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Preface

1 his Second Edition of Universih/ Physics is designed for the calculus-

based introductory course for students majoring in one of the physi-

cal sciences or engineering. The text has been extensively rewritten,

in a more relaxed style that makes physics easier to study but that

does not compromise the necessary rigor of the subject. Each chap-

ter reaches the level of exact, rigorous statement that gives physics

its power. Simultaneously, the occasional historical anecdotes and
biographical sketches remind the reader that physics is, indeed, a

human endeavor.

A number of exciting features enhance the book's accessibility

to students and ensure a firm grounding in all aspects of the study

of physics. Most important are the following.

Special Topics

It is important to continually remind students that "physics is all

around them," and to present both modern applications and some
current research activities. Though we do have a few such discus-

sions of a page or two in length, we choose not to include long guest

essays on peripheral or advanced topics, because students tend not

to read them. Instead, we make liberal use of photographs showing
physics in action, with extended captions that explain the concepts

involved. These photographs are intended to catch the eye of the

reader and pique one's curiosity, luring the student to pursue a

short "aside." We believe this stratagem is more palatable and suc-

cessful than the long essays.

We have made one exception to this. At the end of Chapter 45

on nuclear physics is an essay written by Thomas Ferbel, University

of Rochester, on elementary particles, presenting the Standard

Model of particle physics and the goal of unification. He gives due
recognition to the experimental side of these quests, with inspiring

insights into the future.

A Special Problem-Solving Technique

Many beginning students experience difficulty in learning to ap-

proach a problem by first seeking the general principle that applies,

rather than hunting for a particular formula that works in that spe-



cial circumstance. We ask our students to begin each solution by
ex-plkitly stating the general principle in equation form, rather than
a specific relation derived from that principle. The first equation
in a physics problem should be, for example, Eq = E, instead of

tngh = \mv'^ (most other textbooks simply do the latter). All of our
examples illustrate this procedure. In ten years of using this

method, we have found that this modest formality in solutions does
help channel the student's initial thinking toward basic principles

rather than specific formulas. We are convinced that this easy ped-
agogical tactic is effective in helping many students to "think like a

physicist," a skill that becomes invaluable in future course work.

Mathematical Level

Students in an introductory course have a wide range of prior prep-
aration and skills, so at first we use calculus gently, often in parallel

with the simpler (but longer) algebraic derivation. New mathemati-
cal concepts are explained fully and introduced at the point they are

needed, consistent with the progress of topics in an introductory

calculus course. The Appendixes summarize all the mathematical
relations used in the text, and various tables furnish the numerical
data required for problems. The SI system is used throughout.
However, since the transitional period to exclusive metric usage is

still with us, the American Customary system is also employed at

times in mechanics, disappearing in later chapters. We retain a few
non-SI units, such as the atmosphere and the electron-volt, because of

their great convenience and widespread usage.

Problems

Each chapter of this textbook contains an abundance of carefully

worked and verified problems, arranged in three levels of difficulty.

The simpler A and B problems are identified with the appropriate

sections in the chapter; the more challenging C problems are not so

identified. Answers for odd-numbered problems are given at the

end of the book. Questions at the end of each chapter challenge the

student's understanding of concepts in a way distinct from regular

numerical problems. Some questions may not have precise answers
and will lend themselves to class discussions.



Organization

Our topic sequence follows a traditional pattern. Volume 1 includes

mechanics, wave motion, heat, and thermodynamics; Volume 2

treats electromagnetism, optics, special relativity, and quantum
ideas, and briefly introduces atomic and nuclear physics. Chapter

summaries highlight important concepts.

In the earlier chapters we emphasize a systematic and detailed

approach to problem solving. The sophistication with which mate-

rial is presented becomes greater in subsequent chapters as stu-

dents become familiar with the new (for many of them) analytic

procedures and linear thinking required in physics.

If desired. Chapter 41, Special Relativity, may be moved to the

end of mechanics (omitting Section 41.15, Relativity and Electro-

magnetism). It requires only a few comments on the nature of light

to set the stage for this fascinating subject. We have retained our

optional Chapter 14, Accelerated Frames and Inertial Forces, be-

lieving that it is unfortunate if beginning students do not learn the

physics that is taking place, for example, when they ride around a

curve in an automobile. This topic does enrich and deepen one's

understanding of Newton's second law.

In Chapter 42, The Quantum Nature of Radiation, and Chapter

43, The Wave Nature of Particles, we give a somewhat deeper-than-

average discussion of the wave-particle duality of both matter and
radiation. The atomic physics chapter (44) includes a basic presenta-

tion of the time-independent Schrodinger equation, the particle in a

box, and a few hydrogen-atom wave functions. In nuclear physics

(Chapter 45) we discuss the structure of the nucleus, modes of

radioactive decay, nuclear reactions, and nuclear energy. We con-

clude with Thomas Ferbel's essay, described earlier.

The entire textbook may be covered in a three-semester course,

or, if certain chapters and sections are omitted, the material can

form an effective two-semester course.

Supplemental Materials

For those who adopt the book, an Instructor's Answer Book contains

answers to all text problems. Two-color transparencies of selected

figures are also provided for classroom projection. Materials for stu-

dents include a Studeiit Study Guide, Second Edition, by Ken Jesse,



Illinois State University, and a Student Solutkvts Manual by the au-

thors that presents partially worked-out solutions to about 400 rep-

resentative problems from the text. This should help students gain

skill in the crucial first steps of analysis. (These problems are identi-

fied by an asterisk in the Instructor's Answer Book so a teacher may
choose to omit or to include them in weekly assignments.)
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CHAPTER 24

Coulomb's Law and

the Electric Field

Electricity is of two kinds, positive and negative. The difference is, I

presume, that one comes a little more expensive, but is more durable;

the other is a cheaper thing, but the moths get into it.

STEPHEN LEACOCK
[Literary Lapses (1910)1

24.1 Introduction

We are all familiar with the fact that, after we comb our dry hair, the comb
becomes "electrified" with the ability to attract bits of paper. If you stop to

think about it, this phenomenon is baffling: somehow the bits of paper mys-

teriously sense the presence of the electrified comb without actually touching

it. Magnets have similar powers of attracting iron and steel objects without

touching them.

Such behavior has been observed for a long time. The ancient Greeks

discovered that, when amber was rubbed by any of a variety of materials, it

became capable of attracting small objects. In fact, the word electricity comes
from the Greek word for amber: electron, a fossilized resin that becomes elec-

trified when rubbed. In describing atoms, we apply the term electron to the

negative charges surrounding the nucleus of the atom. We now trace the evo-

lution of our understanding of electricity from the electrification of certain

materials to the elegantly unified description of electric and magnetic phenom-
enon known as Maxwell's equations (Chapter 35).

It took many intelligent investigators a long time to unravel the story.

About 200 years elapsed between the publication of Newton's Principia (1687)

and the comparable achievement by James Clerk Maxwell in his Treatise on

Electricity and Magnetism (1873). Despite this relatively long gap in the progress

of physics, many scientists were struggling to make sense of electromagnetic

phenomena during this period, and there were numerous sparks of insight that

helped to illuminate the separate pieces of the puzzle. But it required the genius

of Maxwell to finally fit all the pieces together in a coherent and unified theory.

Perhaps much of the delay in progress was due also to the difference be-

tween mechanical and electrical phenomena. The study of mechanical phenom-
ena benefited from the everyday experiences of pushing and pulling objects

and observing their motions. But there are no comparable sensory experiences

with electromagnetism (except on the superficial level of static electricity and
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magnets). So the subject is inherently more abstract and more obscure from

everyday observations. Furthermore, quantitative experiments in electricity and

magnetism are vastly more difficult to carry out than experiments in mechanics.

The electric force is so large that just a slight unknown imbalance of electrical

charge easily spoils the measurements. As Richard Feynman explains it, if you

were standing at arm's length from someone and each of you had just 1%
more electrons than protons, the repulsive force on you would be enough to

lift a "weight" equal to that of the entire earth!

Electrical forces are everywhere about us. All so-called "contact forces"

—

such as the forces described by Newton's third law (equal and opposite forces),

which occur between adjacent links in a chain, between your pencil lead and

the paper, and between a tire and the roadway—are electrical in origin. All

of these originate in forces of attraction or repulsion between electric charges.

We shall begin our discussion of electricity and magnetism by investigating

forces between electrified objects that are at rest with respect to each other.

This branch of electrical phenomena is known as electrostatics.

24.2 Electrostatic Forces

If we rub an animal fur against a hard rubber rod, the rod acquires new charac-

teristics. For example, it readily attracts bits of paper, and it can deflect a jet

of water without actually touching it. In the process of being rubbed, the rod

has changed. We say it has become electrified, or charged—yet we don't really

know what these terms mean.

Let us sharpen our terminology and understanding of electrical forces by

carrying out some simple experiments. First, suppose we suspend a hard rubber

rod by a thread as shown in Figure 24-1. If a piece of fur is brought near the

rod, there is no noticeable interaction. However, when the rod is rubbed with

the fur, it is then attracted to the fur even at a distance. We call the attraction

an electrostatic force and conclude that

Electrostatic forces (like gravitational forces) can be forces of

attraction.

(a) When a fur is used to rub a

hard rubber rod, that end of

the rod is attracted to the fur.

Suppose we now rub another hard rubber rod with fur. We find that the second

rod repels the suspended rod that had been previously rubbed, and we conclude

that

Electrostatic forces (unlike gravitational forces) can also be

forces of repulsion.

Since the charged objects interact without touching, we further conclude that

Electrostatic forces (like gravitational forces) act through

empty space.

We would find that the results of this experiment are the same if conducted

in a vacuum.

With our knowledge of Newton's law of universal gravitation, we could

estimate the force of gravity between the fur and the rod and at least qualita-

tively conclude that

Electrostatic forces are much stronger than gravitational

forces.

(b) When two such rods are

rubbed by a fur, the rods repel

each other.

FIGURE 24-1

Electrical forces may be either

attractive or repulsive.
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FIGURE 24-2

A torsion balance. The force of

interaction between the charges (Ji

and (ji twists the fiber supporting the

horizontal rod. (Compare with the

gravitational torsion balance, Figure

16-10.)

In order to focus our attention on the nature of the interaction between

two charged objects, we refine the experimental apparatus to that shown in

Figure 24-2. This arrangement is a form of torsional balance, which the English

physicist Henry Cavendish (1731 — 1810) used to measure gravitational forces.

The charged objects are small spheres that have an electrical charge on them,

designated by the symbols q^ and q^- C*^ ^^^^ "^^^^ ^^^ gravitational force be-

tween the spheres is negligible compared to the electrical force.) The numerical

value of qi and q2 (to be specified later) indicates the amount of charge the

objects have. Since the spheres are small, they approximate point charges.

The force of interaction can be determined by the amount of torque re-

quired to twist the supporting fiber. The distance r between the charges is

measured directly. After a series of measurements is made with differing sepa-

ration of the spheres and with various amounts of charge on the spheres, we
will find that, for point charges.

Electrostatic forces (like gravitational forces) are inverse-

square forces; that is, they decrease with distance r as l/r^.

Electrostatic forces are mutual forces of interaction that obey

Newton's third law.

Electrostatic forces are proportional to the product of the

amount of charge on each of the interacting point charges.

These results may be summarized into a single statement; for two point

charges, q^ and ^2- separated a distance r,

k
'?l'72

(24-1)

where k is a constant of proportionality. This result was first published in 1785

by the French physicist Charles Augustin de Coulomb (1736—1806), who
experimented with a torsion balance similar to what we have described.

We have referred to charged objects and charges without really knowing

what constitutes the charge. During the 1740s, Benjamin Franklin proposed

that the charge was a single fluid and that all objects contained a "normal"

amount of it. When he rubbed glass with a silk cloth he noted that the glass

became "electrified" and attracted bits of paper. Franklin hypothesized that the

rubbing did not create the charge, but merely transferred some of the "electrical

fluid" from the cloth to the glass, so that the glass now had a surplus of fluid

while the cloth had an equal deficiency of fluid. Franklin proposed -j- and —
signs to signify these differences; hence the glass acquired a positive charge and

the cloth an equal negative charge. Similarly, when rubbed with fur, a hard rub-

ber or plastic rod becomes negatively charged and the fur positively charged.

Indeed, all materials become more or less charged when rubbed with other

substances. It would have been more fortuitous had Franklin chosen his -|-

and — signs in the opposite sense; we now know that the positive charge on

a glass rod rubbed by silk really originates because some negatively charged

electrons move from the glass to the silk (instead of positive charges moving

from the silk to the glass), so the actual transportation of charge is in the direc-

tion opposite to Franklin's theory. Franklin believed that the electrical fluid

was conserved, that is, that the total amount of fluid in a closed system remains

constant. Even though this single-fluid idea was later shown to be incorrect,

his conservation of charge remains one of the fundamental principles of physics.

No exception to this principle has ever been found.
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In the modem view, electric charge is a basic property of matter. In

addition to uncharged neutrons, atoms contain protons and electrons that are

charged, respectively, positive and negative. The magnitude of the negative

electron charge e is exactly equal to the magnitude of the positive proton

charge (at least to within the experimental verification of 1 part in lO'^^),

though the electron and proton masses differ greatly as shown in Table 24-1.

TABLE 24-1

Particle Symbol Charge Mass (kg)

Proton p

Neutron n

Electron e

1.673 X 10"^'

1.675 X 10"^''

9.110 X 10"^'

24.3 Conductors and Insulators

It is convenient to classify materials in terms of their ability to conduct elec-

trical charges. In a conductor, electric charges can move freely. Most metals

are conductors because the outer electrons associated with each atom—the

"conduction electrons"—can travel easily throughout the material, while the

positively charged nuclei are held fixed. In certain conducting liquids and ion-

ized gases, positive as well as negative charges can move. On the other hand,

substances such as glass, wood, and plastics are classified as nonconductors or

insulators, since electric charges are much less free to move within them. When
charges are placed at a small localized region on an insulator, they remain

there. While there are no perfect insulators,' the best of them is about 10"^

less conducting than copper, so the range in conducting ability spans a very

great scale. Semiconductors, such as silicon and germanium, lie between these

extremes. We can alter the conducting ability of these substances dramatically

by adding just a few parts per million of foreign atoms.

If you hold a hard rubber comb or a glass rod in your hand and rub

them, respectively, with fur or silk, the charges on them will remain in the

region where they were produced, and you can attract small pieces of paper

with them, evidence that the comb or rod carries a net charge. In contrast, a

piece of copper or other conducting material on which some negative charges

(electrons) are placed will not attract bits of paper; electrons placed on the

conductor immediately escape by readily moving through the conductor to

your hand and body and then to the earth. (Had positive charges been placed

on the conductor, negative electrons would have been attracted from the earth

through your body to neutralize the charges electrically.) In efi-ect, the earth

acts as an infinite "sink" that can absorb or supply an almost unlimited number

of electrons. To maintain a charge on a conductor, we must insulate the object

from its surroundings. Figure 24-3 illustrates a process called charging by induction

in which the charging agent (the charged rod) itself does not touch the object

that acquires the charge.

24.4 Coulomb's Law

Equation (24-1) describes the inverse-square-law force between two point

charges. To make the equation quantitative, we need to define the unit of

charge and then experimentally determine the proportionality constant k. In

the SI system the unit of charge is the coulomb (C). Rather than defining the

coulomb through Equation (24-1), it is experimentally easier—and more pre-

cision can be attained— if we define the coulomb as the amount of charge per

o
(a) A neutral, insulated metal sphere.

Charged

rubber

rod /
+ -)-

+
-f

(b)A negatively charged rod is

brought near the sphere, repelling

some electrons (which move freely

in the metal) to the opposite side,

leaving positive charges near the

rod.

(c)The sphere is grounded by a metal

wire connected to the earth

(symbol: =). The electrons flow

to the earth, repelled by the elec-

trons on the rod.

FIGURE 24-3

Charging a metal sphere by induction.

Certain materials called supercotuiuctors do become perfect conductors in the sense that the electrical resis-

tance to the motion of electrons through the material becomes truly zero. Superconductivity was first

discovered in metals cooled to about 4 K, but recent developments indicate that some metallic alloys

and ceramic compounds become superconducting at much higher temperatures. Quantum mechanics

provides an explanation of this unusual behavior. (See Figure 28-10.)
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second passing through any cross-section of a wire carrying a constant current

of one ampere. In turn, the ampere (A) is defined through the electromagnetic

force between two parallel current-carrying wires, as described in Chapter 30.

In this rather roundabout manner, the definition of the coulomb is connected

to the SI mechanical unit for force. For the present, we will use the unit coulomh,

postponing a more detailed discussion of its formal definition.

The magnitude of the fundamental charge f on a single electron is

MAGNITUDE OF THE
ELECTRON CHARGE e = 1.602 X 10

19 C (24-2)

This is the smallest electric charge that has been found; it is equal in magnitude

to the positive charge on a proton.

The value of the constant k in Equation (24-1) is found experimentally

to be 8.99 x 10^ N-m^/C^. A good approximation is

9 X 10'
N-m'

(24-3)

However, to simplify the equations that will be developed later, it is convenient

to express the constant of proportionality in another way, incorporating a fac-

tor of 47r, with the benefit that that factor will not then appear in many other

equations that are used more frequently than Coulomb's law. So we express

k as

AnEr

FIGURE 24-4

The force on charge q2 is in the

direction of ri2 if the product q-^q2

is positive. The situation illustrated

here could be one in which q^ and

(j2 are both positive charges or both

negative. The vector distance from iji

to ^2 ("ot shown) is r = rfij. By

Newton's third law, the force that ij,

exerts on ^j is equal in magnitude to

F but opposite in direction.

where Eq, called the permittivity of free space, has the value

C^PERMITTIVITY
OF FREE SPACE

8.854 X 10"

N-m^

Thus, Equation (24-1) becomes Coulomb's law,

1 \'?l'?2

(24-4)

COULOMB'S LAW

or, in SI units.

f =
AuSq/ r-

9 X 10
g
N-m^ '\t?i^2

C^

(24-5)

(24-6)

where F is in newtons, q in coulombs, and r in meters.

The Coulomb force between two point charges is a mutual force de-

scribed by Newton's third law: the force on one charge is equal and opposite

to the force on the other. We express Coulomb's law in vector form as

COULOMB'S LAW
(vector form)

Fi:
47ref

^\Ri
'12 (24-7)

where Fj^ is the force charge q^ exerts on qj and r,2 is the unit vector

(magnitude = 1) from q^ toward qi. as shown in Figure 24-4. Note carefully

that we always use unit vectors and subscripts that define force directions in

this way: the unit vector r is always drawn from the source of the force toward the
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object upon which the force acts. (You can easily remember the order of the sub-

scripts if you mentally insert an arrow —> between them. Thus points

from 1 toward 2, and Fj^, 's fhe force that charge 1 exerts on charge 2.)

We express the third-law character of the force by reversing the order of all

subscripts to designate the equal-and-opposite force F^i that qj exerts on q^.

Equation (24-7) gives the correct direction of F if we use the following sign

convention:

A positive charge is given the algebraic sign +

.

A negative charge is given the algebraic sign —

.

The force between "like" charges is repulsive; the force between "unlike" charges

is attractive.

Coulomb's law describes the electrostatic interaction between two point

charges. We now use Coulomb's law to describe the interaction of several

point charges, as well as the interaction of a point charge with a distribution

of charges. Such distributions may be along a line, over a surface, or through-

out a volume.

As with the gravitational force between point masses, f = Gm^mj/r^,

we find experimentally that the electrostatic forces on a single charge due

to the presence of many other charges may be superposed, or added together

as vectors, a procedure called the principle of superposition. Since Newton's

law of gravitation and Coulomb's law have the same mathematical form, similar

(a) A simple electroscope devised

in the eighteenth century but

still used today for indicating

the presence of a net charge.

Two thin metal foils are con-

nected by a metal rod to the

metal sphere. The assembly is

supported by an insulating

stopper in the glass bottle.

When a net charge is distrib-

uted between the sphere and
the foils, the foil leaves diverge

because of the mutual repul-

sion of their "like" charges.

FIGURE 24-5

The electroscope.

Microscope

Quartz fiber

electroscope

Spring-loaded

moveable

support

Eyepiece

lens

Scale

Objective

lens

Insulating

support

Charging

contact pin

(push to

contact)

(b) A modern precision electroscope forms a rugged "pocket dosimeter" that

records the presence of ionizing radiation in the vicinity. The leaves are a

fixed metal electrode and a moveable quartz fiber bent into a U shape

and gold-plated to make it conducting. In use, the electroscope is

charged, causing the quartz fiber to deflect from its uncharged position.

The location of the fiber is viewed with a microscope that contains a

scale. If the dosimeter is exposed to ionizing radiation, the gas in the

chamber becomes slightly conductive, allowing charge to leak off in

proportion to the amount of radiation, and the fiber moves across the

scale. When we are viewing, illumination from below passes through the

transparent supports to the fiber, lenses, and scale. (Courtesy of

Dosimeter Corporation of America.)
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conclusions can be made for each. For example, we have shown that the gravi-

tational attraction of two uniform, solid spheres is as though all the mass were

concentrated at a point at the center of each sphere. Similarly, the electrostatic

force between two uniform spheres of charge is as though the total charge of

each sphere were located at its center. In those cases in which the density of

electric charge within a sphere varies only with the distance from its center

(that is, the object has spherical symmelry), the force is again the same as if

each charge distribution were concentrated at its center, just as it is in the spher-

ically symmetric gravitational case.

