
Lecture Notes in Computer Science 4797
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

MarceloArenas Michael I. Schwartzbach (Eds.)

Database
Programming
Languages

11th International Symposium, DBPL 2007
Vienna, Austria, September 23-24, 2007
Revised Selected Papers

13

Volume Editors

Marcelo Arenas
Pontificia Universidad Católica de Chile
Departamento de Ciencia de la Computacion
Vicuna Mackenna 4860, Edificio San Agustin, 7820436 Macul, Santiago, Chile
E-mail: marenas@ing.puc.cl

Michael I. Schwartzbach
University of Aarhus, Department of Computer Science
Aabogade 34, 8200 Aarhus N, Denmark
E-mail: mis@brics.dk

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.2, H.3, E.2, D.3.3, H.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-75986-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75986-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12181230 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 11th International Symposium on
Database Programming Languages (DBPL 2007), held in Vienna, Austria, on
September 23–24, 2007. DBPL 2007 was one of 15 meetings co-located with
VLDB (the International Conference on Very Large Data Bases).

DBPL continues to present the very best work at the intersection of database
and programming language research. The proceedings include a paper based on
the invited talk by Wenfei Fan and the 16 contributed papers that were selected
by the program committee from 41 submissions. Every submission was reviewed
by at least three members of the program committee. In addition, the program
committee sought the opinions of additional referees, selected because of their
expertise on particular topics. The final selection of papers was made during the
last week of July.

We would like to thank all of the authors who submitted papers to the con-
ference, and the members of the program committee for their excellent work.
The program committee did not meet in person, but carried out extensive dis-
cussions during the electronic PC meeting. We are grateful to Andrei Voronkov
for his EasyChair system that made it so easy to manage these discussions.

Finally, we would also like to thank Christoph Koch and Gavin Bierman for
their assistance and sound counsel, and the organizers of VLDB 2007 for taking
care of the local organization of DBPL.

September 2007 Marcelo Arenas
Michael I. Schwartzbach

Organization

Program Co-chairs

Marcelo Arenas Pontificia Universidad Católica de Chile, Chile
Michael I. Schwartzbach University of Aarhus, Denmark

Program Committee

Sihem Amer-Yahia Yahoo! Research, USA
Marcelo Arenas Pontificia Universidad Católica de Chile, Chile
Paolo Atzeni Università Roma Tre, Italy
Pablo Barcelo Universidad de Chile, Chile
Andrea Cali Free University of Bozen-Bolzano, Italy
Alin Deutsch University of California, San Diego, USA
Jan Hidders University of Antwerp, Belgium
Anastasios Kementsietsidis University of Edinburgh, UK
Wim Martens Universität Dortmund, Germany
Maarten Marx Universiteit van Amsterdam, The Netherlands
Erik Meijer Microsoft, USA
Frank Neven Hasselt University, Belgium
Benjamin Pierce University of Pennsylvania, USA
Mukund Raghavachari IBM Watson, USA
Michael I. Schwartzbach University of Aarhus, Denmark
Helmut Seidl Technische Universität München, Germany
Jérôme Siméon IBM Watson, USA
Dan Suciu University of Washington, USA
Wang-Chiew Tan University of California, Santa Cruz, USA
Stijn Vansummeren Hasselt University, Belgium
Limsoon Wong National University of Singapore, Singapore

External Referees

Alexandru Berlea
Luca Cabibbo
Alessandro Campi
James Cheney
Nate Foster
Wouter Gelade
Mauricio Hernandez

Tadeusz Litak
Davide Martinenghi
Nicola Onose
Jorge Pérez
Christopher Re
Balder ten Cate
Yannis Velegrakis

Table of Contents

Invited Talk

XML Publishing: Bridging Theory and Practice . 1
Wenfei Fan

Algorithms

Efficient Algorithms for the Tree Homeomorphism Problem 17
Michaela Götz, Christoph Koch, and Wim Martens

Datalog Programs over Infinite Databases, Revisited 32
Sara Cohen, Joseph (Yossi) Gil, and Evelina Zarivach

XML Query Languages

A Methodology for Coupling Fragments of XPath with Structural
Indexes for XML Documents . 48

George H.L. Fletcher, Dirk Van Gucht, Yuqing Wu, Marc Gyssens,
Sof́ıa Brenes, and Jan Paredaens

Conjunctive Query Containment over Trees . 66
Henrik Björklund, Wim Martens, and Thomas Schwentick

A Better Semantics for XQuery with Side-Effects . 81
Giorgio Ghelli, Nicola Onose, Kristoffer Rose, and Jérôme Siméon

Inconsistency Handling

Repairing Inconsistent XML Write-Access Control Policies 97
Loreto Bravo, James Cheney, and Irini Fundulaki

On the Consistent Rewriting of Conjunctive Queries Under Primary
Key Constraints . 112

Jef Wijsen

Data Provenance

Relational Completeness of Query Languages for Annotated
Databases . 127

Floris Geerts and Jan Van den Bussche

VIII Table of Contents

Provenance as Dependency Analysis . 138
James Cheney, Amal Ahmed, and Umut A. Acar

Emerging Data Models

A Theory of Stream Queries . 153
Yuri Gurevich, Dirk Leinders, and Jan Van den Bussche

Querying Structural and Behavioral Properties of Business
Processes . 169

Daniel Deutch and Tova Milo

Efficient Evaluation of HAVING Queries on a Probabilistic Database 186
Christopher Ré and Dan Suciu

Type Checking

Succinctness of Pattern-Based Schema Languages for XML 201
Wouter Gelade and Frank Neven

Analysis of Imperative XML Programs . 216
Michael G. Burke, Igor Peshansky, Mukund Raghavachari, and
Christoph Reichenbach

Efficient Inclusion for a Class of XML Types with Interleaving and
Counting . 231

Giorgio Ghelli, Dario Colazzo, and Carlo Sartiani

Towards Practical Typechecking for Macro Tree Transducers 246
Alain Frisch and Haruo Hosoya

Author Index . 261

XML Publishing: Bridging Theory and Practice

Wenfei Fan�

University of Edinburgh and Bell Laboratories

Abstract. Transforming relational data into XML, as known as XML
publishing, is often necessary when one wants to exchange data residing
in databases or to create an XML interface of a traditional database. This
paper aims to provide an overview of recent advances in XML publish-
ing. We present a notion of publishing transducers recently developed
for studying the expressive power and complexity of XML publishing
languages. In terms of publishing transducers we then characterize XML
publishing languages being used in practice. In addition, we address dy-
namic aspects of XML publishing, namely, incremental maintenance and
update management of XML views published from relational data.

1 Introduction

While most data is currently residing in relational databases, it is increasingly
common for one to exchange the data in XML format, or to build an XML

interface of the databases. This highlights the need for transforming relational
data into XML, as known as XML publishing of relational data.

In response to the need, a variety of XML publishing languages have been
developed [2,3,15,26], and are rapidly being introduced into commercial prod-
ucts [18,21,24]. An XML publishing language is essentially a view definition lan-
guage, for specifying XML views of relational data. Just like their relational
counterparts, associated with XML publishing languages are a number of funda-
mental questions in connection with their complexity and expressiveness. These
questions are not only of theoretical interest, but are also important in prac-
tice for both users and designers of XML publishing languages. Given a host of
XML publishing languages, a user wants to decide which one to choose: is an
XML view expressible in certain languages but not definable in others? Which
language is “better” than others when it comes to evaluation cost? To support
recursively-defined XML views in a publishing language, database vendors may
want to know whether or not certain high-end DBMS features are a must: is it
necessary to upgrade the DBMS to support linear recursion of SQL’99?

This paper aims to provide a synergy between theory and practice by answer-
ing these questions for XML publishing languages supported by commercial prod-
ucts or research prototype systems: sql/xml of IBM DB2 XML Extender [18] and
Oracle 10g XML DB [24], for-xml and xsd of SQL Server 2005 [21], dad of DB2

XML Extender, dbms xmlgen of XML DB, as well as XPERANTO [26], TreeQL

� Supported in part by EPSRC GR/S63205/01, GR/T27433/01, EP/E029213/1 and
BBSRC BB/D006473/1.

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 1–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 W. Fan

of SilkRoute [15,2], and ATG of PRATA [3]. We evaluate these languages in terms
of their expressive power and complexity, by leveraging a notion of publishing
transducers recently proposed in [13]. We characterize these languages in terms
of various classes of publishing transducers, for which the complexity bounds
and expressive power have been established in [13].

Another aim of the paper is to promote the study of dynamic aspects of
XML publishing. Since XML publishing actually defines XML views of relational
data, for all the reasons that the incremental update and view update problems
are important for database views, efficient incremental maintenance and update
management also deserve a full treatment for XML publishing. Unfortunately we
are aware of the support of this functionality only in research prototype systems
(e.g., PRATA [6,11]), but currently not in any of the commercial systems.

The remainder of the paper is organized as follows. In Section 2, we discuss
various dichotomies for assessing XML publishing languages. In Section 3 we
present XML publishing transducers and give an account of results about their
complexity bounds and expressive power. In Section 4 we characterize the XML

publishing languages mentioned above in terms of publishing transducers. In
Section 5, we address the incremental update and view update problems for
XML publishing. Finally, we identify open research issues in Section 6.

2 XML Publishing

An XML document is typically modeled as a node-labeled, ordered, unranked
tree. Given a relational schema R, XML publishing is to define an XML view,
i.e., a mapping τ such that for any instance I of R, τ(I) is an XML tree.

Example 1. Consider a relational schema R0 (with keys underlined): course(cno,
title, type), prereq(cno1, cno2). A database instance D0 of R0 maintains course
data classified into “regular” and “project” type, and a relation prereq in which
a tuple (c1, c2) indicates that c2 is an immediate prerequisite of c1. Note that
the transitive closure of prereq gives the prerequisite hierarchy of the courses.

One may want to define the following XML views of the relational database:

(1) As depicted in Fig. 1(a), view τ1 is a tree of depth two, containing the list
of all courses in D0 that do not have db as its immediate prerequisite, i.e., for
any such course c, (c, c′) is not in prereq if the title of c′ is db.

(2) As shown in Fig. 1(b), view τ2 contains the list of all courses in D0. Under
each course c are its title and the list of cno’s of its immediate prerequisites,
followed by an element next-level under which are the immediate prerequisites
of the cno children of c, and so on, until all the prerequisites of c are listed.

(3) As depicted in Fig. 1(c), view τ3 is a tree of depth two, containing the list
of all courses in D0. Below each course c is its cno, followed by the list of all the
cno’s that appear in the prerequisite hierarchy of c.

(4) As shown in Fig. 1(d), view τ4 is an XML tree that is required to conform to
the DTD d0 below (the definition of elements whose type is PCDATA is omitted):

XML Publishing: Bridging Theory and Practice 3

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�

db

course coursecourse

titlecno

(a) XML view τ1

��
��
��
��
��
��
��
��

��
��
��
��

db

course coursecourse

next−level

next−levelcnocno

cnocnotitle

(b) XML view τ2

db

coursecourse course

title cno cno

(c) XML view τ3

�
�
�
�
��
��
��
��

��
��
��
��

prereq

coursecourse

cno

db

course coursecourse

title

project

type

(d) XML view τ4

Fig. 1. Example XML publishing

<!ELEMENT db (course∗)>
<!ELEMENT course (cno, title, type, prereq)>
<!ELEMENT type (regular | project)>
<!ELEMENT prereq (course∗)>
<!ELEMENT regular (empty)> /* similarly for project */

We may find it difficult to express (1) τ1 in xsd of SQL Server 2005 [21],
RDB mapping of IBM DB2 XML Extender [18] and TreeQL [2], (2) τ2 in any lan-
guage except ATG [3], (3) τ3 in any language except dbms xmlgen of Oracle 10g
XML DB [24] and ATG, and (4) τ4 in any language except ATG to guarantee the
conformance to D0. However we are not sure whether it is because we do not
know the languages well enough, or due to the limitations of the languages. �

To answer this question we study a variety of factors that may impact the
expressive power of an XML publishing language. A publishing language
typically specifies the behaviors of a middleware controller with a limited
query interface to relational sources. An XML view defined in such a language
builds an output tree top-down starting from the root: at each node it issues
queries to a relational database I, generates the children of the node using
the query results, and iteratively expands the subtrees of those children
inductively. It may (implicitly) store intermediate query results in registers
associated with nodes and pass the information downward to control subtree
generation [2,3,18,21,24,26]. It may also allow virtual tree nodes [2,3] that will
be removed from the output tree to express, e.g., XML entities. In addition,
it may be recursively defined, capable of generating XML trees for which the
depth cannot be determined at compile time. Finally, it may encode a DTD to
guarantee that the output trees conform to the predefined DTD. These motivate
us to consider the following dichotomies:

– CQ, FO vs. FP: the relational query language in which queries on relational
data are expressed. We consider conjunctive queries (CQ), first-order queries
(FO) and (inflationary) fixpoint queries (FP). For example, view τ1 requires
an FO query and cannot be expressed in languages with CQ queries only.

4 W. Fan

– Relation vs. tuple: registers that store intermediate results. Some languages
store a finite relation in a register while others allow a single tuple. View τ2
is definable only in languages that support relation registers.

– Virtual vs. normal: the types of nodes. Languages may or may not allow
virtual nodes that will be removed from the output tree. In a language that
does not support FP (e.g., SQL’99), view τ3 is definable only if virtual nodes
are allowed, by making the next-level nodes of τ2 virtual.

– Recursive vs. nonrecursive: whether or not views can be recursively defined.
For example, τ2 and τ4 are recursively defined: the depth of a course sub-tree
in these views is determined by its prerequisite hierarchy in D0.

– DTD-directed or not: whether or not output XML trees are guaranteed to
conform to a predefined DTD. In practice, XML publishing is often directed
by a type, typically a DTD, as shown by τ4. A community or industry agrees
on a certain DTD, and subsequently all members of the community create
XML views of their relational data that conform to the predefined DTD [2].

Different combinations of these parameters yield a spectrum of XML publishing
languages with quite different expressive power and complexity.

3 Publishing Transducers

We now present publishing transducers introduced in [13], which allow us to
characterize the complexity and expressive power of existing XML publishing
languages, as well as their equivalence and separation.

3.1 Definition of Publishing Transducers

Let R be a relational schema, L a relational query language, and Σ a set of XML

tags. A publishing transducer is a finite state machine that, given a database
instance I of R, generates an XML tree with elements labeled with tags in Σ,
top-down starting from the root. To do this, with each element labeled a ∈ Σ
in the XML tree, it associates a register Rega, storing intermediate result as a
relation of a fixed arity. At each a-node v, the transducer extracts data from
the underlying database I and the intermediate result in Rega, via a query in L,
and spawns the children of v using the data. This is directed by a transduction
rule, which is uniquely determined by the tag a and the current state of the
machine. In contrast to tree recognizers (see [16]) and the automata for querying
XML [22,23], which operate on an existing tree and either accept the tree or select
a set of nodes from the tree, a publishing transducer does not take a tree as input;
instead, it builds a new XML tree based on the data from a relational source.

Definition 1. A publishing transducer for a relational schema R is defined to
be τ = (Q, Σ, q0, δ), where Q is a finite set of states; Σ is a finite alphabet of
tags; q0 is the start state associated with the root tag r ∈ Σ; and δ is a finite set
of transduction rules: for each (q, a) ∈ Q × Σ, there is a unique rule

(q, a) → (q1, a1, φ1(x̄1; ȳ1)), . . . , (qk, ak, φk(x̄k; ȳk)).

XML Publishing: Bridging Theory and Practice 5

Here k ≥ 0, a1, . . . , ak are distinct tags in Σ, (qi, ai) ∈ Q × Σ for i ∈ [1, k], and
φi ∈ L is a relational query from R and Rega to Regai

. �

We next give basic properties and the semantics of publishing transducers.

Deterministic. A publishing transducer is deterministic: for each (q, a) ∈ Q×Σ,
there is a unique transduction rule, except that for the start state q0, for which
only the rule for (q0, r) is defined. Furthermore, (a) q0 and r do not appear in the
right-hand side of any rule; (b) text is a special “tag” in Σ, and the right-hand
side of the rule for (q, text) is empty, i.e., text nodes do not have any children.

Tuple vs. relation register. The L query φi(x̄i; ȳi) extracts data from I and
Rega. The result of the query is grouped by attributes x̄i, yielding sets of tuples.
For each set Sj , a distinct ai child is created, carrying Sj as the content of its
register Regai

. These ai children are ordered based on an implicit ordering on
the domain of data. When |ȳi| = 0, i.e., when the result is grouped by the entire
tuple, each register Regai

holds a single tuple and is thus a tuple register.

Transduction. Initially, τ constructs a tree t consisting of a single node labeled
(q0, r) with an empty register. At each step, τ expands t by simultaneously oper-
ating on the leaf nodes of t. At each leaf u labeled (q, a), τ generates new nodes
by finding the rule for (q, a) from δ, issuing queries φ1(x̄1; ȳ1), . . . , φk(x̄k; ȳk)
embedded in the rule to the database I and the register Rega(u) associated
with u. For each i ∈ [1, k], the ai children and their associated register Regai

are produced as described above. These yield the children of u characterized
by a regular expression a∗1 . . . a∗k. The transformation proceeds until a stop
condition is satisfied at all the leaf nodes. A stop condition is one of the following.

1. There is a node v on the path from the root to u such that v and u have
the same state q, tag a, and Rega(v) = Rega(u). Since the subtree rooted at
u is uniquely determined by q, a, Rega(u) and I, this asserts that the tree t
will not expand at u if the expansion adds no new information to the tree.

2. The query φj(x̄j ; ȳj) evaluates to empty for all i ∈ [1, k].
3. The right-hand side of the rule for (q, a) is empty. This is particularly the

case for a = text, for which u carries a string representation of Rega(u).

These conditions ensure the termination of the transformation.
When the tree cannot be expanded further, i.e., all leaf nodes satisfy a stop

condition, an XML tree is generated by removing all registers and states from
t. It is the output of the transducer τ , denoted by τ(I). We use τ(R) to denote
the set of all XML trees generated by τ when I ranges over all instances of R.

Example 2. We define a publishing transducer τ1 = (Q1, Σ1, q0, δ1) to generate
the view of Fig. 1(a), where Q1 = {q0, q}, Σ1 = {db, course, cno, title, text},
and the root tag is db. The transduction δ1 is defined as follows:

6 W. Fan

δ1(q0, db) = (q, course, φ1(n, t; ∅)), where
φ1(n, t) = ∃tp (course(n, t, tp) ∧ ¬∃n1, t1, tp1 (prereq(n, n1)∧course(n1, t1, tp1)∧t1=‘db’))

δ1(q, course) = (q, cno, φ2(n; ∅)), (q, title, φ3(t; ∅)), where
φ2(n) = ∃t Reg

c
(n, t), and φ3(t) = ∃n Reg

c
(n, t),

δ1(q, cno) = (q, text, φ4(n)), where φ4(n) = Reg
n
(n) (similarly for δ1(q, title))

δ1(q, text) = . (empty right-hand side.)

Here registers Regc and Regn are associated with course and cno nodes, respec-
tively. These are tuple registers: in each query φ(x̄; ȳ) in δ1, |ȳ| = 0.

Given a database I0 of schema R0, τ1 generates an XML tree as follows. First,
it creates the root of a tree t labeled with (q0, db). It then evaluates query φ1 on
I, and for each tuple (cno, title) in the result of the query, it expands the tree by
spawning a course child of the root, carrying the tuple in its register Regc. For
each course node, it generates its cno and title children by extracting relevant
attribute from the tuple in Regc via queries φ2 and φ3, respectively, which in turn
have a single text child carrying the attribute as pcdata. The transformation
stops at the text nodes (stop condition 3 above). Finally, it outputs an XML tree
by striking out states and registers associated with the nodes in t. �

Recursive transducers. Define the dependency graph Gτ of τ as follows. For
each (q, a) ∈ Q × Σ there is a unique node v(q, a) in Gτ , and there is an edge
from v(q, a) to v(q′, a′) iff (q′, a′) is on the right-hand side of the rule for (q, a).
We say that the transducer τ is recursive iff there is a cycle in Gτ .

Example 3. To generate the XML view of Fig. 1(b), we define a publishing trans-
ducer τ2 = (Q2, Σ2, q0, δ2), where the transduction δ2 is defined as follows:
δ2(q0, db) = (q, course, ψ1(n, t; ∅)), where ψ1(n, t) = ∃tp course(n, t, tp)

δ2(q, course) = (q, title, ψ2(t; ∅)), (q, cno, ψ3(n; ∅)), (q, next-level, ψ4(∅; n)), where
ψ2(t) = ∃n Regc(n, t), ψ3(n1) = ∃n, t(Regc(n, t) ∧ prereq(n, n1))

δ2(q, next-level) = (q, cno, ψ5(n; ∅)), (q, next-level, ψ5(∅; n))

where ψ4 is identical to ψ3 except that its result is put in a single relation (|x̄| = 0
in ψ4) as the content of register Regnl of the next-level node; in other words,
Regnl is a relation register while Regn associated with cno is a tuple register; ψ5 is
the same as ψ3 except that Regnl is used instead of Regc. In contrast to τ1, τ2 is
recursively defined: in its dependency graph there is an edge from v(q, next-level)
to itself. On an instance I0 of R0 the transformation of τ2 terminates due to stop
condition 2, in any practical setting where no course is a prerequisite of itself. �

Virtual vs. normal nodes. To incorporate virtual nodes we generalize trans-
ducers to be of the form τ = (Q, Σ, q0, δ, Σe), where Σe is a designated subset of
Σ and r �∈ Σe, referred to as the virtual tags of τ ; and Q, Σ, q0, δ are the same
as in Definition 1. On a relational database I the transducer τ behaves the same
as a normal transducer, except that the XML tree τ(I) is obtained as follows.
For each node v in t, if v is labeled with a tag in Σe, we shortcut v by replacing
v with the children of v, i.e., treating these children nodes as children of the

XML Publishing: Bridging Theory and Practice 7

Table 1. Complexity of decision problems (S: relation or tuple; O: normal or virtual)

Classes Equivalence Emptiness Membership

PT(FP, S, O) undecidable undecidable undecidable

PT(FO, S, O) undecidable undecidable undecidable

PT(CQ, tuple, normal) undecidable ptime Σp
2 -complete

PT(CQ, relation, normal) undecidable ptime undecidable

PT(CQ, S, virtual) undecidable np-complete undecidable

PTnr(FO, O, normal) undecidable undecidable undecidable

PTnr(CQ, tuple, normal) Πp
3 -complete ptime Σp

2 -complete

PTnr(CQ, tuple, virtual) Πp
3 -complete np-complete Σp

2 -complete

parent of v, and removing v from the tree. The process continues until no node
in the tree is labeled with a tag in Σe.

Example 4. The XML view of Fig. 1(c) can be generated by a publishing trans-
ducer τ3 = (Q2, Σ2, q0, δ2, {next-level}), which is identical to τ2 given in Exam-
ple 3 except that here next-level is treated as a virtual tag. �

Different classes. We denote by PT(L, S, O) various classes of publishing trans-
ducers. Here L indicates the relational query language in which queries embedded
in the transducers are defined, ranging over CQ, FO and FP, all with equality
‘=’ and inequality �=. Store S is either relation or tuple, indicating that the trees
induced by the transducers are with relation or tuple registers, respectively. As
mentioned earlier, transducers with tuple registers are a special case of those
with relation registers, i.e., when |ȳi| = 0 in each query φi(x̄i; ȳi). Output O is
either normal or virtual, indicating whether a transducer allows virtual nodes
or not. We denote by PTnr(L, S, O) the subclass of PT(L, S, O) consisting of all
nonrecursive transducers. For instance, the transducers τ1, τ2 and τ3 given in Ex-
amples 2, 3 and 4 are in PTnr(FO, tuple, normal), PT(CQ, relation, normal) and
PT(FO, relation, virtual), respectively (τ3 is also in PTnr(FP, tuple, normal)).

3.2 Complexity and Expressiveness of Publishing Transducers

Complexity. A natural question is: does a publishing transducer for a relational
schema R always terminate on all instances of R? This is answered in [13]: For
any publishing transducer τ defined for schema R and for any database I of
R, the transformation of τ on I always terminates, and its worst-case data-
complexity is (a) exptime if τ is in PT(L, S, O) and S is tuple, (b) 2exptime if
τ is in PT(L, S, O) and S is relation, (c) ptime if τ is in PTnr(L, S, O) no matter
whether S is tuple or relation, where L ranges over CQ, FO and FP, and O is
either normal or virtual. This tells us that while the presence of relation registers
and recursion may complicate the transformation, relational query language L
and virtual nodes have no impact on the worse-case data complexity.

8 W. Fan

PT(FP, relation, virtual) = PT(FO, relation, virtual)

PT(FP, tuple, normal)

PT(FP, relation, normal)

PT(FO, relation, normal)

PT(CQ, relation, normal) PT(FO, tuple, normal)

PT(CQ, tuple, normal)

PT(FO, tuple, virtual)

PT(FP, tuple, virtual)

PT(CQ, tuple, virtual)

PT(CQ, relation, virtual)

PTnr(CQ, tuple, virtual)

PTnr(CQ, tuple, normal)

PTnr(FO, tuple, normal)

Fig. 2. Containment of various classes of XML publishing transducers

Classical decision problems associated with transducers include the following.
For a class PT(L, S, O) of publishing transducers,

(i) the membership problem is to determine, given an XML tree t and a transducer
τ in this class, whether or not there is a database I such that t = τ(I);

(ii) the emptiness problem is to decide, given τ in this class, whether there is an
instance I such that τ(I) is a nontrivial tree with more than one node;

(iii) the equivalence problem is to determine, given two transducers τ1 and τ2 in
the class defined for the same schema R, whether or not τ1(I) = τ2(I) for all
instances I of R, i.e., they produce the same trees on all the instances of R.

The analyses of these problems may tell a user, at compile time, whether or
not a publishing transducer makes sense (emptiness), whether an XML tree of
particular interest can be generated by a transducer (membership), and whether
a transducer can replaced by a more efficient one (equivalence).

Matching upper and lower bounds are established in [13] for various classes
of publishing transducers, and are summarized in Table 1.

Expressive power. A class PT(L1, S1, O1) is contained in PT(L2, S2, O2), de-
noted by PT(L1, S1, O1) ⊆ PT(L2, S2, O2), if for any τ1 in PT(L1, S1, O1) defined
for a relational schema R, there exists τ2 in PT(L2, S2, O2) for the same R such
that τ1(I) = τ2(I) for all instances I of R. The two classes are equivalent in ex-
pressive power, denoted by PT(L1, S1, O1) = PT(L2, S2, O2), if PT(L1, S1, O1)
⊆ PT(L2, S2, O2) and PT(L2, S2, O2) ⊆ PT(L1, S1, O1). A class PT(L1, S1, O1)
is properly contained in PT(L2, S2, O2) if PT(L1, S1, O1) ⊆ PT(L2, S2, O2) but
PT(L1, S1, O1) �= PT(L2, S2, O2).

Containment. A containment hierarchy on various classes of publishing trans-
ducers is developed in [13], and is shown in Fig. 2. The containment is proper ex-
cept that PT(FO, tuple, virtual) = PT(FP, tuple, virtual) if ptime = nlogspace.
Figure 2 tells us that SQL’99 does not increase expressive power over SQL to a
publishing language that supports virtual nodes, recursion and relation registers.

XML Publishing: Bridging Theory and Practice 9

DTD conformance. It is known [23] that a set of unranked trees is regular iff
it is MSO definable, and that a set of trees is MSO definable iff it is the set of
trees recognized by a specialized DTD [25].

A DTD d′ over Σ is defined by a set of rules of the form a → α, where a
is a tag in Σ and α is a regular expression over Σ. An XML tree t conforms
to d′ iff for each a-element v in t, the list of the labels of the children of v is
a word in α. A normalized DTD is a DTD in which for every rule a → α, α
is defined as either a1, . . . , ak (concatenation), or a1| . . . |ak (disjunction) or a∗1
(Kleene closure), where ai is an element type. It is known that every DTD can
be converted to an equivalent normalized DTD in linear time [5].

A specialized DTD d over Σ is a triple (Σ′, d′, g), where Σ ⊆ Σ′, g is a mapping
Σ′ �→ Σ, and d′ is a DTD over Σ′. A tree t conforms to d if there exists a Σ′-tree
t′ that satisfies d′ and moreover, t = g(t′). We denote by L(d) the set of all
Σ-trees conforming to d. A (specialized or normal) DTD d is said to be definable
in PT(L, S, O) if there exists a publishing transducer τ in the class defined for
some relational schema R such that L(d) = τ(R).

It is shown [13] that every specialized DTD over Σ is definable in PT(FO,
tuple, virtual), and every normalized DTD is definable in PT(FO, tuple, normal).
However, there exist normal DTDs that are not definable in PT(CQ, relation,
virtual). This tells us that when L is FO or FP, PT(L, S, virtual) is capable
of defining all specialized DTDs, and thus all regular unranked trees and MSO

definable trees. In addition, PT(L, tuple, normal) can define normalized DTDs.
In contrast, PT(CQ, S, O) does not have sufficient power to express even DTDs.

Example 5. Recall DTD D0 from Example 1, which is normalized. One can define
τ4 in PT(FO, tuple, normal) to generate views of the form shown in Fig. 1(d)
that are guaranteed to conform to D0. While it is trivial to enforce rules defined
with concatenation and Kleene closure in D0, e.g., db, course, prereq, to enforce
the rule type → regular | project, we need to make sure that each type node
has either a regular or a project child, but not both. This can be checked by a
Boolean FO query ϕ. If ϕ is true τ4 uses the transduction below for type nodes:

δ4(q, type) = (q, regular, ϕ1(tp; ∅)), (q, project, ϕ2(tp; ∅))
where ϕ1(tp) = ∃n, t course(n, t, tp) ∧ Regc(n) ∧ tp=‘regular’; /*similarly for ϕ2*/

Otherwise (ϕ is false) τ4 produces a default XML tree that conforms to D0. �

4 XML Publishing Languages in Practice

We are now ready to assess the expressive power of XML publishing languages
being used in practice, in terms of various classes of publishing transducers.

SQL/XML is an SQL extension for XML, by incorporating XML publishing
functions: xmlelement, xmlattribute, xmlforest, xmlconcat, xmlagg

and xmlgen. For instance, τ1 of Example 2 can be defined in sql/xml as follows:

10 W. Fan

select xmlelement {name “course”, xmlforest {c.cno as “cno”, c.title as “title”}}
from course c
where not exists (select c’.cno from course c’, prereq p

where p.cno1 = c.cno and p.cno2 = c’.cno and c’.title = ‘DB’)

sql/xml has essentially the same expressive power as PTnr(FO, tuple, normal).
It cannot express XML views τ2, τ3 and τ4 given earlier. It has been introduced
into commercial products, including IBM XML Extender [18] and Oracle 10g
XML DB [24]. The publishing language of XPERANTO [26] has the same
expressive power as sql/xml.

DBMS XMLGEN is a PL/SQL package supported by Oracle 10g XML DB [24].
It extends sql/xml by supporting SQL’99 and a function newContextFormHier-
archy, which, in combination of connect by prior of SQL’99, is capable of
expressing recursive XML views. For example, the following defines a recursive
XML view that contains the list of all courses; under each course c are the cno
and title of c followed by the hierarchy of the prerequisite courses of c.
dbms xmlgen.newContextFormHierarchy{

select xmlelement {name “course”, xmlforest {c.cno as “cno”, c.title as “title”}},
from course c
connect by prior course.cno = prereq.cno1}

dbms xmlgen allows neither virtual nodes nor relation registers. It cannot
define τ2 or guarantee specialized DTD conformance. Furthermore, it does not
have stop condition and thus cannot guarantee termination. If the stop condition
is imposed, XML views definable in dbms xmlgen are in PT(FP, tuple, normal).

FOR-XML and XSD are supported by SQL Server 2005 [21]. for-xml extends
SQL as follows: it extracts data from a relational source via an SQL query, and
organizes the data into a hierarchical XML view with nested for-xml constructs.
For example, τ1 can be defined with for-xml as follows:

select c.cno as “cno”, c.title as “title”
from course c
where not exists (select c’.cno from course c’, prereq p

where p.cno1 = c.cno and p.cno2 = c’.cno and c’.title = ‘DB’)
for xml path(‘course’), root(‘db’)

for-xml supports neither recursive XML views, virtual nodes nor relation reg-
isters. It has essentially the same expressive power as PTnr(FO, tuple, normal).

xsd specifies an XML view by annotating a (nonrecursive) schema, which asso-
ciates elements and attributes with tables and table columns, respectively. Given
a relational source, the annotated xsd constructs an XML tree by populating
elements and attributes with tuples and values from their corresponding tables
and columns, respectively. Information is passed via parent-child key-based joins.
For example, the annotated xsd below generates a view that contains the list
of all courses; under each course are its cno, title followed by a list of prereq
elements, which consists of the cno’s of all immediate prerequisite courses:

XML Publishing: Bridging Theory and Practice 11

<xsd:annotation>
<xsd:appinfo>

<sql:relationship name=“prereq” parent=“course” parent-key=“course.cno”
child=“prereq” child-key=“prereq.cno1”/>

</xsd:appinfo>
<xsd:element name=“course” sql:relation = “course”>

<xsd:complexType> <xsd:sequence>
<xsd:element name=“cno” sql:relation = “course.cno”> </xsd:element>
<xsd:element name=“title” sql:relation = “course.title”> </xsd:element>
<xsd:element name=“prereq” sql:relationship=“prereq” maxOccurs=“unbounded”/>

</xsd:sequence> </xsd:complexType> </xsd:element>
</xsd:annotation>

All xsd views are nonrecursive and are expressible in PTnr(CQ, tuple, normal).

DAD (Document Access Definition) of IBM DB2 XML Extender [18] sup-
ports sql mapping and rdb mapping, which are similar to for-xml and
xsd despite different syntax, and are contained in PTnr(FO,tuple,normal) and
PTnr(CQ,tuple,normal), respectively. For example, the for-xml and xsd views
given above can be expressed in sql mapping and rdb mapping, respectively:
sql mapping:
<sql stmt> select c.cno as “cno”, c.title as “title”

from course c
where not exists (select c’.cno from course c’, prereq p

where p.cno1 = c.cno and p.cno2 = c’.cno and c’.title = ‘DB’)
</sql stmt>
<element node name=“course” multi occurrence=“yes”>

<element node name=“cno”> <text node> <column name=“cno”/></text node>
</element node> ... /*similarly for <element node name=“title”>*/

</element node>

rdb mapping:
<element node name=“db”>

<rdb node> <table name=“course”/> <table name=“prereq”/>
<condition>course.cno=prereq.cno1</condition> </rdb node>

<element node name=“course” multi occurrence=“yes”>
... /* <element node name=“cno”> and <element node name=“title”>*/
<element node name=“prereq” multi occurrence=“yes”> <text node> <rdb node>

<table name=“prereq”/><column name=“cno2”/> </rdb node> </text node>
</element node> </element node> </element node>

TreeQL was proposed for publishing middleware SilkRoute [15]. Its abstraction
[2] is precisely PTnr(CQ, tuple, virtual): it defines an XML view by annotating
the nodes of a tree template of a fixed depth with CQ queries, and supports
virtual tree nodes and tuple-based information passing (tuple registers).

ATG (Attribute Transformation Grammar) was proposed in [3] and re-
vised in [6], as the language of XML publishing middleware PRATA. An ATG

defines an XML view based on a normalized DTD, by associating each element
type a with an inherited attribute (register) $a, and annotating its DTD pro-
duction a → α with a set of relational queries, one for each sub-element type b
in the regular expression α, specifying how to compute $b and populate the b

12 W. Fan

children of an a element. It supports recursive DTDs and thus recursive XML

views, as well as virtual nodes to cope with XML entities. It provides a DTD-
directed method to define XML views, such that the views are guaranteed to
conform to a predefined DTD. For example, view τ4 given earlier is defined in
ATG as follows, which guarantees the view to conforms to DTD D0 of Example 1:

db → course∗

$course = select cno, title, type from course
course → cno, title, type, prereq

$prereq = select cno from $course; similarly for $cno, $title and $type
type → regular | project

$regular = select cno from $type where type=‘regular’;
$project = select cno from $type where type=‘project’;

prereq → course∗

$course = select c.cno, c.title, c.type from prereq p, $prereq cp, course c
where cp.cno = p.cno1 and p.cno2 = c.cno;

ATG of [3] is essentially PT(FO,relation,virtual) and can express views τ1–τ4.
XQuery [9] is a Turing-complete XML query language and can express arbitrary
XML views. In practice one typically does not need the expressive power of
XQuery and thus should not be penalized by the evaluation cost of full-fledged
XQuery. In contrast to ATG, XQuery neither guarantees DTD conformance, nor
provides any guidance on how to define an XML view that typechecks.

5 Dynamic Aspects

In many applications including mediation, archiving and Web site management,
large XML documents may need to be exported from relational sources and main-
tained, rather than being “disposed”. Just like their relational counterparts, there
are two practical problems associated with XML views published from relational
data: the incremental update problem and the view update problem.

Incremental publishing. Given a publishing transducer τ defined on a rela-
tional schema R, an instance I of R, the XML view t = τ(I), and changes ΔI
to I, incremental XML publishing is to compute XML changes Δt to t such that
t ⊕ Δt = τ(I ⊕ ΔI). As an example, recall the XML view of Fig. 1(d) published
from database I0 by the transducer τ4 of Example 5. When I0 is updated by,
e.g., ΔI consisting of the insertion of tuples into prereq followed by deletion
of tuples from course, certain course subtrees of Fig. 1(d) have to be changed.
Incremental publishing is to compute the XML change Δt in response to I0.

In contrast to recomputing the new view τ(I ⊕ΔI) from scratch, incremental
publishing can, in principle, improve performance substantially by applying only
the changes Δt to the old view t. The need for this is evident in practice: as
PRATA experienced with applications of European Bioinformatics Institute [10],
recomputing the entire new view may be quite costly: it may take hours for large
XML views. In contrast, relational changes ΔI are often small, and a small ΔI
typically incurs only small XML changes Δt. Incremental XML publishing is to
efficiently compute Δt by minimizing unnecessary recomputation.

XML Publishing: Bridging Theory and Practice 13

One approach for incremental XML publishing is to push incremental compu-
tation to the underlying relational DBMS, along the same lines as implementa-
tions of XML publishing middleware [3,15,26]. However, several practical issues
hamper the applicability of this reduction approach. For example, for recursive
XML views the reduction approach depends on incremental update of material-
ized views defined using SQL’99 recursion. However, few DBMS’s support SQL’99,
and none supports incremental maintenance of SQL’99 views. In addition, if the
queries embedded in a transducer are even mildly complex, the combined queries
to be pushed down to DBMS may become extremely complex. They may not be
effectively optimized by all DBMS, even for non-recursive publishing mappings.

In light of this, we outline an incremental publishing technique developed for
PT(CQ,tuple,virtual) in [6]. It requires the lowest common denominator of DBMS

functionality: neither SQL’99 nor incremental maintenance. The technique can
be extended to other publishing transducers and languages mentioned earlier.

(1) External storage. For any instance I of schema R, a publishing transducer
τ on R induces a function ST that, given a tag a, a state q and a value v of
Rega, ST(a, q, v) returns a unique subtree in t = τ(I), rooted at a node tagged
a and carrying v in its register. Leveraging this subtree property, we can store t
using (i) a hash index H in which each entry (a, q, id(v), p) identifies a node in
t, along with a pointer p to its subtree in S to be given below, where id(v) is the
unique and compact representation of v, computed by a Skolem function; (ii) a
subtree pool S consisting of entries (a, q, id(v), L), where L is a list of H entries
to all the children of the node identified by (a, q, id(v)). This allows us to store
an XML view as a dag, which may take exponentially less space than t.

(2) Algorithm. Given ΔI, one can compute XML updates Δt as follows.

(Step 1) Compute E+ and E−, the set of edges to be inserted into and deleted
from t, respectively. Here each edge is identified by a pair of H-entries. This can
be done as follows. (i) For each pair (q, a, q′, b) of (state, tag) pairs, define an
SQL query Q(q,a,q′,b) as the union of queries ψ that appear in a τ rule (q, a) →
. . . (q′, b, ψ). (ii) Compute the incremental version ΔQ(q,a,q′,b) of Q(q,a,q′,b) in
response to ΔI, by capitalizing on incremental techniques for SQL queries such
as the counting method of [17]. (iii) Evaluate ΔQ(q,a,q′,b) for all involved tags
(a, b) to find E+ and E−. Note that neither Q(q,a,q′,b) nor ΔQ(q,a,q′,b) is recursive.
(Step 2) Update the hash index H and the subtree pool S with E+ and E−, by
modifying the L filed of those relevant S entries.
(Step 3) For each newly inserted node in E+, generate its subtree if its subtree
does not have an entry in S. Only this phase involves recursive computation.
(Step 4) Clean up H and S by removing “dangling” entries, by a garbage col-
lection procedure that runs in the background.

This algorithm avoids unnecessary recomputation by reusing subtrees in S at
various levels of granularity. It guarantees that each distinct subtree of the new
view is computed at most once.

14 W. Fan

View updates. As opposed to incremental publishing, the view update problem
in connection with XML publishing can be stated as follows. Given a publishing
transducer τ defined on a relational schema R, an instance I of R, the XML view
t = τ(I), and XML updates Δt on t, it is to compute relational updates ΔI such
that t⊕Δt = τ(I ⊕ΔI). That is, the relational changes ΔI, when propagated to
XML via τ , yield the desired XML updates Δt on the view t. XML updates can
be expressed in terms of XPath. For example, one may want to pose U = insert
cs240 into course[cno=‘cs650’]//course[cno=‘cs450’]/prereq on the XML view
of Fig. 1(d); in response to this we want to find tuples ΔI0 to insert into the
underlying database I0 such that I0 ⊕ ΔI0 yields the updated XML view.

The update problem is already hard for relational views. Indeed, given view
updates, it is likely that there may not exist updates on the underlying source
without introducing side effects, or there must exist multiple source updates
(see, e.g., [1]). Commercial relational DBMS’s do not provide sophisticated view-
update functionality. In particular, few complexity bounds are known even for
relational view updates (see [8,12] for recent work in this line of research).

When it comes to XML views published from relational data, the update
problem is far more intriguing. In addition to the complications encountered
in relational views, it introduces a number of new challenges. First, these XML

views may be recursively defined, and are required to conform to a predefined
schema. Second, XML updates may be recursive themselves (e.g., descendant-or-
self axis in XPath). Third, the semantics of XML view updates has to revised. For
example, the XML update U given above attempts to add cs240 as a prerequisite
of only those cs450 nodes below cs650. However, cs450 may appear elsewhere
in the tree. The subtree property given above tells us that there is a unique cs450

subtree. Thus either all occurrences of cs450 should take cs240 as a prerequisite
or none of them does. Commercial XML publishing products, e.g., Microsoft SQL

Server 2005 [21], provide at best extremely limited view update functionality.

Algorithm. An approach to tackling the view update problem has been developed
in [11] for PT(CQ, tuple, virtual). It allows both XML views and updates to
be recursively defined, and adopts a revised notion of side effects of XML view
updates based on the subtree property. It compresses the XML view t into a dag,
using the same external storage as in the setting of incremental publishing, and
derives a set V of relational views defined as edge queries Q(q,a,q′,b) given above.
Note that V is a set of union of CQ queries. Given an XML update expression
UX posed on t, one can compute the relational updates ΔI as follows.

(Step 1) Validate UX(t) w.r.t. a predefined DTD of the XML view (if any), and
reject UX if UX(t) violates the DTD.

(Step 2) Translate UX to an update expression UV on the relational view V .
(Step 3) Translate UV to an update expression UR on the source I, if it exists.

(Step 4) Update the underlying database I using UR and the relational views V
using UV , if UR exists, otherwise report side effects to the user and reject UX .

XML Publishing: Bridging Theory and Practice 15

Step 3 may fail, i.e., the XML view t is found not updatable by UX , as for
its relational counterparts. Furthermore, heuristic algorithms are necessary for
Step 3 as the view update problem is intractable for the relational views V .

6 Concluding Remarks

The primary goal of the paper is to provide an overview of recent advances in
XML publishing and a synergy between theory and practice. It is by no means a
comprehensive survey: a number of related articles are not referenced due to the
space constraint (see [20] for a recent survey). It is worth mentioning that XML

publishing differs from recent work on data exchange (see [19] for a survey) in
that XML publishing focuses on transformations from relations to XML defined
in terms of mappings with embedded relational queries, rather than relation-to-
relation or XML-to-XML mappings derived from source-to-target constraints.

Below we highlight some open research issues. One topic concerns XML inte-
gration: in contrast to XML publishing, it is to define a mapping from multiple
distributed relational sources to XML documents. Along the same lines as XML

publishing, the expressive power and complexity of XML integration languages
deserve a full treatment. These are, however, more intriguing than their coun-
terparts for XML publishing. In particular, to cope with dependencies on various
sources, two-way transducers are required in contrast to top-down XML publish-
ing transducers, as indicated by the language proposed in [4] for XML integration.
In addition, other issues that arise in practice, such as information preservation
required by data migration [7], make the study more complicated.

Another issue is about XML shredding, i.e., for storing XML data in relations.
A publishing transducer τ can be treated as a relational query [13]: fixing a
designated output tag ao, we can define the output of τ(I) on a database I as a
relation: the union of all Regao

(v) for all nodes v labeled ao in the tree. Similarly
one can define an XML shredding automaton that has XML queries embedded in
it, operates on existing XML trees and returns a set of tuples to add to a database.
In contrast to publishing transducers, an XML shredding automaton outputs a
relation instead of an XML tree. Based on this an XML shredding language has
been given in [14]. XML shredding automata can be used to characterize the
expressive power and complexity of XML shredding languages found in practice.

Much more needs to be done for the view update problem associated with
XML views published from relational data. To our knowledge no previous work
has considered view update management for publishing transducers defined with
relational queries beyond CQ, e.g., PT(FO, relation, virtual).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Alon, N., Milo, T., Neven, F., Suciu, D., Vianu, V.: Typechecking xml views of
relational databases. TOCL 4 (2003)

16 W. Fan

3. Benedikt, M., Chan, C., Fan, W., Rastogi, R., Zheng, S., Zhou, A.: DTD-directed
publishing with attribute translation grammars. In: Bressan, S., Chaudhri, A.B.,
Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS,
vol. 2590, Springer, Heidelberg (2003)

4. Benedikt, M., Chan, C.Y., Fan, W., Freine, J., Rastogi, R.: Capturing both type
and integrity constraints in data integration. In: SIGMOD (2003)

5. Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs.
In: PODS (2005)

6. Bohannon, P., Choi, B., Fan, W.: Incremental evaluation of schema-directed XML
publishing. In: SIGMOD (2004)

7. Bohannon, P., Fan, W., Flaster, M., Narayan, P.: Information preserving XML
schema embedding. In: VLDB (2005)

8. Buneman, P., Khanna, S., Tan, W.: On propagation of deletions and annotations
through views. In: PODS (2002)

9. Chamberlin, D., et al.: XQuery 1.0: An XML Query Language. W3C Working
Draft (June 2001), http://www.w3.org/TR/xquery

10. Choi, B., Fan, W., Jia, X., Kasprzyk, A.: A uniform system for publishing and
maintaining XML data. In: VLDB (2004) Demo

11. Choi, B., Gao, C., Fan, W., Viglas, S.: Updating recursive XML views. In: ICDE
(2007)

12. Cong, G., Fan, W., Geerts, F.: Annotation propagation revisited for key preserving
views. In: CIKM (2006)

13. Fan, W., Geerts, F., Neven, F.: Expressiveness and complexity of XML publishing
transducers. In: PODS (2007)

14. Fan, W., Ma, L.: Selectively storing XML data in relations. In: Bressan, S., Küng,
J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, Springer, Heidelberg (2006)

15. Fernandez, M., Kadiyska, Y., Suciu, D., Morishima, A., Tan, W.C.: SilkRoute: A
framework for publishing relational data in XML. TODS 27(4), 438–493 (2002)

16. Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages, vol. 3,
Springer, Heidelberg (1996)

17. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.
In: SIGMOD (1993)

18. IBM. DB2 XML Extender,
www-3.ibm.com/software/data/db2/extended/xmlext/

19. Kolaitis, P.G.: Schema mappings, data exchange, and metadata management. In:
PODS (2005)

20. Krishnamurthy, R., Kaushik, R., Naughton, J.: XML-SQL query translation liter-
ature: The state of the art and open problems. In: Xsym (2003)

21. Microsoft. XML support in microsoft SQL server 2005 (2005),
msdn.microsoft.com/library/en-us/dnsql90/html/sql2k5xml.asp/

22. Neven, F.: On the power of walking for querying tree-structured data. In: PODS
(2002)

23. Neven, F., Schwentick, T.: Query automata over finite trees. TCS 275(1-2), 633–674
(2002)

24. Oracle. Oracle Database 10g Release 2 XML DB Whitepaper,
http://www.oracle.com/technology/tech/xml/xmldb/index.html

25. Papakonstantinou, Y., Vianu, V.: Type inference for views of semistructured data.
In: PODS (2000)

26. Shanmugasundaram, J., Shekita, E., Barr, R., Carey, M., Pirahesh, B.L.H., Rein-
wald, B.: Efficiently publishing relational data as XML documents. VLDB J. 10(2-
3), 133–154 (2001)

http://www.w3.org/TR/xquery
www-3.ibm.com/software/data/db2/extended/xmlext/
msdn.microsoft.com/library/en -us/dnsql90/html/sql2k5xml.asp/
http://www.oracle.com/technology/tech/xml/xmldb/index.html

Efficient Algorithms for the Tree
Homeomorphism Problem

Michaela Götz1, Christoph Koch1, and Wim Martens2,�

1 Saarland University
Saarbrücken, Germany

{goetz,koch}@infosys.uni-sb.de
2 University of Dortmund

Dortmund, Germany
wim.martens@udo.edu

Abstract. Tree pattern matching is a fundamental problem that has
a wide range of applications in Web data management, XML process-
ing, and selective data dissemination. In this paper we develop efficient
algorithms for the tree homeomorphism problem, i.e., the problem of
matching a tree pattern with exclusively transitive (descendant) edges.
We first prove that deciding whether there is a tree homeomorphism is
LOGSPACE-complete, improving on the current LOGCFL upper bound.
As our main result we develop a practical algorithm for the tree home-
omorphism decision problem that is both space- and time efficient. The
algorithm is in LOGDCFL and space consumption is strongly bounded,
while the running time is linear in the size of the data tree. This al-
gorithm immediately generalizes to the problem of matching the tree
pattern against all subtrees of the data tree, preserving the mentioned
efficiency properties.

1 Introduction

Tree patterns are a simple query language for tree-structured data. They are at
the heart of several widely-used Web languages such as XPath and XQuery [4].
As a consequence, they form part of a number of typing mechanisms such as
XML Schema, and of Web Programming Languages. They have also been used
as query languages in their own right, for example for expressing subscriptions
in publish-subscribe systems [1,5,6,13].

The general tree pattern matching problem considered in the literature is the
problem of finding a mapping between two node-labeled trees which is, in a
sense, a cross of a subtree homomorphism and a homeomorphism. In this paper
we consider a clean and important special case of the tree pattern embedding
problem that we call the tree homeomorphism problem. The question we consider
is whether there is a mapping θ from the nodes of the first tree, the tree pattern

� This work was supported by a scholarship of the FWO-Vlaanderen that permitted
Wim Martens to visit the Technical University of Vienna in January–February, 2005.

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 17–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 M. Götz, C. Koch, and W. Martens

Table 1. Time and space consumption for algorithms solving the tree homeomor-
phism matching problem. Here depth(·) and branch(·) denote the depth and maximal
branching factor of a tree, respectively.

time space streaming

Yannakakis 1981 [19] O(|Q| · |D| · depth(D)) O(depth(Q) · |D|) no
Gottlob et al. 2002 [10] O(|Q| · |D|) O(|Q| · |D|) no
Olteanu et al. 2004 [16] O(|Q| · |D| · depth(D)) O(|Q| · depth(D) + |D|) yes
Bar-Yossef et al. 2005 [3] O(|Q| · |D|) O(|Q| · log |D| + candD) yes
Ramanan 2005 [17] O((|Q| + depth(D)) · |D|) O(|Q| · depth(D) + candD) yes
Our bottom-up algorithm O(|Q| · |D| · depth(|Q|)) O(depth(D) · branch(D)) no

Our LOGSPACE algorithm poly(|Q| + |D|) O(log(|Q| + |D|)) no

or query, to the nodes of the second tree, the data tree, such that if node y is a
child of x in the first tree, then θ(y) is a descendant of θ(x) in the second tree.
We also consider the tree homeomorphism matching problem: finding all nodes v
of the data tree such that there is such a tree homeomorphism with v the image
of the root node of the pattern tree. This problem of selecting all nodes whose
subtrees match the tree pattern has frequent application in XML and Web query
processing [1,10].

While this problem is of immediate practical relevance and a substantial num-
ber of papers have studied complexity and efficient algorithms for tree pattern
matching, the precise complexity of both the general tree pattern matching prob-
lem and the tree homeomorphism problem are open; they are both known to be
in LOGCFL and LOGSPACE-hard [11].The former can be immediately con-
cluded from earlier results on the complexity of the acyclic conjunctive queries
[12] and the positive navigational fragment of XPath [11], both much stronger
languages. The latter is a direct consequence of the fact that reachability in trees
is LOGSPACE-complete [8].

Much work has been dedicated to developing efficient algorithms for finding
matches of tree patterns and tree homeomorphisms. Certain algorithms aim at
processing the data tree as a stream (i.e., in a single scan) [5,6,13,15,9,16,2,3,17].
For this case a number of lower bound results have been obtained using mecha-
nisms from communication complexity [2,3,14]. It is basically known that stream-
ing algorithms for even simple tree patterns consume space proportional to the
size of the data tree in the worst case. Table 1 lists algorithms for the tree home-
omorphism matching problem together with bounds on their running time and
space consumption. Here D is the data tree and Q is the tree pattern. We assume
a random access machine model with unit cost for reading and writing integers.
Some of the algorithms presented support generalizations of the tree homeomor-
phism problem but where a better bound is known for the tree homeomorphism
problem, it is shown. Some of the streaming algorithms [3,17] use a notion of
candidate node sets candD which depends on the algorithm and which can be of
size close to |D| in the worst case. The algorithm of [3] makes the assumption
of so-called non-recursive data trees, in which no two nodes such that one is a
descendant of the other may have the same label. Finally, streaming algorithms

Efficient Algorithms for the Tree Homeomorphism Problem 19

such as [15] focus on being able to process SAX-events in constant time, at the
cost of an exponential preprocessing step.

In this paper we study the tree homeomorphism (matching) problem. We
establish a tight complexity characterization and develop an algorithm for the
node-selection problem (shown at the bottom of Table 1) that is both time- and
space efficient. In detail, the technical contributions of this paper are as follows.

– We first develop a top-down algorithm for the tree homeomorphism problem
that is in LOGDCFL.1

– From this we develop a proof that the problem is LOGSPACE-complete,
improving on the LOGCFL upper bound from [11].

– As our main result we develop a bottom-up LOGDCFL algorithm for com-
puting all solutions of the tree homeomorphism problem which is both time
and space efficient. This is a rather difficult algorithm and the correctness
proof is involved. The algorithm runs in time O(|D| · |Q| · depth(Q)) and
employs a stack of depth bounded by O(depth(D) · branch(D)).

The algorithm may be of relevance in practical implementations. Indeed,
in most Web or XML applications, the data tree is much larger than the
tree pattern yet its depth is rather small. It can be observed that ours is the
only algorithm in Table 1 — and to the best of our knowledge, in existence
— that can guarantee a space bound that does not contain the size, but only
depth and branching factor, of the data tree as a term. At the same time
the algorithm admits a good time bound.

Furthermore, the algorithm is of relevance in theory as well. It is a first
step in classifying the complexity of positive Core XPath with child and
descendant axis, which is probably the most widely used XPath fragment in
practice. Its precise complexity, however, is unknown.

– In some applications (e.g., for certain XML data trees), a few nodes can
have a very large number of children. Our algorithm can be made to run in
space O(depth(D) · log(branch(D))) with the same time bound if we assume
the data tree to be in a ranked form that can be obtained by a LOGSPACE
linear-time preprocessing algorithm. Given that ours is an offline algorithm
it means little loss of generality to assume that data trees are kept in a
database in this preprocessed form.

The paper presents these result basically in the order given here. Because of
space limitations, some proofs had to be omitted.

2 Definitions

By N we denote the set of strictly positive integers. By Σ we denote a finite
alphabet. The set of unranked Σ-trees, denoted by TΣ , is the smallest set of
strings over Σ and the parenthesis symbols “(” and “)” which contains the

1 For our purposes, it is enough to know that LOGDCFL is characterized by deter-
ministic logspace bounded pushdown automata which run in polynomial time [18].

20 M. Götz, C. Koch, and W. Martens

empty string and, for each a ∈ Σ and w ∈ (TΣ)∗, contains a(w). So, a tree is
either ε (empty) or is of the form a(T1 · · ·Tn) where each Ti is a tree. In the tree
a(T1 · · ·Tn), the subtrees T1, . . . , Tn are attached to the root labeled a. When we
write a tree as a(T1 · · · Tn), we tacitly assume that every Ti is a non-empty tree.
Moreover, we write a rather than a(). Notice that there is no a priori bound on
the number of children of a node in a Σ-tree; such trees are therefore unranked.
A hedge H is a finite sequence T1 · · ·Tn of trees. Hence, the set of unranked
Σ-hedges, denoted by HΣ , equals (TΣ)∗. When we write a hedge as T1 · · ·Tn, we
tacitly assume that every Ti is a non-empty tree. In the sequel, whenever we say
tree or hedge, we always mean Σ-tree or Σ-hedge, respectively. We will slightly
abuse terminology and use the term “tree” to also refer to a hedge consisting
of one tree, and we use the term “hedge” to also refer to the union of trees
and hedges. We assume familiarity with terms such as child, parent, descendant,
ancestor, leaf, root, first child, last child, first sibling, and last sibling.

For a hedge H , the set of nodes or domain of H , denoted by Dom(H), is the
subset of N

∗ inductively defined as follows: (i) if H = ε, then Dom(H) = ∅; (ii) if
H = a, then Dom(H) = {1}; (iii) if H = a(T1 · · · Tn), where each Ti ∈ TΣ −{ε},
then Dom(H) = {1}∪

⋃n
i=1{1iu | 1u ∈ Dom(Ti)}; and (iv) if H = T1 · · ·Tn with

n ≥ 2 and each Ti ∈ TΣ − {ε}, then Dom(H) = {iu | 1u ∈ Dom(Ti)}. The label
of node u in the tree or hedge H , denoted by labH(u), is defined as follows: (i)
if H = a and u = 1, then labH(u) = a; (ii) if H = a(T1 · · · Tn) and u = 1iv with
i ∈ {1, . . . , n}, then labH(u) = labTi(1v); and (iii) if H = T1 · · · Tn with n ≥ 2
and u = iv with i ∈ {1, . . . , n}, then labH(u) = labTi(1v).

By |H |, we denote the number of nodes in a hedge H . The depth of a node
u in hedge H , denoted by depthH(u), is 1 when u ∈ N and 1 + depth(v) when
u = vi and i ∈ N. The height of a node u in hedge H , denoted by heightH(u), is
1 when u is a leaf and max(heightH(u1), . . . , heightH(uk))+1 when u has k > 0
children. By subtreeH(u), we denote the subtree of H rooted at node u. In the
remainder of the paper, we usually leave H implicit when H is clear from the
context.

The Tree Homeomorphism Problem. A tree pattern query (with descendant
edges) Q is an unranked tree over the alphabet Σ � {∗}. In the following, we
use the terms data tree or data hedge to refer to ordinary Σ-trees and Σ-hedges.
Given a data hedge H , a node u ∈ Dom(H), and a tree pattern query Q, we say
that H matches Q at node u, denoted by H |=u Q, if one of the following holds:

– H = a, Q = a or Q = ∗, and u = 1;
– H = a(T1 · · · Tn), Q = a or Q = ∗, and u = 1;
– H = a(T1 · · · Tn), Ti |=1v Q, and u = 1iv, for some i ∈ {1, . . . , n};
– H = T1 · · · Tn, Ti |=1v Q, and u = iv, for some i ∈ {1, . . . , n};
– H = a(T1 · · · Tn), Q = x(Q1 · · ·Qm), u = 1, x ∈ Σ � {∗}, a |= x, and, for

every k = 1, . . . , m, there exists an ik ∈ {1, . . . , n}, uk ∈ Dom(Tik
), such that

Tik
|=uk Qk.

Notice that the ordering of children in our tree pattern queries does not matter.
This corresponds to the well known semantics of XPath queries with descendant

Efficient Algorithms for the Tree Homeomorphism Problem 21

Algorithm 1. Tree pattern matching with descendant axes: Top-down algorithm
Match

Match (DNode d, QNode q)
2: if d matches q then

return ∀ child qc of q ∃ child dc of d: Match(dc,qc)
4: else � q not matched yet, try d’s children

return ∃ child dc of d: Match(dc,q)
6: end if

axes [7]. In the following, we abbreviate by H |= Q that H |=u Q for some
u ∈ Dom(H). Alternatively, we say that H matches Q.

In this paper, we are interested in the following problems. Given a data tree T
and a tree pattern query Q, the tree homeomorphism problem consists of deciding
whether T |= Q. Furthermore, we are interested in computing all answers for the
tree homeomorphism problem, that is, computing all nodes u ∈ Dom(T) such
that T |=u Q. We refer to the latter problem as tree homeomorphism matching.

We assume that trees are stored on tape as a set of records; one for each
node. Each record contains a pointer to its first child, last child, parent, previous
sibling, and next sibling.

In the remainder of the paper, we assume a fixed data tree D and a fixed
query tree Q for ease of presentation. We will refer to nodes of D and Q as data
nodes and query nodes, respectively.

3 A Top-Down Algorithm

This section provides a simple top-down algorithm for the tree homeomorphism
matching problem. The core of this top-down algorithm lies in a simple procedure
that decides, given a data node d and a query node q, whether subtree(d) |=
subtree(q).

3.1 A Top-Down LOGDCFL Algorithm

Algorithm 1 describes the procedure Match to test whether subtree(d) |=
subtree(q). It is straightforward to prove that Match is indeed correct.

Lemma 1. Match is correct. That is, given a data node d and a query node
q, Match returns true iff subtree(d) |= subtree(q).

We can turn the procedure in Algorithm 1 into an algorithm Top-Down-Match

for the tree homeomorphism matching problem as follows. First, we need a proce-
dure Exact-Match that, given a data node d and query node q, decides whether
subtree(d) |=1 subtree(q). This is easy: Exact-Match only differs from Match

in l.5, where it just returns false. Given a data node d and the root qroot of the
query tree, Top-Down-Match now simply iterates over all the data nodes and
returns every data node d for which Exact-Match(d, qroot) returns true. From
this construction and from the correctness of Match, it is now immediate that
Top-Down-Match is correct as well.

22 M. Götz, C. Koch, and W. Martens

Fig. 1. Illustration of the remainder of q in Q

Time and Space Complexity. It can be shown quite directly that the time com-
plexities of Match and Exact-Match are in O(|subtree(d)| · |subtree(q)|). As
Top-Down-Match simply calls Exact-Match for every data node, we im-
mediately have the following result.

Proposition 2. The running time of Top-Down-Match is in O(|D|2 · |Q|).
Moreover, Top-Down-Match makes O(|D|2 · |Q|) comparisons between a data
node and a query node.

It is immediate from our implementation of the algorithm that it can be ex-
ecuted by a deterministic logarithmic space bounded auxiliary pushdown au-
tomaton (see, e.g., [18]). Moreover, by Proposition 2, this auxiliary pushdown
automaton runs in polynomial time. It follows from [18] that the tree homeo-
morphism matching problem is in LOGDCFL. As the maximum recursion depth
of Algorithm 1 is O(depth(D)), this renders the algorithm quite space-efficient,
but the running time being quadratic in the size of the data tree, and the many
unnecessary comparisons between query and data nodes are quite unsatisfactory.
In the next section, we show how these issues can be resolved by turning to a
bottom-up approach.

3.2 A LOGSPACE Procedure

While the top-down algorithm does not seem to be well-suited for efficiently
computing all nodes u for which D |=u Q, it is quite useful for deciding whether
D |= Q, from a complexity theory point of view. Indeed, as we will exhibit, a
modified version of Match can decide in LOGSPACE whether D |= Q. To this
end, we assume the left-to-right pre-order ordering on nodes in trees and hedges
in the remainder of this section. In particular, for every node u with k children
in a hedge H , we have that u < u1 < u2 < · · · < uk. For a node u, we denote
by u + 1 the next node in the depth first, left-to-right traversal.

We argue how to transform Algorithm 1 into a LOGSPACE algorithm that de-
cides whether D |= Q. Intuitively, the LOGSPACE algorithm processes the data
and query trees in a top-down manner, just like Algorithm 1, and it processes the
children of a node from left to right. The essential difference, however, lies in a
backtracking procedure. When, for example, Algorithm 1 matches a leaf q of the
query tree onto some data node d, then it uses the recursion stack to discover the
data node onto which q’s parent was matched in the data tree and tries to match

Efficient Algorithms for the Tree Homeomorphism Problem 23

Algorithm 2. LOGSPACE decision procedure: Top-down algorithm L-Match.
We assume left-to-right preordering on trees.

L-Match (DNode d, QNode q)
2: if d matches q, and both d and q have children then

return L-Match (d + 1,q + 1)
4: else if d does not match q and d has a child then

return L-Match (d + 1, q)
6: else if d matches q and q is a leaf then

if q is maximal in Q then return true � none of q’s ancestors has a right sib.
8: else

d′ ← Backtrack(d, q + 1) � node onto which q + 1’s parent was matched
10: return L-Match (d′ + 1, q + 1)

end if
12: else � d is a leaf and (d does not match q or q is not a leaf)

if d is maximal in D then return false
14: end if

while q has a parent do
16: d′ ← Backtrack(d, q) � node onto which q’s parent was matched

if d′ is an ancestor of d + 1 then return L-Match (d + 1, q)
18: else q ← q.parent

end if
20: end while

return L-Match (d + 1, q)
22: end if

q’s next sibling in some subtree of that data node. Instead of using this recursion
stack, the LOGSPACE algorithm enters a subprocedure Backtrack(d, q) that
recomputes d′. In particular, Backtrack(d, q) computes the highest possible
node d′′ on the path from D’s root to d, such that the path from D’s root to
d′′ matches the path from Q’s root to q’s parent. The crux of the algorithm is
that this is correct, i.e., d′′ = d′; and that Backtrack(d, q) can be performed
using only logarithmic space on a Turing Machine. Backtrack(d, q) stores d
and q on tape and goes to the roots of the query and data tree. It then matches
the path to d with the path to q in a greedy manner. The crux of executing
Backtrack(d, q) using logarithmic space lies in the following. If we arrive at a
node u in D (resp., Q), we have to be able to determine the child of u that lies
on the path to d (resp. q). To this end, we first store d (resp., q) in a temporary
variable v. We now determine v’s parent by scanning the input tape (i.e., we
search a node with a child-pointer to v) and we overwrite v with v’s parent. We
continue following the parent relation in this fashion until we find u, at which
point we return the value of v, which is a child of u.

We present the LOGSPACE algorithm in Algorithm 2. For ease of presen-
tation, we have written the algorithm as a recursive procedure, but it can be
implemented to only use logarithmic space. This can be seen by observing Algo-
rithm 2: every recursive call to L-Match is a return-statement, so the algorithm
does not change when the recursion stack is not used at all.

24 M. Götz, C. Koch, and W. Martens

Let, for a query node q, the remainder of q in Q be the subhedge of Q con-
sisting of the nodes {q′ | q ≤ q′ ≤ qmax}, where qmax is the maximal query nodes
w.r.t. the depth-first left-to-right ordering. We illustrate the remainder of q in
Q in Figure 1. Given a data node d and a query node q, the algorithm first
tries to match the remainder of q in Q consistently with what has already been
matched in D (lines 2–11). If this fails, it either returns false (line 13), or enters
a backtracking procedure (lines 15–21).

Lemma 3. Algorithm 2 is correct. That is, given the roots d and q of a data D
and query tree Q, Algorithm 2 decides whether D |= Q. Moreover, Algorithm 2
only uses logarithmic space.

Theorem 4. The tree homeomorphism problem is LOGSPACE-complete.

4 The Bottom-Up Algorithm

Although the previously presented top-down algorithms for tree homeomorphism
matching are quite space-efficient, their time complexity is quite high and they
involve quite a lot of recomputing of already obtained matchings, which is un-
satisfactory. We therefore turn to a bottom-up matching approach which has the
property that no obtained matchings between the data and query tree need to
be recomputed, which leads to a better time complexity of the overall algorithm.

Before presenting the bottom-up algorithm for the tree homeomorphism
matching problem in detail, we need to introduce several formal notions. As
in the previous section, we first present an algorithm for the tree homeomor-
phism problem and then show how to change it into an algorithm for the tree
homeomorphism matching problem.

In the present section, we assume the left-to-right post-order ordering on nodes
in trees and hedges. In particular, for every node u with k children in a hedge
H , we have that u1 < u2 < · · · < uk < u. For a node u, we denote by u + 1
the next node in the left-to-right postorder traversal. Hence, when we, e.g., use
terminology such as “largest” and “smallest”, we always assume the left-to-right
post ordering. In this section, we also assume that XML documents are stored
on tape in left-to-right postorder (or, alternatively, together with a left-to-right
postorder index), which allows a random-access machine model to verify the
left-to-right post-order ordering in constant time. For technical purposes, we
also assume two dummy nodes in every tree and hedge: nil and ∞. The node nil
is such that nil+1 is the smallest node in the hedge, and the node ∞ is defined as
the successor of the largest node of the hedge. Given two nodes hfrom ≤ huntil in
a hedge H , we denote by the interval [hfrom, huntil] the subhedge of H consisting
only of the nodes {v | hfrom ≤ v ≤ huntil}. The notion of such an interval in a tree
is illustrated in Figure 2(a). Here, the interval [hfrom, huntil] is the striped area in
the tree. Given a hedge H and a node h ∈ Dom(H), we denote by subhedgeH(h)
the subhedge [hfrom, h], where hfrom is the smallest descendant of h’s leftmost
sibling according to the left-to-right postorder ordering. We illustrate this notion
in Figure 2(b).

Efficient Algorithms for the Tree Homeomorphism Problem 25

hfrom

rtop(hfrom, huntil)

huntil

(a)

h

(b)

Fig. 2. Illustration of a hedge interval and RTop (left) and of subhedgeH(h) (right)

When H is a data hedge or a tree pattern query, we refer to [hfrom, huntil]
as a data or query hedge interval, respectively. We extend the semantics of tree
pattern matching to hedges as follows. Let Q1 · · ·Qn be a query hedge interval
[qfrom, quntil] and D1 · · · Dm be a data hedge interval [dfrom, duntil]. We say that
[dfrom, duntil] matches [qfrom, quntil], denoted by [dfrom, duntil] |= [qfrom, quntil], if,
for every Qi, i = 1, . . . , n, there exists a Dj , j = 1, . . . , m, such that Dj |= Qi.

Before presenting the intuition about the bottom-up tree homeomorphism
algorithm, we describe an auxiliary procedure RTop, which, given two nodes
hfrom and huntil, returns the rightmost node among the topmost nodes in the in-
terval [hfrom, huntil]. More formally, RTop(hfrom, huntil) is the node u such that
depth(u) is minimal and u is larger than every other node v in [hfrom, huntil]
with depth(u) = depth(v). This notion is illustrated in Figure 2(a). Fur-
thermore, in order to simplify the presentation of the algorithm, we define
RTop(hfrom, huntil) = ∞ if hfrom > huntil. Notice that RTop can easily be
computed in time linear in the depth of the tree and in logarithmic space by
traversing the path from huntil to the query root and comparing the previous
siblings of nodes on the path with hfrom w.r.t. the left-to-right post-ordering. In-
deed, assume that hfrom ≤ huntil. Let u be the highest ancestor of huntil that has a
previous sibling s such that s ≥ hfrom. If no such u exists, then rtop(hfrom, huntil)
is huntil. Otherwise, rtop(hfrom, huntil) is s.

We first present an algorithm for deciding whether D |= Q and show later
how it can be extended to an algorithm for the tree homeomorphism matching
problem. The main procedure of our algorithm is called TMatch. Given a data
node d and query nodes qfrom and quntil, TMatch returns the largest query node
q in the interval [qfrom, quntil] such that subtreeD(d) matches [qfrom, q] if q exists;
and qfrom − 1 otherwise. Hence, if d is the root of D, and qfrom and quntil are the
leftmost leaf and the root of Q, respectively, then D |= Q if and only if TMatch

returns quntil.
TMatch uses an auxiliary procedure called HMatch, which, given a data

node d and query nodes qfrom and quntil, returns the largest node q in the interval
[qfrom, quntil] such that subhedgeD(d) matches [qfrom, q] if q exists; and qfrom − 1
otherwise.

We start by explaining the operation of TMatch, which is presented in Al-
gorithm 3. Given a data node d and query nodes qfrom and quntil, TMatch first

26 M. Götz, C. Koch, and W. Martens

Fig. 3. Illustrations of the tree homeomorphism algorithm

starts by recursively calling HMatch with the same query nodes for the sub-
hedge D′ of D defined by d’s last child, yielding result qbest (see Figure 3(a)). In
the remainder of TMatch, we essentially want to test how qbest can be improved
when we also consider the node d in addition to D′. One particular interesting
case is when qbest is a last sibling and its parent has the same label as d. In
this case, we can at least improve our best query node to qbest’s parent which
we call here q′best. Furthermore, it is possible that q′best is not yet the best query
node we can obtain. In particular, we still need to test which part of the hedge
defined by [q′best +1, q′best.lastSibling] can be matched in the subtree below d (see
Figure 3(b)). The largest node that is obtained in this manner is the node that
TMatch should return.

We now explain the operation of HMatch, which is presented in Algorithm 4.
Essentially, given d, qfrom, and quntil, HMatch starts by recursively calling itself
with the same query nodes on the hedge defined by the previous sibling of d
(i.e., D′ in Figure 3(c)), yielding qhedge, and by calling TMatch with the same
query nodes on the subtree under d itself (D′′ in Figure 3(c)), yielding qtree. The
remainder of HMatch consists of iteratively improving qtree and qhedge. That
is, while it is possible that D′ and D′′ yield small values of qtree and qhedge,
their concatenation can give rise to a much larger part of the query that can be
matched. Essentially, this is due to the fact that the matching of tree pattern
queries is unordered. For example, it can occur that we need to match a certain
first sibling in D′, a second one in D′′, a third one again in D′ and so on. Hence,
the procedure HMatch alternates between finding best matches in D′ and D′′

until it reaches a fixpoint.

Efficient Algorithms for the Tree Homeomorphism Problem 27

Algorithm 3. Tree pattern matching: function TMatch.
TMatch (DNode d, QNode qfrom, QNode quntil)

2: if d is a leaf then qbest ← qfrom − 1
else qbest ← HMatch(d.lastChild, qfrom, quntil)

4: end if
if qbest + 1 ≤ quntil and d matches qbest + 1 then

6: qbest ← qbest + 1
if qbest + 1 ≤ qbest.lastSib then

8: return TMatch(d, qbest + 1, qbest.lastSib)
else return qbest

10: end if
else return qbest

12: end if

However, we need to take care in how this fixpoint is computed. One possible
case is illustrated in Figure 3(d). This particular case builds further on the
situation in Figure 3(c). Here, we try to improve qtree by starting the TMatch

procedure again for the node d, but now only with the part of the query marked
with question marks. The case where qtree is larger than qhedge is dual and not
illustrated here.

Example 5. Figure 4(a) and 4(b) illustrate an example for the bottom up al-
gorithm. For brevity, we denote TMatch and HMatch with TM and HM,
respectively. The first calls of TM and HM demonstrate the basic recursive
structure of our algorithm: TM on a node d calls HM on the rightmost child of
d. HM on a node d returns TM of d if that node is a first sibling; or performs a
divide-and-conquer technique by calling HM on the left sibling of d and TM on
d itself (as in the function call HM(d4, q1, q5)). Further recursive calls to TM or
HM are then needed to maximize the part of the query that can be matched.

The simplest function call in the example that performs such further recursive
calls is the call HM(d2, q1, q5), which starts by computing qhedge = HM(d1, q1, q5)
and qtree = TM(d2, q1, q5). As can be seen in Figure 4(b), qhedge = nil. The call
TM(d2, q1, q5) is more successful, because d2 and q1 are both labeled with a.
In general, it might be possible that q2 and further nodes can be matched in
subtree(d2). The function call TM(d2, q2, q4) checks that possibility. (For sure,
q1 and q5 cannot both be matched on d2, which is why we restrict the query tree
interval by q4.) But q2 is not labeled with a so the return value of the two TM

calls is q1. After this initial phase, HM(d2, q1, q5) tries to improve qtree and qhedge
iteratively. It calls HM(d1, q2, q4) and improves qhedge to be q2, because q2 and
d1 are both labeled with b. Further improvements fail as there is no c-labeled
node in the subhedge of d2.

A similar iterative improvement is illustrated by HM(d3, q1, q5). Observe that
we try to improve qtree here and call TM(d4, q2, q4) and TM(d4, q3, q3). Only
the latter call yields an improvement. But we cannot omit the former one: if
subtree(d4) would match subtree(q4), then the former call would yield q4 and
the latter call would yield q3. As we want our algorithm to return the largest

28 M. Götz, C. Koch, and W. Martens

Algorithm 4. Tree pattern matching: function HMatch.
HMatch (DNode d, QNode qfrom, QNode quntil)

14: if d is a first sibling then return TMatch(d, qfrom, quntil)
else

16: qhedge ← HMatch(d.prevSib, qfrom, quntil)
qtree ← TMatch(d, qfrom, quntil)

18: loop
if qhedge = qtree then return qhedge

20: else if qtree < qhedge then
rtop ← RTop(qtree + 1, qhedge)

22: while rtop < ∞ and qhedge < rtop.lastSib do
qtree ← TMatch(d, rtop+1, rtop.lastSib)

24: rtop ← RTop(qtree + 1, qhedge)
end while

26: if qtree ≤ qhedge then return qhedge

end if
28: else

rtop ← RTop(qhedge + 1, qtree)
30: while rtop < ∞ and qtree < rtop.lastSib do

qhedge ← HMatch(d.prevSib, rtop + 1, rtop.lastSib)
32: rtop ← RTop(qhedge + 1, qtree)

end while
34: if qhedge ≤ qtree then return qtree

end if
36: end if

end loop
38: end if

query node such that the interval ending with it can be matched the result of
the former call would have been the relevant one in that case.

Correctness. The main technical difficulty of the paper is proving that TMatch

is correct. Due to space limitations, the proof has been omitted.

Lemma 6. Let D be a data tree and let Q be a query tree. TMatch is correct,
that is, given the root node d of D, the smallest and largest node qfrom and quntil
of Q, respectively, TMatch returns quntil iff D |= Q.

We now argue how TMatch can be modified to a procedure TMatch-All,
that computes all data nodes u such that D |=u Q. In order to compute all the
matches, we add a test to l.9 of TMatch. That is, before returning qbest, we test
whether qbest is the root of Q, and we output d if it is. Now we return qbest − 1,
as if the query root was not matched. Furthermore, TMatch-All recursively
calls TMatch-All and HMatch-All instead of TMatch and HMatch. Here
HMatch-All is the same as HMatch, except that it recursively calls TMatch-

All and HMatch-All instead of HMatch and TMatch.

Efficient Algorithms for the Tree Homeomorphism Problem 29

∗

q5

a

q1

d

q4

b

q2

c

q3

e

d

d5

f

d3

b

d1

a

d2

c

d4

(a) Query tree (left) and data tree (right) of Example 5

TM(d1, q1, q5) ⇒ nil

TM(d2, q2, q4) ⇒ q1

TM(d1, q2, q4) ⇒ q2

TM(d1, q3, q3) ⇒ q2

TM(d6, q1, q5) ⇒ q5

HM(d5, q1, q5) ⇒ q4

TM(d5, q1, q5) ⇒ q4

HM(d4, q1, q5) ⇒ q3

HM(d3, q1, q5) ⇒ q2

TM(d3, q1, q5) ⇒ q2

HM(d2, q1, q5) ⇒ q2

HM(d1, q1, q5) ⇒ nil

TM(d2, q1, q5) ⇒ q1

HM(d1, q2, q4) ⇒ q2

TM(d2, q3, q3) ⇒ q2

TM(d4, q1, q5) ⇒ nil

TM(d4, q2, q4) ⇒ q1

TM(d4, q3, q3) ⇒ q3

(b) Function calls of HMatch (HM) and TMatch

(TM) of Example 5.

Fig. 4. Illustrations for Example 5

The following theorem can be proved:

Theorem 7. Let d be the root node of D and let qfrom be the smallest and
qroot be the largest node of Q, respectively. TMatch-All is correct, that is,
TMatch-All(d, qfrom, quntil) outputs the data nodes u such that D |=u Q.

Proof (Sketch). It follows directly from our additional test and the correctness
of TMatch that D |=u Q for all the nodes u that TMatch-All outputs.

It remains to prove that, if D |=u Q, then TMatch-All outputs u. To-
wards a contradiction, assume that there is an u such that D |=u Q, but u
was not reported by TMatch-All. By an easy induction it can be shown
that for every data node d0 in D there is a call TMatch-All for d0’s sub-
tree and Q. In particular, there was a call TMatch-All(u, qfrom, qroot). Since

30 M. Götz, C. Koch, and W. Martens

this call did not output u, it follows that u must have children and that
HMatch-All(u.lastChild, qfrom, qroot) < qroot − 1, (because otherwise qroot and
u would have been compared and u would have been written to the output). In
general, we have that HMatch-All(d, q1, q2)=min (HMatch(d, q1, q2), qroot −1).

It follows that HMatch-All(u.lastChild, qfrom, qroot) = HMatch(u.last
Child, qfrom, qroot).

If we now call TMatch(u, qfrom, qroot), it calls HMatch(u.lastChild, qfrom,
qroot), which yields again a value less than qroot−1. Therefore, the return value of
TMatch(u, qfrom, qroot) is less than qroot. But we assumed that subtree(u) |= Q,
which contradicts the correctness of TMatch proved in Lemma 6. �
Time and Space Complexity. First, we need to show that our algorithm deter-
mines in PTIME whether D |= Q. Notice that the näıve manner of computing
the running time of TMatch gives rise to only an exponential upper bound.
Indeed, define (i) T (N) as the running time of TMatch on d, qfrom, and quntil,
where subtree(d) and [qfrom, quntil] have N nodes in total, and (ii) H(N) as
the running time of HMatch on d, qfrom, and quntil, where subhedge(d) and
[qfrom, quntil] have N nodes in total. Then, we have that T (2) ≤ p(N) for a poly-
nomial p, T (N) ≤ p(N) + H(N − 1) + T (N − 1), and H(N) ≤ T (N) + X(N),
where X(N) ≥ 0. Hence, T (N) ≤ 2N−1, which is obviously not sufficient.

We therefore employ a slightly more sophisticated approach in the following
Lemma.
Lemma 8. Given the root node of a data tree D, and the smallest and largest
query nodes and of a query tree Q, respectively, TMatch runs in time O(|D| ·
|Q| · depth(Q)). Moreover, TMatch makes O(|D| · |Q|) comparisons between a
data node and a query node.
The depth(Q) factor in the complexity of TMatch is due to the calls to rtop
in HMatch, and the computation of the successors of query nodes.

Theorem 9. TMatch-All(D, Q) runs in time O(|D| · |Q| · depth(Q)). More-
over, TMatch-All makes O(|D| · |Q|) comparisons between a data node and a
query node.

Currently, the maximum recursion depth of TMatch-All is O(depth(D) ×
branch(D)), where branch(D) is the maximum number of children a node in
D has. We have the branch(D) factor because HMatch(d, qfrom, quntil) calls
HMatch(d.prevSib, qfrom, quntil). However, this bound can be improved using a
simple preprocessing step: we can turn D into a binary tree Dbin by inserting
intermediate levels of special nodes between each data node and its children. By
doing so, D only grows linearly in size and the depth only grows by a factor of
log(branch(D)).

As Q only uses descendant axes, we have that D |=u Q iff Dbin |=u Q.2 When
this preprocessing step is carried out, our algorithm still has O(|D||Q|depth(Q))
time complexity, but the recursion/stack depth is improved to O(depth(D) ·
log(branch(D))).
2 Under the assumption that the new dummy nodes do not match ∗, which can be

trivially incorporated in the algorithm.

Efficient Algorithms for the Tree Homeomorphism Problem 31

References

1. Altinel, M., Franklin, M.: Efficient filtering of XML documents for selective dis-
semination of information. In: Proc. VLDB, pp. 53–64 (2000)

2. Bar-Yossef, Z., Fontoura, M., Josifovski, V.: On the memory requirements of XPath
evaluation over XML streams. In: Proc. PODS, pp. 177–188 (2004)

3. Bar-Yossef, Z., Fontoura, M., Josifovski, V.: Buffering in query evaluation over
XML streams. In: Proc. PODS (2005)

4. Bruno, N., Srivastava, D., Koudas, N.: Holistic twig joins: Optimal XML pattern
matching. In: Proc. SIGMOD, pp. 310–321 (2002)

5. Chan, C.Y., Fan, W., Felber, P., Garofalakis, M.N., Rastogi, R.: Tree pattern aggre-
gation for scalable XML data dissemination. In: Bressan, S., Chaudhri, A.B., Lee,
M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590,
pp. 826–837. Springer, Heidelberg (2003)

6. Chan, C.Y., Felber, P., Garofalakis, M.N., Rastogi, R.: Efficient filtering of XML
documents with XPath expressions. In: Proc. ICDE, pp. 235–244 (2000)

7. Clark, J., DeRose, S.: XML Path Language (XPath). Technical report, World Wide
Web Consortium (November 1999), http://www.w3.org/TR/xpath

8. Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space.
J. Algorithms 8, 385–394 (1987)

9. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.: Path sharing and
predicate evaluation for high-performance XML filtering. ACM Trans. Database
Syst. 28(4), 467–516 (2003)

10. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. ACM Trans. Database Syst. 30(2), 444–491 (2005)

11. Gottlob, G., Koch, C., Pichler, R., Segoufin, L.: The complexity of XPath query
evaluation and XML typing. J. ACM 52(2), 284–335 (2005)

12. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries.
J. ACM 48(1), 431–498 (2001)

13. Green, T.J., Gupta, A., Miklau, G., Onizuka, M., Suciu, D.: Processing XML
streams with deterministic automata and stream indexes. ACM Trans. Database
Syst. 29(4), 752–788 (2004)

14. Grohe, M., Koch, C., Schweikardt, N.: Tight lower bounds for query processing on
streaming and external memory data. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, Springer, Heidel-
berg (2005)

15. Gupta, A., Suciu, D.: Stream processing of XPath queries with predicates. In: Proc.
SIGMOD, pp. 419–430 (2003)

16. Olteanu, D., Furche, T., Bry, F.: An evaluation of regular path expressions with
qualifiers against XML streams. In: Williams, H., MacKinnon, L.M. (eds.) Key
Technologies for Data Management. LNCS, vol. 3112, pp. 31–44. Springer, Heidel-
berg (2004)

17. Ramanan, P.: Evaluating an XPath query on a streaming XML document. In:
Proc. COMAD 2005, pp. 41–52 (2005)

18. Sudborough, I.H.: Time and tape bounded auxiliary pushdown automata. In:
Gruska, J. (ed.) Mathematical Foundations of Computer Science 1977. LNCS,
vol. 53, pp. 493–503. Springer, Heidelberg (1977)

19. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proc. VLDB, pp.
82–94 (1981)

http://www.w3.org/TR/xpath

Datalog Programs over Infinite Databases, Revisited
(Extended Abstract)

Sara Cohen, Joseph (Yossi) Gil, and Evelina Zarivach

Technion—Israel Institute of Technology

Abstract. This paper’s revisit of infinite relational databases, a model tradition-
ally perceived as purely theoretical, was sparked by a concrete implementation
setting, and the results obtained here were used in a practical database problem.
In the course of implementing a database system for querying Java software, we
found that the universe of Java code can be effectively modeled as an infinite
database. This modeling makes it possible to distinguish between queries which
are “open-ended,” that is, whose result may grow as software components are
added into the system, and queries which are “closed,” in that their result does not
change as the software base grows. Further, closed queries can be implemented
much more efficiently than open queries. Achievements include an algorithm for
distinguishing between these two kinds of queries (we assume that queries are
written in Datalog), and an algorithm to generate an efficient evaluation scheme
of closed queries, which is a generalization of Vieille’s famous QSQR algorithm
for top-down evaluation of Datalog programs. A by-product of this work is a
rather terse and elegant representation of QSQR.

