, in practice, it is a great disadvantage
that our algorithms only find some, but not all, minimal error slices of a program
at once. Many of today’s compilers report only a few type errors at a time. Even
if they do report many type errors at once, most programmers correct only few
of the reported errors before they try to recompile.

The (previously defined) function minErrors satisfies the following equations:

If unify(C) →∗ Success(·): minErrors(C) = ∅
If unify(C) →∗ Error(L, ·):

minErrors(C) = min(
⋃ { minErrors(Πlabels(C)\{l}(C)) | l ∈ L } ∪ {L} )

A recursive implementation of these equations rediscovers identical errors many
times. For instance, if unify(C) →∗ Error(L, ·) and L′ is a minimal error of C
that is contained in (labels(C) \ L), then L′ gets returned by each one of the
recursive calls. Our enumeration algorithm suffers from such recomputations.
For that reason, the algorithm is impractical for exhaustively enumerating all
minimal errors, even in cases where minErrors(C) is small.

The algorithm in figure 6 is essentially an iterative version of the above
recurrences presented as a set of state transformation rules. Initial states are
of the form enum(C) and final states of the form MinErrors(Ls), where Ls is
a set of pairwise incomparable label sets. Intermediate states are of the form
enum(C, found , todo) where both found and todo are sets of pairwise incompa-
rable label sets. At each state, the set found contains close approximations of
some minimal errors of C (“candidate set”). Members of the set todo represent
work items that still need to be done (“to-do set”). Specifically, for each label
set L in the to-do set, the minimal errors that are contained in (labels(C) \ L)
still need to be found. We usually interrupt the execution of enum(C) before it
terminates but after it has found at least one error. In this case, the elements of
the current found -set get minimized and then returned.

4 An example of an algorithm that “behaves well” in the hypothetical limit case,
but may often not even find a single minimal error in reality because of time or
space limits, is a breadth-first exploration of all possible transformation sequences
of labeled unification.
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enum(C) → enum(C, ∅, {∅}); enum(C, found , ∅) → MinErrors(found)

unify(Πlabels(C)\L(C)) →∗ Success(·)
enum(C, found , {L} � todo) → enum(C, found , todo)

unify(Πlabels(C)\L(C)) →∗ Error(L′, ·); insertError(L′, found) = found 1;
insertTodos(distribute(L′, L), todo) = todo1

enum(C, found , {L} � todo) → enum(C, found1, todo1)

insertError(L, found) =def
==

{
found , if (∃L′ ∈ found)(L′ ⊆ L)
{ L′ ∈ found | L �⊆ L′ } ∪ {L}, otherwise

insertTodos(Ls, todo) =
def
== todo ∪ { L ∈ Ls | (∀L′ ∈ todo)(L′ �⊆ L) }

distribute(L′, L) =
def
== { {l′} ∪ L | l′ ∈ L′ }

Fig. 6. A non-deterministic minimal error slice enumeration algorithm

Proposition 5.4 (Termination of enum). Each state transformation sequence
terminates. A state is irreducible iff it is a final state.

Theorem 5.3 (Correctness of enum). If enum(C) →∗ MinErrors(Ls), then
Ls = minErrors(C).

6 Slicing the Program

Figure 7 defines the abstract syntax class of slices. The grammar extends the
labeled expression grammar by the additional phrase

sl ::= . . . | dots(sl 1, . . . , sl k) | . . .

A dots-node in a slice’s abstract syntax tree represents an irrelevant segment of
the corresponding program’s abstract syntax tree. Our experimental implemen-
tation displays dots(sl1, sl2, sl3) as:

(.. sl 1 .. sl 2 .. sl 3 ..)

For instance, the type error slice

fn xl1 => dots( (xl2 dots())l3 , (xl4 + dots())l5 )

computed for the erroneous program from example 4.1 is displayed as:

fn x => (.. x (..) .. x + (..) ..)

Figure 7 defines additional typing rules for slices. A slice of the form dots(sl1,
. . . , slk) is well-typed iff sl1 through slk are. In this case, it has all types. The
typing rules for other phrases are omitted, because they are the same as for
expressions (see figure 2). Figure 7 also extends algorithm T. We need this ex-
tension, in order to formulate a statement that relates erroneous programs to
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k ∈ {0, 1, 2, . . .}
vsl ∈ VarSlice ::= xl | dots()

sl ∈ Slice ::= xl | nl | (sl + sl)l | (fn vsl => sl)l |
(sl sl)l | (let val vsl = sl in sl end)l | dots(sl 1, . . . , sl k)

Typing rules

(∀i ∈ {1, . . . , k}. Γ � sl i : ty i) ⇒ (Γ � dots(sl 1, . . . , sl k) : ty)
(Γ � sl : ty ′) ⇒ (Γ � (fn dots() => sl)l : ty -> ty ′)
(Γ � sl ′ : ty ′) and (Γ � sl : ty) ⇒ (Γ � (let val dots() = sl ′ in sl end)l : ty)

Algorithm T

sl i ⇓ 〈Γi, ty i, Ci〉 for i in {1, . . . , k}; a fresh
dots(sl 1, . . . , sl k) ⇓ 〈 Γ1 ∧ . . . ∧ Γk, a, C1 ∪ . . . ∪ Ck 〉

sl ⇓ 〈Γ, ty , C〉; a, a′ fresh

(fn dots() => sl)l ⇓ 〈Γ, a, {a′ -> ty =
l
== a} ∪ C 〉

sl 1 ⇓ 〈Γ1, ty1, C1〉; sl 2 ⇓ 〈Γ2, ty2, C2〉; a fresh

(let val dots() = sl 1 in sl 2 end)l ⇓ 〈 Γ1 ∧ Γ2, a, {a =
l
== ty2} ∪ C1 ∪ C2 〉

Fig. 7. Additional rules for slices

their type error slices. The rule for dots-phrases does not generate any addi-
tional constraints. It merely propagates recursively computed results. The rules
for other phrases are omitted, because they are exactly as in figure 3.

Figure 8 defines the function slice which takes a label set L and a labeled
expression lexp and returns a slice. This function replaces each node of lexp’s
syntax tree by dots, if its node label is not in L. It also flattens nested dots. As
a result of flattening, slice(L, lexp) does not have immediately nested dots.

Theorem 6.1 (Faithfulness). If (lexp ⇓ 〈·, ·, C〉), L ∈ errors(C)
and (slice(L, lexp) ⇓ 〈·, ·, C ′〉), then L ∈ errors(C ′).

Let � be the least contextually closed and transitive relation on slices satisfying
the following:

dots() � xl;
dots() � nl;

dots(sl 1, sl 2) � sl 1 + sl l
2;

dots(sl) � (fn dots() => sl)l

dots(sl 1, sl 2) � (sl 1 sl 2)l

dots(sl 1, sl 2) � (let val dots() = sl 1 in sl 2 end)l

(sl = dots(sl 1, . . . , sl i, . . . , sl n))
and (sl i = dots(sl ′

1, . . . , sl ′
k))

}

⇒
{

sl � dots(sl 1, . . . , sl i−1,
sl ′

1, . . . , sl ′
k, sl i+1, . . . , sl n)

Theorem 6.2 (Accuracy). If (lexp ⇓ 〈·, ·, C〉), L ∈ minErrors(C)
and sl � slice(L, lexp), then sl is well-typed.
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lexp ↓L sl
slice(L, lexp) = sl

l ∈ L
xl ↓L xl

l �∈ L
xl ↓L dots()

l ∈ L
nl ↓L nl

l �∈ L
nl ↓L dots()

lexp1 ↓L sl 1; lexp2 ↓L sl 2; l ∈ L
(lexp1 + lexp2)l ↓L (sl 1 + sl 2)l

lexp1 ↓L sl 1; lexp2 ↓L sl 2; l �∈ L
(lexp1 + lexp2)l ↓L merge(〈sl 1, sl 2〉)

xl1 ↓L vsl ; lexp ↓L sl ; l1 ∈ L or l2 ∈ L
(fn xl1 => lexp)l2 ↓L (fn vsl => sl)l2

lexp ↓L sl ; l1 �∈ L and l2 �∈ L
(fn xl1 => lexp)l2 ↓L merge(〈sl〉)

lexp1 ↓L sl 1; lexp2 ↓L sl 2; l ∈ L
(lexp1 lexp2)l ↓L (sl 1 sl 2)lL2

lexp1 ↓L sl 1; lexp2 ↓L sl 2; l �∈ L
(lexp1 lexp2)l ↓L merge(〈sl 1, sl 2〉)

xl1 ↓L vsl ; lexp1 ↓L sl 1; lexp2 ↓L sl 2; l1 ∈ L or l2 ∈ L
(let val xl1 = lexp1 in lexp2 end)l2 ↓L (let val vsl = sl 1 in sl 2 end)l2

lexp1 ↓L sl 1; lexp2 ↓L sl 2; l1 �∈ L and l2 �∈ L
(let val xl1 = lexp1 in lexp2 end)l2 ↓L merge(〈sl 1, sl 2〉)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

merge(〈〉) = dots()
merge(sls) = dots(sl 1, . . . , sl n); sl �= dots(·)

merge(sl :: sls) = dots(sl , sl 1, . . . , sl n)

merge(sls) = dots(sl ′
1, . . . , sl ′

k)
merge(dots(sl 1, . . . , sl n) :: sls) = dots(sl 1, . . . , sl n, sl ′

1, . . . , sl ′
k)

Fig. 8. Slicing

7 Conclusion

We have presented algorithms for type error slicing in an implicitly typed λ-
calculus with let-polymorphism. These algorithms first generate type equality
constraints using a version of Damas’s type inference algorithm T, and then find
minimal unsolvable subsets of the set of generated constraints. Type error slices
are programs where irrelevant program points are masked.

In the future, we want to extend our implementation of type error slicing
to full SML and improve its user interface. The user interface will both high-
light program points in the source code and display separate type error slices.
The separate slices will be especially useful, if relevant program points are far
apart, possibly in multiple files. Hyperlinks will relate program points in the
separate slice to the corresponding points in the source. The extension to full
SML will require the treatment of additional issues. For instance, the presence
of equality types and overloaded built-in operations requires an additional sort
of constraints: kind constraints for type variables. Another important issue are
explicit type and signature annotations. These will put natural boundaries on
type error slices. For instance, if library modules are always annotated with ex-
plicit signatures, then type error slices for programs that use the library will
never contain parts of the library implementation.
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Abstract. A core modeling language for Molecular Biology is intro-
duced, where two simple forms of interaction are considered, complex-
ation and activation. This core language is equipped with two sensible
bisimulation-based equivalences, and it is shown that interactions involv-
ing complex reactants are superfluous up to these notions. Strong compi-
lations in π-calculus are given, following Regev’s principle of translating
physical connection as private name sharing.

1 Introduction

The potential interest of formal models in molecular biology has been recog-
nized for some time in the community of bioinformatics. Post-genomic biology
is producing ever bigger networks of reactions at the molecular level. Soon, ex-
haustive descriptions of entire simple living organisms will be obtained, down
to the minutest molecular cogs and rods. Any assistance in investigating and
understanding these is welcome.

The sorts of computational models best suited for this task remain unclear.
Cases, sometimes very convincing, have been made for the use of various ana-
lytic frameworks, from boolean analysis of ordinary differential equations [18] to
model-checking of hybrid systems [8].

We take here a different stance by constructing a calculus specifically designed
for the task of representing and studying biological networks at the molecular
level. While it might sound strange to the ears of a computer scientist that
no such calculus was given before, one has to understand that it is quite a
surprise for a biologist that there is one at all! It’s a long way from one’s first
readings in molecular biology to the realization that, at the appropriate level
of description, it all relies on very few principles of interaction: complexation,
activation, synthesis and degradation.

The first contribution of this paper is therefore to provide such a calculus. Of
course, there is no such calculus without a demonstration of biological expres-
sivity. One has to make sure the formalism is enough to model a significant part
of molecular biology. We propose a few examples in the text, merely to illustrate
the syntax. Our calculus was tested against Kohn’s compilation of the vast net-
work of molecular reactions controlling the cell cycle [10,11]. A system of about

� This research was partly funded by the INRIA ARC CPBIO project.
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300 reactions —after correcting some notational ambiguities— and representing
the ‘logical’ part of the system was obtained in [2].

With the formalism in place we may take a step beyond pure representational
problems. The second contribution of this paper is to construct an encoding
showing that complex reactants are useless in a suitable mathematical sense.
Interestingly, this theorem can be construed as raising a biological question.
Any such interpretation will, of course, depend on the extent to which our formal
biology is biological and not only formal! But this could be said of any model,
and one of the interests of building a calculus at all, as opposed to a mere model,
is to have a formal counterpart to the phenomenon that can be exposed to precise
criticism.

The third contribution is to provide compilations of our formalism into π-
calculus. These compilations were used to provide guidance in defining reactions
in the calculus and could be useful to enrich the model as well. Regev, with
her coauthors, outlined in a series of papers [16,14,15] an alarmingly convincing
dictionary between elementary biological events: binding, activation, transcrip-
tional regulation, etc and π-calculus constructions. We were particularly keen
here on giving compilations respecting Regev’s principle of representing physi-
cal connectivity, a primitive notion in our formalism, as private name sharing.
For want of a formal language to describe what was to be represented, Regev’s
dictionary had to stay informal and could really be understood only by fol-
lowing examples. Encoding of a particular portion of biological knowledge was
not straightforward, could be done in many ways and would generally result in
a biologically illegible code. Our language and compilations provide a layer of
abstraction obviating this.

There is scope for extending the formalism. It is easy to add synthesis (tran-
scription factors included) and degradation reactions. Decomplexation rules can
be added too, but with a purely qualitative non-deterministic semantics, such as
the one we have in this paper, this is probably not going to make any difference.
On the other hand, if one equips solutions with the structure of a Markovian
process following [14], decomplexations will make a difference. We still have to
develop more theory to understand whether complex reactants are reducible to
simple ones in such a quantitative framework.

Then comes the pressing question of whether model-checking methods would
let us query the dynamics of our systems. What kind of biologically relevant
questions can one crank out of a CTL or mu-calculus approach [3,4,9], or other
symbolic toolsets as advocated in [6], when applied to some model of formal
reactions ? Queries one can think of, for the time being, would be reachabil-
ity, and reachability under constraints. Constraints are particularly interesting
here because they might allow the model to represent higher-level knowledge for
which no efficient molecular mechanism is known or even conjectured, a sort of
epistemological cheat code. Another pressing question is to develop a notion of
pseudo-metrics on such probabilistic (or differential, see below) systems, which
would give a reasonable formal counterpart to the evasive concept of homol-
ogy for biological processes. Finally, another breed of operational semantics can
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be imposed on the same calculus, namely continuous-time dynamics based on
classical systems of multilinear differential equations (as explained for instance
in [17]). One ought to understand when and how the stochastic and continuous-
time deterministic operational semantics relate. This prompts us to remark that
another advantage of having a calculus is to be able to plug in different dynamics
calling on different tools and constraints. No matter how modest the contribution
presented here, it is a preliminary step.

Related Work. A language, called “Pathway Logic”, with quite similar concerns
has been recently proposed by Lincoln and collaborators in [6]. Pathway Logic
is a rewriting system formalism, where reactants are proteins and reactions are
modeled by rewriting rules. As in κ, internal wirings of proteins are not modeled.
The implementation of Pathway Logic in the Maude system may give access to
useful analytic tools. This implementation is sequential, while our π calculus
compilations exhibit at least the concurrency of the original biological systems,
and are thus amenable to concurrent implementations.

Another language, the biocalculus, has been defined by Nagasaki and his
colleagues [13]. The biocalculus is similar to Join [7], and therefore less abstract
than the κ calculus —in fact, less intelligible for biologists— and could be used
as a target language for compilation, similarly to π (see Section 5).

Acknowledgements. The first author gladly acknowledges numerous discus-
sions about representation problems in systems biology with Marc Chiaverini,
Magali Roux-Rouquié, Vincent Schächter, and with all the participants of the
INRIA research action CPBIO.

2 The Calculus

Notations. We write x̃ for a (possibly empty) finite sequence x1 · · · xn of names,
and |x̃| for its length. Given a set S, S! will denote the set of multisets over S.
We write U + V for the multiset union, V ⊆ U for the multiset inclusion and
V ⊂ U for the strict multiset inclusion; when V ⊆ U we also write simply U −V
for the multiset U \V . The empty multiset is denoted by ∅. The cardinality of a
multiset U is denoted |U |. We use pattern matching to express set containment,
i.e. X = Y + α means that α ⊆ X. Variables X, Y range over multisets.

Sites, Proteins, and Signatures. We assume two countable sets of sites N , and
protein names A and a signature function s(.) : A → N ! from protein names to
multiset of sites, mapping a protein name to its static interface. We ask further
that s(.) be countably onto, i.e. any static interface has an infinite number of
associated protein names.

Sites and protein names will be ranged over by symbols such as r, s, t, and
A, B, C, respectively. Sites will serve as both internal states and interfaces of
the protein, through which the interactions between proteins may occur. We
sort them accordingly in two separate infinite types, the value type Nv and the
proper type Np.
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A formal protein, or simply a protein, is a triple, written A(ρ, σ), with A ∈ A,
and ρ, σ ∈ N ! such that ρ + σ ⊆ s(A) and all sites in s(A) − (ρ + σ) are of the
proper type Np. In a given protein A(ρ, σ), a site r ∈ s(A) will be said free if
r ∈ ρ + σ, hidden if r ∈ ρ, visible if r ∈ σ and bound if not free.1

Take note that a site might be free and not visible, yet. The intended mean-
ing is that, for instance, A({r, s}, {t}) can interact at site t, and has also two
other unoccupied sites r and s which are momentarily hidden; this could mean
biologically that the particular folding A is assuming at the moment makes it
impossible for another protein to dock on these sites, although they are not
involved in any actual binding.

Complexes. Proteins may be composed into protein complexes, or simply com-
plexes ranged over by C, D, . . . and we denote the composition by the “�”
operator, which is assumed to be associative and commutative (namely, the or-
der of proteins inside the complexes is irrelevant). For instance, the complex

A1(ρ1, σ1) � A2(ρ2, σ2) � A3(ρ3, σ3)

represents a compound made of A1, A2, and A3. This notation is equivalent to
A2(ρ2, σ2) � A1(ρ1, σ1) � A3(ρ3, σ3), as well as to any other permutation of A1,
A2 and A3.

Biologically, a complex is a bundle of proteins connected together by low
energy bounds. Sometimes biologists are able to describe sub-components of the
proteins which are instrumental in the binding. These are commonly called do-
mains. Depending on the way proteins are folded in space, these domains can
be active or not and the behaviour of the protein will be different. Both acti-
vations and complexations can modify the folding and therefore the subsequent
behaviour. Sites are abstracting over both domains and folding states.

Well-formedness. A complex A1(ρ1, σ1) � · · · � An(ρn, σn) is said to be
well-formed if the following two conditions hold:

(a) for all 1 ≤ i ≤ n, ρi + σi ⊂ s(Ai), or n = 1 and ρ1 + σ1 ⊆ s(A1)
(b)

∑
1≤i≤n |s(Ai) − (ρi + σi)| = 2m, for some m ≥ n − 1.

Both conditions work together to make sure that the complex is connected in
the sense that there exists a wiring of the proteins participating in the complex,
using all bound sites, that turns it into a connected graph. Condition (a) is local,
and says that each protein must have at least one bound edge (unless n = 1),
while condition (b) is global and says there is a big enough even number of
bound edges, to connect the whole. All proteins and complexes will be taken to
be well-formed from now on.

Both conditions are obviously necessary and an easy induction proves that
they are also sufficient. So even if our complexation operator won’t let us see the
internal wiring, we still make sure that there is one.
1 To be completely accurate, one should talk about an occurrence of r ∈ s(A) since

we’re dealing with multisets here.



306 V. Danos and C. Laneve

Examples. Consider the following complexes:

A({r, s}, {r, t}) � B(∅, ∅) A({s}, {r, t})
A({s}, {r, t}) � B({t}, ∅) � B(∅, {t})

B(∅, {t}) � B(∅, {t}) � B(∅, {t}) � B(∅, {t})

with s(A) = {2r, s, t} and s(B) = {s, t}. All are ill-formed. Indeed, the first
violates (a) at A, the second and the third violate the parity condition in (b),
and the last doesn’t have enough bound edges. On the contrary the following
complexes are well-formed:

A({r, s}, {r, t}) A({r}, {r, t})�B({s}, ∅) A(∅, {t})�B(∅, ∅)�B(∅, {t})

Solutions and Reactions. Solutions, ranged over by S, S′, . . . are multisets of
proteins and complexes. Reactions are defined by rewriting rules which have the
shape S −→ S′. Following the chemical metaphor further, we’ll call complexes
present in the left hand side of a given rule reactants, and complexes present in
the right hand side products of the rule. To define reactions we use metavariables
X, Y, Z which range over multisets of sites. There are two kinds of basic reactions:

(activation)

C1, . . . , Cn −→ C′
1, . . . , C′

n

(complexation)

C1, . . . , Cn −→ C′
1 � . . . � C′

n

and we ask for the following conservation principles, for activations:

if Ci =
⊙

1≤j≤ki
Aij(Xij + ρij , Yij + σij), and

C′
i =

⊙
1≤j≤ki

Aij(Xij + ρ′
ij , Yij + σ′

ij),
then, for every j, ρij + σij = ρ′

ij + σ′
ij ,

and for complexations:

if Ci =
⊙

1≤j≤ki
Aij(Xij + ρij , Yij + σij + τij), and

C′
i =

⊙
1≤j≤ki

Aij(Xij + ρ′
ij , Yij + σ′

ij), and xi =
∑

1≤j≤ki
|τij |,

then, for every j, ρij + σij = ρ′
ij + σ′

ij , and xi > 0, and∑
1≤i≤n xi = 2m for some m ≥ n − 1.

The condition for activation says that free sites may flip their visible/hidden
status, but may not be bound by the reaction. The condition for complexation
completely mirrors the well-formedness conditions (a) and (b) above and controls
that the final product of the complexation rule:⊙

1≤i≤n,1≤j≤ki

Aij(Xij + ρ′
ij , Yij + σ′

ij)

stays well-formed, knowing that the reactants were already so. We also ask the
newly bound sites, namely the τij , to be visible in the left hand side.

We could distinguish the case of self-complexation, where n = 1 and allow
τ1 = ∅ but then self-complexation becomes exactly self-activation, so it doesn’t
make any difference and it feels better to have two disjoint sets of rules.

A basic reaction will be said simple if for all i, ki = 1, that is to say if all the
reactants are proteins; otherwise it will be said complex.
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(ctx-act)
C1, . . . , Cn −→ C′

1, . . . , C′
n

D1 � Ci1 · · · Cij1
, . . . , Dm � Cim · · · Cijm

−→ D1 � C′
i1 · · · C′

ij1
, . . . , Dm � C′

im
· · · C′

ijm

(ctx-cmp)
C1, . . . , Cn −→ C′

1 � · · · � C′
n

D1 � Ci1 · · · Cij1
, . . . , Dm � Cim · · · Cijm

−→ D1 � C′
i1 · · · C′

ij1
� · · · � Dm � C′

im
· · · C′

ijm

Fig. 1. Contextual Reactions

Contextual Reactions. Basic transitions are made to act on generic solutions
by means of suitable contextual rules. We need two such rules, (ctx-act) and
(ctx-cmp), to define the action of a basic rule when the reactants are them-
selves embedded in super-complexes D1, . . . , Dm. In this sense these rules are
allowing ‘contextual reactions’ where the context is precisely the multiset D1,
. . . , Dm of super-complexes hosting the reactants of the basic rules. The rules
are given in Fig. 1, where {i1, . . . , ij1}, . . . , {im, . . . , ijm

} stands for any partition
of {1, . . . , n}. Take note that when one uses a partition which is not discrete,
that is when m < n, then super-complexes hold more than one reactants. For
instance, from the basic C1, C2 −→ C′

1, C′
2 one can derive C1 · C2 −→ C′

1 · C′
2.

This is going to be crucial in the sequel. It also shows that our rules are not stan-
dard multiset rewriting rules; they’re actually mixing two levels of multisets, the
solution level associated to the operator “,” and the complex level associated to
the other operator “�”.

Contextual reactions are readily seen to preserve well-formedness.

Systems. To complete the construction of our κ-calculus, we define a κ-system
S to be a pair 〈S, R〉 where S is a solution and R is a finite set of basic reactions.
And we define also a transition relation over such κ-systems by 〈(S1, S), R〉 −→
〈(S2, S), R〉, if S1 −→ S2 according to some reaction, basic or contextual, that
can be derived from R.

Most of the time, we will write S −→R S′ instead of 〈S, R〉 −→ 〈S′, R〉, or
even better S −→ S′, when it’s clear from the context which R is meant. We also
write −→∗

R for the reflexive transitive closure of −→R.

Core κ-calculus. An interesting fragment of κ, the core κ-calculus, is obtained
by restricting to simple systems, i.e. systems with no complex reactants in their
basic rules. The simplest reaction which is not in the core calculus is:

A(∅, {r1, r2}), B1(∅, {r′
1}) · B2(∅, {r′

2}) −→ A(∅, ∅) · B1(∅, ∅) · B2(∅, ∅).

We’ll see in section 4 that, despite what seems a strong restriction, the core
calculus is expressive enough to encode κ; but before, we’re going to have a few
examples and comments.
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3 Discussion

Activation. The reader might ask how activation is implemented biologically. It
could be a phosphorylation (or the converse reaction of dephosphorylation), a
reaction whereby a protein is given (or taken) a phosphate group. Some change
of conformation might then occur in the structure possibly revealing formerly
hidden sites and hiding formerly visible ones:

(bio-activation)

A(X + ρ, Y + σ), B(X ′, Y ′) −→ A(X + ρ′, Y + σ′), B(X ′, Y ′)

usually B is called a kinase (or the converse a phosphatase). Our activations are
more general, but there doesn’t seem to be any theoretical reward in restricting
activations to have a closer fit.

Wiring doesn’t matter? By hiding the complexes internal wirings, we seem to be
assuming that the potential interactions of a given complex are not depending
on the underlying graph, which happens to have been used to construct the
complex. This is not true however. In case connections of a complex are making
a difference regarding interaction, one may account for these differences using
some sites as internal states. That said, dealing with explicit graphs and graph-
rewriting reactions is an interesting option which we investigated in [5].

To illustrate further choices built in the formalism, we go now through a
few small molecular stories (all true, although as usual the names have been
changed).

Commuting and Competing behaviours. Suppose B is able to bind A, revealing
a site r in A, and, independently, to bind C, then we write:

r1 = A(X + r, Y + s), B(X ′, Y ′ + s′) −→ A(X, Y + r) � B(X ′, Y ′)
r2 = B(X, Y + t), C(X ′, Y ′ + t′) −→ B(X, Y ) � C(X ′, Y ′)

From an initial solution S = A({r}, {s}), B(∅, {s′, t}), C(∅, {t′}) one gets two
paths to the same final solution:

S −→ A(∅, {r}) � B(∅, {t}), C(∅, {t′}) by r1
−→ A(∅, {r}) � B(∅, ∅) � C(∅, ∅) by r2 and (ctx-cmp)

S −→ A({r}, {s}), B(∅, {s′}) � C(∅, ∅) by r2
−→ A(∅, {r}) � B(∅, ∅) � C(∅, ∅) by r1 and (ctx-cmp)

If, on the contrary, bindings to B are competing for the same binding site s′ in
B, we modify our second basic rule:

r′
2 = B(X, Y + s′), C(X ′, Y ′ + t′) −→ B(X, Y ) � C(X ′, Y ′)

and starting from the same S, we get a ‘deadlocked’ solution:

S −→ A(∅, {r}) · B(∅, {t}), C(∅, {t′})
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because B has spent s′ by binding with A. So both commuting and competing
behaviours are expressible. In the latter case, when A � B, A � C both exist,
but A�B �C doesn’t, other mechanisms can be invoked and expressed. Instead
of having A and C competing for the same docking site on B, A could be
obstructing the site targeted by C, by moving that site into the hidden part of
B’s interface.

Synchronizing behaviours. So far, only simple reactants were used, but the real
interest of complex formation is that some further event can be conditioned on
two sites to be present on the same complex. For instance, some C ′ could bind
only to A and B at the same time, and it easy to add a complex rule:

r = A(X, Y + r) · B(X ′, Y ′ + t), C ′(X ′′, Y ′′ + {r′, t′})
−→ A(X, Y ) · B(X ′, Y ′) · C ′(X ′′, Y ′′)

and get:

A({r}, {s}), B(∅, {s′, t}), C′(∅, {r′, t′})
r1−→ A(∅, {r}) � B(∅, {t}), C′(∅, {r′, t′})
r−→ A(∅, ∅) � B(∅, ∅) � C(∅, ∅)

So we can express competition, commutation and even some form of synchro-
nization, and it seems natural to bring process algebra concepts in the picture.

4 Core κ-Calculus Is Enough

We’ve just said, in the example above, that complexes were useful. One may
wonder whether they really are, formally speaking. In the following we show the
existence of a non-uniform encoding [[ · ]] of a complex biological system into a
simple one. The encoding is non-uniform, namely [[S, S′]] 
= [[S]], [[S′]], because it
depends on the initial solution. We suspect that uniform encodings of complex
systems might not always exist.

To begin with, we introduce an extensional semantics, called barbed bisim-
ulation [12], which equates systems if their transitions match and they are in-
distinguishable under global observations. The key of barbed bisimulation is the
notion of observation. We provide two such notions, which define two different,
uncomparable bisimulations.

Let a, b, c, · · · be a countable set of names—the observations—, and f be
an injective mapping from protein names A to names. Let’s remind that sites N
are partitioned into proper sites Np and value sites Nv.

Definition 1. The complex barb ↓c is the least relation satisfying the rules
below.

A(ρ, σ) ↓c a if f(A) = a
A1 · · · An ↓c a1 · · · an if f(Ai) = ai for every i
S, S′ ↓c ã if S ↓c ã or S′ ↓c ã
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The simple barb ↓s is the least relation satisfying the rules below.

A(ρ, σ) ↓s a if σ \ Nv 
= ∅ and f(A) = a
A1 · · · An ↓s a if there is an i such that Ai ↓s a
S, S′ ↓s a if S ↓s a or S′ ↓s a

We write S ⇓c ã if S −→∗ T and T ↓c ã, and S ⇓s a if S −→∗ T and T ↓s a.

Definition 2. A (weak) barbed bisimulation is a symmetric binary relation R
on κ-systems such that if 〈S, R〉 R 〈S′, R′〉 then:

1. If S −→R T then, for some T′, S′ −→∗
R′ T′ and 〈T, R〉 R 〈T′, R′〉.

2. If S ↓ a, then S′ ⇓ a.

Depending on whether ↓ and ⇓ are ↓c, ⇓c, or ↓s, ⇓s, two κ-systems S and T will
be said complex (resp. simple) barbed bisimilar, written S

.≈c T (resp. S
.≈s T),

if there exists a barbed bisimulation relating S and T.

We are ready to state our reducibility theorem:

Theorem 1. Every κ-system is barbed bisimilar—both complex and simple—to
a core κ-system.

We explain the idea informally. Reactions with a complex reactant, say C,
have to check whether each participant of C is present in a same supercomplex,
and each with the appropriate internal state that would trigger the reaction.
We have to achieve this synchronisation effect with ‘bare hands’ if complex
reactants are forbidden. The gist of the proof is to use sites of value type to
make elementary components ‘aware’ of the states of the partners they are in
physical contact with, at any given moment. Both bisimulations will be blind
to such manoeuvring since none is observing internal states—the value sites
Nv—and activation rules will provide the means to keep this local information
consistent.

5 Compilations into Asynchronous π-Calculus

In this section we detail the compilation of core κ into asynchronous π-
calculus [1]. We’ll introduce an intermediate equivalent calculus κb with explicit
wirings, that makes it easier to pin down the formal relationship with π-calculus.

We begin with a brief introduction to asynchronous π-calculus, then we in-
troduce κb and prove it is equivalent to core κ, and from there we proceed to the
compilations of κb into asynchronous π-calculus. We present two such compila-
tions: the first fits with the standard pattern of encoding of chemical machines
in process calculi, as in Join-calculus [7]; the second one follows Regev’s idea
that protein behaviours are described within the proteins [16].
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5.1 The Asynchronous π-Calculus

The asynchronous π-calculus relies on three countable sets: 1) names, ranged
over by a, b, c, x, y, z, . . . 2) agent names, ranged over by A, B, . . . and 3)
variables X, Y , Z, . . . ; we use u, v to range over values, which may be names,
natural numbers, tuples, written ũ, or finite sets of names. Variables, which
include names, represent formal parameters. Even if no explicit type system
is given, our programs will be typable. Two syntactic categories are defined,
processes written P and boolean expressions written M :

P
def= 0 | x 〈ũ〉 | ∑

i∈I xi (Z̃i).Pi | P | P | (x)P | M P ; P | A(ũ)
M

def= [u = v] | [u ⊆ v] | MM

We see that a process P can be the inert process 0; a message x 〈ũ〉; a nondeter-
ministic input

∑
i∈I xi (Z̃i).Pi, where we assume I finite; a parallel composition

of processes; a restricted process of the form (x)P where (x) is the ‘new’ operator
that limits the scope of x to P ; a conditional M P ; Q; or a defined agent A(ũ),
and we ask for a unique defining equation A(X̃) def= P for each agent identifier.