'^hlScmH'^

(a)

FIGURE 24-6

Example 24-1.

Two small spheres of negligible size, each of mass 2 g, are suspended from a

common support by threads 1 m long. When each sphere is given an electric

charge, the spheres diverge until they are 15 cm apart as shown in Figure 24-6.

(a) Assuming that the charges are equal, find the charge on each sphere, (b) Is

there more than one answer?

SOLUTION

First we draw a free-body diagram for the sphere on the right, as shown in

Figure 24-6b. (Choosing the right or left sphere is arbitrary because of symmetry.

That is, the spheres have identical masses and charges and are suspended by

strings of the same length. Therefore, the Coulomb and gravitational forces on

one sphere are the same as on the other one, except for the directions of the

Coulomb force.)

(a) The net force on the sphere is zero, so the three forces add to form a closed

right triangle, as indicated in Figure 24-6c. Thus:

tan0 =
0.075 m

= 0.075
mg 1 m

Substituting Coulomb's law for the force F, we have

tan0 =

We then solve for q~ (each of the same magnitude):

q^ = (47teo)(tan 6)r^mg

Substituting SI values gives

, / 1

(? =
9 X 10^

N-m-^

"c^

(0.075)(15 X 10 ^ m)^

X (2 X 10 ^ kg) (
9.80 -J

3.68 X 10" c-

Since the charges are equal, we have

1 = V3-68 X 10 " C^ + 6.07 X 10 ** C
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(b) There are two possibilities: both could be positively charged or both could

be negatively charged. Also, because the charges (electrons) have such a small

mass, the two charges could have different values, as long as their product is

3.68 X 10" '^ C'^, and still give the same answer to within the number of

significant figures calculated.

EXAMPLE 24-2

Three different point charges are located as shown in Figure 24-7a. Charge

q^ = 20 nC c\2= —30 jxC, and q->^ = 40 /iC. Find the magnitude and direction

of the net force on ^3.

SOLUTION

We first find the x and y components of the individual force that each charge

exerts on ^3, Figure 24-7b. Here we use a double-subscript notation that will

be used throughout the rest of the text. F13 means the force exerted by q-^ on

Force of ^1 on qj

Because they are like charges, the

force is repulsive. Noting the

3-4—5 right triangle, we find that

the distance r; 3 = 5 m and 6 =
53.1°. Thus:

'^13 - "^
2

''13

= 9 X 10
N-m=

(20 A<C)(40 ^C)
X i

(5 m)'

fi3 = 0.288 N

The X and y components are

fl3;c = fi3COS(180° + 53.13°

= -0.173 N

Force of ifj °" ^3

Because they are unlike charges,

the force is attractive.

'^23 — '<^ 2

= 9 X 10
N-m^

C^

(-30/iC)(40/iC)

(6 m)"

f,, = 0.300 N in the +1 direction)

fj3^, = fj3 sin(I80° + 53.13°)

f
1 3y = -0-^30 N

The r component of the net force on i?3 is Fj^ = (
— 0.173 N + 0.300 N) =

0.127 N. The y component is —0.230 N. Thus the net force on ^3 is

0.263 Nf3 = •JhJ+^ = V(0.127N)^ + (-0.230 N)^ =

The direction of f3 is given by the angle (p in Figure 24-7c, calculated from

'F„A ,/-0.230N'
(j) = tan'

1 / i3y

'3j:,

tan
0.127 N

-61.1° shas shown

4/iC=£73

(m)
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(a) When a negatively charged

conducting sphere is far from

other charges, the electrons

distribute themselves on the

surface of the sphere

symmetrically.

(b) When a positive test charge q
is brought nearby, the distribu-

tion of the electrons on the

surface of the conducting sphere

becomes asymmetric because of

the attraction of unlike charges.

FIGURE 24-8

Under certain circumstances, a test

charge q^ used to determine an

electric field may itself distort the

very field to be determined. To

sidestep this problem, we adopt the

definition of Equation (24-9).

24.5 The Electric Field

Think back for a moment to the concept of a gravitational field (Section 16.6).

The field idea is useful because it enables us to avoid the conceptual difficulties

of "action-at-a-distance," which Newton's law of universal gravitation describes.

For example, according to this law the earth exerts a force on a satellite in

orbit even though the earth and the satellite are separated by empty space.

But the idea of a force operating through empty space was repugnant to

Newton and to many later scientists; "action-at-a-distance" just did not seem

sensible. The concept of a field is a more modern view. This alternative way
of describing the gravitational interaction is that the earth creates a gravitational

field g in the surrounding space. Then, a satellite of mass m experiences a force

F = wg due to the local gravitational field g where the satellite is located. It

is no longer a case of action at a distance.

The gravitational field g at a given location is defined as the force per

unit test mass uiq placed at that location: g = F/wg = —{GM/r^)r. The elec-

tric field E is defined in a similar way. The force between a charge q (which pro-

duces the field) and a test positive charge qQ is ¥ = {llAneQ)(qqJr^)T. Thus,

the force per unit test charge q^ is

ELECTRIC FIELD E E = F

47t£f
(24-8)

where F is the force on a small positive test charge (Jq placed in the field. In

the SI system, £ is in units of newtoiis per coulomb (N/C).

We need to mention a few practical concerns. We assume that the pres-

ence of the test charge ^q does not change the original distribution of the

other charges that produce the field. For example, if the charges reside on a

conductor, bringing a small test charge into the vicinity will cause the charges

to move around on the conductor, thus changing the field we are trying to

measure,' Figure 24-8. To avoid this problem, we refine the definition for E

to be the limiting value of the ratio V/q^ as the charge q^ approaches zero-.

ELECTRIC FIELD E lim —
90^0 ^0

(24-9)

This operational definition is logically precise and tells us to use smaller and

smaller test charges q^, with E being the limit as q^ approaches zero. In this

way, the influence of the test charge ^g becomes vanishingly small.

^

Electric Field Lines

We can visualize the concept of an electric field by introducing field lines

(which Faraday called "lines of force"). Consider the field due to. an isolated

point charge q. Using a test charge q^ and Coulomb's law in vector form,

47ref

Wo
(24-10)

Such difficulties are common in measurements. For example, in measuring the temperature of a liquid,

we alter the temperature by immersing a thermometer in the liquid.

^ In practice, even this more precise definition is not often followed because of experimental difficulties.

For instance, (^q cannot be less than the electronic charge e. The field E is experimentally determined more

easily from calculations based upon measurements of the electric potential Chapter 16.
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Area = 4y4

(a) A conventional two-dimen-

sional way of depicting the

electric field lines due to an

isolated point charge q. The
diagram is an approximate

cross-section of the field pat-

tern. For a better illustration,

mentally extend the pattern to

three dimensions, somewhat
like the quills on a porcupine,

as in (b).

we find the field E = F/(jo to be

Area =A

(b) A three-dimensional perspec-

tive sketch of the field lines

diverging from a point charge

q. The lines intersect portions

of the surfaces of two concen-

tric spheres (radii R and 2R).

FIGURE 24-9

Electric field lines associated with an

isolated point charge q.

ELECTRIC FIELD E

DUE TO A POINT
CHARGE q

E =
AUEc

1 .
-^ r (24-11)

where the unit vector f designates the radial outward direction away from

q, the source of the field. If q is positive, the field is radially outward; if q is

negative, the field is radially inward. The field diminishes in magnitude in ac-

cordance with the inverse-square dependence. These properties of the field can

be visualized as equally spaced straight electric field lines radiating from the

point charge q, Figure 24-9.

ELECTRIC (1) The direction of the lines is the direction of the electric

FIELD field.

LINES (2) The number of lines penetrating a unit area that is per-

pendicular to the lines is proportional to the intensity of

the electric field.

The second statement points up a particularly useful feature regarding

field lines. Where they are crowded together, the field is stronger; where they

are spread apart, the field is weaker. For an isolated point charge, the inverse-

square-law behavior is obvious from geometric considerations. Imagine a series

of spherical surfaces concentric with the point charge. Figure 24-9b. Because

the field lines extend radially (and symmetrically) from the source, the total

number of lines penetrating each sphere is the same. But the area of each

sphere increases with the square of the radius. Since E is proportional to the

number of lines per unit area, the inverse-square relationship follows.

It is difficult to depict true three-dimensional fields in diagrams. Perhaps

the best that can be done conveniently is as shown in Figure 24-9a. One must

always mentally extend such two-dimensional diagrams into three dimensions

to grasp the true nature of the field.

The number of lines we imagine to emanate from a given charge is

arbitrary. For example, a I-/iC charge may be associated with 100 field lines

or with 1 million field lines. We may choose any convenient "scale factor."

But whatever convention we adopt, a 3-/iC charge must have exactly three

times as many lines emanating from it as a 1-/(C charge (see Figure 24-10).

FIGURE 24-10

The electric field pattern near two

isolated, unequal point charges having

opposite signs. To obtain a more

correct visualization of the field,

mentally extend the pattern to three

dimensions, preserving symmetry'

about the horizontal axis. From the

number of lines terminating on each

charge, we see that \q^\
= 3|(jg| and

that q^ is negative and qg positive.
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(a) The electric field near two paral-

lel rods with opposite charges.

FIGURE 24-11

We can depict the electric field

experimentally by sprinkling small,

elongated, nonconducting particles

on a glass plate. (Here, grass seed is

used.) In the presence of a strong

electric field, the particles align

themselves in chains along the

direction of the field.

^:^^y/s '
' SAw ' k a lit) ;'\\\ C ^-^

(b) The electric field near two paral-

lel rods with the same charge.

(c) The electric field near two paral-

lel plates with opposite charges.

Note that, close to each charge, the field lines are symmetrical about each

point charge. At veiy great distances, the collection of charges appears essen-

tially as just a single point charge (with the mi charge of the array), so the

field lines far from the array extend outward symmetrically as if they came

from just a single point charge.

Electric field lines always begin at a positive charge and end at a negative

charge. For isolated net charges, for which the field lines extend away from

the diagram, we imagine that the lines terminate on charges "at infinity" (or,

in more practical terms, on induced charges on the inner walls of the laboratory).

In any case, the lines themselves should not be taken literally. Keep in mind

that field lines do not exist in nature; they are just a convenient mental im-

age that we use to help us think about electric fields . The fields themselves do

exist in the sense that they can be operationally defined and experimentally

determined.

•

3 cm

y

n-h3/iC

I
3 cm

(a)

FIGURE 24-12

Example 24-3.

EXAMPLE 24-3
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We express these fields in vector notation and add them
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FIGURE 24-14

Electric field patterns for two point

charges. As with all diagrams

representing three-dimensional fields,

you should imagine the field lines

filling three-dimensional space

symmetrically. (In these cases, the

pattern is symmetrical about the line

joining the two charges.)

(a) The field of an electric dipole:

point charges of equal magni-

tude but opposite sign.

(b) The field of point charges of

equal magnitude and the same
sign (positive charges

illustrated).

(11
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The Far-Field Approximation

Because most dipoles in nature are of atomic or molecular sizes, it is worthwhile

to consider the limiting case of distances far from the dipole. Figure 24-16.

First consider distances along the x axis. For x » /, Equation (24-13) reduces

to-^

£*
Am,

q{
(24-14)

Thus, for large distances along the .r axis, the field decreases with the inverse-

cube of the distance. As demonstrated by Problem 24C-30, along the line joining

the charges (the y axis), the field also falls off with the inverse-cube of the

distance. In fact, it can be shown that, for all directions away from the dipole,

an inverse-cube behavior exists at large distances. If we place the origin of the

coordinate system at the center of the dipole, then distances are simply r. With

this in mind, we now rewrite the previous equation in the more general notation

FAR-FIELD APPROXIMATION
FOR THE ELECTRIC DIPOLE
(r » /)

q/

r
(24-15)

FIGURE 24-16

The electric field for the dipole

far-field approxtmntion. You should

mentally extend the pattern to three

dimensions, with field lines arrayed

symmetrically about the y axis. The

dipole itself is too small to be seen;

the two point charges are aligned

along the y axis, with the positive

charge above the negative charge, so

the dipole points in the -I- u direction:

T.

An interesting feature about the far-field approximation is that, if q were

doubled and / were halved, the field would still be the same. Indeed, any com-

bination of q and / whose product has the same numerical value leads to the

same electric field at sufficiently large distances. In other words, it is only the

product q/ that determines the field at far distances. For this reason, the product

q^' is given a special name: the electric dipole moment.

The Electric Dipole Moment

Of special interest is the behavior of an electric dipole placed in a uniform

electric field E, as shown in Figure 24-17. Since the field is uniform, the force

F+ on the -hi; charge is equal in magnitude but opposite in direction to the

force F _ on the — q charge. The net force on the dipole is zero, so the torque

on the dipole may be computed from any point. Let us choose the point at the

negative charge —q. Recall from Chapter 10 that the torque T about —q is

Y^
<- -R

FIGURE 24-17

An electric dipole in a uniform

extemal field E.

T = r X F

whose magnitude is T = T+i sm d = {q^)E sin Q

which tends to rotate the dipole toward decreasing 0. The form of this equa-

tion suggests a vector notation,

z=(qe) X E

* The inequality i » / does not mean that x becomes infinite. Rather, when we compare the two terms in

the denominator of Equation (24-13). we see that, if .v » A the factor {/'/D' is negligible compared with

I", and thus (//2)' may be dropped in the far-field approximation. Another way of stating this is that {//2)'

is negligible compared with .r".
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FIGURE 24-18

The dipole moment vector p points in

the direction of the electric field on

the axis of the dipole.

FIGURE 24-19

An electric dipole p in a uniform

external field E. The angle 9 is

between the forward directions of p
and E.

where {q€) is the electric dipole moment p directed from the negative to the

positive charge. The direction of t is specified by the cross-product.

ELECTRIC DIPOLE
MOMENT p

1^
(where ( is directed from the

negative to the positive charge)
(24-16)

The dipole moment has units of coulomb -meters (C-m). It is a vector whose
direction is defined to be along the axis of the dipole from the negative toward

the positive charge. The vector p thus points in the direction that the field

lines come out of the dipole, Figure 24-18.

When the dipole is in an external electric field E, Figure 24-19, the torque

is expressed in vector form as

TORQUE AN ELECTRIC FIELD
E EXERTS ON AN ELECTRIC
DIPOLE MOMENT p

T

kl

p X E

pE sin (

(24-17)

(24-18)

Note that the torque tries to align the dipole so that it points in the field

direction. We would have to do work against this torque to rotate the dipole

away from the field-parallel direction. Thus, in the presence of the external

field, the dipole possesses electric potential energy when not aligned along

the field direction. The electric force is conservative, so the change in potential

energy AU is the negative of the work done by the conservative force. For

linear motion (Equation 7-10), this change is

U,-U„ j: V-dy.

For a torque x acting through an angle dO, the relation is

In Figure 24-19, by the right-hand rule the vector dO (representing an increase

in 9) is out of the plane of the figure, while the torque vector t is into the plane

of the figure. Thus the dot product T • dO introduces a minus sign: |t • d6\ =
T(cos 180°) dO = - (T dd) = - (pE sin dO). (Note that here the angle 6 is the

angle between T and E, not the 180° angle between t and dOl)

Ug - Lig^ = - r (-p£ sin d)dB = -pE{cos - cos Bq)

Choosing the zero reference level Ug^ = when Oq = 90°, we have

U-0 = -pE(cos 9 -0) = -pE cos 9

which can be written as the scalar product

POTENTIAL ENERGY U
OF AN ELECTRIC DIPOLE
IN AN ELECTRIC FIELD
(U = WHEN p AND
£ ARE AT 90°)

U= -(p-E) (24-19)

The potential energy of the dipole is thus a maximum when p is antiparallel

to E and a minimum when p is parallel to E, with the zero reference orientation

midway between at 90°.
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EXAMPLE 24-6

An isolated water molecule has a permanent electric dipole moment of 6.24 x
jQ-30 Q.j^ (g) Calculate the torque on this dipole when it is in an external

electric field of 300 N/C, oriented with the dipole moment at 60° with respect

to the field direction, (b) Find the work performed by the field in rotating the

dipole from this position to an orientation parallel to the field.

SOLUTION

(a) From Equation (24-17),

T = p X E

X = pE sin 9 = (6.24 x 10^^° C-m)(300 N/C)(sin 60°)

1.62 X 10" N-m

(b) The work done by the field is the negative of the change in electric potential

energy:

(\-d0= -AU= -[Ue U„] = -pE(cos 6 — cos 6q)]

W= [(6.24 X 10"^" C-m)(300 N/C)(cos 0° - cos 60°)]

W= 9.36 X 10"

A Dipole in a Nonuniform Field

When a dipole is in the presence of a nonuniform electric field, the force on

each charge q of the dipole will not be the same if the field strength is not

the same at the point where each charge is located. Thus, in addition to a pos-

sible torque, there will be a net force on the dipole toward the region of stronger

field, Figure 24-20. Many molecules have a permanent electric dipole moment

because the center of the positive charge distribution does not coincide exactly

with the center of the negative charge distribution. If such polar molecules are

free to move, they will drift toward the region of stronger field.

An electric field can create induced dipole moments in ordinary matter when

the field causes a slight redistribution of the charges. Positive charges in the

material are shifted slightly in the direction of the field, while the negative

charges are shifted in the opposite direction." Figure 24-21 shows an uncharged

bit of paper or other material near an electrified rod whose diverging field

lines produce a nonuniform field. The induced dipole moment in the bit of

paper experiences a net force toward the region of the stronger field, because

the negative charges find themselves in a stronger field than do the positive

charges. Note that this effect is the same regardless of the sign of the charge

on the rod.

24.7 Electric Fields Due to Continuous

Charge Distributions

In practice, arrays of isolated point charges are rarely encountered. Instead,

charges are usually distributed closely together over a region so that we can

approximate them as smoothly continuous charge distributions along a line, over

FIGURE 24-20

When a dipole is in a nonuniform

electric field, there will be a net

force on the dipole toward the region

of stronger field.

FIGURE 24-21

The electric field near a charged rod

will generate an induced dipole

moment in an uncharged bit of paper

or other material. The diverging field

lines are a nonuniform field, and the

paper is attracted toward the region

of stronger field.

We discuss the microscopic details of dipoles in Section 27.4.
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TABLE 24-2

Charge Distribution

Along a line

On a surface area

Throughout a volume

Relevant Parameter

A, charge per unit length

(T, charge per unit area

p. charge per unit volume

SI Units

C/m

a surface, or throughout a volume. In each case, we will pick an element of

charge dq and calculate an element of field dE that it produces at a point P.

The total field E at that point is then the vector sum of all the field elements

at the point.

Field dE due to one

element of charge dq

dE = k^rt

Total field £ due to all

the elements of charge

J
dq .

Because of the vector nature of the integration, the mathematical procedure

must be carried out with care. Fortunately, in the cases we consider, the sy»imetry

of the charge distribution will usually result in a simplified calculation.

Each type of charge distribution is described by an appropriate Greek-

letter parameter: ?., a, or p, as shown in Table 24-2. Note the units for each.

How we choose the charge element dq depends upon the particular type of

charge distribution:

Charges along

a line

dq = Xdx

Charges on a

surface area

dq = a dA

Charges throughout

a volume

dq = pdV

In the examples that follow, note how the differential elements dx, dA, and

dV are chosen so that they match the symmetry of the various charge dis-

tributions. The most difficult step in solving a problem is the initial choice of

the element dq, so a good diagram that shows the element dq and the field

dE that it produces is essential.

d^\ dx

ho. 4 m-|
dq = Xdx

1.4 m-

FIGURE 24-22

Example 24-7.

EXAMPLE 24-7

Five microcoulombs of charge are distributed uniformly along a thin-, straight,

nonconducting rod 1 m long. Find the electric field E at a point 0.4 m away

from one end of the rod as shown in Figure 24-22.

SOLUTION

The linear charge density / along the rod is / = 5 fiC/m. We align the rod along

the X axis with the origin at the point P. We next choose an element of charge

' Note how multiplying together the units of A and lix does result in uiuts of charge for dq: [charge/length] •

[length] = [charge].
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dq = kdx. This charge element produces the field dE at P in the negative x direc-

tion. As we sum over all the charge elements, we note that all the vector field

elements (fE lie in the same direction, so the f/E's add as scalars. Thus the integral

becomes a one-dimensional scalar summation with limits from x = 0.4 m to

X = 1.4 m.

dq
I

pi.4m /. f/.X"
I

' /^

J f2 Jo.4.m X

1.4 m

0.4 m

=
I
9 X 10'- 1(5 X 10"^- )(

m/ \ m / \1.4 m 0.4 m

£ = -8.04 X 10'^
N

(in the —x direction)

EXAMPLE 24-8

A uniform line charge A (in coulombs per meter) exists along the x axis from

X = — fl to ;r = + fl, as shown in Figure 24-23. Find the electric field £ at point

P a distance i/ along the perpendicular bisector.

SOLUTION

As in all problems involving distributions of charge, we first choose an element

of charge dq to find the element of field dE it produces at the place of interest.

Then we sum all such elements to find the total field E at that location.