1 Introduction

Usually, a database contains relations of finite size. However, there are natural settings
which can be better modeled by infinite databases, over which a set of finiteness con-
straints is defined. In this paper we are interested in the safety problem, which is one
of most fundamental issues related to DATALOG [2] programs over infinite relations.
We say that a DATALOG program is safe, if it yields a finite result over all databases
which satisfy some given finiteness constraints. Instead of studying the safety problem
directly, we consider the weak safety and termination properties. Intuitively, a program
(i) is weakly safe if it yields a finite answer for all finite applications of its rules and, (ii)
terminates if every sequence of rule applications eventually ceases to yield new results.

To motivate our study of infinite databases, we describe below three different scenar-
ios which involve (some degree of) inherent infiniteness of the database.

Function Symbols. Classically, infinite databases were first introduced as an abstrac-
tion that allow programs with function symbols to be modeled as function-free pro-
grams over infinite relations. As an intuitive example, consider the following DATALOG

program which contains two function symbols:

q(x + 1) ← p(x). q(x) ← q(
√
x), p(x).

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 32–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Datalog Programs over Infinite Databases, Revisited 33

As [12] showed, this program can be abstractly modeled as follows, where succ and
sqrt are infinite relations.

q(y) ← p(x), succ(x, y). q(x) ← q(y), p(x), sqrt(x, y).

Finiteness constraints were introduced in [12] to model known characteristics of the
function symbols, such that for each x, there are finitely many y such that sqrt(x, y)
holds.

Open-World Software. Recently, the interest in infinite databases has been sparked by
additional scenarios, e.g., as a formal model of a database of an open-world software
or of other relations that may be spread across the Web. Open-world software is infinite
in the sense that it is constantly growing, and thus, cannot be completely explored at
any moment in time. For example, given a class C, there may be an unbounded number
of program classes that inherit from C, that call a method from C, or that have as a
data member an instance of C. Thus, querying in the open-world software scenario is
naturally modeled as querying over infinite relations. This specific domain also gives
rise to finiteness constraints, e.g., a class may inherit only from a finite number of
classes.

Our study of infinite databases was motivated by JTL [3], a new DATALOG based
system for making queries over software, which uses infinite relations as its data model.
As an example of the usefulness of this paradigm for querying JAVA software, consider
the following JTL query, which finds (i) all public interfaces or (ii) all public interfaces
or classes that extend an abstract class or interface.

public [extends T, T abstract | interface];

The DATALOG program equivalent to the above is as follows.

q(x) ← public(x), p(x). p(x) ← interface(x).
p(x) ← extends(x, y), abstract(y).

Note that public, interface, abstract and extends are EDB predicates. Although this pro-
gram is nonrecursive, it is also possible to express recursive constraints in JTL.

Even in an open-environment, finiteness constraints have a natural manifestation. For
example, the transitive closure of a “uses” relationship between programs is assumed
to be bounded. In other words, the programming model is such that, it is unknown
which classes may be using a given class, and in general, the number of these classes is
unbounded. However, the list of classes that the given class uses, directly or indirectly,
is bounded, and must be available to the compiler at compile time. (This assumption
is critical, as it allows a program to be compiled and executed by dynamically loading
required components.)

Access Constraints. Infinite databases can also be used as an abstraction for computa-
tion that is highly inefficient. Consider, for example, a predicate tree(x, y), which holds
pairs of parent-child node ids in a tree structure. It may be the case that given a value
for x, it is easy to compute all values for y (since we have forward pointers), yet given
a value for y, it is very inefficient to compute x (if we do not store backward point-
ers). Such constraints have been modeled in the past as access constraints (sometimes

34 S. Cohen, J.(Y.) Gil, and E. Zarivach

called binding patterns) and the rewriting problem for queries with access constraints
has been extensively studied, e.g., [4, 9, 5]. An alternative modeling of such scenarios
is to consider tree as an infinite relation, with a finiteness constraint that specifies the
manner(s) in which it can be efficiently accessed.

Due to lack of space we do not discuss the exact similarities and differences between
these two alternative models. However, it is of interest to note that our results shed some
light on problems related to querying with access constraints. For example, our algo-
rithm for implication of finiteness constraints can be adapted to imply access constraints
over IDB predicates, when given access constraints over the EDB predicates.

Related Work. The problem of deciding safety (i.e., finiteness of results) of a DATALOG

program has been extensively studied. Safety of recursive DATALOG programs without
function symbols, but with negation, is known to be undecidable [11, 15]. Safety is
also undecidable for DATALOG programs with functions symbols [14]. This latter re-
sult motivated [12] to abstractly model DATALOG programs with function symbols as
function-free programs over infinite relations. [12] also introduced finiteness constraints
to model known characteristics of function symbols.

The safety problem for DATALOG programs over infinite relations, with finiteness
constraints, was studied in [13]. In particular, [13] showed that safety can be reduced to
a combination of two properties: weak safety (i.e., finiteness of results for every finite
number of rule applications) and termination. They presented a method to determine
weak safety, and showed that termination is undecidable. For monadic programs, [13]
proved that safety can be determined in polynomial time.

Several stronger notions than safety have also been studied for programs over infinite
relations. Supersafety was considered in [6, 7] and shown to be decidable. Supersafety
is a sufficient, but not necessary, condition for safety. Intuitively, supersafety requires
finiteness of results in all fix-point models, whereas safety requires finiteness of results
only in the least fix-point model. The strong safety variant was studied in [8]. Basically,
a program is strongly safe if all intermediate rules (and not only the goal predicate) yield
finite results. For a special case, [8] showed how to evaluate all results for a strongly safe
program, using a bottom-up computation. One of the requirements in [8] is that each
rule can be computed in a left-to-right ordering of its atoms, such that the variables in a
specific atom are bounded by those appearing to its left. Our results can also be used to
check such properties of rules.

Contributions. This paper presents new results on the safety problem for DATALOG

programs over infinite relations. Our four main contributions can be summarized as
follows. First, we present an algorithm (Sections 4 and 5) to determine finiteness con-
straints on IDB predicates defined in a DATALOG program based on the finiteness con-
straints defined on the EDB predicates. Our algorithm finds all finiteness constraints that
must hold on the IDB after any finite number of rule applications. This result is useful in
itself since it gives us insight on the characteristics of the IDB predicates, which can be
important for developing query computation algorithms, such as the type in [8]. Second,
we present an alternative characterization, based on this algorithm, of DATALOG pro-
grams which are weakly safe (Sec. 6). Third, the termination problem in also considered
(Sec. 7). Our EDB predicates can be binary (as opposed to the monadic predicates con-
sidered in [13]). We decide termination when the database is founded which is natural,

Datalog Programs over Infinite Databases, Revisited 35

in particular, in the software model. Fourth, a characterization of DATALOG programs
which can be evaluated even if they require in their evaluation partial exploration of in-
finite values is presented (Sec. 8). (This is the case if the program needs to check e.g., if
a given class has at least one class that inherits from it.) An actual evaluation algorithm,
based on the famous Vieille’s [16, 17] query-subquery top-down evaluation technique
is presented in Sec. 9. (We believe that our presentation of the algorithm is a bit more
elegant and easy to understand than the original formulation.)

2 Preliminaries

This section briefly reviews the basic syntax and semantics of positive, recursive DAT-
ALOG programs, which are evaluated over a possibly infinite database. This review is
necessary in order to introduce the notation that we will be using throughout the paper.

Syntax. Relations in DATALOG are represented by predicates, and are abstractly de-
noted with p and q. We use ar(p) to denote the arity of the predicate p. When discussing
concrete examples of predicates, we will use the sanserif font, e.g., members, parent.
For a predicate p, we denote by p1, p2, . . . its positions.

Let V be an enumerable set of variable symbols and D be an enumerable set of
constant symbols. We shall use lower-case letters from the end of the Latin alpha-
bet, i.e., x, y, z, etc., to denote variables and upper-case bold letters to denote sets of
variables X, Y, Z. Constants are quoted, e.g., ‘Moses’, ‘Isaac’, etc. Terms are either
constants or variables and are denoted t, t1, t2, etc.

An atom a is of the form p(t1, . . . , tn) where p is a predicate symbol of arity n and
each ti is a term. We use pred(a) to denote the predicate of a and we use ar(a) as a
shorthand notation for ar(pred(a)). For an atom a, we denote by ti(a) a term which
appears at position i. Terms which are mapped to a constant are said to be bound;
other terms are free. In parent(x, ‘Moses’), the first term is free while the second is
bound. A fact is a ground atom, i.e., an atom in which all arguments are bound. For
example, parent(‘Amram’, ‘Moses’) is a fact. The phrase p-fact refers to a fact a such
that pred(a) = p.

Let vars(a) (respectively consts(a)) denote the set of all variables (respectively con-
stants) appearing in atom a. Let terms(a) = vars(a) ∪ consts(a), i.e., terms(a) is the
set of all the terms appearing in the atom a. An assignment is a function μ : V → D.
By applying an assignment μ to an atom a, one derives a pred(a)-fact.

A rule r has the form p(t1, . . . , tk) ← a1, . . . , an, where p(t1, . . . , tk) is the head
of r, and a1, . . . , an is the body of r. We use the overloaded notation pred(r) to denote
the predicate of the head of r. If p = pred(r), we say that r defines p. We overload
the notations vars(r), consts(r) and terms(r) to represent all the variables, constants
and terms(respectively) appearing in rule r. For i = 1, 2, . . . , let termsi(r) be the ith

element of terms(r) in some enumeration of this set.
A DATALOG program Π is a finite collection of rules, with a designated predi-

cate, called the goal. We use consts(Π) to denote the set of constants appearing in
any rule of Π , i.e., consts(Π) =

⋃
r∈Π consts(r) . We distinguish between two kinds

of predicates that appear in a program: (i) extensional database (EDB) predicates, de-
noted edb(Π), which are predicates that do not occur in the head of any of the

36 S. Cohen, J.(Y.) Gil, and E. Zarivach

τ1: heir(x, y) ← extends(x, y).
τ2: heir(x, y) ← extends(x, z), heir(z, y).

τ3: class cousins(x, y, z) ← extends(x, x′), extends(x′, z), extends(y, y′), extends(y′, z).
τ4: heirs(x, u, v) ← heir(x, u), heir(x, v), not eq(u, v).
τ5: multi(x, y) ← heirs(x, u, v), class cousins(u, v, y), dependant(x, y).
τ6: q(x, y) ← multi(x, y), heir(‘Bill’, x), extends(w, ‘Bill’).

Fig. 1. A DATALOG program

program’s rules, and (ii) intensional database (IDB) predicates (all other predicates),
denoted idb(Π). By convention, we use q to denote the goal of a program. We always
require that q ∈ idb(Π).

Semantics. A database D is a possibly infinite set of facts. To be exact, for each EDB
predicate p, the database D may contain infinitely many p-facts; D usually does not
contain any facts for the IDB predicates. The result of applying a rule r to a database D
is defined in the standard fashion. Informally, the semantics of a rule is “If the body
atoms are true then so is the head atom.” To make the semantics precise, we consider
a set F that contains facts for the EDB (and possibly for the IDB) predicates. Such
sets are intermediate values during the evaluation of a program on a database. Then,
an application of a rule r: p(t1, . . . , tk) ← a1, . . . , an to F produces a set of facts
denoted r(F), such that (1) every fact in F is in r(F), and (2) if μ is an assignment that
satisfies the body of r (i.e., μ(ai) ∈ F , for all i), then also μ(p(t1, . . . , tk)) ∈ r(F).

For a sequence r of rules, let r(F) denote the set of all facts obtained by applying
the rules in r in sequence to F , i.e., if r is empty, then r(F) = F . Otherwise, r =
r′r, where r′ is a sequence and r is a rule, in which case r(F) = r(r′(F)). The
notation Πi(F) will stand for the union of all r(F), where r is a sequence of at most i
rules selected from Π . Also, let Π∞(F) =

⋃
i≥0 Πi(F).

If p is a predicate, then subscript p will be used to denote the restriction of a set of
facts to p-facts only. Thus, Πi

p(F) is the set of p-facts in Πi(F), and rp(F) is defined
similarly. The result of applying Π to a database D is Π∞q (D) where q is Π’s goal.
Note that Π∞q (D) may be infinite if D is infinite.

For the purpose of illustration, Fig. 1 presents a simple DATALOG program, which
will be used as the running example of this paper. The program is defined over extends,
dependant and not eq EDB predicates which are suitable for JAVA classes. In particular,
a fact extends(‘c’, ‘p’) states that module (e.g., a class or an interface) ‘c’ extends mod-
ule ‘p’ and a fact dependant(‘a’, ‘b’) represents a couple in which ‘a’ depends upon ‘b’.

Expansion Rules. We will find it convenient to summarize the application of a rule se-
quence in a sequence of expansion rules, i.e., rules which involve only EDB predicates.
We will use γ to denote a single expansion rule and Γ to denote a set of expansion rules.
Fac. 1 is well known, and follows, e.g., from [10].

Fact 1. For every finite sequence of rules r and every predicate p there exists a finite
set of expansion rules Γ , which uses only the constants occurring in the rules of r, such
that for all databases D, rp(D) =

⋃
γ∈Γ γp(D).

Datalog Programs over Infinite Databases, Revisited 37

In our running example, applying τ1 and then τ4 is the shortest sequence of rule
applications that generates heirs-facts. The expansion rule for this sequence is

heirs(x, u, v) ← extends(x, u), extends(x, v), not eq(u, v). (2.1)

Similarly, one sequence that yields a multi-fact, is by applying first τ1 and τ4 (to ob-
tain heirs-facts), then τ3 (to obtain class cousins-facts), and finally τ5. The correspond-
ing expansion rule is similar to (2.1), but a bit longer

multi(x, y) ← extends(x, u), extends(u, u′), extends(u′, y), dependant(x, y),
extends(x, v), extends(v, v′), extends(v′, y), not eq(u, v).

(2.2)

Recall that the result of applying a program Π , with goal q, to a database D is Π∞q (D).
It follows from Fac. 1 that there exists an infinite series of expansion rules γ1, γ2, . . .
defining q such that

Π∞q (D) =
∞⋃

i=1

γi
q(D). (2.3)

Henceforth, we shall tacitly assume that the head atom of any rule r does not contain
any variable v ∈ vars(r) more than once and does not contain constants. No generality
is lost. Rules can always be brought to this form without changing their semantics by
introduction of auxiliary variables and by using the infinite EDB predicate eq(x, y)
which holds whenever x = y. For example, rule a(x, x, y, ‘Ben’) ← a(x, ‘Dan’, z).
will be transformed to a(x, w, y, u) ← a(x, ‘Dan’, z), eq(w, x), eq(u, ‘Ben’).

3 The Safety Problem

In this section we present a theory of finiteness constraints which is crucial to the analy-
sis of the problem that we research. Informally, the problem is:

Given a DATALOG program and restrictions over its database, decide whether
the result of a program is finite for any infinite database that meets the restric-
tions.

One should understand that when there are no constraints on the database, nothing
meaningful can be stated about the program’s semantics. Even a simple DATALOG pro-
gram, such as moses son(x) ← parent(‘Moses’, x) can deduce an infinite number of
facts for the moses son predicate when no restrictions are imposed on parent predicate.

Consider, on the other hand, a case in which we restrict the set of parent-facts in
the database such that for any ‘c’ ∈ D, the set {x | parent(‘c’, x)} is finite. Under this
restriction, we can conclude that the above program deduces only finitely many facts to
its goal. To express such restrictions, we use finiteness constraints, as defined in [12].

Definition 2. Let p be a predicate. Then, pos(p) is the set of symbols
{
p1, . . . , par(p)

}
,

and a finiteness constraint (constraint for short) of p is an expression of the form x � y,
where x, y ⊆ pos(p).

38 S. Cohen, J.(Y.) Gil, and E. Zarivach

A set of fact F satisfies constraint x � y if the search for p-facts in F with some
fixed assignment to positions x, yields only a finite variety of combinations of values
for positions y. More formally,

Definition 3. Let σ = x � y be a constraint on predicate p and F be a set of facts.
Then, F |= σ (read F satisfies σ) if the set

{b[y] | b ∈ F and pred(b) = p and b[x] = a[x]}

is finite for every p-fact a ∈ F . If C is a set of constraints, then F |= C if F |= σ for
all σ ∈ C.

As an example, consider the predicate intersect, in which a fact intersect(‘c1’, ‘c2’, ‘p’)
states that ‘c1’ and ‘c2’ are two distinct circles intersecting at a point ‘p’. Then, (in-
finite) set of all facts about intersections of distinct circles in the plane satisfies the
constraint {intersect1, intersect2} � {intersect3}, since there are at most two points in
which such circles intersect. This set does not satisfy any other constraints.

Remark 1. Using constraints it is possible to state that the number of p-facts, for some
predicate p, must be finite. Formally, this is written as ∅ � pos(p).

Remark 2. Note that finiteness constraints are a somewhat weaker version of functional
dependencies. Not surprisingly, Armstrong’s axioms also characterize finiteness con-
straints for EDB predicates [12].

Let C(F) denote the set of all constraints that set F satisfies. It is easy to show that
the set of constraints satisfied by the intersection of finitely many sets is equal to the
intersection of the constraints of the sets, or more formally, C(F1∪· · ·∪Fn) = C(F1)∩
· · · ∩ C(Fn). (Unfortunately, this fact does not hold for infinite sequences.)

After defining the notion of finiteness constraints, we are ready to formally state the
central problem of the research. For the purpose of the following definitions, let Π be
a fixed DATALOG program, and let predicate q be its goal. Also let C be a set of con-
straints. Then, the main problem of this paper is to determine whether the set Π∞q (D)
is finite whenever D |= C, i.e., to decide whether a given program is safe or not.

Definition 4. Program Π is safe if Π∞q (D) is finite whenever D |= C.

The safety problem can be reduced to two problems [13]: (i) the weak safety problem,
which is to decide whether any finite sequence of program rule applications yields a
finite number of facts to its goal, and (ii) the termination problem, which is to decide
whether there is a finite number of rule applications after which no new facts are added
to the program’s goal. Formally,

Definition 5. We say that Π is weakly safe with respect to C if the set Πn
q (D) is finite

for all n ≥ 0 whenever D |= C.

Definition 6. We say that Π is terminating with respect to C if there exists n ≥ 0 such
that Π∞q (D) = Πn

q (D) whenever D |= C.

Datalog Programs over Infinite Databases, Revisited 39

It is well known that a program Π is safe iff it is both weakly safe and terminating [13].
It is also known [13] that the weak safety problem is complete for exponential time.
However, no algorithm has been shown to, given a program, deduce all constraints for
the IDB predicates that follow from the constraints on the EDB predicates, for all finite
applications of the program rules. Such an algorithm is the topic of Sec. 4 and of Sec. 5.
This algorithm is interesting of itself, since it proves that the finite implication problem
for constraints is decidable. It is also useful as an alternative method for determining
weak safety (see Sec. 6) and as a skeleton for query evaluation.

4 Single Rule Constraints Implication

Let r be a rule, and C be a set of constraints. This section is concerned with the con-
straints that can be inferred from C on the output of a single application of r.

Definition 7. Let σ be a constraint on pred(r). Then, C |=r σ (C implies σ in r) if for
every set of facts F , the set r(F) satisfies σ whenever F |= C.

Intuitively, C |=r σ means that if all constraints of C hold prior to an application of r,
then σ holds after a single application of r. Let Cr denote the set of all constraints
implied by C with respect to rule r, i.e., Cr = {σ | C |=r σ}.

Consider, for example, rule τ3 in the running example. Assume that the constraints
set for the running example is C as follows:

C = { {extends1} � {extends2} , {dependant1} � {dependant2}}. (4.1)

Then the set of constraints of τ3 is Cτ3 , which contains {class cousins1}
� {class cousins3} and {class cousins2} � {class cousins3}.

Now, a rule constraint (or a causation) is an expression of the form X� Y where X, Y
⊆ terms(r). For example, {x} � {z} is a causation of the rule τ3 defined in Fig. ??.

Inference in the context of rule r, must be done in terms of r’s vocabulary, that is
the set terms(r). We introduce mechanisms for vocabulary translation: For a p-atom a,
we introduce a function t2pa(·) which given a set of terms of a, returns the correspond-
ing set of p-positions, e.g., for a = p(x, ‘B’, y, x, ‘B’, y), we have t2pa({x, ‘B’}) =
{p1, p2, p4, p5} . Function p2ta(·) is simply t2pa

−1(·). Also, for p-rule r with head
atom h, define function t2pr(X), for X ⊆ terms(r), as t2ph(X∩terms(h)), that is, con-
vert to p-positions only terms occurring in the head. Function p2tr(·) is simply p2th(·).

To define the semantics of a causation σ = X � Y, we construct a (predicate-)
constraint σ′ = t2pr′(X) � t2pr′(Y) where rule r′ is constructed from r by select-
ing p′, a fresh predicate symbol not occurring in r, and letting r′ be the p′-rule iden-
tical to r except that all members of terms(r) occur in its head term, i.e., the bodies
of r′ and r are the same, and the head of r′ is h′ = p′(terms1(r), . . . , termsk(r)),
where k = | terms(r)|. We write C |=r σ (read C implies σ in rule r), or simply C |= σ
(read C implies σ) when the rule is clear from context, iff C |=r′ σ′.

The notion of closure, which will be defined next, is useful when inferring causations
of a rule. Informally, a closure of terms set X consists of all the terms(r) which are
implied by X.

40 S. Cohen, J.(Y.) Gil, and E. Zarivach

Definition 8. The closure of a set X ⊆ terms(r) with respect to C and r, denoted X+
C,r,

is the largest set Y ⊆ terms(r) such that C |=r X � Y.

For example, if C = {{extends1} � {extends2}}, and the rule is given by τ3 in the
running example, then {y}+

C,τ3
= {y, y′, z}.

Lemma 1. There exists a polynomial-time algorithm which, given a rule r, a set C, and
a set X ⊆ vars(r), computes Y = X+

C,r.

Proof. Initially, Y ← X. For all σ ∈ C and all atoms a ∈ body(r), if σ = u � v
and p2ta(u) ⊆ Y, then add p2ta(v) to Y. Iterate until Y ceases to change.

The straightforward version of the closure algorithm runs in quadratic time in the size
of the input (C, X and vars(r)): There are at most |vars(r)| iterations (each iteration
increases Y by one argument in the worst case). In each iteration, all constraints in C
are examined. There also exists a linear time algorithm for the closure computation [1].

The closure procedure is used in Alg. 1 which computes the set Cr of constraints
implied by C in r.

Algorithm 1. r constraints(r, C)
Return Cr for rule r and constraints set C.
1: let Cr ← ∅
2: let H ← terms(head(r))
3: For all X ⊆ H do // Find which variables are bound by X
4: For all Y ⊆ X+

C,r do // Adjust the result according to Def. 7
5: Cr ← Cr ∪ {t2pr(X) � t2pr(Y)}
6: return Cr

The main loop of the algorithm, i.e., lines 3–5, is performed for all the subsets of
variables appearing in the head term. For each such subset X the algorithm computes
its closure X+. Now, since X � X+

C,r holds, it remains to translate this constraint (and
subconstraints of it) to constraints over pred(r).

Lemma 2. Alg. 1 correctly computes the set Cr in time 2mO(n2), where m =
ar(pred(r)) + 1 and n is the length of vars(r) and C.

5 Program Wide Constraints Implication

Now that the means for inferring constraints within a single rule are established, we are
ready to study the more interesting problem, i.e., inference of constraints with respect
to an entire DATALOG program Π . In doing so, we will need to take into account the
effects of multiple applications of the same rule, the fact that an IDB may be defined by
more than one rule, and that the definition of different IDBs may be mutually recursive.

In this section let C be a fixed set of constraints on the extensional predicates of Π
and let D be a database, i.e., a set of p-facts, where p ∈ edb(Π).

Definition 9. Let p ∈ idb(Π) and let σ be a constraint on p. We say that C implies σ,
denoted C |= σ, if Πn

p (D) satisfies the constraint σ for all n ≥ 0 whenever D |= C.

Datalog Programs over Infinite Databases, Revisited 41

Remark 3. The implication considered in this paper is finite implication, i.e., a con-
straint is implied if it holds in all finite number of rule applications. Deciding which
constraints hold after infinitely many applications, allows one to decide termination,
and is therefore undecidable.

Henceforth, we shall assume that D satisfies C. Let Cp the set of all the implied con-
straints over p ∈ idb(Π), i.e., all constraints x � y, where x, y ⊆ pos(p) and C |=
x � y. Let CΠ denote the set of all the constraints on IDB predicates of Π .

Observe that if no facts are established for a certain predicate p, i.e., no p-facts exist
in F , then F satisfies any constraint σ = x � y, where x, y ⊆ pos(p), This is precisely
the circumstances for all p ∈ idb(Π), when program Π starts. The set F will continue
to satisfy σ if no rule defining p will ever generate facts that violate σ.

Algorithm 2. program constraints(Π, C)
Given a program Π , and a set C of constraints over its extensional predicates, return CΠ .
1: For all p ∈ idb(Π) do // find IDB candidate constraints
2: let Pp ← {x � y | x, y ⊆ pos(p)}
3: let CΠ ← C ∪

�
p∈idb(Π) Pp // add candidates to CΠ

4: Repeat // Invalidate constraints until each Pp is reduced to Cp

5: For all p ∈ idb(Π) do // refine Pp as implied by CΠ

6: For all α ∈ Π , pred(α) = p do // examine all p-rules
7: let Cα ← r constraints(α, CΠ)
8: CΠ ← CΠ \ Pp // forget all p-constraints regarding p
9: Pp ← Pp ∩ Cα // remove constraints not preserved by α

10: CΠ ← CΠ ∪ Pp // revive p-constraints preserved by α
11: until no changes in CΠ

12: return CΠ

These observations are employed in Alg. 2 which uses a fixed point evaluation strat-
egy for computing CΠ . Alg. 2 maintains the set Pp of constraints for every intensional
predicate p ∈ Π . Initially, the algorithm assumes that all the constraints are satisfied by
the set F of p-facts (line 2). Then, the algorithm iteratively eliminates the constraints
which are definitely not satisfied by F until a fixed point is reached. In particular, a
constraint σ is in Cp, if σ is implied (in a steady state) by all the rules defining p. One
can show that Alg. 2 indeed computes CΠ , albeit in exponential time.

6 Deciding Weak Safety

In this section we present the theorem which decides the weak safety problem.

Theorem 1. Let Π be a DATALOG program, and let q be its goal. Then, Π is weakly
safe iff C |= ∅ � pos(q).

Proof. If Π is weakly safe, then according to Def. 5, Πn
q (D) is finite for all n ≥ 0

whenever D |= C. The above is possible only if C |= ∅ � pos(q).
Conversely, assume that C |= ∅ � pos(q). Then, by Def. 9, the set Fn = Πn

q (D)
satisfies ∅ � pos(q) for all n ≥ 0 whenever D |= C. Finally, according to Def. 3 it
follows that the set {a | a ∈ Fn ∧ pred(a) = q} is finite for all n ≥ 0. �

42 S. Cohen, J.(Y.) Gil, and E. Zarivach

Consider, for example, the following DATALOG program, which computes all direct or
indirect super classes of ‘ArrayList’:

heir(x, y) ← extends(x, y). superclass(x) ← heir(‘ArrayList’, x).
heir(x, y) ← extends(x, z), heir(z, y).

Suppose that C = {{extends1} � {extends2}} is satisfied by the input database
of the above program. Alg. 2 deduces that {heir1} � {heir2} holds and so is ∅ �
{superclass1}, i.e., any finite number of rule applications deduces finitely many
superclass-facts. It follows that the above program is weakly safe.

Remark 4. Thm. 1 establishes that CΠ can be used to decide weak safety. But, since
weak safety EXP-time complete [13], it is no wonder that our algorithm for comput-
ing CΠ is exponential.

7 Deciding Termination

If a program is weakly safe, then any finite number of rule applications contributes a
finite number of facts to the program semantics. However, the semantics of weakly safe
program may include an unbounded number of facts, since in general, the number of
rule applications is unbounded. Indeed, Sagiv and Vardi [13] showed that the indepen-
dent problem of termination is undecidable, without being able to produce an algorithm
for determining termination in the case that weak safety is known, or conversely, to
prove that no such algorithm exists.

This section sets conditions, common in tasks of processing software, which exclude
the situation that a program is weakly safe yet not terminating.Specifically, we show
that every weakly safe program is also terminating whenever the database is founded.

Definition 10. A database D satisfying a set of constraints C is founded if all EDB
predicates are binary, and there are only finitely many distinct elements in every infinite
sequence �1, �2, . . . in which every consecutive pair �i, �i+1, i ≥ 1 satisfies at least one
of the following: (i) p(�i, �i+1) holds for some EDB predicate p and {p1} � {p2} ∈ C
or (ii) p(�i+1, �i) holds for some EDB predicate p and {p2} � {p1} ∈ C.

Consider the database which represents relations between programming units. Such
database contains relations such as “inherits”, “calls” etc. It is obvious to see that this
database is founded, since the number of units used by a certain programming module
must be finite (otherwise the compilation process will never end).

Now we are ready to state the central theorem of this section.

Theorem 2. Let D be a founded database satisfying the set of constraints C. Then, if Π
is weakly safe, then it is also terminating over D.

The theorem can be made a bit more general, dealing with unary EDB predicates. To
simplify the presentation, we omit this generalization.

Henceforth assume that Π is indeed weakly safe with regards to C and D is founded.
To prove the theorem we first write the yield of q-facts of every possible sequence of
rule applications as a set of expansion rules defining q (as in (2.3)).

Datalog Programs over Infinite Databases, Revisited 43

In the running example, an expansion rule that corresponds to the shortest sequence
of rule applications that may generate a q-fact is obtained by adding two atoms to the
body of expansion rule (2.2):

q(x, y) ← extends(x, u), extends(u, u′), extends(u′, y),
extends(x, v), extends(v, v′), extends(v′, y),
not eq(u, v), dependant(x, y), extends(‘Bill’, x), extends(w, ‘Bill’).

(7.1)

Fix an enumeration of these rules, γ1, γ2,
The proof is carried out by showing that the set

⋃∞
i=1

(
γi(D) \ D

)
is finite. We show

in fact that there is a finite set of representative rules (which are not necessarily expan-
sion rules) γi1 , . . . , γik , such that for every expansion rule γi there is a representative
rule γj , where j ∈ {i1, . . . , ik} such that γi(D) ⊆ γj(D). Thm. 2 now follows from
the observation that each such γj(D) \ D is finite when Π is weakly safe.

8 Computability

Having shown that every weakly safe program defined over founded database is safe, it
is only natural to ask how such programs may be evaluated. This section presents our
computational model and discusses which programs may be computed in it.

For the reminder of the article we assume that the database D is founded, and hence
all EDB predicates are binary. Let D be a founded database and p be a binary predicate.
Then, similarly to [12], we assume that given constants (c, c′), one can determine in
finite time whether p(c, c′) ∈ D. Also, if {p1} � {p2} (resp. {p2} � {p1}), then given
a constant c, it is also possible to find in finite time all constants c′ such that p(c, c′) ∈ D
(resp., p(c′, c) ∈ D). Further, if ∅ � {p1} (resp. ∅ � {p2}), then we can find in finite
time all constants c, such that there exists a c′ for which p(c, c′) ∈ D (resp. p(c′, c) ∈
D). However, in the absence of constraints, one cannot find in finite time all constants c′

such that p(c, c′) ∈ D, (nor respectively, p(c′, c) ∈ D).
It may first seem that if a program is safe, then it is also computable, i.e., there exists

an evaluation algorithm, using this computational model, which computes its result in
finite time. In this section we prove that safety is a necessary but not a sufficient require-
ment for computability of a DATALOG program and present a theorem which settles the
computability problem for founded programs. Then, Sec. 9 presents an evaluation algo-
rithm for safe programs.

To see that safe programs are not necessarily computable, consider the following
program Π , which is aimed to find all the superclasses y on which superclass ‘Bill’
depends.

τ1: superclasses(x, y) ← extends(w, x), extends(z, y).
τ2: dep superclasses(x, y) ← dependant(x, y), superclasses(x, y).
τ3: q(y) ← dep superclasses(‘Bill’, y).

(8.1)

Then, CΠ = {{dep superclasses1} � {dep superclasses2} , ∅ � {q1}} can be in-
ferred with the supposition that extends and dependant predicates satisfy constraints as

44 S. Cohen, J.(Y.) Gil, and E. Zarivach

in (4.1). Since this set includes ∅ � {q1} in CΠ , we have (Thm. 1) that this program
is weakly safe. Also, since D is founded, it is also terminating by Thm. 2. Neverthe-
less, it is impossible to compute its output, because for any assignment μ to D and an
atom t = superclasses(x, y) it is undecidable whether μ(t) holds. The difficulty here is
that the evaluation process must find a subclass of x and a subclass of y to prove that x
and y are indeed superclasses. Now, if the evaluation algorithm does find such sub-
classes, it can conclude that superclasses(x, y) holds. But, what should the algorithm
do if it does not find any subclasses of x?

Missing such evidence may be due to the fact that x indeed does not have subclasses.
Still, lack of evidence, could be a result of evaluation procedure’s failure to explore the
infinite database. In the software interpretation, it could be that a software engineer, in
a very remote galaxy, has implemented a class that inherits from x, but the evaluation
algorithm did not have sufficient resources to find this inheriting class.

If one is willing to permit similar existential queries in the algorithm, then any pro-
gram which is terminating can also be evaluated in practice. The following definition
however is designed to preclude such queries from DATALOG programs.

Definition 11. Predicate p is variable-bound if for every rule r ∈ Π defining p with
head h it holds that CΠ |=r vars(h) � terms(r).

For example, predicate dep superclasses in example (8.1) is variable-bound, while
predicate superclasses is not. Note that the definition implies that every EDB predi-
cate is (trivially) variable-bound.

The above definitions lead to the next theorem, whose proof is provided by the eval-
uation algorithm described in the next section.

Theorem 3. A program Π is computable if (i) it is safe and (ii) every predicate p
appearing in it is variable-bound.

9 A Top-Down Evaluation Algorithm

This section describes a top-down algorithm for query evaluation. The heart of our
algorithm is in function idb eval (Alg. 3), whose parameters include a predicate p, and a
subquery expressed as a relation (in the relational algebra sense) Q, defining a possibly
partial assignment to the positions of p, i.e., schema(Q) ⊆ pos(p) (where schema(Q)
is the schema of Q). The function answers the subquery by returning a relation whose
columns are those columns in pos(p) which are finitely constrained by schema(Q) and
whose tuples are computed from the tuples of Q by these finiteness constraints.

For each of the rules defining the predicate, function idb eval calls function rule eval
(Alg. 4), which in its turn, calls function atom eval (Alg. 5) for each of the atoms in the
rule. If the atom’s predicate is an EDB, then atom eval invokes edb eval; otherwise, it
recursively calls idb eval.

Even simple rules such as anc(x, y) ← anc(x, z), anc(z, y), typical to transitive clo-
sure computation, may cause a naive implementation of idb eval to recurse indefinitely.
To guard against this predicament, the algorithm passes through the recursive calls vari-
able X, which stores in it all “open queries” in the recursion stack. Variable X is im-
plemented as an associative array of relations. For each positions set q, s.t. q ⊆ pos(p)

Datalog Programs over Infinite Databases, Revisited 45

Algorithm 3. idb eval(p, Q, X)
1: let q ← schema(Q) // elicit the pattern of this query
2: let Q′ ← Q \ X[q] // restrict interest to queries not in cache
3: X[q] ← X[q] ∪ Q′ // record remaining queries in cache
4: let m be the maximal set s.t. q � m ∈ CΠ // m is the schema of the answer relation
5: If Q′ �= ∅ then // queries remained for execution
6: Repeat // exercise all rules until no new answers are found
7: For all r ∈ Π such that pred(r) = p do // try rule r
8: let T ← rule eval(r, p2tr(Q′), X)
9: M[q] ← M[q] ∪ πmt2pr(T)

10: until no changes in M
11: return M[q] �� Q // restrict global answer set to queries in Q

and p is an IDB predicate, X[q] is a relation with schema q containing all subqueries
whose pattern is q which are on the recursion stack. At its 2nd line, idb eval restricts
its interest to new such queries. At line 3, the function records the currently executing
queries in X.

Thus, the call to idb eval that starts the evaluation process is with parameters: q (the
program goal), I (the relation with no columns and a single, empty, tuple), and initial-
ization of all entries in X to an empty relation.

In addition to X, the algorithm maintains a similarly organized global array M for
results memoization, except that the schema of M[q] is m, where m is the maximal
set such that q � m. The main loop of idb eval (lines 6–10) uses the results of calls
to rule eval to extend, as long as this is possible, relation M[q]. The function result is
obtained by restricting M[q] (which records all queries of pattern q that the algorithm
ever executed) to answers of queries in Q; this is carried out by the natural join operation
in line 11.

In order to delegate its work to function rule eval, function idb eval must translate
the query Q′, which is formulated in terms of positions in p, to the list of symbolic
variables that rule r expects. To this end, we use an overloaded version of function p2tr
(invoked at line 8), which returns its input relation with renamed columns as per the
head of rule r. The reverse translation of rule eval’s return value, is carried out by the
call to (an overloaded version of) function t2pr, at line 9. This line also projects the
return value into the schema m.

Algorithm 4. rule eval(r, Q, X)

1: Q ← Q �	 CONSTSr

2: Repeat
3: For all a ∈ body(r) do
4: Q ← Q �	 atom eval(a, πaQ, X)
5: until no changes in Q
6: return πhead(r)Q

Algorithm 5. atom eval(a, Q, X)

1: let p ← pred(a)
// elicit the predicate of this atom

2: let P ← t2pa(Q) // bound terms of a

3: let A ←
{

edb eval(p, P) if p ∈ edb(Π)
idb eval(p, P , X) otherwise

4: return p2ta(A)

Line 9 of rule eval begins the computation of a subquery with respect to a rule,
by augmenting the given subquery with the values of constants used in the rule: vari-

46 S. Cohen, J.(Y.) Gil, and E. Zarivach

able CONSTSr denotes the relation whose column names are simply consts(r), while
its single tuple consists also of these constants. The recursive call to atom eval is pre-
ceded by a projection to the variables (and constants) used in the atom. We assume that
the operator π ignores columns in projection schema which do not exist in the projected
relation. Hence, the projection succeeds even if Q does not contain all terms of the cur-
rent atom. (In particular, if Q does not contain any term of a, a no-columns relation
containing the empty tuple is returned.) A projection to terms in the rule head is applied
before the function is returned.

Function atom eval is rather straightforward; note however that the call to functions
that evaluate a predicate require a change of vocabulary, before and after the call.

Our algorithm differs from that of Vieille’s [16,17], due to the differences in the set-
ting, e.g., our computation model is restrictive and our programs are evaluated over an
infinite database. A full comparison of these algorithms, as well as a proof of correct-
ness, is omitted, due to lack of space.

10 Conclusion

In this paper we studied the weak safety and termination problems (and thereby, also the
safety problem) for recursive DATALOG programs over infinite databases. We presented
an algorithm that computes all constraints for IDB predicates that are (finitely) implied
by the constraints on the EDB predicates and the rules of a given program. We also
showed that weak safety guarantees termination if the database is founded, a natural
property in many models. Finally, for safe programs we presented an elegant evalua-
tion algorithm that computes the goal predicate in a top-down manner, using sideways
information passing.

In the future, we intend to extend our algorithm to deal with additional classes of
programs that are not necessarily founded. We also intend to study the effect of negation
on the problems considered in this paper.

References

1. Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal form
relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979)

2. Ceri, S., Gottlob, G., Tanca, L.: Logic programming and databases. Springer, New York
(1990)

3. Cohen, T., Gil, J.Y., Maman, I.: JTL—the Java tools language. In: OOPSLA 2006 (2006)
4. Deutsch, A., Ludäscher, B., Nash, A.: Rewriting queries using views with access patterns

under integrity constraints. Theoretical Comp. Sci. 371(3), 200–226 (2007)
5. Florescu, D., Levy, A.Y., Manolescu, I., Suciu, D.: Query optimization in the presence of

limited access patterns. In: SIGMOD 1999 (1999)
6. Kifer, M., Ramakrishnan, R., Silberschatz, A.: An axiomatic approach to deciding query

safety in deductive databases. In: PODS 1988 (1988)
7. Kifer, M.: On the decidability and axiomatization of query finiteness in deductive databases.

J. ACM 45(4), 588–633 (1998)
8. Krishnamurthy, R., Ramakrishnan, R., Shmueli, O.: A framework for testing safety and ef-

fective computability of extended datalog. In: ICMD 1988 (1988)
9. Li, C., Chang, E.Y.: On answering queries in the presence of limited access patterns. In: Van

den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, Springer, Heidelberg (2000)

Datalog Programs over Infinite Databases, Revisited 47

10. Maier, D., Ullman, J.D., Vardi, M.Y.: On the foundations of the universal relation model.
ACM Trans. Database Syst. 9(2), 283–308 (1984)

11. Paola, R.D.: The recursive unsolvability of the decision problem for the class of definite
formulas. J. ACM 16(2), 324–327 (1969)

12. Ramakrishnan, R., et al.: Safety of recursive Horn clauses with infinite relations. In: PODS
1987 (1987)

13. Sagiv, Y., Vardi, M.Y.: Safety of Datalog queries over infinite databases. In: PODS 1988
(1988)

14. Shmueli, O.: Decidability and expressiveness aspects of logic queries. In: PODS 1987 (1987)
15. Vardi, M.: The decision problem for database dependencies. Inf. Process. Lett. 12(5), 251–

254 (1981)
16. Vieille, L.: Recursive axioms in deductive databases: The Query/Subquery approach. In: 1st

Int. Conf. on Expert Database Syst. (1986)
17. Vieille, L.: Recursive query processing: The power of logic. Theoretical Comp. Sci. 69(1),

1–53 (1989)

A Methodology for Coupling Fragments of XPath
with Structural Indexes for XML Documents

George H.L. Fletcher1, Dirk Van Gucht2, Yuqing Wu2, Marc Gyssens3,
Sof́ıa Brenes2, and Jan Paredaens4

1 Washington State University, Vancouver
gfletcher@acm.org

2 Indiana University, Bloomington
{vgucht,yuqwu,sbrenesb}@cs.indiana.edu

3 Hasselt University and Transnational University of Limburg
marc.gyssens@uhasselt.be

4 University of Antwerp
jan.paredaens@ua.ac.be

1 Introduction

Supporting efficient access to XML data using XPath [3] continues to be an
important research problem [6, 12]. XPath queries are used to specify node-
labeled trees which match portions of the hierarchical XML data. In XPath
query evaluation, indices similar to those used in relational database systems –
namely, value indices on tags and text values – are first used, together with
structural join algorithms [1, 2, 19]. This approach turns out to be simple and
efficient. However, the structural containment relationships native to XML data
are not directly captured by value indices.

To directly capture the structural information of XML data, a family of struc-
tural indices has been introduced. DataGuide [5] was the first to be proposed,
followed by the 1-index [13], which is based on the notion of bi-simulation among
nodes in an XML document. These indices can be used to evaluate some path
expressions accurately without accessing the original data graph. Milo and Su-
ciu [13] also introduced the 2-index and T-index, based on similarity of pairs
(vectors) of nodes. Unfortunately, these and other early structural indices tend
to be too large for practical use because they typically maintain too fine-grained
structural information about the document [9, 16].

To remedy this, Kaushik et al. introduced the A(k)-index which uses a no-
tion of bi-similarity on nodes relativized to paths of length k [10]. This captures
localized structural information of a document, and can support path expres-
sions of length up to k. Focusing just on local similarity, the A(k)-index can be
substantially smaller than the 1-index and others.

Several works have investigated maintenance and tuning of the A(k) indices.
The D(k)-index [15] and M(k)-index [8] extend the A(k)-index to adapt to
query workload. Yi et al. [18] developed update techniques for the A(k)-index
and 1-index. Finally, the integrated use of structural and value indices has been

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 48–65, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Methodology for Coupling Fragments of XPath with Structural Indexes 49

explored [11], and there have also been investigations on covering indices [9, 16]
and index selection [14, 17].

The introduction of structural indices for XML data has lead to significant
improvements in the performance of XPath query evaluation. As was demon-
strated empirically, the performance benefits of these indices are most dramatic
when queries “match” the index definitions [10]. To date, however, there lacks
a formal understanding of this notion of queries matching indices. This leads to
some fundamental questions about using structural indices in query evaluation:

1. For which fragments of XPath are particular structural indices ideally suited?
2. For these fragments, how are its expressions efficiently evaluated with the

index?
3. Can the answers to these questions be bootstrapped to provide general tech-

niques for evaluation of arbitrary XPath expressions?

In this paper, we present a methodology for investigating such questions and
apply it to the important special case of the A(k)-indices. For question (1), we
begin by noting that the A(k)-index of a document induces a partitioning on
its nodes. Recently, an approach has been proposed for considering partitioning
XML documents based on notions of query indistinguishability of nodes and
paths, relative to particular fragments of XPath [7]. If we apply this approach to
show that there exists a fragment of XPath which induces a partition identical
to the A(k)-partition, then we can speak of an “ideal” match between the index
and this fragment. Given this ideal coupling, we can then turn to a principled
investigation of questions (2) and (3). A main contribution of this paper is the
identification of such a fragment of XPath.

Before going into the technical details of the various steps we take in our
methodology, we illustrate the general approach with a simple example coming
from relational databases. Note that the results in this example are well-known,
and as such do not add to the results of this paper.

1.1 A Motivating Example

Consider the B+-tree index on a column A of a relation R [4]. Clearly, this index
induces a partition on the tuples of R: tuples t1 and t2 in R will be in the same
partition block1 if and only if t1(A) = t2(A). We will call this partition the B+-
tree-partition on column A of R, and denote it as Btree(A, R). (For emphasis,
observe that a B+-tree index on A of R is different than the Btree(A, R)-partition.
The first is a tree data structure, whereas the second is a partition on R.)

Next, consider the relational algebra, and in particular its sub-algebra con-
sisting of the range queries. In this example, we focus on such queries as they are
specified on attribute A of R. We will denote this class of queries by RangeQ(A, R).
Its queries are of the form σ((a1≤A≤a2) or ··· or (a2n−1≤A≤a2n))(R).2

The RangeQ(A, R) algebra defines a partition on R, called the RangeQ(A, R)-
partition of R, and is defined as follows: tuples t1 and t2 in R are placed in the
1 “Block” stands for an element of a partition, not be confused with a block on a disk.
2 For simplicity, we will assume that all the ai values occur in the A-column of R.

50 G.H.L. Fletcher et al.

same block of the RangeQ(A, R)-partition if for any query Q in RangeQ(A, R),
t1 ∈ Q(R) if and only if t2 ∈ Q(R). In other words, t1 and t2 can not be
distinguished by any query in RangeQ(A, R), i.e., either t1 and t2 are both in
Q(R), or they are both not in Q(R). An important property of the RangeQ(A, R)-
partition is that for each query Q ∈ RangeQ(A, R), their exists a subset of blocks
in the partition such that Q(R) is the union of these blocks.

A natural question that arises now is to ask if the Btree-partition and the
RangeQ-partition are the same. It should come as no surprise that this is indeed
the case. This is captured in the following theorem.

Theorem 1. [Btree-RangeQ Coupling Theorem] Let R be a relation and let
A be one of its attributes. The Btree(A, R)-partition and the RangeQ(A, R)-
partition are the same.

Proof. We give a proof of this statement, not because it is difficult, but be-
cause its structure reveals the strategy that we will follow to prove an analogous
theorem for the XML case (Theorem 4).

1. Let tuples t1 and t2 be in the same block of the Btree(A, R)-partition. Then,
by definition, t1(A) = t2(A). Consider now an arbitrary range query Q.
Then clearly, if t1(A) (and therefore also t2(A)) is in the range of Q then t1
and t2 are both in Q(R), but if t1(A) is not in the range of Q, then they
are both not in Q(R). Consequently, t1 and t2 are in the same block of the
RangeQ(A, R)-partition.

2. Let tuples t1 and t2 be in different blocks of the Btree(A, R)-partition. Then,
by definition, t1(A) �= t2(A). Let a = t1(A). Then the range query labela :=
σA=a(R) has t1 in its result, but not t2. Thus t1 and t2 are in different blocks
of the RangeQ(A, R)-partition, and the proof is done.

An immediate consequence of Theorem 1 is that each range query evaluated
on R is equal to the union of a family of blocks of the Btree(A, R)-partition.

Theorem 2. [Btree-RangeQ Block-Union Theorem] Let R be a relation, let
A be one of its attributes, and let Q ∈ RangeQ(A, R). Then there exists a class
BQ of partition blocks of the Btree(A, R)-partition such that Q(R) =

⋃
B∈BQ

B.

Note that the Btree-RangeQ Block-Union Theorem can provide guidance and
insight in the processing of queries in richer relational fragments.

In the second part of the proof of Theorem 1, observe that the range query
labela has the property that it uniquely identifies the block of the RangeQ(A, R)-
partition consisting of the tuples of R that are indistinguishable from t1 by any
query in RangeQ(A, R). We will call the query labela, a labeling query and its
defining a-value a label. Now as a consequence of Theorem 2 we have that evalu-
ating a range query Q ∈ RangeQ(A, R) can be done by forming a union of such
labeling expressions applied to R.

Theorem 3. [Btree-RangeQ Label-Union Theorem] Let R be a relation and
A one of its attributes. Then for each query Q ∈ RangeQ(A, R), there is a set of
labeling queries LQ ⊆ RangeQ(A, R) such that Q(R) =

⋃
label∈LQ

label(R).

A Methodology for Coupling Fragments of XPath with Structural Indexes 51

Obviously, in practice we do not want to evaluate the labeling queries label ∈
LQ directly on R, but rather we would want a data structure that stores each re-
sult label(R). If such a data structure supports efficient look-up of the tuples in
the partition block associated with each labeling expression label, then evaluat-
ing Q can be done by simply streaming out these tuples. Of course, such a data
structure is the B+-tree index. So, in a formal sense we have shown that range
queries match ideally with B+-tree indexes, which of course is a well-known fact.

1.2 Paper Overview

We proceed as in this motivating example, for structural indices and the XPath
query language. Specifically:

– We introduce the family of P (k)-partitions, which are derivatives of the
family of A(k)-partitions. It turns out that this new class of partitions is
fundamental for establishing the results which follow.

– We then introduce a family of upward XPath algebras, U (k), and show that
the P (k)-partition and the partition induced by the U (k) algebra are the
same. As a consequence of this we have that the evaluation of a U (k) query
is equal to the union of some blocks of the P (k)-partition.

– Based on this result, we then develop guidelines for the use of a P (k)-
partition in the evaluation of general XPath queries.

– Following this, we show that for each block in the P (k)-partition a labeling
expression in U (k) can be constructed which uniquely identifies the block.
Thus, we conclude that each query in U (k) can be rewritten as the union
of some U (k) block labeling expressions.

These results indicate research directions into new data structures to support
efficient evaluation of general XPath queries.

2 Coupling Indices and XPath Fragments

In this section, we set out to apply the methodology described in the motivating
relational example to the XML case.

2.1 The XML Data Model

We begin by introducing the document data model that will be used in this
paper. Our data model is a simplified version of the XML data model wherein
we view a document as a labeled tree.

Definition 1. A document D is a 4-tuple (V, Ed, r, λ), with V the finite set of
nodes, Ed ⊆ V × V a tree of parent-child edges, r ∈ V the root, and λ : V → L
a node-labeling function into a countably infinite set of labels L.

Given a document, it is useful to introduce the concept of its paths. We de-
fine the set of paths of a document D, denoted Paths(D), as the set V × V .
So, for us a path is not a sequence of nodes, but rather a pair. This makes

52 G.H.L. Fletcher et al.

"Marketing"

n2
Department

Name

Name

Project Project

Name

Name

Lead

Lead

"D100"

"D100a"

Project

"Smith"

"D200"

n3

n1

n4 n5

n10 n11 n12

n20n19

"Sato"

Name

ProjectLead

Lead LeadName

Project

"A100"

n6

n16 n17 n18

n24n23n22n21

"Chen"

Department

n7Name

Name

"Ivanova"

Web

n0
Projects

Project n8

n9
Lead

"Dubois"

n13 n14
Web

n15

"A100b" "Adamo""A100a"

"http://""Design"

"http://"

Fig. 1. An XML document. For reference, non-leaf nodes are given unique IDs.

sense however, since a pair of nodes (n, m) ∈ Paths(D) identifies the unique
path from node n to node m in D. The set of downward-paths, DownPaths(D),
consists of the paths (n, m) where n is an ancestor of m. Similarly, the set of
upwards-paths, UpPaths(D), consists of the paths (n, m) where n is a descen-
dant of m. Furthermore, for k ∈ N, DownPaths(D, k) (UpPaths(D, k)) are those
paths in DownPaths(D) (in UpPaths(D), respectively) of length at most k. For
example, in document D of Figure 1 the path (n1, n1) is a member of both
DownPaths(D, 0) and UpPaths(D, 0), the paths (n1, n1), (n1, n4), and (n1, n9)
are in DownPaths(D, 2), and their corresponding inverse paths (n1, n1), (n4, n1),
and (n9, n1) are in UpPaths(D, 2). The paths (n9, n12) and (n1, n19) are in neither
DownPaths(D, 2) nor UpPaths(D, 2).

2.2 The A(k)-Partition of a Document

Given a labeled semi-structured document3 and a natural number k, Kaushik
et al. [10] introduced the A(k)-index for this document.

The index is built on the partition induced by a certain bi-similarity equiva-
lence relation on the nodes in the document. When specialized to a document,
as defined here, the definition of this bi-similarity equivalence is as follows.

Definition 2. Let D = (V, Ed, r, λ) be a document, n1, n2 ∈ V , and let k ∈ N.
We say that n1 and n2 are A(k)-equivalent in D, denoted n1 ≡A(k) n2, if

1. λ(n1) = λ(n2); and
2. if k ≥ 1 then

(a) n1 has a parent in D if and only if n2 has a parent in D; and
(b) if n1 has parent p1 and n2 has parent p2, then p1 ≡A(k−1) p2.

We call the partition induced by ≡A(k) on V the A(k)-partition of D.

A more intuitive reading of this definition is that nodes n1 and n2 belong to
the same block of the A(k)-partition, if the label sequences associated with their
3 A semi-structured document does not need to be a tree. In particular, it is possible

that a node has multiple parents.

A Methodology for Coupling Fragments of XPath with Structural Indexes 53

n11, n13, n20n4, n5, n9

n1
Department

n3, n10, n12, n19
Name Project Lead

n11, n13, n20

Department
n1

Name
n3

Project
n4, n5

Name
n10, n12, n19

Project
n9

Lead

n20

Department
n1

Name
n3

Project
n4, n5

Name
n10, n12

Project
n9

Lead
n11, n13

Name
n19

Lead

A(0) A(1) A(2)

Fig. 2. A(k)-indices (k = 0, 1, 2) associated with their corresponding A(k)-partitions
for the “Design” Department sub-tree in the document of Figure 1

incoming paths in D of length at most k are the same. Also note that the
A(k + 1)-partition of a document is a refinement of the A(k)-partition.

Example 1. Figure 2 illustrates (ignoring for now the edges between the blocks),
for k = 0, 1, and 2, the A(k)-partition of the Design Department sub-tree rooted
at node n1 in the document of Figure 1.

Following Kaushik et al. [10], the A(k)-index of a document D is a graph wherein
each node is a block of the A(k)-partition of D, and an edge exists from a block
B1 to a block B2 if there exists a parent-child edge in D from a node in B1
to a node in B2. So, the A(k)-index can be thought of as a representation of
the A(k)-partition and how its blocks can be related in accordance with the
document D. The A(k)-indexes for k = 0, 1, 2 are visualized in Figure 2 on
the Design Department sub-tree of the document of Figure 1. Note that if k is
equal to the height of the document, then the A(k)-index corresponds to the
1-index proposed by Milo and Suciu [13] and the strong DataGuide proposed by
Goldman and Widom [5].

2.3 The P (k)-Partition of a Document

The A(k)-partitions of a document D are partitions on its nodes. We will need an-
other family of partitions, the P (k)-partitions, which, rather than being defined
on nodes, are defined on the sets UpPaths(D, k), i.e., the sets of upward-paths of
D of length at most k. As we will see, the P (k)-partitions are more fundamental
than the A(k)-partitions for developing our results.

Definition 3. Let D be a document, let k ∈ N, and let (n1, m1) and (n2, m2)
be two paths in UpPaths(D, k). We say that (n1, m1) and (n2, m2) are P (k)-
equivalent, denoted (n1, m1) ≡P (k) (n2, m2), if

1. n1 ≡A(k) n2; and
2. length(n1, m1) = length(n2, m2).4

We call the partition induced by ≡P (k) on UpPaths(D, k) the P (k)-partition
of D.
4 As should be clear, length(n, m) denotes the length of the path in D from node n

to node m.

54 G.H.L. Fletcher et al.

Example 2. Consider the sub-tree D′ in the document of Figure 1 rooted at n4.
For k = 0, 1, we have that

1. the P (0)-partition on D′ is the set
{[(n19, n19), (n10, n10)], [(n20, n20), (n11, n11)], [(n9, n9), (n4, n4)]}; and

2. the P (1)-partition on D′ is the set
{[(n19, n19), (n10, n10)], [(n20, n20), (n11, n11)], [(n9, n9)], [(n4, n4)],
[(n19, n9), (n10, n4)], [(n20, n9), (n11, n4)], [(n9, n4)]}.
Notice that the block [(n9, n9), (n4, n4)] of the P (0)-partition is split into two
blocks of the P (1)-partition, namely [(n9, n9)] and [(n4, n4)]. This is because
n9 ≡A0 n4, but n9 �≡A1 n4.

Finally, we wish to observe that when k is equal to the height of a document D,
then the P (k)-partition corresponds to the partitions induced by the 2-index on
D proposed by Milo and Suciu [13].

2.4 The XPath-Algebra

We next present an algebraization [7] of the logical navigational core of XPath
[6] which we adopt in this paper and define the paths and nodes-semantics of
expressions in this algebra.

Definition 4. The XPath-algebra consists of the primitives ε, ∅, �, ↓, and ↑ to-
gether with the operations on expressions E1�E2, E1[E2], E1∪E2, E1∩E2, and
E1−E2. Given a document D = (V, Ed, r, λ), the semantics of an XPath-algebra
expression E on D, denoted E(D), is a subset of Paths(D). The semantics for
each primitive and each operation is given in Table 1.

Table 1. The XPath-Algebra Path-Semantics

ε(D) = {(n, n) | n ∈ V }
∅(D) = ∅
�(D) = {(n, n) | m ∈ V and λ(n) = �}

↓ (D) = Ed

↑ (D) = Ed−1

E1 � E2(D) = {(n, m) | ∃w : (n, w) ∈ E1(D) & (w, m) ∈ E2(D)}
E1[E2](D) = {(n, m) ∈ E1(D) | ∃w : (m,w) ∈ E2(D)}

E1 ∪ E2(D) = E1(D) ∪ E2(D)

E1 ∩ E2(D) = E1(D) ∩ E2(D)

E1 − E2(D) = E1(D) − E2(D)

The XPath-algebra semantics reflects a “global” perspective of expressions being
evaluated on an entire document. There is also a “local” semantic perspective,
in which expressions are viewed as working at a particular node, as follows.

Definition 5. Let E be an XPath-algebra expression and let D = (V, Ed, r, λ)
be a document. For n ∈ V , the local semantics of E on D at n, denoted E(D)(n),
is the set {m ∈ V | (n, m)) ∈ E(D)}.

A Methodology for Coupling Fragments of XPath with Structural Indexes 55

Consider the XPath query /Projects/Department/Project[./Project] that re-
trieves all the projects of departments that have a sub-project. When applied
to the document D of Figure 1, this query returns the set of nodes {n4, n6}.
An XPath-algebra expression corresponding to this query can be formulated as
Projects � ↓ � Department � ↓ � Project[↓ � Project]. According to the se-
mantics of the XPath-algebra, the global semantics of this expression on D is
the set of paths {(n0, n4), (n0, n6)} whereas its local semantics at the root node
n0 is the set of nodes {n4, n6}, which, as intended, corresponds to the result set
of the original XPath query.

2.5 Linking the P (k)-Partition to the XPath Algebra

The A(k)-indexes were introduced to support efficient evaluation of certain path
queries on XML documents. As was demonstrated empirically on a benchmark
of queries, the performance benefits of these indexes were most dramatic when
the queries “matched” the index definitions [10]. However, in that paper the
concept of queries matching indexes was not formalized. A main theme of this
paper is that we can indeed formalize this concept. More specifically, in the
remainder of this section we identify a class U (k) of sub-algebras of the XPath-
algebra whose queries ideally match up with the P (k)-partitions (and as such
with the A(k) indexes). The central idea behind this formalization comes from
showing that the P (k)-partitions are identical to the partitions induced on the
document by the U (k) algebras. These language induced partitions are defined
using equivalence relations that define a pair of paths equivalent when they can
not be distinguished by the queries of the sub-algebras. i.e., they are either both
in the answer of a query, or they are both not. Intuitively, such pairs are always
processed together during query evaluation.

In the following two sections, we define the U (k) sub-algebras and show how
the P (k)-partitions are identical to partitions induced by these algebras.

2.6 The U (k)-Algebras and Their Associated U (k)-Partitions

In the example of Section 1.1, we considered the class of RangeQ relational
queries and introduced the notion of RangeQ-partitions. In this section, we define
the U (k) XPath-algebras, and then, in analogy with this example, define the
associated U (k)-partitions.

Definition 6. We recursively define the upward-k XPath algebras, U (k) for
each k ∈ N, as follows. (Notice that the ↓ primitive can not be used in expressions
of these algebras).

1. U (0) is the set of XPath-algebra expressions without occurrences of the “↓”
and “↑” primitives.

2. For k ≥ 1, U (k) is the smallest set of expressions satisfying
(a) if E ∈ U (k − 1), then E ∈ U (k);
(b) ↑ ∈ U (k);

56 G.H.L. Fletcher et al.

(c) if E1 ∈ U (k) and E2 ∈ U (k), then E1 � E2 ∈ U (k), for � = ∪, ∩, −;
and

(d) if E1 ∈ U (k1) and E2 ∈ U (k2), and k1 + k2 ≤ k, then E1 � E2 ∈ U (k)
and E1[E2] ∈ U (k).

Example 3. As an example of U (k) expressions, note that Name � ↑ � Project � ↑
� Project is in U (2) but not in U (1), the expression ↑ � Department is in
U (1) but not in U (0), and the combined expression Name � ↑ � Project � ↑
� Project[↑ � Department] is in U (3) but not in U (2).

The following useful proposition about the U (k)-algebras can be shown by a
simple inductive argument.

Proposition 1. Let D be a document, k ∈ N, and E ∈ U (k). Then E(D) ⊆
UpPaths(D, k).

We are now ready to define the partitions associated with the U (k)-algebras.
Proposition 1 motivates us defining these partitions on UpPaths(D, k), just as
with the P (k)-partitions. In the next section we will then show that it is these
partitions that are identical with the P (k)-partitions.

Recall from the relational example, that we associated the RangeQ query
language with the RangeQ-partition. This partition was defined such that each
of its blocks grouped those tuples in a relation that could not be distinguished
by the queries in RangeQ. We define the partitions associated with the U (k)-
algebras analogously.

Definition 7. Let D = (V, Ed, r, λ) be a document, and k ∈ N. We say two
paths (n1, m1) and (n2, m2) in UpPaths(D, k) are U (k)-equivalent, denoted
(n1, m1) ≡U (k) (n2, m2), if for any expression E in U (k), it is the case that
(n1, m1) ∈ E(D) if and only if (n2, m2) ∈ E(D). We call the partition induced
by ≡U (k) on UpPaths(D, k) the U (k)-partition of D.

2.7 The Coupling of P(k) and U (k)

We establish a coupling theorem for the P (k) and U (k) partitions, in analogy
to Theorem 1, as follows.

Theorem 4. [Coupling Theorem] Let D be a document and k ∈ N. The
P (k)-partition of D and the U (k)-partition of D are the same.

Proof. (Sketch) Compared to the proof that shows that the Btree-partition and
the RangeQ-partition are the same, the proof of Theorem 4 is considerably more
involved. Nevertheless, the proof follows the same strategy. First, we show that
if two paths (n1, m1) and (n2, m2) in UpPaths(D, k) are in the same block of the
P (k)-partition, then they are also together in a block of the U (k)-partition. In
particular, we show by induction that for each expression E ∈ U (k), it is the case
that (n1, m1) ∈ E(D) if and only if (n2, m2) ∈ E(D). The proof of this fact is
given in the Appendix. Second, we show that if (n1, m1) and (n2, m2) are in two

A Methodology for Coupling Fragments of XPath with Structural Indexes 57

different blocks of the P (k)-partition, then they are also in two different blocks of
the U (k)-partition. This is shown by constructing an expression label ∈ U (k)
such that (n1, m1) ∈ label(D), but (n2, m2) �∈ label(D). The expression label
is of independent interest since it can be shown that it uniquely identifies (i.e.,
labels) the block of the U (k)-partition of which (n1, m1) is a member. More
precisely, label(D) consists of exactly those paths in UpPaths(D, k) that can
not be distinguished from (n1, m1) by the U (k)-algebra. Section 4 is devoted to
the existence and the construction of label.

As an immediate consequence, each U (k) query evaluated on a document D is
equal to the union of a family of blocks of the P (k)-partition of D.

Theorem 5. [Block-Union Theorem] Let D be a document, k ∈ N, and
Q ∈ U (k). Then there exists a class BQ of partition blocks of the P (k)-partition
of D such that Q(D) =

⋃
B∈BQ

B.

In analogy with Theorem 2, the Block-Union Theorem provides insight into the
processing of general XPath-algebra queries, as we see next.

3 XPath Query Evaluation with P (k)-Partitions

The results of Section 2 speak to answering U (k) queries directly using the
P (k)-partition structure. In this section we consider the evaluation of general
XPath algebra expressions and show how the results of Section 2 concerning
the coupling between the U (k) and P (k)-partitions can be utilized in this case.
Given an XPath expression and a P (k)-partition, the main idea is to identify
its U (k) sub-expressions or those that are easily converted to U (k) expressions
using rewrite rules. For each such expression, we are then guaranteed by the
Block-Union Theorem that its value is the union of an appropriate set of blocks
of the P (k)-partition. If we then have a method to quickly identify and return
partition blocks, we will have an efficient way of evaluating these expressions.
We return to this issue in the next section. In this section, we focus on the
development of general techniques for using P (k)-partitions in the evaluation of
arbitrary XPath algebra expressions.

3.1 Evaluating Upward Expressions

If our given XPath expression is in fact a member of U (k) then no decomposition
is necessary. However, if we consider a U (j) expression of the form E = A1 � ↑
� . . . � ↑ � Aj where j > k, then such a query is not directly supported by the
P (k)-partition. Nevertheless, we can decompose it into sub-expressions that are
in U (k). For example, consider the P (2)-partition available and the expression
E1 = A1 � ↑ A2 � ↑ � A3 � ↑ � A4 in U (4), then E1 contains sub-expressions
F1 = A1 � ↑ � A2 ↑ � A3, and F2 = A3 � ↑ � A4 which are both in U (2). As such,
they can be directly evaluated using the P (2)-partition as E1(D) = F1(D) ��
F2(D).

58 G.H.L. Fletcher et al.

3.2 Evaluating Downward Expressions

In practice, most XPath expressions use navigation just along the parent-child
(↓) axis. Consider the XPath sub-algebra D which is defined as the set of all
XPath expressions in which the ↑ primitive does not appear (and the D(k) al-
gebras defined analogously to the U (k) algebras). For such queries, we cannot
directly utilize the Block-Union Theorem. However, we can convert downward
navigation into upward navigation by using a technique which we will refer to as
“inverting expressions.” We will illustrate this technique on downward expres-
sions with and without predicate operations. For this discussion, we consider
downward expressions to be in the D(k)-algebra which is defined in complete
analogy with U (k), except that the ↓ primitive is permitted, but not the ↑
primitive.

Downward Expressions without Predicates. Downward expressions with-
out predicates can be “inverted” into expressions in corresponding upward ex-
pressions without predicates using the rewrite rules shown in Table 2.

Table 2. Inversion Rewrite Rules for D

E → E−1

ε → ε
∅ → ∅
↓ → ↑
λ̂ → λ̂

E1 ∪ E2 → E−1
1 ∪ E−1

2
E1 ∩ E2 → E−1

1 ∩ E−1
2

E1 − E2 → E−1
1 − E−1

2
E1 � E2 → E−1

2 � E−1
1 .

So, given a downward ex-
pression E ∈ D(k) without
predicates, we can rewrite E
into E−1 which is in U (k)
and also has no predicates.
We can then obtain E(D) by
first computing E−1(D) and
then considering its inverted
result. Now since E−1 is an
expression in U (k), we can
directly apply the evaluation
techniques for U (k) expres-
sions discussed above.

Downward Expressions with Predicates. Now consider the evaluation of
downward algebra expressions wherein predicate operations occur. A simple ex-
ample is the expression E2 =↓ [↓]. Applied to a document, E2 evaluates to the
document’s parent-child pairs for children that have at least one child themselves.
As above, to evaluate E2 on a document D, we could consider the concept of
inverting E2 into an expression E−1

2 ∈ U (2) such that E2(D) = (E−1
2 (D))−1.

This approach does not work here because the inversion rules in Table 2 do not
extend to include the predicate operation. In fact, we can construct a document
D2 such that for each expression F ∈ U (2), E2(D2) �= F (D)−1.

Clearly E2 is equivalent to the XPath-algebra expression ↓ � ↓ � ↑.5 Notice
that this expression is neither a downward nor an upward expression. How-
ever its sub-expression G1 =↓ � ↓ is in D(2) and its sub-expression G2 =↑
5 Incidentally, it can be shown that each expression in the D(k) algebra can be con-

verted into an alternating composition of D(k) and U (k) expressions all of which
do not use predicates.

A Methodology for Coupling Fragments of XPath with Structural Indexes 59

is in U (1). Using the inversion technique described in Section 3.2 applied to
G1, the evaluation of E2(D) can be accomplished by computing the relation
(G−1

1 (D))−1 �� G2(D), and, as indicated in this section, the evaluations of
G2(D) =↑ (D) and G−1

1 (D) =↑ � ↑ (D) can be done by utilizing the Block-
Union Theorem for the P (2) and P (1)-partitions respectively.

Given that the selectivity of a longer path is no larger than that of short
sub-paths of the path, evaluating G1 reduces the search space to the minimum
that can be obtained on such a chain expression. Starting from any given node,
upward navigation in an XML data tree, unlike downward navigation, has one
and only one route to follow, which is to reach its parent. Therefore, it is rea-
sonable to claim that the result of G−1

1 (D) is substantially smaller than that of
G2(D), and the �� operation can be further optimized by G−1

1 (D) followed by
an upward navigation.

We will now consider a slightly more complicated downward expression E3 ∈
D(3) which retrieves information about leaders of projects that have a sub-
project: E3 = Department� ↓ � Project[↓ � Project] � ↓ � Lead. E3 can be
represented as an expression pattern tree, as illustrated in Figure 3(a). The
shaded node can be interpreted as the “answer” of E3.

Department

ProjectLead

Project

(a) (c)

G4 G5

G
3

(b)

G
1

G
2

Fig. 3. Chain pattern tree for E3

Assume that the P (2)-partition is
available. Then, as shown in Figure 3(b),
there are two natural chains of length 2
present in the pattern tree of E3: G1 and
G2. There are also natural chains of length
1 as shown in Figure 3(c): G3, G4, and G5.

Using G1, G2, and G4, the expression
E3 is equivalent to the expression H1 de-
fined as follows: H1 =((G1 � ↑)∩(G2 � ↑))
� G4, and therefore, for a document D, E3(D) can be computed as follows:

E3(D) =

⎛

⎝
((G−1

1 (D))−1 �� ↑ (D))
∩

((G−1
2 (D))−1 �� ↑ (D))

⎞

⎠ �� (G−1
4 (D))−1.

All sub-expressions in this transformed expression of E3 are in U (2), and hence,
as already discussed, can be evaluated using the Block-Union Theorem for P (2).

Now assume that only the P (1)-partition is available. In this case, the longest
path expressions that can take advantage of the partitions are those of length at
most 1. Such expressions are G3, G4 and G5. Using these sub-expressions, E3 is
equivalent with the expression H2 defined as follows:

H2 = (((G3 � G4) � ↑) ∩ ((G3 � G5) � ↑)) � G4.

We have just observed how the Block-Union Theorem assists in the evaluation
of XPath expressions. However, if we want to make efficient utilization of these
ideas, we will need techniques for quickly identifying the P (k)-partition blocks
associated with a query. We turn to this issue in the following section.

60 G.H.L. Fletcher et al.

4 Labeling P (k)-Partition Blocks

In Section 2 we investigated the semantic relationship between U (k)-equivalence
and the P (k)-partition. There is also an alternative syntactic characterization
of this relationship which is critical in identifying the P (k)-partition blocks used
in evaluating a query. In particular, we have that evaluation of a U (k) query
on a document D can be done by forming a union of partition block labeling
expressions applied to D, similarly to Theorem 3 for the range queries.

Theorem 6. [Label-Union Theorem] Let D be a document and k ∈ N. Then
for each query Q ∈ U (k), a set of labeling queries LQ ⊆ U (k) can be constructed
such that Q(D) =

⋃
label∈LQ

label(D).

The Label-Union Theorem is a crucial syntactic link between P (k)-partitions and
the semantics of U (k) expressions, and is an immediate corollary of Theorem 5
and the following result.

Proposition 2. Let D be a document and k ∈ N. For each block B of the P (k)-
partition of D, an expression labelB ∈ U (k) can be constructed such that for
each pair (n, m) ∈ UpPaths(D, k) it is the case that (n, m) ∈ B if and only if
(n, m) ∈ labelB(D).

We now proceed with the proof of Proposition 2. First, we define in two steps the
labeling expressions for partition blocks. Then, we make precise the relationship
of these expressions to the partition blocks.

Step 1: Ancestor Path Expressions.

Definition 8. Let D = (V, Ed, r, λ) be a document, k ∈ N, and n ∈ V . Let the
k-ancestor label path of n be the list of labels L0, . . . , L� of the nodes on the path
from n up towards the root node r, of length � = min{k, length(n, r)}. For i � k,
the ith k-ancestor label expression of n is the U (k) expression Lk,n,i defined in
Figure 4.6

Lk,n,i =

�
L0 � ↑ � L1 � · · · � ↑ � Li[↑ � Li+1 � · · · � ↑ � L�] if i < �

L0 � ↑ � L1 � · · · � ↑ � L� � ↑i−� if i � �

Fig. 4. The ith k-ancestor label expression of node n having k-ancestor label path
L0, . . . , L�

We observe that all members of a P (k) partition block share a k-ancestor label
expression. Namely, for a block B, all elements share the expression Lk,n,length(n,m),
where (n, m) is any member of block B. This observation follows directly from
the definition of P (k)-equivalence and Definition 8.

6 Where ↑0= ε and for i > 0, ↑i= ↑ � · · · � ↑� �� �
i times

.

A Methodology for Coupling Fragments of XPath with Structural Indexes 61

A

n_b

n_c

n_a

A

A

Fig. 5. Three-node document

Example 4. Consider the P (1)-partition
of the small document in Figure 5,
wherein each node has label A:

{
[(na, na)], [(nb, nb), (nc, nc)],

[(nc, nb), (nb, na)]
}
.

As noted above, we can associate with
each block in this partition an L1,n,length(n,m) expression, for any element (n, m)
in the block, as in Figure 6.

Partition Block Expression
[(na, na)] L1,na,0 = A

[(nb, nb), (nc, nc)] L1,nb,0 = A[↑ � A]
[(nc, nb), (nb, na)] L1,nb,1 = A � ↑ � A

Fig. 6. Ancestor label expressions

Note, however, that ancestor label ex-
pressions do not necessarily uniquely
identify particular P (k) blocks.

Example 5. Continuing Example 4, we
note that expression L1,na,0 = A
for block [(na, na)] evaluates on the
document D as A(D) = {(na, na),
(nb, nb), (nc, nc)}, and hence does not
uniquely identify its block. This is due to the fact that L1,na,0 is not selective
enough. In particular, all blocks, with 1-ancestor label expressions having as a
prefix expression L1,na,0, will also appear in the evaluation of L1,na,0. For exam-
ple, the 1-ancestor labeling expression A[↑ � A] for block [(nb, nb), (nc, nc)] has as
a prefix the 1-ancestor labeling expression A for block [(na, na)], and therefore
both blocks appear in the evaluation of A. We pursue a remedy for this problem
in the next step.

Step 2: Partition Labeling Expressions. To tighten up ancestor label ex-
pressions, we need two tools. To compare these expressions, we introduce the
following notion of expression prefixes.

Definition 9. Let D be a document, i, k ∈ N, i � k, and m and n be nodes in D.
For ith k-ancestor label expressions Lk,m,i and Lk,n,i, we denote by Lk,m,i ≺ Lk,n,i

that the k-ancestor label path of node m is a prefix of the k-ancestor label path
of node n.

Example 6. In Example 5, we observed that L1,na,0 ≺ L1,nb,0.

Relationship to Partition Blocks. To precisely single out blocks of a P (k)-
partition, we introduce the following class of expressions derived from the Lk,n,i

expressions above. The trick is to eliminate all spurious node pairs introduced
from blocks with prefixing ancestor label expressions.

Definition 10. Let D = (V, Ed, r, λ) be a document and let k ∈ N. Then the
k-partition labeling expression for (n, m), with (n, m) ∈ UpPaths(D, k), is the
U (k) expression labelk,(n,m) = Lk,n,l −

⋃
n′∈V & Lk,n,l≺Lk,n′,l

Lk,n′,l, where l =
length(n, m).

62 G.H.L. Fletcher et al.

Example 7. Since L1,na,0 ≺ L1,nb,0, as we observed in Example 6, we have that
label1,(na,na) = L1,na,0 − L1,nb,0 = A − A[↑ � A], and clearly this expression
evaluated on document D of Figure 5 gives us precisely the P (1)-partition block
for pair (na, na), namely label1,(na,na)(D) = [(na, na)], as desired.

By construction of partition labeling expressions, it is easy to see that for a
given block B of a P (k)-partition of document D, each (n, m) ∈ B has the same
label. Furthermore, by an examination of the definition of labelk,(n,m), it is
straightforward to show that it is indeed the case that (n, m) ∈ labelk,(n,m)(D).
In other words, we have that for each block B, an expression labelB ∈ U (k) can
be constructed such that labelB(D) = B, completing the proof of Proposition 2.
These are precisely the labeling expressions of Theorem 6.

5 Towards Indexes: A(k)-Based, or P (k)-Based?

In Section 3, we argued that many XPath queries can be evaluated by (1) discov-
ering appropriate blocks of P (k)-partitions and (2) assembling these blocks, typ-
ically through unions and joins, into the final answer. Step (1) was accomplished
through decomposition and inversion techniques. Relative to a P (k)-partition,
these techniques yield expressions in D(k) and U (k) without predicate opera-
tions. Through the Label-Union Theorem developed in Section 4, we know that
these expressions can be associated with label expressions, which are syntactic
objects that identify the relevant blocks. Thus, to develop an index structure to
support these evaluations, we need a data structure that organizes these label
expressions and their associated partition blocks in a way that allows fast look
up. Given the simplicity of the labeling expressions, this is entirely feasible. In
fact, we are currently implementing such a index structure, and plan to report
on its performance. One of the potential drawbacks of such an index structure is
that it can be large: for a given k, its size is O(k|V |) where V is the set of nodes
of the document. However, we believe that in practice, storing such indexes will
only be necessary for small k values, and as such their size is nearly linear in the
size of the document.

Of course, it is also possible to develop indexes that are based on the A(k)-
partitions. In fact, the A(k)-index introduced by Kaushik et al. [10] is an example
of this. This index has several very desirable properties: (1) its size is O(|V |) and
(2) for expressions in U (k) without predicates wherein exactly k “↑” primitives
occur, simple navigations through the index yield their results. However, it has
also some significant limitations. For example, consider an expression without
predicates in U (j), j > k, that utilizes j “↑” primitives. Such an expression can
be written in the form E1 � E2 where E1 ∈ U (k) and E2 ∈ U (j − k). Now the
A(k)-index can determine the set of nodes that are the result of evaluating E1 on
the document. However now, starting from these nodes, E2 is to be evaluated,
and this can only be done by accessing and navigating the original document
tree. (Notice that an index based on the P (k)-partitions does not suffer from
this problem because it never requires extra navigation in the document.) A
very similar problem occurs with expressions that have predicates. Consider an

A Methodology for Coupling Fragments of XPath with Structural Indexes 63

expression in U (j) of the form E1[E2], where E1 ∈ U (k) and E2 ∈ U (j − k).
Again, the A(k)-index can support E1 well and retrieve the set of nodes that
are the result of its evaluation. But again, to process the predicate [E2], it is
necessary to navigate the original document. (Notice, again, that the P (k)-based
indexes do not suffer from this problem.)

From this discussion, we conclude that for many reasons, P (k)-based indexes
are to be preferred over A(k)-based indexes, especially when only small k’s are
sufficient.

6 Future Directions

In this paper, we take a fresh step towards establishing connections between
the theoretical study of query languages and engineering research on the design
and implementation of XML database systems. These connections hinge on a
new methodology for coupling index-induced partitions and language-induced
partitions of an XML document. To take full advantage of the P (k)-partitions
introduced here and their block labeling expressions, we next need a data struc-
ture that is capable of locating all partition blocks based on label look-up, and
in which the partition blocks that participate in the evaluation of a query are
stored close to each other and can be located with a minimum number of label
look-ups. Currently, we are focusing efforts towards the development of a data
structure which satisfies these requirements.

References

[1] Al-Khalifa, S., et al.: Structural joins: A primitive for efficient XML query pattern
matching. In: ICDE (2002)

[2] Bruno, N., et al.: Holistic twig joins: optimal XML pattern matching. In: SIGMOD
(2002)

[3] Clark, J., DeRose, S. (eds.): XML path language (XPath) version 1.0.
http://www.w3.org/TR/XPATH

[4] Comer, D.: The Ubiquitous B-Tree. ACM Comput. Surv. 11(2), 121–137 (1979)
[5] Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimiza-

tion in semistructured databases. In: VLDB, pp. 436–445 (1997)
[6] Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath

Queries. ACM Trans. Database Syst. 30(2), 444–491 (2005)
[7] Gyssens, M., et al.: Structural Characterizations of the Semantics of XPath as

Navigation Tool on a Document. In: ACM PODS, pp. 318–327. ACM Press, New
York (2006)

[8] He, H., Yang, J.: Multiresolution indexing of XML for frequent queries. In: IEEE
ICDE, IEEE Computer Society Press, Los Alamitos (2004)

[9] Kaushik, R., et al.: Covering indexes for branching path queries. In: SIGMOD
(2002)

[10] Kaushik, R., et al.: Exploiting local similarity for efficient indexing of paths in
graph structured data. In: IEEE ICDE, IEEE Computer Society Press, Los Alami-
tos (2002)

http://www.w3.org/TR/XPATH

64 G.H.L. Fletcher et al.

[11] Kaushik, R., et al.: On the integration of structure indexes and inverted lists. In:
ACM SIGMOD, ACM Press, New York (2004)

[12] Koch, C.: Processing queries on tree-structured data efficiently. In: ACM PODS,
pp. 213–224. ACM Press, New York (2006)

[13] Milo, T., Suciu, D.: Index structures for path expressions. In: Beeri, C., Bruneman,
P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 277–295. Springer, Heidelberg (1998)

[14] Moro, M.M., et al.: Tree-pattern queries on a lightweight XML processor. In:
VLDB (2005)

[15] Qun, C., Lim, A., Ong, K.W.: D(k)-index: An adaptive structural summary for
graph-structured data. In: SIGMOD (2003)

[16] Ramanan, P.: Covering indexes for XML queries: Bisimulation - simulation =
negation. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases, Infor-
mation Systems, and Peer-to-Peer Computing. LNCS, vol. 2944, Springer, Hei-
delberg (2004)

[17] Runapongsa, K., Patel, J.M., Bordawekar, R., Padmanabhan, S.: XIST: An XML
index selection tool. In: Bellahsène, Z., Milo, T., Rys, M., Suciu, D., Unland, R.
(eds.) XSym 2004. LNCS, vol. 3186, pp. 219–234. Springer, Heidelberg (2004)

[18] Yi, K., He, H., Stanoi, I., Yang, J.: Incremental maintenence of XML structural
indexes. In: ACM SIGMOD, pp. 491–502. ACM Press, New York (2004)

[19] Zhang, C., et al.: On supporting containment queries in relational database man-
agement systems. In: SIGMOD (2001)

Appendix

Structural Characterizations of U (k) Indistinguishability

We prove the following fact needed in establishing Theorem 4: on a fixed docu-
ment, for each k � 0 it is the case that P (k)-equivalence (of node pairs) implies
indistinguishability in the U (k) algebra (of node pairs).

Lemma A. Let D = (V, Ed, r, λ) be a document, k ∈ N, and n1, m1, n2 ∈ V
with m1 is an ancestor of n1 and length(n1, m1) ≤ k. If n1 ≡A(k) n2, then there
exists m2 ∈ V such that m2 is an ancestor of n2 and (n1, m1) ≡P (length(n1,m1))
(n2, m2).7 Furthermore, m1 ≡A(k−length(n1,m1)) m2.

Proof. By induction on k. For the base case, k = 0, clearly m1 = n1 and λ(n1) =
λ(n2). The statement holds for m2 = n2.

For k ≥ 1, we can assume that the statement holds for k − 1. If n1 ≡A(k) n2,
then either (1) both n1 and n2 have no parents, or (2) they both have parents p1
and p2, respectively, such that p1 ≡A(k−1) p2 (by definition of A(k) equivalence).
In case (1), clearly m1 = n1 and the statement holds for m2 = n2. In case (2),
length(p1, m1) ≤ k − 1, and by the definition of A(k) equivalence, p1 ≡A(k−1)
p2. By the induction hypothesis, there exists an ancestor m2 of p2 such that
(p1, m1) ≡P (length(p1,m2)) (p2, m2) and m1 ≡A(k−1−length(p1,m1)) m2. It readily
follows that (n1, m1) ≡P (length(n1,m1)) (n2, m2) and m1 ≡A(k−length(n1,m1)) m2.

