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Supervisor’s Foreword

It is a great pleasure for me to write this foreword to the Ph.D. thesis of Bastien
Dalla Piazza. To my mind he solved a puzzle I had been pondering for more than a
decade, and thereby provided the current state of the art in our understanding of the
Heisenberg model in two dimensions, and more widely concerning the duality
between semiclassical and purely quantum states of matter.

Named after one of the fathers of the theory of quantum mechanics, the
Heisenberg model retains a special position as one of the simplest arenas to further
our understanding of many-body quantum physics. It spans the range of possible
behavior from ordered states with semiclassical spin-wave excitations in three
dimensions to purely quantum disordered states with no classical analogue and
fractionalized so-called spinon excitations in one dimension. In two dimensions, the
Heisenberg model resides very close to the boundary between these regimes. It had
for decades been established that at (but only at) zero temperature even in two
dimensions the Heisenberg model does form long-range static order with dynamics
that, at first glance, seems well described as semiclassical spin waves—just like in
three dimensions, or as in a classical version of the model.

However, 15 years ago we discovered experimentally that this spin-wave
description fails for a special region of momenta or periodicity—the ðπ; 0Þ
zone-boundary anomaly. Since then I have challenged leading theorists in the field
for an explanation. But it was Bastien, with invaluable theoretical guidance from
Dmitri Ivanov, who—in my opinion—cracked the nut. Having already successfully
tackled other theoretical challenges, including the systematic derivation of
spin-wave excitations from a so-called Hubbard model in insulating cuprates—
presented as Part 2 of this thesis, the zone-boundary anomaly project was born
during a discussion between Bastien, Dmitri, and myself. I explained the phe-
nomenological problem. Dmitri suggested a possible theoretical avenue (warning
that the avenue would be long, winding, and steep). And, Bastien set off in pursuit.
Needless to say, the guidance from Dmitri was invaluable—my own naïve ques-
tions perhaps less so—but it would be fair to state that the final achievement is fully
Bastien’s.
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For me it was a privilege to see the evolution from idea through pages of
handwritten algebra and millions of CPU hours and definition of new quantities—
such as “the average spinon separation”—to a remarkable conclusion:

The zone boundary anomaly reflects break-down of spin-waves into fractional
spinon-like excitations.

With this, Bastien has shown us that what at first glance behaves like a semi-
classical system leads a double life full of quantum entanglement, which is actually
more challenging to understand than, e.g., the one-dimensional case which is purely
quantum with no classical Façade. As such I hope Bastien’s work will inspire
further efforts and lead to a better understanding of this dual nature.

I remain deeply grateful to Bastien for his work and the many enlightening
discussions we had on this and other topics. And I trust that you—the reader—will
enjoy this thesis and what it uncovers.

Lausanne, Switzerland Prof. Henrik M. Ronnow
November 2015
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Preface

This thesis is divided into two main chapters which correspond to originally
separated projects. The two topics broadly relate to the square lattice antiferro-
magnet, and more precisely to its excitation spectrum as measured by different
techniques. I nonetheless felt it would be artificial to shape the two topics into a
single one. I thus chose to present the two topics separately in their dedicated
chapters.

It then falls upon this introduction to provide some link between these chapters.
A strong link is contained first into the scientific approach that gave birth to these
works. Both topics were motivated by prior experimental results on specific
materials that raised questions about their theoretical interpretation. It just so
happened that the materials considered were all realizations of the square lattice
antiferromagnet. Of course calling this a coincidence is an exaggeration. Indeed, the
magnetic properties of the square lattice antiferromagnet are one of the fundamental
problems of the quantum magnetism research domain and, in a broader context,
a possible key ingredient of the still controversial high temperature superconduc-
tivity problem. The mentioned experimental results allowed to characterize with
unprecedented accuracy the magnetic excitation spectrum, which then required
detailed theoretical modeling.

While the two topics share many aspects, they also represent different comple-
mentary pieces of work of scientific research. The first topic in Chap. 1 studies
theoretically the fundamental Heisenberg model for which a variety of physical
realizations exist. The emphasis is on developing original theoretical methods and
using those to extract some fundamental properties of this model, hopefully
improving its understanding. On the other hand the second topic in Chap. 2 is
geared towards using established theoretical tools in order to give a detailed the-
oretical characterization of materials. The emphasis there is on reaching a high level
of detail in existing theories in order to allow a quantitative interpretation of
experimentally measured quantities. This quantitative analysis then allows com-
parison across different experimental techniques helping to build an overall
consistent experimental picture.
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The occurrence of these two approaches in a single thesis is reminiscent of the
position which was mine in the Laboratory for Quantum Magnetism. As a theo-
retically oriented student in an otherwise experimental laboratory, it often fell on me
to provide some simple “first order” theoretical description, using conventional
theoretical tools such as the mean-field approximation, or spin-wave theory. Upon
the success or failure of such simple approach, more sophisticated approaches could
be undertaken. In the case of the first project in Chap. 1, the established failure of
spin-wave theory to capture some striking aspects of measurements lead to
undertaking a completely different theoretical approach. On the other hand the
relative success of spin-wave theory in the context of the second project in Chap. 2
leads to refining it accounting for fine details of specific materials. Overall, I believe
the two projects make for an equilibrated picture of what has been my work as a
theorist in the Laboratory for Quantum Magnetism.
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Abstract

The first part of this thesis presents the theoretical study of an anomaly of unknown
origin in the excitation spectrum of the quantum spin-1=2 Heisenberg square lattice
antiferromagnet. The anomaly manifests itself in inelastic neutron scattering data
for short wavelength/high energy excitations. Instead of the expected sharp semi-
classical harmonic modes, a broad continuum emerges suggesting the possibility of
fractionalized excitations. A theoretical framework based on the Gutzwiller
projection is developed and allows to link the observed continuum to unbound
fractional quasiparticle pairs, while the sharp harmonic excitations may be descri-
bed by bound ones.

The second part of this thesis presents the detailed theoretical modeling of the
spin-wave dispersion relation measured in insulating cuprate materials. Starting
from the one-band Hubbard model with extended hopping amplitudes, an effective
low-energy theory is derived allowing to describe on the same footing different
insulating cuprate magnetic excitation spectra. The effective theory is fitted against
experimental data and microscopic model parameters are extracted. The high level
of details included in our effective theory allows a consistent characterization of the
studied materials as measured by various magnetic or electronic experimental
techniques.
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Chapter 1
Variational Study of the Square Lattice
Antiferromagnet Magnetic Zone-Boundary
Anomaly

1.1 Introduction: The Case of the Quantum Spin-1/2
Heisenberg Square Lattice Antiferromagnet

A constant trend in modern physics has been the prediction and experimental valida-
tion of the existence of hidden degrees of freedom found in nature. Atoms, nuclei and
the cascade of fundamental particles may all be considered such degrees of freedom
of a larger, more familiar reality. Perhaps the most important for our field—Quantum
Magnetism—is the spin: an intrinsic magnetic dipole moment attached for instance
to electrons, protons and neutrons. The discoveries of such hidden degrees of free-
dom have often been accomplished by carrying out experiments in extraordinarily
high energy regimes. A perfect illustration is the 2013 physics Nobel price rewarding
the theoretical prediction of the Higgs boson following its experimental validation at
CERN’s Large Hadron Collider (LHC). It is tempting to put this in parallel with the
phenomenon known as emergence found in condensed matter physics at compara-
tively extremely low energy scales. The constituents of any condensedmatter physics
system are by definition the building blocks of cold matter: nuclei and electrons. The
energy scale at which such systems are considered is adequately set by the thermal
motion energy at room temperature of 25meV, 14 orders of magnitude less than the
collisions produced in the LHC. At such low energies, the hidden degrees of free-
dom found for instance in the nucleus are invisible. There are nevertheless hidden
degrees of freedom which emerge in such systems but only when regarding it as a
whole, strongly interacting indivisible set of particles. In such cases there have been
many observations of new degrees of freedom characterized as fractional as they
can only be described as fractions of the degrees of freedom found in the system in
its non-interacting limit. Perhaps the most iconic example is the spin-charge separa-
tion (Lieb andWu 1968) in quasi-1D electronic systems. The low-energy excitations
can be characterized by quasi-particles carrying either a charge degree of freedom
(holon) or a spin degree of freedom (spinon). But for the particles constituting the
non-interacting system—the electrons—the charge and spin degrees of freedom are
indivisible. Angle-Resolved Photo-Emission Spectroscopy (ARPES) experiments
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2 1 Variational Study of the Square Lattice Antiferromagnet …

could observe this spin-charge separation (Kim et al. 1996). In the removal of an
electron through the photoemission process, the spin-1/2 charge +e hole left in the
system can thus be understood as a bound state of a holon and a spinon which, due
to the special nature of 1D physics, deconfine into two truly independent degrees of
freedom.

In the area of quantum magnetism, the prototypical emergent degree of freedom
is the fractional spin-1/2 quasiparticle often called spinon. Taking a system of non-
interacting spin-1/2 degrees of freedom, the fundamental spin deviation is to flip a
spin for instance from S = −1/2 to S = 1/2, corresponding to a�S = 1 excitation.
But in an interacting system, spin-1/2 excitations are known to emerge such that, in
a similar fashion as in the spin-charge separation phenomenon, a �S = 1 excitation
deconfines into twounbound fractional spin-1/2 quasiparticles. The deconfinement of
fractional spin-1/2 quasi-particle has been exactly predicted (Faddeev and Takhtajan
1981; Müller et al. 1981) and experimentally observed (Tennant et al. 1995; Lake
et al. 2005; Mourigal et al. 2013) in 1D systems.

In higher dimensions, the theoretical characterization of deconfined fractional
quasi-particle excitations and their experimental observation is an ongoing chal-
lenge (Balents 2010) with the most prominent candidates being the frustrated trian-
gular lattice (Coldea et al. 2001b) and the kagomé lattice (Vries et al. 2009; Han
et al. 2012; Jeong et al. 2011) antiferromagnets. These systems are characterized
by a strong magnetic frustration—the impossibility to minimize classically a set
of conflicting interaction energies—which is a key feature favoring non-magnetic
groundstates composed of highly correlated fluctuating spins called Quantum Spin
Liquid (QSL). So far fractional excitations have been searched for in systems where
the groundstate was thought to be such a QSL or very close to it.

In contrast we take in this work another route and look at the unfrustrated square
lattice antiferromagnet.

The Quantum spin-1/2 Heisenberg Square lattice Anti-Ferromagnetic model
(QHSAF) groundstate has a spontaneously broken spin symmetry which exhibits
a finite staggered magnetization comparable to the classical Néel order state. In this
state, each neighboring spins point in opposite directions such that their orienta-
tion resembles a checkerboard pattern called a Néel state. While this pattern would
be a true groundstate in the classical limit, it is far from it in the quantum case.
The quantum groundstate contains large fluctuations around the classical Néel state
which reduces the staggered magnetization to 62% of its classical value (Reger
and Young 1988; Hamer et al. 1992). The groundstate properties may be experi-
mentally probed using bulk measurements such as the magnetic susceptibility or
by measuring the coherent scattering of neutrons sent through caused by the Néel
ordering of the spins. All these techniques have in common that the energy of the
probed system is conserved. A great deal of additional information may be gathered
if allowing the probing mechanism to exchange energy with the system. This inelas-
tic measurements probe the fundamental low energy excitations of the system, that
is states that have an energy higher than the groundstate. The low energy excitations
of the QHSAF are well described by fluctuations of the ordered spins either in the
transverse or longitudinal directions with respect to the Néel ordering axis. These
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excitations may be viewed as quasi-particles. In this view, the system groundstate is
understood as a vacuum and the excitations as particles floating through which may
be created or annihilated by the interactions the system has with the experimentalists
probing mechanism. In the QHSAF, these excitations can be adequately derived in
the Spin Wave Theory (SWT) approximation (Bloch 1930; Anderson 1952; Kubo
1952). The transverse excitations are found to be dominantly spin-1 bosonic quasi-
particles called magnons with crystal momentum q and the longitudinal ones spin-0
weakly interacting pairs of magnons. In the SWT approximation a weak magnon-
magnon interaction arises which can be treated perturbatively. The small parameter
is 1/S, where S is the spin quantum number of the magnetic sites. In the spin-1/2
case, we are thus in the strongest interacting limit of SWT and it remains a question
whether the perturbative treatment of the magnon-magnon interaction is appropri-
ate, as hinted by the slowly, if at all, convergent quantum corrections to the magnon
energy for the specific momentum q = (π, 0) (Syromyatnikov 2010).

While there is a strong consensus for the groundstate of the square lattice Heisen-
berg antiferromagnet to be Néel ordered, the nature of its quantum fluctuations is
much less clear. An alternate proposal is the so-called Resonating Valence Bonds
(RVB) state. In this state, pairs of spin form a quantum entangled state known as
a singlet with spin-0. Such pairs are formed over the lattice with the pairing spins
separated by different distances. The RVB state is then a quantum superposition of
various lengths’ singlets arrangements on the lattice. The RVB state is a prototypical
QSL first proposed as a possible ground state of the triangular lattice antiferromag-
net (Anderson 1973). Interest for this state arose dramatically following the discovery
of high-temperature superconductivity in the cupratematerials. In the generic cuprate
phase-diagram (see for instance Fig. 2.2), the small doping necessary to destroy the
antiferromagnetic order suggests that QSL states such as the RVB state might be
very close to the Néel ordered groundstate (Anderson 1987). Analytical work of
the RVB state elementary excitations showed that they can be described as frac-
tional fermionic (Hsu 1990; Ho et al. 2001) or bosonic (Auerbach and Arovas 1988)
quasi-particles. The possibility thus exists that, even for a Néel ordered groundstate,
the square lattice Heisenberg antiferromagnet retains fractional excitations for some
specific momenta.

Experimentally, the SWT predictions proved to be accurate, even in the spin-1/2
case. The Inelastic Neutron Scattering (INS) technique in particular could unambigu-
ously characterize both the instantaneous (Greven et al. 1995; Birgeneau et al. 1999;
Rønnow et al. 1999) and the low-energy/long wavelength dynamical (Yamada et al.
1989) properties of the square lattice Heisenberg antiferromagnet in excellent agree-
ment with SWT. Due to their importance for high-temperature superconductivity,
experiments focused at first on the cuprate insulating parent compounds La2CuO4

(LCO) (Birgeneau et al. 1999; Yamada et al. 1989) or Sr2CuO2Cl2 (SCOC) (Greven
et al. 1995). These compounds have the technical disadvantage that the magnetic
interaction energy is rather large J ∼ 1500K which makes it difficult for INS to
probe the top of the magnon dispersion relation. INS measurements carried out
on the much lower energy model material Cu(DCOO)2·4D2O (CFTD) (Rønnow
et al. 2001) systematically evidenced important deviations from SWT found at the

http://dx.doi.org/10.1007/978-3-319-26419-6_2
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high energy/small wavelength part of the magnon dispersion (Rønnow et al. 2001;
Christensen et al. 2007). More precisely, these deviations happen for momenta q on
the magnetic Brillouin zone boundary |q| = π and are hereafter mentioned as the
magnetic zone boundary quantum anomaly. The anomaly has more recently been
found to exist in La2CuO4 (Headings et al. 2010). In particular, a key-feature is the
observation of a continuum of excitations found at the momentum q = (π, 0), in
strong contrast with the SWT predictions. A possible interpretation of this unex-
pected feature is that the states constituting the continuum correspond to different
pairs of fractional excitations.

In the following work, we use a combination of analytical and numerical calcu-
lations to provide a new theoretical description of the high energy/small wavelength
excitations of the square lattice Heisenberg antiferromagnet in terms of bound or
unbound fractional spin-1/2 particles pair and compare it to newly available polar-
ized inelastic neutron scattering results.

1.2 Overview

We provide here as bullet points a quick overview of this study, pointing to the
dedicated sections for additional details.

• Experimental status: There are many physical realizations of the square lattice
antiferromagnets (see Sect. 1.5). The CFTD material is one of those with the dis-
tinct advantage of the energy scale being the most favorable for thermal neutron
scattering. This allowed an accurate determination of the excitation spectrum to
first order well accounted for by SWT (see Sect. 1.6.1). However with respect
to SWT, a glaring anomaly appears at the short wavelength/high enery part of
the magnetic excitation spectrum (see Sect. 1.5.1). The anomaly appears for the
q = (π, 0) momentum of the Brillouin zone of unit length 2π . It is character-
ized by a reduction of 7% of the q = (π, 0) magnon energy with respect to
q = (π/2, π/2), a dramatic loss of intensity of the main magnon peak and the
development of a continuum of excitations extending to higher energies from the
main magnon peak. In strong contrast, the q = (π/2, π/2) magnetic spectrum
stays sharp indicative of a long-lived single-particle excitation.

• Postulate and theoretical framework:We postulate that the observed continuum
might be a manifestation of fractional quasiparticle deconfinement happening in
the vicinity of the q = (π, 0) momentum. To tackle theoretically this idea, we
start from theHeisenbergmodel written in the fermionic operators (see Sect. 1.6.2)
whichwe treat using amean-field decoupling (see Sect. 1.6.3). The obtainedmean-
field groundstate contains double occupancies which are not part of the original
physical Hilbert space associated with the Heisenberg model. We thus consider
the Gutzwiller-projected mean-field groundstate PG |ψMF〉 as a trial wavefunction
for the Heisenberg model groundstate depending on two variational parameters,
one being the so-called flux θ0 and the other the Néel order (see Sect. 1.6.6).
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• Numerical evalutation of the projected mean-field wavefunction: Using varia-
tional Monte Carlo (see Sect. 1.7), we optimize the variational energy obtained by
varying the projected mean-field wavefunction parameters and consider only two
distinct trial wavefunctions, the Néel ordered |SF + N〉 and the spin liquid |SF〉
wavefunctions (see Sect. 1.9.1). The |SF + N〉 state has the best variational energy
but exponentially decaying transverse spin correlations which is inconsistent with
the robust SWT prediction of algebraic decay. On the other hand the |SF〉 state has
a higher variational energy, no magnetic order but a consistent algebraic decay of
the transverse spin correlations.

• Construction of variational magnetic excitations: Using either the |SF + N〉
or |SF〉 trial wavefunctions, we construct the magnetic excitations as projected
particle-hole pairs (see Sect. 1.8.1). Defining γ

†
kσb and γkσb the creation and anni-

hilation operators diagonalizing the mean-field Hamiltonian, k being the momen-
tum, σ the spin and b ∈ {+,−} a band index, the projected particle-hole pairs

∣
∣k, σσ ′, q

〉 = PGγ
†
kσ+γk−qσ ′− |ψMF〉 (1.2.1)

span a subspace of magnetic excitations on which we numerically project the
Heisenberg model (see Sect. 1.8.2). We then diagonalize the projected Heisenberg
model obtaining projected particle-hole eigenstates which allow to calculate the
dynamic spin structure factor (see Sect. 1.8.4).

• Dynamic structure factor for the trial wavefunctions: The two different trial
wavefunctions |SF + N〉 and |SF〉 give a complementary picture of the experi-
mentally observed anomaly (see Sect. 1.9.2). The former recovers the magnon
dispersion with the 7% reduction of the energy but shows no continuum. The latter
develops a strong continuum at q = (π, 0) in strong contrast with q = (π/2, π/2)
where the magnetic excitation spectrum stays sharp as seen in experiments.

• Fractional quasiparticle deconfinement: With the complete knowledge of the
projected particle-hole excitation eigenstates, we develop quantities to charac-
terize the degree of fractional quasiparticle deconfinement (see Sects. 1.10.3 and
1.10.4). We find that for the |SF + N〉 trial wavefunction, the magnetic spectrum
corresponds to bound pairs of fractional quasiparticles recovering the conventional
magnon excitation. On the other hand for the |SF〉 trial wavefunction, we find that
the continuum of excitations corresponds to unbound fractional quasiparticle pairs
(see Sect. 1.10.5).

1.3 The Heisenberg Model

The Heisenberg model is the foundation of the quantum magnetism physics field. It
is a very general model describing magnetic interacting systems which can arise as
the effective low-energy description of many strongly correlated electron systems. It
is simply written as
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H = 1

2

∑

i, j

Ji j Si · S j (1.3.1)

where i, j index sites with a magnetic degree of freedom characterized by a quantum
spin S, Ji j is the magnetic coupling energy and Si are the spin operator vectors as
defined below.

The magnetic degree of freedom of a site can be any of the 2S + 1 states:

{|m = −S〉 , |m = −S + 1〉 , . . . , |m = S − 1〉 , |m = S〉} . (1.3.2)

The Hilbert space can be generated by the ladder operators {S+, S−}

S+ |m〉 = √

S(S + 1) − m(m + 1) |m + 1〉 (1.3.3)

S− |m〉 = √

S(S + 1) − m(m − 1) |m − 1〉 . (1.3.4)

It is customary to regroup these spin operators in a vector whose quantum average
represents the magnetic dipole moment of the site:

S =
⎛

⎝

Sx

Sy

Sz

⎞

⎠ (1.3.5)

with

Sx = 1

2

(

S+ + S−) (1.3.6)

Sy = 1

2i

(

S+ − S−) (1.3.7)

Sz = 1

2

(

S+S− − S−S+) (1.3.8)

The Hilbert space for N sites is spanned by the basis states that we will hereafter call
real space spin configuration:

�H = {|m1, . . . , m N 〉} mi ∈ {−S, . . . , S} . (1.3.9)

Compared to other many-body quantum states, the magnetic sites are distinguishable
thus there is no redundancy in the state labeling Eq.1.3.9.

The Heisenberg model will arise as the effective theory of electronic systems.
We first note that the only magnetic interaction for electrons as described by elec-
trodynamics is the weak dipole-dipole interaction which would couple the electron
intrinsic magnetic moment and angular momentum. Unlike the magnetic coupling
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Ji j in Eq.1.3.1, this interaction is highly anisotropic as characterized by the dipole-
dipole tensor D(r):

HD−D =
∑

i j

ST
i D(r2 − r1)S j (1.3.10)

D
αβ

(r) ∝rαrβ − δαβ |r|2
|r|5 . (1.3.11)

In most materials this coupling can be safely neglected especially for low-spin sys-
tems where the magnitude of this interaction is very small. The Heisenberg model
therefore does not arise from a bare magnetic electron-electron interaction but as an
effective theory. We give below two examples.

1.3.1 The Heitler-London Method

The Heitler-London method was developed in the context of the covalent molecular
bonding theory. We consider only two “sites”, for instance the two protons held
fixed of an H2 molecule. Labeling the sites a and b we only consider one orbital
state per site |a〉 and |b〉 and a separation of Rab between the two sites. We study the
2-electrons problem. The Hamiltonian only contains the electron kinetic energy and
the Coulomb repulsion. The spin degree of freedom of the electron does not enter
the Hamiltonian at all. If the two sites are held at a very large distance, the orbital
states become eigenstates of the single electron problem:

HRab→∞ |a, σ 〉 = E0 |a, σ 〉 (1.3.12)

HRab→∞
∣
∣b, σ ′〉 = E0

∣
∣b, σ ′〉 (1.3.13)

where σ and σ ′ label the electron spins. In this limit, the |a, σ 〉 and ∣∣b, σ ′〉 states are
orthogonal regardless of their spin σ and σ ′. Defining the electron i position-spin
coordinate (ri , si ) = xi , the two-electron anti-symmetrized states are given by the
Slater determinant:

ψσσ ′
(x1, x2) =

∣
∣
∣
∣

〈x1|a, σ 〉 〈x2|a, σ 〉
〈

x1
∣
∣b, σ ′〉 〈

x2
∣
∣b, σ ′〉

∣
∣
∣
∣
, (1.3.14)

where we have omitted the (two) polar states where the two electrons sit on the same
site with opposite spin. We now turn towards the finite Rab limit. As the Hamiltonian
has no explicit spin dependence, it will be possible to factorize the total wavefunction
into a spatial and a spin part. In the following we will consider only the spatial part
in a first step and will introduce the spin part and the antisymmetry requirement in a
later step. We will consider the variational non-symmetrized states:

|c1, c2〉 = c1 |ab〉 + c2 |ba〉 (1.3.15)
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where |ab〉 has electron 1 in orbital state a and electron 2 in orbital state b and |ba〉
the converse. We want to evaluate the correction to the Rab → ∞ energy E0 as we
bring the two sites closer. We define the following quantities:

L2 = 〈ab|ba〉 (1.3.16)

V = 〈ab| H |ab〉 = 〈ba| H |ba〉 (1.3.17)

X = 〈ab| H |ba〉 (1.3.18)

and find the variational energy

〈c1, c2| H |c1, c2〉
〈c1, c2|c1, c2〉 = (c21 + c22)V + 2c1c2X

c21 + c22 + 2c1c2L2
. (1.3.19)

The extrema are found for c1 = ±c2 with the energies

E± = V ± X

1 ± L2
. (1.3.20)

Interestingly, the c1 = c2 solution imply that the spatial part of the wavefunction is
symmetrical and the c1 = −c2 anti-symmetrical upon electron interchange. Intro-
ducing the spin part and enforcing the global anti-symmetry of the wavefunction
leads to the following spatial-spin wavefunctions with their associated energies:

E+ −→ (|ab〉 + |ba〉) (|↑↓〉 − |↓↑〉) (1.3.21)

E− −→ (|ab〉 − |ba〉)
⎧

⎨

⎩

|↑↓〉 + |↓↑〉
|↑↑〉
|↓↓〉

. (1.3.22)

Up to a constant energy shift, this is the same spectrum one would get from the dimer
Heisenberg model:

H = S1 · S2 (1.3.23)

with J = E− − E+. The sign of J will depend of the L2, V and X parameters in the
following way:

J > 0 ⇔ X − V L2 < 0. (1.3.24)

We have thus found that a pure Coulomb Hamiltonian leads to an effective Heisen-
berg Hamiltonian. The required ingredients were a finite overlap L2 and exchange
integral X and most importantly the antisymmetry requirement for the wavefunc-
tion. The particle statistics thus plays an essential role into the emergence of quantum
magnetism.
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1.3.2 The Hubbard Model

Probably the most known example for the Heisenberg model derivation is from the
Hubbard model:

H = −t
∑

i jσ

c†iσ c jσ

︸ ︷︷ ︸

T

+ U
∑

i

c†i↑ci↑c†i↓ci↓
︸ ︷︷ ︸

V

. (1.3.25)

We give a more extended description of this model in Sect. 2.5.1. It describes fermi-
ons on a lattice with one orbital and two spin states per site. The operator c†iσ and
ciσ respectively create and destroy a fermion of spin-σ on site i . The first term is the
kinetic energy and the second one counts the number of doubly occupied sites which
cost an energy U due to Coulomb repulsion. If we compare to the Heitler-London
method, the hopping amplitude t is linked to the overlap integral L2 and the energy
U corresponds to the polar states that were disregarded due to their too high energy.
We consider this model in the half-filled case where there are as many fermions as
there are sites and in the strong coupling limit t/U  1. In this limit, the Coulomb
interaction defines sectors of the Hilbert space with a given number of doubly occu-
pied sites and corresponding empty sites (because of half filling). These sectors are
separated by the large energy U such that in the Hamiltonian Eq.1.3.25 the interac-
tion part V is block-diagonal in the subspace of real space spin configurations with
a given number of double occupancies. However the kinetic term

K = −t
∑

i j

c†iσ c jσ (1.3.26)

is not block-diagonal on this subspace since it might increase or decrease the number
of double occupancies. The usual approach is to introduce it as a perturbation as t/U
is a small parameter. The lowest energy subspace corresponds to the real space spin
configurations with only one fermion on every sites. Let |α〉 be one of these we have

V |α〉 = 0. (1.3.27)

To the first order the perturbation will not bring any matrix elements between an |α〉
and a |β〉 state as

〈α|H (1) |β〉 = 〈α| T |β〉 = 0 (1.3.28)

since the kinetic operator T will necessarily create a double occupancy. To the second
order however we have:

〈α|H (2) |β〉 =
∑

γ

〈α| T |γ 〉 〈γ | T |β〉
−U

(1.3.29)

http://dx.doi.org/10.1007/978-3-319-26419-6_2
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where |γ 〉 are the states with one double occupancy and one hole. As T |β〉 belongs
to these states, the sum over the |γ 〉 states resolves the identity on this subspace thus
we have:

H (2) = − t2

U

∑

i jσ

∑

i ′ j ′σ ′
c†iσ c jσ c†i ′σ ′c j ′σ ′ . (1.3.30)

By inspection it is seen that the above Hamiltonian will only contribute on the real
space spin configuration space without double occupancies only if

j ′ = i (1.3.31)

i ′ = j (1.3.32)

giving the effective second order perturbation theory Hamiltonian

H (2) = − t2

U

∑

i j

∑

σσ ′
c†iσ c jσ c†jσ ′ciσ ′ . (1.3.33)

If we now consider the (i j) part of the above applied on a state |ασσ ′ 〉, there are four
cases to consider:

1.
∣
∣α↑↑

〉 =
∣
∣
∣
∣
· · · i↑ · · · j↑ · · ·

〉

H (2)
∣
∣α↑↑

〉 = 0 (1.3.34)

2.
∣
∣α↓↓

〉 =
∣
∣
∣
∣
· · · i↓ · · · j↓ · · ·

〉

H (2)
∣
∣α↓↓

〉 = 0 (1.3.35)

3.
∣
∣α↑↓

〉 =
∣
∣
∣
∣
· · · i↑ · · · j↓ · · ·

〉

H (2)
∣
∣α↑↓

〉 =
∣
∣
∣
∣
· · · i↑ · · · j↓ · · ·

〉

−
∣
∣
∣
∣
· · · i↓ · · · j↑ · · ·

〉

(1.3.36)

4.
∣
∣α↓↑

〉 =
∣
∣
∣
∣
· · · i↓ · · · j↑ · · ·

〉

H (2)
∣
∣α↓↑

〉 =
∣
∣
∣
∣
· · · i↓ · · · j↑ · · ·

〉

−
∣
∣
∣
∣
· · · i↑ · · · j↓ · · ·

〉

(1.3.37)
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where the negative sign in front of the off-diagonal elements come from the fermionic
sign rule. On the

{∣
∣α↑↑

〉

,
∣
∣α↑↓

〉

,
∣
∣α↓↑

〉

,
∣
∣α↓↓

〉}

states the effective Hamiltonian thus
reads

〈

ασ1σ2

∣
∣H (2)

∣
∣ασ3σ4

〉 = − t2

U

⎛

⎜
⎜
⎝

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞

⎟
⎟
⎠

(1.3.38)

which can be recast as

〈

ασ1σ2

∣
∣H (2)

∣
∣ασ3σ4

〉 = 2t2

U

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

1
4 0 0 0
0 − 1

4
1
2 0

0 1
2 − 1

4 0
0 0 0 1

4

⎞

⎟
⎟
⎠

− 1

4

⎤

⎥
⎥
⎦

(1.3.39)

= 2t2

U

(

Si · S j − 1

4

)

. (1.3.40)

Putting back the sum over the sites, we obtain the Heisenberg model up to a constant:

〈α|H (2) |β〉 = 4t2

U

∑

〈i, j〉

(

Si · S j − 1

4

)

. (1.3.41)

As was the case for the Heitler-London method, we see that a Hamiltonian which
has no explicit spin-spin interaction as the Hubbard model results in an effective spin
Hamiltonian in some limit. Again a critical ingredient was the correct application
of the fermionic statistics, here applied through the fermionic sign coming along
with the c†iσ and ciσ operators. We show in Fig. 1.1 the exchange process which
underlies the second-order perturbation process highlighting the importance of the
Pauli exclusion principle, yet another expression of the fermionic statistics.

Fig. 1.1 Illustration of the
second order perturbation
theory matrix elements from
Eq.1.3.33. Through the
virtual hopping, neighboring
up side down spins can gain
kinetic energy by exchanging
(top) while the process is
forbidden for neighboring up
or down spins (bottom) due
to the Pauli exclusion
principle
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1.4 The 1D Spin-1
2 Heisenberg Chain

Despite its simplicity the HeisenbergHamiltonian hosts an extremely rich physics. In
Eq.1.3.1, neither the lattice, the quantum spin number S nor the magnetic couplings
Ji j are explicitly defined. Depending on those, the ground state and the excitations
can be of an entirely different nature. In particular some choices of lattice and/or
magnetic couplings result in magnetic frustration leading to macroscopically degen-
erate or exotic quantum entangled ground states and fractional excitations (Balents
2010). Key-examples are for instance quantum spin-liquid/valence bond solid and
fractionalized excitations in the Kagomé lattice (Marston and Zeng 1991; Lechemi-
nant et al. 1997; Singh and Huse 2007; Vries et al. 2009; Yan et al. 2011; Han et al.
2012) and spin ice and magnetic monopoles in the pyrochlore lattice (Bramwell and
Gingras 2001; Castelnovo et al. 2008; Jaubert and Holdsworth 2009; Bramwell et al.
2009).

But even when considering simpler lattices without frustration, the Heisenberg
model already produces a wide range of phenomena. In the following we review the
case of the 1D spin- 12 chain.

1.4.1 Theoretical Overview

We consider the Hamiltonian

H =
∑

i

Jxy
(

Sx
i+1Sx

i + Sy
i+1Sy

i

)+ Jz Sz
i+1Sz

i (1.4.1)

known as the XXZ model. We first consider the Jxy = Jz = J which is simply
the Heisenberg model. The classical ground state is simply the antiferromagnetic
arrangement where Sz

i |GS〉 = 1
2 (−1)i . However the system has a continuous spin

rotational symmetry which means it cannot be spontaneously broken at finite tem-
perature [the Mermin-Wagner theorem (Mermin and Wagner 1966)] so the antifer-
romagnetic order is absent at any finite temperature. That still leaves the possibility
of T = 0 long-range order. If the system is ordered at zero temperature, then it is
reasonable to use the semi-classical SWT (see Sect. 1.6.1) to approximately diago-
nalize the Hamiltonian and calculate the predicted staggered magnetization. Such a
calculation leads to

Sz
(π,π) = S − 1

2π

∫ π/a

0
dk

(

1 − J

ωk

)

(1.4.2)

ωk = J
√

1 − cos2(ka) (1.4.3)

where ωk is the so-called spin-wave dispersion and, for small k, ωk ∼ k such that
the integral (1.4.2) diverges. The SWT for the 1D chain, even at zero temperature,
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therefore is not self-consistent suggesting that there is no order at T = 0 as well. The
same approach in higher dimensions leads to a finite, although reduced, staggered
magnetization at T = 0 for 2D systems and to a finite temperature long range order
in 3D systems. The importance of the quantum fluctuations thus critically depend on
the dimensionality.

The isotropic Heisenberg case can in fact be exactly solved by the so-called Bethe
Ansatz (Bethe 1931), an inspired guess of the ground state wavefunction which turns
out to be exact! The ground state has quasi-long-range order and is a realization of
a Luttinger liquid (Giamarchi 2004). However the great complexity of the ground
state wavefunction makes it very difficult to extract physical quantities especially
where it comes to correlation functions (Giamarchi 2004). To illustrate the nature
of 1D spin- 12 chain physics, we turn towards the simpler case where we set Jz = 0.
In this limit the model becomes the so-called XY model and can be solved exactly
in a simple fashion. Since the commutation relations for the spin operators are quite
inconvenient, a good idea is to find a mapping from spin operators to fermionic
or bosonic quasiparticles. We can set the vacuum of particles to be the completely
polarized state

Sz
i |0〉 = −1

2
. (1.4.4)

As one can create many bosonic quasiparticles in the same state, we see that it
would corresponds to successive raising of the spin which is not allowed for spin- 12 .
Representing the change in magnetization using bosons thus requires an additional
constraint which prevents to create two or more bosons on the same site. This is
the so-called hard-core boson mapping. Another idea is to use the Pauli exclusion
principle to implement this constraint using spin-less fermionic quasi-particles. The
mapping

S+
i = c†i (1.4.5)

Sz
i = c†i ci − 1

2
(1.4.6)

fulfills the local spin commutation relation. However spin operators on different sites
should commute, while this is not the case using the simple mapping Eqs. 1.4.5 and
1.4.6. To solve this issue one uses the Jordan-Wigner transformation (Jordan and
Wigner 1928):

S+
i = c†i exp (iπφi ) (1.4.7)

Sz
i = c†i ci − 1

2
(1.4.8)

where φi is the string operator:

φi =
i−1
∑

j=−∞
c†j c j (1.4.9)
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The XXZ model Hamiltonian becomes:

HX X Z = Jxy

2

∑

i

[

c†i+1ci + c†i ci+1

]

+ Jz

∑

i

(

c†i+1ci+1 − 1

2

)(

c†i ci − 1

2

)

(1.4.10)
which, upon the gauge transformation ci → (−1)i ci becomes

HX X Z = −t
∑

i

[

c†i+1ci + c†i ci+1

]

+V
∑

i

(

c†i+1ci+1 − 1

2

)(

c†i ci − 1

2

)

(1.4.11)

describing spinless fermions hopping on a chain with amplitude t = Jxy

2 subjected to
a nearest neighbor repulsion V = Jz . In the XY limit the Hamiltonian is quadratic
and can be diagonalized by a Fourier transform:

HXY =
∑

k

εkc†k ck (1.4.12)

εk = −2tcos(ka) (1.4.13)

which describes free fermions on a chain. The Sz
tot sector defines the fermion filling

with Sz
tot = 0 corresponding to half-filling. The ground state is then a half-filled

Fermi sea up to the Fermi energy εF . The most important outcome of this calculation
is the fractional nature of the excitations which, in the so-called longitudinal channel
where excitations do not change the Sz

tot sector, will be made of particle-hole spinless
fermion pairs. We show in Fig. 1.2 the evolution of a local particle-hole excitation

Fig. 1.2 Real space
representation of a spinon
particle-hole pair. Arrows are
for spin representation and
plain and hollow dots for
spinless fermion
representation. The
particle-hole fermionic pair
flips two neighbouring spins
creating two domain walls.
The Hamiltonian applied on
this state will move away the
domains walls which behave
like free quasiparticles
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c†i ci+1 applied on a Néel ordered cluster. This allows to identify the particle-hole
excitation as the creation of two domain walls which will propagate freely on the
chain as their movement does not change the overall energy of the system. Another
important outcome is that, for a given momentum transfer q, there will be many
particle-hole pairs which one can create with this net momentum. It follows that
the excitations will not be like for instance a harmonic oscillator mode where for
each momentum there corresponds a discret number of bosonic excitations. Instead,
a continuum of excitations |k, q〉 will correspond to each momentum:

|k, q〉 = c†k ck−q |GS〉 εk−q < εF < εk (1.4.14)

|GS〉 =
∏

{k|εk≤εF }
c†k |0〉 . (1.4.15)

Because of the simplicity of the Sz operator in the spinless fermion representation
(Eq.1.4.8), the dynamic spin structure factor is identical to the particle-hole excitation
density of states (Imambekov et al. 2012):

D(q, ω) =
∑

{k|εk−q<εF <εk}
δ(ω − εk−q + εk) (1.4.16)

which we show in Fig. 1.3 for the half-filled case where the delta-functions are
widened by a gaussian with a finite width. Of course the XY model is strongly
anisotropic and the dynamic spin structure factor will be different for instance in the
transverse excitation channel where the total spin is increased by �S = 1. However
because of the string operator entering the spinless fermion representation of the

Fig. 1.3 Particle-hole excitation density of states for the XY model in the half-filled case
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S±
i operators, the calculation of the transverse dynamic spin structure factor is more

complicated and can be looked up for instance in Imambekov et al. (2012).
Turning on the longitudinal coupling Jz → Jxy in a perturbative way, the

interaction between spinless fermions will mix higher order n-particles n-holes into
the longitudinal dynamic structure factor. In the Heisenberg limit Jz = Jxy the
exactly calculated two-spinons contribution amounts for 73% of the total spec-
tral weight (Karbach et al. 1997) while including 4-spinon excitations produces
98% (Caux andHagemans 2006). These theoretical predictions have been confirmed
experimentally (Mourigal et al. 2013).

1.4.2 Experimental Realizations

There have been many physical realizations of the 1D spin- 12 chain. We can men-
tion KCuF3 (Tennant et al. 1995), Sr2CuO3 (Walters et al. 2009) and CuSO4 ·
5D2O (Mourigal et al. 2013). All these materials features nearly isolated spin- 12
chains. Below some critical temperature, the inter-chain couplings will become rel-
evant. The system thus turns into a three-dimensional one which will realize some
magnetic order. Above this temperature however, the thermal fluctuations will effec-
tively decouple the chains while leaving the chain physics itself nearly unaffected,
thus realizing an effective one-dimensional system.We show in Fig. 1.4 a comparison
between an inelastic neutron scattering measurement of the dynamic spin structure
factor and the predicted spectrum. This figure is taken from Mourigal et al. (2013).
The one-dimensional spin- 12 Heisenberg chain is a great example where a theoreti-
cally exact theory could be successfully confronted to experimental measurements
in great details.