Note the symmetry^ of the situation. For each dq located at a positive

value of X, there is a similar dq located at the same negative value of x. The

dE^ produced by one dq is canceled by the dE^ in the opposite direction due to

the other dq. Hence, as we sum all the dq's along the hne, all the dE^ components

add to zero. So we need to sum only the dEy components, a scalar sum since

they all point in the same direction. The element of charge is dq = /.dx. From

Coulomb's law.

dq k/. dx
dE = k~ = -^-

r r

dE^, = dE cos 9 =
kA cos dx

(24-20)

We have three variables: x, r, and 0. Choosing as our single variable, we write

the other variables in terms of 0:

X = y iaT\

cos 9

Substituting these in Equation (24-12) gives

kX cos 1/ f 1

"^y = 7 \T 2
y \ \cos

dx = 1/ sec

kl
d0 = —cos0d0

cos
d0

dE cos 6 = dEy
i ^

-a dq

FIGURE 24-23

Example 24-8. A uniform line charge

A from X = — fltoj:= +a.

' Symmetry arguments are very important in physics. Always look for symmetry since it usually allows a great

simplification in the analysis. We will be using symmetry reasoning frequently in the next few chapters.
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(a) A uniformly charged ring. The
element of charge dq produces

the element of field dE at

point P.

(b) The approximate electric field

pattern in the xy plane.

FIGURE 24-24

Example 24-10.

The parameter Q varies from —Q^ to -\-Qq. By symmetry, this is twice the

integral from to Q,^, so (from the table of integrals, Appendix G-II), the total

field £j. at point P is

Ikk fflo

* J-»o * y Jo

IkX
e

*° 2k/. sin On

We note that sin Oq = al-Ja} + y^ and k = 1/4tz£q, giving

(24-21)

Let us consider a limiting case. If we go very far away, so that y » a, the line

of charge begins to look like just a single point charge Q = X(la), and we would

expect an inverse-square-law field. For y » a, Equation (24-21) does reduce to

-J
(tor y » a)

Verifying a limiting-case situation is a useful technique for checking answers.

EXAMPLE 24-9

Find the field E at a distance r away from an infinitely long uniform line

charge A.

SOLUTION

By symmetry, we recognize that the field is everywhere perpendicular to the

line of charge. (Reasoning: there is no asymmetry in the charge distribution to

cause the field lines to bend toward either the + x direction or the — x direction.

Nor is there any reason for the field lines to bend around the wire in any way.

Thus the field can only be radially outward.) The analysis proceeds the same

as in the previous example, fiowever, we replace y by the parameter r and note

that the limits of integration are from 9 = — 90° to 6 = + 90° (or twice the in-

tegral from to 90°), giving

FIELD DUE TO AN
INFINITELY LONG
UNIFORM LINE
CHARGE I

E, = sm 6
r
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SOLUTION

In problems involving distributions of charge, we first choose a point element of

charge dq to find the element of field liE it produces at the place of interest. Then

we sum all such elements to find the total field E at that location.

Note the symmetry of this situation. Every element dq can be paired with

a similar element on the opposite side of the ring. Every component dE^ per-

pendicular to the X axis is thus canceled by a component dE^ in the opposite

direction. Indeed, in the summation process, all the perpendicular components

dE^ add to zero. Thus we need only add the dE^ components, which all lie along

the +x direction, and this is a simple scalar integral. From Coulomb's law in

vector form,

£^E = fc -T f

whose magnitude is

kdq kdq
The X component is fl£, = —^ s- (cos a) = —

^

= ,

(a^ + x^) («' + x') V^fl2 + ;c2

Thus: £. =
J^£.

=
J

kxdq

As we integrate around the ring, all the terms remain constant and \ dq = Q,

so the total field (with k replaced by l/47r£o) is

£v =
kx

[a^ + x^?l^
^dq =

xQ

47iEoJ {a^ + x^f'^
(24-23)

To check this result, we consider two limiting cases. When r -> as we move
toward the center of the ring, £ —>• 0. This is to be expected because, at the cen-

ter, the dE produced by an element of charge is exactly canceled by a dE in the

opposite direction from a similar charge element on the opposite side of the

ring. By symmetry, summing all such pairs around the ring results in £ = at

the center. Another limiting case is for x » a. When we go very far away along

the X axis, the ring appears to be just a point charge. Equation (24-23) verifies

this behavior since, for x » a, it reduces to

4n£c
(for X » a)

Though we will not calculate £ for points off the axis, we can estimate that

the field will have the general configuration shown in Figure 24-24b.

EXAMPLE 24-11

A flat, circular, nonconducting disk of radius R has a uniform charge per unit

area a on one side of the disk. Find the electric field E at a point P along the

axis of the disk, a distance x from the center of the disk. See Figure 24-25.

SOLUTION

Making use of the answer to the previous example, we consider the disk to be

made up of a set of concentric rings of radius r and width dr. From symme-

try considerations, we know that the electric field dE at point x for each ring is

FIGURE 24-25

Example 24-11.
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TABLE 24-3

Source

Spatial Dependence

of the Electric Field

Point charge

Uniformly charged

infinite straight

line

Uniformly charged

infinite plane

Like-

Like-

Constant

directed along the +r axis. So the summation of dE's for all the rings is a sim-

ple scalar integral, resulting in a field E^.

Let us write an expression for the field dE^ due to a ring of radius r and

width dr. The area dA of this ring is dA = Inrdr, and the charge dq on this ring

is thus dq = adA = Znardr. From Equation (24-23), the field dE^ produced by
this ring of charge dq (replacing « by r and Q by dq) is

dE =
kxdq kxlnardr

(r^ + x^?'^ (r"- + x")
2^3/2

The total field £^. is the summation of the fields due to all of the rings from r =
to r = R. (In this integral, note that a: is a constant.)

kxlna r
rdr

(r^ + x"-)
2\3/2

From Appendix G-Il, the integral becomes

£. = kxlna (
: 1

Substituting the limits and rearranging, we obtain

£. =
2en VFT?

(24-24)

We now consider two limiting cases. First, what does the field look like at

very large distances along the axis from the disk— that is, when x » Rl To
evaluate the expression, we divide the numerator and the denominator of the

last term by x, giving

2£o

1 - \

RY
+ 1

Using the approximation (1 + b^) "^ ^ i — b^/l when b^ « 1, we obtain

R' anR' very far from

the disk

which is Coulomb's law for a point charge Q = onR^. just what we would expect.

For the second limiting case, let x -* 0, which is analogous to letting

R —> cc. That is, we approach the case of the field near the surface of an in-

finitely large plane sheet of charge. As x ^ in Equation (24-24), the expression

becomes

a

2eo

very close to

the disk

This is an interesting result since it shows that the field is uniform and does

not depend upon the distance x from the sheet of charge. In the next chapter,

we present a simple derivation of this result using Gauss's law.
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You will find it helpful to get a "feeling" for the spatial dependence of

fields produced by charge distributions that have certain simple geometries,

Table 24-3.

Summary

Electric charge q, measured in units of coulombs (C), can be

+ or — and always occurs in multiples of the fundamental elec-

tron charge whose magnitude is e = 1.602 x 10~" C. Charge

is conserved so that the total charge in a closed system always

remains constant.

Coulomb's law for the force between two point charges:

F,;
, '?1'72 -

k r, where k
47r£r

^ 9 X 10^
N-m-

Here, F12 is the force that charge 1 exerts on charge 2 and

f,2 is the unit vector from 1 to 2. Like charges repel; unlike

charges attract.

The electric field E is defined as

F
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Problems

24.4 Coulomb's Law

24A-1 Calculate the mass of electrons that, when shared be-

tween the earth and moon, would produce a force of repulsion

equal to the gravitational force between the earth and moon.

24A-2 Suppose two objects, each with a net positive charge

of one coulomb, were separated by a distance equal to the dis-

tance between New York and San Francisco (about 4140 km).

Calculate the mutual force of repulsion between these objects.

24A-3 Calculate the ratio of the electrostatic force to the

gravitational force between the electron and the proton in a

hydrogen atom.

24A-4 Two helium nuclei (each containing two protons plus

two neutrons) are located 5 x 10" ''^m apart, (a) Find the

Coulomb force of repulsion between them, (b) Find the gravi-

tational force of attraction, (c) If the nuclei are free to move,

what is the initial acceleration of each nucleus?

24A-5 Consider three charges located in the xu plane. A
charge of -I- 3 nC is located at x = 4 cm, y = 0; a charge of

— 2 /iC is located at x = 0, i/ = 5 cm. Find the force on a

+ 6 /iC charge at the origin.

24.A-6 In Problem 24A-5, find the electric field (magnitude

and direction) at the origin if the + 6 /;C charge were absent.

Verify your answer by using the answer to Problem 24A-5.

24B-7 Two small silver spheres, each with a mass of 100 g,

are separated by a distance of 1 m. Calculate the fraction of

the electrons in one sphere that must be transferred to the other

in order to produce an attractive force of 10'* N (about a ton)

between the spheres. (The number of electrons per atom of

silver is 47, and the number of atoms per gram is Avogadro's

number divided by the atomic weight of silver, 107.9.)

24B-8 Richard Feynman once said that if two persons stood

at arm's length from each other and each person had 1% more

electrons than protons, the force of repulsion between the two

people would be enough to lift a "weight" equal to that of the

entire earth. Carry out an order-of-magnitude calculation to sub-

stantiate this assertion.

24B-9 Two point charges are located as follows; a — 3-/iC

charge at the origin and a +2-/iC charge at j: = 0.15 m. Find

the location where a positive point charge q' may be placed

so that the net force on the charge q' is zero.

248-10 If there were a slight imbalance between the number

of protons and the number of electrons in matter, the gravi-

tational attraction between astronomical objects could be over-

come by the electrostatic repulsion between these objects.

Calculate the minimum fraction by which one charge would

have to exceed the other for this to occur. The approximate

average number of proton-electron pairs per kilogram of mat-

ter is 3 X 10^*.

24B-11 A silver dime (not the nonsilver version now in cir-

culation) has a mass of 2.49 g. The atomic mass of silver is

107.870 and its atomic number is 47. Assume that the dime

is 100% silver. For every lO'^ electrons present, how many
electrons must be removed to give the dime a net charge of

1 /iO

24.5 The Electric Field

24A-12 Express the units for an electric field in terms of the

SI base units of mass (kg), length (m), time (s), and electric cur-

rent (A).

24A-13 Under normal atmospheric conditions on a clear

day, a downward electric field of roughly 100 N/C exists just

above the surface of the earth. If a toy helium-filled balloon

is barely capable of lifting a mass of 50 g, find the amount of

electric charge that must be distributed over the balloon's sur-

face so that the balloon will not rise when the mass is removed.

(The amount of charge required would produce repulsive forces

on the surface of the balloon that would be more than sufficient

to tear the balloon apart.)

24B-14 Point charges o( +q and —2q are located near each

other. Sketch field lines to represent the approximate electric

field configuration in the vicinity, making sure that two times

as many field lines are associated with one charge as with the

other.

24B-15 A uniform electric field is described in Cartesian co-

ordinates by E = EqY, where Eq is a constant. A particle with

a mass m and charge +q is injected at the origin into the

electric field with an initial velocity v = Vq-k. Find the equation

of the subsequent trajectory of the particle.

24.6 The Electric Dipole

24A-16 Many molecules possess an electric dipole moment
because the center of distribution of the positive charge (pro-

tons) does not exactly coincide with that of the negative charge

(electrons). The electric dipole moment of a water molecule in

its gaseous state is 6.24 x 10~^° C-m. (a) If a water molecule

is placed in an electric field of lO** N/C, calculate the maximum
torque that the field can exert on the molecule, (b) Find the

range of the potential energies that the molecule may have in

this field.

24A-17 The electric dipole moment of a sodium fluoride

molecule is 2.72 x lO^"' C'm. Assuming an (oversimplified)

model of singly ionized atoms, Na"^ and F~, for this molecule,

how far apart are the centers of these atoms? (Note: the actual

value is 1.93 x 10" '°m.)

24B-18 Figure 24-11 describes how grass seed can be used

to visualize an electric field. Explain why small, elongated, non-

conducting particles align themselves in the direction of an

electric field.

24.7 Electric Fields Due to Continuous

Charge Distributions

24B-19 A charge -I- Q is distributed uniformly along a

straight line of length L. Find the electric field £ at a point P

along the direction of the line, a distance d from one end

(Figure 24-26).
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FIGURE 24-26

Problem 24B-19.

24B-20 A uniform positive charge per unit length /. exists

along a thin nonconducting rod bent into the shape of a seg-

ment of a circle of radius R. subtending an angle 29q as shown

in Figure 24-27. Find the electric field E at the center of cur-

vature 0. (Hint: consider the field i^E due to the charge dq con-

tained within an element of length d/ = R dO. Use symmetry

considerations in setting up the integral between Q = —QqYo
6= -I- 00 to find the total field E at 0.)

'

FIGURE 24-27

Problem 24B-20.

24B-21 Consider a thin, circular, nonconducting disk, radius

R, that has a uniform charge per unit area a on one side of

the disk. In Example 24-11 we find the electric field £ at a

point along the axis a distance x from the center of the disk.

Show that, as R approaches infinity (the case of a uniform in-

finite plane of charge), the electric field becomes £ = ojIEq.

(Note that, for an infinite plane of uniform charge density, the

field has the same constant value, independent of the distance

X from the plane.)

Additional Problems

24C-22 Two protons are released from rest when they are

2 X 10~'^ m apart, (a) Find the final speed of each proton.

(b) If, instead, one of the protons were held fixed, what would

be the speed of the other proton?

24C-23 Show that two small objects a given distance apart

and sharing a given total charge will have a maximum force

of repulsion when the charge is shared equally between the

objects.

24C-24 Between 1909 and 1917, R. A. Millikan made the

first accurate determination of the electronic charge — e by ob-

serving the vertical motions of tiny charged droplets of oil in

air. A vertical electric field was established between horizontal

metal plates such that an upward electric force on a charged

droplet just balanced the downward gravitational force. From

these (and other) measurements, the highest common factor of

various charges on a droplet ( — e, —le, —3e,...) allowed Mil-

likan to determine the smallest step by which the charge could

increase or decrease (that is, the charge on a single electron).

In a typical experiment, a droplet weighing 1.9 x 10"'^ N is

held stationary when 1200 V is applied to plates separated

3 mm. (a) Fiow many surplus electrons are on the droplet?

(b) If the density of the oil is 920 kg/m^, what is the radius

of the droplet?

24C-25 In the Millikan Oil Drop experiment (see previous

problem), the droplets are so tiny that they appear only as

points of light in the microscope used to observe them. In

order to find the radius (and hence the mass) of each droplet,

we allow them to fall freely under gravity. The retarding force

F exerted by the viscous air on a sphere of radius r moving

with speed v through air is given by Stokes' law, f = 6nr\rv,

where r\ is the coefficient of viscosity, (a) Find the SI units for

r]. (b) Show that when a falling droplet achieves a constant

"terminal" velocity (signifying that the viscous retarding force

equals the force of gravity), the following relation is true, thus

allowing the radius of the droplet to be determined;

Pa)

Here, Po ^^^ Pa ^re the respective densities of the oil and air.

24C-26 Two point charges, each of charge + Q, are held

fixed a distance d apart. A third positive charge q is confined

to move along the straight line joining the original two charges.

(a) Show that if the charge q is displaced a small distance x

(where x « d) from its position of equilibrium, it will execute

approximately simple harmonic motion, (b) Find the "spring

constant" k associated with this motion.

24C-27 Calculate the amount of work required to accumu-

late a charge Q on a sphere of radius R. We can build the

charge by bringing infinitesimal charges dq from infinity up to

the surface of the sphere until the total charge Q is reached.

24C-28 An electron with horizontal velocity I'g = 8 x

10* m/s enters the region midway between two horizontal

deflecting plates as shown in Figure 24-28. The plates are 3 cm

long and separated by 1.5 cm. A potential difference of 40 V
is applied to the plates. Find the angle B with respect to the

horizontal that the electron's velocity v makes just as it emerges

from the region between the plates. Ignore fringing field effects.

FIGURE 24-28

Problem 24C-28.

24C-29 As shown in Figure 24-29, an electron with initial

speed Vq = 10* m/s at Xq = moves along the +x direction

in a region of increasing electric field strength given by E^ =
(4 V/m)(l -I- lO^x), where x is in meters. Find the distance that

the electron moves before it is brought (momentarily) to rest.

24C-30 A point charge -\-qis located aix = fjl and a point

charge — (j is at j: = —{jl, forming an electric dipole. (a) Find

an expression for the electric field £(jc) for all positive values

of X. (b) Show that, for values of x » f , the electric field varies

as 1/x^.
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FIGURE 24-29

Problem 24C-29.

24C-31 An electric dipole is made of two point charges,

+ q and —q, each of mass m, separated a distance /. The dipole

is placed in a uniform electric field £ oriented near its lowest

potential energy state, (a) Show that the dipole will undergo

oscillatory rotations about its center of mass, (b) Derive an

expression for the approximate period T of small-amplitude

oscillations.

24C-32 The quadrupok. Consider three point charges in the

xy plane such that a charge — Iq is at the origin, a charge + q

is at y = -\-{jl, and a charge -fips at y = —fjl. Such an ar-

rangement of charges is called an electric quadrupole. Derive

expressions for the electric field along (a) the x axis as a func-

tion of .V and (b) the ;/ axis as a function of y. (c) Determine

the direction of £ in each case, (d) Show that £ x 1/r* in each

case for .v or i/ much greater than /.

24C-33 Positively charged particles {e,in) can be accelerated

in a linear drift-tube accelerator that consists of a series of cylin-

drical metal tubes, of increasing lengths, inside a vacuum cham-

ber (see Figure 24-30). Odd-numbered tubes are connected to

one terminal of a high-frequency sine-wave voltage source,

while even-numbered tubes are connected to the other terminal.

There is no force on a particle while it travels inside a tube

because the potential is constant there. However, after traveling

with velocity v^ through tube 1, the particle enters the gap at

time /[, where it is subjected to the peak portion of the time-

® ©
•, etc.

£o
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FIGURE 24-33

Problem 24C-37.

24C-38 A thin, nonconducting rod is in the shape of a

semicircle of radius R. It has a varying positive charge per unit

length A described by i = Ag sin 20, where 6 is defined in

Figure 24-34. (a) Sketch the charge distribution along the semi-

circle, (b) What is the direction of the electric field E at point

0, the center of the semicircle? (c) Find the magnitude of the

electric field at point 0.

FIGURE 24-34

Problem 24C-38.

24C-39 Consider the electric field along the axis of a uni-

formly charged ring of radius R. Show that the maximum field

and negative values of x. You may use the results of Example

24-10.

24C-40 A long, thin, nonconducting ribbon with a width b

has a uniform surface charge density a on both the top and

bottom surfaces. Find the electric field E at a point P a distance

a above the centerline of the ribbon. Figure 24-35. Hint: con-

sider the ribbon as an assembly of charged "wires." Show that

the charge per unit length along a wire dx wide is la cix.

Each wire produces an element of field dE at the point P (cf.

Example 24-8).

(£x)max on the axis is at a distance x = R/\/2 from the center

of the ring. Make a freehand graph of £ vs. x for both positive

FIGURE 24-35

Problem 24C-40.

24C-41 A circular hoop of a nonconducting material with

a uniform distribution of charge has zero electric field at the

center of the hoop. Why? Consider such a hoop of radius R

with a total charge + Q. A length / along the circumference

is now cut from the hoop. Find an expression for the field at

the center of curvature of the remaining segment.



CHAPTER 25

Gauss's Law

These immortal words of Gauss

Were posted clearly on his house:

"The outward surface field will tell

What charges in this house doth dwell.'

ANONYMOUS

25.1 Introduction

In the previous chapter we visualized an electric field as a pattern of field lines

in space, which gives us a sense of the magnitude and direction of the field E

at every point. Where the lines are closer together, the field is stronger; where

they are farther apart, the field is weaker. A line is imagined to start on a posi-

tive charge and end on a negative charge, so that the direction of a line agrees

with the direction of the field in that vicinity. Admittedly, field lines are a

fiction—they do not exist in nature. However, they are a useful aid in our

thinking about an electric field that does exist: at every point in space the field

has a certain magnitude and direction, characteristics that (at least, in principle)

we can experimentally measure by placing a small positive test charge ^q ^^

that location.

We now make our interpretation of field lines more quantitative. This

will lead to a very useful relation known as Gauss's law, which provides an

alternative method for calculating fields—one that for symmetric charge dis-

tributions is far easier to use than the Coulomb's-law approach used in Chap-

ter 24.

Area

FIGURE 25-1

The plane of the area A is

perpendicular to the uniform field

E. The electric flux (tj passing through

the area is <!>£ = EA.

25.2 The Electric Flux

We now enlarge our interpretation of field lines so that they become quantita-

tive, rather than just pictorial. We define the concept of electric flux, which is

basically a measure of the number of electric field lines that penetrate a surface. Con-

sider a uniform field E and an imaginary area A whose plane is perpendicular

to the field. Figure 25-1. For this case, we define the electric flux <I>£ through

the surface to be

^^ = EA (25-1)
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Area A Area A

Area A' =A cos Q

(a) When the area A is tihed as

shown, the projection of A to

the area A ' (which is perpen-

dicular to the field lines) is

A'=A cose.