Both restriction and input are binders: (x)P binds name x in P and x (Z̃).P
binds the variables Z̃ in P . Names of P which are not bound are called free and
we write fn(P ) for the set of such names.

The conditional M P ; Q evaluates to P or Q depending on whether M is
true or not. In our programs, M will be either [u = v] or [u ⊆ v] or sequences
of such tests. We assume the existence of an evaluation function for terms in M
which gives booleans, which we leave unspecified. Table 1 collects the semantics
of π-calculus: there are three basic reductions which are then lifted to parallel
contexts and scope contexts, up to the structural congruence defined above.

We consider a standard extensional semantics of π-calculus: (weak) barbed
equivalence, written

.≈. The definition parallels definition 2, with processes in-
stead of solutions, and we only need to redefine the notion of observation.

Definition 3. The observation relation on π-calculus processes is the least re-
lation satisfying the rules below.

a 〈ũ〉 ↓ a

P | Q ↓ a if P ↓ a or Q ↓ a

(x)P ↓ a if x 
= a and P ↓ a

A(ũ) ↓ a if A(X̃) def= P and P{ũ/X̃} ↓ a

As usual, we write P ⇓ a if P −→∗ Q and Q ↓ a.

5.2 The κb-Calculus

Proteins and complexes. Besides sites N , and protein names A, we need a further
disjoint set of names V, called connections, and ranged over by x, y, z, . . . , which
are sorted by sites so as to have countably many connections for any given site.
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Table 1. Operational semantics of the asynchronous π-calculus.

Structural congruence:

P | Q ≡ Q | P, (P | Q) | R ≡ P | (Q | R), P | 0 ≡ P,
(x)0 ≡ 0, (x)(y)P ≡ (y)(x)P,

(x)MP ; Q ≡ M(x)P ; (x)Q if x �∈ fn(M)
P | (z)Q ≡ (z)(P | Q), if z �∈ fn(P )
A(ũ) ≡ P {ũ/X̃} if A(X̃) def= P

Basic reductions:

x 〈ũ〉 |
∑

i∈I xi (Ỹi).Pi −→ Pj{ũ/Ỹj} (if x = xj)
M P ; Q −→ P (if M is true) M P ; Q −→ Q (if M is false)

Contextual reductions:

P −→ P ′

P | Q −→ P ′ | Q

P −→ P ′

(x)P −→ (x)P ′
P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q

We need to adapt the definitions of Section 2. Protein names now carry three
arguments: two multisets of sites ρ and σ, as before in κ, and an additional set
ξ of connections. The connection set ξ represents the bound sites of a protein:
every site in it is represented by a different connection. Let s(ξ) be the multiset
of sorts of the connections in ξ. We demand that a protein A(ρ, σ, ξ) is such
that s(A) − (ρ + σ) = s(ξ) and also that for every complex A1(ρ1, σ1, ξ1) � · · · �
An(ρn, σn, ξn):

1. for all 1 ≤ i ≤ n, ρi + σi ⊂ s(Ai), or n = 1 and ρ1 + σ1 ⊆ s(A1);
2. connections occur exactly twice in ξ1 + . . . + ξn.

To express the fact that names in the ξ arguments are local to the complex, we
borrow the ‘new’ operator from π-calculus. So the general shape of a complex is
(ξ)A1(ρ1, σ1, ξ1) � · · · � An(ρn, σn, ξn).

Solutions and Reactions. Solutions in κb must satisfy the additional constraint
that complexes have pairwise disjoint connection sets.

We have now to adapt our basic reactions to handle correctly the connection
sets. Activations don’t modify connections:

(activation)

A1(X1 + ρ1, Y1 + σ1, Z1)
, . . . ,

An(Xn + ρn, Yn + σn, Zn)
−→

A1(X1 + ρ′
1, Y1 + σ′

1, Z1)
, . . . ,

An(Xn + ρ′
n, Yn + σ′

n, Zn)
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But complexations, by definition, need to create new connections, and these have
to be fresh names in the ambient solution:

(complexation)

A1(X1 + ρ1, Y1 + σ1 + τ1, Z1)
, . . . ,

An(Xn + ρn, Yn + σn + τn, Zn)
−→

(ξ1 . . . ξn)
A1(X1 + ρ′

1, Y1 + σ′
1, Z1 + ξ1)

� · · · �
An(Xn + ρ′

n, Yn + σ′
n, Zn + ξn)

Both kind of rules are subject to the side-conditions that ρi+σi = ρ′
i+σ′

i, and for
complexations, we also demand that τi 
= ∅, s(ξi) = τi. Since the product of the
reaction has to be a correct complex, new connections

⋃
1≤i≤n ξi do not clash

with existing connections in
⋃

1≤i≤n Zi, and we observe that the ‘big enough
even number’ side-condition is also taken care of automatically.

To move the new operator upwards, once it is created, we add the structural
congruence: S, (ξ)S′ ≡ (ξ)(S, S′), when ξ is not free in S. Additionally, we adapt
rule (ctx-cmp) in Figure 1 such that names created in the subcomplex are
also new in the host supercomplex. With these adaptations done, transitions
between κb-systems are defined up to structural congruence and with the help of
the following additional form of contextual reaction which we need for handling
the ‘new’: S −→ T implies (ξ)S −→ (ξ)T.

Equivalence with core κ. The notions of complex and simple barbs of Definition 1
can be easily extended to κb by discarding connections ξ. There is an observation
preserving function U which maps a κb-solution to a κ-solution just by dropping
the connections. This ‘forgetful’ map U is left inverse to a family of converse maps
which make explicit the connections of the underlying graphs of complexes. Of
course, there isn’t a unique right inverse to U because many choices of internal
wirings are possible for each complex.

Since reactions are not ‘seeing’ the internal wiring, any choices will end up to
be complex and simple bisimilar. One easily sees that U commutes to transitions,
and so does any of the converse maps. Therefore (with the obvious adaptation
of weak barbed bisimilarity to include κb systems):

Proposition 1. Every κb-system is barbed bisimilar—both complex and
simple—to a core κ-system, and conversely.

5.3 First Compilation: Proteins Encode States, Rules Are Outside

This first compilation is ‘reaction-centric’, proteins play a passive role and just
encode the state of the solution. Contextual reactions are taken care of by con-
textual reductions in π, there is no need to translate them.

First, to each protein A(ρ, σ, ξ), an agent A(ρ, σ, ξ) is associated with the
following behaviour (we use the name a = f(A), as defined in Section 4):

A(ρ, σ, ξ) def= [σ \ Nv = ∅]0 ; (x)(a 〈ρ, σ, x〉 | x (ρ′, σ′, ξ′).A(ρ′, σ′, ξ + ξ′))
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By writing σ \ Nv we are cheating a little bit, because there is no such operation
in the π-calculus of Section 5.1. But, we could easily implement this operation
by partitioning σ in two different arguments of A, and keeping track of this
difference in messages which exchange σ.

Second, given an activation reaction a:

A1(X1 + ρ1, Y1 + σ1, Z1), · · · , An(Xn + ρn, Yn + σn, Zn) −→
A1(X1 + ρ′

1, Y1 + σ′
1, Z1), · · · , An(Xn + ρ′

n, Yn + σ′
n, Zn)

we define the agent [[a]] def= (z)(A1(0, 0) | z 〈〉) with:

A1(P, Q) def= a1 (�′
1, �′′

1 , x1).
[ρ1 ⊆ �′

1, σ1 ⊆ �′′
1 ]

A2(P | x1 〈(�′
1 \ ρ1) + ρ′

1, (�′′
1 \ σ1) + σ′

1, ∅〉, Q | a1 〈�′
1, �′′

1 , x1〉) ;
(Q | a1 〈�′

1, �′′
1 , x1〉 | A1(0, 0))

+z ().(Q | [[a]])

and similar definitions for Ai, with i < n, and:

An(P, Q) def= an (�′
n, �′′

n, xn).
([ρn ⊆ �′

n, σn ⊆ �′′
n](P | xn 〈�′

n \ ρn) + ρ′
n, (�′′

n \ σn) + σ′
n, ∅〉) ;

(Q | an 〈�′
n, �′′

n, xn〉) | A1(0, 0))
+z ().(Q | [[a]])

Nondeterminism in the Ais is introduced to avoid deadlocks which could occur
when not all of a’s reactants are present and free to use.

Last, given a complexation reaction c:

A1(X1 + ρ1, Y1 + σ1 + τ1, Z1), · · · , An(Xn + ρn, Yn + σn + τn, Zn) −→
(ξ1 . . . ξn) A1(X1 + ρ′

1, Y1 + σ′
1, Z1 + ξ1) � · · · � An(Xn + ρ′

n, Yn + σ′
n, Zn + ξn)

we define the agent [[c]] def= (z)(C1(0, 0) | z 〈〉), with:

C1(P, Q) def= (ξ1) a1 (�′
1, �′′

1 , x1).
[ρ1 ⊆ �′

1, σ1 + τ1 ⊆ �′′
1 ]

C2(P | x1 〈(�′
1\ρ1)+ρ′

1, (�′′
1 \(σ1+τ1)) + σ′

1, ξ1〉, Q | a1 〈�′
1, �′′

1 , x1〉) ;
(Q | a1 〈�′

1, �′′
1 , x1〉 | C1(0, 0))

+z ().(Q | [[c]])

and similar definitions for Ci, with i < n, and:

Cn(P, Q) def= (ξn) an (�′
n, �′′

n, xn).
([ρn ⊆ �′

n, σn + τn ⊆ �′′
n]

(P | xn 〈(�′
n \ ρn)+ρ′

n, (�′′
n\(σn+τn))+σ′

n, ξn〉);
(Q | an 〈�′

n, �′′
n, xn〉)) | C1(0, 0)

+z ().(Q | [[c]])

Observe that biological connections are explained in π-calculus in terms of bound
names. In particular, two proteins are connected if they share a same bound
name. We give now the action of [[ · ]] on solutions and complexes:

[[S, S′]] = [[S]] | [[S′]]
[[(ξ) S′]] = (ξ) [[S]]

[[A1(ρ1, σ1, ξ1) � · · · � An(ρn, σn, ξn)]] = (ξ1 . . . ξn) (A1(ρ1, σ1, ξ1) | · · · | An(ρn, σn, ξn))
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Lemma 1. Let 〈S, R〉 be a κb-system and set [[R]] =
∏

r∈R [[r]], then:

1. (simulation) If S −→R S′ then [[S]] | [[R]] −→∗ [[S′]] | [[R]].
2. (catch-up) If [[S]] | [[R]] −→∗ Q then Q −→∗ [[S′]] | [[R]] with S −→∗

R S′.

Next observe that, S ↓s a if and only if [[S]] | [[R]] ↓ a, so the translation respects
simple barbs. From there it is possible to deduce that (S, R) and [[S]] | [[R]] are
weakly bisimilar in their respective transition systems, and by transitivity, this
gives a full abstraction result with respect to barbed equivalence:
Theorem 2. Let 〈S, R〉 and 〈S′, R′〉 be κb-systems, then 〈S, R〉 �≈s 〈S′, R′〉 iff

[[S]] | [[R]]
�≈ [[S′]] | [[R′]].

5.4 A Second Compilation: Rules Are inside Protein Agents

This second compilation will be protein-centric. In the previous compilation,
proteins were just passive solution states and even if this is formally correct,
we want to provide a more “natural” compilation, more in line with Regev’s
representations of various biological pathways [14,16].

Let R be the set of basic rules of a given κb-system, r ∈ R be a rule, and �r� be
the rule identifier (a number). A temporary network is set up between proteins
by means of the agent linkR

def=
∏

r∈R link(�r�), where link(�r�) is defined below
for activations and complexations. Suppose the reactant of r are A1, . . . , An, we
define:

link(�r�) = a1 (z1).(z)(link(�r�, 2, z, z1, a1 〈z1〉) | z 〈〉)

(2 ≤ i < n) link(�r�, i, z, ỹ, P ) = ai (zi).link(�r�, i + 1, z, ỹzi, a1 〈z1〉)
+z ().(P | link(�r�))

while for i = n, there is a slight difference depending on whether r is an activation
or a complexation. Specifically for activations and complexations respectively,
we define:

link(�r�, n, z, z1 · · · zn−1, P ) =

an (zn).(z′
1, · · · z′

n)
(

z1 〈�r�, z′
n, z′

2〉 | · · · | zn 〈�r�, z′
n−1, z′

1〉 | z′
n 〈1〉 | link(�r�)

)

+z ().(P | link(�r�))

link(�r�, n, z, z1 · · · zn−1, P ) =

an (zn).(z′
1, · · · z′

n)
(

z1 〈�r�, z′
n, z′

2〉 | · · · | zn 〈�r�, z′
n−1, z′

1〉 | (ξ̃)z′
n 〈1, ξ̃〉 | link(�r�)

)

+z ().(P | link(�r�))
In order to coordinate the reactants, link sets up a ring to support a token ring
protocol and passes the token to the nth reactant. In addition, for complexa-
tions, link also creates the potential new connections. We observe that rules are
attempted competitively, which is vaguely resembling the real thing.

The behaviour of a protein A depends on the activation and complexation
rules it participates in. Let RA be the set of rules the protein A may participate
in (i.e., is a reactant of). Then:

A(X, Y, Z, R) = [Y \ Nv = ∅] 0 ;
(z)(a 〈z〉 | z (v, z′, z′′).

∏
r∈RA

[v = �r�]RA(X, Y, Z, z′, z′′, R); 0)
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(the same remark regarding the expression Y \ Nv applies here as well) and
we define the agents RA1(X, Y, Z, z′, z′′, R) for the activation rule a and the
complexation rule c of Section 5.3. (The agents AAi and CAi , for other i, are
similar.)

AA1 (X, Y, Z, z′, z′′, R) =
[ρ1 ⊆ X, σ1 ⊆ Y ]

z′ (v).[v = 1]
(z′′ 〈v〉 | z′ (v′).[v′ = 1](A1((X \ ρ1) + ρ′

1, (Y \ σ1) + σ′
1, Z, R) | z′′ 〈1〉);

(A1(X, Y, Z, R) | z′′ 〈0〉));
(z′′ 〈0〉 | A1(X, Y, Z, R));

z′ (v).(z′′ 〈0〉 | A1(X, Y, Z, R))

CA1 (X, Y, Z, z′, z′′, R) =
[ρ1 ⊆ X, σ1 + τ1 ⊆ Y ]

z′ (v, ξ̃).[v = 1]
(z′′ 〈v, ξ̃〉 | z′ (v′, ξ̃′).[v′ = 1](A1(X ′, Y ′, Z′, R) | z′′ 〈1, ξ̃′〉);

(A1(X, Y, Z, R) | z′′ 〈0, ξ̃′〉));
(z′′ 〈0, ξ̃〉 | A1(X, Y, Z, R));

z′ (v, ξ̃).(z′′ 〈0, ξ̃〉 | A1(X, Y, Z, R))
where X ′ = (X \ ρ1) + ρ′

1 , Y ′ = Y \ (σ1 + τ1)) + σ′
1 , Z′ = Z + ξ̃1

where ξ̃1 is the subsequence of ξ̃′ containing names representing bound sites of
the agent A1. The token ring protocol used by reacting proteins consists in two
steps. In the first, each protein sends 1 or 0 depending on whether its own sites
satisfy the constraints of the rule or not. In the second step, 1 or 0 is propagated,
depending on whether every protein satisfies the constraints of the rule or not.
In case a protein receives 1 in the second step, the changes prescribed by the
rule are performed, and the 1 is propagated. Otherwise the reduction is aborted,
the initial state is restored, and the 0 is propagated.

The correctness of the compilation is established by means of an encoding
[[ · ]]· which depends on solutions and basic rules:

[[S, S′]]R = [[S]]R | [[S′]]R
[[A(ρ, σ, ξ)]]R = A(ρ, σ, ξ, R)

[[A1(ρ1, σ1, ξ1) � · · · � An(ρn, σn, ξn)]]R =
(ξ1, · · · , ξn)(A1(ρ1, σ1, ξ1, R) | · · · | An(ρn, σn, ξn, R))

Lemma 2. Let (S, R) be a κb-system and linkR be as above, then

1. if S −→R S′ then [[S]]R | linkR | G −→∗ [[S′]]R | linkR | G′; where G and G′

are idle garbage agents;
2. if [[S]]R | linkR | G −→∗ Q, where G is an idle garbage agent, then Q −→∗

[[S′]]R | linkR | G′ with G′ an idle garbage agent, and S −→∗
R S′.

Our idle garbage agents are parallel compositions of processes like (z)z 〈u, ξ̃〉.
These agents collect the last messages of our token ring protocol. Of course we
could refine the protocol such that no garbage is ever produced.

As before, we observe that S ↓s a iff [[S]]R | linkR ↓ a, and from there one
can prove the following:
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Theorem 3. Let 〈S, R〉 and 〈S′, R′〉 be κb-systems, then 〈S, R〉 �≈s 〈S′, R′〉 iff

[[S]]R | linkR
�≈ [[S′]]R′ | linkR′ .

We conclude with two remarks. What is relevant in the former protocol—the
token ring—is that it does not play a crucial role. Namely, our compilation may
be abstracted from the protocol implementing the cooperation, still retaining
the correctness. Our choice of the token ring protocol follows by its simplicity.
But other reasons could be considered, such as efficiency, i.e. the number of
channels used. In particular, our protocol doesn’t use channels ξi which describe
the underlying graph of connections of a complex. A clever protocol could make
a profit of them, without introducing channels zi. We keep this issue for future
investigations. The second remark: barbed bisimilarity of our two compilations
in π-calculus is an immediate consequence of Theorems 2 and 3.

6 Conclusions

We’ve presented a simple language of complexations and activations targetting
core molecular biology. Synthesis and degradation were not considered, neither
were decomplexations. No locations were introduced in the language either. We
could have introduced all these. Though they certainly play a part in molecular
biology, the idea here was to have the simplest meaningful language equipped
with a barebone operational semantics and see if anything interesting happens.

What happens is that this language can be compiled in a even simpler frag-
ment up to two different bisimulations. A simpler fragment which in turn can be
compiled in two different styles in π-calculus. So the simplicity of the formalism
pays off with this structured translation in π. In some sense the conclusion for
now is that the formalism itself can be seen as a process algebra of its own.
Further investigations will show if anything more practical comes out of it.
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Abstract. Kahn process networks (KPNs) are a programming
paradigm suitable for streaming-based multimedia and signal-processing
applications. We discuss the execution of KPNs, and the criteria for
correct scheduling of their realisations. In [12], Parks shows how process
networks can be scheduled in bounded memory; the proposed method
is used in many implementations of KPNs. However, it does not result
in the correct behaviour for all KPNs. We investigate the require-
ments for a scheduler to guarantee both correct and bounded execution
of KPNs and present an improved scheduling strategy that satisfies them.

Keywords: Kahn process networks, Kahn Principle, dynamic schedul-
ing, deadlock resolution, multi-processor architectures, media processing,
signal processing, streaming

1 Introduction

Process networks are a popular model to express behaviour of data flow and
streaming nature. This includes audio, video and 3D multimedia applications
such as encoding and decoding of MPEG video streams. Using process networks,
an application is modelled as a collection of concurrent processes communicating
streams of data through FIFO channels. Process networks make task-level par-
allelism and communication explicit, have a simple semantics, are compositional
and allow for efficient implementations without time-consuming synchronisa-
tions. There are several variants of process networks. One of the most general
forms are Kahn process networks [7,8], where the nodes are arbitrary sequential
programs, that communicate via channels of the process networks with blocking
read and non-blocking write operations. Although harder to analyse than more
restricted models, such as synchronous dataflow networks [11], the added flexi-
bility makes KPNs a popular programming model. Where synchronous dataflow
models can be statically scheduled at compile time, KPNs must be scheduled
dynamically in general, because their expressive power does not allow them to
be statically analysed. A run-time system is required to schedule the execution
of processes and to manage memory usage for the channels. The goal is to create
an execution that is as efficient as possible w.r.t. speed and memory and that is
faithful to the process network specification.
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In this paper, we investigate the fundamental requirements for a run-time
system for KPNs to be faithful to the semantics of the KPN specification and
to use bounded memory resources when possible. In particular, we study the
issues that arise when the conceptually unbounded FIFO channels of the KPN
are realised using bounded FIFOs.

Related Work. Reasoning about realisations of KPNs touches on the Kahn
Principle, stating that the solution to the network equations formulated by Kahn
[7] is the same as the behaviour of a model of (sequential) programs reading and
writing tokens on channels. The Principle was introduced, but not proved, by
Kahn in [7]. It was proved [5,13] for an operational model of transition systems.

Scheduling process networks using static bounded channels is extensively ad-
dressed by Thomas Parks in [12], introducing an algorithm that uses bounded
memory if possible. Based on this scheduling policy, a number of tools and li-
braries have been developed for executing KPNs. YAPI [9] is a C++ library
for designing stream-processing applications. Ptolemy II [10] is a framework for
codesign using mixed models of computation. The process-network domain is de-
scribed in [6]. The Distributed Process Networks of [15] form the computational
back end of the Jade/PAGIS system for processing digital satellite images. [14]
covers an implementation of process networks in Java. [1] is another implementa-
tion for digital signal processing. Common among all these implementations is a
multi-threading environment in which processes of the KPN execute in their own
thread of control and channels are allocated a fixed capacity. Semaphores control
access to channels and block the thread when reading from an empty or writing
to a full channel. This raises the possibility of a deadlock when one or more pro-
cesses are permanently blocked on full channels. A special thread (preempted by
the other threads) is used to detect a deadlock and initiate a deadlock resolution
procedure when necessary. This essentially realises the scheduling policy of [12].
The algorithm of Parks leaves some room for optimisation of memory usage by
careful selection of initial channel capacities (using profiling) and clever selection
of channels when the capacity needs to be increased; see [2]. [2] also introduces
causal chains, also used in this paper to define deadlocks.

Contribution. All work on practical implementations of KPNs that we found
builds on Parks’ scheduling algorithm. We show that this algorithm does not
execute all KPNs correctly and propose an improved scheduling strategy.

Organisation. Section 2 discusses the challenges related with implementing
process networks, such as memory management, scheduling and deadlock detec-
tion and resolution. An operational semantics of process networks is introduced
in Section 3 to enable reasoning about realisations of KPNs. Section 4 discusses
the properties of realisations of process networks with bounded channels and
Section 5 introduces a correct scheduling strategy. Section 6 concludes.
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2 Implementing Kahn Process Networks

Conceptually, the FIFO communication channels of a KPN have an unbounded
capacity. A realisation of a process network has to run within a finite amount of
memory. Rather than dynamically allocating memory to channels when needed,
it is for reasons of efficiency better to allocate fixed amounts of memory to chan-
nels and change this amount only sporadically, if necessary. An added advantage
of the fixed capacity of channels is that one can use Parks’ [12] model of exe-
cution, where a write action on a full FIFO blocks until there is room again in
the FIFO. This gives an efficient intermediate form of data-driven and demand-
driven scheduling [12,2] in which a process can produce output (in a data-driven
way) until the channel it is writing to is full. Then it blocks and other processes
take over. Unfortunately, it is undecidable in general, how much buffer capac-
ity is needed in every channel [4]. If buffers are chosen too large, memory is
wasted. If buffers are chosen too small, artificial deadlocks (i.e., processes being
permanently blocked on a full channel) may occur that are not in the original
KPN. Therefore, a scheduler is needed that determines the order of execution of
processes and that manages buffer sizes at run-time.

In practice, such a scheduler should satisfy two requirements. Output should
be complete; it must coordinate progress of all processes and manage channel
capacity in such a way that the output produced by the KPN corresponds to the
output predicted by the denotational semantics introduced in [7]. Secondly, it is
important that this is achieved within bounded memory. Since memory usage of
the individual processes is not under control of the scheduler, this amounts to
keeping the FIFOs bounded, also in (conceptually) infinite computations.

An important aspect of a run-time scheduler for KPNs is dealing with dead-
locks. One should discern different kinds of deadlocks. A process network is in
global deadlock if none of the processes can make progress. In contrast, a local
deadlock arises if some of the processes in the network cannot progress and their
further progress cannot be initiated by the rest of the network. In a realisation
of a KPN, processes may be blocked if an output channel is full. This is not the
case for the conceptual KPNs. As a result, some of the deadlocks in realisations
are artificial in the sense that they do not exist in the KPN. Figure 1 shows a
process network in an artificial deadlock situation. Process w cannot continue
because its input channel to process v is empty; it is blocked on a read action
on the channel to v, denoted by the ‘r’ in the figure. The required input should
be provided by v, but this is in turn waiting for input from u. u is waiting for q.
Process q is blocked, because it is trying to output a token on the full channel
to r; the block on the write action is denoted by a ‘w’. Similarly processes r, s
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and t are blocked by a full channel. Only w could start emptying these channels,
but w is blocked. The processes are in artificial deadlock (q, r, s and t would
not be blocked in the KPN) and can only continue if the capacity of one of the
full channels is increased. The deadlock is local as long as process p can con-
tinue. To guarantee the correct output of a network, a run-time scheduler must
detect and respond to artificial deadlocks. Parks proposes to respond to global
artificial deadlocks. Detection is (in [1,6,9,14,15]) realised by detecting that all
processes are blocked, some of which on a full FIFO. Although this guarantees
that execution of the process network never terminates because of an artificial
deadlock, it does not guarantee the production of all output required by the
KPN semantics; output may not be complete. E.g., in the network of Figure 2,
if the upper part reaches a local artificial deadlock, then the lower, independent
part is not affected. Processes may not all come to a halt and the local deadlock
is not detected and not resolved. The upper part may not produce the required
output. Such situations exist in realistic networks. Further, when multiple KPNs
are controlled by a single run-time scheduler, one entire process network may get
stuck in a deadlock. A deadlock detection scheme has to detect local deadlocks.

It is well known that the Kahn Principle hinges on fair scheduling of pro-
cesses [3,7,13]. Fairness means that all processes that can make progress should
make progress at some point. This is often a tacit but valid assumption if the
underlying realisation is truly concurrent, or fairly scheduled. In the context
however of bounded FIFO channels where processes appear to be inactive while
they are blocked for writing, fairness of a schedule is no longer evident. This
issue is neglected in Parks’ algorithm by responding to global deadlocks only,
leading to a discrepancy with the behaviour of the conceptual KPN.

To come to an improved scheduling strategy, we must restrict our attention to
particular classes of KPNs. It is observed in [12] that the scheduling requirements
cannot always be met; some KPNs cannot be scheduled with bounded channel
capacity meaning the second scheduling requirement cannot be achieved. Thus,
the existence of a bounded execution must be required. We argue that one further
restriction on KPNs is needed to meet the requirement of output completeness. A
problem is posed by the production of data that is never used. This is illustrated
with Figure 3. Process p writes n data elements (tokens) on channel c connecting
p to process q; after that, it writes tokens to output channel a forever. q never
reads tokens from c and outputs tokens to channel b forever. If the capacity of c is
insufficient for n tokens, then output a will never be written to unless the capacity
of c is increased. q doesn’t halt and execution according to Parks’ algorithm
does not produce output on channel a. In the KPN however, infinite output is
produced on both channels. The above suggests that a good scheduler should
eventually increase the capacity of channel c so that it can contain all n tokens.
However, such a scheduler fails to correctly schedule another KPN. Consider a
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process network with the same structure as the one of Figure 3, but this time,
p continuously writes tokens on output a, mixed with infinitely many tokens to
channel c. q writes infinitely many tokens to b and reads infinitely many tokens
from c, but at a different rate than p writes tokens to c. Note that a bounded
execution exists; a capacity of one token suffices for channel c. If process p writes
to c faster than q reads, channel c may fill up and the scheduler, not knowing
if tokens on channel c will ever be read, decides to increase channel capacity. A
process q exists that always postpones the read actions until after the scheduler
decides to increase the capacity; the execution will be unbounded, although a
bounded execution exists. The above demonstrates that KPNs producing unread
tokens cannot be scheduled correctly. Our solution is to assume that every token
that is written to a channel, is eventually also read. We call such KPNs effective.

The development of a correct scheduling algorithm is based on the use of
blocking write operations to full channels as in [12]. In order to deal with local
deadlocks, we build upon the notion of causal chains as introduced in [2]. Any
blocked process depends for its further progress on a unique other process that
must fill or empty the appropriate channel. These dependencies give rise to
chains of dependencies. If such a chain of dependencies is cyclic, it indicates
a local deadlock; no further progress can be made without external help. In
Figure 1, such a causal chain is indicated by the dashed ellipse indicating the
cyclic mutual dependencies of the processes q, r, s, t, u, v and w.

3 An Operational Model of Process Networks

The denotational semantics of KPNs of [7] is attractive from a mathematical
point of view, because of its abstractness and compositionality. It (purposely)
abstracts from implementation related aspects such as scheduling, performance
and resources such as channel capacities. In a realisation of a process network,
FIFO sizes and contents play an important role and are influenced by a runtime
environment that governs the execution of the network. It is for this reason that
we give a simple operational semantics of process networks, similar to [5,13].

3.1 Labelled Transition Systems

We give an operational semantics to KPNs in the form of a labelled transition
system (LTS). We use, more specifically, an LTS with an initial state, with
designated input and output actions in the form of reads and writes of tokens
on channels, as well as internal actions. For convenience, we assume a universal
set Chan of channels and for every channel c ∈ Chan a corresponding channel
alphabet Σc. We use Σ to denote the union of all channel alphabets, and A∗

(A∞) to denote the set of all finite (and infinite) strings over alphabet A. If i
and j are functions from channels to strings over the corresponding alphabets,
we write i � j iff for every channel c in the domain of i, i(c) is a prefix of j(c).

An LTS is a tuple (S, s0, I, O, Act , ) consisting of a set S of states, an
initial state s0 ∈ S, a set I ⊆ Chan of input channels, a set O ⊆ Chan (distinct
from I) of output channels, a set Act of actions consisting of input actions
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{c?a | c ∈ I, a ∈ Σc} ⊆ Act , output actions {c!a | c ∈ O, a ∈ Σc} ⊆ Act and
(possibly) internal actions (all other actions), and a labelled transition relation

⊆ S × Act × S. Thus, c!a is a write action to channel c with token a; c?a
models passing of a token from input channel c to the LTS. We write s1

α s2
if (s1, α, s2) ∈ and s1

α if there is some s2 ∈ S such that s1
α s2.

With a write operation, the token on the output channel is determined by
the LTS. With a read operation, the token that appears on the input channel
is determined by the environment of the LTS. Therefore, a read operation is
modelled with a set of input actions that provides a transition for every possible
token of the alphabet. Kahn process networks do not exhibit non-determinism.
Transitions are deterministic and if multiple actions are available at the same
time, then they are truly concurrent (i.e., they can be executed in any order
with an identical result). We call such LTSes determinate.
Definition 1. (Determinacy) LTS (S, s0, I, O, Act , ) is determinate iff for
any s, s1, s2 ∈ S, α1, α2 ∈ Act, if s α1 s1 and s α2 s2, the following hold:

1. (Determinism) if α1 = α2, then s1 = s2, i.e., executing a particular action
has a unique deterministic result;

2. (Confluence) if α1 and α2 are not two input actions on the same channel
(i.e., instances of the same read operation), then there is some s3 such that
s1

α2 s3 and s2
α1 s3.

3. (Input Completeness) if α1 = c?a for some c ∈ I and a ∈ Σc, then
for every a′ ∈ Σc, s c?a′

, i.e., input tokens are completely defined by the
environment, the LTS cannot be selective in the choice of tokens;

4. (Output Uniqueness) if α1 = c!a and α2 = c!a′ for some c ∈ O and
a, a′ ∈ Σc, then a = a′, i.e., output tokens are determined by the LTS.

A sequential LTS is a determinate LTS with the additional property that

5. (Sequentiality) if α1 = c�a (� ∈ {!, ?}), for some c ∈ I ∪ O, a ∈ Σc, then
α2 = c�a′ for some a′ ∈ Σc, i.e., the LTS accepts at most one input/output
operation at any point in time and no other (internal) actions.

An execution of the transition system is a sequence s0
α0 s1

α1 . . . of states
si ∈ S and actions αi ∈ Act , such that si

αi si+1 for all i ≥ 0 (up to the
length of the execution). If ρ is such an execution, then we use |ρ| ∈ N ∪ {∞}
to denote the length of the execution. |ρ| = ∞ if ρ is infinite and |ρ| = n if
ρ = s0

α0 s1
α1 . . .

αn−1 sn. For k ≤ |ρ|, we use ρk to denote the prefix
of the execution up to and including state k.