Fig. 1.4 Figure from
Mourigal et al. (2013).
Experimental colormap of
the dynamic spin structure
factor of the spin- 12 chain
material CuSO4 · 5D2O (left)
compared to a two- plus
four-spinons excitation
calculation from the
isotropic Heisenberg model
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1.5 The Square Lattice Heisenberg Model

The Quantum spin-1/2 Heisenberg Square lattice Anti-Ferromagnetic model
(QHSAF) is probably the simplest Heisenberg model one can think of in two dimen-
sions. We only consider a nearest-neighbour antiferromagnetic coupling J such that
the model is usually written as

H = J
∑

〈i, j〉
Si · S j (1.5.1)

where i = (ix , iy) and j index the sites of the lattice and the sum runs over the 〈i, j〉
nearest-neighbours bonds. Since the system still has a continuous rotational symme-
try and is two-dimensional, the Mermin-Wagner theorem still applies and predicts
that the system should be disordered at any finite temperature. However there is the-
oretical and numerical agreement (Manousakis 1991) that the zero-temperature sys-
tem should be ordered. Since in real materials there always is some weak inter-plane
coupling making the systemmarginally three-dimensional, physical realizations will
order at some finite temperature.

At a first glance, this renders the problem simpler since its ground state seems to
be close to a classical state with a local order parameter. However there is to date no
exact solution such as in the one-dimensional case and approximations must be used.
To allow comparison between the different theoretical approaches and experimental
results, one resorts on instantaneous and dynamical quantities respectively relating
to the ground state and to the excitations properties. The quantities which will be
thoroughly studied in this work are:

• the staggered magnetization:

〈

Sz
Q

〉

= 1

N

∑

i

ei Ri · Q 〈Sz
i

〉

(1.5.2)

where Q = (π, π) is the antiferromagnetic ordering vector (in reciprocal unit cell
units),

• the longitudinal (α = z) and transverse (α ∈ {x, y}) instantaneous spin correlation
in real and reciprocal space:

Sαα(r) = 〈

Sα
i+r Sα

i

〉

(1.5.3)

Sαα(q) = 〈

Sα
−q Sα

q

〉

, (1.5.4)

• and the longitudinal and transverse dynamic spin structure factor:

Szz(q, ω) =
∫

dteiωt
〈

Sz
−q(t)Sz

q(0)
〉

(1.5.5)

S±(q, ω) =
∫

dteiωt
〈

S−
q (t)S+

q (0)
〉

. (1.5.6)
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Fig. 1.5 Instantaneous
transverse correlation
function
S±(r) = ei Qr 〈S−

i S+
i+r 〉

from linear SWT. The
log-log plot evidences the
algebraic decay of the
correlation function

Probably the most established theory to tackle the QHSAF is SWTwhich we quickly
review in Sect. 1.6.1. Before going into a review of the experimental results available,
it is useful to point out a few SWT results for comparison.

• The staggered magnetization: For spin- 12 , SWT predicts a T = 0 ordered phase
with a staggered magnetization reduced to 62% of its classical value.

• Transverse instantaneous spin correlation functions: in linear SWT one can cal-
culate S±(q) and the corresponding alternating real space transverse spin-spin
correlation S±(r) = ∫

ei(q+ Q)r S±(q). An important outcome for the coming dis-
cussion is that the alternated real space transverse spin-spin correlation decays
algebraically with distance (Fig. 1.5). This is a long wave-length property and we
will see that the spin-wave approximation is the most robust in this regime.

• Transverse dynamic spin structure factor: In linear SWT, the transverse dynamic
structure factor consists only of a magnon mode ωq gapless at q = (0, 0) and
q = (π, π). The important facts are that (i) the spin-wavemagnonmode energyωq

is constant along the Magnetic Brillouin Zone Boundary (MBZB) |qx |+ |qy| = π

and (ii) its intensity I (q) in the transverse dynamic structure factor S±(q, ω) =
I (q)δ(ω − ωq) is also constant along the MBZB. We show these observations in
Fig. 1.6 along the high-symmetry directions.

1.5.1 Physical Realizations and Statement of the Problem

There exists many realizations of the QHSAF: the metal-organics CFTD
(Burger et al. 1980; Yamagata et al. 1981; Clarke et al. 1992; Rønnow et al.
1999; Christensen et al. 2007) and Cu(pz)2(ClO4)2 (Tsyrulin et al. 2009), the
vanadate K2V3O8(Lumsden et al. 2006), the insulating parent compound of the
high-temperature superconducting cuprate materials for instance LCO
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Fig. 1.6 Linear SWT magnon dispersion ωq and intensity I (q) in the dynamic structure factor
S(q, ω) = I (q)δ(ω − ωq). The inset shows the chosen high-symmetry path q = (qx , qy)

(Coldea et al. 2001a; Headings et al. 2010), Sr2Cu3O4Cl2 (Kim et al. 1999), SCOC
or Bi2Sr2YCu2O8 (BSYCO) (Guarise et al. 2010; Dalla Piazza et al. 2012) and the
monolayer iridate Sr2IrO4 (Kim et al. 2012). A key quantity which is accessible to
neutron scattering experiments is the dynamic spin structure factor. Overall the SWT
predictions proved to be surprisingly accurate, but a few experiments nonetheless
reported significant deviations (Rønnow et al. 2001; Christensen et al. 2007; Head-
ings et al. 2010; Kim et al. 2001). These deviations occur at the high-energy/short
wavelength part of the excitation spectrum which coincides with the MBZB, where
SWT is consistently expected to be less robust. Dubbed hereafter “quantum effects”,
the observed deviations can be summarized as follow:

1. A downward dispersion of the magnon mode energy of 7% along the MBZB
from q = (π/2, π/2) (highest) to q = (π, 0) (lowest).

2. A reduction of the magnon intensity of 50% at q = (π, 0) compared to q =
(π/2, π/2).

3. The emergence of a continuum of excitations extending towards higher energies
above the magnon line at q = (π, 0). This feature results in an asymmetrical
lineshape of the dynamic spin structure factor peak for this momentum as a
function of energy.

Feature 1 has been observed in CFTD and Sr2Cu3O4Cl2 (Rønnow et al. 2001;
Christensen et al. 2007; Kim et al. 2001) but not in LCO. This can be explained
by the extended magnetic couplings present in the cuprate materials, in particular
the cyclic ring exchange, which qualitatively modifies the SWT prediction for the
magnon dispersion (see Chap. 2). Therefore feature 1 is rendered unobservable in

http://dx.doi.org/10.1007/978-3-319-26419-6_2
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LCO due to these extended magnetic coupling. Otherwise features 2 and 3 could
both be observed in CFTD (Christensen et al. 2007), LCO (Headings et al. 2010) and
Cu(pz)2(ClO4)2 (Tsyrulin et al. 2009)whilewe are not aware of an experimentalwork
evidencing it in Sr2Cu3O4Cl2. These effects thus appear in very different materials
supporting the idea that they are intrinsic quantum effects of the nearest-neighbour
QHSAF.

The dispersion quantum effect 1 could be numerically reproduced by series expan-
sion around the Ising limit of the QHSAF (Zheng et al. 2005) and quantum Monte
Carlo (Syljuåsen and Rønnow 2000; Sandvik and Singh 2001) strengthening the pro-
posal of its QHSAF intrinsic nature. 3rd order 1/S SWT also predicted a dispersion
along the MBZB but only of 3% (Syromyatnikov 2010) as a result of an apparently
very slowly, if at all convergent 1/S perturbative expansion.

The intensity and the continuum quantum effects 2 and 3 are linked in the sense
that the energy-integrated intensity is almost constant along the MBZB such that the
intensity going into the continuum at q = (π, 0) necessarily lowers themainmagnon
peak intensity. Series expansion could reproduce a 20% reduction of the q = (π, 0)
intensity with respect to q = (π/2, π/2). QuantumMonte Carlo on the other hand is
a difficult tool when going to dynamical properties as the analytical continuation of
noisy numerical data either results in an insufficient frequency resolution or requires
some a-priori knowledge/postulate of the lineshape (Sandvik and Singh 2001).

To illustrate the experimental quantum effect, we will focus on experimental
data coming from CFTD due to (i) the absence of extended magnetic interactions,
(ii) the availability of extended time-of-flight neutron data and (iii) the availabil-
ity of polarized neutron scattering data for the q = (π, 0) and q = (π/2, π/2)
momenta which importantly allow to disentangle the longitudinal Szz(q, ω) from
the transverse S±(q, ω) experimental contributions. This yet unpublished data can
be found in Martin Mourigal Ph.D. thesis (Mourigal 2011). We show a colormap
of the unpolarized neutron scattering data along the high-symmetry directions in
Fig. 1.7 which nicely evidences features 2. The 7% dispersion feature 1 is better
seen in Fig. 1.8, data extracted from reference Christensen et al. (2007). We now take
a closer look at the specific momenta q = (π, 0) and q = (π/2, π/2) from polar-
ized neutron scattering in Fig. 1.9. The measurement by polarized neutron scattering

Fig. 1.7 Unpolarized INS spectrum for the CFTD materials from Mourigal (2011) as a function
of momentum and energy
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Fig. 1.8 Magnon-like
dispersion relation (top) and
intensity (bottom) as
measured by INS on the
CFTD material (Christensen
et al. 2007) (blue open
circles) compared to linear
SWT (black solid line) with
J adjusted such that
ω(π/2, π/2) matches
experiments (color online)

Fig. 1.9 Polarized INS
spectra for the q = (π, 0)
(a–d) and q = (π/2, π/2)
(e–h) momenta (Mourigal
2011). First line from the top
indicate the total dynamic
structure factor
S(q.ω) = Sxx (q, ω) +
Syy(q, ω) + Szz(q, ω), the
Néel ordering axis taken
along the z axis. Second line
shows the transverse spectra
with solid blue line being
resolution-limited gaussian
fits. Third line shows the
longitudinal spectra with
dashed red lines guides for
the eye, and fourth line
shows together twice the
longitudinal red dashed
guide to the eye line with the
transverse spectrum where
the fitted resolution-limited
gaussian solid blue line have
been subtracted (color
online)

from two different Brillouin zones allowed to decouple the transverse (Fig. 1.9b, f)
and longitudinal (Fig. 1.9c, g) channels. In the transverse channel, the q = (π, 0)
(Fig. 1.9b) and the q = (π/2, π/2) (Fig. 1.9) nicely evidence all the quantum anom-
aly features. The main peak is shifted down by 7% for q = (π, 0) compared to
q = (π/2, π/2) and its intensity is reduced as more weight is pushed into the tail
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going to higher energies. The longitudinal spectrum (Fig. 1.9c, g) also shows impor-
tant differences between the two momenta. If one subtracts from the transverse
channel the magnon-like peak as fitted by a resolution-limited gaussian, one obtains
the blue open points in Fig. 1.9d, h. The dashed red lines are twice the longitudinal
lineshapes from Fig. 1.9c, g. While the subtraction at q = (π/2, π/2) leaves almost
no spectral weight, at q = (π, 0) it results in a lineshape which overlaps perfectly
the longitudinal channel data. This surprising observation hints that the excitations
found in the high energy tail of the q = (π, 0) spectrum might be spin-isotropic
with Sxx (q, ω) = Szz(q, ω) = 1

2 S±(q, ω). It is not possible to reconciliate the
observed lineshapes with SWT. In SWT, magnon-magnon interaction do push about
20% of the MBZB magnon peak weight into a higher energy three-magnon con-
tinuum (Canali and Wallin 1993). But the resulting lineshape is radically different,
does not coincide with the (two-magnon) longitudinal lineshape at q = (π, 0) and
more importantly is only weakly momentum-dependent while the experimental data
shows very important differences between the q = (π, 0) and q = (π/2, π/2).

In this thesis, we propose that all these experimental deviations mark a departure
from the conventional SWT at short wavelengths/high energies and that themeasured
excitations must be described differently. The total spin dynamic structure factor
shown in Fig. 1.9a for q = (π, 0) is reminiscent of the one-dimensional spin- 12 chain
dynamic structure factor. It inspired us to consider the proposal that the excitations
at q = (π, 0) should in fact be understood as emergent fractional quasiparticles-pair
excitations just as in the one-dimensional case. In the followingwe set up a formalism
and numerical techniques to tackle this idea.

1.6 Analytical Approaches

In this section we first set up the linear SWT and extract from it quantities that
can be compared to experiments and to our spinon-pair calculation. Then we move
towards reviewing the fermionic mean-field theories of the QHSAF and setup the
mathematical foundations of our later numerical work.

1.6.1 The Spin-Wave Approximation

Wequickly review linear SWT for the sake of the coming discussion. Amore in depth
discussion in particular considering bi-layered materials and the first order quantum
corrections is carried out in Chap.2 Sect. 2.7. We start by introducing a staggered
rotation of the spin frame of reference around the y axis:

Sx
i → ei Q Ri Sx

i , (1.6.1)

Sy
i → Sy

i , (1.6.2)

Sz
i → ei Q Ri Sz

i . (1.6.3)

http://dx.doi.org/10.1007/978-3-319-26419-6_2
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In this rotated frame of reference the classical ground state is ferromagnetic. Using
the Holstein-Primakov transform we describe the deviations from this ground state
using the bosonic spin-wave creation and annihilation operators:

Sz
i = 1

2
− a†

i ai (1.6.4)

S+
i =

[√

2S − a†
i ai

]

ai ≈ √
2Sai (1.6.5)

S−
i = a†

i

[√

2S − a†
i ai

]

≈ √
2Sa†

i (1.6.6)

where the approximation of the square root term prepares the 1/S approximation
of the spin-wave Hamiltonian. Neglecting the quartic boson operator terms (the 1/S
approximation) we obtain a quadratic Hamiltonian

H (2)
SW = J S2 1

2

∑

i

∑

τ

[

−1 + 1

S

(

a†
i ai + a†

i+τ ai+τ − a†
i+τ a†

i − ai+τ ai

)]

+O

(
1

S0

)

(1.6.7)
which upon a Fourier transform

ai =
∑

k

ei kRi ak (1.6.8)

a†
i =

∑

k

e−i kRi a†
i (1.6.9)

becomes

H (2)
SW = −S2z J

N

2
+ S J

∑

k

∑

τ

a†
kak − 1

2
ei kτ a†

ka†
−k − 1

2
ei kτ aka−k (1.6.10)

= −S2z J
N

2
+ S J

∑

k

Aka†
kak + 1

2
Bk

(

a†
ka†

−k + aka−k

)

. (1.6.11)

with z = 4 the number of nearest neighbors and

Ak = z (1.6.12)

Bk =
∑

τ

cos(kτ ). (1.6.13)

At last a standard Bogoliubov transform diagonalize the quadratic spin-wave Hamil-
tonian with

αk = ukak + vka†
−k (1.6.14)
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uk =
√

1

2

(

1 + Ak

ωk

)

(1.6.15)

vk = sign (Bk)

√

1

2

(

1 − Ak

ωk

)

(1.6.16)

ωk =
√

A2
k − B2

k (1.6.17)

giving

H (2)
SW = −J S(S + 1)z

N

2
+ S J

∑

k

ωk

(

α
†
kαk + 1

2

)

. (1.6.18)

The ground state is the vacuum of the αk harmonic oscillator modes and the exci-
tations are the creation of one or more spin-waves through the α

†
k creation operator.

Inversing the transformations, we can express the spin operators in terms of the αk

operators thus we can express the various zero-temperature physical quantities such
as:

• The staggered magnetization:

M Q =
〈
∑

i

Sz
i

〉

T =0

=1

2
− 〈a†

i ai 〉 (1.6.19)

1

2
−
∑

k

v2
k � 0.3. (1.6.20)

• The transverse instantaneous spin-spin correlation:

〈

S−
q S+

q

〉 = (uk − vk)
2. (1.6.21)

We show the Fourier transform
〈

S−
i S+

i+r

〉 = ∑

q eiqr
〈

S−
q S+

q

〉

in the case of the

spin- 12 QHSAF in Fig. 1.5
• The transverse dynamic spin structure factor:

S±(q, ω) =
∫

dteiωt
∑

i j

eq(R j −Ri )
〈

S−
i (t)S+

j (0)
〉

(1.6.22)

= (uk − vk)
2δ(ω − ωk). (1.6.23)

We see that the transverse excitations are made out of single spin-waves which
corresponds to a changeof angularmomentum�S = 1. In realitymagnon-magnon
interaction will give rise to a continuum of three-magnons, five-magnons and so
on. We show in Fig. 1.6 the one-magnon dispersion ωq along with its intensity
Iq = (uk − vk)

2 in the case of the spin- 12 QSHAF.
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• The longitudinal dynamic spin structure factor:

Szz(q, ω) = M2
Qδ(q − Q)δ(ω) + 1

2

∑

k

(ukvk−q − uk−qvk)
2δ(ω − ωk − ωk−q)

(1.6.24)
whose inelastic part corresponds to the creation of two spin-waves giving rise to
a longitudinal continuum of excitations. We show this longitudinal continuum for
the spin- 12 QHSAF later on in Fig. 2.22.

1.6.1.1 Magnon-Magnon Interaction

From Eqs. 1.6.4 to 1.6.7 we truncated the expansion of the spin Hamiltonian in terms
of the ai and a†

i bosonic operators such that only the quadratic bosonic terms were
left. This corresponds to an expansion in 1/S where terms of order 1/S0, giving rise
to quartic bosonic terms, where disregarded. Introducing these terms can be done in
various perturbative schemes. In Sect. 2.7.5 for instance we treat those through an
Hartree-Fock procedure which for nearest-neighbour coupling J leads to a uniform
quantum renormalization of the one-magnon energy ωk → Zcωk with Zc � 1.15.

To calculate the effect of these magnon-magnon interactions on the various corre-
lation functions, the preferred approach is to rewrite the interacting part of the spin-
wave Hamiltonian into the quasi-particle αk operators diagonalizing the quadratic
part and to carry out a perturbative expansion in the interaction through the Feynman
diagram formalism for instance (Igarashi 1992; Canali and Wallin 1993; Igarashi
and Nagao 2005; Syromyatnikov 2010). Following Igarashi (1992) the correlation
functions can be written in terms of the Green functions:

G11 = −i〈T αk(t)α
†
k(0)〉 (1.6.25)

G12 = −i〈T αk(t)α−k(0)〉 (1.6.26)

G21 = −i〈T α
†
−k(t)α

†
k(0)〉 (1.6.27)

G22 = −i〈T α
†
−k(t)α−k(0)〉. (1.6.28)

The perturbed Green functions may be calculated from the Fourier-transformed
unperturbed ones G0

μν(k, ω) through the Dyson equation:

Gμν(kω) = G0
μν(k, ω) +

∑

μ′ν ′
G0

μμ′(kω)�μ′ν ′(k, ω)Gν ′ν(k, ω) (1.6.29)

where �μν(k, ω) is the self-energy which quantifies how the magnon-magnon inter-
action will mix together the unperturbed Green functions and is calculated through
perturbation theory.

The reason we recall this calculation is that it has been shown that the self-energy
�μν(k, ω) vanishes for long wavelength k → 0 (Igarashi 1992) which justifies

http://dx.doi.org/10.1007/978-3-319-26419-6_2
http://dx.doi.org/10.1007/978-3-319-26419-6_2
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the SWT being accounted for as a long wavelength theory. This is important for
the coming discussion as some spin-wave results are therefore robust such as for
instance the long distance algebraic decay of the transverse spin-spin correlation
function

〈

S−
i S+

i+r

〉

. On the other hand the measured anomalies precisely happen at
the short wavelength/high energy part of the spectrum where the convergence of the
perturbation series is less robust. Indeed while Series Expansion (Zheng et al. 2005)
and Quantum Monte Carlo (Sandvik and Singh 2001; Syljuåsen and Rønnow 2000)
could obtain the 7% MBZ boundary dispersion, a 3rd order spin-wave expansion
could only recover a dispersion of about 3%, raising doubts about the convergence
of the perturbation series.

1.6.2 Fermionized Heisenberg Model

In order to tackle the idea of fractional excitations in the QSHAF, we first need to
somehow express the Heisenberg Hamiltonian in a language with fractional spin-
1/2 quasiparticle creation and annihilation operators. Note that, in the XY model
in 1D one could achieve this using the Jordan-Wigner transformation and map the
spin operators to spinless fermions. But this mapping relied on the uniqueness of
the string operator definition Eq.1.4.9 and the nearest-neighbour restriction of the
interaction (Giamarchi 2004). In 2D the string operator attached to the Jordan-Wigner
transformation may be defined in many ways and the “magic” cancellation of the
string operator found in the 1D XY model would not happen here anymore.

We thus turn towards a much less inspired transformation and simply express the
spin- 12 operators in second-quantized form:

Sα
i →

∑

σ,σ ′
c†iσ

(

Sα
i

)

σσ ′ ciσ ′ . (1.6.30)

The Heisenberg Hamiltonian then becomes:

H =
∑

〈i, j〉

∑

α

∑

1234

c†iσ1

(

Sα
i

)

σ1σ2
ciσ2c

†
jσ3

(

Sα
j

)

σ3σ4
c jσ4 (1.6.31)

=
∑

〈i, j〉

[
1

4

(

ni↑n j↑ + ni↓n j↓ − ni↑n j↓ − ni↓n j↑
)

+1

2

(

c†i↑ci↓c†j↓c j↓ + c†i↓ci↑c†j↑c j↓
)]

(1.6.32)

= −1

2

∑

〈i, j〉

⎡

⎣ni

(
1

2
ni − 1

)

+
∑

αβ

c†iαc jαc†jβciβ

⎤

⎦ (1.6.33)



1.6 Analytical Approaches 27

In this fermionic formulation, doubly occupied and empty sites now belong to the
enhanced Hilbert space. The Heisenberg Hamiltonian Eq.1.5.1 and its fermionized
version (1.6.33) might only be equivalent on the subspace corresponding to half-
filling N↑ = N↓ = N/2 and D = 0 double occupancies or empty sites (note that in
this subspace the first term in Eq.1.6.33 is a constant and will be omitted hereafter).
It turns out that Eq. 1.6.33 commutes with D̂ = ∑

i ni↑ni↓ thus the two formulations
are equivalent on the physical Hilbert space. But when applying approximations
we might break this property. A way to enforce it a priori is to add explicitly the
constraint into the fermionic spin operators:

ciσ → c̃iσ = ciσ (1 − ni σ̄ ) (1.6.34)

c†iσ → c̃†iσ = (1 − ni σ̄ )c†iσ (1.6.35)

as one can verify that [c̃iσ , D̂] = 0. Another way to enforce the constraint of
no-double occupancies is through the so-called Gutzwiller projection:

PD=0 =
∏

i

(

1 − ni↑ni↓
)

. (1.6.36)

Applying this projector left-hand and right-hand side of an approximate of Eq. 1.6.33
will cure a posteriori the non-commuting parts of an approximated Hamiltonian such
that [

PD=0HapproxPD=0, D̂
]

= 0. (1.6.37)

Equivalently, the Gutzwiller projection may simply be applied to the eigenstates
found in a particular approximation. In the following we will heavily use the
Gutzwiller projection which we will implement numerically.

1.6.3 Projected Mean Field Theories

The simplest approximation one can think of to diagonalize the fermionized Heisen-
berg Hamiltonian is to define mean-fields such that it becomes quadratic in fermion
operators. There aremanyways one can define themean fields andwe review some of
those below.When doing a mean-field approximation, we might break the no-double
occupancies constraint introducing matrix elements between the half-filled D = 0
subspace and other D > 0 subspaces which are not relevant for approximating the
Heisenberg model. As a result, the obtained eigenstates of the mean-field Hamil-
tonian will contain states belonging to D > 0 subspaces. We cure this a-posteriori
using the Gutzwiller projection such that a mean-field eigenstate |ψM−F〉 become

|ψM−F〉 → PD=0 |ψM−F〉 . (1.6.38)
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These kinds of projected wavefunctions were first used by Gutzwiller (1963) to study
theHubbardmodel in themetallic phase. They have been later put forward in the con-
text of high-temperature superconductivity along with the RVB proposal (Anderson
1987). When defining the mean-fields, we must be careful that they obey the sym-
metries present in the Heisenberg model in particular we want the total z-component
of the total spin to be conserved. We define the three mean-fields:

hiσ = −hi σ̄ = 〈c†iσ ciσ 〉 (1.6.39)

χi j = χ∗
j i = 2〈c†iσ c jσ 〉 (1.6.40)

�i j = � j i = 〈ci↑c j↓〉. (1.6.41)

Introducing those in Eq.1.6.33 we obtain the following mean-field Hamiltonian
where constants have been omitted:

HM−F = −1

4

∑

〈i, j〉

∑

σ

[

χi j c
†
jσ c jσ + �i jεσ σ̄ c†i σ̄ c†jσ + H.C.

+h jσ c†iσ ciσ + hiσ c†jσ ciσ

]

. (1.6.42)

The definition of the different mean-fields is then guided by physical insight and
results in various mean-field Ansätze. For instance as we know that the classical
Heisenberg model favours antiferromagnetism, we will choose for hiσ an antiferro-
magnetic order parameter:

hiσ = σhei Q·Ri Q = (π, π). (1.6.43)

The choice of a good form of the other two mean-fields is less obvious. The first one
we present is the so-called d-waveRVBAnsatz. It is inspired by the Bardeen-Cooper-
Schrieffermean-field decoupling of the effective electron-phononHamiltonian found
to govern conventional superconductivity (Bardeen et al. 1957). The ‘d-wave’ name
comes from the similarity of the chosen mean-field symmetries with the one of a d-
shell electronic orbital. It was inspired by the superconducting gap symmetry found
in the cuprate family by ARPES measurements (Lee et al. 2006). The mean-fields
Ansatz is:

χi j = χ0 ∈ R (1.6.44)

�i j =
⎧

⎨

⎩

�0 j = i ± êx

−�0 j = i ± êy

0 otherwise
. (1.6.45)

An alternative Ansatz is the so-called Staggered Flux (SF) mean-field as it describes
free fermions on a lattice with staggered fluxes threading the plaquettes (Fig. 1.10).
The mean-field is parametrized by the two parameters t and θ0. While t only sets an
energy scale, θ0 describes the phase a fermion would acquire by circulating around
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Fig. 1.10 Representation of
the staggered flux mean-field
solution. Fluxes of ±4θ0
threads the square lattice
plaquettes in a staggered
manner

a plaquette (±4θ0). This mean-field decoupling was first proposed by Affleck and
Marston (1989) as it turns out it is the exact solution of Eq.1.6.33 in the limit where,
instead of σ ∈ {↑,↓} the spin index takes n → ∞ flavors. Themean-fields definition
is:

χi j = teiθi j θi j = θ0(−1)ix + jy (1.6.46)

�i j = 0. (1.6.47)

Although it seems at first sight that these twomean-fields definitions are very different
from each others, it turns out that they produce exactly the same eigenvalues. This
is explained in the following section.

1.6.4 Equivalences Between Mean Field Theories

When going to the fermionized version of the Heisenberg Hamiltonian, there are
actually many ways one can define the fermions in the new enhanced Hilbert space.
For instance an obvious transformation that leaves the Heisenberg model invariant
is a local U(1) gauge transformation:

ciσ → eiωi ciσ . (1.6.48)

However there is more. Introducing ψi

ψi =
(

ci↑
c†i↓

)

(1.6.49)
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we remark that the spin operators can be rewritten as (Lee and Feng 1988):

S+
i = 1

2
ψT

i

(

0 1
−1 0

)

ψi (1.6.50)

Sz
i = 1

2

[

ψ
†
i ψi − 1

]

. (1.6.51)

such that it is easy to see that the SU(2) transformation

ψi → Wiψi Wi ∈ SU(2) (1.6.52)

does leave the spin operator unchanged since for a SU(2) matrix Wi

W T
i

(

0 1
−1 0

)

Wi =
(

0 1
−1 0

)

(1.6.53)

W H
i Wi = 11. (1.6.54)

Therefore there are many ways to fermionize the Heisenberg Hamiltonian which,
when considered on the half-filled with no double occupancies subspace, are equiva-
lent. To be physically relevant, themean-fieldAnsatzmust also exhibit this symmetry.
If we introduce the ψi operators in the mean-field Hamiltonian Eq.1.6.42 then we
obtain:

HM−F = −1

4

∑

〈i, j〉

[

ψ
†
i Ui jψ j + H.C. + ψ

†
i Hjψi + ψ

†
j Hiψ j

]

(1.6.55)

with

Ui j =
(

χ∗
i j −�i j

−�∗
i j −χi j

)

= −
〈

ψiψ
†
j

〉

(1.6.56)

and

Hi =
(

hi↑ 0
0 hi↑

)

= 1

2

(〈

ψ
†
i ψi

〉

− 1
)( 1 0

0 1

)

(1.6.57)

We now consider the local SU(2) transformations

ψi →Wiψi (1.6.58)

ψ j →W jψ j . (1.6.59)

We see that the mean-field Hamiltonian remains invariant. Using such an SU(2)
transformation it has been shown (Affleck et al. 1988) that the d-wave RVB and SF
Ansätze are in fact equivalent with
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t =
√

χ2
0 + �2

0 (1.6.60)

θ0 = tan−1

(
�0

χ0

)

. (1.6.61)

1.6.5 Projected Mean-Field Magnetic Excitation Spectrum

We shortly review here previous efforts into predicting the excitation spectrum of
the square lattice antiferromagnet based on the mean-field approach.

Following the mean-field decoupling of Eq.1.6.33 omitting the Gutzwiller pro-
jection, one can simply diagonalize the Hamiltonian and write down self-consistent
equations defining the mean-fields. In the staggered flux gauge, it has been shown
that the self-consistent flux is 4θ0 = π (Marston and Affleck 1989) such that the
staggered pattern from Fig. 1.10 is lost since the phase acquired by circulating around
a plaquette is eiπ = e−iπ . Of course neglecting the Gutzwiller projection renders the
mean-field results doubtful at best. A strategy is to consider the following Hamit-
lonian treated in the mean-field approach:

H = −Jef f

∑

〈i, j〉,σ

[

eiθi j c†iσ c jσ + h.c.
]

+ V
∑

i

ni↑ni↓ (1.6.62)

with θi j as defined in Eq.1.6.46 with θ0 = π/4. V is an added on-site repulsion,
a strategy to account to some level for the Gutzwiller projection. The mean-field
solution gives the eigenvalues as

Ek = Jef f

√

cos2kx + cos2ky + m2 (1.6.63)

where m is a Néel field. The self-consistent relation between m and V is given by

V −1 = N−1
∑

|k|<π

E−1
k (1.6.64)

The strategy then is to find some scheme such that the choice of parameters Jef f

and m (or equivalently V ) reflects the effect of the Gutzwiller projection. In Hsu
(1990), Jef f = J and m is the optimal value from variational Monte Carlo while
the Gutzwiller projection still is accounted for in some approximate way. In Ho
et al. (2001) the values of Jef f and m are obtained from a self-consistent approach
first developped in Laughlin (1995). The effect of the particle repulsion V is then
accounted for in a Random Phase Approximation (RPA) fashion. The generalized
magnetic susceptibility is obtained as:

χ±(q, ω) = χ±
0 (q, ω)

1 − V χ±
0 (q, ω)

(1.6.65)
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whereχ±
0 is the transverse susceptibility calculated in themean-field solution. Impor-

tantly, in both approach the excitations are made out of projected mean-field particle-
hole pairs which form a bound state with a dispersion similar to the magnon one from
SWT. Additionally the calculation in Ho et al. (2001) evidences the emergence of a
continuumof high-energy excitationswhich, at q = (π, 0)mergeswith the otherwise
sharp magnon mode.

However the approximate treatement of the Gutzwiller projection in the two
approaches obviously is a source of uncertainties. In Hsu (1990), the complications
induced by the approximate Gutzwiller projection only allowed for the calculation of
the poles of the excitation spectrum—similar to a single-mode approximation—such
that the question of the possibility of a continuum could not be addressed. In Ho et al.
(2001), the RPA treatment of the Gutzwiller projection allows for a finite number of
double occupancies such that the spin sum rule S2 = S(S + 1) is not fullfilled. In
that case it is impossible to tell whether the calculated spectrum exhaust the spectral
weight.

1.6.6 The Staggered Flux + Néel Wavefunction

The coming numerical calculations will be based on the Staggered Flux plus Néel
(SF+N) mean-field Ansatz which we describe here. The staggered flux gauge is
convenient because in the mean-field Hamiltonian there are no pairing terms such as
c†iσ c†j σ̄ . The resulting quasiparticle operators diagonalizing it therefore do not contain
superposition of creation and annihilation operators such that the number of particles
is conserved and the wavefunction can simply be factorized such as

|ψ〉 =
∏

k,σ

γ
†
k,σ

|0〉 . (1.6.66)

The mean-field Hamiltonian is:

HSF+N = HSF + HN (1.6.67)

HSF = −1

2

∑

i even,σ

(

eiθ0c†iσ ci+xσ + e−iθ0c†iσ ci+ yσ + H.C.
)

− 1

2

∑

i odd,σ

(

e−iθ0c†iσ ci+xσ + eiθ0c†iσ ci+ yσ + H.C.
)

(1.6.68)

HN = −hN

∑

σ

σ

(
∑

i even

c†iσ ciσ −
∑

i odd

c†iσ ciσ

)

(1.6.69)
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where σ ∈ {−1, 1}. Using the Fourier transform of the creation and annihilation
operators we obtain a more compact form:

HSF+N =
∑

k∈MBZ,σ

−α
†
kσ

(

σhN �∗
k

�k −σhN

)

αkσ (1.6.70)

with

αkσ = 1√
2

(

ckσ + ck+ Qσ

ckσ − ck+ Qσ

)

(1.6.71)

and

�k = 1

2

(

eiθ0cos (kx ) + e−iθ0 cos
(

ky
))

. (1.6.72)

We thus look for a unitary transformation P−1
kσ = P H

kσ such that

�kσ = P−1
kσ

(

σhN �∗
k

�k −σhN

)

Pkσ (1.6.73)

is a diagonal matrix. Defining the transformation matrix as

Pkσ =
(

ukσ− ukσ+
vkσ− vkσ+

)

(1.6.74)

we achieve this with the following definitions:

ukσ− =
√

1

2

(

1 + σhN

ωk

)

(1.6.75)

vkσ− = �k

|�k|

√

1

2

(

1 − σhN

ωk

)

(1.6.76)

ukσ+ = −v∗
kσ− (1.6.77)

vkσ+ = ukσ− (1.6.78)

where ωk is the quasiparticle eigen-energy:

�kσ =
(−ωk 0

0 ωk

)

(1.6.79)

ωk =
√

|�k|2 + h2
N. (1.6.80)

We have thus diagonalized the SF+NHamiltonian Eq.1.6.67 using a canonical trans-
formation which defines two quasiparticle bands. The reason there are two bands
is because in Eq.1.6.67 the original lattice translation symmetry is broken. The
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resulting lattice has a doubled unit cell containing two sites thus the obtained two
bands with the corresponding quasi-particle operators. We note that the doubling of
the unit cell is uniquely due to the Néel mean field. While HSF Eq.1.6.68 seems to
break the translational symmetry (along with some 90◦ crystal rotation symmetry),
this transformation can in fact be written as an SU(2) transformation which is a
symmetry of the mean-field Hamiltonian in the physical Hilbert space. However the
same is not true for HN Eq.1.6.69. There an SU(2) transformation cannot account
for a translation by one unit cell resulting into the changing the sign of the hN mean-
field parameter. With respect to the original Hamiltonian creation and annihilation
operators ckσ , the canonical transform reads:

(

γkσ−
γkσ+

)

= 1√
2

(

ukσ− v∗
kσ−

u∗
kσ+ vkσ+

)(

ckσ + ck+ Qσ

ckσ − ck+ Qσ

)

(1.6.81)

where k is restricted to theMagnetic Brillouin Zone (MBZ) |k| ≤ π . Expressed with
the new quasi-particle operators the real space fermion operators are

ciσ = √
2
∑

k∈MBZ

ei kRi
[(

εRi ukσ− + ε̄Ri vkσ−
)

γkσ− + (

εRi ukσ+ + ε̄Ri vkσ+
)

γkσ+
]

(1.6.82)
where εRi and ε̄Ri tell whether site i is even or odd:

εRi = 1

2

(

1 + ei Q Ri
)

(1.6.83)

ε̄Ri = 1

2

(

1 − ei Q Ri
)

. (1.6.84)

We show in Fig. 1.11 the obtained energy bands. For hN = 0 the bands are gapless
with Dirac cones at k = (±π/2,±π/2). The effect of the Néel mean field hN is to
gap the two bands turning the Dirac cones into minima/maxima of the bands. We
note that the canonical transformation is ill-defined at k = (±π/2,±π/2) since the
phase �k/|�k| has no well-defined limit when k → (±π/2,±π/2). This will have
technical consequences when implementing the numerical calculation.

The ground state of the SF+N mean field Hamiltonian at half-filling and in the
Sz
tot = 0 sector corresponds into completely filling the bottom band. The mean-field

ground-state is thus:
|ψGS〉 =

∏

k∈MBZ

γ
†
k↑−γ

†
k↓− |0〉 . (1.6.85)

Looking at the definition of the quasi-particle operators Eq. 1.6.81, one immediately
sees that the mean-field ground state will contain many double occupancies and thus
cannot be as such an approximation of the Heisenberg model ground state. Only the
Gutzwiller-projected mean-field ground-state is significant:

|GS(θ0, hN)〉 = PD=0 |ψGS(θ0, hN)〉 (1.6.86)
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Fig. 1.11 Quasi-particle bands from the SF+N mean-field Hamiltonian

where we have explicitly put back the mean-fields definition dependence. How good
an approximation of theHeisenbergmodel ground state is it and forwhich parameters
θ0 and hN? To answer this we can try to calculate the variational energy of this state:

EGS(θ0, hN) = 〈GS|H |GS〉
〈GS|GS〉 = 〈ψGS| PD=0H PD=0 |ψGS〉

〈ψGS| PD=0 |ψGS〉 . (1.6.87)

Due to the complexity of the Gutzwiller projection, there is no simple way to evaluate
Eq.1.6.87. Analytically one can use further approximation such as the Gutzwiller
approximation (Gros 1989). In this thesis we choose to treat exactly the Gutzwiller
projection using the variational Monte Carlo numerical technique presented in the
following section.

1.7 Variational Monte Carlo

In a broad context Variational Monte Carlo (VMC) is a numerical technique to
calculate the zero-temperature quantum average of some quantities using amotivated
approximation of the ground state called the trial wavefunction |ψtrial〉. If we are able
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to calculate the overlap of the trial wavefunction with some complete basis of the
Hilbert space {|α〉} and also are able in this basis to calculate the matrix elements of
the quantity under interest 〈α| O |β〉, then the quantum average is:

〈O〉trial =
∑

αβ

〈ψtrial|α〉 〈α| O |β〉 〈β|ψtrial〉
〈ψtrial|ψtrial〉 . (1.7.1)

As the sum over the states {|α〉} surely is much too large to be evaluated by some
regular sampling, we turn towards a Monte Carlo approach. For a quantity F

F =
∑

α

ρ(α) f (α) (1.7.2)

where ρ(α) is a normalized probability distribution, one can design a Markov
chain Monte Carlo using the Metropolis-Hastings algorithm (Metropolis et al. 1953;
Hastings 1970) to evaluate the sum. In the case of Eq.1.7.1, it is simple to turn it into
a form suitable for a Metropolis Monte Carlo evaluation (Gros 1989; Foulkes et al.
2001):

〈O〉 =
∑

α

|〈α|ψtrial〉|2
〈ψtrial|ψtrial〉
︸ ︷︷ ︸

ρ(α)

⎛

⎝
∑

β

〈α| O |β〉 〈β|ψtrial〉
〈α|ψtrial〉

⎞

⎠

︸ ︷︷ ︸

f (α)

(1.7.3)

where

ρ(α) = |〈α|ψtrial〉|2
〈ψtrial|ψtrial〉 (1.7.4)

is a normalized probability distribution and

f (α) =
∑

β

〈α| O |β〉 〈β|ψtrial〉
〈α|ψtrial〉 (1.7.5)

is the quantity of interest for the point or state α. We give a short description of the
Metropolis Monte Carlo in the Appendix A.1.