(b) Note that the angle between A
and A' is the same as the angle

between the normal n to the

surface and the field E.

FIGURE 25-2

Field lines through an area A whose

normal n makes an angle 6 with

respect to the field E,

On occasion, we will need to deal with surfaces that are not perpendicular to

field lines. If a plane area A is tilted as shown in Figure 25-2, fewer field lines

penetrate the surface. Note the projection of A to the surface A', which is per-

pendicular to the field lines. The two areas are related according toA'=A cos 6.

The same number of lines penetrates both areas, so from Equation (25-1) the

electric flux Or is

O. EA' = EA cos e (25-2)

We see that the flux O^ through the surface has a maximum value when the

plane of the area is perpendicular to the field lines.

In this chapter we will need to deal with curved surfaces over which the

electric field varies in both magnitude and direction. We therefore generalize

our definition of electric flux by defining a vector element of area AA, defined

always to be perpendicular to the surface. Furthermore, we mostly deal with

closed surfaces. To avoid ambiguity, we always choose the direction of the

vector AA to be the outward normal to the surface. Figure 25-3. Making use

of the vector notation for the cross product of two vectors, A • B = AB cos 6,

we have for the element of flux A^r

Ad), £ A/\ cos = E • AA (25-3)

Finally, we let the area of each element AA approach zero (as the number of

such elements consequently approaches infinity). In the limit, we have the dif-

ferential element of area dA, leading to the differential electric flux.

DIFFERENTIAL
ELECTRIC FLUX d<J>g

da)£ = E • dA (25-4)

where dA is the outward normal element for closed surfaces. For finite areas,

we sum over all such elements to obtain^

ELECTRIC FLUX <Dj

(general definition) Jsu rface
E-dA (25-5)

The units of electric flux are N'm /C.

:1A

FIGURE 25-3

A closed surface with a few vector

elements of area AA, where the

direction of the vector AA is

always the outward normal to the

surface.

' The integral may be over an arbitrary area, as written, or over a completely dosed surface, in which case

the symbol ^ is used. (Note the similarity in notation with the integral over a closed path, j df)



Fortunately we need not evaluate this integral directly over such an awk-

ward closed surface as in Figure 25-3. As discussed in the next section, an

interesting property of the inverse-square field produced by an electric charge

enables us to evaluate such an awkward integration by inspection (!) without

actually carrying out the messy details. But first we show the direct calculation

for some simple cases.

FIGURE 25-4

Example 25-1. The cube of edge

length / is oriented symmetrically in

the uniform electric field E.

EXAMPLE 25-1

A uniform electric field E exists in the -l-.r direction. Find the net electric flux

Oj through the surface of a cube, edge length /, that is oriented with its edges

along the coordinate axes as shown in Figure 25-4.

SOLUTION

Because E is perpendicular to dA on four of the faces, the flux through those

four faces is zero. For each,

Of = Je • (iA = JeIcos 90°) dA = q

=

For the other two faces, we note that the field lines enter the left-hand face, so

the angle 6 between E and dA on that face is 180°. Thus:

O, fieft E rfA = Lft £(cos 180°) dA= -E L, dA = -£/'

The field lines emerge from the right-hand face, so = 0°:

<!>£ = fright E • <iA = fright E(cos 0°)dA = £ Lght dA = E/^
•'face •'face " v

'

•'face

= -1-1

The total flux through all of the faces of the cube is thus

Total cl)£= -£/- -h£/^ = [T]

FIGURE 25-5

Example 25-2.
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EXAMPLE 25-2

As shown in Figure 25-5, a uniform electric field E penetrates a surface in the

shape of a half-cylinder. The field lines are perpendicular to the plane rectangle

of length L and width 2R. By direct integration over the curved surface, calcu-

late the electric flux $£ that penetrates the curved surface.

SOLUTION

We need to calculate j E ciA over the cylindrical surface. To simplify the inte-

gration, we seek an element of area dA whose normal makes the same angle

with E everywhere. Noting the symmetry, we choose dA to be a thin strip of

length L and width ds = RdO. Thus, dA = LRdO, and, as we sum all such

elements, 6 varies from to n. The angle between E and dA is [{n/2) — 9].

Thus:

Oe = Je • rfA = r £ cos[(7r/2) - 0]LRde = ELR f" sin OdO

^E = ELR{- cos 0)\^ = ELR[-(-l - 1)] = 2ELR

Suppose that we form a closed Gaussian surface by adding a plane surface

that connects the straight edges and adding half-circle end caps. Note that

the above answer is the (negative of the) flux entering the plane: JE • c/A =
£(cos 180°){2LR) = —2ELR. Thus, by formation of a closed surface in the region

of the uniform field E, the total flux summed over the entire surface is zero.

(
j E (VA = for the end caps because E and dA are at 90° there.) The next

section generalizes this result to a closed surface of any shape, in the presence

of even nonuniform fields.

25.3 Gauss's Law

Karl Friedrich Gauss (1777—1855), one of the greatest mathematicians of the

nineteenth century, gained much insight into the nature of vector fields. His

mathematical conclusions are very useful in physics, and Gauss himself made

many contributions in the development of electromagnetic theory. To develop

Gauss's law, we start with the simplest possible case; a point charge q. Imagine

a spherical surface of radius r, called a Gaussian surface,' centered on the point

charge. Figure 25 -6a. What is the electric flux 0£ through this closed surface?

The radially outward field lines are everywhere perpendicular to the surface,

and the magnitude of E is the same all over the surface, so the total flux is

simply

<!)£ = (D E • rfA = (p £(cos 0°) dA = E S) dA = E{4n;

From Coulomb's law, the field £ = q/4n£Qr~, so we have

r')

<t>E
=

TOTAL ELECTRIC FLUX Of
ASSOCIATED WITH
A POINT CHARGE q

4neQr
(Anr)

fcfi

(25-6)

Note that the flux <I>£ is independent of the size of the sphere.

' Gaussian surfaces are hypothetical surfaces we use in calculations. They have no physical reality. They

may have any convenient shape.

(a) A spherical Gaussian surface of

radius r centered on the point

charge q.

(b) An arbitrary Gaussian surface

that encloses a point charge q.

FIGURE 25-6

Gaussian surfaces that enclose a

charge q.
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Surface

element

The projection

AA ' that is

perpendicular

to the field

FIGURE 25-8

An arbitrary surface encloses the

point charge q. The element Ay4 on

the surface is not perpendicular to

the electric field lines from q. The

projection A^l' = Av4 cos 9 is

perpendicular to the field lines, and

it defines the element of sohd angle

AQ = (KA cos 6)ir' extending from

the charge q.

(a) The plane angle 6 is defined as

Q=
-J-

(in radians)

where s is the length of the arc

of the circle of radius r

subtended by the angle d. For

the complete circle, the whole

plane angle is 1-k radians.

(b) The solid angle fl is defined as

n = — (in steradians)
r~

where A is the area on the sur-

face of the sphere of radius r

subtended by the solid angle Q.

For an element of solid angle,

AAAU s (in steradians)

(c) The area A that defines a solid

angle may have any shape.

The area may have any shape,

but it must be everywhere

perpendicular to the radius.

Since the total surface area of a

sphere is 4irr, the whole solid

angle surrounding the point at

the center is

n= 47121= 4^ steradians
r~

In the illustration, the solid

angle Q is physically related to

the more-or-less conical region

extending from the origin that

subtends the area AA.

FIGURE 25-7

The definition of a solid angle D. is analogous to the definition of a plane angle. Just

as the arc length s is everywhere perpendicular to the radius r, the area A must

be everywhere perpendicular to the radius. Because Q is a ratio of lengths squared,

the unit steradian is dimensionless.

What about nonspherical surfaces that enclose a charge. Figure 25-6b?

We will now prove a remarkable conclusion:

For any arbitrary closed surface that contains a charge <j

anywhere inside, the integral over the entire surface ^ E • dA
equals /j/Eq for each case!

Of course, during the integration the value of E will be different at various

locations on the surface, and the angle betvyeen E and dA. will also vary as

we sum the various contributions over the surface. But, interestingly, regardless

of the shape of the surface the answer is always qJBQ.

We begin the proof by making use of the concept of the solid angle Q
defined in Figure 25-7. Consider a point charge q surrounded by a closed

surface that has an arbitrary shape. The surface area element AA in Figure 25-8

is not perpendicular to the radial field lines extending outward fi^om q. The

flux A(I)£ through AA is given by Equation (25-3):

A(D£ = E AA = EAAcosd AAcos d (25-7)
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But note that hA cos is the area element perpendicular to the radial field

lines, so (A/l cos B)lr equals the solid angle element Afi. Hence the total flux

<!'£ through the entire closed surface is

dA cos 9
0)^ = (D E • M = ic^ (p ^^ = kqa)dQ = kq (47r)

^£ =
47r£n

(47r) (25-8)

This result is independent of the shape of the surface that encloses the charge

q, and it also does not depend upon the particular location of q inside the

surface.^ Furthermore, we could have any number of charges inside, distributed

in any arbitrary fashion, adding to a total charge inside of q,„ = ^iqi-

Here is the final step. Our reasoning has just shown that <!>£ = qjjco

for any arbitrary surface. Since <!>£ = JE • dA, we combine these two facts to

arrive at

GAUSS'S
LAW

For any closed surface

that contains a total

charge q^^ anywhere inside

E • (iA =— (25-9)

Something interesting has happened here; we no longer need to deal with the

electric flux <I>£ itself. (Lines of flux are just a convenient fiction, anyway!) In-

stead, Gauss's law connects charges and fields directly in a way that is different

from Coulomb's law. For symmetrical cases. Gauss's law is a far easier approach

because we can carefully choose the shape of the Gaussian surface to match

the symmetry of the field, making the integral easy to calculate. In contrast to

Coulomb's law (which gives us the electric field if the charge is known). Gauss's

law can tell us how much charge is in a region if the electric field is known,

so Gauss's law is useful "in both directions." Figure 25-9 illustrates another

unusual feature of Gauss's law. Although q^„ is the charge inside the Gaussian

surface, the E that appears in the integral is due to all charges in the vicinity,

both inside and outside the Gaussian surface!

Our examples deal only with symmetrical distributions of charges—the

only kind that are easy to calculate with Gauss's law (though Gauss's law holds

true in all cases). But note that, just hy reasoning from symmetry alone, we can

usually deduce the particular spatial form that the field must have before we

actually calculate it. Thus we can choose a Gaussian surface that matches the

field configuration, which makes Gauss's law easy to calculate.

FIGURE 25-9

The total electric flux $£ passing

through a Gaussian surface depends

on only the net charge inside that

closed surface. Thus the net flux

is ^i/fio for surface Sj and

((j2 + '?3)/£o for surface S,. For

surface S3, the same number of

lines enter the surface as leave the

surface (there are no charges inside),

so the net flux <!>£ is zero for S3.

TABLE 25-1 Notation for Charge Distributions

Distribution Symbol Units Element of Charge

Point charge

Line charge

Area charge

Volume charge

* The area and volume

the element.
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(a The line of positive charge is

perpendicular to the plane of

the figure.

(b) A perspective view.

FIGURE 25-10

Example 25-3. A cylindrical Gaussian

surface matches the symmetry of the

field due to an infinitely long line of

uniform positive charge. The surface

area elements i^A are either parallel or

perpendicular to the field lines.

EXAMPLE 25-3

An infinitely long, straight line of uniform positive charge has a charge per unit

length of i (in units of charge per length). Find the electric field E at an arbitrary

distance r from the line.

SOLUTION

Frog^ each incremental charge along the line, an electric field emanates equally

in all directions. However, by symmetry, the superposition of the fields from

all of the incremental charges results in a cancellation of fields parallel to the

line of charge.* The result is a net field directed radially outward from the line.

At all points at a given distance r from the line (in any direction), the field has

the same magnitude.

Therefore, we match this symmetry with a Gaussian surface in the form of

a cylinder of radius r and length L whose axis is the line of charge. Figure 25-10.

At every point on the curved side of the cylinder, E is parallel to the area

elements dA, and it has the same magnitude everywhere. On the end caps of

the cylinder, E is perpendicular to dA everywhere. The net charge q^^ inside the

cylinder is XL. Applying Gauss's law, we obtain

E-dA = 5?in

XL
f E-M-t-f E-dA = —
Jcurved + Jend -^ g
side ' cans

'

COS 0° = 1

E{2nrL) +

caps

cos 90° =

XL

Solving for £ gives £ =
InSar0'

/radially
j

\outward/
(25-10)

Note how much simpler this solution is than the Coulomb's-law approach

used in Examples 24-4 and 24-5. The solution using Gauss's law is simple only

because we carefully choose a Gaussian surface that matches the symmetry of the

electric field (which we can determine ahead of time by symmetry reasoning),

thus making the actual calculation of j E • dA very easy. Even though Gauss's

law holds true for all cases, it is only an easy calculation for fields that have

obvious symmetries.

EXAMPLE 25-4

A uniform volume charge density p (in units of charge per volume) exists

throughout the volume of an infinitely long cylinder of radius R, Figure 25-11.

Find (a) the total charge Q^ in a length L of the cylinder and (b) the electric

field £ at a radius r < R.

* Another way of stating the symmetry argument is to point out that there is no asymmetry in the

charge distribution that would make field lines have a component parallel to the wire in one direction

instead of the opposite direction. Because the charge distribution is symmetrical along the line, the only

way to make the field match this symmetry is with field lines that extend radially outward.
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Volume
element dV
= 2TrrL dr

(a) The volume element dV is a

thin cylindrical shell of radius

r, length L. and thickness dr.

I

Gaussian

surj-ace

(b) The Gaussian surface is a

cylinder of radius r,

length L.

FIGURE 25-11

Example 25-4. A uniform charge density p exists throughout the volume of an

infinitely long cylinder of radius R.

SOLUTION

(a) For volume charge distributions, Q =
^ pdV. Here, we choose a volume

element dV in the form of a thin cylindrical shell of radius r, thickness dr,

and length L.

Q = (pdV =
j

" plnrLdr = Inpl J"
rdr KpLR^

(b) By symmetry, we conclude that the field is radially outward and that, for

a given value of r, E has the same magnitude everywhere. So we choose

a Gaussian surface that matches this symmetry. It is a cylinder of radius r

and length L that [from part (a)) encloses a charge q-^^ just within the radius

r, or
(ji„

= nplr-.

E-(^A
^Jin

E • (fA + E • (/A =
Jo >. Jo

I

cos 90° = cos 0° = 1

+ EdnrL)

£o
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Area A

FIGURE 25-13

Example 25-5. The electric field

produced by a very large plane sheet

of uniform positive charge density

(T. The Gaussian surface is in the

form of a cylinder with flat end

faces, placed symmetrically above

and below the plane, matching the

symmetry of the field. No field

lines penetrate the curved sides of

the cylinder, and the field lines are

perpendicular to the end faces. (We
could equally well have chosen a

rectangular box with sides parallel to

the field lines, or any other shape

of box as long as the sides are

parallel to the field lines and the

end faces are perpendicular to the

field lines.)

EXAMPLE 25-5

Find the electric field E produced by a very large (essentially infinite) sheet of

uniform positive charge density a (in units of charge per area).

SOLUTION

From symmetry we reason that, as long as we are not near an edge, the electric

field must extend perpendicularly away from the plane on both sides. (There

is no asymmetry that would cause the field lines to bend to one side or the

other as they extend away from the positive charges.) We match the symmetry

of this field by considering a Gaussian surface in the form of a cylinder, of

cross-sectional area A, whose axis is perpendicular to the plane and whose ends

are equidistant from the plane,' Figure 25-13. The net charge enclosed by the

surface is (jA. By symmetry, the field emerges uniformly and perpendicularly

from each end and is tangent to the curved side of the cylinder. Applying

Gauss's law, we obtain

I B-dA+ r
both 4- Jc
ends '

COS 0° = 1

rt
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we note that the field lines penetrate only one
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FIGURE 25-16

A graph of the electric field £ vs. r

for a uniform positive charge density

throughout a spherical volume of

radius R. Outside the sphere, the

field is the sarue as for a point

charge Q at the center. (This holds

true only for charge distributions

that have spherical symmetry.) In the

graph, £(r) is positive when E(r) is

directed radially outward.

Spherical volume
element:

dV= 'i-Kr~dr

I

Like r^ i Like -r-
r^

FIGURE 25-17

Example 25-8. A graph of £ vs. r for a

spherical charge distribution in which the

charge density varies as p = Br^

.

Outside the sphere, the field is the

same as if the total charge Q were

concentrated at the point at the center.

(This holds true only for charge

distributions that have spherical symmetry.)

In the graph, £(r) is positive when E(r)

is radially outward.

This is just the inverse-square-law field for a point charge Q concentrated at the

center of the sphere.^ To obtain the answer in terms of the given parameters,

we substitute Q = p(jnR^) to obtain

for r > R: £ =
ipfnR^

Anv.^r^

I
radially

V outward
(25-13)

(b) For r < R: To match the symmetry of E, we choose a Gaussian surface in

the form of a sphere of radius r < R (surface h). Gauss's law involves only

the charge q-^^ inside this surface. From part (a), this is the integral q' =

jo pdV, where the upper limit is r instead of R. Thus, q^^ = p(f7rr^).

E-,fA
1m

, pinr'
E(Anr^) =

3er,

for r < R:
radially

outward
(25-14)

Thus, inside the sphere of uniform charge, the field is directly proportional to

the distance r from the center. A graph of £ vs. r is shown in Figure 25-16.

EXAMPLE 25-8

A positive charge density exists throughout a spherical volume of radius R. The

charge density p is not constant, but varies with the radius as p = Br", where

B is a constant. Figure 25-17. Find (a) the SI units of the constant B and (b)

the total charge Q in the sphere, (c) Find the electric field for r < R.

SOLUTION

(a) Since p is in units of charge per volume, solving for B we have

(C/m^

(b) Because the charge density p varies with the distance r from the center, we
must sum elements of charge dq contained within volume elements dV, where

all of each volume element is the same distance r from the center. We do this

so that the charge density p has the same value throughout the volume

element dV. Thus we choose elements in the form of a thin spherical shell

of radius r and thickness dr (see Figure 25-17a). Its volume is dV = 4Kr' dr,

Recall an analogous result for the gravitational field due to a uniform spherical mass. Section 16.5, in

which the external field is the same as if the total mass were concentrated at a point at the center. Too

bad that Newton did not have Gauss's law to use. The 20-year delay in publishing his Pnncipia was

probably due, in part, to Newton's difficulty in trying to sum the gravitational forces on the moon due

to the earth's mass distributed throughout its volume. Newton had to invent the calculus to solve this

problem; his notation was very cumbersome compared with the modem version of calculus.
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and the charge dq within dV is dq = p4nr^ dr. Substituting p = Br~ and

summing over all such shells from r = to r = i?, we obtain

Q = \dq = jpdV = r Br-{'inr)dr = AnB \^ r* dr

Q = 4nB
R
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FIGURE 25-20

Cloud physicists have long sought

an explanation of thunderstorm

electricity. Due to the difficulty of

obtaining accurate measurements, the

mechanism that generates the

separation of charges is controversial

and not well understood. In any

case, a combination of mechanical,

thermodynamical, and maybe
chemical energies is involved. The

most common distribution of

charges in a thundercloud is shown

in this figure, though sometimes the

polarity is reversed. (Field lines

within the cloud are not shown.)

The electric field above the earth's

surface thus reverses direction

between a cloudy day and a sunny

day. Under a storm cloud, the

electric field strength can be 10* N/C

and more. When the electric field

reaches the order of lo' to lO'* N/C,

lightning strokes can occur, both

between the cloud and the ground

and within the cloud itself. Typically,

several tens of coulombs are

neutralized in a stroke. Peak

currents in a stroke are often 10-20

kiloamps. Worldwide there are

probably about 100 lightning flashes

occurring at any time, lasting roughly

lO"'^ s to 2 s, made up of 1 to 20

strokes per flash. Lightning occurs

over continents about 10 times the

frequency of lightning over oceans.

(Adapted from ]. V. Iribame and

H. R. Cho, Atmospheric Physics,

Reidec Publishing Co., 1980.) Also

see Figure 28-12.

+ •

+ *

+

+ •

- + "

+ »

FIGURE 25-21

An uncharged metal slab placed in

an external electric field acquires

surface charge densities as shovim.

Inside the conductor, the internal

field produced by these induced

surface charges exactly cancels the

original field E, resulting in a zero

electric field within the conducting

slab.

What happens if we place an uncharged conducting slab in an external

electric field? Originally the free electrons are distributed uniformly throughout

the material, and the slab is electrically neutral everywhere. However, in re-

sponse to the external field, the free electrons will quickly move in the direction

opposite to E (because F = ( — e)E). They accumulate on the surface to form a

negative surface charge density on one face and a positive charge density on

the other face. Figure 25-21. These induced surface charges increase until they

create an internal electric field of their own that is equal and opposite to the

external field, so that the net electric field inside the conductor is zero when all

charges are at rest.

EXAMPLE 25-9

A hollow conducting sphere is surrounded by a larger concentric, spherical,

conducting shell as shown in Figure 25-22a. The inner sphere has a net negative

charge of — Q and the outer sphere has a net positive charge of + iQ. The

charges are in electrostatic equilibrium. Using Gauss's law, find the charges and

the electric fields everywhere.