3.2 Operational Semantics of Process Networks

We formalise an operational notion of a KPN as an LTS.
Definition 2. (Kahn process network) A Kahn process network is a tuple
(P, C, I, O, Act , {LTS p | p ∈ P}) that consists of the following elements.

– A finite set P of processes.
– A finite set C ⊆ Chan of internal channels, a finite set I ⊆ Chan of input

channels and a finite set O ⊆ Chan of output channels, all distinct.
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– The set Act of actions consisting of reads and writes of tokens on the chan-
nels c in C ∪ I ∪ O: Act = {c?a, c!a | c ∈ C ∪ I ∪ O, a ∈ Σc}.

– Every process p ∈ P is defined by a sequential labelled transition system
LTS p = (Sp, sp,0, Ip, Op, Act , p ), with Ip ⊆ I ∪ C and Op ⊆ O ∪ C.

– For every channel c ∈ C ∪ I, there is exactly one process p ∈ P that reads
from it (c ∈ Ip) and for every channel c ∈ C ∪O, there is exactly one process
p ∈ P that writes to it (c ∈ Op).

To define the operational semantics of a KPN, we need a notion of global state
of the network; this state is composed of the individual states of the processes
and the contents of the internal channels.

Definition 3. (Configuration) A configuration of a process network is a pair
(π, γ) consisting of a process state π and a channel state γ, where

– a process state π : P → S =
⋃

p∈P Sp is a function that maps every process
p ∈ P on a local state π(p) ∈ Sp of its transition system;

– a channel state γ : C → Σ∗ is a function that maps every internal channel
c ∈ C on a finite string γ(c) over Σc.

The set of all configurations is denoted by Confs and there is a designated initial
configuration c0 = (π0, γ0), where π0 maps every process p ∈ P to its initial state
sp,0 and γ0 maps every channel c ∈ C to the empty string ε.

Definition 4. (Operational Semantics of a KPN) We assign to a KPN
an operational semantics in the form of an LTS (Confs, c0, I, O, Act , ). The
labelled transition relation is the smallest relation satisfying the following
four induction rules. For reading from and writing to internal channels:

π(p) p
c?a s, γ(c) = aσ, c ∈ C

(π, γ) c?a (π{s/p}, γ{σ/c})

π(p) p
c!a s, γ(c) = σ, c ∈ C

(π, γ) c!a (π{s/p}, γ{σa/c})

(The notation f{y/x} denotes the function with the same domain as f and
identical to f , except that f(x) = y.) Input channels and output channels are
open to the environment:

π(p) p
c?a s, c ∈ I

(π, γ) c?a (π{s/p}, γ)

π(p) p
c!a s, c ∈ O

(π, γ) c!a (π{s/p}, γ)

It is easy to show that if the labelled transition systems of the individual pro-
cesses P are sequential, then the labelled transition system of the KPN is de-
terminate. From a given execution ρ of a KPN, we extract the consumed input
and the produced output on a set D ⊆ C ∪ I ∪ O of channels as follows.

– For a channel c ∈ D, ρ?c is a (finite or infinite) string over Σc that results
from projecting ρ onto read actions on c;

– similarly, ρ!c is a (finite or infinite) string over Σc that results from projecting
ρ onto write actions on c;

– finally, ρ?D = {(c, ρ?c) | c ∈ D} and ρ!D = {(c, ρ!c) | c ∈ D}.
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Thus ρ?I denotes the input consumed by the network in execution ρ and ρ!O
denotes the output of the network. To reason about the input offered to the
network (consumed or not consumed), we say that ρ is an execution with input
i : I → Σ∞ iff ρ?I � i.

In the remainder, we assume that (P, C, I, O, Act , {LTS p | p ∈ P}) is a Kahn
process network with LTS (Confs, c0, I, O, Act , ). We can now formalise the
notions of fairness, maximality, effectiveness and boundedness.
Definition 5. ρ = (π0, γ0) α0 (π1, γ1) α1 . . . is an execution of the KPN.

– (Fairness) Execution ρ with input i is fair iff it is finite, or it is infinite
and if at some point an input, internal or output action is enabled, it must
eventually be executed, i.e.,

• if for some n ∈ N, c ∈ C and a ∈ Σc, (πn, γn) c?a , then there is some
k ≥ n such that αk = c?a;

• if for some n ∈ N, c ∈ I and a ∈ Σc, (πn, γn) c?a , and i(c) = (ρn?c)aσ
for some σ ∈ Σ∞

c , then there is some k ≥ n such that αk = c?a;
• if for some n ∈ N, c ∈ C ∪ O and a ∈ Σc, (πn, γn) c!a , then there is

some k ≥ n such that αk = c!a.
– (Maximality) Execution ρ with input i is called maximal iff it is infinite

or, in its last configuration, only read actions on input channels from which
all input of i has been consumed are possible, i.e., if |ρ| = n and (πn, γn) α

then α = c?a for some c ∈ I and a ∈ Σc and ρ?c = i(c).
– (Effectiveness) Execution ρ is effective iff every token produced on an

internal channel is ultimately consumed, i.e., if ρ?C = ρ!C . A KPN is called
effective iff for all inputs there exists an effective fair and maximal execution.

– (Boundedness) Execution ρ is bounded iff for every internal channel there
is an upper bound to the number of tokens that accumulate in it during the
execution, i.e., ∀ c ∈ C : ∃ n ∈ N : ∀ i ∈ N, 0 ≤ i ≤ |ρ| : |γi(c)| ≤ n . A KPN
is bounded iff for all inputs there is a bounded fair and maximal execution.

Corollary 1. Any two fair and maximal executions of a KPN with the same
input execute the same actions.

The question whether a KPN is bounded or effective is unfortunately undecidable
in general; this follows immediately from the fact that processes are arbitrary
sequential programs and thus Turing complete.

3.3 The Kahn Principle

The operational semantics given in the previous subsection is a model for a
realisation of a KPN. Its behaviour corresponds to the function given by Kahn’s
semantics as the least solution to a set of network equations [7] for the KPN.
This is referred to as the Kahn Principle. It was stated convincingly, but without
proof, by Kahn in [7] and was later proved by Faustini [5] for an operational
model similar to ours. Based on the operational semantics, we can derive a
functional relation between inputs and outputs. This function can then be shown
to correspond to the least solution of Kahn’s network equations. The maximal
and fair executions capture the input/output relation of the network.
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Definition 6. (Input/Output Relation) The input/output relation IO of a
KPN is the relation {(i, ρ!O) | ρ is a maximal and fair execution with input i}.
IO is a so-called continuous function, which is the basis of the following theorem.

Theorem 1. (Kahn Principle) [7,5] The function IO of input strings and
output strings for maximal and fair executions corresponds to the least solution
of Kahn’s network equations of [7].
A proof of the Kahn Principle is beyond the scope of this paper and can be found
in (for instance) [5] for a similar operational model and in [13] for an operational
semantics in terms of so-called concurrent transition systems.

4 Process Networks with Channel Bounds

In this section, we study the effects of imposing channel bounds on KPNs. We
consider what happens if we execute a process network when offered some fixed
input i. We assume that all input offered is initially available, i.e., an input
action only blocks if all input has been consumed. When we mention executions,
we mean executions with input i.

4.1 Bounded Channels

The bounded memory requirement is enforced on a process network by bounds
on the number of tokens that can accumulate in every channel. These bounds
need not be the same for all channels. We can model a realisation by an LTS,
as presented in the previous section, and an execution of the realisation by an
execution of this LTS. Choices are resolved by a scheduling mechanism that
controls when and how processes are executed on processors and that manages
memory that is used for the channels. Hence, the scheduler is a mechanism that
guides the execution through the LTS.
Definition 7. (Channel Bound) A bound b̄ on channel contents is a mapping
C → N

+ that maps every internal channel to the (positive) maximum number of
tokens it can simultaneously contain. If b̄1 and b̄2 are both channel bounds, we
write b̄1 � b̄2 to denote that for every c ∈ C, b̄1(c) ≤ b̄2(c).
In the remainder, we refer to a KPN and a corresponding bound on its chan-
nel sizes as a process network with bounds (PNB). The operational semantics
of a PNB conforms to the operational semantics of the corresponding KPN ex-
cept that those configurations (π, γ) are missing that do not respect the FIFO
bounds, i.e., if |γ(c)| > b̄(c) for some c ∈ C. Also transitions from or to these
configurations are removed. As a consequence, where the KPN may be able to
write to a channel, a PNB may not be able to do the same if the channel is full.
This write may have to be postponed, until there is room in the channel, but
also, artificial deadlocks may arise in the transition system as a result of this
[12]. We first show that PNBs also have determinate transition systems.
Proposition 1. A PNB is determinate.
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Proof. The corresponding KPN is determinate. The LTS of the PNB is obtained
from the LTS of the KPN by removing states and transitions; thus determinism
is preserved. By a simple case analysis, one can show that the transitions of the
PNB are confluent, i.e., that the configuration where actions from configurations
respecting the bounds converge also stays within FIFO bounds. Since input
and output actions do not touch internal channels, also input completeness and
output uniqueness are preserved.

Note that executions of a PNB are also executions of the corresponding KPN.
Definition 8. An execution of a PNB is fair (maximal, effective) iff it is fair
(maximal, effective) in the corresponding KPN.

Corollary 2. An execution of a PNB is not fair or not maximal if it perma-
nently blocks on a full channel; in its own LTS there is no enabled write transition
corresponding to the blocked write action, but such an action exists in the LTS
of the KPN implying that the execution is not fair/maximal in the KPN.

4.2 Deadlocks

A PNB behaves the same as the corresponding KPN, except for the fact that
certain write actions may be disabled by full channels. This may lead to artificial
deadlock situations. Since the amount of memory required for channels cannot
be decided upfront [4], a scheduler must provide the means to dynamically (at
run-time) increase channel capacity where needed.

If a process is blocked trying to read from an empty channel or trying to write
to a full channel, this situation can only be resolved by a unique other process
in the network or, in the latter case, by increasing FIFO capacity. These depen-
dencies may give rise to a chain of blocked processes whose blocked condition
depends on each other. In order for a process on this chain to make progress, a
process further on the chain must first make progress. This is impossible however
if the chain leads to an input and all input has been consumed, or if the chain
is cyclic. In the latter case, it is clear that the processes in this cyclic causal
chain are in local deadlock. If all channels in this chain are empty, the deadlock
is real (i.e., also present in the KPN); if not, the deadlock is artificial and can
be resolved by enlarging the capacity of a channel on that cycle.
Definition 9. (Waiting) Let p, q ∈ P ; process p is said to be waiting for pro-
cess q in configuration (π, γ) of the PNB with bounds b̄,

– if it can read from an empty internal channel c and q is the process that
writes to channel c; i.e., π(p) p

c?a for a ∈ Σc, γ(c) = ε and c ∈ Oq;
– if it can write to a full internal channel c and q is the process that reads from

channel c; i.e., π(p) p
c!a for some a ∈ Σc, |γ(c)| = b̄(c) and c ∈ Iq;

– if p = q and it has terminated; i.e., there is no α ∈ Act such that π(p) p
α .

Note that in the third case the process p has terminated. Saying that in that
case it is waiting for itself, simplifies further definitions. Since processes are
sequential, a process is waiting for a unique other process. This gives rise to
chains of waiting processes.
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Definition 10. ((Complete) Causal Chain) A causal chain (of waiting pro-
cesses in configuration (π, γ) with bounds b̄) is a sequence p̄ = p0p1p2 . . . pk of
different processes such that for all 0 ≤ n < k, pn is waiting for pn+1 (in configu-
ration (π, γ) with bounds b̄). Such a causal chain is called complete if pk can read
from an input channel, or it is waiting for some pn (0 ≤ n ≤ k) (in configuration
(π, γ) with bounds b̄).
Based on causal chains, we can define what we consider to be a local deadlock.
Definition 11. (Local Deadlock) A local deadlock of a PNB is a complete
causal chain forming a cycle, i.e., the last process waiting for the first. A local
deadlock is artificial if there is a process p in the deadlock that has an enabled
write action in the corresponding KPN to a channel that is full in the PNB. A
local deadlock is called real if it is not artificial, i.e., if all FIFOs on the cycle
are empty. With a local deadlock, we associate its impact as the set of processes
that are waiting (via a causal chain) for a process in the deadlock.
A deadlock is an inherent property of a process network with its particular
FIFO bounds combined with the input provided to the network. As a direct
consequence of Corollary 1, we know that it cannot be avoided by different
scheduling (unless a schedule is unfair and slows progress so that the deadlock
is never reached). Since an artificial local deadlock involves a blocking write to
a full channel, the following proposition follows immediately from Corollary 2.
Proposition 2. If a fair and maximal execution of a PNB exists, then none of
its executions exhibits an artificial local deadlock.
Now we can show that artificial local deadlocks are caused by a lack of capacity
in the full channels of the corresponding cycle.
Proposition 3. If a PNB with bounds b̄ displays an artificial local deadlock and
there exists a maximal and fair execution of the corresponding PNB with bounds
b̄′, then in the deadlock there is some full channel c such that b̄′(c) > b̄(c).

Proof. The fact that the execution with bounds b̄′ is maximal and fair implies
that the artificial deadlock is not encountered (Proposition 2). Let causal chain
p̄ be a reachable artificial deadlock of the PNB with bounds b̄ and let FC ⊆ C
be the set of full channels on this chain. Assume towards a contradiction that
there is a set b̄′ of bounds with b̄′(c) ≤ b̄(c) for every c ∈ FC, allowing for a
fair and maximal execution . Now we can imagine the set b̄′′ of FIFO bounds
where b̄′′(c) = max(b̄(c), b̄′(c)) for all c ∈ C. Note that both b̄ � b̄′′ and b̄′ � b̄′′.
Then the execution leading to the deadlock with bounds b̄ is also an execution
in the PNB with bounds b̄′′. In that PNB, the causal chain p̄ will occur in that
execution (the full channels have the same capacity as in b̄). But this contradicts
by Proposition 2 the fact that the network with bounds b̄′′ has a fair and maximal
execution (since the network with smaller bounds b̄′ has one).

The previous two propositions demonstrate that the channel capacity on a
causal chain causing an artificial deadlock is insufficient and needs to be in-
creased. The deadlock is not caused by wrong scheduling (Proposition 2) and
could not have been avoided if other buffers outside of the deadlock were larger
(Proposition 3). It is not clear however which of the full FIFOs on the chain
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should be enlarged. As a consequence of Proposition 3, we do know that if there
exist bounds large enough to prevent the artificial deadlock, then also for all
PNBs with larger bounds, the artificial deadlock cannot occur.

Corollary 3. If a process network with bounds b̄ permits a maximal and fair
execution, then on the same network with bounds b̄′, with b̄ � b̄′, there is no
execution that leads to an artificial deadlock.

5 Schedulers

We view a scheduler for PNBs as a strategy that determines the order of execu-
tion of individual read and write actions of all processes as well as the increase
(or decrease) of memory allocated to FIFOs. To define the result of a scheduling
strategy, we imagine that it is applied to generate some (possibly infinite) exe-
cution. We capture a series of snapshots by repeatedly observing the PNB. The
snapshots of the output (ρ!O) form chains of output strings. We can define the
result of the scheduling strategy to be the supremum of this chain.

Definition 12. (Scheduler Requirements) A scheduling strategy should (if
possible) satisfy the following constraints (taken from [2], adapted from [12]).

– Output Completeness: the output of the realisation should be equal to the
output prescribed by the denotational semantics of KPNs.

– Boundedness: The scheduler should realise an execution where a bounded
amount of memory is used for channels.

Based upon the observation made in Section 4.2, that an artificial deadlock in-
dicates a lack of capacity in the corresponding cyclic chain, we can devise a
deadlock resolution strategy, that establishes a bounded execution if one exists.
Unfortunately, we do not know which of the full buffers on the local deadlock
should be enlarged. Therefore, we employ a strategy, that will (eventually) en-
large all full FIFOs on a local deadlock if necessary.

Definition 13. (Scheduling Strategy) A correct scheduling strategy is ob-
tained by repeating the following steps forever.

1. Execute the processes of a PNB in a data-driven fashion until either an
artificial (local) deadlock occurs or the PNB terminates. While executing,
use a scheduling policy that guarantees progress for all processes that can
continue within current FIFO bounds.

2. Resolve all artificial deadlocks by increasing the smallest full FIFO on that
deadlock by a finite amount of tokens.

Note the difference with the algorithm of Parks, where the network is executed
until all processes are blocked. In our scheduling strategy, deadlock resolution is
activated also for local artificial deadlocks.

We proceed to show that the proposed scheduling strategy satisfies the re-
quirements of Definition 12. These requirements can only be met if the KPN
is bounded and effective. Blocking because of a full channel must eventually be
resolved when the channel is emptied by another process, or it must lead to a



Requirements on the Execution of Kahn Process Networks 331

local artificial deadlock. To see this, consider a PNB where a process remains
blocked on a full channel. The tokens in the channel are eventually read in an
execution of the (effective) KPN. If this doesn’t happen in the corresponding
PNB, the process that reads the channel must also remain blocked, as well as
the process on which this process waits, and so forth. The corresponding com-
plete causal chain cannot end in an input; such a block can only be caused if all
input has been consumed. But then the contents of the full channel will never
be read contradicting effectiveness. Thus the causal chain must be cyclic, i.e.,
a local deadlock has occurred, and from effectiveness it follows that it must be
artificial.
Lemma 1. If a PNB of an effective KPN is scheduled according to the strat-
egy of Definition 13 with bounds b̄ and a process p is blocked on a write, then
during step 1 of the scheduling strategy, either this write will become unblocked
and subsequently scheduled, or p will eventually be in the impact of an artificial
deadlock.

Proof. Let (π, γ) be a configuration where process p is trying to write to a
full channel c ∈ C, π(p) p

c!a s and |γ(c)| = b̄(c). Process p is waiting for
process q reading from channel c. In any execution with bounds b̄ passing through
configuration (π, γ), a read action of q on channel c precedes the write action c!a
if it occurs. Effectiveness implies that an effective fair and maximal execution
exists on the KPN. Corollary 1 implies that, in the KPN, q performs only a finite
number of read and write operations before executing a read action from c. If
during scheduling step 1, this action never occurs in the PNB, then q must from
some point onward be permanently blocked, waiting for some other process r.
It cannot be blocked because of termination of process q or on a read operation
from an input channel, because that would contradict effectiveness of the KPN.
The argument can be repeated for the processes q and r and so forth. Since the
number of processes is finite, this implies that there is a set of processes that
remain blocked and are waiting for each other, i.e., a local deadlock. Again, this
deadlock must be artificial, because effectiveness of the KPN implies that the
reading of tokens from the full channel c cannot depend on a real local deadlock.

Lemma 2. The scheduling strategy of Definition 13 applied to a PNB of a
bounded and effective KPN leads a finite number of times to an artificial dead-
lock.

Proof. The KPN is bounded, thus there exists a capacity b of tokens, such that
the PNB with bounds b̄, where b̄(c) = b for all c ∈ C, has a fair and maximal
execution. Then the sum of positive differences between b and the capacities of
the full FIFOs in some deadlock is a measure that decreases with every resolution
of this deadlock (Proposition 3) and does not increase with the resolution of other
deadlocks. At the latest when this measure reaches zero, this deadlock can no
more occur (Corollary 3). There is only a finite number of different deadlocks
and thus at some point no more artificial deadlock can occur.

Lemma 3. The scheduling strategy of Definition 13 applied to a PNB of a
bounded and effective KPN produces a fair and maximal execution.



332 M. Geilen and T. Basten

Proof. Step 1 of the scheduling strategy guarantees progress on all actions, ex-
cept write actions to full channels. That these blocking actions cannot persist
follows from the fact that a persisting blocking write action leads to an artificial
local deadlock (Lemma 1). The deadlock is resolved by the scheduling strat-
egy. A new deadlock can occur only a finite number of times (Lemma 2). Thus
eventually, the blocked write actions must become enabled thereby guaranteeing
fairness and maximality.

This brings us to the main result, namely that the introduced scheduling strategy
is correct for the class of KPNs that are bounded and effective.
Theorem 2. The scheduling strategy of Definition 13 applied to a PNB of a
bounded and effective KPN results in an execution that satisfies both correctness
requirements of Definition 12.

Proof. (Output Completeness) The output conforms to the denotational
semantics if the execution is maximal and fair (Theorem 1). That the execution
is maximal and fair follows from Lemma 3. (Boundedness) First note that
the strategy increases the buffer sizes with a finite amount with every deadlock
detected. An unbounded schedule can only be the result of an infinite number
of deadlocks. According to Lemma 2, only a finite number of times a deadlock
can occur.

To conclude, we reflect on the restrictions of boundedness and effectiveness on
the class of KPNs, and on the influence of fairness implicit in these restrictions.
Theorem 3. There exists no scheduler that correctly schedules (i) all effective
KPNs, (ii) all bounded KPNs, or (iii) all KPNs for which a maximal, bounded
and effective (but possibly unfair) execution exists.

Proof. (i) It is known [12] that there exist KPNs that are not bounded (but still
effective). It is obvious that they cannot satisfy the boundedness and output
completeness requirement. (ii) It follows from the example in Section 2 (Figure
3) that no scheduler exists that can schedule the described collection of KPNs
in bounded memory and with complete output. (iii) A maximal, bounded and
effective execution may exist that is not fair. It may be that it is bounded only
because a part of the network is never scheduled. It may still be output complete
if that part of the network does not produce any output. Then a bounded and
effective execution may exist that doesn’t execute that part of the network. A
scheduler however cannot decide in general whether any part of the network
contributes to the output and must schedule it, leading to unbounded memory
usage.

6 Conclusions

(Kahn) process networks are a suitable model of computation and program-
ming model for streaming-based multimedia applications. The Kahn Principle
states that any operational implementation that respects some loose fairness
constraints realises the behaviour specified by a KPN. The scheduling algorithm
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proposed in [12], and used for many implementations of KPNs [1,6,9,14,15],
employs a scheduling and artificial-deadlock resolution strategy that does not
guarantee fairness. In this paper, we have presented an alternative scheduling
strategy that solves this problem and we have proved that for a very broad class
of KPNs (called bounded and effective), this scheduler realises the correct be-
haviour. As future work, we would like to study an efficient implementation and
the optimisation of scheduling as done in [2] for Parks’ algorithm of [12]. We
would also like to investigate the implications of distributed execution of KPNs.
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Abstract. A partial evaluator is said to be Jones-optimal if the result of
specializing a self-interpreter with respect to a source program is textu-
ally identical to the source program, modulo renaming. Jones optimality
has already been obtained if the self-interpreter is untyped. If the self-
interpreter is typed, however, residual programs are cluttered with type
tags. To obtain the original source program, these tags must be removed.

A number of sophisticated solutions have already been proposed. We ob-
serve, however, that with a simple representation shift, ordinary partial
evaluation is already Jones-optimal, modulo an encoding. The represen-
tation shift amounts to reading the type tags as constructors for higher-
order abstract syntax. We substantiate our observation by considering
a typed self-interpreter whose input syntax is higher-order. Specializing
this interpreter with respect to a source program yields a residual pro-
gram that is textually identical to the source program, modulo renaming.

1 Introduction

Specializing an interpreter with respect to a program has the effect of translating
the program from the source language of the interpreter to the implementation
language (or to use Reynolds’s words, from the defined language to the defining
language [36]). For example, if an interpreter for Pascal is written in Scheme,
specializing it with respect to a Pascal program yields an equivalent Scheme
program. Numerous instances of this specialization are documented in the liter-
ature, e.g., for imperative languages [5, 9], for functional languages [2], for logic
languages [7], for object-oriented languages [27], for reflective languages [31],
and for action notation [3]. Interpreter specialization is also known as the first
Futamura projection [15,16,26].
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One automatic technique for carrying out program specialization is partial
evaluation [6, 25]. An effective partial evaluator completely removes the inter-
pretive overhead of the interpreter. This complete removal is difficult to char-
acterize in general and therefore it has been characterized for a particular case,
self-interpreters, i.e., interpreters whose source language is (a subset of) their
implementation language. A partial evaluator is said to be Jones optimal if
it completely removes the interpretation overhead of a self-interpreter, i.e., if
the result of specializing a self-interpreter with respect to a well-formed source
program is textually identical to the source program, modulo renaming. Jones
optimality was obtained early after the development of offline partial evaluation
for untyped interpreters, with lambda-Mix [18,25].

A typed interpreter, however, requires a universal data type to represent
expressible values. Specializing such an interpreter, e.g., with lambda-Mix, yields
a residual program with many tag and untag operations. Ordinary, Mix-style,
partial evaluation is thus not Jones optimal [24].

Obtaining Jones optimality has proven a source of inspiration for a number
of new forays into partial evaluation, e.g., handwritten generators of program
generators [19,1], constructor specialization [10,33], type specialization [11,21,20,
22,23,29], coercions [8], and more recently tag elimination [30,37,38] and staged
tagless interpreters [34]. Furthermore, the term “identical modulo renaming” in
the definition of Jones optimality has evolved into “at least as efficient” [17,25].

Here, we identify a simple representation shift of the specialized version of
a typed lambda-interpreter and we show that with this representation shift,
ordinary partial evaluation is already Jones optimal in the original sense.

Prerequisites and notation: We assume a basic familiarity with partial evaluation
in general, as can be gathered in Jones, Gomard, and Sestoft’s textbook [25].
We use Standard ML [32] and the notion of higher-order abstract syntax as
introduced by Pfenning and Elliot [35] and used by Thiemann [39,40]: Whereas
the first-order abstract syntax of lambda-terms reads as

datatype foexp = FOVAR of string
| FOLAM of string * foexp
| FOAPP of foexp * foexp

the higher-order abstract syntax of lambda-terms reads as

datatype hoexp = HOVAR of string
| HOLAM of hoexp -> hoexp
| HOAPP of hoexp * hoexp

where the constructor HOVAR is only used to represent free variables. For example,
the first-order abstract syntax of the K combinator λx.λy.x reads as

FOLAM ("x", FOLAM ("y", FOVAR "x"))

and its higher-order abstract syntax reads as

HOLAM (fn x => HOLAM (fn y => x))
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2 The Problem

The problem of specializing a typed interpreter is usually presented as fol-
lows [38]. Given

– a grammar of source expressions
datatype exp = LIT of int

| VAR of string
| LAM of string * exp
| APP of exp * exp
| ADD of exp * exp

– a universal type of expressible values
datatype univ = INT of int

| FUN of univ -> univ

– an environment Env : ENV

signature ENV
= sig

type ’a env
val empty : ’a env
val extend : string * ’a * ’a env -> ’a env
val lookup : string * ’a env -> ’a

end

– and two untagging functions app and add

exception TYPE_ERROR

(* app : univ * univ -> univ *)
fun app (FUN f, v)

= f v
| app _
= raise TYPE_ERROR

(* add : univ * univ -> univ *)
fun add (INT i1, INT i2)

= INT (i1 + i2)
| add _
= raise TYPE_ERROR

a typed lambda-interpreter is specified as follows:

(* eval : exp -> univ Env.env -> univ *)
fun eval (LIT i) env

= INT i
| eval (VAR x) env
= Env.lookup (x, env)

| eval (LAM (x, e)) env
= FUN (fn v => eval e (Env.extend (x, v, env)))

| eval (APP (e0, e1)) env
= app (eval e0 env, eval e1 env)

| eval (ADD (e1, e2)) env
= add (eval e1 env, eval e2 env)
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This evaluator is compositional, i.e., all recursive calls to eval on the right-
hand side are on proper sub-parts of the term in the left-hand side [41, page 60].
Specializing this evaluator amounts to

1. unfolding all calls to eval while keeping the environment partially static, so
that variables are looked up at specialization time, and

2. reconstructing all the remaining parts of the evaluator as residual syntax.

Unfolding all calls to eval terminates because the evaluator is compositional and
its input term is finite.

Specializing the interpreter with respect to the term

LAM ("x", APP (VAR "x", VAR "x"))

thus yields

FUN (fn v => app (v, v))

This specialization is not Jones optimal because of the type tag FUN and the
untagging operation app. (N.B. Danvy’s type coercions and (depending on the
annotations in the interpreter) Hughes’s type specialization would actually not
produce any result here [8, 21]. Instead, they would yield a type error because
the source term is untyped. Raising a type error at specialization time or at run
time is inessential with respect to Jones optimality.)

3 But Is It a Problem?

An alternative reading of

FUN (fn v => app (v, v))

is as higher-order abstract syntax [35]. In this reading, FUN is the tag of a lambda-
abstraction and app is the tag of an application.

In that light, let us define the residual syntax as an ML data type by con-
sidering each branch of the evaluator and gathering each result into a data-type
constructor:

datatype univ_res = INT_res of int
| FUN_res of univ_res -> univ_res
| APP_res of univ_res * univ_res
| ADD_res of univ_res * univ_res

The corresponding generating extension is a recursive function that tra-
verses the source expression and constructs the result using the constructors
of univ res:

(* eval_gen : exp -> univ_res Env.env -> univ_res *)
fun eval_gen (LIT i) env

= INT_res i
| eval_gen (VAR x) env
= Env.lookup (x, env)
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| eval_gen (LAM (x, e)) env
= FUN_res (fn v => eval_gen e (Env.extend (x, v, env)))

| eval_gen (APP (e0, e1)) env
= APP_res (eval_gen e0 env, eval_gen e1 env)

| eval_gen (ADD (e1, e2)) env
= ADD_res (eval_gen e1 env, eval_gen e2 env)

The interpretation of univ res elements is defined with a function eval res

that makes the following diagram commute:

exp
eval gen ��

eval

�������������������� univ res

eval res

��
univ

First of all, we need a conversion function u2ur and its left inverse ur2u to write
eval res:

exception NOT_A_VALUE

(* u2ur : univ -> univ_res *)
(* ur2u : univ_res -> univ *)
fun u2ur (INT i)

= INT_res i
| u2ur (FUN f)
= FUN_res (fn r => u2ur (f (ur2u r)))

and ur2u (INT_res i)
= INT i

| ur2u (FUN_res f)
= FUN (fn u => ur2u (f (u2ur u)))

| ur2u (APP_res _)
= raise NOT_A_VALUE

| ur2u (ADD_res _)
= raise NOT_A_VALUE

The corresponding evaluator reads as follows (the auxiliary functions app and
add are that of Section 2):

(* eval_res : univ_res -> univ *)
fun eval_res (INT_res i)

= INT i
| eval_res (FUN_res f)
= FUN (fn u => eval_res (f (u2ur u)))

| eval_res (APP_res (r0, r1))
= app (eval_res r0, eval_res r1)

| eval_res (ADD_res (r1, r2))
= add (eval_res r1, eval_res r2)



340 O. Danvy and P.E. Mart́ınez López

The generating extension, eval gen, is an encoding function from first-order
abstract syntax to higher-order abstract syntax. (In fact, it is the standard such
encoding [35].) It maps a term such as

LAM ("x", APP (VAR "x", VAR "x"))

into the value of

FUN_res (fn v => APP_res (v, v))

With this reading of residual syntax as higher-order abstract syntax, or-
dinary partial evaluation (i.e., the generating extension) maps the first-order
abstract-syntax representation of λx.x x into the higher-order abstract-syntax
representation of λx.x x, and it does so optimally.

(Incidentally, partial evaluation (of an interpreter in a typed setting) connects
to Ershov’s mixed computation, since the specialized version of an evaluator
is both (1) a residual program and (2) the data type used to represent this
residual program together with the interpretation of the constructors of the
data type [12,13,14].)