7 And even stronger, (n1, m1) ≡P (k) (n2, m2).

A Methodology for Coupling Fragments of XPath with Structural Indexes 65

Proposition A. Let D = (V, Ed, r, λ) be a document, k ∈ N, E ∈ U (k), and
n1, m1, n2, m2 ∈ V such that m1 is an ancestor of n1 and m2 is an ancestor
of n2, and (n1, m1) ≡P (k) (n2, m2). If (n1, m1) ∈ E(D), then (n2, m2) ∈ E(D),
and vice versa.

Proof. First observe that it follows from E ∈ U (k) and (n1, m1) ∈ E(D) that
length(n1, m1) ≤ k, by Proposition 1.

The proof is by induction on k. The base case, k = 0, follows straightforwardly
from the definition of P (0)-equivalence and a simple structural induction on
expressions in U (0). Now assume that k ≥ 1, and that the statement holds for
0, 1, 2, . . . , k −1. The proof goes by structural induction on expressions in U (k).
Thus, let E ∈ U (k).

– E ∈ U (k − 1). The statement holds by the induction hypothesis.
– E =↑. If (n1, m1) ∈↑ (D), then m1 is the parent of n1. Since (n1, m1) ≡P (k)

(n2, m2), it follows in particular that m2 is the parent of n2. We conclude
that (n2, m2) ∈↑ (D).

– E = E1 ∪ E2, for E1 and E2 ∈ U (k). Suppose (n1, m1) ∈ E(D). Then
(n1, m1) ∈ E1(D) or (n1, m1) ∈ E2(D). Without loss of generality, assume
(n1, m1) ∈ E1(D). Then by structural induction, (n2, m2) ∈ E1(D), and we
conclude (n2, m2) ∈ E(D).

– E = E1 ∩E2 or E = E1 −E2, for E1 and E2 ∈ U (k). Similar to the previous
case.

– E = E1 � E2, for E1 ∈ U (k1) and E2 ∈ U (k2), such that k1 + k2 ≤
k. Suppose (n1, m1) ∈ E(D). Then there is a node w1 ∈ V such that
(n1, w1) ∈ E1(D) and (w1, m1) ∈ E2(D). By Lemma 1, length(n1, w1) ≤ k1
and length(w1, m1) ≤ k2. By Lemma A, there is a node w2 ∈ V such
that (n1, w1) ≡P (length(n1,w1)) (n2, w2), and w1 ≡A(k−length(n1,w1)) w2. Since,
k2 ≤ k − length(n1, w1), by Lemma A, a node m′ ∈ V exists with (w1, m1)
≡P (length(w1,m1)) (w2, m

′).
By (n1, w1) ≡P (length(n1,w1)) (n2, w2), and (w1, m1) ≡P (length(w1,m1))

(w2, m
′), it is (definitions of ≡P (k1) and ≡P (k2)) that length(n2, w2) =

length(n1, w1) and length(w2, m
′) = length(w1, m1).

Consequently, length(n2, m
′) = length(n1, m1), and since m′ is the unique

ancestor at this length, we conclude that m′ = m2. Thus (w1, m1) ≡P (k2)
(w2, m2). By the induction hypothesis, we can conclude that (n2, w2) ∈
E1(D) and (w2, m) ∈ E2(D) and thus (n2, m2) ∈ E(D).

– E = E1[E2], for E1 ∈ U (k1) and E2 ∈ U (k2), such that k1 +k2 ≤ k. Similar
to the previous case.

Conjunctive Query Containment over Trees�

Henrik Björklund, Wim Martens, and Thomas Schwentick

University of Dortmund

Abstract. The complexity of containment and satisfiability of conjunc-
tive queries over finite, unranked, labeled trees is studied with respect
to the axes Child , NextSibling , their transitive and reflexive closures,
and Following . For the containment problem a trichotomy is presented,
classifying the problems as in PTIME, coNP-complete, or ΠP

2 -complete.
For the satisfiability problem most problems are classified as either in
PTIME or NP-complete.

1 Introduction

Conjunctive query containment for relational databases is one of the most thor-
oughly investigated problems in database theory. It is known to be essentially
equivalent to conjunctive query evaluation and to Constraint Satisfaction in
AI [9]. From the database point of view, the importance of conjunctive queries
on relational structures lies in the fact that they correspond to the most widely
used queries in practice. More precisely, they correspond to the select-from-where
queries from SQL that only use “and” as a Boolean connective.

Recently, conjunctive queries over trees also attracted quite some attention [7].
It is somewhat surprising that they have not been studied earlier, as they arise
very naturally in various settings, such as data extraction and integration, com-
putational linguistics, and dominance constraints [7]. Moreover, unary and bi-
nary conjunctive queries over trees form a very natural fragment of XPath 2.0 [1],
and therefore also of XQuery [2]. Indeed, unary and binary conjunctive queries
over trees correspond to Core XPath without negation and union (see, e.g.,
[6]), but with path intersection, as introduced in XPath 2.0 (see, e.g., [8,13]).
Gottlob et al. already showed that unary conjunctive queries over trees can be
translated to XPath 1.0 queries, albeit with an exponential blow-up [7], and the
above-mentioned Core XPath queries with path intersection can be translated
into conjunctive queries by identifying variables. Hence, our complexity upper
bounds transfer to positive Core XPath expressions with path intersection, but
without union.

In this paper, we consider conjunctive query containment on trees. We mainly
focus on Boolean containment of conjunctive queries, i.e., given two conjunctive
queries P and Q, is L(P) ⊆ L(Q), where L(P) (resp., L(Q)) denotes the set of
trees on which P (resp., Q) has a non-empty output. Conjunctive query con-
tainment over trees is a problem that needs to be solved for conjunctive query
� This work was supported by the DFG Grant SCHW678/3-1.

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 66–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Conjunctive Query Containment over Trees 67

Table 1. Complexities of Conjunctive Query Containment

Child Child+ Child∗ NextSibling NextSibling+ NextSibling∗ Following
Child in P ΠP

2 ΠP
2 coNP coNP coNP ΠP

2

Child+ coNP coNP ΠP
2 ΠP

2 ΠP
2 ΠP

2

Child∗ coNP ΠP
2 ΠP

2 ΠP
2 ΠP

2

NextSibling in P coNP coNP ΠP
2

NextSibling+ coNP coNP ΠP
2

NextSibling∗ coNP ΠP
2

Following coNP

optimization. The latter is, for instance, important for XQuery engines, but is
also relevant in the other settings mentioned above. Moreover, conjunctive query
satisfiability, which we also study and which is a simplified form of containment,
needs to be solved if one wants to decide well-definedness for important XQuery
fragments [14]. There is a further relevant setting in which the set of trees under
consideration is restricted by a schema and the containment question is asked
relative to this schema. We give a brief overview of our results.

Containment. We obtain a similar classification as Gottlob et al. [7]. The most
essential differences are that the PTIME membership results for conjunctive
query evaluation translate to coNP membership results for containment and
that NP-completeness results for evaluation translate to ΠP

2 -completeness re-
sults for containment. The former translation is easy to obtain due to a poly-
nomial size witness property for counter examples (Lemma 8). For the latter
translation, we build on some of the NP lower bound reductions by Gottlob
et al. for our ΠP

2 lower bound proofs. They had to be significantly adapted,
however, as unlike in the relational setting, conjunctive query containment on
trees cannot be reduced in a straightforward manner to conjunctive query eval-
uation on a canonical model. Most of our complexity results on conjunctive
query containment are summarized in Table 1. From the above mentioned poly-
nomial size witness property and the results by Gottlob et al. [7], we can also
conclude that containment is in coNP for the fragments CQ(Child, NextSibling,
NextSibling∗, NextSibling+), CQ(Child∗, Child+), and CQ(Following). Combined
with the results from the table, this gives us a complete trichotomy of the com-
plexity of conjunctive query containment with respect to all sets of axes we
consider.

Unfortunately, as we can see from the table, conjunctive query containment on
trees is quite a hard problem. We only identify two tractable fragments, that is,
CQ(NextSibling) and CQ(Child). For the latter fragment, PTIME membership
is already non-trivial. All other combinations of axes are at least coNP-hard.

Satisfiability. Conjunctive query satisfiability can be seen as a simplification of
the containment problem. Indeed, Q is satisfiable if and only if L(Q) �⊆ L(false).
Our results on satisfiability are summarized in Table 2. Interestingly, we see here
that the dichotomy drawn by the evaluation and the containment problem shifts.

68 H. Björklund, W. Martens, and T. Schwentick

Table 2. Complexities of Conjunctive Query Satisfiability

Child Child+ Child∗ NextSibling NextSibling+ NextSibling∗ Following
Child in P NP [8] NP in P in P in P NP

Child+ in P in P ? ? ? ?

Child∗ in P ? ? ? ?

NextSibling in P NP NP NP

NextSibling+ in P in P in P

NextSibling∗ in P in P

Following in P

For the satisfiability problem, we obtain significantly more tractable fragments
than for the containment problem. Some cases, however, still remain NP-hard.

We note that the NP lower bound for satisfiability of CQ(Child ,Child+)
is already obtained by Hidders [8]. We prove it in an alternative manner in
Theorem 26.

Containment with respect to a schema. It turns out that the complexity of the
containment problem is (presumably) much higher if it is posed relative to a given
schema which restricts the set of trees under consideration. A similar effect was
observed before for XPath query containment [11]. More concretely, we show
that deciding whether a conjunctive query only using Child -axes returns a non-
empty output on each tree defined by a DTD is EXPTIME-hard. In fact, the
conjunctive query in our proof can even be expressed as an XPath query using
wildcards, predicates, and the axes Child and Descendant , thereby obtaining
that XPath containment w.r.t. a DTD is EXPTIME-complete for XPath queries
using Child , Descendant , predicates, and wildcards.

Related Work. Most of the related work has already been mentioned. We note,
however, that conjunctive query containment has also been investigated for
object-oriented database systems [3]. In particular, it is shown that conjunctive
query containment is ΠP

2 -complete. The classes of conjunctive queries studied
in [3] are, however, incomparable to ours.

2 Preliminaries

2.1 Trees

By Σ we always denote a fixed but infinite set of labels. For a finite set S, we
denote by |S| the number of elements of S. The trees we consider are rooted,
ordered, finite, labeled, unranked trees, which are directed from the root down-
wards. That is, we consider trees with a finite number of nodes and in which
nodes can have arbitrarily many children. We view a tree t as a relational struc-
ture over a finite number of unary labeling relations a(·), where each a ∈ Σ,
and binary relations Child(·, ·) and NextSibling(·, ·). Here, a(u) expresses that u
is a node with label a, and Child(u, v) (respectively, NextSibling(u, v)) expresses
that v is a child (respectively, next sibling) of u.

Conjunctive Query Containment over Trees 69

Notice that, in contrast to standard practice, we have an infinite set of labels
from which our (finite) trees can choose. This reflects how trees occur in an
XML-context: an XML tree is a finite structure, but there is no restriction on
how it should be labeled (if no schema is provided).

In addition to Child and NextSibling, we use their transitive closures (denoted
Child+ and NextSibling+) and their transitive and reflexive closures (denoted
Child∗ and NextSibling∗). We also use the Following-relation, which is inspired
by XPath [4] and defined as

Following(u, v) = ∃x∃yChild∗(x, u) ∧ NextSibling+(x, y) ∧ Child∗(y, v).

We denote the set of nodes of a tree t by Nodes(t). We define the size of t,
denoted by |t|, as the number of nodes of t. We refer to the above mentioned
binary relations as axes.

2.2 Conjunctive Queries

Let X = {x, y, z, . . .} be a set of variables. A conjunctive query (CQ) over alpha-
bet Σ is a positive existential first-order formula without disjunction over a finite
set of unary predicates a(x) where each a ∈ Σ, and the binary predicates Child ,
Child+, Child∗, NextSibling, NextSibling+, NextSibling∗, and Following. In this
paper, we will mainly focus on Boolean satisfaction of conjunctive queries. We
will therefore consider conjunctive queries without free variables. As our con-
junctive queries do not contain free variables, we sometimes omit the existential
quantifiers to simplify notation. For a conjunctive query Q, we denote the set of
variables appearing in Q by Var(Q). We use CQ(R1, . . . , Rk) or CQ(R) (where
R = {R1, . . . , Rk}) to denote the fragment of CQs that uses only the unary al-
phabet predicates and the binary predicates R1, . . . , Rk. We use the terminology
on valuations of a query and query graphs from Gottlob et al. [7].

Definition 1. Let Q be a conjunctive query, and t a tree. A valuation of Q on
t is a total function θ : Var(Q) → Nodes(t). A valuation is a satisfaction if it
satisfies the query, that is, if every atom of Q is satisfied by the assignment. A
tree t models Q (t |= Q) if there is a satisfaction of Q on t. The language L(Q)
of Q is the set of all trees that model Q.

We say that a tree t is a minimal model of Q if t |= Q and the number of nodes
in t is minimal among all trees in L(Q).

The following example illustrates a conjunctive query.

Example 2. Consider the conjunctive query Q = Child+(x1, x2)∧Child+(x2, x4)∧
Child+(x1, x3) ∧ Child+(x3, x4) ∧ a(x1) ∧ b(x2) ∧ c(x3) ∧ d(x4) ∧ e(x5). A tree t
models Q if t has an a-labeled node u with a d-labeled descendant v such that
the path from u to v contains a b-labeled node and a c-labeled node (in arbitrary
order). Moreover, t must contain an e-labeled node somewhere.

Definition 3. Let Q be a conjunctive query over Σ with variables Var(Q). The
query graph Q is the directed multigraph GQ = (V, E) with edge labels and

70 H. Björklund, W. Martens, and T. Schwentick

node labels such that V = Var(Q), node x is labeled a if and only if a(x) is an
atom in Q; and E contains the labeled directed edge x

R→ y if and only if R(x, y)
is an atom in Q.

We assume familiarity with standard graph-related terminology such as reach-
ability, connected components, etc. Subgraphs of GQ correspond to subqueries
of Q. We will sometimes slightly abuse the terminology by using graph-related
concepts when talking about queries. Thus “variable x is reachable from variable
y in Q” means that x is reachable from y in GQ. Similarly, “maximal connected
component of Q” means a subquery corresponding to a maximal connected com-
ponent of GQ.

For ease of readability, we often represent queries (or their query graphs)
graphically. For example, the rightmost picture in Figure 2 represents the query

Child(x1, x2) ∧ Child(x2, x3) ∧ Child(x2, x4) ∧ b(x3) ∧ c(x4).

The following decision problems for conjunctive queries are the main topic of
interest for this paper.

Definition 4

– Containment: Given two conjunctive queries P and Q, is L(P) ⊆ L(Q)?
– Satisfiability: Given a conjunctive query Q, is L(Q) �= ∅?

The above problems are in a sense both instances of the containment problem.
That is, satisfiability for Q is testing whether L(Q) �⊆ L(false).

As mentioned above, we consider conjunctive queries without free variables.
This means that we only look at whether a tree models the query or not, and not
at the whole set of satisfactions. One can also consider k-ary conjunctive queries,
i.e., CQs with k free variables, returning a k-ary relation when evaluated on a
tree. For two k-ary queries P and Q, P is contained in Q if, for every tree t,
the relation returned by P is a subset of the relation returned by Q. Using a
result of Miklau and Suciu [10], this problem reduces to containment for Boolean
queries for all fragments that include the Child -axis. For instance, consider the
left query P (x1, x2, x3) in Figure 1. By introducing, for each free variable xi, a
new variable x′i and adding the atoms Child(xi, x

′
i) ∧ Xi(x′i) to the query, where

Xi is a new label, the query P ′, depicted on the right of Figure 1, is obtained.
It is now easy to see that, for two queries P (x) and Q(x)1 with k free variables,
P is contained in Q if and only if L(P ′) ⊆ L(Q′), where P ′ and Q′ are obtained
by adding the atoms Child(xi, x

′
i)∧Xi(x′i) to P and Q, respectively. Indeed, the

proof is analogous to the one in [10]. For satisfiability, it is of course immediate
that the complexities are the same for 0-ary and k-ary queries.

2.3 Basic Properties

If t and t′ are trees, h is a function from t to t′, and R is a set of binary relations,
we say that h is an R-homomorphism if h(u) is defined for every node u in t,
1 We can assume w.l.o.g. that the free variables are the same in P and Q.

Conjunctive Query Containment over Trees 71

a

b c

e

dx1 x2 x3

a

b c

e

dx1 x2 x3

X2X1 X3

Fig. 1. How to reduce from k-ary queries to 0-ary queries

a(u) in t implies a(h(u)) in t′, for each a ∈ Σ, and R(u, v) holds in t implies that
R(h(u), h(v)) holds in t′, for each R ∈ R.

Observation 5. Let t be a tree and let Q ∈ CQ(R) be a query such that t |= Q.
If t′ is a tree and there exists an R-homomorphism h : t → t′, then t′ |= Q.

Observation 6. Conjunctive queries are monotonous, i.e., if t |= Q, for a tree t
and a CQ Q, then t′ |= Q for all trees t′ for which t ⊆ t′.

3 Containment

When we investigate whether query P is contained in query Q, i.e., L(P) ⊆ L(Q),
we will always assume that the graph of Q has only one maximal connected
component. This is because P is contained in Q if and only if P is contained in
every subquery of Q that corresponds to a maximal connected component.

3.1 PTIME Upper Bounds

Theorem 7. Containment is in PTIME for CQ(Child) and CQ(NextSibling).

Proof (Sketch). The proof for CQ(NextSibling) is straightforward: for testing
whether L(P) ⊆ L(Q), one can start by simplifying both queries, by applying
the chase for the relation NextSibling(A, B) with functional dependencies A → B
and B → A (i.e., NextSibling(x, x1) ∧ NextSibling(x, x2) or NextSibling(x1, x) ∧
NextSibling(x2, x) should not occur). Consequently, we have to test whether the
chased query for Q can be embedded into the chased query for P .

The proof for CQ(Child) is tedious and too intricate to illustrate the main
idea here. We just want to point out that the problem is not trivial. A naive
algorithm would try to find an embedding of Q into P and accept iff it can be
found. However, Figure 2 illustrates that not finding an embedding of Q into P
does not imply that L(P) �⊆ L(Q). �

a

b c

b

b c

*

*

b c
Query P . Query Q.

Fig. 2. Example for which L(P) ⊆ L(Q) but Q cannot obviously be embedded into P .
Every arrow denotes a Child -axis.

72 H. Björklund, W. Martens, and T. Schwentick

a1
1 a2

1 . . . an1
1

#
...

... #

a1
m a2

m . . . anm
m

Fig. 3. Structure of query P in the proof of Theorem 10

3.2 coNP and ΠP
2 Upper Bounds

We first show that if CQ P is not contained in CQ Q, then there is a polynomial
size witness tree.

Lemma 8. Let P and Q be conjunctive queries. If L(P) �⊆ L(Q) then there
exists a tree t such that t |= P , t �|= Q, and |t| ≤ 2 · |Var(P)| · (|Var(Q)| + 4).

The above lemma puts conjunctive query containment in ΠP
2 . Indeed, for test-

ing whether L(P) �⊆ L(Q), the algorithm would guess a tree tsmall of size at
most 2 · |Var(P)| · (|Var(Q)| + 4), test in NP whether tsmall |= P and test in
coNP whether tsmall �|= Q. As Gottlob et al. showed that conjunctive query
evaluation is in PTIME for CQ(Child , NextSibling, NextSibling∗, NextSibling+),
CQ(Child∗,Child+), and CQ(Following), the above algorithm gives us a coNP
upper bound for containment for these fragments. We can therefore state the
following theorem.

Theorem 9.

1. Containment is in ΠP
2 for CQs.

2. Containment is in coNP for CQ(Child∗,Child+), CQ(Following),
and CQ(Child,NextSibling,NextSibling∗,NextSibling+).

3.3 coNP Lower Bounds

For the coNP lower bounds, we will reduce from the complement of the Short-

est Common Supersequence problem; or the Shortest Common

Superstring problem, both of which are known to be NP-complete [12,5]. The
Shortest Common Supersequence (respectively, Shortest Common Su-

perstring) problem asks, given a set of strings S, and an integer k, whether
there exists a string of length at most k which is a supersequence (respectively,
superstring) of each string in S. Here, s is a supersequence of s0 if s0 can by
obtained by deleting symbols from s, and s is a superstring of s0 if s0 can be
obtained by deleting a prefix and a postfix of s.

Theorem 10. Containment is coNP-hard for CQ(NextSibling+),
CQ(NextSibling∗), CQ(Child+), CQ(Child∗), and CQ(Following).

Proof. All cases can be proved by a reduction from Shortest Common Su-

persequence. Thereto, let S and k be an instance of Shortest Common Su-

persequence. We now define conjunctive queries P and Q such that P �⊆ Q if

Conjunctive Query Containment over Trees 73

and only if there exists a shortest common supersequence for S of length at most
k. Thereto, let S = {s1, . . . , sm} where, for each i = 1, . . . , m, si = a1

i · · ·ani

i .
Let # be a symbol not occurring in any string in S.

We first show how the proof works for NextSibling+. The query P is defined
as in Figure 3, where each arrow represents a NextSibling+-axis and # and each
aj

i is a Σ-symbol. The query Q now essentially states that each tree must have
a string of siblings with at least k + 1 + 2 different nodes. Formally, we define Q
as

NextSibling+(x1, x2) ∧ · · · ∧ NextSibling+(xk+2, xk+3).

It is not difficult to see that P �⊆ Q if and only if there exists a shortest common
supersequence for S of length at most k. The proofs for Child+and Following
are completely analogous. For Child∗and NextSibling∗, we need to insert dummy
#-symbols between all aj

i labels in P , and adapt the query Q accordingly. �

The proof of the next theorem is in the same lines as the previous one, but
this time we reduce from the Shortest Common Superstring problem. The
essential difference is that P now does not contain the leftmost and rightmost
#-labeled symbol in Figure 3, the arrows in Figure 3 now denote NextSibling-
axes, and that all the ai

j-labeled nodes are connected to a common parent by
Child -axes.

Theorem 11. Containment is coNP-hard for CQ(Child,NextSibling).

3.4 ΠP
2 Lower Bounds

The ΠP
2 lower bounds in this section will all be obtained by a reduction from

∀∃ positive 1-in-3 SAT, which is formally defined as follows. A set C1, . . . , Cm of
clauses is given, each of which has three Boolean variables from {x1, . . . , xnx} �
{y1, . . . , yny}. No variable is negated. The question is whether, for every truth
assignment for {x1, . . . , xnx}, there exists a truth assignment for {y1, . . . , yny}
such that each Ci contains precisely one true variable.

The proof of the following lemma is analogous to the proof showing that
positive 1-in-3 SAT is NP-complete.

Lemma 12. ∀∃ positive 1-in-3 SAT is ΠP
2 -complete.

Theorem 13. Containment is ΠP
2 -complete for CQ(Child, Child+) and

CQ(Child, Child∗).

Proof. We present a proof for CQ(Child , Child+) and discuss in the end how to
adapt it for CQ(Child , Child∗).

The proof is an adaptation of a proof by Gottlob et al., showing that the
query complexity of evaluation for CQ(Child,Child+) is NP-hard [7]. We reduce
from ∀∃ positive 1-in-3 SAT, which is ΠP

2 -complete according to Lemma 12.
For the purposes of this proof, we will assume that each tree node can carry

multiple labels. It can be modified to work for the standard definition of labeled
trees, where each node has only one label.

74 H. Björklund, W. Martens, and T. Schwentick

v0

A v1

A v2 X1 · · · Xnx

A v3

B w1,1

w1,2

w1,3

L2, L3 w1,4

L2, L3 w1,5

L1, L2, L3 w1,6

L2, L3 w1,7

L2, L3 w1,8

L2, L3 w1,9

L2, L3 w1,10

C w2,1

B w2,2

w2,3

L1, L3 w2,4

L1, L3 w2,5

L1, L3 w2,6

L1, L2, L3 w2,7

L1, L3 w2,8

L1, L3 w2,9

L1, L3 w2,10

D w3,1

w3,2

B w3,3

L1, L2 w3,4

L1, L2 w3,5

L1, L2 w3,6

L1, L2 w3,7

L1, L2, L3 w3,8

L1, L2 w3,9

L1, L2 w3,10

Fig. 4. Illustration of the definition of query P in the proof of Theorem 13

Let ∀x∃yC1, . . . , Cm be an instance of ∀∃ positive 1-in-3 SAT, where x =
{x1, . . . , xnx} and y = {y1, . . . , yny}. We may assume that no clause contains a
particular literal more than once. Let Φ denote the formula

∀x∃yC1, . . . , Cm, Cm+1, . . . Cm+nx .

Here, for each i = 1, . . . , nx, Cm+i denotes the clause (y′i, xi, y
′′
i), where y′i and y′′i

are new existentially quantified variables. It is easy to see that there is solution
for the original formula if and only if there is one for Φ.

Let query P be defined as in Figure 4, where single lines represent the Child
axis, double lines represent the Child+axis, and the symbols outside of nodes, as
well as X1, . . . Xnx , are labels.

For the query Q, we introduce variables ai, bi for each i = 1, . . . , m + nx and
in addition a variable ck,l,i,j whenever the k-th literal of Ci coincides with the
l-th literal of Cj (1 ≤ j ≤ m + nx, i �= j, 1 ≤ k, l ≤ 3).

The query Q consists of the following atoms:

– for each i = 1, . . . , m + nx, A(ai) ∧ B(bi) ∧ Child3(ai, bi);
– for eachvariable ck,l,i,j,Lk(ck,l,i,j)∧Child+(bi, ck,l,i,j)∧Child8+k+l(aj , ck,l,i,j);

and,
– for each i = m + 1, . . . , m + nx, Xi−m(ai).

This concludes the reduction for CQ(Child , Child+). For CQ(Child ,Child∗) we
replace each pair of atoms Child+(v0, Xi),Child+(Xi, w2,1) of P (for 1 ≤ i ≤ nx)
with the pair Child∗(v1, Xi),Child∗(Xi, v3). In Q, we can simply replace Child+

by Child∗. �

Conjunctive Query Containment over Trees 75

�

�L1
1

A �

L1 2

A

�

�
L2 3

� �

L2 4

B

B �

L2 5

B

�

� L3

6

� �

L3 7

C

C

(a) Fragment T .
�

�

...

�

Z �

�

...

�

Z

Z Z Z X1 · · · Xnx

(b) Fragment X. The dots represent
unary paths with nx nodes.

�

� � �

T T X

(c) Query P .

Fig. 5. Definition of query P in the proof of Theorem 15

Theorem 14. Containment is ΠP
2 -hard for CQ(Child, Following).

Proof. We adapt the proof of Theorem 13 by simulating Child+with Child and
Following. To this end, we begin by equipping each of the variables u in query P
defined in Figure 4 that has an outgoing Child+-axes by two “dummy” children
z1 and z2. These new variables are used nowhere else, and get the new label #.
Now, whenever Child+(u, v) is used in one of the queries, we can replace it by

Child(u, z1) ∧ Child(u, z2) ∧ Following(z1, v) ∧ Following(v, z2).

It is now enough to note that all variables in the queries P and Q that have no
specified label are required by the queries to have children. Thus none of them
can bind to a node in one of the minimal models of the modified P query that
is labeled by #. �

Theorem 15. Containment is ΠP
2 -hard for CQ(Child+,Following).

Proof (Sketch). Let ∀x∃yC1, . . . , Cm be an instance of ∀∃ positive 1-in-3 SAT.
Let x = {x1, . . . , xnx} and let y = {y1, . . . , yny}. We can assume that no clause
contains a particular literal more than once.

We construct two queries, P and Q, over the labeling alphabet {A, B, C, L1,
L2, L3, X1, . . . , Xnx , Z} such that P ⊆ Q if and only if ∀x∃yC1, . . . , Cm has a
solution. The current proof builds further on a proof by Gottlob et al. that shows
that the query complexity of evaluation for CQ(Child+,Following) is NP-hard [7].

The construction of query P is illustrated in Figure 5. Here, every double-lined
edge represents a Child+-axis and every directed edge represents a Following-
axis. For improved readability, we adopt the terminology of the proof by Gottlob

76 H. Björklund, W. Martens, and T. Schwentick

L1 L2 L3

A B C

F 2 F 2

F 4 F 4

F 7

(a) The 1-in-3 gadget.

L1 Xi L2 Xi L3 Xi

• Z • Z • Z

F 21 F 16 F 13

F 23 F 20 F 15

(b) The X-variable gadgets: varX(1, i) (left),
varX(2, i) (middle), and varX(3, i) (right).

Fig. 6. Gadgets for the definition of query Q in the proof of Theorem 15

et al.. That is, we will refer to the nodes labeled L1, L2, and L3 in the 1-in-3
gadget from Figure 6(a) by v1, v2, and v3, respectively. Moreover, we annotate
the query fragment T in Figure 5(a) with numbers from 1 to 7. We call the node 1
(resp., 3, 6) the topmost position of variable v1 (resp., v2, v3).

Let tmin be a minimal model of fragment T from Figure 5(a). That is, tmin is
essentially shaped as the structure given by the Child+ axes in T . Gottlob et al.
show that the following observation holds.

Observation 16 ([7]). Every satisfaction θ of the 1-in-3 gadget on tmin maps
exactly one of the variables v1, v2, and v3 to its topmost position.

Given a clause C, we interpret a satisfaction θ in which variable vk is mapped to
its topmost position as the selection of the k-th literal from C to be true. Hence,
the 1-in-3 gadget would ensure that, on tmin, exactly one variable of clause C is
selected and becomes true.

We now define the query P as in Figure 5(c). That is, P contains two copies
of the fragment T , followed by a copy of the X-fragment from Figure 5(b). The
ordering between the subqueries of P is enforced by Following-axes: the root of
T ’s left copy has a Following-axis to the root of T ’s right copy, and root of T ’s
right copy has a Following-axis to the root of the X-fragment.

Intuitively, the purposes of the different parts of the query P are as follows.
The left copy of the T -fragment in P , together with the 1-in-3 gadget, is used to
verify that the truth assignments we consider for x and y actually make one literal
per clause of ∀x∃yC1, . . . , Cm true. The second copy of T in P is needed to ensure
consistency of variable assignments between clauses: if we pick a variable to be true
in one clause, that variable must be true in all clauses. Finally, the fragment X is
used in P to generate all possible truth assignments for the x-variables. Roughly,
we interpret xi as “false” if Xi appears in the upper unary path with nx nodes and
as “true” if Xi appears in the lower unary path with nx nodes in Figure 5(b).

The query Q is defined much like the query in the proof of Gottlob et al., with
the essential difference that we have to transfer the variable assignment that is
generated in the X-fragment of P to the matching of L1, L2, and L3 of the
1-in-3 gadget of Q onto the subtrees that satisfy the two copies of T in P . This
will be taken care of by the X-assignment gadgets in Q, which are illustrated in
Figure 6(b). �

Conjunctive Query Containment over Trees 77

Theorem 17. Containment is ΠP
2 -hard for CQ(Child∗, Following).

Proof. The proof for this case can be obtained from the proof of Theorem 15
by ensuring that, for each occurrence of Child+(x, y), x and y bear a different
alphabet label in P . �

As Following can be defined in terms of Child∗and NextSibling+, we immediately
have the following corollary.

Corollary 18. Containment is ΠP
2 -hard for CQ(Child∗, NextSibling+).

Theorem 19. Containment is ΠP
2 -hard for

(1) CQ(Child∗, NextSibling), (4) CQ(Child+,NextSibling+), and
(2) CQ(Child∗,NextSibling∗), (5) CQ(Child+,NextSibling∗).
(3) CQ(Child+,NextSibling),

Proof. For each of these fragments, the proofs of Theorems 15 and 17 can be
adapted by the same methods as in the article by Gottlob et al. [7]. For the
fragments (2)–(5), we also need to adapt the query P , such that P accepts trees
in which the T -fragments have the shape from the proof by Gottlob et al. This
is, however, straightforward for each of the fragments. �

Theorem 20. Containment is ΠP
2 -hard for CQ(Following,NextSibling).

The proof uses a modified version of the reduction from Theorem 15.

Theorem 21. Containment is ΠP
2 -hard for CQ(Following, NextSibling+) and

CQ(Following, NextSibling∗).

4 Satisfiability

We first note that a conjunctive query Q is satisfiable if and only if all its maximal
connected components are satisfiable. We therefore assume in our proofs that Q
has only one maximal connected component.

Proposition 22. Satisfiability for CQs is in NP.

Proof. It is easy to see that if a CQ is satisfiable, then it is satisfiable in a linear
size tree. Indeed, let Q be a CQ and let t be a tree satisfying Q under valuation θ.
Now let t′ be the tree that

– contains the nodes of t onto which variables are matched by θ;
– contains, for each pair of variables x �= y, the least common ancestor of θ(x)

and θ(y);

78 H. Björklund, W. Martens, and T. Schwentick

– contains no other nodes; and
– preserves the descendant relation and document order (i.e., depth-first-left-

to-right order) from t.

It is easy to see that t′ contains less than 2 · |Var(Q)| nodes and that t′ models
Q. Thus we can guess this tree, guess a satisfaction, and verify in polynomial
time that all atoms are satisfied. �

4.1 PTIME Upper Bounds

Theorem 23. Satisfiability is in PTIME for CQ(Child) and CQ(NextSibling).

Proof. First, we apply the chase on the relations in Q, i.e., we compute equiv-
alence classes [x] of variables such that [x] is the set of variables that must be
mapped to the same tree node as x by any satisfaction of Q. For Q ∈ CQ(Child),
we start with one class for each variable in Var(Q), and iteratively merge classes
[x] and [y] if there are x′ ∈ [x], y′ ∈ [y], and a variable z such that there
is are paths from x′ to z and from y′ to z in GQ, both of equal length. For
Q ∈ CQ(NextSibling) we do the same, with the addition that we also merge
classes [x] and [y] if there are x′ ∈ [x], y′ ∈ [y], and z such that there are equal
length paths from z to x′ and from z to y′.

Once these classes are computed, we test whether Q contains a cycle on equiv-
alence classes. If Q contains a cycle, it is unsatisfiable. Otherwise, we check
whether there exist a class containing two variables x, y and a �= b such that
a(x) and b(y) are both atoms of Q. If this is the case, Q is unsatisfiable. Other-
wise it is satisfiable. �

Theorem 24. Satisfiability is in PTIME for CQ(NextSibling+,NextSibling∗,
Following) and CQ(Child+,Child∗).

Proof. As in the proof of Theorem 23 we first check for cycles. However, unlike
for Theorem 23, a query may have cycles of Child∗(resp., NextSibling∗) axes and
still be satisfiable. On such cycles, there can be no variables x, y such that a(x)
and b(y) are atoms, for a �= b. We start by removing such (allowed) cycles by
identifying all variables on the cycle. In the remainder of the proof, we assume
that the query is cycle free.

For CQ(NextSibling+,NextSibling∗,Following), we argue that if Q is satisfiable,
then there is a tree t and a satisfaction θ for Q on t such that θ assigns all
variables of Q to nodes of t which are all siblings of one another (i.e., in the
same siblinghood). As a first step we note that, if Q is satisfiable, then Q′,
obtained by replacing all NextSibling∗-atoms of Q by NextSibling+-atoms is also
satisfiable. Indeed, if θ is a satisfaction of Q on tree t, NextSibling∗(x, y) is an
atom of Q, and θ(x) = θ(y), we can modify t by inserting a new node between
θ(x) and its left sibling (or at the beginning of the siblinghood if there is no left
sibling), and modify θ by assigning x to the new node. After doing this for all
such pairs x, y, the modified θ is a satisfaction of both Q and Q′.

Conjunctive Query Containment over Trees 79

Next, we note that any acyclic query Q in CQ(NextSibling+,Following) in-
duces a strict partial order on the variables. A topological sorting according to
this partial order gives us a string of variables such that if NextSibling+(x, y)
or Following(x, y) is an atom of Q, then x appears before y in the string. From
such a string it is easy to construct a tree with a siblinghood that satisfies Q.

For CQ(Child+, Child∗) we use the same arguments as for CQ(NextSibling+,
NextSibling∗, Following), except that instead of a siblinghood we use a tree that
does not branch. �

Theorem 25. Satisfiability is in PTIME for CQ(Child, NextSibling) and
CQ(Child, NextSibling+, NextSibling∗).

4.2 NP Lower Bounds

Theorem 26. Satisfiability is NP-hard for
(1) CQ(Child, Child+), (4) CQ(NextSibling,NextSibling∗),
(2) CQ(Child,Child∗), (5) CQ(NextSibling,Following), and
(3) CQ(NextSibling,NextSibling+), (6) CQ(Child,Following).

The proof uses reductions from Shortest Common Supersequence.

5 Containment with Respect to a DTD

We abstract from Document Type Definitions (DTDs) as follows:

Definition 27. A Document Type Definition (DTD) is a triple D = (Σf , d, sd)
where Σf is a finite subset of Σ, d is a function that maps Σf -symbols to regular
expressions over Σf and sd ∈ Σf is the start symbol.

For ease of notation, we denote by labt(u) the Σ-symbol a such that a(u)
appears in t. A tree t then satisfies D if (i) labt(u) = sd for the root u
of t and, (ii) for every u ∈ Nodes(t) with n children u1, . . . , un from left to
right, labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set of trees
satisfying d.

The main problem of interest of this section is validity of a conjunctive query Q
w.r.t. a DTD D, that is, is L(D) ⊆ L(Q)? Notice that here, validity with respect
to a DTD can also be seen as a form of containment of conjunctive queries with
respect to a DTD. That is, L(D) ⊆ L(Q) if and only if (L(D) ∩ L(true)) ⊆
(L(D) ∩ L(Q)).

Theorem 28. Validity with respect to DTDs is EXPTIME-hard for CQ(Child).

6 Conclusions

We have determined the complexity of the containment problem for all sets of
axes built from Child , NextSibling, their transitive, respectively reflexive and

80 H. Björklund, W. Martens, and T. Schwentick

transitive, closures, and Following. The complexity of the satisfiability problem
was pinpointed for most sets, but the cases involving transitive closures of Child
and NextSibling (which we believe will be quite similar) are still open.

All these results were obtained in a schema-less setting. Since XML processing
is mostly done with respect to a schema, this is far from the complete picture.
As we show in Section 5, the presence of a schema dramatically increases the
complexity. We have preliminary results for some combinations of schemas and
axes, and intend to study this subject in more detail.

References

1. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J.,
Siméon, J.: XML Path Language (XPath) 2.0. Technical report, World Wide Web
Consortium (January 2007), http://www.w3.org/TR/xpath20/

2. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.:
Xquery 1.0: An XML query language. Technical report, World Wide Web Consor-
tium (January 2007), http://www.w3.org/TR/xquery/

3. Chan, E.P.F., van der Meyden, R.: Containment and optimization of object-
preserving conjunctive queries. Siam J. on Computing 29(4), 1371–1400 (2000)

4. Clark, J., DeRose, S.: XML Path Language (XPath) version 1.0. Technical report,
World Wide Web Consortium (1999), http://www.w3.org/TR/xpath/

5. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings.
JCSS 20(1), 50–58 (1980)

6. Gottlob, G., Koch, C., Pichler, R., Segoufin, L.: The complexity of XPath query
evaluation and XML typing. Journal of the ACM 52(2), 284–335 (2005)

7. Gottlob, G., Koch, C., Schulz, K.U.: Conjunctive queries over trees. Journal of the
ACM 53(2), 238–272 (2006)

8. Hidders, J.: Satisfiability of XPath expressions. In: Lausen, G., Suciu, D. (eds.)
DBPL 2003. LNCS, vol. 2921, pp. 21–36. Springer, Heidelberg (2004)

9. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satis-
faction. JCSS 61(2), 302–332 (2000)

10. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath.
Journal of the ACM 51(1), 2–45 (2004)

11. Neven, F., Schwentick, T.: On the complexity of XPath containment in the presence
of disjunction, DTDs, and variables. Logical Methods in Computer Science 2(3)
(2006)

12. Räihä, K.J., Ukkonen, E.: The shortest common supersequence problem over binary
alphabet is NP-complete. TCS 16(2), 187–198 (1981)

13. ten Cate, B., Lutz, C.: The complexity of query containment in expressive frag-
ments of XPath 2.0. In: PODS 2007. 26th International Symposium on Principles
of Database Systems, pp. 73–82 (2007)

14. Vansummeren, S.: On deciding well-definedness for query languages on trees. Jour-
nal of the ACM 54(4) (2007)

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath/

A Better Semantics for XQuery with Side-Effects

Giorgio Ghelli1, Nicola Onose2, Kristoffer Rose3, and Jérôme Siméon3

1 Università di Pisa
ghelli@di.unipi.it

2 University of California, San Diego
nicola@cs.ucsd.edu

3 IBM T. J. Watson Research Center
krisrose/simeon@us.ibm.com

Abstract. Formal semantics for XQuery with side-effects have been pro-
posed in [13,16]. We propose a different semantics which is better suited
for database compilation. We substantiate this claim by formalizing the
compilation of XQuery extended with updates into a database algebra.
We prove the correctness of the proposed compilation by mapping both
the source language and the algebra to a common core language with list
comprehensions and extensible tuples.

1 Introduction

Two semantics of XQuery. The use of list comprehensions to formalize database
languages has been popular since the work of Trinder and Wadler [24], and that
of Buneman et al [23,3]. More recently, the same approach has been used suc-
cessfully by Fernandez et al. [11] to specify the semantics of XQuery. It notably
relies on a notion of normalization that is now part of the XQuery Formal Se-
mantics [7]. For instance, the following FLWOR expression applied to a variable
$d containing the element <doc><a>1<a>2</doc>

for $x in $d/a
for $y in $d/a
where $x = $y
return ($x+$y)

is defined as being equivalent to the following expression in the target fragment
of XQuery called the XQuery core (we use a different font for the core)

for $x in $d/a return
for $y in $d/a return
if ($x = $y) then ($x+$y) else ()

This approach has the benefit of relying on a small set of simple primitives which
are well understood from functional programming, and support laws useful for
optimization.

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 81–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

82 G. Ghelli et al.

Because of the importance of FLWOR expressions as a database primitive,
most compilers do not rely on normalization, but instead compile into tuple-
based algebras that support traditional database optimizations [19,18,21]. For
instance, the above query is compiled in the following plan using the algebra
of [21].

Map{#x+#y}
(Select{#x = #y}
(MapConcat
{Map{[y:ID]}(TreeJoin[a](#d))}
(Map{[x:ID]}(TreeJoin[a](#d)))))

This plan manipulates streams of tuples whose fields correspond to the variables
in the source code. It first builds a stream of tuples [x:v], by applying tuple
construction [x:ID] to each node resulting from the navigation TreeJoin[a](#d)
(i.e, $d/a). It then concatenates each [x:v] tuple which each of the [y:v] tuples
built by the Map{[y:ID]}(TreeJoin[a](#d)) subplan, selects the tuples that satisfy
#x = #y, and computes #x+#y once for each tuple. Algebraic equivalences can
be applied to that plan to introduce a more efficient join operator.

Several extensions to XQuery involving side-effects have recently been pro-
posed [6,13,4] by the research community, and are being considered by the
W3C [5]. While the first proposals for side-effects relied on whole-program snap-
shot semantics [6], meaning that a piece of code could not observe its own effect,
some consensus is emerging that allowing side-effects to be visible is a key feature
for new XML applications [13,4,16,5]. Normalization and algebraic compilation
coincide for a “pure” language such as XQuery 1.0. Unfortunately, in presence
of visible side-effects, tuple based compilation and nested-for semantics diverge.
Consider the following query, where insert exemplifies any visible side-effect.

for $x in $d/a
for $y in $d/a
where $x = $y
return (do insert <a>{$x+$y} into $d)

The normalization approach, as used in [16,13], defines the query to be equivalent
to the following core expression.

for $x in $d/a return
for $y in $d/a return
if ($x = $y) then (do insert <a>{$x+$y} into $d) else ()

Hence, it first executes the internal for $y... with $x bound to the first a element,
and then executes the same expression with $x bound to the second a element.
The first iteration inserts a new element a into $d. Hence, in the second iteration
$y is bound to a different set of nodes. Instead, the tuple-building phase is
protected from the effects of the return clause when the algebraic compilation
is applied, as follows.

A Better Semantics for XQuery with Side-Effects 83

Map{Insert(<a>{#x+#y},#d)}
(Select{#x = #y}
(MapConcat
{Map{[x:ID]}(TreeJoin[a](#d))}
(Map{[y:ID]}(TreeJoin[a](#d)))))

One may argue which of the two semantics is better for the programmer. We ob-
serve that the informal, but normative, semantics for XQuery is actually defined
in terms of a tuple stream, and mandates that the return clause is executed after
the tuple-stream has been built and filtered [2]. We believe that the tuple-stream
semantics is at least as natural as the nested-for semantics, and is better suited
for optimization: in this example, the nested-for semantics requires the internal
loop to be run on two different sequences, hence makes it impossible to use a
join, while the tuple-stream semantics enables join optimization, which would
produce the following plan.

Map{Insert(<a>{#x+#y},#d)}
(Join{#x = #y}
(Map{[x:ID]}(TreeJoin[a](#d)),
Map{[y:ID]}(TreeJoin[a](#d))))

Scope of the paper. Our goal is to provide a list-comprehension based semantics
for XQuery which enables the use of traditional tuple-based algebras for compi-
lation and optimization. To this aim, we first formalize the tuple-stream seman-
tics, by translating XQuery with updates into a target language with records
which we call the XQueryU core with tuples. The result is still a nesting of for-
expressions, which, in this case, are used to first build the tuple-stream, and to
finally apply the return clause. For example, the code above is translated as fol-
lows, where $environment is a tuple-stream that only contains one context-tuple,
[d:<doc><a>1<a>2</doc>].

for $t5 in
for $t4 in

for $t2 in
(for $t0 in $environment
return for $t1 in $d/a return [x:$t1]++ $t0)

return for $t3 in $d/a return [y:$t3]++ $t2
return if ($t4.x = $t4.y) then $t4 else ()

return (do insert element ’a’ {$t5.x+$t5.y} into $t5.d)

The translation transforms variables into tuple fields, moves the outermost it-
eration in the innermost position and, most importantly, moves the filtering,
reordering, and return phases at the end of the whole process, as required by
the tuple-stream semantics. This formalization is not only a first step to our
main theorem about the soundness of a database-like interpretation of tuple-
stream semantics, but it also shows that the tuple-stream semantics admits, in
a measure, the same advantages of the nested-for semantics, namely:

84 G. Ghelli et al.

1. it admits a simple PL-style implementation, based on in-memory nested
loops, with no need of going through algebraic compilation, for applications
where a PL-style implementation may be useful.

2. it can be mapped down to a simple core language which is best suited for
studies about semantics and types, as we will do in this paper.

We then formally define a database algebra for this language and a compilation
function from XQuery with side-effects to the algebra, and we prove that the
compilation implements the tuple-stream semantics. The target language and
the algebra are typed, by a type system that keeps track of record access and
concatenation. These type systems involve record concatenation and subtyping,
which means that we have to address the well-known problem that these two
mechanisms are incompatible for simple record types [14]. We have chosen an
original solution for this old problem, based on linearity conditions which identify
a sub-language where concatenation and simple subtyping safely coexist, and we
show that this sub-language is indeed sufficient to interpret XQuery.

Related work. Design and semantics for database query languages based on
comprehension were first introduced by [3,23,22]. This work notably led to the
development of the Kleisli system which is probably the most advanced query
language compiler based on functional techniques [25,8]. However, join optimiza-
tion in Kleisli is not handled at the comprehension level, but remains internal to
the compiler. So far, functional optimizations did not catch on as most database
management system optimizers to this day rely on tuple-based algebras [1,20,19].
The recent emergence of languages which blend database and programming lan-
guages features [17,12,4,15] has created renewed interest in list comprehensions.
We believe our work is the first to provide a list comprehension treatment of a
tuple-based database algebra. The reconciliation of record subtyping with record
concatenation has been the subject of a huge body of work [14]. The proposed
approaches were mostly based on the addition of information about missing
fields, or on the substitution of subtyping with parametric polymorphism. We
instead use the simplest form of record types, but impose a linearity constraint
on the code. Finally, the topic of optimization in the presence of side effects
have received almost no attention so far. On notably exception is the work by
Fegaras [9] which also relies on a monadic approach.

We first introduce the XQuery core with tuples (Section 2). We then introduce
the source language XQueryU (Section 3) and its semantics, through a transla-
tion to the core. We finally define the typed second-order algebra (Section 4),
the compilation of XQueryU into the algebra, and prove its correctness.

2 XQueryU Core with Tuples

In this section we define a core language with support for tuples, which we use
to specify the semantics of both XQuery with updates and the corresponding
algebra. This core language is based on the W3C XQuery core defined in [7].

A Better Semantics for XQuery with Side-Effects 85

Definition 2.1 (core syntax). Our core language has the following syntax,
using e for core expressions, and s for XPath steps :

e ::= for $x in e1 return e2 | order $x in e1 by e2
| let $x := e1 return e2 | $x | if (e1) then e2 else e3
| � | () | e1,e2 | element q {e} | $x/s | f(e1, . . . , en)
| [a1 : e1; . . . ; an : en] | $x.a | e1++ e2 | do insert e1 into e2 | do delete e

s ::= child::q | descendant::q | . . .

$x (and other $-names) denotes variables, q denotes XML “qualified” element
names, f denotes function names, a denotes field names, and � denotes literals
including numbers and strings; finally we have left the exact list of steps un-
specified as our analysis does not depend on the specific steps. We allow the
usual XPath/XQuery shorthands, in particular the child:: axis can be omitted,
// abbreviates the descendant:: axis, and we will write certain built-in functions
with traditional infix notation (such as e1 = e2 for equal(e1, e2)).

Our core differs from the W3C core [7] in three important ways: (1) it adds side-
effects, in the form of two operations to update XML data in-place, which are
executed immediately (2) it adds an explicit order by expression for sorting (a
construction the W3C semantics does not specify), and (3) it adds tuples (a.k.a.
records) which are finite mappings of field names to values: [a1 : e1; . . . ; an : en]
constructs a new tuple that maps each distinct field name ai to the value of
the corresponding ei, $x.a, extracts the value of the a field from the tuple value
of $x, and e1++ e2, constructs a new tuple with the combined fields from two
existing tuples.

Since we use the core also as a target language for the algebra’s semantics,
we adopt record subtyping, i.e., every tuple type specifies some fields that are
guaranteed present, but more fields may be found in the typed value. This is
notoriously incompatible with record concatenation: from e1 : [a : t] and e2 : []
one cannot deduce that e1++ e2 : [a : t], since e2 may actually include an a field
with an incompatible type. To solve the problem, we first adopt the following
definition for the semantics of tuple concatenation for the case when the same
field appears in both v1 and v2.

1. if v1.a = xv1 and v2.a = xv2 and xv1 is different from xv2, then v1++ v2
raises an error (informally “concatenation failure,”);

2. if v1.a = xv = v2.a, then v1++ v2 associates a with xv.

We prove below that the translation of XQuery only generates well-typed linear
core expressions (to be defined later), which never raise a concatenation failure.
However, case (2) above must be allowed since it actually happens in the linear
expressions that derive from XQuery translation.

Definition 2.2 (core semantics). The dynamic semantics of the core is de-
fined by the judgment

Σ; σ � e ⇒ v′; σ′

86 G. Ghelli et al.

Σ is the dynamic environment mapping free variables of e to values (defined
below). σ is a store mapping XML nodes ids to their value, and is used to
support features such as node creation, node identity, backward navigation, and
tree update. e is a core expression, v′ the computed value, and σ′ the resulting
store. (The actual definition is standard, apart from tuple concatenation which
we commented on above, and can be found in the Appendix.)

Values are partitioned into two classes, XML values xv and table values tv. XML
values are sequences of XML items iv, while table values are sequences of tuples.
In both cases we identify a single item, or tuple, with the corresponding sequence
of one element.

Definition 2.3 (values). The values, relative to a store σ, are given by

v ::= xv | tv (value)
xv ::= xv1, xv2 | () | iv (XML value)
tv ::= tv1, tv2 | () | [a1 : xv1; . . . ; an : xvn] (table value)
iv ::= � | id with id ∈ σ (item value)

where � denotes literals. The fields of a tuple value are distinct and unordered.

The type system for the core should play two roles: (a) checking that predefined
functions and operators are applied to arguments of the correct type, as it hap-
pens with the XQuery type system; (b) checking that tuple deconstruction and
concatenation are correctly applied. Such a type system can be defined by en-
riching the XQuery type system with tuple types. To simplify the presentation,
we follow here a much leaner approach, where all the types for the instances of
the XQuery Data Model [10] are merged into Item, i.e. we focus on the (b) role
only, since nothing is new, with respect to XQuery, on the (a) role. Similarly to
values, types are partitioned into XML types xt and table types tt.

Definition 2.4 (types).

t ::= xt | tt (type)
xt ::= {xt} | Item (XML type)
tt ::= {tt} | [r] (table type)
r ::= a : xt | r1; r2 | ε (fields)
ft ::= (t1, . . . , tn) → t (function type)

Tuple types are understood as follows:

– [ε] is the type of tuples with no fields, which we write [].
– [a : xt] is the type of tuples that map the field a to an XML value of type

xt, and may be either defined or undefined on the other fields.
– [r1; r2] is undefined if r1 and r2 map the same field name to two different

types; otherwise, it is the intersection of types [r1] and [r2].

A Better Semantics for XQuery with Side-Effects 87

Hence, record fields are subject to the equalities (r1; r2); r3 = r1; (r2; r3), r1; r2 =
r2; r1, a : xt; a : xt = a : xt, and r; ε = r, where r1 = r2 means that we identify
them in every context (type equality, type rules, type semantics). Finally, since
value sequences are flat, for any type t, {{t}} = {t}.

Definition 2.5 (core type semantics). The semantics of a type in a store,
T �t�σ, is defined as follows:

– T �Item�σ contains all node ids that are bound in σ, and all literal values;
– T �{t}�σ is the set of all finite sequences of elements of T �t�σ; a single element

of T �t�σ belongs to this set, and is equivalent to a singleton sequence;
– T �[a1 : t1; . . . ; an : tn]�σ is the set of all functions that, for i in 1 . . . n, map

ai to an element of T �ti�σ; an element of T �[a1 : t1; . . . ; an : tn]�σ may also
be defined on any field name that is not specified in the type.

– T �(t1, . . . , tn) → t�σ is the set of all functions that, applied to n arguments
in T �t1�σ . . . T �tn�σ, return a value in T �t�σ.

The fact that a tuple type does not give information about the fields that are
not explicitly specified, and the fact that a single element is identified with a
singleton sequence, lead to the following subtyping relation.

Definition 2.6 (subtyping). The subtyping relation ≤: is the transitive ho-
momorphic closure over types of the relation defined by

[r1; r2] ≤: [r1] t ≤: {t}

Definition 2.7 (core typing). The judgment Γ � e : t holds iff it can be
proved by the rules of Fig. 1, where:

1. Γ is a type environment which associates each free variable $x of e with a
type Γ ($x), and each predefined function f with its function type Γ (f).

2. (Γ, $x��t) denotes a new type environment where $x is assigned the type t
instead of what it was in Γ ; the empty type environment is written ().

We generalize the notions of typing to whole type environments: Σ : Γ means
that every variable bound by Σ is typed as specified by Γ , and
T �$x1 : t1; . . . ; $xn : tn�σ is the set of all functions that, for i in 1 . . . n, map
$xi to an element of T �ti�σ.

Unfortunately, this type-system is not sound in general; for example, record
concatenation fails in the two well-typed expressions below:

(1) [a:1] ++ [a:2]
(2) let $x := (for $w in (1,2) return [a:$w]) return

for $y1 in $x return for $y2 in $x return ($y1++ $y2)

However, the type-system is sound when we restrict the attention to a linear
subset of the language. Informally, a closed core expression is linear if none of
the following non-linearity conditions apply.

88 G. Ghelli et al.

Γ � e : t1 t1 ≤: t2
(sub)

Γ � e : t2

Γ ($x) = t
(var)

Γ � $x : t

Γ � e1 : {t1} Γ � e2 : t2 Γ � e3 : t2
(if)

Γ � if (e1) then e2 else e3 : t2

Γ � e1 : {t1} (Γ, $x �� t1) � e2 : t2
(for)

Γ � for $x in e1 return e2 : {t2}
Γ � e1 : {t1} (Γ, $x �� t1) � e2 : {Item}

(order)
Γ � order $x in e1 by e2 : {t1}

Γ � e1 : t1 (Γ, $x �� t1) � e2 : t2
(let)

Γ � let $x := e1 return e2 : t2
(literal)

Γ � � : Item
(empty)

Γ � () : {t}

Γ � e1 : {t} Γ � e2 : {t}
(comma)

Γ � e1, e2 : {t}
Γ � e : {Item}

(element)
Γ � element q {e} : Item

Γ � $x : Item
(step)

Γ � $x/s : {Item}

Γ (f) = ({xt1}, . . . , {xtn}) → xt ∀i ∈ 1..n : Γ � ei : {xti}
(fun)

Γ � f(e1, . . . , en) : xt

Γ � $x : [a : xt]
(field)

Γ � $x.a : xt

∀i ∈ 1..n : Γ � ei : xti
(tuple)

Γ � [a1 : e1; . . . ; an : en] : [a1 : xt1; . . . ; an : xtn]

Γ � e1 : [r1] Γ � e2 : [r2]
(concat)

Γ � e1++ e2 : [r1; r2]

Γ � e : {Item}
(delete)

Γ � do delete e : {Item}
Γ � e1 : {Item} Γ � e2 : {Item}

(insert)
Γ � do insert e1 into e2 : {Item}

Fig. 1. Type rules for the core

1. double construction: the presence of two distinct constructors for a field
a is “non-linear” (case (1) above); double construction is only allowed in
independent subexpressions, as in if ([a:1]) then [a:2] else [a:3].

2. non-linear let-variables : two distinct uses of a let variable are “non-linear”
(like the occurrences of $x in case (2) above); as in the double construction
case, double use is allowed in independent code branches.

The above definition is extended to pairs (Σ, e) formed by an expression and a
dynamic environment that defines the free variables of e, so that the evaluation
of a linear expression only involves linear (Σ, e) pairs. With these tools, we can
prove the following theorem, which will allow us to prove that the semantics of
any well-typed XQueryU or algebraic expression is always well-defined, despite
the combined use of subtyping and record concatenation in the core.

Theorem 2.8 (soundness of typing). For any expression e linear for Σ : Γ ,
type t such that Γ � e : t, and store σ such that Σ ∈ T �Γ �σ, there exist v′; σ′

such that Σ; σ � e ⇒ v′; σ′ and v′ ∈ T �t�σ′ .

3 XQuery

We define here XQueryU, a minimal subset of XQuery with immediate updates.

Definition 3.1 (XQueryU syntax). XQueryU syntax consists of expressions
E, where F denotes FLWOR expressions, and s denotes XPath steps.

A Better Semantics for XQuery with Side-Effects 89

E ::= F | () | E1,E2 | $x | if (E1) then E2 else E3 | f(E1, . . . ,En)

| element q {E} | E/s | � | do insert E1 into E2 | do delete E

F ::= for $x inE F | let$x :=E F | whereE F | order byE F | returnE

with the standard constraints that each FLWOR-expression must have at least
one for or let clause, where clauses cannot be followed by for or let clauses,
and order by clauses can only be followed by a return clause.

Definition 3.2 (XQuery semantics). The semantics of an XQueryU expres-
sion E is given by the translation X �E�

�
$t defined in the following table, provided

$t is a core variable of tuple type and � is a mapping from XQueryU variables to
core field names, which must map all free variables of E to fields defined by $t.

Most of the XQueryU operators are mapped to the core by homomorphism. We
use do insert as an example, and give the non-homomorphic cases:

X �do insertE1 intoE2�
�
$t = do insert X �E1�

�
$t into X �E2�

�
$t

X �$x��
$t = $t.a where a = �($x)

X �E/s��
$t = for $dot in (X �E��

$t) return $dot/s
X �F �

�
$t = X ∗�F �

�
$t where X ∗ is defined below

X ∗�for $x inE F �
�
e = X ∗�F �

(�,$x ��a)
e1

where a is a fresh field name, and
e1 = for $t in e return for $v in (X �E�

�
$t) return $t++ [a: $v]

X ∗�let $x :=E F �
�
e = X ∗�F �

(�,$x ��a)
e1

where a is a fresh field name, and
e1 = for $t in e return $t++ [a: X �E�

�
$t]

X ∗�order byE F �
�
e = X ∗�F �

�
order $t in e by (X�E��

$t
)

X ∗�whereE F �
�
e = X ∗�F �

�
for $t in e return if (X�E��

$t
) then $t else ()

X ∗�returnE��
e = for $t in e return (X �E��

$t)

The most notable aspect of those rules is how the result of compilation for
prior clauses in a FLWOR is passed as a parameter (as subscript) to the auxiliary
X ∗ translation judgment.

X �E�
�
$t is always well-defined, but it is only guaranteed to be well-typed in

a specific static context, specified by Theorem 3.3 below. Informally, $t col-
lects values for the free variables of E which is why � must map these variables
to field names of $t. Similarly, in the helper translation X ∗�F �

�
e, e is an ex-

pression producing the tuple stream used to evaluate F , and � maps the free
variables of F to the field names of this tuple stream. To formalize these re-
quirements we equip XQueryU with a type judgement, Γ � E : xt, similar to
the core typing of Def. 2.7, which we do not specify here for space reasons. We
map type environments to tuple types by defining �($x1:xt1; . . . ; $xn:xtn) =
[�($x1):{xt1}; . . . ; �($xn):{xtn}], where each xti is mapped to {xti} (i.e., to
{Item}) because we map let into for, hence the core type system sometimes
infers sequence types in places where XQueryU typing was more precise. This
is also reflected in the statement of the type preservation theorem. It would be

90 G. Ghelli et al.

easy to have exact type preservation, using a finer type system for the core, but
this paper is focused on the use of tuple types to map static environments, and
the other typing aspects are kept minimal by design.

We can finally show that the translation of well-typed terms is well-typed and
linear, hence, thanks to Theorem 2.8, it is always well defined.

Theorem 3.3 (type preservation). If �(Γ) is well defined, then:

Γ � E : xt ⇒ ($t : �(Γ)) � X �E�
�
$t : {xt}

($t : tt) � e : {�(Γ)} ∧ Γ � F : xt ⇒ ($t : tt) � X ∗�F �
�
e : {xt}

Theorem 3.4 (linearity). For any E, �, tv, where � is defined on all free vari-
ables of E, and tv = [�($x1) : xv1; . . . ; �($xn) : xvn] is defined on the whole
image of �, the term X �E�

�
$t is linear with ($t �� tv).

Corollary 3.5 (XQueryU semantics). For any Γ, E, xt, �, σ, tv, if Γ � E :
xt, �(Γ) is defined, tv = [�($x1) : xv1; . . . ; �($xn) : xvn] with xvi ∈ T �Γ (xi)�σ,
then there exist v′; σ′ such that ($t �� tv); σ � X �E�

�
$t ⇒ v′; σ′ and v′ ∈ T �t�σ′ .

4 Algebra

We formally specify the semantics and type system for an existing nested-
relational algebra for XQuery [18,21]. Most other database algebras are quite
similar, so most of the treatment proposed here should apply quite directly to
other relational or nested-relational algebras. From a functional programming
perspective, database algebras are first order languages, where efforts are taken
in order to avoid any manipulation of functions. For example, the projection
operator from relational algebra, usually written πφR, is similar to a map and
applies φ to every element of R. However, traditional database algebras usu-
ally do not allow φ to be a function from tuples to tuples, but always use a
variable-free syntax [20], which significantly simplifies the analysis and rewriting
of algebraic terms. Algebras for object databases sometimes depart from this,
since methods have to be formalized, and we have seen a drift towards higher-
order algebras, where functions and lambda-binders play a role. XQuery seems
to call for that approach, since the language is functional, and also because every
expression is always evaluated with respect to an implicit context item, which
means that every expressions denotes a function.

We propose a different approach that merges the advantages of binder-free
syntax and the expressivity of higher-order. In our algebra, every term (or plan)
denotes a first-order function, that yields a result when applied to a context
tuple. Every n-ary algebra operator (with n > 0), such as Map or Select, denotes
a second-order function, which yields a first-order plan when applied to first-
order subplans. We will show how this approach gives all the expressive power
we need, while avoiding the need for higher-order syntax and rewriting.

A Better Semantics for XQuery with Side-Effects 91

(ID)
ID : t → t

(Literal)
� : t → Item

p : t → xt
(Tuple)

[a : p] : t → [a : xt]
(Field)

#a : [a : xt] → xt

p2 : t → {[r]} p1 : [r] → {Item}
(Select)

Select{p1}(p2) : t → {[r]}
p2 : t → {[r]} p1 : [r] → {Item}

(OrderBy)
OrderBy{p1}(p2) : t → {[r]}

p2 : t → {[r2]} p1 : [r2] → {[r1]}
(MapConcat)

MapConcat{p1}(p2) : t → {[r1; r2]}
p2 : t → {t′} p1 : t′ → t′′

(Map)
Map{p1}(p2) : t → {t′′}

(Empty)
Empty() : t → {Item}

p1 : t → {Item} p2 : t → {Item}
(Seq)

Sequence(p1, p2) : t → {Item}

p : t → {Item}
(TreeJoin)

TreeJoin[s](p) : t → {Item}
p1 : t → {Item} p2 : t → u p3 : t → u

(If)
Conditional(p1, p2, p3) : t → u

Γ (f) = (t′
1, . . . , t

′
n) → t′ p1 : t → t′

1 . . . pn : t → t′
n

(Call)
Call[f](p1, . . . , pn) : t → t′

p1 : t → {Item} p2 : t → {Item}
(Insert)

Insert(p1, p2) : t → {Item}
p : t → {Item}

(Delete)
Delete(p) : t → {Item}

p : t → u p : t−≤: t p : u ≤: u+

(Sub)
p : t−→ u+

Fig. 2. Type rules for the base algebra

Example 4.1. Consider the following XQuery expression:

for $x in $doc//a where $x/empno≥1 return $x

Database compilers compile this into a query plan similar to the following, de-
noting a function to be applied to a context tuple where the #doc field is defined.

Map{#x}(Select{TreeJoin[empno](#x) ≥1}
(MapConcat{Map{[x:ID]}(TreeJoin[//a](#doc))}

(ID)))

To illustrate the first order nature of each operator, the same plan with explicit
binders would look as follows.

λt0� Map (λt1� t1.x)
(Select (λt2� t2.x/empno ≥1)

(MapConcat (λt3�Map (λt4� [x : t4]) (t3.doc//a))
(t0)))

Due to lack of space, we focus on a base algebra which contains only the
algebraic operators that are needed for compilation, and we ignore the additional
operators needed for optimization purposes.

92 G. Ghelli et al.

Definition 4.2 (base algebra syntax). For unoptimized query plans we use
the following basic syntax:

p ::= ID | Empty() | Sequence(p1, p2) | � | Element[q](p)
| Select{p1}(p2) | OrderBy{p1}(p2) | Map{p1}(p2) | MapConcat{p1}(p2)
| TreeJoin[s](p) | Conditional(p1, p2, p3) | Call[f](p1, . . . , pn)
| [a:p] | #a | Insert(p1, p2) | Delete(p)

The semantics of the basic query plans is given in the following table, through
a translation to the core. Every plan p denotes a core expression A�p�$t with
one free variable $t for the input tuple stream. Every algebraic plan receives an
input value, and, with the only exception of the leaf operators #a, ID, � and
Empty, does not operate on it, but passes it to the subplans enclosed in round
brackets. Select, OrderBy, MapConcat and Map also apply their curly-brackets
subplan to each value in the list returned by the round-brackets. Finally, the
values returned by the subplans are acted upon.

A�ID�$t = $t
A�Sequence(p1, p2)�$t = (A�p1�$t , A�p2�$t)
A�Empty()�$t = ()
A�Scalar[�]()�$t = �
A�Element[q](p)�$t = element q {A�p�$t}
A�Select{p1}(p2)�$t = for $t1 in A�p2�$treturn if (A�p1�$t1

) then $t1 else ()
A�TreeJoin[s](p)�$t = for $t1 in A�p�$treturn $t1/s
A�Map{p1}(p2)�$t = for $t1 in A�p2�$treturnA�p1�$t1
A�MapConcat{p1}(p2)�$t = for $t1 in A�p2�$treturn

for $t2 in A�p1�$t1
return $t1 ++ $t2

A�OrderBy{p1}(p2)�$t = order $t1 in A�p2�$tbyA�p1�$t1
A�Conditional(p1, p2, p3)�$t = if (A�p1�$t) then A�p2�$telse A�p3�$t

A�Call[f](p1, . . . , pn)�$t = f(A�p1�$t , . . . , A�pn�$t)
A�[a : p]�$t = [a : A�p�$t]
A�#a�$t = $t.a
A�Insert(p1, p2)�$t = do insertA�p1�$t into A�p2�$t

A�Delete(p)�$t = do delete A�p�$t

Definition 4.3 (application of a plan). The notation A�p�σ
v denotes the

value-store pair v′; σ′ such $t �� v; σ � A�p�$t ⇒ v′; σ′. We will also use the
same notation to denote just the value component v′, when this is clear from
the context.

Every plan has a first order type t → t′, where t and t′ are defined exactly as in
Definition 2.4; the two type languages coincide since the semantics of the algebra
is given through a translation to the core.

Definition 4.4 (algebra typing). The algebra type system is defined by the
rules in Figure 2; subtyping is defined as in the core.

A Better Semantics for XQuery with Side-Effects 93

Notice that Γ is treated as a constant here (with just the built-in function
signatures) hence is not propagated within the rules. Tuple concatenation plays
a key role here as in the core (whereas the distinction between {t} and t is only
relevant for optimizations purposes that we do not consider here). Once more,
we are able to combine record concatenation with record subtyping by adopting
a linearity constraint. We say that the query plan p builds a field a if it contains
a tuple constructor for a, i.e., a subplan [a : p′]. Linearity then means that,
informally, every tuple field is only built in one specific point of the code.

Definition 4.5 (linearity). A plan p is linear if no field is built by two distinct
tuple constructors inside p.

A plan p is linear with a tuple type [a1 : t1; ...; an : tn] or with a tuple sequence
type {[a1 : t1; ...; an : tn]}, if it is linear and no field among a1, . . . , an is built by
p. A piece of code p is linear with an XML type iff p is linear.

Definition 4.6 (πt(v)). The projection πt(v) of a value v over a type t such
that v ∈ T �t�σ is defined by cases on t, as follows. π[a1:t1,...,an:tn](v) is a tuple
that coincides with v on the fields a1, . . . , an, and is undefined on the others.
π{tt}(v1, . . . , vn) is equal to π{tt}(v1), . . . , π{tt}(vn). Finally, πxt(v) = v.

We can now state the type soundness of the algebra. The theorem is not triv-
ial, because it requires that the extra fields in the input tuple are removed by
projection (πt(tv)), but the thesis v′ ∈ T �t′�σ′ does not exclude the presence of
extra fields in the result. This means that the theorem cannot be proved directly
by induction, but we need to resort on linearity to prove that the extra fields
are actually harmless. In a sense, this theorem specifies that any optimizer that
preserves types and linearity never needs to insert extra projections.

Theorem 4.7 (type soundness). If p : t → t′ and p is linear with t, then, for
any σ and any tuple tv ∈ T �t�σ, then A�p�

σ
πt(tv) is well defined, and,

if (v′, σ′) = A�p�
σ
πt(tv), then v′ ∈ T �t′�σ′ .

4.1 Compilation

We give now a formal definition of the algebraic compilation C�E�
� of an XQueryU

expression E, in the table below. � is a mapping from free variables in E to core
field names, and a is a fresh field name in cases for and let.

C�F �
� = C∗�F �

�
ID where C∗ is defined below

C�()�� = Empty()
C�E1,E2�

� = Sequence(C�E1�
�
, C�E2�

�)
C�$x�� = #a with a = �($x)
C�if (E1) thenE2 elseE3�

� = Conditional(C�E1�
�
, C�E2�

�
, C�E3�

�)
C�f(E1, . . . , En)�

� = Call[f](C�E1�
�
, . . . , C�En�

�)
C�element q {E}�� = Element[q](C�E��)
C�E/s�� = TreeJoin[s](C�E�

�)
C���

�
$t = �

94 G. Ghelli et al.

C�do insertE1 intoE2�
� = Insert(C�E1�

�)C�E2�
�

C�do deleteE�
� = Delete(C�E�

�)

C∗�for$x inE F �
�
p = C∗�F �

(�,$x ��a)
p1

p1 = MapConcat{Map{[a : ID]}(C�E�
�)}(p)

C∗�order byE F �
�
p = C∗�F �

�
p1

p1 = OrderBy{C�E�
� }(p)

C∗�let$x :=E F �
�
p = C∗�F �

(�,$x ��a)
p1

p1 = MapConcat{[a : C�E�
�]}(p)

C∗�whereE F �
�
p = C∗�F �

�
p1

p1 = Select{C�E�
� }(p)

C∗�returnE�
�
p = Map{C�E�

� }(p)

The compilation rules correspond strictly to those of [21] (except for some
minor syntactic variations and the use of � for explicit field naming). As in
the rules that describe the semantics of XQueryU, the most interesting rules
are those we have described with the helper function C∗�F ��

p, which compiles
the “tail clauses” F of a FLWOR expression. Those rules are specified in the
context of an operator p that generates the stream of tuples that are generated
by the “head clauses” of the same FLWOR.

Example 4.8 (algebraic compilation). The example XQueryU from the “two
semantics” part of the introduction compiles with the translation scheme to the
algebraic expression in the “database algebra” part of the introduction. The
following table shows how the application of C∗ constructs the plan backwards:

i Fi pi = C∗�Fi�
...
...

1 for $a in . . . F2 Map{[a:ID]}(. . .)
2 for $b in . . . F3 MapConcat{Map{[b:ID]}(. . .)}(p1)
3 where$a=$bF4 Select{#a=#b}(p2)
4 return$a Map{#a}(p3)

The following theorem expresses the correctness of this compilation scheme, with
respect to our semantics. Interestingly, the proof is done by merely applying a
simple variant of the semantics provided in Section 4 to the result of compilation,
and showing that it is syntactically equivalent to the semantics of the same query
in the core. The variant is defined in the Appendix.

Theorem 4.9 (correctness). For any environment Σ, stores σ, σ′, XQueryU
expression E, variable $t, field name assignment � defined for all free variables
in E, and value v′,

Σ, σ � A�C�E�
�
�$t ⇒ v, σ′ iff Σ, σ � X �E�

�
$t ⇒ v, σ′

5 Conclusion

In this paper, we showed how the nested-for and the tuple-stream semantics
for FLWOR expressions diverge in presence of side-effects. We have formalized
the compilation process for XQuery extended with side effects into a database
algebra, and we have shown that this compilation scheme is sound for the tuple-
stream semantics. This formalization shows that the tuple-stream semantics ad-
mits a simple implementation, based on normalization and list comprehensions,

A Better Semantics for XQuery with Side-Effects 95

along the lines of the traditional implementation of main-memory programming
language iterators. We are currently investigating optimization of database lan-
guages with side-effects based on that framework.

Acknowledgements. We would like to thank Limsoon Wong for clarifying some
details about optimization in Kleisli, and Mary Fernández for feedback on earlier
drafts of this paper.

References

1. Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., Eswaran, K.P., Gray, J., Grif-
fiths, P.P., Frank King III, W., Lorie, R.A., McJones, P.R., Mehl, J.W., Put-
zolu, G.R., Traiger, I.L., Wade, B.W., Watson, V.: System R: Relational approach
to database management. ACM Transactions on Database Systems 1(2), 97–137
(1976)

2. Boag, S., Chamberlain, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.:
XQuery 1.0: An XML query language, W3C recommendation (2007)

3. Buneman, P., Libkin, L., Suciu, D., Tannen, V., Wong, L.: Comprehension syntax.
SIGMOD Record 23(1), 87–96 (1994)

4. Chamberlain, D., Carey, M., Florescu, D., Kossmann, D., Robie, J.: XQueryP:
Programming with XQuery. In: XIME-P (2006)

5. Chamberlain, D., Florescu, D., Robie, J.: XQuery scripting extension 1.0 require-
ments, W3C working draft (March 23, 2007),
http://www.w3.org/TR/2007/WD-xquery-sx-10-requirements-20070323/2007

6. Chamberlain, D., Florescu, D., Robie, J.: XQuery Update Facility, W3C working
draft (July 11, 2006) (2007)

7. Draper, D., Fankhauser, P., Fernández, M.F., Malhotra, A., Rose, K., Rys, M.,
Siméon, J., Wadler, P.: XQuery 1.0 and XPath 2.0 formal semantics, W3C recom-
mendation (January 24, 2007) (2007)

8. Fegaras, L.: Query unnesting in object-oriented databases. In: SIGMOD Confer-
ence, pp. 49–60 (1998)

9. Fegaras, L.: Optimizing queries with object updates. J. Intell. Inf. Syst. 12(2-3),
219–242 (1999)

10. Fernández, M., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuery1.0 and
XPath 2.0 data model (xdm). W3C Recommendation (January 2007)

11. Fernández, M.F., Siméon, J., Wadler, P.: A semi-monad for semi-structured data.
In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 263–300.
Springer, Heidelberg (2000)

12. Florescu, D., Grünhagen, A., Kossmann, D.: XL: An XML programming lan-
guage for Web service specification and composition. In: International conference
on World Wide Web, pp. 65–76 (May 2002)

13. Ghelli, G., Re, C., Siméon, J.: XQuery!: An XML query language with side effects.
In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S.,
Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006.
LNCS, vol. 4254, pp. 178–191. Springer, Heidelberg (2006)

14. Gunter, C.A., Mitchell, J.C.: Theoretical Aspects of Object-Oriented Program-
ming. MIT Press, Cambridge (1994)

15. Harren, M., Raghavachari, M., Shmueli, O., Burke, M.G., Bordawekar, R.,
Pechtchanski, I., Sarkar, V.: Xj: facilitating xml processing in java. In: Interna-
tional conference on World Wide Web, pp. 278–287 (2005)

http://www.w3.org/TR/2007/WD-xquery-sx-10-requirements-20070323/2007

96 G. Ghelli et al.

16. Hidders, J., Paredaens, J., Vercammen, R.: On the expressive power of xquery-
based update languages. In: Amer-Yahia, S., Bellahsène, Z., Hunt, E., Unland, R.,
Yu, J.X. (eds.) XSym 2006. LNCS, vol. 4156, pp. 92–106. Springer, Heidelberg
(2006)

17. The linq project. msdn.microsoft.com/XML/linqproject
18. May, N., Helmer, S., Moerkotte, G.: Nested queries and quantifiers in an ordered

context. In: ICDE, pp. 239–250 (2004)
19. Moerkotte, G.: Building query compilers, draft manuscript (December 2005),

http://db.informatik.uni-mannheim.de/moer
20. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill, New

York (2000)
21. Re, C., Siméon, J., Fernández, M.F.: A complete and efficient algebraic compiler

for XQuery. In: ICDE, p. 14 (2006)
22. Tannen, V.: Tutorial: Languages for collection types. In: PODS, pp. 150–154 (1994)
23. Tannen, V., Buneman, P., Wong, L.: Naturally embedded query languages. In:

Hull, R., Biskup, J. (eds.) ICDT 1992. LNCS, vol. 646, pp. 140–154. Springer,
Heidelberg (1992)

24. Trinder, P., Wadler, P.: Improving list comprehension database queries. In: Fourth
IEEE Region 10 Conference (TENCON), pp. 186–192. IEEE Computer Society
Press, Los Alamitos (1989)

25. Wong, L.: Kleisli, a functional query system. Journal of Functional Program-
ming 10(1), 19–56 (2000)

msdn.microsoft.com/XML/linqproject
http://db.informatik.uni-mannheim.de/moer

Repairing Inconsistent XML Write-Access Control
Policies

Loreto Bravo, James Cheney, and Irini Fundulaki

School of Informatics, University of Edinburgh, UK
{lbravo,jcheney,efountou}@inf.ed.ac.uk

Abstract. XML access control policies involving updates may contain security
flaws, here called inconsistencies, in which a forbidden operation may be sim-
ulated by performing a sequence of allowed operations. This paper investigates
the problem of deciding whether a policy is consistent, and if not, how its incon-
sistencies can be repaired. We consider policies expressed in terms of annotated
DTDs defining which operations are allowed or denied for the XML trees that
are instances of the DTD. We show that consistency is decidable in PTIME for
such policies and that consistent partial policies can be extended to unique “least-
privilege” consistent total policies. We also consider repair problems based on
deleting privileges to restore consistency, show that finding minimal repairs is
NP-complete, and give heuristics for finding repairs.

1 Introduction

Discretionary access control policies for database systems can be specified in a number
of different ways, for example by storing access control lists as annotations on the data
itself (as in most file systems), or using rules which can be applied to decide whether to
grant access to protected resources. In relational databases, high-level policies that em-
ploy rules, roles, and other abstractions tend to be much easier to understand and main-
tain than access control list-based policies; also, they can be implemented efficiently
using static techniques, and can be analyzed off-line for security vulnerabilities [7].

Rule-based, fine-grained access control techniques for XML data have been con-
sidered extensively for read-only queries [11,15,14,2,17,10]. However, the problem of
controlling write access is relatively new and has not received much attention. Authors
in [2,10,16] studied enforcement of write-access control policies following annotation-
based approaches.

In this paper, we build upon the schema-based access control model introduced by
Stoica and Farkas [19], refined by Fan, Chan, and Garofalakis [11], and extended to
write-access control by Fundulaki and Maneth [13]. We investigate the problem of
checking for, and repairing, a particular class of vulnerabilities in XML write-access
control policies. An access control policy specifies which actions to allow a user to
perform based on the syntax of the atomic update, not its actual behavior. Thus, it is
possible that a single-step action which is explicitly forbidden by the policy can nev-
ertheless be simulated by one or more allowed actions. This is what we mean by an
inconsistency; a consistent policy is one in which such inconsistencies are not possible.
We believe inconsistencies are an interesting class of policy-level security vulnerabili-
ties since such policies allow users to circumvent the intended effect of the policy. The

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 97–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

98 L. Bravo, J. Cheney, and I. Fundulaki

Fig. 1. DTD graph (a) and XML documents conforming to the DTD (b, c)

purpose of this paper is to define consistency, understand how to determine whether a
policy is consistent, and show how to automatically identify possible repairs for incon-
sistent policies.

Motivating Example. We introduce here an example and refer to it throughout the pa-
per. Consider the XML DTD represented as a graph in Fig. 1(a). A document conform-
ing to this DTD has as root an R-element with a single child element that can either be
an A, B, J or K-element (indicated with dashed edges); similarly for G. An A-element
has one C and one D children elements. A B-element can have zero or more E children
elements (indicated with ∗-labeled edges); similarly, E and J elements can have zero
or more G children elements. Finally, F , H , I and K are text elements. Fig. 1(b) and
(c) show two documents that conform to the DTD.

Suppose that a security policy allows one to insert and delete G elements and for-
bids one from replacing an H with an I element. It is straightforward to see that the
forbidden operation can be simulated by first deleting the G element with an H child
and then inserting a G element with an I child. There are different ways of fixing this
inconsistency: either (a) to allow all operations below element G or (b) forbid one of
the insert and delete operations at node G.

Now, suppose that the policy allows one to replace an A-element with a B-element
and this with a J-element, but forbids the replacement of A with J elements. The latter
operation can be easily simulated by performing a sequence of the allowed operations.
As in the previous case, the repairs that one can propose are (a) to allow the forbidden
replace operation or (b) forbid one of the allowed replace operations.

Our contributions. In this paper we consider policies that are defined in terms of non-
recursive structured XML DTDs as introduced in [11] that capture without loss of gen-
erality more general non-recursive DTDs. We first consider total policies in which all
allowed or forbidden privileges are explicitly specified. We define consistency for such
policies and prove the correctness of a straightforward polynomial time algorithm for
consistency checking. We also consider partial policies in which privileges may be
omitted. Such a policy is consistent if it can be extended to a consistent total policy;

Repairing Inconsistent XML Write-Access Control Policies 99

there may be many such extensions, but we identify a canonical least-privilege consis-
tent extension, and show that this can be found in polynomial time (if it exists). Finally,
given an inconsistent (partial or total) policy, we consider the problem of finding a “re-
pair”, or minimal changes to the policy which restore consistency. We consider repairs
based on changing operations from allowed to forbidden, show that finding minimal
repairs is NP-complete, and provide heuristic repair algorithms that run in polynomial
time.

The rest of this paper is structured as follows: in Section 2 we provide the definitions
for XML DTDs and trees. Section 3 discusses i) the atomic updates and ii) the access
control policies that we are considering. Consistency is discussed in Section 4; Section 5
discusses algorithms for detecting and repairing inconsistent policies. We conclude in
Section 6. Proofs of theorems and detailed algorithms can be found in the full version
of the paper [4].

2 XML DTDs and Trees

We consider structured XML DTDs as discussed in [11]. Although not all DTDs are
syntactically representable in this form, one can (as argued by [11]) represent more
general DTDs by introducing new element types. The DTDs we consider here are 1-
unambiguous as required by the XML standard [5].

Definition 1 (XML DTD). Let L be the infinite domain of labels. A DTD D is rep-
resented by (Ele, Rg, rt) where i) Ele ⊆ L is a finite set of element types ii) rt is a
distinguished type in Ele called the root type and iii) Rg defines the element types: that
is, for any A ∈ Ele, Rg(A) is a regular expression of the form:

Rg(A) := str | ε | B1, B2, . . . , Bn | B1 + B2 + . . . + Bn | B1∗
where Bi ∈ Ele are distinct, “,”, “+” and “∗” stand for concatenation, disjunction and
Kleene star respectively, ε for the EMPTY element content and str for text values.

We will refer to A → Rg(A) as the production rule for A. An element type Bi that
appears in the production rule of an element type A is called the subelement type of A.
We write A ≤D B for the transitive, reflexive closure of the subelement relation.

A DTD can also be represented as a directed acyclic graph that we call DTD graph.

Definition 2 (DTD Graph). A DTD graph GD = (VD, ED, rD) for a DTD D =
(Ele, Rg, rt) is a directed acyclic graph (DAG) where i) VD is the set of nodes for
the element types in Ele∪{str}, ii) ED = {(A, B) | A, B ∈ Ele and B is a subelement
type of A} and iii) rD is the distinguished node rt.

Example 1. The production rules for the DTD graph shown in Fig. 1 are:
R → A+B +J +K
A → C, D
C → F∗

D → F∗
B → E∗
E → G∗

G → H + I
J → G∗
F → str

H → str
I → str
K → str �

We model XML documents as rooted unordered trees with labels from L ∪ {str}.

100 L. Bravo, J. Cheney, and I. Fundulaki

Definition 3 (XML Tree). An unordered XML tree t is an expression of the form t =
(Nt, Et, λt, rt, vt) where i) Nt is the set of nodes ii) Et ⊂ Nt × Nt is the set of edges,
iii) λt : Nt → L ∪ {str} is a labeling function over nodes iv) rt is the root of t and is
a distinguished node in Nt and v) vt is a function that assigns a string value to nodes
labeled with str.