' Electrons are normally bound to the surface of the material, though with a sufficiently strong external

field they can be pulled out of the surface in a process called field emission. We assume that this does not

happen here.
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SOLUTION

The spherical symmetry of the conductors ensures that all electric fields are

spherically symmetric, either radially inward or outward.

REGION (T): A spherical Gaussian surface just inside the inner sphere en-

closes no net charge. By symmetry, E on this surface (if it existed) would have

to have the same value everywhere. But | E • c/A = 0, implying that E must be

zero everywhere in region (T).

REGION (2); Since no field lines exist in a conductor in the static case,

when we apply Gauss's law to a spherical Gaussian surface barely inside the

outer surface, we find | E dA = 0, which implies that the charge — Q must

reside on its outer surface.

REGION®: Since § E • dA = —Q/Eq for a spherical Gaussian surface in

region (S), symmetry requires that field lines must be radially inward as if there

were a point charge — Q at the center. Thus:

E® = - Q
47reor^

REGION (4): Because E = within the conductor, ^ E • dA = 0, implying

zero net charge within a spherical Gaussian surface. So there must be a positive

charge + Q on the inner wall of the outer shell to balance the — Q charge on

the inner sphere.

REGION (5): The outer shell has a net positive charge of +3Q. Since

— Q is on its inner surface, +2Q must reside on its outer surface. A spherical

Gaussian surface at @ encloses a net charge of — Q + 3Q = +2Q, implying

(by symmetry) a radially outward field similar to one produced by a net positive

point charge of -|-2Q at the center:

E(D =
2Q

The charges and fields are sketched in Figure 25-22b.

(b)

FIGURE 25-22

Example 25-9. Two concentric,

conducting, spherical shells. The

inner shell has a charge — Q and

outer shell has a charge +3Q.
the

Summmy

The electric flux <I>£ is a measure of the number of electric field

lines that penetrate a surface. When the normal n to a plane sur-

face, the area element dA = ndA, makes an angle with a

uniform electric field E, the flux is

4). EA cos e

More generally. <^, = lEdA

For a closed surface, the element dA is the outward normal to

the surface.

Gauss's law. E-dA = ^
(where A is any surface

enclosing a total charge

t^in anywhere inside

E-^A

(where the charge \

density p is in the \

volume V enclosed i

by the surface /

The notation for charge distributions:

Distribution Symbol Units Element of Charge

c
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il. Thus a Gaussian surface can he chosen so it matches the

field configuration, making Gauss's law easy to calculate. It can

be perpendicular to the field everywhere and pass through

points of equal field magnitude, or it can be chosen parallel to

the field and thus contribute nothing to the integral.

The electric field just above a conducting surface that

has a surface charge density a is

£ =

The properties of charged conductors in eledrostaHc equilibrium:

(1) Excess charges in static equilibrium reside entirely at

the outer surface of the conductor.

(2) The electric field everywhere inside a conductor is

zero.

(3) Electric field lines just outside a conductor always

intersect the surface of the conductor at right angles.

The electric field has the magnitude £ = (jIsq, where

a is the surface charge density at that location.

Questions

1. A small mass is at the center of a hollow, massive sphere.

If another mass is placed external to the sphere, does the

mass within the sphere experience a net gravitational force

due to the presence of the external mass?

2. A charge is at the center of a hollow, uncharged metal

sphere. If a charge is placed external to the sphere, does the

charge within the sphere experience a net force?

3. Can the movement of a charge within a hollow conducting

sphere alter the electric field outside the sphere?

4. A charge is deposited on a hollow metal sphere floating in

oil. As a consequence of becoming charged, does the sphere

float higher or lower or does it remain at the same level in

the oil? Why?

5. How can the surface charge density on the outer surface of

a hollow sphere be uniform while the surface charge density

on the inner surface is not?

6. Answer Question 5 interchanging the words outer and inner.

7. Why is Gauss's law impractical for finding the electric field

outside a charged metal cube?

8. Why, in general, is a charge within a hollow metal sphere

attracted toward the walls of the sphere whether or not the

sphere is charged?

9. Does the attraction of a small positive charge toward a large

metal sphere necessarily mean that the sphere is negatively

charged?

Problems

25.2 The Electric Flux

25.3 Gauss's Law

25A-1 In Figure 25-23, find the net flux (t>£ through each

of the closed surfaces (a), (b), and (c).

FIGURE 25-23

Problem 25A-1.

total flux emerging from the faces of the box that are parallel

to (b) the yz plane, (c) the xy plane, and (d) the zx plane, (e) Find

the net charge inside the box.

25A-3 A uniform electric field E = iO N/C exists parallel to

the axis of a square pipe of side length / = 5 cm, Figure 25-24.

Calculate the value of j E • dA for the slanted face of the pipe

to find the total electric flux Oj emerging from that face.

FIGURE 25-24

Problem 25A-3.

25A-2 A nonuniform electric field is in the +x direction for

positive X with magnitude of 20.v N/C and the — .r direction

for negative x with a magnitude of 20.r N/C. A cubic box

(nonconducting) of edge length 1 m is located with its center

at the origin of the coordinate system and its edges parallel to

the coordinate axes, (a) Make a sketch of the field. Calculate the

25A-4 A point charge -|- Q is located at the center of a cubi-

cal Gaussian surface of edge length I. Suppose that 1200 elec-

tric field lines are drawn symmetrically from the charge, (a) Use

a symmetry argument to find the number of field lines that

emerge from one face of the cube (assuming that none coincides

with edges or comers.) (b) What total number of field lines
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emerge from the total surface of the cube? (c) Suppose that the

charge were displaced off-center, but still inside the cube. Which
of the previous answers would be different? Discuss.

25A-5 Two infinite nonconducting plane sheets each have

a uniform positive charge density a. The sheets are parallel to

each other. Use the superposition principle to find the electric

field (a) between the sheets and (b) in the regions beyond the

sheets.

25A-6 Solve the previous problem for the case in which the

surface charge density on one sheet is changed to —a.

25B-7 A uniform volume charge density p exists through-

out a plane slab of thicicness d that extends essentially to in-

finity in the +y and +; directions. Figure 25-25. The origin

of the X axis is at the midplane of the slab. Find the electric

field for positive values of x for (a) < j: < d/2 and (b) for

X > d/2.

y

i:

water. (The field can vary considerably in magnitude and may
be reversed if clouds are overhead.) What is the surface charge

density on the ground for these conditions?

25B-12 A very long metal rod, radius R, has a uniform sur-

face charge density a. (a) Ignoring end effects, find the electric

field E at a distance R from the surface of the cylinder, (b) Find

the speed v such that an electron could travel in a circular orbit

about the rod at a distance R from the rod's surface.

25B-13 The electric field near the earth's surface is due to

a net surface charge density on the surface. The field may also

vary with height because of free charges in the air (which

terminate field lines) as shown in Figure 25-26. Suppose that

at an altitude of 300 m above level ground the electric field is

100 N/C downward and that at 100 m above the ground the

field is 150 N/C downward, (a) Use Gauss's law to find the

average volume charge density p in the region between these

altitudes, (b) Express this charge density in terms of a surplus

or a deficiency of electrons per cubic meter.

FIGURE 25-25

Problem 25B-7.

It If
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25B-8 A proton is in empty space very near the surface of

the earth, (a) Find the total net charge Q that the earth would

have to have (uniformly distributed over the surface) to pro-

duce an electric force of repulsion that would exactly balance

the earth's gravitational force of attraction, (b) Would the same

charge Q also balance forces on free protons situated at larger

distances from the earth? Explain.

25.4 Gauss's Law and Conductors

25A-9 Consider an isolated conducting sphere of very large

radius that possesses a uniform surface charge density a (in

coulombs per square meter), (a) Derive an expression for the

electric field close to the surface of the sphere, (b) Derive an

expression for the electric field close to a large, planar conduct-

ing sheet that has the same area and total charge as the sphere.

Assume that the charge is distributed uniformly over the sheet,

ignoring edge effects.

25A-10 Consider a hollow metallic sphere with a charge of

-I- 10 |iC and a radius of 10 cm. The center of the sphere is at

the origin of a Cartesian coordinate system. Within the sphere,

at X = 5 cm, is a negative point charge of —3 ^C. Find the

electric field external to the sphere along the x axis. Make a

qualitative sketch of the field lines inside and outside the sphere.

25A-11 On a clear, sunny day, there is a vertical electrical

field of about 130 V/m pointing down over flat ground or

FIGURE 25-26

Problem 25B-13.

Additional Problems

25C-14 A point charge +Q has 1200 electric field lines

drawn symmetrically away from it in all directions. The center

of a spherical Gaussian surface of radius r is located at a point

Ir from the point charge. Figure 15-17. (a) How many field lines

enter into the interior of this Gaussian surface? (Hint: see Ap-

pendix D for the definition of a solid angle D, measured in

steradians. The whole solid angle surrounding a point is 4?:

steradians. The conical solid angle formed by a cone of half-vertex

angle is fi = 271(1 — cos 8), measured in steradians.) (b) Find

Spherical Gaussian

surface

-

FIGURE 25-27

Problem 25C-14.
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the net electric flux <!>£ = | E • rfA leaving the Gaussian surface,

noting that flux lines entering are counted as negative and flux

lines leaving are positive.

25C-15 As shown in Figure 25-28, a positive charge distri-

bution exists within the volume of an infinitely long cylindrical

shell between radii a and b. The charge density p is not uni-

form, but varies inversely as the radius r from the axis. That

is, f)
= K/r ioT a < r < b, where K is a constant in SI units,

(a) Find the units of K. (b) Find the total charge Q in a length

L of the cylindrical shell, (c) Starting with Gauss's law, find the

electric field £ at a point r (for a < r < b).

FIGURE 25-28

Problem 25C-15.

25C-16 An early (incorrect) model of the hydrogen atom,

suggested by ]. ]. Thomson, proposed that a positive cloud of

charge +e was uniformly distributed throughout the volume

of a sphere of radius R, with the electron an equal-magnitude

negative point charge — e at the center, (a) Using Gauss's law,

show that the electron would be in equilibrium at the center

and, if displaced from the center a distance r < R, would ex-

perience a restoring force of the form f = —kr. (b) Show that

the force constant k = e'^/AuBoR^. (c) Find an expression for

the frequency / of simple harmonic oscillations that an electron

would undergo if displaced a short distance ( < R) from the

center and released, (d) Calculate a numerical value for R that

would result in a frequency of 2.47 x 10^' Hz, the most in-

tense line in the hydrogen spectrum.

25C-17 The Thomson model for the helium atom (see the

previous problem) consists of a uniform positive charge distri-

bution (total charge -I- 2e) throughout the volume of a sphere

of radius R. The two point electrons, each of charge —e, are

symmetrically situated as shown in Figure 25-29. Show that

the equilibrium separation distance d of the electrons is R.

MH
FIGURE 25-29

Problem 25C-I7.

25C-18 Inside a sphere of radius R, the electric field E is

radially outward and has a constant magnitude Eg everywhere.

Thus, E = EqT, where f is the unit vector in the outward radial

direction, (a) Use Gauss's law to find the expression for the

volume charge density p{r) as a function of the radius r. (Hint:

the fundamental theorem of calculus says that ii g{x) = jo /(f) dt,

then dg/dx = f{x).) (b) Why does the center of the sphere pre-

sent a difficulty?

25C-19 As shown in Figure 25-30, a uniform electric field

E penetrates a closed hemisphere of radius R, entering the ob-

ject perpendicular to the flat face. By direct integration over

the curved surface, calculate the electric flux Oj- that emerges

through the curved surface of the hemisphere. Hint; noting the

symmetry, choose an element of area dA in the form of a thin

circular strip as shown so that the angle 9 between E and dA
is the same all over the strip. The area dA of the strip is its

length, 2n{R sin 6), times its width, ds = R dO. Thus, dA =
2nR sin 9 d9. In the summation, the angle 9 varies between

and n/2. The result is, of course, the same as the magnitude

of the (negative) flux entering the flat surface, — E{nR^), so that

the total flux over the entire closed surface is zero.

FIGURE 25-30

Problem 25C-19.

25C-20 A sphere of radius 2a is made of a nonconducting

material that has a uniform volume charge density p. (Assume

that the material does not affect the electric field.) A spherical

cavity of radius a is now removed from the sphere as shown
in Figure 25-31. Show that the electric field within the cavity

is uniform and is given by £^ = and Ey = pa/3eQ. (Hint: the

field within the cavity is the superposition of the field due to

the original uncut sphere, plus the field due to a sphere the

size of the cavity with a uniform negative charge density — p.

This vector relation will be useful: rf = xx -I- i/y.)

^
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any convenient location as the zero reference position of i/o ^nd calculate the

potential energy for all other positions relative to that zero reference location.

For analyzing fields and charges, however, there is a related concept that

is even more useful: the electric pwtential V. Note that the work done by the

electric field, | q^E ti(, is proportional to the magnitude of cjq. To eliminate

this dependence on the property of a particle and obtain a more useful quan-

tity that is related just to the field itself, we define the electric potential V as

the limit of the work per unit charge as q^^
—» (not to be confused with U, the

electric potential energy). For a differential distance d€, the change in the elec-

tric potential dV is

dV = lim —
90 -*0 ^0

= -'E- d€ (26-4)

TABLE 26-1 Typical Electrical

Potential Differences

For finite distances from a to /', the potential V changes by

Nerve impulses

Flashlight battery

Car battery

House wiring

Electric eel

Transmission lines

within a city

cross country

high voltage

Lightning

(cloud to ground)

50 mV
1.5 V
12 V
120 V
600 V

4.4 kV

120 kV

10* V

10^-10^ V

ELECTRIC
POTENTIAL V

V,-V„ /> d€ (26-5)

The SI units of electric potential, often called just the potential, are joules per

coulomb (]/C), and are also given the name volt (V).' Because of the minus sign

in Ay = —^E-d€, electric field lines always point in the direction of decreasing

potential. Only potential differences AV are physically meaningful, and we can

designate any convenient location for the zero reference potential. For fields

that are due to local charge distributions, the zero reference is usually taken to

be far from the charges at infinity: V = a\. r = oo.

When we analyze electric fields, the potential is a scalar quantity that is

often more convenient to use than the electric potential energy. (In mechanics

it is the other way around: potential energy is more useful than potential.)

The two concepts differ by the factor q:

RELATION BETWEEN
VandU dV

dU

1

(26-6)

When evaluating —
j^ E • d^, we recall that the electric field is conser-

vative. This means that the integral is independent of the path taken between points

a and h. This feature will allow us to choose paths that are particularly easy to

calculate. For example, consider the radially outward field E due to a point

charge. Figure 26-la, with the line integral df along the path from a to b. In

Figure 26-lb we show an increment d€ at an arbitrary angle to the field E. The

vector 1^/ has a radial component dr in the direction of the field (T), and two other

components^ in the directions (2) and Q), each at right angles to r. Because

E has only a radial component E^, the dot product E df is zero for compo-

nents perpendicular to r. So we can choose the easier calculation along the

' This unit honors Count Allesandro Volla (1745-1827), ttie Italian physicist who invented the vollaic cell

[the forenjnner of our modem battery), which provided the first practical method of obtaining a steady

electric current. Before this time, scientists could only experiment with intermittent spark discharges or

with lightning bolts.

" When we discuss electric circuits in a later chapter, a particular point in the circuit is assigned the zero

reference V = 0, and it is often physically connected to a metal water pipe that, in trim, is in contact with

the earth. The circuit is said to be grounded (symbol: =). Three-pronged electrical plugs achieve this

grounding when one of the outlet connections is wired to a water pipe.

^ In spherical polar coordinates, these would be the 6 and </» directions.
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(a) Because E is a conservative

field, the potential difference

AV= -X'' E'd€ is the same

when calculated along the solid

path as when calculated along

the (easier-to-calculate) dashed

path.

(b) The element d( has components
in three mutually perpendicular

directions: X', S', and (I.

FIGURE 26-1

Calculating potential differences in

the Coulomb field E of a point

charge q.

dashed path. The integral ^ E • d€ for the part that is perpendicular to E is zero

(cos 90° = 0), so we are left with just the radial part, which is

For radial fields: E • li/ => \ E^dr

/where £, is positive

if E is directed

\radially outward

(26-7)

We will always look for the easy paths—along E itself, or at right angles to

E— to make the calculation a simple one. For fields that are linear with E along,

say, the x axis,

For linear fields: E • r// => E^dx (26-8)

From these relations, we see that electric field may be expressed in units of

£ = (potential difference)/(distance) = volts/per meter (V/m). These units are

perhaps more commonly encountered than the equivalent units newtons per

coulomb (N/C) used in Chapter 24.

EXAMPLE 26-1

(a) Find the electric potential V in the vicinity of a point charge q where V =
at r = CO. (b) Find the electric potential energy (J of a system of two point

charges, q^ and q2, a distance r apart.

SOLUTION

(a) From Equation (26-5), we have

v,-v,= -j: E-df

Here we choose the position a at infinity, where V^ = 0, and the position

h at any arbitrary distance r from the charge. The expression for the field £
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due to a point charge is £ = kq/r^ (radially outward). Noting that the direc-

tion of rfr is contained in the limits of integration, we substitute values in the

above expression and integrate along a radially inward line to obtain

^-°=-j:?^'=-''J:^*= -'<-;)
r

ELECTRIC POTENTIAL V
NEAR A POINT CHARGE q
{V=Oatr=ao)

_^_
4n£r,r

(26-9)
0'

The potential V near a positive charge is positive, and it drops as l/'r to

zero at infinity.

Using the superposition principle, we may generalize this result to ex-

press the electric potential V at a point due to several nearby point charges:

ELECTRIC POTENTIAL AT
A POINT DUE TO SEVERAL
NEARBY POINT CHARGES

v = kl' (26-10)

Because potential is a scalar, this is merely an algebraic sum of scalars rather

than a vector sum of electric fields that would be necessary to find the net

field E due to several charges. Thus it is easier to calculate V than E.

(b) To find the potential energy of two point charges a distance r apart, we use

the fact that to bring a charge q from infinity (where 1/ = 0) to a location

where the potential is V requires an amount of work qV. Thus, to bring a

second charge ^2 from infinity to a distance r from a stationary charge q^

where the potential is V, we have

ELECTRIC POTENTIAL
ENERGY U OF TWO
CHARGES SEPARATED
A DISTANCE r

U ^iti

AuEQr
(26-11)

To generalize to the electric potential energy U of a system of point charges,

to assemble such a system (starting with the charges infinitely far from

each other), we add the potential energy associated with each pair of charges.

For three point charges, this is

U = k h k 1- k (26-12)

The total electric potential energy Vofa system of point charges is the work required

to bring the charges, one at a time, from an infinite separation to their final

positions.

FIGURE 26-2

Example 26-2.

EXAMPLE 26-2

Two point charges, q^ = 2 1.1C and (/a
= -^ /^C, are located, respectively, at two

comers of an equilateral triangle of side length / = 3 m. Figure 26-2. (a) Find the

potential V at the other comer of the triangle (V = at r = 00). (b) Find the

work required to bring a third charge q^ = 4 fiC from infinity to the unoccupied

comer of the triangle, (c) Find the total electric potential energy of the system

of three charges.
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SOLUTION

(a) From Equation (26-10),

v = kl'^ = k

V = 9 X 10^
N-m^ 2 X 10 ^C 3 X 10"* C'

+
3 m 3 m

1.5 X 10* V

(b) The work required to bring q^ from infinity to this location, where the poten-

tial is V, is

W = q^V = {4 X 10'^ C)(1.5 x 10* V) = 6.00 X 10 M

(c) The total potential energy U of the system of three charges is

U=lc^ + ^-fM3
'23 '13

L/= 9 X 10"
N-m' (2 X 10~*C)(3 X 10"* C)

3 m

+

(3 X 10"*C)(4 X 10"* C)

3 m

(2 X 10"* C)(4 X 10"* Q"

U =
9 X lo'

3 m

[(6 -h 12 + 8) X 10 'IJ = 7.80 X 10^

A battery is a device that provides an electric potential difference by

means of certain chemical reactions inside the battery. Consider a 12-V auto-

mobile battery with one positive and one negative terminal. The "12 V" indi-

cates the magnitude of the potential difference between the terminals of the

battery, with the positive terminal at the higher potential. If the terminals

are connected to parallel metal plates separated a distance d, charges will flow

from the battery to the plates until the plates also acquire a potential difference

of 12 V. These charges reside at the inner surfaces of the plates, creating an

electric field between them as in Figure 26-3. The field is uniform in the cen-

tral region if the separation d is small compared with other dimensions. (For

this preliminary discussion, we will ignore the bulging of the field, called

"fringing" effects, at the edges of the plates.) The next example makes use of

this arrangement to further clarify the relation between E and V.

EXAMPLE 26-3

In Figure 26-3, a 12-V battery is connected to two large parallel plates separated

4 mm. (a) Find the magnitude of the electric field between the plates, (b) A proton

is released from rest at the top plate and is accelerated by the electric force along

the dotted-line path to the negative plate. Find the change in electric potential

energy of the proton during this motion, (c) Show that the change in gravita-

tional potential energy of the proton during this motion is negligible compared

with the change in electric potential energy, (d) Find the speed of the proton just

as it reaches the negative plate.