4 An Interpreter for Higher-Order Abstract Syntax

Let us now verify that Jones optimality is obtained for a typed interpreter whose
input syntax is higher order. It is a simple matter to adapt the representation of
the input of the typed interpreter from Section 3 to be higher order instead of
first order. In the fashion of Section 2, the grammar of source expressions and
the universal type of expressible values read as follows:

datatype exp = LIT of int
| LAM of exp -> exp
| APP of exp * exp
| ADD of exp * exp

datatype univ = INT of int
| FUN of univ -> univ

The auxiliary functions app and add read just as in Section 2. As in Section 3,
we need a conversion function u2e and its left inverse e2u:

exception NOT_A_VALUE

(* u2e : univ -> exp *)
(* e2u : exp -> univ *)
fun u2e (INT i)

= LIT i
| u2e (FUN f)
= LAM (fn e => u2e (f (e2u e)))
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and e2u (LIT i)
= INT i

| e2u (LAM f)
= FUN (fn u => e2u (f (u2e u)))

| e2u (APP _)
= raise NOT_A_VALUE

| e2u (ADD _)
= raise NOT_A_VALUE

The corresponding evaluator reads as follows:

(* eval : exp -> univ *)
fun eval (LIT i)

= INT i
| eval (LAM f)
= FUN (fn u => eval (f (u2e u)))

| eval (APP (e0, e1))
= app (eval e0, eval e1)

| eval (ADD (e1, e2))
= add (eval e1, eval e2)

As in Section 3, we define the residual syntax as an ML data type by enu-
merating each branch of the evaluator and gathering each result into a data-type
constructor. The result and its interpretation (i.e., eval res and its two auxiliary
conversion functions) are the same as in Section 3:

datatype univ_res = INT_res of int
| FUN_res of univ_res -> univ_res
| APP_res of univ_res * univ_res
| ADD_res of univ_res * univ_res

As in Section 3, we need two conversion functions ur2e and e2ur to write the
generating extension:

(* ur2e : univ_res -> exp *)
(* e2ur : exp -> univ_res *)
fun ur2e (INT_res i)

= LIT i
| ur2e (FUN_res f)
= LAM (fn e => ur2e (f (e2ur e)))

| ur2e (APP_res (e0, e1))
= APP (ur2e e0, ur2e e1)

| ur2e (ADD_res (e1, e2))
= ADD (ur2e e1, ur2e e2)

and e2ur (LIT i)
= INT_res i

| e2ur (LAM f)
= FUN_res (fn r => e2ur (f (ur2e r)))

| e2ur (APP (e0, e1))
= APP_res (e2ur e0, e2ur e1)

| e2ur (ADD (e1, e2))
= ADD_res (e2ur e1, e2ur e2)
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The corresponding generating extension reads as follows:

(* eval_gen : exp -> univ_res *)
fun eval_gen (LIT i)

= INT_res i
| eval_gen (LAM f)
= FUN_res (fn r => eval_gen (f (ur2e r)))

| eval_gen (APP (e0, e1))
= APP_res (eval_gen e0, eval_gen e1)

| eval_gen (ADD (e1, e2))
= ADD_res (eval_gen e1, eval_gen e2)

It should now be clear that exp and univ res are isomorphic, since ur2e and
e2ur are inverse functions, and that eval gen computes the identity transforma-
tion up to this isomorphism. The resulting specialization is thus Jones optimal.

5 But Is It the Real Problem?

Jones’s challenge, however, is not for any typed interpreter but for a typed self-
interpreter. Such a self-interpreter, for example, is displayed in Taha, Makholm,
and Hughes’s article at PADO II [38]. We observe that the reading of Section 3
applies for this self-interpreter as well: its universal data type of values can be
seen as a representation of higher-order abstract syntax.

6 A Self-Interpreter for Higher-Order Abstract Syntax

The second author has implemented a self-interpreter for higher-order abstract
syntax in a subset of Haskell, and verified that its generating extension computes
an identity transformation modulo an isomorphism [28].1 Therefore, Jones’s chal-
lenge is met.

7 Related Work

7.1 Specializing Lambda-Interpreters

The generating extension of a lambda-interpreter provides an encoding of a
lambda-term into the term model of the meta language of this interpreter. For an
untyped self-interpreter, the translation is the identity transformation, modulo
desugaring. For an untyped interpreter in continuation-passing style (CPS), the
translation is the untyped CPS transformation. For an untyped interpreter in
state-passing style (SPS), the translation is the untyped SPS transformation.
And for an untyped interpreter in monadic style, the translation is the untyped
monadic-style transformation.
1 The self-interpreter is available from the authors’ web page.
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In that light, what we have done here is to identify a similar reading for a
typed self-interpreter, identifying its domain of universal values as a representa-
tion of higher-order abstract syntax. With this reading, type tags are not a bug
but a feature and ordinary partial evaluation is Jones optimal. In particular, for
a typed interpreter in CPS, the translation is the typed CPS transformation into
higher-order abstract syntax, and similarly for state-passing style, etc.

7.2 Jones Optimality and Higher-Order Abstract Syntax

This article complements the first author’s work on coercions for type specializa-
tion [8] and the second author’s work on type specialization [29]. Our key insight
is that a specialized interpreter is a higher-order abstract syntax representation
of the source program. As pointed out by Taha in a personal communication
to the first author (January 2003), however, this insight in itself is not new.
Already in 2000, Taha and Makholm were aware that “A staged interpreter for
a simply-typed lambda calculus can be modelled by a total map from terms to
what is essentially a higher-order abstract syntax encoding.” [37, Section 1.2].
Yet they took a different path and developed tag elimination and then tagless
interpreters to achieve Jones-optimal specialization of typed interpreters.

7.3 Type Specialisation

The goal of type specialisation is to specialise both a source term and a source
type to a residual term and a residual type. It was introduced by Hughes,
who was inspired precisely by the problem of Jones optimality for typed in-
terpreters [21, 20]. The framework of type specialisation, however, allows more
than just producing optimal typed specialisers; traditional partial evaluation,
constructor specialisation, firstification, and type checking are comprised in it
(among other features). In contrast, we have solely focused on specializing (unan-
notated) typed interpreters here.

8 Conclusion

The statement of Jones optimality involves two ingredients:

1. an evaluator that is in direct style and compositional, i.e., that is defined by
structural induction on the source syntax; and

2. a partial evaluator.

Our point is that if the partial evaluator, when it specializes the evaluator with
respect to an expression,

– unfolds all calls to the evaluator,
– keeps the environment partially static, so that variables can be looked up at

partial-evaluation time, and
– reconstructs everything else into a residual data type
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then it computes a homomorphism, i.e., a compositional translation, from the
source syntax (data type) to the target syntax (data type). When the source and
target syntax are isomorphic, as in Section 4 and for lambda-Mix [18, 25], this
homomorphism is an isomorphism and the partial evaluator is Jones optimal.
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Abstract. We present the formalization of the rely-guarantee method
in the theorem prover Isabelle/HOL. This method consists of a Hoare-
like system of rules to verify concurrent imperative programs with shared
variables in a compositional way. Syntax, semantics and proof rules are
defined in higher-order logic. Soundness of the proof rules w.r.t. the se-
mantics is proven mechanically. Also parameterized programs, where the
number of parallel components is a parameter, are included in the pro-
gramming language and thus can be verified directly in the system. We
prove that the system is complete for parameterized programs. Finally,
we show by an example how the formalization can be used for verifying
concrete programs.

1 Introduction

The rely-guarantee method introduced by Jones [5] represents the first and most
fundamental compositional method for correctness proofs of parallel imperative
programs with shared variables. It consists of a set of axioms and inference rules
that form a sound and complete system for the derivation of correct programs
in the style of Hoare. It also has the classical advantages of Hoare logic, namely,
it is syntax oriented and compositional. In a compositional proof system, the
specification of a parallel program can be derived from the specification of the
components without knowing the implementation of these components. This is
important for the correct development of complex programs, where one would
like to verify the design at stages where implementation details are still unknown.

The rely-guarantee method can be considered as a reformulation of
the classical non-compositional Owicki-Gries method (also formalized in Isa-
belle/HOL [8]). To apply the Owicki-Gries method, programs have to be anno-
tated with an assertion at every point of interference. The verification process
requires proving that the annotations of each component be preserved by the
atomic actions of the other components. This property, called interference free-
dom, makes the method non compositional because the particular implementa-
tion of the components must be known. The idea of the rely-guarantee method
is to record the interference information in the specification of each component.
Hence, besides the classical pre and postcondition of Hoare logic, each component
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is annotated with a rely and a guarantee condition, which describe the expected
effect of the environment and of the component itself, respectively. Then, the
verification process requires proving correctness of each component separately
and some side conditions about their specifications, for which no knowledge of
the internal implementation of the components is required. That is, the resulting
proof method is compositional.

This paper presents the formalization in the theorem prover Isabelle/HOL
of the rely-guarantee proof system. The main results are:

– A higher-order logic model of: parallel programs, a semantic definition of
correctness and a proof system.

– A formalized theorem that the proof system is sound w.r.t. the semantics.

An interesting by-product of our formalization is that parameterized programs,
where the number of components is a parameter n, are naturally included in
the model. This is a consequence of the representation of parallel programs as
lists of components. Our proof rule for parallel composition allows us to derive
correct specifications of parameterized programs directly, without induction. A
soundness and completeness proof for such a system is new in the literature.

Finally, we show by an example how the formalization can be used to verify
concrete programs. In practice, the real challenge is to identify suitable rely and
guarantee conditions. This requires a full understanding of the program and a
detailed identification of the interactions that occur. Such verification exercises
are tedious and error prone. A theorem prover is a great help in the iterative
process of finding and adjusting the specifications; previous proofs can be easily
reused and details are checked automatically. The user can then concentrate only
on the most interesting steps.

The definitions and theorems shown in the paper are actual fragments of the
Isabelle theories and we hope to convince the reader of the expressiveness of
Isabelle’s syntax. Due to lack of space we cannot show all the definitions and
proofs. For a detailed exposition we refer to [11]. The full theories and proof
scripts are available at http://isabelle.in.tum.de/library/HOL/HoareParallel/.

2 Related Work

The formalization presented here is mostly inspired by [15], where the system is
proved to be sound and complete. The preciseness required by a theorem prover,
however, leads to some simplifications and improvements over the original model.
There exists a broad literature on the rely-guarantee and other related systems
that we cannot survey here. The recent book [1] presents systematically and in
a unified notation the work of more than a 100 publications and 15 dissertations
on concurrency verification.

From the theorem prover angle, much work has been done on formalizing
different concurrency paradigms like UNITY, CSP, CCS or TLA among others
(see [8] for a list of references). Remarkable formalizations for compositional ap-
proaches are [2, 9] for the UNITY framework in Isabelle/HOL and the soundness
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proof of McMillan assume-guarantee rule [6] in PVS [12]. Surprisingly, there is
not much work on embedding Hoare logics for parallelism in theorem provers.
A Hoare-style compositional proof system for distributed real-time systems has
been formalized and proved correct in PVS [4]. In this formalization, variables
are local, i.e. not shared by parallel components and communication is achieved
by means of events which are then used to model different forms of communica-
tion. Also a static checker for parallel programs has been presented in [3], where
given a suitable rely-guarantee specification for a parallel program, the tool de-
composes it in a verification problem for the sequential components, which can
be checked by an automatic theorem prover. This tool is focused on the verifica-
tion and no soundness proof has been formalized. To the best of our knowledge,
the work presented in this paper is the first formalization in a theorem prover of
a compositional system and its soundness proof for shared-variable parallelism
in the style of Hoare.

3 Isabelle/HOL

Isabelle is a generic interactive theorem prover and Isabelle/HOL is its instan-
tiation for higher-order logic. For a gentle introduction to Isabelle/HOL see [7].
Here we summarize the relevant notation and some predefined functions used in
the paper. Others will be explained as they appear.

The product type α × β comes with the projection functions fst and snd.
Tuples are pairs nested to the right, e.g. (a, b, c) = (a, (b, c)). They may also
be used as patterns like in λ(x, y). f x y. List notation is similar to ML (e.g. @ is
‘append’) except that the ‘cons’ operation is denoted by # (instead of ::). The
ith component of a list xs is written xs!i. The last element of a non-empty list
is last xs. The functional map :: (α ⇒ β) ⇒ α list ⇒ β list applies a function
to all elements of a list. The syntax xs[i := x] denotes the list xs with the ith
component replaced by x.

The datatype α option = None | Some α is frequently used to add a dis-
tinguished element to some existing type. It comes with the function the such
that the (Some x) = x. Set comprehension syntax is {x. P x} expressing the set
of all elements that satisfy the predicate P . The complement of a set A is −A.
The notation [[A1; . . . ; An]] =⇒ A represents an implication with assumptions
A1, . . . , An and conclusion A.

4 The Programming Language

We formalize a simple while-language augmented with shared-variable paral-
lelism (‖) and synchronization via an await-construct. For simplicity, each Pi

in cobegin P1‖ . . . ‖Pn coend must be a sequential command, i.e. nested par-
allelism is not allowed. We encode this stratification by defining the syntax in
two layers, one for sequential component programs and another for parallel pro-
grams. We start by defining boolean expressions as sets of states, where the state
is represented by the parameter α:
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types α bexp = α set

The syntax of component programs is given by the following datatype:

datatype α com = Basic (α ⇒ α)
| Seq (α com) (α com) (-; - )
| Cond (α bexp) (α com) (α com)
| While (α bexp) (α com)
| Await (α bexp) (α com)

The Basic command represents an atomic state transformation, for example, an
assignment, a multiple assignment, or the skip command. The Await command
executes the body atomically whenever the boolean condition holds. The rest are
well-known. Parallel programs, on the other layer, are simply lists of component
programs:

types α par-com = ((α com) option) list

The option type is used to include the empty program None as a possible com-
ponent program. For the moment, we only introduce concrete syntax of the
form c1; c2 for sequential statements. Concrete syntax is nice for representing
and proving properties of concrete programs. The main difficulty for defining
concrete syntax lies in finding a convenient representation of the state, or more
precisely, of program variables. We will come back to this issue in the example
of section 10. The rest of the paper, however, deals with meta-theory, i.e. defi-
nitions and proofs about the language itself, so we use the abstract syntax and
leave the state completely undetermined.

5 Operational Semantics

Semantics of commands is defined via transition rules between configurations. A
configuration is a pair (P , σ), where P is some program (or the empty program)
and σ is a state. A transition rule has the form (P , σ) −δ → (P ′, σ ′) where δ is
a label indicating the kind of transition. A component program can perform two
kinds of transitions: component transitions (labeled with c), performed by the
component itself, and environment transitions (labeled with e), performed by a
different component of the parallel composition or by an arbitrary environment.

5.1 Transition Rules

Rules for Component Programs: The rule for environment transitions is

Env : (P , s) −e→ (P , t)

Intuitively, a transition made by the environment of a component program P
may change the state but not the program P. The program part is only modified
by transitions made by the component itself. Such transitions are inductively
defined by the following rules:
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Basic: (Some (Basic f ), s) −c→ (None, f s)

Await : [[ s∈b; (Some P , s) −c∗→ (None, t) ]]
=⇒ (Some (Await b P), s) −c→ (None, t)

Seq1: (Some P0, s) −c→ (None, t) =⇒ (Some (P0; P1), s) −c→ (Some P1, t)
Seq2: (Some P0, s) −c→ (Some P2, t)

=⇒ (Some (P0; P1), s) −c→ (Some (P2; P1), t)

CondT : s∈b =⇒ (Some (Cond b P1 P2), s) −c→ (Some P1, s)
CondF : s /∈b =⇒ (Some (Cond b P1 P2), s) −c→ (Some P2, s)

WhileF : s /∈b =⇒ (Some (While b P), s) −c→ (None, s)
WhileT : s∈b =⇒ (Some (While b P), s) −c→ (Some (P ; While b P), s)

where P −c∗→ Q is the reflexive transitive closure of P −c→ Q. Basic actions
and evaluation of boolean conditions are atomic. The body of an await-statement
is executed atomically, i.e. without interruption from the environment, thus no
environment transitions can occur.

Rules for Parallel Programs: Parallel programs may also interact with the
environment, thus an analogous environment transition, labeled with pe, is de-
fined:

ParEnv : (Ps, s) −pe→ (Ps, t)

Execution of a parallel program is modeled by a nondeterministic interleaving
of the atomic actions of the components. In other words, a parallel program
performs a component step when one of its non-terminated components performs
a component step:

ParComp: [[ i<length Ps; (Ps!i , s) −c→ (r , t) ]] =⇒ (Ps, s) −pc→ (Ps[i :=r ], t)

Ps[i :=r ] is the list of programs Ps with the program i replaced by r. A parallel
program terminates when all the components terminate, i.e. when all component
programs are None.

5.2 Computations

A computation of a sequential program records the sequence of transitions. In [15]
it is defined as any sequence of the form

(P0, σ0) − δ1 → (P1, σ1) − δ2 → . . . − δn → (Pn, σn) − δn+1 → . . . , δi ∈ {e, c}
There are several ways to formalize this intuitive definition. We present two
formalizations that are equivalent but serve different purposes. The first one
directly follows the definition and is “obviously” the right one. The second one
is more elaborated and is useful for the proofs.
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Direct Definition of Computation: We define the set of computations, called
cptn, as the set of lists of configurations inductively defined by the following rules:

One: [(P , s)] ∈ cptn
Env : (P , t)#xs ∈ cptn =⇒ (P , s)#(P , t)#xs ∈ cptn
Comp: [[ (P , s) −c→ (Q , t); (Q , t)#xs ∈ cptn ]] =⇒ (P , s)#(Q , t)#xs ∈ cptn

The one-element list is always a computation. Two consecutive configurations are
part of a computation if they are the initial and final configurations of an environ-
ment or a component transition. Computations of parallel programs (par-cptn)
are defined analogously.

Modular Definition of Computation: The previous definition of compu-
tation clearly formalizes the one proposed in [15]. However, it represents the
execution of a program in a simplified linear way without taking the structure of
the development of a computation into account. For example, the computation
of a sequential composition is formed by the computation of the two parts and
the computation of a while-statement is formed by several computations of the
body. Retrieving this information out of the linear representation of the com-
putation is unnecessarily cumbersome. It can be elegantly avoided by defining
computations in a modular way. We propose a new definition of computation
which maintains the structure and considerably simplifies some proofs, especially
those concerning properties of while-programs.

First, we define the auxiliary function seq-with that returns, given a program
Q and a configuration (P , s), the same configuration where the program has
been sequentially composed with Q. If the concerned program is finished, i.e.
None, the returned program is just Q1:

seq-with Q ≡ λ(P ,s). if P=None then (Some Q , s) else (Some((the P); Q), s)

We define the set of computations mcptn as the lists of configurations formed
by the following rules:

MOne: [(P , s)] ∈ mcptn

MEnv : (P , t)#xs ∈ mcptn =⇒ (P , s)#(P , t)#xs ∈ mcptn

MNone: [[ (Some P , s) −c→ (None, t); (None, t)#xs ∈ mcptn ]]
=⇒ (Some P , s)#(None, t)#xs ∈mcptn

MCondT : [[ (Some P0, s)#ys ∈ mcptn; s ∈ b ]]
=⇒ (Some (Cond b P0 P1), s)#(Some P0, s)#ys ∈ mcptn

MCondF : [[ (Some P1, s)#ys ∈ mcptn; s /∈ b ]]
=⇒ (Some (Cond b P0 P1), s)#(Some P1, s)#ys ∈ mcptn

1 Isabelle’s notation does not allow tuples as arguments on the left-hand side of a
definition. Thus, λ-notation is used on the right-hand side.
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MSeq1: [[ (Some P0, s)#xs ∈ mcptn; zs = map (seq-with P1) xs ]]
=⇒ (Some (P0; P1), s)#zs ∈ mcptn

MSeq2: [[ (Some P0, s)#xs ∈ mcptn; fst (last ((Some P0, s)#xs)) = None;
(Some P1, snd (last ((Some P0, s)#xs)))#ys ∈ mcptn;
zs = (map (seq-with P1) xs)@ys ]] =⇒ (Some (P0; P1), s)#zs ∈ mcptn

MWhile1: [[ (Some P , s)#xs ∈ mcptn; s ∈ b; zs = map (seq-with (While b P)) xs ]]
=⇒ (Some (While b P), s)#(Some (P ; While b P), s)#zs ∈ mcptn

MWhile2: [[ (Some P , s)#xs ∈ mcptn; fst (last ((Some P , s)#xs)) = None;
s ∈ b; zs = (map (seq-with (While b P)) xs)@ys;
(Some (While b P), snd (last ((Some P , s)#xs)))#ys ∈ mcptn ]]

=⇒ (Some (While b P), s)#(Some (P ; While b P), s)#zs ∈ mcptn

The first two rules are the same as in the set or rules defining cptn. The rule
Comp, however, is now replaced by seven rules which correspond to different
kinds of component transitions.

The rule MNone stands for the three possible component transitions where
the program terminates, i.e. Basic, Await or WhileF. The two rules for the
conditional are obvious. (Observe that for these five cases the new definition
does not provide any richer information than the rule Comp with case analysis
on the corresponding c-step.) Rule MSeq1 represents the case where the second
program of the sequential composition is not started, whereas MSeq2 stands for
the case where at least the first program is finished. MWhile1 represents the
computations where the body is started but not finished and MWhile2 those
where the body has been executed at least once.

The new definition is specially useful for the proof of soundness of the rule
for while-programs. By using rule induction on mcptn we directly obtain the
three following cases:

1. The while-body is not entered.
2. The execution of the body is at least started.
3. The body is executed completely at least once followed by a new computation

of the same while-program, on which the induction hypothesis holds.

In contrast, the information obtained by using the same proof method on cptn
was almost useless. The equivalence of both definitions is proven in the following
theorem:

theorem cptn-iff-mcptn: cptn = mcptn

6 Validity of Correctness Formulas

In this section we formally define what it means for a program P to satisfy a
rely-guarantee specification (pre, rely , guar , post). These four conditions can be



The Rely-Guarantee Method in Isabelle/HOL 355

classified in two parts: assumptions, represented by the pre and rely condition,
describe the conditions under which the program runs, and commitments, com-
posed by the guarantee and postcondition, describe the expected behaviors of
the program when it is run under the assumptions.

The pre and postcondition are, like in the traditional Hoare logic, sets of
states. They impose conditions upon the initial and final states of a computation,
respectively. The rely and guarantee conditions describe properties of transitions
from the environment and transitions of the program, respectively. Thus, they
are sets of pairs of states, formed by the state before and after the transition.

P satisfies its specification, written |= P sat [pre, rely , guar , post ], if under
the assumptions that

1. P is started in a state that satisfies pre, and
2. any environment transition in the computation satisfies rely,

then P ensures the following commitments:

3. any component transition satisfies guar, and
4. if the computation terminates, the final state satisfies post.

Formally, validity of a specification for a sequential component program is
defined as follows:

|= P sat [pre, rely , guar , post ] ≡ ∀ s. cp (Some P) s ∩ assum (pre, rely) ⊆ comm
(guar , post)

where cp (Some P) s represents the set of computations of the component pro-
gram P starting from some initial state s, i.e. cp (Some P) s ≡ {c. c!0 = (Some
P , s) ∧ c ∈ cptn}. The definitions of assum and comm are:

assum ≡ λ(pre, rely). {c. snd (c!0) ∈ pre ∧ (∀ i . i+1 <length c −→
c!i −e→ c!(i+1) −→ (snd (c!i), snd (c!(i+1))) ∈ rely)}

comm ≡ λ(guar , post). {c. (∀ i . i+1<length c −→
c!i −c→ c!(i+1) −→ (snd (c!i), snd (c!(i+1))) ∈ guar) ∧
(fst (last c) = None −→ snd (last c) ∈ post)}

In other words, P satisfies its specification iff all computations of P that satisfy
the assumptions satisfy the commitments.

Validity of a specification of a parallel program Ps (of type α par-com),
written ||= Ps sat [pre, rely , guar , post ], is defined analogously. (Note the syn-
tactic difference between |= used for component programs and ||= for parallel
programs.)

Jones [5] first suggested that the rely and guarantee conditions be reflexive
and transitive. However, for the soundness proof only the reflexivity of the guar-
antee condition is necessary. This is to ensure that transitions corresponding to
the evaluation of boolean conditions (which do not affect the state) also satisfy
the guarantee condition. If transitivity is also required another property, namely,
observational equivalence, can be proven. In [14], the author discusses this point
in more detail. Similarly, he requires only reflexivity since in practice finding
guarantee conditions that are transitive is not easy.
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7 The Proof System

First, we define stable p q ≡ ∀ x y . x ∈ p −→ (x , y) ∈ q −→ y ∈ p. Thus, stable
pre rely reads as “pre is stable when rely holds” meaning that if a state from the
precondition performs a transition satisfying the rely condition, then the next
state still satisfies the precondition.

The derivable correctness formulas 	 P sat [pre, rely , guar , post ] are induc-
tively defined by the following set of rules:

Basic: [[ pre ⊆ {s. f s ∈ post}; {(s, t). s ∈ pre ∧ (t = f s ∨ t = s)} ⊆ guar ;
stable pre rely ; stable post rely ]] =⇒ � Basic f sat [pre, rely , guar , post ]

Seq : [[ � P sat [pre, rely , guar , mid ]; � Q sat [mid , rely , guar , post ] ]]
=⇒ � P ; Q sat [pre, rely , guar , post ]

Cond : [[ � P1 sat [pre ∩ b, rely , guar , post ]; � P2 sat [pre ∩ −b, rely , guar , post ];
stable pre rely ; ∀ s. (s, s)∈guar ]] =⇒ � Cond b P1 P2 sat [pre, rely , guar , post ]

While: [[ � P sat [pre ∩ b, rely , guar , pre]; pre ∩ −b ⊆ post ; stable post rely ;
stable pre rely ; ∀ s. (s, s)∈guar ]] =⇒ � While b P sat [pre, rely , guar , post ]

Await : [[ ∀ V . � P sat [pre ∩ b ∩ {V }, {(s, t). s = t}, UNIV ,

{s. (V , s) ∈ guar} ∩ post ]; stable pre rely ; stable post rely ]]
=⇒ � Await b P sat [pre, rely , guar , post ]

Conseq : [[ pre ⊆ pre ′; rely ⊆ rely ′; guar ′ ⊆ guar ; post ′ ⊆ post ;
� P sat [pre ′, rely ′, guar ′, post ′] ]] =⇒ � P sat [pre, rely , guar , post ]

In the computation of a Basic command there is exactly one component
transition that updates the state. Before and after this component transition
there can be a number of environment transitions. The initial state satisfies
pre, thus from stable pre rely it follows that pre holds immediately before the
component transition takes place. From pre ⊆ {s. f s ∈ post} it follows that post
holds immediately after the component transition, and because post is stable
when rely holds, post holds after any number of environment transitions.

The rules for the sequential composition and conditional statements are stan-
dard. In the while-rule the precondition plays the role of the invariant; it must
hold before and after execution of the body at every iteration.

The rule for the await-statement is less obvious. By the semantics of the
await-command, a positive evaluation of the condition and the execution of the
body is done atomically. Thus, the state transition caused by the complete exe-
cution of P must satisfy the guarantee condition. This is reflected in the precon-
dition and postcondition of P in the assumptions; since these are sets of single
states, the relation between the state before and after the transformation is es-
tablished by fixing the values of the first via a universally quantified variable V.
The intermediate state changes during the execution of P must not guarantee
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anything, thus the guarantee condition is the universal set UNIV, defined as
{s. True}. However, since they are executed atomically, the environment can-
not change their values. This is reflected by the rely condition {(s, t). s = t}.
To ensure that the postcondition holds at the end of the computation, regard-
less of possible environment transitions, stable post rely is required. Finally, the
rule of consequence allows us to strengthen the assumptions and weaken the
commitments.

We now introduce the proof rule for parallel composition. Recall that in a
validity formula for a parallel program ||= Ps sat [pre, rely , guar , post ], Ps has
type α par-com with no information about the pre, post , rely and guar conditions
of each component program. This is fine to define validity, however, for concrete
verification of programs, we want to apply the rules backwards. Therefore, the
conclusion of the rule should include all the information needed in the premises.
Hence, in a derived formula for a parallel program, denoted 		 Ps sat [pre, rely ,
guar , post ], Ps is a list of tuples, each one formed by the code of the component
program and its specification. The functions Pre, Post , Rely , Guar and Com
(with obvious definitions) extract the different parts when applied to such a
“component tuple”.

Parallel :
[[ ∀ i<length Ps. � Com(Ps!i) sat [Pre(Ps!i), Rely(Ps!i), Guar(Ps!i), Post(Ps!i)];

∀ i<length Ps. rely ∪ (
⋃

j ∈{j . j <length Ps ∧ j 
=i}. Guar (Ps!j )) ⊆ Rely (Ps!i);
(
⋃

j ∈{j . j <length Ps}. Guar (Ps!j )) ⊆ guar ;
pre ⊆ (

⋂
i∈{i . i<length Ps}. Pre (Ps!i));

(
⋂

i∈{i . i<length Ps}. Post (Ps!i)) ⊆ post ]] =⇒ �� Ps sat [pre, rely , guar , post ]

We explain the five premises. The first one requires that each component together
with its specification be derivable in the system for sequential program.

The second one is a constraint on the rely condition of component i. An
environment transition for i corresponds to a component transition of another
component j with i �=j, or of a transition from the overall environment (which
satisfies rely). Hence, the strongest rely condition for component i is rely ∪
(
⋃

j ∈{j . j <length Ps ∧ j �=i}. Guar (Ps!j )).
The third requirement imposes a relation among the guarantee conditions of

the components and that of the parallel composition: since a component transi-
tion of the parallel program is performed by one of its components, the guarantee
condition guar of the parallel program must be at least the union of the sets
specified by the guarantee conditions of the components.

The forth premise requires that the precondition for the parallel composition
imply all the component’s preconditions. Finally, the overall postcondition must
be a logical consequence of all postconditions.

This rule generalizes the particular case of composing two programs, as
known from the literature [1, 15], to composing any number of programs. As
a consequence, also parameterized parallel programs can be proved correct in a
single derivation even though they represent an infinite family of programs (see
section 9).
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8 Soundness

To prove soundness of the rule for parallel composition we first need to prove
soundness of the system of rules for sequential component programs:

theorem sound : � P sat [pre, rely , guar , post ] =⇒ |= P sat [pre, rely , guar , post ]

To state soundness of the parallel composition rule, we define a function Par-
allelCom which, given a list of “component tuples” formed by each component
program’s code and its corresponding four conditions it returns the same list
with only the component programs, i.e. the parallel program. The soundness
theorem is formulated using this function as follows:

theorem par-sound :
�� Ps sat [pre, rely , guar , post ] =⇒ ||= ParallelCom Ps sat [pre, rely , guar , post ]

Both proofs are done by rule induction. For the soundness of the system for
component programs the most interesting case is the rule for while, where the
use of the modular definition of computation results in an elegant and well-
structured proof. Soundness of the parallel rule relies on an important lemma
stating that the computation of a parallel program can be described in terms
of the computations of its components, i.e. that the semantics is compositional.
This result alone has the longest proof (about 500 lines).

9 Completeness for Parameterized Parallel Programs

By using lists to model parallel composition (see section 4) we can easily rep-
resent parameterized parallel programs via the predefined HOL functional map
:: (α ⇒ β) ⇒ α list ⇒ β list, and the construct [i ..j ], which represents the list
of natural numbers from i to j. For example, the program cobegin P 0 ‖ . . .
‖ P (n−1) coend representing the parallel composition of n components which
differ only on the index number can be represented by map (λi . P i) [0..n−1],
for which concrete syntax of the form scheme [0 ≤ i < n] P i has also been
defined.

Consequently, the rule for parallel composition and its soundness proof also
include the case of parameterized parallel programs. This means that correctness
for such programs can be proven by a single derivation (typically parameterized
by the number of components) which can then be instantiated for any parameter.
This leads to the question whether finding such a derivation is always possible,
i.e. whether the system is complete for this kind of programs.

In [10] we proved that the extended Owicki-Gries system of [8] is complete
for parameterized programs. Using this result, we prove completeness of the
rely-guarantee system for parameterized programs by reduction. The idea comes
from [13], where the author proves that the rely-guarantee system is complete rel-
ative to the Owicki-Gries system, i.e. a rely-guarantee proof can be constructed
from an Owicki-Gries proof of the same program. Thus, from the completeness of
the Owicki-Gries system for parameterized programs it follows that the extended
rely-guarantee system is also complete.
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10 Example

We verify a simple parameterized parallel program presented in [13]. The pro-
gram searches for the first element satisfying some predicate P in an array B
of length m (represented by a list). If there is one, we call it min-el, otherwise
min-el = m. Upon termination the program establishes the postcondition

min-el < m+1 ∧ (∀ i<min-el . ¬ P(B !i)) ∧ min-el < m −→ P(B !min-el).

We use n concurrent programs, S 0 ‖ . . . ‖ S (n−1) (for simplicity let n divide
m) such that S i visits the array indices i , n+i , 2∗n+i ,. . ., m+i. Each S i
uses two variables xi and yi ranging over natural numbers. There exist several
ways of formalizing program variables in such formalizations [9]. In the approach
used here the state is represented by an Isabelle record type, whose fields are
the program variables . For example, if a program has a boolean variable a
and a variable b ranging over the natural numbers, the program state would be
represented by the record:

record Example =
a :: bool
b :: nat

The advantages of this representation w.r.t. other approaches are discussed
in [11]. In our example, parameterized variables are used. These can be im-
plemented by lists or, more abstractly, functions from naturals into the corre-
sponding value domain:

record Parameterized-Example =
x :: nat ⇒ nat
y :: nat ⇒ nat

Then, an indexed variable xi in our program is represented by the function x
applied to index i, i.e. x i. To distinguish program variables we write them in
sans serif (e.g. x) in the following.

Each component program S i is a while-program which uses the variable x i,
initially set to i, for searching. It terminates if

1. P (B !(x i)) or,
2. x i > m or,
3. S k, with k �=i, has found that P (B !(x k)) for x k < x i.

Another variable y i is initially set to m+i and, if P(B !(x i)) holds, then y i is
set to x i. Then, the termination condition for S i is: ∃ j <n. y j ≤ x i. The code
of the parameterized parallel program is:

scheme [0 ≤ i < n]
while (∀ j < n. x i < y j ) do
if P (B !(x i)) then y := y (i := x i) else x := x (i := (x i)+ n) fi od
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where f (i := t) is Isabelle syntax for function update. Assignment to a param-
eterized variable is written y := y (i := x i) meaning that the variable y i is
updated to x i. The loop invariant is the predicate:

(x i) mod n = i ∧ (∀ z < x i . z mod n = i −→ ¬P (B ! z )) ∧
(y i < m −→ P (B ! (y i)) ∧ y i ≤ m+i).