The quantity thus sampled will be for instance the variational energy 〈H 〉trial of
a state |ψtrial〉 which may depend on some undetermined set of parameters. An asso-
ciated problem often is to find the proper set of parameters such that the variational
energy is minimized, thus providing an approximate of the system ground state. An
important aspect of the VMC technique is that the sampled quantities entirely rely
on the trial wavefunction. Thus if one seeks exact numerical estimates of physical
quantities for a given problem, the VMC technique might not be the most suitable
approach as it introduces an explicit bias by choosing a more or less well motivated
trial wavefunction. But this disadvantage can be turned around in the case we actu-
ally are focused on the trial wavefunction per se. There are many cases where the
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choice of a trial wavefunction contains deep physical motivations. This choice then
is a physical Ansatz and the VMC technique allows to draw its consequences in term
of physical, and potentially measurable, quantities. In this perspective, the VMC
technique is not aimed at providing a numerical way of simulating the physics of
some problem. Rather it may be understood as a semi-analytical tool which allows
to draw the physical consequences of some theoretical hypotheses as encompassed
in the trial wavefunction. The focus therefore is more about establishing an effective
theory for a system than about simulating its physical properties.

1.7.1 Average Quantities for Projected Wavefunctions

In the context of projected wavefunctions, the trial wavefunction is simply the pro-
jected mean-field ground state |ψtrial〉 = PD=0 |ψGS〉, or any other filling of the
mean-field bands PD=0 |ψ〉. The idea is to deal with the projection by simply con-
sidering the Hilbert space of singly occupied sites when introducing the projector
∑

α |α〉 〈α|. More precisely the |α〉 are states where spin- 12 particles are arranged on
the system sites without double occupancies:

|α〉 = |(R1, σ1), (R2, σ2), . . . , (RN , σN )〉 Ri �= R j ∀i, j (1.7.6)

where σi ∈ {↑,↓} is the spin index. The Gutzwiller projection then takes the simple
form:

PD=0 =
∑

α

|α〉 〈α| . (1.7.7)

On the other hand the mean field wavefunction can be written as

|ψ〉 = |(k1, σ1, b1), (k2, σ1, b2), . . . , (kN , σN , bN )〉 (1.7.8)

where bi ∈ {+,−} is the band index. In using the spin σi in these notations we
assume that Sz

tot is a good quantum number in the mean-field theory. From Eq.1.7.3
we see that the random walk probability distribution is

ρ(α) = |〈α|ψ〉|2
〈ψ |ψ〉 . (1.7.9)

A nice feature of the Metropolis random walk is that the normalization must not
be known as only ratios of the probability distribution enter the transition matrix
Eq.A.1.2. The averaged quantities calculated that way also are implicitly normalized
as well. The key-quantity is then the amplitude 〈α|ψ〉. The states Eqs. 1.7.6 and 1.7.8
are written in a particles state basis, not in Fock space. The random walk in the |α〉
states will consist into moving these particles respecting the no-double occupancies
condition. But because the particles are fermions, the states written in the particles



38 1 Variational Study of the Square Lattice Antiferromagnet …

state basis must be anti-symmetrized. As a result the amplitudes 〈α|ψ〉 must be
calculated as a Slater determinant:

〈α|ψ〉 = Deti j
〈

Ri , σi

∣
∣k j , σ j , b j

〉

(1.7.10)

where
〈

Ri , σi

∣
∣k j , σ j , b j

〉

are the single-particle amplitudes. Because Sz
tot is a good

quantum number, the determinant can be further split in two since it is block-diagonal
as
〈

Ri ,↑
∣
∣k j ,↓, b j

〉 = 0:

〈α|ψ〉 = (

Deti↑ j↑
〈

Ri↑ ,↑
∣
∣k j↑ ,↑, b j↑

〉) (

Deti↓ j↓
〈

Ri↓ ,↓
∣
∣k j↓ ,↓, b j↓

〉)

. (1.7.11)

The numerical calculation of a N × N determinant is of complexity O(N 3).
We explain in Appendix A.2 how one can improve the determinant calculation
complexity.

1.7.1.1 The Projected SF+N Wavefunction

For the specific case of the staggered flux mean-field wavefunction, the unprojected
ground state trial wavefunction simply is |ψGS〉 and depends upon two parameters
(θ0, hN). An approximate of the ground state may then be obtained by optimizing
the variational energy of the trial wavefunction with respect to those parameters.
We come back at the issue that the magnetic Brillouin zone does contain special
points—the nodes—q = (±π/2,±π/2) where the quasi-particles are ill-defined
(see Eqs. 1.6.75–1.6.78). If we take a finite square system of L × L sites with
periodic boundary conditions, then the reciprocal wavevector will be of the form
k = (

nx
2π
L , ny

2π
L

)

and if L is even then the wavevectors corresponding to the nodes
will be included leading to numerical difficulties. A solution is to choose a finite sys-
tem slightly tilted which results in tilted wavevectors avoiding the nodal points (Gros
1989). This has the disadvantage to break some of the lattice symmetries in partic-
ular the fourfold rotational symmetry of the square lattice. The approach we chose
is to consider a finite square system of L × L sites but with anti-periodic boundary
conditions. For the single-particle Bloch waves this means:

ψkn(r) = ei krukn(r) (1.7.12)

ψkn(r + L êα) = −ψkn(r) (1.7.13)

which leads to the definition of the wavevector:

kα =
(

nα + 1

2

)
2π

L
. (1.7.14)

The anti-periodicity thus leads into shifting the wavevectors by π
L which will make

them avoid the nodes. We show a real space/reciprocal space finite system pair in
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Fig. 1.12 Real space/reciprocal space pairwhere doubling of the unit cell is assumed. The boundary
conditions are anti-periodic in both the êx and êy directions. Red points indicate the position of the
SF+N nodes (color online)

Fig. 1.12 where antiperiodic boundary conditions are taken in both the êx and êy

directions.

1.7.2 Monte Carlo Random Walk

We specifically describe here the Metropolis Monte Carlo random walk for half-
filled Sz

tot = 0 mean-field wavefunctions. The |α〉 states have no empty sites and
a simple choice for the proposal function generating the random walk is to simply
swap neighbouring spins if they are anti-parallel and do nothing if they are parallel.
The conditional probability from the proposal function has therefore the property:

P(α|α′) = P(α′|α) (1.7.15)

which simplifies the definition of the transition matrix Eq. A.1.2. A slight disadvan-
tage is that it artificially increases the acceptance rate as many proposed states are
actually identical to the previous one. Another proposal matrix would be to only gen-
erate states by swapping nearest neighbour anti-parallel spins, then the conditional
probability would be:

P(α′|α) = 1

N↑↓
α

(1.7.16)

where N↑↓
α is the number of nearest-neighbour anti-parallel spins in the state |α〉.

Defined that way the proposal matrix requires to keep track of N↑↓
α . In our imple-

mentation we do not tune the proposal function in order to optimize the acceptance
ratio thus use the first proposal function.
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What does the swap of to anti-parallel spins mean for the amplitude 〈α|ψ〉 →
〈

α′∣∣ψ
〉

. Labeling the moving spin-↑ particle l↑ and the moving spin-↓ particle l↓,
we see that the swap only means a change if the l↑’th line in the

〈

Ri↑ ,↑
∣
∣k j↑ ,↑, b j↑

〉

spin-↑ Slater matrix and the same thing for the spin-↓ Slater matrix. We then use
a determinant update formula to efficiently calculate the new amplitude from the
old one exploiting this fact. This procedure is explained in details in Appendix A.2.
Here we will only mention that the calculation of the new determinant will only be
of O(N ) complexity if N is the size of the matrix instead of the cubic complexity
for calculating the determinant from scratch. Due to additional book-keepings of the
determinant update formula, the acceptance of a proposed state also has a numerical
cost and will be of order O(N 2).

The random walk can thus be efficiently generated and samples of the measured
quantity will be collected every L2 steps in order to make them independent. The
measurementwill also have a significant computational cost. Considering the specific
case of the Heisenberg model:

H =
∑

〈i, j〉
Sz

i Sz
j + 1

2

(

S+
i S−

j + S−
i S+

j

)

(1.7.17)

we see that the off-diagonal part will generate new states |β〉 �= |α〉 for which
a new amplitude 〈β|ψ〉 must be calculated according to Eq.1.7.5. The associated
determinant update with the sum over nearest-neighbour will make the measurement
cost of quadratic complexity O(N 2). Finally important quantities like the transverse
spin-spin correlation function will turn out to be pretty expensive:

〈

S−
q S+

q

〉 =
∑

i j

eiq(R j −Ri )
〈

S−
i S+

j

〉

(1.7.18)

as they must then be of cubic complexity due to the double sum.

1.7.3 Jastrow Factors

Wemention here another degree of freedom into defining a variational wavefunction,
the so-called Jastrow factor (Jastrow 1955). The idea is to allow for more correlation
into the trial wavefunction Ansatz than the one directly induced by the Gutzwiller
projection. In practice the Jastrow factor is an operator diagonal into the sampling
subspace, that is the real space spin configuration in our case. A popular generic
form (Edegger et al. 2007) is for instance the spin-spin correlator:

Js = exp

⎡

⎣
∑

i j

V
(

ri j
)

Sz
i Sz

j

⎤

⎦ (1.7.19)
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where the different components of V (r) potential are independent variational para-
meters. In the context of the square lattice Heisenberg antiferromagnet, an interesting
simple Jastrow factor would be for instance using a staggered potential

V (r) = λei Q·r (1.7.20)

where as usual Q = (π, π) and λ is a variational parameter. The staggered potential
will cause antiferromagnetic order in the wavefunction and will artificially break the
spin rotation symmetry as is the case in the SF+N trial wavefunction. In the process
of this work, we also looked at the even simpler antiferromagnetic Jastrow factor:

JAFM = exp

[

λ
∑

i

ei Q Ri Sz
i

]

(1.7.21)

which, in contrast to Eq.1.7.19 with a potential of the form of Eq.1.7.20 will favor
only one of the two sublattice magnetization. That is, if λ > 0 even sites ei Q Ri = 1
will have negative magnetization while odd ei Q Ri = −1 will have positive magneti-
zation.Wewill brieflymention later in Sect. 1.9.1 and in Sect. 1.9.2 how such Jastrow
antiferromagnetically ordered wavefunctions compare to the SF+N mean-field one.

1.7.4 Other Numerical Methods

We review here only two other numerical methods mainly because our results will
often be compared to those. In strong contrast these two methods provide a way
to give an estimate of various quantities corresponding to a physical model while
our approach does find those as corresponding to an Ansatz for the ground state
wavefunction.Agreement between these approaches strengthen the validity of a given
ground state Ansatz, but in the following discussion it is ultimately agreement with
experimental results that will be the most important. Although we did not develop
yet our formalism for calculating dynamical quantities we will briefly mention how
adequate these other numerical techniques are in that respect.

1.7.4.1 Perturbative Series Expansion

The series expansion technique takes some known limit of the model Hamiltonian
and uses it as the basis for a perturbation expansion. The most relevant one for the
square lattice Heisenberg model is the Ising limit:

H =
∑

〈i, j〉
Sz

i Sz
j + �

(

Sx
i Sx

j + Sy
i Sy

j

)

. (1.7.22)

In the limit where � = 0 the model has a classical Néel ground state. One might
then attempt to treat the transverse part of the Hamiltonian in a perturbative way for
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finite�. A so-called cluster expansion allows a systematic derivation of the expansion
which can be carried out computationally (Gelfand et al. 1990). Of course, being a
perturbation expansion, this technique cannot predict quantum phase transition as a
function of� as it relies on the assumption one can adiabatically relate the perturbed
ground state with the unperturbed one although divergences in the correction might
indicate the proximity to a phase transition (Gelfand et al. 1990). This is probably not
an issue in the case of the Heisenberg model on the square lattice as its ground-state
does have long-range Néel order and as such should be adiabatically connected to
the classical Néel order state.

The systemexcitationsmaybe also calculated either using the singlemode approx-
imation (Singh 1993) or in a perturbative way (Singh and Gelfand 1995). However
the excitations obtained perturbatively also rely on the assumption that the perturbed
excited states can be adiabatically connected to those of the unperturbed system. In
the case of the Ising limit, the unperturbed excitations of the Néel classical ground
state are local spin-flips with a constant energy over the whole magnetic Brillouin
zone.Calculating the excitation spectrum from there naturally leads to spin-waves but
it has to be noted that it does carry an explicit bias from the adiabaticity assumption.

1.7.4.2 Stochastic Series Expansion Quantum Monte Carlo

The stochastic series expansion (SSE) quantum Monte Carlo method is a finite tem-
perature method based on an expansion of the partition function. Finite temperature
quantum Monte Carlo starts from the thermal average formula:

〈A〉 = 1

Z
Tr
(

Ae−β H
)

(1.7.23)

Z = Tr
(

e−β H
)

(1.7.24)

and expand it in order to turn it into a form suitable forMonte Carlo sampling such as
Eq.1.7.2. Probably themost famous expansion scheme is the imaginary time-slicing:

〈A〉 = 1

Z

∑

α

〈α| e−β H |α〉 (1.7.25)

= 1

Z

∑

α0,...,αL−1

〈α0| e−�τ H |α1〉 〈α1| . . . |αL−1〉 〈αL−1| e−�τ H A |α0〉 (1.7.26)

with �τ = β/L which, when �τ → 0 leads to the path integral formulation of
quantum statistical mechanics. The expansion used in SSE Monte Carlo is a simple
Taylor expansion:

∑

α0

〈α0| e−β H A |α0〉 =
∞
∑

n=0

(−β)n

n!
∑

{α}n+1

〈α0| H |αn〉 〈αn | . . . |α2〉 〈α2| H |α1〉 〈α1| A |α0〉

(1.7.27)
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and uses the fact quantummodels on lattices are expressed in terms of bond operators:

H =
∑

pb

Hp,b (1.7.28)

where b index the bonds and p some “parts” of the Hamiltonian. One can then
formulate the above expansion in terms of a sum over α0 and over bonds operators
products Sn = ∏n

i=1 Hpi ,bi and use importance sampling to carry it out (Sandvik
1999). An important prerequisite is that it must be possible to make the matrix
elements of the Sn operators positive definite which is generally the case on non-
frustrated lattices.

In principle this method is exact modulo the numerical uncertainties thus can pro-
vide many of the physical properties of lattice quantum models. In particular for the
Heisenberg model it provides important quantities such as the ground state energy
and the staggered magnetization. However when turning towards dynamical quanti-
ties, important difficulties arise. For instance the dynamic spin structure factor is the
space and time Fourier transform of the dynamical spin-spin correlation function:

Sαβ(r, t) = 〈Sα
Ri +r(t)Sβ

Ri
(0)〉 (1.7.29)

where the time-dependant operator is

Sα
R(t) = eit H Sα

Re−i t H . (1.7.30)

Introducing this quantity in Eq.1.7.23 might be done using some expansion scheme
but then the complex exponent i t H will break the positive definite condition. The
work-around is to consider the dynamical quantity in imaginary time τ = i t :

Gαβ(q, τ ) =
∑

i j

eiq(R j −Ri )〈Sα
Ri

(τ )Sβ

R j
(0)〉. (1.7.31)

The imaginary-time spin-spin correlation function can now be sample through a
quantum Monte Carlo method and the dynamic spin structure factor is linked to it
by a Laplace transform:

Gαβ(q, τ ) = 1

π

∫ ∞

−∞
dωSαβ(q, ω)e−τω. (1.7.32)

In principle one should then invert this relation, a problem which is known as the
analytical continuation. But in practice this inversion is rendered highly unstable by
the numerical noise contained within the sampled quantity G(q, τ ) and schemes to
regularize the transform must be designed (Jarrell and Gubernatis 1996) which will
be costly in terms of frequency resolution (Sandvik and Singh 2001). Fine details
such as the square lattice Heisenberg model zone boundary anomaly will prove
very difficult to reproduce with an acceptable confidence. Another approach is to
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assume some functional form of S(q, ω) allowing to invert Eq.1.7.32 (Syljuåsen
and Rønnow 2000; Sandvik and Singh 2001). Although the results obtained this way
are numerically stable, they are then tied to the assumption chosen for the lineshape
and are therefore explicitly biased.

1.8 Dynamical Spin Structure Factor in the Variational
Monte Carlo Method

The dynamic spin structure factor is a fundamental quantity in the context of quantum
magnetism both theoretically and experimentally. Experimentally because it turns
out to be very accessible through the inelastic neutron scattering technique. Theoret-
ically because it is linked to probably the simplest quantity describing the dynamical
properties of a spin system, the spin-spin correlation function:

Sα(r, t) = 〈Sα
Ri +r(t)Sα

Ri
(0)〉. (1.8.1)

It asks the simple question of the time and space correlation of two successive spin
measurement. Since the system under study are usually space and time-translation
invariant, it is natural to study the time and space Fourier transform of this quantity
which defines the dynamic spin structure factor:

Sα(q, ω) =
∫

dt
∑

i,r

eiqr+iωt 〈Sα
Ri +r(t)Sα

Ri
(0)〉. (1.8.2)

An elementary calculation then leads to the zero-temperature expression:

Sα(q, ω) =
∑

λ

∣
∣〈λ| Sα

q |GS〉∣∣2 δ (ω − Eλ + EGS) (1.8.3)

with λ the system eigenstates. This quantity thus has a form quite different from the
quantum averages we based the VMC technique on. We will see below that it is still
suitable for VMC as evidenced in Li and Yang (2010).

1.8.1 Excitation Subspace

The first thing to do is to define what the system eigenstates |λ〉 are. In that respect
it is instructive to look at the state:

|q,+〉 = S+
q PD=0 |ψGS〉 (1.8.4)
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and write it in the basis of the mean-field eigenstates. Written in fermionic operators,
S+

q is:

S+
q =

∑

k

c†k↑ck−q↓ (1.8.5)

and can be expressed in the mean-field quasiparticle basis using the canonical trans-
form Eq.1.6.81. This gives:

|q,+〉 = PD=0

∑

k

φ
q+
k γ

†
k↑+γk−q↓− |ψGS〉 (1.8.6)

where we have used the fact that [S+
q , PD=0] = 0 and where k − q means folding

back in the MBZ. The coefficients φ
q+
k are:

φ
q+
k = u∗

k↑+uk−q↓− + v∗
k↑+vk−q↓−. (1.8.7)

The excited state |q,+〉 can thus be written as a sum of the particle-hole excitations
|k,↑↓, q〉 (Fig. 1.13):

|k,↑↓, q〉 = PD=0γ
†
k↑+γk−q↓− |ψGS〉 (1.8.8)

and suggests that the transverse �S = 1 eigenstates |λ〉 = |n, q,+〉 might as well
be expressed the same way:

|n, q,+〉 =
∑

k

φ
q+
kn |k,↑↓, q〉 (1.8.9)

Fig. 1.13 Representation of
the transverse particle-hole
pair excitation. A spin-↓ is
taken from the filled spin-↓
band, flipped and put in the
spin-↑ empty band. The
integrated density of states
D(ω) = ∑

q∈MBZ D(q, ω) is
calculated from the (gapped)
SF+N state



46 1 Variational Study of the Square Lattice Antiferromagnet …

where the φ
q+
kn are some coefficients that remains to be determined. We can in the

same way define longitudinal �S = 0 particle-hole excitations:

|k, σσ, q〉 = PD=0γ
†
kσ+γk−qσ− |ψGS〉 (1.8.10)

and find that the state |q, 0〉 = Sz
q PD=0 |ψGS〉 can be written as

|q, 0〉 = 1

2

∑

k

∑

σ

φ
q0
kσ

|k, σσ, q〉 + δq Q

∑

k

hN

ωk
PD=0 |ψGS〉 (1.8.11)

with
φ

q0
kσ = σ

(

u∗
kσ+uk−qσ− + v∗

kσ+vk−qσ−
)

. (1.8.12)

which also suggests we can look for longitudinal eigenstates |n, q, 0〉 of the form:

|n, q, 0〉 =
∑

kσ

φ
q0
kσn |k, σσ, q〉. (1.8.13)

In the end considering the Sz
tot sector and the momentum q, we see that we can

construct subspaces of particle-hole excitations:

�q,�S=+1 = {|k,↑↓, q〉|k ∈ MBZ} (1.8.14)

�q,�S=0 = {|k, σσ, q〉|k ∈ MBZ, σ ∈ {↑,↓}}. (1.8.15)

While the unprojected particle-hole excitations are true eigenstates of the mean-field
Hamiltonian, the projected ones are probably very far from being eigenstates from
the Heisenberg model itself. Therefore the individual states in themselves may not
really have physical relevance but we will show later on that the subspace they span
in fact does.

In principle we could also construct higher order excitations by considering mul-
tiple particle-hole pairs. We choose here to restrict ourselves to the one particle-hole
pair under the assumption that the number of particle-hole pair is approximately a
good quantum number of the Heisenberg model, as it is the case for its SF+N mean-
field version. But this claim might be challenged, although carrying out calculations
containing these higher order terms becomes numerically intractable.

1.8.2 The Heisenberg Hamiltonian on the Excitation
Subspace

With the excitation subspaces defined, we can now define the variational eigenstates
|λ〉 entering the definition of the dynamic spin structure factor. For the |n, q,�S〉 to
be eigenstates we require that:
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〈n, q,�S|H |n, q,�S〉 = E k�S
n 〈n, q,�S|n, q,�S〉 (1.8.16)

〈

n′, q,�S
∣
∣n, q,�S

〉 = δnn′ (1.8.17)

where H is the Heisenberg model Eq.1.3.1. For the transverse excitations, this
defines the following generalized eigenvalue problem:

∑

kk′
φ

q+∗
k′n H q+

k′k φ
q+
kn = Eq+

n

∑

kk′
φ

q+∗
k′n Oq+

k′kφ
q+
kn (1.8.18)

where

H q+
kk′ = 〈k,↑↓, q|H ∣

∣k′,↑↓, q
〉

(1.8.19)

Oq+
kk′ = 〈

k,↑↓, q
∣
∣k′,↑↓, q

〉

(1.8.20)

and in a similar way for the longitudinal excitations:

∑

kk′σσ ′
φ

q0∗
k′σ ′n H q0

k′kσ ′σφ
q0
kσn = Eq0

n

∑

kk′σσ ′
φ

q0∗
k′σ ′n Oq0

k′kσ ′σφ
q0
kσn (1.8.21)

where

H q0
kk′σσ ′ = 〈k, σσ, q|H ∣

∣k′, σ ′σ ′, q
〉

(1.8.22)

Oq0
kk′σσ ′ = 〈

k, σσ ′, q
∣
∣k′, σ ′σ ′, q

〉

. (1.8.23)

Finding the particle-hole excitations eigenstates therefore amount into diagonalizing
the Heisenberg model projected into the non-orthonormal bases �q,�S . Once the
matrices Oq�S and H q�S are known, this is a simple numerical problem that can
be solved with standard diagonalization routines. Indeed the size of these matrices
is small being simply the number of particle-hole pair one can form. For a L × L
system, there are only L2/2 particle-hole excitations in the transverse channel and
L2 in the longitudinal one. The matrices size thus grows linearly with the number of
sites considered. Li and Yang showed how these matrices can be evaluated through
the VMC technique (Li and Yang 2010) as we will show below.

1.8.3 Modified Monte Carlo Random Walk

In order to perform the Gutzwiller projection, the idea still is to expand the quantities
H q�S and Oq�S into the basis of spin- 12 particles in real space positions with no
double occupancies. This can be readily done for instance in the transverse channel:

H q+
kk′ =

∑

αβ

〈k,↑↓, q|α〉 〈α|H |β〉 〈β∣∣k′,↑↓, q
〉

. (1.8.24)
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which can simply be put back in a form suitable for Metropolis Monte Carlo using
the same approach than before:

H q+
kk′

〈k,↑↓, q|k,↑↓, q〉 =
∑

α

|〈k,↑↓, q|α〉|2
〈k,↑↓, q|k,↑↓, q〉
︸ ︷︷ ︸

ρ(α)

∑

β

〈α|H |β〉
〈

β
∣
∣k′,↑↓, q

〉

〈α|k,↑↓, q〉
︸ ︷︷ ︸

f (α)

.

(1.8.25)
This formulation allows to calculate H q+

kk′ but normalized to the |k,↑↓, q〉wavefunc-
tion. If one aims at doing exact diagonalization of the H q+ then we would need all
matrix elements normalized to the same arbitrarily chosen wavefunction |k0,↑↓, q〉
leading to

H q+
kk′

〈k0, ↑↓, q|k0, ↑↓, q〉 =
∑

α

|〈α|k0, ↑↓, q〉|2
〈k0, ↑↓ q|k0, ↑↓, q〉
︸ ︷︷ ︸

ρ(α)

∑

β

〈k, ↑↓, q|α〉
〈k0, ↑↓, q|α〉 〈α|H |β〉

〈

β
∣
∣k′, ↑↓, q

〉

〈α|k0, ↑↓, q〉
︸ ︷︷ ︸

f (α)

.

(1.8.26)
This formulation is however rather unstable. Suppose 〈k0,↑↓, q|α〉 → 0 and

〈k,↑↓, q|α〉 finite. Then we have the problem that ρ(α) → 0 and f (α) → ∞
which will render a good theMonte Carlo sampling impossible. The arbitrary choice
of a wavevector k0 obviously is the problem. To solve this Li and Yang (2010) devel-
oped a reweighing technique, which simply redefines the Monte Carlo random walk
weight to avoid such problems: For any weight definition W (α) one can in principle
define the weighted sum:

H q+
kk′

∑

α W (α)
=
∑

α

W (α)
∑

α W (α)
︸ ︷︷ ︸

ρ(α)

〈k,↑↓, q|α〉 〈α|H |β〉 〈β∣∣k′,↑↓, q
〉

W (α)
︸ ︷︷ ︸

f (α)

(1.8.27)

which will be good-behaved if 〈k,↑↓, q|α〉 〈β∣∣k′,↑↓, q
〉

/W (α) is a slowly varying
function of α and β. Choosing the following weight we see this will indeed be the
case:

W q+(α) =
∑

k∈MBZ

|〈α|k,↑↓, q〉|2 . (1.8.28)

Defining the sum W q+ = ∑

α W q+(α)we have the following weighted sum defining
the Monte Carlo random walk in the transverse channel:

H q+
kk′

W q+ =
∑

α

W q+(α)

W q+
∑

β

〈k,↑↓, q|α〉 〈α|H |β〉 〈β∣∣k′,↑↓, q
〉

W q+(α)
(1.8.29)

Oq+
kk′

W q+ =
∑

α

W q+(α)

W q+
〈k,↑↓, q|α〉 〈α∣∣k′,↑↓, q

〉

W q+(α)
. (1.8.30)
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In the longitudinal channel the formulas are almost the samewith aweight defined as:

W q0(α) =
∑

k∈MBZ,σ

|〈α|k, σσ, q〉|2 (1.8.31)

W q0 =
∑

α

W q0(α). (1.8.32)

To finish the discussion about the modifiedMonte Carlo randomwalk, we come back
to the problem of efficiently calculating the overlaps 〈α|k,↑↓, q〉. To do so we must
calculate the determinant of the Slater matrices:

M 〈α|k,↑↓,q〉
i↑ j↑ = 〈

Ri↑ ,↑
∣
∣k j↑ ,↑, b j↑

〉

(1.8.33)

M 〈α|k,↑↓,q〉
i↓ j↓ = 〈

Ri↓ ,↓
∣
∣k j↓ ,↓, b j↓

〉

(1.8.34)

for which we know that an exchange of an up-spin and a down-spin |α〉 → |β〉
corresponds to a single row change in both M 〈α|k,↑↓,q〉

i↑ j↑ and M 〈α|k,↑↓,q〉
i↓ j↓ for which the

determinant can be efficiently updated through the formulas derived in Appendix
A.2. Suppose now that we already know the amplitude 〈α|k,↑↓, q〉. Is there a sim-
ple way to calculate

〈

β
∣
∣k′,↑↓, q

〉

? In fact the transition |k,↑↓, q〉 → ∣
∣k′,↑↓, q

〉

simply corresponds to moving the excited spin-↑ from wavevector k to k′ and the
spin-↓ hole from k − q to k′ − q. This corresponds into changing a column in both
the up and down Slater matrices. We therefore need an efficient way to calculate
the determinant update upon simultaneous row and column change. Looking into
the longitudinal channel we see we actually require more. Indeed the transition
|k, σσ, q〉 → ∣

∣k′, σσ, q
〉

corresponds to two simultaneous column changes in the
σ -Slater matrix. To efficiently treat all those cases in a manageable way, we derive in
Appendix A.2 a determinant update formula for an arbitrary number of simultaneous
row and column changes.We also expose in greater details themodified randomwalk
in Appendix A.3.

1.8.4 Evaluation of the Dynamical Spin Structure Factor

With all the above developments, we are now in a position to evaluate the dynamic
spin structure factor through a VMC technique. In Eq.1.8.3, in the transverse case
we have:

|λ〉 = |n, q,+〉 (1.8.35)

S+
q |GS〉 = |q,+〉 (1.8.36)
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and in the longitudinal channel:

|λ〉 = |n, q, 0〉 (1.8.37)

Sz
q |GS〉 = |q, 0〉 (1.8.38)

such that the dynamic structure factors are:

S±(q, ω) =
∑

n

|〈n, q,+|q,+〉|2 δ
(

ω − Eq+
n + EGS

)

(1.8.39)

Szz(q, ω) =
∑

n

|〈n, q, 0|q, 0〉|2 δ
(

ω − Eq0
n + EGS

)

. (1.8.40)

Expanding the |n, q,�S〉 and |q,�S〉 states into the particle-hole bases �q�S we
obtain:

S±(q, ω)

W q+ =
∑

n

∣
∣
∣
∣
∣

∑

kk′
φ

q+∗
kn

Oq+
kk′

W q+ φ
q+
k′

∣
∣
∣
∣
∣

2

δ
(

ω − Eq+
n + EGS

)

(1.8.41)

Szz(q, ω)

W q0
=
∑

n

∣
∣
∣
∣
∣

∑

kk′σσ ′
φ

q0∗
kσn

Oq0
kk′σσ ′

W q0
φ

q0
k′σ ′

∣
∣
∣
∣
∣

2

δ
(

ω − Eq0
n + EGS

)

(1.8.42)

where we have explicitly written down the normalization from the weights W q�S

as the matrices Oq�S obtained from the variational Monte Carlo will necessarily be
normalized to it. We thus see that the sampling of the (H q�S, Oq�S) is all that is
needed to obtain the dynamic structure factor. A slight issue is that the normalization
W q�S is q-dependent. In principle this renders a direct comparison of the spectral
weight across different q momenta impossible. We will see in next section how the
so-called sum rules will allow to solve this issue.

1.8.5 Sum Rules

By integrating the dynamic structure factor over energy, it is simple to see that one
recovers the corresponding instantaneous correlation functions:

∫

dωS±(q, ω) = 〈

S−
q S+

q

〉

(1.8.43)
∫

dωSzz(q, ω) = 〈

Sz
−q Sz

q

〉

. (1.8.44)

In our formalism, using the property:

1

W q+
∑

nk

φ
q+∗
nk1

Oq+
k2kφ

q+
nk = δk1k2 (1.8.45)
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we consistently get

∫

dω
S±(q, ω)

W q+ =
∑

n

∣
∣
∣
∣
∣
φ

q+∗
nk

Oq+
kk′

W q+ φ
q+
nk′

∣
∣
∣
∣
∣

2

(1.8.46)

= 1

W q+
∑

kk′
φ

q+∗
k Oq+

kk′ φ
q+
k′ (1.8.47)

= 1

W q+ 〈ψGS| PD=0S−
q S+

q PD=0 |ψGS〉 (1.8.48)

= 〈

S−
q S+

q

〉

�q+
. (1.8.49)

We then see that using the sum rule will solve the issue of the q-dependent nor-
malization of the dynamic structure factor. We can thus evaluate the instantaneous
transverse spin-spin correlation function in two ways, either using the groundstate
wavefunction Eq.1.8.50 or the particle-hole excitation subspace Eq.1.8.51.

〈

S−
q S+

q

〉

ψGS
= 〈ψGS| PD=0S−

q S+
q PD=0 |ψGS〉

〈ψGS| PD=0 |ψGS〉 (1.8.50)

〈

S−
q S+

q

〉

�q+
= 〈ψGS| PD=0S−

q S+
q PD=0 |ψGS〉

W q+ . (1.8.51)

We can carrying out both numerical evaluation,we can thus obtain the proportionality
constant 〈

S+
q S−

q

〉

�q+
〈

S+
q S−

q
〉

ψGS

= 〈ψGS| PD=0 |ψGS〉
W q+ . (1.8.52)

which can then be used to renormalize the dynamic structure factor such that it
becomes normalized to the groundstate wavefunction for every q. This reasoning can
be carried out exactly the same way for the longitudinal channel. In the following,
every numerical evaluation of the dynamic structure factor is normalized such that:

∫

dω
∑

q

〈

Szz(q, ω) + 1

2
S±(q, ω)

〉

= N S(S + 1). (1.8.53)

1.9 Numerical Results

The variational Monte Carlo algorithm modified for measuring dynamical quanti-
ties has been implemented in the C++ programming language. The most compu-
tationally demanding part is the calculation of the determinant updates. The many
matrix-matrix, matrix-vector and scalar products implied by the determinant update
formulas exposed in Appendix A.2 are calculated using the Basic Linear Algebra
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Subroutines (BLAS) interface to highly optimized platform-dependent implemen-
tations. The Monte Carlo algorithm being just about collecting statistics, it is very
easy to parallelize simply by running many simultaneous random walks. The paral-
lelization has been implemented using the standardMessage Passing Interface (MPI)
making the program suitable for massively parallel supercomputers. So far calcu-
lations have been performed on the EPFL Institute of Theoretical Physics cluster
“itplc1”, on the Swiss National Supercomputing Center (CSCS) Monte Rosa Cray
XE6 cluster and on our home-made “Quantum Wolf” cluster made out of consumer
parts (Appendix C). Single calculations have so far used as much as 3200 computa-
tional cores simultaneously on the CSCSMonte Rosa cluster and the total CPU-time
spent in the context of this project amounts for more than 5 × 106 CPU-hours. We
discuss theMonteCarlo thermalization process and the calculationCPU-time scaling
in the Appendices A.4 and A.5.

In the numerical results shown below we will first establish the properties of the
trial wavefunctions as a function of its parameters and then move on into the analysis
of the dynamic quantities. The discussion comparing our results to other numerical
or analytical techniques and to experiments will be carried out in parallel with the
results presentation.

1.9.1 Ground State Average Quantities

The ground state properties of the trial wavefunction are probably the easiest to
obtain through the variational Monte Carlo method and have been calculated before.
First of those is the ground state energy calculated as:

EGS(θ0, hN) = 〈ψGS(θ0, hN)| PD=0H PD=0 |ψGS(θ0, hN)〉
〈ψGS(θ0, hN)| PD=0 |ψGS(θ0, hN)〉 (1.9.1)

We show in Fig. 1.14 a colormap of this variational energy as a function of θ0
and hN. Since 4θ0 describes the phase acquired by a particle circulating around a
square plaquette, The SF+N variational energy is periodic in θ0 → θ0 + π

2 . At zero
Néel field, moving along the θ0 axis, the energy has two minima at θ0 = 0.075π and
θ0 = π

2 − 0.075π with a reduction of 18% compared to the θ0 = 0 and hN = 0
case. On the other hand considering no flux and moving along the Néel mean field
axis, we see a broad minima about hN = 0.06 with a reduction of of the energy by
19%. We took (θ0 = 0.1π, hN = 0.055) with EGS = −0.664J as the optimal flux
and Neel field hereby referred as |SF + N〉. This is only 4% better than the pure
flux state and only 3.5% better than the pure Néel mean-field state. Thus we see
that all these groundstate energies are quite close. While there is experimentally no
doubts that the system ground state is ordered, the proximity of QSL groundstates
corresponding here to the pure flux states suggests that the system excitations may
not always share the spontaneously broken spin-symmetry of the groundstate.
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Fig. 1.14 Variational energy
of the wavefunction
PD=0 |ψGS〉 as a function of
the parameters θ0 and hN.
The dashed contour
indicates the region where
the variational energy varies
by less than 0.5%

Fig. 1.15 Staggered
magnetization of the
wavefunction PD=0 |ψGS〉 as
a function of the parameters
θ0 and hN

Another elementary quantity to look at is the staggered magnetization:

S̃z
GS(θ0, hN) = 〈ψGS(θ0, hN)| PD=0Sz

Q PD=0 |ψGS(θ0, hN)〉
〈ψGS(θ0, hN)| PD=0 |ψGS(θ0, hN)〉 (1.9.2)

which we also show on the (θ0, hN) plane (Fig. 1.15). For a given Néel mean field,
turning on the flux results into a reduction of the staggered magnetization evidencing
that the flux induces additional quantum fluctuations competing with the classical
Néel order. The best groundstate energy corresponds to a staggered magnetization
of S̃z

GS(0.1, 0.055) = 0.71S. This corresponds to a 29% reduction from the classical
value and may be compared to SWT which predicts a 38% reduction. The energy
and staggeredmagnetization from various numerical methods are shown in Table1.1.
Regarding the above results, it seems obvious the optimal flux and Néel field, hereby
denoted SF+N, is the best trial wavefunction: it has the lowest energy, reasonably
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Table 1.1 Comparison of the groundstate energies and staggered magnetization from various
numerical approaches

〈H 〉 〈Sz
Q〉

Green function Monte Carlo −0.6692 J 0.62S

Optimal flux −0.638J 0S

Optimal flux and Néel field −0.664J 0.71S

Green function Monte Carlo from Trivedi and Ceperley (1989), Runge (1992), Calandra Buonaura
and Sorella (1998). Optimal flux VMC from Yokoyama and Ogata (1996) and coincide with our
results for the SF state. Optimal flux and Néel field from Lee and Feng (1988) and coincides with
our results for the SF+N state

close to the Green function Monte Carlo one, and shows a staggered magnetization
also in good agreement. With respect to experiments, the observed finite ordered
moment also seems to favour the SF+N wavefunction. To settle the notations for
the wavefunctions, let us define again the QSL state |SF〉 and the Néel ordered state
|SF + N〉:

|SF〉 −→θ0 = 0.1π, hN = 0 (1.9.3)

|SF + N〉 −→θ0 = 0.1π, hN = 0.055. (1.9.4)

Theminimumof the energy is quite broad andmany sets of variational parameterswill
have very comparable energies. In the area highlighted in Fig. 1.14, the groundstate
energy varies at most by 0.5%. We will show later that, while the Néel mean-field
parameter hN is critical to shape the excitation spectra, these only weakly depend
on the flux θ0 in the region of minimum variational energy (see Figs. 1.22 and 1.27).
We quickly mention that we also have tried to use Jastrow factors to induce in a
different way theNéel order into the trial wavefunctions.We defined the two different
wavefunctions:

∣
∣SF + VQ

〉 =JQ |SF〉 (1.9.5)

|SF + AF〉 =JAF |SF〉 (1.9.6)

where JQ is Eq.1.7.19 with the staggered potential Eq. 1.7.20 and JAF the anti-
ferromagnetic Jastrow factor Eq.1.7.21. Once optimized, the two Jastrow wavefunc-
tions essentially gave the same results as the |SF + N〉 state both when looking at
the variational energy and the staggered magnetization.

We now turn towards the instantaneous spin-spin correlation function. We show
in Fig. 1.16 the instantaneous correlation functions 〈Sx−q Sx

q 〉 and 〈Sz−q Sz
q〉 in both the

SF and the SF+N case. The SF case has the full spin-symmetry but the introduction
of the Néel mean field depletes the transverse Q = (π, π) peak in the transverse
correlation function and develops a strong Magnetic Bragg peak in the longitudinal
channel (cut out from the plot in Fig. 1.16 top right panel). By Fourier-transforming
with a shift of Q, we get the real space staggered spin-spin correlation function:
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Fig. 1.16 Instantaneous
longitudinal and transverse
spin-spin correlation
functions for both the SF and
SF+N cases. In the
longitudinal SF+N case the
magnetic Bragg peak has
been cut out of the plot

Sαα(r) = 1

N

∑

q

ei(q+ Q)r〈Sα
−q Sα

q 〉 (1.9.7)

= 1

2

∑

i

e Qr〈Sα
i Sα

i+r〉 (1.9.8)

It is interesting to look at the transverse component, recalling that SWT predict an
algebraically decay of Sx (r) ∼ |r|a . We show it along both the r = (x, 0) and
r = (x, x) directions on a log-log plot in Fig. 1.17 again in the SF and SF+N cases.