(a A battery connected to two

parallel metal plates transfers

charge from one plate to the other

until the potential difference

between the plates equals the

potential difference of the battery.
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SOLUTION

(a) The potential difference through which the proton moves is Vf, — V^ =
—

fJl
E • li^. Because the electric field is uniform, it can be brought out from

under the integral sign:

V,- V„= -EJ'^dy= -Ed

Solving for the magnitude of £ gives

E =
V^- V„ 12 V

4 X 10 " m
3000-

(b) The change in potential energy AU of the proton is found from Equation

(26-4):

AU = qAV= (1.60 X IQ-'^CK-n V) = 1.92 X 10"'^]

(c) The change in gravitational potential energy for a proton moving vertically

downward 4 mm is

AUg = mgh = (1,67 X 10 ^^ kg)(9.8 m/s^)(-4 x 10

AU„= -6.55 X 10""]

This is about a factor of 30 billion smaller than the change in electric poten-

tial energy, Wlien analyzing the motion of fundamental charged particles in elec-

tric fields, we can almost always ignore the effects of gravity.

(d) From the work-energy relation, the work qAV done by the electric field

equals the change in kinetic energy:

qAV= AK

eAV = \mv" —

Solving for v gives
/2e(Al^) _ /2(1,60 X 10"^^C)(12V)

m V 1.67 X 10'" kg

4,80 X 10*

Alternate method: From Newton's second law SF = ma, we find the

acceleration of the proton to be a = F/m = eE/m. Substituting this value

into the kinematic equation results in

v~ = Vq' + lay

.^ = +
2(f).

Solving for v, we obtain the same equation as above:

jleEd _ le(AV)

m \ m
4.80 X 10*



26.2 The Electric Potential 603

The Electron Volt

The prevalence of the electron charge in atomic and nuclear physics has led to

defining a new energy unit, the electron volt. An electron volt (eV) is the

amount of energy acquired by an object with a charge e equal in magnitude to

the electronic charge when the object is accelerated through a potential differ-

erence of one volt.

AW=eAV
leV = (1.602 X 10"^^C)(1J/C)

ELECTRON VOLT
(an energy unit)

1 eV = 1.602 X 10
19 (26-13)

Suppose, in the previous example, that we had an alpha particle (helium nucleus)

instead of a proton. Because the alpha particle has a charge of +2e, after

moving through a potential difference of 12 V it would have a idnetic energy

of (2e)(12 V) = 24 eV, tivice that of tbe singly charged proton. To convert to

SI units, we use a conversion ratio:

24 eV
1.602 X 10'

leV
= 3.84 X lO^M (26-14)

Conversion ratio

The electron volt as an energy unit may also be applied to nonelectrical situations.

For example, an air molecule at room temperature is said to have an average

kinetic energy of about (l/40) eV.

EXAMPLE 26-4

Setting V = at r = 00, find the potential V for regions inside and outside a

uniform positive spherical charge density p that extends from r = to r = R.

Use the value of the electric fields found in Example 25-5, and express your

answer in terms of the total charge Q = p(volume) = plfjcR ).

SOLUTION

In Example 25-5, we found the following expressions for the electric field £:

Outside (r > R)

^pR^\ 1 f Q \ I

Inside (r < R)

£. = ^ r = ( ^
CqV 3Ec. AnSc

OUTSIDE (r > R). We have set the value of the potential to be zero at

infinity. So we start at infinity and integrate inward to find the change in V as we

progress inward. For this radial field, we have

V,- V,

J *. \47I£o/

Q Ml
dr =

47r6f

r

X'
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FIGURE 26-4

Example 26-4. A graph of V vs. r

for a uniform charge density

throughout a sphere of radius R.

The maximum value of V is at the

center even though £ = at the

center. Outside the sphere, the

potential is the same as if the total

charge Q were a point charge at the

center.

INSIDE (r < R). From the above result, we know that, at the surface of

the sphere (r = R), the potential is 1/ = Qj\TH\^K. So we start at this known

value at r = R and find the cliange in V as we integrate inward to an arbitrary

location r inside the sphere.

Q

4nEoR^J\2

V:„

V:„ =

47t£oR

STTEoR-

R

R') +
Ane.QR

( °)
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surface anywhere in Region A wit:h an arbitrary radius (0 < r < r^), so we
conclude that ihe field E is zero everywhere inside the inner shell.

£. = (inside the inner shell)

Region B: between the shells. Again, we recognize that the sym-

metry calls for a Gaussian surface in the form of a sphere of radius r (where

ri < r < rj) concentric with the center. We recognize this problem is similar

to Example 25-7, whose result is

£« =
(radially outward

for Ti < r < r,)

Recalling that l/(47!:eo) = 9 x lo' N-m^/C^ we calculate the value of E

at the location just barely outside the inner shell radius r^.

E„ = 9 X 10
gN-m'\(10 X 10"^ C)

C^ (0.15 m)^
4000

N

C

(just outside the

inner shell)

This field decreases as l/r^ until just barely inside the outer shell, where its

value is

£,, = I 9 X 10^
N-m'\(10 X 10"'' C)

(0.30 m)^
1000-

N (iust inside the

outer shell)

Region C: outside the outer shell. Again, we construct a concentric

Gaussian surface of radius r (where r > r2) and apply Gauss's law, recognizing

that q is the net charge inside the surface: | E dA = q/so- The net charge is

q = qi + i?2' or (10 nC) + ( — 15 nC) = — 5 nC. As above.

Ml
47r£o/ r^

(radially inward for r > rj

because q is negative)

The value just barely outside the outer shell (at r = rj) is

£,, = ( 9 X 10^
N-m^\(-5 X 10"* C)

(0.30 m)^
500

N (just outside the

outer shell)

The minus sign indicates that the field is directed inward (in the — r direction).

It varies as l/r", approaching zero as r — oo.

Note that the electric field is not a continuous function of distance. As

the Gaussian surface expands across one of the shells, it suddenly encloses

a new layer of charge, causing the value of E to change discontinuously

(at least in this idealized case, where we assume that the layer of point

charges has zero thickness). As we approach a discontinuity from one side

or the other, we thereby learn information about the way the values change

at the discontinuity itself. Figure 26-6 shows a graph of these fields,

(b) Calculation of the electric potential V. Since we know the field E everywhere,

we will use

V, V
.
- ~S:

E-de

to calculate how the potential varies. First, we choose the zero reference

location: V = at r = oo. Then, we start at r = oo and work our way into

the center of the sphere, calculating the change of potential as we go.

Region C: outside the outer shell. Because of the spherical symmetry

of the charge distribution, both the field and the potential outside the spheres

-1000

(a) The electric field £ is positive if

it is radially outward; negative

values are radially inward

fields. The curved portions of

the graph vary as some
function of l/r^. £ has

discontinuities because a

Gaussian surface, as it

gradually expands, suddenly

encloses a new layer of charge

at a shell, causing E to change

suddenly to a new value.

150

(V)

-150

(b) The electric potential V varies

as l/r. There are no discon-

tinuities of V because JE'd€

may be interpreted as summing

the area under the E-vs.-r graph.

Integrating across a discon-

tinuity merely changes the rate

at which area accumulates. The

area itself does not change

abruptly, which implies that

there is no sudden change in

the work done.

FIGURE 26-6

Example 26-5. Concentric, thin,

conducting spherical shells that

carry different net charges.
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are as though the net charge q (which equals (Ji + ^2) were concentrated at

a point at the center. Integrating inward from 00 to a point r (outside the

spheres), we have

Ane,
(Region C:r^ rj)

Since the net charge q is —5 nC, the numerical value at r = rj is

V
, = 9 X 10^

N-m' -5 X 10"

0.30 m
150 V (at r = r^)

Region B: between the shells. As usual, the change of potential be-

tween Ct and r (where r^ < r < rj) is given by

V, - V,,_= -
J^'

E • d(

The magnitude of E is determined solely by the charge q^ on the inner

sphere (Gauss's law). For the integration from r, to r we have

K - V,
•''•2 47t£r47t£or

dr = 'ii n 1

47l£n

Since V^^ = — 150 V, the value within region B is

150 V +
47ren

1 1
(Region 6; r, < r < r,)

The numerical value for V^, ^^ the inner shell is

„N-m'\ o / 1

K. = (-150 V) + 9 X 10^ ^ (10 X 10"' C)
C' 0.15 m 0.30 m

y,, = - 150 V + 300 V = 150 V

Although E is discontinuous at the boundaries of the shells where the charges

are located, the potential V is continuous across these boundaries. This is plausible

when you recall that integrating ^ E d£ may be interpreted as summing up

the area under the curve for E as a function of distance (see Figure 26-6a).

Integrating across a discontinuity merely changes the rate at which area ac-

cumulates; the area itself does not change abruptly.

Region A: inside the inner shell. Again, we start with the same

general relation;

,
= -f;E-diV-,- V

But here E is zero everywhere inside the inner shell. So there is no change

of potential as we move inward. Hence, the potential at r^ (equal to 150 V)

is the same (constant) value for all smaller values of r.

Va = 150 V (Region A: ^r ^r^)

Figure 26-6b shows a graph of the electric potential V in all regions. Note that

even though E is everywhere zero inside, the potential V has a finite positive

value in this region.
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EXAMPLE 26-6

Consider an infinitely long, straight line of uniform positive charge density A

(in units of charge per length). Find the electric potential V due to this line

charge.

SOLUTION

We will calculate the potential from the electric field £ that we found in Exam-

ple 25-1:

(26-15)
"or a uniform
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FIGURE 26-9

Example 26-9. A uniform disk of

charge.

EXAMPLE 26-8

Find the electric potential V along the axis of a uniformly charged disk of radius

((, that has a uniform surface charge ff (in units of charge per area) on one side.

SOLUTION

In Figure 26-9 we let x be the distance from the center of the disk along the

axis to the point P. We divide the area of the disk into a series of charged ring

elements of radius r and width dr, and we use the result of the previous example

for the potential element dV produced by this ring element. Then we sum all

such ring elements for the whole disk. A ring element of radius r has an area

dA = Inrdr and carries a charge dq = a dA = alnrdr. Thus, the potential dV
at point P due to this ring element is

dV =
kdq kaInrdr

sjr^ + x^ sjr^ + x^

We now sum over all such rings elements from r = to r = a. Using the result

of Appendix G-II, Equation 19, we get

-\:
a kalnrdr

^T7V'

= kaln
J:

rdr

,

= kaln\sjr^ + xH

v = kalnisja^ + x^ - x]

26.3 The Gradient of V

If an electric field is nonuniform—that is, if it has changing values in all three

coordinates—we may still write a relation between V and E. If a field has only

one component £^, we write

which becomes

dV= -

£v= -

(26-18)

(26-19)

But if V and E are ftanctions of the three variables x, y, and z, then we must

find three derivatives: the derivative with respect to x (while holding the

variables y and z constant), the derivative with respect to y (while holding

X and z constant), and the derivative with respect to z (while holding x and

y constant). There is a shorthand mathematical notation for this process. The

partial derivative symbol, dV/dx, means "take the derivative of V with respect

to x while holding all other variables constant." Thus, the complete form of

Equation (26-19) in three dimensions is

dV
'

dx
£,=

ay

"dy

dV
(26-20)

A specific example illustrates the process. Consider a potential of the form

V = ax^y, where a is a constant. The partial derivatives are

dV
£-x = --g-= -2axy £=-^ =

' dy
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The total field E is written as

E = £^x + £j,y + £.z = —laxy\. — ax^y

In general notation, the relation between E and V is written

— X -|- — y ~l" — z
()x dy dz

(26-21)

The expression in parentheses is called the gradient of V. It is the vector

that points in the direction of the greatest rate of change of potential, and thus

it is always along E, perpendicular to the equipotential surfaces. Hence, the

electric field is the negative gradient of the potential. The gradient is represented

by the vector symbol V, called del or grad.

THE GRADIENT OF V
(Cartesian coordinates)

dV ^ dV ^ 8V

^

(26-22)

For spherical coordinate systems (Figure (26-24), we define the three mutually

perpendicular unit vectors f, Q, and ^. Without presenting the proof, we state

the gradient in spherical coordinates:

THE GRADIENT OF V ^,, oV .
,

1^^^
,

1 ^^ I o^ ,a^
(spherical coordinates) Qr r 39 r sin ccj)

Using this notation, we write the general relation:

E= -VV (26-24)
RELATION BETWEEN
Eand V

Note the convenience of the vector notation; it is easy to write and it is

true for all coordinate systems.

EXAMPLE 26-9

(a) Derive the expression for the potential V of a dipole at distances that are

large compared with the separation of the charges, (b) Using Equation (26-24),

find an expression for the electric field £ of a dipole at large distances.

SOlUTlOhl

(a) The potential of a dipole is the sum of the potentials for each of the two

charges. For a single charge, V = fcq/r. For both charges, the potential at

FIGURE 26-10

Spherical coordinates. The unit

vectors r, 6 and are mutually

perpendicular. They point in the

directions of the increase of the

variables r. 6, and
(f),

respectively.

* The mathematical operator V is a powerful and useful concept that you will use in later courses. It is a

generalization of the concept "slope" to three dimensions, and it has an interesting analogy that comes

from topographic contour maps. The gradient of the gravitational potential along the surface points uphill

in the direction in which the rate of change of potential is the greatest. A loose rock would roll downhill

in the steepest direction of g = — VL/j. Similarly, the gradient of the electric potential points "uphill,"

while the electric field E points "downhill"—the direction that a free positive charge would move. An-

other analogy is that of a block of material that has different temperatures throughout. At any point in

the block, the gradient of the (scalar) temperature is a vector that points opposite to the direction of the

heat "flow."
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FIGURE 26-11

Example 26-9.

point P is

V=kq(~ 1 \ lr_ - r+
= ki] (26-25)

where r , and r_ are defined in Figure 26-11. For r » ^, we make the fol-

lowing approximations: r+r- x r^, and (r_ — r+) % / cos 0. When we sub-

stitute these values, Equation (26-25) becomes

/" cos Q p cos
V=ki] ^— = k 2—

1 \ ;; cos

47r£(
(26-26)

where we have substituted the notation for the electric dipole, q/' = p.

(b) To obtain the electric field £ in the r, d, and (j) directions, we calculate the

partial derivatives

dv

Tr

2p cos

47teor-'

dV

'de'

p sin Q dV

Substituting these expressions into Equation (26-24) for spherical coordinates

gives

'dv ^ idV
;,

1 dv -'

de r sin 6 d4)

Ip cos d\, ( p sm I

r +
47reor^ 47reQr'

far-field approximation \ ,-^ » _*

for the dipole

Note that, for distances along a direction perpendicular to the dipole axis

{6 = n/2), this result agrees with Equation (24-16). The fact that there is no

component in the direction agrees with symmetry considerations and with

the fact that electric field lines must terminate on charges. Equation (26-27)

also reveals an interesting feature of the field. At large distances from the

dipole, the field along the axis of the dipole {9 = 0°) has twice the magnitude

of the field at the same distance perpendicular to the dipole axis (9 = 90°).

At large distances in any direction, the field falls off as l/r^.

26.4 Equipotential Surfaces

We have seen that diagrams of electric field lines are useful for understanding

the nature of electric charges and their interactions. In a similar way, it is helpful

to visualize electric potentials. Consider an imaginary surface that is every-

where perpendicular to the field lines. It would take no work to move a small

test charge i]q around on such a surface, since the force F = q^E is always

perpendicular to the motion. The entire surface is at the same potential: an

equipotential surface. A family of such surfaces, spaced apart at equal intervals

of potential AV, gives one an intuitive "feel" for the physical situation. Figure

26-12 shows several examples. For a point charge, the equipotential surfaces

are spheres concentric with the charge.

Equipotentials are easier to locate experimentally than field lines. For

complicated two-dimensional geometries, the field pattern is most easily found

experimentally by first determining a series of equipotentials spaced at equal
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v=o

(a) A line (perpendicular to the paper) at positive

potential. The field lines are imagined to extend to

infinity, where they terminate on negative charges.

: -V

(c) Two conducting planes (perpendicular to the plane of

the paper) at opposite potentials. One plane has a

pointed ridge extending perpendicular to the paper.

(b) Two parallel wires (perpendicular to the plane of the

paper) at equal and opposite potentials. All field lines

that leave the left-hand wire terminate on the right-

hand wire.

(d) Two parallel wires (perpendicular to the plane of the

paper) at the same positive potential. As in (a), the

field lines are imagined to extend to infinity, where

they terminate on negative charges.

intervals of potential difference. The correct field pattern can then be deter-

mined by drawing field lines perpendicular to the equipotentials.

A perfect conductor is, of course, an equipotential surface. Therefore,

electric field Hues iinist always intersect cotidiictors at right angles. (If they did not,

there would be a component of E parallel to the surface, thus requiring work

to move a test charge along the surface.) Furthermore, since field lines must

terminate on charges, when a field line intersects a conductor there must be a

net charge at that point on the surface of the conductor. These properties make

possible some interesting assertions. For example, we can place a hollow con-

ducting sphere concentric to a point charge without altering the field outside

the shell. Moreover, once the shell is in place, the charge inside may move

about within the shell without changing the external field (see Figure 26-13).

FIGURE 26-12

Electric field lines (solid) and

cross-sections of equipotential

surfaces (dashed). The field lines are

everywhere perpendicular to the

equipotential surfaces, a mathematical

property called orthogonality.
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FIGURE 26-14

Contrary to this figure, no electric

field can exist within an empty, closed

conductor, regardless of whether the

conductor is charged or not.

FIGURE 26-15

Two charged conducting spheres,

isolated from their surroundings, are

connected by a conducting wire so

that they are at the same potential V.

The wire is then removed. (The

spheres should be separated much
farther than shown here so that the

charge distribution on each is not

disturbed by the presence of the other

charged sphere.) In this process, the

charge will distribute itself so that the

smaller sphere has the larger surface

charge density a; hence it has the

larger electric field near its surface.

/
t \

(a) The point charge induces

surface charges on the inside

and outside of the hollow

conducting sphere.

(b) Interestingly, the field outside

the sphere remains symmetric

even though the point charge

inside is moved to various

positions within the hollow

interior.

FIGURE 26-13

A hollow conducting sphere, initially uncharged, with a point charge placed inside.

The concept of equipotential surfaces and associated electric fields allows

us to conclude that no electric field exists within any empty, closed conductor,

whether the conductor is charged or not. We have already shown this to be the

case for a hollow conducting sphere (Example 26-5). Consider now an irregular

hollow conductor, such as that in Figure 26-14. We construct a Gaussian surface

just within the surface and apply Gauss's law: ^ E • liA = q'/So- Since there is

no charge inside the Gaussian surface, <^ E • dA = 0. But note that we cannot

invoke symmetry arguments to assert that the field is zero. (There could be

some field lines entering the surface and some leaving, so that the total integral

is zero.) Let us suppose a field line enters and leaves the Gaussian surface as

shown in Figure 26-14. Then an electron at A could leave the conductor, work

could be done on it by the field between A and B, and it could subsequently

enter the conductor at B. The electron could then be moved through the con-

ductor without doing work from B io A (since the conductor is an equipotential

surface). The process could be repeated, giving still more energy to the electron.

The energy of the system would increase without end; it would represent a

perpetual motion machine, which violates the first law of thermodynamics.

Therefore no field exists within an empty, hollow conductor. Stated another way,

a closed conductor is a perfect electrostatic shield.

Another conclusion we may draw from the use of equipotentials and

field lines is that charges tend to accumulate on the points of conductors. Consider

two charged conducting spheres, one larger than the other. A conducting wire

is now connected between the spheres, causing a rearrangement of charges

until both spheres are at the same potential. Figure 26-15. The wire is then

removed. (We assume that the spheres are separated by a large enough dis-

tance so that the charge distribution on each sphere is not appreciably distorted

by the presence of the other sphere.) The potential V of an isolated sphere

with a charge ^ is 7 = kq/r. Because the two spheres were momentarily con-

nected by a conductor, their potentials are equal:

kq^ kq2
(26-28)
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(a) A field ion micrograph of surface atoms in an iridium cr>'stal needle point.

Each spot corresponds to a single atom.

Fluorescent

screen

Evacuated

bulb

Needle

i High positive

potential

(b) A field ion microscope. (c) A simplified sketch of the electric field near

atoms on the surface of the needle point.

FIGURE 26-16

The field ion microscope developed

by Erwin Miiller at Pennsylvania

State University gives a "picture" of

individual atoms on the surface of a

needle point. Its operation depends

on the fact that the electric field is

strongest at the sharp comers of a

surface. In an evacuated glass bulb,

a very sharp needle point with a

tip radius of only a few lens of

nanometers is held at a large positive

voltage with respect to a fluorescent

screen on the inside of the bulb

wall. At the surface of the crystalline

structure of the needle tip, atoms at

the edge of a plane of atoms form

sharp "comers," causing particularly

strong fields just above them. Helium

atoms are then introduced into the

evacuated bulb. When the helium

atoms encounter regions of extremely

strong fields just above individual

atoms, they lose an electron to the

surface, become positive ions, and

are accelerated along the field lines

to the fluorescent screen, causing a

bright spot on the screen. Each spot

thus corresponds to the location of

a particular atom on the needle

surface. Unfortunately, the strong

electric fields near the tip surface

create large mechanical stresses that

limit the technique to metallic

substances that have very strong

mechanical properties.