Now we need to find rely and guar conditions for each component program.
Observe that for each S i the following holds:

1. The variables x i and y i are only changed by component i, thus the envi-
ronment cannot affect their values or increase y j for j �=i.

2. The program S i cannot affect the variables x j and y j for j �=i, and it does
not increase the initial value of y i.

We represent the value of a variable x after a transition by x. In the theorem
below, we show each component i of the parallel composition as a tuple formed by
the program code and its corresponding specification, i.e. the pre, rely, guar and
postcondition. This theorem states that the full annotated program is derivable
in the formalized rely-guarantee system:

theorem Parameterized-Example: m mod n = 0 =⇒
�� cobegin
scheme [0 ≤ i < n]
(while (∀ j < n. x i < y j ) do

if P (B ! (x i)) then y := y (i := x i)
else x := x (i := (x i)+ n) fi

od,

{| (x i) mod n = i ∧ (∀ z < x i . z mod n = i −→ ¬P (B ! z )) ∧
(y i < m −→ P (B ! (y i)) ∧ y i ≤ m+i) |},

{| (∀ j < n. i 
= j −→ y j ≤ y j ) ∧ x i = x i ∧ y i = y i |},

{| (∀ j < n. i 
= j −→ x j = x j ∧ y j = y j ) ∧ y i ≤ y i |},

{| (x i) mod n = i ∧ (∀ z < x i . z mod n = i −→ ¬P (B ! z )) ∧
(y i < m −→ P (B ! (y i)) ∧ y i ≤ m+i) ∧ (∃ j < n. y j ≤ x i) |})

coend
sat [{| ∀ i < n. x i = i ∧ y i = m+i |}, {| x = x ∧ y = y |}, {| True |},

{| ∀ i < n. (x i) mod n = i ∧ (∀ z < x i . z mod n = i −→ ¬P (B ! z )) ∧
(y i < m −→ P (B ! (y i)) ∧ y i ≤ m+i) ∧ (∃ j < n. y j ≤ x i) |}]

The expressions {| p |} are concrete syntax for the set of states (or pairs of states)
satisfying p. From the specifications of the components we establish the speci-
fication of the parallel program given by the four conditions after the keyword
sat. The precondition of each component is the invariant shown above and the
postcondition corresponds to the invariant and the negation of the loop guard.

The precondition {| ∀ i<n. x i = i ∧ y i = m+i |} of the parallel program
gives the initial values of the variables. We consider the parallel program to
be closed, meaning that the environment is empty. Thus, the corresponding
rely condition simply states that the program variables are not modified by the
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environment. Analogously, the parallel program must not guarantee anything to
the environment, so the guarantee condition is just True.

The proof is done by interactively applying the proof rules backwards until
all the verification conditions are generated. It requires only one application of
the consequence rule. The final verification conditions are proved with standard
Isabelle tactics for simplification and natural deduction.

When all component programs terminate, the established postcondition im-
plies that the element we were looking for, namely min-el, is the minimum of
the set {y 0, . . . ,y (n−1)}. This is proven in the following lemma:

[[∀ i<n. (x i) mod n=i ∧ (∀ z < x i . z mod n=i −→ ¬P (B ! z )) ∧
(y i < m −→ P(B ! (y i)) ∧ y i ≤ m+i) ∧ (∃ j < n. y j ≤ x i);
min-el = minimum (map y [0..n−1])]] =⇒ min-el < m+1 ∧

(∀ i < min-el . ¬ P (B ! i)) ∧ min-el < m −→ P (B ! min-el)

where the function minimum returns the least element of a list, in this case the
list [y 0,. . ., y (n−1)]. Hence, upon termination, the program establishes the
postcondition announced at the beginning of the section for the indicated value
of min-el.

11 Conclusions

We have presented the first formalization of the rely-guarantee system and its
soundness proof in a theorem prover. This work represents another successful
step towards the embedding of programming languages and their verification
calculi in theorem provers. Another interesting contribution of this work is the
extension of the formal treatment from the two-process to the n-process case,
which is a technical challenge in formal verification, and whose soundness and
completeness proofs have not been considered before.

The total number of specification lines for this formalization is 330. For the
proof of soundness we proved 90 lemmas which were proven in 2200 lines (number
of interactions with the theorem prover). Comparing it to the formalization of
the Owicki-Gries system [8] with 220 lines of specification, 49 lemmas and 340
lines of proofs, it is clear that the rely-guarantee method is more involved. This
is the price to obtain a compositional method: the underlying theory requires
more work, but yields a simpler proof system.

Machine-checking soundness proofs is labour intensive, however, it produces
not only highest confidence in the proof but also leads to optimizations and
simpler formulations, which becomes crucial as languages are enriched with more
complicated features. We hope that this work encourages further development
in this area.

Acknowledgment. I wish to thank Tobias Nipkow for helpful comments on a
previous version of the paper and Jozef Hooman and Qiwen Xu for their interest
and useful feedback about their own and other related work.
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Abstract. Proof-Carrying Code (PCC) allows a code producer to pro-
vide to a host a program along with its formal safety proof. The proof
attests a certain safety policy enforced by the code, and can be mechan-
ically checked by the host. While this language-based approach to code
certification is very general in principle, existing PCC systems have only
focused on programs whose safety proofs can be automatically generated.
As a result, many low-level system libraries (e.g., memory management)
have not yet been handled. In this paper, we explore a complementary
approach in which general properties and program correctness are semi-
automatically certified. In particular, we introduce a low-level language
CAP for building certified programs and present a certified library for
dynamic storage allocation.

1 Introduction

Proof-Carrying Code (PCC) is a general framework pioneered by Necula and
Lee [13,12]. It allows a code producer to provide a program to a host along with
a formal safety proof. The proof is incontrovertible evidence of safety which
can be mechanically checked by the host; thus the host can safely execute the
program even though the producer may not be trusted.

Although the PCC framework is general and potentially applicable to certi-
fying arbitrary data objects with complex specifications, generating proofs re-
mains difficult. Existing PCC systems [14,11,2,1] have only focused on programs
whose safety proofs can be automatically generated. As a result, many low-level
system libraries, such as dynamic storage allocation, have not been certified.
Nonetheless, building certified libraries, especially low-level system libraries, is
an important task in certifying compilation. It not only helps increase the relia-
bility of “infrastructure” software by reusing provably correct program routines,
but also is crucial in making PCC scale for production.
! This research is based on work supported in part by DARPA OASIS grant F30602-99-
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findings, and conclusions contained in this document are those of the authors and
do not reflect the views of these agencies.

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 363−379, 2003.
 Springer-Verlag Berlin Heidelberg 2003



On the other hand, Hoare logic [6,7], as a widely applied approach in program
verification, allows programmers to express their reasonings with assertions and
the application of inference rules, and can be used to prove general program cor-
rectness. In this paper, we introduce a conceptually simple low-level language for
certified assembly programming (CAP) that supports Hoare-logic style reason-
ing. We use CAP to build a certified library for dynamic storage allocation, and
further use this library to build a certified program whose correctness proof can
be mechanically checked. Applying Hoare-logic reasonings at an assembly-level,
our paper makes the following contributions:

– CAP is based on a common instruction set so that programs can be executed
on real machines with little effort. The expected behavior of a program is
explicitly written as a specification using higher-order logic. The programmer
proves the well-formedness of a program with respect to its specification
using logic reasoning, and the result can be checked mechanically by a proof-
checker. The soundness of the language guarantees that if a program passes
the static proof-checking, its run-time behavior will satisfy the specification.

– Using CAP, we demonstrate how to build certified libraries and programs.
The specifications of library routines are precise yet general enough to be
imported in various user programs. Proving the correctness of a user program
involves linking with the library proofs.

– We implemented CAP and the dynamic storage allocation routines using the
Coq proof assistant [18], showing that this library is indeed certified. The
example program is also implemented. All the Coq code is available [19].

– Lastly, memory management is an important and error-prone part of most
non-trivial programs. It is also considered to be hard to certify by previous
researches. We present a provably correct implementation of a typical dy-
namic storage allocation algorithm. To the authors’ knowledge, it is so far
the only certified library for memory management.

2 Dynamic Storage Allocation

In the remainder of this paper, we focus on the certification and use of a library
module for dynamic storage allocation. In particular, we implement a storage
allocator similar to that described in [9,10]. The interface to our allocator consists
of the standard malloc and free functions. The implementation keeps track of
a free list of blocks which are available to satisfy memory allocation requests.
As shown in Figure 1, the free list is a null-terminated list of (non-contiguous)
memory blocks. Each block in the list contains a header of two words: the first
stores a pointer to the next block in the list, and the second stores the size of
the block. The allocated block pointer that is returned to a user program points
to the useable space in the block, not to the header.

The blocks in the list are sorted in order of increasing address and requests
for allocation are served based on a first-fit policy; hence, we implement an
address-ordered first-fit allocation mechanism. If no block in the free list is big
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free list

free space owned by malloc
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or not owned by malloc

zooming into a free space:

points to next free block

address to return to user

size

Fig. 1. Free list and free blocks.

enough, or if the free list is empty, then malloc requests more memory from the
operating system as needed. When a user program is done with a memory block,
it is returned to the free list by calling free, which puts the memory block into
the free list at the appropriate position.

Our implementation in this paper is simple enough to understand, yet faith-
fully represents mechanisms used in traditional implementations of memory al-
locators [20,9,10]. For ease of presentation, we assume our machine never runs
out of memory so malloc will never fail, but otherwise many common low-level
mechanisms and techniques used in practice are captured in this example, such
as use of a free list, in-place header fields, searching and sorting, and splitting
and coalescing (described below). We thus believe our techniques can be as easily
applied to a variety of other allocator implementations than described here.

In the remainder of this section, we describe in detail the functionality of the
malloc and free library routines (Figure 2), and give some “pseudo-code” for
them. We do not show the calloc (allocate and initialize) and realloc (resize
allocated block) routines because they essentially delegate their tasks to the two
main functions described below.

free This routine puts a memory block into the free list. It takes a pointer
(ptr) to the useable portion of a memory block (preceded by a valid header)
and does not return anything. It relies on the preconditions that ptr points to
a valid “memory block” and that the free list is currently in a good state (i.e.,
properly sorted). As shown in Figure 2, free works by walking down the free
list to find the appropriate (address-ordered) position for the block. If the block
being freed is directly adjacent with either neighbor in the free list, the two are
coalesced to form a bigger block.

malloc This routine is the actual storage allocator. It takes the size of the
new memory block expected by the user program, and returns a pointer to an
available block of memory of that size. As shown in Figure 2, malloc calculates
the actual size of the block needed including the header and then searches the
free list for the first available block with size greater than or equal to what is
required. If the size of the block found is large enough, it is split into two and a
pointer to the tail end is returned to the user.
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void free (void* ptr) {
hp = ptr - header_size; // move to header
for (prev = nil, p = flist; p <> nil; prev = p, p = p->next)

if (hp < p) { // found place
if (hp + hp->size == p) // join or link with upper neighbor

hp->size += p->size, hp->next = p->next;
else hp->next = p;
if (prev <> nil) // join or link with lower neighbor

if (prev + prev->size == hp)
prev->size += hp->size, prev->next = hp->next;

else prev->next = hp;
else flist = hp;
return;

}
hp->next = nil; // block’s place is at end of the list
if (prev <> nil) // join or link with lower neighbor

if (prev + prev->size == hp)
prev->size += hp->size, prev->next = hp->next;

else prev->next = hp;
else flist = hp;

}

void* malloc (int reqsize) {
actual_size = reqsize + header_size;
for(prev = nil, p = flist; ; prev = p, p = p->next)

if (p==nil) { // end of free list, request more memory
more_mem(actual_size);
prev = nil, p = flist; // restart the loop search

} else if (p->size > actual_size + header_size) {
p->size -= actual_size; // found block bigger than needed
p += p->size; // by more than a header size,
p->size = actual_size; // so split into two
return (p + header_size);

} else if (p->size >= actual_size) { // found good enough block
if (prev==nil) flist = p->next; else prev->next = p->next;
return (p + header_size);

}
}
void more_mem(int req_size) {
if (req_size < NALLOC) req_size = NALLOC; // request not too small
q = alloc(req_size); // call system allocator
q->size = req_size;
free(q + header_size); // put new block on free list

}

Fig. 2. Pseudo code of allocation routines.

If no block in the free list is large enough to fulfill the request, more memory is
requested from the system by calling more mem. Because this is a comparatively
expensive operation, more mem requests a minimum amount of memory each time
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to reduce the frequency of these requests. After getting a new chunk of memory
from the system, it is appended onto the free list by calling free.

These dynamic storage allocation algorithms often temporarily break certain
invariants, which makes it hard to automatically prove their correctness. During
intermediate steps of splitting, coalescing, or inserting memory blocks into the
free list, the state of the free list or the memory block is not valid for one or
two instructions. Thus, a traditional type system would need to be extremely
specialized to be able to handle such code.

3 A Language for Certified Assembly Programming (CAP)

To write our certified libraries, we use a low-level assembly language CAP fitted
with specifications reminiscent of Hoare-logic. The assertions that we use for
verifying the particular dynamic allocation library described in this paper are
inspired by Reynolds’ “separation logic” [17,16].

The syntax of CAP is given in Figure 3. A complete program (or, more
accurately, machine state) consists of a code heap, a dynamic state component
made up of the register file and data heap, and an instruction sequence. The
instruction set captures the most basic and common instructions of an assembly
language, and includes primitive alloc and free commands which are to be viewed
as system calls. The register file is made up of 32 registers and we assume an
unbounded heap with integer words of unlimited size for ease of presentation.

Our type system, as it were, is a very general layer of specifications such
that assertions can be associated with programs and instruction sequences. Our
assertion language (Assert) is the calculus of inductive constructions (CiC) [18,
15], an extension of the calculus of constructions [3] which is a higher-order typed
lambda calculus that corresponds to higher-order predicate logic via the Curry-
Howard isomorphism [8]. In particular, we implement the system described in
this paper using the Coq proof assistant [18]. Assertions are thus defined as Coq
terms of type State→Prop, where the various syntactic categories of the assembly
language (such as State) have been encoded using inductive definitions. We give
examples of inductively defined assertions used for reasoning about memory in
later sections.

3.1 Operational Semantics

The operational semantics of the assembly language is fairly straightforward and
is defined in Figures 4 and 5. The former figure defines a “macro” relation de-
tailing the effect of simple instructions on the dynamic state of the machine.
Control-flow instructions, such as jd or bgt, do not affect the data heap or reg-
ister file. The domain of the heap is altered by either an alloc command, which
increases the domain with a specified number of labels mapped to undefined
data, or by free, which removes a label from the domain of the heap. The ld and
st commands are used to access or update the value stored at a given label.

367Building Certified Libraries for PCC: Dynamic Storage Allocation



(Program) P ::= (C, S, I)
(CodeHeap) C ::= {f ! I}∗

(State) S ::= (H, R)
(Heap) H ::= {l ! w}∗

(RegFile) R ::= {r ! w}∗

(Register) r ::= {rk}k∈{0...31}

(Labels) f, l ::= i (nat nums)
(WordVal) w ::= i (nat nums)
(InstrSeq) I ::= c; I | jd f | jmp r

(Command) c ::= add rd, rs, rt | addi rd, rs, i
| sub rd, rs, rt | subi rd, rs, i
| mov rd, rs | movi rd, i
| bgt rs, rt, f | bgti rs, i , f
| alloc rd[rs] | ld rd, rs(i)
| st rd(i), rs | free rs

(CdHpSpec) Ψ ::= {f ! a}∗

(Assert) a ::= . . .

Fig. 3. Syntax of CAP.

Since we intend to model realistic low-level assembly code, we do not have a
“halt” instruction. In fact, termination is undesirable since it means the machine
has reached a “stuck” state where, for example, a program is trying to branch to
a non-existent code label, or access an invalid data label. We present in the next
section a system of inference rules for specifications which allow one to statically
prove that a program will never reach such a bad state.

3.2 Inference Rules

We define a set of inference rules allowing us to prove specification judgments
of the following forms:

Ψ 0 {a} P (well-formed program)
Ψ 0 C (well-formed code heap)
Ψ 0 {a} I (well-formed instruction sequence)
Programs in our assembly language are written in continuation-passing style

because there are no call/return instructions. Hence, we only specify precondi-
tions for instruction sequences (preconditions of the continuations actually serve
as the postconditions). If a given state satisfies the precondition, the sequence
of instructions will run without reaching a bad state. Furthermore, in order to
check code blocks, which are potentially mutually recursive, we require that all
labels in the code heap be associated with a precondition– this mapping is our
code heap specification, Ψ .

Well-formed code heap and programs A code heap is well-formed if the code block
associated with every label in the heap is well-formed under the corresponding
precondition. Then, a complete program is well-formed if the code heap is well-
formed, the current instruction sequence is well-formed under the precondition,
and the precondition also holds for the dynamic state.

dom(Ψ) = dom(C) Ψ 0 {Ψ(f)} C(f) ∀f ∈ dom(Ψ)
Ψ 0 C

(1)

Ψ 0 C Ψ 0 {a} I (a S)
Ψ 0 {a} (C, S, I)

(2)
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if c = then AuxStep(c, (H, R)) =
add rd, rs, rt (H, R{rd ! R(rs) + R(rt)})
addi rd, rs, i (H, R{rd ! R(rs) + i})
sub rd, rs, rt (H, R{rd ! R(rs) − R(rt)})
subi rd, rs, i (H, R{rd ! R(rs) − i})
mov rd, rs (H, R{rd ! R(rs)})
movi rd, w (H, R{rd ! w})

Fig. 4. Auxiliary state update macro.

Well-formed instructions: Pure rules The inference rules for instruction se-
quences can be divided into two categories: pure rules, which do not interact
with the data heap, and impure rules, which deal with access and modification
of the data heap.

The structure of many of the pure rules is very similar. They involve showing
that for all states, if an assertion a holds, then there exists an assertion a′
which holds on the state resulting from executing the current command and,
additionally, the remainder of the instruction sequence is well-formed under a′.
We use the auxiliary state update macro defined in Figure 4 to collapse the rules
for arithmetic instructions into a single schema. For control flow instructions,
we instead require that if the current assertion a holds, then the precondition of
the label that is being jumped to must also be satisfied.

c ∈ {add, addi, sub, subi, mov, movi}
∀H. ∀R. a (H, R)⊃a′ (AuxStep(c, (H, R))) Ψ 0 {a′} I

Ψ 0 {a} c; I
(3)

∀H. ∀R. (R(rs) ≤ R(rt))⊃a (H, R)⊃a′ (H, R)
∀H. ∀R. (R(rs) > R(rt))⊃a (H, R)⊃a1 (H, R)
Ψ 0 {a′} I Ψ(f) = a1

Ψ 0 {a} bgt rs, rt, f; I
(4)

∀H. ∀R. (R(rs) ≤ i)⊃a (H, R)⊃a′ (H, R)
∀H. ∀R. (R(rs) > i)⊃a (H, R)⊃a1 (H, R)
Ψ 0 {a′} I Ψ(f) = a1

Ψ 0 {a} bgti rs, i , f; I
(5)

∀S. a S⊃a1 S where Ψ(f) = a1

Ψ 0 {a} jd f
(6)

∀H. ∀R. a (H, R)⊃a1 (H, R) where Ψ(R(r)) = a1

Ψ 0 {a} jmp r
(7)
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(C, (H, R), I) ,−→ P where
if I = then P =
jd f (C, (H, R), I

′) where C(f) = I
′

jmp r (C, (H, R), I
′) where C(R(r)) = I

′

bgt rs, rt, f; I
′ (C, (H, R), I

′) when R(rs) ≤ R(rt); and
(C, (H, R), I

′′) when R(rs) > R(rt) where C(f) = I
′′

bgti rs, i , f; I
′ (C, (H, R), I

′) when R(rs) ≤ i ; and
(C, (H, R), I

′′) when R(rs) > i where C(f) = I
′′

alloc rd[rs]; I
′ (C, (H′, R{rd ! l}), I

′)
where R(rs) = i , H

′ = H{l ! , . . . , l + i − 1 ! }
and {l, . . . , l + i − 1} ∩ dom(H) = ∅

free rs; I
′ (C, (H′, R), I

′) where ∀l ∈ dom(H′).H′(l) = H(l),
R(rs) ∈ dom(H), and dom(H′) = dom(H) − R(rs)

ld rd, rs(i); I
′ (C, (H, R{rd ! H(R(rs) + i)}), I

′)
where (R(rs) + i) ∈ dom(H)

st rd(i), rs; I
′ (C, (H{R(rd) + i ! R(rs)}, R), I

′)
where (R(rd) + i) ∈ dom(H)

c; I
′ for remaining cases of c (C, AuxStep(c, (H, R)), I

′)

Fig. 5. Operational semantics.

Well-formed instructions: Impure rules As mentioned previously, these rules
involve accessing or modifying the data heap.

∀H. ∀R. a (H, R)⊃a′ (H{l ! , . . . , l + i − 1 ! }, R{rd ! l})
where R(rs) = i and {l, . . . , l + i − 1} ∩ dom(H) = ∅
Ψ 0 {a′} I

Ψ 0 {a} alloc rd[rs]; I
(8)

∀H. ∀R. a (H, R)⊃((R(rs) + i) ∈ dom(H)) ∧ (a′ (H, R{rd ! H(R(rs) + i)}))
Ψ 0 {a′} I

Ψ 0 {a} ld rd, rs(i); I
(9)

∀H. ∀R. a (H, R)⊃((R(rd) + i) ∈ dom(H)) ∧ (a′ (H{R(rd) + i ! R(rs)}, R))
Ψ 0 {a′} I

Ψ 0 {a} st rd(i), rs; I
(10)

∀H. ∀R. a (H, R)⊃(R(rs) ∈ dom(H)) ∧ (a′ (H′, R))
where dom(H′) = dom(H) − R(rs) and ∀l ∈ dom(H′).H′(l) = H(l)

Ψ 0 {a′} I

Ψ 0 {a} free rs; I
(11)

3.3 Soundness

We establish the soundness of these inference rules with respect to the opera-
tional semantics of the machine following the syntactic approach of proving type
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soundness [21]. From “Type Preservation” and “Progress” lemmas (proved by
induction on I), we can guarantee that given a well-formed program, the current
instruction sequence will be able to execute without getting “stuck.” Further-
more, at the point when the current instruction sequence branches to another
code block, the machine state will always satisfy the precondition of that block.

Lemma 1 (Type Preservation). If Ψ & {a} (C, S, I) and (C, S, I) $−→ P, then
there exists an assertion a′ such that Ψ & {a′} P.

Lemma 2 (Progress). If Ψ & {a} (C, S, I), then there exists a program P such
that (C, S, I) $−→ P.

Theorem 1 (Soundness). If Ψ & {a} (C, S, I), then there exists a program P

such that (C, S, I) $−→ P, and
– if (C, S, I)$−→∗(C, S

′, jd f), then Ψ(f) S
′;

– if (C, S, I)$−→∗(C, (H, R), jmp rd), then Ψ(R(rd)) (H, R);
– if (C, S, I)$−→∗(C, (H, R), (bgt rs, rt, f)) and R(rs) > R(rt), then

Ψ(f) (H, R);
– if (C, S, I)$−→∗(C, (H, R), (bgti rs, i , f)) and R(rs) > i , then Ψ(f) (H, R).

It should be noted here that this soundness theorem establishes more than
simple type safety. In addition to that, it states that whenever we jump to a
block of code in the heap, the specified precondition of that code (which is an
arbitrary assertion) will hold.

4 Certified Dynamic Storage Allocation

Equipped with CAP, we are ready to build the certified library. In particular,
we provide provably correct implementation for the library routines free and
malloc. The main difficulties involved in this task are: (1) to give precise yet
general specifications to the routines; (2) to prove as theorems the correctness of
the routines with respect to their specifications; (3) the specifications and theo-
rems have to be modular so that they can interface with user programs. In this
section, we discuss these problems for free and malloc respectively. From now
on, we use the word “specification” in the wider sense, meaning anything that
describes the behavior of a program. To avoid confusion, we call the language
construct Ψ a code heap spec, or simply spec.

Before diving into certifying the library, we define some assertions related to
memory blocks and the free list as shown in Figure 6. These definitions make
use of some basic operators (which we implement as shorthands using primitive
constructs) commonly seen in separation logic [17,16]. In particular, emp asserts
that the heap is empty; e $→e′ asserts that the heap contains one cell at address
e which contains e′; and separating conjunction p*q asserts that the heap can
be split into two disjoint parts in which p and q hold respectively.

Memory block (MBlk p q s) asserts that the memory at address p is preceded
by a pair of words: the first word contains q, a (possibly null) pointer to another
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MBlk p q s
≡ (p > 2) ∧ (s > 2) ∧

(p − 2 ,→q)*(p − 1 ,→s)
*(p, . . . , p + s − 3 ,→ , . . . , )

MBlkLst 0 p q
≡ emp∧(p = q)

MBlkLst (n + 1) p q
≡ ∃p′.(MBlk (p + 2) p′ )

*(MBlkLst n p′ q)
∧(p < p′ ∨ p′ = nil)

EndL flist p q
≡ ((p = nil)⊃(MBlkLst 0 flist q))

∧(p .= nil
⊃∃n. ((MBlkLst n flist p)

∗(MBlk (p + 2) q )
∧(p < q ∨ q = nil)))

MidL flist p q
≡ ∃n.(EndL flist p q)

*(MBlkLst n q nil)

Good flist
≡ ∃n.(MBlkLst n flist nil)

∀p. ∀q. (MidL flist p q)⊃(Good flist)

p’

...

q

nil

MBlk p q s q s ... ...

p−1 p p+s−3p−2

...

flist

p

...

p

q

...

q

flist

p

MBlkLst n p q

EndL flist p q

MidL flist p q

Fig. 6. Assertions on free list.

memory block, and the second word contains the size of the memory block itself
(including the two-word header preceding p).

Memory block list (MBlkLst n p q) models an address-ordered list of blocks.
n is the number of blocks in the list, p is the starting pointer and q is the
ending pointer. This assertion is defined inductively and is a specialized version
of the singly-linked list introduced by Reynolds [17,16]. However, unlike the
somewhat informal definition of singly-linked list, MBlkLst has to be defined
formally for mechanical proof-checking. Thus we use a Coq inductive definition
for this purpose. In contrast, if the assertion language is defined syntactically,
inductive definitions have to be defined in the assertion language, which is not
shown in previous work.

A list with ending block (EndL flist p q) is defined as a list flist of memory
blocks with p pointing at the last block whose forward pointer is q. In the special
case that flist is an empty list, p and q are nil. (MidL flist p q) models a list
with a block B in the middle, where the list starts from flist, and the block B is
specified by the position p and the forward pointer q. This assertion is defined as
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the separating conjunction of a list with ending block B and a null-terminated
list starting from the forward pointer of B.

Finally we define a good free list (Good) as a null-terminated memory block
list. It is easy to show the relation between MidL and Good as described.

free Putting aside the syntax for the moment, a specification which models the
expected behavior of free can be written as the following Hoare triple:

{P RE} free(fptr) {P OST };
where P RE ≡ P red ∗ (MBlk fptr ) ∗ (Good flist)

P OST ≡ P red ∗ (Good flist)

Assertion PRE states the precondition. It requires that the heap can be sep-
arated into three disjoint parts, where fptr points to a memory block to be
freed; flist points to a good free list; and the remaining part satisfies the user
specified assertion Pred. Assertion POST states the postcondition. Since the
memory block is placed into the free list, the heap now can be separated into
two disjoint parts: flist still points to a good free list, and the remaining part
of the heap still satisfies Pred because it is untouched.

Note that this does not totally specify all the behaviors of free. For example,
it is possible to add in the postcondition that the memory block that fptr pointed
to is now in the free list. However, this is irrelevant from a library user’s point
of view. Thus we favor the above specification, which guarantees that free does
not affect the remaining part of the heap.

Now we write this specification in CAP, where programs are written in
continuation-passing style. Before free completes its job and jumps to the return
pointer, the postcondition should be established. Thus the postcondition can be
interpreted as the precondition of the code referred to by the return pointer.
Suppose r0 is the return pointer, a valid library call to free should require that
POST implies Ψ(R(r0)) for all states (which we write as POST =⇒Ψ(R(r0))).
In fact, this condition is required for type-checking the returning code of free
(i.e., jmp r0). As a library routine, free is expected to be used in various pro-
grams with different code heap specs (Ψ). So the above condition has to be
established by the user with the actually knowledge of Ψ . When proving the
well-formedness of free, this condition is taken as a premise.

At an assembly-level, most non-trivial programs are expressed as multiple
code blocks connected together with control flow instructions (jd, jmp and bgt).
Type-checking these control flow instructions requires similar knowledge about
the code heap spec Ψ . For instance, at the end of the code block free, an asser-
tion Aiter is established about the current state, and the control is transferred
to the code block iter with a direct jump. When type-checking this direct jump
(i.e., jd iter) against the assertion Aiter, the inference rule 6 requires that Aiter

implies Ψ(iter) for all states. These requirements are also taken as premises in
the well-formedness theorem of free. Thus the specification of free is actually
as follows:

∀P red. ∀Ψ. ∀f. (P OST =⇒Ψ(f)) ∧ (Aiter =⇒Ψ(iter))
⊃Ψ 0 {P RE ∧ R(r0) = f} C(free)
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where C(free) is the code block labeled free, r0 holds the return location,
and universally quantified Pred occurs inside the macros PRE and POST as
defined before. This is defined as a theorem and formally proved in Coq.

Following similar ideas, the well-formedness of all the other code blocks im-
plementing the library routine free are also modeled and proved as theorems,
with the premises changed appropriately according to which labels they refer to.

Using the Coq proof-assistant, proving these theorems is not difficult. Pure
instructions only affect the register file; they are relatively easy to handle. Impure
instructions affect the heap. Nonetheless, commonalities on similar operations
can be factored out as lemmas. For instance, writing into the “link” field of a
memory block header occurs in various places. By factoring out this behavior as
a lemma and applying it, the proof construction becomes simple routine work.
The only tricky part lies in proving the code which performs coalescing of free
blocks. This operation essentially consists of two steps: one to modify the size
field; the other to combine the blocks. No matter which one is performed first,
one of the blocks has to be “broken” from being a valid memory block as required
by MBlk. This behavior is hard to handle in conventional type systems, because
it tends to break certain invariants captured by the type system.

In a companion technical report [22] we give the routine free written in CAP.
This program is annotated with assertions at various program points. It contains
the spec templates (the assertions at the beginning of every code block), and can
be viewed as an outline of the proof. In this program, variables are used instead
of register names for ease of understanding. We also assume all registers to be
caller-saved, so that updating the register file does not affect the user customized
assertion Pred. Typically relevant states are saved in activation records in a stack
when making function calls, and Pred would be dependent only on the stack.
In the current implementation, we have not yet provided certified activation
records; instead, we simply use different registers for different programs.

A certified library routine consists of both the code and the proof. Accord-
ingly, the interface of such a routine consists of both the signature (parameters)
and the spec templates (e.g., PRE,POST ). When the routine is used by a user
program, both the parameters and the spec templates should be instantiated
properly. The well-formedness of free is also a template which can be applied
to various assertion Pred, code heap spec Ψ and returning label f . If a user pro-
gram contains only one call-site to free, the corresponding assertion for free
should be used in Ψ . However, if a user program contains multiple call-sites to
free, a “sufficiently weak” assertion for free must be constructed by building a
disjunction of all the individually instantiated assertions. The following derived
Rule 12 (which is proved by induction on I), together with the theorem for the
well-formedness of free, guarantees that the program type-checks.

Ψ 0 {a1} I Ψ 0 {a2} I

Ψ 0 {a1 ∨ a2} I
(12)
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malloc Similarly as for free, an informal specification of malloc can be de-
scribed as follows:

{P RE} malloc(nsize, mptr) {P OST };
where P RE ≡ P red ∗ (Good flist) ∧ (nsize = s0 > 0)

P OST ≡ P red′ ∗ (Good flist) ∗ (MBlk mptr s) ∧ (s0 + 2 ≤ s)

The precondition PRE states that flist points to a good free list, user cus-
tomized assertion Pred holds for the remaining part of the heap, and the re-
quested size nsize is larger than 0. The postcondition POST states that part
of the heap is the newly allocated memory block pointed to by mptr whose size
is at least the requested one, flist still points to a good free list, and another
assertion Pred′ holds for the remaining part of the heap. Pred′ may be different
from Pred because malloc modifies register mptr. The relation between these
two assertions is described by SIDE as follows:

SIDE ≡ ∀(H, R). P red (H, R)⊃P red′ (H, R{mptr ! })

Typically, Pred does not depend on mptr. So Pred′ is the same as Pred and
the above condition is trivially established.