Fig. 1.17 Transverse
spin-spin correlation
function Sxx (r) as defined
by Eq.1.9.7 on a log-log
scale. Blue (green) dots and
blue (green) squares are for
r = (x, 0) and r = (x, x)

respectively for the SF
(SF+N) state calculated on a
32 × 32 lattice size (color
online)
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Interestingly we see that the SF trial wavefunction does have an algebraic decay
of the transverse (or longitudinal) spin-spin correlation as found previously (Ivanov
2006). But the SF+N trial wavefunction does not and has in fact an exponential decay
of the transverse spin-spin correlation. Thus the Néel mean-field, while resulting into
a Néel ordered state, does not have the correct long-wavelength properties expected
from SWT. We recall that the spin-wave prediction should be robust as the residual
magnon-magnon interaction should become negligible for longwavelength (Igarashi
1992). It is thus not so obvious which wavefunction between the SF and SF+N is
the most physical. In the following we will therefore study both and see that they
seem to capture different aspects of the square lattice Heisenberg model excitation
spectrum.

1.9.2 Transverse Dynamic Spin Structure Factor

We now turn to the most important numerical results from our VMC calcula-
tion which, for the half-filled square lattice Heisenberg model, are the true new
results of this work. Solving the generalized eigenvalue problem Eq.1.8.18, we
obtain the transverse particle-hole excitations eigen-energies Eq+

n and eigenstates
∑

k φ
q+
kn |k,↑↓, q〉. We first show in Fig. 1.18 the density of states of the transverse

particle-hole excitations:

D(q, ω) =
∑

n

δ(ω − Eq+
n + EGS) (1.9.9)

�
∑

n

1√
2πσ 2

exp

⎡

⎣−1

2

(

ω − Eq+
n + EGS

σ

)2
⎤

⎦ (1.9.10)

Fig. 1.18 Density of states
of the transverse
particle-hole excitations of
the |SF + N〉 state for a
24 × 24 system
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where we broaden the δ-function with a gaussian of variance σ = 0.1J for better
visualization. The density of states is plotted along the high-symmetry directions:

(π

2
,
π

2

)

→ (π, 0) → (π, π) → (0, 0) → (π, 0). (1.9.11)

The numerical data is the result of 106 samples of the projected Hamiltonian and the
overlapmatrix for a 24×24 systemsize. In theSF+Ncase it is immediately visible that
the lowest-energy states follow amagnon-like dispersion with a gap at the q = (0, 0)
and q = (π, π) momenta of 0.38J. In the same way as the exponentially decaying
transverse spin correlations, the opening of a gap is a result of artificially breaking
the spin symmetry adding the Néel mean-field hN. There are higher-lying eigenstates
gapped every-where from the magnon-like branch. Especially at q = (π, 0) there is
no trace of a continuum of excitations.

From the obtained eigenstates and eigen-energies, we can now take look at the
transverse dynamic structure factor using formula 1.8.41 and making sure that it is
correctly normalized using Eq.1.8.52. The result is shown in Fig. 1.19. We see that
most of the high-energy states have no spectral weight while the magnon-like mode
intensity is almost constant along themagnetic Brillouin zone, diverges at q = (π, π)

and almost vanishes at q = (0, 0). Again the reason it does not completely vanish
is due to the artificial breaking of the spin-symmetry. For instance in linear SWT, a
similar gapped magnon branch with a finite intensity at q = (0, 0) can be obtained
by including a staggered longitudinal field to the Heisenberg model.

We briefly note that, using the alternate Néel ordered wavefunctions
∣
∣SF + VQ

〉

Eq.1.9.5 and |SF + AF〉 Eq.1.9.6 we essentially recovered the same results. The
high-energy excitations above the magnon mode were slightly different, but still
gapped from the magnon mode. We show this in the case of the optimal

∣
∣SF + VQ

〉

for a 16 × 16 lattice in Fig. 1.20.
Coming back to the |SF + N〉 wavefunction, we first take a closer look at the

magnon-like branch in Fig. 1.21 where we compare it with unpolarized

Fig. 1.19 Transverse
dynamic structure factor for
the particle-hole excitations
of the |SF + N〉 state for a
24 × 24 system
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Fig. 1.20 Transverse dynamic structure factor for the projected particle-hole excitations of the
∣
∣SF + VQ

〉

state on a 16 × 16 lattice

Fig. 1.21 Comparison of the magnon-like mode obtained from the |SF + N〉 wavefunction on
a 24 × 24 system along the high-symmetry directions (right panel) and zoom-in of the MBZB
(left panel). Blue squares unpolarized inelastic neutron scattering from Christensen et al. (2007).
Black solid line Spin-wave theory with first 1/S corrections. Green triangles Spin-wave theory with
third 1/S corrections (Syromyatnikov 2010). Dashed magenta line Perturbation series expansion
around the Ising limit (Zheng et al. 2005). Cyan diamonds Stochastic series expansion quantum
Monte Carlo (Sandvik and Singh 2001). Red dots The transverse particle-hole eigenstates from the
|SF + N〉 variational wavefunction (color online)

inelastic neutron scattering on theCFTDmaterial (Christensen et al. 2007),withSWT
with first and with third (Syromyatnikov 2010) order 1/S corrections, with series
expansion (Zheng et al. 2005) and with stochastic series expansion quantum Monte
Carlo (Sandvik and Singh 2001). Overall the different theories agree very well with
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Fig. 1.22 Transverse dynamic structure factor for q = (π, 0) (left) and q = (π/2, π/2) (right) for
the optimal Néel mean-field hN and various fluxes θ0. The calculations were carried with a 16× 16
lattice size

the experimental data. But taking a closer look at the MBZB, we see that the trans-
verse particle-hole magnon-like mode we calculated, series expansion and quantum
MonteCarlo agree verywellwith the 7%downward dispersion (π/2, π/2) → (π, 0)
found in the experiment while third order SWT only obtains a 3% dispersion. This
remarkably good agreement of the calculated transverse particle-hole magnon-like
mode comes about without any tuning parameter and is the anchor for the physical
validity of our variational approach of dynamical quantities. In contrast, quantum
Monte Carlo results rely on an explicit choice for the lineshape in order to carry
out the analytic continuation (see Sect. 1.7.4). In Syljuåsen and Rønnow (2000) and
Sandvik and Singh (2001) the lineshape was chosen to match experiments making
this approach explicitly biased. We note that in our approach the dispersion from
q = (π/2, π/2) to q = (π, 0) is only very weakly dependent on the fine optimiza-
tion of the variational parameter θ0. We show in Fig. 1.22 the transverse dynamic
structure factor at q = (π, 0) and q = (π/2, π/2) for the optimal Néel mean-field
hN = 0.055 but with various fluxes θ0. In the region of lowest variational energy
θ0 ∈ [0.06π, 0.12π ], the spectra appear to be only very weakly flux-dependent.

Looking at the magnon-like mode intensity and comparing it to experiments
(Fig. 1.23), we see that the 50% reduction of the (π, 0) intensity compared to
(π/2, π/2) is not reproduced by the transverse particle-hole excitations of the
|SF + N〉 state. Instead we find a small 6% reduction of the magnon intensity. This
simply relates to the other important discrepancy between our variational theory and
the experiments: the fact the SF+N spectrum largely misses the (π, 0) continuum,
although the high-energy excitations above the q = (π, 0) magnon-like mode are
stronger than at q = (π/2, π/2) (Fig. 1.24).

We then turn towards the SF case. Looking at the density of states we see that
a magnon-like branch is still visible but that a strong continuum of states appears
everywhere above it. Close to q = (0, 0) and q = (π, π), the eigen-energies become



60 1 Variational Study of the Square Lattice Antiferromagnet …

Fig. 1.23 Comparison of themagnon-likemode intensity obtained from the |SF + N〉wavefunction
on a 24 × 24 system. Red dots the transverse particle-hole excitation intensity. Black solid line
Linear SWT. Blue error bars unpolarized inelastic neutron scattering (Christensen et al. 2007). The
linear spin-wave intensity and the experimental intensity are scaled to match the q = (π/2, π/2)
transverse particle-hole intensity. The transverse dynamic structure factor as obtained from our
variational approach is itself normalized such that

∑

q

∫

dωS±(q, ω) = N
2 (color online)

Fig. 1.24 Density of states
of the transverse
particle-hole excitations of
the |SF〉 state for a 24 × 24
system

negative, meaning some “excitations” have a lower energy than the groundstate. This
is due to the fact the wavefunction |SF〉 is energetically sub-optimal, linked to the fact
there is a magnetic ordering instability. The corresponding dynamic structure factor
is shown in Fig. 1.25. We see that the continuum of states above the magnon-like
branch has almost no spectral weight except at q = (π, 0) where a continuum of
states clearly appears. However since the calculation is based on a finite size system,
the continuum appears as a collection of discretemodes. To support the interpretation
of the q = (π, 0) states as being part of a continuumwe show in Fig. 1.26 the effect of
increasing systemsize: The particle-hole excitation subspace size is of L2/2where L2
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Fig. 1.25 Transverse dynamic structure factor for the particle-hole excitations spectrum of the |SF〉
state on a 24 × 24 system

Fig. 1.26 Size dependence of the dynamic structure factor for the |SF〉 state at q = (π, 0) (left)

and q = (π/2, π/2) (right). All spectra are normalized such that
∑

q

∫

dωS±(q, ω) = L2

2

is the total number of sites. Then for larger systems there aremore states “available” to
populate the continuum. As a result we see that in Fig. 1.26 left panel new excitations
appear at larger system size and move down in energy while gaining spectral weight.
This finite-size behavior is the milestone indicating the development of a continuum
in the thermodynamic limit. In contrast we show in Fig. 1.26 right panel the evolution
of the q = (π/2, π/2) mode. It appears nearly size-independent and about twice
as intense as the maximum intensity at (π, 0), in qualitative agreement with the
experimental results and thus seems to retain a magnon character even in the QSL
case.
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Fig. 1.27 Evolution of the
q = (π, 0) transverse
dynamic structure factor for
a range of different Néel
mean fields hN. The spectra
are obtained from a
calculation on a 32 × 32
system size

While we obtain a qualitative agreement for the appearance of the (π, 0) contin-
uum with the SF wavefunction, the magnon-like branch dispersion along the MBZB
is now too pronounced and it is also difficult, when moving close to (π, 0), to clearly
identify what the magnon mode is. However as the excitation spectrum is strongly
dependent on the system size, it is unsure what the main magnon-like branch will
look in the thermodynamic limit. Indeed in Fig. 1.26 for q = (π, 0), the lowest
energy mode seems to loose spectral weight with increasing system sizes while the
dominant peak energy is 6% smaller than the sharp q = (π/2, π/2) peak energy.
Based on the available numerical data, one can thus not rule out that the projected
particle-hole spectrum of the QSL |SF〉 state does recover all of the experimentally
observed features at short wavelength/high energies in the thermodynamic limit. But
for our discussion it is already enough to simply state how the Néel field selects the
different observed aspects of the dynamical properties of the square lattice antiferro-
magnet. We show in Fig. 1.27 the variation of the q = (π, 0) spectrum as a function
of the Néel mean field. One can see it immediately results in a gap between the
magnon-like branch and the higher energy excitations. Along with the experimental
observation that the q = (π, 0) continuum seems to be spin-rotationally invari-
ant, this would support the following interpretation of our theoretical results: The
broken spin-symmetry state |SF + N〉 recovers spin-symmetry broken excitations
(the magnons) while the QSL |SF〉 state recovers spin-rotationally invariant excita-
tions. We propose to put in parallel the extinction of the continuum of excitations at
q = (π, 0) and the exponential decay of the transverse spin correlations suggesting
that the states composing the continuum are highly sensitive to the long-distance
spin correlation behavior. The relation between these two aspects will be clarified in
the next Sect. 1.10. We summarize the pros and cons of the two wavefunctions on
Table1.2 highlighting their complementarity.
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Table 1.2 Comparison of the SF+N and SF wavefunctions in terms of phenomenological aspects

|SF + N〉 |SF〉
+ Néel order − QSL

+ Perfect MBZ magnon dispersion − MBZ dispersion seems too pronounced

− Exponential correlation function + Algebraic correlation function

− Weak MBZ magnon intensity variation + Good MBZ magnon intensity variation

− No continuum + (π, 0) continuum

1.9.3 Longitudinal Dynamical Spin Structure Factor

We present here the longitudinal dynamic structure factor obtained using the eigen-
states of the longitudinal particle-hole excitations of our trial wavefunction. In con-
trast with the transverse channel, these results must be taken as preliminary as much
less work and CPU-time was dedicated to it. We will only consider the case of the
|SF + N〉 trial wavefunction as the |SF〉 one has no breaking of the spin-symmetry
thus the longitudinal spectrum is identical to the transverse one. Indeed using the
definition of the global rotation operator

∑

i S−
i in terms of the mean-field theory

quasi-particles we find that

∑

i

S−
i |k,↑↓, q〉 = |k,↑↑, q〉 + |k,↓↓, q〉 (1.9.12)

which are the triplet states of the longitudinal channel. But when the Néel mean-field
is introduced, the breaking of the spin-symmetry makes the longitudinal channel
dynamic structure factor different as is the case in SWT.We show only here the result
for the 24 × 24 |SF + N〉 system in Fig. 1.28 top panel. Longitudinal particle-hole
excitations appear gapped above the transverse magnon-like mode (dashed white
line) reproduced as a guide to the eye. At q = (π, π), the magnetic Bragg peak
appears at negative energy of −0.4J. To explain it, we recall that at q = (π, π) and
at q = (0, 0) the mean-field groundstate itself must be included into the excitation
subspace such that longitudinal particle-hole excitations can mix with the ground-
state. This leads to a further optimization of the variational groundstate, although it
will be barely noticeable when considering the energy per site.

From the analysis of the transverse dynamic structure factor, it was apparent that
a particle-hole bound state reproduces a magnon-like excitation. But it shouldn’t be
inferred that the fractional particle and hole are simply internal degrees of freedom of
magnons. In fact as seen in the longitudinal channel, particle-hole states do overlap
with what SWT would interpret as two-magnon excitations and it is reasonable to
postulate that they will overlap with states which SWT would interpret as even
higher order multi-magnons. There is thus no simple relation between the SWT
bosonic excitations and the particle-hole one from the projected mean-field theory.
To ease the comparison with the spin-wave predictions, we show in Fig. 1.28 bottom
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Fig. 1.28 Top The longitudinal particle-hole dynamic structure factor in the |SF + N〉 state for a
24×24 system.Dashed white line indicates the position of the transverse particle-hole magnon-like
dispersion.BottomThe longitudinal dynamic structure factor in the linear spin-wave approximation.
The dashed white line indicates the position of the (not renormalized) transverse magnon dispersion

panel the longitudinal dynamic structure factor from linear SWT, thus neglecting
magnon-magnon interaction.

Compared to the polarized neutron scattering data shown in Fig. 1.9 panels c and
g, we note the following: At q = (π/2, π/2), the calculated spectrum shows a rather
sharp peak at ω = 3J which might be compared to the lower energy ω = 2.6J
peak found in the experimental data. At q = (π, 0), while the calculated spectrum
is broader than at q = (π/2, π/2) in agreement with experiments, it also has a
too high energy. The calculated spectrum thus shows significant differences from
the experimental data. But for the experimental interpretation of the q = (π, 0)
continuum as spin-rotationally invariant, it is not expected to match with our spin-
rotation broken symmetry calculations based on the |SF + N〉 state. However in
the |SF〉 state, the longitudinal spectrum must be identical to the transverse one.
The numerical validation of this statement still requires some work. Comparing for
instance Fig. 1.26 to the longitudinal experimental spectrum Fig. 1.9 panels c and g,
we see that the sharp q = (π/2, π/2) excitation and the broad q = (π, 0) continuum
is reproduced by the calculations.

1.10 Bound/Unbound Spinon Pair Analysis

The possibility to obtain numerical predictions of dynamical quantities such as the
dynamic structure factor is one great achievement of the VMC technique in the
context of Gutzwiller-projected mean-field wavefunctions. Another great advantage
is that, from the Monte Carlo sampling of the projected Hamiltonian Eq.1.8.29 and
overlap matrix (1.8.30) and their diagonalization, we do obtain variational particle-
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hole eigenstates which we can further scrutinize. In our study so far of the transverse
excitation spectrum, we mentioned dispersing excitations as “magnon-like”. In the
SF case, we also would like to link the collection of spin-isotropic modes forming
the continuum to fractional “spinon”-like particle pairs. We will show below how the
knowledge of these excitations eigenstates can lead to a firmer physical interpretation
of their nature.

1.10.1 The Spinon Pair Wavefunction

In the context of the fermionized Heisenberg model Eq.1.6.33, the unprojected spin-
1
2 fermion particle creation and annihilation operators are simply the bare electronic
c†iσ and ciσ operators. The projected mean-field particle-hole excitations we defined
in Sect. 1.8.1 may also simply be written in the basis of the real space projected
particle-hole states

∣
∣R, r, σσ ′〉 = PD=0c†R+rσ cRσ ′ |ψGS〉 (1.10.1)

with R a real space position on the lattice and r what we will hereby mention
as the spinon pair separation. Since the system is translation-invariant, whether
with doubled unit cell or not, it is convenient to define the two-spinons in crystal
momentum space:

∣
∣r, σσ ′, q

〉 = PD=0

∑

R

eiq Rc†R+rσ cRσ ′ |ψGS〉 (1.10.2)

which may be understood as propagating spinon pair with momentum q and spinon
separation r . In this language, the spin-flip state |q,+〉 = PD=0S+

q |ψGS〉 is rewritten
as

PD=0S+
q |ψGS〉 = |0,↑↓, q〉 (1.10.3)

therefore a local spin-flip is understood as a local transverse spinon-pair with zero
separation. Of course the spinon pair states

∣
∣r, σσ ′, q

〉

are not eigenstates but will
be used as a reference set of states to quantify the degree of spinon delocalization of
the eigenstates. By inversing the quasiparticle definition (1.6.81), we can relate the
spinon pair wavefunction to the mean-field particle-hole excitations. For instance in
the transverse channel we have:

|r,↑↓, q〉 =
∑

k

φ
q+
k (r) |k,↑↓, q〉 (1.10.4)

with

φ
q+
k (r) = ei kr [εr

(

u∗
k↑+uk−q↓− + v∗

k↑+vk−q↓−
)

+ε r
(

v∗
k↑+uk−q↓− + u∗

k↑+vk−q↓−
)]

(1.10.5)
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and

εr = 1

2

(

ei Qr + 1
)

(1.10.6)

ε r = 1

2

(

ei Qr − 1
)

. (1.10.7)

While the set of state �q+ = {|k,↑↓, q〉} is a basis of the transverse particle-hole
excitations, the set of states {|r,↑↓, q〉} is not as it is linearly dependent spanning
the same space as �q+ but containing twice as much states. This originates from the
simple definition of

∣
∣r, σσ ′, q

〉

in Eq.1.10.2 which is not symmetric upon r → −r .
A symmetric definition could simply be chosen as:

∣
∣r, σσ ′, q

〉′ = 1√
2

(∣
∣r, σσ ′, q

〉+ ∣
∣−r, σσ ′, q

〉)

(1.10.8)

and the set of states {∣∣r, σσ ′, q
〉′} is a basis of the projected particle-hole excitation

subspace provided we only consider half of the plane for the spinon separation r . In
the following we nonetheless chose the set {|r,↑↓, q〉} but we note that the results
presented below are essentially the same in the two formulations.

1.10.2 A Real Space Picture of the Projected
Spinon Pair Excitations

In the one-dimensional spin chain in the XY limit, we saw in Sect. 1.4 that it was
possible to give a simple physical interpretation of the spinless particle-hole exci-
tations as unbound pairs of domain walls. It is an important question to know to
which extent a simple picture of the particle-hole excitations can be found in two
dimensions. The unprojectedmean-field particle-hole excitations by themselves have
little significance as it is difficult to see what they become in real space after being
Gutzwiller-projected. It ismore tractable to look for instance directly at thewavefunc-
tion |R, r,↑↓〉. To simplify we will consider the QSL groundstate but in the d-wave
RVB gauge equivalent to the SF state through a SU(2) transformation (Sect. 1.6.4).
The groundstate can be represented as a superposition of various lengths singlets
arrangements on the lattice. For simplicity we only represent in Fig. 1.29a arrange-
ments with nearest-neighbours singlets. Along with the singlets arrangements, the
unprojected d-wave RVB state will also contain several states with one or more
double occupancies.

We now consider the effect of creating particle-hole excitations on these states.
When applying a local spin-flip, we will simply promote a singlet into a triplet
(Fig. 1.29b). This leaves a new state with the same number of double occupancies,
thus the one previously containing double occupancies will be projected out.
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(a)

(b) (c)

Fig. 1.29 Pictorial representation of the local spin-flip states and the non-local spinon pairs. a
The unprojected ground state in the d-wave RVB gauge represented by a superposition of singlets
arrangements. Some of the states contain double occupancies and are discarded by the Gutzwiller
projection. b A local spin-flip corresponds into creating a particle-hole pair on the same site. It
promotes a singlet into a triplet and the resulting states have the same number of double occupancies.
c The non-local transverse particle-hole pair will contribute from the unprojected ground state
components containing exactly one double occupancy (and one hole) resulting into well separated
single spins. Artwork courtesy of Martin Mourigal

The picture for the non-local spinon pair |R, r �= 0〉 is quite different and relies
heavily on the fact the creation of the particle-hole is made before the Gutzwiller
projection. In strong contrast with the local spin-flip, creating a non-local particle-
hole state will only work on states which contain exactly one double occupation and
one hole. Indeed in the case where R and r are such that the particle-hole excitation
annihilates the double occupancy and the hole, then the resulting state is one where
a singled out pair of spins sit in the singlet sea separated by r (Fig. 1.29c).

1.10.3 Eigenstates Spinon-Pair Analysis

Using the set of states {|r,↑↓, q〉}, we will now characterize the transverse particle-
hole excitation eigenstates. An important aspect of our results is that some of the
excitations we find seem to have a magnon character, at least when looking at their
dispersion relation and intensity. A magnon, considering the simple ferromagnetic
groundstate, is simply a Fourier sum of local spin-flips. In an antiferromagnet it is
also the case if considering the linear SWT solution. Including further orders of 1/S
corrections will change this picture as a local spin-flip can now overlap with the
multi-magnon continuum. But considering the corrections are small even up to third
order 1/S perturbation (Syromyatnikov 2010), it is reasonable still to consider the
magnon excitation based on the Fourier sum of local spin-flip picture.
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In our variational approach, the Fourier sum of the local spin-flip state is:

∑

R

eiq R S+
R |GS〉 = |0,↑↓, q〉 (1.10.9)

thus expressed as a superposition of local particle-hole pairs. We thus expect the
magnon-like excited states to have a strong overlap with this state. We define

Pq+(r, n) = |〈r,↑↓, q|n,↑↓, q〉|2 , (1.10.10)

the overlap of the n-th transverse eigenstate with the transverse spinon pair separated
by r . Pq+(r, n) gives the spinon-pair separation distribution of the state |n,↑↓, q〉.
This quantity then provides a picture of the spinon pair separation envelope of some
eigenstate |n,↑↓, q〉. For instance we expect the magnon-like modes to have most
of their overlap contained in the r = 0 component and the finite r contributions to
decay rapidly. The quantity also allows to quantify how far the spinon-pair states
are from being eigenstates. For instance if some eigenstates were to correspond to
delocalized spinon pairs—the |r,↑↓, q〉 states being as far from being eigenstates as
possible—then we expect Pq+(r, n) to be a very broad distribution of weights as a
function of r . We also define the following overlap quantity in term of the eigenstates
frequency:

Pq+(r, ω) =
∑

n

|〈r,↑↓, q|n,↑↓, q〉|2 δ
(

ω − Eq+
n + EGS

)

(1.10.11)

where in practice the delta-function will be widened by a gaussian with a finite
width as was done for the dynamic structure factor. This quantity is in practical
terms the most handy as what we ultimately want is to link features (i.e. “peaks”)
of the dynamic structure factor to a corresponding spinon-pair separation distribu-
tion. If some eigenstates are nearly degenerate, it defines an average of their spinon
separation distribution. Numerically, truly degenerate eigenstates will always crys-
tallize into non-degenerate states chosen at random by the numerical algorithm in
the degenerate subspace. This is the motivation behind the definition Eq.1.10.11 as
now Pq+(r, ω) is independent of such random choices. We incidentally also note
that, for r = 0 case, it is actually the same as the transverse dynamic structure factor:

Pq+(r = 0, ω) =
∑

n

∣
∣〈GS| S+

q |n,↑↓, q〉∣∣2 δ(ω − Eq+
n + EGS) = S±(q, ω)

(1.10.12)
such that Pq+(r, ω)might be understood as a generalization of the dynamic structure
factor. In the following figures, the quantity Pq+(r, ω) is normalized such that

∑

r

Pq+(r, ω) = 1 (1.10.13)
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Fig. 1.30 Inspection of the
transverse dynamic structure
factor features in terms of
corresponding spinon pair
separation distribution.
Bottom the transverse
dynamic structure factor
along the high symmetry
directions for the Néel SF+N
state on a 24× 24 lattice. Top
the spinon pair distribution
Eq.1.10.11 corresponding to
the highlighted features in
the transverse dynamic
structure factor

We can now come back at the previously obtained results in the transverse chan-
nel. We first consider the Néel ordered case in the SF+N groundstate. We show in
Fig. 1.30 the transverse dynamic structure factor with some regions highlighted. For
the highlighted q and ω, we show the corresponding spinon pair separation distribu-
tion using Eq.1.10.11. It is immediately visible that all the modes consist essentially
of the spin-flip state |0,↑↓, q〉 with a small envelope of finite spinon pair separation.
We thus conclude that in the Neel ordered case, the particle-hole pairs form a bound
state which we might refer to as a magnon. We note that even higher energy states
(feature “B” in Fig. 1.30) are also two-spinons bound states such that the magnon
interpretation relies not only on the bound spinons argument but also on the observed
magnon-like dispersion and intensity. We note that the spinon separation distribution
in Fig. 1.30 panel lacks an inversion symmetry. This is due to the definition (1.10.2).
Using the symmetric states (1.10.8) would simply corresponds into symmetrizing
the spinon separation distribution upon the inversion r → r .

The situation is very different in the isotropic disordered SF state case. We show
in Fig. 1.31 bottom panels the transverse structure factor at the q = (π, 0) and
q = (π/2, π/2) points again highlighting some features for which the spinon
pair separation distribution is shown on the top panels. Note that the color-scale
is identical to Fig. 1.30 to allow comparison. While the sharp mode still present
at q = (π/2, π/2) still dominantly overlaps with the spin-flip state with a small
envelope, the excited states composing the continuum at q = (π, 0) are much more
spread out. In fact the spread is such that it is the system size that bounds the max-
imum separation, hinting that in the thermodynamic limit the states composing the
continuum are made of delocalized, unbound spinon pairs.

This last affirmation cannot be made firm without finite-size analysis which we
will develop in Sect. 1.10.5. It is thus seen that our variational calculation yields the
two different aspects observed in experiments. The SF+N case allows to recover
precisely the observed magnon dispersion, the magnon mode being made out of
bound spinons pairs. The SF case on the other hand also recovers a state we might
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Fig. 1.31 Inspection of the transverse dynamic structure factor features in terms of corresponding
spinon pair separation distribution. Bottom left (right) the transverse dynamic structure factor at
q = (π, 0) (q = (π/2, π/2)) for the QSL SF state on a 32 × 32 lattice. Top the spinon pair
distribution Eq.1.10.11 corresponding to the peaks in the transverse dynamic structure factor

characterize as magnon-like at (π/2, π/2) but, in strong contrast, finds a continuum
at (π, 0) seemingly corresponding to unbound spinon pairs.

1.10.4 Spinon-Pair Analysis of the S+
Q |GS〉 State

Linking the observation of a continuumof excitations to delocalized spinon physics is
themost important part of this study.While Eq.1.10.11 seems very suitable to inquire
about well-defined, sharp modes, it is not so good for characterizing a continuum.
In our finite system calculation the continuum will always appear as a collection
of modes growing bigger with system size and Eq.1.10.11 can be used to study the
different contributions of themodes. But this has the disadvantage that, the collection
evolving with system size, comparing the results across different system sizes is
difficult. To allow this comparison we thus need a quantity which is not dependent
on a particular collection of modes. We define the following weighted average:

ρq+(r) =
∑

n

|〈r,↑↓, q|n,↑↓, q〉 〈n,↑↓, q|0,↑↓, q〉|2 , (1.10.14)

normalized such that
∑

r ρq+(r) = 1. In this quantity, we weight the eigen-
states’ spinon separation distributions Pq+(r, n) = |〈r,↑↓, q|n,↑↓, q〉|2 with
the corresponding mode intensity found in the transverse dynamic structure factor
|〈n,↑↓, q|0,↑↓, q〉|2. This allows to characterize the degree of spinon delocaliza-
tion attached to the modes proportionally to their intensity in the transverse spectrum
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at a given momentum q. While this definition is simple and functional per se, we
give below another interpretation of this quantity.

In the interpretation of the continuum as caused by spinon pair delocalization,
the local spin-flip S+

q , caused for instance by a probing neutron, delocalizes into
more and more extended spinon pairs. This is a dynamic process thus we might be
interested into looking at:

ρq+(r, t) = ∣
∣〈r,↑↓, q| e−iH t |0,↑↓, q〉∣∣2 (1.10.15)

which is the probability, at time t , to find the time-evolved spin-flip state
e−iH t |0,↑↓, q〉 into the spinon pair state |r,↑↓, q〉. To resolve the time evolu-
tion operator, we simply introduce the eigenstates projector |n,↑↓, q〉 〈n,↑↓, q|.
One might then ask the question of knowing, over all times, howmuch does the spin-
flip state delocalizes? This can be answered by averaging over time the probability
distribution ρq+(r, t):

lim
T →∞

1

T

∫ T

0
ρq+(r, t) = lim

T →∞
1

T

∫ T

0

∣
∣
∣
∣
∣

∑

n

〈r,↑↓, q|n,↑↓, q〉 〈n,↑↓, q|0,↑↓, q〉 e−i En t

∣
∣
∣
∣
∣

2

=
∑

n

|〈r,↑↓, q|n,↑↓, q〉 〈n,↑↓, q|0,↑↓, q〉|2

= ρq+(r). (1.10.16)

ρq+(r) can thus also be interpreted as the time-averaged spinon pair separation dis-
tribution of the spin-flip state |0,↑↓, q〉. This interpretation carries the message that,
while the spin-flip does naturally overlap with spinon pairs with a small separation,
it is the dynamics of the Hamiltonian that might or might not cause delocalization.
In other word, while the overlap 〈r,↑↓, q|0,↑↓, q〉 will decay quickly with r at
any momenta, the matrix elements 〈r,↑↓, q|H |0,↑↓, q〉 might not, which will be
evidenced by the ρq+(r) quantity.

We show this quantity again for the SF+N (Fig. 1.32) and the SF (Fig. 1.33) states
for the q = (π, 0) and q = (π/2, π/2) momenta. Similarly to the previous section,
we see that the q = (π/2, π/2) momentum spectrum corresponds to bound spinon
pair physics in both the SF+N and SF cases. The q = (π, 0) momentum displays

Fig. 1.32 The spinon pair
separation quantified using
Eq.1.10.14 for q = (π, 0)
(left) and q = (π/2, π/2) in
the SF+N case on a 24 × 24
lattice
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Fig. 1.33 The spinon pair
separation quantified using
Eq.1.10.14 for q = (π, 0)
(left) and q = (π/2, π/2) in
the SF case on a 32 × 32
lattice

a contrasted behavior showing again bound spinon pairs physics for the SF+N case
and unbound spinon pairs in the SF case. To further quantify the extent of the spinon
delocalization as a function of the Néel mean field, we define the disk-integrated
spinon-pair separation distribution:

Rq+(r) =
∑

|r ′|≤r

ρ̃q+(r ′), (1.10.17)

where ρ̃q+(r) is the same quantity than ρq+(r) but restricted to |r| ≤ L/2 and
normalized such that ∑

|r|≤L

ρ̃q+(r) = 1 (1.10.18)

in order to work-around the fact that, in a square L × L lattice, full disks can only
have a radius as large as L/2. We also define the RootMean Square (RMS) spinon
separation

r q+ =
√
∑

r

ρ̃q+(r) |r|2. (1.10.19)

We note that for these two quantities, whether we use the state |r,↑↓, q〉 as defined
in Eq.1.10.2 or |r,↑↓, q〉′ in Eq.1.10.8 to calculate ρ̃q+(r) will bring exactly the
same result due to the fact that in both quantities ρ̃q+(r) and ρ̃q+(−r) are averaged.

We show these two quantities at q = (π, 0) in Fig. 1.34 for different strengths of
the Néel mean field. Consistently with the overall picture, the Néel mean field gives
the disk-integrated separation distributions more weight at short spinon separations
and reduces the RMS spinon separation.

To summarize, we thus get a consistent picture for the effect of the artificial
symmetry breaking induced by the Néel field. It induces:

• A change from algebraic to exponential decay of the instantaneous transverse
spin-spin correlation functions.

• A well-defined magnon-mode.
• A binding of the spinon pairs at q = (π, 0).
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Fig. 1.34 Analysis of the
Néel mean field effect on the
spinon pair separation. Left
panel, the spinon pair
separation profile as defined
in Eq.1.10.17 for increasing
Néel mean fields. Right
panel The root mean square
spinon separation Eq.1.10.19
as a function of the Néel
mean field. All data is
obtained for a 32 × 32 lattice

1.10.5 Finite Size-Effect Analysis

We provide here what we consider the strongest support in favor of spinon delocal-
ization at q = (π, 0) in the SF state. If the spinon pairs are indeed unbound, then
they are allowed to separate as much as the finite L × L system size permits. We thus
expect a linear dependence of the RMS spinon separation Eq.1.10.19 on system size
L . The disk-integrated spinon separation distribution Eq.1.10.17 should also show
a constantly changing profile as a function of L . In the opposite case where spinons
form a bound state, then the RMS spinon separation and the disk-integrated spinon
separation distribution should stay unchanged once a sufficiently large system size
to contain the full bound spinon pair envelope is reached.

With these expectations in mind we show the system size dependence of the
q = (π, 0) and q = (π/2, π/2) in the SF case in Fig. 1.35. While the transverse
spectrum size dependence was already shown in Fig. 1.26, we show again this size-
dependence in Fig. 1.35 top panels as we believe the parallel with the spinon sep-
aration size-dependence in the bottom panels is remarkable: At q = (π/2, π/2)
all quantities plotted quickly converge with increasing system size, indicating that
already at modest sizes the solutionwe obtain is representative of the thermodynamic
limit.

In strong contrast at q = (π, 0) the continuous changes against system size
observed both in the transverse excitation spectrum and in the spinon separation
quantities hints at completely deconfined spinon physics. In particular the linear
size-dependence of the RMS spinon separation brings strong support to the unbound
spinons interpretation of the observed transverse continuum.
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Fig. 1.35 Size dependence of various quantities in the SF case at q = (π, 0) and q = (π/2, π/2).
a and b the transverse dynamic structure factor at q = (π, 0) and q = (π/2, π/2) respectively
for sizes ranging from 8 × 8 (dark blue) to 32 × 32 (dark red). c and d for the same momenta
the disk-integrated spinon separation distributions Eq.1.10.17. Same color-code as in (a) and (b). e
The RMS spinon separation Eq.1.10.19 for q = (π, 0) (red error bars) and q = (π/2, π/2) (blue
error bars) as a function of system size. The error bars are evaluated as explained in Appendix A.6
(color online)

1.11 Conclusion

To conclude this chapter we will state again the results shown in the preceding
sections. A strong axis in this work is to explain theoretically the observed magnetic
zone boundary anomaly and to provide a physical interpretation. This is covered into
Sect. 1.11.1. The success of the variational approach for characterizing the magnetic
excitations of the square lattice antiferromagnet calls for further research topics for
which we provide a tentative list in Sect. 1.11.2.

1.11.1 Magnetic Zone Boundary Anomaly

The initial motivation for this work was the unambiguous characterization of the
magnetic zone boundary quantum anomaly found in the transverse dynamic struc-
ture factor. This anomaly is characterized by (i) a 7% reduction of the magnon-like
mode energy from q = (π/2, π/2) to q = (π, 0), (ii) a 50% of the q = (π, 0) max-
imum intensity with respect to q = (π/2, π/2) and (iii) an asymmetric broadening
of the q = (π, 0) peak towards higher energies, referred to as the continuum. All
these observations mark a strong contradiction with the SWT, even when account-
ing for high-order corrections (Canali and Wallin 1993; Syromyatnikov 2010). On
the other hand numerical calculations could reproduce the 7% magnon-like mode
energy reduction (Sandvik and Singh 2001; Zheng et al. 2005) strengthening the
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hypothesis that the magnetic zone-boundary quantum anomaly is an intrinsic aspect
of the square lattice antiferromagnet. An unbiased numerical determination of the
transverse dynamic structure factor lineshape at q = (π, 0) is still missing due to
the limitations of exact numerical approaches, especially the so-called analytical
continuation problem (Jarrell and Gubernatis 1996).

In this context our work brings important contributions by linking the magnetic
zone boundary quantum anomaly aspects (i)–(iii) to physically meaningful varia-
tional Ansätze for the square lattice Heisenberg antiferromagnet ground-state and
low-energy excitations. Namely we provide two complementary pictures through
the Néel ordered SF+N and the QSL SF variational Ansätze.

The SF+N variational Ansatz reproduces the spontaneously broken spin symme-
try of the square lattice Heisenberg antiferromagnet by artificially breaking it through
a Néel mean field. It has a very good variational energy, only 0.7% higher than the
best numerical groundstate energy estimate (Trivedi and Ceperley 1989; Calandra
Buonaura and Sorella 1998; Runge 1992) and a staggered magnetization of 0.71S,
higher by 12% from aforementioned references. These groundstate aspects of the
SF+N variational Ansatz have been studied before (Gros 1988; Lee and Feng 1988;
Ivanov and Lee 2003; Ivanov 2004). The completely new result is that this Ansatz
perfectly reproduces the observed short wavelength magnon-like excitation energy
including the 7%dispersion along themagnetic zone boundary. But it also has limita-
tions tied to the artificial breaking of the spin symmetry. The transverse instantaneous
spin-spin correlation function decays exponentially instead of the expected power-
law decay (Fig. 1.17). Along with the slightly too high staggered magnetization, this
shows that the SF+N state underestimates the transverse quantum fluctuations of the
true square lattice Heisenberg antiferromagnet groundstate. The most striking aspect
of the magnetic zone-boundary quantum anomaly is not reproduced by the SF+N
Ansatz: Everywhere on the magnetic zone-boundary, higher energy excitations stay
gapped from the magnon-like mode such that there is no trace of a transverse contin-
uumof excitations at q = (π, 0). Looking in parallel at the evolution of the transverse
dynamic structure factor evolution at q = (π, 0) and at the evolution of the trans-
verse instantaneous spin-spin correlation function suggests that the extinction of the
transverse quantum fluctuation in the SF+N variational Ansatz is responsible for the
disappearance of the transverse continuum.

This leads to the second complementary variational Ansatz we studied, the spin-
liquid SF state. With respect to variational energy and staggered magnetization, it is
a sub-optimal Ansatz as it has a 5% higher energy than the best numerical estimate
and no staggered magnetization. But it also has interesting properties. In particular
it is a critical state as the isotropic instantaneous spin-spin correlation decay as a
power-law, in agreement with robust long wave-length SWT prediction. Being a
spin-liquid the quantum fluctuations are very large as there are no finite classical
order parameter. We found that this state reproduces the magnetic zone boundary
quantum anomaly aspects (ii) and (iii), that is it finds a continuum of excitations at
q = (π, 0) as evidenced by the finite-size effect analysis in Fig. 1.26. Moreover it
also finds that at the q = (π/2, π/2) the magnon-like mode stays sharp as observed
in experiments.
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The two SF+N and SF Ansätze thus provide a complementary description of all
of the experimental aspects of the short wavelength excitations of the square lat-
tice Heisenberg antiferromagnet. It has to be noted however that we presently do
not provide a complete picture as it seems we cannot reproduce all the aspects in a
single Ansatz. The mean-field approach to describe the spontaneously broken spin
symmetry seems to suffer from the strong limitation that it effectively extincts the
transverse quantum fluctuations present in the square lattice Heisenberg antiferro-
magnet groundstate.