The surface charge density (7 on a sphere of radius r is (7 = (j/47ir . So Equa-

tion (26-28) becomes

r,ffi"i r.a2^1 (26-29)

In Example 25-4 we found that the field £ just outside a conductor with a

surface charge density ff is £ = cr/eQ. Substituting this relation in Equation

(26-29) gives

£iri = Ejrj (26-30)

leading to the following conclusion; for a charged conductor of irregular shape,

where the radius of curvature is smallest the electric field at the surface is the largest.

^ For certain geometrical stiapes there can be exceptions to this general rule. See Richard H. Price and

Ronald J. Crowley, "The Lightning-rod Fallacy," American journal of Physics 53, 843 (1985).
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Thus, both E and a can become very large near sharp points on high-voltage

equipment. This becomes a problem when the small number of charged ions

always present in the air (produced by cosmic-ray bombardment) are attracted

toward a charged conductor of the opposite sign. Near sharp points where the

electric fields are very large, these ions are accelerated to sufficiently high

speeds that they collide with other air molecules, producing more ions, and

an electrical breakdown of the (relatively) nonconducting air, called corona dis-

char}ie, occurs. This discharge causes the air to glow visibly near sharp points

as ions and electrons recombine. In dry air (STP) the electrical breakdown occurs

for fields above about 3 x 10^ V/m, though at low pressures (a few hundred

pascal) breakdown occurs at much lower values. Until this variation was recog-

nized, it was a source of problems in designing electric circuitry for spacecraft;

the circuit functioned well at the engineer's workbench, but suffered arc dis-

charges as the spacecraft passed through the outer limits of the earth's atmo-

sphere. Humidity and dust also greatly lower the breakdown fields.

During an electrical storm, high potentials develop between thunder-

clouds and the earth. The purpose of sharp-pointed lightning rods attached to

tall structures is not to "attract" lightning, but just the opposite: the strong

electric fields near the points allow charges to leak off, reducing the high po-

tential differences that might otherwise result in a lightning bolt at that loca-

tion. Aircraft also have special sharp points to help reduce excess charge. Si.

Elmo's fire, named after the patron saint of sailors, refers to the glowing corona

discharge from prominent points of a mast on ships at sea when a storm is

brewing.

Summary

Electric potential energy U: U^

Electric potential V: V„ E-rf^

Only changes in potential, AV, are significant. Because the field

is conservative, A Vis the same {or any convenient path between

a and b. For localized systems of charges, the zero reference

location is chosen at infinity.

The electron volt (eV) is the energy acquired by a particle

with a charge equal in magnitude to the electron charge accel-

erated through a potential difference of one volt:

1 eV = 1.602 X 10

For point charges {V = ai r = 'Xj),

1 \ WU =
47ref

V =
4ner

For symmetrically distributed charges, the relation between V

and E often permits an easier calculation of E than does

Coulomb's law.

1 integral form
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Questions

1. What is the distinction between electric potential energy

difference and electric potential difference?

2. Do positive charges tend to seek regions of high potential

or of low potential? What about electrons?

3. Consider the equations for the electric forces, fields, and

potentials associated with a group of point charges. Dis-

cuss the similarities and differences with the analogous

equations for the gravitational forces, fields, and potentials

associated with a group of point masses.

4. Why cannot equipotential lines not cross one another?

5. Can the electric potential be zero at a point where the

electric field is not zero? If so, give an example.

6. The electric field is zero at a certain point in a vacuum.

Must V also equal zero at that same point? Give examples

to illustrate your answer.

7. Can the electric field be zero at a point where the electric

potential is not zero? If so, give an example.

8. As shown in Section 16.4, the gravitational field within a

uniform, hollow, spherical shell of mass is zero. Similarly,

the electric field within a hollow spherical conducting shell

is zero. The electric field is also zero within a hollow con-

9.

10.

11.

12.

ductor of any shape (not just one that has spherical sym-

metry). What about a hollow mass of any shape—say, a

hollow cube? Is the gravitational field zero everywhere

within a hollow mass of any shape? Can it be zero at a

particular point within such a hollow mass? Can you always

find a point at which the gravitational field is zero inside

every hollow mass of any arbitrary shape?

The surface of an isolated charged conductor is an equi-

potential. Does this imply that the surface charge is uni-

form over the surface of the conductor?

Suppose that the electric field had the same magnitude

everywhere over the surface of a conductor. What would

this imply about the surface charge density? What would

it imply about the physical shape of the conductor?

A "Faraday cage" consists of a hollow box with sides

constructed of metallic wire screen. A sensitive voltmeter

is connected between the screen and a probe inside the

box. How does this device detect a net charge within the

box?

Why is it impossible for the potential function of a charge

distribution to have a finite discontinuity?

Problems

26.2 The Electric Potential

26A-1 A 12-V battery is connected to two large, parallel

metal plates, (a) An electron released from rest at the negative

plate acquires what velocity just before it strikes the positive

plate? (b) Find the electron's maximum kinetic energy in elec-

tron volts and in joules, (c) If the plates arc 4 mm apart, how
long does the electron take to travel between the plates? (d)

If the plates were a different distance apart, would this change

the answers to parts (a) and (b)?

26A-2 Two parallel metal plates separated by 2 cm have a

potential difference of 90 V between them (Figure 26-17). An
electron passes through a small hole in the positive plate with

a speed of 5 x lO'' m/s. Find how close to the negative plate

the electron will go.

26A-3 In the Bohr model of the hydrogen atom, the electron

revolves around the proton in a circular path of radius 52.9 pm
under the action of the Coulomb force between them. (Because

of its much larger mass, the proton remains essentially at rest.)

(a) By applying Newton's second law, find the speed of the

electron, (b) Show that the magnitude of the electric potential

energy is twice the electron's kinetic energy, (c) What is the

total energy of the system in electron volts?

26A-4 In the Bohr model of a hydrogen atom, an electron

moves in a circular path around a (stationary) proton. The

radius of the path is 0.529 x 10" ' m. For the region in which

the electron moves, find (a) the magnitude of the electric field

£, and (b) the electric potential V (setting V = ai r = crj).

(c) For comparison, an electrical breakdown (sparking) in air

usually occurs for fields in excess of about 10*^ V/m. Why is

this problem not a consideration in the Bohr model? (d) Com-

FIGURE 26-17

Problem 26A-2.

pare the electron's potential with the potential difference of a

car battery.

26B-5 A point charge +q is located at each vertex of an

equilateral triangle with side length a. Find the potential dif-

ference AV between a point at the center of the triangle and

a point at the center of one edge. Which point is at the higher

potential?

26B-6 Four equal positive charges q form the comers of a

square with a side length a. Find the potential difference be-

tween a point at the center of the square and a point midway

along one side of the square. Which point is at the higher

potential?
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26B-7 Show that, for two positively charged, concentric

conducting shells, the inner shell is always at a higher potential

than the outer shell, regardless of the amount of charge on

either shell.

26B-8 A point charge q = 2 fiC is located at each vertex

of the isosceles triangle shown in Figure 26-18. (a) Find the

electric potential energy of this configuration of charges. (Hint:

bring these charges in from infinity, one at a time. The change

in potential energy when the first charge is moved in is zero.)

(b) What is the electric field E at the origin after all three

charges are in place?

""•--^ 2 m

1 m

2 m

FIGURE 26-18

Problem 26B-8.

26.3 The Gradient of V
26.4 Equipotential Surfaces

26B-9 The potential V (in volts) in a region is defined by

y = (3 V/m^)x^ + (0.2 V/m)y, where x and y are expressed in

meters. Find the magnitude and direction of the force on an

electron placed at r = 10 cm, y = 15 cm.

26B-10 The electric potential just outside a charged con-

ducting sphere is 200 V, and 10 cm farther from the center of

the sphere the potential is 150 V. Find (a) the radius of the

sphere and (b) the charge on the sphere.

26B-11 Two isolated conducting spheres, one with a radius

R and the other with a radius 3R, each carry an equal charge

Qq. The spheres are brought into contact and then separated

again. Find the charge on each sphere.

26B-12 Two identical small metal spheres have net charges

of ^1 and ^2- respectively. When separated a distance of 1 m,

they attract each other with a force of 9 x 10^ ^N. The spheres

are now moved together until they touch, then again placed

1 m apart where it is found that they now repel each other with

a force of 2 x 10"^ N. Find the charges <;, and ijj-

26B-13 Consider two hollow, metallic, concentric spheres.

The inner sphere has a radius of 30 cm and a charge of — 80 ^C.

The outer sphere has a radius of 50 cm and a charge of 40 jiC

For the regions outside the spheres, between the spheres, and

inside the inner sphere, find (a) the electric field and (b) the

potential, (c) Sketch qualitative graphs for £ and V.

26B-14 Two positive charges, each +q, are located on the

X axis at x = ±a. (a) Make a freehand sketch of the elec-

tric field pattern in the xy plane, (b) Without calculating an exact

equation, sketch a qualitative graph for the electric potential

V{x) along the +x axis as a function of x. ( V = at a: = + oo).

(c) From your graph of V{x) vs. x, explain how you could ob-

tain a qualitative graph of the electric field £(x) along the x axis

as a function of x. Make a freehand graph of £(x) vs. x. (d)

Repeat (a), (b), and (c) for equal but opposite charges, +q and

-'?

Additional Problems

26C-15 A total charge Q is spread uniformly along a thin,

nonconducting rod of length /. Find the electric potential V
at a point P that is a distance y from the end of the rod as

shown in Figure 26-19.

FIGURE 26-19

Problem 26C-15.

26C-16 In Figure 26-20, a positive charge distribution exists

within the volume of an infinitely long cylindrical shell between

radii a and b. The charge density p is not uniform, but varies

inversely as the radius r from the axis. That is, p = w/r for a <
r < b, where h.' is a constant in SI units. Find the electric field

for the regions (a) r < a, (h) a < r < b, and (c) r > b. (d) Find

the electric potential for the same regions, setting K = at

r = d {a very large distance away from the region of interest).

FIGURE 26-20

Problem 26C-16.

26C-17 The interior of a sphere of radius R has a volume

charge density p that is proportional to the distance r from the

center:

Ar (for < r < R)
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where y4 is a constant, (a) Find the SI units for A. (b) Find the

total charge Q inside the sphere in terms of A and R. (Hint: fol-

lowing Example 26-4, sum the charges dq in spherical shells of

thickness dr.) (c) Use Gauss's law to find the electric field E in-

side the sphere a distance r from the center, (d) Setting l^ =
at r = 00, find the potential U as a function of r both outside

and inside the sphere.

26C-18 Repeat the previous problem for a charge distribu-

tion p = Ar~.

26C-19 An electric field is described by £ = 2000x +
3000y (in SI units). Find the potential difference (Vg — V^) be-

tween the points ^1 at x = 0, i/ = 3 m, ; = 2 m and B a[ x =
2 m, y = 1 m, z = 0. (Hint: since £ is a conservative field, Vg —
V^ may be calculated along any path between A and B.)

26C-20 A point charge of —20 nC is located at the origin

of a coordinate system, and another point charge of -I- 10 nC
is located at x = 6 cm. An electron is released from rest ai x =
1 cm, and it subsequently moves along the x axis toward the

positive charge. Find the speed of the electron when it reaches

the point x = 5 cm. (Hint: what is the potential difference be-

tween these points?)

26C-21 The liquid-drop model of the nucleus suggests that

high-energy oscillations of certain nuclei can split the nucleus

into two unequal fragments plus a few neutrons. The fragments

acquire kinetic energy from their mutual Coulombic repulsion.

Calculate the Coulomb potential energy (in MeV) of two spher-

ical fragments from a uranium nucleus having the following

charges and radii: -|-38£' and radius 5.5 x 10" ''' m; -I- 54e and

radius 6.2 x 10"'^ m, respectively. Assume that the charge is

distributed uniformly throughout the volume of each spherical

fragment and that their surfaces are initially in contact at rest.

(The electrons surrounding the nucleus can be neglected). The

result agrees approximately with the observed kinetic energy

associated with uranium fission.

26C-22 Two identical raindrops, each carrying surplus elec-

trons on its surface to make a net charge —q on each, collide

and form a single drop of larger size. Before the collision, the

characteristics of each drop are the following: (a) surface charge

density Gq, (b) electric field £o at the surface, (c) electric po-

tential Vq at the surface (where l^ = at r = x). For the

combined drop, find these three quantities in terms of their

original values.

26C-23 Two conducting parallel plates are 5 cm apart and

have a potential difference of 2000 V. An electron is released

from rest at the negative plate and simultaneously a proton is

released from rest at the positive plate, (a) How far from the

positive plate do the particles pass each other? (b) Find the speed

of each particle as it strikes the other plate, (c) Find the kinetic

energy (in eV and in J) of each particle as it reaches the other

plate.

26C-24 A disk of radius a has a uniform surface charge a

on one side. A circular hole of radius a/2 is now cut in the cen-

ter of the disk, (a) Using the superposition principle and the

result of Example 26-8, find the electric potential V along the

axis of the disk at a distance x from its center {V = at

X = CO), (b) What is the electric potential at the center of the

hole? (c) What is the electric field at the center of the hole?

26C-25 Consider an electric quadrupole that is an assembly

of three charges: — 2q at the origin, +q ai y = //2, and + q

at y = — //2. Find the potential at points (a) along the x axis

and (b) along the y axis, (c) Show that, at large distances from

the quadrupole (that is, x and y much larger than /), the poten-

tial varies as the inverse cube of the distance. (Hint: note the

approximation iZ-v/l + a~ % 1 — a'/2.)



Capacitance and Energy

in Electric Fields

Penetrating so many secrets, we cease to believe in the unknowable. But

there it sits nevertheless, calmly licking its chops.

H. L. MENCKEN
Minority Report (1956).

27.1 Introduction

In this chapter, it will become clear why we have placed so much importance

on the concept of an electric field. Compact configurations of conductors can

be constructed so that they contain very intense electric fields. Such devices

are called capacitors, a name derived from their capacity for storing positive and

negative charges. We will show that the external work performed in establishing

the separation of charge on the capacitor appears as energy stored in the elec-

tric field that is thereby created inside the capacitor. This chapter will lead us

to the important conclusion that electric fields, wherever they exist, contain

energy. Capacitors are widely used in electronic circuits, and in later chapters

we will illustrate some of these applications.

27.2 Capacitance

Any two conductors, separated by an insulator, form what is called a capacitor.

When a potential difference' V (such as a battery) is applied across the two con-

ductors, negatively charged electrons with a total charge Q are attracted from

the conductor attached to the positive plate of the battery and flow to the con-

ductor attached to the negative plate, until the potential difference V between

the conductors is the same as that of the battery. The battery may then be re-

moved and the charges remain on the conductors. The ability of a capacitor to

maintain this storage of charge at a given potential difference is called capaci-

tance C, defined as

CAPACITANCE C = - (27-1)

^ Only potential difference is important when we are dealing with capacitors, so for simplicity it is common

practice to use the symbol V, rather than AV.
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The SI units of capacitance are coulombs per volt (C/V), which are given the

name farad (¥).' The symbol for a capacitor is —
1

1— . In the context of its usage,

there is no confusion between the letter C for capacitance, which is a quantity,

and the unit coulomb (C).

When we speak of "the charge Q on a capacitor" we mean just the

magnitude of the charge on one of the conductors. (The total net charge on

the conductors is zero.) The following examples derive expressions for the ca-

pacitance of some common geometrical shapes.

EXAMPLE 27-1

The Parallel-Plate Capacitor. Two parallel plates of equal areas A, separated a

small distance d, form the most common type of capacitor. One plate has a charge

+ Q and the other a charge — Q as shown in Figure 27-1. If the plate separation

is very small compared with the edge lengths of the plates, the fringing field at

the edges may be ignored, and we assume that the electric field between the plates

is uniform everywhere. From Equation (25-10), the electric field £ between the

plates

_ J _ Q
(27-2)

From Equation (26-5), the magnitude of the potential difference between the

plates, which we will call V (rather than AV), is

V=(-)^E- d€ = Ed

Combining these equations, we obtain the capacitance C:

Q EqAE £oA

(27-3)

C =
V Ed

CAPACITANCE OF A
PARALLEL-PLATE
CAPACITOR

C =
EnA

(27-4)

Note that the capacitance is independent of the charge on the capacitor.

The capacitance C depends on ordy the physical dimensions of the capacitor (and the

constant fig). Here, the capacitance is directly proportional to the plate area A and

inversely proportional to the plate separation d.

Plate area =A

M t MtttHititf
;^+++++++++++++++++

+ Q

FIGURE 27-1

Example 27-1. Two parallel plates,

each of area A, with a plate

separation d, have equal and opposite

charges. If d is very small compared

with the edge lengths of the plates,

the fringing field at the edges may
be ignored.

' The /ararf honors the English physicist and chemist Michael Faraday (1791-1867), who investigated many

electric, magnetic, optical, and chemical phenomena. Electromagnetic induction (Chapter 32) is his best

known discovery. Faraday's family was very poor and he did not have the benefit of formal academic

training. However, he fervently pursued his own self-education, and he had a truly outstanding knack for

experimentation. At the age of 13, apprenticed to a bookseller, he became entranced with a copy of the

third edition of the Enq/dopaedia Briltanica that was brought in for repair. This edition had many articles

on electricity that Faraday found specially interesting, further stimulating his interests in experimentation.

Later he became an assistant to Sir Humphry Davy, the noted British chemist, who gave him rooms and

an assistantship at the Royal Institution. Upon Davy's death, Faraday succeeded him at the Royal Institution,

achieving fame in important research as well as giving popular lectures on scientific topics. The last nine

years of his life, Faraday and his wife lived in a house in Hampton Court, provided for them by Queen

Victoria.

We assume a vacuum between the plates. The effects of a dielectric material between the plates is discussed

in Section 27.4.
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EXAMPLE 27-2

Find the capacitance of two metal plates, each 2 m^ in area, separated by I mm.

Ignore fringing effects at the edges.

SOLUTION

For parallel plates,

EqA (8.85x10 '^F/m2m^ _„
C = -^ = ^ i—^ = 17.7 X 10 ^

d (1 X 10 ^ m)
F = 17,7 nF

In spite of its physical size, this is quite a small capacitance. For a parallel-plate

separation of 1 mm, a 1-F capacitor with square plates would be 10.6 km along

each edge! (In Section 27.3 we will discuss methods of fabricating fairly large

capacitances in small volumes.) Because the farad is a very large unit, more

commonly encountered capacitances are usually expressed in units of the

microfarad (1 /iF = 10"''
F), the nanofarad (1 nF = 10"' F), and the picofarad

(lpF = 10-1^ F).

FIGURE 27-2

Example 27-3. Two long, concentric,

conducting cylinders in a vacuum

form a cylindrical capacitor. Equal and

opposite charges per unit length,

+ Q/L, produce a radially outward

electric field between the cylinders.

EXAMPLE 27-3

The Cylindrical Capacitor. A cylindrical capacitor consists of two concentric

conducting cylinders. Figure 27-2. The outer radius of the iimer conductor is a

and the inner radius of the outer conductor is b. We assume that the total length

of the cylinders is very great so that end effects involving fringing fields may be

neglected. Consider a section of length L. In this length, the charge on the inner

cylinder is + Q and that on the outer cylinder is — Q, producing a symmetrical

electric field between the cylinders that is radially outward. Applying Gauss's law

to a cylindrical Gaussian surface of radius r {a < r < b) and length L, we find that

the electric field £ (see Example 25-1) is

E-dA =

E(lnrL)

'Jin

£ = Q
iTZEorL

The potential difference V = — |* E rf^ becomes

(27-5)

.^ri^=-f^in:
ItzEqL •!" r \lneQlJ

The magnitude of the potential difference V is thus

ItiEqI
(In b — \r\a)

« \J'-

and the capacitance C is C =

IuEqIj \a

Q. Q
V

'

Q ^J'
ZuEqI
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CAPACITANCE OF A
CYLINDRICAL CAPACITOR
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EXAMPLE 27-5

Find the capacitance of a single, isolated sphere of radius R. (The second con-

ductor may be considered as a conducting sphere at infinity where V = 0.)

SOLUTION

In Equation (27-7), we let the outer radius b approach infinity, so that the a term

in the denominator becomes insignificant. The b in the denominator then cancels

the b in the numerator, resulting (in the limit) in C = AnEga. For an isolated

sphere of radius R, the capacitance is thus

CAPACITANCE OF AN
ISOLATED SPHERE

C = 47teoR (27-8)

Note that the only significant factor is a geometric one: the radius R of the sphere.

EXAMPLE 27-6 1
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Many electronic circuits use capacitors whose capacitance is variable over

a limited range of values. Figure 27-5 shows two common types. In practice,

calculating the capacitance of arbitrary arrangements of conductors is not easy.

We have illustrated three simple cases in which geometrical symmetry led to

simple calculations. But for nonsymmetrical systems we find the value of C
empirically by putting known charges on the conductors and measuring the

potential dilTerence between them. In electronic circuits, even this method fails

because it is not possible to isolate one part of a circuit from its neighbors.

Usually the stray capacitances between parts of a circuit are negligible, though

they can sometimes be troublesome in alternating-current circuits. Chapter 34.