To type-check the control-flow instructions of routine malloc without know-
ing the actual code heap spec Ψ , we add premises to the well-formedness theorem
of malloc similarly as we did for free. The specification in CAP is as follows:

∀P red. ∀P red′. ∀s0. ∀Ψ. ∀f. SIDE ∧ (P OST =⇒Ψ(f)) ∧ (Ainit =⇒Ψ(init))
⊃Ψ 0 {P RE ∧ R(r1) = f} C(malloc)

where C(malloc) is the code block labeled malloc, universally quantified Pred,
Pred′ and s0 occurs inside the macros PRE, POST and SIDE, init is the label
of a code block that malloc refers to, and Ainit is the assertion established when
malloc jumps to init. Because malloc calls free during its execution, we use
a different register r1 to hold the return location for routine malloc, due to the
lack of certified activation records. The well-formedness of all the other code
blocks implementing routine malloc are modeled similarly.

Proving these theorems is not much different than proving those of free. A
tricky part is on the splitting of memory blocks. Similar to coalescing, splitting
temporarily breaks certain invariants; thus it is hard to handle in conventional
type systems. The annotated malloc routine in CAP is shown in the companion
technical report [22] as an outline of the proof.

5 Example: Copy Program

With the certified implementation (i.e., code and proof) of free and malloc,
we now implement a certified program copy. As shown in Figure 7, this copy
program takes a pointer to a list as the argument, makes a copy of the list, and
disposes the original one.

Certifying the copy program involves the following steps: (1) write the plain
code; (2) write the code heap spec; (3) prove the well-formedness of the code with
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list* copy (list* src) {
target = prev = nil;
while (src<>nil) {

p = malloc(2); \\ allocate for a new element
p->data = src->data, p->link = src->link; \\ copy an element
old = src, src = src->link, free(old); \\ dispose old one
if (prev == nil) {target = p, prev = p}
else {prev->link = p, prev=p} \\ link in new element

}
return target;

}

Fig. 7. Pseudo code of copy

respect to the spec, with the help of the library proofs. The companion technical
report [22] shows the copy program with annotations at various program points,
as well as discussions about the assertions used to handle the list data structure.

The spec for the code blocks that implement the copy program depends
on what property one wants to achieve. In our example, we specify the partial
correctness that if copy ever completes its task (by jumping to halt), the result
list contains the same sequence as the original one.

We get the specs of the library blocks by instantiating the spec templates
of the previous section with appropriate assertion Pred. The only place where
malloc is called is in block nxt0 of copy. Inspecting the assertion at that place
and the spec template, we instantiate Pred appropriately to get the actual spec.
Although free is called only once in program copy (in block nxt1), it has another
call-site in block more of malloc. Thus for any block of free, there are two
instantiated specs, one customized for copy (A1) and the other for malloc (A2).
The actual spec that we use is the disjunction of these two (A1 ∨ A2).

The well-formedness of the program can be derived from the well-formedness
of all the code blocks. We follow the proof outline [22] to handle the blocks of
copy. For the blocks of routine malloc, we directly import their well-formedness
theorems described in the previous section. Proving the premises of these the-
orems (e.g., Ainit =⇒ Ψ(init)) is trivial (e.g., Ainit is exactly Ψ(init)). For
routine free whose spec has a disjunction form, we apply Rule 12 to break up
the disjunction and apply the theorems twice. Proving the premises of these the-
orems involves or-elimination of the form A1 =⇒ A1 ∨ A2, which is also trivial.
We refer interested readers to our implementation [19] for the exact details.

6 Related Work and Future Work

Dynamic storage allocation Wilson et al. [20] categorized allocators based on
strategies (which attempt to exploit regularities in program behavior), place-
ment policies (which decide where to allocate and return blocks in memory),
and mechanisms (which involve the algorithms and data structures that im-
plement the policy). We believe that the most tricky part in certifying various
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allocators is on the low-level mechanisms, rather than the high-level strategies
and policies. Most allocators share some subsidiary techniques, such as splitting
and coalescing. Although we only provided a single allocation library implement-
ing a particular policy, the general idea used to certify the techniques of splitting
and coalescing can be applied to implement other policies.

Hoare logic. Our logic reasonings about memory properties directly follow
Reynolds’ separation logic [17,16]. However, being at an assembly level, CAP
has some advantages in the context of mechanical proof-checking. CAP provides
a fixed number of registers. So the dynamic state is easier to model than using
infinite number of variables, and programs are free of variable shadowing. Being
at a lower-level implies that the compiler is easier to build, hence it engages a
smaller Trusted Computing Base (TCB). Defining assertions as CiC terms of
type State→Prop, as opposed to defining assertions syntactically, is also crucial
for mechanical proof-checking and thus for PCC. Another difference is that we
establish the soundness property using a syntactic approach.

Filliâtre [4,5] developed a software certification tool Why which takes an-
notated programs as input and outputs proof obligations based on Hoare logic
for proof assistants Coq and PVS. It is possible to apply Why in the PCC
framework, because the proof obligation generator is closely related to the veri-
fication condition generator of PCC. However, it is less clear how to apply Why
to Foundational PCC because the proof obligation generator would have to be
trusted. On the other hand, if Why is applied to certify memory management, it
is very likely to hit problems such as expressing inductively defined assertions.
Our treatment of assertions in mechanical proof-checking can be used to help.

Certifying compilation. This paper is largely complementary to existing work on
certifying compilation [14,11,2,1]. Existing work have only focused on programs
whose safety proofs can be automatically generated. On contrast, we support
general properties and partial program correctness, but we rely on the pro-
grammer to construct the proof. Nevertheless, we believe this is necessary for
reasoning about program correctness. Automatic proof construction is infeasible
because the problem in general is undecidable. Our language can be used to for-
mally present the reasonings of a programmer. With the help of proof-assistants,
proof construction is not difficult, and the result can be mechanically checked.

Future work. Exploring the similarity appeared between Hoare-logic systems and
type systems, we intend to model types as assertion macros in CAP to ease the
certifying task. For instance, a  useful macro is the type of a  memory block
(MBlk). With lemmas (c.f., typing rules) on how this macro interacts with com-
mands, users can propagate it conveniently. If one is only interested in common
properties, (e.g., operations are performed only on allocated blocks), it is promis-
ing to achieve proof construction with little user directions, or automatically.

In the future, it would be interesting to develop high-level (e.g., C-like or
Java-like) surface languages with similar explicit specifications so that programs
are written at a  higher-level. “Proof-preserving” compilation from those lan-
guages to CAP may help retain a small trusted computing base.
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7 Conclusion

Existing certifying compilers have only focused on programs whose safety proofs
can be automatically generated. In complementary to these work, we explored in
this paper how to certify general properties and program correctness in the PCC
framework, letting programmers provide proofs with help of proof assistants. In
particular, we presented a certified library for dynamic storage allocation — a
topic hard to handle using conventional type systems. The logic reasonings on
memory management largely follow separation logic. In general, applying Hoare-
logic reasonings in the PCC framework yields interesting possibilities.
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Abstract. This paper concerns mechanisms for maintaining the value of an in-
strumentation predicate (a.k.a. derived predicate or view), defined via a logical
formula over core predicates, in response to changes in the values of the core
predicates. It presents an algorithm for transforming the instrumentation predi-
cate’s defining formula into a predicate-maintenance formula that captures what
the instrumentation predicate’s new value should be.

This technique applies to program-analysis problems in which the semantics
of statements is expressed using logical formulas that describe changes to core-
predicate values, and provides a way to reflect those changes in the values of the
instrumentation predicates.

1 Introduction

This paper addresses a fundamental challenge in applying abstract interpretation, namely,

Given the concrete semantics for a language and a desired abstraction, how does
one create the associated abstract transformers?

The problem that we address arises in program-analysis problems in which the semantics
of statements is expressed using logical formulas that describe changes to core-predicate
values. When instrumentation predicates (defined via logical formulas over the core
predicates) have been introduced to refine an abstraction, the challenge is to reflect the
changes in core-predicate values in the values of the instrumentation predicates [8,5,
14,18,3]. The algorithm presented in this paper provides a way to create formulas that
maintain correct values for the instrumentation predicates, and thereby provides a way
to generate, completely automatically, the part of the transfer functions of an abstract
semantics that deals with instrumentation predicates. The algorithm runs in time linear
in the size of the instrumentation predicate’s defining formula.

This research was motivated by our work on static analysis based on 3-valued logic
[18]; however, any analysis method that relies on logic—2-valued or 3-valued—to ex-
press a program’s semantics may be able to benefit from these techniques.

In our setting, we consider two related logics: an ordinary 2-valued logic, as well as
a related 3-valued logic. A memory configuration, or store, is modeled by what logicians
call a logical structure; an individual of the structure’s universe either models a single
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Finite Differencing of Logical Formulas for Static Analysis 381

memory element or, in the case of a summary individual, it models a collection of memory
elements. A run of the analyzer carries out an abstract interpretation to collect a set of
structures at each program point. This involves finding the least fixed point of a certain
set of equations. When the fixed point is reached, the structures that have been collected
at program point P describe a superset of all the execution states that can occur at P .
To determine whether a property always holds at P , one checks whether it holds in all
of the structures that were collected there. Instantiations of this framework are capable
of establishing nontrivial properties of programs that perform complex pointer-based
manipulations of a priori unbounded-size heap-allocated data structures. The TVLA
system (Three-Valued-Logic Analyzer) implements this approach [11,1].

Summary individuals play a crucial role. They are used to ensure that abstract de-
scriptors have an a priori bounded size, which guarantees that a fixed-point is always
reached. However, the constraint of working with limited-size descriptors implies a loss
of information about the store. Intuitively, some concrete individuals “lose their iden-
tity” when they are grouped together with other individuals in one summary individual.
Moreover, a property can be true for some concrete individuals of the group but false
for other individuals. It is for this reason that 3-valued logic is used; uncertainty about
a property’s value is captured by means of the third truth value, 1/2.

An advantage of using 2- and 3-valued logic as the basis for static analysis is that the
language used for extracting information from the concrete world and the abstract world
is identical: every syntactic expression—i.e., every logical formula—can be interpreted
either in the 2-valued world or the 3-valued world. The consistency of the 2-valued and 3-
valued viewpoints is ensured by a basic theorem that relates the two logics. This provides
a partial answer to the fundamental challenge posed above: formulas that define the
concrete semantics when interpreted in 2-valued logic define a sound abstract semantics
when interpreted in 3-valued logic [18].

Unfortunately, unless some care is taken in the design of an analysis, there is a
danger that as abstract interpretation proceeds, the indefinite value 1/2 will become per-
vasive. This can destroy the ability to recover interesting information from the 3-valued
structures collected (although soundness is maintained). A key role in combating indefi-
niteness is played by instrumentation predicates, which record auxiliary information in
a logical structure. They provide a mechanism for the user to fine-tune an abstraction: an
instrumentation predicate, which is defined by a logical formula over the core predicate
symbols, captures a property that an individual memory cell may or may not possess.
In general, adding additional instrumentation predicates refines the abstraction, defining
a more precise analysis that is prepared to track finer distinctions among stores. This
allows more properties of the program’s stores to be identified.

From the standpoint of the concrete semantics, instrumentation predicates represent
cached information that could always be recomputed by reevaluating the instrumenta-
tion predicate’s defining formula in the local state. From the standpoint of the abstract
semantics, however, reevaluating a formula in the local (3-valued) state can lead to a
drastic loss of precision. To gain maximum benefit from instrumentation predicates, an
abstract-interpretation algorithm must obtain their values in some other way.

This problem, the instrumentation-predicate-maintenance problem, will be solved
by incremental computation. The new value that instrumentation predicate p should have
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after a transition via abstract state transformer τ from state σ to σ′ will be computed
incrementally from the known value of p in σ.

The contributions of the work reported in this paper include the following:

– We give an algorithm for the predicate-maintenance problem; it creates a predicate-
maintenance formula by applying a finite-differencing transformation to p’s defining
formula. The algorithm runs in time linear in the size of the defining formula.

– We present experimental evidence that our technique is an effective one, at least for
the analysis of programs that manipulate acyclic singly-linked lists, doubly-linked
lists, and binary trees, and for certain sorting programs. In particular, the predicate-
maintenance formulas produced automatically using our approach are as effective
for maintaining precision as the best available hand-crafted ones.

– This work is related to the view-maintenance problem in databases. Compared with
that work, the novelty is the ability to create predicate-maintenance formulas that
are suitable for use when abstraction has been performed.

The remainder of the paper is organized as follows: Sect. 2 introduces terminology
and notation. Sect. 3 defines the predicate-maintenance problem. Sect. 4 presents a
method for generating maintenance formulas for instrumentation predicates. Sect. 5
discusses extensions to handle instrumentation predicates that use transitive closure.
Sect. 6 presents experimental results. Sect. 7 discusses related work.

2 Background

2-Valued First-Order Logic with Transitive Closure. The syntax of first-order for-
mulas with equality and reflexive transitive closure is defined as follows:

Definition 1. A formula over the vocabulary P = {eq, p1, . . . , pn} is defined by

p ∈ P ϕ ::= 0 | 1 | p(v1, . . . , vk)
ϕ ∈ Formulas | (¬ϕ1) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (∃v : ϕ1) | (∀v : ϕ1)
v ∈ Variables | (RTC v′

1, v′
2 : ϕ1)(v1, v2)

The set of free variables of a formula is defined as usual. “RTC” stands for reflexive
transitive closure. In ϕ ≡ (RTC v′

1, v′
2 : ϕ1)(v1, v2), if ϕ1’s free-variable set is V , we

require v1, v2 �∈ V . The free variables of ϕ are (V − {v′
1, v′

2}) ∪ {v1, v2}.

We use several shorthand notations: (v1 = v2) def= eq(v1, v2); (v1 �=v2) def=
¬eq(v1, v2); and for a binary predicate p, p∗(v1, v2) def= (RTC v′

1, v′
2 : p(v′

1, v′
2))(v1, v2).

We also use a C-like syntax for conditional expressions: ϕ1 ? ϕ2 : ϕ3.1 The order of
precedence among the connectives, from highest to lowest, is as follows: ¬, ∧, ∨, ∀,
and ∃. We drop parentheses wherever possible, except for emphasis.

1 In 2-valued logic, one can think of ϕ1 ? ϕ2 : ϕ3 as a shorthand for (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3).
In 3-valued logic, it becomes a shorthand for (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3).
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Definition 2. A 2-valued interpretation over P is a 2-valued logical structure S =
〈US , ιS〉, where US is a set of individuals and ιS maps each predicate symbol p of arity
k to a truth-valued function: ιS(p) : (US)k → {0, 1}. In addition, (i) for all u ∈ US ,
ιS(eq)(u, u) = 1, and (ii) for all u1, u2 ∈ US such that u1 and u2 are distinct individuals,
ιS(eq)(u1, u2) = 0.

An assignment Z is a function that maps variables to individuals (i.e., it has the
functionality Z : {v1, v2, . . . } → US). When Z is defined on all free variables of a
formula ϕ, we say that Z is complete for ϕ. (We generally assume that every assignment
that arises in connection with the discussion of some formula ϕ is complete for ϕ.)

The (2-valued) meaning of a formula ϕ, denoted by [[ϕ]]S2 (Z), yields a truth value in
{0, 1}; it is defined inductively as follows:

[[0]]S2 (Z) = 0 [[ϕ1 ∧ ϕ2]]S2 (Z) = min([[ϕ1]]S2 (Z), [[ϕ2]]S2 (Z))
[[1]]S2 (Z) = 1 [[ϕ1 ∨ ϕ2]]S2 (Z) = max([[ϕ1]]S2 (Z), [[ϕ2]]S2 (Z))

[[p(v1, . . . , vk)]]S2 (Z) = ιS(p)(Z(v1), . . . , Z(vk)) [[∃v : ϕ1]]S2 (Z) = max
u∈US

[[ϕ1]]S2 (Z[v1 �→ u])

[[¬ϕ1]]S2 (Z) = 1 − [[ϕ1]]S2 (Z) [[∀v : ϕ1]]S2 (Z) = min
u∈US

[[ϕ1]]S2 (Z[v1 �→ u])

[[(RTC v′
1, v′

2 : ϕ1)(v1, v2)]]S2 (Z)

=




1 if Z(v1) = Z(v2)

max
n ≥ 1,

u1, . . . , un+1 ∈ U,
Z(v1) = u1,

Z(v2) = un+1

n
min
i=1

[[ϕ1]]S2 (Z[v′
1 �→ ui, v′

2 �→ ui+1]) otherwise

S and Z satisfy ϕ if [[ϕ]]S2 (Z) = 1. The set of 2-valued structures is denoted by
2-STRUCT[P].

3-Valued Logic and Embedding. In 3-valued logic, the formulas that we work with
are identical to the ones used in 2-valued logic. At the semantic level, a third truth
value—1/2—is introduced to denote uncertainty.

Definition 3. The truth values 0 and 1 are definite values; 1/2 is an indefinite value.
For l1, l2 ∈ {0, 1/2, 1}, the information order is defined as follows: l1 
 l2 iff l1 = l2
or l2 = 1/2. We use l1 � l2 when l1 
 l2 and l1 �= l2. The symbol � denotes the
least-upper-bound operation with respect to 
.

Definition 4. A 3-valued interpretation over P is a 3-valued logical structure S =
〈US , ιS〉, where US is a set of individuals and ιS maps each predicate symbol p of
arity k to a truth-valued function: ιS(p) : (US)k → {0, 1/2, 1}. In addition, (i) for all
u ∈ US , ιS(eq)(u, u) � 1, and (ii) for all u1, u2 ∈ US such that u1 and u2 are distinct
individuals, ιS(eq)(u1, u2) = 0.

For an assignment Z, the (3-valued) meaning of a formula ϕ, denoted by [[ϕ]]S3 (Z),
yields a truth value in {0, 1/2, 1}. The meaning of ϕ is defined exactly as in Defn. 2, but
interpreted over {0, 1/2, 1}. S and Z potentially satisfy ϕ if [[ϕ]]S3 (Z) � 1. The set of
3-valued structures is denoted by 3-STRUCT[P].

Defn. 4 requires that for each individual u, the value of ιS(eq)(u, u) is 1 or 1/2. An
individual for which ιS(eq)(u, u) = 1/2 is called a summary individual. In the abstract-
interpretation context, a summary individual is an abstract individual, and can represent
more than one concrete individual.
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Because ϕ1 ?ϕ2 : ϕ3 is treated as a shorthand for (ϕ1 ∧ϕ2)∨(¬ϕ1 ∧ϕ3)∨(ϕ2 ∧ϕ3)
in 3-valued logic, the value of 1/2 ? V1 : V2 equals V1 � V2.

Definition 5. Let S = 〈US , ιS〉 and S′ = 〈US′
, ιS′〉 be two structures, and let

f : US → US′
be a surjective function. We say that f embeds S in S′ (denoted by

S 
f S′) if for every predicate symbol p ∈ P of arity k and for all u1, . . . , uk ∈ US ,
ιS(p)(u1, . . . , uk) 
 ιS′

(p)(f(u1), . . . , f(uk)). We say that S can be embedded in S′

(denoted by S 
 S′) if there exists a function f such that S 
f S′.

The Embedding Theorem says that if S 
f S′, then every piece of information
extracted from S′ via a formula ϕ is a conservative approximation of the information
extracted from S via ϕ. To formalize this, we extend mappings on individuals to operate
on assignments: if f : US → US′

is a function and Z : V ar → US is an assignment,
f ◦ Z denotes the assignment f ◦ Z : V ar → US′

such that (f ◦ Z)(v) = f(Z(v)).

Theorem 1. (Embedding Theorem [18, Theorem 4.9]). Let S = 〈US , ιS〉 and S′ =
〈US′

, ιS′〉 be two structures, and let f : US → US′
be a function such that S 
f S′.

Then, for every formula ϕ and complete assignment Z for ϕ, [[ϕ]]S3 (Z) 
 [[ϕ]]S
′

3 (f ◦ Z).

Program Analysis Via 3-Valued Logic. The remainder of this section summarizes the
program-analysis framework described in [18]. Stores are encoded as logical structures
in terms of a fixed collection of core predicates, C. Core predicates are part of the
underlying semantics of the language to be analyzed; they record atomic properties of
stores. For instance, Tab. 1 gives the definition of a C linked-list datatype, and lists the
predicates that would be used to represent the stores manipulated by programs that use
type List. (The core predicates are fixed for a given language; in general, different
languages require different collections of core predicates.)

Table 1. (a) Declaration of a linked-list datatype in C. (b) Core predicates used for representing
the stores manipulated by programs that use type List.

typedef struct node {
struct node *n;
int data;

} *List;

Predicate Intended Meaning
eq(v1, v2) Do v1 and v2 denote the same memory cell?
q(v) Does pointer variable q point to memory cell v?
n(v1, v2) Does the n field of v1 point to v2?

(a) (b)

Often only a restricted class of structures is used to encode stores; to exclude struc-
tures that cannot represent admissible stores, integrity constraints can be imposed. For in-
stance, in program-analysis applications, a predicate like q(v) of Tab. 1 captures whether
pointer variable q points to memory cell v; q would be given the attribute “unique”, which
imposes the integrity constraint that q can hold for at most one individual in any structure.

A concrete operational semantics is defined by specifying, for each kind of statement
st in the programming language, a structure transformer for each outgoing control-flow
graph (CFG) edge e = (st, st′). A structure transformer is specified by providing a
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collection of predicate-transfer formulas, τc,st, one for each core predicate c. These
define how the core predicates of a logical structure S that arises at st is transformed by
e to create a logical structure S′ at st′.

Abstract stores are 3-valued logical structures. Concrete stores are abstracted to
abstract stores by means of embedding functions—onto functions that map individuals
of a 2-valued structure S� to those of a 3-valued structure S. The Embedding Theorem
ensures that every piece of information extracted from S by evaluating a formula ϕ is a
conservative approximation (�) of the information extracted from S� by evaluating ϕ.

The finiteness of the abstract domain is assured by canonical abstraction, under
which each individual of a 2-valued logical structure (representing a concrete memory
cell) is mapped to an individual of a 3-valued logical structure according to the vector of
values that the concrete individual has for a user-chosen collection of unary abstraction
predicates. This mechanism ensures that each 3-valued structure is no larger than some
fixed size, known a priori.

The abstraction function on which an analysis is based, and hence the precision of the
analysis defined, can be tuned by (i) choosing to equip structures with additional instru-
mentation predicates to record derived properties, and (ii) varying which of the unary
core and unary instrumentation predicates are used as the set of abstraction predicates.
The set of instrumentation predicates is denoted by I. Each arity-k predicate symbol
p ∈ I is defined by an instrumentation-predicate definition formula ψp(v1, . . . , vk). In-
strumentation predicates may appear in the defining formulas of other instrumentation
predicates as long as there are no circular dependences. Instrumentation predicates that
involve reachability properties, which can be defined using RTC, often play a crucial
role in the definitions of abstractions. For instance, in program-analysis applications,
reachability properties from specific pointer variables have the effect of keeping disjoint
sublists summarized separately. This is particularly important when analyzing a program
in which two pointers are advanced along disjoint sublists.

For each kind of statement in the programming language, the abstract semantics
is again defined by a collection of formulas: the same predicate-transfer formula that
defines the concrete semantics, in the case of a core predicate, and, in the case of an
instrumentation predicate p, by a predicate-maintenance formula µp,st.2

Abstract interpretation collects a set of 3-valued structures at each program point. It
can be implemented as an iterative procedure that finds the least fixed point of a certain
set of equations [18]. (It is important to understand that although the analysis framework
is based on logic, it is model theoretic, not proof theoretic: the abstract interpretation
collects sets of 3-valued logical structures—i.e., abstracted models; its actions do not
rely on deduction or theorem proving.)

Fig. 1 illustrates the abstract execution of the statement y = x on a 3-valued logical
structure that represents concrete lists of length 2 or more.
The following graphical notation is used for depicting 3-valued logical structures:

– Individuals are represented by circles with names inside.
– A summary individual u has eq(u, u) = 1/2, and is represented by a double circle.

2 In [18], predicate-transfer formulas and predicate-maintenance formulas are both called
“predicate-update formulas”. Here we use separate terms so that we can refer easily to predicate-
maintenance formulas, which are the main subject of the paper.
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Structure before

unary preds. binary preds.
indiv. x y is[n]

u1 1 0 0
u 0 0 0

n u1 u
u1 0 1/2
u 0 1/2

eq u1 u
u1 1 0
u 0 1/2

x �� ��������u1
n �� 	
��
�����������u

n

��

Statement y = x

Predicate-transfer formulas
τx,y=x(v) = x(v)
τy,y=x(v) = x(v)

τn,y=x(v1, v2) = n(v1, v2)
Predicate-maintenance formula µis[n],y=x(v) = ∃ v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 �=v2

Structure after

unary preds. binary preds.
indiv. x y is[n]

u1 1 1 0
u 0 0 1/2

n u1 u
u1 0 1/2
u 0 1/2

eq u1 u
u1 1 0
u 0 1/2

x, y �� ��������u1
n �� 	
��
�����������u

n

��

is[n]

��

Fig. 1. The predicate-transfer formulas for x, y, and n express a transformation on logical structures
that corresponds to the semantics of y = x. (The predicate is[n] is discussed in Ex. 1.)

– A unary predicate p is represented by a solid arrow from p to each individual u for
which ι(p)(u) = 1, and by the absence of a p-arrow to each node u′ for which
ι(p)(u′) = 0. (If ι(p) = 0 for all individuals, the predicate name p is not shown.)

– A binary predicate q is represented by a solid arrow labeled q between each pair of
individuals ui and uj for which ι(q)(ui, uj) = 1, and by the absence of a q-arrow
between pairs u′

i and u′
j for which ι(q)(u′

i, u′
j) = 0.

– Unary and binary predicates with value 1/2 are represented by dotted arrows.

3 The Problem: Maintaining Instrumentation Predicates

The execution of a statement st transforms a logical structure S, which represents a store
that arises just before st, into a new structure S′, which represents the corresponding
store just after st executes. The structure that consists of just the core predicates of S′ is
called a proto-structure, denoted by S′

proto. The creation of S′
proto from S, denoted by

S′
proto := [[st]]3(S), can be expressed as

for each c ∈ C and u1, . . . , uk ∈ US ,

ιS′
proto(c)(u1, . . . , uk) := [[τc,st(v1, . . . , vk)]]S3 ([v1 �→ u1, . . . , vk �→ uk]). (1)

In general, if we compare the various predicates of S′
proto with those of S, some tuples

will have been added and others will have been deleted.
We now come to the crux of the matter: Suppose that ψp defines instrumentation

predicate p; how should the static-analysis engine obtain the value of p in S′?
An instrumentation predicate whose defining formula is expressed solely in terms

of core predicates is said to be in core normal form. Because there are no circular
dependences, an instrumentation predicate’s defining formula can always be put in core
normal form by repeated substitution until only core predicates remain. When ψp is in
core normal form, or has been converted to core normal form, it is possible to determine
the value of each instrumentation predicate p by evaluating ψp in structure S′

proto:
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for each u1, . . . , uk ∈ US ,

ιS′
(p)(u1, . . . , uk) := [[ψp(v1, . . . , vk)]]

S′
proto

3 ([v1 �→ u1, . . . , vk �→ uk]). (2)

Thus, in principle it is possible to maintain the values of instrumentation predicates
via Eqn. (2). In practice, however, this approach does not work very well. As ob-
served elsewhere [18], when working in 3-valued logic, it is usually possible to retain
more precision by defining a special instrumentation-predicate maintenance formula,
µp,st(v1, . . . , vk), and evaluating µp,st(v1, . . . , vk) in structure S:

for each u1, . . . , uk ∈ US ,

ιS′
(p)(u1, . . . , uk) := [[µp,st(v1, . . . , vk)]]S3 ([v1 �→ u1, . . . , vk �→ uk]). (3)

The advantage of the predicate-maintenance approach is that the results of program
analysis can be more accurate. In 3-valued logic, when µp,st is defined appropriately, the
predicate-maintenance strategy can generate a definite value (0 or 1) when the evaluation
of ψp on S′

proto generates the indefinite value 1/2.
To ensure that an analysis is conservative, however, one must also show that the

following property holds:

Definition 6. Suppose that p is an instrumentation predicate defined by formula ψp.
Predicate-maintenance formula µp,st maintains p correctly for statement st if, for all

S ∈ 2-STRUCT[P] and all Z, [[µp,st]]S2 (Z) = [[ψp]][[st]]2(S)
2 (Z).

u2

u1

u

Fig. 2. Store
in which u is
shared; i.e.,
is[n](u) = 1.

For an instrumentation predicate in core normal form, it is al-
ways possible to provide a predicate-maintenance formula that satisfies
Defn. 6 by defining µp,st as

µp,st
def= ψp[c ←↩ τc,st | c ∈ C], (4)

where ϕ[q ←↩ ϕ′] denotes the formula obtained from ϕ by replac-
ing each predicate occurrence q(w1, . . . , wk) by ϕ′{w1, . . . , wk}, and
ϕ′{w1, . . . , wk} denotes the formula obtained from ϕ′(v1, . . . , vk) by
replacing each free occurrence of variable vi by wi.

The formula µp,st defined in Eqn. (4) maintains p correctly for state-
ment st because, by the 2-valued version of Eqn. (1), [[τc,st]]S2 (Z) =

[[c]]
S′

proto

2 (Z); consequently, when µp,st of Eqn. (4) is evaluated in struc-
ture S, the use of τc,st in place of c is equivalent to using the value
of c when ψp is evaluated in S′

proto; i.e., for all Z, [[ψp[c ←↩ τc,st | c ∈ C]]]S2 (Z) =

[[ψp]]
S′

proto

2 (Z). However—and this is precisely the drawback of using Eqn. (4) to ob-
tain the µp,st—the steps of evaluating [[ψp[c ←↩ τc,st | c ∈ C]]]S2 (Z) mimic exactly those

of evaluating [[ψp]]
S′

proto

2 (Z). Consequently, when we pass to 3-valued logic, for all Z,

[[ψp[c ←↩ τc,st | c ∈ C]]]S3 (Z) yields exactly the same value as [[ψp]]
S′

proto

3 (Z) (i.e., as
evaluating Eqn. (2)). Thus, although µp,st that satisfy Defn. 6 can be obtained auto-
matically via Eqn. (4), this approach does not provide a satisfactory solution to the
predicate-maintenance problem.
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Example 1. Eqn. (5) shows the defining formula for the instrumentation predicate is[n]
(“is-shared using n fields”),

is[n](v) def= ∃ v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 �=v2, (5)

which captures whether a memory cell is pointed to by two or more pointer fields of
memory cells, e.g., see Fig. 2.

Fig. 1 illustrates how execution of the statement y = x causes the value of is[n] to
lose precision when its predicate-maintenance formula is created according to Eqn. (4).
The initial 3-valued structure represents all singly linked lists of length 2 or more in which
all memory cells are unshared. Because execution of y = x does not change the value of
core predicate n, τn,y=x(v1, v2) is n(v1, v2), and hence the formula µis[n],y=x(v) created
according to Eqn. (4) is ∃ v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 �=v2. As shown in Fig. 1, the
structure created using this maintenance formula is not as precise as we would like. In
particular, is(u) = 1/2, which means that u can represent a shared cell. Thus, the final
3-valued structure also represents certain cyclic linked lists, such as

x, y �� ��������u1
n �� ��������u2

n �� ��������u3
n �� ��������u4

n �� ��������u5��

This sort of imprecision can usually be avoided by devising better predicate-
maintenance formulas. For instance, when µis[n],y=x(v) is defined to be the formula
is[n](v)—meaning that y = x does not change the value of is[n](v)—the imprecision
illustrated in Fig. 1 is avoided (see Fig. 3). Hand-crafted predicate-maintenance formu-
las for a variety of instrumentation predicates are given in [18,11,1]; however, those
formulas were created by ad hoc methods.

Structure before

unary preds. binary preds.
indiv. x y is[n]

u1 1 0 0
u 0 0 0

n u1 u
u1 0 1/2
u 0 1/2

eq u1 u
u1 1 0
u 0 1/2

x �� ��������u1
n �� 	
��
�����������u

n

��

Statement y = x

Predicate-transfer formulas
τx,y=x(v) = x(v)
τy,y=x(v) = x(v)

τn,y=x(v1, v2) = n(v1, v2)
Predicate-maintenance formula µis[n],y=x(v) = is[n](v)

Structure after

unary preds. binary preds.
indiv. x y is[n]

u1 1 1 0
u 0 0 0

n u1 u
u1 0 1/2
u 0 1/2

eq u1 u
u1 1 0
u 0 1/2

x, y �� ��������u1
n �� 	
��
�����������u

n

��

Fig. 3. Example showing how the imprecision that was illustrated in Fig. 1 is avoided with the
predicate-maintenance formula µis[n],y=x(v) = is[n](v). (Ex. 2 shows how this is generated
automatically.)