Following the achievements of the SF+N and SF Ansätze into reproducing the
experimentally established aspects of the magnetic zone boundary quantum anom-
aly, we developed their physical interpretation based on the complete knowledge
of the variational excitation wavefunctions allowed by the variational Monte Carlo
approach. Namely we could describe all of the excitations as projected mean-field
particle-hole excitations and showed that, in the physical Hilbert space they can be
understood as superpositions of spatially-separated spinon-pairs. This naturally lead
to the question of knowing whether these spinon-pairs must be seen as a bound-state
identifiable to a magnon or if the two spinons are in fact truly independent degrees of
freedom. The development of meaningful quantities to tackle this important section
allowed to unambiguously link the calculated SF Ansatz continuum of excitations
at the q = (π, 0) momentum to a deconfinement of the spinon-pairs while, at the
q = (π/2, π/2) momentum the SF Ansatz variational excitation is found to be a
spinon-pair bound state. In the SF+N case, all excitations including the magnon-like
mode were found to be spinon-pair bound states.

Deconfined fermionic excitations have been observed and predicted in 1D sys-
tems. In 2D, deconfined fermionic degrees of freedom has so farmainly been pursued
in highly frustrated models such as the triangular model (Coldea et al. 2001b) or the
Kagomé lattice (Han et al. 2012; Jeong et al. 2011). The unambiguous experimen-
tal characterization of the square lattice Heisenberg antiferromagnet magnetic zone
boundary quantum anomaly and its interpretation in our work in terms of bound and
unbound spinon pairs is the first attempt at establishing the existence of deconfined
fractional degrees of freedom in the experimentally measured excitation spectrum
of an unfrustrated 2D magnetic system with a Néel ordered groundstate.

1.11.2 Further Research

The success of the variational Monte Carlo approach at calculating the magnetic
excitations of the square lattice Heisenberg antiferromagnet calls for more applica-
tions. We list here a tentative list of interesting topics where this approach might be
useful.

• Transverse field effect: Experimentally applying an external field is one of the
most obvious approaches to add some controlled parameter into the system and
might help to uncover new physics. Early unpublished neutron scattering results
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from the Laboratory for Quantum Magnetism seem to indicate that, upon apply-
ing a magnetic field transverse to the Néel ordering direction, the magnetic zone
boundary quantum anomaly disappears and a conventional magnonmode is recov-
ered. While in zero field the magnon mode is two-fold degenerate, the uniform
field will split it into an “antiferromagnetic” and a “ferromagnetic” component.
It is in principle simple to introduce such external magnetic fields into the vari-
ational calculation. First, the projected Heisenberg model matrix will need to
include a Zeemann term, a simple modification of the calculation. But to truly
take account of the effect of the applied field one would also need to introduce it
at the projected mean-field wavefunction level. Indeed to be physically relevant
the variational wavefunction should be able to get polarized by the applied field.
A new wavefunction must therefore be introduce which allow a polarization along
the axis where the field is applied. This is a rather trivial modification but will add
a new variational parameter—the polarization—which will need to be optimized
for each value of the applied magnetic field.
An interesting aspect is that, in the case where a magnetic field does break the
spin rotational symmetry, it is possible that the SF+N becomes a better variational
Ansatz since its broken spin symmetry now is a physical ingredient of the system
under study. In particular it seems like the exponential decay of the transverse
instantaneous spin-spin correlation might be physical in the case where we apply
a transverse field and would be consistent with the extinction of the q = (π, 0)
continuum.

• Excitation spectra for doped systems:The interest into the square lattice Heisen-
berg antiferromagnet physics obviously was in a large part motivated by the dis-
covery of the high-temperature cuprate materials. The projected mean-field wave-
function approach originally was also motivated by the high-Tc problematic fol-
lowing Anderson’s proposal of the RVB theory (Anderson 1987). It is thus an
obvious route to take to try to obtain the magnetic excitation spectrum of doped
square-lattice antiferromagnet. There are indeed many experimental results avail-
ablewhich the variational approach could or could not reproduce. The development
of the reweighing technique by Li and Yang (2010) was primarily geared towards
describing the so-called q = (π, π) neutron resonance as a function of doping. The
q-dependence of the magnetic excitation spectrum was not looked at. Therefore
it remains an important question to know if for instance the hour-glass excitation
spectrum could be reproduce by a mean-field Ansatz. The interest of variationally
reproducing such a feature goes beyond simply reproducing numerically some
experimental feature. The fact the calculation is tied to a variational Ansatz brings
a strong physical significance by strengthening the Ansatz.

• ARPES spectra: If extending the variational calculation to undoped systems, it
is then completely possible to calculate variationally the spectral function:

A(q, ω) =
∑

nσ

∣
∣〈n, q, σ | cqσ |GS〉∣∣2 δ(ω − Eqσ

n + EGS) (1.11.1)
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where |n, q, σ 〉 is an eigenstate calculated by diagonalizing the generalized eigen-
value problem defined by the Heisenberg Hamiltonian projected on a suitable
projected mean-field excitations subspace.

• Jastrow factor optimization: An obvious weakness of our work is that we could
not, using the Néel mean field approach, reproduce neither the long wavelength
properties (the magnon mode we found is gapped) or one of the most important
short wavelength property: the development of the q = (π, 0) continuum. But
the introduction of a Néel mean-field arguably is a rather primitive approach. A
much more versatile one is to use an optimized Jastrow factor (see Sect. 1.7.3) to
the wavefunction which might introduce non-trivial many-body physics into the
variational Ansatz. Of course it has the drawback that one must now numerically
optimize a large number of variational parameters. Techniques to perform such an
optimization have been devised and might bring interesting results (Sorella 2005).

• Extended magnetic interactions (ring-exchange): If focusing on the relevance
of our calculation in the context of the cupratematerials, it is probably interesting to
include further magnetic interactions into the physical model. Introducing second-
and third-neighbor magnetic interaction should be very simple if one does not
account for those at themean-field level. The four-spin ring-exchange term (see the
second chapter of this thesis) might also be introduced, first only into the physical
model without modifying the mean-field wavefunction Ansatz. A difficulty is that
the ring-exchange term will exchange a pair of up spins with a pair of down spins
which, in the variational Monte Carlo technique, corresponding into changing
simultaneously two rows or columns of the up and down Slater matrices. But this
technical difficulty can now be easily overcome by the use of the generalized rank-
r determinant and inverse matrix update formulas we developed in Appendix A.2.
The magnetic zone boundary quantum anomaly has been observed in the cuprate
material La2CuO4 (Headings et al. 2010). The ring-exchange term effect seems
to kill the 7% magnetic zone boundary dispersion by increasing the q = (π, 0)
magnon energy compared to q = (π/2, π/2). It is interesting to see whether, by
introducing this ring-exchange term we also get the increased q = (π, 0) magnon
energy while keeping the continuum above.

• Raman scattering spectrum: The asymmetric line shape of the Raman spectrum
measured on realizations of the QHSAF is a long standing puzzle which originally
inspired to look for fractional excitations (Ho et al. 2001). In principle this spectrum
can as well be calculated using our variational approach. In the so-called B1g

geometry, the interaction of light with the magnetic degrees of freedom is (Canali
and Girvin 1992)

� ∝
∑

j

S j · (S j+ŷ − S j+x̂
)

(1.11.2)

such that the scattering intensity will be a function of the four spin operator cor-
relation function

I (ω) =
∫

dteiωt 〈�(t)�〉. (1.11.3)
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In our formalism, this could be written in the longitudinal projected particle-hole
excitation subspace as:

I (ω) =
∑

n

|〈n, q, 0| � |GS〉|2 δ(ω − Eq0
n + EGS). (1.11.4)

But this last equation overlooks the fact that, writing the � |GS〉 state into the
projectedmean-field states will not only generate particle-hole states, but also two-
particles two-holes states. Thiswill therefore dramatically increasing the excitation
subspace to be considered. The prospect of increasing the size of the considered
projected mean-field excitation subspace is treated in the next point.

• Higher order spinon excitations:While calculating themagnetic excitation spec-
trum we restricted the subspace of excited states to the particle-hole pairs in the
transverse and the longitudinal channels. This is of course an approximation and
these subspaces are only as much “sufficient” for describing the real system exci-
tations as the variational wavefunction is close to the real groundstate. In fact we
already checked that the Gutzwiller projection results in a finite overlap between
particle-hole pair excitations and two-particles two-holes excitations, thus in the
projected Hilber space four-spinons excitations. These four-spinons excitations
have been shown to be responsible of about 30% of the 1D spin chain magnetic
spectrum (Mourigal et al. 2013). It is thus an interesting question to know if this
is the case as well in 2D. While adding 4-spinons excitations is simple formally, it
does bring significant technical difficulties. Indeed for instance the transverse 4-
spinons excitations subspace now has L6/2 states instead of L2/2 for the 2-spinon
state (L2 being the system size). In practice the first technical limitation to come
will be the memory problem as the projected Heisenberg model and overlap matri-
ces will likely be too large to hold on a standard computer memory. But we would
like to mitigate this issue. In fact the computationally expensive part is to calculate
the overlaps 〈ψ |α〉 and 〈β∣∣ψ ′〉 where |ψ〉 and ∣∣ψ ′〉 are two different variational
excitations. The number of |β〉 states depends on the quantity being sampled. For
the Heisenberg model, this is of order L2. Each of the overlap calculation still is
only of cubic complexity in the system sizeO

(

L6
)

. Thus one can imagine a com-
putational scheme where the random walks only calculate the vectors of overlaps
〈ψ |α〉 and 〈β∣∣ψ ′〉 and delegate the construction of the large projected Heisenberg
and overlap matrices to an other process with access to a large permanent storage
to hold the full matrices. There are thus possible ways to push the technical limits.
Other axes would be to concentrate on quantities which do not require the explicit
calculation of the projected matrices. Without much inquiring, we would like to
mention information theory quantities which could be used to quantify the degree
of entanglement between the two-spinons and four-spinons excitation subspaces.
This could potentially indicate how “good” is the approximation of truncating the
excitation subspace to two-spinons only.

• Extrapolation to 1D chain: This research suggestion aims at giving a more solid
footing to the analogy between the 1D spinon excitations and the 2D ones. An
interesting question is to know how, upon weakening for instance the magnetic
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coupling Jy along the y-axis of the square lattice, the continuum of excitations
would evolve towards the exactly known 1D limit. If the 2D spinon excitations
are adiabatically connected to the 1D ones, then we should see for Jy → 0 the
continuum of excitations at q = (π, 0) expand such that it reproduces the 1D
two-spinons excitation spectrum (see for instance the XY spectrum Fig.1.3).
It is possible for the variational Monte Carlo approach to bring valuable insight
with respect to this problematic. Indeed it has been shown that the projected wave-
function with no flux (θ0 = 0) and no Néel mean field is a very good varia-
tional Ansatz for the 1D spin chain with an energy only 0.2% higher than the
exact groundstate energy from the Bethe Ansatz (Gros et al. 1987; Gebhard and
Vollhardt 1987). It thus would be quite desirable to generalize the SF mean-field
wave function such that it can extrapolate to the 1D case. The most likely modifi-
cation will be to differentiate the two mean-fields:

〈c†iσ ci±êx σ 〉 = tx eiθi,i±êx (1.11.5)

〈c†iσ ci±êyσ 〉 = tyeiθi,i±êy (1.11.6)

and then carry out the optimization of these mean-fields for each ratio Jy/Jx .
Therefore this only amounts into redefining the mean-field Ansatz while the com-
putational framework would stay unmodified.

• other lattices: The variational procedure we used can in principle be used on
any lattice geometry provided a motivated mean-field variational Ansatz exists.
It could possibly make sense for instance to go back to the triangular lattice for
which the RVB Ansatz was conceived in the first place and calculate its excitation
spectrum.

1.11.3 Summary

In summary we have developed a variational Monte Carlo approach to give a vari-
ational determination of the magnetic spectrum of the square lattice Heisenberg
antiferromagnet. Using the Néel ordered SF+N variational Ansatz, we could repro-
duce perfectly the short wave-length magnon-like excitations dispersion, including
the 7% zone boundary dispersion. The observed continuum at q = (π, 0) however
is not found with this Néel ordered wavefunction but could be obtained from the
spin-liquid SF Ansatz. Detailed analysis of the obtained variational excitations lead
to characterize them as bound and unbound spinon pairs. The short wave-length
magnon-like mode in the SF+N case corresponds to bound spinons forming the
magnon while the continuum at q = (π, 0) found in the SF Ansatz is found to
correspond to deconfined spinon pairs.
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Chapter 2
Modeling the Spin-Wave Dispersion
of Insulating Cuprate Materials

2.1 Introduction

After being a dormant field of research, Quantum Magnetism gained a renewed
interest following the discovery of high-temperature superconductivity in the cuprate
compounds family by Bednorz andMüller (1986) and the gigantic challenge it poses
to the condensed matter physics community. Indeed it was soon realized that high-
Tc superconductivity was arising in the vicinity of magnetically ordered phases and
that magnetic degrees of freedom were a fundamental ingredient for this exotic phe-
nomenon to occur. The low energy physics of the cuprate materials seems in first
approximation to entirely reside into the CuO2 plane where Cu2+ ions reside on
the nodes of a square lattice with the O2− ions residing on the edges making the
system essentially two-dimensional. In order to address theoretically this system,
one has to reduce the sheer number of degrees of freedom to only keep the most
significant ones. With this objective, the Hubbard model was proposed to encom-
pass the most relevant aspects of the CuO2 square lattice plane physics (Anderson
1987). In its simplest form, the Hubbard model considers charged spin-1/2 fermions
(the electrons) residing on a lattice. These fermions can hop from site to site with a
probability amplitude of t . Being fermions, they are subjected to the Fermi exclusion
principle that forbids two fermions to reside in the same state. In the case of the
Hubbard model, the state of the fermion is described by its position on the lattice
and its spin state, traditionally described using the Sz = ±1/2 spin component. This
means that two fermions can only reside on one lattice site if they are of opposite
spin, in which case they strongly repeal each-other due to their electric charge cost-
ing a large (Coulomb) energy U . Despite its simplicity, the Hubbard model contains
all the ingredients that make the task of describing the physics of high-Tc cuprate
materials a formidable challenge: It mixes spin and charge degrees of freedom and,
for the regime relevant to cuprates, lacks a small variational parameter which would
allow some simple perturbative approach. These ingredients are nicely represented
as the model parameters, respectively the electron filling and the ratio between the
electron hopping matrix element t and the on-site Coulomb repulsionU . This ratio is
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though to be moderately small for the cuprate materials t/U ∼ 1/10. Thus to further
simplify the model, a first approach is to consider the states where two electrons
with opposite spin sit on the same site as high-energy ones and to project them out
from the Hilbert space. For the half-filled case where there is one electron per site,
this corresponds to getting rid of the charge degrees of freedom altogether. How-
ever this projection cannot be carried out exactly and is performed as an expansion
in tn/U n−1. This leads to another difficult model, the t-J model and its half-filled
version, the Heisenberg model. In this last case, the SpinWave Theory (SWT) can
be used to give an approximate solution which can be compared to experiments.

The problematic raised by high-Tc superconductivity lead to designing or dramat-
ically improving experimental techniques. Perhaps the best example is the Angle-
Resolved Photo-Emission Spectroscop (ARPES) technique able to directly probe
the electronic physics of the CuO2 plane. Another whose realization was strongly
motivated by the cuprate problem is the Resonant Inelastic X-ray Scattering (RIXS)
technique able to probe both magnetic and electronic degrees of freedom. Adding to
these the well-established Inelastic Neutron Scattering (INS) and Raman scattering
techniques, it appears that there are plenty of different available probes to tackle the
spectroscopic properties of the cuprate materials.

This work aims at addressing the conventional aspects of the magnetic excita-
tion spectrum of the insulating cuprate high-Tc parent compounds trying to bring a
determination of some microscopic parameters consistent with the constraints set by
the ARPES, RIXS, INS and Raman results. Looking at the ARPES and INS results
for the La2CuO4 (LCO) compound, some inconsistencies appear (Delannoy et al.
2009): The Fermi surface as determined by ARPES indicates that second and third
nearest neighbour hopping matrix elements have a significant amplitude compared
to the nearest neighbour hopping matrix element (Damascelli et al. 2003). On the
other hand, the magnon dispersion measured by INS indicates that, in the projection
of the Hubbard model onto the no-double-occupancy Hilbert space, fourth order
t4/U 3 correction bring important qualitative modifications of the magnetic exci-
tation spectrum (Coldea et al. 2001). The model parameters extracted from these
two approaches are incompatible (Delannoy et al. 2009): In particular the Coulomb
repulsion U found in INS for La2CuO4 (Coldea et al. 2001) is too small compared
to ARPES estimates. Importantly, the analysis of the INS magnetic spectrum did not
include further neighbour hopping matrix elements. New RIXS experimental results
soon showed that these discrepancies were not limited to the La2CuO4 compound
but were in fact even worse considering for instance the Sr2CuO2Cl2 (SCOC) or the
bi-layer compound Bi2Sr2YCu2O8 (BSYCO).

In this work, we followed the derivation of a low-energy magnetic model as
developed in MacDonald et al. (1998) and extended in the case of Hubbard models
with extended hoppings in Delannoy et al. (2009) in order to consistently analyze the
newly available magnetic spectra as obtained by RIXS following the development
of an unprecedented high-resolution spectrometer at the Swiss Light Source in the
Paul Scherrer institute. The focus is to use established theoretical techniques in
order to extract a detailed determination of the microscopic model parameters from
the measurement of magnetic spectra and confront it in particular to the electronic
measurements determination.
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2.2 Overview

We provide here a quick overview of this study.

• Experimental status: The cuprate materials LCO and SCOC have been measured
by ARPES and, for the former, by INS. The Fermi surface as measured by ARPES
(see Sect. 2.4.1) indicates that second and third nearest neighbor hopping ampli-
tudes must be considered in the t − J model (see Sect. 2.5). INS measurements
on LCO showed that extended magnetic couplings such as the ring-exchange term
must be included in the microscopic magnetic model to account for the magnon
dispersion. This corresponds to fourth order terms in the strong coupling pertur-
bation theory of the Hubbard model. The constraints set by the ARPES and INS
measurements are inconsistent. For instance considering the t − J model as the
effective theory of the Hubbard model (see Sect. 2.5.3), the Coulomb repulsion as
found from fitting the Fermi surface measured by ARPES is inconsistent with the
one found from fitting the magnetic excitation spectrum from INS. New results of
the SCOC material magnon dispersion from RIXS show an even larger discrep-
ancy. In that last case theHubbardmodel parameters as found by fitting themagnon
dispersion would inconsistently put SCOC out of the Mott insulating phase.

• Low energy theory: To reconcile the microscopic parameter determinations from
electronic and magnetic excitation spectra, we develop an effective low energy
theory for the extended Hubbard model including second and third nearest neigh-
bor hopping amplitudes (see Sect. 2.6). This calculation is carried out through the
unitary transform technique to fourth order in t/U . The resulting effective spin
model at half filling is a Heisenberg model including extended magnetic inter-
actions. In particular a large family of ring exchange couplings involving first,
second and third nearest neighbor hopping amplitudes arise. The effective spin
Hamiltonian is approximately diagonalized using SWT including first order 1/S
quantum corrections (see Sect. 2.7).

• Experimental data fitting: Using the SWT result, we fit the dispersion relation
of LCO from INS measurements and of SCOC and BSYCO from RIXS mea-
surements (see Sects. 2.8.1 and 2.8.2). The fitting parameters are the microscopic
model parameters of the extended Hubbard model. As the fit is under-constrained,
we obtain a family of solutions, more precisely a line of solutions. We choose to
parametrize these solutions as a function of the Coulomb repulsion U . The fitting
results show that strong constraints are imposed on the amplitude of U while the
ratio t/U ∼ 1/10 stays rather constant for all solutions. These results are then
compatible with ARPES ones (see Sect. 2.8.3).

• Predictions: Having determined consistent microscopic parameters, we then pro-
duce a number of predictions and compare themwith available ARPES, RIXS and
Raman experimental results (see Sects. 2.8.4 and 2.8.5).
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2.3 The Cuprates Materials

The cuprate material class regroups various ceramic compounds which share a lay-
ered structure of copper-oxides planes separated by various rare earth elements. A
very large interest arose when an unexpectedly high temperature superconductiv-
ity was discovered for the compound BaxLa5−xCu5O5 (Bednorz and Müller 1986)
at 35K, about 15K above the highest superconducting temperature known at that
point for Nb3Ge thin films (Muller 1980). Soon similar compounds were found to
also achieve superconductivity at higher temperature culminating at about 130K
(Schilling et al. 1993) less than a decade later. These high critical temperatures are
well above 30K, traditionally accepted as an upper-bound for conventional phonon-
mediated superconductivity raising hopes that room temperature superconducting
materials could be discovered in the future. After two decades of intensive research,
the mechanism driving the electron pairing, a prerequisite for superconductivity, still
remains highly controversial as the absence of isotope effect shed important doubts
about the possibility of a conventional phonon-based mechanism (for reviews see
Dagotto 1994 or Scalapino 2012).

The structure of the cuprate materials consists of layers of one or more CuO2

planes stacked together with large interstitial rare-earth ions which isolate the cop-
per oxides layers from each others. As a result the physics of the cuprate materials is
dominantly two-dimensional. The copper oxides planes are made of copper embed-
ded in a octahedral cage of oxygens ions. The octahedra can be either edge- or
corner-sharing the latter forming a checkerboard pattern (Fig. 2.1). The oxidation
state of the copper ion is Cu2+ which means that 9 electrons populate its 3d valence
shell (Fig. 2.2). The octahedral crystal field induced by the oxygens breaks the spher-
ical symmetry of the 3d shell and results in the splitting of the 3d energy levels into
the two groups of six (spin degree of freedom included) t2g and of four eg levels
(Fig. 2.3). In this reduced symmetry, the electronic states are conveniently labeled by
the cubic harmonics orbitals. The slight elongation of the octahedra in the perpen-
dicular direction from the plane further causes a splitting between the eg 3dz2−r2 and
3dx2−y2 orbitals, the latter having the highest energy which can be understood simply
considering where the lobes of the copper 3d orbitals point with respect to the neigh-
bouring oxygen 2p orbitals. Filling up the 9 electrons, one sees that the state of the
Cu2+ ions has a single electron in the 3dx2−y2 orbital with a spin-

1
2 degree of freedom

and all other orbitals are filled. The situation where every copper ion is in this local
state is referred as half-filling while situations where some copper ions have either
more or less electrons are referred as electron-doped and hole-doped, respectively.
It is in the electron- or hole-doped cases that superconductivity has been observed.

We reproduce in Fig. 2.2 the generic cuprate phase diagram. A striking aspect
of the cuprate family is the proximity between the superconducting phase and the
insulating antiferromagnetic phase where each copper ion hosts on average a spin-↑
or a spin-↓ in a staggered manner. This proximity inspired the idea that the electron
pairing mechanism might be of magnetic origin (Anderson 1987) in contrast with
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Fig. 2.1 Sketch of the oxygen (blue) octahedra surrounding the copper (orange) ions. Left edge-
sharing octahedra. Right corner-sharing octahedra (color online)

Fig. 2.2 Generic phase
diagram for the cuprate
materials. SC stands for the
superconducting phase and
AF for the antiferromagnetic
one. The pseudogap phase is
a badly metallic one where
the density of states close to
the Fermi surface is strongly
suppressed

Fig. 2.3 Splitting of the
Cu2+ 3d orbitals in the
reduced symmetry of the
octahedral environment
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conventional superconductivity where it is the electron-phonon interaction which
results in electron pairing.

In this work we will focus on the antiferromagnetic phase of the cuprate materials
seeking a microscopic model to account for available experimental data.

2.4 Electronic and Magnetic Measurements

We give here a short description of some of the different techniques that allowed
an experimental insight into the electronic and magnetic properties of the cuprate
materials. We also give short reviews of some of the achieved experimental results
that we will try to address in the rest of the chapter.

2.4.1 Angle-Resolved Photo-Emission Spectroscopy

Angle-Resolved Photo-Emission Spectroscopy (ARPES) has been a very successful
techniques for characterizing materials including, for our topic, the cuprates (for a
review see Damascelli et al. 2003 or Lu et al. 2012). The photoemission process is a
fundamental manifestation of the quantum nature of photons and electrons. Histori-
cally this effect lead to the discovery of light quantization (Einstein 1905), a prereq-
uisite for the quantum mechanics revolution of modern physics. In a photoemission
event, light is absorbed by amaterialwhich as a result emits excited electrons.ARPES
additionally keeps track of the emitted electrons energy and angle with respect to the
incident light beam and sample orientation. This allows to resolve the momentum of
the electrons. The ARPES intensity is then a function of the electron momentum k
and energy �ω and can be expressed as:

I (k, ω) = I0(k, ν, A) f (ω)A(k, ω) (2.4.1)

This formula is valid in the so-called sudden approximation, where the photoelectron
do not further interact with the material once excited away from its material equilib-
rium state. I0 is the matrix element describing the light-matter interaction (the probe
function), ν the incident light frequency and A the electromagnetic vector poten-
tial. f (ω) is the Fermi function which express the fact that only occupied electronic
states can give rise to a photoemission event. Finally A(k, ω) is the spectral function
associated with the one-particle retarded Green function, an intrinsics property of
the material unrelated to the probe

G R(k, t) = i�(t)
〈{

ck(t), c†k(0)
}〉

(2.4.2)
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whose time Fourier transform is related to the spectral function as

G R(k, ω) =
∫

dε
A(k, ω)

ω − ε + i0+ (2.4.3)

A(k, ω) = − 1

π
Im

[

G R(k, ω)
]

. (2.4.4)

More explicitly, the total spectral function is the sum of the electron removal and
addition spectral functions A−(k, ω) and A+(k, ω)

A(k, ω) =A+(k, ω) + A−(k, ω) (2.4.5)

A±(k, ω) =
∑

m

∣
∣
〈

�N±1
m

∣
∣ c±

k

∣
∣�N

i

〉∣
∣
2
δ(ω − E N±1

m + E N
i ) (2.4.6)

where
∣
∣�N

i

〉

is the initial material N particles state with initial energy E N
i ,

∣
∣�N±1

m

〉

a possible final material eigenstate indexed by m with N ± 1 particles and energy
E N±1

m , and c+
k = c†kσ and c−

k = ckσ are respectively the creation and annihilation
operators of an electron with momentum k and spin σ . While in Eq.2.4.1 the ARPES
intensity thus seems to include both the electron removal and addition contributions,
the latter are formally extinguished by the fermi function f (ω) at low temperature.
Direct ARPES measures the electron removal probability as a function of energy
and momentum. If the matrix element I0(k, ν, A) is known, it allows to extract the
electron removal spectral function A−(k, ω) or equivalently at low temperature the
total spectral function multipied with the Fermi function f (ω)A(k, ω). If the c±

k
operators correspond to the system quasiparticle creation and annihilation operators
so the initial and final states could be written as

∣
∣�N

i

〉 =
∏

{k}
c†k|0〉

∣
∣�N−1

m=k

〉 =
∏

{k′ �=k}
c†k′ |0〉 (2.4.7)

Then the ARPES signal would be essentially a delta function

I −(k, ω) ∼ δ(ω − ωk) (2.4.8)

where ωk is the electron dispersion relation in the material. In this example the sys-
tem is made of non-interacting electrons forming bands. For a correlated electron
system, the excited state

∣
∣�N−1

〉 = ckσ

∣
∣�N

i

〉

will not be an eigenstate and therefore
overlap with many

∣
∣�N−1

m

〉

resulting in a broadening of the ARPES signal. This is
often referred to as self-energy effects as the ARPES results are commonly inter-
preted on the basis of a band picture (non-interacting electrons) and the interaction
introduced perturbatively in the Green function formalism. Considering a system
Hamiltonian with a diagonal kinetic term and some non-magnetic interaction treated
perturbatively:

H =
∑

k

ωkc†kck + V̂ (2.4.9)
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the Green function of the unperturbed system is

G R
0 (k, ω) = 1

ω − ωk + i0+ . (2.4.10)

Introducing the perturbation through the Feynman diagram technique leads to the
Dyson equation

G R(k, ω) =
[(

G R
0 (k, ω)

)−1 − 
(k, ω)
]−1

(2.4.11)

where 
(k, ω) is the self energy. Because the above system has only one band
and the interaction is non-magnetic, G R(k, ω), G R

0 (k, ω) and 
(k, ω) are scalars.
Introducing theDyson equation into Eq.2.4.4 leads to the popular formof the spectral
function in terms of the self-energy:

A(k, ω) = − 1

π

Im(
(k, ω))

[ω − ωk − Re(
(k, ω))]2 + [Im(
(k, ω))]2
. (2.4.12)

Thus if one can extract from ARPES the total spectral function, it might allow for
a determination of the self-energy function, a key quantity encoding the many-body
correlation.Of coursewhat directARPES reallymeasures is I0(k, ν, A) f (ω)A(k, ω)

and approximations must be made to obtain the total spectral function (Norman et al.
1999). We shortly review below two important results from ARPES experiments on
cuprates that will be referred to in the following development.

2.4.1.1 Single Hole Dispersion in the Antiferromagnetic Phase

The motion of a single hole on top of the antiferromagnetic background of the
undoped (half-filled) cuprate Sr2CuO2Cl2 has been reported in various articles (Wells
et al. 1995; LaRosa et al. 1997) and compared to a t −t ′−t ′′− J model using the self-
consistent Born approximation (Tohyama and Maekawa 2000). A good agreement
has been found for the model parameters t = 0.35, t ′ = −0.12, t ′′ = 0.08 and
J = 0.14eV. We will discuss in Sects. 2.5.3 and 2.8.4 how this result can be related
to our work.

2.4.1.2 Waterfall Feature in the Doped and Undoped Cuprates

The cuprates quasiparticle dispersion measured by ARPES displays a kink between
80 and 400meV (Ronning et al. 2005; Graf et al. 2007) that has been interpreted
either as an ARPESmatrix element effect on top of a shallow quasiparticle bare band
with t = 0.23eV (Inosov et al. 2007) or as an intrinsics self-energy effect on top of
strongly dispersing quasiparticle bare band with t = 0.48eV (Chang et al. 2008). In
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the Sect. 2.8.4 we will address whether our results can possibly shed light into this
controversy.

2.4.2 Inelastic Neutron Scattering

Inelastic Neutron Scattering (INS) is an extremely successful technique able to probe
detailed properties of magnetic materials. Neutrons produced through nuclear events
such as fission or proton irradiation get scattered by the sample where the initial
and final neutron energy and momentum can be controlled in various experimental
geometries. The scattering can either result from nuclear interaction between the
neutrons and the sample nuclei or from the small dipole-dipole interaction between
the neutron spin- 12 and the magnetic ions of the sample. This last scattering process
is the one of interest to us as it gives rise to a signal that can be traced back to the
intrinsic magnetic properties of the sample. Compared to other techniques, magnetic
INS has the special characteristic that there is nothing unknown about the probing
mechanism which is very accurately accounted for by the simple Fermi golden rule.
The signal is given by the neutron scattering differential cross-section:

d2σ

d�dω
= (γ r0)

2 k f

ki

∣
∣
∣
g

2
F(q)

∣
∣
∣

2
exp(−2W (q))

∑

αβ

(δαβ − q̂α q̂β)Sαβ(q, ω)

(2.4.13)

where γ is the neutron dipole moment in units of nuclear magneton μN , r0 = e2

mec2

is the classical electron radius, g is the Landé g-factor, F(q) is the magnetic form
factor, W (q) is theDebye-Waller factor and (δαβ −q̂α q̂β) is a geometric factor related
to the form of the dipole-dipole interaction. The most important part of the above
formula is the dynamical structure factor Sαβ(q, ω) which is the material-intrinsic
part of the INS signal while all the rest broadly relates to the probing mechanism
and is known more or less exactly. The dynamical structure factor is given by:

S(q, ω) = 1

2π

∫

dteiωt
∑

i j

eiq(R j −Ri )〈Sα
i (t)Sβ

j (0)〉 (2.4.14)

=
∑

λλ′
ρ(λ)

∑

i j

eiq(R j −Ri )〈λ|Sα
i |λ′〉〈λ′|Sβ

j |λ〉δ(�ω − Eλ′ + Eλ) (2.4.15)

and can be understood as the time and space Fourier transform of the spin-spin corre-
lation function 〈Sα

i (t)Sβ

j (0)〉. Through this quantity, the internal correlated structure
of the local spins can be both experimentally probed and theoretically predicted pro-
viding a unique platform where experiments and theory can meet on solid ground.

In the context of the cuprates, magnetic neutron scattering brought important
information both in the doped and undoped case. We focus here on the undoped
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results which characterize the properties of the square lattice antiferromagnet. A
detailed study of the square lattice antiferromagnet INSmagnetic spectrum is carried
out in Chap.1 which was motivated by important peculiarities of the INS spectrum
which fall out of the scope of this part. The dynamical structure factor takes a quite
simple form when the system can be described in the spin-wave approximation. It
becomes

S(q, ω) = I (q)δ(ω − ωq) (2.4.16)

where I (q) is a q-dependent intensity and ωq is the dispersion relation of bosonic
excitations known as spin-waves, a propagating disturbance of the antiferromagnetic
order. INS experiments could accurately measure the spin-wave dispersion of the
La2CuO4 cuprate material (Coldea et al. 2001; Headings et al. 2010) and consistently
relate it to a microscopic one band Hubbard model with parameters t = 0.3 and
U = 2.2eV. A striking aspect of the measured spin-wave dispersion is the so called
magnetic zone boundary dispersion, the variation of the spin-wave energy along the
line q = (l, π − l), l ∈ [0, π ], which is as large as 20meV in La2CuO4. This is
in complete contradiction with spin-wave theory based on the Heisenberg model
which predicts no dispersion at all. This result was the proof that, in the case of the
cuprates where the interaction energies are large, more complicated interactions of
the magnetic moments must be included in the model. We will come back to this in
Sect. 2.8.

2.4.3 Raman Scattering

The Raman scattering technique is a photon-in photon-out techniques which uses
polarized visible light produced with lasers. Light has the advantage to couple
strongly to the valence electrons and can thus probe a large spectrum of excita-
tions ranging from phonons, electronic excitations and magnons. The excitations
have zero total momentum because the small momentum carried by visible light
photons. For magnetic scattering on the square lattice antiferromagnet, the measure-
ments are most often carried out in the so-called B1g geometry where the incident
light is linearly polarized with the electrical and magnetic components of the field
point at 45◦ in-between the square lattice x̂ and ŷ translation vectors (Devereaux and
Hackl 2007). In this geometry the interaction of light with the magnetic degrees of
freedom is (Canali and Girvin 1992):

� = B

2
P(Ein, Esc)

∑

j

S j · (S j+ŷ − S j+x̂
)

(2.4.17)

where P(Ein, Esc) is a function of the incident and scattered light electrical field
vectors. We see that, on top of momentum-conservation, the excitations also con-
serves the z component of the total spin

∑

j Sz
j so the excitations must carry zero

http://dx.doi.org/10.1007/978-3-319-26419-6_1
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spin �S = 0. We can thus already conclude that single magnon which are �S = 1
excitations cannot be observed. The lowest order magnetic excitations which can be
observed will therefore be two-magnons. We also see that the correlation functions
probed by Raman scattering will be much more complicated as, using the Fermi
golden rule, the intensity will be

I (ω) ∼
∫

dωeiω(t) 〈ψ0| �(t)�(0) |ψ0〉 (2.4.18)

where, by comparison to the INS cross-section Eq.2.4.14, the operator �(t)�(0)
is quartic in spin operators instead of quadratic. We follow here Canali and Girvin
(1992) to give a brief account of the two-magnon Raman peak. Expressing Eq. 2.4.17
using the magnon operators will produce two-magnons terms as well as higher order
ones. Restricting to the two-magnons part and neglecting magnon-magnon interac-
tion gives:

I (ω) ∼
∑

k

γ̃k
2

ε2k
δ(ω − 2εk) (2.4.19)

where εk is the magnon dispersion and γ̃k = 1
2

(

cos(ky) − cos(kx )
)

. This is very
similar to Eq.2.4.16 except that in the δ-function we have the joint energy of a k and
−k magnon pair so the formula looks like a weighted density of states of the zero
momentum two-magnons pairs which is peaked at twice themagnetic zone boundary
energy 4Zc J . Including the magnon-magnon interaction will, in a RandomPhase
Approximation (RPA) (Canali and Girvin 1992), effectively shifts to lower energies
theRaman two-magnons peak to 3.37J , a 36.8%rather large energy renormalization.
By approximating the effective model for undoped cuprates to the simple nearest-
neighbour Heisenberg model, the position of the measured Raman two-magnon peak
then gives an approximate of the magnetic coupling J , found to be of about 124meV
in La2CuO4, which is small if compared to themagnetic zone boundary energy found
by INS indicating JN N = 140meV (Coldea et al. 2001; Headings et al. 2010). This
issue was further resolved by extending the RPA procedure from Canali and Girvin
(1992) including a ring exchange term (Katanin and Kampf 2003).

2.4.4 Resonant Inelastic X-Ray Scattering

Resonant Inelastic X-ray Scattering (RIXS) is a technique made available by the
improved brilliance of X-ray radiation produced in third generation sychrotrons.
The technique, similarly to Raman scattering, is a photon-in photon-out technique
but where the much higher photons energy allows momentum transfer and is thus an
angle-resolved technique. Another big difference with Raman scattering is that the
scattering event is produced by a second order process (the resonance) not accounted
for by the Fermi golden rule. In RIXS, the incoming photon energy is tuned to an
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absorption edge of the sample material, that is a specific energy which will bring a
core electron to the valence shell for one of the elements in the sample. In the context
of the cuprates, the absorption edges considered are the Cu L3-edge and the oxygen
K-edge. The most successful experiments used the copper L3 edge as it allows single
magnon scattering. The RIXS process is illustrated on Fig. 2.4. The incident photon
creates a copper core hole in the Cu 2p shell and an excited electron in the Cu 3d
valence shell. During its life-time the copper core hole can exchange spin angular
momentum for orbital angular momentum due to spin-orbit coupling. As a result, the
core hole might decay with a valence shell electron with opposite spin thus creating a
�S = 1 excitation. This second order process and the related RIXS intensity can be
modeled by the Kraemer-Heisenberg formula (Forte et al. 2008; Ament et al. 2009;
Haverkort 2010)

d2σ

d�dω
∼ lim

η→0+

∑

f

∣
∣
∣
∣
〈 f |T †

εo

1

ωi + Ei + iη/2 − H
Tεi |i〉

∣
∣
∣
∣

2

δ(ωi − ωo + Ei − E f )

(2.4.20)

where the εi(o) stands for the incoming (outgoing) photon polarization and Tε the
optical transition operator A · p where A is the photon vector potential and p the
electron momentum operator. |i〉 and | f 〉 respectively stand for the initial and final
states. H is the intermediate state Hamiltonian describing the excited system with
a core-hole and excited electron pair. Various theoretical approaches tackled the
theoretical problem of giving practical estimates for Eq. 2.4.20 (Forte et al. 2008;
Ament et al. 2009; Haverkort 2010; Nomura and Igarashi 2005).

Fig. 2.4 Schematic cartoon of the RIXS second order scattering process. An incoming photon
promotes a Cu 2p core hole into the valence Cu 3d shell. During its life-time, the core hole can
exchange spin angular momentum for orbital angular momentum through the spin-orbit interaction.
A possible final state has a flipped spin in the Cu 3d valence shell corresponding to a �S = 1
excitation
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Fig. 2.5 RIXS spectra of the
Sr2CuCl2O2 cuprate from
Guarise et al. (2010). The
insert shows the x-ray
absorption spectrum which
highlights the absorption
edge for incident photons at
about �ν ∼ 930.8eV

In the following, we are only interested in the magnon dispersion and not in the
intensity nor lineshape analysis of the RIXS spectrum. A typical RIXS spectrum for
the Sr2CuO2Cl2 is shown in Fig. 2.5 (figure fromGuarise et al. 2010). Several energy
scales are present. In the range 1.2–2.5eV are the d −d orbital excitations which are
related to the octahedral crystal field. Not shown on the left are the charge transfer
excitations corresponding to creating a hole on the oxygen 2p valence shell and a
fully occupied Cu 3d valence shell. But the most interesting energy scale for us is
0 − 1eV which shows a dispersing peak for q = (x, 0) x ∈ [−π, π ] which we can
identify with the magnon dispersion. In Sect. 2.8 we will show various RIXS results
which we will analyse with the theory developed below.