We denote by childrent(n), parentt(n) and desct(n), the children, parent and descen-
dant nodes, respectively, of a node n in an XML tree t. The set desce

t (n) denotes the
edges in Et between descendant nodes of n. A node labeled with an element type A in
DTD D is called an instance of A or an A-element.

We say that an XML tree t = (Nt, Et, λt, rt, vt) conforms to a DTD D = (Ele, Rg,
rt) at element type A if i) rt is labeled with A (i.e., λt(rt) = A) ii) each node in Nt is
labeled with either an Ele element type B or with str, iii) each node in t labeled with an
Ele element type B has a list of children nodes such that their labels are in the language
defined by Rg(B) and iv) each node in t labeled with str has a string value (vt(n) is
defined) and is a leaf of the tree. An XML tree t is a valid instance of the DTD D if rt

is labeled with rt. We write ID(A) for the set of valid instances of D at element type
A, and ID for ID(rt).

Definition 4 (XML Tree Isomorphism). We say that an XML tree t1 is isomorphic to
an XML tree t2, denoted t1 ≡ t2, iff there exists a bijection h : Nt1 → Nt2 where: i)
h(rt1) = rt2 ii) if (x, y) ∈ Et1 then (h(x), h(y)) ∈ Et2 , iii) λt1(x) = λt2(h(x)), and
iv) vt1(x) = vt2(h(x)) for every x with λt1(x) = str = λt2(h(x)).

3 XML Access Control Framework

3.1 Atomic Updates

Our updates are modeled on the XQuery Update Facility draft [8], which considers
delete, replace and several insert update operations. A delete(n) operation will delete
node n and all its descendants. A replace(n, t) operation will replace the subtree with
root n by the tree t. A replace(n, s) operation will replace the text value of node
n with string s. There are several types of insert operations, e.g., insert into(n, t),
insert before(n, t), insert after(n, t), insert as first(n, t), insert as last(n, t). Update
insert into(n, t) inserts the root of t as a child of n whereas update insert as first(n, t)
(insert as last(n, t)) inserts the root of t as a first (resp. last) child of n. Update oper-
ations insert before(n, t) and insert after(n, t) insert the root node of t as a preceding
and following sibling of n resp..

Since we only consider unordered XML trees, we deal only with the operation
insert into(n, t) (for readability purposes, we are going to write insert(n, t)). Thus, in
what follows, we will restrict to four types of update operations: delete(n), replace(n, t),
replace(n, s) and insert(n, t).

More formally, for a tree t1 = (Nt1 ,Et1 , λt1 , rt1 , vt1), a node n in t1, a tree t2
= (Nt2 , Et2 , λt2 , rt2 , vt2) and a string value s, the result of applying insert(n, t2),
replace(n, t2), delete(n) and replace(n, s) to t1, is a new tree t = (Nt, Et, λt, rt, vt)
defined as shown in Table 1. We denote by [[op]](t) the result of applying update opera-
tion op on tree t.

Repairing Inconsistent XML Write-Access Control Policies 101

Table 1. Semantics of update operations

Nt Et λt rt vt

[[insert(n, t2)]](t1) Nt1 ∪ Nt2 Et1 ∪ Et2∪ {(n, rt2)} λt1 (m), m ∈ Nt1 rt1 vt1 (m), m ∈ Nt1
λt2 (m), m ∈ Nt2 vt2 (m), m ∈ Nt2

[[replace(n, t2)]](t1) Nt1 ∪ Nt2 Et1 ∪ Et2∪ λt1 (m), rt1 vt1 (m),
\desct1 (n) {(parentt1

(n), rt2)}\ m ∈ (Nt1 \ {n}) m ∈ (Nt1\{n})
desce

t1
(n) λt2 (m), m ∈ Nt2 vt2 (m), m ∈ Nt2

[[replace(n, s)]](t1) Nt1 Et1 λt1 (m), m ∈ Nt1 rt1 vt1 (m),
m ∈ (Nt1\{n})
vt1 (n) = s

[[delete(n)]](t1) Nt1 \ desct1 (n) Et1 \ desce
t1

(n) λt1 (m), rt1 vt1 (m),
m ∈ (Nt1\desct1 (n)) m ∈ (Nt1\desct1 (n))

An update operation insert(n, t2), replace(n, t2), replace(n, s) or delete(n) is valid
with respect to tree t1 provided n ∈ Nt1 and t2, if present, does not overlap with t1 (that
is, Nt1 ∩Nt2 = ∅). We also consider update sequences op1; . . . ; opn with the (standard)
semantics [[op1; . . . ; opn]](t1) = [[opn]]([[opn−1]](· · · [[op1]](t1))). A sequence of updates
op1; . . . ; opn is valid with respect to t0 if for each i ∈ {1, . . . , n}, opi+1 is valid with
respect to ti, where t1 = [[op1]](t0), t2 = [[op2]](t1), etc. The result of a valid update
(or valid sequence of updates) exists and is unique up to tree isomorphism. We restrict
attention to valid updates and sequences in the rest of the paper.

3.2 Access Control Framework

We use the notion of update access type to specify the access authorizations in our
context. Our update access types are inspired from the XAcUannot language discussed
in [13]. Authors followed the idea of security annotations introduced in [11] to specify
the access authorizations for XML documents in the presence of a DTD.

Definition 5 (Update Access Types). Given a DTD D, an update access type (UAT)
defined over D is of the form (A, insert(B1)), (A, replace(B1, B2)), (A, replace(str,
str)) or (A, delete(B1)), where A is an element type in D, B1 and B2 are subelement
types of A and B1 �= B2.

Intuitively, an UAT represents a set of atomic update operations. More specifically, for
t an instance of DTD D, op an atomic update and uat an update access type we say that
op matches uat on t (op matchest uat) if:

λt(n) = A t′ ∈ ID(B)

insert(n, t′) matchest (A, insert(B))

λt(n) = B λt(parentt(n)) = A

delete(n) matchest (A, delete(B))

λt(n) = B, t′ ∈ ID(B′), λt(parentt(n)) = A, B �= B′

replace(n, t′) matchest (A, replace(B,B′))

λt(n) = str, λt(parentt(n)) = A

replace(n, s) matchest(A, replace(str, str))

It is trivial to translate our update access types to XAcUannot security annotations. In
this work we assume that the evaluation of an update operation on a tree that conforms
to a DTD D results in a tree that conforms to D. It is clear then that each update
access type only makes sense for specific element types. For our example DTD, the

102 L. Bravo, J. Cheney, and I. Fundulaki

update access type (A, delete(C)) is not meaningful because allowing the deletion of
a C-element would result in an XML document that does not conform to the DTD,
and therefore, the update will be rejected. Similar for (R, delete(A)) or (R, insert(A)).
But, (B, delete(E)) and (B, insert(E)) are relevant for this specific DTD. The relation
uat valid in D, which indicates that an update access type uat is valid for the DTD D,
is defined as follows:

Rg(A) := B∗
1

(A, insert(B1)) valid in D

Rg(A) := B1∗
(A,delete(B1)) valid in D

Rg(A) := str
(A, replace(str, str)) valid in D

Rg(A) := B1 + · · · + Bn, i, j ∈ [1, n] i �= j

(A, replace(Bi, Bj)) valid in D

We define the set of valid UATs for a given DTD D as valid(D) = {uat | uat valid in
D}. A security policy will be defined by a set of allowed and forbidden valid UATs.

Definition 6. A security policy P defined over a DTD D, is represented by (A, F)
where A is the set of allowed and F the set of forbidden update access types defined
over D such that A ⊆ valid(D), F ⊆ valid(D) and A ∩ F = ∅. A security policy is
total if A ∪ F = valid(D), otherwise it is partial.

Example 2. Consider the DTD D in Fig. 1 and the total policy P =(A, F) where A is:
(R, replace(A, B)) (R, replace(B, J)) (R, replace(J, K)) (R, replace(K, J))
(R, replace(K, B)) (C, insert(F)) (C, delete(F)) (D, insert(F))
(D, delete(F)) (F, replace(str, str)) (B, insert(E)) (B, delete(E))
(E, insert(G)) (E, delete(G)) (G, replace(I,H)) (J, insert(G))
(J, delete(G)) (D, insert(F)) (D, delete(F)) (H, replace(str, str))
(I, replace(str, str)) (K, replace(str, str))

and F = valid(D) \ A. On the other hand, P = (A, ∅) is a partial policy. �

The operations that are allowed by a policy P = (A, F) on an XML tree t, denoted
by [[A]](t), are the union of the atomic update operations matching each UAT in A.
More formally, [[A]](t) = {op | op matchest uat, and uat ∈ A}. We say that an update
sequence op1; . . . ; opn is allowed on t provided the sequence is valid on t and op1 ∈
[[A]](t), op2 ∈ [[A]]([[op1]](t)), etc.1 Analogously, the forbidden operations are [[F]](t) =
{op | op matchest uat, and uat ∈ F}. If a policy P is total, its semantics is given by
its allowed updates, i.e. [[P]](t) = [[A]](t). The semantics of a partial policy is studied in
detail in Section 4.1.

4 Consistent Policies

A policy is said to be consistent if it is not possible to simulate a forbidden update
through a sequence of allowed updates. More formally:

Definition 7. A policy P = (A, F) defined over a DTD D is consistent if for every
XML tree t that conforms to D, there does not exist a valid sequence of updates
op1; . . . ; opn that is allowed on t and a valid update op0 ∈ [[F]](t) such that:

[[op1; . . . ; opn]](t) ≡ [[op0]](t).
1 Note that this is not the same as {op1, . . . , opn} ⊆ [[A]](t).

Repairing Inconsistent XML Write-Access Control Policies 103

In our framework inconsistencies can be classified as: insert/delete and replace.
Inconsistencies due to insert/delete operations arise when the policy allows one to

insert and delete nodes of element type A whilst forbidding some operation in some
descendant element type of A. In this case, the forbidden operation can be simulated by
first deleting an A-element and then inserting a new A-element after having done the
necessary modifications.

There are two kinds of inconsistencies created by replace operations on a production
rule A → B1 + · · · + Bn of a DTD. First, if we are allowed to replace Bi by Bj and
Bj by Bk but not Bi by Bk, then one can simulate the latter operation by a sequence
of the first two. Second, consider that we are allowed to replace some element type Bi

with an element type Bj and vice versa. If some operation in the subtree of either Bi

or Bj is forbidden, then it is evident that one can simulate the forbidden operation by a
sequence of allowed operations, leading to an inconsistency.

We say that nothing is forbidden below an element type A in a policy P = (A, F)
defined over D if for every Bi s.t. A ≤D Bi and every (Bi, x) ∈ valid(D), (Bi, x) �∈ F .
If A → B1 + . . . + Bn, then we define the replace graph GA = (VA, EA) for a policy
P = (A, F), where i) VA is the set of nodes for B1, . . . , Bn and ii) (Bi, Bj) ∈ EA

if there exists (A, replace(Bi, Bj)) ∈ A. Also, the set of forbidden edges of A, is
EF

A = {(Bi, Bj) | (A, replace(Bi, Bj)) ∈ F}. We say that a graph G = (V , E) is
transitive if (x, y), (y, z) ∈ E then (x, z) ∈ E . We write G+

A for the transitive graph of
GA. The following theorem characterizes policy consistency:

Theorem 1. A policy P = (A, F) defined over DTD D is consistent if and only if for
every production rule:
1. A → B∗ in D, if (A, insert(B)) ∈ A and (A, delete(B)) ∈ A, then nothing is

forbidden below B
2. A → B1 + · · · + Bn in D, if for every edge (Bi, Bj) in G+

A , (Bi, Bj) �∈ EF
A , and

3. A → B1 + · · · + Bn in D, if for every i ∈ [1, . . . n], if Bi is contained in a cycle in
GA then nothing is forbidden below Bi.

Proof (Sketch). The forward direction is straightforward, since if any of the rules are
violated an inconsistency can be found, as sketched above. For the reverse direction, we
first need to reduce allowed update sequences to certain (allowed) normal forms that are
easier to analyze, then the reasoning proceeds by cases. A full proof is given in [4]. �

In the case of total policies, condition 2 in Theorem 1 amounts to requiring that the
replace graph GA is transitive (i.e., GA = G+

A).

Example 3. (example 2 continued) The total policy P is inconsistent because:
– (E, insert(G)) and (E, delete(G)) are in A, but (G, replace(H, I)) ∈ F (condition

1, Theorem 1),
– (R, replace(A, J)), (R, replace(A, K)) and (R, replace(B, K)) are in F (condi-

tion 2, Theorem 1), and
– There are cycles in GR involving both B and J , but below both of them there is a

forbidden UAT, namely (G, replace(H, I)) (condition 3, Theorem 1). �

It is easy to see that we can check whether properties 1, 2, and 3 hold for a policy using
standard graph algorithms:

104 L. Bravo, J. Cheney, and I. Fundulaki

Proposition 1. The problem of deciding policy consistency is in PTIME.

We wish to emphasize that consistency is highly sensitive to the design of policies
and update types. For example, we have consciously chosen to omit an update type
(A, replace(Bi, Bi)) for an element type A in the DTD whose production rule is either
of the form B∗ or B1 + . . . + Bn. Consider the case of a conference management sys-
tem where a paper element has a decision and a title subelement. Suppose that the
policy allows the author of the paper to replace a paper with another paper element,
but forbids to change the value of the decision subelement. This policy is inconsis-
tent since by replacing a paper element by another with a different decision subele-
ment we are able to perform a forbidden update. In fact, the replace(paper, paper) can
simulate any other update type applying below a paper element. Thus, if the policy
forbids replacement of paper nodes, then it would be inconsistent to allow any other
operation on decision and title. Because of this problem, we argue that update type
(A, replace(Bi, Bi)) should not be used in policies. Instead, more specific privileges
should be assigned individually, e.g., by allowing replacement of the text values of title
or decision element types.

4.1 Partial Policies

Partial policies may be smaller and easier to maintain than total policies, but are am-
biguous because some permissions are left unspecified. An access control mechanism
must either allow or deny a request. One solution to this problem (in accordance with
the principle of least privilege) might be to deny access to the unspecified operations.
However, there is no guarantee that the resulting total policy is consistent. Indeed, it is
not obvious that a partial policy (even if consistent) has any consistent total extension.
We will now show how to find consistent extensions, if they exist, and in particular how
to find a “least-privilege” consistent extension; these turn out to be unique when they
exist so they seem to be a natural choice for defining the meaning of a partial policy.

For convenience, we write AP and FP for the allowed and forbidden sets of a policy
P ; i.e., P = (AP , FP). We introduce an information ordering P Q, defined as
AP ⊆ AQ and FP ⊆ FQ; that is, Q is “more defined” than P . In this case, we say
that Q extends P . We say that a partial policy P is quasiconsistent if it has a consistent
total extension. For example, a partial policy on the DTD of Figure 1 which allows
(B, insert(E)), (B, delete(E)), and denies (H, replace(str, str)) is not quasiconsistent,
because any consistent extension of the policy has to allow (H, replace(str, str)).

We also introduce a privilege ordering on total policies P ≤ Q, defined as AP ⊆
AQ; that is, Q allows every operation that is allowed in P . This ordering has unique
greatest lower bounds P ∧ Q defined as (AP ∩ AQ, FP ∪ FQ). We now show that
every quasiconsistent policy has a least-privilege consistent extension P †; that is, P † is
consistent and P † ≤ Q whenever Q is a consistent extension of P .

Lemma 1. If P1, P2 are consistent total extensions of P0 then P1 ∧P2 is also a consis-
tent extension of P0.

Proof. It is easy to see that if P1, P2 extend P0 then P1 ∧ P2 extends P0. Suppose
P1 ∧ P2 is inconsistent. Then there exists an XML tree t, an atomic operation op0 ∈

Repairing Inconsistent XML Write-Access Control Policies 105

[[FP1∧P2]](t), a sequence op allowed on t by P1 ∧ P2, such that [[op0]](t) = [[op]](t).
Now AP1∧P2 = AP1 ∩ AP2 , so op0 must be forbidden by either P1 or P2. On the other
hand, op must be allowed by both P1 and P2, so t, op0, op forms a counterexample to
the consistency of P1 (or symmetrically P2). �

Proposition 2. Each quasiconsistent policy P has a unique ≤-least consistent total
extension P †.

Proof. Since P is quasiconsistent, the set S = {Q | P Q, Q consistent} is finite,
nonempty, and closed under ∧, so has a ≤-least element P † =

∧
S. �

Finally, we show how to find the least-privilege consistent extension, or determine that
none exists (and hence that the partial policy is not quasiconsistent). Define the operator
T : P(valid(D)) → P(valid(D)) as:

T (S) = S ∪ {(C, x) | B ≤D C, Rg(A) = B∗, {(A, insert(B)), (A,delete(B))} ⊆ S}
∪{(C, x) | Bi ≤D C, Rg(A) = B1 + . . . + Bn, (Bi, Bi) ∈ G+

A (S)}
∪{(A, replace(Bi, Bk)) | Rg(A) = B1 + . . . + Bn, (Bi, Bk) ∈ G+

A (S)}

where G+
A (S) is the transitive graph of A for the partial policy S.

Lemma 2. If uat ∈ T (S) then for any valid operation op0 matching uat on t there
exists a valid sequence of operations op allowed on t by S such that [[op0]](t) = [[op]](t).

Theorem 2. Let P be a partial policy. The following are equivalent: (1) P is quasicon-
sistent, (2) P is consistent (3) T (AP) ∩ FP = ∅.

Proof. To show (1) implies (2), if P ′ is a consistent extension of P , then any incon-
sistency in P would be an inconsistency in P ′, so P must be consistent. To show (2)
implies (3), we prove the contrapositive. If T (AP) ∩ FP �= ∅ then choose uat ∈
T (AP)∩FP . Choose an arbitrary tree t and atomic update op satisfying op0 ∈ [[uat]](t).
By Lemma 2, there exists a sequence op allowed by AP on t with [[op]](t) = [[op0]](t).
Hence, policy P is inconsistent. Finally, to show that (3) implies (1), note that (T (AP),
valid(D) \ T (AP)) extends P and is consistent provided T (AP) ∩ FP = ∅.

Indeed, for a (quasi-)consistent P , the least-privilege consistent extension of P is sim-
ply P † = (T (AP), valid(D) \ T (AP)) (proof omitted). Hence, we can decide whether
a partial policy is (quasi-)consistent and if so find P † in PTIME.

5 Repairs

If a policy is inconsistent, we would like to suggest possible minimal ways of modifying
it in order to restore consistency. In other words, we would like to find repairs that are
as close as possible to the inconsistent policy.

There are several ways of defining these repairs. We might want to repair by changing
the permissions of certain operations from allow to forbidden and vice versa; or we
might give preference to some type of changes over others. Also, we can measure the
minimality of the repairs as a minimal number of changes or a minimal set of changes
under set inclusion.

106 L. Bravo, J. Cheney, and I. Fundulaki

Due to space restrictions, in this paper we will focus on finding repairs that transform
UATs from allowed to forbidden and that minimize the number of changes. We believe
that such repairs are a useful special case, since the repairs are guaranteed to be more
restrictive than the original policy.

Definition 8. A policy P ′ = (A′, F ′) is a repair of a policy P = (A, F) defined over
a DTD D iff: i) P ′ is a policy defined over D, ii) P ′ is consistent, and iii) P ′ ≤ P .

A repair is total if F ′ = valid(D) \ A′ and partial otherwise. Furthermore a repair
P ′ = (A′, F ′) of P (A, F) is a minimal-total-repair if there is no total repair P ′′ =
(A′′, F ′′) such that |A′| < |A′′| and a minimal-partial-repair if F ′ = F and there is no
partial repair P ′′ = (A′′, F) such that |A′| < |A′′|.
Given a policy P = (A, F) and an integer k, the total-repair (partial-repair) problem
consists in determining if there exists a total-repair (partial-repair) P ′ = (A′, F ′) of
policy P such that |A\A′| < k. This problem can be shown to be NP-hard by reduction
from the edge-deletion transitive-digraph problem [20].

Theorem 3. The total-repair and partial-repair problem is NP-complete.

If the DTD has no production rules of the type A → B1+ · · ·+Bn, then the total-repair
problem is in PTIME.

5.1 Repair Algorithm

In this section we discuss a repair algorithm that finds a minimal repair of a total or
partial policy. All the algorithms can be found in [4].

The algorithm to compute a minimal repair of a policy relies in the independence
between inconsistencies w.r.t. insert/delete (Theorem 1, condition 1) and replace (The-
orem 1, conditions 2 and 3) operations. In fact, a local repair of an inconsistency w.r.t.
insert/delete operations will never solve nor create an inconsistency with respect to a re-
place operation and vice-versa. We will separately describe the algorithm for repairing
the insert/delete inconsistencies and then the algorithm for the replace ones.

Both algorithms make use of the marked DTD graph MGD = (GD, μ, χ) where μ
is a function from nodes in VD to {“+”, “−”} and χ is a partial function from VD to
{⊥}. In a marked graph for a DTD D and a policy P = (A, F) i) each node in the
graph is either marked with “+” (i.e., nothing is forbidden below the node) or with a
“−” (i.e., there exists at least one update access type that is forbidden below the node).
If, for nodes A and B in the DTD, both (A, insert(B)) and (A, delete(B)) are in A
and μ(A) = “−”, then χ(A) = “⊥”. A marked graph is obtained from algorithm
markGraph which takes as input a DTD graph and a policy P and traverses the
DTD graph starting from the nodes with out-degree 0 and marks the nodes and edges
as discussed above.

Example 4. Consider the graph for DTD D in Fig. 2(a) and policy P = (A, F), with
A defined in Example 2. The result of applying markGraph to this DTD and policy
is shown in Fig. 2(b). Notice that nodes B, E and J are marked with both a “−” and
“⊥” since i) update access type (G, replace(H, I)) is in F and ii) all insert and delete
update access types for B, E and J are in A. For readability purposes we do not show
the multiplicities in the marked DTD graph. �

Repairing Inconsistent XML Write-Access Control Policies 107

Fig. 2. DTD Graph (a) and Marked DTD Graph (b) for the DTD in Fig. 1

Repairing Inconsistencies for Insert and Delete Operations. Recall that if both the
insert and delete operations are allowed at some element type and there is some op-
eration below this type that is not allowed, then there is an inconsistency (see Theo-
rem 1, condition 1). The marked DTD graph provides exactly this information: a node
A is labeled with “⊥” if it is inconsistent w.r.t. insert/delete operations. For each such
node and for the repair strategy that we have chosen, the inconsistency can be min-
imally repaired by removing either (A, insert(B)) or (A, delete(B)) from A. Algo-
rithm InsDelRepair in [4] takes as input a DTD graph GD and a security policy
P = (A, F) and returns a set of UATs to remove from A to restore consistency w.r.t.
insert/delete-inconsistencies.

Example 5. Given the marked DTD graph in Fig. 2(b), it is easy to see that the UATs
that must be repaired are associated with nodes B, J and E (all nodes are marked with
“⊥”). The repairs that can be proposed to the user are to remove from A one UAT
from each of the following sets: {(B, insert(E)), (B, delete(E))}, {(E, insert(G)),
(E, delete(G))} and {(J, insert(G)), (J, delete(G))}. �

Repairing Inconsistencies for Replace Operations. There are two types of inconsis-
tencies related to replace operations (see Theorem 1, conditions 2–3): the first arises
when some element type A is contained in some cycle and something is forbidden be-
low it; the second arises when the replace graph GA cannot be extended to a transitive
graph without adding a forbidden edge in EF

A . In what follows we will refer to these
type of inconsistencies as negative-cycle and forbidden-transitivity. By Theorem 3, the
repair problem is NP-complete, and therefore, unless P = NP, there is no polynomial
time algorithm to compute a minimal repair to the replace-inconsistencies. Our objec-
tive then, is to find an algorithm that runs in polynomial time and computes a repair that
is not necessarily minimal.

Algorithm ReplaceNaive given in [4] traverses the marked graph MGD and at
each node, checks whether its production rule is of the form A → B1+. . .+Bn. If this is
the case, it builds the replace graph for A, GA, and runs a modified version of the Floyd-
Warshall algorithm [12]. The original Floyd-Warshall algorithm adds an edge (B, D) to

108 L. Bravo, J. Cheney, and I. Fundulaki

the graph if there is a node C such that (B, C) and (C, D) are in the graph and (B, D)
is not. Our modification consists on deleting either (B, C) or (C, D) if (B, D) ∈ EF

A ,
i.e., if there is forbidden-transitivity. In this way, the final graph will satisfy condition 2
of Theorem 1. Also, if there are edges (B, C) and (C, B) and μ(C) = “−”, i.e., there
is a negative-cycle, one of the two edges is deleted. Algorithm ReplaceNaive returns
the set of edges to delete from each node to remove replace-inconsistencies.

Example 6. The replace graph GG has no negative-cycles nor forbidden-transitivity,
therefore it is not involved in any inconsistency. On the other hand, the replace graph
GR = (VR, ER), shown in Fig. 3(a) is the source of many inconsistencies. A possible
execution of ReplaceNaive is: (A, B), (B, J) ∈ ER but (A, J) ∈ EF

R , so (A, B) or
(B, J) should be deleted, say (A, B). Now, (B, J), (J, K) ∈ ER and (B, K) ∈ EF

R ,
therefore we delete either (B, J) or (J, K), say (B, J). Next, (K, J), (J, K) ∈ ER

and μ(J) = “−” in Fig. 2(b), therefore there is a negative-cycle and either (K, J) or
(J, K) has to be deleted. If (K, J) is deleted, the resulting graph has no forbidden-
transitivity nor negative-cycles. The policy obtained by removing (R, replace(A, B)),
(R, replace(B, J)) and (R, replace(J, K)) from A has no replace-inconsistencies. �

The ReplaceNaive algorithm might remove more than the necessary edges to achieve
consistency: in our example, if we had removed edge (B, J) at the first step, then we
would have resolved the inconsistencies that involve edges (A, B), (B, J) and (J, K).

An alternative to algorithm ReplaceNaive, that can find a solution closer to min-
imal repair, is algorithm ReplaceSetCover also given in [4]. This algorithm com-
putes, using the Floyd-Warshall algorithm, the transitive closure of the replace graph
GA and labels each newly constructed edge e with a set of justifications J . Each justifi-
cation contains the sets of edges of GA that were used to add e in G+

A . Also, if a node is
found to be part of a negative-cycle, it is labeled with the justifications J of the edges
in each cycle that contains the node. An edge or vertex might be justified by more than
one set of edges. In fact, the number of justifications an edge or node might have is
O(2|EA|). To avoid the exponential number of justifications, ReplaceSetCover as-
signs at most J justifications to each edge or node, where J is a fixed number. This new
labeled graph is then used to construct an instance of the minimum set cover problem
(MSCP) [18]. The solution to the MSCP, can be used to determine the set of edges to
remove from GA so that none of the justifications that create inconsistencies are valid
anymore. Because of the upper bound J on the number of justifications, it might be the
case that the graph still has forbidden-transitivity or negative-cycles. Thus, the justifi-
cations have to be computed once more and the set cover run again until there are no
more replace inconsistencies.

Example 7. For J = 1, the first computation of justifications of ReplaceSetCover
results in the graph in Fig. 3 (b) with the following justifications:

J ((A, J)) = {{(A, B), (B, J)}}
J ((A, K)) = {{(A, B), (B, J), (J, K)}}
J ((B, K)) = {{(B, J), (J, K)}}

J ((J, B)) = {{(J, K), (K, B)}}
J (B) = {{(B, J), (J, K), (K, B)}}
J (J) = {{(J, K), (K, J)}}

Justifications for edges represent violations of transitivity. Justification for nodes rep-
resent negative-cycles. If we want to remove the inconsistencies, it is enough to delete
one edge from each set in J . �

Repairing Inconsistent XML Write-Access Control Policies 109

Fig. 3. Replace GR (a) and Transitive Replace Graph G+
R (b)

The previous example shows that, for each element type A, replace-inconsistencies can
be repaired by removing at least one edge from each of the justifications of edges and
vertices in G+

A . It is easy to see that this problem can be reduced to the MSCP. An
instance of the MSCP consists of a universe U and a set S of subsets of U . A subset C
of S is a set cover if the union of the elements in it is U . A solution of the MSCP is a
set cover with the minimum number of elements.

The set cover instance associated to G+
A = (VA, EA) and the set of forbidden edges

EF
A , is MSCP(G+

A , EF
A) = (U , S) for i) U = {s | s ∈ J (e), e ∈ EF

A } ∪ {s | s ∈ J (V),
V ∈ VA}, and ii) S =

⋃
e∈E I(e) where I(e) = {s | s ∈ U , e ∈ s}. Intuitively, U

contains all the inconsistencies, and the set I(e) the replace-inconsistencies in which an
edge e is involved. Notice that in this instance of the MSCP, U is a set of justifications,
therefore, S is a set of sets of justifications.

Example 8. The minimum set cover instance, MSCP(G+
R , EF

R) = (U , S), is such that
U = {{(A, B), (B, J), (J, K)}, {(A, B), (B, J)}, {(B, J), (J, K)}, {(J, K), (K, B)},
{(J, K), (K, J)}, {(K, J), (J, K)}, {(B, J), (J, K), (K, B)}} and S = {I((A, B)),
I((B, J)), I((J, K)), I((K, J)), I((K, B))}. The extensions of I are given in Table 2,
where each column corresponds to a set I and each row to an element in U . Values 1
and 0 in the table represent membership and non-membership respectively. A minimum
set cover of MSCP(G+

R , EF
R) is C = {I((B, J)), I((J, K))}, since I((B, J)) covers

all the elements of U except for the element {(A, B), (B, J)}, which is covered by
I((J, K)). Now, using the solution from the set cover, we remove edges (B, J) and
(J, K) from GR. If we try to compute the justifications once again, it turns out that there
are no more negative-cycles and that the graph is transitive. Therefore, by removing
(R, replace(B, J)) and (R, replace(J, K)) from A, there are no replace-inconsistencies
in node R. �

The set cover problem is MAXSNP-hard [18], but its solution can be approximated
in polynomial time using a greedy-algorithm that can achieve an approximation factor
of log(n) where n is the size of U [9]. In our case, n is O(J × |Ele|). In the ongoing
example, the approximation algorithm of the set cover will return a cover of size 2. This
is better than what was obtained by the ReplaceNaive algorithm. In order to decide
which one is better, we need to run experiments to investigate the trade off between
efficiency and the size of the repaired policy.

Algorithm ReplaceRepair will compute the set of UATs to remove from A, by
using either ReplaceNaive or ReplaceSetCover .

110 L. Bravo, J. Cheney, and I. Fundulaki

Table 2. Set cover problem

S
U I((A, B)) I((B, J)) I((J, K)) I((K, J)) I((K, B))

{(A, B), (B, J), (J,K)} 1 1 1 0 0
{(A, B), (B, J)} 1 1 0 0 0
{(B, J), (J, K)} 0 1 1 0 0
{(J, K), (K, B)} 0 0 1 0 1
{(J, K), (K, J)} 0 0 1 1 0
{(K, J), (J, K)} 0 0 1 1 0

{(B, J), (J, K), (K, B)} 0 1 1 0 1

Computation of a Repair. Algorithm Repair computes a new consistent policy
P ′ = (A′, F ′) from P = (A, F) by removing from A the union of the UATs returned
by algorithms InsDelRepair and ReplaceRepair. The algorithm is capable of
computing total and partial repairs.

Theorem 4. Given a total (partial) policy P , algorithm Repair returns a total (par-
tial) repair of P .

6 Conclusion

Access control policies attempt to constrain the actual operations users can perform, but
are usually enforced in terms of syntactic representations of the operations. Thus, poli-
cies controlling update access to XML data may forbid certain operations but permit
other operations that have the same effect. In this paper we have studied such incon-
sistency vulnerabilities and shown how to check consistency and repair inconsistent
policies. This is, to our knowledge, the first investigation of consistency and repairs for
XML write-access control policies. We also considered consistency and repair prob-
lems for partial policies which may be more convenient to write since many privileges
may be left unspecified.

Cautis, Abiteboul and Milo in [6] discuss XML update constraints to restrict insert
and delete updates, and propose to detect updates that violate these constraints by mea-
suring the size of the modification of the database. This approach differs from our secu-
rity framework for two reasons: a) we consider in addition to insert/delete also replace
operations and b) we require that each operation in the sequence of updates does not
violate the security constraints, whereas in their case, they require that only the input
and output database satisfies them.

Minimal repairs are used in the problem of returning consistent answers from incon-
sistent databases [1]. There, a consistent answer is defined in terms of all the minimal
repairs of a database. In [3] the set cover problem was used to find repairs of databases
w.r.t. denial constraints.

There are a number of possible directions for future work, including running ex-
periments for the proposed algorithms, studying consistency for more general security
policies specified using XPath expressions or constraints, investigating the complexity
of and algorithms for other classes of repairs, and considering more general DTDs.

Repairing Inconsistent XML Write-Access Control Policies 111

Acknowledgments. We would like to thank Sebastian Maneth and Floris Geerts for
insightful discussions and comments.

References

1. Arenas, M., Bertossi, L., Chomicki, J.: Consistent Query Answers in Inconsistent Databases.
In: PODS, pp. 68–79. ACM Press, New York (1999)

2. Bertino, E., Ferrari, E.: Secure and Selective Dissemination of XML Documents. ACM TIS-
SEC 5(3), 290–331 (2002)

3. Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A.: Complexity and Approximation of Fix-
ing Numerical Attributes in Databases Under Integrity Constraints. In: Bierman, G., Koch,
C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 262–278. Springer, Heidelberg (2005)

4. Bravo, L., Cheney, J., Fundulaki, I.: Repairing Inconsistent XML Write-Access Control Poli-
cies (August 2007), http://arxiv.org/abs/0708.2076

5. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup Lan-
guage (XML) 1.0 (Fourth Edition) (September 2006),
http://www.w3.org/TR/REC-xml/

6. Cautis, B., Abiteboul, S., Milo, T.: Reasoning about XML Update Constraints. In: PODS,
pp. 195–204 (2007)

7. Centonze, P., Naumovich, G., Fink, S.J., Pistoia, M.: Role-Based Access Control Consistency
Validation. In: ISSTA, pp. 121–132. ACM Press, New York (2006)

8. Chamberlin, D., Florescu, D., Robie, J.: XQuery Update Facility. W3C Working Draft (July
2006), http://www.w3.org/TR/xqupdate/

9. Chvatal, V.: A Greedy Heuristic for the Set Covering Problem. Mathematics of Operations
Research 4, 233–235 (1979)

10. Damiani, E., De Capitani di, S., Paraboschi, S., Samarati, P.: A Fine-grained Access Control
System for XML Documents. ACM TISSEC 5(2), 169–202 (2002)

11. Fan, W., Chan, C.-Y., Garofalakis, M.: Secure XML Querying with Security Views. In: ACM
SIGMOD, pp. 587–598. ACM Press, New York (2004)

12. Floyd, R.: Algorithm 97: Shortest path. Communications of the ACM 5(6), 345 (1962)
13. Fundulaki, I., Maneth, S.: Formalizing XML Access Control for Update Operations. In:

SACMAT, pp. 169–174 (2007)
14. Fundulaki, I., Marx, M.: Specifying Access Control Policies for XML Documents with

XPath. In: SACMAT, pp. 61–69 (2004)
15. Kuper, G., Massacci, F., Rassadko, N.: Generalized XML Security Views. In: SACMAT, pp.

77–84 (2005)
16. Lim, C.-H., Park, S., Son, S.H.: Access control of XML documents considering update op-

erations. In: ACM Workshop on XML Security, pp. 49–59. ACM Press, New York (2003)
17. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML Access Control Using Static Analysis.

ACM TISSEC 9(3), 290–331 (2006)
18. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
19. Stoica, A., Farkas, C.: Secure XML Views. In: IFIP WG 11.3, vol. 256, pp. 133–146. Kluwer,

Dordrecht (2002)
20. Yannakakis, M.: Edge-Deletion Problems. SIAM Journal on Computing 10(2), 297–309

(1981)

http://arxiv.org/abs/0708.2076
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xqupdate/

On the Consistent Rewriting of Conjunctive
Queries Under Primary Key Constraints

Jef Wijsen

Université de Mons-Hainaut, Mons, Belgium
jef.wijsen@umh.ac.be

Abstract. This article deals with the computation of consistent answers
to queries on relational databases that violate primary key constraints.
A repair of such inconsistent database is obtained by selecting a maximal
number of tuples from each relation without ever selecting two distinct
tuples that agree on the primary key. We are interested in the following
problem: Given a Boolean conjunctive query q, compute a Boolean first-
order (FO) query ψ such that for every database db, ψ evaluates to true
on db if and only if q evaluates to true on every repair of db. Such ψ is
called a consistent FO rewriting of q.

We use novel techniques to characterize classes of queries that have
a consistent FO rewriting. In this way, we are able to extend previously
known classes and discover new ones. Finally, we use an Ehrenfeucht-
Fräıssé game to show the non-existence of a consistent FO rewriting for
(the existential closure of) R(x, y) ∧ R(y, c), where c is a constant and
the first coordinate of R is the primary key.

1 Introduction

Consistent query answering (CQA) was introduced by Arenas et al. [1] and has
gained considerable interest in recent years; see for example the invited talk by
Chomicki [2]. The aim of CQA is to filter consistent information out of incon-
sistent databases. In technical terms, the repairs of an inconsistent database db
are defined as the consistent databases that are maximally close to db according
to some distance measure. If, as in this article, the constraints are primary keys,
then it is natural to take as repairs the maximal consistent subsets of db. Given
a Boolean query q, the problem then is to decide whether q evaluates to true on
every repair of db.

We deal with conjunctive queries in this article. For a fixed Boolean conjunc-
tive query q, CQA(q) is the following problem: On input of a not-necessarily-
consistent database db, decide whether q evaluates to true on every repair of
db. It is by now well known (see for example [2]) that CQA(q1) is coNP-complete
for the following Boolean query q1

q1 : ∃x∃y∃z(R(x, z) ∧ S(y, z)) ,

where primary key positions are underlined. On the other hand, CQA(q2) is in
P for the following query q2 [3]

q2 : ∃x∃y∃z(R(x, z) ∧ S(z, y)) .

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 112–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Consistent Rewriting of Conjunctive Queries 113

The different computational behavior arises because the “join” variable z (i.e.
the variable common to both atoms) constitutes a primary key in the second
query, but not in the first one.

Fuxman and Miller [3] showed that for every query q in some syntactically
restricted class, called Cforest , there exists a computable Boolean first-order (FO)
query ψ such that for every database db, q evaluates to true on every repair of
db if and and only if ψ evaluates to true on db. We call such ψ a consistent FO
rewriting of q. Clearly, if q has a consistent FO rewriting ψ, then CQA(q) is in
P (because ψ can be evaluated in polynomial time on any database). For the
query q2, a consistent FO rewriting is:

ψ2 : ∃x∃z′(R(x, z′) ∧ ∀z(R(x, z) → ∃y(S(z, y)))) .

Intuitively, ψ2 checks whether for all R-tuples with primary key value x, there
exists a joining tuple in S.

Query rewriting is a clean and elegant approach to consistent query answering.
This article presents a number of new results in this field; its main contributions
can be summarized as follows:

1. We define the class of rooted queries and give a rewriting scheme that com-
putes a consistent FO rewriting for every rooted query. The scheme consists
of two non-procedural rewriting rules. The class of rooted queries includes
Cforest .

2. As the notion of rooted queries is a semantical one, the task then is to
define syntactic restrictions on queries that guarantee “rootedness” (and
hence guarantee applicability of our rewriting scheme). The advantage of
our approach is that the notion of rootedness hides the syntactical intricacies
that complicate FO rewriting.
Rather than using Fuxman Miller (FM) join graphs, we use the join graphs
defined by Beeri, Fagin, Maier and Yannakakis [4], called BFMY join graphs
hereafter. This technique allows us to characterize new, previously unknown
classes of queries with a consistent FO rewriting (some of which have cyclic
FM join graphs, but acyclic BFMY join trees).

3. We pay special attention to queries with multiple occurrences of the same
relation name, a class for which consistent FO rewriting was largely unex-
plored until now. For the query q = ∃x∃y∃z(R(x, z) ∧ R(y, z) ∧ x �= y), it is
known that CQA(q) is in P but q has no consistent FO rewriting [5]. We
show that the same holds for the query q = ∃x∃y(R(x, y) ∧ R(y, c)), where
c is a constant. This result is surprising, since the join variable y appears as
primary key.

This article is organized as follows. The next section introduces the notations
and terminology used throughout the article. In particular, the term “rule” will
be used as a shorthand for “Boolean conjunctive query.” Section 3 discusses
related work. Section 4 defines the model-theoretic class of rooted rules. Section 5
gives a rewriting scheme that computes a consistent FO rewriting for any rooted
rule. Section 6 characterizes classes of rooted rules in terms of BFMY join trees.

114 J. Wijsen

Section 7 shows that for the query q = ∃x∃y(R(x, y) ∧ R(y, c)), CQA(q) is in P
but q has no consistent FO rewriting. Section 8 concludes the article.

2 Notations and Terminology

A symbol is either a constant or a variable. Let x be a sequence of symbols. A
valuation of x is a total mapping θ from symbols to symbols such that for every
variable v that occurs in x, θ(v) is a constant; if symbol s does not occur in x
or if s is a constant, then θ(s) = s. If x is a sequence of symbols, then vars(x) is
the set of variables that occur in x.

Key-equal atoms. A database schema is a finite set of relation names . Every
relation name R has a unique signature, which is is a pair [n, k] with n ≥ k ≥ 1:
n is the arity of the relation name and the coordinates 1, 2, . . . , k make up the
primary key. If R is a relation name with signature [n, k], then R(s1, . . . , sn)
is an R-atom (or simply atom), where each si is a constant or a variable (1 ≤
i ≤ n). Such an atom is commonly written as R(x, y) where x = s1, . . . , sk and
y = sk+1, . . . , sn. An atom is ground if it contains no variables. All constructs
that follow are defined relative to a fixed database schema.

A database is a finite set I of ground atoms using only the relation names
of the schema. Two ground atoms R1(a1, b1), R2(a2, b2) ∈ I are key-equal if
R1 = R2 and a1 = a2. We write [[R1(a1, b1)]]I for the set containing each atom
of I that is key-equal to R1(a1, b1). This notation extends to subsets J ⊆ I:
[[J]]I =

⋃
{[[A]]I | A ∈ J}.

Repair. A database I is consistent if it does not contain two distinct atoms
that are key-equal. Thus, I is consistent if for every atom A ∈ I, [[A]]I = {A}. A
repair J of a database I is a maximal (under set inclusion) consistent subset of
I.

[Ordered] rules. As in [6, p. 41], the term rule will be used as a shorthand for
rule-based conjunctive query. Moreover, all rules are understood to be Boolean.

A rule is a finite set q = {R1(x1, y1), . . . , Rm(xm, ym)} of atoms. This rule
is satisfied by a database I, denoted I |= q, if there exists a valuation θ of
x1y1 . . . xmym such that for each i ∈ {1, . . . , m}, Ri(θ(xi), θ(yi)) ∈ I.

We call q an ordered rule if the order in which the atoms are listed is signif-
icant. If q is ordered and m ≥ 1, then R1(x1, y1) is called the head of q, and
{R2(x2, y2), . . . , Rm(xm, ym)} the tail .

Consistently true. A rule q is consistently true in I, denoted I|=∗ q, if for every
repair J of I, J |= q. The problem CQAS(q), where S is a database schema and
q is a rule, is the complexity of (testing membership of) the set:

CQAS(q) = {I | I is a database over S and I|=∗ q} .

Throughout this article, the schema S will be implicitly understood and therefore
omitted.

On the Consistent Rewriting of Conjunctive Queries 115

Consistent FO rewriting. We say that a Boolean FO query ψ is a consistent
FO rewriting of a rule q if for every database I, I|=∗ q if and only if I |= ψ.

3 Related Work

The repairs defined above are maximal consistent subsets of the original data-
base. In the case of primary keys, it makes no difference whether maximality is
expressed relative to set inclusion (as in [1]) or cardinality (as in [7]). Inserting
new tuples is useless for restoring primary key violations. Tuple modifications,
as proposed in [8], are not considered in this article.

The idea of consistent query rewriting first appeared in [1]. Fuxman and
Miller [3] have made a number of breakthroughs in the consistent FO rewriting
of rules under primary key constraints, which motivated the ConQuer system [9].
Their results have been generalized and extended to exclusion dependencies by
Grieco et al. [10] and to unions of conjunctive queries by Lembo et al. [11].

Although Fuxman and Miller have extended their results to non-Boolean con-
junctive queries later on [3], we will limit the discussion to Boolean queries here.
Thus, all variables of a rule are understood to be implicitly existentially quanti-
fied. The definition of Fuxman Miller (FM) join graph first appeared in [12] and
was slightly adapted in [3].

FM join graph. The FM join graph of a rule q = {R1(x1, y1), . . . , Rm(xm, ym)}
is an oriented graph (q, E) such that there is an edge from Ri(xi, yi) to Rj(xj , yj)
if i �= j and vars(yi) ∩ vars(xjyj) �= {}.

Fig. 1 shows two FM join graphs; neither is a tree (the left graph has a vertex
with two incoming edges).

Fuxman and Miller [12] give an algorithm that computes a consistent FO
rewriting for any rule q = {R1(x1, y1), . . . , Rm(xm, ym)} with the following
properties:

1. 1 ≤ i < j ≤ m implies Ri �= Rj . Thus, no relation name occurs more than
once in q.

2. The FM join graph of q is a tree (or a forest); and
3. if there is an oriented edge from Ri(xi, yi) to Rj(xj , yj), then vars(xj) ⊆

vars(yi).

R(x, y)

S(u, w)
T (y,w)

y

w

R(x, y) S(x, y)
y

y

Fig. 1. FM join graphs of {R(x, y), S(u, w), T (y,w)} and {R(x, y), S(x, y)}

116 J. Wijsen

This class of rules is called Ctree (or Cforest). The class C+
tree , defined by Grieco

et al. [10], omits the third condition.
Complexity results on consistent query answering for larger classes of con-

straints appear in [13,14]. Cal̀ı et al. [15] study query rewriting under key and
inclusion dependencies in a larger context of data integration.

4 Rooted Rules

We define the model-theoretic notion of rooted rules. Rooted rules capture the
following model-theoretic property which can be easily verified. An ordered rule
q with head R1(x1, y1) and tail q′ is true in every repair of a database I if the
following condition is satisfied:

there exists a valuation θ of x1 such that (let θ(x1) = a) I contains an
R1-atom with primary key value a and for every such atom R1(a, b) ∈ I,
there exists a valuation θb of x1y1 such that θb(x1y1) = ab and θb(q′)
is true in every repair of I that contains R1(a, b).

The above condition deals with all ways to repair multiple R1-atoms with the
same primary key value a. There are two points to observe:

1. If such valuation θ exists, then θ(q) is also true in every repair of I.
2. Consistent truth of q is reduced to consistent truth of the shorter rule θb(q′).

The above condition is sufficient for I|=∗ q. We now define the class of rooted rules
as a semantically restricted class of rules satisfying this condition. Observation 1
leads to the notion of “reifiability” (Def. 1); observation 2 to a recursive definition
of rooted rules (Def. 2). Proposition 1 then indicates that the class of rooted
rules is of practical interest: it encompasses the class Cforest , which contains
many common, practical queries [12]. Moreover, as we will see later on, it covers
relevant queries not in Cforest , such as ∃x∃y(R(x, y) ∧ S(x, y)), testing whether
two relations have a nonempty intersection.

Definition 1. Let q be a rule containing Ri(xi, yi). We call Ri(xi, yi) reifiable
in q if for every database I, if I|=∗ q, then there exists a valuation θ of xi such
that I|=∗ θ(q).

Definition 2. We define rooted ordered rules:

1. The empty rule is rooted.
2. The ordered rule q = {R1(x1, y1), . . . , Rm(xm, ym)} with m ≥ 1 is rooted if

(a) R1(x1, y1) is reifiable in q; and
(b) for each valuation θ of x1y1, the ordered rule θ(q′) is rooted where

q′ is the tail of q. Here, θ(q′) inherits its order from q, i.e. θ(q′) =
{θ(R2(x2, y2)), . . . , θ(Rm(xm, ym))}, in that order.

The following proposition will serve in certain examples. It is subsumed by more
general theorems to follow.

On the Consistent Rewriting of Conjunctive Queries 117

Proposition 1. Let q be a rule.

1. If |q| = 1, then q is rooted.
2. If q = {R1(a, y1), R2(x2, y2)} and the primary key value a contains no

variables, then q is rooted (possibly R1 = R2).
3. If q ∈ Cforest and the atoms of q are ordered in increasing depth of the FM

join graph, then q is rooted.

Lemma 1 shows that for every rooted rule q, CQA(q) is in P. The proof charac-
terizes CQA(q) as the set of databases satisfying a property, called Property FO,
which can be checked in polynomial time. As was to be expected, Property FO
expresses the condition that motivated the definition of rootedness (see first para-
graph of Section 4). Significantly, we will show in Section 5 that Property FO
is first-order expressible, which thus gives us a consistent FO rewriting for any
rooted rule.

Lemma 1. For every rooted ordered rule q, CQA(q) is in P.

Proof. Let q = {R1(x1, y1), . . . , Rm(xm, ym)} be a rooted ordered rule. If m =
0, then the desired result is obvious. Next assume m ≥ 1.

Let I be a relation such that I|=∗ q. Since R1(x1, y1) is reifiable in q, we can
assume the existence of a valuation θ of x1 such that I|=∗ θ(q). Assume w.l.o.g.
that θ(x1) = a. Then, there exists an atom R1(a, b′) ∈ I such that every repair
J of I contains exactly one atom of [[R1(a, b′)]]I .

Let R1(a, b) ∈ I be key-equal to R1(a, b′). Let J be a repair of I such that
R1(a, b) ∈ J . Since J |= θ(q), it follows that there exists a valuation θb of x1y1
such that θb(x1) = θ(x1) = a, θb(y1) = b, and J |= θb(q). Clearly, if J is a repair
of I such that R1(a, b) ∈ J , then J is a repair of (I \ [[R1(a, b′)]]I) ∪ {R1(a, b)};
and the inverse is also true. It follows (I \ [[R1(a, b′)]]I) ∪ {R1(a, b)}|=∗ θb(q).
Hence, if I|=∗ q, then the following condition holds:

Property FO: for some atom R1(a, b′) ∈ I, for every key-equal atom R1(a, b)
∈ I, there exists a valuation θb of x1y1 such that θb(x1y1) = ab and

(I \ [[R1(a, b′)]]I) ∪ {R1(a, b)}|=∗ θb(q′) , (1)

where q′ is the tail of q.

It is easy to see that the latter condition is also sufficient for I|=∗ q. The crux is
that θb(q′) is rooted by Def. 2. That is, we have reduced the test I|=∗ q to tests
of the form I ′|=∗ q′ where I ′ ⊆ I and |q′| = |q| − 1. For every query length, we
have to test the existence of at most |I| valuations. The overall complexity is
O(|I|m) where m = |q|. �

5 Consistent FO Rewriting of Rooted Rules

We show that if q is a rooted ordered rule, then we can construct a FO formula
ψq that checks membership of CQA(q); that is, for every database I, I|=∗ q if

118 J. Wijsen

and only if I |= ψq. The formula ψq is essentially nothing else than a first-order
encoding of Property FO in the proof of Lemma 1.

To start with a simple example, consider the singleton rule q = {R1(a, b)},
which is obviously rooted because it contains no variables. To ease the technical
treatment, we encode this rule as R1(x, y)∧ ϕ where ϕ = (x = a)∧ (y = b). The
following formula starts encoding Property FO:

∃x∃y′(R1(x, y′) ∧ ∀y(R1(x, y) → Rewrite(ϕ))) .

Intuitively, “for some atom R1(a, b′) ∈ I” is encoded by ∃x∃y′(R1(x, y′) ∧ . . .),
and “for every key-equal atom R1(a, b) ∈ I” is encoded by ∀y(R1(x, y) → . . .).
For a formula ϕ that contains only equality predicates, we will define Rewrite(ϕ)=
ϕ. The formula ϕ checks the correctness of the valuations in Property FO; in
this example, x must be a, and y must be b:

∃x∃y′(R1(x, y′) ∧ ∀y(R1(x, y) → (x = a) ∧ (y = b))) .

A subtlety to note is that in Property FO, the |=∗ test for the tail query q′, ex-
pressed by (1), is not with respect to I, but with respect to the database obtained
from I by selecting R1(a, b) as the only representative of [[R1(a, b′)]]I . However,
since the tail query in this simple example contains only built-in predicates, its
truth is database independent.

As a follow-up example, consider the rule {R1(a, y), R2(x, y)}, which is rooted
by Proposition 1. Note incidentally that this rule has a cyclic FM join graph and
hence does not belong to Ctree . We will first write this rule as:

R1(x1, y1) ∧ R2(x2, y2) ∧ ϕ where ϕ = (x1 = a) ∧ (y1 = y2) .

We proceed as in the first example:

∃x1∃y′1(R1(x1, y
′
1) ∧ ∀y1(R1(x1, y1) → Rewrite(R2(x2, y2) ∧ ϕ))) (2)

Next, we have to distinguish two cases:

– If R2 �= R1, then we can compute Rewrite(R2(x2, y2) ∧ ϕ) as before, because
R2(x2, y2)∧ϕ is true in every repair of I that contains R1(x1, y1) if and only
if Rewrite(R2(x2, y2) ∧ ϕ) is true in every repair of I:

Rewrite(R2(x2, y2) ∧ ϕ)
= ∃x2∃y′2(R2(x2, y

′
2) ∧ ∀y2(R2(x2, y2) → (x1 = a) ∧ (y1 = y2)))

– On the other hand, if R2 = R1, then it becomes significant that the for-
mula Rewrite(R2(x2, y2) ∧ ϕ) must be true in I if and only if the query tail
R2(x2, y2)∧ϕ is true in each repair of I that contains R1(x1, y1). This yields
two cases: if x2 �= x1, then we proceed as before; if x2 = x1, then R2(x2, y2)
must be identified with R1(x1, y1).

Rewrite(R2(x2, y2) ∧ ϕ)
= ∃x2∃y′2((x2 �= x1) ∧ R2(x2, y

′
2) ∧ ∀y2(R2(x2, y2) →(x1=a) ∧ (y1=y2)))

∨ ∃x2∃y2((x2 = x1) ∧ (y2 = y1) ∧ (x1 = a) ∧ (y1 = y2))

On the Consistent Rewriting of Conjunctive Queries 119

In this particular example, the second disjunct is equivalent to simply (x1 =
a) and is implied by the first disjunct. Hence, if R1 = R2, then the formula
Rewrite(R2(x2, y2) ∧ ϕ) is equivalent to (x1 = a). When we substitute this
result in formula (2), we find a formula equivalent to:

∃x1∃y′1(R1(x1, y
′
1) ∧ (x1 = a)) .

To see that the latter formula correctly checks membership of CQA(q) where
q = {R1(a, y), R2(x, y)} and R1 = R2, notice that if R1 = R2, then q is
equivalent to the rule {R1(a, y)}.

We now define our rewrite function. The function takes the form Rewriteq1(q2 ∧ ϕ),
where q1 “remembers” the part of the query that has already been rewritten, so
that atoms of q2 can possibly be identified with atoms of q1 (as in the above ex-
ample). Note that the use of the separator ∧ instead of a comma (,) is just for
readability. Theorem 1 then shows that this rewriting scheme computes a consis-
tent FO rewriting for every rooted rule.

Definition 3. Let q1∧q2∧ϕ be an ordered rule, written in the form where q1∧q2
is constant-free and contains no two occurrences of the same variable; ϕ is a set
of equalities involving variables occurring in q1 ∧ q2 and constants.

1. Rewriteq1(ϕ) = ϕ
2. Rewriteq1(R(x, y) ∧ q2 ∧ ϕ) =

∃x∃y(
∨

R(v,w)∈q1
Rewriteq1(q2 ∧ ϕ ∧ (x = v) ∧ (y = w)))

∨
∃x∃y(R(x, y) ∧¬(

∨
R(v,w)∈q1

(x = v))
∧∀y(R(x, y) → Rewriteq1∪{R(x,y)}(q2 ∧ ϕ)))

It is understood that x = v is a shorthand for x1 = v1 ∧ . . . ∧ xk = vk, where
x = 〈x1, . . . , xk〉 and v = 〈v1, . . . , vk〉. Likewise for y = w. Also, ∃x is a
shorthand for ∃x1 . . . ∃xk. The empty disjunction is false.

For example, the complete rewriting of the rule {R(a, y), R(x, y)} now goes as
follows. First, we write this rule in the form R(x1, y1)∧R(x2, y2)∧(x1 = a)∧(y1 =
y2), as required by Def. 3. Next,

Rewrite{}(R(x1, y1) ∧ R(x2, y2) ∧ (x1 = a) ∧ (y1 = y2))
= ∃x1∃y1(R(x1, y1) ∧ ∀y1(R(x1, y1) →

Rewrite{R(x1,y1)}(R(x2, y2) ∧ (x1 = a) ∧ (y1 = y2))))

where

Rewrite{R(x1,y1)}(R(x2, y2) ∧ (x1 = a) ∧ (y1 = y2))

= ∃x2∃y2((x1 = a) ∧ (y1 = y2) ∧ (x2 = x1) ∧ (y2 = y1))
∨∃x2∃y2(R(x2, y2) ∧ (x2 �= x1) ∧ ∀y2(R(x2, y2) → (x1 = a) ∧ (y1 = y2)))

120 J. Wijsen

Theorem 1. Let q ∧ ϕ be a rooted ordered rule written in the form required by
Def. 3 (thus, q is constant-free and no variable occurs twice in q). For every
database I, I|=∗ q ∧ ϕ if and only if I |= Rewrite{}(q ∧ ϕ).

Since the rewriting of a rule q = R(x, y) ∧ q2 ∧ ϕ contains rewritings of both
q2 ∧ ϕ ∧ (x = v) ∧ (y = w) and q2 ∧ ϕ, its length can be exponential in the size
of q. However, if no relation name occurs more than once, then the disjunction∨

R(v,w)∈q1
(. . .) is empty, resulting in a rewriting of polynomial length.

6 New Classes of Rules with a Consistent FO Rewriting

Now that we are able to compute a consistent FO rewriting for any rooted rule,
we can shift our attention to characterizing classes of rooted rules. What is new
is that we will not use the FM join graphs employed by others for characterizing
classes of rules with a FO rewriting. Instead, we use the join graphs defined by
Beeri et al. [4].

This section consists of four subsections. Subsection 6.1 defines the notion of
BFMY join graph. After that, three subsections each contain a theorem intro-
ducing a new class of rooted rules. Subsections 6.2 and 6.3 cover rules where
the same relation name can occur multiple times. We are not aware of already
existing rewriting algorithms that can handle such rules. Subsection 6.4 then
elaborates on the classes Ctree and C+

tree defined in Section 3. Significantly, the
rooted rules in Subsections 6.2 and 6.4 can have cyclic FM join graphs (but al-
ways have acyclic BFMY join trees). Again, we are not aware of already existing
rewriting algorithms that can handle such rules.

6.1 BFMY Join Trees

The notion of join tree introduced by Beeri, Fagin, Maier, and Yannakakis [4]
naturally extends to rules. The authors’ initials will be used to distinguish with
the FM join trees introduced by Fuxman and Miller [3]. Fig. 2 shows two BFMY
join graphs; both are (undirected) trees. Compare with the FM join graphs of
the same queries in Fig. 1.

R(x, y)

S(u, w)
T (y,w)

y

w

R(x, y) S(x, y)
x, y

Fig. 2. BFMY join trees of {R(x, y), S(u, w), T (y,w)} and {R(x, y), S(x, y)}

On the Consistent Rewriting of Conjunctive Queries 121

Definition 4. A BFMY join graph of a rule q is an undirected graph τ = (q, E)
such that

1. each edge {Ri(xi, yi), Rj(xj , yj)} is labeled by vars(xiyi) ∩ vars(xjyj); and
2. for every pair Ri(xi, yi), Rj(xj , yj) of distinct nodes, for each variable v ∈

vars(xiyi) ∩ vars(xjyj), there is a path between Ri(xi, yi) and Rj(xj , yj)
with the property that each edge label along the path includes v.

A BFMY join tree is an acyclic BFMY join graph.
If q has a BFMY join tree, then any atom Ri(xi, yi) of q can be selected as

the root of the tree, giving a directed BFMY join tree with root Ri(xi, yi).

6.2 No Variables in the Primary Key of the Root

Theorem 2 uses the construct of BFMY join tree to characterize a class of rooted
ordered rules—and for which Theorem 1 thus provides a consistent FO rewriting.
The class contains the rule shown in Fig. 3. The rule has four occurrences of
the same relation name and the FM join graph (not shown) would contain an
oriented edge from any node to any other node (and hence would not be a tree).

R(a, x, y)

R(x, y, z)

R(u, y, x) R(w, z, y)

{x, y}

{x, y} {y, z}

Fig. 3. BFMY join tree of {R(a, x, y),R(x, y, z), R(u, y, x), R(w, z, y)}

Theorem 2. An ordered rule q = {R1(x1, y1), . . . , Rm(xm, ym)} is rooted (and
hence q has a consistent FO rewriting by Theorem 1) if it has a BFMY join tree
with root R1(x1, y1) such that

1. If Ri(xi, yi) is the parent of Rj(xj , yj), then i < j. Thus, the atoms in q
appear in increasing depth.

2. vars(x1) = {}. Thus, the primary key of the root node contains only con-
stants.

3. If Ri(xi, yi) is the parent of Rj(xj , yj), then either Rj(xj , yj) is a leaf node
or vars(xj) ⊆ vars(xiyi).

6.3 Single Relation Name

Theorem 3 characterizes another class of rooted rules in terms of BFMY join
trees. A rule of this class is shown in Fig. 4. The FM join graphs of queries in
this class are trees, but unlike the queries considered in [3], all atoms share the
same relation name.

122 J. Wijsen

R(x1, x2, x3)

R(x2, x4, x5) R(x3, x6, x7)

R(x4, x8, x9)
R(x5, x10, x11) R(x6, x12, x13)

R(x7, x14, x15)

x2 x3

x4 x5 x6 x7

Fig. 4. BFMY join tree of a rule covered by Theorem 3

Theorem 3. An ordered rule q = {R(x1, y1), . . . , R(xm, ym)}, with a single
relation name R, is rooted (and hence q has a consistent FO rewriting by Theo-
rem 1) if it has a BFMY join tree with root R1(x1, y1) such that

1. If Ri(xi, yi) is the parent of Rj(xj , yj), then i < j.
2. Every atom is constant-free and contains no two occurrences of the same

variable.
3. Whenever R(xi, yi) and R(xj , yj) are internal nodes, then the subtree of

depth 1 with root R(xi, yi) is the same up to a renaming of variables as the
subtree of depth 1 with root R(xj , yj).

4. All leaf nodes are at the same depth.
5. For j �= 1, the edge connecting R(xj , yj) to its parent has label vars(xj).

Moreover, the theorem is no longer valid if one of these conditions is dropped.

6.4 No Duplicate Relation Names

The following theorem builds on the characterization of the classes Ctree [3]
and C+

tree [10]. No relation name can occur more than once (condition 2 in the
theorem’s statement) and the variables shared by two atoms must be part of
the primary key of one of the atoms (condition 3.b). Our contribution lies in the
weakening of the latter condition through an alternative (condition 3.a). The
“intersection” query {R(x, y), S(x, y)}, for example, is covered by Theorem 4,
but does not belong to C+

tree.

Theorem 4. An ordered rule q = {R1(x1, y1), . . . , Rm(xm, ym)} is rooted (and
hence q has a consistent FO rewriting by Theorem 1) if it has a BFMY join tree
with root R1(x1, y1) such that:

1. If Ri(xi, yi) is the parent of Rj(xj , yj), then i < j.
2. If i �= j, then Ri �= Rj. Thus, no relation name occurs more than once in q.
3. If Ri(xi, yi) is the parent of Rj(xj , yj), then at least one of the following

two conditions is true:
(a) vars(xj) ⊇ vars(xi); or
(b) vars(xj) ⊇ vars(xiyi) ∩ vars(xjyj). That is, vars(xj) is a superset of the

label on the edge between Rj(xj , yj) and its parent.

On the Consistent Rewriting of Conjunctive Queries 123

The rule {R(x, y), S(u, w), T (y, w)} has a BFMY join tree (left graph of Fig. 2)
but is not covered by Theorem 4, no matter which atom is selected as the root.
On the other hand, the rule {R(x, y), S(x, y)} (right graph of Fig. 2) is covered
by the theorem and hence has a consistent FO rewriting. The latter rule is not
in C+

tree because its FM join graph is cyclic (right graph in Fig. 1).
It should be noticed here that Theorem 4 covers most, but not all queries in

Ctree (or C+
tree). Proposition 2 states that each query q ∈ Ctree that is not covered

by Theorem 4, must contain atoms that join only on their primary keys. Such a
query q can encode a cyclic join, which has no BFMY join tree [4]. It should be
clear, however, that atoms that join only on their primary keys pose no difficulties
in consistent FO rewriting. For example, q = {R(x, y, u1), S(x, z, u2), T (y, z, u3)}
is in Ctree but has no BFMY join tree; it is easy to see that q itself is a consistent
FO rewriting of q.

Proposition 2. An ordered rule q = {R1(x1, y1), . . . , Rm(xm, ym)} satisfies
all conditions in Theorem 4 if

1. i �= j implies Ri �= Rj;
2. the FM join graph of q is a tree and the atoms of q appear in increasing

depth; and
3. for all i, j ∈ {1, . . . , m}, if vars(xiyi) ∩ vars(xjyj) �= {}, then vars(xiyi) ∩

vars(xjyj) ∩ vars(yiyj) �= {}. Thus, if two atoms have variables in common,
then at least one shared variable occurs at a non-key position in one of the
atoms.

7 R(x, y) ∧ R(y, c) Has No Consistent FO Rewriting

We found in the literature no rewriting algorithms that produce consistent FO
rewritings for rules with multiple occurrences of the same relation name. Theo-
rems 2 and 3 seem to be the first positive results in this direction. We now argue
that there is little hope to significantly extend these results.

Clearly, under the assumption P �= NP, a rule q can have no consistent FO
rewriting if CQA(q) is coNP-complete. We will now show that for the simple
rule q = {R(x, y), R(y, c)}, where c is constant, CQA(q) is in P but q has no
consistent FO rewriting. This may come as a surprise, because the join in this
rule is foreign-key-to-primary-key, the rule has a BFMY join tree, and its FM
join graph is a tree. The rule is not covered by Theorem 2 because no primary
key is ground; it is not covered by Theorem 3 because it contains a constant.
So it turns out that the double occurrence of the same relation name in a rule
q easily leads to the non-existence of a consistent FO rewriting (even if CQA(q)
is in P).

Theorem 5. Let q = R(x, y), R(y, c).

1. CQA(q) is in P.
2. There exists no Boolean FO query ψ such that for every database I, I|=∗ q if

and only if I |= ψ. Thus, q has no consistent FO rewriting.

124 J. Wijsen

Iyes

c

α β

γ

δ ε

Ino

c

αβ

γ

δ ε

Fig. 5. R(x, y) ∧ R(y, c) is consistently true in Iyes , but not in Ino

c

αβ

γ

δ ε

Fig. 6. Repair of Ino falsifying R(x, y) ∧ R(y, c)

Proof. For the first item, let I be a database. Construct a maximal sequence
C0 � C1 � C2 � . . . where C0 = {} and for each i > 0, Ci = Ci−1 ∪{b} for some
b such that R(b, c) ∈ I and ∀z((R(b, z) ∈ I) → (z ∈ Ci−1 ∪ {c})). Let Cm be the
last element in this sequence. It can be shown that I|=∗ q if and only if m ≥ 1
and ∃x∃y′((R(x, y′) ∈ I) ∧ ∀y((R(x, y) ∈ I) → (y ∈ Cm))). Obviously, m ≤ |I|
and Cm can be computed in polynomial time.

For the second item, we use an Ehrenfeucht-Fräıssé game. Suppose there is
a FO sentence ψ checking membership of CQA(q). Let d be the quantifier depth of

On the Consistent Rewriting of Conjunctive Queries 125

ψ. We exhibit a database Iyes |=∗ q and a database Ino �|=∗ q such that Iyes and Ino

are undistinguishable by Ehrenfeucht-Fräıssé games of length d. Consequently,
Iyes and Ino are undistinguishable using sentences of quantifier depth d, a con-
tradiction.

The databases Iyes and Ino are illustrated by the graphs in Fig. 5. Distinct
vertices are distinct constants and an edge from a to b means that the atom
R(a, b) is in the database. The vertex at the center is c. In every repair, no
vertex can have more than one outgoing edge. Fig. 6 shows a repair of Ino that
falsifies q, because no path of length 2 ends in c.

We sketch the winning strategy for Duplicator. At the ith move of Spoiler,
if he or she picks a node close to γ on one graph, then Duplicator picks on the
other graph the node at the same distance from γ and in the same direction
(clockwise or counterclockwise). Likewise for α, β, δ, ε.

The graphs are taken sufficiently large so that the resulting subgraphs after
d moves are isomorphic. Note, for example, that Spoiler cannot take advantage
of the fact that there is an oriented path from δ to ε in Ino , but not in Iyes . To
do so, Spoiler would have to exhibit an oriented path from δ to ε in Ino , which
Duplicator could not do in Iyes . However, Spoiler cannot construct such a path
because it requires choosing more than d nodes. �

8 Concluding Remarks

Our consistent FO rewriting scheme of Def. 3 is relatively simple compared to
certain procedural rewriting algorithms found in the literature, and yet turns out
to be widely applicable. We proved that this rewriting scheme yields a consistent
FO rewriting for any rooted rule. This result allowed us to shift our attention
from the syntactical intricacies of FO rewriting toward characterizing classes of
rooted rules. This characterization was successful using BFMY join trees (rather
than FM join trees used so far in the literature). Finally, we showed that the
rule {R(x, y), R(y, c)} has no consistent FO rewriting.

In this article, the target language of the rewriting scheme is first-order. The
motivation for this is that target queries execute in polynomial time data com-
plexity and can be easily encoded in SQL. Nevertheless, the proof of Theorem 5
suggests adding recursion to the target language.

The model-theoretic notion of rooted rules was engineered so as to capture
the typical ∃∀ quantifier alternation in consistent FO rewritings: the formula
∃x∃y′∀y(R(x, y′) ∧ (R(x, y) → ψ)) expresses that ψ must hold no matter how
we repair R-atoms that agree on the primary key x. Two intriguing questions
about rootedness are open for further research: First, does there exist a rule
q such that q has a consistent FO rewriting but q is not rooted, no matter
how its atoms are ordered? Second, is it decidable whether a given rule q is
rooted?

126 J. Wijsen

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proc. 18th ACM Symp. on Principles of Database Systems, pp.
68–79. ACM Press, New York (1999)

2. Chomicki, J.: Consistent query answering: Five easy pieces. In: Schwentick, T.,
Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)

3. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. J.
Comput. Syst. Sci. 73(4), 610–635 (2007)

4. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. J. ACM 30(3), 479–513 (1983)

5. Fuxman, A., Miller, R.J.: Towards inconsistency management in data integration
systems. In: IIWeb 2003. Proc. of IJCAI-03 Workshop on Information Integration
on the Web, pp. 143–148 (2003)

6. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

7. Lin, J., Mendelzon, A.O.: Merging databases under constraints. Int. J. Cooperative
Inf. Syst. 7(1), 55–76 (1998)

8. Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3),
722–768 (2005)

9. Fuxman, A., Fazli, E., Miller, R.J.: Conquer: Efficient management of inconsistent
databases. In: SIGMOD 2005. Proc. of the ACM SIGMOD Int. Conf. on Manage-
ment of Data, pp. 155–166. ACM Press, New York (2005)

10. Grieco, L., Lembo, D., Rosati, R., Ruzzi, M.: Consistent query answering under key
and exclusion dependencies: Algorithms and experiments. In: CIKM 2005. Proc.
14th ACM Int. Conf. on Information and Knowledge Management, pp. 792–799.
ACM Press, New York (2005)

11. Lembo, D., Rosati, R., Ruzzi, M.: On the first-order reducibility of unions of con-
junctive queries over inconsistent databases. In: Grust, T., Höpfner, H., Illarra-
mendi, A., Jablonski, S., Mesiti, M., Müller, S., Patranjan, P.-L., Sattler, K.-U.,
Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 358–374.
Springer, Heidelberg (2006)

12. Fuxman, A.D., Miller, R.J.: First-order rewriting for inconsistent databases. In:
Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 337–351. Springer,
Heidelberg (2004)

13. Caĺı, A., Lembo, D., Rosati, R.: On the decidability and complexity of query an-
swering over inconsistent and incomplete databases. In: Proc. 22nd ACM Symp.
on Principles of Database Systems, pp. 260–271. ACM Press, New York (2003)

14. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Information and Computation 197(1-2), 90–121 (2005)

15. Cal̀ı, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints
in data integration systems. In: Proc. 18th Int. Joint Conf. on Artificial Intelligence,
pp. 16–21. Morgan Kaufmann, San Francisco (2003)

Relational Completeness of Query Languages for

Annotated Databases

Floris Geerts1,2 and Jan Van den Bussche1

1 Hasselt University/Transnational University Limburg
2 University of Edinburgh

Abstract. Annotated relational databases can be queried either by sim-
ply making the annotations explicitly available along the ordinary data,
or by adapting the standard query operators so that they have an im-
plicit effect also on the annotations. We compare the expressive power
of these two approaches. As a formal model for the implicit approach
we propose the color algebra, an adaptation of the relational algebra to
deal with the annotations. We show that the color algebra is relationally
complete: it is equivalent to the relational algebra on the explicit anno-
tations. Our result extends a similar completeness result established for
the query algebra of the MONDRIAN annotation system, from unions
of conjunctive queries to the full relational algebra.

1 Introduction

Recently, much attention has been paid to annotated databases [10,4,2,5,8,7,6,3].
In querying annotated databases, there are two distinct approaches:

1. In annotation propagation [10,4,2,6,3], queries are directed primarily at the
ordinary data, not the annotations: the latter are merely propagated to the
query results. For example, when joining two relations, the annotations of
two joined tuples would become annotations of the new joint tuple.

2. In annotation querying [8,7,5], queries can be directed to the annotations as
well as to the ordinary data. For example, when joining two relations, two
tuples might be considered joinable only if they have a common annotation.
Such join queries are outside the scope of annotation propagation.

Of course, these two approaches are not competing; it is simply that in some
applications we want annotation propagation, while in other applications we
want to really query on the basis of annotations. As a matter of fact, annotation
propagation can be precisely characterized [3] as that part of annotation querying
that is invariant under arbitrary re-annotations, even those re-annotations that
replace two different annotations by the same one.

In the present paper, we are concerned with full annotation querying, and
here one can again distinguish two approaches: explicit and implicit.

1. In explicit querying, we simply make the annotations explicitly available
along with the ordinary data; any standard query language can then be used

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 127–137, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

128 F. Geerts and J. Van den Bussche

to query the database. For example, suppose we want to join annotated rela-
tions R(A,B) and S(A,C) not only on their common A-attribute, but also
on common annotations. Then we simply model R as a relation R(A,B,N),
where N is an extra column holding the annotations, and likewise model S
as S(A,C,N), and write in SQL:

select R.*, S.*
from R, S
where R.A=S.A and R.N=S.N

A similar feature is provided by the ANNOT operator of the pSQL language
in DBNotes [5], where we would write:

select R.*, S.*
from R, ANNOT(R) N1, S, ANNOT(S) N2
where R.A=S.A and N1=N2

2. In implicit querying, which is more in the spirit of annotation propagation,
annotations are not explicitly addressed in query formulations. Rather, the
standard query operators are adapted so that they have an effect not only
on the ordinary data but also on the annotations. For example, in the query
algebra of MONDRIAN [8], one would write the above join query as

μσR.A=S.A(R × S),

where
– the Cartesian product operator × is adapted so as to keep, for each joint

tuple r ∪ s ∈ R × S with r ∈ R and s ∈ S, two sets of annotations: the
annotations that r already had in R, and the annotations that s already
had in S;

– the selection operator σ simply propagates these sets of annotations;
– the new merge operator μ intersects the two sets of annotations.

A natural question now arises as to the relative expressiveness of explicit
versus implicit annotation querying. This question was already addressed for
the MONDRIAN query algebra, which has been shown to be equivalent to the
positive relational algebra on explicit annotations [8]. In the present paper, we
continue this investigation and extend it to the full relational algebra (as opposed
to its positive fragment, which does not have the difference operator). Recall [1]
that the relational algebra is much more powerful and complicated than its pos-
itive fragment. For instance, in the positive algebra only unions of conjunctive
queries can be expressed, and containment and equivalence of queries is decid-
able; in the full relational algebra, all first-order logic definable queries can be
expressed, and equivalence (let alone containment) is undecidable.

We will introduce color relations as a simple but general abstraction of an-
notated databases. A color relation is a standard database relation, where ad-
ditionally every tuple is annotated by some set of “colors”. Moreover, we will
introduce the color algebra (CA), an adaptation of the relational algebra to deal
with color relations. CA is inspired by, but different from, the MONDRIAN
query algebra. The operators of CA always produce color relations as output;

Relational Completeness of Query Languages for Annotated Databases 129

in particular, in CA one cannot compute intermediate results that explicitly re-
late the colors of different tuples. Nevertheless, we will prove that CA can still
express any expression of the full relational algebra on explicit annotations, as
long as the latter expression starts from color relations and finally ends up in
color relations.

Our result, while answering a natural question, is mainly of theoretical inter-
est. Yet, good theoretical underpinnings of new database management features,
such as annotation, are important. We hope that the elegant formalism pro-
vided by our color algebra can serve as a guide to the understanding and design
of annotation query languages.

2 Color Relations

Basically we assume as given an infinite set of attributes, an infinite set D of data
values, and an infinite set C of colors. The sets D and C are disjoint; colors serve
as an abstraction for annotation values.

1. A relation schema is a finite set R of attributes.
2. A tuple over R is a mapping t : R→ D.
3. A relation over R is a finite set of tuples over R.
4. A coloring of a relation r is a subset r′ of r × C, i.e., a set of tuple–color

pairs where the tuples come from r, such that every tuple of r appears in r′,
i.e., every tuple of r gets at least one color.

5. We call r the underlying relation of r′. We agree that whenever we denote
a coloring by a primed letter, the unprimed letter stands for the underlying
relation.

6. Colorings of relations over R are also called color relations over R.
7. A database schema S consists of a finite set of relation variables x, each with

an associated relation schema S(x).
8. A color database D over S consists of a set of color relations D(x), one for

each relation variable x of S, such that D(x) is a color relation over S(x).

We can view a color relation r′ alternatively as a mapping r′ from r to 2C, as
follows:

r′(t) = {c | (t, c) ∈ r′}.
Note that, since every tuple gets at least one color, r′(t) is never empty. For any
subset s ⊆ r, the restriction of the mapping r′ to s, which we denote by r′|s, is
of course a coloring of s. We will use this observation in the following section.

Remark 1. In our data model, we restrict attention to the coloring of entire
tuples. In annotation systems such as DBNotes [2,5], not just tuples in relations
can be colored, but also individual components of these tuples. We can model
this by multiple color relations, one for each attribute. The system MONDRIAN
[8,7] even allows the coloring of arbitrary subsets of projections of a relation.
Even more generally, one can consider annotations of arbitrary combinations

130 F. Geerts and J. Van den Bussche

of records and sets [3]. Such complex structures can always be decomposed in
multiple flat relations, however, and since the focus of this paper is on expressive
power, our model of color relations is sufficient.

3 The Color Algebra

We are familiar with the classical relational algebra operations on relations: union
(∪), difference (−), natural join (��), renaming (ρ), selection (σ), and projection
(π). We now define a number of analogous operations on color relations. The
result of these operations is again a color relation.

Let r′ and s′ be two color relations over the same relation scheme R.

Union: r′ ∪ s′ is the standard set-theoretic union. This is a coloring of r ∪ s.
Tuple difference: r′ � s′ equals r′|r\s. It is thus a coloring of r \ s.
Full difference: r′ − s′ is the standard set-theoretic difference. It is a coloring

not of r \ s, but of

(r \ s) ∪ {t ∈ r ∩ s | r′(t) � s′(t)}.
For the definition of the next two operations, s′ no longer needs to be over

the same relation scheme as r′.

Tuple join: r′ � s′ equals

{(t1 ∪ t2, c) | t1 ∪ t2 ∈ r �� s and c ∈ r′(t1) ∪ s′(t2)}.
It is a coloring of r �� s.

Full join: r �� s is defined in the same way as r � s, except that now we take
the intersection r′(t1)∩s′(t2) rather than the union. It is thus a coloring not
of r �� s, but of

{t1 ∪ t2 ∈ r �� s | r′(t1) ∩ s′(t2) �= ∅}.
Renaming: if A ∈ R and B is an attribute not in R, then ρA/B(r′) equals

{(ρA/B(t), c) | (t, c) ∈ r′},
with ρA/B(t) = t|R−A ∪ {(B, t(A))} the classical renaming of a tuple. It is
thus a coloring of ρA/B(r).

Selection: if A,B ∈ R, then σA=B(r′) equals r′|σA=B(r′).
Color selection: if k ≥ 2 is a natural number, then σcolor≥k(r′) equals r′|u,

where
u = {t ∈ r | |r′(t)| ≥ k},

with |r′(t)| denoting the cardinality of r′(t), i.e., the number of distinct colors
of t in r′.

Projection: if X ⊆ R, then πc
X(r′) equals

{(t|X , c) | (t, c) ∈ r′}.

Relational Completeness of Query Languages for Annotated Databases 131

This concludes the definition of the operations of the color algebra, abbrevi-
ated CA.

Example 1. A simple example is the CA-expression

πc
X(x �� green),

where green is a constant relation (over attributes disjoint from x) consisting
of a single “green”-colored tuple and X consists of the attributes in x. This
expression returns all tuples in x that are colored ‘green’; all colors of those
tuples are returned as well.

For another example, the CA-expression

(x �� (x � y))− (y �� (x� y))

applied to colored relations r′ and s′, returns joint tuples t1∪t2 from the natural
join of the underlying relations r and s (with t1 ∈ r and t2 ∈ s); these joint
tuples are colored by the colors t1 has in r′, except for the colors t2 has in s′.
In particular, if t1 has only colors that t2 has too, then the joint tuple t1 ∪ t2 is
not returned at all, since in colored relations, each tuple must have at least one
color.

As a final example, the expression

x− σcolor≥3(x)

returns all tuples in x that have at most two colors.

Remark 2. We remark that most of the operators in CA are intuitive except for
maybe the color selection σcolor≥k. This operator is necessary, however, to show
the completeness of CA.

4 CA and the Relational Algebra

Let us reserve a special attribute col and agree that it is never used in the
relation schemes of color relations. For any relation scheme R, we define the
relation scheme R̄ = R ∪ {col}. We can naturally view a color relation r over R
as a relation over R̄, as follows:

{t ∪ {(col , c)} | (t, c) ∈ r}.

Conversely, any relation r over R̄ can be viewed as a color relation as follows:

{(t|R, t(col)) | t ∈ r}.

Beware that when we regard r as a color relation, it is a color relation over R,
i.e., r’s relation scheme is just R, because the color attribute is implicit in color
relations. Indeed, this is exactly the main feature of the color algebra: that colors

132 F. Geerts and J. Van den Bussche

Table 1. Simulation of CA by relational algebra. In the case of x � y, the R refers to
the relation scheme of the color relations x and y; in the cases of x� y and σcolor≥k(x),
the R (S) refers to the relation scheme of the color relation x (y). Moreover, in the
simulation of σcolor≥k(x), the auxiliary attributes col i are chosen such that they do not
appear in R.

x ∪ y x ∪ y
x � y (πR(x) − πR(y)) �� x
x − y x − y
x � y (x �� πS(y)) ∪ (πR(x) �� y)
x �� y x �� y
ρA/B(x) ρA/B(x)
σA=B(x) σA=B(x)
σcolor≥k(x) πR̄σ�

i�=j coli �=colj (ρcol/col1(x) �� · · · �� ρcol/colk (x))

πc
X(x) πX∪{col}(x)

are handled automatically. When we regard r as an ordinary relation, however,
it is a relation over R̄ and the color attribute becomes explicitly visible.

Under the view of color relations as ordinary relations, we can apply classical
relational algebra operations to color relations, and consider relational algebra
expressions with R̄ as result relation scheme to be producing color relations over
R. It then becomes apparent that the classical relational algebra can actually
simulate the color algebra. The simulation is given in Table 1. The table shows
the simulation of the individual operations; the simulation of more complex
expressions can be obtained using composition.

More interestingly, the converse simulation holds as well: every operation on
color relations that is definable in the relational algebra is already definable
in CA. More formally, to every color database schema S we can associate the
relational database schema S̄ which has precisely the same relation variables,
but when relation variable x has relation scheme R in S, then x has relation
scheme R̄ in S̄. We will establish:

Theorem 1. For every relational algebra expression over S̄ whose result relation
scheme is of the form R̄ for some relation scheme R, there exists an equivalent
CA-expression over S.
In proving this theorem, one cannot hope for a simple bottom-up syntax-directed
translation from relational algebra to CA, such as we had with Table 1 for the
other direction. For instance, consider in that table the line for σcolor≥k(x), but
now read from right to left. More generally, the challenge is how to deal with
relational algebra expressions that produce relations as intermediate results that
explicitly relate colors from different tuples in the database.

5 Simulation of the Relational Algebra by the Color
Algebra

In this section, we prove our theorem. It is actually sufficient to do this for
a restricted fragment of the relational algebra, which we call the color-typed

Relational Completeness of Query Languages for Annotated Databases 133

relational algebra, denoted by RAc. In order to define this fragment, we must
first go from our one special color attribute col to an infinite set C of color
attributes, and agree that these are, like col , never used in relation schemes of
color relations. Of course we put col ∈ C. The color-typed restriction now only
lies in a condition imposed on selections and renamings. Specifically, if e is an
expression, then σA=B(e) and ρA/B(e) are only allowed if either A and B are
both color attributes, or are both not color attributes. Expressions of the form
e1 ∪ e2, e1 − e2, e1 �� e2, or πX(e) can be constructed just like in the classical
relational algebra.

A result on the first-order completeness of many-sorted logic [9] implies that
every relational algebra expression over a database schema S̄ with result relation
scheme of the form R̄ can be expressed in RAc. (We point out that this depends
crucially on the disjointness of the universes D of data values and C of colors.)
So, we indeed only have to prove the theorem for RAc.

Our proof uses the technical notion of an R-parameterized monadic database
schema, where R is a relation scheme. This is a relational database schema
where every relation name has the same relation scheme R̄. Equivalently, it can
be viewed as a color database schema where every relation scheme has the same
relation scheme R. Furthermore, an RAc-expression f over such a schema is
called R-uniform if it satisfies the following:

– f uses only renamings ρA/B and selections σA=B where A and B are color
attributes;

– all projections πX appearing in f satisfy R ⊆ X .

The intuition is that an R-uniform expression does not explicitly work with the
attributes in R; these attributes are merely dragged along as parameters.

We now show that CA can simulate R-uniform RAc, in the following sense:

Lemma 1. Let f be an R-uniform RAc-expression over the R-parameterized
monadic database schema S. Let S be the result relation scheme of f .