To sum up, in past incarnations of our work, the user must supply a formula µp,st

for each instrumentation predicate p and each statement st. In effect, the user must
write down two separate characterizations of each instrumentation predicate p: (i) ψp,
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which defines p directly; and (ii) µp,st, which specifies how execution of each kind of
statement in the language affects p. Moreover, it is the user’s responsibility to ensure
that the two characterizations are mutually consistent. In contrast, with the new method
for automatically creating predicate-maintenance formulas presented in Sects. 4 and 5,
the user’s only responsibility is to define the ψp.

4 A Finite-Differencing Scheme for 3-Valued Logic

This section presents a finite-differencing scheme for creating predicate-maintenance
formulas. A predicate-maintenance formula µp,st for p ∈ I is defined in terms of two
finite-differencing operators, denoted by ∆−

st[·] and ∆+
st[·], which capture the negative

and positive changes, respectively, that execution of statement st induces in an instru-
mentation predicate’s value. The formula µp,st is created by combining p with ∆−

st[ψp]
and ∆+

st[ψp] as follows: µp,st = p ? ¬∆−
st[ψp] : ∆+

st[ψp].

evaluate
p

retrieve
stored
value

execute statement st
S

p p′′ b p′

∆–[ p]st

∆+[ p]st

evaluate
∆+[ p]stevaluate

∆–[ p]st

p ? ¬∆–[ p] : ∆+[ p]st st

S′proto

Fig. 4. How to maintain the value of ψp in 3-valued logic in response
to changes in the values of core predicates caused by the execution of
statement st.

Fig. 4 depicts how
the static-analysis en-
gine evaluates ∆−

st[ψp]
and ∆+

st[ψp] in S and
combines these val-
ues with the old value
p to obtain the de-
sired new value p′′.
The operators ∆−

st[·]
and ∆+

st[·] are defined
recursively, as shown
in Fig. 5. The defini-
tions in Fig. 5 make
use of the following
operator:

Fst[ϕ] def= ϕ ? ¬∆−
st[ϕ] : ∆+

st[ϕ]. (6)

Thus, maintenance formula µp,st can also be expressed as µp,st = Fst[p].
Eqn. (6) and Fig. 5 define a syntax-directed translation scheme that can be imple-

mented via a recursive walk over a formula ϕ. The operators ∆−
st[·] and ∆+

st[·] are mutu-
ally recursive. For instance, ∆+

st[¬ϕ1] = ∆−
st[ϕ1] and ∆−

st[¬ϕ1] = ∆+
st[ϕ1]. Moreover,

each occurrence of Fst[ϕi] contains additional occurrences of ∆−
st[ϕi] and ∆+

st[ϕi].
Note how ∆−

st[·] and ∆+
st[·] for ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2 exhibit the “convolution” pattern

characteristic of differentiation, finite-differencing, and divided-differencing.
Continuing the analogy with differentiation, it helps to bear in mind that the “in-

dependent variables” are the core predicates—which are being changed by the τc,st

formulas; the dependent variable is the value of ϕ. A formal justification of Fig. 5 is
stated later (Thm. 2); here we merely explain informally a few of the cases from Fig. 5:

∆+
st[1] = 0, ∆−

st[1] = 0. The value of atomic formula 1 does not depend on any core
predicates; hence its value is unaffected by changes in them.
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ϕ ∆+
st[ϕ] ∆−

st[ϕ]
1 0 0
0 0 0
p(w1, . . . , wk),
p ∈ C, and τp,st

is of the form
p ? ¬δ−

p,st : δ+
p,st

(δ+
p,st ∧ ¬p){w1, . . . , wk} (δ−

p,st ∧ p){w1, . . . , wk}

p(w1, . . . , wk),
p ∈ C, but τp,st

is not of the form
p ? ¬δ−

p,st : δ+
p,st

(τp,st ∧ ¬p){w1, . . . , wk} (p ∧ ¬τp,st){w1, . . . , wk}

p(w1, . . . , wk),
p ∈ I

((∃ v : ∆+
st[ϕ1]) ∧ ¬p){w1, . . . , wk} if ψp ≡ ∃ v : ϕ1

∆+
st[ψp]{w1, . . . , wk} otherwise

((∃ v : ∆−
st[ϕ1]) ∧ p){w1, . . . , wk} if ψp ≡ ∀ v : ϕ1

∆−
st[ψp]{w1, . . . , wk} otherwise

¬ϕ1 ∆−
st[ϕ1] ∆+

st[ϕ1]
ϕ1 ∨ ϕ2 (∆+

st[ϕ1] ∧ ¬ϕ2) ∨(¬ϕ1 ∧ ∆+
st[ϕ2]) (∆−

st[ϕ1] ∧ ¬Fst[ϕ2]) ∨(¬Fst[ϕ1] ∧ ∆−
st[ϕ2])

ϕ1 ∧ ϕ2 (∆+
st[ϕ1] ∧ Fst[ϕ2]) ∨(Fst[ϕ1] ∧ ∆+

st[ϕ2]) (∆−
st[ϕ1] ∧ ϕ2) ∨(ϕ1 ∧ ∆−

st[ϕ2])
∃ v : ϕ1 (∃ v : ∆+

st[ϕ1]) ∧ ¬(∃ v : ϕ1) (∃ v : ∆−
st[ϕ1]) ∧ ¬(∃ v : Fst[ϕ1])

∀ v : ϕ1 (∃ v : ∆+
st[ϕ1]) ∧(∀ v : Fst[ϕ1]) (∃ v : ∆−

st[ϕ1]) ∧(∀ v : ϕ1)

Fig. 5. Finite-difference formulas for first-order formulas.

∆−
st[ϕ1 ∧ ϕ2] = (∆−

st[ϕ1] ∧ ϕ2) ∨(ϕ1 ∧ ∆−
st[ϕ2]). Tuples of individuals removed

from ϕ1 ∧ ϕ2 are either tuples of individuals removed from ϕ1 for which ϕ2 also
holds (i.e., (∆−

st[ϕ1] ∧ ϕ2)), or they are tuples of individuals removed from ϕ2 for
which ϕ1 also holds, (i.e., (ϕ1 ∧ ∆−

st[ϕ2]).
∆+

st[∃ v : ϕ1] = (∃ v : ∆+
st[ϕ1]) ∧ ¬(∃ v : ϕ1). For ∃ v : ϕ1 to change value from 0 to

1, there must be at least one individual for which ϕ1 changes value from 0 to 1 (i.e.,
∃ v : ∆+

st[ϕ1] holds), and ∃ v : ϕ1 must not already hold (i.e., ¬(∃ v : ϕ1) holds).
∆+

st[p(w1, . . . , wk)] = (∃ v : ∆+
st[ϕ1]) ∧ ¬p, if p ∈ I and ψp ≡ ∃ v : ϕ1. This is sim-

ilar to the previous case, except that the term to ensure that ∃ v : ϕ1 does not
already hold (i.e., ¬(∃ v : ϕ1)) is replaced by the formula ¬p. Thus, when
(∃ v : ∆+

st[ϕ1]) ∧ ¬p is evaluated, the stored value of ∃ v : ϕ1, i.e., p, will be used
instead of the value obtained by reevaluating ∃ v : ϕ1.

∆+
st[p(w1, . . . , wk)] = ∆+

st[ψp{w1, . . . , wk}], if p ∈ I and ψp �≡ ∃ v : ϕ1. To charac-
terize the positive changes to p, apply ∆+

st to p’s defining formula ψp.

One special case is also worth noting: ∆+
st[v1 = v2] = 0 and ∆−

st[v1 = v2] = 0 because
the value of the atomic formula (v1 = v2) (shorthand for eq(v1, v2)) does not depend on
any core predicates; hence, its value is unaffected by changes in them.

Example 2. Consider the instrumentation predicate is[n] (“is-shared using nfields”), de-
fined in Eqn. (5). Fig. 6 shows the formulas obtained for ∆+

st[is[n](v)] and ∆−
st[is[n](v)].

For a particular statement, the formulas in Fig. 6 can usually be simplified. For
instance, for y = x, the predicate-transfer formula τn,y=x(v1, v2) is n(v1, v2); see
Fig. 1. Thus, by Fig. 5, the formulas for ∆−

y=x[n(v1, v)] and ∆+
y=x[n(v1, v)] are

both n(v1, v) ∧ ¬n(v1, v), which simplifies to 0. (In our implementation, simplifica-
tions are performed greedily at formula-construction time; e.g., the constructor for
∧ rewrites 0 ∧ p to 0, 1 ∧ p to p, p ∧ ¬p to 0, etc.) The formulas in Fig. 6 sim-
plify to ∆+

y=x[is[n](v)] = 0 and ∆−
y=x[is[n](v)] = 0. Consequently, µis[n],y=x(v) =

Fy=x[is[n](v)] = is[n](v) ? ¬0 : 0 = is[n](v). As shown in Fig. 3, this definition of
µis[n],y=x(v) avoids the imprecision that was illustrated in Ex. 1.
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∆+
st[is[n](v)] =

(
∃ v1, v2 :

(
(∆+

st[n(v1, v)] ∧ Fst[n(v2, v)])
∨ (Fst[n(v1, v)] ∧ ∆+

st[n(v2, v)])

)
∧ v1 �=v2

)
∧ ¬is[n](v)

∆−
st[is[n](v)] =




(
∃ v1, v2 :

(
(∆−

st[n(v1, v)] ∧ n(v2, v))
∨ (n(v1, v) ∧ ∆−

st[n(v2, v)])

)
∧ v1 �=v2

)

∧

¬


∃ v1, v2 :




(n(v1, v) ∧ n(v2, v) ∧ v1 �=v2)

? ¬
((

(∆−
st[n(v1, v)] ∧ n(v2, v))

∨ (n(v1, v) ∧ ∆−
st[n(v2, v)])

)
∧ v1 �=v2

)

:
(

(∆+
st[n(v1, v)] ∧ Fst[n(v2, v)])

∨ (Fst[n(v1, v)] ∧ ∆+
st[n(v2, v)])

)
∧ v1 �=v2







Fig. 6. Finite-difference formulas for the instrumentation predicate is[n](v).

For 2-STRUCTs, the correctness of the finite-differencing transformation given in
Fig. 5 is ensured by the following theorem.

Theorem 2. Let S be a structure in 2-STRUCT, and let S′
proto be the proto-structure

for statement st obtained from S. Let S′ be the structure obtained by using S′
proto as the

first approximation to S′ and then filling in instrumentation predicates in a topological
ordering of the dependences among them: for each arity-k predicate p ∈ I, ιS′

(p)
is obtained by evaluating [[ψp(v1, . . . , vk)]]S

′
2 ([v1 �→ u′

1, . . . , vk �→ u′
k]) for all tuples

(u′
1, . . . , u′

k) ∈ (US′
)k. Then for every formula ϕ(v1, . . . , vk) and complete assignment

Z for ϕ(v1, . . . , vk), [[Fst[ϕ(v1, . . . , vk)]]]S2 (Z) = [[ϕ(v1, . . . , vk)]]S
′

2 (Z).

For 3-STRUCTs, the soundness of the finite-differencing transformation given in
Fig. 5 follows from Thm. 2 by the Embedding Theorem (Thm. 1).

Malloc and Free. In [18], the modeling of storage-allocation/deallocation operations
is carried out with a two-stage statement transformer, the first stage of which changes
the number of individuals in the structure. This creates some problems for the finite-
differencing approach in establishing appropriate, mutually consistent values for pred-
icate tuples that involve the newly allocated individual. Such predicate values are
needed for the second stage, in which predicate-transfer formulas for core predicates
and predicate-maintenance formulas for instrumentation predicates are applied in the
usual fashion, using Eqns. (1) and (3).

However, there is a simple way to sidestep this problem, which is to model the
free-storage list explicitly, making the following substructure part of every 3-valued
structure:

freelist �� ��������u1
n �� 	
��
�����������u

n

��
(7)

A malloc is modeled by advancing the pointer freelist into the list, and returning
the memory cell that it formerly pointed to. A free is modeled by inserting, at the head
of freelist’s list, the cell being deallocated.

It is true that the use of structure (7) to model storage-allocation/deallocation op-
erations also causes the number of individuals in a 3-valued structure to change; how-
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ever, because the new individual is materialized using the usual mechanisms from [18]
(namely, the focus and coerce operations), values for predicate tuples that involve the
newly materialized individual will always have safe, mutually consistent values.

5 Reachability and Transitive Closure

Several instrumentation predicates that depend on RTC are shown in Tab. 2.

Table 2. Defining formulas of some instrumentation predicates that depend on RTC. (Recall that
n∗(v1, v2) is a shorthand for (RTC v′

1, v′
2 : n(v′

1, v′
2))(v1, v2).)

p IntendedMeaning ψp

t[n](v1, v2) Is v2 reachable from v1 along n fields? n∗(v1, v2)
r[z, n](v) Is v reachable from pointer variable z along n fields? ∃ v1 : z(v1) ∧ t[n](v1, v)
c[n](v) Is v on a directed cycle of n fields? ∃ v1 : n(v1, v) ∧ t[n](v, v1)

Unfortunately, finding a good way to maintain instrumentation predicates defined us-
ing RTC is challenging because it is not known, in general, whether it is possible to write
a first-order formula (i.e., without using a transitive-closure operator) that specifies how
to maintain the closure of a directed graph in response to edge insertions and deletions.
Thus, our strategy has been to investigate special cases for classes of instrumentation
predicates for which first-order maintenance formulas do exist. Whenever these do not
apply, the system falls back on safe maintenance formulas (which themselves use RTC).

In this paper, we confine ourselves to an important special case, namely, techniques
to maintain instrumentation predicates specified via the RTC of a binary formula that
defines an acyclic graph. (Some special cases for RTC of binary formulas that define
possibly-cyclic graphs will be the subject of a future paper.)

Consider a binary instrumentation predicate p, defined by ψp(v1, v2) ≡
(RTC v′

1, v′
2 : ϕ1)(v1, v2). If the graph defined by ϕ1 is acyclic, it is possible to give a

first-order formula that maintains p after the addition or deletion of a single ϕ1-edge.
The method we use is a minor modification of a method for maintaining non-reflexive
transitive closure in an acyclic graph, due to Dong and Su [7].

In the case of an insertion of a single ϕ1-edge, the maintenance formula is

Fst[p](v1, v2) = p(v1, v2) ∨(∃ v′
1, v′

2 : p(v1, v′
1) ∧ ∆+

st[ϕ1](v′
1, v′

2) ∧ p(v′
2, v2)). (8)

The new value of p contains the old tuples of p, as well as those that represent two old
paths connected with the new ϕ1-edge.

The maintenance formula to handle the deletion of a single ϕ1-edge is a bit more
complicated. We first identify the tuples of p that represent paths that might rely on the
edge to be deleted, and thus may need to be removed from p (S stands for suspicious):

S[p, ϕ1](v1, v2) = ∃ v′
1, v′

2 : p(v1, v′
1) ∧ ∆−

st[ϕ1](v′
1, v′

2) ∧ p(v′
2, v2).
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We next collect a set of p-tuples that definitely remain in p (T stands for trusted):

T [p, ϕ1](v1, v2) = (p(v1, v2) ∧ ¬S[p, ϕ1](v1, v2)) ∨ Fst[ϕ1](v1, v2). (9)

Finally, the maintenance formula for p for a single ϕ1-edge deletion is

Fst[p](v1, v2) = ∃ v′
1, v′

2 : T [p, ϕ1](v1, v′
1) ∧ T [p, ϕ1](v′

1, v′
2) ∧ T [p, ϕ1](v′

2, v2).
(10)

u1

ba

ui ui+1

uk

Fig. 7. Edge (a, b) is being deleted; ui is the last
node along path u1, . . . , ui, ui+1, . . . , uk from
which a is reachable.

Maintenance formulas (8) and (10)
maintain p when two conditions hold: the
graph defined by ϕ1 is acyclic, and the
change to the graph is a single edge addi-
tion or deletion (but not both). To see that
under these assumptions the maintenance
formula for a ϕ1-edge deletion is correct,
suppose that there is a suspicious tuple
p(u1, uk), i.e., S[p, ϕ1](u1, uk) = 1, but
there is a ϕ1-path u1, . . . , uk that does
not use the deleted ϕ1-edge. We need to
show that Fst[p](u1, uk) has the value 1.
Suppose that (a, b) is the ϕ1-edge being
deleted; because the graph defined by ϕ1
is acyclic, there is a ui �= uk that is the last node along path u1, . . . , ui, ui+1, . . . , uk

from which a is reachable (see Fig. 7). Because p(u1, ui) and p(ui+1, uk) both hold, and
because ui cannot be reachable from b (by acyclicity), neither tuple is suspicious; conse-
quently, T [p, ϕ1](u1, ui) = 1 and T [p, ϕ1](ui+1, uk) = 1. Because (ui, ui+1) is an edge
in the new (as well as the old) graph defined by ϕ1, we have Fst[ϕ1](ui, ui+1) = 1, which
means that T [p, ϕ1](ui, ui+1) = 1 as well, yielding Fst[p](u1, uk) = 1 by Eqn. (10).

Fig. 8 extends the method for generating predicate-maintenance formulas to handle
instrumentation predicates specified via the RTC of a binary formula that defines an
acyclic graph. Fig. 8 makes use of the operator T [p, ϕ1](v, v′) (Eqn. (9)), but recasts
Eqns. (8) and (10) as finite-difference expressions ∆+

st[ψp] and ∆−
st[ψp], respectively.

To know whether this special-case maintenance strategy can be applied, for each
statement st we need to know at analysis-generation time whether the change performed
at st, to the graph defined by ϕ1, always results in a single edge addition or deletion. If
in any admissible 2-STRUCT[P ] there is a unique satisfying assignment to the two free
variables of ∆+

st[ϕ1] and no assignment satisfies ∆−
st[ϕ1], then the pair ∆+

st[ϕ1], ∆−
st[ϕ1]

defines a change that adds exactly one edge to the graph. Similarly, if in any admissible
2-STRUCT[P ] there is a unique satisfying assignment to the two free variables of ∆−

st[ϕ1]
and no assignment satisfies ∆+

st[ϕ1], then the change is a deletion of exactly one edge
from the graph.

Because answering these questions is in general undecidable, we employ a conserva-
tive approximation based on a syntactic analysis of logical formulas. The analysis uses
a heuristic to determine a set of variables V such that for each admissible structure, the
variables in V have a single possible binding in the formula’s satisfying assignments.
We refer to such variables as anchored variables. For instance, if predicate q has the
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Fig. 8. Extension of the finite-differencing method from Fig. 5 to cover RTC formulas, for unit-
sized changes to an acyclic graph defined by ϕ1.

attribute “unique”, for each admissible structure there is a single possible binding for
variable v in any assignment that satisfies q(v); in a formula that contains an occurrence
of q(v), v is an anchored variable.

If both free variables of ∆+
st[ϕ1] are anchored and ∆−

st[ϕ1] = 0, then the change
adds one edge to the graph defined by ϕ1. Similarly, if both free variables of ∆−

st[ϕ1] are
anchored and ∆+

st[ϕ1] = 0, then the change removes one edge from the graph. In these
cases, the reflexive transitive closure of ϕ1 can be updated using the method discussed
above.

6 Experimental Evaluation

To evaluate the techniques presented in the paper, we extended TVLA to generate
predicate-maintenance formulas, and applied it to a test suite of 5 existing analysis
specifications, involving 26 programs (see Fig. 9).

The test programs consisted of various operations on acyclic singly-linked lists,
doubly-linked lists, binary trees, and binary-search trees, plus several sorting programs
[10]. The system was used to verify some partial-correctness properties of the test
programs. For instance, Reverse, an in-situ list-reversal program, must preserve list
properties and lose no elements; InsertSorted and DeleteSorted must preserve binary-
search-tree properties; InsertSort must return a sorted list; Good Flow must not allow
high-security input data to flow to a low-security output channel.

A few of the programs contained bugs: for instance, InsertSortBug2 is an insert-sort
program that ignores the first element of the list; BubbleBug is a bubble-sort program
with an incorrect condition for swapping elements, which causes an infinite loop if the
input list contains duplicate data values; Non-tree creates a node whose left-child and
right-child pointers point to the same subtree.
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# of non-id Performance
Category Test Program maintenance-formula

schemas instances Analysis Time (sec.)
total TC non-TC reference FD % increase

Search 2 0 2 2 0.93 0.92 -0.11
NullDeref 2 0 2 3 0.96 0.96 0.31
GetLast 3 0 3 4 1.14 1.14 -0.44

SLL DeleteAll 11 2 9 15 0.79 0.81 3.30
Shape Reverse 12 2 10 16 1.33 1.39 4.49

Analysis Create 11 2 9 21 0.73 0.76 3.68
Swap 11 2 9 27 0.77 0.81 5.47
Delete 12 2 10 39 3.78 4.81 27.15
Merge 11 2 9 64 7.69 9.34 21.50
Insert 12 2 10 72 3.67 4.47 21.69

DLL Append 15 2 13 50 7.66 8.81 14.96
Shape Delete 16 2 14 74 27.97 26.87 -3.93

Analysis Splice 15 2 13 96 3.25 3.78 16.20

Binary Non-tree 8 2 6 9 0.82 0.90 9.63
Tree InsertSorted 13 2 11 43 10.08 11.19 10.98

Shape Deutsch-Schorr-Waite 10 2 8 52 357.88 419.07 17.10
Analysis DeleteSorted 13 2 11 554 284.50 406.30 42.81

ReverseSorted 18 2 16 23 1.62 1.69 4.13
Bubble 18 2 16 80 36.08 41.88 16.07

SLL BubbleBug 18 2 16 80 34.68 39.85 14.90
Sorting InsertSortBug2 18 2 16 87 29.95 43.52 45.29

InsertSort 18 2 16 88 38.20 51.38 34.51
InsertSortBug1 18 2 16 88 109.91 134.15 22.05
MergeSorted 18 2 16 91 12.09 14.24 17.79

Information Good Flow 12 2 10 66 58.49 67.65 15.66
Flow Bad Flow 12 2 10 86 375.83 461.77 22.87

Fig. 9. Results from using hand-crafted vs. automatically generated maintenance formulas for
instrumentation predicates.

In TVLA, the operational semantics of a programming language is defined by spec-
ifying, for each kind of statement, an action schema to be used on outgoing CFG
edges. Action schemas are instantiated according to a program’s statement instances
to create the CFG. For each combination of action schema and instrumentation pred-
icate, a maintenance-formula schema must be provided. The number of non-identity
maintenance-formula schemas is reported in columns 3–5 of Fig. 9, broken down in
columns 4–5 into those whose defining formula contains an occurrence of RTC, and
those that do not. Predicate-maintenance formulas produced by finite differencing are
generally larger than the hand-crafted ones. Because this affects analysis time, the num-
ber of instances of non-identity maintenance-formula schemas is a meaningful size
measure for our experiments. These numbers appear in column 6.

For each program in the test suite, we first ran the analysis using hand-crafted main-
tenance formulas, to obtain a reference answer in which CFG nodes were annotated
with their final sets of logical structures. We then ran the analysis using automatically
generated maintenance formulas and compared the result against the reference answer.
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For all 26 test programs, the analysis using automatically generated formulas yielded
answers identical to the reference answers.

Columns 7–9 show performance data, which were collected on a 1Ghz AMD
AthlonTM workstation running Red Hat Linux version 7.1. In each case, five runs were
made; the longest and shortest times were discarded from each set, and the remaining
three averaged. (Figures do not report time spent on loading and initialization, which
is not affected by our technique. We also exclude the overhead of formula differencing,
because this is not an analysis-time cost.) The geometric mean of the slowdowns when
using the automatically generated formulas was approximately 14%, with a median of
15%, mainly due to the fact that the automatically generated formulas are larger than the
hand-crafted ones. The maximum slowdown was 45%.3 A few analyses were actually
faster with the automatically generated formulas; these speedups are either due to ran-
dom variation or are accidental benefits of subformula orderings that are advantageous
for short-circuit evaluation.

These results are encouraging. At least for abstractions of several common data
structures, they suggest that the algorithm for generating predicate-maintenance formulas
from Sect. 4 is capable of automatically generating formulas that (i) are as precise as the
hand-crafted ones, and (ii) have a tolerable effect on runtime performance.

The extended version of TVLA also uncovered several bugs in the hand-crafted for-
mulas. A maintenance formula of the form µp,st(v1, . . . , vk) = p(v1, . . . , vk) is called
an identity predicate-maintenance formula. For each identity predicate-maintenance
formula in the hand-crafted specification, we checked that (after simplification) the
corresponding generated predicate-maintenance formula was also an identity formula.
Each inconsistency turned out to be an error in the hand-crafted specification. We also
found one instance of an incorrect non-identity hand-crafted maintenance formula. (The
measurements reported in Fig. 9 are based on corrected hand-crafted specifications.)

7 Related Work

A weakness of past incarnations of TVLA has been the need for the user to define
predicate-maintenance formulas that specify how each statement affects each instrumen-
tation predicate. Recent criticisms of TVLA based on this deficiency are no longer valid
[3,15], at least for analyses that can be defined using formulas that define acyclic rela-
tions (and also for some classes of formulas that define cyclic relations, using techniques
not discussed in this paper). With the algorithm presented in Sects. 4 and 5, the user’s
responsibility is merely to write the ψp formulas; appropriate predicate-maintenance
formulas are created automatically.

Graf and Saı̈di [8] showed that theorem provers can be used to generate best abstract
transformers [4] for abstract domains that are fixed, finite, Cartesian products of Boolean
values. (The use of such domains is known as predicate abstraction; predicate abstraction
is also used in SLAM [3] and other systems [5].) In contrast, the abstract transformers
created using the algorithm described in Sects. 4 and 5 are not best transformers; however,
this algorithm uses only very simple, linear-time, recursive tree-traversal procedures,

3 We expect that some simple optimizations, such as caching the results from evaluating subfor-
mulas, could significantly reduce the slowdown.
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whereas the theorem provers used in predicate abstraction are not even guaranteed to
terminate. Moreover, our setting makes available much richer abstract domains than the
ones offered by predicate abstraction, and experience to date has been that very little
precision is lost (using only good abstract transformers) once the right instrumentation
predicates have been identified.

Paige studied how finite-differencing transformations of applicative set-former ex-
pressions could be exploited to optimize loops in very-high-level languages, such as
SETL [16]. Liu et al. used related program-transformation methods in the setting of
a functional programming language to derive incremental algorithms for various prob-
lems from the specifications of exhaustive algorithms [13,12]. In their work, the goal is
to maintain the value of a function F (x) as the input x undergoes small changes. The
methods described in Sects. 4 and 5 address a similar kind of incremental-computation
problem, except that the language in which the exhaustive and incremental versions of
the problem are expressed is first-order logic with reflexive transitive closure.

The finite-differencing operators defined in Sects. 4 and 5 are most closely related
to a number of previous papers on logic and databases: finite-difference operators for
the propositional case were studied by Akers [2] and Sharir [19]. Previous work on
incrementally maintaining materialized views in databases [9], “first-order incremental
evaluation schemes (FOIES)” [6], and “dynamic descriptive complexity” [17] has also
addressed the problem of maintaining one or more auxiliary predicates after new tuples
are inserted into or deleted from the base predicates. In databases, view maintenance is
solely an optimization; the correct information can always be obtained by reevaluating
the formula. In the abstract-interpretation context, where abstraction has been performed,
this is no longer true: reevaluating a formula in the local (3-valued) state can lead to a
drastic loss of precision. Thus, one aspect that sets our work apart from previous work
is the goal of developing a finite-differencing transformation suitable for use when
abstraction has been performed.

Not all finite-differencing transformations that are correct in 2-valued logic (i.e.,
satisfy Thm. 2), are appropriate for use in 3-valued logic. For instance, Fig. 10 presents
an alternative finite-differencing scheme for first-order formulas. In this scheme, ∆st[ϕ]
captures both the negative and positive changes to ϕ’s value. With Fig. 10, the mainte-
nance formula for instrumentation predicate p is

µp,st
def= p ⊕ ∆st[ψp], (11)

where ⊕ denotes exclusive-or. However, in 3-valued logic, we have 1/2 ⊕ V = 1/2,
regardless of whether V is 0, 1, or 1/2. Consequently, Eqn. (11) has the unfortunate
property that if p(u) = 1/2, then µp,st evaluates to 1/2 on u, and p(u) becomes “pinned”
to the indefinite value 1/2; it will have the value 1/2 in all successor structures S′, in all
successors of S′, and so on. With Eqn. (11), p(u) can never reacquire a definite value.

In contrast, the maintenance formulas created using the finite-differencing scheme
of Fig. 5 do not have this trouble because they have the form p ? ¬∆−

st[ψp] : ∆+
st[ψp].

The use of if-then-else allows p(u) to reacquire a definite value after it has been set to
1/2: if p(u) is 1/2, µp,st evaluates to a definite value on u if [[∆−

st[ψp(v)]]]S3 ([v �→ u])
is 1 and [[∆+

st[ψp(v)]]]S3 ([v �→ u]) is 0, or vice versa.
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ϕ ∆st[ϕ]
1 0
0 0
p(w1, . . . , wk), p ∈ C (τp,st ⊕ p){w1, . . . , wk}
p(w1, . . . , wk), p ∈ I ∆st[ψp]{w1, . . . , wk}
ϕ1 ⊕ ϕ2 ∆st[ϕ1] ⊕ ∆st[ϕ2]
ϕ1 ∧ ϕ2 (∆st[ϕ1] ∧ ϕ2) ⊕(ϕ1 ∧ ∆st[ϕ2]) ⊕(∆st[ϕ1] ∧ ∆st[ϕ2])
∀ v : ϕ1 (∀ v : ϕ1) ? (∃ v : ∆st[ϕ1]) : (∀ v : ϕ1 ⊕ ∆st[ϕ1])

Fig. 10. An alternative finite-differencing scheme for first-order formulas.
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Abstract. This paper presents a proof-theoretical framework that ac-
counts for the entire process of register allocation – liveness analysis is
proof reconstruction (similar to type inference), and register allocation
is proof transformation from a proof system with unrestricted variable
accesses to a proof system with restricted variable access. In our frame-
work, the set of registers acts as a “working set” of the live variables at
each instruction step, which changes during the execution of the code.
This eliminates the ad-hoc notion of “spilling”. The necessary memory-
register moves are systematically incorporated in our proof transforma-
tion process. Its correctness is a direct corollary of our construction; the
resulting proof is equivalent to the proof of the original code modulo
treatment of structural rules. The framework yields a clean and power-
ful register allocation algorithm. The algorithm has been implemented,
demonstrating the feasibility of the framework.

1 Introduction

Register allocation is a process to convert an intermediate language to another
language closer to machine code. Such a process should ideally be presented as
a language transformation system that preserves the meaning of a program –
both its static and dynamic semantics. These results will not only yield robust
and systematic compiler implementation but also serve as a basis for reasoning
about formal properties of register allocation process such as preservation of type
safety, which will complement recent results on verifying type safety of low-level
code, e.g. [11,6,7,8]. Unfortunately, however, it appear to be difficult to establish
such results for existing methods of register allocation.

The most widely used method for register allocation is graph coloring [3,2].
It first performs liveness analysis of a given code and constructs an interference
graph. It then solves the problem by “spilling” some nodes from the graph and
finding a “coloring” of the remaining subgraph. Although it is effective and
practically feasible, there seems to be no easy and natural way to show type and
semantics preservation of this process. There are also some other methods such
as [10], but we do not know any attempt to establish a framework for reasoning
about register allocation process.
� This work was partially supported by Grant-in-aid for scientific research on priority

area “informatics” A01-08, grant no:14019403.
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The goal of this work is to establish a novel framework for reasoning about
register allocation process and also for developing a practical register allocation
algorithm.

Our strategy is to present register allocation as a series of proof transforma-
tions among proof systems that represents code languages with different variable
usage. In an earlier work [8], the author has shown that a low-level code lan-
guage can be regarded as a sequent-style proof system. In that work, a proof
system deduces typing properties of a code. However, it is also possible to re-
gard each “live range” of a variable as a type, and to develop a proof system to
deduce properties of variable usage of a given code. Such a proof system must
admit structural rules, e.g. those of contraction, weakening and exchange, to
rearrange assumptions. The key idea underlying the present work is to regard
those structural rules as register manipulation instructions and to represent a
register allocation process as a proof transformation from a proof system with
implicit structural rules to one with explicit structural rules. In this paradigm,
liveness analysis is done by proof reconstruction similarly to type inference. Dif-
ferent from ordinary type inference, however, it always succeeds for any code and
returns a proof, which is the code annotated with variable liveness information.
The reconstructed proof is then transformed to another proof where allocation
and deallocation of registers, and memory-register moves are explicitly inserted.
The target machine code is extracted mechanically from the transformed proof.

Based on this idea, we have worked out the details of proof transformations
for all the stages of register allocation, and have developed a register allocation
algorithm. The correctness of the algorithm is an obvious corollary of this con-
struction itself. Since structural rules only rearrange assumptions and do not
change the computational meaning of a program, the resulting proof is equiva-
lent to the original proof representing the given source code. Moreover, as being
a proof system, our framework can be easily combined with a static type system
of low-level code. Compared with the conventional approaches based on graph
coloring, our framework is more general in that it uniformly integrate liveness
analysis and register-memory moves.