2.5 Microscopic Electronic Models

I describe here models that are the starting point of the effective theory derived
below. These models already are a drastic simplification of the physical system. The
atoms position is considered fixed to the lattice points, thus phonon physics is not
considered. From all the electronic degrees of freedom, it assumed that only the
valence electrons participate in the low-energy physics while the other electrons are
left in their atomic orbital state.
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2.5.1 The Hubbard Model

TheHubbardmodel is one of the simplestmicroscopicmodel to describe electrons on
a lattice. The electrons state is written in the basis of one spin-degenerate local orbital
per site. The electrons may tunnel from adjacent sites orbital and are repelling each
others whenever two occupy the same site, therefore with opposite spins. In second
quantized form, the Hamiltonian is:

H = −t
∑

〈i, j〉,σ

(

c†iσ c jσ + h.c.
)

+ U
∑

i

ni↑ni↓ (2.5.1)

with t the tunneling probability amplitude andU the on-site Coulomb repulsion. The
model parameters are electron filling and the ratio t/U . In this work we will only
consider the half-filled case with one electron per site. If t/U is large, then one might
introduce the Coulomb repulsion perturbatively. To zeroth order, the Hamiltonian is
diagonalized simply by considering the canonical transformation:

ckσ = 1√
N

∑

i

ei Ri ·kciσ (2.5.2)

c†kσ = 1√
N

∑

i

e−i Ri ·kc†iσ (2.5.3)

which leads to a metallic system with a single band:

H =
∑

kσ

εkc†kσ ckσ (2.5.4)

εk = − 1

2

∑

τ

tτ eiτ ·k (2.5.5)

where τ is the hopping translation vector. Turning on U can then be done by for
instance the Random Phase Approximation (Hirsch 1985). Without going so far, it is
interesting to see the case of the half-filled square lattice in the absence of Coulomb
interaction. In that case the electron dispersion relation is:

εk = 2t (cos(kx) + cos(ky)). (2.5.6)

Filling all spin-↑ and spin-↓ results in the Fermi level being at εF = 0 which results
in a perfectly nesting Fermi surface with the wave-vector Q = (π, π) (Fig. 2.6). As
a result, already looking at the non-interacting Lindhardt magnetic susceptibility:

χ0(q, ω) = lim
δ→0

∑

k

f (εk) − f (εk+q)

�ω − εk + εk+q + iδ
(2.5.7)
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Fig. 2.6 Band structure of the non-interacting Hubbard model on the square lattice. At half-filling
the Fermi surface is perfectly nesting with Q = (π, π)

we see that the system has an instability towards anti-ferromagnetic ordering
since the divergence of χ0(q = (π, π)) indicates the linear response to an anti-
ferromagnetically alternating applied field.

Wenow turn to the strong coupling limitwith t/U  1. In this limit, the number of
Double Occupancys (DOs) defines sectors of the Hilbert space separated by the large
Coulomb repulsion energy U . Therefore at low temperature the number of double
occupations should be a good quantum number and the lowest energy subspace is
obtainedwhen there is theminimum ofDOs as permitted by the filling. The Coulomb
interaction V = U

∑

i ni↑ni↓ is diagonal in this subspace while the kinetic term

K = −t
∑

〈i, j〉,σ
(

c†iσ c jσ + h.c.
)

can be treated as a perturbation. If we denote |α〉
and |β〉 two states belonging to the lowest energy sector of the Hubbard model we
have:

〈α|H |β〉 = 0 + 〈α|K |β〉 +
∑

γ

〈α|K |γ 〉〈γ |K |β〉
E0 − Eγ

+ · · · (2.5.8)

up to second order perturbation theory. In the case of half-filling, the first order
correction does not contribute since K |β〉 must have a DO while |α〉 has none. In
the second order correction, E0 and Eγ are the energy of the |α〉 (|β〉) and |γ 〉 states
in the unperturbed Hamiltonian V respectively. Since K necessarily creates a DO
when applied on states without any DO at half-filling, |γ 〉 must have a DO to have a
finite matrix element 〈γ |K |α〉 and Eγ = U . The effective Hamiltonian up to second
order perturbation theory is therefore
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H (2)
eff =

∑

α,β

1

U
|α〉〈α|K 2|β〉〈β| (2.5.9)

As |α〉 and |β〉 have no DO or empty sites, this effective Hamiltonian works on the
same Hilbert space as spin operators. It can be “translated” from fermionic operators
to spin operators giving the antiferromagnetic Heisenberg model

H (2)
eff =J

∑

〈i, j〉

(

Si · S j − 1

4

)

(2.5.10)

J =4t2

U
. (2.5.11)

It is thus seen that adding the kinetic energy perturbatively will lift the degeneracy
between the different spin configurations favoring to first approximation an antiferro-
magnetic arrangement. The reason for this is that the system can gain energy through
the virtual hoppings such as in Eq.2.5.9. But the virtual hoppings are only allowed
when nearest-neighbors are of opposite spin, due to the Pauli exclusion principle
which forbids two fermions of same spin state to occupy the same site.

Now turning to the doped case where holes are added, one can perform the
same kind of effective perturbation theory development. The first order perturba-
tion 〈α| K |β〉 will now contribute by exchanging an electron and a hole while the
second order perturbation will generate more complex hops, the so called three-
sites term. Altogether the effective Hamiltonian of the Hubbard model in the strong
coupling limit with finite doping is a t − J -like model:

H (2)
eff = −

∑

〈i, j〉σ
PD=0

(

ti j c
†
iσ c jσ + h.c.

)

PD=0 + J
∑

〈i, j〉

(

Si · S j − 1

4
ni n j

)

− J

4

∑

j,τ �=τ ′,σ

PD=0

(

c†j σ̄ c j σ̄ c†j+τσ c j+τ ′σ + c†j+τ σ̄ c j σ̄ c†jσ c j+τ ′σ

)

PD=0

(2.5.12)

where
PD=0 =

∏

i

(1 − ni↑ni↓) (2.5.13)

is the Gutzwiller projector. This model, especially due to the presence of the
Gutzwiller projection, constitutes a great theoretical challenge and is the starting
point of many of the high-Tc theoretical proposals (Lee et al. 2006).
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2.5.2 The d- p Model

In this model only the copper 3dx2−y2 and the oxygen 2px and 2py orbitals are con-
sidered. If not considering overlaps between the orbitals, thus no hopping processes,
the groundstate has filled oxygen 2p orbitals and half-filled copper 3dx2−y2 orbitals
(Fig. 2.7a, c). It is highly degenerate as the half-filled copper orbital retains a spin
degree of freedom. When considering overlaps, the relative energy of the half-filled
copper orbital with the filled oxygen ones is important as it changes the nature of
the lowest energy excitations. In the case where the energy of the filled oxygen
orbitals is lower than that of the half-filled copper, the lowest energy excitation cor-
responds to making an electron hop from a copper site to an other, creating a double
occupancy with energy Ud (Fig. 2.7b). This is the Mott-Insulator scenario where the
oxygen bands could simply be projected out in a further effective theory leading to
the Hubbard model (2.5.1) where the hopping amplitude t will be some function of
the copper-oxygen and oxygen-oxygen hopping amplitudes considered in the d-p
model. On the other hand, if the filled oxygen orbitals have a higher energy than
the half-filled copper one by �p, then the lowest energy excitation corresponds to
bringing an electron from the oxygen to a neighbouring copper orbital. Relative to
the previous scenario, the excitation energy is thus Ud − �p (Fig. 2.7d). This is the
charge-transfer insulator scenario. X-ray absorption spectroscopy (Tranquada et al.
1987) experiments showed that the cuprate materials belong to the second case and
are thus charge-transfer insulators such that the adequate effective model is the d-p
model (Zaanen et al. 1985; Emery 1987). Rather than looking at the electron pic-
ture, it is also convenient to look at the hole picture on Fig. 2.8. The ground state of
both the Mott insulator Fig. 2.8a and of the charge transfer insulator Fig. 2.8c have
one hole per copper ion. In the Mott insulator scenario, the lowest energy consists
of putting two holes on a copper ion, consequently creating a double occupancy of
electrons on a neighbouring copper ion. In the charge transfer scenario, the lowest
energy excitation consists of putting a hole on an oxygen ion. This leaves a doubly
occupied copper ion costing an energy Ud but releases an energy of �p by putting a
hole on the oxygen ion. The total energy of putting a hole on the oxygen ion from a

Fig. 2.7 Schematics of the Mott insulator and charge transfer insulator scenario. a Ground state of
the Mott insulator. b Lowest energy excitation of the Mott insulator. The oxygen orbital does not
participate and can thus be integrated out of the model. c Charge transfer insulator ground state.
d Lowest energy excitation of the charge transfer scenario. Compared to the direct copper-copper
hop, this excitation energy is reduced by �p
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Fig. 2.8 Schematics of the Mott insulator and charge transfer insulator scenario in the hole picture.
a Ground state of the Mott insulator. b Lowest energy excitation of the Mott insulator. Putting
two holes on a Cu site means creating another doubly occupied site. The oxygen orbital does not
participate and can thus be integrated out of the model. c Charge transfer insulator ground state.
d Lowest energy excitation of the charge transfer scenario. Compared to the direct copper-copper
hop, this excitation energy is reduced by �p

copper one is thus� = Ud −�p. Putting the energy reference at the singly occupied
copper ion, if �p is negative, then this is a higher energy excitation than the Mott
one (Mott scenario) but if �p > 0 it is lower (charge transfer scenario). The model
is written in the hole picture as:

Hdp = − tdp

∑

〈i, j〉σ

(

d†
iσ p jσ + h.c.

)

− tp

∑

〈 j, j ′〉σ

(

p†
jσ p j ′σ + h.c.

)

+ t ′
p

∑

〈〈 j, j ′〉〉σ

(

p†
jσ p j−σ + h.c.

)

+ �
∑

jσ

n p, jσ

+ Ud

∑

i

nd,i↑nd,i↓ + Up

∑

j

n p, j↑n p, j↓ + V
∑

〈i, j〉
nd,i n p, j (2.5.14)

where diσ and p jσ are respectively the destruction operators of a hole with spin σ in
copper site i 3dx2−y2 orbital and oxygen site j 2px or 2py orbital, n p, jσ = p†

jσ p jσ

counts the number of spin σ holes on the 2px/y orbitals at site j , nd,iσ = d†
iσ diσ

the same for the copper 3dx2−y2 at site i and nd,i = (nd,i↑ + nd,i↓) and n p,i =
(n p,i↑ + n p,i↓). Other than the constants already defined in Fig. 2.7, we find: a 2p-
orbital Coulomb repulsion Up is introduced, a neighbouring copper and oxygen
Coulomb repulsion V and the hopping amplitudes coming from the orbitals overlap
tpd , tp and t ′

p (Fig. 2.9).

Fig. 2.9 The CuO2 plane
with the relevant orbitals and
hopping parameters
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We now consider the strong coupling limit at half filling. This limit corresponds
to Ud � tpd and Ud − �p � tpd . In that case we can see that the state which has a
double occupancy on the copper ion and a hole on the oxygen (Fig. 2.7d) will be of
high energy and should be projected out in an effective theory. To the zeroth order,
any copper spin configuration is a groundstate. But introducing virtual hoppings in a
perturbativemanner in tpd/Ud and tpd/(Ud −�p) leads to the followingHamiltonian
which will lift the degeneracy between the different spin configurations (Zhang and
Rice 1988):

H =J
∑

〈i, j〉
Si · S j (2.5.15)

J = 4t4pd

Ud − �p + V

(
1

Ud
+ 2

2(Ud − �p) + Up

)

(2.5.16)

which corresponds to the fourth order in perturbation series. The Hamiltonian 2.5.15,
up to a constant, is again theHeisenbergmodel seen previously as the strong coupling
expansion of the Hubbard model 2.5.10. Thus, at half-filling, the purely magnetic
properties will be independent on whether the underlying electronic model is that of
a Mott Insulator or a Charge-Transfer Insulator.

Let us now turn towards the situation where holes are doped into the system.
Without considering the intra-orbital overlaps, the hole will simply go on the oxygen
site. But turning on the hopping matrix elements perturbatively will result in an
effective model where the pure doped hole on the oxygen is not the most favourable
state. Zhang and Rice (1988) showed that rewriting this effective model using a
special combination of the oxygen 2p orbitals surrounding a copper ion results in an
effective magnetic interaction between the copper ion and the surrounding oxygens.
The lowest energy state diagonalizing this effective magnetic interaction is called
the Zhang-Rice singlet and can be schematically represented as a hole delocalized
between a copper ion and its four surrounding oxygen ions. Other terms in the
effective Hamiltonian written in the localized Zhang-Rice singlet basis will generate
hoppings of the local singlet across neighbouring sites, which may be equivalently
regarded as the exchange of a localized copper spin and a hole. The estimation of
the hopping integral from the d − p model parameters is quite complex (Matsukawa
and Fukuyama 1989a) such that it may be better accounted for as a parameter which
must be fixed by experiments (Tanamoto et al. 1993). Putting together the half-filled
case and the doped case, we obtain the t − J model

H = −
∑

(i, j)σ

PD=0

(

ti j c
†
iσ c jσ + h.c.

)

PD=0 + J
∑

〈i, j〉
Si · S j (2.5.17)

where ciσ and c†iσ are the destruction and creation operators of the localized copper
spins. As before, the operator PD=0 is the Gutzwiller projection which enforces the
no double occupancy constraint.
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2.5.3 Relation Between the d − p and the Hubbard Model

In the Mott insulator scenario, the Hubbard model is simply the effective model one
obtains by projecting out the filled oxygen orbitals from the d − p model. But in the
relevant case for cuprates, the charge-transfer scenario, the relation between the two
models is not so simple. On the other hand, the two models, once taken in the strong
coupling limit, both result in a t − J -like model. The Hubbard model can nonetheless
not be considered as an effective theory of the d − p one. The t − J model Eq.2.5.17
and the strong coupling limit of the Heisenberg model differ by the two additional
terms found in the latter:

J

4

∑

〈i, j〉
ni n j (2.5.18)

and

− J

4

∑

j,τ �=τ ′,σ

PD=0

(

c†j σ̄ c j σ̄ c†j+τσ c j+τ ′σ + c†j+τ σ̄ c j σ̄ c†jσ c j+τ ′σ

)

PD=0. (2.5.19)

At half filling the first term is a constant and the second term identically zero because
of the Gutzwiller projection. For small doping, the first term remains nearly a con-
stant and it has been shown by variational Monte Carlo that the second term hardly
contributes (Yokoyama and Ogata 1996). In this work we will thus consider the Hub-
bard model as a phenomenological model. A drawback of this approach is that there
is no direct link between the phenomenological Hubbard model parameters and the
d − p ones. For instance, linking the phenomenological Hubbard model Coulomb
repulsion to the d − p model parameters as determined by some electronic measure-
ments will prove to be difficult. In the following, we will take a simpler approach.
For instance we will mention ARPES data analysed in terms of a t − J model.
To link this analysis to a Hubbard model we will simply deduce the corresponding
phenomenological Hubbard model parameters t and U such that its strong coupling
limit would result in the same t − J model.

2.6 Effective Low-Energy Theory

In this section we describe the development of the strong coupling effective low-
energy theory of the single band Hubbard model with an arbitrary set of hopping
amplitudes tτ along τ bonds defined as

H = −
∑

rστ

tτ T̂rτσ + U V̂ (2.6.1)

T̂rτσ =c†r+τσ crσ (2.6.2)
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V̂ =
∑

r

c†r↑cr↑c†r↓cr↓ (2.6.3)

where c†rσ and cτσ are the creation and annihilation fermion operators. Practical
choices for the hoppings can for instance include first, second and third nearest
neighbors on a square lattice. This is the case further on when this theory will be
applied for the specific case of the cuprates. Here we develop a theory which is
completely generic for any considered hoppings on any lattice. As seen before in
Sect. 2.5.1, the strong coupling limit tτ/U  1 expresses the fact that putting two
fermions on the same site (therefore with opposite spins) costs a very large energy
due to the Coulomb repulsion U compared to the energy one gains by letting the
fermions delocalize with a bandwidth W ∼ tτ .

The number of double occupancies is given by the operator V̂ defining subspaces
with very different energies. The Hubbard Hamiltonian in the strong coupling limit,
if expressed in a suitable basis, should thus commute with V̂ . Developing a low-
energy theory for the Hubbard model in the strong coupling limit thus only amounts
to finding an approximate change of basis Û such that the condition:

[

ÛH Û †, V̂
]

= 0 (2.6.4)

is approximately fulfilled.

2.6.1 The Unitary Transformation

The change of basis operator Û defines the new basis states as

|α〉 →|α′〉 = Û |α〉 (2.6.5)

〈α| →〈α′| = 〈α|Û †. (2.6.6)

In our case the states |α〉 are real space configurations of ↑, ↓, empty and doubly
occupied sites. A choice to enumerate them is, for instance on a two by two square
lattice:

(2.6.7)

(2.6.8)

To be sure the transformation is isomorphic and leads to an new orthonormal basis
set, we require that

〈β ′|α′〉 = 〈β|Û †Û |α〉 = δα,β (2.6.9)



110 2 Modeling the Spin-Wave Dispersion of Insulating Cuprate Materials

which imply that the transformation Û must be unitary:

Û−1 = Û †. (2.6.10)

This is formally achieved by defining the unitary transformation in the following
manner:

Û = ei Ŝ (2.6.11)

where Ŝ is a hermitian matrix. In the new bazsis set, the transformed Hamiltonian is
then written as

H ′ = ei ŜH e−i Ŝ (2.6.12)

=H + 1

1!
[

i Ŝ,H
]

+ 1

2!
[

i Ŝ,
[

i Ŝ,H
]]

+ · · · (2.6.13)

where Eq.2.6.13 is a standard combinatorics result (proof in Appendix B.1). In
Eqs. 2.6.11–2.6.13, i Ŝ is an unknown operator for which we ideally require that
Eq.2.6.4 is fulfilled which would mean that the transformed Hamiltonian H ′ con-
serves the number of double occupancies. Of course it is doubtful we would find a
way to exactly determine i Ŝ and are thus looking for an approximation. If we sup-
pose i Ŝ is proportional to a small parameter λ, then it might suffice to only find an
approximate transformation

Û (n) = ei Ŝ(n)

(2.6.14)

such that only the n first terms of Eq.2.6.13 do fulfill the conservation of the number
of double occupancy condition Eq.2.6.13.

In the original Hamiltonian Eq.2.6.1 it is immediatly visible that, applied on a
state without double occupancies, the kinetic term Eq.2.6.2 will create a double
occupancy. To better tackle the effect of the kinetic operator we split it in parts using
the occupation number operators

nrσ =c†rσ crσ (2.6.15)

h rσ =1 − nrσ . (2.6.16)

Left- and right-mutliplying the kinetic term by respectively nr+τ σ̄ +h r+τ σ̄ and nrσ̄ +
h rσ̄ results in

T̂rτσ =T̂ 1
rτσ + T̂ −1

rτσ + T̂ 0
rτσ (2.6.17)

T̂ 1
rτσ =nr+τ σ̄ c†r+τσ crσ h rσ̄ (2.6.18)

T̂ −1
rτσ =h r+τ σ̄ c†r+τσ crσ nrσ̄ (2.6.19)

T̂ 0
rτσ =nr+τ σ̄ c†r+τσ crσ nrσ̄ + h r+τ σ̄ c†r+τσ crσ h rσ̄ . (2.6.20)
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The new operators T̂ m
rτσ now have a more adequate meaning as it is easy to see that

T̂ 1
rτσ creates a double occupancy, T̂ −1

rτσ destroys one and T̂ 0
rτσ either move a double

occupancy or a hole. For instance taking σ =↑ we have:

(2.6.21)

(2.6.22)

(2.6.23)

(2.6.24)

where εα
rτσ is the fermionic sign attached to the hop of a spin ↑ from site r to site

r + τ in the state |α〉. The calculation of the fermionic sign is tied to the arbitrarily
chosen state enumeration convention. Defining the index i = x(r, σ ), the fermionic
sign attached to a hop of a fermion from state i = x(r, σ ) to j = x(r + τ , σ ′) is

εα
i j =(−1)Nα

i j (2.6.25)

Nα
i j =

max(i,j)−1
∑

k=min(i,j)+1

〈α|c†k ck |α〉. (2.6.26)

To ease the notations, we also define the more compact form of the hop operators

T̂ m =
∑

rτσ

tτ T̂ m
rτσ (2.6.27)

and remark the following properties:

[

V̂ , T̂ m
]

=mU T̂ m (2.6.28)
(

T̂ m
)† =T̂ −m . (2.6.29)
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The determination of the approximate unitary transform is then performed iteratively.
At order n:

H (n) = H +
[

i Ŝ(n−1),H
]

+ 1

2!
[

i Ŝ(n−1),
[

i Ŝ(n−1),H
]]

+ · · · (2.6.30)

such that terms that change the number of double occupancies are of order no less
than tn/U n−1 where tn is a shorthand notation for a nth order product of the various
tτ hopping amplitudes. To second order, we see that using

i Ŝ(1) = 1

U
(T 1 − T −1) (2.6.31)

will indeed result in

H (2) = V̂ +T̂ 0+ 1

U

([

T̂ 1, T̂ −1
]

+
[

T̂ 1, T̂ 0
]

+
[

T̂ 0, T̂ −1
])

+O(t3/U 2) (2.6.32)

where the first terms changing the number of double occupancies are 1
U

[

T̂ 1, T̂ 0
]

and 1
U

[

T̂ 0, T̂ −1
]

. We can further simplify this expression if considering only the

subspace with the minimum number of double occupancies allowed by the filling. If
|αL〉 belongs to this lowest-energy subspace, then

T̂ −1|αL〉 = 0 (2.6.33)

or more generally
T̂ m1 T̂ m2 . . . T̂ mk |αL〉 = 0 (2.6.34)

if
k

∑

i=1

mi < 0. (2.6.35)

Further on, if now considering specifically the half-filled case, we see that

T̂ 0|αL〉 = 0 (2.6.36)

or more generally
T̂ m1 T̂ m2 . . . T̂ mk |αL〉 ≡ 0 (2.6.37)

if

mk =0 or (2.6.38)
k

∑

i=l

mi <0 ∀l ∈ {1, . . . , k}. (2.6.39)
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Applying all these simplifications, we end with

H (2) = − 1

U

(

T̂ −1T̂ 1 + T̂ 0T̂ 1
)

. (2.6.40)

A systematic scheme to calculate higher order approximates of i Ŝ can be devised
(details in Appendix B.2) and leads to:

i Ŝ(3) = 1

U

(

T̂ 1 − T̂ −1
)

+ 1

U 2

([

T̂ 1, T̂ 0
]

−
[

T̂ 0, T̂ −1
])

+ 1

U 3

([

T̂ 0,
[

T̂ 0, T̂ 1
]]

−
[

T̂ 0,
[

T̂ 0, T̂ −1
]]

+ 1

4

[

T̂ 1,
[

T̂ 0, T̂ 1
]]

− 1

4

[

T̂ −1,
[

T̂ 0, T̂ −1
]]

+2

3

[

T̂ 1,
[

T̂ 1, T̂ −1
]]

− 2

3

[

T̂ −1,
[

T̂ −1, T̂ 1
]])

(2.6.41)

and to the effective low-energy Hamiltonian

H (4) = − 1

U
T̂ −1T̂ 1 + 1

U 2
T̂ −1T̂ 0T̂ 1

+ 1

U 3

(

T̂ −1T̂ 1T̂ −1T̂ 1 − T̂ −1T̂ 0T̂ 0T̂ 1

− T̂ −1T̂ −1T̂ 1T̂ 1/2
)

(2.6.42)

where terms of order t4/U 3 creating one ormore double occupancies have been omit-
ted as they will be destroyed at next order leaving the terms shown here unchanged.

2.6.2 Effective Spin Hamiltonian

At half filling we thus obtain to t4/U 3 order the Hamiltonian Eq.2.6.42 expressed
as a sum of a combination of hopping operators T̂ m which do not create any dou-
ble occupancy. Therefore the Hilbert space associated with Eq.2.6.42 has only the
σ ∈ {↑,↓} spin- 12 degrees of freedom per site. It follows that Eq. 2.6.42 can be
reformulated using the SU (2) invariant spin operators.

If we consider a system of N sites, the Hamiltonian Eq.2.6.42 can be represented
as a 2N × 2N matrix H in a given basis of states. The matrix itself can be seen as a
superposition of matrices with only one element:

H =
∑

i j

Hi j�i j
(

�i j
)

kl = δikδ jl (2.6.43)
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or if we associate the matrix �i j to the unit vectors �ei j of the basis spanning the
complex 2N × 2N matrices �2N :

�2N = {

�i j
}

(2.6.44)

we can equivalently write the matrix H in a vector form

�H =
∑

i j

H i j �ei j . (2.6.45)

In this language, reformulatingH in terms of spin operators is identical to performing
a change of basis for �H. Let us define the new basis of the 2N ×2N hermitian matrices
�H

2N :

�H
2N = {σ [m]} (2.6.46)

σ [m] =σ (1)
m1

⊗ σ (2)
m2

⊗ · · · ⊗ σ (N )
m N

(2.6.47)

whereσ (l)
ml

∈ {11, σ x , σ y, σ z} are thePaulimatrices plus the 2×2 identity 11 associated
with the site l spin- 12 degree of freedom. The unit vectors of the new �H

2N basis can
be written in the old one �2N as

�σ [m] = 1

2N/2

∑

i j

(σ [m])i j �ei j . (2.6.48)

We can verify that the new vectors are indeed orthonormal as:

�σ [m] · �σ [m ′] = 1

2N

∑

i j

∑

i ′ j ′
(σ [m ′])i ′ j ′(σ [m])∗i j �ei j · �ei ′ j ′

= 1

2N

∑

i j

(σ [m ′])i j (σ [m]) j i

= 1

2N
Tr

(

σ [m′]σ [m])

= 1

2N

∏

l

Tr(σ (l)
ml

σ
(l)
m ′

l
)

=
∏

l

δml m ′
l
. (2.6.49)

We can then rewrite �H in terms of �σ [m]:

�H = 1

2N/2

∑

{m}

(

�σ [m] · �H
)

�σ [m] (2.6.50)
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or in operator form,

HS = 1

2N

∑

{m}
σ [m]Tr(σ [m]H). (2.6.51)

To reformulateH (k) in terms of spin operators, wemust therefore evaluate its matrix
form on a specific cluster of N sites large enough to support the different hopping
processes contained inH (k). This calculation is carried out using an exact computer
implementation. To illustrate how it works, let us study the case of the hopping
process T̂ −1T̂ 0T̂ 0T̂ 1:

T̂ −1T̂ 0T̂ 0T̂ 1 =
∑

i1i2i3i4

∑

τ 1τ 2τ 3τ 4

∑

σ1,σ2,σ3,σ4

T̂ −1
i4τ 4σ4

T̂ 0
i3τ 3σ3

T̂ 0
i2τ 2σ2

T̂ 1
i1τ 1σ1

. (2.6.52)

Despite the apparent complexity from the many indices, only a very few subset of
those actually give a finite contribution. We consider the cluster of Fig. 2.10 with the
highlighted spins participating an exchange process. The initial state is denoted

|α〉 =
∣
∣
∣
∣

↑ ↓
↓ ↑

〉

. (2.6.53)

Reading T̂ −1T̂ 0T̂ 0T̂ 1 from right to left we can illustrate one possible exchange
process:

T̂ −1T̂ 0T̂ 0T̂ 1

∣
∣
∣
∣

↑ ↓
↓ ↑

〉

=T̂ −1T̂ 0T̂ 0

∣
∣
∣
∣

↑↓ ↓
− ↑

〉

(2.6.54)

=T̂ −1T̂ 0

∣
∣
∣
∣

↑↓ ↓
↑ −

〉

(2.6.55)

=T̂ −1

∣
∣
∣
∣

↓ ↑↓
↑ −

〉

(2.6.56)

=
∣
∣
∣
∣

↓ ↑
↑ ↓

〉

. (2.6.57)

Fig. 2.10 Example of a
cluster with the four spins
highlighted forming a closed
path through the hoppings
τ 1, τ 2, τ 3 and τ 4
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The last hop from Eqs. 2.6.56–2.6.57, which must annihilate a double occupancy and
a hole, require that the double occupancy and the hole do not separate far enough that
no hopping is available for T̂ −1 to be able to operate. The translation vectors τ i must
therefore form a closed path for the operator T̂ −1T̂ 0T̂ 0T̂ 1 to give a contribution.
The complicated sum of Eq.2.6.52 thus contains far less terms than apparent. The
situation is identical for the T̂ −1T̂ 0T̂ 1 and the T̂ −1T̂ 1 operators: they might only
contribute on closed paths of three or two sites respectively. The T̂ −1T̂ −1T̂ 1T̂ 1 and
T̂ −1T̂ 1T̂ −1T̂ 1 operators on the other hand might individually contribute on two
disjoint pairs of sites. A close inspection of this situation reveals that in that case,
one can commute the T̂ m

iτσ which do not operate on the same bonds such that the
two operators are actually identical up to a combinatorial factor. In the end the sum
of their contribution in Eq.2.6.42 cancels out such that only their contributions on
closed paths remain.

Using an exact computer implementation to carry out the evaluation of H (4) on
a given cluster in order to calculate Eq.2.6.51 finally gives the following effective
spin Hamiltonian

(2.6.58)

where, following the previous discussion, , and are the ensem-
bles of every closed loops with two, three and four sites respectively. Here we leave
these ensembles undefined as they depend on the specific lattice and hopping para-
meters {τ } considered. We note that there are no three spins contributions which
would come out from the operator T̂ −1T̂ 0T̂ 1. The contribution of this operator is

always null, which is non-trivial in the case of the three site loops . In that
case for each hopping process going around the loop, one can find another going in
the other direction which will give the same contribution but with an opposite sign of
fermionic origin. We conclude this section emphasizing that Eq. 2.6.58 is the general
effective spin Hamiltonian of the strong coupling Hubbard model at half filling for
any lattice and any ensemble of considered hoppings {τ }.
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2.6.3 Spin Operators in the Effective Theory

The low-energy effective theory defines a change of basis such that the number of
double occupancies is approximately conserved and it turns out the effective Hamil-
tonian can be written in terms of spin operators. But these effective spin operators
must not be confused with the bare physical ones as defined in the original basis:

S̄z
i = 1

2

(

c†i↑ci↑ − c†i↓ci↓
)

(2.6.59)

S̄+
i = c†i↑ci↓ (2.6.60)

S̄−
i = c†i↓ci↑. (2.6.61)

In the same way as the Hamiltonian, the bare spin operators must be transposed in
the new effective basis using the formula:

S̄α(n)
i = S̄α

i +
[

i Ŝ(n−1), S̄α
i

]

+ 1

2

[

i Ŝ(n−1),
[

i Ŝ(n−1), S̄α
i

]]

+ · · · (2.6.62)

Looking at i Ŝ(3) in Eq.2.6.41, we can notice that all terms change the number of
double occupancies but on the other hand the bare spin operators do not. It follows that
in Eq.2.6.62 the terms with odd power of 1/U will necessarily change the number
of double occupancies so they will not contribute in the low-energy subspace where
double occupancies are forbidden. On the other hand the even terms in 1/U will
contribute so we expect a correction of order (t/U )2. In the coming discussion, it is
more useful to give the spin operator in reciprocal space

S̄α
q =

∑

i

eiq·Ri S̄α
i . (2.6.63)

In the effective theory this operator becomes

S̄α(4)
k = Reff(q)Sα

q (2.6.64)

with the Reff(q) is a charge fluctuation renormalization factor:

Reff(q) = 1 +
∑

τ

(
tτ
U

)2
(

1 − eiq·τ ) + O

(
t4

U 4

)

(2.6.65)

2.7 Spin-Wave Theory

The previous sections were dedicated to produce a low-energy Hamiltonian for gen-
eral lattices and hopping ensembles. In this section we will restrict our discussion to
the square lattice as this development aims at fitting themagnetic excitation spectrum
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of the cuprate families. While the size of the Hilbert space associated with our prob-
lem could already be dramatically reduced by projecting out double occupancies, the
spin Hamiltonian Eq.2.6.58 still is a difficult problem. It is in fact difficult already
without considering all the complicated terms and restricting it for instance to the
simple nearest neighbour Heisenberg model

H =
∑

〈i j〉
Si · S j , (2.7.1)

a model that has no known exact solution on 2-dimensional systems (Manousakis
1991).Herewewill use the overall very successful spin-wave theory to approximately
diagonalize the Heisenberg model and adapt it to the case of the more complicated
effective spin Hamiltonian Eq.2.6.58. The starting point is to note that the minimum
classical energy for Eq.2.7.1 is obtained for an antiferromagnetic arrangement of the
spins hereafter referred as Néel order. But now considering the complete effective
Hamiltonian Eq.2.6.58, it is not the case for anyU and any set of hoppings parameter.
But in a situation where the nearest neighbor coupling is dominant, there must be a
region where the other parameters only affect the eigenenergies but not the eigen-
states. We therefore also start by assuming the classical groundstate of Eq. 2.6.58 is
the antiferromagnetic Néel order. The spin-wave theory assumes the quantum state
can be described as the classical groundstate plus zero-point quantum fluctuations
(Bloch 1930; Anderson 1952; Kubo 1952) and is written as an expansion in 1/S
so is most justified when S is large while we sit actually in the opposite situation
with S = 1/2. We describe here its application on the effective spin Hamiltonian
Eq.2.6.58 in the case of the single and double layer square lattice where the classical
groundstate is postulated to be antiferromagnetic.

As the magnetic lattice has doubled unit cell compared to the nuclear lattice, we
apply a staggered rotation of the frame of reference around the spin y-axis:

Sx
i =ei Q·Ri S̃x

i (2.7.2)

Sy
i =S̃ y

i (2.7.3)

Sz
i =ei Q·Ri S̃z

i (2.7.4)

In the case of a double layer, we proceed similarly but shift the staggered rotation
by one unit cell between the layers so they sit antiferromagnetically with respect to
each others:

Sx
i1 =ei Q·Ri S̃x

i1 Sx
i2 =e−i Q·Ri S̃x

i2 (2.7.5)

Sy
i1 =S̃ y

i1 Sy
i2 =S̃ y

i2 (2.7.6)

Sz
i1 =ei Q·Ri S̃z

i1 Sz
i2 =e−i Q·Ri S̃z

i2 (2.7.7)

where Q = (π/a, π/a) with a the square lattice parameter and, for the spin opera-
tors Sα

il , i and Ri index the unit cell and l ∈ {1, 2} index the layers. In the staggered
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frame of reference the classical ground state is now ferromagnetic. It simplifies the
formalism in the following. We further introduce the Holstein-Primakov transforma-
tion (Holstein and Primakoff 1940):

Sz
il = S − a†

ilail (2.7.8)

S+
il =

√

2S − a†
ilailail (2.7.9)

S−
il = a†

il

√

2S − a†
ilail . (2.7.10)

The classical ground state being ferromagnetic in the staggered frameof reference,we
do not need to introduce two species of bosons to represent the even Q · R = 2nπ

from the odd Q · R = (2n + 1)π sites. The different terms in the effective spin
Hamiltonian Eq.2.6.58 are either quadratic or quartic products of spin operators. We
develop below their formulation in terms of spin-waves.

2.7.1 Quadratic Products of Spin Operators

The quadratic spin operators products in Eq.2.6.58 written in the staggered frame of
reference Eqs. 2.7.2–2.7.4 and 2.7.5–2.7.7 is:

Sil · Si+τ l ′ = (2ετ ll ′ − 1)S̃z
il S̃

z
i+τ l ′ + 1

2

[

ετ ll ′
(

S̃+
il S̃−

i+τ l ′ + S̃−
il S̃+

i+τ l ′

)

−ε̄τ ll ′
(

S̃+
il S̃+

i+τ l ′ + S̃−
il S̃i+τ l ′

)]

(2.7.11)

where τ is a translation vector, the l and l ′ index applies to the double layer square
lattice and

ετ ll ′ =
{

1+ei Q·τ
2 l = l ′

1−ei Q·τ
2 l �= l ′

(2.7.12)

ε̄τ ll ′ =
{

1−ei Q·τ
2 l = l ′

1+ei Q·τ
2 l �= l ′

. (2.7.13)

Note that the vector τ describes only translations between unit cells, not the layers.
If l �= l ′, the τ = 0 must be included to account for the nearest neighbour inter-layer
interaction. Substituting Eqs. 2.7.8–2.7.10 into Eq.2.7.11 we obtain a power series
of terms in S:

Sil · Si+τ l ′ = S2

[

(Sil · Si+τ l ′)
(0) + 1

S
(Sil · Si+τ l ′)

(1)

+ 1

S2
(Sil · Si+τ l ′)

(2) + O

(
1

S3

)]

(2.7.14)
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where we kept only terms up to 1
S2 in the above notation. We find

(Sil · Si+τ l ′)
(0) = (2ετ ll ′ − 1), (2.7.15)

(Sil · Si+τ l ′)
(1) = (1 − 2ετ ll ′)(a

†
ilail + a†

i+τ l ′ai+τ l ′)

+ 2ετ ll ′(a
†
i+τ l ′ail + a†

ilai+τ l ′)

− 2ε̄τ ll ′(ailai+τ l ′ + a†
ila

†
i+τ l ′) (2.7.16)

and

(Sil · Si+τ l ′)
(2) = (2ετ ll ′ − 1)nilni+τ l ′ − 1

4

[

ετ ll ′
(

a†
il(nil + ni+τ l ′)ai+τ l ′

+ a†
i+τ l ′(nil + ni+τ l ′)ail

)

+ ε̄τ ll ′ ((nil + ni+τ l ′)ailai+τ l ′

+ a†
ila

†
i+τ l ′(nil + ni+τ l ′)

)]

.

(2.7.17)
We then proceed by doing a Fourier transform. We use

ail = 1√
N

∑

k

ei k·Ri ak (2.7.18)

a†
il = 1√

N

∑

k

ei−i k·Ri a†
k. (2.7.19)

The quadratic part Eq.2.7.16 becomes:

∑

i

(Sil · Si+τ l ′)
(1)

=
∑

k

∑

m,m ′∈{l,l ′}

(

Aτ ll ′
k

)

mm ′
a†

k(m)ak(m ′) + 1

2

(

Bτ ll ′
k

)

mm ′

(

a†
kma†

−km ′ + akma−km ′
)

(2.7.20)

with

Aτ ll ′
k =Jτ ll ′

(

2(1 − 2ετ ll ′) + δll ′ετ ll ′cos(kτ ) (1 − δll ′)ετ ll ′cos(kτ )

(1 − δll ′)ετ ll ′cos(kτ ) 2(1 − 2ετ ll ′) + δll ′ετ ll ′cos(kτ )

)

(2.7.21)

Bτ ll ′
k = − Jτ ll ′

(

2δll ′ ε̄τ ll ′cos(kτ ) 2(1 − δll ′)ε̄τ ll ′cos(kτ )

(1 − δll ′)ε̄τ ll ′cos(kτ ) 2δll ′ ε̄τ ll ′cos(kτ )

)

. (2.7.22)
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In the monolayer case, the above formulas are still valid simply by considering only
the

(

Aτ11
k

)

11 and
(

Bτ11
k

)

11 or equivalently by letting Jτ l �=l ′ = 0 such that the two
layers are non-interacting.

2.7.2 Quartic Products of Spin Operators

We treat in a similar way the quartic terms, but will keep only the terms quadratic in
the boson operators. Doing so we carry out the following approximation:

(Si · Si+τ 1)(Si+τ 2 · Si+τ 3) � S4

(

(Si · Si+τ 1)
(0)(Si+τ 2 · Si+τ 3)

(0)

+ 1

S

(

(Si · Si+τ 1)
(1)(Si+τ 2 · Si+τ 3)

(0)

+(Si · Si+τ 1)
(0)(Si+τ 2 · Si+τ 3)

(1)
) + O

(
1

S2

))

(2.7.23)

so one can use the formulas found for the case of the quadratic products of spin
operators.

2.7.3 Effective Spin Hamiltonian in the Spin-Wave
Approximation

We finally sum up all quadratic and quartic products of spin operators to find a
Hamiltonian that has the following form:

H (4) � H (0)
SW + H (1)

SW + H (2)
SW (2.7.24)

where H (0)
SW is a constant, H (1)

SW has only terms quadratic in the boson operators and
H (2)

SW has quartic boson terms. Let us here discuss in what limit exactly the above
expansion is justified. Unlike the simpleHeisenbergmodel casewhere only quadratic
products of spin operators must be considered, the limit here cannot be expressed
only as a 1

S one. We actually work in a mixed 1
S and t

U limit. If we denote [aa] and
[aaaa] the terms quadratic and quartic in boson operators respectively, we chose to
only consider the following terms:

H (4) � t2

U
S2

(

Et2/U + 1

S
[aa] + 1

S2
[aaaa]

)

+ O

(
t2

U

1

S

)
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t4

U 3
S4

(

Et4/U 3 + 1

S
[aa]

)

+ O

(
t4

U 3
S2

)

(2.7.25)

so we effectively work in a mixed limit where t2

U S and t4S2

U 3 are expected to be small
enough parameters to be neglected. Using the formalism developed before, we can
then write the following quadratic bosonic Hamiltonian

H (2)
SW =

∑

k

∑

mm ′
(Ak)mm ′

(

a†
kmakm ′ + a†

km ′akm

)

+ 1

2
(Bk)mm ′

(

a†
kma†

−km ′ + akma−km ′
)

(2.7.26)

where the matrices Ak and Bk are complicated sums over the ensembles of two-,
three- and four-sites closed loops as in Eq.2.6.58. We give the full expressions in the
Appendix B.3.