– If S ∩ C = ∅, i.e., S = R, then there exists a CA-expression sim(f) such
that f(D) equals the relation underlying sim(f)(D), for each color database
D over S.

– If S ∩ C �= ∅, then for each equivalence relation E on S ∩ C, there exists a
set simE(f) of mappings from S ∩ C to CA, such that f(D) equals

⋃

E

⋃

τ∈simE(f)

σ�
(col′,col′′)∈E col′=col′′

σ�
(col′,col′′)/∈E col′ �=col′′ ��

col′∈S∩C
ρcol/col′(τ(col

′)(D))

Proof. Assume that S consists of the relation names z1, . . . , zn. We begin by
refining the classical correspondence between the relational algebra and the
relational calculus (first-order logic, FO) to R-uniform RAc. The correspond-
ing fragment of FO, which we denote by FOc

R, is obtained as follows. Let

134 F. Geerts and J. Van den Bussche

R = {A1, . . . , Am}. We use the Aj ’s, plus all color attributes, as first-order
variables. The allowed atomic formulas are of two forms:

1. zi(A1, . . . , Am, col ′) withcol ′∈C. We abbreviate such formulas by zi(R, col ′).
2. col ′ = col ′′ with col ′, col ′′ ∈ C.

The only variables that can be quantified are color attributes. It is then readily
seen that R-uniform RAc corresponds to FOc

R under the active-domain seman-
tics, with the understanding that, when evaluating a formula in a database D,
the tuple of free variables A1, . . . , Am is only instantiated by R-tuples that ac-
tually appear in D.

We next apply the well-known quantifier elimination method for monadic
first-order logic to FOc

R. Concretely, this gives us that every FOc
R formula can

be written without quantifiers if we additionally allow predicates of the form
|zα(R)| ≥ � in formulas, where � ≥ 1 is a natural number, and α is a nonempty
subset of {1, . . . , n}. The meaning of such a predicate, for a given tuple t over
R, is that |zα(t)| ≥ �, where zα(t) equals

{t′ ∈
⋃

i

zi | t′|R = t &
∧

i∈α

t′ ∈ zi &
∧

i∈α̂

t′ /∈ zi},

where α̂ abbreviates {1, . . . , n} − α.
Putting the quantifier-free formula in disjunctive normal form, and simplify-

ing each conjunction, we obtain a disjunction of conjunctions of factors of the
following possible forms:

– If S ∩ C = ∅, then each factor of the conjunction is of one of the following
three forms:

1. |zα(R)| ≥ 1. This can be expressed in CA by ��
i∈α

zi −
⋃

i∈α̂ zi.

2. |zα(R)| ≥ � with � ≥ 2. This can be expressed in CA by σcolor≥�(|zα(R)| ≥
1).

3. ¬(|zα(R)| ≥ �). This can be expressed in CA by
⋃

i zi � (|zα(R)| ≥ �).
– If S∩C �= ∅, then factors may additionally be of the following possible forms:

4. zi(R, col ′) for some color attribute col ′. This can be expressed in CA by
zi.

5. ¬zi(R, col ′). This can be expressed in CA by
⋃

j zj − zi.
6. equalities and inequalities among color attributes.

Without loss of generality, we may assume that in each conjunction γ, the
set of equalities and inequalities among color attributes is maximally consis-
tent, involving all color attributes in S ∩ C. Such a maximally consistent set
gives rise to an equivalence relation Eγ on the color attributes.

We now construct, for each conjunction γ, the following mapping τ from
S ∩ C to CA and put it in simEγ (f). For each color attribute col ′, we take
the CA-expressions for all factors of types 1–3 above, and also take the
CA-expressions for all factors of types 4–5 that concern the particular color

Relational Completeness of Query Languages for Annotated Databases 135

attribute col ′. If there are no such factors of types 4–5 for col ′, then we add
the CA-expression

⋃
z∈S π∅(z). We conjoin all these CA-expressions using

�. The resulting CA-expression then equals τ(col ′).
�
Our second lemma connects R-uniform expressions to general RAc-expressions.
Together with the first lemma, it establishes the theorem.

Lemma 2. Let h be an RAc-expression over S̄ with result relation scheme S,
and let R = S − C. Then there exist a natural number n; CA-expressions e1,
. . . , en, all with result relation scheme R; and an R-uniform RAc-expression
f(z1, . . . , zn), such that the composition f(e1, . . . , en) is equivalent to h.

Proof. By induction on the structure of e. If h is a relation name x, then n = 1;
e1 is x; and f is z1.

If h is h1 ∪ h2, by induction we have, for j = 1, 2, the natural number nj , the
sequence of CA-expressions ej = ej

1, . . . , e
j
nj

, and the RAc-expression fj . Then
we put

n := n1 + n2

e1, . . . , en := e1, e2

f := f1(z1, . . . , zn1) ∪ f2(zn1+1, . . . , zn).

The case where h is h1 − h2 is similar, but now f is f1 − f2.
If h is h1 �� h2, we again begin by obtaining the ingredients for h1 and h2 by

induction, as above. By Lemma 1, we can simulate f1 and f2 in CA. We now
perform a case analysis based on how the result relation schemes S1 and S2 of
h1 and h2 intersect with C. There are four cases.

First, S1 ∩ C = ∅ = S2 ∩ C. We put

n := 1

e1 := sim(f1)(e1) � sim(f2)(e2)
f := πR(z1).

Second, S1∩C = ∅ and S2∩C �= ∅. Let us first introduce the following derived
CA operator: x � y is an abbreviation for x �� (x � y). Note that r′ � s′, for
color relations r′ and s′, equals {(t1 ∪ t2, c) | t1 ∪ t2 ∈ r �� s & (t1, c) ∈ r′}.
Now in this case we take n to be the total number of expressions occurring in
all sets simE2(f2), for all equivalence relations E2 on S2 ∩ C. For each of those
expressions g, we form g′ := g(e2) � sim(f1)(e1), and all these expressions g′

constitute the ei’s. Denoting the relation name corresponding to g′ by zg, we
can then use the following expression for f :

⋃

E2

⋃

τ∈simE2(f2)

σ�
(col′,col′′)∈E2

col′=col′′σ
�

(col′,col′′)/∈E2
col′ �=col′′ ��

col′∈S2∩C
ρcol/col′(zτ(col′)).

Third, S1∩C = ∅ and S2∩C �= ∅. This case is symmetric to the previous case.
Fourth, S1∩C �= ∅ �= S2∩C. In this case we use three kinds of CA-expressions:

136 F. Geerts and J. Van den Bussche

1. τ1(col ′)(e1) �� τ2(col ′)(e2), with col ′ ∈ S1 ∩ S2 ∩ C, and τj ∈ simEj (fj), for
an equivalence relation Ej of Sj ∩ C, for j = 1, 2;

2. τ(col ′)(e1) � τ(col ′′)(e2), with col ′ ∈ (S1 ∩ C) \ (S2 ∩ C) and col ′′ ∈ S2 ∩ C,
and τj as above;

3. τ(col ′′)(e2) � τ(col ′)(e1), with col ′′ ∈ (S2 ∩ C) \ (S1 ∩ C) and col ′ ∈ S1 ∩ C,
and again τj as above.

So, n equals the total number of all possible CA-expressions of those three kinds.
For all these expressions, which are all of the form i �� j or i� j, the underlying
R-parameterized monadic database schema has corresponding relation names
zi,j . The expression f then becomes:

⋃

E1

⋃

E2

⋃

τ1

⋃

τ2

σ�
(col′,col′′)∈E1

col′=col′′σ
�

(col′,col′′)/∈E1
col′ �=col′′

σ�
(col′,col′′)∈E2

col′=col′′σ
�

(col′,col′′)/∈E2
col′ �=col′′

��
col′∈S1∩S2∩C

ρcol/col′(zτ1(col′),τ2(col′))

�� ��
col′∈(S1∩C)\(S2∩C)

col′′∈S2∩C

ρcol/col′(zτ1(col′),τ2(col′′))

�� ��
col′′∈(S2∩C)\(S1∩C)

col′∈S1∩C

ρcol/col′(zτ2(col′′),τ1(col′)).

If h is ρA/B(h1) with A and B not in C, then we put n := n1; ei := ρA/B(e1i);
and f := f1.

If h is ρcol′/col′′(h1) with col ′, col ′′ ∈ C, then n := n1; ei := e1i ; and f :=
ρcol′/col′′(f1).

If h is σA=B(h1) with A and B not in C, then we put n := n1; ei := σA=B(e1i);
and f := f1.

If h is σcol′=col′′(h1) with col ′, col ′′ ∈ C, then n := n1; ei := e1i ; and f :=
σcol′=col′′(f1).

Finally, if h is πX(h1), then we simulate f1 in CA according to Lemma 1.
Now if the intersection of the result relation scheme S1 of h1 with C is empty,
then we put n := 1; e1 := πc

X(sim(f1)(e1); and f := z1. If S1 ∩ C �= ∅, then we
take n to be the total number of expressions occurring in all sets simE(f1), for
all equivalence relations E on S1 ∩ C. For each of those expressions g, we form
g′ := πX−C(g)(e1), and all these expressions g′ constitute the ei’s. Denoting the
relation name corresponding to g′ by zg, we can then use the following expression
for f :

πX

⋃

E

⋃

τ∈simE(f1)

σ�
(col′,col′′)∈E col′=col′′σ

�
(col′,col′′)/∈E col′ �=col′′ ��

col′∈S1∩C
ρcol/col′(zτ(col′)).

�

Relational Completeness of Query Languages for Annotated Databases 137

Acknowledgements

Floris Geerts is a postdoctoral researcher of the FWO Vlaanderen and is sup-
ported in part by EPSRC GR/S63205/01.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Bhagwat, D., Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: An annotation manage-
ment system for relational databases. The VLDB Journal 14(4), 373–396 (2005)

3. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. In: Schwentick, T., Suciu, D. (eds.)
ICDT 2007. LNCS, vol. 4353, pp. 209–223. Springer, Heidelberg (2006)

4. Buneman, P., Khanna, S., Tan, W.-C.: On propagation of deletions and annotations
through views. In: Proceedings 21st ACM Symposium on Principles of Database
Systems, pp. 150–158. ACM Press, New York (2002)

5. Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: DBNotes: A post-it system for rela-
tional databases based on provenance. In: Proceedings 2005 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 942–944. ACM Press, New York
(2005)

6. Cong, G., Fan, W., Geerts, F.: Annotation propagation revisited for key preserving
views. In: Proceedings 15th ACM International Conference on Information and
Knowledge Management, pp. 632–641. ACM Press, New York (2006)

7. Geerts, F., Kementsietsidis, A., Milano, D.: iMONDRIAN: A visual tool to anno-
tate and query scientific databases. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W.,
Matthes, F., Hatzopoulos, M., Boehm, K., Kemper, A., Grust, T., Boehm, C. (eds.)
EDBT 2006. LNCS, vol. 3896, pp. 1168–1171. Springer, Heidelberg (2006)

8. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN: Annotating and query-
ing databases through colors and blocks. In: Proceedings 22th International Con-
ference on Data Engineering, p. 82 (10 pages). IEEE Computer Society Press, Los
Alamitos (2006)

9. Van den Bussche, J., Cabibbo, L.: Converting untyped formulas into typed ones.
Acta Informatica 35(8), 637–643 (1998)

10. Wang, Y.R., Madnick, S.E.: A polygen model for heterogeneous database systems:
the source taging perspective. In: McLeod, D., Sacks-Davis, R., Schek, H. (eds.)
Proceedings of the 16th International Conference on Very Large Data Bases, pp.
518–538. Morgan Kaufmann, San Francisco (1990)

Provenance as Dependency Analysis

James Cheney1, Amal Ahmed2, and Umut A. Acar2,�

1 University of Edinburgh
2 Toyota Technological Institute at Chicago

Abstract. Provenance is information recording the source, derivation, or history
of some information. Provenance tracking has been studied in a variety of settings;
however, although many design points have been explored, the mathematical or
semantic foundations of data provenance have received comparatively little atten-
tion. In this paper, we argue that dependency analysis techniques familiar from
program analysis and program slicing provide a formal foundation for forms of
provenance that are intended to show how (part of) the output of a query depends on
(parts of) its input. We introduce a semantic characterization of such dependency
provenance, show that this form of provenance is not computable, and provide
dynamic and static approximation techniques.

1 Introduction

Provenance is information about the origin, ownership, influences upon, or other histor-
ical or contextual information about an object. Such information has many applications,
including evaluating integrity or authenticity claims, establishing the chain of custody
of or responsibility for an object, detecting and repairing errors, and memoization and
caching of the results of computations. Provenance is particularly important in scien-
tific computation and recordkeeping, since it is considered essential for ensuring the
repeatability of experiments and judging the scientific value of their results.

Provenance tracking has been studied in a variety of settings, including databases,
file systems, and scientific workflows; indeed, many familiar systems provide simple
forms of provenance, such as the timestamp and ownership metadata in file systems,
system logs, and version control systems. Although a wide variety of design points
have been explored [8,17,21], there is relatively little understanding of the relationships
among techniques or of the design considerations that should be taken into account when
developing or evaluating an approach to provenance. The mathematical or semantic
foundations of data provenance have received comparatively little attention, with a few
relatively recent exceptions [10,11,15,19].

Most prior approaches have invoked intuitive concepts such as contribution, influence,
and relevance as motivation for their definitions of provenance. These intuitions seem
adequate when considering monotone relational queries, but tend to break down when
negation, grouping, or aggregation are considered. These intuitions have also motivated
rigorous approaches to seemingly quite different problems, such as aiding debugging
via program slicing [7,16,24], supporting efficient memoization and caching [2,4], and

� Cheney was supported by EPSRC grant R37476. Acar was supported by an Intel gift.

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 138–152, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Provenance as Dependency Analysis 139

(a)

Protein

ID Name MW · · ·
p1 thioredoxin 11.8 · · ·
p2 flavodoxin 19.7 · · ·
p3 ferredoxin 12.3 · · ·
p4 ArgR −700 · · ·
p5 CheW 18.1 · · ·
...

...
...

...

EnzReact

PID RID

p1 r1
p2 r1
p1 r2
p4 r2
p5 r3
...

...

Reaction

ID Name · · ·
r1 thia-phos + ATP = thi diphos + ADP · · ·
r2 H2O + an acyl phos → phos + a carboxylate · · ·
r3 D-ribose-5-phosp = D-ribulose-5-phos · · ·
r4 β-D-gluc-6-phos = fruct-6-phos · · ·
r5 panteth 4′-phos + ATP = dephos-CoA + diphos · · ·
...

...
...

(b)

SELECT R.Name as Name, AVERAGE(P.MW) as AvgMW
FROM Protein P, EnzymaticReaction ER, Reaction R
WHERE P.ID = ER.ProteinID, ER.ReactionID = R.ID
GROUP BY R.Name

(c)
Name AvgMW

thia-phos + ATP = thi diphos + ADP 15.75
H2O + an acyl phos → phos + a carboxylate -338.2

D-ribose-5-phosp = D-ribulose-5-phos 18.1
...

...

Fig. 1. Example (a) input, (b) query, and (b) output data; input field values relevant to italicized
erroneous output value are highlighted in bold

improving program security using information flow analysis [20]. As Abadi et al. have
argued [1], slicing, information flow, and several other program analysis techniques can
all be understood in terms of dependence.

In this paper, we argue that these dependency analysis and slicing techniques familiar
from programming languages provide a suitable foundation for an interesting class of
provenance techniques. To illustrate our approach, consider the (realistic, but biologically
inaccurate) input data shown in Figure 1(a) and the query in Figure 1(b) which calculates
the average molecular weights of proteins involved in each reaction. The result of this
query is shown in Figure 1(c).

Since the MW field contains the molecular weight of a protein, it is clearly an error
for the italicized value in the result to be negative. To track down the source of the error,
it would be helpful to know which parts of the input contributed to, or were relevant to,
the erroneous part of the output. We can formalize this intuition by saying that a part
of the output depends on a part of the input if a change to the input part may result in
a change to the output part. This is analogous to program slicing [24], a debugging aid
that identifies the parts of a program on which a program output depends.

In this example, the input field values that the erroneous output AvgMW-value depends
on are highlighted in bold. The dependences include the two summed MW values and the
ID fields which are compared by the selection and grouping query. These ID fields must
be included because a change to any one of them could result in a change to the italicized

140 J. Cheney, A. Ahmed, and U.A. Acar

output value—for example, changing the occurrence of p4 in table EnzymaticReaction.
On the other hand, the names of the proteins and reactions are irrelevant to the output
AvgMW.

This example is simplistic, but the ability to concisely explain which parts of the
input influence each part of the output is much more important if we consider a realistic
database with perhaps tens or hundreds of columns per table and thousands or millions
of rows. Moreover, dependence information can also be useful for a variety of other
applications, including estimating the quality or freshness of data in a query result by
aggregating timestamps or quality annotations on the relevant inputs.

In this paper, we argue that data dependence provides a solid semantic foundation
for generalizing why-provenance, lineage, and similar techniques. We consider the full
nested relational calculus with set difference, equality, grouping and aggregation oper-
ations, and functions on basic types. We consider annotation-propagating semantics for
such queries and define a property called dependency-correctness, which, intuitively,
means that the annotations produced by a query correctly show all parts of the output
that may change if a part of the input is changed.

The structure of the rest of this paper is as follows. We briefly review the nested rela-
tional calculus in Section 2. We then introduce (in Section 3) the annotation-propagation
model and define dependency-correctness. In Section 3.1 we describe a dynamic prov-
enance-tracking semantics that is dependency-correct.We also (Section 3.2) introduce a
type-based provenance analysis which is less accurate than provenance tracking, but can
be performed statically; we also prove its correctness relative to dynamic provenance
tracking. We discuss our results and a preliminary implementation in Section 3.3 and
discuss related and future work and conclude in Sections 4–5. Full proofs of our main
results are provided in a companion technical report [14].

2 Background

We assume some familiarity with the nested relational calculus (NRC) [13], which is
closely related to monad algebra [22]. We consider multiset (or bag) collections rather
than sets. The types and expressions of our variant of NRC are as follows:

τ ::= bool | int | τ1 × τ2 | {τ}
e ::= x | let x = e1 in e2 | (e1, e2) | πi(e) | b | i | ¬e | e1 ∧ e2 | e1 + e2 | sum(e)

| e1 ≈ e2 | if e0 then e1 else e2 | ∅ | {e} | e1 ∪ e2 | e1 − e2 | {e2 | x ∈ e1} |
⋃
e

Here, i ∈ Z={. . . ,−1, 0, 1, . . .} represents integer constants and b ∈ B = {true, false}
denotes Boolean constants. The type {τ} describes collections of elements of type τ ;
in this paper, we consider collections to be bags (multisets). The bag operations in-
clude ∅, the constant empty bag; singletons {e}; bag union and difference; compre-
hension {e2 | x ∈ e1}; and flattening

⋃
e. By convention, we write {e1, . . . , en} as

syntactic sugar for {e1} ∪ · · · ∪ {en}. Finally, we include sum, a typical aggregation
operation, which adds together all of the elements of a bag and produces a value; e.g.

Provenance as Dependency Analysis 141

sum{1, 2, 3} = 6 (by convention, sum(∅) = 0). We syntactically distinguish between
NRC’s equality operation≈ and mathematical equality =.

Types. Query language expressions can be typechecked using standard techniques.
Contexts Γ are lists of pairs of variables and types x1 : τ1, . . . , xn : τn, where x1, . . . ,
xn are distinct. The rules for typechecking expressions are shown in Figure 2.

Semantics. We writeMfin(X) for the set of all finite bags with elements drawn from
X . The (standard) interpretation of base types as sets of values is as follows:

T [[bool]] = B = {true, false} T [[τ1 × τ2]] = T [[τ1]]× T [[τ2]]
T [[int]] = Z = {. . . ,−1, 0, 1, . . .} T [[{τ}]] =Mfin(T [[τ]])

An environment γ is a function from variables to values. We define the set of environ-
ments matching context Γ as T [[Γ]] = {γ | ∀x ∈ dom(Γ).γ(x) ∈ T [[Γ (x)]]}.

Figure 3 gives the semantics of queries. Note that we overload notation for pair
projection πi and bag operations such as ∪ and

⋃
; also, if S is a bag of integers, then∑

S is the sum of their values (taking
∑ ∅ = 0). It is straightforward to show that

Lemma 1. If Γ � e : τ then E [[e]] : T [[Γ]]→ T [[τ]].

As discussed in previous work [13], the NRC can express a wide variety of queries
including ordinary relational queries as well as grouping and aggregation. We do not
consider incomplete information (NULL values). Additional primitive functions and
relations such asaverage can also be added without difficulty (in fact, average is definable
in our language). For example, using more readable named record, comprehensions, and
patterns, the SQL query from the Figure 1(b) can be defined as

let X = {(r.Name, p.MW) | r ∈ R, er ∈ ER,p ∈ P, er.RID=r.ID,p.ID=er.P ID} in
{(n, average{mw | (n′, mw) ∈ X, n = n′}) | (n,) ∈ X}

Additional examples are shown in Figure 4.

3 Annotations, Provenance and Dependence

We wish to define dependency provenance as information relating each part of the output
of a query to a set of parts of the input on which the output part depends. Collection
types such as sets and bags are unordered and lack a natural way to “address” parts of
values, so we must introduce one. One technique (familiar from many program analyses
as well as other work on provenance [10,23]) is to enrich the data model with anno-
tations that can be used to refer to parts of the value. We can then infer provenance
information from functions on annotated values by observing how such functions prop-
agate annotations; conversely, we can define provenance-tracking semantics by enrich-
ing ordinary functions with annotation-propagation behavior. In this section, we show
how to define dependency provenance in this way. In the next sections, we will show
how to compute dynamic and static dependency provenance for NRC queries using
annotations.

142 J. Cheney, A. Ahmed, and U.A. Acar

Γ � e : τ

x:τ ∈ Γ
Γ � x : τ

Γ � e1 : τ1 Γ, x:τ1 � e2 : τ2

Γ � let x = e1 in e2 : τ2

i ∈ Z

Γ � i : int

Γ � e1 : int Γ � e2 : int

Γ � e1 + e2 : int

Γ � e : {int}
Γ � sum(e) : int

b ∈ B

Γ � b : bool

Γ � e0 : bool Γ � e1 : τ Γ � e2 : τ

Γ � if e0 then e1 else e2 : τ
Γ � e : bool

Γ � ¬e : bool

Γ � e1 : bool Γ � e2 : bool

Γ � e1 ∧ e2 : bool

Γ � e1 : τ1 Γ � e2 : τ2

Γ � (e1, e2) : τ1 × τ2

Γ � e : τ1 × τ2

Γ � πi(e) : τi

Γ � e1 : τ Γ � e2 : τ

Γ � e1 ≈ e2 : bool Γ � ∅ : {τ}
Γ � e : τ

Γ � {e} : {τ}
Γ � e1 : {τ} Γ � e2 : {τ}

Γ � e1 ∪ e2 : {τ}
Γ � e1 : {τ} Γ � e2 : {τ}

Γ � e1 − e2 : {τ}
Γ � e1 : {τ1} Γ, x:τ1 � e2 : τ2

Γ � {e2 | x ∈ e1} : {τ2}
Γ � e : {{τ}}
Γ �

S
e : {τ}

Fig. 2. Well-formed query expressions

E [[x]]γ = γ(x) E [[let x = e1 in e2]]γ = E [[e2]]γ[x 	→ E [[e1]]γ]
E [[i]]γ = i E [[e1 + e2]]γ = E [[e1]]γ + E [[e2]]γ

E [[sum(e)]]γ =
P

E [[e]]γ E [[b]]γ = b
E [[¬e]]γ = ¬E [[e]]γ E [[e1 ∧ e2]]γ = E [[e1]]γ ∧ E [[e2]]γ

E [[(e1, e2)]]γ = (E [[e1]]γ, E [[e2]]γ) E [[πi(e)]]γ = πi(E [[e]]γ)
E [[∅]]γ = ∅ E [[{e}]]γ = {E [[e]]γ}

E [[e1 ∪ e2]]γ = E [[e1]]γ ∪ E [[e2]]γ E [[e1 − e2]]γ = E [[e1]]γ − E [[e2]]γ
E [[

S
e]]γ =

S
E [[e]]γ E [[{e | x ∈ e0}]]γ = {E [[e]]γ[x 	→ v] | v ∈ E [[e0]]γ}

E [[if e0 then e1 else e2]]γ =

j
E [[e1]]γ if E [[e0]]γ = true
E [[e2]]γ if E [[e0]]γ = false

E [[e1 ≈ e2]]γ =

j
true if E [[e1]]γ = E [[e2]]γ
false if E [[e1]]γ
= E [[e2]]γ

Fig. 3. Semantics of query expressions

We define annotated values (a-values) v, raw values (r-values) w, and multisets of
annotated values V as follows:

v ::= wΦ w ::= i | b | (v1, v2) | V V ::= {v1, . . . , vn}
For us, annotations are sets Φ ⊆ Color of values from some atomic data type Color of
colors. We often omit set brackets in the annotations, for example writingwa,b,c instead
of w{a,b,c} and w instead of w∅. An a-value v is said to be distinctly colored if every
part of it is colored with a singleton set {a} and no color c is repeated anywhere in v.

For each type τ , we define the set A0[[τ]] of annotated values of type τ as follows:

A0[[bool]] = {bΦ | b ∈ B} A0[[τ1 × τ2]] = {(v1, v2)Φ | v1 ∈ A0[[τ1]], v2 ∈ A0[[τ2]]}
A0[[int]] = {iΦ | i ∈ Z} A0[[{τ}]] = {V Φ | ∀v ∈ V.v ∈ A0[[τ]]}

Provenance as Dependency Analysis 143

ΠA(R) = {x.A | x ∈ R}
σA=B(R) =

[
{if x.A = x.B then {x} else ∅ | x ∈ R}

R × S = {(A : x.A, B : x.B, C : y.C, D : y.D, E : y.E) | x ∈ R, y ∈ S}
ΠBE(σA=D(R × S)) = {if x.A = y.D then {(B : x.B, E : y.E)} else ∅ | x ∈ R, y ∈ S}

R ∪ ρA/C,B/D(ΠCD(S)) = R ∪ {(A : y, C, B : y.D) | y ∈ S}
R − ρA/D,B/E(ΠDE(S)) = R − {(A : y, D, B : y.E) | y ∈ S}

sum(ΠA(R)) = sum{x.A | x ∈ R}
count(R) = sum{1 | x ∈ R}

Fig. 4. Example queries

Annotated environments γ̂ map variables to annotated values. We define the set of
annotated environments matching context Γ as A0[[Γ]] = {γ̂ | ∀x ∈ dom(Γ).γ̂(x) ∈
A0[[Γ (x)]]}.

We define an erasure function |−|, mapping a-values to ordinary values (and, abusing
notation, also mapping r-values to ordinary values), as follows:

|i| = i |b| = b |(v1, v2)| = (|v1|, |v2|) |{V }| = {|v| | v ∈ V } |wΦ| = |w|
and an annotation extraction function ‖−‖which extracts the set of all colors mentioned
anywhere in an a-value or r-value, defined by taking ‖wΦ‖ = Φ ∪ ‖w‖ and

‖i‖ = ∅ ‖b‖ = ∅ ‖(v1, v2)‖ = ‖v1‖ ∪ ‖v2‖ ‖{V }‖ =
⋃
{‖v‖ | v ∈ V }

Two a-values are said to be compatible (written v ∼= v′) if |v| = |v′|.
We now consider annotated functions (a-functions)F : A0[[Γ]]→ A0[[τ]] on a-values.

Recall that we plan to define provenance for functions f : T [[Γ]]→ T [[τ]] by observing
how a-functions transform annotations. For this to make sense, we first need to restrict
attention to a-functions F whose behavior is consistent with that of some function f ;
that is, such that ∀v ∈ A0[[Γ]].f(|v|) = |F (v)|. If this is the case, then we say that the a-
functionF is an enrichment of f ; there can be at most one such f , so we sometimes write
|F | for f . Of course, many a-functions are not enrichments of any ordinary function: for
example, suppose F0(1a) = 1a while F0(1b) = 2b. It may be of interest to semantically
characterize the a-functions that are enrichments of ordinary functions, by analogy with
generic queries in relational databases and color-invariance in [10]; while this would
be important for studying expressiveness, in this paper we simply restrict attention to
a-functions F that are enrichments of ordinary functions, that is, for which |F | exists.

Dependency-correctness. Intuitively, an a-function F is dependency-correct if its out-
put annotations tell us how changes to parts of the input may affect parts of the output.
First, we need to capture the intuitive notion of changing a value at a particular location:

Definition 1 (Equal except at c). Two a-values v1, v2 are equal except at c (v1 ≡c v2)
provided that they have the same structure except possibly at subterms labeled with c;
this relation is defined as follows:

144 J. Cheney, A. Ahmed, and U.A. Acar

d ∈ B ∪ Z

d ≡c d

v1 ≡c v′
1 v2 ≡c v′

2

(v1, v2) ≡c (v′
1, v

′
2)

v1 ≡c v′
1 · · · vn ≡c v′

n

{v1, . . . , vn} ≡c {v′
1, . . . , v

′
n}

w1 ≡c w2

wΦ
1 ≡c wΦ

2

c ∈ Φ1 ∩ Φ2

wΦ1
1 ≡c wΦ2

2

Example 1. Consider the two a-environments:

γ̂ = (R : {(1c1 , 3c2 , 5c3)b1 , . . .}a, S : · · ·)
γ̂′ = (R : {(2c1 , 3c2 , 5c3)b1 , . . .}a, S : · · ·)

We have γ̂ ≡a γ̂′, γ̂ ≡b1 γ̂′, and γ̂ ≡c1 γ̂′, assuming that the elided portions are
identical. For distinctly-colored values, a color serves as an address uniquely identifying
a subterm. Thus, ≡c relates a distinctly-colored value to a value which can be obtained
by modifying the subterm “at c”; that is, if we write v1 as C[v′1] where C is a context
and v′1 is the subterm labeled with c in v1, and v1 ≡c v2, then v2 = C[v′2] for some
subterm v′2 labeled with c. Note that v′2 and v2 need not be distinctly colored, and that
≡c makes sense for arbitrary a-values, not just distinctly colored ones.

Definition 2 (Dependency-correctness). An a-function F : A0[[Γ]] → A0[[τ]] is de-
pendency-correct if for any c ∈ Color and γ̂, γ̂′ ∈ A0[[Γ]] satisfying γ̂ ≡c γ̂

′, we have
F (γ̂) ≡c F (γ̂′).

Example 2. Recall γ̂, γ̂′ as in the previous example. Suppose

F (γ̂) = {(1c1 , 3c2 , 5c3)b1}a .

Since γ̂ ≡c1 γ̂
′, we know that F (γ̂) ≡c1 F (γ̂′) so we can see that F (γ̂′) must be of the

form
{(sc1 , 3c2, 5c3)b1}a

for some n ∈ Z. We do not necessarily know that n must be 2; this is not captured by
dependency-correctness.

More generally, dependency-correctness tells us that for any c, we must have F (γ̂) =
C[v1, . . . , vn] andF (γ̂′) = C[v′1, . . . , v

′
n], whereC[−, . . . ,−] is a context not mention-

ing c and v1, . . . , vn, v
′
1, . . . , v

′
n are labeled with c. Thus, F ’s annotations tell us which

parts of the output (i.e., v1, . . . , vn) may change if the input is changed at c. Dually, they
also tell us what part of the output (i.e., C[−, . . . ,−]) cannot be changed by changing
the input at c.

Of course, dependency-correctness does not uniquely characterize the annotation be-
havior of a given F . It is possible for the annotations to be dependency-correct but
inaccurate. For example we can always trivially annotate each part of the output with
every color appearing in the input. This, of course, tells us nothing about the function’s
behavior. In general, the fewer the annotations present in the output of a dependency-
correct F , the more they tell us about F ’s behavior. We therefore consider a function F
to be minimally annotated if no annotations can be removed from F ’s output for any v
without damaging correctness.

We say that a query e is constant if [[e]]γ = v for some v and every suitable γ.

Provenance as Dependency Analysis 145

(wΦ)+Φ0 = wΦ∪Φ0 (iΦ1
1) �+ (iΦ2

2) = (i1 + i2)
Φ1∪Φ2

�¬(bΦ) = (¬b)Φ (bΦ1
1) �∧ (bΦ2

2) = (b1 ∧ b2)
Φ1∪Φ2

�πi((v1, v2)
Φ) = v+Φ

i (wΦ1
1) �∪ (wΦ2

2) = (w1 ∪ w2)
Φ1∪Φ2

ĉond(trueΦ, v1, v2) = v+Φ
1 ĉond(falseΦ, v1, v2) = v+Φ

2

��
({v1, . . . , vn}Φ) = (v1 �+ · · · �+ vn)+Φ

��{v1, . . . , vn}Φ = (v1 �∪ · · · �∪ vn)+Φ

{v(x) | x �∈ wΦ} = {v(x) | x ∈ w}Φ

(wΦ1
1) �− (wΦ2

2) = {v ∈ w1 | |v|
∈ |w2|}Φ1∪‖w1‖∪Φ2∪‖w2‖

v1 �≈ v2 =

�
true‖v1‖∪‖v2‖ |v1| = |v2|
false‖v1‖∪‖v2‖ |v1|
= |v2|

Fig. 5. Auxiliary annotation-propagating operations

Proposition 1. It is undecidable whether a Boolean NRC query is constant.

Proof. Recall that query equivalence is undecidable for the (nested) relational calcu-
lus [3]; this holds even for queries e(x), e′(x) over a single variable x. Given two such
queries, consider the expression ê = e(x) ≈ e′(x) ∨ y (definable as ¬(¬(e(x) ≈
e′(x)) ∧ ¬y)). The result of this expression cannot be false everywhere since the dis-
junction is true for y = true, so is ê is constant iff [[ê]]v = true for every v iff e ≡ e′.
Clearly, an annotation is needed on the result of a Boolean query if and only if the query
is not a constant, so finding minimal annotations is undecidable. As a result, we cannot
expect to be able to compute dependency-correct annotations with perfect accuracy. It is
important to note, though, that dependency-tracking is hard even if we leave out the e1−
e2 or e1 ≈ e2 operators. For example, we can reduce (coNP-hard) propositional validity
problems to dependency-tracking for ordinary Boolean expressions or conditionals.

3.1 Dynamic Provenance Tracking

We now consider a provenance tracking approach in which we interpret each expressions
e as dependency-correct a-functions P [[e]]. The definition of the provenance-tracking
semantics is shown in Figure 6. Auxiliary operations are used to define P [[−]]; these are
shown in Figure 5. In particular, note that we define (wΦ)+Ψ = wΦ∪Ψ .

Many cases involving ordinary programming constructs are self-explanatory. Con-
stants always have empty annotations: nothing in the input can affect them. Built-in func-
tions such as +,∧,¬ propagate all annotations on their arguments to the result. For a
conditional if e0 then e1 else e2, the result is the result of evaluating e1 or e2, combined
with the annotations of e0. A constructed pair has an empty top-level annotation; in a
projection, the top-level annotation of the pair is merged with that of the returned value.

The cases involving collection types deserve some explanation. The empty set is a
constant, so has an empty top-level annotation. Similarly, a singleton set constructor has
an empty annotation. For union, we take the union of the underlying bags (of annotated

146 J. Cheney, A. Ahmed, and U.A. Acar

P[[x]]bγ = bγ(x) P[[let x = e1 in e2]]bγ = P[[e2]]bγ[x 	→ P[[e1]]bγ]

P[[i]]bγ = i∅ P[[e1 + e2]]bγ = P[[e1]]bγ b+ P[[e2]]bγ
P[[sum(e)]]bγ = cPP[[e]]bγ P[[b]]bγ = b∅

P[[¬e]]bγ = b¬P[[e]]bγ P[[e1 ∧ e2]]bγ = P[[e1]]bγ b∧ P[[e2]]bγ
P[[(e1, e2)]]bγ = (P[[e1]]bγ, P[[e2]]bγ)∅ P[[πi(e)]]bγ = bπi(P[[e]]bγ)

P[[∅]]bγ = ∅∅ P[[{e}]]bγ = {P[[e]]bγ}∅

P[[e1 ∪ e2]]bγ = P[[e1]]bγ b∪ P[[e2]]bγ P[[e1 − e2]]bγ = P[[e1]]bγ b− P[[e2]]bγ
P[[

S
e]]bγ = bS P[[e]]bγ P[[{e | x ∈ e0}]]bγ = {P[[e]]bγ[x 	→ v] | v b∈ P[[e0]]bγ)}

P[[e1 ≈ e2]]bγ = P[[e1]]bγ b≈ P[[e2]]bγ P[[if e0 then e1 else e2]]bγ = ĉond(P[[e0]]bγ, P[[e1]]bγ, P[[e2]]bγ)

Fig. 6. Provenance-tracking semantics

values) and fuse the top-level annotations. For comprehension, we leave the top-level
annotation alone. For flattening

⋃
e, we take the lifted union (∪̂) of the elements of e and

add the top-level annotation of e. Similarly, ŝum(e) uses +̂ to add together the elements
of e, fusing their annotations with that of e. For set difference, to ensure dependency
correctness, we must conservatively include all of the colors present on either side in
the annotation of the top-level expression. Similarly, for equality tests, we must include
all of the colors present in either value in the result annotation.

Remark 1. Our approach to handling negation and equality is somewhat awkward since
it may result in very large annotations. For example, consider {1a, 2b}c − {1d, 3e}f :
clearly, changing any of the input locations a, b, c, d, e, f can cause the output to change.
In contrast, other approaches such as lineage associate tuple t ∈ R−S only with t ∈ R
and all tuples of S. This may seem more “accurate”, but it is not dependency-correct.On
the other hand, our approach can also be more “accurate” than lineage in the presence
of negation; for example, in {1}− {π1(x) | x ∈ S}, our approach will indicate that the
output does not depend on the second components of elements ofS, whereas the lineage
of this query include all the records in S.

However, although our approach to negation and equality has pathological behavior
in some cases, it does seem to provide useful provenance for typical queries. Develop-
ing more sophisticated forms of dependence that are better-behaved in the presence of
negation or equality is an interesting area for future work.

Example 3. Consider an annotated input environment γ̂, shown in Figure 7(a), of
schema R : (A : int, B : int), S(C : int, D : int, E : int) (we use more compact
relational schema notation with field names for readability). Figure 7(b) shows the
provenance tracking semantics of the example queries from Figure 4. We write a123

as an abbreviation for a1, a2, a3, etc. Note that in the count example query, the output
depends on no individual of the input; we cannot change the number of elements of a
multiset by changing field values. However, in a query such as count(σA=B(R)), the
result depends on all of the A and B fields.

These annotated results can easily be used to “highlight” the parts of the input that
may be relevant to a part of the output, by examining the annotations appearing above
the output part of interest. This is how the example in Figure 1 was constructed.

Note that equivalent expressions e ≡ e′ need not satisfy P [[e]] ≡ P [[e′]]; for example,
x− x ≡ ∅ but P [[x− x]] �≡ ∅∅.

Provenance as Dependency Analysis 147

(a)

�γ = [R := {(A : 1a1 , B : 1b1), (A : 1a2 , B : 2b2), (A : 2a3 , B : 3b3)},

S := {(C : 1c1 , D : 2d1 , E : 3e1), (C : 1c2 , D : 1d2 , E : 4e2)}]

(b)

P [[ΠA(R)]]�γ = {(A : 1a1), (A : 1a2), (A : 2a3)}
P [[σA=B(R)]]�γ = {(A : 1a1 , B : 1b1)}a1,b1

P [[R × S]]�γ = {(A : 1a1 , B : 1b1 , C : 1c1 , D : 2d1 , E : 3e1),

(A : 1a1 , B : 1b1 , C : 1c2 , D : 1d2 , E : 4e2), . . .}
P [[ΠBE(σA=D(R × S))]]�γ = {(B : 1b1 , E : 4e2), (B : 2b2 , E : 4e2),

(B : 3b3 , E : 3e1)}a123,d12

P [[R ∪ ρA/C,B/D(ΠCD(S))]]�γ = {(A : 1a1 , B : 1b1), (A : 1a2 , B : 2b2), (A : 2a3 , B : 3b3),

(A : 1c1 , B : 2d1), (A : 1c2 , B : 1d2)}
P [[R − ρA/D,B/E(ΠDE(S))]]�γ = {(A : 1a1 , B : 1b2), (A : 1a2 , B : 2b2)}a123,b123,d12,e12

P [[sum(ΠA(R))]]�γ = 4a1,a2,a3 P [[count(R)]]�γ = 3

Fig. 7. (a) Annotated input environment (b) Examples of provenance tracking

We summarize the main results concerning P [[−]] as follows:

Theorem 1. If Γ � e : τ then (1) P [[e]] : A0[[Γ]]→ A0[[τ]], (2) |P [[e]]| = E [[e]], and (3)
P [[e]] is dependency-correct.

3.2 Static Provenance Analysis

Although it can often be quite accurate, dynamic provenance seems expensive to compute
and nontrivial to implement in a standard relational database system. Moreover, dynamic
analysis cannot tell us anything about a query without looking at (annotated) input data.
In this section we consider a static provenance analysis which statically approximates
the dynamic provenance, but can be calculated more easily and without accessing the
input.

We formulate the analysis as a type-based analysis; annotated types (a-types) τ̂ and
raw types (r-types) ω are defined as follows:

τ̂ ::= ωΦ ω ::= int | bool | τ̂ × τ̂ ′ | {τ̂}
We write Γ̂ for a typing context mapping variables to a-types. We lift the auxiliary a-value
operations of erasure (|τ̂ |), annotation extraction (‖τ̂‖), and compatibility
(τ̂1 ∼= τ̂2) to a-types in the obvious way.

We also define a “union” operation � on compatible types as follows:

ωΦ1
1 � ωΦ2

2 = (ω1 � ω2)Φ1∪Φ2 int � int = int bool � bool = bool

(τ̂1 × τ̂2) � (τ̂ ′1 × τ̂ ′2) = (τ̂1 � τ̂ ′1)× (τ̂2 � τ̂ ′2) {τ̂} � {τ̂ ′} = {τ̂ � τ̂ ′}
Finally, we write τ̂ � τ̂ ′ if τ̂ ′ = τ̂ � τ̂ ′; this is essentially a subtyping relation.

148 J. Cheney, A. Ahmed, and U.A. Acar

bΓ � i : int & ∅

bΓ � e1 : int & Φ1
bΓ � e2 : int & Φ2bΓ � e1 + e2 : int & Φ1 ∪ Φ2

bΓ � e : {intΦ0} & ΦbΓ � sum(e) : int & Φ0 ∪ Φ

bΓ � b : bool & ∅
bΓ � e : bool & ΦbΓ � ¬e : bool & Φ

bΓ � e1 : bool & Φ2
bΓ � e2 : bool & Φ2bΓ � e1 ∧ e2 : bool & Φ1 ∪ Φ2bΓ � e1 : bτ1

bΓ � e2 : bτ2bΓ � (e1, e2) : (bτ1 × bτ2) & ∅

bΓ � e : ωΦ1
1 × ωΦ2

2 & ΦbΓ � πi(e) : ωi & Φi ∪ ΦbΓ � e1 : bτ1
bΓ � e2 : bτ2 bτ1

∼= bτ2bΓ � e1 ≈ e2 : bool & ‖bτ1‖ ∪ ‖bτ2‖

bΓ � e0 : bool & Φ0
bΓ � e1 : bτ1

bΓ � e2 : bτ2 ω1
∼= ω2bΓ � if e0 then e1 else e2 : (bτ1 � bτ2)

+Φ0

bΓ � ∅ : {bτ} & ∅
bΓ � e : bτbΓ � {e} : {bτ} & ∅

bΓ � e1 : {bτ1} & Φ1
bΓ � e2 : {bτ2} & Φ2 bτ1

∼= bτ2bΓ � e1 ∪ e2 : {bτ1 � bτ2} & Φ1 ∪ Φ2bΓ � e1 : {bτ1} & Φ1
bΓ � e2 : {bτ2} & Φ2 bτ1

∼= bτ2bΓ � e1 − e2 : {bτ1} & ‖{bτ1}Φ1‖ ∪ ‖{bτ2}Φ2‖

bΓ � e : {{bτ}Φ2} & Φ1bΓ �
S

e : {bτ} & Φ1 ∪ Φ2bΓ � e1 : {bτ1} & Φ1
bΓ , x:bτ1 � e2 : ω & Φ2bΓ � {e2 | x ∈ e1} : {ωΦ

2 } & Φ1

x:bτ ∈ bΓbΓ � x : bτ
bΓ � e1 : bτ1

bΓ , x : bτ1 � e2 : bτ2bΓ � let x = e1 in e2 : bτ2

Fig. 8. Type-based provenance analysis

We interpret a-types τ̂ as setsA[[τ̂]] of a-values. We interpret the annotations in a-types
as upper bounds on the annotations in the corresponding a-values:

A[[int]] = {i | i ∈ Z} A[[τ̂1 × τ̂2]] = {(v1, v2) | v1 ∈ A[[τ̂1]], v2 ∈ A[[τ̂2]]}
A[[bool]] = {b | b ∈ B} A[[{τ̂}]] = {V | ∀v ∈ V.v ∈ A[[τ̂]]}
A[[ωΦ]] = {wΨ | Ψ ⊆ Φ,w ∈ A[[ω]]}

The syntactic operations |−|, ‖−‖, � and � correspond to appropriate semantic opera-
tions on sets of a-values. We note some useful properties of these operations:

Lemma 2. 1. If v ∈ A[[τ̂]] then |v| ∈ T [[|τ̂ |]] and ‖v‖ ⊆ ‖τ̂‖.
2. If τ̂1 � τ̂2 then A[[τ̂1]] ⊆ A[[τ̂2]] and ‖τ̂1‖ ⊆ ‖τ̂2‖.
3. If τ̂1� τ̂2 is defined thenA[[τ̂1 � τ̂2]] = A[[τ̂1]]∪A[[τ̂2]] and ‖τ̂1� τ̂2‖ = ‖τ̂1‖∪‖τ̂2‖.

The annotated typing judgment Γ̂ � e : τ̂ (sometimes written Γ̂ � e : ω & Φ for
readability, provided τ̂ = ωΦ) extends the plain typing judgment shown in Figure 2.

Proposition 2. The judgment Γ � e : τ is derivable if and only if for any Γ̂ enriching
Γ , there exists a τ̂ enriching τ such that Γ̂ � e : τ̂ . Moreover, given Γ � e : τ ,
and Γ̂ enriching Γ , we can compute τ̂ in polynomial time (by a simple syntax-directed
algorithm).

The correctness of the analysis is proved with respect to the provenance-tracking seman-
tics. This property takes the form of a type-soundness theorem: we simply need to show
that if the input environment γ̂ is well-formed at annotated context Γ̂ then the result
P [[e]]γ̂ is well-formed at type τ̂ :

Provenance as Dependency Analysis 149

(a) �Γ = [R : {(A : inta, B : intb)}, S : {(C : intc, D : intd, E : inte)}]

(b)

�Γ � ΠA(R) : {(A : inta)}�Γ � σA=B(R) : {(A : inta, B : intb)}a,b

�Γ � R × S : {(A : inta, B : intb, C : intc, D : intd, E : inte)}�Γ � ΠBE(σA=D(R × S)) : {(B : intb, E : inte)}a,d

�Γ � R ∪ ρA/C,B/D(ΠCD(S)) : {(A : inta,c, B : intb,d)}�Γ � R − ρA/D,B/E(ΠDE(S)) : {(A : inta, B : intb)}a,b,d,e

�Γ � sum(ΠA(R)) : inta

�Γ � count(R) : int

Fig. 9. (a) Annotated input context (b) Examples of provenance analysis

Theorem 2. If Γ̂ � e : τ̂ then P [[e]] : A[[Γ̂]]→ A[[τ̂]].

This theorem tells us that the annotations we obtain (statically) by provenance analysis
over-approximate those obtained (dynamically) by provenance tracking provided the
initial value γ̂ matchesA[[Γ̂]].

Example 4. Consider an annotated type context Γ̂ , shown in Figure 9(a), where we have
annotated field values A,B,C,D,E with colors a, b, c, d, e respectively. Figure 9(b)
shows the results of static analysis for the queries in Figure 7. In some cases, the type
information simply reflects the field names which are present in the output. However,
the colors are not affected by renamings, as in ρA/C,B/D. Furthermore, note that (if we
replace the colors a, b, c, d, ewith color sets {a1, a2, a3}, etc.) in each case the type-level
colors over-approximate the value-level colors calculated in Figure 7.

Example 5. To illustrate how the analysis works in practice, we consider an extended
example for a query that performs grouping and aggregation:

Q(R) = {(π1(x), sum(G(x))) | x ∈ R}
where we make the following abbreviations:

G(x) :=
⋃{if π1(y) ≈ π1(x) then {π2(y)} else {} | y ∈ R}

τ̂R := inta × intb Γ̂ := R:{τ̂R}
Γ̂1 := Γ̂ , x:τ̂R Γ̂2 := Γ̂1, y:τ̂R

We will derive Γ̂ � Q(R) : {inta × inta,b}. The derivation illustrates how color a is
propagated from the to both parts of the result type, while color b is only propagated to
the second column.

150 J. Cheney, A. Ahmed, and U.A. Acar

First, we can reduce the analysis of Q to analyzing G as follows:

�Γ � R : {�τR}

�Γ1 � x : �τR�Γ1 � π1(x) : inta

�Γ1 � G(x) : {intb}a

�Γ1 � sum(G(x)) : inta,b

�Γ1 � (π1(x), sum(G(x))) : inta × inta,b

�Γ � {(π1(x), sum(G(x))) | x ∈ R} : {inta × inta,b}

We next reduce the analysis of G to an analysis of the conditional inside G:

�Γ1 � R : {�τR} �Γ2 � if π1(y) ≈ π1(x) then {π2(y)} else {} : {intb}a

�Γ1 � {if π1(y) ≈ π1(x) then {π2(y)} else {} | y ∈ R} : {{intb}a}�Γ1 �
�

{if π1(y) ≈ π1(x) then {π2(y)} else {} | y ∈ R} : {intb}a

Finally, we can analyze the conditional as follows:

�Γ2 � y : �τR�Γ2 � π1(y) : inta

�Γ2 � y : �τR�Γ2 � π1(x) : inta

�Γ2 � π1(y) ≈ π1(x) : boola

�Γ2 � y : �τR�Γ2 � π2(y) : intb

�Γ2 � {π2(y)} : {intb} �Γ2 � {} : {int}�Γ2 � if π1(y) ≈ π1(x) then {π2(y)} else {} : {intb}a

3.3 Discussion

We have implemented a prototype interpreter for the NRC that performs ordinary type-
checking and evaluation as well as provenance tracking and analysis. We used this
implementation to construct the examples.

We chose to study provenance via the NRC because it is a clean and system-
independent model; we believe our results can be specialized to common database
implementations and physical operators without much difficulty. We have not yet in-
vestigated scaling this approach to large datasets. There are several apparent obstacles
to implementing annotation-based provenance tracking in standard database systems
that do not natively support annotation. Recent research has begun to address this prob-
lem [6,18] and we plan to investigate whether these techniques can be used to implement
our approach.

Static provenance analysis is also more expensive than ordinary typechecking, but
since the overhead is proportional only to the size of the query, not the (usually much
larger) data, this seems acceptable. Moreover, static analysis may be useful in optimizing
provenance tracking, for example by using the results of static analysis to avoid tracking
annotations that are statically irrelevant to the output.

4 Related and Future Work

Slicing and other dependence analyses. Dependence tracking and analysis have been
shown to be useful in many contexts [1] such as program slicing [7,16,24], memoization
and caching [2,4], and information-flow security [20]. In program slicing [24], the goal

Provenance as Dependency Analysis 151

is to identify a (small) set of program points whose execution contributes to the value
of an output variable (or other observable behavior). This is analogous to our approach
to provenance, except that provenance identifies relevant parts of the input database,
not the program (i.e. query). Our approach is inspired by, and in some cases could be
viewed as an adaptation of, these techniques to a database setting with collection types.

Provenance in databases. Most work on provenance in databases [23,15,11,12,10] has
focused on identifying information that explains why some data is present in the output
of a query (or view) or where some data in the output was copied from in the input.
However, semantic characterizations of these intuitions have been elusive and difficult
to generalize beyond monotone relational queries. Our work generalizes some of these
techniques and provides clear semantic guarantees and qualitatively useful provenance
information in the presence of grouping and aggregation.

Updates. Some recent work has generalized where-provenance to database updates
[9,10], motivated by “curated” scientific databases that are updated frequently, often by
(manual) copying from other sources. Our approach addresses an orthogonal issue; we
plan to investigate dependency provenance for updates.

Workflow provenance. Provenance has also been studied in geospatial and scientific
“grid” computation [8,17,21], particularly for workflows (visual programs written by
scientists). At present, formal correctness criteria have not been identified for most of
these approaches, but we believe it to be worthwhile to seek a foundation for workflow
provenance using dependence analysis.

Annotations. Recent research on annotations, uncertainty, and incomplete informa-
tion [6,5,18,19] is closely related to provenance. Green et al. [19] showed that relations
with semiring-valued annotations generalize several variations of the relational model,
including set, bag, probabilistic, and incomplete information models, and identified a
relationship between free semiring-valued relations and why-provenance.

5 Conclusions

Provenance information that relates parts of the result of a query to “relevant” parts of the
input is useful for many purposes, including judging the reliability of information based
on the relevant sources and identifying parts of the database that may be responsible for
an error in the output of a query. We have argued that the notion of dependence, familiar
from program slicing, information flow security, and other analyses, provides a solid
semantic foundation for understanding provenance for complex database queries. In this
paper we introduced a semantic characterization of dependency provenance, showed
that minimal dependency provenance is not computable, and presented approximate
tracking and analysis techniques. We believe there are many promising directions for
future work, including implementing efficient practical techniques, identifying more
sophisticated and useful dependency properties, and studying dependency provenance
in other settings such as update languages and workflows.

Acknowledgments. We wish to thank Peter Buneman and Stijn Vansummeren for helpful
discussions on this work.

152 J. Cheney, A. Ahmed, and U.A. Acar

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency. In: POPL,
pp. 147–160. ACM Press, New York (1999)

2. Abadi, M., Lampson, B., Lévy, J.-J.: Analysis and caching of dependencies. In: ICFP, pp.
83–91. ACM Press, New York (1996)

3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)
4. Acar, U.A., Blelloch, G.E., Harper, R.: Selective memoization. In: Proceedings of the 30th

Annual ACM Symposium on Principles of Programming Languages, ACM Press, New York
(2003)

5. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: ULDBs: Databases with uncertainty
and lineage. In: VLDB, pp. 953–964 (2006)

6. Bhagwat, D., Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: An annotation management system
for relational databases. VLDB Journal 14(4), 373–396 (2005)

7. Biswas, S.: Dynamic Slicing in Higher-Order Programming Languages. PhD thesis, Univer-
sity of Pennsylvania (1997)

8. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM Comput.
Surv. 37(1), 1–28 (2005)

9. Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated databases. In:
SIGMOD 2006, pp. 539–550 (2006)

10. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit provenance in
query and update languages. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353,
pp. 209–223. Springer, Heidelberg (2006)

11. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data provenance.
In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer,
Heidelberg (2000)

12. Buneman, P., Khanna, S., Tan, W.-C.: On propagation of deletions and annotations through
views. In: PODS, pp. 150–158 (2002)

13. Buneman, P., Naqvi, S.A., Tannen, V., Wong, L.: Principles of programming with complex
objects and collection types. Theor. Comp. Sci. 149(1), 3–48 (1995)

14. Cheney, J., Ahmed, A., Acar, U.: Provenance as dependency analysis. Technical Report
arXiv:0708.2173v1, arXiv.org e-Print archive (2007)

15. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environ-
ment. ACM Trans. Database Syst. 25(2), 179–227 (2000)

16. Field, J., Tip, F.: Dynamic dependence in term rewriting systems and its application to program
slicing. Information and Software Technology 40(11–12), 609–636 (1998)

17. Moreau, L., Foster, I. (eds.): IPAW 2006. LNCS, vol. 4145. Springer, Heidelberg (2006)
18. Geerts, F., Kementsietsidis, A., Milano, D.: Mondrian: Annotating and querying databases

through colors and blocks. In: ICDE 2006, p. 82 (2006)
19. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS, pp. 31–40.

ACM Press, New York (2007)
20. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal on Se-

lected Areas in Communications 21(1), 5–19 (2003)
21. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD

Record 34(3), 31–36 (2005)
22. Wadler, P.: Comprehending monads. Mathematical Structures in Computer Science 2, 461–

493 (1992)
23. Wang, Y.R., Madnick, S.E.: A polygen model for heterogeneous database systems: The source

tagging perspective. In: VLDB, pp. 519–538 (1990)
24. Weiser, M.: Program slicing. In: ICSE, pp. 439–449. IEEE Press, Piscataway, NJ, USA (1981)

A Theory of Stream Queries

Yuri Gurevich1, Dirk Leinders2, and Jan Van den Bussche2

1 Microsoft Research
gurevich@microsoft.com

2 Hasselt University and Transnational University of Limburg
{dirk.leinders,jan.vandenbussche}@uhasselt.be

Abstract. Data streams are modeled as infinite or finite sequences of
data elements coming from an arbitrary but fixed universe. The uni-
verse can have various built-in functions and predicates. Stream queries
are modeled as functions from streams to streams. Both timed and un-
timed settings are considered. Issues investigated include abstract defini-
tions of computability of stream queries; the connection between abstract
computability, continuity, monotonicity, and non-blocking operators; and
bounded memory computability of stream queries using abstract state
machines (ASMs).

1 Introduction

Over the past few years in the database systems research community, much at-
tention has been paid to query languages and query processing for data streams.
We give just a few references here [15,5,6,14,7]; much more has been published.
Stream queries are typically “continuous” in that their result must be continu-
ally updated as new data arrives: indeed, stream applications are “data-driven”.
Consequently, continuous stream queries must be computed in an incremental
fashion, using so-called “non-blocking” operators. Relational algebra operators
that are monotone are non-blocking; query operators that are not monotone,
such as difference, or grouping and aggregation, are typically made non-blocking
by restricting them to sliding windows.

The aim of this paper is to offer a theoretical framework that attempts to clar-
ify various philosophical questions about stream queries. For instance, if streams
are thought of as infinite, and arbitrary queries are modeled as functions from
streams to streams, what does it mean for a query to be computable? Is com-
putability the same concept as continuity? What is the precise connection be-
tween continuity and monotonicity? Can one give a formal definition of what it
means for an arbitrary operator to be non-blocking?

Earlier work in this direction has already been reported by Arasu and Widom
[3] and by Law, Wang and Zaniolo [12]. Our work has the following new features:

1. We distinguish from the outset between timed and untimed applications. In a
timed setting, the timestamps in the output stream of some stream query are
synchronized with the timestamps in the input stream; in an untimed setting,
they are not. The usual applications mentioned in the data stream literature,

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 153–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

154 Y. Gurevich, D. Leinders, and J. Van den Bussche

such as stock quotes or sensors, are timed. Nevertheless, untimed streams also
find applications, e.g., in audio or video streams, or Internet broadcasts, where
the logical order among arriving packets is more important than precise tim-
ing information. More fundamentally, however, much of the theory of stream
queries can already be developed on the more basic untimed level, viewing
timed streams merely as a special case of untimed streams. Nonetheless, we
will also identify some specific aspects of timed queries, in particular, their
non-predicting nature (in a sense that will be made precise later).

2. Our formal definitions of abstract computable stream queries are grounded
in the theory of type-2 effectivity (TTE) [16]. This is a well-established
theory of computability on infinite strings (and much more, which we will
not use here). The basic idea of TTE, strikingly analogous to the idea of
continuous stream queries, is that arbitrary long finite prefixes of the infinite
output can be computed from longer and longer finite prefixes of the infinite
input. A basic insight from TTE is that computable functions on infinite
strings are indeed “continuous”, but now in the precise sense of mathematical
topology. More specifically, under a natural metric on infinite strings (known
as the Cantor metric), where two strings are closer the longer they agree on
their prefixes, computable functions can be shown to be continuous in the
standard mathematical sense of the word. Continuity is a useful property
for it provides us with a principled way to prove that not just any function
from streams to streams can be naturally considered to be a stream query.

3. Our theory is abstract in the sense that elements from a stream can come
from an arbitrary universe, equipped with predicates and functions. In math-
ematical logic one speaks of a structure, and we will refer to the universe as
the background structure. In particular, we do not concern ourselves with the
encoding of stream elements as bitstrings (finite or infinite), or with Turing
machine computations on those bitstrings, since those aspects are already
well understood from the TTE. Consequently, our theory is very general,
and computable stream queries will turn out to be the same thing as con-
tinuous functions from streams to streams (where we introduce a variant of
the Cantor topology that accommodates finite as well as infinite streams).

4. We define a concrete computation model for stream queries, called “stream-
ing ASM”. Due to the abstract nature of our theory, streaming ASMs are
naturally based on (sequential) Abstract State Machines [9,10]. Every com-
putable stream query is computable by a streaming ASM with an appro-
priate background structure. Moreover, streaming ASMs allow us to prove
impossibility results. Specifically, we focus on bounded memory machines:
such machines can only remember a constant number of previously seen
stream elements. Bounded memory machines are natural in the context of
query processing; for example, any query operator that applies a sliding win-
dow (typical in streaming applications) is computable in bounded memory.
Bounded memory evaluation of stream queries was already emphasized by
Arasu et al. [1]. We will prove that there exist simple queries that are not
bounded memory computable, one of the simplest being the query inter-

sect: finding the common elements in two interleaved streams.

A Theory of Stream Queries 155

The present paper is a companion to our paper with Grohe, Schweikardt, and
Tyszkiewicz [8] on Finite Cursor Machines (FCM). There, we studied classical
database query processing using a bounded number of one-way cursors over the
database relations. Streaming ASMs are similar to FCMs, but a crucial difference
is that a streaming ASM has only one cursor, and this cursor is manipulated
by the stream rather than by the machine (recall the data-driven nature of
streaming applications). So, FCMs are unrealistically powerful in the context of
data streams, because they can control their own cursors, which is only realistic
when the stream is fully given as a completed, finite input list. In particular,
FCMs are certainly at least as powerful as streaming ASMs. Since we already
know that the query intersect mentioned above is not even computable by
an FCM, it follows by a reduction that the query is also not computable by
a streaming ASM. Yet, in this paper we will give a direct proof of this result,
that is much simpler and thus provides more direct insight on the limitations
of bounded memory stream processing. Moreover, we will see that there exist
stream queries that are computable by an FCM, but not by a streaming ASM.

We must also note that Arasu et al. have already presented impossibility
results for bounded memory evaluation of stream queries [1], which seem to
encompass, for example, the result on the query intersect which we prove in
this paper. Their impossibility proofs, however, assume that stream elements are
encoded in bits: they show, for instance, that intersect cannot be computed
in o(n) bits of memory. Our proof shows how to perform such impossibility
arguments on a level where elements can be stored in their entirety as abstract
objects. Note that it is not so easy to reduce the abstract level to the bit level,
because in o(n) bits of memory we cannot simply encode on the fly all elements
we encounter as binary numbers, and still remember whether we have already
seen some element earlier. More generally, there seems to be a discrepancy in the
mentioned paper [1] between the computation model assumed for the positive
results, and that assumed for the negative results (that for the negative results
appears weaker).

2 Abstract Computability

Basically, we assume a universe U of data elements. A stream is a possibly infinite
sequence of data elements. The set of all streams is denoted by Stream, and the
set of all finite streams is denoted by finStream. Thus finStream ⊆ Stream. We
denote the i-th element of a stream s by si.

Our model of streams is very abstract and thus very general.

Example 1. Consider measurements coming from sensors, where each entry is a
pair of the form (i, m) with i a sensor identifier and m a measurement. Suppose,
at each discrete time point t (with time points modeled by natural numbers),
we collect all entries that arrived in the interval (t − 1, t]. Then U would contain
sets of entries as data elements.

156 Y. Gurevich, D. Leinders, and J. Van den Bussche

In a setting where time points would be more fine-grained, so that at most
one entry can arrive per clock tick, U would contain entries directly as data
elements, plus possibly some dummy element to indicate no entry arrived. ��
Mathematically, a stream query is simply a mapping from Stream to Stream. Not
all such mappings make sense in the streaming context, however. To make for-
mal which queries do make sense, we define the notion of abstract computability.
Intuitively, a stream query Q is abstract computable if there exists a function
K : finStream → finStream such that the result of Q can be obtained by con-
catenating the results of K applied to larger and larger prefixes of the input.

Formally, for any K as above, we define the function

Repeat(K) : s �→
size(s)⊙

k=0

K(s≤k) of type Stream → Stream,

where s≤k is the prefix of s of length k, and size(s) is the length of s in case s
is finite, and ∞ in case s is infinite (in which case the index k ranges over all
natural numbers). Here

⊙
denotes concatenation. We now define:

Definition 2. A query Q : Stream → Stream is abstract computable if there
exists a function K such that Q = Repeat(K). We call K a kernel for Q.

The following example shows an abstract computable stream query:

Example 3. Let Q be the running average query, defined on streams of natural
numbers and returning at each step the average value of the numbers arrived so
far. The function returning (

∑
ui)/n on input stream u1 . . . un (and returning

the empty stream when the input is the empty stream) is a kernel for Q. ��
In connection to finite streams, we make the following two important observa-
tions:

1. The answer to an abstract computable query on an infinite stream can be
finite.
Example 4. Consider the query Q that returns all elements in the input
stream satisfying a certain predicate P . On a stream with only a finite num-
ber of elements satisfying P , the result of Q will be finite. Note that this
query Q indeed has a kernel: for example the function K that given a finite
stream, returns its last element if it satisfies P , and returns the empty stream
otherwise, is a kernel for Q. ��

2. The answer to an abstract computable query on a finite stream must be finite.
Indeed, the result of K is always a finite stream and on a finite input stream,
K is applied only a finite number of times. So, queries transforming finite
streams into infinite streams will never be computable in our model. This
is not a problem since our model is primarily meant to capture input-data-
driven computations.

We note:

Proposition 5. Abstract computable stream queries are closed under composi-
tion.

A Theory of Stream Queries 157

3 Continuity

We will now see that abstract computability and continuity of stream queries
coincide.

Recall from elementary calculus [4] that a real function f : R → R is called
continuous if for all x ∈ R, for every neighborhood around f(x), there exists
a neighborhood around x that is completely mapped into the neighborhood of
f(x). In order to generalize this definition of continuity to stream queries, we
must first agree on a definition of neighborhood of a stream s. In other words,
we need to define a suitable topology on streams.

For infinite streams, there is a standard topology, known from computable
analysis [16], called the Cantor topology. This topology arises from the following
metric (distance function) on infinite streams:

d(s, s′) =

{
0 if s = s′,
2−n if s 	= s′ and n = min{i | si 	= s′i}.

According to this topology, open balls around an infinite stream s are sets of the
form B(p), with p some finite prefix of s, defined as follows:

B(p) = {s′ infinite stream | p is a prefix of s′}.

In this paper, we generalize this notion of open ball to the setting of both
finite and infinite streams, as follows:

Definition 6. Let p ∈ finStream. Then

B(p) := {s′ ∈ Stream | p is a prefix of s′}.

Any set of the form B(p), for some p ∈ finStream, is called an open ball. Ele-
ments of B(p) are called continuations of p.

This notion of open ball gives rise to a topology on streams, and the notion of
continuity then amounts to the following:

Definition 7. Q : Stream → Stream is continuous if for every open ball B, the
pre-image Q−1(B) is a union (possibly infinite) of open balls.

Remark 8. The Cantor metric described above has only been defined on infinite
streams. One may wonder whether the topology on Stream given by Definition 6
can be given by some metric of that sort but applicable to finite as well as infinite
streams. The answer is negative: metrizable topologies must be Hausdorff, and
our topology is not. Indeed, an infinite stream q and a finite prefix p of q can not
be separated as each open ball containing p contains q. For basic background
on topology, we refer to Hocking and Young [11].

Theorem 9. Let Q be a stream query mapping finite inputs to finite outputs.
Then Q is abstract computable if and only if Q is continuous.

158 Y. Gurevich, D. Leinders, and J. Van den Bussche

Proof. For the only-if direction let K be a kernel for Q, i.e., Q = Repeat(K).
Consider X := B(p). Let s be a stream in Q−1(X). Then, from some natural
number � on, we know that

⊙�
k=0 K(s≤k) starts with p. Consider then the open

ball B(s1 . . . s�). Every s′ ∈ B(s1 . . . s�) is mapped into X. Indeed,

Q(s′) =
�⊙

k=0

K(s≤k)

size(s)⊙

k=�+1

K(s′≤k)

clearly starts with p. Thus, s ∈ B(s1 . . . s�) ⊆ Q−1(X), as desired.
For the if-direction, we define a kernel K for Q as follows. K(()) := Q(()), and

K(su) := Q(su) − Q(s), where the difference is to be interpreted as removing a
prefix, so that Q(su) = Q(s)
K(su). Note that Q(s) and Q(su) are both finite.

For K to be well-defined, we must show that Q(s) is indeed a prefix of Q(su).
Consider X = Q−1(B(Q(s))). By continuity, X is a union of open balls. Thus,
there must be an open ball B(p) with s ∈ B(p) ⊆ X. Clearly, p must be a prefix
of s. But then also su ∈ B(p) ⊆ X, and therefore Q(su) ∈ B(Q(s)). This means
that Q(s) is a prefix of Q(su).

We now show that Repeat(K) = Q by showing that they have the same
prefixes. By construction, Repeat(K) coincides with Q on finite streams. Let
s = s1s2 . . . be an infinite stream and let v1 . . . vj be an arbitrary prefix of
Repeat(K)(s). Let i be the smallest natural number such that v1 . . . vj is a prefix
of Repeat(K)(s1 . . . si) = Q(s1 . . . si). Since Q(s) ∈ B(Q(s1 . . . si)), we have
v1 . . . vj also as a prefix of Q(s). We conclude that every prefix of Repeat(K)(s)
is also a prefix of Q(s).

For the other direction, let v1 . . . vj be an arbitrary prefix of Q(s). By continu-
ity, v1 . . . vj is also a prefix of Q(s1 . . . si) for some i. Since Repeat(K)(s1 . . . si) =
Q(s1 . . . si), we have v1 . . . vj also as a prefix of Repeat(K)(s1 . . . si), which by
construction is itself a prefix of Repeat(K)(s), as desired. ��

Theorem 9 can be used to prove that there are simple stream queries that are
not abstract computable.

Example 10. Consider the following query check. Let a, b ∈ U and let s be
a stream over U. Then check(s) is the stream (a) if b does not occur in s;
otherwise, check(s) is the empty stream (). This query is not abstract com-
putable; we prove that check is not continuous. Consider the open ball B(a).
Clearly, the empty stream () is in check

−1(B(a)). The only open ball that con-
tains the empty stream is B(()). This open ball, however, is not included into
check

−1(B(a)). Indeed, (b) ∈ B(()), but check(b) = () 	∈ B(a). ��

Remark 11. In connection to Theorem 9 we remark the following:

1. Suppose we would have extended the Cantor metric to finite (as well as
infinite) streams in the obvious manner; in particular, if s is a finite prefix
of s′, but s 	= s′, then we define d(s, s′) = 2−(n+1) with n the length of
s. In the resulting topology, abstract computable queries need no longer be
continuous. A simple example is provided by the query Q from Example 4.

A Theory of Stream Queries 159

Let U := {a, b} and let P be true of a and false of b. Consider the open ball
B containing only the empty stream (). Then Q maps the infinite stream b
containing only b’s into B. Any open ball B(p) around b, however, contains
the stream pa which is not in Q−1(B). Thus, Q is not continuous.

2. The qualification in Theorem 9 that Q must map finite inputs to finite
outputs is important for the if-direction. Indeed, any constant query, that
always outputs some fixed infinite stream, is continuous, but not abstract
computable (precisely because it maps finite to infinite).

4 The Finite Case

Considering only finite streams makes the situation simpler. Define a finite
stream query as a mapping from finStream to finStream. Define abstract com-
putability of finite stream queries in the same way as for queries on Stream, and
consider the topology on finStream induced by the topology on Stream, i.e., the
open balls are now finite continuations of finite streams. We will use the notation
Bfin(p) to denote the set of all finite continuations of the finite stream p. We
then indeed have:

Proposition 12. A finite stream query is abstract computable if and only if it
is continuous.

In the finite case, there is also a third equivalent notion: monotonicity. A query
Q : finStream → finStream is called monotone if for all s, s′ ∈ finStream, s � s′

implies Q(s) � Q(s′), where � denotes the “prefix of” relation.

Proposition 13. A finite stream query is continuous if and only if it is monotone.

Proof. For the if-direction let Q : finStream → finStream be monotone. Consider
X := Bfin(p). Let s be a stream in Q−1(X). Then, s ∈ Bfin(s) ⊆ Q−1(X).
Indeed, s′ ∈ Bfin(s) implies s � s′, which by monotonicity implies Q(s) � Q(s′).
As Q(s) has p as a prefix, Q(s′) has p as a prefix too and thus Q(s′) ∈ X.

The only-if direction is proved by the argument already used in the proof of
the if-direction of Theorem 9, where we showed that K is well-defined. Con-
cretely, let Q : finStream → finStream be continuous. Let s � s′. Consider
X := Q−1(Bfin(Q(s))). By continuity, X is a union of open balls. Thus, there
must be an open ball Bfin(p) with s ∈ Bfin(p) ⊆ X. Clearly, p must be a prefix
of s. But then also s′ ∈ Bfin(p) ⊆ X, and therefore Q(s′) ∈ Bfin(Q(s)). This
means that Q(s) � Q(s′). ��

As a corollary we obtain the following equivalence already noted by Law, Wang
and Zaniolo (LWZ), who referred to our notion of abstract computability as
computability by a “nonblocking” operator:

Corollary 14 ([12]). Let Q be a finite stream query. Q is computable by a
nonblocking operator if and only if Q is monotone.

160 Y. Gurevich, D. Leinders, and J. Van den Bussche

The proof given by LWZ is slightly confusing. Their formalism is based on a
notion of queries on finite streams that are computable by (not necessarily non-
blocking) “operators”. They fail to mention, however, that any query on finite
streams is computable by such an operator.

5 Time

In some applications, the output stream is synchronized with the input stream.
In such cases, we need an additional requirement on stream queries beyond mere
abstract computability.

Example 15. Consider the following instance of the query from Example 4: the
input is a stream of numbers (e.g., sensor readings) and the output consists of
all readings below a certain threshold, say 0. In an “untimed” setting, where the
original time points of the output readings are not required by the client of the
query, we can simply formalize this stream query as being abstract computable
with kernel function K0 with K0(()) = (), and

K0(su) =

{
u if u < 0
() otherwise.

On the other hand, in a “timed” setting stream positions in the output are
supposed to be synchronized with stream positions in the input [3,2]. In that
case, the above formalization is inadequate, because, the 5th element of the
output may well be, say, the 10th element of the input!

A more proper computation would be given by the function K1 with again
K1(()) = (), and now

K1(su) =

{
u if u < 0
null otherwise.

where null is an explicitly visible element denoting that the reading at this time
point was not below 0. ��

The above discussion motivates:

Definition 16. A stream query Q is synchronous abstract computable (SAC) if
Q = Repeat(K) for some kernel K : finStream → finStream such that K(()) = ()
and every other K(s) is of length one. We will call such kernel K a length-one
kernel.

SAC stream queries can be characterized by means of non-predicting queries.
Here and below, N0 stands for the set of natural numbers without zero.

Definition 17. A stream query Q is non-predicting if for all streams s and s′

and for all t ∈ N0 such that s≤t = (s′)≤t, we have Q(s)t = Q(s′)t.

A Theory of Stream Queries 161

We note that non-predicting is part of the definition of “stream operator” by
Arasu, Babu and Widom [3,2].

Proposition 18. A stream query is SAC if and only if it is non-predicting.

Proof. Let K be a length-one kernel for stream query Q. Let s, s′ ∈ Stream and
t ∈ N0 such that s≤t = (s′)≤t. Then

Q(s)t = K(s≤t) = K((s′)≤t) = Q(s′)t

and thus Q is non-predicting.
For the “if” direction, let Q be non-predicting. For each finite stream p of

length t, define π(p) as the infinite stream with π(p)i = pi for i ≤ t and with
π(p)i = pt for i > t. Then the following function K is a length-one kernel for Q.
If p is a finite stream of length t then K(p) := Q(π(p))t.

Furthermore, for each stream s and any time instant t, define π′(s, t) as the
infinite stream with π′(s, t)i = si for i ≤ t and with π′(s, t)i = st for i > t. We
now prove that K is indeed as desired. Let s be a stream and let t be a time
instant. Then

Q(s)t = Q(π′(s, t))t = Q(π(s≤t))t = K(s≤t).

Here, the first equality follows from the fact that Q is non-predicting; the second
equality follows from the definition of π′(s, t); and the third equality follows from
the definition of K. ��

We also have:

Proposition 19. SAC stream queries are closed under composition.

6 Complexity Limitations

The definition of abstract computability does not impose any restriction on K:
the function is not even required to be computable, neither in the classical sense
nor in the sense of TTE. The results in the previous sections are thus very
general.

To further study the limitations of streaming applications, however, such re-
strictions are necessary. Concretely, for a class C of functions from finStream
to finStream, we say that a query Q : Stream → Stream is abstract computable
modulo C if Q has a kernel K in C. The class C could for example be the class
of functions computable in the classical sense or in the sense of TTE; or—as
in the “streaming model of computation” [5]—C could be the class of functions
incrementally computable in polylog space and in polylog time per data element.

In the next section, we will define several classes C of functions computable by
a concrete model based on the Abstract State Machine (ASM) methodology [9],
that we will call “streaming ASM” (sASM). We will study abstract computability
modulo the classes C obtained by altering the computation power of the model.

162 Y. Gurevich, D. Leinders, and J. Van den Bussche

7 Streaming ASMs

An abstract state machine (ASM) is a transition system whose states are many-
sorted first-order structures. Transitions change the interpretation of some of the
function and relation symbols—those in the dynamic part of the vocabulary—
and leave the remaining symbols—those in the static part of the vocabulary—
unchanged. The part of the structure that is never changed during state transi-
tions, i.e., the structure over the static part of the vocabulary, is typically called
the background structure. Transitions are described by simple rules that produce
state updates which are “fired” simultaneously (if they are inconsistent, no up-
date is carried out). A crucial property of the sequential ASM model is that in
each transition only a limited part of the state is changed. The detailed definition
of sequential ASMs is given in the Lipari guide [9].

We now describe the streaming abstract state machine (sASM) model.

The states: The base set of any state, i.e., the universe of the structure in the
sense of logic, contains at least our universe U of data elements. We assume that
U contains an element ⊥.

The static functions and predicates on the base set include, but are not limited
to, the functions and predicates defined on U.

Each state of an sASM contains a finite number of dynamic functions on
the base set. There are always the nullary dynamic function in and a number
of nullary dynamic functions, called output registers, denoted by out , possibly
with subscripts. The output registers and in take values in U.

The names of the static and dynamic functions and predicates are collected
in a vocabulary.

The program: A program for an sASM is a basic sequential program in the sense
of ASM theory. Concretely, a basic update rule has the form: f(t1, . . . , tn) := t0
where f is a function name and t0, . . . , tn are terms in the vocabulary. To fire
the basic update rule at a state A, evaluate the terms t0, . . . , tn in A to elements
a0, . . . , an in the base set and then change the interpretation of f in (a1, . . . , an)
to a0.

Update rules r1, . . . , rm can be combined to a new rule par r1 . . . rm end-
par, the semantics of which is this: Fire rules r1, . . . , rm in parallel; if they are
inconsistent then do nothing.

Furthermore, if r1 and r2 are rules and ϕ is a quantifier-free formula in the
vocabulary, then if ϕ then r1 else r2 endif is also a rule. The semantics is
obvious.

Now, an sASM program is just a single rule.

The run and the output: An sASM M that is set to work on a finite stream s
starts in the state where all dynamic functions have the interpretation ⊥, except
for the function in: In the initial state, the function in contains the first element
of the stream s.

The run of M on s is the sequence of states obtained as follows: start from
the initial state and fire (the rule of) M ’s program, in each step interpreting

A Theory of Stream Queries 163

the function in as the next element in s. The sASM halts when the end of
s is reached. The interpretation of in is dynamic but it is controlled by the
environment rather than by the machine; in is an external function.

We define the final output of M on a finite stream s as the stream obtained
by concatenating the interpretations of the output registers in some predefined
order when M has halted, and where ⊥-elements are disregarded.

We now say that an sASM M computes a function K : finStream → finStream
(meant as a kernel for a stream query) if for all finite streams s, the final output
of M on s equals K(s). By KM we denote the function K computed by M .

It is important to note that the final output of an sASM M on a stream
s1 . . . sn+1 can be simply obtained by running M on the input s1 . . . sn first, and
then making one final step upon reading sn+1. Consequently, on any stream s
(finite or infinite), we can compute Repeat(KM)(s) simply by continuously run-
ning M on s, at each step producing the current output. We refer to Repeat(KM)
as the stream query computed by M .

Example 20. Recall Example 1. In the setting where U contains sets of entries,
there could for example be a function defined on U that given a set of entries,
returns the set of sensor identifiers that measured an alarmingly high value.

In the setting where U contains entries directly, there could for example be
a predicate defined on U that checks whether an entry has an alarmingly high
measurement and a function that given an entry, returns the sensor identifier of
the entry. ��

Example 21. Consider the sliding window join between two streams of tuples of
natural numbers over the attributes {A, B} and {C, D}, where the join condi-
tion is B = C. The output tuples have attributes {A, B, D}. The universe U

then contains ⊥, TupleAB, TupleCD, and TupleABD, with TupleAB the set of
tuples over the attributes {A, B}, and similarly for TupleCD and TupleABD. The
function joinB=C : TupleAB × TupleCD → TupleABD checks whether two tuples
join on their B- and C-attributes and returns the joined tuple; the result is ⊥ if
the tuples do not join.

The output of the sliding window join depends on two streams, whereas
streaming ASMs work on a single stream. Moreover, the output depends on
the particular interleaving in which the streams arrive. By choosing an appro-
priate universe U, however, we can represent the two input streams and their
interleaving as a single stream.

Concretely, we extend the universe U with the set TaggedTuple of elements of
the form 〈r:u〉 and 〈s:v〉 with u ∈ TupleAB and v ∈ TupleCD. A tagged tuple
encodes an element and its origin. For example, the stream of tagged tuples

〈r:(1, 2)〉〈s:(2, 3)〉〈s:(3, 4)〉 . . .

is a representation of the interleaving of the tuple (1,2) arriving in the first
stream, followed by the tuples (2,3) and (3,4) arriving in the second stream, and
so on. Furthermore, we add the predicates R and S to the universe U to test
whether an element is of the form 〈r:u〉 or 〈s:v〉, respectively. Finally, we add

164 Y. Gurevich, D. Leinders, and J. Van den Bussche

a function strip : TaggedTuple → TupleAB ∪ TupleCD that removes the tag of a
tagged tuple. Static functions return ⊥ when one of the arguments is ⊥.

Assume for simplicity that the window size is 2. We then equip the sASM
with 4 nullary dynamic functions regR

i , and regS
i for i = 1, 2. The following is

now a program for an sASM computing the sliding window join described above.

par
if R(in) then

par
regR

1 = in
regR

2 = regR
1

out1 = joinB=C(strip(in), strip(regS
1))

out2 = joinB=C(strip(in), strip(regS
2))

endpar
endif
if S(in) then

par
regS

1 = in
regS

2 = regS
1

out1 = joinB=C(strip(regR
1), strip(in))

out2 = joinB=C(strip(regR
2), strip(in))

endpar
endif

endpar ��

8 Bounded-Memory and o(n)-Bitstring sASMs

Due to the extreme generality of the ASM model, one should not expect that
restricting attention to stream queries that are computable by an sASM would
imply any limitation. Indeed, the only restriction that comes from our sASM
model is that at each step in the computation of the stream query, only a con-
stant number of elements can be output. More concretely, since the background
structure of an sASM could, a priori, be anything, we have the following propo-
sition and corollary (which in itself are philosophically entirely uninteresting):

Proposition 22. Let k be a fixed natural number and let K : finStream →
finStream be any kernel function such that the length of K(s), for any finite
stream s, is at most k. Then the stream query Repeat(K) is computable by some
sASM.

Proof (sketch). It is an easy matter for an sASM to compute Repeat(K) if it has
1) a background structure containing a) the set of all finite streams finStream,
b) the append function of sort finStream × U → finStream, c) the function K,
and d) functions element i for i = 1, . . . , k to extract elements out of a finite
stream; and 2) a nullary dynamic function s containing at each step the part of
the stream that has already arrived.

A Theory of Stream Queries 165

At each step, the sASM uses the append function to update the dynamic
function s; it applies K to the stream s; and it uses the extraction functions
element i to update the output registers. ��

Corollary 23. Every SAC query is abstract computable by an sASM.

In order to formulate a relevant complexity limitation on stream queries, we
propose “bounded-memory sASMs”.

Definition 24. A bounded-memory sASM is an sASM with the following re-
strictions: 1) no output register can ever be used as an argument to a function;
2) all dynamic functions are nullary; and 3) non-nullary (static) functions can
only be applied in rules of the form out := t0, with out an output register and t0
a term over the vocabulary.

Example 25. The sASM computing the sliding window join in Example 21 is a
bounded-memory sASM. The obvious sASM for computing the running average
query from Example 3, however, is not bounded-memory (but see later, when
we introduce bitstring sASMs). ��

Every CQL-query where a finite window is applied to the input streams ([2]) is
computable by a bounded-memory sASM. Indeed, let Q be such a CQL-query.
Then, Q = Repeat(KM), where M is the following sASM. For each window of Q
of size n, the sASM M has n dynamic constants. When M receives a new input
element, say with tag 〈r:〉, the sASM simulates the sliding of the window(s) on
input stream r by updating the corresponding dynamic constants accordingly.
In each step, the output is computed in a brute-force way. This technique was
already illustrated in Example 21.

Moreover, every duplicate-eliminating SPJ-query computable in bounded
memory in the sense defined by Arasu et al. is computable by a bounded-memory
sASM [1].

Bounded-memory sASMs also have some limitations: even the very simple
stream query that checks whether two streams intersect, is not computable by
a bounded-memory sASM. Let E be an infinite set of data elements and let
TaggedElement be the set of elements of the form 〈r:u〉 and 〈s:u〉 with u ∈ E.
A stream over TaggedElement then represents the interleaving of two streams
over E (see Example 21). Let U be the set TaggedElement extended with the
boolean values true and false. The query intersect is defined on streams
over U and checks whether a common element has been seen in the interleaved
streams over E. Concretely, the result of intersect on a stream s over U is the
stream s′ such that the n-th element of s′ is true if and only if for some i, j ∈ N0
with i, j < n and for some u ∈ E, we have si = 〈r:u〉 and sj = 〈s:u〉.

Proposition 26. intersect is not computable by a bounded-memory sASM.

Proof. Let M be a bounded-memory sASM such that intersect is equal to
Repeat(KM).

166 Y. Gurevich, D. Leinders, and J. Van den Bussche

Let Ω be the set of predicates of M . Then for each predicate p ∈ Ω of arity
k and for each k-sequence α of elements in {r, s}, define the predicate pα on
E to be true of a tuple (u1, . . . , uk) iff p is true of (〈α1:u1〉, . . . , 〈αk:uk〉). Let
Ω′ := {pα | p ∈ Ω and α ∈ {r, s}k where k = arity(p)}.