We believe that the framework can be used to develop a practical register
allocation algorithm. In order to demonstrate its practical feasibility, we have
implemented the proposed method. Although the current prototype is a “toy
implementation” and does not incorporated any heuristics, our limited experi-
mentation confirms the effectiveness of our framework.

The major source of our inspiration is various studies on proof systems in
substructural logic [9] and in linear logic [5]. They have attracted much attention
as logical foundations for “resource management”. To the author’s knowledge,
however, there does not seem to exist any attempt to develop a register allocation
method using proof theoretical or type-theoretical frameworks.

The rest of the paper is organized as follows. Section 2 defines a proof system
for a simple source language and gives a proof reconstruction algorithm. Section 3
gives a proof normalization algorithm to optimize live ranges of variables. Sec-
tion 4 presents a proof transformation to a language with a fixed number of
registers, and gives an algorithm to assign register numbers. Section 5 discusses
some properties of the method and concludes the paper.
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2 Proof System for Code Language and Liveness Analysis

To present our method, we define a simple code language. Let x, y, . . . range over
a given countably infinite set of variables and c range over a given set of atomic
constants. We consider the following instructions (ranged over by I), basic blocks
(ranged over by B), and programs (ranged over by P ).

I ::= x = y | x = c | x = y + z | if x goto l

B ::= returnx | goto l | I; B

P ::= {l : B, . . . , l : B}

There is no difficulty of adding various primitive operations other than +. It is
also a routine practice to transform a conventional intermediate language into
this representation by introducing necessary labels.

We base our development on a proof-theoretical interpretation of low-level
code [8] where each instruction I is interpreted as an inference rule of the form

Γ ′ � B : τ

Γ � I; B : τ

indicating the fact that I changes machine state Γ to Γ ′ and continues execution
of the block B. Note that a rule forms a bigger code from a smaller one, so the
direction of execution is from the bottom to the top. If the above rule is the last
inference step, then I is the first instruction to execute. The “return” instruction
corresponds to an initial sequent (an axiom in the proof system) of the form

Γ, x : τ � return x : τ

which returns the value of r to the caller. All the sequents in the same proof has
the same result type determined by this rule.

Under this interpretation, each basic block becomes a proof in a sequent
style proof system. A branching instruction is interpreted as a meta-level rule
referring to an existing proof. For this purpose, we introduce a label environment
(ranged over by L) of the form {l1 : Γ1 � τ1, . . . , ln : Γn � τn} specifying the type
of each label, and define a proof system relative to a given label environment.
We regard L as a function and write L(li) for the li’s entry in L.

To apply this framework to register allocation, we make the following two
refinements. First, we regard a type not as a property of values (such as being
an integer) but as a property of variable usage, and introduce a type variable
for each live range of a variable. Occurrences of the same variable with different
type variables imply that the variable has multiple live ranges due to multiple
assignments. Second, we regard structural rules in sequent style proof system as
(pseudo) instructions for allocation and de-allocation of variables (registers). The
left-weakening rule corresponds (in the sense of Curry-Howard isomorphism) to
the rule for discarding a register:

Γ � τ0

Γ, τ � τ0
=⇒ Γ, x : nil � B : τ0

Γ, x : τ � discard x; B : τ0
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Γ, x : t � return x : t
Γ, x : nil � B : t0

Γ, x : t � discard x; B : t0

Γ, x : t � B : t0

Γ, x : nil � x = c; B : t0

Γ, x : t1, y : t2 � B : t0

Γ, x : nil, y : t2 � x = y; B : t0

Γ, x : t1, y : t2, z : t3 � B : t0

Γ, x : nil, y : t2, z : t3 � x = y + z; B : t0

Γ, x : t1, y : t2 � B : t0

Γ, x : t3, y : t2 � x = x + y; B : t0
(similarly for x = y + x)

Γ, x : t � B : t0

Γ, x : t � if x goto l; B : t0
(if L(l) = Γ ′ � t0 such that Γ ′ ⊆ Γ, x : t.)

Γ � goto l : t (if L(l) = Γ ′ � t such that Γ ′ ⊆ Γ .)

Fig. 1. SSC(L) : proof system for liveness information

where x : nil indicates that x is not live at this point. Assuming that τ is a true
formula (inhabited type), the following valid variant of the left-contraction rule
corresponds to the rule for allocating a new register.

Γ, τ � τ0

Γ, �τ0
=⇒ Γ, x : τ � B : τ0

Γ, x : nil � alloc x; B : τ0

Later, we shall see that exchange rules represent register-memory moves.
We let t range over type variables. A type τ is either t or nil (which is

introduced to make type inference easier.) A context Γ is a mapping from a
finite set of variables to types. For contexts Γ and Γ ′, we write Γ ⊆ Γ ′ if Γ
is included in Γ ′ as sets ignoring entries of the form x : nil. Fig. 1 gives the
proof system for liveness. This is relative to a given label environment L. A
program {l1 : B1, . . . , ln : Bn} is derivable under L, if L(li) = Γi � τi and
Γi � Bi : τi for each 1 ≤ i ≤ n. We call this proof system SSC(L)1. We note
that, in this definition, alloc is implicitly included in the rules for assignment.
Furthermore, if the target variable of an assignment is one of its operands, then
the assignment rule also includes discard. For example, an inference step for
x = x + y discards the old usage of variable x and allocates a new usage for x.
This is reflected by the different type variables for x in the rule.

We develop a proof reconstruction algorithm. For this purpose, we introduce
context variables (denoted by ρ) and extend the set of contexts as follows.

γ ::= Γ | ρ · Γ

For this set of terms, we can define a unification algorithm. We say that a set of
context equations (i.e. a set of pairs of contexts) E is well formed if whenever
ρ·Γ1 and ρ·Γ2 appear in E, dom(Γ1) = dom(Γ2). Well-formedness is preserved by
unification, and therefore it is sufficient to consider well formed equations. This
1 The proof system for low-level code in [8] is called the sequential sequent calculus;

hence the name. Also note that a program in general forms a cyclic graph, and
therefore as a logical system it is inconsistent. It should be regarded as a type
system of a recursive program, but we continue to use the term proof system.
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property allows us to define a unification algorithm similarly to the standard
unification. We note that although context terms are similar to record types,
any extra machinery for record unification is not required. We can show the
following.
Theorem 1. There is an algorithm cunif such that for any set of well formed
context equations E, if cunif(E) = S then S is a unifier of E, and if there is a
unifier S of E then cunif(E) = S′ such that S = S′′ ◦ S′ for some S′′.
We omit a simple definition of cunif and its correctness proof.

Using cunif and a standard unification algorithm unify on types, we define
a proof inference algorithm Infer. To present the algorithm, we first define some
notations. We let ∆ range over proofs. In writing a proof tree, we only include,

at each inference step, the instruction that is introduced. We write
∆

(Γ � I : τ)
if ∆ is a proof whose end sequent is Γ � I : τ . If γ is a context containing x,
γ{x : τ} is the context obtained from γ by replacing the value of x with τ . An
entry constraint is a sentence of the form l � γ � τ indicating the requirement
that the block labeled with l must be a proof γ′ � τ such that γ′ ⊆ γ. Let L be a
label environment and C be a set of entry constraints. L(C) is the set of sentence
of the form γ′ � τ ′ � γ � τ obtained from C by replacing each l appearing in
C with L(l). We write x and x : τ for a sequence of variables and a sequence of
typed variables.

The algorithm Infer is given in Fig. 2. It takes a labeled set of basic blocks
{l1 : B1, . . . , ln : Bn} and returns a labeled set of proofs {l1 : ∆1, . . . , ln : ∆n}.
It first uses InfBlk to infer for each Bi its proof scheme (i.e. a proof containing
context variables) together with a set of entry constraints. InfBlk proceeds
by induction on the structure of Bi, i.e. it traverses Bi backward from the last
instruction (return or goto). When it encounters a new variable, it introduces
a fresh type variable for a new live range of the variable. When it encounters
an assignment to x, it inserts discard x, and changes the type of x to nil,
and continues toward the entry point of the code block. It generates an entry
constraint for l for each branching instruction (goto l or if x goto l.) After
having inferred proof schemes for blocks, the main algorithm gathers the set
L(C) of constraints of the form γ′ � t′ � γ � t. The set of constraints is then
solved by fixed point computation, where each iteration step picks one sentence
ρ′ · Γ ′ � t′ � ρ · Γ � t such that Γ ′ �⊆ Γ or t �= t′, and generates a minimal
substitution S such that S(ρ · Γ ) = ρ′′ · Γ ′′, S(Γ ′) ⊆ Γ ′′ and S(t′) = S(t).
Finally, the main algorithm Infer instantiates all the context variables with
empty set to obtain a ground proof.

We establish the soundness of this algorithm. Let C be a set of entry con-
straints of L; let dom(C) be the set of labels mentioned in C. We say that a
substitution S is a solution of C under L if dom(C) ⊆ dom(L) and, for each
constraint l � γ � τ in C, L(l) = γ′ � τ ′, S(γ′) ⊆ S(γ), and S(τ ′) = S(τ). From
this definition, if S is a solution of C under L, then S(L) satisfies S(C). We can
show the following lemmas.
Lemma 1. Let B be a code block. If InfBlk(B) = (C, ∆) then for any solution
(L, S) of C, S(∆) is a derivable proof under L.
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InfBlk(return x) = (∅, ρ · x : t � return x : t) (t, ρ fresh)

InfBlk(goto l) = ({l � ρ � t}, ρ � goto l : t) (t, ρ fresh)

InfBlk(x = v; B) =

let (C1,
∆0

(γ0 � I0 : t0)
) = InfBlk(B)

S = cunif(γ0, ρ1 · y : t2) (y = F V (v) ∪ {x}, and ρ1, t2 fresh)
{y1, . . . , yk} = {y′|(y′ : nil) ∈ S(γ0), y′ ∈ y}

∆1

(γ1 � τ1) = S(∆0)

∆i+1

(γi+1 � τi+1) =
∆i

γi{yi : t′
i} � discard yi : τi

(t′
i fresh for each 1 ≤ i ≤ k)

in if x ∈ F V (v) then (S(C1),
∆k+1

γk+1{x : tk+1} � x=v : S(t0)
) (tk+1 fresh)

else (S(C1),
∆k+1

γk+1{x : nil} � x=v : S(t0)
)

Solve(C) =
if there is some (ρ1 · Γ1 � τ1 � ρ2 · Γ2 � τ2) ∈ C such that Γ1 �⊆ Γ2 or τ1 �= τ2 then

let S1 = unify({(Γ1(x), Γ2(x))|x ∈ dom(Γ1) ∩ dom(Γ1), Γ1(x) �= nil} ∪ {(τ1, τ2))})
Γ3 = {x : Γ1(x)|x ∈ (dom(Γ1) \ dom(Γ2)), Γ1(x) �= nil}
S2 = [ρ3 · S1(Γ3)/ρ2] ∪ S1 (ρ3 fresh)

in Solve(S2(C)) ◦ S2

else ∅

Infer({l1 : B1, . . . , ln : Bn}) =

let (Ci,
∆i

(Γi � τi)
) = InfBlk(Bi) (1 ≤ i ≤ n)

(C, {l1 : ∆1, . . . , ln : ∆n}) = (C1 ∪ · · · ∪ Cn, {l1 : ∆1, . . . , ln : ∆n})
L = {li : γi � τi|∆i’s end sequent is of the form γi � Bi : τi}
S = Solve(L(C))
P = S({l1 : ∆1, . . . , ln : ∆n})
{ρ1, . . . , ρk} = F reeContextV ars(P )

in [∅/ρ1, . . . , ∅/ρk](P )

Fig. 2. Some of the cases of proof reconstruction algorithm

Lemma 2. If Solve(L(C)) = S and {ρ1, . . . , ρk} is the set of free context vari-
ables in S(L(C)) then [∅/ρ1, . . . , ∅/ρk] ◦ S is a solution of C under L.

Using these lemmas, we can show the following soundness theorem.

Theorem 2. If Infer({· · · , li : Bi · · ·}) = {· · · , li :
∆i

(Γi � Ii : τi)
, · · ·} then

each ∆i is a proof of Bi under the label environment {l1 : Γ1 � τ1, . . . , ln :
Γn � τn}, and therefore the program {l1 : B1, . . . , ln : Bn} is derivable under
{l1 : Γ1 � τ1, . . . , ln : Γn � τn}.
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(1) An example source code
i = 1
s = 0

loop c = i > n
if c goto finish
s = s + i
i = i + 1
goto loop

finish return s

(2) The source program obtained by decom-
posing the source code into basic blocks

{l1: i = 1; s = 0; goto l2,
l2: c = i > n; if c goto l4; goto l3,
l3: s = s + i; i = i + 1; goto l2,
l4: return s}

(3) The inferred proof schemes of blocks, and the associated constraints

l1:

ρ1{i : t2, s : t3} � goto l2 : t1

ρ1{i : t2, s : nil} � s=0 : t1

ρ1{i : nil, s : nil} � i=1 : t1 l3:

ρ3{i : t9, s : t10} � goto l2 : t8

ρ3{i : t11, s : t10} � i=i+1 : t8

ρ3{i : t11, s : t12} � s=s+i : t8

l2:

ρ2{c : t5, i : t6, n : t7} � goto l3 : t4

ρ2{c : t5, i : t6, n : t7} � if c goto l4 : t4

ρ2{c : nil, i : t6, n : t7} � c=i>n : t4 l4 : ρ4{s : t13} � return s : t13

l2 � ρ1{i : t2, s : t3} � t1 l2 � ρ3{i : t9, s : t10} � t8

l3 � ρ2{c : t5, i : t6, n : t7} � t4 l4 � ρ2{c : t5, i : t6, n : t7} � t4

(4) The reconstructed liveness proof of the program after constraint solving

l1:

{i : t2, n : t3, s : t1} � goto l2 : t1

{i : t2, n : t3} � s=0 : t1

{n : t3} � i=1 : t1 l3:

{i : t2, n : t3, s : t1} � goto l2 : t1

{i : t2, n : t3, s : t1} � i=i+1 : t1

{i : t2, n : t3, s : t1} � s=s+i : t1

l2:

{c : t4, i : t2, n : t3, s : t1} � goto l3 : t1

{c : t4, i : t2, n : t3, s : t1} � if c goto l4 : t1

{i : t2, n : t3, s : t1} � c=i>n : t1 l4 : {s : t1} � return s : t1

Fig. 3. Example code and the reconstructed liveness proof

Fig. 3 shows an example of proof reconstruction. It lists (1) a sample source
code in an informal notation, (2) the source program obtained by decomposing
the given source code into a set of basic blocks, (3) the inferred proof schemes of
the basic blocks and the associated set of constraints, and (4) the reconstructed
liveness proof after constraint resolution. In this final proof, empty entries of
the form x : nil are eliminated since they are no longer needed after the proof
reconstruction have been completed.

We will use the sample source code (1) in Fig. 3 as the running example and
will show examples of the proof transformation steps that follow (4) in Fig. 3.
The examples above and those shown later are (reformatted) actual outputs of
our prototype system.
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3 Optimizing Liveness by Inserting Weakening Rule

The above proof inference algorithm always succeeds and returns a liveness proof
for any given code. The resulting proof is, however, not the only possible one.
The next step is to optimize the inferred proof by proof normalization.

The proof system has the freedom in terms of the places where discard is
inserted. Our proof inference algorithm does not insert weakening rules (discard
instructions) except for those required by assignments. All the necessary weaken-
ing rules are implicitly included in goto and return instructions. The optimiza-
tion step is to introduce weakening rules explicitly and to move them toward the
root of the proof tree (i.e. toward the entry point of the code) so that variables
are discarded as early as possible. This is characterized as a proof normalization
process with respect to the following commutative conversion (used in the spec-
ified direction) of proofs:

...
Γ, x : nil � B : τ0

Γ, x : τ � discard x; B : τ0

Γ, x : τ � I; discard x; B : τ0

=⇒

...
Γ, x : nil � B : τ0

Γ, x : nil � I; B : τ0

Γ, x : τ � discard x; I; B : τ0

(if x �∈ I)

Fig. 4 gives the optimization algorithm Weaken. In these definitions, we used
the notations Γ |V for the restriction of Γ to a set of variables V , and Γ − V for
the context obtained from Γ by removing the assumptions of variables in V .

We write AddWeaken(∆) for the proof obtained from ∆ by adding all the
discard instructions just before each branching instruction so that the proof
conforms to the proof system where the axioms are restricted to the following:

{x : t} � return x : t. Γ � goto l : τ (if L(l) = Γ � τ)

We write ∆
∗−→ ∆′ if ∆′ is obtained from ∆ by repeated application of the

conversion rule. We can show the following.

Theorem 3. For any proof ∆, if WK(∆) = ∆′then AddWeaken(∆) ∗−→ ∆′.

Fig. 5 shows the optimized proof of the proof inferred for our running example
in Fig. 3. Since discard is a pseudo instruction and is not needed in subsequent
development, the algorithm erases them after the optimization is completed. In
Fig. 5, discard step is shown in parenthesis to indicate this fact.

Let us review the results so far obtained. The labeled set of proofs obtained
from a given program (a labeled set of basic blocks) by the combination of proof
inference (Infer) and optimization (Weaken) is a code annotated with liveness
information at each instruction step. The annotated liveness information is at
least as precise as the one obtained by the conventional method. This is seen by
observing the following property. If ∆ contains a inference step Γ � I : τ then
all the variables in Γ are live at I and the interference graph of P must contain a
completely connected subgraph of the length of Γ . Significant additional benefit
of our liveness analysis is that it is presented as a typing annotation to the
original program. This enables us to change the set of the target variables for
register allocation dynamically, to which we now turn.
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Weaken({l1 : ∆1, . . . , ln : ∆n}) =
let E = {l1 : EntryVars(∆1), . . . , ln : EntryVars(∆n)}

(Vi, ∆′
i) = WK(∆i) (1 ≤ i ≤ n)

in {l1 : ∆′
1, . . . , ln : ∆′

n}

EntryVars(
∆

(Γ � I : τ)
) = {x|x ∈ dom(Γ ), Γ (x) �= nil)}

In the following definition, E is a global environment defined in the main algorithm.

WK(Γ � return x : t) = (dom(Γ ) \ {x}, {x : Γ (x)} � return x : t)

WK(Γ � goto l : τ) = (dom(Γ ) \ E(l), Γ |E(l) � goto l : τ)

WK(
∆

Γ � x = v : τ ) =

let (V,
∆0

(Γ0 � I0 : τ)
) = WK(∆)

{x1, . . . , xn} = F V (v) ∩ V
V ′ = V \ {x1, . . . , xn}

∆i

(Γi � : )
=

∆i−1

Γi−1{xi : Γ (xi)} � discard xi : τ
for each xi (1 ≤ i ≤ n)

in (V ′,
∆n

Γ − V ′ � x = v : τ
)

WK(
∆

Γ � discard x : τ ) = let (V, ∆0) = WK(∆) in (V ∪ {x}, ∆0)

Fig. 4. Some cases of weakening (discard pseudo instruction) insertion algorithm

l1:

{i : t2, n : t3, s : t1} � goto l2 : t1

{i : t2, n : t3} � s=0 : t1

{n : t3} � i=1 : t1 l3:

{i : t2, n : t3, s : t1} � goto l2 : t1

{i : t2, n : t3, s : t1} � i=i+1 : t1

{i : t2, n : t3, s : t1} � s=s+i : t1

l2:

{i : t2, n : t3, s : t1} � goto l3 : t1

({c : t4, i : t2, n : t3, s : t1} � discard c : t1)
{c : t4, i : t2, n : t3, s : t1} � if c goto l4 : t1

{i : t2, n : t3, s : t1} � c=i>n : t1 l4 : {s : t1} � return s : t1

Fig. 5. The result of weakening insertion optimization for the example in Fig. 3

4 Assigning Registers

We have so far considered a language with unbounded number of variables. A
conventional approach to register allocation selects a subset of variables for the
target of register allocation, and “spills” the others out. The treatment of spilled
variables require ad-hoc strategies. Our approach provides a systematic solution
to this problem using the liveness annotated code itself. We consider the set of
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registers as a “working set” of the live variables at each instruction step, and
maintain this working set. For this purpose, we define a new proof system whose
sequents are of the form

Σ | Π �k B : τ.

where Π is a register context whose length is bounded by the number k of
available registers, and Σ is a memory context of unbounded length. We assume
that k is no less than the number of assumptions needed for each instructions. In
our case, instructions have at most 2 operands and therefore k ≥ 2. Each logical
rule (instruction) can only access assumptions in Π. To assess Σ, we introduce
rules for load x and store x to move assumptions between Σ and Π:

Σ | Π, x : t1 �k B : t

Σ, x : t1 | Π �k load x; B : t0

Σ, x : t1 | Π �k B : t0

Σ | Π, x : t1 �k store x; B : t0
(if |Π| < k)

where |Π| denotes the length of Π. The other rules do not change Σ and are
the same as before. We call the new proof system SSC(LE, k).

In a proof-theoretical perspective, the previous proof system SSC(L) im-
plicitly admits unrestricted exchange so that any assumptions in Γ is freely
available, while the new proof system SSC(LE, k) requires explicit use of the
exchange rules to access some part of the assumptions. The next step of our
register allocation method is to transform a proof obtained in the previous step
into a proof in this new system. Since each inference rule only uses no more than
k assumptions, the following is obvious.
Proposition 1. There is an algorithm Exchange such that, for any provable
program P in SSC(L), Exchange(k, P ) is a program provable in SSC(LE, k),
and if we ignore the distinction between Σ and Π, and erase load and store,
then it is equal to P .
Exchange traverses the code block, and whenever it detects an instruction
whose operands are not in Π, it exchanges the necessary operands in Σ with some
variables in Π, which are selected according to some strategy. The algorithm is
straightforward except for this strategy of selecting variables to be saved. With
the existence of branches, developing an optimal strategy is a difficult problem.
Our prototype system adopted a simple lookahead strategy: it selects one control
flow and traverses the instructions (up to a fixed number) to form an ordered
list of variables that are more likely to be used in near future, and select those
variables that are not appearing in the beginning of this list. In practical, we
need more sophisticated heuristics, which is outside of the scope of this paper.

Fig. 6 shows the result of exchange insertion against the optimized proof
shown in Fig. 4.

The final stage of our development is to assign a register number to each type
variable in Π at each instruction step. We do this by defining yet another proof
system where a type variable in Π has an attribute of a register number (ranged
over by p). The set of instructions in this final proof system is as follows.

I ::= x = y | x = c | x = x + x | if x goto l

| load (p,x) | store (p, x) | move x[pi → pj ]

load (p, x) moves variable x from Σ to Π and loads register p with the content
of x. store (p, x) is its converse. move x[pi → pj ] is an auxiliary instruction
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l1:

∅ | {i : t2, n : t3, s : t1} �3 goto l2 : t1

∅ | {i : t2, n : t3} �3 s=0 : t1

∅ | {n : t3} �3 i=1 : t1 l3:

∅ | {i : t2, n : t3, s : t1} �3 goto l2 : t1

∅ | {i : t2, n : t3, s : t1} �3 i=i+1 : t1

∅ | {i : t2, n : t3, s : t1} �3 s=s+i : t1

{s : t1} | {i : t2, n : t3} �3 load s : t1

l2:

{s : t1} | {i : t2, n : t3} �3 goto l3 : t1

{s : t1} | {c : t4, i : t2, n : t3} �3 if c goto l4 : t1

{s : t1} | {i : t2, n : t3} �3 c=i>n : t1

∅ | {i : t2, n : t3, s : t1} �3 store s : t1 l4:
∅ | {s : t1} �3 return s : t1

{s : t1} | ∅ �3 load s : t1

Fig. 6. Converting to the dual context calculus

that changes the register allocated to x, which corresponds to register-register
copy instruction. The rules for load, store and move are given below.

Σ | Π, x : t[p2] �k I : t0

Σ | Π, x : t[p1] �k move x[p1 → p2] : t0
(p1 �∈ Π)

Σ | Π, x : t[p] �k I : t0

Σ, x : t | Π �k load (p, x) : t0

Σ, x : t | Π �k I : t0

Σ | Π, x : t[p] �k store (p, x) : t0
(if |Π, x : t[p]| ≤ k, p �∈ Π)

The other rules are the same as those in SSC(LE, k) except that in Π, each
type variable has distinct register number attribute p. We call this proof system
SSC(LEA, k).

Within a block, proof transformation from SSC(LE, k) to SSC(LEA, k) is
straightforwardly done by a simple tail recursive algorithm (starting from the
entry point) that keeps track of the current register assignment of Π and a
set of free registers, and updates them every time when Π is changed due to
assignment, load or store instructions. Since the length of Π is bounded by
k, it is always possible to assign registers. An extra work is needed to adjust
register assignment before a branching instruction so that the assignment at the
branching instruction agrees with that of the target block. If the target block
is not yet processed, then we can simply set the current register assignment of
Π as the initial assignment for the block. If an assignment has already been
done for the target block and it does not agree on the current assignment, then
we need to permutate some registers by inserting move instructions using one
temporary register. If there is no free register, we have to save one and then load
after the permutation. In our current prototype implementation, we adopt a
simple strategy of trying to allocate the same register to the same liveness type
whenever possible by caching the past allocation. Minimizing register-register
moves at branching instructions requires certain amount of heuristics, which is
left as future work.

It should be noted, however, that this problem is much simpler than the
problem of combining independently colored basic blocks. Our liveness analysis
and the subsequent decompositions of variables into Σ and Π are done globally,
and therefore the set Π of register contexts are guaranteed to agree when control
flows merge.
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The remaining thing to be done is to extract machine code from a proof in
SSC(LEA, k). We consider the following target machine code.

I ::= return ri | goto l | ri = c | ri = rj | if ri goto l

| store (ri,x) | load (ri,x) | ri = rj + rk

ri is the register identified by number i. store (ri,x) stores the register ri
to the memory location named x. load (ri,x) loads the register ri with the
content of the memory location x. Since in a proof of SSC(LEA, k), each occur-
rence of variable in its register context Π is associate with a register number,
it is straightforward to extract the target machine code by simply traversing a
proof. For example, for the proof

∆

(Σ | Π, x : t1[1], y : t2[2] �k I : t0)

Σ | Π, y : t2[2] �k x = y : t0

we emit instruction “r1 = r2” and then continue to emit code for the proof ∆.
Fig. 7 shows the proof in SSC(LEA, k) and the machine code for our running

example.

5 Conclusions and Discussions

We have presented a proof-theoretical approach to register allocation. In our
approach, liveness analysis is characterized as proof reconstruction in a sequent-
style proof system where a formula (or a type) represents a “live range” of a
variable at each instruction step in a given code. Register manipulation instruc-
tions such as loading and storing registers are interpreted as structural rules in
the proof system. Register allocation process is then regarded as a proof trans-
formation from a calculus with implicit structural rules to one with explicit
structural rules. All these proof transformation processes are effectively done,
yielding a register allocation algorithm. The algorithm has been implemented,
which demonstrates the practical feasibility of the method.

This is the first step toward proof theoretical framework for register alloca-
tion; there remain number of issues to be investigated – detailed comparisons
with other approaches, relationship to other aspects of code generation such
as instruction scheduling, robust implementation and evaluation etc. Below we
include some discussion and suggestions for further investigation.

Correctness and other formal properties. In our approach, register allocation
is presented as a series of proof transformations among proof systems that dif-
fer in their treatment of structural rules. Since structural rules do not affect
the meanings, it is an immediate consequence that our approach preserves the
meaning of the code. Since our method is a form of type system, it can smoothly
be integrated in a static type system of a code language. By regarding liveness
types as attribute of the conventional notion of types, we immediately get a reg-
ister allocation method for a typed code language. Type-preservation is shown
trivially by erasing liveness and register attributes, and merging the memory
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The proof with register number annotation.

l1:

∅ | {i : t2[r1], n : t3[r0], s : t1[r2]} �3 goto l2 : t1

∅ | {i : t2[r1], n : t3[r0]} �3 s=0 : t1

∅ | {n : t3[r0]} �3 i=1 : t1

l2:

{s : t1} | {i : t2[r1], n : t3[r0]} �3 goto l3 : t1

{s : t1} | {c : t4[r2], i : t2[r1], n : t3[r0]} �3 if c goto l4 : t1

{s : t1} | {i : t2[r1], n : t3[r0]} �3 c=i>n : t1

∅ | {i : t2[r1], n : t3[r0], s : t1[r2]} �3 store s : t1

l3:

∅ | {i : t2[r1], n : t3[r0], s : t1[r2]} �3 goto l3 : t1

∅ | {i : t2[r1], n : t3[r0], s : t1[r2]} �3 i=i+1 : t1

∅ | {i : t2[r1], n : t3[r0], s : t1[r2]} �3 s=s+i : t1

{s : t1} | {i : t2[r1], n : t3[r0]} �3 load s : t1

l4:
∅ | {s : t1[r0]} �3 return s : t1

{s : t1} | ∅ �3 load s : t1

The extracted machine code:

l1 : r1 = 1 l3: load r2,s
r2 = 0 r2 = r2 + r1
goto l2 r1 = r1 + 1

goto l2
l2: store r2,s

r2 = r1 > r0 l4: load r0,s
if r2 goto l4 return r0
goto l3

Fig. 7. Example of register number assignment and code emission

and register context of each sequent. We also believe that our method can be
combined with other static verification systems for low-level code.

Expressiveness. Our formalism covers the entire process in register allocation,
and as a formalism, it appears to be more powerful than the one underlying the
conventional method based on graph coloring. We have seen that liveness analysis
is as strong as the conventional method using an interference graph. Since our
formalism transforms the liveness annotated code, it provides better treatment
for register-memory move than the conventional notion of “spilling”. Although
we have not incorporated various heuristics in our prototype implementation,
our initial experimentation using our prototype system found that our method
properly deals with the example of a “diamond” interference graph discussed in
literature [1], for which the conventional graph coloring based approach cannot
find an optimal coloring. Fig. 8 shows one simple example.



412 A. Ohori

(1) The source program

L: a = d + c
b = a + d
c = a + b
d = b + c
goto L

(2) The optimized liveness proof:

{c : t3, d : t2} � goto L : t1

{b : t4, c : t3, d : t2} � discard b : t1

{b : t4, c : t3} � d=b+c : t1

{a : t5, b : t4, c : t3} � discard a : t1

{a : t5, b : t4} � c=a+b : t1

{a : t5, b : t4, d : t2} � discard d : t1

{a : t5, d : t2} � b=a+d : t1

{a : t5, c : t3, d : t2} � discard c : t1

{c : t3, d : t2} � a=b+d : t1

(3) The proof without discard:

{c : t3, d : t2} � goto L : t1

{b : t4, c : t3} � d=b+c : t1

{a : t5, b : t4} � c=a+b : t1

{a : t5, d : t2} � b=a+d : t1

{c : t3, d : t2} � a=b+d : t1

(4) The proof in SSC(LE, k):

∅ | {c : t3, d : t2} �2 goto L : t1

∅ | {b : t4, c : t3} �2 d=b+c : t1

∅ | {a : t5, b : t4} �2 c=a+b : t1

∅ | {a : t5, d : t2} �2 b=a+d : t1

∅ | {c : t3, d : t2} �2 a=b+d : t1

(5) The proof in SSC(LEA, k):

∅ | {c : t3[r0], d : t2[r1]} �2 goto L : t1

∅ | {b : t4[r1], c : t3[r0]} �2 d=b+c : t1

∅ | {a : t5[r0], b : t4[r1]} �2 c=a+b : t1

∅ | {a : t5[r0], d : t2[r1]} �2 b=a+d : t1

∅ | {c : t3[r0], d : t2[r1]} �2 a=b+d : t1

(6) The extracted machine code

L: r0 = r1 + r0
r1 = r0 + r1
r0 = r0 + r1
r1 = r1 + r0
goto L

Fig. 8. Example for a code whose interference graph forms a “diamond”

Liveness analysis and SSA-style optimization. The main strength of our
method is the representation of liveness as type system of code itself. For exam-
ple, as far as liveness analysis is concerned, our system already contains the effect
of SSA (static single assignment) transformation [4] without actually perform-
ing the transformation. The effect of renaming a variable at each assignment is
achieved by allocating a fresh type variable. The effect of φ function at control
flow merge is achieved by unification of the type variables assigned to the same
variable in different blocks connected by a branch instruction. Thanks to these
effects, our liveness analysis achieves the accuracy of those that perform SSA
transformation without introducing the complication of φ functions. Moreover,
we believe that this property also allows us to combine various techniques of
SSA-based optimization in our approach. For example, since each live range has
distinct type variables, it is easy to incorporate constant propagation or dead
code elimination. The detailed study on the precise relationship with our type-
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based approach and SSA transformation is beyond the scope of the current work,
and we would like to report it elsewhere.

Acknowledgments. The author thanks Tomoyuki Matsumoto for his help in
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sion at early stage of this work while the author was in Kyoto University.
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