2.7.4 Bogoliubov Transformation

We diagonalize Eq.2.7.26 using a Bogoliubov transformation. Defining the quasi-
particle operators:

bkn =
∑

l

ul
knakl + vl

kna†
−kl (2.7.27)

we want ukl and vkl such that the quadratic Hamiltonian can be written as

H (2)
SW =

∑

k,n

ωknb†
knbkn + 1

2

∑

k,n

ωkn − 1

2

∑

k,l

Akll . (2.7.28)

In the case of a single layer, the index n is unnecessary. In the bilayer case, n ∈
{a, s} will index the so-called symmetric and anti-symmetric modes. It follows from
Eq.2.7.28 that we must have

[

H (2)
SW , bkn

]

= −ωknbkn. (2.7.29)

Carrying out the commutator, we arrive at the eigenproblem

(

Ak −Bk

Bk −Ak

)(

ukn

vkn

)

= ωkn

(

ukn

vkn

)

(2.7.30)

where Ak and Bk are 2× 2 real matrices for the bilayer case and real numbers in the
case of a single layer. The ukn and vkn are defined in a similar way as



2.7 Spin-Wave Theory 123

ukn =
(

u1
kn

u2
kn

)

(2.7.31)

vkn =
(

v1
kn

v2
kn

)

(2.7.32)

for the bilayer case and are simply real numbers in the single layer case. In the single
layer case, we get the familiar result

ωk =
√

A2
k − B2

k (2.7.33)

and

uk =
√

1

2

(
Ak

ω
+ 1

)

(2.7.34)

vk =sign (Bk)

√

1

2

(
Ak

ω
− 1

)

(2.7.35)

and for the bilayer case

ωks =
√

(Ak11 + Ak12)
2 − (Bk11 + Bk12)

2 (2.7.36)

ωka =
√

(Ak11 − Ak12)
2 − (Bk11 − Bk12)

2 (2.7.37)

and

u1
ks = u2

ks =1

2

√

A11
k + A12

k

2
+ 1 (2.7.38)

v1
ks = v2

ks =1

2
sign

(

B11
k + B12

k

)

√

A11
k + A12

k

2
− 1 (2.7.39)

u1
ka = −u2

ka =1

2

√

A11
k − A12

k

2
+ 1 (2.7.40)

v1
ka = −v2

ka =1

2
sign

(

B11
k − B12

k

)

√

A11
k − A12

k

2
− 1 (2.7.41)
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2.7.5 First 1
S Quantum Correction

Here we treat the first 1
S corrections to the spin-wave solution. So far we only diag-

onalized the quadratic part of the spin-wave Hamiltonian allowing us to write it
down as a sum of the non-interacting magnon quasiparticles energies. We will only
consider the correction coming from magnon-magnon interaction of order t2

U S0 in
Eq.2.7.14. Also we do not calculate the quantum corrections coming from the inter-
layer magnetic couplings. While they can in principle be calculated simply as shown
below, they will bring very little contribution considering the small magnitude of the
interlayer coupling in the bilayer material that will be considered. A rough estimate
brings J⊥/J ∼ 2% as discussed on page 133. The quartic part of the spin-wave
Hamiltonian is thus

H (4)
SW =1

2

∑

i

∑

τ

4t2τ
U

(2ετ − 1)ni ni+τ

− 1

4

[

ετ

(

a†
i (ni + ni+τ )ai+τ + a†

i+τ (ni + ni+τ )ai

)

+ ε̄τ

(

(ni + ni+τ )ai ai+τ + a†
i a†

i+τ (ni + ni+τ )
)]

(2.7.42)

which describes magnon-magnon interactions. The layer index has been dropped
as we do not consider interlayer couplings. We will treat it through a Hartree Fock
procedure. We start by defining the mean fields:

n = 〈a†
i ai 〉 (2.7.43)

δ = 〈ai ai 〉 = 〈a†
i a†

i 〉 (2.7.44)

tτ = 〈a†
i ai+τ 〉 = 〈a†

i+τ ai 〉 (2.7.45)

�τ = 〈ai ai+τ 〉 = 〈a†
i a†

i+τ 〉. (2.7.46)

Using those mean fields we can decouple the quartic term in Eq.2.7.42. We give as
an example the mean field decoupling of the quartic term ni ni+τ :

1

2

∑

i

∑

τ

ni ni+τ �
∑

i

∑

τ

n(a†
i ai + a†

i+τ ai+τ )

+ tτ (a
†
i ai+τ + a†

i+τ ai )

+ �τ (a
†
i a†

i+τ + ai ai+τ ) (2.7.47)

and by inserting the Fourier transform of the boson operators ai we obtain

1

2

∑

i

∑

τ

ni ni+τ �
∑

τ

∑

k

2 (n + tτ cos(kτ )) a†
kak + �τ cos(kτ )

(

a†
ka†

−k + aka−k

)

.

(2.7.48)
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In principle this just defines a correction to the quadratic Hamiltonian so one could
write down mean-field self-consistent equations and use some iterative procedure to
find self-consistent mean fields. We don’t go so far here and only evaluate the mean
fields on the unperturbed quadratic Hamiltonian. For the monolayer case we obtain:

n =
∑

k

v2
k (2.7.49)

δ =
∑

k

ukvk (2.7.50)

tτ =
∑

k

cos(kτ )v2
k (2.7.51)

�τ =
∑

k

cos(kτ )ukvk (2.7.52)

Where uk and vk are the Bogoliubov coefficients from the unperturbed Hamiltonian
H (2)

SW Eq.2.7.26. For the bilayer case we have:

n =
∑

k

v2
ks + v2

ka (2.7.53)

δ =
∑

k

ukavka + uksvks (2.7.54)

tτ =
∑

k

cos(kτ )i
(

v2
ka + v2

ks

)

(2.7.55)

�τ =
∑

k

cos(kτ ) (ukavka + uksvks) (2.7.56)

where ukb = u1
kb and vkb = v1

kb to shorten notations. The mean fields then define
corrections to the quadratic Hamiltonian which we give here:

d Ak =
∑

τ

Jτ ετ (tτ − n)cos(kτ )

+ ε̄τ

[

(�τ − n)

(
δ

2
− tτ

)

cos(kτ )

]

(2.7.57)

d Bk = 1

2

∑

τ

Jτ ετ

(

−�τ

2
+

(

�τ − δ

2

)

cos(kτ )

)

+ ε̄τ

(

(n − �τ )cos(kτ ) + tτ
2

)

. (2.7.58)
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Inserting these corrections to the eigen-energies finally gives the first order quantum
corrections. For instance for the single layer case:

ω̃k =
√

(A2
k + d Ak) − (Bk + d Bk)2 � ωk

(

1 + Akd Ak − Bkd Bk

ω2
k

)

︸ ︷︷ ︸

Zc

(2.7.59)

where ωk is the bare dispersion obtained from Eq.2.7.26. For the bilayer case we
obtain:

ω̃ks � ωks

Zs
c

︷ ︸︸ ︷
(

1 +
(

A11
k + A12

k

)

d Ak − (

B11
k + B12

k

)

d Bk

ω2
ks

)

(2.7.60)

ω̃ka � ωka

(

1 +
(

A11
k − A12

k

)

d Ak − (

B11
k − B12

k

)

d Bk

ω2
ka

)

︸ ︷︷ ︸

Za
c

. (2.7.61)

For the single layer square lattice nearest neighbour Heisenberg model, it turns out
this quantum renormalization is uniform (k-independent) with a value of Zc = 1.15.

2.7.6 Extracted Physical Quantities

We review here a few physical quantities that can be extracted from the above cal-
culation and confronted with experimental result. To exemplify, we show what these
quantities are in the case of the simple square lattice Heisenberg model with nearest
neighbour interaction J only. The first obvious quantity is the dispersion relation
which will relate the momentum of a spin-wave with its energy. Applying the for-
malism developed above, we obtain

ωk = 2J

√

1 − 1

4

(

cos(kx ) + cos(ky)
)2

. (2.7.62)

This dispersion has a maximum energy of 2J along the magnetic zone boundary
k = (π/2 + z, π/2 − z) z ∈ [0, π/2] which is further uniformly renormalized
by the first 1

S quantum corrections by approximately Zc = 1.15. Gapless modes
appear at k = (0, 0) and k = (π, π) due to the spontaneously broken spin rotational
symmetry. The dispersion can be measured through experiments such as inelastic
neutron scattering or resonant x-ray scattering. In both cases for each k, the mode in
the dispersionwill appear through a scattering event with some probability amplitude
which experimentally corresponds to a measured signal intensity. In the case of
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INS, the signal is a functional of the dynamical spin structure factor which, at zero
temperature, is:

S(q, ω) =
∑

λ

〈0|S−
q |λ〉〈λ|S+

q |0〉δ(ω + E0 − Eλ) (2.7.63)

where |0〉 is the ground state and |λ〉 are all the intermediate excited states. In our
case |0〉 is the vacuum for the spin-waves quasiparticle operator bk and, to a first
approximation, the |λ〉 = b†

k|0〉 are excited states where a single spin-wave has been
created by the spin raising operator.

An important remark is that this spin operator is written in the physical basis,
not in the effective spin basis! As seen previously in Sect. 2.6.3, this implies that
in the effective spin basis this operator is renormalized with a q-dependent weight
Eq.2.6.64:

S̄α(4)
k = Sα

q

[

1 −
∑

τ

(
tτ
U

)2
(

1 − eiq·τ )
]

+ O

(
t4

U 4

)

. (2.7.64)

In the above formula, the operators Sα
q now are the effective ones from which we

derived the spin-wave theory. We can thus rewrite those in terms of the spin-wave
operators bk:

S+
q = 1

2

(

(uk + vk)(bk − b†
−k) + (uk+ Q − vk+ Q)(bk+ Q + b†

−k− Q)
)

. (2.7.65)

Putting everything together one gets the dynamical structure factor:

S(q, ω) = 1

4
(uq + vq)

2

[

1 − 4
t2

U 2

(

1 − 1

2

(

cos(qx ) + cos(qy)
)
)]2

δ(ω − ωq).

(2.7.66)

Physically, the renormalization is due to the charge fluctuations of theHubbardmodel
which we integrate perturbatively in our effective theory. It is thus not surprising that
a measured magnetic signal will be weakened by these fluctuations as empty and
doubly occupied sites have zero spin and thus cannot couple to a magnetic probe
such as INS. An important aspect linked to the discussion in the thesis Chap. 1 is
that this renormalization is constant along the magnetic zone boundary. We show
on Fig. 2.11 the dispersion and intensity of the spin-waves along the high-symetry
directions of the Brillouin zone. In the case of a bilayer square lattice Heisenberg
model, the same calculation leads to:

S(q, ω) = (

uqs + vqs
)2
cos2(qb)δ(ω − ωqs)

+ (

uqa + vqa
)2
sin2(qb)δ(ω − ωqa) (2.7.67)

http://dx.doi.org/10.1007/978-3-319-26419-6_1


128 2 Modeling the Spin-Wave Dispersion of Insulating Cuprate Materials

Fig. 2.11 Example of the spin-wave dispersion and intensity for the square lattice Heisenberg
antiferromagnet. Y-axis on the left is for energy and y-axis on the right for intensity. Intensity
comes as the familiar spin-wave result Iq ∼ (uq + vq)2 (dotted line) and the physically more
relevent one where the intensity is renormalized by the Hubbard model charge fluctuations (solid
line) as given in Eq.2.7.66. In this example we have used a too large ratio t/U = 1/5 so that the
renormalization is graphically obvious. Amore reasonable ratio for cuprates would be t/U ∼ 1/10,
implying a maximum reduction at q = (π, π) of 15% of the intensity

where now for single q momentum one finds the symmetric and anti-symmetric
modes, b is the translation vector between the two layers. For simplicity we dropped
here the charge fluctuations renormalization as the effect is small and essentially
identical to the monolayer case. The two modes respective intensity is modulated
with the perpendicular component of q as qb ∼ qz . Each mode is either gapped
at (0, 0) or (π, π) and the two are perfectly degenerate along the magnetic zone
boundary. By interchanging the modes definition if inside or outside of the magnetic
Brillouin zone, we would obtain the more familiar acoustic (gapless at (0, 0) and
(π, π)) and optical (gapped) modes. We give a representation of the modes with
equal out of plane and in-plane couplings J⊥ = J on Fig. 2.12. Another important
quantity is the zero-temperature staggered magnetization:

S̄z
Q =

∑

i

(−1)i 〈0|S̄z
i |0〉. (2.7.68)

Again we must be careful to identify that in the above equation the spin operators
are the physical ones defined in the Hubbard basis. In terms of the effective spin
operators we get:

S̄z
Q = Sz

Q

(

1 − 8
t2

U 2

)

(2.7.69)
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Fig. 2.12 Example of the
spin-wave dispersion and
intensity for the bilayer
square lattice Heisenberg
antiferromagnet with equal
out of plane and in-plane
coupling J⊥ = J . Y-axis on
the right is for energy and
y-axis on the left for intensity

Formulating this in termof spin-waves operators and calculating the zero-temperature
average gives

〈0|S̄z
Q|0〉 =

(

S − 1

N

∑

k

v2
k

)(

1 − 8
t2

U 2

)

. (2.7.70)

Considering the spin-waves fluctuations only, the staggeredmagnetization is reduced
by 40% for spin- 12 . For a ratio of t/U = 1/10, the charge fluctuations would further
reduce it by 8%.

Finally, it is interesting to take a closer look at these charge fluctuations directly
which could be quantified by the average number of double occupancies. Using
the Hellmann-Feynman theorem (Feynman 1939), we would have for the Hubbard
model:

〈GS|ni↑ni↓|GS〉 = d

dU
〈GS|HHub|GS〉 (2.7.71)

It means that in our effective theory, taking the derivative of the ground state energy
would give an approximate of 〈ni↑ni↓〉. The ground state energy has many contribu-
tions coming from the effective low-energy derivation and the spin-waves approxi-
mation. But in the case of the Heisenberg Hamiltonian with J = 4t2/U , all these
contributions are of order t2/U . It follows that the density of double occupancies
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will be proportional to t2/U 2 which is consistently the same dependence we found
for the charge fluctuation renormalization factor.

2.8 Comparison to Experimental Data

In this section we will confront the various quantities extracted in Sect. 2.7.6
with experimental results when available. We will focus on the three compounds
LCO,SCOC and BSYCO, the first two being monolayers cuprates and the third a
bilayer cuprate. We first review the quantities in Sect. 2.7.6.

• Magnon dispersion: ωk is one of the most accessible properties for spectroscopic
probes. In fact the data quality is such that a systematic fit with the theory will
results in strong constraints on the model parameters. The other quantities can thus
in a later step be evaluated and compared to experiments when possible.

• Magnon intensity: For INS, the magnon intensity is very well known experi-
mentally and theoretically. Below we will therefore give our predicted magnon
intensity and compare it to available INS data which we only have for La2CuO4.
For the other compounds, we do have a RIXS experimental magnon intensity.
The issue is then that it is much more complicated to obtain a theoretical RIXS
cross-section prediction (Nomura and Igarashi 2005; Forte et al. 2008; Ament et al.
2009; Haverkort 2010) and we did not pursue that direction.

• Staggeredmagnetization: In a neutron diffraction experiment,magnetic diffraction
peaks will show up with an intensity which scale quadratic with the local magnetic
ordered moments. This could in principle provide an experimental estimate of
the staggered magnetization with the magnetic diffraction peak intensity I ( Q)

taken as:

I ( Q) ∼ 〈Sz
Q〉2. (2.8.1)

However two difficulties arise. First the antiferromagnetic neutron diffraction peak
really measures

I ( Q) ∝ 〈Sz
− Q Sz

Q〉 (2.8.2)

which in the spin-wave formulation is

〈Sz
− Q Sz

Q〉 = S2 − 2S〈a†
i ai 〉 + 1

N 2

∑

i j

〈a†
i ai a

†
j a j 〉. (2.8.3)

It follows then that Eq.2.8.1 corresponds to the naive decoupling 〈a†
i ai a

†
j a j 〉 ∼

〈a†
i ai 〉〈a†

j a j 〉 which overlooks two-magnon contributions such as 〈0| b−kbkb†
k′

b†
−k′ |0〉. Experimentally a probably more important difficulty is that the propor-
tionality constant in Eq.2.8.1 is not trivial to determine accurately as it will depend
on many details of the experimental setup. A possibility would be to apply a mag-
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netic field large enough to reach a saturated ferromagnetic statewhere quantumand
thermal fluctuations could be neglected. This has been done for instance to estab-
lish an experimental absolute scale for the 1D spin chain material CuSO4·5D2O
(Mourigal et al. 2013) using a reasonable field of 5T. However this is in practice
impossible to reproduce in the 2D cuprate materials as the very large nearest-
neighbour interaction J ∼ 140meV is three orders of magnitude stronger than the
one inCuSO4·5D2Oandwould require an enormousmagnetic field of thousands of
Tesla. Other possibilities are to carefully calibrate the instrument on some known
material or compare the magnetic Bragg peaks to the nuclear peak. Furthermore
it will be also important to include the charge fluctuations as in Eq.2.7.70.

• The charge fluctuations: The charge fluctuations 〈ni↑ni↓〉 can in principle be mea-
sured using the neutron scattering sum rule:

∑

α∈{x,y,z}

∫

dqdωSαα(q, ω) = N S(S + 1), (2.8.4)

which is an exact result. But the charge fluctuation will reduce this sum rule
as some fraction of the sites are either doubly occupied or empty. Measuring the
integrated cross-section thus allows to determine the size of the charge fluctuations
as those will reduce the effective total spin. The charge fluctuations have been
calculated to be about 〈ni↑n j↓〉 � 5% (Lorenzana et al. 2005) in agreement with
measurements (Walters et al. 2009).

As enlightened by ARPES measurements analysis (Tohyama and Maekawa 2000),
the single hole dynamics must be described using a t − t ′ − t ′′ − J model. While this
model originate from the strong coupling expansion of the d-p model, it can also be
related back to a more simple phenomenological t − t ′ − t ′′ − U Hubbard model
whose strong coupling expansion would be equivalent (see Sect. 2.5.3). In order to
be able to relate back to the ARPES electronic spectra from the measured magnetic
spectra, we choose to consider the {t, t ′, t ′′} hopping amplitude as given on Fig. 2.13
which in turn defines the set of exchange plaquettes leading to the effective spin

Fig. 2.13 The CuO2 plane with the t , t ′ and t ′′ hopping amplitudes and a few examples of the
plaquettes exchange loops that enters the effective spin Hamiltonian Eq.2.6.58
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Hamiltonian Eq.2.6.58. Some examples of plaquettes are shown on Fig. 2.13. In the
case of the bilayer system, we also add a perpendicular hopping t⊥ to the hopping
ensemble. These rather extended hopping ensembles generate a large number of
exchange plaquettes which are determined along with their spin-wave contribution
in a systematic way using a computer implementation of the problem. Indeed for
the {t, t ′, t ′′} ensemblse, there are 126 exchange plaquettes to consider and 145
for the {t, t ′, t ′′, t⊥} ensemble! Using the formalism developed above, we generate
an analytical expression of the magnon dispersion with first order 1/S quantum
corrections. This analytical expression is parametrized by the hopping parameters
and the Coulomb repulsion and is translated in the C programming language in
order to provide a fast evaluation mechanism for given wave-vector q and model
parameters {t, t ′, t ′′, (t⊥), U }.

2.8.1 Experimental Data

We give a quick overview of the experimental data that will be used to fit our theory.

2.8.1.1 La2CuO4

Measured by InelasticNeutron Scattering (Coldea et al. 2001), thismaterial is famous
for providing a strong support for the cyclic ring exchange relevance for the mea-
sured magnetic spectrum. Indeed the data evidenced a large magnetic zone boundary
dispersion of about 20meV which could be fitted to the effective spin Hamiltonian
Eq.2.6.58 where only the nearest-neighbour t is considered. Amore recent measure-
ment (Headings et al. 2010) (reproduced on Fig. 2.14 bottom panel) also highlighted
an anomalous intensity reduction at q = (π, 0) compared to q = (π/2, π/2).

2.8.1.2 Sr2CuO2Cl2

In collaboration with Prof. Grioni’s group (Laboratory of Photoelectron Spec-
troscopy, EPFL) we measured the RIXS magnetic spectrum of this material and
extracted the magnon dispersion (Guarise et al. 2010; Guarise 2012). The experi-
ment was carried out at the Swiss Light Source ADRESS beamline using the RIXS
instrument SAXES. As RIXS will not only pick up single magnon but also two-
magnons and in principle further order multi-magnon excitations, the dispersion
relation is extracted through an analysis of the spectral lineshape (details available
in Marco Guarise’s PhD thesis (Guarise 2012)). We reproduce here the extracted
magnon dispersion on Fig. 2.14 middle panel. Along the magnetic zone-boundary,
the dispersion is even more pronounced than in La2CuO4 (LCO) with a 70meV
between q = (π, 0) and q = (π/2, π/2).



2.8 Comparison to Experimental Data 133

Fig. 2.14 Experimentally measured magnon dispersion relations. Top BSYCOmeasured by RIXS
(Dalla Piazza et al. 2012), middle Sr2CuO2Cl2 (SCOC) measured by RIXS (Guarise et al. 2010),
bottomLCOmeasured by INS (Headings et al. 2010) shifted by (π, π).Dashed lines are themagnon
dispersion of the simple Heisenberg model with J adjusted such that the q = (π/2, π/2) energy
matches experiments

2.8.1.3 Bi2Sr2YCu2O8

Lastly we also measured in collaboration with Prof. Grioni’s group this bilayer
cuprate compound on the SAXES spectrometer. The same lineshape analysis pro-
vides the magnon dispersion. As Bi2Sr2YCu2O8 (BSYCO) has two coupled CuO
planes, the spectrum should show two magnon modes: an acoustic mode and an
optical one as discussed in Sect. 2.7.6 and plotted on Fig. 2.12. However the two
modes will clearly separate with a finite intensity only at q = (π, π) which we
cannot measure due to the momentum transfer restrictions of the soft x-ray radiation
needed for copper L3 edge RIXS. Elsewhere the two modes lie very close to each
others and the SAXES RIXS energy resolution of 130meV could not resolve them
separately. We show on Fig. 2.14 top panel the obtained dispersion which we can
experimentally consider as a nearly doubly degenerate magnon mode.

2.8.2 Fitting Procedure

The spin-wave expansion of the effective spin Hamiltonian Eq.2.6.58 with the first
1/S quantum corrections provides the magnon dispersion
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ω(q) = Zc(q)ω0(q) (2.8.5)

parametrized by the Hubbard model parameters {t, t ′, t ′′, (t⊥), U }. It can simply
be fitted using a least-square minimization algorithm. However the quantum renor-
malization Zc(q) contains the integrals 2.7.49–2.7.52 which are computationally
demanding. To reduce the computational expense of the quantum renormalization,
we apply a two-step fitting procedure:

1. Set Zc(q) = 1.156, the first order q-independant 1/S quantum correction.
2. Fit the experimental data against the {t/U, t ′/t, t ′′/t, (t⊥), U } parameter set using

the dispersion formula Eq.2.8.5.
3. With the obtained parameter set {t/U, t ′/t, t ′′/t, (t⊥), U }, calculate the quantum

renormalization by numerical evaluation of the integrals 2.7.49–2.7.52.
4. Compare the newly obtained Zc(q) to the old one. If the difference is smaller

than a given threshold, the fit is said to be converged. If not go back to 2 using
the new Zc(q).

Looking at the various dispersions, it can be seen that the fit is under-constraint.
One can indeed only identify three independent features in the measured magnon
dispersions: The energy at q = (π, 0), the energy at q = (π/2, π/2) and the linear
branch slopes at q = (0, 0) or q = (π, π). In the bilayer case, a fourth constraint
would be the bilayer splitting at q = (0, 0) or q = (π, π) if available. For BSYCO,
as the measured RIXS spectrum cannot resolve the bilayer splitting, we use the value
t⊥ = 54meV as determined by ARPES (Chuang et al. 2004). Using this value, it is
usefull to give a rough estimate of the respective magnitude of the nearest neighbour
coupling and the intralayer one. Taking J ∼ 0.14 and U ∼ 3.5eV from the ARPES
estimate for SCOC (Tohyama and Maekawa 2000) and assuming J⊥ = 4t2⊥/U
gives J⊥/J ∼ 2%. It is thus expected that the interlayer coupling will bring little
contribution to the spin-wave dispersion and very little bilayer splitting.

Counting the number of independent model parameters we see that in the mono-
layers and bilayer there are four and five respectively while the independent features
are only three and four. It follows that one should expect the solutions space to be
one-dimensional in parameter space. We choose to set up the fitting procedure such
that this line of solutions will be a function of the Coulomb repulsion U . To do so,
we first reformulate the model parameters as {t/U, t ′/t, t ′′/t, U }. We then define
a plane of (t ′′/t, U ) pairs and, for each one of those, fit the two other parameters
t/U and t ′/t . The fit result might be dependent of the starting guess for the fitted
parameters (t/U )0 and (t ′/t)0 and even completely fail if those are not reasonable.
To avoid this issue we choose (t/U )0 such that it reproduce the correct energy scale
for the q = (π/2, π/2) magnon energy that is it must satisfy

ω(π/2, π/2) � 8

(
t

U

)2

U. (2.8.6)

The starting parameter (t ′/t)0 is considered as a correction and is chosen small.
However we found than its sign with respect to t ′′ is important and thus performed
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the fit for both t ′t ′′ > 0 and t ′t ′′ < 0, keeping the best solution. We then obtain
χ2(t ′′/t, U ) which quantifies the quality of the fit for each (t ′′/t, U ) pairs. We will
show that inspecting the function χ2(t ′′/t, U ) will allow to determine the solutions
line as a function of U .

2.8.3 Fitting Results

For brevity, we show below only the fitting results for SCOC. The BSYCO and
LCO fitting results can be found in Appendices B.4 and B.5. Performing the fitting
procedure, we obtain the following quantities as a function of t ′′/t and U :

• χ2(t ′′/t, U ) quantifying the fit quality.
• t

U (t ′′/t, U ) and
• t ′

t (t ′′/t, U ) the fitted parameters.

• S−〈a†a〉
S (t ′′/t, U ) the reduced staggered magnetization,

• 〈ni↑ni↓〉(t ′′/t, U ) the double occupation density,
• Zc(t ′′/t, U ) = 1

�BZ

∫

dq Zc(q, t ′′/t, U ) the average first 1/S quantum correction
and

• σ 2
Zc

= 1
�BZ

∫

dq(Zc(q, t ′′/t, U )−Zc(t ′′/t, U ))2 its variance on theBrillouin zone.

We plot the fit quality χ2(t ′′/t, U ) on Fig. 2.15. There is an obvious mirror symmetry
between the t ′′/t > 0 and the t ′′/t < 0. It is easily explained as follow: In themagnon

Fig. 2.15 Color map of the fit quality as a function of U and t ′′/t . In the outer dark red regions the
parameters are such that the spin-wave approach fails indicating the breakdown of the long-ranged
Néel order hypothesis. In the central area of the displayed (t ′′/t, U ) plane, the spin-wave approach
does bring ameaningful solution which results in a good fit quality. In particular, two distinct valleys
of best fit solutions can be followed as a function of U . Inspecting the resulting (t/U, t ′/t) fitted
parameters, we see the inner solution corresponds to t ′t ′′ < 0 and the outer one to (t ′t ′′ > 0)
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dispersion the magnetic exchange energies are either of the form t2i /U or t1t2t3t4/U 3

where the electronic exchanges ti form a closed loop. In the first case the sign of
ti is obviously irrelevant for the magnon energy. In the second case we note that
t causes an electronic exchange between the ↑ and the ↓ sublattice while t ′ and
t ′′ associate exchange stays on the same sublattice. Consequently, if t is present in
a given term, it must be of a even power as one needs an even number of nearest
neighbour hoppings to come back on the starting point sublattice. The sign of t is thus
arbitrary explaining Fig. 2.15 symmetry. We point out however that the relative signs
of t ′ and t ′′ are not arbitrary because of terms proportional to t2t ′t ′′/U 3. For some
choices of (t ′′/t, U ) pairs, the fit will completely fail either because varying t/U and
t ′/t cannot bring a good magnon dispersion or even because for such parameters the
spin-wave approach simply fails. This is the case when t ′/t and t ′′/t are so large that
the frustration induced by the magnetic couplings destroys the long-range Néel order
invalidating the fundamental assumption of the spin-wave approach. These areas a
marked on Fig. 2.15 in dark red. Elsewhere on the (t ′′/t, U ) plane, a reasonable fit can
be obtained. One clearly sees on Fig. 2.15 two distinct valleys of good χ2 solutions.
Discarding the mirrored solutions, for a given U one can find two best fit solutions
defining two (t ′′/t, U ) best fit lines shown by the white markers on Fig. 2.15. The
value ofχ2 along these best fit lines strongly constrainsU > 2eV as seen on Fig. 2.16
top panel. Looking at the value of the fitted parameters t ′/t and t/U along these best
fit lines, we see that the inner line solution corresponds to the t ′t ′′ < 0 solution
while the outer line corresponds to the t ′t ′′ > 0 solution. We show the evolution
of the fitted parameter solutions as a function of U on Fig. 2.16. For both t ′t ′′ < 0
and t ′t ′′ > 0 solutions, the ratio t/U decreases monotonously from t/U ∼ 0.18
to t/U ∼ 0.1 for greater U ’s while the other parameter amplitudes t ′/t and t ′′/t
increase. For each choice of U in the range allowed by Fig. 2.16 top panel, a magnon
dispersion can be drawn. We plot several of the obtained dispersions on Fig. 2.17
along with the original experimental data. Compared to the spin-wave solution of
the simple Heisenberg model with J adjusted such that ω(π/2, π/2) = 2J (dashed

Fig. 2.16 Fitted parameters
for the best fit lines defined
on Fig. 2.15. Top panel
shows χ2 along the inner
(solid line) t ′t ′′ < 0 best fit
line and the outer (dashed
line) t ′t ′′ > 0 one. On the
bottom panel are show the
corresponding fitted
parameters (t ′′/t, t ′/t, t/U )

as a function of U along the
best fit lines, solid line for
t ′t ′′ < 0 and dashed for
t ′t ′′ > 0
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Fig. 2.17 The obtained fitted dispersion for Sr2CuCl2O2. Top panel shows the experimental data
and a range of fitted solutions (solid blue lines) with the magnon dispersion of a simple Heisenberg
model (dashed grey line) with J chosen such that ω(π/2, π/2) = 2J . On the bottom panel we
subtract it to the data and the fitted dispersions and also show the dispersion from a fit to the t − U
Hubbard model fourth order strong coupling expansion (dashed red line) (color online)

grey line on Fig. 2.17), our solution obviously better matches the ω(π, 0) energy
as well as the magnon branches slope at q = (0, 0) or q = (π, π) which should
not come as a surprise given the large number of fitting parameters. To better view
the details of the fit we subtract this simple Heisenberg spin-wave solution from
the experimental data and to the fitted dispersion. We obtain Fig. 2.17 bottom panel
where we also include the fit to a spin-wave solution to the strong coupling limit of
the nearest neighbour hopping t −U Hubbard model (Eq.2.6.58 considering only t),
the dashed red line. This fit to the t −U Hubbardmodel corresponds towhat was done
in Coldea et al. (2001). We see that, while it adequately matches the two magnon
energies at q = (π, 0) and q = (π/, π/2), it fails to fit the steeper slope at q = (0, 0)
and q = (π, π). We can further show the value of the staggered magnetization, the
double occupation density and the strength of the first 1/S quantum correction along
the best fit lines defined in Fig. 2.15. We show the results again only for SCOC on
Fig. 2.18 for the t ′t ′′ < 0 solution. As seen on Fig. 2.16, increasing U ’s causes the t ′
and t ′′ amplitudes to grow in order to still obtain a fit to the experimental data. The
induced additional couplingswill bringmagnetic frustration causing theNéel order to
weaken until a point where it becomes zero. At that point the spin-wave theory is not
self-consistent anymore. While for SCOC a good fit could be obtained using values
of U as large as 5eV, we see on Fig. 2.18 top panel that above 4.5eV the staggered
magnetization vanishes putting an upper boundary to the allowed range of U . While
an experimental determination of the staggeredmagnetization is a difficult task, some
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Fig. 2.18 Various physical
properties along the t ′t ′′ < 0
best fit line in Fig. 2.15. Top
Reduced staggered
magnetization with an
experimental determination
(dashed black line, shaded
area represents the
uncertainty). Middle The
doubly occupied site density.
Bottom The q-averaged first
1/S quantum
renormalization of the
magnon energy, shaded area
represents the variance σ 2

across the Brillouin Zone

estimate have been provided for SCOCwith Sz(π, π) = 0.34±0.04
gμB

(Vaknin et al. 1990)
which we added on Fig. 2.18 top panel assuming g = 2. With the uncertainty of the
measurement, we can draw a rough determination of U ∼ 2.8± 0.3eV which must
not be taken too seriously due to the important experimental difficulty of providing
such measurement on an absolute scale. Another interesting quantity is the average
density of doubly occupied sites 〈n↑n↓〉 shown on Fig. 2.18 middle panel. It is found
it has rather constant value of about 5% indicating that along the best fit line the
regime in which the effective strong coupling theory is carried out is not changing.
Also this quantity can be put in relationwith the electronic shielding factor calculated
in Lorenzana et al. (2005). Lastly, to evaluate the stability of our spin-wave solution, it
is interesting to look at the first 1/S quantum correction along the best fit line, shown
on Fig. 2.18 bottom panel. We plot the q-averaged renormalization factor Zc as
defined in Eq.2.7.59. Consistently with the decrease of the staggered magnetization,
the quantum correction increases along the best fit line for greater U indicating the
loss of stability of our solution for larger U . The shaded area on Fig. 2.18 indicates
the variance of the quantum renormalization on the Brillouin zone. It is also found
to grow for larger U ’s.

2.8.4 Comparison with Electronic Spectrum

In this section we review the conclusions that can be drawn when comparing the
microscopic electronic model parameters as obtained through electronic measure-
ment (ARPES) or magnetic measurements (Raman, RIXS, INS). In the context of
the cuprates, the Hubbard model must be thought as a phenomenological one as dis-
cussed in Sect. 2.5.3 because it cannot be considered as an effective theory of the d− p
model due charge-transfer energy being smaller than the Cu double occupation one.
ARPES spectra are commonly analysed in term of a t − J model which is indeed an
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effective theory of the d − p model. The related phenomenological Hubbardmodel is
the one from which a strong coupling limit effective model would result in the same
t − J model as the one obtained from the d − p one. The quasiparticle dispersion
from ARPES measurement of the SCOC material has been analysed and shown to
be well accounted for by a t − t ′ − t ′′ − J model:

Ht−t ′−t ′′−J = − t
∑

〈i, j〉1stσ
i
(

c̃†iσ c̃ jσ + h.c.
)

− t ′ ∑

〈i, j〉2ndσ

(

c̃†iσ c̃ jσ + h.c.
)

− t ′′ ∑

〈i, j〉3rdσ

(

c̃†iσ c̃ jσ + h.c.
)

+ J
∑

〈i, j〉
Si · S j (2.8.7)

where
c̃iσ = ciσ (1 − ni σ̄ ) (2.8.8)

enforces the no double occupancy constraint. The t ′ and t ′′ model parameters can be
related back to a microscopic description of the CuO2 plane (Eskes et al. 1989;
Hybertsen et al. 1990; Tohyama et al. 1990; Matsukawa and Fukuyama 1989a;
Matsukawa et al. 1989b). To relate this model to our work we note that it corre-
sponds to the t − t ′ − t ′′ − U Hubbard model:

Ht−t ′−t ′′−U = − t
∑

〈i, j〉1stσ

(

c†iσ c jσ + h.c.
)

− t ′ ∑

〈i, j〉2ndσ

(

c†iσ c jσ + h.c.
)

− t ′′ ∑

〈i, j〉3ndσ

(

c†iσ c jσ + h.c.
)

+ U
∑

i

ni↑ni↓ (2.8.9)

taken in the strong coupling limit up to second order perturbation theory with
J = 4t2/U and the other magnetic coupling J ′ = 4t ′2/U and J ′′ = 4t ′′2/U
neglected. The dispersion of a single hole in the antiferromagnetic background
has been measured by ARPES and analysed in terms of the t − t ′ − t ′′ − J
model (Tohyama and Maekawa 2000) bringing the microscopic model parameters
t = 0.35, t ′ = −0.12, t ′′ = 0.08 and J = 0.14eV. Comparing these model para-
meters to ours imply relating the full complicated effective spin-only Hamiltonian
Eq.2.6.58 to the constrained fermionic one Eq.2.8.7.We thus do not expect a detailed
agreement but only require major aspects to be consistent. Probably the most impor-
tant aspect is the amplitude of the Coulomb repulsion U . The phenomenological
Hubbard model attached to the above t − t ′ − t ′′ − J model hasU = 4t2/J = 3.5eV.

First we can look at what U we get if we fit the experimental magnon dispersions
to an effective spin Hamiltonian derived from the t − U Hubbard model. Having
only two parameters, the fit provides a unique solution as was previously done in
Coldea et al. (2001). This results in Table2.1. It is immediately visible that the
obtained Coulomb repulsion for all three materials are very small. For SCOC and
BSYCO, it is even less than 2eV and the ratio U/t ∼ 5.5 places them quite far from
the generally accepted ratio U/t ∼ 10 for cuprate materials. Also these results are
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Table 2.1 Fit of the experimental dispersion to the effective spin Hamiltonian Eq.2.6.58 consid-
ering only nearest neighbour hopping amplitude t

t [eV] U [eV]

SCOC 0.28 1.62

BSYCO 0.26 1.46

LCO 0.31 2.2

Table 2.2 Fitted parameters for the experimental dispersions of SCOC, BSYCO and LCO

t t ′ t ′′ 〈S〉/S c 〈n↑n↓〉(%)

BSYCO 407(10) −207(3) 79(4) 0.3 0.146 5.9

SCOC 480(10) −200(5) 75(5) 0.29 0.163 5.1

LCO 492(7) −207(3) 45(2) 0.4 0.195 5.2

Guided by ARPES results, the Coulomb repulsion is chosen to beU = 3.5eV for all three materials
and only the t ′t ′′ < 0 solution is kept. Also shown are the reduced staggered magnetization, the
spin-wave velocity and the double occupancy density

in complete disagreement with the ARPES U = 3.5eV for the phenomenological
Hubbard model. We will see that this discrepancy can be resolved by including the
t ′ and t ′′ hopping amplitudes in the phenomenological Hubbard model. This leads to
the fits shown in the previous section. Requiring U = 3.5eV for all three materials,
we obtain the microscopic parameters on Table2.2. The obtained rough agreement
between our fitted parameters and the SCOC ARPES ones consistently reconciliate
the magnetic measurements and the electronic ones in a unified microscopic theory.

Another puzzle attached to the ARPES measurement of the insulating cuprates
is the so-called waterfall controversy which we briefly exposed in Sect. 2.4.1.2. The
rather large nearest neighbour hopping amplitude that is found in our work would
strongly support the self-energy induced kink scenario (Chang et al. 2008).

2.8.5 Comparison with Magnetic Measurements

Thefit of themagnetic dispersion allowed to put strong constraints on themicroscopic
model parameters. In this section we consider other ‘magnetic’ quantities such as
the dynamical spin structure factor, the two-magnon oxygen K-edge RIXS spectrum
and the Raman scattering spectrum.