Without loss of generality, we assume that E is totally ordered by a predicate
<. Using Ramsey’s theorem, we can find an infinite set V ⊆ E over which the
truth of the predicates in Ω′ on tuples of elements in E only depends on the
way these data elements compare w.r.t. < (details on this can be found, e.g.,
in Libkin’s textbook [13, Section 13.3]). Now choose 2n elements in V , for n
large enough, satisfying v1 < v′1 < · · · < vn < v′n. Let s be the input stream
〈r:v1〉 . . . 〈r:vn〉 and consider the run of M on s. After the step where 〈r:vn〉
is processed there will be at least one element 〈r:v�〉 that M has not stored in
its registers. Then, consider the streams s′ and s′′ of length n + 1 that have s as
a prefix, and with s′n+1 = 〈s:v�〉 and s′′n+1 = 〈s:v′�〉. The runs of M on s′ and
s′′ will be identical to the run of M on s until right after the step where 〈r:vn〉
is processed. In the next step, the machine receives either 〈s:v�〉 or 〈s:v′�〉.
Because v� and v′� have the same relative order with respect to the other v-
elements, each tuple of elements from the set {v1, . . . , v�, . . . , vm} satisfies the
same predicates in Ω′ as the tuple obtained by replacing v� by v′�. By definition
of Ω′, also each tuple of elements from the set {〈r:v1〉, . . . , 〈s:v�〉, . . . , 〈r:vm〉}
satisfies the same predicates in Ω as the tuple obtained by replacing 〈s:v�〉 by
〈s:v′�〉. Therefore, the output of M on s′ will be identical to the output of M
on s′′. As a consequence, Repeat(KM)(s′) and Repeat(KM)(s′′) are equal while
intersect(s′) and intersect(s′′) are different. Thus, M is wrong. ��
This result can also be obtained via a reduction from a result on Finite Cursor Ma-
chines (FCMs) in our earlier work with Grohe, Schweikardt and Tyszkiewicz [8].
An FCM works by moving one-way cursors over a number of input lists using
an internal memory consisting of a finite number of modes, finitely many ele-
ment registers containing input elements, and finitely many registers containing
bitstrings. To manipulate its internal memory, an FCM has a number of func-
tions and predicates, with the restriction that the output of a function is always
a bitstring. It has been shown [8, Theorem 12] that no matter how rich the
background is, an FCM can not check whether two sets intersect using bitstring
registers of size o(n), where n is the size of the input.

The proof we gave here is more direct and therefore provides more insight on
the limitations of bounded memory stream processing. The reduction argument,
however, can easily be generalized to accommodate for bitstring registers of size
o(n). A bitstring sASM is an sASM defined as in Definition 24 with the following
relaxation of restriction 3: non-nullary (static) functions can be used also to
update non-output registers, as long as those functions produce bitstrings. An
o(n)-sASM then is a bitstring sASM such that on each stream s and for each
step n in the run on s, the sASM stores bitstrings of length o(n).

Example 27. We can model a version of the running average query (Example 3)
using o(n)-bitstring sASMs. Indeed, consider streams of natural numbers such
that the value in the n-th position of the stream (for any n) is at most 2polylog(n).

A Theory of Stream Queries 167

Then with a static function from natural numbers to their binary representations,
and the addition and division function on binary numbers, we can compute the
running average with an o(n)-sASM. ��

Proposition 28. The query intersect is not computable by an o(n)-sASM.

Proof. Let M be an o(n)-sASM M working on a stream of tagged elements such
that intersect is equal to Repeat(KM). From M , we can then construct an
o(n)-FCM M ′ working on two lists of elements in E that checks whether they
have a common element. The FCM M ′ has the same number of bitstring registers
as M , and has an element register for every dynamic constant of M . For every
element in an element register, M ′ remembers from which input list the element
was copied, using its internal mode. Furthermore, let Ω be the set of predicates
of M , including the predicates naturally corresponding to M ’s boolean output
functions. Then the set of predicates of M ′ is the set Ω′ as defined in the proof
of Proposition 26. Finally, if F is the set of functions of M , then the set of
functions F ′ of M ′ is similarly constructed from F as Ω′ is constructed from Ω.

Consider the input lists R and S. The FCM M ′ has a single cursor on R and
a single cursor on S. Now, M ′ computes as follows. At each odd step, M ′ moves
its cursor on R to the next element u, updating the (element and bitstring)
registers as M would do when receiving the element 〈r:u〉 from the stream. The
internal mode is changed so that it contains the origin of each element in the
registers. At each even step, M ′ moves its cursor on S to the next element v,
updating the registers as M would do when receiving the element 〈s:v〉 from
the stream. The internal mode is again changed accordingly. M ′ can simulate
this behaviour using the functions in F ′, or the predicates in Ω′ together with
its internal mode. For example, if M applies a predicate p to an element in a
dynamic constant reg — i.e., an element of the form 〈r:u〉 or 〈s:v〉 — the FCM
M ′ would use its internal mode to obtain the origin of the element in the register
corresponding to reg and then apply the right predicate pr or ps to the element
in that register — i.e., to u or v. Once M outputs true, M ′ enters the accept
state and halts. As long as M outputs false, M ′ continues until it has detected
the ends of the input lists. In that case, M ′ enters the reject state and halts.
Note that M ′ can use the predicates corresponding to the boolean functions of
M to obtain the output M produces. Because M works correctly, it will also
work correctly on this particular interleaving. Therefore, M ′ correctly checks
whether R and S intersect. Hence the contradiction. ��

We conclude by pointing out that on finite streams, finite cursor machines are
indeed more powerful than bounded-memory sASMs: Consider the query sort-

intersect that given two finite streams A and B, checks if they are both
sorted and if so, outputs their intersection; if the inputs are not sorted, sort-

intersect, outputs false. Then,

Proposition 29. The query sort-intersect is computable by an FCM but
not by a bounded-memory sASM.

168 Y. Gurevich, D. Leinders, and J. Van den Bussche

Proof. An FCM would compute the query sort-intersect using one cursor
on each list to check if they are sorted and another cursor on each list to do
a synchronized scan of both list to search for common elements. Inspection of
the proof of Proposition 26 reveals that a bounded-memory sASM can not even
check whether two finite sorted streams intersect. ��

9 Conclusion

An interesting open problem is to relax the definition of bounded-memory sASM
in other ways than with using o(n)-length bitstrings.

References

1. Arasu, A., Babcock, B., Babu, S., McAlister, J., Widom, J.: Characterizing memory
requirements for queries over continuous data streams. ACM TODS 29(1), 162–194
(2004), Includes an electronic appendix
http://doi.acm.org/10.1145/974750.974756

2. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal 15(2), 121–142 (2006)

3. Arasu, A., Widom, J.: A denotational semantics for continuous queries over streams
and relations. SIGMOD Record 33(3), 6–11 (2004)

4. Ayres, F., Mendelson, E.: Schaum’s Outline of Calculus. McGraw-Hill, New York
(1999)

5. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS 2002, pp. 1–16 (2002)

6. Balakrishan, H., Balazinska, M., Carney, D., Çetintemel, U., Cherniack, M., Con-
vey, C., Galvez, E.F., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., Zdonik,
S.B.: Retrospective on Aurora. The VLDB Journal 13(4), 370–383 (2004)

7. Golab, L., Özsu, M.T.: Processing sliding window multi-joins in continuous queries
over data streams. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases,
Information Systems, and Peer-to-Peer Computing. LNCS, vol. 2944, pp. 500–511.
Springer, Heidelberg (2004)

8. Grohe, M., Gurevich, Y., Leinders, D., Schweikardt, N., Tyszkiewicz, J., Van den
Bussche, J.: Database query processing using finite cursor machines. In: Schwentick,
T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 284–298. Springer, Heidelberg
(2006)

9. Gurevich, Y.: Evolving algebra 1993: Lipari guide. In: Börger, E. (ed.) Specification
and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

10. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM TOCL 1(1), 77–111 (2000)

11. Hocking, J.G., Young, G.S.: Topology. Dover Publications, Mineola, NY (1988)
12. Law, Y.-N., Wang, H., Zaniolo, C.: Query languages and data models for database

sequences and data streams. In: VLDB 2004, pp. 492–503 (2004)
13. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
14. Madden, S.R., Franklin,M.J., Hellerstein, J.M., Hong,W.: TinyDB:Anacquisitional

query processing system for sensor networks. ACM TODS 30(1), 122–173 (2005)
15. Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over append-only

databases. In: SIGMOD 1992, pp. 321–330 (1992)
16. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Heidelberg (2000)

http://doi.acm.org/10.1145/974750.974756

Querying Structural and Behavioral Properties

of Business Processes�

Daniel Deutch �� and Tova Milo

School of Computer Science, Tel Aviv University
{danielde,milo}@post.tau.ac.il

Abstract. BPQL is a novel query language for querying business
process specifications, introduced recently in [5,6]. It is based on an in-
tuitive model of business processes as rewriting systems, an abstraction
of the emerging BPEL (Business Process Execution Language) standard
[7]. BPQL allows users to query business processes visually, in a manner
very analogous to the language used to specify the processes. The goal of
the present paper is to study the formal model underlying BPQL and in-
vestigate its properties as well as the complexity of query evaluation. We
also study its relationship to previously suggested formalisms for process
modeling and querying. In particular we propose a query evaluation al-
gorithm of polynomial data complexity that can be applied uniformly
to queries on the structure of the process specification as well as on the
potential behavior of the defined process. We show that unless P=NP
the efficiency of our algorithm is asymptotically optimal.

1 Introduction

A Business Process (BP for short) consists of a group of business activities
undertaken by one or more organizations in pursuit of some goal. It usually
depends upon various business functions for support (e.g. personnel, accounting,
inventory), and interacts with other BPs/activities carried out by the same or
other organizations. Consequently, the implementations of such BPs typically
operate in a cross-organization, distributed environment.

It is a common practice to use XML for data exchange between BPs, and Web
Services for interaction with remote processes [26]. Complementarily, the recent
BPEL standard (Business Process Execution Language [7]) allows description
not only of the interface between the participants in a process, but also of the
full operational logic of the process and its execution flow.

Since BPEL has a fairly complex syntax, commercial vendors offer systems
that allow design of BPEL specifications via a visual interface. These systems
use a conceptual, intuitive representation of the process, as a graph of activity
� The research has been partially supported by the European Project EDOS and the

Israel Science Foundation.
�� Supported by the Deutsch Institute.

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 169–185, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 D. Deutch and T. Milo

nodes, connected by control and data flow edges. The designs are automatically
converted to BPEL specifications, which in turn can be automatically compiled
into executable code implementing the BP [23].

Already in 2002, the importance of query languages for business processes had
been recognized by BPMI (the Business Process Management Initiative) [8], yet
no draft standard has been published since.

To answer this need, we have recently developed BPQL, a novel query lan-
guage for querying business process specifications [5,6]. BPQL is based on the
same graph-based view of processes, used by vendors for the specification of
BPs. It allows users to query BPs visually, in an intuitive manner, very anal-
ogous to how such processes are typically specified. In this paper we present a
thorough study of the formal model underlying BPQL, suggest a generic algo-
rithm for query evaluation on BPs, and analyze its complexity and relationship
with common formalisms for processes modeling and querying.

Next, we give the intuition behind our formalisms. The exact definitions are
given in the next section.

Data Model. Intuitively, we model the specification of a BP system as a set
of directed, possibly recursive nested graphs, including a unique root graph that
serves as the entry point for the specification. Each graph has a single ’start’ and
’end’ nodes and represents the execution flow of some function (i.e. a process).
A graph may contain (possibly recursive) calls to other functions (processes),
which in turn are also represented by flow graphs. Upon an invocation of a
call to a function f , appearing in the graph of a function g, the graph of (the
implementation of) f is ’plugged-in’ into g’s graph, replacing the node that
represents the call to f . Each graph obtained from g’s graph by a sequence of
such replacements is called a refinement of g.

Query language. At the core of the BPQL language are BP patterns, which
generalize the tree patterns of XML to nested BP graphs and enable users to
describe the patterns of activities/data flow that are of interest. In particular,
the patterns allow navigation along two axes: (1) the standard path-based axis,
which navigates paths in process graphs, and (2) a novel zoom-in axis, that allows
to navigate (transitively) inside the process functions, at any depth of nesting,
and query their refinements. Many data models which are all equivalent1 to
this simple model of nested graphs appear in the literature. Among them one
can find restricted versions of Rewriting Systems (e.g. [25]), Recursive State
Machines (RSMs) [4], Context Free Graph Grammars [14], and others. Each of
these works relates to some query language which is evaluated over the data
model. We identify two main branches of query languages, as follows. In the
Databases area, the query languages are structural. Namely, they allow users to
ask questions about the structure of a specification (graph). In contrast, in the
Verification area, the query languages are behavioral. These queries relate to the
possible runs of the process defined by specification, and are used to identify
invariants, execution patterns, etc. The models considered for the structural

1 The definition of models equivalence is given in section 3.

Querying Structural and Behavioral Properties of Business Processes 171

Database queries are typically ‘flat’ graph models, without nesting. Verification-
related works query include both flat and nested graph models.

While our model for BP specifications is quite standard, we emphasize the
uniqueness of our query language with respect to common query languages (see
Section 3 for an overview). The main features of the query language are given
next.

1. BPQL is a unified environment for querying structural as well as behavioral
properties of business processes. Specifically, this work is the first to suggest
a query language for structural queries over nested graphs.

2. BPQL allows queries with flexible granularity. Users can ask coarse-grained
queries that consider certain process components as black boxes and allow a
high level abstraction, as well as fine-grained queries that “zoom-in” on all
(or some of) the process components, possibly recursively.

3. BPQL is a graphical query language, with the query being similar to the
specification, thus allowing intuitive formulation of the queries parallel to
the specification development.

BPQL enables a flexible and intuitive formulation of queries on BPs. We will
see, however, that this makes the evaluation of queries somewhat intricate. First,
the nested shape of the BP graphs/patterns causes the query evaluation to be
computationally more expensive than that of similar queries on flat graphs. In-
deed, we show that while the data complexity of BPQL queries is polynomial,
the combined complexity is NP-complete w.r.t. the size of the query, even for
simple classes of queries that can be evaluated on flat graphs in polynomial time
(combined complexity). Second, the need to support both structural and behav-
ioral interpretations for BP patterns required the design of a query evaluation
algorithm which can be parameterized by the desired semantics. We propose
here such a query evaluation algorithm and show that, unless P = NP , a more
efficient algorithm does not exist. Moreover, thanks to the modular nature of our
algorithm, the complexity of query evaluation over nested BPs is parameterized
by the complexity of query evaluation for flat graphs. This allows identification
of restricted classes of queries and specifications for which the performance can
be further improved.

The BPQL query language was originally introduced in [5] where a first pro-
totype of the BPQL system was demonstrated. There, and in a follow-up work
[6] the focus was on the graphical query interface and the system implementa-
tion. The model that had been considered was limited to structural queries. The
formalization presented here is new, and so are the results. Since BPs in general,
and BPEL specifications in particular, are promised such a brilliant future, we
believe it is very important to develop a formal foundation for modeling and
querying such specifications, so that this technology can be better understood
and used. Querying the behavior of a system is essentially a verification prob-
lem [12] and is typically of very high complexity (from NP-hard for very simple
specifications to undecidable in the general case [12]). To guaranty a complexity
that is polynomial in the size of the data, BPQL ignores the run-time semantics

172 D. Deutch and T. Milo

of certain BPEL constructs such as conditional execution and variable values,
and focuses on the given specification flow. We believe that this approach offers
a reasonable balance between expressibility and complexity. Clearly, the general
problem is more complex, and further work is needed.

The paper is organized as follows. Section 2 describes the BPQL data model
and query language and its semantics. Section 3 compares BPQL to related
models. Section 4 describes the query evaluation algorithm and Section 5 studies
its complexity. We conclude in Section 6.

2 Preliminaries

In this section we present the formal model underlying BPQL. We start with
the motivation for our work, and then proceed to the formal definitions.

2.1 Motivation

The following questions may rise from the introduction: Why are structural
queries over nested graphs interesting? What are the advantages of a generic
framework for multiple query semantics? Why is it important to have a graphical
query language, similar to the specification? We give here intuitive answers to
these questions, using some examples.

Figure 1 depicts a partial specification of a travel agency system. The rectangle-
shaped nodes represent function calls. BP1 is the root BP and contains a single
node, AlphaTours, that serves as an entry point for the travel agency. BP2 de-
scribes the implementation of the AlphaTours function, where a user can choose
between searching for a trip and reserving one. BP3 is the implementation of the
SearchTrip function used in BP2. A user can request for a specific search (for
flights, cars, etc.) or can go back to the AlphaTours trip reservation process. Note
that this definition establishes recursive dependencies between the processes, as
BP2 may call BP3, which in turn, if the user decides to reset (implemented in
the BP as a call to AlphaTours), calls BP2.

An example query is depicted in Figure 2. It is formulated graphically in a
manner very similar to the specification. This is an important feature of the
query language, as (a) it allows faster learning curve of the language and (b) it
allows simultaneous formulation, by the specification designer, of a specification
and verification queries over it.

Fig. 1. A BPQL Specification

Querying Structural and Behavioral Properties of Business Processes 173

Fig. 2. A BPQL Query

To answer a query, we seek for occurrences of the described patterns within the
specification. Intuitively, the query in Figure 2 searches the AlphaTours BP, and
the processes that it uses, for execution paths leading to/from a SearchFlights
operation.Q2 here describes an implementation pattern for the AlphaTours func-
tion. The double-headed arrows indicate that we are looking for execution paths
of arbitrary length. The double bounding of the AlphaTours rectangle denotes
an unbounded zoom-in; we search for the Q2 pattern inside the implementation
of AlphaTours and (recursively) the functions that it invokes. In general, when
matching a (double-bounded) function node n of the query to a function node
n′ in the specification, we require that the implementation pattern of n, as given
in the query, is matched to (a refinement of) the implementation of n′ in the
specification. Such matching is called an embedding.

Some variants of the answer to a query are suggested. The first distinction is
between boolean and explanatory answers. The former answers whether or not
some embedding exists, while the latter is a new BP, consisting of the speci-
fication parts that contributed to some possible embedding. To continue with
our example, the explanatory answer for the query in Figure 2 when applied on
the system in Figure 1 is depicted in Figure 3. The answer here is a ‘projec-
tion‘ of the travel agency system over the parts relevant to the query, and so it
contains the SearchTrip function in BP2 and the path in its implementation,
BP3, that leads to SearchFlights. It also contains the AlphaTours function call
node in BP3, as this call allows to invoke BP2 and recursively reach (by call-
ing SearchTrip) BP3 and SearchFlights, via another execution path (in fact, an
infinite number of such recursive calls, hence paths, are possible).

Another distinction concerns the type of embedding (of the query in the spec-
ification) sought for. We look at two common approaches for such embeddings,
referred to as structural and behavioral. Consider the query (BP pattern) depicted

Fig. 3. Explanatory Query Answer

174 D. Deutch and T. Milo

Fig. 4. Structural vs. Behavioral

in Figure 4. Interpreted as a query over the structure of a process specification,
this query searches for BPs whose “code” contains a loop of the shape depicted
by the query. BP1 in Figure 4 is an example for such BP. The same query,
interpreted as a query over the behavior of the BPs, will look for processes con-
taining execution paths of form similar to the one specified in the query, namely
an unbounded sequence of A,B’s. This is satisfied by both BP1 and BP2. The
key point is that here, unlike the structural interpretation, the use of distinct
occurrences of A and B is allowed.

In previous query languages for querying process specifications, typically only
the behavioral approach was taken, with modal (and specifically temporal) logics
being used as the basis for the query language. The dichotomy between the two
approaches is established by the fact that subgraph isomorphism/homomorphism
cannot be expressed by any bisimulation-invariant language [12], and thus, in
particular, by any temporal logic (as these are bisimulation-invariant [12]). Thus,
structural queries cannot be formulated using the previous works, but are still of
great interest, as explained next. Continuing with the example above, code reuse
is a common programming policy. This policy would probably impose loops of
the structure depicted in BP1 rather than the structure in BP2. The query in
Figure 4, when interpreted as structural query, enforces this policy, in a manner
not possible using behavioral queries. In general, structural queries are of high
importance for any purpose that is interested also in the code itself, and not
only in its executions. Such purposes may include coding conventions, profiling
and optimizations.

2.2 Definitions

We now give the formal definitions of the specification and query languages.
To simplify the presentation we first consider a basic data model and query
language, and then enrich them to obtain the full fledged model.

BPs and BP systems We assume the existence of two infinite domains: a domain
N of nodes and a domain L of node labels, containing a sub-domain F of function
names. We model a BP as a directed labeled graph. Formally,

Definition 1. A business process (BP) is a quadruple p = (G, λ, start, end),
where G = (N,E) is a connected directed graph in which N ⊂ N is a finite set of
nodes, E is a set of edges with endpoints in N ; λ : N → L is a labeling function

Querying Structural and Behavioral Properties of Business Processes 175

for the nodes; start, end are two distinguished nodes in G and every node in G
resides on a path from start to end. Nodes labeled by function names from F
are called function calls.

A system is a collection of BPs, and a mapping of function names to imple-
mentations.

Definition 2. A system s of BPs is a triple (S, s0, τ), where S is a finite set of
BPs, s0 ∈ S is a distinguished BP, called the root process, and τ : F → 2S is a
(possibly partial) function, called the implementation function, mapping function
names in S to sets of BPs in S.

W.l.o.g we assume that the nodes in the graphs have distinct identifiers. This
will be utilized below in the construction of the explanatory answer to a query.
A function name can be mapped, through the implementation function, to a
set of BPs. These represent alternative possible implementations for the func-
tion (one of which will be chosen at run time as the actual implementation).
The implementation function is partial if the internal implementation struc-
ture of some functions is unknown (e.g. since their providers do not wish to
expose their specification). Given a BP p and a function call n in p, a more
detailed description of p can be obtained by replacing n by one of the func-
tion’s possible implementations. A result of such replacements is called a refine-
ment.

Definition 3. Given a system s = (S, s0, τ), a BP p, and a node n in p labeled
by a label l for which τ is defined, we say that p n→ p′ (w.r.t. τ) if p′ is obtained
from p by replacing n in p by one of its possible implementations g ∈ τ(l).
[Namely, n is deleted from p, and a copy of g is plugged in its place, with the
incoming/outgoing edges of n now connected to the start/end node of g, resp.]

If p n1→ p1
n2→ p2 . . .

nk→ pk, we say that pk is a refinement of p, and name the
sequence of node replacements a refinement sequence.

We say that a node v ∈ pk depends on a node ni in the sequence if v ∈ pi but
v �∈ pi−1. v depends transitively on ni if it either depends on ni or depends on
some node nj transitively depending on ni.

Queries We now consider queries and their answers. Queries are modeled using
BP patterns. These generalize BPs similarly to the way tree patterns generalize
XML trees. Formally,

Definition 4. A BP pattern is a tuple p̂ = (p, Ie, If), where p is a BP and Ie,
If are distinguished sets of edges and function names in p, resp. These are the
indirect edges and functions of p̂.
A query q is a system of BP patterns (Q, q0, τ), where Q is a set of BP patterns,
q0 is the root BP pattern, and τ is an implementation function.

Embeddings. To evaluate a query, its patterns are embedded into the system
BPs. Generally speaking, every type of relation over (finite) flat graphs may
be generalized to an embedding type. We suggest here the usage of three main

176 D. Deutch and T. Milo

types of graph relations - homomorphism, isomorphism, and bisimulation. These
are generalized to homomorphic- and isomorphic-embeddings (which capture the
structural query interpretation) and bisimilar-embedding (capturing behavioral
interpretation). We define these next. We consider first the embedding of a single
BP pattern, then of full queries.

Definition 5. Let p̂ be a BP pattern and let p be a BP. An homomorphic (resp.
isomorphic)-embedding of p̂ into p is a homomorphism (isomorphism) ψ from
the nodes of p̂ to the nodes of p s.t.

1. (nodes) each node of p̂ is mapped to a node of p having the same label; the
start (resp. end) node of p̂ is mapped to the start (resp. end) node of p.

2. (edges) for each (indirect) edge of p̂ from a node m to a node n there is an
edge (path) in p from ψ(m) to ψ(n).

Definition 6. Let p̂ be a BP pattern and let p be a BP. A bisimilar-embedding
of p̂ into p is a binary relation R between the nodes of p̂ and the nodes of some
subgraph p′ of the transitive closure 2 of p s.t.

1. (nodes’) for each node n ∈ p̂ [resp. each n′ ∈ p′] there exists some node
n′ ∈ p′ [n ∈ p̂] s.t. R(n, n′) holds; whenever R(n, n′) holds, n and n′ have
the same label and if one is a start/end node then so is the other.

2. (edges’) for each (indirect) edge from a node n to a node m in p̂, [resp. from
n′ to m′ in p′] there exists a (indirect) edge from some node n′ to some m′

in p′ [resp. from some n to some m in p̂] s.t. R(m,m′) and R(n, n′) hold.

In the sequel, when some definition/result applies to all homomorphic, isomor-
phic, and bisimilar embeddings we will denote all by X-embedding.

We now consider the embedding of a query consisting of a set of such BP
patterns into a specification.

Definition 7. Let q = (Q, q0, τq) be a query and let s = (S, s0, τs) be a system
of BPs. An X-embedding of q into s consists of

1. An homomorphism h from the BP patterns in Q to the BPs in S and their
refinements that (i) maps the root pattern q0 of q to the root BP s0 of s,
and (ii) maps, for each (indirect) function name c in q, the BPs in τq(c) to
(refinements of) the BPs in τs(c).

2. An X-embedding for each 〈BPpattern,BP 〉 pair in the homomorphism.

To conclude, we need to define the query semantics. We distinguish between
boolean and explanatory answers for a query. The boolean X-answer to a query
q on a system s is positive if such X-embedding exists and is negative otherwise.
The explanatory X-answer consists of s’s components participating in such X-
embeddings, as defined formally below.

2 The transitive closure of a graph is obtained by adding edges (specially marked as
’indirect’) between any two nodes n, m such that m is reachable from n.

Querying Structural and Behavioral Properties of Business Processes 177

Definition 8. The nodes and edges of a system s that are relevant to a given
X-embedding include

1. the nodes of s in the ranges of the mappings (ψ or R, depending on the
embedding type)

2. the edges and nodes of s appearing on paths between these nodes and which
could be used to verify requirement (edges) (resp. (edges)’) for the embed-
ding.

3. the nodes on which any of the above depend on, transitively (see Definition
3).

The explanatory X-answer of a query q on a system s, denoted qX(s), is a
restriction of s to those nodes and edges that are relevant to some X-embedding
of q in s. (Empty BPs are removed and the domain of τ is restricted to the
relevant functions).

In the sequel, we will refer to BPQL, under isomorphic, homomorphic, and
bisimilar embeddings, as isoBPQL, homBPQL, and bisBPQL, resp. One may
also consider combinations, allowing the user to specify different interpretations
for various BP patterns in the query, and our results will still hold.

3 Related Models and Languages

Before presenting our query evaluation algorithm, we first set the background
by looking at some closely related models and languages. We compare our work
to relevant works in three areas, namely Model Checking, Formal Models and
Databases. We classify the works according to the structural/behavoiural di-
chotomy, and discuss their relationships. Due to space constraints, we cannot
give the formal definitions of each model we discuss, and the reader is re-
ferred to the literature. In the following, we use BPQLspec, and BPQLquery

to denote the specification and query parts of BPQL, respectively. We start
by formally defining the notion of model and query languages containment for
models that define sets of finite graphs. In the following, ≡ denotes graph iso-
morphism, and 	 denotes query equivalence (where two boolean queries Q1, Q2

over graphs are considered equivalent if a graph satisfies Q1 iff it also
satisfies Q2).

Definition 9. For two models M1, M2, M1 ⊆M2 if for all m1 ∈M1 there exists
m2 ∈M2 s.t. m1, m2 represent respectively (possibly infinite) sets of graphs S1,
S2, and ∀G1 ∈ S1 ∃G2 ∈ S2 s.t. G ≡ G′. Also, |m2| is required to be linear in
|m1|.
M1 ∼M2 if M1 ⊆M2 and M2 ⊆M1.

For two (boolean) query languages L1, L2 over some domain D, L1 ⊆ L2 if for
all Q1 ∈ L1 there exists Q2 ∈ L2 s.t. Q1 	 Q2 , and |Q2| is linear in |Q1|.
L1 ∼ L2 if L1 ⊆ L2 and L2 ⊆ L1.

178 D. Deutch and T. Milo

Model Checking. Several models similar to our model of nested graphs appear in
works related to model checking. A common model that captures this semantics
is named Recursive State Machines (RSM) [4]. This model naturally extends
Finite State Machines (FSM), by allowing some states to be call states, invoking
other FSMs. A call is simulated by replacing the call state by its implementation.
Each FSM has some entry and exit states. The simplest form of RSM is Single
Entry Single Exit RSM (SERSM), where each FSM has unique start and exit
nodes. It is straightforward to prove the following proposition.

Proposition 1. BPQLspec ∼ SERSM

By their nature, works in the area of Model Checking use behavioral query lan-
guages, being interested in properties of the process’s possible executions rather
than its exact structure. Temporal logics are used to capture such properties. The
most common of these are LTL, CTL*, and the more powerful alternation-free
μ-calculus. These logics consider the behavior of programs over time, and differ
in their quantifiers. CTL∗ allows queries over branching execution paths, and
supply corresponding quantifiers; LTL considers the time as linear, and does
not allow branching; μ-calculus is the most general temporal logic, containing
fix-point operators (μ and ν), that allow recursive iterations over the queried
process. A particular fragment of μ-calculus, called ‘alternation-free’, is the one
consisting of formulas that contains no μ operator depending on ν or vice versa.
The exact definitions can be found in [12]. We can show the following:

Proposition 2. bisBPQLquery ⊂ alternation-free μ-calculus

Specifically, using [10] one can easily obtain an evaluation algorithm for
alternation-free μ-calculus over SERSM, of complexity poly(|spec|)∗2|query|. This
algorithm can be used to answer bisBPQL queries with the same complexity.

Formal Languages. There is rich literature on Context Free Processes in the
area of Formal Models. A main branch of this research concerns Context Free
Graph Grammars, first introduced in early works such as [24]. These grammars
generalize the common model of context free grammars over strings. Similarly,
the grammar consists of a set of non-terminals and derivation rules. Each non-
terminal derives labeled graphs, which in turn contain objects (nodes, edges,
etc.) labeled by non-terminals. The rules are accompanied by instructions on
how to connect the new graphs to the original graph. These instructions are
called the connection relation. The literature (e.g. [20]) considers mainly two
particular cases of context free graph grammars: Hyperedge Replacement (HR)
grammars, where the non-terminals in the graph are hyperedges, and Vertex
Replacement (VR) grammars, where the non-terminals are graph nodes. By [20],
HR ⊂ V R.

The following proposition establishes the connection between our specification
model and context free graph grammars.

Querying Structural and Behavioral Properties of Business Processes 179

Proposition 3. BPQLspec ⊂ HR ⊂ VR

The work on these models is mostly theoretic, and uses, for query formalism,
formal logics such as FO(TC)3 orMSO4. The following theorem from [14] shows
decidability of MSO over HR graph grammars.

Theorem 1. [14] It is decidable whether a given MSO formula is satisfied by
any graph generated by a given HR graph grammar

As FO(TC) and MSO are structural query languages, it is suitable to compare
the structural variants of BPQL to these logics. It is easy to see that

Proposition 4. isoBPQLquery ,homBPQLquery ⊂ FO(TC) ⊂ MSO

Using Prop. 3, 4 and Thm. 1, we obtain:

Theorem 2. isoBPQL, homBPQL are decidable

Where bisBPQL is decidable as well, as implied from the discussion above. How-
ever, though the proof of theorem 1 is constructive, i.e. provide a decision pro-
cedure, it is unfeasible for practical use, as its complexity is non-elementary in
the size of the query.

Databases. Works in the Database world typically consider the representation of
data as flat graphs (e.g. [13,1]). Models that consider nested relations [3], actually
consider flat trees . One exception that does consider nested graphs (trees) is
Active XML (AXML) [2]. AXML is an extension of XML where the XML trees
may contain nodes that represent calls to Web services. When invoked, the calls
return new AXML trees that replace the call element. AXML data is queried
using standard XML query languages like XQuery [11]. However, the semantics
relates only to the full (possibly infinite) refinement of the document and does
not allow queries of finer granularity. For this purpose, the model presented here
can be adapted.

4 Query Evaluation for BPQL

To evaluate a query q on a system s, we need to embed the BP patterns in q
within (refinements) of the BPs in s. We assume first the existence of some oracle,
denoted X-match, that given a single BP pattern p̂ and some BP p, computes
the X-embeddings of p̂ into p. (We will consider the implementation of such an
oracle later). We start by showing how to use this oracle to find X-embeddings
of p̂ into refinements of p. Later, we use this to derive an evaluation algorithm
for the full query.

Our algorithm is inspired by the original BPQL query evaluation algorithm
presented in [6]. However, unlike that algorithm, which is applicable only to
3 First Order logic augmented by a Transitive Closure operator.
4 Monadic Second Order Logic.

180 D. Deutch and T. Milo

structural queries, the present algorithm is designed in a modular manner that
can be parameterized by the required type of embedding. This is achieved by
modeling the queries as logic formulas – FO(TC) formulas for structural queries
and μ-calculus formulas for behavioral ones – and using a similar formula de-
composition method for both, as described below. We sketch here an intuitive
description for the boolean version of our algorithm, and then explain how to
obtain its explanatory version. A full description of the algorithm, as well as its
correctness proof, can be found in the full version of the paper [17].

Embedding a single pattern. We start by explaining how to find, given a system
s, a BP p and a BP pattern p̂, X-embeddings of p̂ into refinements of p. Our
algorithm first constructs (1) a graph grammar Gp that describes the possible
refinements of p (w.r.t s), and (2) an FO(TC) or μ-calculus formula, depending
on the embedding type, Fp̂ that represents the pattern p̂. It then uses the two
to compute a new graph grammar that encodes the X-embeddings of p̂ into
refinements of p. The boolean query answer will be positive iff the constructed
grammar is not empty. We explain each of these steps below.

Grammar. We first construct a graph grammar for the system s, as explained in
the previous section. We use the result of [22] stating that an HR graph grammar
can be translated into a normal form, where each graph includes only two non-
terminals. We assign to the normal-formed grammar a new root non-terminal R
that derives the BP p, and denote the resulting grammar by Gp. It is easy to
see that the set of graphs derived from R in Gp corresponds precisely to the set
of possible refinements of p w.r.t s.

Formula. The formula for p̂ uses two types of predicates: LA(n) holds iff the
given BP contains a node n having a label A. Path(n,m) holds iff there is a
path from node n to node m. In general, each pattern p̂ can be expressed as a
conjunction of these predicates.

The distinction between the different embeddings sought for is expressed in
the formula construction: For homBPQL and isoBPQL, variables are interpreted
over individual nodes, while for bisBPQL they are interpreted over sets of nodes.
Also, isoBPQL formulas contain additional clauses representing inequalities be-
tween the node variables.

Algorithm. We use the graph grammar Gp and the formula Fp̂ described above
to construct a new graph grammar that encodes the embeddings of p̂ in refine-
ments of p. The basic idea is similar to the one used in verification algorithms,
e.g. [4]. We try all splits of the formula Fp̂ up into 3 parts, each of which is
‘not larger’ then the original formula. Each part is then handled separately, as
follows. The first part is embedded directly within p, where the other two parts
are embedded recursively within the implementations of p’s function call nodes.
To capture this recursive embedding, we replace within (the grammar repre-
sentation of) p its two non-terminals N1,N2, that represent the function calls,
by (N1, FN1) and (N2, FN2), (where FN1 , FN2 are the above mentioned parts
of Fp̂) and we continue recursively to finding embeddings of FN1 (FN2) within

Querying Structural and Behavioral Properties of Business Processes 181

the implementation of N1 (N2). Intuitively, we find the fix-point of the set of
constraints generated.

Formula Decomposition. To complete the algorithm description, we only need
to describe the split of a formula F . For a BP g with two function call nodes
(grammar non-terminals) N1, N2, we define the split F into three formulas de-
noted Fg, FN1 and FN2 . This is done by considering all possible splitting of the
node predicates of F into three sets 5 fg, fN1, fN2 (representing the nodes to be
embedded in g, N1, and N2, resp.) and then splitting the remainder of F based
on this nodes split. The node predicates in Fg, FN1 , FN2 are trivially fg, fN1 , fN2 ,
respectively. We further need to consider the paths connecting the nodes. The
splitting of the path formulas depends upon the nodes split - path predicates
with both end-nodes in fN1 (resp. fN2) are added 6 to FN1 (resp. FN2). The
treatment of path predicates with one end-node in fN1 and the other in fN2

is similar: these are split into three parts s.t. one describes the sub-path to be
embedded in N1 (the corresponding path predicate is added to FN1), the second
describes the sub-path to be embedded in g, connecting N1 to N2 (added to Fg),
and the third describes the sub-path to be embedded in N2 (added to FN2). We
can show the following theorem, used in the algorithm correctness proof.

Theorem 3. (informal) A pattern p̂ can be X-embedded within a BP p, con-
taining call nodes N1 and N2 labeled lN1 and lN2 resp., if and only if there exists
a split of Fp̂ into F1, F2, F3 (as described in the algorithm) such that F1 can be
X-embedded into p without matching N1 and N2, F2 and F3 can be X-embedded
into the implementations of lN1 and lN2 respectively.

Evaluating a full query. The algorithm above constructs a graph grammar that
encodes the embedding of a single BP Pattern. Extending it to handle a full
BPQL query is fairly straightforward. For each indirect function call node in
the query, we use the algorithm above to compute the graph grammar rules
representing the embeddings of the function’s implementation into refinements
of the corresponding call node in the system. If any of the computed grammars
happens to be empty, we stop and return an empty graph grammar. For the
direct call nodes in the query, as well as for the query root BP pattern, we use
directly the X-match oracle to obtain grammar rules describing their possible
(direct) embedding into the corresponding system BPs. Here again, if any of
these embeddings fail, we stop and return an empty grammar.

The following theorem states the correctness of the algorithm. The proof ap-
pears in the full version of the paper [17].

Theorem 4. The grammar constructed by the algorithm is not empty iff an
embedding exists

The explanatory query answer can also be easily obtained from the above algo-
rithm, as it maintains the unique identifiers of all nodes and edges being used.
5 For structural queries the sets are required to be disjoint.
6 Note that all formulas are conjunctive, so whenever we refer to ’adding’ a formula

f1 into a formula f2 we mean generating the conjunction f1

�
f2.

182 D. Deutch and T. Milo

These can be extracted from the constructed graph grammar and used to gen-
erate the explanatory answer.

5 Complexity

The complexity of the algorithm presented in the previous section depends on
the complexity of the X-match oracles. We first examine the complexity of such
oracles for isomorphic, homomorphic and bisimilar embeddings. Next we analyze
the complexity of the full algorithm, parameterized by the oracle’s complexity.

X-match oracles. Given a BP pattern p̂ and some BP p, X-match computes the X-
embeddings of p̂ into p. For the three types of embedding, the problem of testing for
the existence of an embedding is NP-complete w.r.t the size of the query pattern,
but polynomial in the data size. (The proof follows immediately from the NP-
completeness of subgraph isomorphism/homomorphism/bisimulation [16,18]). A
worst case complexity for the oracles is thus O(pp̂). However, using optimization
techniques, this is typically much lower in practice [21].

The overall algorithm. For a given X-match oracle, we use O(X-match(n,m)) to
denote the worst case time complexity of the oracle when embedding a query
pattern of size m into a BP of size n.

Theorem 5. Given a BP system s and a query q, the time complexity of (the
Boolean and Explanatory versions of) the query evaluation algorithm presented
in the previous section is O(| s |2 ×c|q| × O(X-match(| s |, | q |))), where c is a
constant.
Thus, the algorithm is polynomial in the size of the system s 7 and in the
complexity of the X-match oracle, but is exponential in the size of the query.
Since testing for the existence of isomorphic-, homomorphic-, and bisimilar-
embeddings is NP-hard in the size of the query, it is evident that testing if
the answer to a iso-,hom-, and bisBPQL is empty is also NP-hard in the query
size. Interestingly, we can expose an additional type of hardness that comes from
the nested shapes of the system and query graphs, as follows.

Theorem 6. 1. Boolean hom-, iso-, and bisBPQL are NP-hard in the size of
the query even when the system BPs and the query patterns belong to a re-
stricted class of graphs for which the X-match can be computed in polynomial
time.

2. For homBPQL and bisBPQL, the above holds if, furthermore, all the call
nodes in the system and the query have only one possible implementation. 8

It is open if (2) holds also for isoBPQL. The proof (appearing in the full version)
is by reduction from the problem of testing if a 3NF formula is satisfiable, known
7 The complexity is quadratic in the size of the system because of the mapping to

normal form grammars, resulting in a quadratic size grammar.
8 In general, the implementation function allows to map each function name to a set

of BPs, representing alternative possible implementations for the function.

Querying Structural and Behavioral Properties of Business Processes 183

to be NP-complete. The graphs used in the proof have very simple, almost tree-
shaped structure, where all nodes besides the end nodes have a single parent.

To give a lower bound we can show that

Theorem 7. The Boolean versions of homBPQL and isoBPQL are in NP (com-
bined complexity).

The main lemma required in order to supply an NP algorithm is the following.

Lemma 1. For every BPQL system s and homBPQL (isoBPQL) query q, ex-
actly one of the following holds:
1. There is no homomorphic (isomorphic) embedding of q into s.
2. There is at least one homomorphic (isomorphic) embedding that maps nodes

of q only to nodes of refinements obtained by a polynomial number of refine-
ment steps.

The correctness of this lemma stems from the correctness of the analogous lemma
for context free string grammars. (The proof is in the full version). Interestingly,
when the query is viewed as a logic formula, this property can also be viewed
as an instance of the Small Model Property. It is open if the same holds for
bisBPQL.

A different kind of analysis is obtained through parameterized complexity,
where the size of one of the inputs which is typically small (the query size,
in our case) is considered as a parameter k, and the size of the rest of the
input is denoted n. A parameterized complexity class corresponding to PTIME
is FPT [19], which is the class of all problems solved with time complexity
O(f(k)∗P (n)), P being a polynomial and f being any computable function. An
important hardness class, namely W[1]-hard [19], contains problems which are
likely not to be in FPT , and thus is analogous to the class of NP-hard problems.
We can show the following proposition.

Proposition 5. If X-match is in FPT (resp. is W[1]-hard) then so is X-BPQL.

Note the difference from conventional complexity analysis, where even for X-
matches that are in PTIME, X-BPQL is NP-hard (See theorem 6(1)).

6 Conclusion

This paper studied the formal model underlying BPQL, a novel query language
for BP specifications. We investigated its properties as well as the complexity of
query evaluation, showed how queries on the structure and behavior of BPs can
be processed in a uniform manner, and analyzed the relationship to previously
suggested formalisms for processes modeling and querying. Because of space
constraints, we have discussed only parts of the full BPQL model and query
language, which include extensions such as regular path expressions, joins, and
negation. Our results extend to this setting as well, as shown in [17].

To guaranty a complexity that is polynomial in the size of the data, BPQL
ignores the run-time semantics of certain BPEL constructs such as conditional

184 D. Deutch and T. Milo

execution and variable values. Identifying semantic constructs that can never-
theless be incorporated without increasing the complexity is a challenging future
research task. It would be interesting, following e.g. [15], to consider the data
manipulated by BPs and the messages passed from one process to another. One
may also consider a setting where calls are possibly asynchronous, or where the
knowledge of the implementation of some (remote) processes may be partial
[9]. It would also be interesting to combine our algorithm with some existing
verification techniques, e.g. [21].

References

1. Abiteboul, S., Abrams, Z., Haar, S., Milo, T.: Diagnosis of asynchronous discrete
event systems: datalog to the rescue! In: Proc. of PODS 2005 (2005)

2. Abiteboul, S., Benjelloun, O., Milo, T.: Positive active xml. In: Proc. of PODS
2004 (2004)

3. Abiteboul, S., Fischer, P.C., Schek, H.J.: Nested Relations and Complex Objects
in Databases. LNCS, vol. 361. Springer, Heidelberg (1989)

4. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4)
(2005)

5. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying Business Processes with
BP-QL (demo). In: Proc. of VLDB (2005)

6. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In:
Proc. of VLDB (2006)

7. Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/library/ws-bpel/

8. BPMI. Business process management initiative: Business process: Business process
query language (bpql).
http://www.service-architecture.com/web-services/articles/

business process query language bpql.html

9. Buneman, P., Cong, G., Fan, W., Kementsietsidis, A.: Using partial evaluation in
distributed query evaluation. In: Proc. of VLDB (2006)

10. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland,
W.R. (ed.) CONCUR 1992. LNCS, vol. 630, Springer, Heidelberg (1992)

11. Chamberlin, D.: Xquery: a query language for xml. In: Proc. of SIGMOD (2003)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge
(1999)

13. Consens, M., Mendelzon, A.: The g+/graphlog visual query system. In: Proc. of
SIGMOD (1990)

14. Courcelle, B.: The monadic second-order logic of graphs. Inf. Comput. 85(1) (1990)

15. Deutsch, A., Sui, L., Vianu, V., Zhou, D.: Verification of communicating data-
driven web services. In: Proc. of PODS (2006)

16. Dovier, A., Piazza, C.: The subgraph bisimulation problem. IEEE Trans. Knowl.
Eng. 15(4) (2003)

17. Querying structural and behavioral properties of business processes - full version.
http://www.cs.tau.ac.il/~danielde/BPQLFull.pdf/

18. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

http://www.ibm.com/developerworks/library/ws-bpel/
http://www.service-architecture.com/web-services/articles/business_process_query_language_bpql.html
http://www.service-architecture.com/web-services/articles/business_process_query_language_bpql.html
http://www.cs.tau.ac.il/~danielde/BPQLFull.pdf/

Querying Structural and Behavioral Properties of Business Processes 185

19. Grohe, M.: Parameterized complexity for the database theorist. SIGMOD
Rec. 31(4) (2002)

20. Janssens, D., Rozenberg, G.: Graph grammars with node-label controlled rewriting
and embedding. In: Proc. of COMPUGRAPH (1983)

21. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel,
C.: Context-sensitive program analysis as database queries. In: Proc. of PODS
(2005)

22. Lengauer, T., Wanke, E.: Efficient decision procedures for graph properties on
context-free graph languages. J. ACM 40(2) (1993)

23. Oracle BPEL Process Manager 2.0 Quick Start Tutorial.
http://www.oracle.com/technology/products/ias/bpel/index.html

24. Pavlidis, T.: Linear and context-free graph grammars. J. ACM 19(1) (1972)
25. Schurr, A.: Logic based programmed structure rewriting systems. Fundam.

Inf. 26(3-4) (1996)
26. The World Wide Web Consortium. http://www.w3.org/

http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.w3.org/

Efficient Evaluation of HAVING Queries
on a Probabilistic Database

Christopher Ré and Dan Suciu

Department of Computer Science and Engineering
University of Washington

{chrisre,suciu}@cs.washington.edu

Abstract. We study the evaluation of positive conjunctive queries with Boolean
aggregate tests (similar to HAVING queries in SQL) on probabilistic databases.
Our motivation is to handle aggregate queries over imprecise data resulting from
information integration or information extraction. More precisely, we study con-
junctive queries with predicate aggregates using MIN, MAX, COUNT, SUM, AVG or
COUNT(DISTINCT) on probabilistic databases. Computing the precise output
probabilities for positive conjunctive queries (without HAVING) is �P-hard, but
is in P for a restricted class of queries called safe queries. Further, for queries
without self-joins either a query is safe or its data complexity is �P-Hard, which
shows that safe queries exactly capture tractable queries without self-joins. In this
paper, for each aggregate above, we find a class of queries that exactly capture
efficient evaluation for HAVING queries without self-joins. Our algorithms use a
novel technique to compute the marginal distributions of elements in a semiring,
which may be of independent interest.

1 Introduction

We study the complexity of evaluating aggregate queries on probabilistic databases.
Our motivation is managing data resulting from integration applications, e.g. object
reconciliation [15,30,31] and information extraction [5,14,17,19]. Standard approaches
require that we eliminate all uncertainty before any querying can begin, which is ex-
pensive in both man-hours to perform the integration and in lost revenue due to down
time. An alternative approach where data are allowed to be uncertain but we capture
uncertainty using probabilities has attracted renewed interest [6,7,9,10,22,29]. In such
systems, individual tuples are allowed to be incorrect, but aggregations of tuples still
provide meaningful information.

In SQL, aggregates come in two forms: value aggregates that are returned to the
user in the SELECT clause (e.g. the MAX price) and predicate aggregates that appear in
a HAVING clause (e.g. is the MAX price greater than $10.00?). In this paper, we focus
on positive conjunctive queries with a single predicate aggregate which we call HAVING
queries. Prior art [4,16] has defined a semantic for value aggregation that returns the ex-
pected value of an aggregate query (e.g. the expected MAX price) and have demonstrated
its utility for Decision Support or OLAP style applications. In this paper, we propose
a complementary semantic for predicate aggregates inspired by HAVING (e.g. what is
the probability that the MAX price is bigger than $10.00?). We illustrate the difference
between the approaches with a simple example:

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 186–200, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Evaluation of HAVING Queries on a Probabilistic Database 187

Example 1. Consider a probabilistic database with a Profit relation that contains the
profit forecasted for each item if we continue to sell it:

Item Forecaster Profit P

Widget Alice $−99K 0.99
Bob $100M 0.01

Whatsit Alice $1M 1

SELECT SUM(PROFIT)

FROM PROFIT

WHERE ITEM=‘Widget’

SELECT ITEM

FROM PROFIT

WHERE ITEM=‘Widget’

HAVING SUM(PROFIT) > 0.0

Profit(Item;Forecaster,Profit;P) (a) Expectation Style (b) HAVING Style

Profit is an example of BID relation which captures our uncertain about contradic-
tory and incompatible forecasts. Here, we trust Alice’s forecast (probability 0.99) more
than Bob’s (0.01). Prior art [16] considered aggregate queries in the SELECT clause such
as (a). Their semantic computes the expected profit. Using linearity of expectation, the
value of query (a) is 100M * 0.01 + −99K * 0.99 ≈ 900K. This large value suggests
that we should continue selling widgets because we expect to make money. However,
if we asked the HAVING style query (b), which says: What is the chance that we will
make a profit? The answer is only 0.01, which tells us that we should immediately stop
selling widgets or risk going out of business.

Prior work [7,11,21] has shown that for Boolean conjunctive queries without HAVING,
computing a query’s probability is �P-Complete1. Although in general evaluating con-
junctive queries on a probabilistic database is hard, there are a class of queries that can
be computed efficiently called safe queries [7,21]. In this paper, for each aggregate α,
we find a class of HAVING queries called α-safe that can be evaluated efficiently. Fur-
ther, we show that there is a dichotomy for queries without self-joins: Either Q is α-safe,
and has an algorithm in P, or Q is not α-safe and is �P-Hard.

Our starting observation is that evaluating a query with a value aggregate with ag-
gregate α on a traditional database can be computed by annotating the database with
values from some semiring, S α, then computing the annotations returned by a the query
by evaluating any algebra plan P over the semiring, using the rules in [12]. There-
fore the output of an aggregate function α on a probabilistic database is described by
a random variable sQ with values in S α, and a HAVING query Q whose predicate is,
say, COUNT(∗) < k, can be computed over the probabilistic database in two stages: first
compute the random variable sQ, second apply some recovery function that computes
the probability sQ < k. The cost of this algorithm depends on the space required to
represent random variables sQ, which is proportional to the set of possible worlds of
the probabilistic database and hence is prohibitively high. Our key technical insight is
that if the plan P is a safe plan then the random variable sQ can be computed using a
much more concise representation called a marginal vector, because P can guarantee
that the random variables being combined are either independent or disjoint. In addition
we need to impose an extra condition on P to ensure that the recovery function can be
computed from the marginal vector representation of sQ, and we call this condition plus
the safety condition for the plan P, which depends on α, α-safety.

1 �P defined by Valiant [28] is the class of functions that contains the problem of counting the
number of solutions to NP-Hard problems (e.g. #3-SAT).

188 C. Ré and D. Suciu

Contributions and Overview. We study conjunctive queries with HAVING predicates
where the aggregation function is given by MIN, MAX, COUNT, SUM, AVG or
COUNT(DISTINCT) and the aggregate test is one of =,�, <,≤, >, or ≥ on common repre-
sentations of probabilistic databases [3,22,29]. In Sec. 2, we formalize HAVING queries,
our choice of representation and define efficient evaluation. In Sec. 3, we review the
relevant technical material (e.g. semirings and safe plans). In Sec. 4, we give our main
results: For each aggregate α, we find a class of HAVING queries, called α-safe, such
that for any Q using α:

– If Q is α-safe then Q’s data complexity is in P.
– If Q has no self-joins and is not α-safe then, Q has �P-hard data complexity.
– It can be decided in polynomial time in the size of Q if Q is α-safe.

2 Formal Problem Description

We first define the syntax and semantics of HAVING queries on probabilistic databases
and then define the problem of evaluating HAVING queries.

Semantics. We consider the aggregatesMIN, MAX, COUNT, SUM, AVG and COUNT(DISTINCT)
as functions on multisets with the obvious semantics.

Definition 1. A Boolean conjunctive query is a single rule q = g1, . . . , gm where each
gi is a positive EDB predicate. A Boolean HAVING query is a single rule:

Q[α(y) θ k] � g1, . . . , gn

where for each i, gi is a positive EDB predicate, α ∈ {MIN, MAX, COUNT, SUM, AVG,
COUNT(DISTINCT)}, y is a single variable2, θ ∈ {=,�, <,≤, >,≥} and k is a constant.
The set of variables in the body of Q is denoted var(Q). We assume that y ∈ var(Q).
The conjunctive query q = g1, . . . , gn, is called the skeleton of Q, denoted sk(Q) = q.
We call θ the predicate test, k, the predicate operand and a pair (α, θ) an aggregate
test.

Fig. 1(a) shows a SQL query with a HAVING predicate, that asks for all movies reviewed
by at least two distinct reviewers. A translation of this query into an extension of our
syntax is shown in Fig. 1(b). The translated query is not a Boolean HAVING query be-

SELECT m.Title
FROMMovieMatch m, Reviewer r
WHERE m.ReviewTitle = r.ReviewTitle
GROUP BY m.Title
HAVING COUNT(DISTINCT r.reviewer) ≥ 2

Q(m)[COUNT(DISTINCT y) ≥ 2] �
MovieMatchp(t,m),
Reviewerp(−, r, t)

Q[COUNT(DISTINCT y) ≥ 2] �
MovieMatchp(‘Fletch’,m),
Reviewerp(−, r, t)

(a) SQL Query (b) Extended Sytanx (Non Boolean) (c) Syntax of this paper

Fig. 1. A translation of the query “Which moviews have been reviewed by at least 2 distinct
reviewers?” into SQL and the syntax of this paper.

2 For COUNT, we will omit y and write the more familiar COUNT(∗) instead.

Efficient Evaluation of HAVING Queries on a Probabilistic Database 189

cause it has a head variable (d). In this paper, we discuss only Boolean HAVING queries.
However, as is standard, to study the complexity of non-boolean queries, we can substi-
tute constants for head variables. For example, if we substitute ‘M. Ritchie’ for d, then
the result is Fig. 1(c) which is a Boolean HAVING query.

Definition 2. Given a HAVING query Q[α(y) θ k] and a relational instance W, let

Y = {| v(y) | v is a valuation for Q and im(v) ⊆ W |}
i.e. Y is the multiset of all valuations of Q applied to y. We say that Q is satisfied on W
and write W |= Q[α(y) θ k] (or simply W |= Q) if Y � ∅ and α(Y) θ k holds.

Probabilistic Databases. In this paper, we will use probabilistic databases described
in the block-independent disjoint (BID) representation [22,24] which generalizes many
representations in the literature including p-?-sets and p-or-sets [13], ?- and x-relations
[26] and tuple independent databases [7,18] and is similar to [3].

Syntax. A BID schema has relational schemas of the form R(K; A; P) with its attributes
partitioned into three classes separated by semicolons: the possible worlds key (K), the
value attributes (A), and a single distinguished probability attribute P taking values in
(0, 1]. The corresponding possible worlds schema has relations of the form R(K; A),
i.e. the same schema without the attribute P.

Semantics. Let J be an instance of a BID schema. We denote by t[KAP] a tuple in
J, emphasizing its three kinds of attributes, and call t[KA], its projection on the KA
attributes, a possible tuple. Define a possible world, W, to be any instance consisting of
possible tuples s.t. K is a key in W. Note that the key constraints do not hold in J, but
do hold in any possible world. LetWJ be the set of all possible worlds. We define the
semantics of BID instances only for valid instances, which are instances J s.t. for every
tuple t ∈ RJ in any BID relation R(K; A; P) the inequality

∑
s∈R:s[K]=t[K] s[P] ≤ 1 holds.

For a valid instance J its semantics is a finite probability space (WJ, μJ). First note that
any possible tuple t[KA] can be viewed as an event in the probability space (WJ, μJ),
namely the event that a world contains t[KA]. Then we define the semantics of J to
be the probability space (WJ, μJ) s.t. (a) the marginal probability of any possible tuple
t[KA] is t[P], (b) any two tuples from the same relation t[KA], t′[KA] s.t. t[K] = t′[K]
are disjoint events (a.k.a. exclusive events), and (c) for any set of tuples {t1, . . . , tn} s.t.
all tuples from the same relation have distinct keys, the events defined by these tuples
are independent.

Example 2. The data in Fig. 2 shows an example of a BID representation that stores data
from integrating extracted movie reviews (e.g. from USENET) with a movie database
(e.g. IMDB). The MovieMatch table is uncertain because it is the result of an auto-
matic matching procedure. For example, the probability a review title ‘Fletch’ matches
a movie titled ‘Fletch’ is very high 0.95, but not 1 because the title is extracted from
text and so may contain errors: For example, from ‘The second Fletch movie’, our ex-
tractor will likely extract just ‘Fletch’ although this review actually refers to ‘Fletch 2’.
The review table is uncertain because it is the result of information extraction and so

190 C. Ré and D. Suciu

Title Matched P
‘Fletch’ ‘Fletch’ 0.98 m1

‘Fletch’ ‘Fletch 2’ 0.9 m2

‘Fletch 2’ ‘Fletch’ 0.4 m3

‘The Golden Child’ ‘The Golden Child’ 0.95 m4

‘The Golden Child’ ‘Golden Child’ 0.8 m5

‘The Golden Child’ ‘Wild Child’ 0.2 m6

ReviewID Reviewer Title P

231 ‘Ryan’
‘Fletch’ 0.7 t231a

‘Spies Like Us’ 0.3 t231b

232 ‘Ryan’
‘European Vacation’ 0.90 t232a

‘Fletch 2’ 0.05 t232b

235 ‘Ben’
‘Fletch’ 0.8 t235a

‘Wild Child’ 0.2 t235b

MovieMatch(CleanTitle,ReviewTitle;P) Reviews(Reviewer,ReviewTitle;Rating;P)

Fig. 2. Sample Data arising from integrating automatically extracted reviews from a movie data-
base. MovieMatch is a probabilistic relation, we are uncertain which review title matches with
which movie in our clean database. Reviews is uncertain because it is the result of information
extraction and sentiment analysis.

we have extracted the title from free text (e.g. ‘Fletch is a great movie, just like Spies
Like Us’). Notice that t232a[P] + t232b[P] = 0.95 < 1, which indicates that there is some
probability reviewid 232 is actually not a review at all.

Remark 1. Recall that two distinct possible t[KA] and t′[KA] are disjoint if t[K] � t′[K]
and t[A] = t′[A]. But what happens if A = ∅, i.e. all attributes are part of the possible
worlds key ? In that case all possible tuples become independent, and we sometime call
a table R(K; ; P) a tuple independent table [7] or a ?-table [20] or a p-?-table [13].

Queries are posed over the possible worlds schema. For clarity, we denote such relations
with a superscripted p (e.g. Reviewsp).

Definition 3 (Query Semantics). The marginal probability of a HAVING query Q on
BID database J is denoted μJ(Q) (or simply μ(Q)) and is defined by:

μJ(Q) =
∑

W∈WJ :W |=Q

μJ(W)

We also make use of μJ(q) where q is a Boolean conjunctive query with the standard
semantics.

Example 3. Fig. 1(c) shows a query which asks for all movies that were reviewed by at
least 2 different reviewers. The movie ‘Fletch’ is present when the formula is satisfied
(m1∧t231a)∨(m2∧t232b)∨(m1∧t235a) and the multiplicity of tuples is exactly the number
of disjuncts satisfied. Thus, μ(Q) is the probability that at least two of these disjuncts
are true, which semantically can be computed by summing over all possible worlds.

Notions of complexity for HAVING queries. In the database tradition, we would like to
measure the data complexity [1], i.e. treat the query as fixed, but allow the data to grow.
This assumption makes sense in practice because the running time for query evaluation
can be O(n f (|Q|)) where |Q| is the size of a conjunctive query Q. This exponential running
time is considered to be tenable in practice, because database queries are generally
small. However, in our setting this introduces a problem. By fixing a HAVING query q
we also fix k, which means that we should accept a running time nk as efficient. Clearly

Efficient Evaluation of HAVING Queries on a Probabilistic Database 191

this is undesirable: because k can be large. For example, Q()[SUM(y) > 200] � R(x, y).
For that reason we consider in this paper an alternative definition of the data complexity
of HAVING queries, where both the database and k are port of the input.

Definition 4. Fix a skeleton q, an aggregate α, and a comparison operator θ. The query
evaluation problem is: given as input the encoding of a BID representation J, and a
binary representation of k > 0, calculate μJ(Q), where Q[α θ k] is such that sk(Q) = q.

The technical problem we address in this work is the complexity of query evaluation.
We shall see for the query in Ex. 3, that the query evaluation problem is hard for �P.
And moreover, this is the general case for all HAVING queries.

3 Preliminaries

We review here some basic facts on semirings (mostly from [12] and introduce random
variables over semirings.

3.1 Background: Random Variables on Semirings

Definition 5. A monoid (S ,+, 0) is a set S and + is an associative binary operation
with identity, 0. A semiring is a structure (S ,+, ·, 0, 1) where (S ,+, 0) is a commutative
monoid with identity 0, (S , ·, 1) is a monoid with identity 1, · distributes over + and 0
annihilates S . A commutative semiring is one in which (S , ·, 1) forms a commutative
monoid. We abbreviate either structure with the set S when clear from the context.

We shall consider only commutative semirings in this paper.

Example 4. For integer k ≥ 0, let Zk+1 = {0, 1, . . . , k} then for every such k, (Zk,max,
min, 0, k) is a semiring. In particular, k = 2 is the Boolean semiring. Another set of
semirings we consider, Sk = (Zk,+k, ·k, 0, 1) where +k(x, y) = min(x + y, k) and ·k =
min(xy, k) where addition and multiplication are in Z.

For the rest of this section fix a BID instance J, and denote (W, μ) = (WJ, μJ) the
probability space induced by J on possible worlds.

Definition 6. Given a semiring (S ,+S , ·S), an S -random variable, r, is a function r :
W → S . Given two random variables r, s then r +S s and r ·S s are random variables
defined as (r +S s)(W) = r(W) +S s(W) and (r ·S s)(W) = r(W) ·S s(W).

In the sequel, we make use of the following fact:

Fact 1 . The set of S -random variables on a fixed BID instance J induces a semiring,
denoted S J, with the operations in Def. 6.

Definition 7. Given a semiring S and a set of random variables R = {r1, . . . , rn} on S ,
R is independent if ∀N ⊆ 1, . . . , n and any set k1, . . . , kn ∈ S , we have μ(

∧
i∈N ri = ki) =∏

i∈N μ(ri = ki). We say that R is disjoint if for any i � j we haveμ((ri � 0)∧(r j � 0)) = 0.

192 C. Ré and D. Suciu

To represent a single random variable we need space as large as |W|, which is exponen-
tial in the size of the J and thus prohibitive for most applications. However, there exists
an alternative representation in terms of marginal vectors, which only takes size S .

Definition 8. Given a random variable r on S , the marginal vector (or simply, the
marginal) of r is denoted mr and is a vector indexed by S defined by ∀s ∈ S μ(r = s)
= mr[s]. Given a monoid (S ,+S , 0), the monoid convolution is a binary operation on
marginals denoted ⊗+S , and for any marginals mr and mt is defined by

∀s ∈ S (mr ⊗+S mt)[s]
def
=
∑

i+S j=k

i, j∈S

mr[i]mt[j]

The disjoint operation for (S , 0) is denoted mr ⊥ ms and is defined by

if s � 0 (mr ⊥ ms)[s]
def
= mr[s] + ms[s] else (mr ⊥ ms)[0]

def
= (mr[0] + ms[0]) − 1

The next proposition tells us when the operations defined in the previous definition yield
the correct results:

Proposition 1. If r and s are random variables on the monoid (S ,+S , 0) with marginal
vectors mr and ms then let mr+S s denote the marginal of r+S s. If r and s are independent
then mr+S s = mr ⊗+S ms. If r and s are disjoint then mr+S s = mr ⊥ ms. Further, the
n-fold convolution can be computed in time O(n|S |2) and the n-fold disjoint operation
can be computed in O(n|S |).
The importance of this proposition is that if the semiring is small, then each operation
can be done efficiently.

Example 5. Consider the Boolean semiring, and two random variables r and s with
marginal probabilities (of truth) pr and ps. Then mr = (1− pr, pr) and ms = (1− ps, ps).
If r and s are independent then, the distribution of r∨ s = r+S s which can be computed
using r ⊗+ s. This satisfies (r ⊗+ s)[1] = pr(1 − ps) + (1 − pr)ps + pr ps or in a more
familiar form, mr ⊗+ ms = ((1 − pr)(1 − ps), 1 − (1 − pr)(1 − ps)).

3.2 Background: Queries on Databases Annotated from a Semiring

In this section, we review material from [12] on computing queries on databases anno-
tated with semiring elements. A slight twist on prior art is that we allow the query to
induce the annotations as a first step, rather than being part of the data.

Definition 9. Given a commutative semiring S and a Boolean conjunctive query q =
g1, . . . , gn, an annotation is a set of functions indexed by subgoals, such that for i =
1, . . . , n, τgi is a function on tuples that unify with gi to S . We denote the set of annotation
functions with τ.

As in [12], we compute the annotation using a modified relational algebra which we
define below:

Efficient Evaluation of HAVING Queries on a Probabilistic Database 193

Definition 10.

– a plan P is inductively defined as (a) a single subgoal (b) π−xP1 if P1 is a plan (b)
P1 � P2 if P1, P2 are plans.

– var(P), the variables output by P, is defined as var(g) if P = g, var(π−xP) =
var(P) − {x} and var(P1 � P2) = var(P1) ∪ var(P2).

– goal(P), the set of subgoals in P, is defined as (a) goal(g) = {g}, (b) goal(π−xP1) =
goal(P1) (c) goal(P1 � P2) = goal(P1) ∪ goal(P2).

The value of a plan P on a standard instance W is a set of tuples with attributes cor-
responding to the variables in var(P) each annotated with a semiring element, denoted
ωW

P (t), which is defined inductively below. Concurrently, we define the support of a tu-
ple suppP,V(t) = {t′ | ∀y ∈ V t[y] = t′[y] ∧ ωW

P (t′) � 0} where P is a plan, V is a set of
variables such that V ⊆ var(P), t is a tuple with attributes corresponding to V and t′ is
a tuple with attributes corresponding to var(P).

– If P = g then if t unifies with g then ωW
P (t) = τg(t) else ωW

P (t) = 0.
– If P = π−xP1, then ωW

π−x P1
(t) =

∑
t′∈suppW

P1 ,var(P)(t)
ωW

P1
(t′).

– else P = P1 � P2 and for i = 1, 2 let ti be t restricted to var(Pi) then ωW
P1�P2

(t) =
ωW

P1
(t1) · ωW

P2
(t2)

A result of [12] shows thatωW
P is independent of the choice of plan P, which justisfies

the notation sτ,W,q, the value of a conjunctive query q on a determinsitic instance W

under annotation τ defined as sτ,W,q
def
= ωW

P () where P is any plan for q where and ωW
P is

applied to the empty tuple.

4 Approaches for HAVING

In this section, we define the α-safe HAVING queries for α ∈ {MIN, MAX, COUNT} in
Sec. 4.3, for α = COUNT(DISTINCT) in Sec. 4.4 and α ∈ {AVG, SUM} in Sec. 4.5.

4.1 Aggregates and Semirings

We explain the details of computing HAVING queries using semirings on determinis-
tic databases, which immediately generalizes to probabilistic databases. Since HAVING
queries are Boolean, we use a function ρ, the recovery function, which maps semiring
values to true if that value would satisfy the HAVING query. Fig. 3 lists the (commu-
tative) semirings for the aggregates in this paper, their annotations τ and a Boolean
recovery function ρ. EXIST is similar to the safe plan algebra of [7,8,21].

Example 6. Consider the query Q[MIN(y) ≥ 10] � R(y) where R = {t1, . . . , tn}. Fig. 3
tells us to use the semiring (Z3,max,min). We first apply τ: τ(ti) = 1 represents that
ti[y] > 10 while τ(ti) = 2 represents that zi[y] ≤ 10. Let s =

∑S
i=1,...,m τ(ti)

= maxi=1,...,m τ(ti). ρ(s) is satisfied only when s is 1, i.e. all zi[y] are greater than 10.

194 C. Ré and D. Suciu

HAVING Predicate Semiring Annotation τg∗ (t) Recovery ρ(s)

EXISTS (Z2,max,min) 1 s = 1

MIN(y) {<,≤} k (Z3,max,min) if t θ k then 2 else 1 s = 2
MIN(y) {>,≥} k (Z3,max,min) if t θ k then 1 else 2 s = 1
MIN(y) {=,�} k (Z4,max,min) if t < k then 3 else

if t = k then 2 else 1
if = then s = 2
if � then s � 2

COUNT(∗) θ k Sk+1 1 (s � 0) ∧ (s θ k)

SUM(y) θ k Sk+1 t[y] (s � 0) ∧ (s θ k)

Fig. 3. Semirings for the operators MIN, COUNT and SUM. Let g∗ be the lowest indexed subgoal
such that contains y. For all g � g∗, ∀t, τg(t) equals the multiplicative identity of the semiring.

Let Zk+1 = {0, 1, . . . , k} and +k(x, y)
def
= min(x + y, k) and ·k def

= min(xy, k), where x, y ∈ Z. Let

Sk
def
= (Zk+1,+k, ·k, 0, 1). MAX and MIN are symmetric. AVG and COUNT(DISTINCT) are omitted.

More generally, we have the following proposition:

Proposition 2. Given a HAVING query Q, let q = sk(Q) and S , ρ and τ be chosen as in
Fig. 3, then for any deterministic instance W and sτ,W,q (Sec. 3.2):

W |= Q ⇐⇒ ρ(sτ,W,q)

In probabilistic databases, we want to compute the random variable sτ,q defined as

sτ,q(W)
def
= sτ,W,q. A simple corollary of Prop. 2 is the following generalization to prob-

abilistic databases:

Corollary 1. Given Q, let q, S ,ρ and τ be as in Prop. 2 then for any BID instance J we
have the following equalities:

μJ(Q) = μJ(ρ(sτ,W,q)) =
∑

k : ρ(k)

msτ,q[k]

Cor. 1 tells us that examining the entries of the marginal vector at index s such that ρ(s)
is true is sufficient to answer Q. Hence our goal is to compute msτ,q .

4.2 Computing Safely in Semirings

We now extend safe plans to compute a marginal vector instead of a Boolean value.
Specifically, we compute msτ,q , the marginal vector for sτ,q using the operations defined
in Sec. 3.1.

Definition 11. An extensional plan for a Boolean conjunctive query q is a subgoal g
and if P1, P2 are extensional plans then so are πI−xP1, πD−xP1 and P1 � P2. An exten-
sional plan P is safe if P1 and P2 are safe then

Efficient Evaluation of HAVING Queries on a Probabilistic Database 195

– P = g is safe
– P = πI−xP1 is safe if x ∈ var(P1) and ∀g ∈ goal(P1) then x ∈ key(g)
– P = πD−xP1 is safe if x ∈ var(P1) and ∃g ∈ goal(P1), key(g) ⊆ var(P), x ∈ var(g).
– P = P1 � P2 is safe if goal(P1) ∩ goal(P2) = ∅

– and for i = 1, 2 var(goal(P1)) ∩ var(goal(P2)) ⊆ var(Pi)

An extensional plan P is a safe plan for q if P is safe and goal(P) = q.

Proposition 3. If P is a safe plan for q, then for x ∈ var(q) there is exactly one of πI−x

or πD−x in P.

At least one of the two projections must be present, because we must remove the vari-
able x (q is boolean). If there were more than one in the plan, then they cannot be de-
scendants of each other because x � var(P1) for the ancestor and they cannot be joined
afterward because of the join condition for i = 1, 2 var(goal(P1)) ∩ var(goal(P2)) ⊆
var(Pi).

Definition 12. Given a BID instance J. Let P be an safe plan, then denote the exten-
sional value of P in S on J as ω̂J

P,S which is a marginal vector on S defined inductively:

– ω̂J
g,S (t) = τ̂g(t) where τ̂g(t) is the marginal vector mt given by mt[0] = 1 − t[P] and

mt[τg(t)] = t[P], i.e. the (probabilistic) image of τ.
– ω̂J

πI−x P1,S
(t) = ⊗+S

t′∈suppP1 ,var(P)(t)
ω̂J

P1,S
(t).

– ω̂J
πD−x P1,S

(t) =⊥t′∈suppP1 ,var(P)(t) ω̂
J
P1,S

(t).

– ω̂J
P1�P2

(t) = ω̂J
P1,S

(t1) ⊗· ω̂J
P2,S

(t2) where for i = 1, 2 ti is t restricted to var(Pi)

The next lemma uses the observation that an operator in a safe plan and the operator
used to compute the value have the same correlation assumptions. For example, πI

assumes independence, which is required for ⊗+.

Lemma 1. If P is a safe plan for a Boolean query q then for any si ∈ S on any BID
instance J, we have ω̂J

P()[si] = μJ(sτ,q = si).

Remark 2. A safe plan is not necessarily efficient for any S (Def. 4). In particular, the
operations in a safe plan on S take time polynomial in |S |. Thus, if the size of S grows
super-polynomially in |J|, the size of the BID instance, the plan will not be efficient.

4.3 MIN, MAX and COUNT-Safe

We can now formalize the class of queries which are efficient for MIN, MAX and COUNT.

Definition 13. If α ∈ {MIN, MAX, COUNT} and Q[α(t) θ k] is a HAVING query, then Q is
α-safe if the skeleton of Q is safe.

Theorem 1. If Q[α(y) θ k] is a HAVING query for α ∈ {MIN, MAX, COUNT} and Q is
α-safe then the exact evaluation problem for Q is in polynomial time.

196 C. Ré and D. Suciu

Correctness is straightforward from Lem. 1. Efficiency follows because the semiring
is of polynomial size. Hence the translation and each operation in the evaluation is of
polynomial size for each aggregate in the theorem. In particular, S is constant for MIN
and MAX and upper bounded by n for COUNT.

Remark 3. We remark that for SUM, we can only guarantee that |S | = O(k), which
implies a running time of O(kn|Q|), which is not efficient (Def. 4).

The results of [7,8,21] show that either a conjunctive query without self-joins has a safe
plan or it is �P-hard. It is not hard to see that each aggregate has at least one test so
that a HAVING query Q is satisfied only when the skeleton of Q is satisfied. It is then
straightforward to extend to all predicate tests. Formally, we have:

Theorem 2. If α ∈ {MIN, MAX, COUNT} and Q[α(y) θ k] does not contain self-joins, if Q
is α-safe then Q has data complexity in P else Q has �P-hard data complexity. Further,
we can find an α-safe plan in P.

The algorithm to find a safe plan is identical to [8,21].

4.4 COUNT(DISTINCT)-Safe Queries

Intuitively, we compute COUNT(DISTINCT) in two stages: proceeding bottom-up, we
first compute the probability a y value appears (i.e. DISTINCT), we then count the num-
ber of distinct values (i.e. COUNT) using the techniques of the previous section. However,
one caveat is that the representation is lossy: We do not know which values are present,
only the distribution of their count. This implies that not all operations on these lossy
marginal vectors are correct, which restricts the class of allowable plans:

Definition 14. A query Q[COUNT(DISTINCT y) θ k] is COUNT(DISTINCT)-safe if there
is a safe plan P for the skeleton of Q such that πI−y or πD−y is in P and no proper ancestor
is πI−x for any x.

Example 7. Fix a BID instance J. Consider Q[COUNT(DISTINCT y) > 2] � R(y, x),
S (y), a safe plan for the skeleton of Q is P = πI−y((πI−xR(y, x)) � S (y)). For the sub-
query P1 = (πI−xR(y, x)) � S (y), calculate the probability that each value EXISTS in the
subplan P1, i.e. for each t, ω̂J

P,EXISTS(t). Intuitively, all tuples returned by the plan are
independent because πI−y is correct, and all y values are trivially distinct.

Intuitively, we map each EXISTS marginal vector to a vector suitable for computing
COUNT, i.e. a vector in Zk where k = 2, in this problem. In other words, (1 − p, p) =
ω̂J

P,EXISTS(t) = mt is mapped to τ̂(mt) = (1 − p, p, 0). Thus, the correct distribution
is given by ⊗t′∈suppP(()) τ̂(t′). To compute the final result, use the recovery function, ρ
defined by ρ(s) ⇐⇒ s > 2.

The proof of the following theorem is a generalization of Ex. 7, whose proof is in the
full paper [23]:

Theorem 3. If Q is COUNT(DISTINCT)-safe then its evaluation problem is in P.

Efficient Evaluation of HAVING Queries on a Probabilistic Database 197

Complexity. We now establish that for COUNT(DISTINCT) queries without self-joins,
COUNT(DISTINCT)-safe captures efficient computation. We first show the canonical
hard patterns for COUNT(DISTINCT) and then extend this to show that the evaluation
of any COUNT(DISTINCT) query without self-joins that is not COUNT(DISTINCT)-safe
can be reduced to one of these hard patterns.

Proposition 4. The following HAVING queries are �P-hard for i ≥ 1:
Q1[COUNT(DISTINCT y) θ k] � Rp(x), S(x, y) and Q2,i[COUNT(DISTINCT y) θ k] � Rp

1 (x; y), . . . , Rp
i (x; y)

Proof (Sketch). To see that Q1 is hard, we reduce from counting the number of inde-
pendent sets in a graph (V, E). We let k be the number of edges, intuitively Q is satisfied
only when all edges are present. For each node u ∈ V , create a tuple R(u) with probabil-
ity 0.5. For edge e = (u, v) create two tuples S(e, u), S(e, v), each with probability 1. For
any set V ′ ⊆ V , let WV ′ denote the world corresponding where the tuples correspond-
ing to V ′ are present. For any subset of nodes, N, we show that if N is an independent
set if and only if WV−N satisfies Q1. Since f (N) = V − N is one-to-one, the number
of possible worlds that satisfy Q1 are exactly the number of independent sets. If N is
independent, then for any edge (u, v), it must be the case that at least one of u or v is in
V − N, thus every edge is present and Q is satisfied. If N is not independent, then there
must be some edge (u, v) such that u, v ∈ N, hence neither of u, v is in V − N. Since
this edge is missing, Q1 cannot be satisfied. The hardness of Q2 is based on a reduction
from counting the set covers of a fixed size and is in the full paper [23].

There is some work in generalizing the previous theorem, we show in the full paper
[23]:

Theorem 4. If Q is not COUNT(DISTINCT)-safe and does not contain self-joins, then Q
has �P-hard data complexity.

Proof (Sketch). We sketch the proof in the simpler case when only tuple independent
probabilistic tables are used in Q. Assume the theorem fails, let Q be the minimal
counter example in terms of subgoals; this implies we may assume that Q is connected
and the skeleton of Q is safe. Since there is no safe plan projecting on y and only inde-
pendent projects are possible, the only condition that can fail is that some subgoal does
not contain y. Thus, there are at least two subgoals R(x) and S (zy) such that y � x ∪ z
and x∩ z � ∅. Given a graph (V, E), we then construct a BID instance J exactly as in the
proof of Prop. 4. Only the R relation is required to have probabilistic tuples, all others
can set their probabilities to 1.

Extending to tuple-disjoint databases requires slightly more work, because adding mul-
tiple tuples with probability 1 may violate a possible world key constraint. The proof
appears in the full paper [23]. It is straightforward to decide if a plan isCOUNT(DISTINCT)-
safe, the safe plan algorithm of [8,21] simply tries only disjoint projects and joins until it
is able to project away y or it fails.

4.5 SUM-Safe and AVG-Safe Queries

To find SUM- and AVG-safe queries, we further restrict the class of allowable plans. Intu-
itively, if each value for y is present disjointly, then computing the multiplicity of each

198 C. Ré and D. Suciu

value is sufficient to compute the query, which we accomplish using the COUNT algebra
of Sec. 4.3. Since computing SUM and AVG for a HAVING query with a single tuple in-
dependent table is already �P-Hard, our safe plans we must not contain an independent
project for y (πI−y).

Definition 15. A HAVING query Q[α(y) θ k] for α ∈ {SUM, AVG} is α-safe, if there is a
safe plan P for the skeleton of Q such that πD−y in P and no proper ancestor of πD−y is πI−x

for any x.

Theorem 5. If Q[α(y) θ k] for α ∈ {SUM, AVG} is α-safe, then Q’s evaluation problem is
in P.

Proof (Sketch). Since Q is α-safe, there is a plan P satisfying Def. 15. We may assume
without loss of generality that P = πD−y(P1). We compute P1 using the algebra for COUNT,
ω̂J
COUNT,P1

(t), which is correct because P1 is safe. We then have the following equation
which can be computed efficiently:

μ(Q) =
∑

t∈suppP1
()

∑

s:s∗t[y] θ k

ω̂J
P1 ,COUNT

[s]

Example 8. Consider Q[SUM(y) > 10] � R(‘a’; y), S(y, u). This query is SUM-safe, with
plan πD−y(R(‘a’; y) � πI−uS(y, u)).

Complexity. We show that if a HAVING query without self-joins is not SUM-safe then,
it has �P-data complexity. AVG follows by essentially the same construction.

Proposition 5. If α ∈ {SUM, AVG} and θ ∈ {≤, <,=, >,≥} then Q[α(y) θ k] � Rp(y) has
�P-data complexity.

Proof (Sketch). Consider when θ is =. An instance of �SUBSET-SUM is a set of in-
tegers x1, . . . , xn and our goal is to count the number of subsets ∅ � S ⊆ 1, . . . , n
such that

∑
s∈S xi = B. We create the representation with schema R(X; ; P) satisfying

R = {(x1; 0.5), . . . , (xn; 0.5)}, i.e. each tuple present with probability 0.5. Thus, μ(Q)∗2n

is number of such S . Showing hardness for other aggregate tess is straightforward.

Theorem 6. If α ∈ {SUM, AVG} and θ ∈ {=,�,≤, <, >,≥} then let Q[α(y) θ k] be a
HAVING query if Q does not contain self-joins and is not α-safe, then Q has �P-data
complexity. Further, there is an algorithm to decide if Q is α-safe in P.

If Q’s skeleton is unsafe, then it is straightforward that Q has �P-hard data complexity.
So we may assume that Q is safe, but not SUM-safe. Given any set of constants y1, . . . , yn,
let q = sk(Q) and for i = 1, . . . , n, qi be q[y→ yi]. We construct an instance J such that
the qi are satisfied independently with multiplicity 13. This allows us to construct the
reduction above. A formal proof is in the full paper [23].

3 By multiplicity, we mean that for any W ∈ WJ and any qi there is at most one valuation v such
that im(v) ⊆ W.

Efficient Evaluation of HAVING Queries on a Probabilistic Database 199

5 Related Work

Probabilistic relational databases have been discussed by Barbara et. al [3] and more
recently Dalvi and Suciu [7], Ré et. al [22], Sen et. al [27] and Widom [29], though all
omit HAVING style aggregation. Cheng et al. [6] and Desphande et. al [9] consider prob-
abilistic databases resulting from sensor networks and handle continuous distributions
with more general correlations, while we handle only the discrete case. In their settings,
aggregate queries are effectively value aggregates over a singe relation.

In the OLAP setting [4] and streaming setting [16] give efficient algorithms for value
aggregation in a model which is equivalent to the single table model and focuses on
scaling such computation (e.g. using streaming techniques). In contrast, computing the
AVG for predicate aggregates on a single table is already �P-Hard. Ross et al. [25] de-
scribe an approach to computing aggregates on a probabilistic database, by computing
bounding intervals (e.g. the AVG is between [5600, 5700]). For more aggregate functions
than we discuss, they show computing bounding intervals exactly is NP-Hard but do
not offer any results on the boundary of hardness.

A closely related work is Arenas et. al, [2] which considers the complexity of ag-
gregate queries, similar to HAVING queries, over data which violates functional depen-
dencies. Their semantic is greatest lower bound or least upper bound on the set of all
minimal repairs, i.e. not probabilistic. They consider multiple predicates, which we do
not. In this paper, we deal with more general types of value inconsistency.

6 Conclusion

In this paper we have examined the complexity of evaluating positive conjunctive
queries with predicate aggregates over probabilistic databases. For each aggregate, we
discussed a novel method based on computing the distribution of elements in a semiring
to evaluate such queries. We proved that for conjunctive queries without self-joins our
methods are optimal.

Acknowledgements. This work was partially supported by NSF Grants IIS-0428168
and IIS-0454425.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)
2. Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar aggregation

in inconsistent databases. Theoretical Computer Science (2003)
3. Barbara, D., Garcia-Molina, H., Porter, D.: The management of probabilistic data. IEEE

Trans. Knowl. Data Eng. 4(5), 487–502 (1992)
4. Burdick, D., Deshpande, P.M., Jayram, T.S., Ramakrishnan, R., Vaithyanathan, S.: Olap over

uncertain and imprecise data. VLDB J. 16(1), 123–144 (2007)
5. Cafarella, M.J., Ré, C., Suciu, D., Etzioni, O.: Structured querying of web text data: A tech-

nical challenge. In: CIDR, pp. 225–234 (2007), http://www.crdrdb.org
6. Cheng, R., Kalashnikov, D., Prabhakar, S.: Evaluating probabilistic queries over imprecise

data. In: Proceedings of ACM SIGMOD Conference, ACM Press, New York (2003)

http://www.crdrdb.org

200 C. Ré and D. Suciu

7. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: VLDB,
Toronto, Canada (2004)

8. Dalvi, N., Suciu, D.: Management of probabilisitic data: Foundations and challenges. In:
PODS, pp. 1–12 (2007)

9. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., Hong, W.: Model-driven data ac-
quisition in sensor networks (2004)

10. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. In: ICDT,
pp. 337–351 (2005)

11. Gradel, E., Gurevich, Yu., Hirch, C.: The complexity of query reliability. In: Symposium on
Principles of Database Systems, pp. 227–234 (1998)

12. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS (2007)
13. Green, T.J., Tannen, V.: Models for incomplete and probabilistic information. IEEE Data

Engineering Bulletin 29 (2006)
14. Gupta, R., Sarawagi, S.: Curating probabilistic databases from information extraction mod-

els. In: Proc. of the 32nd Int’l. Conference on Very Large Databases (VLDB) (2006)
15. Hernandez, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In: SIGMOD

Conference, pp. 127–138 (1995)
16. Jayram, T.S., Kale, S., Vee, E.: Efficient aggregation algorithms for probabilistic data. In:

SODA (2007)
17. Jayram, T.S., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Zhu, H.: Avatar informa-

tion extraction system. IEEE Data Engineering Bulletin 29(1) (2006)
18. Lakshmanan, L., Leone, N., Ross, R., Subrahmanian, V.S.: Probview: A flexible probabilistic

database system. ACM Trans. Database Syst. 22(3) (1997)
19. Mansuri, I., Sarawagi, S.: A system for integrating unstructured data into relational databases.

In: Proc. of the 22nd IEEE Int’l. Conference on Data Engineering (ICDE), IEEE Computer
Society Press, Los Alamitos (2006)

20. Parag, A., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T., Widom, J.:
Trio: A system for data uncertainty and lineage. In: VLDB (2006)

21. Ré, C., Dalvi, N., Suciu, D.: Query evaluation on probabilistic databases. IEEE Data Engi-
neering Bulletin 29(1), 25–31 (2006)

22. Ré, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on probabilistic data. In: Pro-
ceedings of ICDE (2007)

23. Ré, C., Suciu, D.: Efficient evaluation of having queries on a probabilistic database. Technical
Report TR2007-06-01, University of Washington, Seattle, Washington (June 2007)

24. Ré, C., Suciu, D.: Materialized views in probabilsitic databases for information exchange
and query optimization. In: VLDB (2007)

25. Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate operators in probabilistic databases. J.
ACM 52(1), 54–101 (2005)

26. Sarma, A.D., Benjelloun, O., Halevy, A.Y., Widom, J.: Working models for uncertain data.
In: Liu, L., Reuter, A., Whang, K.-Y., Zhang, J. (eds.) ICDE, p. 7. IEEE Computer Society
Press, Los Alamitos (2006)

27. Sen, P., Deshpande, A.: Representing and querying correlated tuples in probabilistic data-
bases. In: Proceedings of ICDE (2007)

28. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Com-
put. 8(3), 410–421 (1979)

29. Widom, J.: Trio: A system for integrated management of data, accuracy, and lineage. In:
CIDR, pp. 262–276 (2005)

30. Winkler, W.E.: Improved decision rules in the fellegi-sunter model of record linkage. Tech-
nical report, Statistical Research Division, U.S. Census Bureau, Washington, DC (1993)

31. Winkler, W.E.: The state of record linkage and current research problems. Technical report,
Statistical Research Division, U.S. Bureau of the Census (1999)

Succinctness of Pattern-Based Schema

Languages for XML

Wouter Gelade� and Frank Neven

Hasselt University and Transnational University of Limburg
School for Information Technology

{firstname.lastname}@uhasselt.be

Abstract. Martens et al. defined a pattern-based specification language
equivalent in expressive power to the widely adopted XML Schema defi-
nitions (XSDs). This language consists of rules of the form (r, s) where r
and s are regular expressions and can be seen as a type-free extension of
DTDs with vertical regular expressions. Sets of such rules can be inter-
preted both in an existential or universal way. In the present paper, we
study the succinctness of both semantics w.r.t. each other and w.r.t. the
common abstraction of XSDs in terms of single-type extended DTDs.
The investigation is carried out relative to three kinds of vertical pattern
languages: regular, linear, and strongly linear patterns. We also consider
the complexity of the simplification problem for each of the considered
pattern-based schema’s.

1 Introduction

In formal language theoretic terms, an XML schema defines a tree language. The
for historical reasons still widespread Document Type Definitions (DTDs) can
then be seen as context-free grammars with regular expressions at right-hand
sides which define the local tree languages [1]. XML Schema [10] extends the ex-
pressiveness of DTDs by a typing mechanism allowing content-models to depend
on the type rather than only on the label of the parent. Unrestricted application
of such typing leads to the robust class of unranked regular tree languages [1]
as embodied in the XML schema language Relax NG [3]. The latter language
is commonly abstracted in the literature by extended DTDs (EDTDs) [9]. The
Element Declarations Consistent constraint in the XML Schema specification,
however, restricts this typing: it forbids the occurrence of different types of the
same element in the same content model. Murata et al. [8] therefore abstracted
XSDs by single-type EDTDs. Martens et al. [7] subsequently characterized the
expressiveness of single-type EDTDs in several syntactic and semantic ways.
Among them, they defined an extension of DTDs equivalent in expressiveness
to single-type EDTDs: ancestor-guarded DTDs. An advantage of this language
is that it makes the expressiveness of XSDs more apparent: the content model
of an element can only depend on regular string properties of the string formed
� Research Assistant of the Fund for Scientific Research - Flanders (Belgium).

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 201–215, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

202 W. Gelade and F. Neven

Table 1. Overview of complexity results for translating pattern-based schema’s into
other schema formalisms. For all non-polynomial complexities, except the ones marked
with a star, there exist examples matching this upper bound. Theorem numbers are
given between brackets.

other semantics EDTD EDTDst DTD

P∃(Reg) 2-exp (14(1)) exp (14(2)) exp (14(3)) exp* (14(5))

P∀(Reg) 2-exp (14(6)) 2-exp (14(7)) 2-exp (14(8)) 2-exp (14(10))

P∃(Lin) \ (16(1)) exp (16(2)) exp (16(3)) exp* (16(5))

P∀(Lin) \ (16(6)) 2-exp (16(7)) 2-exp (16(8)) 2-exp (16(10))

P∃(S-Lin) poly (19(1)) poly (19(2)) poly (19(3)) poly (19(6))

P∀(S-Lin) poly (19(7)) poly (19(8)) poly (19(9)) poly (19(12))

P∃(Det-S-Lin) poly (19(1)) poly (19(2)) poly (19(3)) poly (19(6))

P∀(Det-S-Lin) poly (19(7)) poly (19(8)) poly (19(9)) poly (19(12))

by the ancestors of that element. Ancestor-based DTDs can therefore be used
as a type-free front-end for XML Schema. As they can be interpreted both in an
existential and universal way, we study in this paper the complexity of translat-
ing between the two semantics and into the formalisms of DTDs, EDTDs, and
single-type EDTDs.

In the remainder of the paper, we use the name pattern-based schema, rather
than ancestor-based DTD, as it emphasizes the dependence on a particular pat-
tern language. A pattern-based schema is a set of rules of the form (r, s), where
r and s are regular expressions. An XML tree is then existentially valid w.r.t. a
rule set if for each node there is a rule such that the path from the root to that
node matches r and the child sequence matches s. Furthermore, it is universally
valid if each node vertically matching r, horizontally matches s. The existential
semantics is exhaustive, fully specifying every allowed combination, and more
DTD-like, whereas the universal semantics is more liberal, enforcing constraints
only where necessary.

Kasneci and Schwentick studied the complexity of the satisfiability and inclu-
sion problem for pattern-based schemas under the existential (∃) and universal
(∀) semantics [6]. They considered regular (Reg), linear (Lin), and strongly linear
(S-Lin) patterns. These correspond to the regular expressions, XPath-expressions
with only child (/) and descendant (//), and XPath-expressions of the form //w
or /w, respectively. A snapshot of their results is given in the third and fourth
column of Table 2. These results indicate that there is no difference between the
existential and universal semantics.

We, however, show that with respect to succinctness there is a huge difference.
Our results are summarized in Table 1. Both for the pattern languages Reg and
Lin, the universal semantics is exponentially more succinct than the existential
one when translating into (single-type) extended DTDs and ordinary DTDs.
Furthermore, our results show that the general class of pattern-based schemas is
ill-suited to serve as a front-end for XML Schema due to the inherent exponential
or double exponential size increase after translation. Only when resorting to
S-Lin patterns, there are translations only requiring polynomial size increase.

Succinctness of Pattern-Based Schema Languages for XML 203

Table 2. Overview of complexity results for pattern-based schema’s. All results, unless
indicated otherwise, are completeness results. Theorem numbers for the new results are
given between brackets.

simplification satisfiability inclusion

P∃(Reg) exptime (14(4)) exptime [6] exptime [6]

P∀(Reg) exptime (14(9)) exptime [6] exptime [6]

P∃(Lin) pspace (16(4)) pspace [6] pspace [6]

P∀(Lin) pspace (16(9)) pspace [6] pspace [6]

P∃(S-Lin) pspace (19(4)) pspace [6] pspace [6]

P∀(S-Lin) pspace (19(10)) pspace [6] pspace [6]

P∃(Det-S-Lin) in ptime (19(5)) in ptime [6] in ptime [6]

P∀(Det-S-Lin) in ptime (19(11)) in ptime [6] in ptime [6]

Fortunately, the practical study in [7] shows that the sort of typing used in XSDs
occurring in practice can be described by such patterns. Our results further show
that the expressive power of the existential and the universal semantics coincide
for Reg and S-Lin, albeit a translation can not avoid a double exponential size
increase in general in the former case. For linear patterns the expressiveness
is incomparable. Finally, as listed in Table 2, we study the complexity of the
simplification problem: given a pattern-based schema, is it equivalent to a DTD?

Outline. The paper is further organized as follows. In Section 2, we recall the
necessary definitions concerning regular expressions, schema languages, and
pattern-based schemas. We define the decision problems we consider and intro-
duce a notation for succinctness. In Section 3, 4, and 5, we study pattern-based
schemas with regular, linear, and strongly linear expressions, respectively. We
conclude in Section 6. A version of this paper containing all proofs is available
from the authors’ webpages.

2 Preliminaries

In this section, we recall the necessary definitions and results concerning regular
expressions, schema languages for XML and pattern-based schemas. We also
formally define the problems we address.

2.1 Regular Expressions

For the rest of the paper, Σ always denotes a finite alphabet. A Σ-symbol (or
simply symbol) is an element of Σ, and a Σ-string (or simply string) is a finite
sequence w = a1 · · · an of Σ-symbols. We define the length of w, denoted by |w|,
to be n. We denote the empty string by ε. The set of positions of w is {1, . . . , n}
and the symbol of w at position i is ai. By w1 · w2 we denote the concatenation
of two strings w1 and w2. For readability, we usually denote the concatenation
of w1 and w2 by w1w2. The set of all strings is denoted by Σ∗ and the set

204 W. Gelade and F. Neven

of all non-empty strings by Σ+. A string language is a subset of Σ∗. For two
string languages L,L′ ⊆ Σ∗, we define their concatenation L · L′ to be the set
{w · w′ | w ∈ L,w′ ∈ L′}. We abbreviate L · L · · ·L (i times) by Li.

The set of regular expressions over Σ, denoted by RE, is defined in the usual
way: ∅, ε, and every Σ-symbol is a regular expression; and when r1 and r2 are
regular expressions, then r1 · r2, r1 + r2, and r∗1 are also regular expressions.
The language defined by a regular expression r, denoted by L(r), is inductively
defined as follows: L(∅) = ∅; L(ε) = {ε}; L(a) = {a}; L(r1r2) = L(r1) · L(r2);
L(r1 + r2) = L(r1) ∪ L(r2); and L(r∗) = {ε} ∪⋃∞

i=1 L(r)i. The size of a regular
expression r over Σ, denoted by |r|, is the number of Σ-symbols and operators
occurring in r. By r?, r+, and rk, with k ∈ N, we abbreviate the expression
r + ε, rr∗, and rr · · · r (k times), respectively. For a set S = {a1, . . . , an} ⊆ Σ,
we denote by S∗ the regular expression (a1 + · · ·+ an)∗. The sets of prefixes and
suffixes of strings defined by r are Prefix(r) = {w | ∃v ∈ Σ∗, wv ∈ L(r)} and
Suffix(r) = {w | ∃v ∈ Σ∗, vw ∈ L(r)}.

A non-deterministic finite automaton (NFA) A is a 4-tuple (Q, q0, δ, F) where
Q is the set of states, q0 is the initial state, F is the set of final states and
δ ⊆ Q ×Σ ×Q is the transition relation. We write q ⇒A,w q′ when w takes A
from state q to q′.

We use the following theorem of Glaister and Shallit [5].

Theorem 1 ([5]). Let L ⊆ Σ∗ be a regular language and suppose there exists a
set of pairs M = {(xi, wi) | 1 ≤ i ≤ n} such that

– xiwi ∈ L for 1 ≤ i ≤ n; and
– xiwj /∈ L for 1 ≤ i, j ≤ n and i
= j.

Then any NFA accepting L has at least n states.

We make use of the following results on transformations of regular expressions.
Theorem 2(3-4) are from [4].

Theorem 2. 1. Let r1, . . . , rn, s1, . . . , sm be regular expressions. A regular ex-
pression r, with L(r) =

⋂
i≤n L(ri) \

⋃
i≤m L(si), can be constructed in time

double exponential in the sum of the sizes of all ri, sj, i ≤ n, j ≤ m.
2. Let r1, . . . , rn be regular expressions. A regular expression r, with L(r) =⋂

i≤n L(ri), can be constructed in time double exponential in the sum of the
sizes of all ri, i ≤ n.

3. For every n ∈ N, there are a linear number of regular expressions r1, . . . , rm
of size linear in n such that any regular expression r with L(r) =

⋂
i≤m L(ri)

must be of size at least double exponential in n.
4. For every n ∈ N, there is a regular expression rn of size linear in n such

that any regular expression r defining Σ∗ \ L(rn) is of size at least double
exponential in r.

5. For any regular expressions r and alphabet Δ ⊆ Σ, an expression r−, such
that L(r−) = L(r) ∩Δ∗, can be constructed in time linear in the size of r.

Succinctness of Pattern-Based Schema Languages for XML 205

2.2 Schema Languages for XML

The set of unranked Σ-trees, denoted by TΣ , is the smallest set of strings over
Σ and the parenthesis symbols “(” and “)” such that, for a ∈ Σ and w ∈ (TΣ)∗,
a(w) is in TΣ . So, a tree is either ε (empty) or is of the form a(t1 · · · tn) where
each ti is a tree. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn are attached to
the root labeled a. We write a rather than a(). Notice that there is no a priori
bound on the number of children of a node in a Σ-tree; such trees are therefore
unranked. For every t ∈ TΣ , the set of nodes of t, denoted by Dom(t), is the
set defined as follows: (i) if t = ε, then Dom(t) = ∅; and (ii) if t = a(t1 · · · tn),
where each ti ∈ TΣ , then Dom(t) = {ε} ∪⋃n

i=1{iu | u ∈ Dom(ti)}. For a node
u ∈ Dom(t), we denote the label of u by labt(u). By anc-strt(u) we denote the
sequence of labels on the path from the root to u including both the root and u
itself, and ch-strt(u) denotes the string formed by the labels of the children of u,
i.e., labt(u1) · · · labt(un). In the sequel, whenever we say tree, we always mean
Σ-tree. Denote by t1[u ← t2] the tree obtained from a tree t1 by replacing the
subtree rooted at node u of t1 by t2. By subtreet(u) we denote the subtree of t
rooted at u. A tree language is a set of trees.

We make use of the following definitions to abstract from the commonly used
schema languages [7]:

Definition 3. Let R be a class of representations of regular string languages
over Σ.

1. A DTD(R) over Σ is a tuple (Σ, d, sd) where d is a function that maps
Σ-symbols to elements of R and sd ∈ Σ is the start symbol. For notational
convenience, we sometimes denote (Σ, d, sd) by d and leave the start symbol
sd implicit.
A tree t satisfies d if (i) labt(ε) = sd and, (ii) for every u ∈ Dom(t) with n
children, labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set of
trees satisfying d.

2. An extended DTD (EDTD(R)) over Σ is a 5-tuple D = (Σ,Σ′, d, s, μ),
where Σ′ is an alphabet of types, (Σ′, d, s) is a DTD(R) over Σ′, and μ is
a mapping from Σ′ to Σ.
A tree t then satisfies an extended DTD if t = μ(t′) for some t′ ∈ L(d). Here
we abuse notation and let μ also denote its extension to define a homomor-
phism on trees. Again, we denote by L(D) the set of trees satisfying D. For
ease of exposition, we always take Σ′ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N} for
some natural numbers ka, and we set μ(ai) = a.

3. A single-type EDTD (EDTDst(R)) over Σ is an EDTD(R) D = (Σ,Σ′, d,
s, μ) with the property that for every a ∈ Σ′, in the regular expression d(a)
no two types bi and bj with i
= j occur.

We denote by EDTD, and EDTDst the classes EDTD(RE), and EDTDst(RE),
respectively. As explained in [7,8], EDTDs and single-type EDTDs correspond
to Relax NG and XML Schema, respectively. Furthermore, EDTDs correspond
to the unranked regular languages [1], while single-type EDTDs form a strict
subset thereof [7].

206 W. Gelade and F. Neven

t1

v1
∈ T

t2

v2
∈ T ⇒

t1

v2
∈ T

Fig. 1. Closure under label-guarded subtree exchange

A regular tree language T is closed under label-guarded subtree exchange if it
has the following property: if two trees t1 and t2 are in T , and there are two
nodes v1 in t1 and v2 in t2 with the same label, then t1[v1 ← subtreet2(v2)] is
also in T . This notion is graphically illustrated in Figure 1.

Lemma 4 ([9]). A regular tree language is definable by a DTD iff it is closed
under label-guarded subtree exchange.

An EDTD D = (Σ,Σ′, d, sd, μ) is trimmed if for for every ai ∈ Σ′, there exists
a tree t ∈ L(d) and a node u ∈ Dom(t) such that labt(u) = ai.

Lemma 5. [7]

1. For every EDTD D, a trimmed EDTD D′, with L(D) = L(D′), can be
constructed in time polynomial in the size of D.

2. Let D be a trimmed EDTD. For any type ai ∈ Σ′ and any string w ∈ L(d(ai))
there exists a tree t ∈ L(d) which contains a node v with labt(v) = ai and
ch-strt(v) = w.

We give another schema formalism equivalent to single-type EDTDs. An
automaton-based schema D over vocabulary Σ is a tuple (A, λ), where A =
(Q, q0, δ, F) is a DFA and λ is a function mapping states of A to regular expres-
sions. A tree t is accepted by D if for every node v of t, where q ∈ Q is the state
such that q0 ⇒A,anc-str(v) q, ch-str(v) ∈ L(λ(q)). Because the set of final states
F of A is not used, we often omit F and represent A as a triple (Q, q0, δ).

Remark 6. Because DTDs and EDTDs only define tree languages in which
every tree has the same root element, we implicitly assume that this is also the
case for automaton-based schema’s and the pattern-based schema’s defined next.
Whenever we translate among pattern-based schema’s, we drop this assumption.
Obviously, this does not influence any of the results of this paper.

Lemma 7. Any automaton-based schema D can be translated into an equivalent
single-type EDTD D′ in time at most quadratic in the size of D, and vice versa.

2.3 Pattern-Based XML Schemas

We recycle the following definitions from [6].

Succinctness of Pattern-Based Schema Languages for XML 207

Definition 8. A pattern-based schema P is a set {(r1, s1), . . . , (rm, sm)} where
all ri, si are regular expressions.

Each pair (ri, si) of a pattern-based schema represents a schema rule. We also
refer to the ri and si as the vertical and horizontal regular expressions, respec-
tively. There are two semantics for pattern-based schemas.

Definition 9. A tree t is existentially valid with respect to a pattern-based schema
P if, for every node v of t, there is a rule (r, s) ∈ P such that anc-str(v) ∈ L(r)
and ch-str(v) ∈ L(s). In this case, we write P |=∃ t.
Definition 10. A tree t is universally valid with respect to a pattern-based schema
P if, for every node v of t, and each rule (r, s) ∈ P it holds that anc-str(v) ∈ L(r)
implies ch-str(v) ∈ L(s). In this case, we write P |=∀ t.
Denote by P∃(t) = {v ∈ Dom(t) | ∃(r, s) ∈ P, anc-str(v) ∈ L(r) ∧ ch-str(v) ∈
L(s)} the set of nodes in t that are existentially valid. Denote by P∀(t) = {v ∈
Dom(t) | ∀(r, s) ∈ P, anc-str(v) ∈ L(r)⇒ ch-str(v) ∈ L(s)} the set of nodes in t
that are universally valid.

We denote the set of Σ-trees which are existentially and universally valid with
respect to P by T Σ

∃ (P) and T Σ
∀ (P), respectively. We often omit the existential

or universal quantifier if it is clear from the context which semantics is meant.
Likewise, we usually drop Σ.

When for every string w ∈ Σ∗ there is a rule (r, s) ∈ P such that w ∈ L(r),
then we say that P is complete. Further, when for every pair (r, s), (r′, s′) ∈ P
of different rules, L(r) ∩ L(r′) = ∅, then we say that P is disjoint.

In some proofs, we make use of unary trees, which can be represented as
strings. In this context, we abuse notation and write for instance w ∈ T∃(P)
meaning that the unary tree which w represents is existentially valid with respect
to P . Similarly, we refer to the last position of w as the leaf of w.

Lemma 11. For a pattern-based schema P , a tree t and a string w

1. t ∈ T∀(P) iff for every node v of t, v ∈ P∀(t).
2. if w ∈ T∀(P) then for every prefix w′ of w and every non-leaf node v of w′,

v ∈ P∀(w′).
3. t ∈ T∃(P) iff for every node v of t, v ∈ P∃(t).
4. if w ∈ T∃(P) then for every prefix w′ of w and every non-leaf node v of w′,

v ∈ P∃(w′).
Lemma 12. For any complete and disjoint pattern-based schema P , T∃(P) =
T∀(P).

2.4 Problems

We give an overview of the problems studied by Schwentick and Kasneci [6]
and the ones studied in this paper. We define all problems for the existential
semantics, and leave the identical definitions for the universal semantics implicit.

208 W. Gelade and F. Neven

Definition 13. Given pattern-based schemas P, P ′

– satisfiability for P : Is there a non-empty tree t such that t ∈ T∃(P)?
– inclusion for P , P ′: Is T∃(P) ⊆ T∃(P ′)?
– simplification for P : Does there exist a DTD D with T∃(P) = L(D)?

2.5 Succinctness

We introduce some additional notation to characterize the complexity of trans-
lating pattern-based schema’s into DTDs and (single-type) EDTDs.

For a class S and S′ of representations of schema languages, and F a class
of functions from N to N, we write S F→ S′ if there is an f ∈ F such that for
every s ∈ S there is an s′ ∈ S′ with L(s) = L(s′) which can be constructed in
time f(|s|). This also implies that |s′| ≤ f(|s|). By L(s) we mean the set of trees
defined by s.

We write S F⇒ S′ if S F→ S′ and there is an f ∈ F , a monotonically increasing
function g : N → N and an infinite family of schema’s sn ∈ S with |sn| ≤ g(n)
such that the smallest s′ ∈ S′ with L(s) = L(s′) is at least of size f(g(n)). By
poly, exp and 2-exp we denote the classes of functions

⋃
k,c cn

k,
⋃

k,c c2
nk

and
⋃

k,c c2
2nk

, respectively.
Further, we write S
→ S′ if there exists an s ∈ S such that for every s′ ∈ S′,

L(s′)
= L(s). In this case we also write S
F

→ S′ and S
F

⇒ S′ whenever S F→ S′ and
S F⇒ S′, respectively, hold for those elements in S which do have an equivalent
element in S′.

3 Regular Pattern-Based Schema’s

In this section, we study the full class of pattern-based schema’s which we denote
by P∃(Reg) and P∀(Reg). The results are shown in Theorem 14. We only give
sketches of some proofs.

Theorem 14. 1. P∃(Reg)
2-exp⇒ P∀(Reg)

2. P∃(Reg)
exp⇒ EDTD

3. P∃(Reg)
exp⇒ EDTDst

4. simplification for P∃(Reg) is exptime-complete.

5. P∃(Reg)
exp

→ DTD
6. P∀(Reg)

2-exp⇒ P∃(Reg)
7. P∀(Reg)

2-exp⇒ EDTD
8. P∀(Reg)

2-exp⇒ EDTDst

9. simplification for P∀(Reg) is exptime-complete.

10. P∀(Reg)
2-exp

⇒ DTD

Succinctness of Pattern-Based Schema Languages for XML 209

Proof. (1) We first show P∃(Reg)
2-exp→ P∀(Reg). Let P = {(r1, s1), . . . , (rn, sn)}.

We show that we can construct a complete and disjoint pattern-based schema
P ′ such that T∃(P) = T∃(P ′) in time double exponential in the size of P . By
Lemma 12, T∃(P ′) = T∀(P ′) and thus T∃(P) = T∀(P ′).

For any non-empty set C ⊆ {1, . . . , n}, denote by rC the regular expression
which defines the language

⋂
i∈C L(ri)\

⋃
1≤i≤n,i/∈C L(ri) and by r∅ the expres-

sion defining Σ∗\⋃
1≤i≤n L(ri). That is, rC defines any word w which is defined

by all vertical expressions contained in C but is not defined by any vertical ex-
pression not contained in C. Denote by sC the expression defining the language⋃

i∈C L(si). Then, P ′ = {(r∅, ∅)} ∪ {(rC , sC) | C ⊆ {1, . . . , n} ∧ C
= ∅}. Now,

P∃(Reg)
2-exp→ P∀(Reg) follows from the facts that T∃(P) = T∃(P ′) and that P ′

can be constructed from P in time double exponential in the size of P .
To show that P∃(Reg)

2-exp⇒ P∀(Reg), we slightly extend Theorem 2(4).

Lemma 15. For every n ∈ N, there is a regular expressions rn of size linear in
n such that any regular expression r defining Σ∗ \L(rn) is of size at least double
exponential in r. Further, rn has the property that for any string w /∈ L(rn),
there exists a string u such that wu ∈ L(rn).

Now, let n ∈ N and let rn be a regular expression overΣ satisfying the conditions
of Lemma 15. Then, define Pn = {(rn, ε), (Σ∗, Σ)}. Here, T∃(Pn) defines all
unary trees w for which w ∈ L(rn).

Let P be a pattern-based schema with T∃(Pn) = T∀(P). Define U = {r |
(r, s) ∈ P ∧ ε /∈ L(s)} as the set of vertical regular expressions in P whose
corresponding horizontal regular expression does not contain the empty string.
Finally, let r be the disjunction of all expressions in U . Then, since L(r) =
Σ∗ \ L(rn), the size of P must be at least double exponential in n.

(4) For the upperbound, we combine a number of results of Kasneci and
Schwentick [6] and Martens et. al [7]. In the following, an NTA(NFA) is a non-
deterministic tree automaton where the transition relation is represented by an
NFA. A DTD(NFA) is a DTD where content models are defined by NFAs.

Given a pattern-based schema P , we first construct an NTA(NFA) AP with
L(AP) = T∃(P), which can be done in exponential time (Proposition 3.3 in
[6]). Then, Martens et. al. [7] have shown that given any NTA(NFA) AP it is
possible to construct, in time polynomial in the size of AP , a DTD(NFA) DP

such that L(AP) ⊆ L(DP) and L(AP) = L(DP) iff L(AP) is definable by a
DTD. Summarizing, DP is of size exponential in P , T∃(P) ⊆ L(DP) and T∃(P)
is definable by a DTD iff T∃(P) = L(DP).

Now, construct another NTA(NFA)A¬P which defines the complement of
T∃(P). This can again be done in exponential time (Proposition 3.3 in [6]). Since
T∃(P) ⊆ L(DP), T∃(P) = L(DP) iff L(DP) ∩ L(A¬P)
= ∅. Here, DP and A¬P

are of size at most exponential in the size of P , and testing the non-emptiness
of their intersection can be done in time polynomial in the size of DP and A¬P .
This gives us an exptime algorithm overall.

For the lower bound, we reduce from satisfiability of pattern-based schema’s,
which is exptime-complete [6].

210 W. Gelade and F. Neven

(6) The proof of P∀(Reg)
2-exp→ P∃(Reg) is along the same lines as that of

Theorem 14(1).
We show that P∀(Reg)

2-exp⇒ P∃(Reg). Let n ∈ N. According to Theorem 2(2),
there exist a linear number of regular expressions r1, . . . , rm of size linear in n
such that any regular expression defining

⋂
i≤m L(ri) must be of size at least

double exponential in n. For brevity, define K =
⋂

i≤m L(ri).
Define Pn over the alphabet Σa = Σ � {a}, for a /∈ Σ, as Pn = {(a, ri) | i ≤

m} ∪ {(ab, ε) | b ∈ Σ} ∪ {(b, ∅) | b ∈ Σ}. That is, T∀(Pn) contains all trees a(w),
where w ∈ K.

Let P be a pattern-based schema with T∀(Pn) = T∃(P). For an expres-
sion s, denote by s− the expression defining all words in L(s) ∩ Σ∗. Accord-
ing to Theorem 2(5), s− can be constructed from s in linear time. Define
U = {s− | (r, s) ∈ P ∧ a ∈ L(r)} as the set of horizontal regular expressions
whose corresponding vertical regular expressions contains the string a. Finally,
let rK be the disjunction of all expressions in U . Then, L(rK) = K, and thus
must the size of P be at least double exponential in n. ��

4 Linear Pattern-Based Schema’s

In this section, following [6], we restrict the vertical expressions to XPath expres-
sions using only descendant and child axes. For instance, an XPath expression
\\a\\b\c captures all nodes that are labeled with c, have b as parent and have
an a as ancestor. This corresponds to the regular expression Σ∗aΣ∗bc.

Formally, we call an expression linear if it is of the form w0Σ
∗ · · ·wn−1Σ

∗wn,
with w0, wn ∈ Σ∗, and wi ∈ Σ+ for 1 ≤ i < n. A pattern-based schema is linear
if all its vertical expressions are linear. Denote the classes of linear schema’s
under existential and universal semantics by P∃(Lin) and P∀(Lin), respectively.

Theorem 16 lists the results for linear schema’s. The complexity of simpli-
fication improves slightly, pspace instead of exptime. Further, we show that
the expressive power of linear schema’s under existential and universal seman-
tics becomes incomparable, but that the complexity of translating to DTDs
and (single-type) EDTDs is in general not better than for regular pattern-based
schema’s.

Theorem 16. 1. P∃(Lin)
→ P∀(Lin)
2. P∃(Lin)

exp⇒ EDTD
3. P∃(Lin)

exp⇒ EDTDst

4. simplification for P∃(Lin) is pspace-complete.

5. P∃(Lin)
exp

→ DTD
6. P∀(Lin)
→ P∃(Lin)
7. P∀(Lin)

2-exp⇒ EDTD
8. P∀(Lin)

2-exp⇒ EDTDst

9. simplification for P∀(Lin) is pspace-complete.

10. P∀(Lin)
2-exp

⇒ DTD

Succinctness of Pattern-Based Schema Languages for XML 211

Proof. (1) First, consider the following simple lemma. Given an alphabet Σ, and
a symbol b ∈ Σ, denote Σ \ {b} by Σb.

Lemma 17. There does not exist a set of linear regular expression r1, . . . , rn
such that

⋃
1≤i≤n L(ri) is an infinite language and

⋃
1≤i≤n L(ri) ⊆ L(Σ∗b).

Now, let P = {(Σ∗bΣ∗, ε), (Σ∗, Σ)}. Then, T∃(P) defines all unary trees contain-
ing at least one b. Suppose that P ′ is a linear schema such that T∃(P) = T∀(P ′).
Define U = {r | (r, s) ∈ P ′ and ε /∈ L(s)} as the set of all vertical regular expres-
sions in P ′ whose horizontal regular expressions do not contain the empty string.
We show that the union of the expressions in U defines an infinite language and
is a subset of Σ∗b , which by Lemma 17 proves that such a schema P ′ can not
exist.

First, to show that the union of these expressions defines an infinite language,
suppose that it does not. Then, every expression r ∈ U is of the form r = w, for
some string w. Let k be the length of the longest such string w. Now, ak+1b ∈
T∃(P) = T∀(P ′) and thus by Lemma 11(2) every non-leaf node v of ak+1 is in
P ′∀(a

k+1). Further, ak+1 /∈ L(r) for all vertical expressions in U and thus the
leaf node of ak+1 is also in P ′∀(a

k+1). But then, by Lemma 11(1), ak+1 ∈ T∀(P ′)
which leads to the desired contradiction.

Second, let w ∈ L(r), for some r ∈ U , we show w ∈ Σ∗b . Towards a contra-
diction, suppose w /∈ Σ∗b , which means that w contains at least one b and thus
w ∈ T∃(P) = T∀(P ′). But then, for the leaf node v of w, anc-str(v) = w ∈ L(r),
and by definition of U , ch-str(v) = ε /∈ L(s), where s is the corresponding hori-
zontal expression for r. Then, v /∈ P ′∀(w) and thus by Lemma 11(1), w /∈ T∀(P ′),
which again gives the desired contradiction.

(2-3) First, P∃(Lin)
exp→ EDTDst follows immediately from Theorem 14(3). We

show P∃(Lin)
exp⇒ EDTD, which then implies both statements. Thereto, we first

characterize the expressive power of EDTDs over unary tree languages.

Lemma 18. For any EDTD D for which L(D) is a unary tree language, there
exists an NFA A such that L(D) = L(A). Moreover, A can be computed from D
in time linear in the size of D.

Now, let n ∈ N. Define Σn = {$,#1,#2} ∪
⋃

1≤i≤n{a0
i , a

1
i , b

0
i , b

1
i } and Kn =

{#1a
i1
1 a

i2
2 · · · ain

n $bi11 b
i2
2 · · · bin

n #2 | ik ∈ {0, 1}, 1 ≤ k ≤ n}. It is not hard to see
that any NFA defining Kn must be of size at least exponential in n. Indeed,
in Theorem 1, define M = {(x,w) | xw ∈ Kn ∧ |x| = n + 1} which is of size
exponential in n, and satisfies the conditions of Theorem 1. Then, by Lemma 18,
every EDTD defining the unary tree languageKn must also be of size exponential
in n. We conclude the proof by giving a pattern-based schema Pn, such that
T∃(Pn) = Kn, which is of size linear in n. It contains the following rules:

– #1 → a0
1 + a1

1

– For any i < n:
• #1Σ

∗a0
i → a0

i+1 + a1
i+1

• #1Σ
∗a1

i → a0
i+1 + a1

i+1

212 W. Gelade and F. Neven

• #1Σ
∗a0

iΣ
∗b0i → b0i+1 + b1i+1

• #1Σ
∗a1

iΣ
∗b1i → b0i+1 + b1i+1

– #1Σ
∗a0

n → $
– #1Σ

∗a1
n → $

– #1Σ
∗$→ b01 + b11

– #1Σ
∗a0

nΣ
∗b0n → #2

– #1Σ
∗a1

nΣ
∗b1n → #2

– #1Σ
∗#2 → ε

(4) For the lower bound, we reduce from universality of regular expres-
sions. That is, deciding for a regular expression r whether L(r) = Σ∗. The
latter problem is known to be pspace-complete [11]. Given r over alphabet Σ,
let ΣP = {a, b, c, d} � Σ, and define the pattern-based schema P = {(a, b +
c), (ab, e), (ac, e), (abe,Σ∗), (ace, r)} ∪ {(abeσ, ε), (aceσ, ε) | σ ∈ Σ}. We show
that there exists a DTD D with L(D) = T∃(P) iff L(r) = Σ∗.

If L(r) = Σ∗, then the following DTD d defines T∃(P): d(a) = b+ c, d(b) = e,
d(c) = e, d(e) = Σ∗, and d(σ) = ε for every σ ∈ Σ.

Conversely, if L(r) � Σ∗, we show that T∃(P) is not closed under label-
guarded subtree exchange. From Lemma 4, it then follows that T∃(P) is not
definable by a DTD. Let w,w′ be strings such that w /∈ L(r) and w′ ∈ L(r).
Then, a(b(e(w))) ∈ L(D), and a(c(e(w′))) ∈ L(D) but a(c(e(w))) /∈ T∃(P).

For the upper bound, we again make use of the closure under label-guarded
subtree exchange property of DTDs. Observe that T∃(P), which is a regular tree
language, is not definable by any DTD iff there exist trees t1, t2 ∈ T∃(P) and
nodes v1 and v2 in t1 and t2, respectively, with labt1(v1) = labt2(v2), such that
the tree t3 = t1[v1 ← subtreet2(v2)] is not in T∃(P). It can be shown that if there
exist such trees t1, t2 then there also exist such trees t′1, t′2 of polynomial depth,
which allows us to give a pspace algorithm for the problem.
(6) Let Σ = {a, b, c} and define P = {(Σ∗bΣ∗c, b)}. Then, T∀(P) contains all
trees in which whenever a c labeled node v has a b labeled node as ancestor,
ch-str(v) must be b. We show that any linear schema P ′ defining all trees in
T∀(P) under existential semantics, must also define trees not in T∀(P).

Suppose there does exist a linear schema P ′ such that T∀(P) = T∃(P ′). Define
w� = a�c for � ≥ 1 and note that w� ∈ T∀(P) = T∃(P ′). Let (r, s) ∈ P ′ be a rule
matching infinitely many leaf nodes of the strings w�. There must be at least
one as P ′ contains a finite number of rules. Then, ε ∈ L(s) must hold and r is
of one of the following forms:

1. an1Σ∗an2Σ∗ · · ·Σ∗ankc
2. an1Σ∗an2Σ∗ · · ·Σ∗ankcΣ∗

3. an1Σ∗an2Σ∗ · · ·Σ∗ankΣ∗

where k ≥ 2 and nk ≥ 0.
Choose some N ∈ N with N ≥ |P ′| and define the unary trees t1 = aNbaNcb

and t2 = aNbaNc. Obviously, t1 ∈ T∀(P), and t2 /∈ T∀(P). Then, t1 ∈ T∃(P ′)
and since t2 is a prefix of t1, by Lemma 11(4), every non-leaf node v of t2 is in
P ′∃(t2). Finally, for the leaf node v of t2, anc-str(v) ∈ L(r) for any of the three

Succinctness of Pattern-Based Schema Languages for XML 213

expressions given above and ε ∈ L(s) for its corresponding horizontal expression.
Then, v ∈ P ′∃(t2), and thus by Lemma 11(3), t2 ∈ T∃(P ′) which completes the
proof. ��

5 Strongly Linear Pattern-Based Schema’s

In [7], it is observed that the type of a node in most real-world XSDs only depends
on the labels of its parents and grand parents. To capture this idea, following
[6], we say that a regular expression is strongly linear if it is of the form w or
Σ∗w, where w is non-empty. A pattern-based schema is strongly linear if it is
disjoint and all its vertical expressions are strongly linear. Denote the class of all
strongly linear pattern-based schema’s under existential and universal semantics
by P∃(S-Lin) and P∀(S-Lin), respectively.

In [6], all horizontal expressions in a strongly linear schema are also required
to be deterministic or one-unambiguous [2], as is the case for DTDs and XML
Schema. The latter requirement is necessary to get ptime satisfiability and
inclusion which would otherwise be pspace-complete for arbitrary regular ex-
pressions. This is also the case for the simplification problem studied here,
but not for the various translation problems. Therefore, we distinguish between
strongly linear schema’s, as defined above, and strongly linear schema’s where
all horizontal expressions must be deterministic, which we call deterministic
strongly linear schema’s and denote by P∃(Det-S-Lin) and P∀(Det-S-Lin).

Theorem 19 shows the results for (deterministic) strongly linear pattern-based
schema’s. First, observe that the expressive power of these schema’s under exis-
tential and universal semantics again coincides. Further, all considered problems
become tractable, which makes strongly linear schema’s very interesting from a
practical point of view.

Theorem 19. 1.P∃(S-Lin)
poly→ P∀(S-Lin) and P∃(Det-S-Lin)

poly→ P∀(Det-S-Lin)

2. P∃(S-Lin)
poly→ EDTD and P∃(Det-S-Lin)

poly→ EDTD
3. P∃(S-Lin)

poly→ EDTDst and P∃(Det-S-Lin)
poly→ EDTDst

4. simplification for P∃(S-Lin) is pspace-complete.
5. simplification for P∃(Det-S-Lin) is in ptime.

6. P∃(S-Lin)
poly

→ DTD and P∃(Det-S-Lin)
poly

→ DTD
7. P∀(S-Lin)

poly→ P∃(S-Lin) and P∀(Det-S-Lin)
poly→ P∃(Det-S-Lin)

8. P∀(S-Lin)
poly→ EDTD and P∀(Det-S-Lin)

poly→ EDTD
9. P∀(S-Lin)

poly→ EDTDst and P∀(Det-S-Lin)
poly→ EDTDst

10. simplification for P∀(S-Lin) is pspace-complete.
11. simplification for P∀(Det-S-Lin) is in ptime.

12. P∀(S-Lin)
poly

→ DTD and P∀(Det-S-Lin)
poly

→ DTD

Proof. (1) We show P∃(S-Lin)
poly→ P∀(S-Lin). The key of this proof lies in the

following lemma:

214 W. Gelade and F. Neven

Lemma 20. For each finite set R of disjoint strongly linear expressions, a finite
set S of disjoint strongly linear regular expressions can be constructed in ptime
such that

⋃
s∈S L(s) = Σ∗\⋃

r∈RL(r).

We show how this lemma implies the theorem. For P = {(r1, s1), . . . , (rn, sn)},
let S be the set of strongly linear expressions for R = {r1, . . . , rn} satisfying the
conditions of Lemma 20. Set P ′ = P ∪⋃

s∈S{(s, ∅)}. Here, T∃(P) = T∃(P ′) and
since P ′ is disjoint and complete it follows from Lemma 12 that T∃(P ′) = T∀(P ′).
This gives us T∃(P) = T∀(P ′). By Lemma 20, the set S is polynomial time
computable and therefore, P ′ is too.

(3) We show P∃(S-Lin)
poly→ EDTDst. Given P , we construct an automaton-

based schema D = (A, λ) such that L(D) = T∃(P). By Lemma 7, we can then
translate D into an equivalent single-type EDTD in polynomial time. Let P =
{(r1, s1), . . . , (rn, sn)}. We define D such that when A is in state q after reading
w, λ(q) = si iff w ∈ L(ri) and λ(q) = ∅ otherwise. The most obvious way to
construct A is by constructing DFAs for the vertical expressions and combining
these by a product construction. However, this would induce an exponential
blow-up. Instead, we construct A in polynomial time in a manner similar to the
construction used in Proposition 5.2 in [6].

First, assume that every ri is of the form Σ∗wi. The following construction
can be extended to also handle vertical expressions of the form wi. Define S =
{w | w ∈ Prefix(wi), 1 ≤ i ≤ n}. Then, A = (Q, q0, δ) is defined as Q = S ∪{q0},
and for each a ∈ Σ,

– δ(q0, a) = a if a ∈ S, and δ(q0, a) = q0 otherwise; and
– for each w ∈ S, δ(w, a) = w′, where w′ is the longest suffix of wa in S, and
δ(w, a) = q0 if no string in S is a suffix of wa.

For the definition of λ, let λ(q0) = ∅, and for all w ∈ S, λ(w) = si if w ∈ L(ri)
and λ(w) = ∅ if w /∈ L(ri) for all i ≤ n. Note that since the vertical expression
are disjoint, λ is well-defined. ��

6 Conclusion

In this paper, we studied the succinctness of pattern-based schema’s under ex-
istential and universal semantics with respect to each other and the common
schema formalisms: DTDs, EDTDs, and single-type EDTDs. This is done for reg-
ular, linear, and strongly linear pattern-based schema’s. The main observation is
that schema’s under existential semantics behave at least as good or better than
the corresponding schema’s under universal semantics. In some translations a
double exponential blow-up can even not be avoided. However, almost all prob-
lems for the class of strongly linear schema’s turn out to be tractable, which
makes this class very interesting from a practical point of view.

As our main motivation comes from using pattern-based schema’s as a front-
end to more traditional schema languages like XSDs, we only studied the trans-
lation of pattern-based schema’s to these formalisms. However, it would also be

Succinctness of Pattern-Based Schema Languages for XML 215

interesting to see results for translations in the other direction. We leave open
the exact complexity of translating from regular and linear schema’s under exis-
tential semantics to DTDs, and of the transformation of linear schema’s between
the two semantics.

References

1. Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge
languages over unranked alphabets. Technical report, The Hongkong University of
Science and Technologiy (April 3, 2001)

2. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion and Computation 142(2), 182–206 (1998)

3. Clark, J., Murata, M.: RELAX NG Specification. OASIS (December 2001)
4. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular

expressions. Manuscript (2007)
5. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic

finite automata. Inf. Process. Lett. 59(2), 75–77 (1996)
6. Kasneci, G., Schwentick, T.: The complexity of reasoning about pattern-based

XML schemas. In: PODS, pp. 155–163 (2007)
7. Martens, W., Neven, F., Schwentick, T., Bex, G.: Expressiveness and complexity

of XML schema. ACM Trans. Database Syst. 31(3), 770–813 (2006)
8. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XML schema lan-

guages using formal language theory. ACM Trans. Internet Techn. 5(4), 660–704
(2005)

9. Papakonstantinou, Y., Vianu, V.: DTD inference for views of XML data. In: PODS,
pp. 35–46 (2000)

10. Sperberg-McQueen, C.M., Thompson, H.: XML Schema (2005), http://www.w3.
org/XML/Schema

11. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Pre-
liminary report. In: STOC, pp. 1–9 (1973)

http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema

Analysis of Imperative XML Programs

Michael G. Burke1, Igor Peshansky1, Mukund Raghavachari1,
and Christoph Reichenbach2,�

1 IBM T. J. Watson Research Center
{mgburke,igorp,raghavac}@us.ibm.com

2 University of Colorado at Boulder
reichenb@colorado.edu

Abstract. The widespread adoption of XML has led to programming languages
that support XML as a first class construct. In this paper, we present a method for
analyzing and optimizing imperative XML processing programs. In particular, we
present a program analysis, based on a flow-sensitive type system, for detecting
both redundant computations and redundant traversals in XML processing pro-
grams. The analysis handles declarative queries over XML data and imperative
loops that traverse XML values explicitly in a uniform framework. We describe
two optimizations that take advantage of our analysis: one merges queries that
traverse the same set of XML nodes, and the other replaces an XPath expression
by a previously computed result. We show the effectiveness of our method by
providing performance measurements on XMark benchmark queries and XLinq
sample queries.

1 Introduction

XML processing applications in imperative languages such as Java and C# use runtime
APIs such as DOM [18], or language-based approaches such as XLinq [2], XJ [5], or
XAct [7]. In either case, the programmer is provided with an XML data model and
navigational constructs. The XML data model is typically an object view, where each
element in an XML document is instantiated as an object. The navigational constructs
range from library routines that access children of a node in an XML tree, to compre-
hensions, to queries in declarative query languages such as XPath [17].

The imperative nature of systems such as XLinq and XJ poses challenges that differ
from those in declarative languages such as XQuery. Consider the program in Figure 1
written in a language based on XJ. Assume that in Line 1, x is set to refer to some
XML value. The XPath expression on Line 2 can be interpreted as computing the set
of all descendants of the root of the tree referred to by x such that each member of
the result is labeled book and has an attribute author with value ’Poe’. Similarly, the
XPath expression on Line 5 can be interpreted as computing the set of all publisher
descendants of x. Some challenges in the optimization of such programs are:

– Query identification: Queries may be latent in a program where programmers
combine imperative traversals (with variable assignment) with declarative queries.

� This work was supported in part by NSF Career Grant CCR-0133457.

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 216–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Analysis of Imperative XML Programs 217

1 x = . . . ;
2 y = $x//book [@author= ’Poe ’] ;
3 u = $x//book ;
4 v = $u [@author= ’ Poe ’] ;
5 z = $x// p u b l i sh e r ;
6 k = ∅ ;
7 foreach i in u {
8 System . out . p r i n t l n (i) ;
9 i f ($ i [@author= ’Poe ’])

10 k ⇐ i
11 }

Fig. 1. Example demonstrating redundant computations

Consider the loop that begins on Line 7 of Figure 1. The statement on Line 10 can
be interpreted as k = k ∪ {i}—the accumulate operator “⇐” models the invocation
of a method such as add on an instance of the Set class in Java. Observe that at
the end of the loop, k is guaranteed to contain the same value as y. While the loop
itself is not redundant (it has effects), the computation of k certainly is.

– Optimizations across Multiple Queries: The detection of two queries (or sub-
queries) that return the same results could be used to remove redundant compu-
tation. The complication in this analysis is that there are many ways of writing
equivalent queries (including as explicit loops), which precludes the use of syntac-
tic techniques such as value numbering [1,6]. In all executions of the program of
Figure 1, the variable v on Line 4 will refer to the same value as y—the computation
of v is redundant.

Further, two different computations over an XML tree may not produce the same
value, but visit the same set of nodes in performing the computations. The two com-
putations could be combined to return the two results in one traversal of the tree. This
transformation is called tupling. Consider the expressions in Lines 2 and 5. They tra-
verse the same set of nodes (the subtree rooted at x), but filter these sets in different
ways—both sets of results can be produced efficiently in one traversal.

This paper studies the analysis of imperative XML processing programs, where tra-
versals over data may be specified in many ways—as explicit loops over data and in
terms of XPath expressions. We present a program analysis, based on a flow-sensitive
type system, for detecting both redundant computations and redundant traversals in
XML processing programs. The analysis handles both loops that traverse XML values
explicitly and declarative query expressions in a uniform framework. For exposition, we
focus on a core language for XML processing based on the XJ programming language.
Our techniques are applicable to other languages with XML support, such as XLinq,
to imperative derivatives of XQuery, such as XQueryP [3], and also to invocations of
runtime APIs such as DOM (if the compiler detects invocations of XPath expressions
on DOM objects as special operations).

The contributions of this paper are an analysis, based on a flow-sensitive type sys-
tem, that computes a symbolic representation of the values assumed by each XML

218 M.G. Burke et al.

expression or variable in a program, a description of transformations enabled by the
analysis, and experiment results demonstrating the effectiveness of the optimizations.

Structure of the Paper. Section 2 introduces the XML processing language that we
use as the basis of the exposition of our analysis. In Section 3 we describe the types
that track the values of expressions and variables in programs, and formally define cor-
rectness criteria for our analysis. In Section 4 we present a flow-sensitive type system
for detecting redundant computations and traversals. We describe the transformations
enabled by the analysis in Section 5. Section 6 describes our implementation and ex-
perimental results. Section 7 presents related work, and we conclude in Section 8.

2 Syntax and Semantics

We model XML documents as ordered, labeled trees. T refers to the set of all such trees,
and N is the (infinite) set of all nodes used in trees in T. Each node n in each XML tree
has unique identity and a label, LABEL(n), drawn from an infinite alphabet Σ (we use
uppercase characters (A, B, C) to represent members of Σ).

For exposition, we focus on a fragment of XPath 1.0 [17], whose (somewhat non-
standard) syntax is listed in Figure 2. The evaluation of an XPath expression is always
with respect to a set of nodes in XML trees (the nodes could belong to different XML
trees) and the result is a set of nodes. The operators ↓ and ↓+ represent the child and
descendant traversals, that is, they return the union of the set of children and the set of
descendants of the nodes in the input node set, respectively. In the syntax, s ranges over
Σ and it represents a node test, which filters its inputs with respect to s. The semantics
of these expressions is standard and is also provided in Figure 2.

Xp ::= ε | ↓ | ↓+ | s | Xp/Xp | Xp[Xp] | Xp[¬Xp]

�·� : P(N) → P(N)

�ε�(N) = N
�↓�(N) =

�
{child(n) | n ∈ N}

�↓+�(N) =
�

{descendant(n) | n ∈ N}
�s�(N) = {n ∈ N | LABEL(n) = s}
�Xp1/Xp2�(N) = �Xp2�(�Xp1�(N))
�Xp1[Xp2]�(N) = {n ∈ �Xp1�(N) | �Xp2�({n}) �= ∅}
�Xp1[¬Xp2]�(N) = {n ∈ �Xp1�(N) | �Xp2�({n}) = ∅}

Fig. 2. Syntax and semantics of XPath-like expressions

We describe a core imperative language for XML processing that serves as the do-
main for our static analysis. The syntax for the language is provided in Figure 3. For
simplicity, we have not included XML literal-based construction, XML updates, effects
(such as I/O or Java-like constructs), a more expressive XPath fragment, or schema

Analysis of Imperative XML Programs 219

information in our core language. The handling of these constructs is mostly orthogo-
nal to the central ideas of this paper. We discuss the extension of our analysis to support
these issues in Section 4.4.

In the language, there are three disjoint, finite sets of variables—Id, IndexVar, and
DocVar. IndexVar may only appear in foreach statements, where each foreach state-
ment has a unique IndexVar. The DocVar represents some input XML document or
XML construction. Only Id variables may be on the left-hand side of assignments or
accumulations. IndexVar are updated implicitly by loops and DocVar remain constant
through the program.

Var ::= Id | IndexVar | DocVar
Expr ::= Var | $Var / Xp | ∅

Stmt ::= Id = Expr
| Id ⇐ Expr
| if (Expr) then Stmt else Stmt
| foreach IndexVar in Expr Stmt
| Stmt ; Stmt
| skip

Fig. 3. Language syntax

The semantics of program execution is provided in Figure 4. A value in the language
is a subset of N . A store σ maps each program variable to such a value. 〈S, σ〉 ⇓ σ′,
where σ, σ′ are stores, represents that the evaluation of statement S takes the program
from store σ to σ′. 〈Expr, σ〉 |= value states that expression Expr evaluates to value,
given store σ.

A program is a Stmt. In the inital store, each Id variable used in the program is
mapped to ∅, and each DocVar variable used in the program is mapped to the root node
of some tree in T. The expression $Var/Xp evaluates the XPath expression Xp with
respect to the set of nodes specified by Var. We refer to Var as the context variable of
the XPath expression.

The foreach loop iterates over the value denoted by its Expr, which we call the
loop’s iteration space; for each node in this set, it binds the IndexVar to a singleton
set consisting of that node, and then evaluates the Stmt in the new store. Since an index
variable is only defined within a loop, it is removed from the result store of the loop. The
execution of foreach is non-deterministic (the elements are visited in some unspecified
order). The statement skip has no effect on the store. The accumulate statement, x ⇐ y,
sets x to the equivalent of x ∪ y. Observe that one can express general union operations,
i.e., x = y ∪ z, with a pattern like x = y; x ⇐ z.

Consider the code sample in Figure 5. Line 1 sets x to the singleton set containing
the root of some XML tree that is refered to by the DocVar d. The foreach loop on
lines 3–7 iterates over an XPath expression evaluated with respect to the value referred
to by x. This expression returns a set of nodes containing all B descendants of the root
node of the tree referenced in Line 1. In each iteration of the loop, if a particular B node
has a C child, then the B node is added to y. At the end of the loop, y will refer to the
equivalent of the expression $x/↓+/B[↓/C].

220 M.G. Burke et al.

VAR
N = σ(x)

〈x, σ〉 |= N

XPATH
N = σ(x),N ′ = �Xp�(N)

〈$x/Xp, σ〉 |= N ′

EMPTY

〈∅, σ〉 |= ∅

ASSIGN
〈Expr, σ〉 |= N

〈x = Expr, σ〉 ⇓ σ[x
→ N]

ACCUM
〈Expr, σ〉 |= N N ′ = σ(x) ∪ N

〈x ⇐ Expr, σ〉 ⇓ σ[x
→ N ′]

IF-THEN
〈Expr, σ〉 |= N, N �= ∅ 〈S1, σ〉 ⇓ σ′

〈if(Expr) then S1 else S2, σ〉 ⇓ σ′

IF-ELSE
〈Expr, σ〉 |= ∅ 〈S2, σ〉 ⇓ σ′

〈if(Expr) then S1 else S2, σ〉 ⇓ σ′

FOREACH
〈Expr, σ〉 |= {x1, x2, . . . , xk}

〈S, σ[i
→ {x1}]〉 ⇓ σ1
···

〈S, σk−1[i
→ {xk}]〉 ⇓ σk

〈foreach i in Expr S, σ〉 ⇓ σk\ i

COMPOSE
〈S, σ〉 ⇓ σ′ 〈S′, σ′〉 ⇓ σ′′

〈S; S′, σ〉 ⇓ σ′′

SKIP

〈skip, σ〉 ⇓ σ

Fig. 4. Semantics of language

1 x = d ;
2 y = ∅ ;
3 foreach i in $x/ ↓+ /B
4 i f ($i/ ↓ /C) then
5 y ⇐ i
6 else
7 skip

Fig. 5. Sample program

3 Types

The types in our type system are the “don’t know” type or ξ; the “empty” type or ∅,
which denotes that a variable or expression evaluates to an empty set; types of the form
($x,Xp, Ψ), where Ψ is a set {ψ1, . . . , ψk} and each ψi is of the form τ or ¬τ , and
union types, τ1 ∪ τ2.

τ ::= ξ | ∅ | ($x,Xp, Ψ) | τ ∪ τ ′

Ψ = {ψ1, . . . , ψk}, where ψi ::= τ | ¬τ

In a type ($x,Xp, Ψ), x is either a DocVar or an IndexVar and Xp is an XPath expres-
sion. For such a type, we refer to x as the context variable of the type, and Ψ as the filter
of the type. If a variable has the type ($d, ε, ∅), under all executions, the variable refers

Analysis of Imperative XML Programs 221

to the node to which the store maps d. The type ($d, ε, Ψ) is equivalent to ($d, ε, ∅) if
the denotation of each ψ ∈ Ψ is non-empty, and to ∅ otherwise.

More precisely, the denotation of a type τ is defined in terms of a store σ. The
denotation, �τ�σ , is a subset of N or a distinguished set ξ. The semantics of the types
is defined as:

�ξ�σ = ξ �∅�σ = ∅ �τ1 ∪ τ2�σ = �τ1�σ ∪ �τ2�σ

�($x,Xp, Ψ)�σ =

⎧
⎪⎨

⎪⎩

�Xp�(σ(x)) satisfied(Ψ) = true

ξ satisfied(Ψ) = ξ

∅ otherwise

The definition of satisfied relies on a notion of equivalence between two types
τ and τ ′, denoted τ ≡ τ ′, if for all σ, �τ�σ = �τ ′�σ . The function satisfied(Ψ) is a
three-valued logic function:

satisfied(Ψ) =

⎧
⎪⎨

⎪⎩

ξ ∃τ ∈ Ψ ∨ ¬τ ∈ Ψ, �τ�σ ≡ ξ.

true ∀τ ∈ Ψ, �τ�σ ≡ ∅ ∧ ∀¬τ ∈ Ψ, �τ�σ ≡ ∅

false otherwise

A typing environment, Γ , maps program variables to types. Our goal is a type system
that ensures that if two variables x and y are assigned equivalent types at a program
point, then in all executions of the program, x and y refer to identical values at that
program point. More formally, a store σ is consistent with a typing environment Γ , if
for all x : τ ∈ Γ , τ ≡ ξ or �τ�σ = σ(x). With this definition of consistency, the
soundness property is defined as follows:

Property 1 (Statement Typing Soundness). If a store σ is consistent with Γ , and Γ {S}Γ ′

and 〈S, σ〉 ⇓ σ′, then σ′ is consistent with Γ ′.

By Γ {S} Γ ′, we mean that if the type system starts in environment Γ , the environment
at the end of S is Γ ′. It should be clear that if a store σ is consistent with Γ and
Γ (x) ≡ Γ (y), and Γ (x) ≡ ξ, then x and y contain the same value at that point.

4 A Flow-Sensitive Type System

We first consider a type system for detecting when variables must refer to the same
value in programs without loops. We then extend this type system to support loops. The
typing judgments for expressions (Figure 6) are of the form Γ � Expr : τ .

It is straightforward to show that if a store σ is consistent with respect to an environ-
ment Γ , and 〈Expr, σ〉 |= N , then Γ � Expr : τ implies that τ ≡ ξ or �τ�σ = N .

4.1 Analyzing Programs Without Loops

Figure 7 lists the judgments of our type system for statements other than foreach. The
judgments are of the form Γ {S} Γ ′. A program S is well typed if Γ∅ {S} Γ ′ is
derivable, where Γ∅ assigns the ∅ type to each Id, and ($d, ε, ∅) to each DocVar d.

222 M.G. Burke et al.

� ∅ : ∅

x : τ ∈ Γ

Γ � x : τ

Γ � x : τ

Γ � $x/Xp : τ ◦ Xp

ξ ◦ Xp = ξ ∅ ◦ Xp = ∅ ($x,Xp1, Ψ) ◦ Xp2 = ($x,Xp1/Xp2, Ψ)

(τ ∪ τ ′) ◦ Xp = (τ ◦ Xp) ∪ (τ ′ ◦ Xp)

Fig. 6. Expression type system

ASSIGN
Γ � Expr : τ

Γ{x = Expr} Γ [x
→ τ]

ACCUM
Γ � Expr : τ Γ � x : τ ′

Γ{x ⇐ Expr} Γ [x
→ τ ′ ∪ τ]

SEQ

Γ {S1} Γ ′ Γ ′ {S2} Γ ′′

Γ {S1; S2} Γ ′′

IF
Γ � Expr : τ

Γ {S1} Γ ′ Γ {S2}Γ ′′ Γf = merge(Γ ′, Γ ′′, τ)

Γ {if Expr then S1 else S2} Γf

SKIP

Γ {skip} Γ

Fig. 7. Type system for programs without loops

The rule for accumulation reflects the set-based semantics of the operation—the re-
sulting type is the union of the types of the two expressions in the accumulation.

The IF rule is designed to handle cases such as the following statement:

if c then y = $c/Xp2 else y = ∅

If the type of the variable c is ($d,Xp1, ∅), then ideally, the analysis should derive
the type ($d,Xp1/Xp2, ∅) for y at the end of the conditional. In any execution of the
program, the store would either map c to ∅ or to a non-empty set of nodes. In the
first case, the else branch would be taken, and �($d,Xp1/Xp2, ∅)�σ = ∅, which is
sound. If c is non-empty, then, again, ($d,Xp1/Xp2, ∅) would be an appropriate type
according to the $x/Xp rule in Figure 6.

The typing rule evaluates the then and else branches of an if statement indepen-
dently. The merge function is used to unify the environments obtained in the two
branches. Its definition depends on that of the type constructor, τ [ψ]. For a type τ and
ψ, where ψ is of the form τ ′ or ¬τ ′, τ [ψ] is defined as follows:

τ [ψ] =

⎧
⎪⎨

⎪⎩

ξ τ = ξ ∨ τ ′ = ξ

∅ τ = ∅

($d,Xp, Ψ ∪ {ψ}) τ = ($d,Xp, Ψ)

Analysis of Imperative XML Programs 223

Definition 1. The merge(Γ ′, Γ ′′, τ) function is a new environment Γf such that:

merge(Γ ′, Γ ′′, τ) =

{
Γ ′(x) Γ ′(x) ≡ Γ ′′(x)
Γ ′(x)[τ] ∪ Γ ′′(x)[¬τ] otherwise

In short, the merge function encodes the control dependency in the type of a vari-
able to ensure greater precision. In our example, the resulting type for y would be
($d,Xp1/Xp2, ∅) in Γ ′, and ∅ in Γ ′′. The merge function would generate the type
($d,Xp1/Xp2, {($d,Xp1, ∅)}) ∪ ∅, which can be simplified to ($d,Xp1/Xp2, ∅),
which is equivalent to Γf (c) ◦ Xp2.

4.2 Handling Foreach Loops

In this section, we provide the rule for analyzing foreach loops. The rule is non-
constructive—we discuss in the next section how the types can be assigned to state-
ments in a foreach loop to satisfy this rule. To support accurate and precise handling
of loops, we modify the operational semantics of loops to include two pseudovariables
i− and i+, where i is the index of the loop. i+ corresponds to the set of all nodes over
which the loop has iterated, including the current iteration. i− is similar, but does not
include the current iteration. The types corresponding to i− and i+ are used to distin-
guish between the types of y = i (which will have the type ($i, ε, ∅)) and y ⇐ i (which
will have type ($i+, ε, ∅)) in the scope of a loop, where i is the index variable.

FOREACH

〈Expr, σ〉 |= {x1, x2, . . . , xk}
〈S, σ[i �→ {x1}, i− �→ ∅, i+ �→ {x1}]〉 ⇓ σ1

···

〈S, σk−1[i �→ {xk}, i− �→
k−1⋃

j=1

{xj}, i+ �→
k⋃

j=1

{xj}]〉 ⇓ σk

〈foreach i in Expr S, σ〉 ⇓ σk − {i, i+, i−}

Let Γs and Γf be the type environments at the start and end of the loop body, respec-
tively. Let Γ0 be the type environment at the statement immediately preceding the loop
body. In a loop body, the typing rule for foreach should ensure that variables are as-
signed types that are consistent in any iteration of the loop. The typing rule for foreach
is as follows:

FOREACH

Γ0 � Expr : τ
match(Γ0, Γs) Γs{S}Γf

valid(Γs, Γf)
Γ0{foreach i in Expr S} promoteτ (Γf)

valid(Γs, Γf) constrains the start and end environments of the loop body. Let subst(τ)
be the type derived from τ by replacing all instances of i− in τ by i+.

224 M.G. Burke et al.

Definition 2. valid(Γs, Γf) is satisfied if:

1. For each variable x, either Γs(x) ≡ Γf (x) or Γf (x) ≡ subst(Γs(x)).
2. The type of no variable in Γs other than i can refer to i. Similarly, the type of no

variable in Γs other than i+ can refer to i+.

The rationale behind the first condition is that by the operational semantics, at the start
of a new iteration of a loop, i+ and i− are modified so that i− is equivalent to i+ at the
end of the previous iteration of the loop. Since the operational semantics of a foreach
loop modifies the value of i at the head of a loop to contain a new value, it would be
unsound for any other variable to be based on i or i+. In any execution, the contents
of that variable must have been based on the previous value of i or i+. It is safe, how-
ever, for a type to refer to i− since i− at the head of a loop is equivalent to i+ at the
end of a loop. The valid function ensures that the types at the start and end of the loop
match up. The existence of environments that satisfy the definition of valid requires
the ability to convert types based on i− to those based on i+. Observe that the type
($i−,Xp, Ψ)∪ ($i,Xp, Ψ) is equivalent to ($i+,Xp, Ψ). Our algorithm for type assign-
ment implements such rewritings when deriving appropriate types in a loop body.

The variables i, i+, and i− are not visible outside the body of the loop. The match
(promote) function supports the composition of the type environment at the start (end)
of a loop with preceding (following) statments by allowing these loop-based variables
to be eliminated.

Definition 3. match(Γ0 , Γs) is true if for each variable x, Γ0(x) contains no refer-
ences to i, i+, and i−, and either (1) Γ0(x) ≡ Γs(x) or (2) Γ0(x) ≡ ∅ and Γs(x) =
($i−,Xp, Ψ).

Observe that the soundness of this composition relies on the fact that i− is equivalent to
∅ at the start of the loop. The definition of promote at the end of the loop is dual — it
converts instances of i+ to types involving the iteration space of the loop.

Definition 4. promoteτ (τ ′), where τ = ($d,Xp1, Ψ1) and τ ′ is a type, is defined as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ τ ′ = ξ

∅ τ ′ = ∅

($d,Xp1/Xp2, Ψ1 ∪ promoteτ (Ψ2)) τ ′ = ($i+,Xp2, Ψ2)
($x,Xp, promoteτ (Ψ)) τ ′ = ($x,Xp, Ψ)

promoteτ (Ψ) implies applying the function to each τ , where τ or ¬τ is in Ψ . We lift the
promote function to environments by applying it to each binding in the environment.

Finally, we introduce a subsumption rule to support the widening of the type of a
variable.

SUB

Γ1 {S} Γ ′1
Γ2 {S} Γ ′2

Γ1 � Γ2, Γ
′
2 � Γ ′1

where Γ � Γ ′ if for all x, Γ (x) ≡ ξ or Γ (x) ≡ Γ ′(x).

Analysis of Imperative XML Programs 225

4.3 Assigning Types

The algorithm for assigning types to variables according to the typing rules depends
on efficient mechanisms for detecting the equivalence of types, for simplifying union
types, and for deriving an appropriate typing for loops.

There are several algorithms for determining the equivalence of XPath expressions
[10,4]. Our analysis is orthogonal to the equivalence algorithm used; an appropriate al-
gorithm could be chosen depending on the fragment of XPath supported. In our imple-
mentation, we use a straightforward algorithm based on matching the syntactic structure
of types. Two types ($x,Xp1, Ψ1) and ($x,Xp2, Ψ2) are equivalent if Xp1 is equivalent
to Xp2 and one can match each element in Ψ1 with an element in Ψ2. Xp1 and Xp2
are equivalent if the tree representations of Xp1 and Xp2 are identical modulo com-
mutativity of predicates, that is, τ [τ1][τ2] is equivalent τ [τ2][τ1]. While this syntactic
matching is incomplete, it allows us in practice to detect equivalences in the presence
of data value comparisons, count, and other functions that more complete algorithms
do not handle [4].

For union types, we simplify types using straightforward rewriting rules where pos-
sible so that the equivalence heuristic mentioned previously can find matches. The
rewriting rules are sound but incomplete. Specifically, for τ ′ = τ1 ∪ τ2, if τ1 =
∅, then τ ′ = τ2, and vice-versa. Furthermore, if τ1 = ($x,Xp, {τ3}) and τ2 =
($x,Xp, {¬τ3}), then τ ′ = ($x,Xp, ∅) is a valid rewriting. Also, as mentioned be-
fore, the type ($i−,Xp, Ψ) ∪ ($i,Xp, Ψ) is converted to ($i+,Xp, Ψ). Finally, the type
($d,Xp, {($d,Xp1, Ψ)}) can be flattened to ($d,Xp[Xp1], Ψ), if d is known to always
refer to a singleton set (a DocVar or IndexVar).

For loops, assume that we wish to derive an appropriate type environment Γs accord-
ing to the foreach rule, given a Γ0. We will sketch how we incrementally arrive at a Γ ′′s
that will satisfy the conditons of the FOREACH typing rule.

Consider the typing rule for foreach. For a Γ0 to match Γs, only variables that are ∅

in Γ0 can have a different type in Γs. Let us call these variables accumulators. Observe
that according to the definition of match, in Γs, the context variable for any accumulator
must be i−, where i is the index variable of the loop. We now sketch the algorithm for
assigning types to these accumulators—the types of the accumulators must either be
∅, ξ, or a type with context variable i−.

We start with Γs = Γ0 and recursively assign types to the body of the loop. Let Γf

be the type environment at the end of the body of the loop. We modify Γs to create a
new typing environment Γ ′s as follows. If the type for an accumulator in Γf is ∅, its
type in Γ ′s is ∅. If the type for an accumulator in Γf is ($i,Xp, Ψ) or ($i+,Xp, Ψ), we
set its type in Γ ′s to be ($i−,Xp, Ψ). Otherwise, we set its type to be ξ in Γ ′s. If any
non-accumulator variable has a different type in Γs and Γf , we set its type to be ξ as
well in Γ ′s.

Starting in Γ ′s, we run the typing algorithm recursively for the body of the loop. As-
sume that the environment at the end of the loop is Γ ′f . We now create a final version
of Γs, Γ ′′s . Γ ′′s is essentially the same as Γ ′s. If for any accumulator in Γ ′s of the form
($i−,Xp, Ψ) that variable has type ($i+,Xp, Ψ) in Γ ′f , then we leave it unchanged.
Otherwise, we set its type to ξ. For any other variable, if the types of that variable are

226 M.G. Burke et al.

different in Γ ′s and Γ ′f , we set its type in Γ ′′s to be ξ. Observe that Γ ′′s is guaranteed by
construction to satisfy all the conditions on Γs in the typing rule for foreach.

The above algorithm can be viewed as an iterative data flow algorithm, with the type
environment representing the fixed point data flow solution. The worst-case complexity
of the iterative algorithm is 3nv, where n is the number of statements in the program,
and v is the number of variables.

4.4 Extensions

For simplicity, we have focused on a core fragment of an XML-based language. We
expect the extension of our analysis to the richer set of constructs available in an im-
perative language such as XJ to be straightforward. Since the interaction between XML
values and non-XML values occurs in a constrained manner, traditional alias analyses
or value numbering algorithms could be applied to the non-XML (Java) subset of the
imperative language prior to the execution of our analysis. Updates to Java variables
do not directly affect our analysis. Updates to XML values would require the detection
of the values that are killed by an update statement. Existing algorithms for read-write
conflict detections [12] can be adapted to this end.

The type system that we have described is mostly orthogonal to the fragment of
XPath used — the framework depends essentially on an efficient algorithm for de-
tecting the equivalence of XPath expressions. Recently, Geneves et al. [4] have pre-
sented an engine that in practice can detect equivalences between XPath expressions
efficiently. We could adapt our analysis to support a larger fragment by taking advan-
tage of their equivalence checker. XML Schema information can be incorporated into
our analysis by performing a preprocessing pass, where XPath expressions are rewrit-
ten using schema information. For example, ($a, ↓+ /A, Ψ) could be rewritten into
($a, ↓ /B/ ↓ /A, Ψ) if appropriate schema information states that A elements only
occur as children of B elements.

5 Transformations

The analysis described in the previous section computes a symbolic representation of
all possible values assumed by each XML expression or variable in the program. This
section describes how this symbolic representation is used to optimize programs. We
describe three transformations enabled by our analysis. The first is common subexpres-
sion elimination [6], which replaces an XPath expression by a previously computed
result. The second, XPath extraction allows for the treatment of loops as XPath expres-
sions; while it is not an optimization in itself, it enables other optimizations. The third,
common traversal elimination is an optimization across multiple queries; if two XPath
evaluations are likely to traverse a common set of nodes (though they might return dif-
ferent results), the XPath engine could optimize the computation by evaluating both
queries in parallel. We provide a brief overview of these transformations below.

Common Subexpression Elimination (CSE): The symbolic representation resulting
from our analysis provides a basis for applying traditional CSE algorithms to XPath
expressions. For example, given a statement “y = $x/XP”, if the analysis were to

Analysis of Imperative XML Programs 227

discover that the type of some variable z after the statement is equivalent to that of y,
then we could replace the statement with “y = z”.

XPath Extraction: This transformation extracts XPath expressions out of loops that
accumulate values. It consists of two steps: loop splitting and XPath conversion. If, us-
ing algorithms such as loop reordering analysis [11], we can detect that splitting a loop
preserves semantics, then we can isolate accumulate operations by splitting the loop.
The essence of the transformation can be described through the following example:

foreach i in $x/XP {
y ⇐ $i/ . . . ;
. . .

}

�

/ / Loop 1
foreach i in $x/XP {

y ⇐ $i/ . . .

}
foreach i in $x/XP {

. . . / / y ⇐ . . . removed
}

The XPath conversion step replaces loops of the form of Loop 1 in the previous ex-
ample with the statement “y = $x/XP/ . . .”. Such a transformation may enable further
optimizations such as CSE and common traversal elimination.

Common Traversal Elimination: Consider two XPath expressions over the same doc-
ument and whose evaluation would traverse the same set of nodes. The analysis results
described in Section 4 implicitly encode the sets of nodes traversed by XPath evalua-
tions. Common traversal elimination, or tupling, merges XPath expressions that traverse
the same set of XML nodes. Intuitively, the tupling optimization represents simultane-
ous computation of multiple results over the same data set. For example, consider two
XPath expressions a = $x/↓/B/↓/C and b = $x/↓/B/↓/D. The tupling transformation
takes advantage of the fact that the evaluation of both XPath expressions would visit the
B children of x and all the children of those nodes. Rather than evaluating the two XPath
expressions separately, one could compute the two solutions in parallel. To support this
optimization, we add a new operator “⊗” to our XPath syntax. In our XPath engine, the
two XPath expressions would be represented as x/↓/B/↓/(C ⊗ D). The denotation of
the ⊗ operator, �τ ⊗ τ ′�(N) is defined to be the tuple (�τ�(N), �τ ′�(N)). Consider a
statement of the form y = $x/XP1/XP2. If some variable z at that statement has type
($x,XP1/XP3, Ψ), we follow the definition of z to see if the computation of z and y
are amenable to common traversal elimination. The transformation detects whether the
computation of y can be safely hoisted to the point where z is computed.

For example, consider the following instance of the transformation:

/ / ∃ e : x = e/XP1 ;
foreach i in e/XP2 {

. . .

y ⇐ i ;
. . .

}

�

/ / ∃ e : (x , y) = e/(XP1 ⊗ XP2) ;
/ / let y = e/XP2;
foreach i in y {

. . . / / y ⇐ . . . removed

. . .

}

In this example, we first perform XPath extraction to move the assignment to y out of
the loop. We can then tuple the computation of x and y. If Γ (x) = ($d,XP1/XP ′1, Ψ1)

228 M.G. Burke et al.

and Γ (y) = ($d,XP2/XP ′2, Ψ2), our implementation searches for an expression e,
where e is a “common prefix” of x and y. Specifically, Γ � e : τ ′, where

τ ′ ≡ ($d,XP1, Ψ1) ≡ ($d,XP2, Ψ2)

The implicit encoding of traversals in the analysis results provides the information
needed to find a common traversal for x and y. More elaborate matching is possible,
but it would require a more complex transformation than the tupling described above.

6 Experiments

We compare the runtimes achieved by code emitted by our AXIL backend [13] with
and without the transformations described in the paper. The benchmarks for our exper-
iments are based on programs drawn from the XMark XML Benchmark project [14]
and the XLinq [2,9] 101 samples. In all cases, the benchmarks were transcribed in a
straightforward manner as XJ programs. Our compiler implements the type assignment
algorithm from Section 4.3 and the tupling optimization from Section 5.

We provide the performance comparisons for the tupling optimization on XLinq34,
XLinq35, XLinq36, XLinq38 (from the XLinq samples) and XMarkQ7 and XMarkQ20
(from the XMark benchmark suite).

Our experiments were run on the data sets provided by the XMark benchmarks and
the XLinq samples. We measured the runtimes using the with and without the tupling
optimization on an IBM Intellistation with 3.0 GHz processor and 3GB of memory,
running the IBM J9 VM 1.5.0 on top of a GNU/Linux 2.6.15-28 system. We ran each
query 10 times, picking the best result for each query. Before measuring, we removed
all text output from the benchmarked code. Our results are summarized in Table 1. The
results of the tupling optimization are shown in the column “Tupling”. For the queries
testing tupling, the introduction of tupling produces an improvement of 19.7% to 49.9%.

Table 1. Performance results, in microseconds, best out of 10 consecutive executions

Benchmark Unopt Tupling

XLinq34 4096 2050 / 49.9%
XLinq35 3206 2554 / 20.3%
XLinq36 2718 2182 / 19.7%
XLinq38 2503 1779 / 28.9%
XMark7 16390 11688 / 28.7%
XMark20 1227 846 / 31.1%

The CSE optimizations were implemented by-hand using the analysis results. We
provide results for XMarkQ3 and XMarkQ20. We manually modified XMark20.xj into
XMark20opt.xj, eliminating the same redundant traversal as the tupling optimization
as well as manual CSE of an XPath expression. XMark3opt.xj is a manual modifica-
tion of XMark3.xj, which eliminates the redundant computation of two XPath expres-
sions. The improvements on other applications that have the same pattern is similar.

Analysis of Imperative XML Programs 229

XMark20opt.xj achieves a 51.0% reduction in the runtime of XMark20.xj , while the
tupling optimization achieves a 31.1% reduction. This difference is due to the hand-
coding of XPath expression CSE in Xmark20opt.xj. XMark3opt.xj achieves an 8.5%
reduction in runtime with respect to XMark3.xj by eliminating the redundant computa-
tion of two XPath expressions.

7 Related Work

The problem studied in this paper is similar to the inference of relational queries and
optimizations from imperative programs. For example Lieuwen and Dewitt [8] analyze
database programming languages to detect whether optimizations such as reordering
loops can improve performance. Recently, Wiedermann and Cook studied the inference
of queries in a language with orthogonal persistence [16]. The motivation in this paper
is similar — understanding accesses to a different data model in the scope of an imper-
ative language. We, however, focus on the XML data model, and the XPath querying
language, with the incident challenges these bring. In terms of XML static analysis,
previous work has mostly focused on typechecking [7], where types are used to verify
statically that constructed XML data satisfy a specified schema.

Genevès et al. have developed a framework for analyzing XPath expressions (with
our without schema information). They provide a uniform representation capable of
answering questions such as equivalence, containment, and satisfiability of XPath ex-
pressions. Our types fit well into their framework, and it would be interesting to use
their engine as the underlying basis of our analysis.

The problem we study in this paper is closely related to that of value numbering [1,6],
which attempts to discovers those expressions that are Herbrand equivalent: i.e., use the
same operator applied to equivalent operands, where the operators are treated as unin-
terpreted functions. In our context, however, it is necessary to take advantage of known
algorithms for detecting equivalences of XPath expressions, and not treat them as unin-
terpreted functions. Moreover, we wished to be able to deduce the values computed by
loops in the same framework.

Steensgard [15] presents an interprocedural flow-insensitive points-to analysis for a
small imperative pointer language based on type inference methods. He uses types to
model how storage is used in a program at runtime, where typing rules specify when a
program is well-typed. In some sense, the problem addressed in this paper can be con-
sidered a points-to analysis problem. We wish to derive some notion of the relationships
between nodes in a tree when the tree is accessed using complex “pointer” expressions
such as XPath expressions.

8 Conclusions

In this paper, we have studied the analysis of embedded XPath queries in an imperative
language. We have described a flow-sensitive type system that takes into account the
equivalence properties of XPath expressions and that can detect when a loop produces
values equivalent to XPath expressions. While we have motivated this analysis using
the example of redundant computation removal, such an analysis is essential for many

230 M.G. Burke et al.

purposes — for example, if we can infer that the values computed by a loop are equiv-
alent to an XPath expression, then, in certain circumstances we can replace a loop with
a direct invocation to an XPath engine that could implement the query more efficiently
(in a sense, performing strength reduction).

References

1. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in programs. In:
Proceedings of the 15th Symposium on Principles of Programming Languages, pp. 1–11
(January 1988)

2. Calvert, C.: Linq samples update (2007), http://blogs.msdn.com/charlie/
archive/2007/03/04/samples-update.aspx

3. Chamberlin, D., Carey, M., Florescu, D., Kossman, D., Robie, J.: XQueryP: Programming
with XQuery. In: XIME-P (2006)

4. Genevès, P., Layaida, N., Schmitt, A.: Efficient static analysis of XML paths and types. In:
Conference on Programming Language Design and Implementation (June 2007)

5. Harren, M., Raghavachari, M., Shmueli, O., Burke, M., Bordawekar, R., Pechtchanski, I.,
Sarkar, V.: XJ: Facilitating XML processing in Java. In: Proceedings of World Wide Web
(WWW), pp. 278–287 (May 2005)

6. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings of the 1st
Symposium on Principles of Programming Languages, pp. 194–206 (1973)

7. Kirkegaard, C., Møller, A., Schwartzbach, M.: Static analysis of XML transformations in
Java. IEEE Transactions on Software Engineering 30(3), 181–192 (2004)

8. Lieuwen, D.F., DeWitt, D.J.: Optimizing loops in database programming languages. In:
DBPL, pp. 287–305 (1991)

9. Meijer, E., Beckman, B.: XLinq: XML Programming Refactored (The Return of the
Monoids). In: XML 2005 Proceedings (2005)

10. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J. ACM 51(1),
2–45 (2004)

11. Moon, S.-M., Ebcioǧlu, K.: Parallelizing nonnumerical code with selective scheduling and
software pipelining. ACM Transactions on Programming Languages and Systems 19(6),
853–898 (1997)

12. Raghavachari, M., Shmueli, O.: Conflicting XML updates. In: Ioannidis, Y., Scholl, M.H.,
Schmidt, J.W., Matthes, F., Hatzopoulos, M., Boehm, K., Kemper, A., Grust, T., Boehm, C.
(eds.) EDBT 2006. LNCS, vol. 3896, Springer, Heidelberg (2006)

13. Reichenbach, C., Burke, M., Peshansky, I., Raghavachari, M., Bordawekar, R.: AXIL: An
XPath Intermediate Language. IBM Research Report RC24075 (2006)

14. Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, I., Busse, R.: Xmark: A bench-
mark for XML data management. In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu, J.X.,
Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, pp. 974–985. Springer,
Heidelberg (2003)

15. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the 23rd Sym-
posium on Principles of Programming Languages, pp. 32–41 (1996)

16. Wiedermann, B.A., Cook, W.R.: Extracting queries by static analysis of transparent persis-
tence. In: Proceedings of the 34th Symposium on Principles of Programming Languages
(January 2007)

17. World Wide Web Consortium. XML Path Language (XPath) Version 1.0 (1999)
18. World Wide Web Consortium. Document Object Model Level 2 Core (2000)

http://blogs.msdn.com/charlie/archive/2007/03/04/samples-update.aspx
http://blogs.msdn.com/charlie/archive/2007/03/04/samples-update.aspx

Efficient Inclusion for a Class of XML Types
with Interleaving and Counting

Giorgio Ghelli1, Dario Colazzo2,�, and Carlo Sartiani1

1 Dipartimento di Informatica - Università di Pisa - Italy
{ghelli,sartiani}@di.unipi.it

2 Université Paris Sud, UMR CNRS 8623, Orsay F-91405 - France
dario.colazzo@lri.fr

Abstract. Inclusion between XML types is important but expensive,
and is much more expensive when unordered types are considered. We
prove here that inclusion for XML types with interleaving and counting
can be decided in polynomial time in presence of two important restric-
tions: no element appears twice in the same content model, and Kleene
star is only applied to disjunctions of single elements.

Our approach is based on the transformation of each such type into a
set of constraints that completely characterizes the type. We then provide
a complete deduction system to verify whether the constraints of one type
imply all the constraints of another one.

1 Introduction

XML schemas are an essential tool for the robustness of applications that in-
volve XML data manipulation, transformation, integration, and, crucially, data
exchange. To solve any static analysis problem that involves such types one must
first be able to reason about their inclusion and equivalence.

XML schema languages are designed to describe ordered data, but they usu-
ally offer some (limited) support to deal with cases where the order among some
elements is not constrained. These “unordered” mechanisms bring the language
out of the well-understood realm of tree-grammars and tree-automata, and have
been subject to little foundational study, with the important exception of a recent
work by Gelade, Martens, and Neven [1]. Here, the authors study a wide range of
schema languages, and show that the addition of interleaving and counting oper-
ators raises the complexity of inclusion checking from PSPACE (or EXPTIME,
for Extended DTDs) to EXPSPACE. These are completeness results, hence this
is really bad news. A previous result in [2] had already shown that the inclusion
of Regular Expressions with interleaving alone is complete in EXPSPACE, hence
showing that counting is not essential for the high cost. The paper [1] concludes
with: “It would therefore be desirable to find robust subclasses for which the
basic decision problems are in PTIME”. Such subclasses could be used either to
design a new schema language, or to design adaptive algorithms, that use the
PTIME algorithm when possible, and resort to the full algorithm when needed.
To this aim, it is important that (i) the subclass covers large classes of XML
types used in practice, (ii) it is easy to verify whether a schema belongs to the
subclass.
� Work of this author was partially funded by the French ACI young researcher project

“WebStand”.

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 231–245, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

232 G. Ghelli, D. Colazzo, and C. Sartiani

Our Contribution. In this paper we define a class of XML types with inter-
leaving and numerical constraints whose inclusion can be checked in polynomial
time. These types are based on two restrictions that we impose on the Regular
Expressions (REs) used to the define the element content models: each RE is
conflict-free (or single occurrence) meaning that no symbol appears twice, and
Kleene star is only applied to elements or to disjunctions of elements. These
restrictions are severe, but, as shown in [3] and [4], they are actually met by
most of the schemas that are used in practice.