2.8.5.1 Dynamical Spin Structure Factor

Neutron scattering carried on LCO has been very fruitful. First it proved in 2001 that
extended magnetic exchanges are relevant for cuprate materials (Coldea et al. 2001).
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Second it evidenced in the context of the cuprate the high energy magnon anomaly
(Headings et al. 2010)whichwas alreadyobserved in theCFTDmaterial (Christensen
et al. 2007). This anomaly is the subject of this thesis Chap. 1. Briefly, it may be
characterized by (i) a reduction of the (π, 0) magnon energy of 7% with respect to
q = (π/2, π/2), (ii) a reduction by 50% of the q = (π, 0) magnon intensity and
(iii) a continuum of excitations extending towards high energy from the q = (π, 0)
magnon line. This was completely characterized in the context of the CFTDmaterial
in Christensen et al. (2007). For cuprates feature (i) is not observable due to the
large enlargement of the q = (π, 0) magnon energy due to the extended magnetic
interactions. But features (ii) and (iii) have been observed for LCO (Headings et al.
2010). The magnon description is by definition not suited to tackle feature (iii) as
it will only predict only as many magnon modes as there are independent sites in
the unit cell. But it is worth discussing what happen for feature (ii) when accounting
from the charge fluctuation renormalization of the dynamical spin structure factor as
discussed in Sect. 2.7.6. If only nearest neighbour hopping amplitudes are considered,
then we already discussed that the renormalization is constant along the magnetic
zone boundary thus cannot explain an intensity difference between q = (π/2, π/2)
and q = (π, 0). But when the additional next- and next-next-nearest neighbour t ′
and t ′′ hopping amplitudes are introduced, this is not strictly the case anymore. We
show on Fig. 2.19 the experimental magnon intensity of LCO reported in Headings
et al. (2010) along with the predicted LCO magnon intensity using the microscopic
parameters of Table2.2 with and without the charge fluctuation renormalization.
We see that the charge fluctuation renormalization only brings a small 3% intensity
variation between q = (π/2, π/2) and q = (π, 0), a much too small effect compared
to the 50% reduction experimentally observed. In Chap.1 we argue that the high-
energy magnon anomaly has an entirely different origin than an effective model
renormalization of a spin-wave result.

2.8.5.2 Two-Magnon Quantities

Other important magnetic measurements are the copper K-edge RIXS and Raman
scattering experiments. These measurements do not transfer angular momentum to
the sample thus cannot probe individual magnon excitations. But conjugated two-
magnon excitations are possible. In linear spin-wave theory, the eigenstates are
described as a gas of non-interacting magnons which of course is an approxima-
tion. The neglected terms in the spin-wave expansion generate magnon-magnon
interactions which we already included for the single magnon energy to first order
perturbation theory using the Hartree-Fock approach in Sect. 2.7.5. The magnon-
magnon interaction becomes even more important when considering two-magnons
correlation functions such as those probed by oxygen K-edge RIXS and Raman scat-
tering and lead, in the former case in one theoretical treatment (Canali and Girvin
1992), to a 36.8% renormalization of the two-magnon peak energy.

http://dx.doi.org/10.1007/978-3-319-26419-6_1
http://dx.doi.org/10.1007/978-3-319-26419-6_1
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Fig. 2.19 Experimental magnon intensity in LCO as reported in Headings et al. (2010). Dashed
blue line is the predictedmagnon intensity without charge fluctuation renormalization with the LCO
parameter set of Table2.2. Solid red line is the predicted magnon intensity including the charge
fluctuation renormalization. The insert show a zoom in of the magnetic zone boundary intensity
variation (color online)

The Raman scattering results were briefly introduced in Sect. 2.4.3. In summary,
the two-magnon peak energy has been consistently analysed in an RPA treatment
of the magnon-magnon interaction on a t − U Hubbard model to the fourth order
t/U effective theory (Eq.2.6.58with only the nearest neighbour hopping amplitude t)
(Katanin andKampf 2003). But the asymmetric lineshape of the Raman two-magnon
peak could not be reproduced.

Copper K-edge RIXS experiments were carried out on the doped and undoped
LCO materials and evidenced a peak in the RIXS signal at q = (π, 0) and at a
500meV energy (Ellis et al. 2010). The peak was interpreted as the RIXS equivalent
of the Raman two-magnon peak.

To compare our results with these measurements, we calculate the two-magnon
density of state and the two-magnon part of the longitudinal dynamical spin structure
factor. However we do not go as far as calculating the magnon-magnon interaction
effect and only show the results in the non-interacting case. The comparison is based
on the differences observed between the non-interacting two-magnon quantities for
the simple nearest-neighbour Heisenberg model and for our effective theory. We
then postulate that the effect of magnon-magnon interactions would be similar in our
effective theory to the one already calculated in the case of the Heisenberg model.
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The density of two-magnon states is simply given by:

D(q, ω) =
∑

k

δ(ω − ωk − ωk−q). (2.8.10)

The two-magnon part of the dynamical spin structure factor is obtained using:

Szz(q, ω) =
∑

λ

〈GS|Sz
−q |λ〉〈λ|Sz

q |GS〉δ(ω − Eλ + EGS), (2.8.11)

expressing the bare Sz
q in the effective theory spin operators as in Eq.2.6.64 in turn

re-expressed in terms of the magnon quasiparticle operators. The inelastic part is
then only composed of two-magnon excitations with the following intensity:

Szz(q, ω) = R2
eff(q)

∑

k

1

2

(

ukvk−q − uk−qvk
)2

δ(ω − ωk − ωk−q) (2.8.12)

where Reff(q) is the charge fluctuation renormalization factor Eq.2.6.65:

Reff(q) = 1 −
∑

τ

t2τ
U 2

(1 − cos(q · τ )) (2.8.13)

We show the two-magnon density of states in both the case of the simple nearest
neighbour Heisenberg model and in the case of our full effective model with the
SCOCmicroscopic parameters from Table2.2 on Fig. 2.20. The Heisenberg model J
is adjusted such that the q = (π/2π/2)magnon energymatches the onemeasured by
RIXS for SCOC. At q = (0, 0), the sharp ω = 4J peak observed for the Heisenberg
model is brought down in energy and widened. We show an energy cut in Fig. 2.21.
While magnon-magnon interactions will lower the peak energy, we note that the
inclusion alone of the extended magnetic interaction from Eq.2.6.58 lead to a tail of
excitations towards high energies from the main peak. It is tempting thus to interpret
the measured Raman scattering two-magnon peak asymmetric lineshape as an effect
of the extended magnetic interactions. But, while the density of states underlies
the Raman scattering signal, the matrix element effects might completely change
this picture. Indeed the Raman lineshape has been analyzed using the fourth order
low-energy effective theory of the t-U Hubbard model (Katanin and Kampf 2003)
which also includes extended magnetic interactions. This approach did result in a
slightly asymmetrical lineshape but not enough compared to experiments. On can
speculate that including the larger family of extended magnetic couplings for a t-t ′-
t ′′-U Hubbardmodelmight increase the asymmetry. But in view of the first chapter of
this thesis, one can speculate that the origin of the asymmetrical Raman lineshape has
an entirely different origin than effective extended magnetic excitations. In Chap. 1
we argued that the asymmetric lineshape measured by INS on the CFTD material
at momentum q = (π, 0) might be a signature of fractional excitations physics.

http://dx.doi.org/10.1007/978-3-319-26419-6_1
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Fig. 2.20 Two magnon density of states in the case of the Heisenberg model (top) and in the
case of the full effective model Eq.2.6.58 (bottom) with the SCOC parameters from Table2.2. The
Heisenberg model J is adjusted such that the q = (π/2π/2) magnon energy matches the one
measured by RIXS for SCOC

Fig. 2.21 Energy cut of the two-magnon density of states from Fig. 2.20 at q = (0, 0)
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Fig. 2.22 Two magnon part of the longitudinal spin structure factor in the case of the Heisenberg
model and in the case of the effective model Eq.2.6.58 with the SCOC parameters from Table2.2.
The Heisenberg model J is adjusted such that the q = (π/2, π/2) magnon energy matches the one
measured by RIXS on SCOC

One can therefore speculate that fractional excitations might also be the explanation
for the asymmetric Raman lineshape (Ho et al. 2001). Lastly we also note that the
500meV copper K-edge RIXS peak can also be interpreted as an extended magnetic
interaction effect. Indeed comparing the density of states for the Heisenberg model
and for our effective model we see a concentration of two-magnon states exactly at
q = (π, 0). Again the RIXS matrix elements might change this picture but we note
that, at least for the dynamical spin structure factor, this feature survives as shown
on Fig. 2.22.

2.9 Conclusion

This work is an attempt at using the available theoretical tools to obtain a detailed
and unified description of the cuprate superconductor family insulating parent com-
pounds. The goal was to provide a strong experimental footing to the microscopic
model parameters. The cuprate superconductors problematic generated a hugeworld-
wide experimental thrust and an associated huge literature. Herewe chose to focus on
experimental results from the ARPES, INS, Raman scattering and RIXS techniques
and show that they consistently constraint the microscopic model parameters. Using
the same unified effective theory framework, we could account for the magnetic
excitation spectrum of the LCO, SCOC and BSYCO materials and show that it is
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consistent with the entirely different electronic measurements carried by ARPES.
Such a consistency across widely different techniques, while desirable, is rarely
achieved. Following this determination of the microscopic model parameters, we
discussed their adequacy with the following experimental facts:

• In ARPES measurements, the waterfall feature discussed in Sect. 2.4.1 was con-
troversially described either as an ARPES matrix element effect (Inosov et al.
2007) or an intrinsic self-energy effect (Chang et al. 2008). In the former case
the associated bare band quasiparticle dispersion was shallow corresponding to a
small nearest-neighbour hopping t = 0.23eV. The size of the nearest neighbour
hopping t = 0.48eV from our fit of the magnetic spectrum seems to support the
latter interpretation of the waterfall feature.

• In copper K-edge RIXS at momentum q = (π, 0), a strong peak at 500meV
was interpreted a two-magnon excitation. The concentration of states we find in
the non-interacting two-magnon density of states at this momentum supports this
interpretation although the effect of magnon-magnon interaction and RIXSmatrix
elements was not accounted for.

• Finally the asymmetric lineshape of the Raman scattering was addressed. While it
would seem tempting to link it to themagnetic zone boundary dispersion caused by
the extendedmagnetic interactions, such a coursewas already attempted inKatanin
andKampf (2003) and did not result in a large enough asymmetry. The inclusion of
the larger family of extendedmagnetic coupling from the t-t ′-t ′′-U Hubbardmodel
low energy effective theory might increase this asymmetry. But it was speculated
that the asymmetric Raman lineshapewas a result of fractionalized excitations (Ho
et al 2001), a similar phenomenon as the zone boundary anomaly evidenced in
Chap.1. It might be very interesting to see if the variational Monte Carlo approach
developed in Chap.1 could address the Raman asymmetric lineshape problematic.
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Appendix A
Variational Monte Carlo Appendices

A.1 Metropolis Monte Carlo

The metropolis Monte Carlo is a numerical approach to provide an estimate of an
integral when the space the integral is carried on is too large for a regular partition.
We consider a quantity F :

F =
∑

α

ρ(α) f (α) (A.1.1)

where ρ(α) is a normalized probability distribution. The Metropolis Monte Carlo
provides a simple way to calculate an estimate of F by summing the contributions
f (α) with the α states being generated by a random walk following the probability
distribution ρ(α). To define this random walk, we must specify a proposal function
P(α′|αn) where n index the random walk steps. There is a great freedom into
designing this proposal function and we only require that it may generate a transition
between any pair of states α and α′ in a finite number of steps. We then define the
transition probability matrix A (α′|αn):

A (α′|αn) = min

[

1,
P(αn|α′)ρ(α′)
P(α′|αn)ρ(αn)

]

. (A.1.2)

The random walk is then generated as follow:

1. A new state α′ is generated by the proposal function P(α′|αn).
2. A random number r ∈ [0, 1) is drawn.

• If r < A (α′|αn) then the state is accepted and αn+1 = α′.
• If not then the state is rejected and αn+1 = αn .

3. Go back to 1.
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Defined that way, the random walk conditional probability P(αn+1|αn) is:

P(αn+1|αn) =
{

A (αn+1|αn)P(αn+1|αn) αn+1 �= αn

1 − ∑

α′ A (α′|αn)P(α′|αn) αn+1 = αn
(A.1.3)

and verifies the detailed balance

P(α′|α)ρ(α) = P(α|α′)ρ(α′) (A.1.4)

which guaranties that the set of states {αn} drawn by the random walk will follow the
probability distribution ρ(α). Using this random walk we will then collect samples
f (α) whose average will be an estimate of F � E(F). We then would like to be also
able to tell what the uncertainty of this estimate is. If the samples are independent,
we could simply use the estimate of the standard deviation σ(F):

σ(F) � E(σ (F)) =
√

1

L(L − 1)

∑

α

(E(F) − f (α))2. (A.1.5)

This is only valid if the samples are independent which typically is not the case
in a Markov chain. To overcome this difficulty we simply choose to take the samples
sufficiently far away from each others in the random walk. Also the statistical average
will only be reliable for sufficient statistics. All these remarks are quite hand-wavy
and we need a way to know whether we can trust the estimate. We describe in
Appendix A.6 how we determine the uncertainty of our numerical results.

A.2 Determinant Update Formulas

The determinant update formula for a new matrix A′ where only one row/column
has been changed with respect to A can easily be calculated if one knows the inverse
matrix A−1 and remembering the inverse matrix is linked to the determinant through
the co-factor matrix:

A−1 = 1

Det(A)
cof(A)T (A.2.1)

where the i, j th element of the cofactor matrix is:

cof(A)i j = Det
(

A\(i j)
)

(A.2.2)

where A\(i j) is the matrix A where row i and column j have been removed. These
considerations lead to the simple determinant update formula where, for definiteness,
we changed row k in matrix A to get A′:



Appendix A: Variational Monte Carlo Appendices 153

Det(A′)
Det(A)

=
∑

j

A′
k j A−1

jk . (A.2.3)

A similar formula can be derived to also find the inverse matrix update (A′)−1.
We note that the determinant update formula involve a simple sum over the columns
j of the A′ matrix and thus is of linear complexity with respect to the matrix size
N thus far better the cubic complexity for calculating the determinant from scratch.
In fact these results are only special cases of the two following relations. Let A be a
N × N matrix, U a N × m matrix and V an m × N matrix. The rank-m modification
of the matrix A is defined as:

A′ = A + U V (A.2.4)

for which we have the two results (Brookes 2011):

Det(A′) = Det(A)Det
(

I + V A−1U
)

(A.2.5)

(A′)−1 = A−1 − A−1U
(

I + V A−1U
)−1

V A−1 (A.2.6)

where I is the m × m matrix identity and it s assumed in A.2.6 that the m × m matrix
I + V A−1U is invertible. Let’s reformulate these results in a more useful way for
the problem of changing simultaneously mr rows and mc columns. We define the
matrices of the new rows and columns as R and C respectively being mr × N and
N × mc. We let r1, . . . , rmr be the indices of the rows to be changed and c1, . . . , cmc

the indices of the columns to be changed. Furthermore we define the unit column-
vectors êi where the only non-zero element is (êi )i = 1. Then one can see that
the following U and V do define a simultaneous change of the ri th rows and c j th
columns of A by the i th rows of R and the j th columns of C :

U = (

C ′ Er
)

(A.2.7)

V =
(

Ec

R′

)

(A.2.8)

with

Er = (

êr1 êr2 . . . êrmr

)

(A.2.9)

Ec =

⎛

⎜
⎜
⎜
⎜
⎝

êT
c1

êT
c2

...

êT
cmc

⎞

⎟
⎟
⎟
⎟
⎠

(A.2.10)

and
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C ′ =(1 − Er E T
r )(C − AET

c ) (A.2.11)

R′ =R − E T
r A. (A.2.12)

Then the matrix K = I + V A−1U has the block form:

K = I + V A−1U =

⎛

⎜
⎜
⎝

Ec A−1C − Ec A−1 Er E T
r C

+Ec A−1 Er E T
r AE T

c
Ec A−1 Er

R A−1C − R A−1 Er E T
r C

−RE T
c + R A−1 Er E T

r AE T
c

R A−1 Er

⎞

⎟
⎟
⎠

. (A.2.13)

Let’s check the computational complexity of each blocks in the case mr � N
and mc � N . The upper left block has mc ×mc elements and its calculation requires
O(N ) operations. The lower left block has mr × mc elements and requires O

(

N 2
)

operations. The upper right block has mc × mr elements and requires O
(

N 0
)

opera-
tions. The lower right block has mr ×mr elements and requiresO(N ) operations. The
complete calculation of the matrix K is of quadratic complexity O

(

N 2
)

. When there
are no row changes or no column changes, the above formulas might be modified a
little yielding:

K =Ec A−1C no row changes (A.2.14)

K =R A−1 Er no column changes (A.2.15)

and thus are only of linear complexity O(N ). Once the matrix K is calculated, the
determinant update can be obtained from the rank-(mc + mr ) determinant of the K
matrix. The inverse matrix update will require the inversion of K and additional rank-
N matrix multiplications making the inverse update of quadratic O(N 2) regardless
of the fact there might be only rows or only columns being changed. In summary
the above formulas allow to calculate the determinant update and the inverse matrix
update in quadratic complexity O

(

N 2
)

at worst. Of course the whole procedure gets
increasingly expensive for larger mr and mc and is only worth when mc � N and
mr � N .

A.3 Modified Monte Carlo Random Walk: Details

The random walk is generated by random exchanges of neighbouring anti-parallel
spins as explained in Sect. 1.7.2. The calculation of the amplitude 〈α|ψ〉 involving
N↑ × N↑ and N↓ × N↓ Slater determinants we store the Slater matrices M 〈α|ψ〉

i↑ j↑ and

M 〈α|ψ〉
i↓ j↓ :

http://dx.doi.org/10.1007/978-3-319-26419-6_1
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M 〈α|ψ〉
i↑ j↑ =

〈

Ri↑ ,↑
∣
∣
∣k j↑ ,↑, bk j↑

〉

(A.3.1)

M 〈α|ψ〉
i↓ j↓ =

〈

Ri↓ ,↓
∣
∣
∣k j↓ ,↓, bk j↓

〉

(A.3.2)

and their inverse calculated once from a standard LU decomposition. The determi-
nant is also obtained that way and stored. These initial inverse matrix and determinant
calculation are of cubic complexity. When one proceeds in the random walk, the pro-
posed state amplitudes is obtained through the determinant update formula derived
in Appendix A.2. When a move is accepted, one must also update the inverse matrix
thus using also the previously seen formulas from Appendix A.2.

In the special case of the modified Monte Carlo random walk presented in
Sect. 1.8.3, one has to take special care. The random walk starts by choosing an
arbitrary particle-hole state for |ψ〉 = ∣

∣k0, σσ ′, q
〉

as the reference state to define
the Slater matrices and their inverse. But it might happen that some special state |α〉
is a node of this state

〈

α
∣
∣k0, σσ ′, q

〉 = 0 but not of the other particle-hole states
〈

α
∣
∣k �= k0, σσ ′, q

〉 �= 0. In that case the weight Eq. 1.8.28 or 1.8.31 W q�S(α) might
still be finite and the move accepted. But because

〈

α
∣
∣k0, σσ ′, q

〉 = 0 the Slater
matrix for

∣
∣k0, σσ ′, q

〉

is not invertible! To ensure this situation never happen we
make sure, when accepting a move |α〉 → ∣

∣α′〉, that we also choose the particle-hole

reference state
∣
∣k0, σσ ′, q

〉 → ∣
∣k′, σσ ′, q

〉

such that
∣
∣
〈

α′∣∣k′, σσ ′, q
〉∣
∣
2

is maximum
thus making the inverse matrix well-defined.

A.4 Monte Carlo Thermalization

The Monte Carlo random walk starts from a completely random state. It is likely this
initial state will have very little weight and the random walk will drift towards better
states. This is the so-called thermalization process where the visited states might not
be representative of the Monte Carlo probability distribution. The states associated
with this process should therefore not enter the Monte Carlo sampling as they will
introduce a bias from the random initial state. It is therefore important to determine
how long in terms of random walk steps the initial thermalization takes, in order
to only start sampling quantities safely away. In some cases the thermalization may
be as hard as to constitute the main goal of the Monte Carlo procedure. In our case
however it turns out to be an extremely fast and easy procedure due to the lack of
frustration involved in the square lattice antiferromagnet. We show on Fig. A.1 top
panel the evolution of the Monte Carlo weight ρ(α) = |〈α|GS〉|2 as a function of
Monte Carlo step for the SF+N wavefunction for different system sizes. The x-axis is
scaled by the system size to allow comparison between different sizes. It is seen that
the initial state evolves in less than 20 × L2 steps to gain a staggered magnetization
and get a reasonable weight. We obtain a similar result for the spin-liquid SF state.
For calculations in the transverse or longitudinal particle-hole subspace, we also
obtain very similar results showing a very fast thermalization. We show it in the SF
case on Fig. A.2. It is interesting to see that, while in the SF state the q = (π, π)

http://dx.doi.org/10.1007/978-3-319-26419-6_1
http://dx.doi.org/10.1007/978-3-319-26419-6_1
http://dx.doi.org/10.1007/978-3-319-26419-6_1
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Fig. A.1 Evolution of the Monte Carlo weight and staggered magnetization of the random walk
states for the SF+N state with weight ρ(α) = |〈α|GS〉|2. Top weight normalized to the average
weight of the random walk. Bottom Staggered magnetization

Fig. A.2 Evolution of the Monte Carlo weight and staggered magnetization of the random walk
states for the SF state with weight ρ(α) = ∑

k |〈α|k ↑↓, q〉|2. Top weight normalized to the average
weight of the random walk. Bottom Staggered magnetization
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instantaneous spin-spin correlation function is peaked, the random walk nevertheless
alternates between positive and negative staggered magnetization.

The numerical results presented in this thesis were obtained using 100 × L2 ther-
malization steps to guarantee unbiased results. The very small cost of thermalization
in our problem has great advantage for massive parallelization. In the largest cal-
culations we did, we ran up to 3200 parallel random walks each containing only a
thousand evaluations of the measured quantities done every L2 random walk steps
where L2 is the number of lattice sites. We show below that each thermalization step
require O

(

L4
)

operations while each measurement requires O
(

L6
)

operations. The
thermalization thus amounts to a very minor cost in run-time making it profitable to
run many short parallel random walks to gather large statistics.

A.5 Calculation Run-Time Scaling

The calculation run-time scaling can be deduced from the algorithmic complexity
determined in Appendix A.2. For the groundstate and excited subspaces calculations,
the random steps cost O(N 2) operations either from the inverse Slater matrix update
or, for the excited subspace calculations, from the determinant update itself. Therefore
the thermalization process run-time will scale quadratically with system size as seen
on Fig. A.3.

Fig. A.3 Run-time needed versus system size for the excited subspace calculations (here trans-
verse). Thermalization steps (red open circles) scale quadratically with system size (cyan solid line)
and measurements (blue open circles) scale cubically with system size (green solid line)
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The measurements run-time depends on the quantity. The simplest one which have
only diagonal contributions 〈α| O |β〉 = 〈α| O |α〉 δαβ do not involve determinant
updates. For instance the staggered magnetization measurement run-time will scale
linearly with system size while the longitudinal instantaneous spin-spin correlation
function will scale quadratically due to the double sum in Eq. 1.7.18.

For the quantities evaluated on the groundstate, quantities with off-diagonal matrix
elements 〈α| O |β〉 �= 0 will involve determinant updates which are of linear com-
plexity for the groundstates if |β〉 differs from |α〉 by a unique hop of ↑ and/or ↓
spins. For instance the variational energy of the Heisenberg Hamiltonian will scale
quadratically with system size due to the sum over sites coupled to the determinant
updates. The transverse instantaneous spin-spin correlation functions measurement
will scale in cubically with system size again due to the double sum coupled to the
determinant updates.

We finally consider the excitation subspace calculations. The overlap matrix is
sampled using, from Eq. 1.8.30:

fOq�S
kk′

(α) =
〈

k, σσ ′, q
∣
∣α
〉 〈

α
∣
∣k′, σσ ′, q

〉

∑

q |〈α|k, σσ ′, q〉|2 (A.5.1)

which, for calculating all (k, k′) matrix elements is of quadratic complexity as the
determinant update where only rows or columns are changed is of linear complexity.
For the case of the projected Heisenberg matrix, the sampling is done using, from
Eq. 1.8.29:

fH q�S
kk′

(α) =
∑

β

〈

k, σσ ′, q
∣
∣α
〉 〈α|H |β〉 〈β∣∣k′σσ ′, q

〉

∑

q |〈α|k, σσ ′, q〉|2 (A.5.2)

which involves simultaneous row and column changes in the determinant update
from the

〈

β
∣
∣k′, σσ ′, q

〉

amplitude which are of quadratic complexity. Coupled to the
sum over sites in the Heisenberg model and the O(N ) number of k′, it looks like
the sampling of the projected Heisenberg matrix is of quartic complexity! To fix the
ideas let’s decide that the change |α〉 → |β〉 involves a row change in the spin-↑
and spin-↓ Slater matrices. In Eq. A.2.13, the quadratic complexity comes from the
matrix-vector multiplication

Rα→β

(

M〈α|k,σσ ′,q〉)−1
.

It only needs to be calculated once for one |α〉 → |β〉 change. Then the vector-
vector product:

(

Rα→β

(

M〈α|k,σσ ′,q〉)−1
)

Ck→k′

http://dx.doi.org/10.1007/978-3-319-26419-6_1
http://dx.doi.org/10.1007/978-3-319-26419-6_1
http://dx.doi.org/10.1007/978-3-319-26419-6_1
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needs O(N ) operations and must be carried out O(N ) times. Therefore the total
complexity is only cubic as there are O(N ) matrix-vector products

Rα→β

(

M〈α|k,σσ ′,q〉)−1

to carry out. The measurement run-time of the projected Heisenberg matrix will
therefore scale cubically with system size. The number of Monte-Carlo steps in-
between two measurement is given by the system size N such that that it also amounts
to a cubically scaling run-time. We confirm in practice these predictions on Fig. A.3
where is shown the required run-time per measurement as a function of system
size. For the largest system size calculated (L2 = 322), one can see that the cost
of thermalization steps is 6 orders of magnitude less than a single measurment.
Counting that about 100L2 thermalization steps must be carried out before starting
measurements, the cost of the whole thermalization costs less that 10 % of a single
measurement, a negiligible cost.

A.6 Evaluation of Uncertainties

To evaluate Eq. 1.7.3, one sums only on a very small subset of the spin configuration
space. This naturally leads to an uncertainty on the end-result. For simple quantities
such as the staggered magnetization and the variational energy of the Heisenberg
model, the uncertainty can be calculated following Gros (1989). As the data for large
lattices were obtained using massively parallel independant random walks (up to
3200) we usually bunch the obtained data into Nb ∼ 10 〈O〉b statistically indepen-
dant samples. The expectation value is then simply obtained by taking the samples
average:

〈O〉 = 1

Nb

Nb∑

b=1

〈O〉b (A.6.1)

and the uncertainty is obtained from the standard deviation

σ 2(O) = 1

Nb − 1

Nb∑

b=1

(〈O〉b − 〈O〉)2
. (A.6.2)

For more complicated quantities like the projected Heisenberg model matrix
Eq. 1.8.29 and the overlap matrix Eq. 1.8.30, the uncertainty on the matrix elements
could be found in the same way. The problem is that the meaningful quantities are
then obtained through solving the generalized eigenvalue problem defined by these
matrices. It is difficult to know how the uncertainty on the sampled matrices will prop-
agate by the diagonalization process. We thus take the following practical approach:
we compare the result obtained through the two different ways:

http://dx.doi.org/10.1007/978-3-319-26419-6_1
http://dx.doi.org/10.1007/978-3-319-26419-6_1
http://dx.doi.org/10.1007/978-3-319-26419-6_1
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• We completely collapse the sampled matrices into one projected Heisenberg and
overlap matrix pair, diagonalize and extract further quantities from the eigenvectors
and eigenvalues. This, for instance in the case of the spinon-pair root mean square
separation Eq. 1.10.19 gives single points on Fig. 1.35 panel E.

• We bunch the sampled matrices into Nb = 10 projected Heisenberg and overlap
matrix pairs, diagonalize and extract Nb independant samples of further quantities
from the Nb samples of eigenvalues and eigenstates. The average value is then
obtained using Eq. A.6.1 and the unceratinty Eq. A.6.2. In the case of the root-
mean-square spinon separation Eq. 1.10.19, this gives the errorbars which may or
may not be centered on the points calculated from the full collapse of the data in
one unique sample.

Comparing these two ways allows to know whether the obtained values can be
trusted by making sure they are compatible. On Fig. 1.35 panel E it is seen that the
error propagation is highly non-trivial as the q = (π, 0) points display much larger
uncertainties than the q = (π/2, π/2) momentum points.

http://dx.doi.org/10.1007/978-3-319-26419-6_1
http://dx.doi.org/10.1007/978-3-319-26419-6_1
http://dx.doi.org/10.1007/978-3-319-26419-6_1
http://dx.doi.org/10.1007/978-3-319-26419-6_1
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Effective Low-Energy Model Derivation

B.1 Proof of the Unitary Transformation Expansion
Formula

We give a short proof of Eq. 2.6.13 here written simply as

eX Y e−X = Y + [X, Y ] + 1

2! [X, [X, Y ]] + 1

3! [X, [X, [X, Y ]]] + · · · (B.1.1)

Let

f (s) = es X Y e−s X (B.1.2)

where s is a real number. We can write f (s) as a Taylor expansion around s = 0:

f (s) = Y +
∞
∑

n=1

1

n!
dn f

dsn

∣
∣
∣
∣
s=0

sn. (B.1.3)

Then proving that

dn f

dsn
=

n commutators
︷ ︸︸ ︷
[

X,
[

X, . . .
[

X, es X Y e−s X
]

. . .
]]

(B.1.4)

proves (B.1.1) by letting s = 1. By recursion:

• n = 1:

d f

ds
= Xes X Y e−s X − es X Y e−s X X (B.1.5)

= [

X, es X Y e−s X
]

(B.1.6)
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• recursion:

dn+1 f

dsn+1
= d

ds

n commutators
︷ ︸︸ ︷
[

X, . . .
[

X, es X Y e−s X
]

. . .
]

(B.1.7)

=
[

X, . . .

[

X,
d

ds
es X Y e−s X

]

. . .

]

(B.1.8)

=
n+1 commutators

︷ ︸︸ ︷
[

X, . . .
[

X,
[

X, es X Y e−s X
]]

. . .
]

# (B.1.9)

B.2 Iterative Approximate of the Unitary Transformation

We give here the details of the iterative scheme to derive an approximate of the
unitary transformation Eq. 2.6.13 which approximately fulfill the conservation of
the number of double occupancies condition Eq. 2.6.4. Following MacDonald et al.
(1988), we define the following notation:

T (k)(m1, m2, . . . , mk) = T (k)[m] = T̂ m1 T̂ m2 . . . T̂ mk (B.2.1)

Then we find that

[

V̂ , T (k)[m]
]

=
∑

l

(
l−1
∏

i=1

T̂ mi

[

V̂ , T̂ ml

] k
∏

i=l+1

T̂ mi

)

= U
∑

l

ml

︸ ︷︷ ︸

=M (k)[m]

T (k)[m]. (B.2.2)

It naturally follows that the terms which do not commute with V̂ are those where
M (k)[m] �= 0. At a given order k, the previous approximate i Ŝ(k−1) leaves only terms
of order t k/U k−1. Calling H

′[k] these terms:

H
′[k] = U 1−k

∑

{m}
C (k)[m]T (k)[m] (B.2.3)

where C (k)[m] are simply the coefficients. From Eq. B.2.2 it follows that defining:

i Ŝ(k) = i Ŝ(k−1) + U−k
∑

{m}∈M (k)[m]�=0

C (k)[m]T (k)[m]
M (k)[m] (B.2.4)

will iteratively define order by order a suitable approximate of i Ŝ. We show on
Fig. B.1 a short python program which carries out the calculation up to order t4/U 3.

http://dx.doi.org/10.1007/978-3-319-26419-6_2
http://dx.doi.org/10.1007/978-3-319-26419-6_2
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B.3 Formulas for the Spin-Wave Hamiltonian

We give here the formulas to calculate the Ak and the Bk factors in Eq. 2.7.26:

H (2)
SW =

∑

k

∑

mm ′
(Ak)mm ′

(

a†
kmakm ′ + a†

km ′akm

)

+ 1

2
(Bk)mm ′

(

a†
kma†

−km ′ + akma−km ′
)

(B.3.1)

the Ak and Bk terms are expressed as a sum over the Aτ ll ′
k and Bτ ll ′

k terms as defined
in Eqs. 2.7.21 and 2.7.22:

Aτ ll ′
k =

(

2(1 − 2ετ ll ′) + δll ′ετ ll ′cos(kτ ) (1 − δll ′)ετ ll ′cos(kτ )

(1 − δll ′)ετ ll ′cos(kτ ) 2(1 − 2ετ ll ′) + δll ′ετ ll ′cos(kτ )

)

(B.3.2)

Bτ ll ′
k = −

(

2δll ′ ε̄τ ll ′cos(kτ ) 2(1 − δll ′)ε̄τ ll ′cos(kτ )

(1 − δll ′)ε̄τ ll ′cos(kτ ) 2δll ′ ε̄τ ll ′cos(kτ )

)

(B.3.3)

We give the definition for Ak. The Bk is exactly identical just by replacing the Aτ ll ′
k

with Bτ ll ′
k .

(B.3.4)

where the τ i j li l j translation and layer indices are determined by the sites included

in the two-, three- and four-sites plaquette exchange , and
The calculation of the Ak and Bk is then performed using a symbolic algebra soft-
ware by first enumerating all possible plaquettes exchanges and then defining their
corresponding A

τ i j li l j

k and B
τ i j li l j

k matrices.

http://dx.doi.org/10.1007/978-3-319-26419-6_2
http://dx.doi.org/10.1007/978-3-319-26419-6_2
http://dx.doi.org/10.1007/978-3-319-26419-6_2
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Fig. B.1 Full python code to produce the iterative approximate of the unitary transformation
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Fig. B.2 Color map of the fit quality as a function of U and t ′′/t . In the outer dark red regions the
parameters are such that the spin-wave approach fails indicating the breakdown of the long-ranged
Néel order hypothesis. In the central area of the displayed (t ′′/t, U ) plane, the spin-wave approach
does bring a meaningful solution which results in a good fit quality. In particular, two distinct valleys
of best fit solutions can be followed as a function of U . Inspecting the resulting (t/U, t ′/t) fitted
parameters, we see the inner solution corresponds to t ′t ′′ < 0 and the outer one to (t ′t ′′ > 0)

B.4 Fitting Results for BSYCO

We provide in this appendix the fitting results in the case of the bilayer cuprate
BSYCO. The results are qualitatively identical to those of SCOC discussed in
Sect. 2.8.3 and are not further discussed here (Figs. B.2, B.3, B.4, and B.5).

B.5 Fitting Results for LCO

We provide in this appendix the fitting results in the case of the single layer cuprate
LCO. The results are qualitatively identical to those of SCOC discussed in Sect. 2.8.3
and are not further discussed here (Figs. B.6, B.7, B.8 and B.9).

http://dx.doi.org/10.1007/978-3-319-26419-6_2
http://dx.doi.org/10.1007/978-3-319-26419-6_2
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Fig. B.3 Fitted parameters for the best fit lines defined on Fig. B.2. Top panel shows χ2 along the
inner (solid line) t ′t ′′ < 0 best fit line and the outer (dashed line) t ′t ′′ > 0 one. On the bottom panel
are show the corresponding fitted parameters (t ′′/t, t ′/t, t/U ) as a function of U along the best fit
lines, solid line for t ′t ′′ < 0 and dashed for t ′t ′′ > 0

Fig. B.4 The obtained fitted dispersion for BSYCO. Top panel shows the experimental data and a
range of fitted solutions (solid blue lines) with the magnon dispersion of a simple Heisenberg model
(dashed grey line) with J chosen such that ω(π/2, π/2) = 2J . On the bottom panel we subtract it
to the data and the fitted dispersions and also show the dispersion from a fit to the t − U Hubbard
model fourth order strong coupling expansion (dashed red line)
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Fig. B.5 Various physical properties along the t ′t ′′ < 0 best fit line in Fig. B.2. Top Reduced
staggered magnetization with an experimental determination (dashed black line, shaded area rep-
resents the uncertainty). Middle The doubly occupied site density. Bottom The q-averaged first 1/S
quantum renormalization of the magnon energy, Shaded area represents the variance σ 2 across the
Brillouin Zone

Fig. B.6 Color map of the fit quality as a function of U and t ′′/t . In the outer dark red regions the
parameters are such that the spin-wave approach fails indicating the breakdown of the long-ranged
Néel order hypothesis. In the central area of the displayed (t ′′/t, U ) plane, the spin-wave approach
does bring a meaningful solution which results in a good fit quality. In particular, two distinct valleys
of best fit solutions can be followed as a function of U . Inspecting the resulting (t/U, t ′/t) fitted
parameters, we see the inner solution corresponds to t ′t ′′ < 0 and the outer one to (t ′t ′′ > 0)
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Fig. B.7 Fitted parameters for the best fit lines defined on Fig. B.6. Top panel shows χ2 along the
inner (solid line) t ′t ′′ < 0 best fit line and the outer (dashed line) t ′t ′′ > 0 one. On the bottom panel
are show the corresponding fitted parameters (t ′′/t, t ′/t, t/U ) as a function of U along the best fit
lines, solid line for t ′t ′′ < 0 and dashed for t ′t ′′ > 0

Fig. B.8 The obtained fitted dispersion for LCO. Top panel shows the experimental data and a
range of fitted solutions (solid blue lines) with the magnon dispersion of a simple Heisenberg
model (dashed grey line) with J chosen such that ω(π/2, π/2) = 2J . On the bottom panel we
subtract it to the data and the fitted dispersions and also show the dispersion from a fit to the t − U
Hubbard model fourth order strong coupling expansion (dashed red line)
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Fig. B.9 Various physical properties along the t ′t ′′ < 0 best fit line in Fig. B.6. Top Reduced
staggered magnetization with an experimental determination (dashed black line, shaded area rep-
resents the uncertainty). Middle The doubly occupied site density. Bottom The q-averaged first 1/S
quantum renormalization of the magnon energy, Shaded area represents the variance σ 2 across the
Brillouin Zone



Appendix C
Realization of In-House Quantum
Wolf Cluster

In the process of the variational Monte Carlo project covered in Chap. 1, the need of
a large amount of CPU time quickly rose. This need was partially met by obtaining
ten million CPU hours on the Swiss National Supercomputing Center (CSCS) Monte
Rosa Cray XE6 cluster. But the constaints linked to the proposal-based CPU time
attribution along with my personal interst in computing technical aspects motivated
the realization of an in-house loosely interconnected cluster made out of consumer
market parts. This kind of cluster is often reffered as “Beowulf” cluster and is a
competitive alternative to professionnally-built clusters when the need of a fast-
interconnect and of high quality of service are low. Probably following my badly
pronounced english and Henrik’s wild inspiration, the cluster was named “Quantum
Wolf”.

Monte Carlo calculations such as the ones described in 1 typically meet these
criteria. The Monte Carlo sampling is trivially parallelized by carrying out several
random walks in parallel, with essentially no communication needed between the
running instances. In case of unexpected termination, there might be essentially no
data loss if the Monte Carlo statistics is regularily saved, thus the there is no special
reliability needs. Based on these considerations we built a in-house cluster whose
key-features are:

• 96 nodes each with a 4-core CPU, totalling 384 computational cores.
• 9.6 TFlops (synthetic from the CPU documentation)
• Energy consumption of 4.8 kW
• Low cost of 312 CHF/node

We show on Table C.1 the specific parts which where used. The cluster in simply
air-cooled by a front wall of fans and a classic heat-exchanger at the back to thermalize
the room the cluster is sitting in. In order to use the power supply in the most
energy-efficient way, we power 8 nodes using a single power supply. The local
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Table C.1 Parts used to build the Quantum Wolf cluster

Components Model Number

CPU Intel i5-3350 96

Motherboard Gigabyte H61M-S1 96

Memory Patriot DDR3 1333 MHz 2 × 4GB 96

Power supply FSP AURUM GOLD 600 W 12

Fans Arctic Cooling F12-PWM 60

Ethernet cables Roline Kat. 5e Kabel 1m 96

Ethernet switches Zyxel XGS1910-48 2

Fig. C.1 Front view of the
cluster. The fans of the top
shelf have been removed
showing the motherboards
stacked vertically in two
rows such that each shelf
carries 16 nodes powered by
two power supplies

network was setup with two switch interconnected together and with the master
node with a 10 Gbit/s network speed. The nodes themselves have simple 1 Gbit
networking. The computational nodes are diskless meaning they completely load
in memory a stripped-down debian-based operating system booted from the local
network. Standard comnputational libraries such as Message Passing Interface (MPI),
Basic Linear Algebra Subroutines (BLAS), lapack of hdf5 for instances.

In terms of reliability the cluster, once setted up, did not suffer major incidents
with a constant calculations being carried out over more than 3 months so far (Fig.
C.1).
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