Our approach is based on the transformation of each type into an equivalent
set of constraints. Consider, for instance, the following string type T = (a [1..3]·
b [2..2]) + c [1..2], and the following properties for a word w in T :

1. lower-bound: at least one of a, b and c appears in w;
2. cardinality: if a is in w, it appears 1, 2 or 3 times; if b is there, it appears

twice; if c is there, it appears once or twice;
3. upper-bound: no symbol out of {a, b, c} is in w;
4. exclusion: if one of a, b is in w, then c is not, and if c is in w then neither of

a, b is in w;
5. co-occurrence: if a is in w, then b is in w, and vice versa;1
6. order: no occurrence of a may follow an occurrence of b.

It is easy to see that every w in T enjoys all of them. We will prove here
that the opposite implication is true as well: every word that satisfies the six
properties is indeed in T , i.e., that constraint set is complete for T .

We will generalize this observation, and will associate a complete set of con-
straints, in the six categories above, to any conflict-free type (we will actually
encode exclusion constraints as order constraints.) We will then define a poly-
nomial algorithm to verify whether, given T and U , the constraints of T imply
those for U , so that T is included in U . We will formalize the constraints using
a simple ad-hoc logic. We will describe the constraint implication algorithm by
first giving a sound and complete constraint deduction system, and then giving
an algorithm that exploits the deduction system.

The ability to transform a type into a complete set of constraints expressed in
a limited variable-free logic is used here to design an efficient inclusion algorithm.
We believe that it can also be exploited for many related tasks, such as PTIME
membership checking (which is NP -complete for REs with interleaving), and
path containment under a DTD. Quite surprisingly, binary type intersection,
which is usually simpler than type inclusion, turns out in this case to be NP-
hard; the constraint-based approach was important in our discovery of the proof
that we present here.

Paper Outline. The paper is structured as follows. Section 2 describes the data
model, the type language, and the constraint language we are using. Section 3
shows how types can be characterized in terms of constraints, and how inclusion
can be encoded in terms of constraint implication. Section 4 describes a de-
duction system for type constraints. Section 5, then, sketches a polynomial time
algorithm for deciding type inclusion based on the deduction system of Section 4.
In Section 6 we show that intersection is NP-hard. In Sections 7 and 8, finally,
we briefly revise some related works and draw our conclusions.
1 The term co-occurrence constraint has an unrelated meaning in [5]; we use it as

in [6].

Efficient Inclusion for a Class of XML Types with Interleaving and Counting 233

2 Type Language and Constraint Language

2.1 The Type Language

Gelade, Martens, and Neven showed that, if inclusion for a given class of regular
expressions with interleaving and numerical constraints is in the complexity class
C, and C is closed under positive reductions (a property enjoyed by PTIME),
then the complexity of inclusion for DTDs and single-type EDTDs that use
the same class of regular expressions is in C too [7,1]. Hence, we can focus
our study on a class of regular expression over strings, and our PTIME result
will immediately imply the same complexity for the inclusion problem of the
corresponding classes of DTDs and single-type EDTDs. Single-type EDTDs are
the theoretical counterpart of XML Schema definitions (see [1]).

We adopt the usual definitions for string concatenation w1 · w2, and for the
concatenation of two languages L1 · L2. The shuffle, or interleaving, operator
w1&w2 is also standard, and is defined as follows.

Definition 1 (v&w, L1&L2). The shuffle set of two words v, w ∈ Σ∗, or two
languages L1, L2 ⊆ Σ∗, is defined as follows; notice that each vi or wi may be
the empty string ε.

v&w =def {v1 · w1 · . . .· vn · wn

| v1 · . . .· vn = v, w1 · . . .· wn = w, vi ∈ Σ∗, wi ∈ Σ∗, n > 0}
L1&L2 =def

⋃
w1∈L1, w2∈L2

w1&w2

Example 1. (ab)&(XY) contains the permutations of abXY where a comes be-
fore b and X comes before Y :

(ab)&(XY) = {abXY, aXbY, aXY b, XabY, XaY b, XY ab}

When v ∈ w1&w2, we say that v is a shuffle of w1 and w2; for example, w1 · w2
and w2 · w1 are shuffles of w1 and w2.

We define N∗ = N ∪ {∗}, and extend the standard order among naturals with
n ≤ ∗ for each n ∈ N∗. We consider the following type language for strings over
an alphabet Σ, where a ∈ Σ, m ∈ N \{0}, n ∈ N∗ \{0}, and n ≥ m (please
notice the specific domains for m and n):2

T ::= ε | a [m..n] | T + T | T · T | T&T

Note that expressions like a [0..n] are not allowed due to the condition on m;
of course, the type a [0..n] can be equivalently represented by a [1..n] + ε.

Our type system generalizes Kleene star to counting, but it only allows sym-
bols to be counted, so that, for example, (a· b)∗ cannot be expressed. However,
it has been found that DTDs and XSD schemas use Kleene star almost exclu-
sively as a∗ or as (a + . . . + z)∗ (see [3]), which can be easily expressed in our
system as: (a∗& . . .&z∗), where a∗ abbreviates (a [1..∗] + ε). The simple expres-
sions studied in [3] are a subclass of what can be expressed with our approach,
and [3] measured a 97% fraction of XSD schemas with simple expressions only.

2 We call them “types” because of our background, but they are actually a specific
family of REs with interleaving, counting, and some restrictions.

234 G. Ghelli, D. Colazzo, and C. Sartiani

Moreover, most of the non-simple expressions that they present are also easy to
express in our system. Chain Regular Expressions [4] can also be expressed with
our approach (see Section 7).3

Definition 2 (S(w), S(T),Atoms(T)). For any string w, S(w) is the set of all
symbols appearing in w. For any type T , Atoms(T) is the set of all atoms a [m..n]
appearing in T , and S(T) is the set of all symbols appearing in T .

Semantics of types is defined as follows.

�ε� = {ε}
�a [m..n]� = {w | S(w) = {a}, |w| ≥ m, |w| ≤ n}
�T1 + T2� = �T1� ∪ �T2�

�T1 · T2� = �T1�· �T2�

�T1&T2� = �T1�&�T2�

We will use ⊗ to range over · and & when we need to specify common prop-
erties, such as, for example: �T ⊗ ε� = �ε ⊗ T � = �T �.

In this system, no type is empty. Some types contain the empty string ε, and
are characterized as follows (N(T) is read as “T is nullable”).

Definition 3. N(T) is a predicate on types, defined as follows:

N(ε) = true
N(a [m..n]) = false
N(T + T ′) = N(T) or N(T ′)
N(T ⊗ T ′) = N(T) and N(T ′)

Lemma 1. ε ∈ �T � iff N(T).

We can now define the notion of conflict-free types.

Definition 4 (Conflict-free types). Given a type T , T is conflict-free if for
each subexpression (U + V) or (U ⊗ V): S(U) ∩ S(V) = ∅.

Equivalently, a type T is conflict-free if, for any two distinct subterms a [m..n]
and a′ [m′..n′] that occur in T , a is different from a′.

Example 2. Consider the following type: (a [1..1]&b [1..1]) + (a [1..1]&c [1..1]).
This type generates the language {ab, ba, ac, ca}. This type is not conflict-free,
since S(a [1..1]&b [1..1]) ∩ S(a [1..1]&c [1..1]) = {a} �= ∅.

Consider now a [1..1]&(b [1..1] + c [1..1]); it generates the same language, but
is conflict-free since a [1..1] and (b [1..1] + c [1..1]) have no common symbols.

Conflict-free DTDs have been considered many times before, because of their
good properties and because of the high percentage of actual schemas that satisfy
this constraint (see Section 7).

Hereafter, we will silently assume that every type is conflict-free, although
some of the properties we specify are valid for any type.
3 We are only discussing here our Kleene-star restriction, ignoring conflict-freedom for

a moment.

Efficient Inclusion for a Class of XML Types with Interleaving and Counting 235

2.2 The Constraint Language

We verify inclusion between T and U by translating them into constraint sets
CT and CU and by then verifying that CT implies CU . Constraints are expressed
using the following logic, where a, b ∈ Σ and A, B ⊆ Σ, m ∈ N\{0}, n ∈ N∗\{0},
and n ≥ m:

F ::= A+ | A+ ⇒ B+ | a?[m..n] | upper(A) | a ≺ b | F ∧ F ′ | true

Satisfaction of a constraint F by a word w, written w |= F , is defined as follows.4

w |= A+ ⇔ S(w) ∩ A �= ∅, i.e. some a ∈ A appears in w

w |= A+ ⇒ B+ ⇔ w �|= A+ or w |= B+

w |= a?[m..n] (n �= ∗) ⇔ if a appears in w,
then it appears at least m times and at most n times

w |= a?[m..∗] ⇔ if a appears in w, then it appears at least m times
w |= upper(A) ⇔ S(w) ⊆ A

w |= a ≺ b ⇔ there is no occurrence of a in w that follows
an occurrence of b in w

w |= F1 ∧ F2 ⇔ w |= F1 and w |= F2

w |= true ⇔ always

We will also use A+ ⇒ true as an alternative notation for true. This should not
be too confusing, since the two things are logically equivalent, and will simplify
the notation for one crucial definition.

The atomic formulas are best understood through some examples.

dab |= {a, b, c}+
ca |= {a, b, c}+

ε �|= A+ w �|= ∅+

dab �|= upper({a, b, c}) ca |= upper({a, b, c}) ε |= upper(A) ε |= upper(∅)
ca |= b?[2..∗] cba �|= b?[2..∗] cbab |= b?[2..∗] bcbab |= b?[2..∗]
ca |= a ≺ b caba �|= a ≺ b aacb |= a ≺ b ε |= a ≺ b

Observe that A+ is monotone, i.e. w |= A+ and w is a subword of w′ imply
that w′ |= A+, while upper(A) and a ≺ b are anti-monotone.

We use the following abbreviations:

a+ =def {a}+

a ≺� b =def (a ≺ b) ∧ (b ≺ a)

A ≺ B =def

∧

a∈A,b∈B

a ≺ b

A ≺� B =def

∧

a∈A,b∈B

a ≺� b

4 Notice that A+ ⇒ b+ differs from the sibling constraint A ⇓ b of [8], since A+ ⇒ b+

means “if one symbol of A is in w then b is in w”, while A ⇓ b means “if all symbols
of A are in w then b is in w”.

236 G. Ghelli, D. Colazzo, and C. Sartiani

The next propositions specify that A ≺� B encodes mutual exclusion between
sets of symbols.

Proposition 1. w |= a ≺� b ⇔ a and b and are not both in S(w)

Proposition 2. w |= A ≺� B ⇔ w �|= A+ ∧ B+

Definition 5. a ∈ S(F) if one of the following is a subterm of F : a?[m..n],
a ≺ b, A+, A+ ⇒ B+, upper(A), where, in the last three cases, a ∈ A or a ∈ B.

The atomic operators are all mutually independent: only A+ can force the pres-
ence of a symbol independently of any other, only A+ ⇒ B+ induces a positive
correlation between the presence of two symbols, only a?[m..n] can count, only
upper(A) is affected by the presence of a symbol that is not in S(F), and only
a ≺ b is affected by order. However, combinations of the atomic operators can
be mutually related (see Proposition 2, for example).

3 Characterization of Types as Constraints

3.1 Constraint Extraction

We first extend satisfaction from words to types, as follows.

Definition 6. T |= F ⇔ ∀w ∈ �T �. w |= F

To each type T , we associate a formula S+(T) that tests for the presence of one
of its symbols, as follows.

Definition 7. S+(T) = (S(T))+

The S+(T) formula allows us to express the exclusion constraints associated
with the type T1 +T2: if S(T1)∩S(T2) = ∅ and w ∈ �T1 +T2�, then w |= S+(T1)
is sufficient to deduce that w |= ¬S+(T2), i.e. T1 + T2 |= ¬(S+(T1) ∧ S+(T2))
(which we actually express as T1 + T2 |= S(T1) ≺� S(T2)).

We would like to have a dual constraint for T1·T2, such as T1·T2 |= S+(T1) ⇒
S+(T2), but this does not hold in case T2 contains the empty string; we will prove
that this weaker constraint holds: T1·T2 |= if not N(T2) then S+(T1) ⇒ S+(T2).

The condition “if not N(T) then . . .” will be expressed using the SIf (T) no-
tation that we define below.

We can now endow a type T with five sets of constraints. We start with
the lower-bound, cardinality, and upper-bound constraints (we introduced this
terminology in Section 1).

Definition 8 (Flat constraints).

Lower-bound: SIf (T) =def S+(T) if not N(T)
SIf (T) =def true if N(T)

Cardinality: ZeroMinMax(T) =def
∧

a[m..n]∈Atoms(T) a?[m..n]
Upper-bound: upperS(T) =def upper(S(T))

Flat constraints: FC(T) =def SIf (T) ∧ ZeroMinMax(T) ∧ upperS(T)

Efficient Inclusion for a Class of XML Types with Interleaving and Counting 237

We can now add co-occurrence, order, and exclusion constraints, whose definition
is inductive over the type structure. Exclusion constraints are actually encoded
as order constraints.

Definition 9 (Nested constraints).

Co-occurrence:
CC(T1 + T2) =def CC(T1) ∧ CC(T2)

CC(T1 ⊗ T2) =def (S+(T1) ⇒ SIf (T2)) ∧ (S+(T2) ⇒ SIf (T1)) ∧
CC(T1) ∧ CC(T2)

CC(ε) =def CC(a [m..n]) =def true

Order and exclusion:
OC(T1 + T2) =def (S(T1) ≺� S(T2)) ∧ OC(T1) ∧ OC(T2)
OC(T1&T2) =def OC(T1) ∧ OC(T2)
OC(T1 · T2) =def (S(T1) ≺ S(T2)) ∧ OC(T1) ∧ OC(T2)

OC(ε) =def OC(a [m..n]) =def true

Nested constraints:
NC(T) =def CC(T) ∧ OC(T)

Notice that, when N(T2) is true, S+(T1) ⇒ SIf (T2) is just true, because (A+ ⇒
true) is true, by definition. This notation is helpful to visualize, for example,
the fact that S+(T1) and S+(T1) ⇒ SIf (T2) imply SIf (T2).

3.2 Correctness and Completeness of Constraints

We plan to prove the following theorem, that specifies that the constraint system
completely captures the semantics of conflict-free types.

Theorem 1. Given a conflict-free type T , it holds that:

w ∈ �T � ⇔ w |= FC(T) ∧ NC(T)

We first prove that constraints are complete, i.e., whenever w satisfies all the
five groups of constraints associated with T , then w ∈ �T �.

Proposition 3 (ZeroMinMax(T)).

w |= ZeroMinMax(T1 + T2) ⇒ w |= ZeroMinMax(T1) ∧ ZeroMinMax(T2)
w |= ZeroMinMax(T1 ⊗ T2) ⇒ w |= ZeroMinMax(T1) ∧ ZeroMinMax(T2)

Definition 10. We define w|S(T) as the string obtained from w by removing all
the symbols that are not in S(T).

We can now prove the crucial completeness theorem.

Theorem 2 (Completeness of constraints).

w |= (FC(T) ∧ NC(T)) ⇒ w ∈ �T �

238 G. Ghelli, D. Colazzo, and C. Sartiani

Proof. For the sake of convenience, we will use ZMM-SIf(T) as a shortcut for
ZeroMinMax(T) ∧ SIf (T), so that we can rewrite the thesis to prove as

w |= (upperS(T) ∧ ZMM-SIf(T) ∧ NC(T)) ⇒ w ∈ �T �

We prove the following fact, by case inspection and structural induction on T .

w |= (ZMM-SIf(T) ∧ NC(T)) ⇒ w|S(T) ∈ �T �

The theorem follows because w |= upperS(T) implies that w = w|S(T).
We first observe that w|S(T) = ε and w |= SIf (T) imply the thesis w|S(T) ∈

�T �. Indeed, w|S(T) = ε implies that w �|= S+(T), hence, the hypothesis w |=
SIf (T) implies that N(T) is true, which in turn implies that ε ∈ �T �, i.e. w|S(T)
∈ �T �.

Having dealt with the w|S(T) = ε case, in the following we assume that
w|S(T) = a1 · . . .· an, where n �= 0.

T = ε :
Trivial, as w|S(ε) = ε and ε ∈ �ε�.

T = a [m..n] :
Since N(T) is false, w |= ZMM-SIf(T) implies that w |= ZeroMinMax(T) ∧

S+(T), i.e., w |= ZeroMinMax(a [m..n]) ∧ a+, i.e., w |= a?[m..n] ∧ a+, hence
w|S(a[m..n]) ∈ �a [m..n]�.
T = T1 + T2 :

Let w|S(T) = a1 ·. . .·an, and assume,without loss of generality, that a1 ∈ S(T1).
By hypothesis we have that w |= ZMM-SIf(T1 + T2) ∧ (S(T1) ≺� S(T2)) ∧

NC(T1) ∧ NC(T2). As w|S(T) = a1 · . . .· an with a1 ∈ S(T1), we also have that
w |= S+(T1).

This implies that w |= SIf (T1) (by definition of SIf ()) and that w �|= S+(T2)
(by Proposition 2). This, in turn, implies w|S(T1+T2) = w|S(T1) (*). By Propo-
sition 3 and by w |= ZMM-SIf(T1 + T2) we obtain that w |= ZeroMinMax(T1).
Putting all together, w |= ZMM-SIf(T1) ∧ NC(T1).

By induction we have that w|S(T1) ∈ �T1�; hence, by (*), we get w|S(T1+T2) ∈
�T1�, which, in turn, implies that w|S(T1+T2) ∈ �T1 + T2�.
T = T1 · T2 :

We have two possible cases:

1. w|S(T) = a1 · . . .· an and a1 ∈ S(T1);
2. w|S(T) = a1 · . . .· an and a1 ∈ S(T2).

Case 1 (w|S(T) = a1 · . . .· an and a1 ∈ S(T1)).
By hypothesis we have that:

w |= ZMM-SIf(T1 · T2) ∧ (S+(T1) ⇒ SIf (T2))
∧ (S+(T2) ⇒ SIf (T1))
∧ (S(T1) ≺ S(T2))
∧ NC(T1) ∧ NC(T2)

Since w|S(T) = a1 · . . .· an with a1 ∈ S(T1), we have that w |= S+(T1), which
implies that w |= SIf (T1) (by definition of SIf ()) and that w |= SIf (T2) (by hy-
pothesis). By Proposition 3 we conclude that w |= ZMM-SIf(T1)∧ZMM-SIf(T2).

Efficient Inclusion for a Class of XML Types with Interleaving and Counting 239

Let us define w1 = w|S(T1) and w2 = w|S(T2). As w |= NC(T1) ∧ NC(T2), by
induction we obtain that w1 ∈ �T1� and w2 ∈ �T2�.

By conflict-freedom, w1 and w2 do not contain any common symbols, hence,
from the constraint S(T1) ≺ S(T2) we obtain that each symbol of w1 precedes
each symbol of w2 in w. As a consequence, w|S(T1·T2) = w|S(T1)·w|S(T2) = w1·w2.
Thus, w|S(T1·T2) ∈ �T1 · T2�.

Case 2 (w|S(T) = a1 · . . .· an and a1 ∈ S(T2)).
By hypothesis we have that:

w |= ZMM-SIf(T1 · T2) ∧ (S+(T1) ⇒ SIf (T2))
∧ (S+(T2) ⇒ SIf (T1))
∧ (S(T1) ≺ S(T2))
∧ NC(T1) ∧ NC(T2)

Since w|S(T) = a1 · . . .· an and a1 ∈ S(T2), we obtain that w |= S+(T2), which
implies that w |= SIf (T1) (by hypothesis) and that w |= SIf (T2) (by definition).
By Proposition 3 we conclude that w |= ZMM-SIf(T1) ∧ ZMM-SIf(T2). As w |=
NC(T1)∧NC(T2), by induction we obtain that w|S(T1) ∈ �T1� and w|S(T2) ∈ �T2�.

w |= (S(T1) ≺ S(T2)) and a1 ∈ S(T2) imply that w �|= S+(T1), i.e., w|S(T1) =
ε. Hence, w|S(T1·T2) = w|S(T2) = ε·w|S(T2) = w|S(T1)·w|S(T2). Hence, by w|S(T1) ∈
�T1� and w|S(T2) ∈ �T2�, we conclude that w|S(T1·T2) ∈ �T1 · T2�.

T = T1&T2 : similar, but simpler. �

In order to prove soundness, we use the following lemma that specifies that the
value of any formula F over w does not change if any letter a that is not in S(F)
is added or deleted from w, provided that F does not contain the upper(A)
operator. Recall that upper(A) is only used to express upper-bound constraints.

Soundness is stated by Theorem 3 below; for reasons of space, we omit the
proof and refer the reader to [9] for further details.

Theorem 3 (Soundness).

w ∈ �T � ⇒ w |= FC(T) ∧ NC(T)

Corollary 1. For any conflict-free type T :

w ∈ �T � ⇔ w |= FC(T) ∧ NC(T)

4 Deduction System

We introduce here a deduction system as a first step for the formalization of
a constraint implication algorithm. The system is partitioned into two separate
judgements, �cc and �oc, for deducing co-occurrence and order constraints, This
deduction system is not complete in general, but is powerful enough to decide
type inclusion (Theorem 10).

Each judgement �x will be defined, by a set of deduction rules with shape
F1 ∧ . . . ∧ Fn �x F ; the notation F1 ∧ . . . ∧ Fm �x F ′1 ∧ . . . ∧ F ′n also means that
F ′1 . . . F ′n can be deduced from F1 . . . Fm through the repeated application of the
corresponding deduction rules.

240 G. Ghelli, D. Colazzo, and C. Sartiani

From now on, we will often identify a set formula A+ with the symbol set A;
the use will clarify the distinction. Hence, we will use metavariables A and B to
range over subsets of Σ and also over set-formulas.

For reasons of space, we omit the proofs of the results of this section and refer
the reader to [9] for further details.

4.1 Co-occurrence Deduction

We start by defining a deduction system that will be used for co-occurrence
constraints of the form A+ ⇒ B+. The R-T -A rules correspond to the Arm-
strong system used to deduce functional constraints [10], after left-hand-sides
are switched with right-hand-sides. We will denote set union as juxtaposition:
AB =def A ∪B and aA =def {a} ∪ A. The False rule specifies that, if an upper-
bound constraint excludes a, then we can deduce any B from the impossible
presence of a.

R : �cc A ⇒ AB
T : (A ⇒ B) ∧ (B ⇒ C) �cc A ⇒ C
A : A ⇒ B �cc AC ⇒ BC

False : a �∈ A : upper(A) �cc a ⇒ B

The backward correspondence between the R-T -A rules and Armstrong ax-
ioms can be easily explained: a functional dependency X1, . . . , Xn ⇒ Y1, . . . , Ym

over a relation R is an implication of conjunctions ∀t, u ∈ R.(P (X1) ∧ . . . ∧
P (Xn)) ⇒ (P (Y1) ∧ . . . ∧ P (Ym)), where P (X) is t.X = u.X . An implica-
tion {a1, . . . , an}+ ⇒ {b1, . . . , bm}+ is an implication of disjunctions ∀w.(a1 ∈
S(w) ∨ . . . ∨ an ∈ S(w)) ⇒ (b1 ∈ S(w) ∨ . . . ∨ bm ∈ S(w)), that becomes a back-
ward implication of conjunctions by contraposition: (Q(b1) ∧ . . . ∧ Q(bm)) ⇒
(Q(a1)∧ . . . ∧Q(an)), where Q(a) is a �∈ S(w). Hence, co-occurrence constraints
can be manipulated as functional dependencies, after the two sides have been
switched.

From these rules we can derive some additional rules, shown below.

Down : A′ ⊆ A : A ⇒ B �cc A′ ⇒ B
Up : B ⊆ B′ : A ⇒ B �cc A ⇒ B′

Union : (A ⇒ C) ∧ (B ⇒ C) �cc AB ⇒ C
Decomp : AB ⇒ C �cc A ⇒ C

These rules are trivially sound.

Theorem 4 (Soundness of co-occurrence deduction). If w |= F and
F �cc F ′, then w |= F ′. If T |= F and F �cc F ′, then T |= F ′.

The following lemma contains the core of the completeness proof.

Lemma 2. For each type T and for each symbol a ∈ S+(T), if T |= a ⇒ B,
then CC(T) �cc a ⇒ B, using the R-T -A rules only.

Theorem 5 (Completeness of co-occurrence deduction for subtypes).
If �T1� ⊆ �T2�, then upperS(T1) ∧ CC(T1) �cc CC(T2).

Efficient Inclusion for a Class of XML Types with Interleaving and Counting 241

4.2 Order Deduction

Order constraints can be deduced from upper bounds, as follows.

FalseL : b �∈ A : upper(A) �oc b ≺ b′
FalseR : b �∈ A : upper(A) �oc b′ ≺ b

Theorem 6 (Soundness of order deduction). If w |= F and F �oc F ′, then
w |= F ′. If T |= F and F �oc F ′, then T |= F ′.

Lemma 3 (Completeness of order deduction). If a �= b and {a, b} ⊆ S(T)
and T |= a ≺ b, then OC(T) �oc a ≺ b.

Theorem 7 (Completeness of order deduction for subtypes). If �T1� ⊆
�T2�, then upperS(T1) ∧ OC(T1) �oc OC(T2).

4.3 Flat Constraints Deduction

Flat constraints are manipulated with a different approach. In this case, we check
them together, and we directly discuss their soundness and completeness with
respect to a pair of types. We first introduce a system to deduce whether the
flat constraints of T1 imply all the flat constraints of T2.

Definition 11 (T1 �flat T2)

T1 �flat T2 ⇔def

(a?[m..n] ∈ Atoms(T1) ⇒ ∃m′ ≤ m, n′ ≥ n. a [m′..n′] ∈ Atoms(T2))
∧ (N(T1) ⇒ N(T2))

Checking all flat constraints together makes sense because the three of them, in
a sense, just check inclusion of Atoms(T1) into Atoms(T2). But there is another
strong reason: the design of a sound and complete deduction system for SIf (T)
alone is actually much trickier than expected, while the holistic check is simple,
sound, and complete, for the three of them, as formalized below.

Theorem 8 (Soundness of �flat). If T1 �flat T2, then:

1. T1 |= SIf (T2);
2. T1 |= upperS(T2);
3. T1 |= ZeroMinMax(T2).

Theorem 9 (Completeness of �flat). If �T1� ⊆ �T2�, then T1 �flat T2.

4.4 Correctness and Completeness of Inclusion Deduction

We can now state the final theorem.

Theorem 10 (Correctness and completeness of inclusion deduction).

�T1� ⊆ �T2� ⇔ upperS(T1) ∧ CC(T1) �cc CC(T2) ∧
upperS(T1) ∧ OC(T1) �oc OC(T2) ∧
T1 �flat T2

242 G. Ghelli, D. Colazzo, and C. Sartiani

5 Inclusion Checking

Theorem 10 proves that language inclusion among conflict-free string types can
be decided through the deduction systems presented in the previous section.
From this theorem we can derive an inclusion checking algorithm. The algo-
rithm first verifies whether T �flat U , in time O(n) in the size of T and U . The
algorithm, then, verifies the deduction of co-occurrence constraints by a simple
extension of the Beeri and Bernstein algorithm for functional constraints impli-
cation [10] (Section 5.1). The deduction for order constraints is much simpler: we
essentially verify that each constraint of OC(U) either is in OC(T) or it involves
a symbol that is not in S(T) (Section 5.2).

In the following we will only sketch the basic principles of our algorithm; for
more details, see [9].

5.1 Co-occurrence Constraints

We present here an algorithm to verify whether upperS(T) ∧ CC(T) �cc CC(U).
To this aim, it invokes a “backward closure” algorithm for the Ui argument of
each S+(Uj) ⇒ S+(Ui) constraint generated by the occurrence of an ⊗ oper-
ator inside U . The “backward closure” of S(Ui) with respect to F = CC(T)
(TBackwardClose(S(Ui))) is defined as the maximal R ⊆ S(T) such that
F �cc R ⇒ S(Ui), and is computed using a reversed version of the standard
Beeri-Bernstein algorithm, which is correct and complete for deduction rules R,
T , and A [10]. By Lemma 2, and by rules Union and Decomp, upperS(T) ∧
CC(T) �cc S+(Uj) ⇒ S+(Ui) iff (S(Uj) ∩ S(T)) ⊆ TBackwardClose(S(Ui)).

By a standard argument [10], the backward closure algorithm is linear in
the total size of the rules. Since no symbol can appear in more than 2 ∗ d⊗
co-occurrence rules, where d⊗ is the nesting level of ⊗ operators, each closure
invocation is in O(n ∗ d⊗). Backward closure is invoked once, or less, for each
argument of each ⊗ inside U , which means that the co-occurrence constraint
algorithm is in O(n ∗ n ∗ d⊗), i.e. in O(n3).

In practice, we traverse U bottom up and we compute the T -closure of U
subterms that are bigger and bigger. We can easily use dynamic programming
in order to reuse the results of closure on the subterms to speed up the closure
of a superterm. We do not study this optimization here.

5.2 Order Constraints

Order constraints correspond to the concatenation and union type operators. For
each pair of leaves a [m..n] and b [m′..n′] in the syntax tree of T , let LCAT [a, b]
be their common ancestor that is farthest from the root (the Lowest Common
Ancestor). For each a and b in S(T), a ≺� b ∈ OC(T) iff LCAT [a, b] is labeled
by +: the if direction is clear; for the only if direction, observe that any + that is
lower than the LCA is not a common ancestor, and any + that is higher has both
a and b below the same child. Similarly, a ≺ b ∈ OC(T) iff LCAT [a, b] = + or a
precedes b in T and LCAT [a, b] = ·. As a consequence, upperS(T) ∧ OC(T) �oc

OC(U) iff, for each a and b in S(U), such that a precedes b in U :

Efficient Inclusion for a Class of XML Types with Interleaving and Counting 243

– if LCAU [a, b] = + then either a �∈ S(T) or b �∈ S(T) or LCAT [a, b] = +;
– if LCAU [a, b] = · then either a �∈ S(T) or b �∈ S(T) or LCAT [a, b] = + or

(LCAT [a, b] = · and a precedes b in T).

Hence, we can verify whether upperS(T)∧OC(T) �oc OC(U) via the following
algorithm. We first build an array LCAT [a, b] which associates each a and b in
S(T) with the operator that labels the LCA of a and b in T , and similarly for
U ; this can be done in linear time [11]. We then scan all the ordered pairs a, b of
S(U), checking the condition above, which can be done with O(n2) constant-time
accesses to LCAT [,] and LCAU [,], which gives a O(n2) algorithm.

This inclusion-checking algorithm is presented here to prove that inclusion is
in PTIME, but we do not expect it to be optimal. Specifically, in the crucial
case of co-occurrence constraints, the set CC(T) has a very regular structure.
For example, for any two constraints L ⇒ R and L′ ⇒ R′, if R ∩ R′ �= ∅ then
either R ⊂ R′ or R′ ⊂ R, and similarly for L and L′. It seems plausible that
better solutions could be achieved by exploiting this regularity.

6 Complexity of Intersection

Intersection for subclasses of RE corresponds to automata product, while inclu-
sion corresponds to automata complement plus product, hence intersection is in
general cheaper than inclusion. We show here that, for conflict-free types, things
are quite different: while inclusion is in PTIME, intersection of two confict-free
expressions is NP-hard. This result is quite surprising, and it suggests that it
makes sense to study such types with an approach that is not based on automata.

Interestingly, NP-hardness does not depend on counting or Kleene star, but
our proof depends crucially on the & operator.

Theorem 11. Emptyness of the intersection of two conflict-free types is NP-
hard, even if the types do not use counting and concatenation.

Proof. (Hint) Consider m boolean variables x1, . . . , xm and a formula φ = (a1
1 ∨

a2
1 ∨ a3

1) ∧ . . . ∧ (a1
n ∨ a2

n ∨ a3
n) where each literal ai

j is either a variable xl or
a negated variable ¬xl; Satisfiability of φ can be encoded as the intersection
of two conflict-free types T1 and T2 as exemplified below. Both types have one
symbol for each occurrence of a literal in φ, hence their size is linear in |φ|.

φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

T1 = (a1
1 + a2

1 + a3
1) & (a1

2 + a2
2 + a3

2) & (a1
3 + a2

3 + a3
3) & (a1

4 + a2
4 + a3

4)

T2 = ((a1
1?) + (a1

2? & a1
4?)) & ((a2

1?) + (a1
3?))

& ((a3
1? & a2

2?) + (a2
3? & a2

4?)) & ((a3
2? & a3

4?) + (a3
3?))

φ is satisfiable iff it has a witness, i.e. a choice of literal instances, one from each
factor, such that not two instances are contradictory, i.e. if xi is chosen in a
factor then ¬xi is not chosen in any other factor.

Any element of T1 corresponds to a choice of literal instances, one from each
factor. If the same list also belongs to T2, then it is not contradictory. Hence,
words in �T1� ∩ �T2� correspond to witnesses for φ.

244 G. Ghelli, D. Colazzo, and C. Sartiani

7 Related Work

The properties of unordered XML types have been studied in several recent
papers. In [12], the authors discuss the techniques and heuristics they used in
implementing a type-checker, based on sheaves automata with Presburger arith-
metic, for unordered XML types. The type language is an extension of the lan-
guage we are considering here, and shares a similar restriction on the use of
repetition types. The main purpose of the paper is to address scalability prob-
lems that naturally arise when working on XML types; as a consequence, they
describe effective heuristics that improve scalability, but do not affect computa-
tional complexity.

Restrictions to RE languages that are similar to ours have been proposed
many times. For example, conflict-free REs appear as “conflict-free DTDs” in
the context of well-typed XML updates in [13], as “duplicate-free DTDs” in the
context of path inclusion in [8], and as “single occurrence REs” in the context
of DTD inference in [4]. The same restriction that we pose on Kleene-star can
be found, for example, in [12]. Chain Regular Expressions (CHARE’s) [4,1] are
also strictly related. They are defined as concatenations of factors, where each
factor has a shape (a1 + . . . + an), (a1 + . . . + an)?, (a1 + . . . + an)∗ or (a1 +
. . . + an)+. As we discussed in Section 2.1, the first three classes of factors can
be easily expressed in our language, using counting and interleaving. Factors
like (a1 + . . . + an)+ cannot be expressed in our languages, but we could add
them as a third class of base types {a1, . . . , an}[1..∗], besides a [m..n] and ε, with
FC(A[1..∗]) = (A+ ∧ upper(A)) and N(A[1..∗]) = false. We did not consider
these base types just for minimality. Simple expressions [3] have a more general
syntax than CHAREs but the same expressive power, hence can still be managed
through our approach.

We have cited many times paper [1], where the complexity of type inclusion
is studied for many different dialects of REs with interleaving and/or counting,
showing that inclusion complexity is almost invariably EXPSPACE-complete.
In particular, this is shown to hold for chain-REs with counting, which are
concatenations of CHARE factors, as defined above, and counting factors (a1 +
. . . + ak)[m..n] (with n �= ∗ and m ≥ 0), with no interleaving operator. In a
sense, this hints that the conflict-free restriction, rather than the Kleene-star
restriction, is crucial for our PTIME result. In the same paper, the authors
introduce a sublanguage of CHAREs with PTIME inclusion, but that fragment
is quite trivial, since it only includes counting factors (a1 + . . . + ak)[m..n], with
the further restriction that m > 0 and n �= ∗, hence cannot express neither
optionality nor unbounded repetition (neither ∗ nor +).5

8 Conclusions

Inclusion for REs with interleaving, counting, or both, is EXPSPACE-complete,
even if we consider the restricted subclass of CHAREs (with counting) [2,1]. This
result easily extends to XML types featuring these operators. We have introduced

5 Observe that our language can express optionality and repetition, but cannot express
counting factors (a1 + . . . + ak)[m..n] with k > 1, unless m = 0 and n = ∗.

Efficient Inclusion for a Class of XML Types with Interleaving and Counting 245

here a restricted class of REs with interleaving and counting. Our restriction is se-
vere, but it seems to match reasonably well the measured features of actual DTDs
and XSDs found on the web, and is extremely easy to define and verify. For this
class of REs, we have proved that inclusion is in PTIME, a complexity that is sur-
prising low, and trivially extends to DTDs and XSDs that use REs of this class
for their content models. We have shown how to use classical algorithms to get a
O(n3) upper bound, but we feel that this could be easy lowered. We also proved
that intersection of two conflict-free types has not the same complexity as inclu-
sion (unless P=NP) but is, quite surprisingly, NP-hard.

Our result is based on the transformation of our REs into sets of constraints
which completely characterize the expressions and are easy to manipulate. We
believe that this constraint-based approach could be fruitfully used for other
analysis tasks, such as, for example, type normalization, path minimization under
a DTD, or a polynomial membership algorithm.

Acknowledgments. We thanks the anonymous referees for their constructive
comments and suggestions.

References
1. Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for XML: Nu-

merical constraints and interleaving. In: Schwentick, T., Suciu, D. (eds.) ICDT
2007. LNCS, vol. 4353, Springer, Heidelberg (2006)

2. Mayer, A.J., Stockmeyer, L.J.: Word problems-this time with interleaving. Inf.
Comput. 115, 293–311 (1994)

3. Bex, G.J., Neven, F., den Bussche, J.V.: DTDs versus XML schema: A practical
study. In: Amer-Yahia, S., Gravano, L. (eds.) WebDB, pp. 79–84 (2004)

4. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from XML
data. In: Dayal, U., Whang, K.Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten,
M.L., Cha, S.K., Kim, Y.K. (eds.) VLDB, pp. 115–126. ACM Press, New York (2006)

5. Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Minimization of tree
pattern queries. In: SIGMOD Conference, pp. 497–508 (2001)

6. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part 1:
Structures Second Edition. Technical report, World Wide Web Consortium, W3C
Recommendation (2004)

7. Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for simple
regular expressions. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004.
LNCS, vol. 3153, pp. 889–900. Springer, Heidelberg (2004)

8. Wood, P.T.: Containment for XPath fragments under DTD constraints. In: Cal-
vanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp.
300–314. Springer, Heidelberg (2002)

9. Ghelli, G., Colazzo, D., Sartiani, C.: Efficient inclusion for a class of XML types
with interleaving and counting. Technical report, Dipartimento di Informatica -
Università di Pisa (2007)

10. Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst. 4, 30–59 (1979)

11. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Vi-
ola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

12. Foster, J.N., Pierce, B.C., Schmitt, A.: A logic your typechecker can count on:
Unordered tree types in practice. In: PLAN-X, informal proceedings (2007)

13. Barbosa, D., Mendelzon, A.O., Libkin, L., Mignet, L., Arenas, M.: Efficient in-
cremental validation of XML documents. In: ICDE, pp. 671–682. IEEE Computer
Society Press, Los Alamitos (2004)

Towards Practical Typechecking for Macro Tree
Transducers

Alain Frisch1 and Haruo Hosoya2

1 INRIA Rocquencourt
alain@frisch.fr

2 The University of Tokyo
hahosoya@is.s.u-tokyo.ac.jp

Abstract. Macro tree transducers (mtt) are an important model that
both covers many useful XML transformations and allows decidable ex-
act typechecking. This paper reports our first step toward an implemen-
tation of mtt typechecker that has a practical efficiency. Our approach
is to represent an input type obtained from a backward inference as
an alternating tree automaton, in a style similar to Tozawa’s XSLT0
typechecking. In this approach, typechecking reduces to checking empti-
ness of an alternating tree automaton. We propose several optimizations
(Cartesian factorization, state partitioning) on the backward inference
process in order to produce much smaller alternating tree automata than
the naive algorithm, and we present our efficient algorithm for checking
emptiness of alternating tree automata, where we exploit the explicit
representation of alternation for local optimizations. Our preliminary ex-
periments confirm that our algorithm has a practical performance that
can typecheck simple transformations with respect to the full XHTML
in a reasonable time.

1 Introduction

Static typechecking for XML transformations is an important problem that ex-
pectedly has a significant impact on real-world XML developments. To this end,
several research groups have made efforts in building typed XML programming
languages [10,3] with much influence from the tradition of typed functional lan-
guages [2,12]. While this line of work has successfully treated general, Turing-
complete languages, its approximative nature has resulted in an even trivial
transformation like the identity function to fail to typecheck unless a large
amount of code duplicates and type annotations are introduced [9]. Such situa-
tion has led us to pay attention to completely different approaches that have no
such deficiency, among which exact typechecking has emergingly become promis-
ing. The exact typechecking approach has extensively been investigated for years
[14,22,18,25,28,26,13,17,1,15,20,16], in which macro tree transducers (mtt) have
been one of the most important computation models since they allow decidable
exact typechecking [6], yet cover many useful XML transformations [6,13,5,21].
Unfortunately, these studies are mainly theoretical and their practicality has
never been clear except for some small cases [25,28].

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 246–260, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards Practical Typechecking for Macro Tree Transducers 247

This paper reports our first step toward a practical implementation of type-
checker for mtts. As a basic part, we follow an already-established scheme called
backward inference, which computes the preimage of the output type for the
subject transformation and then checks it against the given input type. (This
is because, as is well known, the more obvious, forward inference does not work
since the image of the input type is not always a regular tree language and can
even go beyond context-free tree languages.1) However, our proposal is, on top
of this scheme, to use a representation of the preimage by an alternating tree
automaton [23], extending the idea used in Tozawa’s typechecking algorithm for
XSLT0 [25]. In this approach, typechecking reduces to checking emptiness of an
alternating tree automaton.

Whereas normal tree automata use only disjunctions in the transition re-
lation, alternating tree automata can use both disjunctions and conjunctions.
This extra freedom permits a more compact representation (they can be ex-
ponentially more succinct than normal tree automata) and make them a good
intermediate language to study optimizations. Having explicit representation of
transitions as Boolean formulas (with disjunctions and conjunctions) allows us
to derive optimized versions of the rules for backward inference, such as Carte-
sian decomposition and state partitioning (Section 4), from which we obtain a
typechecking algorithm that scales to large types. Also, in our emptiness algo-
rithm for alternating tree automata, we exploit various simple facts on Boolean
formulas (e.g., a formula φ1 ∧ φ2 denotes an empty set if φ1 does so) to perform
efficient shortcuts—these exploited facts are not immediately available in normal
tree automata (our emptiness algorithm is omitted from this abstract for lack of
space; see our technical report [8]).

For preliminary experiments on our implementation, we have written several
sizes of transformations and verified against the full XHTML type automatically
generated from its DTD. (In reality, transformations are often small, but types
that they work on are quite big in many cases; excellent statistical evidences are
provided in [19].) The results show that, for this scale of transformations, our
implementation has successfully completed typechecking in a reasonable time
(about 1 second or less on a stock PC) even with XHTML, which is considered
to be quite large. We have also compared the performance of our implementation
with Tozawa and Hagiya’s [28] and confirmed that ours has comparable speed
for their small examples that are used in their own experiments.

Related work. Numerous techniques for exact typechecking for XML transfor-
mations have been proposed. Many of these take their target languages from the
tree transducer family. Those include techniques for macro tree transducers [14,5],
for macro forest transducers [22], for k-pebble tree transducers [18,5], for subsets
of XSLT [25,28], for high-level tree transducers [26], and a tree transformation

1 Special thanks to Sebastian Maneth providing a simple proof for this: a macro (or
even a top-down) tree transducer can produce the tree language over {a, b, c} that
consists of trees a(t, t′) where t′ is identical to t except that every symbol b in t is
replaced with c in t′, but this language is not in context-free tree languages according
to [4].

248 A. Frisch and H. Hosoya

languageTL [13]. Other techniques treatXML query languages in the select-construct
style [17,1,15] or even simpler transformations [20,16]. Most of the above men-
tioned work provides only theoretical results; the only exceptions are [25,28], where
some experimental results are shown though we have examined much bigger ex-
amples (in particular in the size of types).

Several algorithms in pragmatic approaches have been proposed to address
high complexity problems related to XML typechecking. A top-down algorithm
for inclusion test on tree automata has been developed and used in XDuce type-
checker [11]; an improved version is proposed in [24]. A similar idea has been
exploited in the work on CDuce on the emptiness check for alternating tree
automata [7]; the emptiness check algorithm in our present work is strongly in-
fluenced by this. Tozawa and Hagiya have developed BDD-based algorithms for
inclusion test on tree automata [27] and for satisfiability test on a certain logic
related to XML typechecking [28].

Lastly, another relevant piece of work is on static typechecking for XSLT
programs by Møller, Olesen, and Schwartzbach [19]. They employ a context-
sensitive flow analysis and have experimentally proved its high precision by using
a number of style sheets taken from real applications. However, their technique
is, in a sense, based on a forward inference and, in theory, cannot be exact (even
if we exclude obscure features such as complex conditionals and external function
calls). Whether or not the lack of exactness can be problematic in practice is yet
to be seen. (A remark worthwhile here is that their analysis is precise enough to
typecheck a trivial identity function with respect to a given type.)

Overview. This paper is organized as follows. In Section 2, we recall the classical
definitions of macro tree transducers (mtt), bottom-up tree automata (bta), and
alternating tree automata (ata). In Section 3, we present a basic construction
of our backward type inference that produces an ata from an mtt and a deter-
ministic bta. In Section 4, we revisit this construction from a practical point of
view and describe important optimizations and implementation techniques. In
Section 5, we report the results of our experiments with our implementation of
the typechecker for several XML transformations. In Section 6, we conclude this
paper with future research directions.

Our accompanied technical report [8] describes, in addition to proofs of the-
orems and our emptiness check for atas, our theoretical contributions omitted
from this abstract for lack space. Namely, we establish an exact relationship with
two major existing algorithms for mtt typechecking, a classical algorithm based
on “function enumeration” [5] and an algorithm proposed by Maneth, Perst, and
Seidl [14]. In this, we show that each of these algorithms can be retrieved from
ours by composing it with a known algorithm.

2 Preliminaries

2.1 Macro Tree Transducers

We assume an alphabet Σ where each symbol a ∈ Σ is associated with its arity;
often we write a(n) to denote a symbol a with arity n. We assume that there is

Towards Practical Typechecking for Macro Tree Transducers 249

a symbol ε with zero-arity. Trees, ranged over by v, w, . . ., are defined as follows:
v ::= a(n)(v1, . . . , vn). We write ε for ε() and �v = (v1, . . . , vn) to represent a
tuple of trees. Assume a set of variables, ranged over by x, y, A macro tree
transducer (mtt) T is a tuple (P, P0, Π) where P is a finite set of procedures,
P0 ⊆ P is a set of initial procedures, and Π is a set of (transformation) rules
each of the form p(k)(a(n)(x1, . . . , xn), y1, . . . , yk) → e where each yi is called
(accumulating) parameter and e is a (n, k)-expression, defined below. We will
abbreviate the tuples (x1, . . . , xn) and (y1, . . . , yk) to �x and �y. Note that each
procedure is associated with its arity, i.e., the number of parameters; we write
p(k) to denote a procedure p with arity k. An (n, k)-expression e is defined by
the following grammar

e ::= a(m)(e1, . . . , em) | p(l)(xh, e1, . . . , el) | yj

where only yj with 1 ≤ j ≤ k and xh with 1 ≤ h ≤ n can appear as variables.
We assume that each initial procedure has arity zero.

We describe the call-by-value semantics of an mtt (P, P0, Π) by a denotation
function [[·]]. First, the semantics of a procedure p(k) takes a tree a(n)(v1, . . . , vn)
and parameters �w = (w1, . . . , wk) and returns the set of trees resulting from the
evaluation of p’s body expressions.

[[p(k)]](a(n)(�v), �w) =
⋃

(p(k)(a(n)(�x),�y)→e)∈Π

[[e]](�v, �w)

Then, the semantics of an (n, k)-expression e takes a current n-tuple �v =
(v1, . . . , vn) of trees and a k-tuple of parameters �w = (w1, . . . , wk), and returns
a set of trees. It is defined as follows.

[[a(m)(e1, . . . , em)]](�v, �w) ={a(m)(v′1, . . . , v′m) | v′i ∈ [[ei]](�v, �w), for i=1, . . . , m}
[[p(l)(xh, e1, . . . , el)]](�v, �w)={[[p(l)]](vh, (w′1, . . . , w

′
l)) | w′j ∈ [[ej]](�v, �w),

for j=1, . . . , l}
[[yj]](�v, �w) ={wj}

Note that an mtt is allowed to inspect only the input tree and never a part of
the output tree being constructed. Also, parameters only accumulate subtrees
that will potentially become part of the output and never point to parts of the
input.

The whole semantics of the mtt with respect to a given input tree v is defined
by T (v) =

⋃
p0∈P0

[[p0]](v). An mtt T is deterministic when T (v) has at most
one element for any v; also, T is total when T (v) has at least one element
for any v. We will also use the classical definition of images and preimages:
T (V) =

⋃
v∈V T (v) and T −1(V ′) = {v | ∃v′ ∈ V ′.v′ ∈ T (v)}.

2.2 Tree Automata and Alternation

A (bottom-up) tree automaton (bta) M is a tuple (Q, QF , Δ) where Q is a finite
set of states, QF ⊆ Q is a set of final states, and Δ is a set of (transition) rules

250 A. Frisch and H. Hosoya

each of the form q ← a(n)(q1, . . . , qn) where each qi is from Q. We will write �q
for the tuple (q1, . . . , qn). Given a bta M = (Q, QF , Δ), acceptance of a tree by
a state is defined inductively as follows: M accepts a tree a(n)(�v) by a state q
when there is a rule q ← a(n)(�q) in Δ such that each subtree vi is accepted by
the corresponding state qi. M accepts a tree v when M accepts v by a final state
q ∈ QF . We write [[q]]M for the set of trees that the automaton M accepts by
the state q (we drop the subscript M when it is clear), and L(M) =

⋃
q∈QF

[[q]]
for the set of trees accepted by the automaton M. Also, we sometimes say that
a value v has type q when v is accepted by the state q. A bta (Q, QF , Δ) is
complete and deterministic when, for any symbol a(n) and n-tuple of states �q,
there is exactly one transition rule of the form q ← a(n)(�q) in Δ. Such a bta is
called deterministic bottom-up tree automaton (dbta). For any value v, there is
exactly one state q such that v ∈ [[q]]. In other words, the collection {[[q]] | q ∈ Q}
is a partition of the set of trees.

An alternating tree automaton (ata) A is a tuple (Ξ, Ξ0, Φ) where Ξ is a finite
set of states, Ξ0 ⊆ Ξ is a set of initial states, and Φ is a function that maps each
pair (X, a(n)) of a state and an n-ary symbol to an n-formula, where n-formulas
are defined by the following grammar.

φ ::= ↓i X | φ1 ∨ φ2 | φ1 ∧ φ2 | � | ⊥

(with 1 ≤ i ≤ n). In particular, note that a 0-ary formula evaluates naturally
to a Boolean. Given an ata A = (Ξ, Ξ0, Φ), we define acceptance of a tree by a
state. A accepts a tree a(n)(�v) by a state X when �v Φ(X, a(n)) holds, where
the judgment �v φ is defined inductively as follows: �v φ1 ∧ φ2 if �v φ1 and
�v φ2; �v φ1 ∨ φ2 if �v φ1 or �v φ2; �v �; �v ↓i X if A accepts vi by
X . That is, �v φ intuitively means that φ holds by interpreting each ↓i X as
“vi has type X .” We write [[X]] for the set of trees accepted by a state X and
[[φ]] = {�v | �v φ} for the set of n-tuples accepted by an n-formula φ. We write
L(A) =

⋃
X0∈Ξ0

[[X0]] for the language accepted by the ata A. Note that a bta
M = (Q, QF , Δ) can be seen as an ata with the same set of states and final
states by defining the function Φ as Φ(q, a(n)) =

∨
(q←a(n)(�q))∈Δ

∧
i=1,...,n ↓i qi,

and the definitions for the semantics of states and the language accepted by the
automaton seen as a bta or an ata then coincide. We will use the notation � to
represent semantical equivalence of pairs of states or pairs of formulas.

3 Typechecking

Given a dbta Mout (“output type”), a bta Min (“input type”), and an mtt
T , the goal of typechecking is to verify that T (L(Min)) ⊆ L(Mout). It is well
known that T (L(Min)) is in general beyond regular tree languages and hence
the forward inference approach (i.e., first calculate an automaton representing
T (L(Min)) and check it to be included in L(Mout)) does not work. Therefore
an approach usually taken is the backward inference, which is based on the
observation that T (L(Min)) ⊆ L(Mout) ⇐⇒ L(Min) ∩ T −1(L(M)) = ∅,
where M is the complement automaton of Mout. Intuitively, if the intersection

Towards Practical Typechecking for Macro Tree Transducers 251

L(Min)∩T −1(L(M)) is not empty, then it is possible to exhibit a tree v in this
intersection; since this tree satisfies that v ∈ L(Min) and T (v) �⊆ L(Mout), it
means that there is a counter-example of the well-typedness of the mtt with re-
spect to the given input and output types. Algorithmically, the approach consists
of computing an automaton A representing T −1(L(M)) and then checking that
L(Min) ∩ L(A) = ∅. Since the language T −1(L(M)) is regular and indeed such
automata A can effectively be computed, the above disjointness is decidable.

The originality of our approach is to compute A as an alternating tree au-
tomaton. Let a dbta M = (Q, QF , Δ) and an mtt T = (P, P0, Π) be given. Here,
note that the automaton M, which denotes the complement of the output type
Mout, can be obtained from Mout in a linear time since Mout is deterministic.
From M and T , we build an ata A = (Ξ, Ξ0, Φ) where

Ξ = {〈p(k), q, �q〉 | p(k) ∈ P, q ∈ Q, �q ∈ Qk}
Ξ0 = {〈p0, q〉 | p0 ∈ P0, q ∈ QF }
Φ(〈p(k), q, �q〉, a(n)) =

∨

(p(k)(a(n)(�x),�y)→e)∈Π

Inf(e, q, �q).

Here, the function Inf is defined inductively as follows.

Inf(b(m)(e1, . . . , em), q, �q) =
∨

(q←b(m)(�q′))∈Δ

∧

j=1,...,m

Inf(ej , q
′
j , �q)

Inf(p(l)(xh, e1, . . . , el), q, �q) =
∨

�q′∈Ql

⎛

⎝↓h 〈p(l), q, �q′〉 ∧
∧

j=1,...,l

Inf(ej , q
′
j , �q)

⎞

⎠

Inf(yj , q, �q) =
{

� (q = qj)
⊥ (q �= qj)

Intuitively, each state 〈p, q, �q〉 represents the set of trees v such that the proce-
dure p may transform v to some tree u of type q, assuming that the parameters
yi are bound to trees wi each of type qi. Formally, we can prove the following
invariant

∀�w ∈ [[�q]]. v ∈ [[〈p(k), q, �q〉]] ⇐⇒ [[p(k)]](v, �w) ∩ [[q]] �= ∅ (1)

where �w ∈ [[�q]] means w1 ∈ [[q1]], . . . , wk ∈ [[qk]]. Note that this invariant implies
that whether the right-hand side holds or not does not depend on the specific
choice of the values wi from the sets [[qi]]. From this invariant, the initial states
Ξ0 represent the set of trees that we want. Then, the function Inf(e, q, �q) infers
an n-formula representing the set of n-tuples �v such that the expression e may
transform �v to some tree of type q, assuming that the parameters yi are bound
to trees wi each of type qi. Each case can be understood as follows.

– In order for a tree u of type q to be produced from the constructor expression
b(m)(e1, . . . , em), first, there must be a transition q ← b(m)(�q′) ∈ Δ. In
addition, u’s each subtree must have type q′i and must be produced from the
corresponding subexpression ei.

252 A. Frisch and H. Hosoya

– In order for a tree u of type q to be produced from the procedure call
p(xh, e1, . . . , el), first, a tree w′j of some type q′j must be yielded from each
parameter expression ej. In addition, the h-th input tree must have type
〈p, q, (q′1, . . . , q

′
l)〉 since the result tree u must be produced by the procedure

p from the h-th tree with parameters w′1, . . . , w
′
l of types q′1, . . . , q

′
l.

– In order for a tree of type q to be produced from the variable expression yj ,
this variable must have type q.

Theorem 1. L(A) = T −1(L(M)).

Finally, it remains to check L(Min) ∩ L(A) = ∅, for which we first calculate an
ata A′ representing L(Min) ∩ L(A) (this can easily be done since an ata can
freely use intersections) and then check the emptiness of A′. For lack of space,
we give our emptiness checking algorithm in [8].

Note that the size of the ata A is polynomial in the sizes of Mout and of T .
The size of A′ is thus polynomial in the sizes of Min, Mout, and T .

4 Optimization Techniques

In this section, we describe some optimization techniques for speeding up the
backward inference presented in Section 3.

A simple algorithm to compute the input type as an alternating tree au-
tomaton is to follow naively the formal construction given in Section 3. A first
observation is that it is possible to build the automaton lazily, starting from the
initial states, producing new states and computing Φ() only on demand. This
is sometimes useful since our emptiness check algorithm [8] works in a top-down
way and will not always materialize the whole automaton.

The defining equations for the function Inf as given in Section 3 produce
huge formulas. We will now describe new equations that produce much smaller
formulas in practice. Before describing them, it is convenient to generalize the
notation Inf(e, q, �q) by allowing a set of states q ⊆ Q instead of a single state
q ∈ Q for the output type. Intuitively, we want Inf(e, q, �q) to be semantically
equivalent to

∨
q∈q Inf(e, q, �q). We obtain a direct definition of Inf(e, q, �q) by

adapting the rules for Inf(e, q, �q):

Inf(b(m)(e1, . . . , em), q, �q) =
∨

(q←b(m)(�q′))∈Δ,q∈q

∧

j=1...,m

Inf(ej , {q′j}, �q)

Inf(p(l)(xh, e1, . . . , el), q, �q) =
∨

�q′∈Ql

⎛

⎝↓h 〈p(l), q, �q′〉 ∧
∧

j=1,...,l

Inf(ej , {q′j}, �q)

⎞

⎠

Inf(yj , q, �q) =
{

� (qj ∈ q)
⊥ (qj �∈ q)

We have used the notation ↓h 〈p(l), q, �q′〉. Intuitively, this should be semantically
equivalent to the union

∨
q∈q ↓h 〈p(l), q, �q′〉. Instead of using this as a definition,

Towards Practical Typechecking for Macro Tree Transducers 253

we prefer to change the set of states of the automaton:

Ξ = {〈p(k), q, q1, . . . , qk〉 | p(k) ∈ P, q ⊆ Q, �q ∈ Qk}
Ξ0 = {〈p0, QF 〉 | p0 ∈ P0}
Φ(〈p(k), q, �q〉, a(n)) =

∨
(p(k)(a(n)(�x),�y)→e)∈Π Inf(e, q, �q).

In theory, this new alternating tree automaton could have exponentially many
more states. However, in practice, and because of the optimizations we will
describe now, this actually reduces significantly the number of states that need
to be computed.

The sections below will use the semantical equivalence
∨

q∈q Inf(e, {q}, �q) �
Inf(e, q, �q) mentioned above in order to simplify formulas.

Cartesian factorization. The rule for the constructor expression b(m)(e1, . . . ,
em) can be rewritten:

Inf(b(m)(e1, . . . , em), q, �q) =
∨

�q′∈Δ(q,b(m))

∧

j=1...,m

Inf(ej , {q′j}, �q)

where Δ(q, b(m)) = {�q′ | q ← b(m)(�q′) ∈ Δ, q ∈ q} ⊆ Qm. Now assume that we
have a decomposition of this set Δ(q, b(m)) as a union of l Cartesian products:

Δ(q, b(m)) = (q1
1 × . . . × q1

m) ∪ . . . ∪ (ql
1 × . . . × ql

m)

where the qi
j are sets of states. It is always possible to find such a decomposition:

at worst, using only singletons for the qi
j , we will have as many terms in the union

as m-tuples in Δ(q, b(m)). But often, we can produce a decomposition with fewer
terms in the union. Let us write Cart(Δ(q, b(m)) for such a decomposition (seen
as a subset of (2Q)m). One can then use the following rule:

Inf(b(m)(e1, . . . , em), q, �q) =
∨

(q1,...,qm)∈Cart(Δ(q,b(m)))

∧

j=1,...,m

Inf(ej , qj , �q)

State partitioning

Intuition. The rule for procedure call enumerates all the possible states for the
values of parameters of the called procedure. In its current form, this rule always
produces a big union with |Q|l terms. However, it may be the case that we don’t
need fully precise information about the value of a parameter to do the backward
type inference.

Let us illustrate that with a simple example. Assume that the called procedure
p(1) has a single parameter y1 and that it never does anything else with y1 than
copying it (that is, any rule for p whose right-hand side mentions y1 is of the form
p(1)(a(n)(x1, . . . , xn), y1) → y1). Clearly, all the states 〈p, q, q′1〉 with q′1 ∈ q are
equivalent, and similarly for all the states 〈p, q, q′′1 〉 with q′′1 �∈ q. This is because
whether the result of the procedure call will be or not in q only depends on the

254 A. Frisch and H. Hosoya

input tree (because there might be other rules whose right-hand side doesn’t
involve y1 at all) and on whether the value for the parameter is itself in q or not.
In particular, we don’t need to know exactly in which state the accumulator is.
So the rule for calling this procedure could just be:

Inf(p(xh, e1), q, �q)
=

∨

q′
1∈Q

↓h 〈p, q, q′1〉 ∧ Inf(e1, {q′1}, �q)

=

⎛

⎝
∨

q′
1∈q

↓h 〈p, q, q′1〉 ∧ Inf(e1, {q′1}, �q)

⎞

⎠

∨

⎛

⎝
∨

q′′
1 ∈Q\q

↓h 〈p, q, q′′1 〉 ∧ Inf(e1, {q′′1}, �q)

⎞

⎠

= (↓h 〈p, q, q′1〉 ∧ Inf(e1, q, �q)) ∨ (↓h 〈p, q, q′′1 〉 ∧ Inf(e1, Q\q, �q))

where in the last line q′1 (resp. q′′1) is chosen arbitrarily from q (resp. Q\q).

A new rule. More generally, in the rule for a call to a procedure p(l), we don’t
need to consider all the l-tuples �q′, but only a subset of them that capture all the
possible situations. First, we assume that for given procedure p(l) and output
type q, one can compute for each j = 1, . . . , l an equivalence relation E〈p(l), q, j〉
such that:

(∀j = 1, . . . , l. (q′j , q
′′
j) ∈ E〈p(l), q, j〉) ⇒ 〈p(l), q, �q′〉 � 〈p(l), q, �q′′〉 (∗)

Let us see again the right-hand side of the definition for Inf(p(l)(xh, e1, . . . , el),
q, �q):

Inf(p(l)(xh, e1, . . . , el), q, �q) =
∨

�q′∈Ql

⎛

⎝↓h 〈p(l), q, �q′〉 ∧
∧

j=1,...,l

Inf(ej , {q′j}, �q)

⎞

⎠

Let us split this union according to the equivalence class of the q′j modulo the
relations E〈p(l), q, j〉. If for each j, we choose an equivalence class qj for the
relation E〈p(l), q, j〉 (we write qj
 E〈p(l), q, j〉), then all the states 〈p(l), q, �q′〉
with �q′ ∈ q1 × . . . × ql are equivalent to 〈p(l), q, C(q1 × . . . × ql)〉, where C is a
choice function (it picks an arbitrary element from its argument). We can thus
rewrite the right hand-side to:

∨

q1�E〈p(l),q,1〉,...,ql�E〈p(l),q,l〉

(

↓h 〈p(l), q, C(q1 × . . . × ql)〉

∧
∨

�q′∈q1×...×ql

∧

j=1,...,l

Inf(ej , {q′j}, �q)

)

Towards Practical Typechecking for Macro Tree Transducers 255

The union of all the formulas
∧

j=1,...,l Inf(ej , {q′j}, �q) for �q′ ∈ q1 × . . . × ql is
equivalent to

∧
j=1,...,l Inf(ej , qj , �q). Consequently, we obtain the following new

rule:

Inf(p(l)(xh, e1, . . . , el), q, �q) =
∨

q1�E〈p(l),q,1〉,...,ql�E〈p(l),q,l〉

⎛

⎝↓h 〈p(l), q, C(q1 × . . . × ql)〉 ∧
∧

j=1,...,l

Inf(ej , qj , �q)

⎞

⎠

In the worst case, all the equivalence relations E〈p(l), q, j〉 are the identity, and
the right-hand side is the same as for the old rule. But if we can identify larger
equivalence classes, we can significantly reduce the number of terms in the union
on the right-hand side.

Computing the equivalence relations. Now we will give an algorithm to compute
the relations E〈p(k), q, j〉 satisfying the condition (∗). We will also define equiv-
alence relations E[e, q, j] for any (n, k)-expression e (with j = 1, . . . , k), such
that:

(∀j = 1, . . . , k.(q′j , q
′′
j) ∈ E[e, q, j]) ⇒ Inf(e, q, �q′) � Inf(e, q, �q′′)

We can use the rules used to define the formulas Inf(e, q, �q) in order to obtain
sufficient conditions to be satisfied so that these properties hold. We will express
these conditions by a system of equations. Before giving this system, we need
to introduce some notations. If E1 and E2 are two equivalence relations on Q,
we write E1 � E2 if E2 ⊆ E1 (when equivalence relations are seen as subsets of
Q2). The smallest equivalence relation for this ordering is the equivalence relation
with a single equivalence class. The largest equivalence relation is the identity on
Q. For two equivalence relations E1, E2, we can define their least upper bound
E1 �E2 as the set-theoretic intersection. For an equivalence relation E and a set
of states q, we write q
 E if q is one of the equivalence class modulo E. Abusing
the notation by identifying an equivalence relation with the partition it induces
on Q, we will write {Q} for the smallest relation and {q, Q\q} for the relation
with the two equivalence classes q and its complement. The system of equations
is derived from the rules used to define the function Inf:

E[b(m)(e1, . . . , em), q, i] �
⊔

{E[ej , qj , i] | (q1, . . . , qm) ∈ Cart(Δ(q, b(m))),
for j = 1, . . . , m}

E[p(l)(xh, e1, . . . , el), q, i] �
⊔

{E[ej , qj , i] | qj
 E〈p(l), q, j〉, for j = 1, . . . , l}

E[yj , q, i] �
{

{q, Q\q} (i = j)
{Q} (i �= j)

E〈p(k), q, j〉 �
⊔

{E[e, q, j] | p(k)(a(n)(�x), �y) → e) ∈ Π}

Let us explain why these conditions imply the required properties for the equiv-
alence relation and how they are derived from the rules defining Inf. We will
use an intuitive induction argument (on expressions), even though a formal

256 A. Frisch and H. Hosoya

proof actually requires an induction on trees. Consider the rule for the pro-
cedure call. The new rule we have obtained above implies that in order to
have Inf(p(l)(xh, e1, . . . , el), q, �q′) � Inf(p(l)(xh, e1, . . . , el), q, �q′′), it is sufficient
to have Inf(ej , qj , �q′) � Inf(ej , qj , �q′′) for all j=1, . . . , l and for all qj
E〈p(l), q, j〉,
and thus, by induction, it is also sufficient to have (q′i, q

′′
i) ∈ E[ej , qj , i] for all

i, for all j = 1, . . . , l and for all qj
 E〈p(l), q, j〉. In other words, a sufficient
condition is (q′i, q

′′
i) ∈

⋂
{E[ej, qj , i] | qj
 E〈p(l), q, j〉, j = 1, . . . , l}, from which

we obtain the equation above (we recall that � corresponds to set-theoretic in-
tersection of relations). The reasoning is similar for the constructor expression.
Indeed, the rule we have obtained in the previous section tells us that in order
to have Inf(b(m)(e1, . . . , em), q, �q′) � Inf(b(m)(e1, . . . , em), q, �q′′), it is sufficient
to have Inf(ej , qj , �q

′) � Inf(ej , qj , �q′′) for all (q1, . . . , qm) ∈ Cart(Δ(q, b(m))) and
j = 1, . . . , m.

As we explained before, it is desirable to compute equivalence relations with
large equivalence classes (that is, small for the � ordering). Here is how we
can compute a family of equivalence relations satisfying the system of equations
above. First, we consider the CPO of functions mapping a triple (e, q, i) to an
equivalence relation on Q and we reformulate the system of equation as finding
an element x of this CPO such that f(x) � x, where f is obtained from the
right-hand sides of the equations. To compute such an element, we start from
x0 the smallest element of the CPO, and we consider the sequence defined by
xn+1 = xn � f(xn). Since this sequence is monotonic and the CPO is finite, the
sequence reaches a constant value after a finite number of iterations. This value
x satisfies f(x) � x as expected. We conjecture that this element is actually a
smallest fixpoint for f , but we have no proof of this fact (note that the function
f is not monotonic).

Sharing the computation. Given the rules defining the formulas Inf(e, q, �q),
we might end up computing the same formula several times. A very classical
optimization consists in memoizing the results of such computations. This is
made even more effective by hash-consing the expressions. Indeed, in practice,
for a given mtt procedure, many constructors have identical expressions.

Complementing the output. In the example at the beginning of the section
on “state partitioning,” we have displayed a formula where both Inf(e, q, �q) and
Inf(e, Q\q, �q) appear. One may wonder what the relation is between these two
sub-formulas. Let us recall the required properties for these two formulas:

[[Inf(e, q, �q)]] = {v | [[p]](�v, �w) ∩ [[q]] �= ∅}

[[Inf(e, Q\q, �q)]] = {v | [[p]](�v, �w) ∩ [[Q\q]] �= ∅}

(for �w ∈ [[�q]]). Note that [[Q\q]] is the complement of [[q]]. As a consequence, if
[[p]] is a total deterministic function (that is, if [[p]](�v, �w) is always a singleton),
then [[Inf(e, Q\q, �q)]] is the complement of [[Inf(e, q, �q)]]. If we extend the syntax
of formula in alternating tree automata with negation (whose semantics is trivial
to define), we can thus introduce the following rule:

Towards Practical Typechecking for Macro Tree Transducers 257

Inf(e, q, �q) = ¬Inf(e, Q\q, �q)

to be applied e.g. when the cardinal of q is strictly larger than half the cardinal
of Q. In practice, we observed a huge impact of this optimization: the number
of constructed states is divided by two in all our experiences, and the emptiness
algorithm runs much more efficiently. Also, because of the memoization technique
mentioned above, this optimization allows us to share more computation. That
said, we don’t yet have a deeper understanding of the very important impact of
this optimization.

The rule above can only be applied when the expression e denotes a total
and deterministic function. We use a very simple syntactic criterion to en-
sure that: we require all the reachable procedures p(k) to have exactly one rule
p(k)(a(n)(x1, . . . , xn), y1, . . . , yk) → e for each symbol a(n).

5 Experiments

We have experimented on our typechecker with various XML transformations
implemented as mtts. Although we did not try very big transformations, we did
work with large input and output tree automata automatically generated from
the XHTML DTD (without taking XML attributes into account). Note that
because this DTD has many tags, the mtts actually have many transitions since
they typically copy tags, which requires all constructors corresponding to these
tags to be enumerated. They do not have too many procedures, though. The
bottom-up deterministic automaton that we generated from the XHTML DTD
has 35 states.

Table 1 gives the elapsed times spent in typechecking several transformations
and the number of states of the inferred alternating tree automaton that have
been materialized. The experiment was conducted on an Intel Pentium 4 proces-
sor 2.80Ghz, running Linux kernel 2.4.27, and the typechecking time includes the
whole process (determinization of the output type, backward inference, intersec-
tion with the input type, and emptiness check). The typechecker is implemented
in and compiled by Objective Caml 3.09.3.

We also indicate the number of procedures in each mtt, the maximum number
of parameters, and the minimum integer b, if any, such that the mtt is syntacti-
cally b-bounded copying. Intuitively, the integer b captures the maximum number
of times the mtt traverses any node of the input tree. This notion has been in-
troduced in [14] where the existence of b is shown to imply the polynomiality
of the algorithm described in that paper (see [8]). Here, we observe that even
unbounded-copying mtts can be typechecked efficiently.

Unless otherwise stated, transformations are checked to have type
XHTML→XHTML (i.e., both input and output types are XHTML). Transformation
(1) removes all the tags, keeping their contents. Transformation (2) is a
variant that drops the <div> tags instead. The typechecker detects that the
latter doesn’t have type XHTML→XHTML by producing a counter-example:

<html><head><title/></head><body><div/></body>

258 A. Frisch and H. Hosoya

Table 1. Results of the experiments

Transformation: (1) (2) (3) (4) (5) (6) (7)

of procedures: 2 2 3 5 4 6 6

Max # of parameters: 1 1 1 1 2 2 2

Bounded copying: 1 1 2 ∞ ∞ 2 1

Type-checking time (ms): 1057 1042 0373 0377 0337 0409 0410

of states in the ata: 147 147 43 74 37 49 49

Indeed, removing the <div> element may produce a <body> element with an
empty content, which is not valid in XHTML. This kind of error is quite com-
mon in XML transformations but it is difficult to find with testing or with a
simple type system. Transformation (3) copies all the <a> elements (and their
corresponding subtrees) into a new <div> element and prepends the <div> to
the <body> element. Transformation (4) groups together adjacent elements,
concatenating their contents. Transformation (5) extracts from an XHTML doc-
ument a tree of depth 2 which represents the conceptual nesting structure of
<h1> and <h2> heading elements (note that, in XHTML, the structure among
headings is flat). Transformation (6) builds a tree representing a table of contents
for the top two levels of itemizations, giving section and subsection numbers to
them (where the numbers are constructed as Peano numerals), and prepends the
resulting tree to the <body> element. Transformation (7) is a variant that only
returns the table of contents.

We have also translated some transformations (that can be expressed as mtts)
used by Tozawa and Hagiya in [28] (namely htmlcopy, inventory, pref2app,
pref2html, prefcopy). Our implementation takes between 2ms and 6ms to type-
check these mtts, except for inventory for which it takes 22 ms. Tozawa and
Hagiya report performance between 5ms and 1000ms on a Pentium M 1.8 Ghz for
the satisfiability check (which corresponds to our emptiness check and excludes
the time taken by backward inference). Although these results indicate our ad-
vantages over them to some extent, since the numbers are too small and they
have not undertaken experiments as big as ours, it is hard to draw a meaningful
conclusion.

6 Conclusion and Future Work

We have presented an efficient typechecking algorithm for mtts based on the idea
of using alternating tree automata for representing the preimage of the given mtt
obtained from the backward type inference. This representation was useful for
deriving optimization techniques on the backward inference phase such as state
partitioning and Cartesian factorization, and was also effective for speeding up
the subsequent emptiness check phase by exploiting Boolean equivalences among
formulas. Our experimental results confirmed that our techniques allow us to
typecheck small sizes of transformations with respect to the full XHTML type.

Towards Practical Typechecking for Macro Tree Transducers 259

The present work is only the first step toward a truly practical typechecker for
mtts. In the future, we will seek for further improvements that allow typecheck-
ing larger and more complicated transformations. In particular, transformations
with upward axes can be obtained by compositions of mtts as proved in [13] and
a capability to typecheck such compositions of mtts in a reasonable time will
be important. We have some preliminary ideas for the improvement and plan to
pursue them as a next step. In the end, we hope to be able to handle (at least
a reasonably large subset of) XSLT.

Acknowledgments. This work is partly supported by Japan Society for the Pro-
motion of Science and by The Okawa Foundation for Information and Telecom-
munications. We are grateful to Sebastian Maneth for useful discussions.

References

1. Alon, N., Milo, T., Neven, F., Suciu, D., Vianu, V.: XML with data values: Type-
checking revisited. In: Proceedings of Symposium on Principles of Database Sys-
tems (PODS) (2001)

2. Appel, A.W., MacQueen, D.B.: Standard ML of New Jersey. In: Third Int’l. Symp.
on Prog. Lang. Implementation and Logic Programming, pp. 1–13. Springer, Hei-
delberg (1991)

3. Benzaken, V., Castagna, G., Frisch, A.: CDuce: An XML-centric general-purpose
language. In: Proceedings of the International Conference on Functional Program-
ming (ICFP), pp. 51–63 (2003)

4. Engelfriet, J., Filé, G.: The formal power of one-visit attribute grammars. Acta
Informatica 16, 275–302 (1981)

5. Engelfriet, J., Maneth, S.: A comparison of pebble tree transducers with macro
tree transducers. Acta Informatica 39(9), 613–698 (2003)

6. Engelfriet, J., Vogler, H.: Macro tree transducers. J. Comput. Syst. Sci. 31(1),
146–710 (1985)

7. Frisch, A.: Théorie, conception et réalisation d’un langage de programmation
adapté à XML. PhD thesis, Universit Paris 7 (2004)

8. Frisch, A., Hosoya, H.: Towards practial typechecking for macro tree transducers.
Technical report, INRIA (2007)

9. Hosoya, H.: Regular expression filters for XML. Journal of Functional Program-
ming 16(6), 711–750 (2006) Short version appeared. In: Proceedings of Program-
ming Technologies for XML (PLAN-X), pp.13–27, (2004)

10. Hosoya, H., Pierce, B.C.: XDuce: A typed XML processing language. ACM Trans-
actions on Internet Technology 3(2), 117–148 (2003). In: Suciu, D., Vossen, G.
(eds.) WebDB 2000. LNCS, vol. 1997, pp. 226–244. Springer, Heidelberg (2001)

11. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. ACM
Transactions on Programming Languages and Systems, 27(1), 46–90 (2004). Short
version appeared. In: Proceedings of the International Conference on Functional
Programming (ICFP), pp. 11–22 (2000)

12. Leroy, X., Doligez, D., Garrigue, J., Vouillon, J., Rémy, D.: The Objective
Caml system. Software and documentation available on the Web (1996), http://
pauillac.inria.fr/ocaml/

260 A. Frisch and H. Hosoya

13. Maneth, S., Perst, T., Berlea, A., Seidl, H.: XML type checking with macro tree
transducers. In: Proceedings of Symposium on Principles of Database Systems
(PODS), pp. 283–294 (2005)

14. Maneth, S., Perst, T., Seidl, H.: Exact XML type checking in polynomial time.
In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 254–268.
Springer, Heidelberg (2006)

15. Martens, W., Neven, F.: Typechecking top-down uniform unranked tree transduc-
ers. In: Proceedings of International Conference on Database Theory, pp. 64–78
(2003)

16. Martens, W., Neven, F.: Frontiers of tractability for typechecking simple XML
transformations. In: Proceedings of Symposium on Principles of Database Systems
(PODS), pp. 23–34 (2004)

17. Milo, T., Suciu, D.: Type inference for queries on semistructured data. In: Proceed-
ings of Symposium on Principles of Database Systems, Philadelphia, pp. 215–226
(May 1999)

18. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. In: Proceed-
ings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, pp. 11–22. ACM, New York (2000)

19. Møller, A., Olesen, M.Ø., Schwartzbach, M.I.: Static validation of XSL Transforma-
tions. Technical Report RS-05-32, BRICS, Draft, accepted for TOPLAS (October
2005)

20. Murata, M.: Transformation of documents and schemas by patterns and contextual
conditions. In: Nicholas, C., Wood, D. (eds.) PODDP 1996 and PODP 1996. LNCS,
vol. 1293, pp. 153–169. Springer, Heidelberg (1997)

21. Nakano, K., Mu, S.-C.: A pushdown machine for recursive XML processing. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 340–356. Springer, Heidel-
berg (2006)

22. Perst, T., Seidl, H.: Macro forest transducers. Information Processing Letters 89(3),
141–149 (2004)

23. Slutzki, G.: Alternating tree automata. Theoretical Computer Science 41, 305–318
(1985)

24. Suda, T., Hosoya, H.: Non-backtracking top-down algorithm for checking tree au-
tomata containment. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005.
LNCS, vol. 3845, pp. 83–92. Springer, Heidelberg (2006)

25. Tozawa, A.: Towards static type checking for XSLT. In: Proceedings of ACM
Symposium on Document Engineering, ACM Press, New York (2001)

26. Tozawa, A.: XML type checking using high-level tree transducer. In: Hagiya, M.,
Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 81–96. Springer, Heidelberg
(2006)

27. Tozawa, A., Hagiya, M.: XML schema containment checking based on semi-implicit
techniques. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 213–
225. Springer, Heidelberg (2003)

28. Tozawa, A., Hagiya, M.: Efficient decision procedure for a logic for XML (unpub-
lished manuscipt, 2004)

Author Index

Acar, Umut A. 138
Ahmed, Amal 138

Björklund, Henrik 66
Bravo, Loreto 97
Brenes, Sof́ıa 48
Burke, Michael G. 216

Cheney, James 97, 138
Cohen, Sara 32
Colazzo, Dario 231

Deutch, Daniel 169

Fan, Wenfei 1
Fletcher, George H.L. 48
Frisch, Alain 246
Fundulaki, Irini 97

Geerts, Floris 127
Gelade, Wouter 201
Ghelli, Giorgio 81, 231
Gil, Joseph (Yossi) 32
Götz, Michaela 17
Gurevich, Yuri 153
Gyssens, Marc 48

Hosoya, Haruo 246

Koch, Christoph 17

Leinders, Dirk 153

Martens, Wim 17, 66
Milo, Tova 169

Neven, Frank 201

Onose, Nicola 81

Paredaens, Jan 48
Peshansky, Igor 216

Raghavachari, Mukund 216
Ré, Christopher 186
Reichenbach, Christoph 216
Rose, Kristoffer 81

Sartiani, Carlo 231
Schwentick, Thomas 66
Siméon, Jérôme 81
Suciu, Dan 186

Van den Bussche, Jan 127, 153
Van Gucht, Dirk 48

Wijsen, Jef 112
Wu, Yuqing 48

Zarivach, Evelina 32

	00-Front Matter
	01
	XML Publishing: Bridging Theory and Practice
	Introduction
	XML Publishing
	Publishing Transducers
	Definition of Publishing Transducers
	Complexity and Expressiveness of Publishing Transducers

	XML Publishing Languages in Practice
	Dynamic Aspects
	Concluding Remarks

	02
	Efficient Algorithms for the Tree Homeomorphism Problem
	Introduction
	Definitions
	A Top-Down Algorithm
	A Top-Down LOGDCFL Algorithm
	A LOGSPACE Procedure

	The Bottom-Up Algorithm

	03
	Datalog Programs over Infinite Databases, Revisited (Extended Abstract)
	Introduction
	Preliminaries
	The Safety Problem
	Single Rule Constraints Implication
	Program Wide Constraints Implication
	Deciding Weak Safety
	Deciding Termination
	Computability
	A Top-Down Evaluation Algorithm
	Conclusion

	04
	A Methodology for Coupling Fragments of XPath with Structural Indexes for XML Documents
	Introduction
	A Motivating Example
	Paper Overview

	Coupling Indices and XPath Fragments
	The XML Data Model
	The $A(k)$-Partition of a Document
	The $P(k)$-Partition of a Document
	The XPath-Algebra
	Linking the $P(k)$-Partition to the XPath Algebra
	The $\ensuremath{\mathscr{U}(k)}$-Algebras and Their Associated $\ensuremath{\mathscr{U}(k)$-Partitions
	The Coupling of P(k) and $\ensuremath{\mathscr{U}(k)}$

	XPath Query Evaluation with $P(k)$-Partitions
	Evaluating Upward Expressions
	Evaluating Downward Expressions

	Labeling $P(k)$-Partition Blocks
	Towards Indexes: $A(k)$-Based, or $P(k)$-Based?
	Future Directions

	05
	Conjunctive Query Containment over Trees
	Introduction
	Preliminaries
	Trees
	Conjunctive Queries
	Basic Properties

	Containment
	PTIME Upper Bounds
	coNP and Π_2^P Upper Bounds
	coNP Lower Bounds
	Π_2^P Lower Bounds

	Satisfiability
	PTIME Upper Bounds
	NP Lower Bounds

	Containment with Respect to a DTD
	Conclusions

	06
	A Better Semantics for XQuery with Side-Effects
	Introduction
	XQueryU Core with Tuples
	XQuery
	Algebra
	Compilation

	Conclusion

	07
	Repairing Inconsistent XML Write-Access Control Policies
	Introduction
	XML DTDs and Trees
	XML Access Control Framework
	Atomic Updates
	Access Control Framework

	Consistent Policies
	Partial Policies

	Repairs
	Repair Algorithm

	Conclusion

	08
	On the Consistent Rewriting of Conjunctive Queries Under Primary Key Constraints
	Introduction
	Notations and Terminology
	Related Work
	Rooted Rules
	Consistent FO Rewriting of Rooted Rules
	New Classes of Rules with a Consistent FO Rewriting
	BFMY Join Trees
	No Variables in the Primary Key of the Root
	Single Relation Name
	No Duplicate Relation Names

	$R(x,y) \wedge R(y,c)$ Has No Consistent FO Rewriting
	Concluding Remarks

	09
	Relational Completeness of Query Languages for Annotated Databases
	Introduction
	Color Relations
	The Color Algebra
	CA and the Relational Algebra
	Simulation of the Relational Algebra by the Color Algebra

	10
	Provenance as Dependency Analysis
	Introduction
	Background
	Annotations, Provenance and Dependence
	Dynamic Provenance Tracking
	Static Provenance Analysis
	Discussion

	Related and Future Work
	Conclusions

	11
	A Theory of Stream Queries
	Introduction
	Abstract Computability
	Continuity
	The Finite Case
	Time
	Complexity Limitations
	Streaming ASMs
	Bounded-Memory and $o(n)$-Bitstring sASMs
	Conclusion

	12
	Querying Structural and Behavioral Properties of Business Processes
	Introduction
	Preliminaries
	Motivation
	Definitions

	Related Models and Languages
	Query Evaluation for BPQL
	Complexity
	Conclusion

	13
	Efficient Evaluation of HAVING Queries on a Probabilistic Database
	Introduction
	Formal Problem Description
	Preliminaries
	Background: Random Variables on Semirings
	Background: Queries on Databases Annotated from a Semiring

	Approaches for $HAVING$
	Aggregates and Semirings
	Computing Safely in Semirings
	MIN, MAX and $COUNT$-Safe
	$COUNT(DISTINCT)$-Safe Queries
	SUM-Safe and AVG-Safe Queries

	Related Work
	Conclusion

	14
	Succinctness of Pattern-Based Schema Languages for XML
	Introduction
	Preliminaries
	Regular Expressions
	Schema Languages for XML
	Pattern-Based XML Schemas
	Problems
	Succinctness

	Regular Pattern-Based Schema's
	Linear Pattern-Based Schema's
	Strongly Linear Pattern-Based Schema's
	Conclusion

	15
	Analysis of Imperative XML Programs
	Introduction
	Syntax and Semantics
	Types
	A Flow-Sensitive Type System
	Analyzing Programs Without Loops
	Handling $Foreach$ Loops
	Assigning Types
	Extensions

	Transformations
	Experiments
	Related Work
	Conclusions

	16
	Efficient Inclusion for a Class of XML Types with Interleaving and Counting
	Introduction
	Type Language and Constraint Language
	The Type Language
	The Constraint Language

	Characterization of Types as Constraints
	Constraint Extraction
	Correctness and Completeness of Constraints

	Deduction System
	Co-occurrence Deduction
	Order Deduction
	Flat Constraints Deduction
	Correctness and Completeness of Inclusion Deduction

	Inclusion Checking
	Co-occurrence Constraints
	Order Constraints

	Complexity of Intersection
	Related Work
	Conclusions

	17
	Towards Practical Typechecking for Macro Tree Transducers
	Introduction
	Preliminaries
	Macro Tree Transducers
	Tree Automata and Alternation

	Typechecking
	Optimization Techniques
	Experiments
	Conclusion and Future Work

	18-Back Matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