27.3 Combinations of Capacitors

In the construction of electronic circuits, it is often necessary to combine two

or more capacitors. Combinations of capacitors consist of parallel and/or series

connections, as shown in Figure 27-6. The electronic symbol —
1

1— for a capacitor

is used in the figure. (The symbol implies a parallel-plate capacitor, but it is used

for any type of capacitor.)

In the parallel combination, the potential difference V is the same for all capaci-

tors, but the charge on each may be different. The total charge on all capacitors

is

Substituting gives

Q=Qi + Q2 + Qi

Therefore, the single capacitance C^^ that is equivalent to this combination is

Since the analysis could be extended to include any number of capacitors in

parallel, we may write the general formula

CAPACITORS
IN PARALLEL Qq = Ci + C3 + C3 + (27-9)

To analyze the series combination, suppose that the capacitors are initially un-

charged and that we connect a battery of voltage V across the ends of the series.

The principle of charge conservation holds true, so the negative charge — Q
that flows from the battery onto one end plate must equal the negative charge

that flows from the opposite end plate to the battery, leaving that plate with

a charge -I- Q. Now, since the portion enclosed in the dashed box is isolated,

the net charge within this region must remain zero (its initial value). However,

the charged plates just outside the dashed box will cause a charge separation

within the box, so that each plate of a capacitor acquires a charge equal but op-

posite to that on the other plate of the capacitor. Thus, each capacitor in series

acquires the same magnitude of charge Q. The total potential V across the com-

bination is the sum of the potentials across each capacitor:

(a) In a parallel combination of

capacitors, the voltage across

each capacitor is the same.
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FIGURE 27-7

Example 27-7. The step-by-step

reduction of a combination of

capacitors to a single equivalent

capacitance Q,.

-0(=C> o- -o c=zC> o-

Ceq = 2.82 ii¥

(c)

Since V = Q/C, the single capacitance Q^ that is equivalent to this series

combination is

1 _ 1 1 1

Qq '^l ^2 ^3

Since the analysis could be extended to include any number of capacitors in

series, we may write the general formula

CAPACITORS
IN SERIES C„

111
(27-10)

EXAMPLE 27-7
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POLAR DIELECTRIC

G) © ^
(a) In a polar dielectric (with zero

external field), the electric

dipole moments of the

molecules have random
orientations.

(b) When an external field £o is

applied to a polar dielectric,

the electric dipole moments
tend to align themselves in the

direction of the field.

FIGURE 27-8

The effect of an external electric

field on the molecules of a polar

dielectric material.

filled with certain insulating materials, the capacitance is increased and also the

voltage that can be applied is increased—both desirable effects. The following

discussion assumes homogeneous materials in the presence of a uniform electric

field.

Suppose that we place a slab of nonconducting material called a dielectric

between isolated charged plates of a parallel-plate capacitor. We will find that

the potential difference between the plates decreases. To understand why, we
now discuss the behavior of a dielectric material at the molecular level when

it is placed in an electric field. Dielectrics may be classed as polar or nonpolar.

Figure 27-8 shows a polar dielectric, so-named because its molecules have a

permanent electric dipole moment. In the presence of the field Eq (produced by

the charges on the plates), these dipole moments tend to align themselves in

the direction of the field. In contrast, the molecules of a nonpolar dielectric.

Figure 27-9, have no inherent dipole moments since the center of the positive

charge distribution within a molecule coincides with the center of the negative

charge distribution. However, when an external electric field Eq is applied, the

centers of charge are drawn slightly apart to form induced dipole moments

aligned in the direction of the field. In both types of materials, the overall

effect of dipole alignments is that the surfaces of the material perpendicular to

the applied field acquire induced surface charge densities as shown in Figure 27-10,

NONPOLAR DIELECTRIC

© © ©
© © ©
© © ©

(a) In a nonpolar dielectric (zero

external field), the center of

positive charge within a

molecule coincides with the

center of negative charge, and

the molecules have no electric

dipole moments.

FIGURE 27-9

The effect of an external electric field

on the molecules of a nonpolar

dielectric material.

(b) When an external field Eq is

applied to a nonpolar dielectric,

the centers of positive and

negative charges are drawn
apart, inducing a dipole

moment in each molecule in

the direction of the field.

-(- + -|--t--l-4-H--l- + -l--H
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Insulators

n^T- l\
Oil

dielectric

(a) High-voltage oil-tilled capacitor

Aluminum foils -

Plastic film

(b) Tubular capacitor

Metal foil

connection

Electrolytic fluid

Case connection

to electrolyte

(c) Electrolytic capacitor. The
metal foil has an oxide coating

which forms the insulating

materal between the foil and

the electrolyte.

FIGURE 27-11

Some commercial capacitors.

TABLE 27-1 Approximate*

Dielectric Constants and

Dielectric Strengths
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thick. With such an extremely thin separation between conductors the capac-

itance becomes enormous. Although used widely, electrolytic capacitors have

certain limitations. The polarity of the metal conductor must always be positive;

with a reverse polarity a chemical reaction occurs that breaks down the oxide

layer.

EXAMPLE 27-8

The plates of a parallel-plate capacitor each have an area of 40 cm" and are

separated by a mica sheet 0.5 mm thick, (a) Find the capacitance. Calculate (b)

the maximum voltage and (c) the maximum charge that this capacitor can have

without electrical breakdown.

SOLUTION

(a) From Equations (27-4) and (27-11),

K£o^ (5)(8.85 X 10"'^ CVN-m^)(40 x 10"* m^)
C=Co =

C = 3.54 X 10'

(5 X 10 * m)

0.354 nF

(b) The maximum voltage is limited by the dielectric strength of the mica:

3 X 10^ V/m. For a thickness d = 5 x 10~* m, we have

Ed=(3 X 10^ V/m)(5 x 10 *
i

1.50 x 10" V

(Because of possible irregularities in the mica, as a safety factor the maximum

usable voltage would probably be set at a lower value.)

(c) The maximum charge is

CV = (0.354 x 10"' F)(1.5 x 10^ V) = 531 fiC

EXAMPLE 27-9

Consider the parallel-plate capacitor (plate area A) shown in Figure 27-12 where

the space between the plates is filled with different thicknesses of two different

dielectrics. Ignoring edge effects, find an expression for the capacitance.

SOLUTION

When the capacitor is charged, the electric field is perpendicular to the boundary

between the dielectrics. Hence that boundary is an equipotential surface, and a

conducting sheet could be placed at the boundary without any of the fields

being altered within the capacitor. The conducting sheet could then be split as

shown in Figure 27-12b, forming two capacitors in series. The capacitance Cj

of the upper capacitor, including the effect of its dielectric, is Cj = K^^SQA/di-

Similarly, the capacitance Cj of the lower capacitor is Ct = K2£o^/^2- The series

combination of Cj and Cj becomes

Solving for C gives

1 1
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27.5 Potential Energy of Charged Capacitors

As we have seen, configurations of charges have electric potential energy U.

This potential energy implies the system could do work. For a charged parallel-

plate capacitor, there are several ways this could be accomplished. For example,

the force of attraction between the plates could do work if the plates were

free to move toward each other. Or, if the charges could move, work could

be done by each charge as it moves through the potential difference.

We can determine the potential energy by calculating the amount of

work done by an external agent to charge the capacitor. The incremental work

dW required to move a charge dq from the plate at the lower potential to the

plate at the higher potential is

dW = Vdq (27-12)

where V is the potential difference between the plates. However, the potential

difference depends upon the charge q already deposited on the plates: V = q/C.

Substituting this relation into Equation (27-12), we have

dW
C

dq

We obtain the total amount of work W required to charge the capacitor to a

final charge Q by integrating:

W = r C'^'^

h hi
C\l c

Since the work done by the external agent is the gain in electric potential

energy U of the capacitor; we have

U =
C

(27-13)

It is usually easier to determine the potential difference V rather than the

charge Q. Since Q = CV, we may write Equation (27-13) in terms of V and C:

ENERGY U STORED
IN A CHARGED
CAPACITOR

u = \CV^ (27-14)

+
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we use Equation (27-13) to find the potential energy. As we will see, the

potential V changes as the dielectric is withdrawn. The initial and final

energies are

"-K|| - Uf =
i/Q'

2VQ

But the initial capacitance (with the dielectric) is C| = K'Cf. Therefore:

Since the work done by the external force in removing the dielectric equals

the change in potential energy, we have

I IQ:

2VC
^(Qr

2\C
(K- - 1)

To express this relation in terms of the potential V',, we substitute Q = Cy^,

and evaluate:

W=4(CiVj-)(K-- l) = i(2 X 10"'F)(100 V)-(5 -1)= 4.00 x 10 ^

The positive result confirms that the final energy of the capacitor is greater

than the initial energy. The extra energy comes from the work done on the

system by the external force that pulled out the dielectric,

(b) The final potential difference across the capacitor is given by

Vf =

Substituting Cf = CJk and Q = CjV| gives

Vf = K-Vi = (5)(100 V) = 500 V

Even though the capacitor is isolated and its charge remains constant, the

potential difference across the plates does increase in this case.

EXAMVLE 27-11

Consider the capacitors shown in Figure 27-14a. The 4-/<F and 12-/iF capacitors

are connected in series across a potential difference of 50 V. After becoming

charged, the capacitors are disconnected f'om the source of potential, separated,

and then rejoined in parallel, with positive plates together and negative plates

together as shown in Figure 27-14b. (a) Find the initial and final potential energies.

(b) Find the final voltage across the two capacitors in parallel.

SOLUTION

(a) The initial value of the series combination of two capacitors is given by

Equation (27-10):

1 _ 1 1 _ 1 1

C; C, C2 4//F 12 /iF

=t 4mF

V, = 50V 6 a

dp UfiF

(a) Initial configuration

?

Vf =p 4 ftF 12 /iF d=_

(b) Final configuration

FIGURE 27-14

Example 27-11.
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Solving for Cj gives C; = 3 //F

The initial potential energy of the system of capacitors is given by Equation

(27-14):

Evaluating, we obtain L/j = ^(3 x 10 "^ F)(50 V)^ = 3.75 x 10"^
]

As explained earlier, when capacitors in series are charged, each capac-

itor acquires the same magnitude of charge Q. This is

Q = CjVi = (3 X 10"" FK50 V) = 1.50 x 10~* C

When connected in the nevi' arrangement, the charge on the parallel com-
bination of capacitors will be 2Q = 3 x 10~* C. The capacitance of the

parallel combination is given by Equation (27-9):

Evaluating, we find Cf = 4 ix¥ + 11 piY = 16 fi¥

The final potential energy is given by Equation (27-13):

1 fQ~\ 1 (3 X 10"* Q-
U = 2.81 X 10 ^

]

Z\ C J
"

2 (16 X 10"" F)

Note that a loss in potential energy has occurred:

AU= Uf - U,== 2.81 X 10"M - 3.75 x 10"^] = -9.4 x 10"*
J

(b) The final potential difference Vf is obtained from the relation Q = CV. In

this case.

Vr =
Qf 3 X 10"* C

Cf 16 X 10"
18.8 V

27.6 Energy Stored in an Electric Field

The previous example raises a few questions. Since the final energy of the

system is less than the initial energy, where does the "missing" energy go? Also,

where does the potential energy of a charged capacitor (or, for that matter, a

single charged particle) reside? To answer the first question, we must realize

that the redistribution of charge causes charges to flow through the wires

connecting the capacitors. It can be shown that the resultant heating of the

wires, no matter how small their electrical resistance (excluding zero resistance),

exactly accounts for the energy loss of the charged capacitors. (The resistance

of materials to the flow of charge is discussed in the next chapter.)

The other question, regarding where the potential energy resides, leads

to an important new concept. Consider a charged capacitor. If an incremental

charge dq is freed from the positive plate, it will be accelerated toward the neg-

ative plate by the electric field between the plates. The kinetic energy acquired

by dq results in a corresponding reduction in the electric field (because the

charge on the plates is now less). Therefore, it is reasonable to assume that

the potential energy of a charged capacitor resides in the electric field.



27.6 Energy Stored in an Electric Field 631

We can derive an expression for the energy stored in an electric field by

considering a parallel-plate capacitor, where the field is uniform. We have seen

that, for a parallel-plate capacitor, C = EoA/d and V = Ed. Substituting these

expressions for the energy Li of a charged capacitor brings

U = lCV^=l
(^ j

(Edf = ^ SoE'iAd) (27-15)

But {Ad) is the volume occupied by the electric field. We now define the energy

per unit volume in the electric field as the energy density u^ (in joules/meter ).

Thus:

U ho^-Ad 1 ,

• - - " = - en£
Ad Ad

ENERGY DENSITY u^ IN

AN ELECTRIC FIELD

(in free space)

i(£ = koE^ (27-16)

Had there been a dielectric present, the capacitance C would have been

increased by the factor k. The previous analysis"* would then lead to

ENERGY DENSITY m^ IN

AN ELECTRIC FIELD

(in the presence of a dielectric)

Uf7 — 2'^'^0 (27-17)

Although we derived these results for the uniform electric field in a parallel-plate

capacitor. Equations (27-16) and (27-17) are general expressions, valid for all

field configurations.

EXAMPLE 27-12

An isolated conducting sphere of radius R has a charge Q. Show that the total

energy stored in the surrounding electric field equals the energy stored in a

charged capacitor, U = 2^Q~/C), where C is the capacitance of the isolated

sphere.

SOLUTION

An isolated sphere has a capacitance C = AuEoR [Equation (27-6)]. The potential

energy stored in the capacitor is thus

U =
2 C STTEfiR

(27-18)

The electric field outside a charged conducting sphere is the Coulomb field;

£ = Q/4neQr~. At any point in this field, the energy density M£ is

_ 1 2 _ 1

4nenr'

Q'

iln'Eor

* Certain dielectric materials can be given a permanent electric dipole moment if they are melted and then

allowed to solidify in the presence of an electric field. The resulting electret has a permanent electric field

analogous to the permanent magnetic field of a magnet.
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To find the total energy stored in the entire surrounding electric field, we note

the spherical symmetry (£ depends only on the radial distance r) and express

the energy dU in the thin, spherical shell clement of radius r and thickness dr.

This thin shell has a volume dV = 4nr dr, and the energy dU within this shell is

dU=MpdV =
-J- ) {4nr- dr) = ^ dr

Integrating from r = R to r = oo, we obtain the total energy in the field:

u =
8nE, j; SlZEn SKEoR

This result is indeed the same as Equation (27-18).

Sumtnaiy

A capacitor consists of two conductors separated by insulating

material and has the ability to store charge. A capacitor with

equal and opposite charges ± Q at a potential difference V has

a capacitance C:

General definition: C = Q

where Q is the magnitude of the charge on either plate and V
is the potential difference. The SI unit of capacitance is the farad

(F), or C/V. Capacitance depends solely on the geometry of the

conductors. A simple capacitor formed of parallel plates of area

A, separation d in a vacuum, has a capacitance of

For parallel plates: C =
Eo^

where fig is the permittivity of free space. Capacitors with other

geometries are discussed in the chapter.

For combinations of capacitors in circuits, the equivalent

capacitance C^q is

In parallel:

In series:

Qq = Ci + C2 + C3 +1111
Ljq L-i ^2 1-3

The electric potential energy U stored in a charged capacitor

U = -jCV" (in joules)

The energy density u^ in any electric field £ is

"e = 2£o£^ (in )Oules/meter )

When a dielectric material with a dielectric constant K is

introduced between the plates of an isolated charged capacitor,

the capacitance increases by a factor of K (always larger than 1),

C = kCo

and the potential difference V across the isolated capacitor de-

creases by a factor of K,

V =

The potential difference decreases because the electric field pro-

duced by the charged plates aligns electric dipoles within the

dielectric. The aligned dipoles produce an internal field in a

direction opposite to the original field, resulting in a smaller

net field.

Questions

2.

The pattern of electric field lines between opposite but

equal charges is undisturbed if we place a thin metal sheet

halfway between the two charges so that the plane of the

sheet is perpendicular to the line joining the charges. Why?

In terms of basic concepts, why is the capacitance of an

isolated spherical conductor proportional to its radius?

3. Does the fringing effect in a parallel-plate capacitor tend to

increase or decrease its actual capacitance compared with

the value we calculate by ignoring the fringing effect?

Why?

4. Is it possible for the plates of a capacitor to have different

magnitudes of charge?
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5. Why should air bubbles be avoided in oil-filled capacitors?

6. A dielectric slab is inserted between the plates of a charged

parallel-plate capacitor. The capacitor is not connected to

a battery. What happens to the energy of the capacitor?

What happens to the potential difference across the plates

of the capacitor?

7. Given three capacitors of different capacitances, how many

different capacitance values can we obtain using one or

more of the capacitors?

8. In view of its high dielectric constant, why is water not

commonly used as a dielectric material in capacitors?

9. Capacitors are often stored with a wire connected across

their terminals. Why?

10. How does the size of a given type of capacitor depend on

its maximum energy storage capacity?

11. The oil in an isolated (but charged) oil-filled capacitor leaks

out. What happens to the potential differences between

the terminals of the capacitor?

The edge of a parallel-plate capacitor is placed in a pool

of oil. The oil rises between the plates due to capillary ac-

tion. Will the height to which the oil rises depend on the

potential differences between the plates? In what way?

Due to the normal potential gradient in the earth's at-

mosphere, an electric field exists there. What are the dif-

ficulties in extracting the energy associated with this field

and applying the energy for useful purposes?

Consider the two isolated spheres of Figure 26-15, Chapter

26. Each, alone, has a capacitance given by Equation (27-8).

If we now add a fine conducting wire that connects the

two spheres electrically, what is the resultant capacitance

of the combination? (Are they connected in series or in

parallel?)

12

13.

14

Problems

27.2 Capacitance

27.3 Combinations of Capacitors

27A-1 A capacitor with a capacitance of 1 F, while com-

mercially available, is difficult to visualize as a stack of plates

separated by sheets of dielectric material. Fiowever, the capaci-

tance of two parallel plates, each with an area of 1 cm" and

separated by 1 mm of air, has a capacitance of about one 1 pp.

Calculate a more exact value for the capacitance of such a

capacitor.

27A-2 The ionosphere is a part of the earth's upper atmo-

sphere (from about 50 km to 1000 km) that is sufficiently

ionized by ultraviolet radiation from the sun so that the concen-

tration of free electrons (~]0" m"^) affects the propagation

of radio waves. The heights and intensities of ionization of

these regions vary with the hour of the day, the season, sunspot

activity, and other factors. Consider that the earth and a lowest

ionosphere layer at 80 km altitude form a spherical capacitor.

Calculate the capacitance of this earth-ionosphere system.

27A-3 Determine the equivalent capacitance for each of the

networks of capacitors shown in Figure 27-15. Each capacitor

has the same capacitance C.

HHH
(a)

27B-4 A collection of n identical capacitors may be con-

nected in series or in parallel. When they are connected in paral-

lel, the equivalent capacitance is N times larger than when the

capacitors are connected in series. Express n in terms of N.

27B-5 Find the capacitance between terminals A and B of

the capacitor network shown in Figure 27-16. (Hint: consider

a potential difference across the terminals A and B and the

way in which the charge is distributed among the capacitors.)

Ao

FIGURE 27-15

Problem 27A-3.

FIGURE 27-16

Problem 27B-5.

27B-6 An isolated capacitor of unknowm capacitance has

been charged to a potential difference of 100 V. When the

charged capacitor is then connected in parallel to an uncharged

I0-|(F capacitor, the voltage across the combination is 30 V.

Calculate the unknown capacitance.

27B-7 Consider the parallel-plate capacitor configuration

shown in Figure 27-17. Derive an expression for its capacitance.

Ignore fringing effects. Please explain your reasoning.

27B-8 A Z-fi¥ capacitor and a 3-/iF capacitor have the same

maximum voltage rating 1^^,^^. Due to this voltage limitation,

the maximum potential difi^erence that can be applied to a series

combination of these capacitors is 800 V. Calculate the maxi-

mum voltage rating of the individual capacitors.
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Area A

FIGURE 27-17

Problem 27B-7.

27B-9 Equation (27-7) gives the capacitance of a spherical

capacitor, C = 47teo[flfc/ (fc — a)\, where a and h are the inner

and outer radii, respectively. As both a and h become very

large (while the difference between them remains small), over

a small region the surfaces approach parallel plates. Show that

this expression reduces to Equation (27-4), the capacitance of

a parallel-plate capacitor.

27B-10 A potential difference of 200 V is applied to a series

combination of a l-\x^ capacitor and a b-\i\ capacitor, (a) For

each individual capacitor, find the potential difference and the

charge, (b) The charged capacitors are isolated, then connected

together in parallel with positive polarities joined and negative

polarities joined. Find the new potential difference across the

parallel combination and the charge on each capacitor, (c) If

part (b) is repeated, except that the capacitors are connected

in parallel with opposite polarities, what would be the final po-

tential difference and the charge on each capacitor?

27B-11 Figure 27-18 shows a variable capacitor commonly

used in the tuning circuit of radios. Alternate plates are con-

nected together, with one group held fixed while the other

group rotates together, resulting in a variable meshing of the

plates. The area of each plate is A, with a spacing d between

a plate of one group and the adjacent plate of the other group.

The total number of plates is n. Ignoring fringing effects at

the edges, show that the maximum capacitance is C^a^ =

{f.^Ajd\n - 1).

FIGURE 27-18

Problem 27B-11.

27.4 Dielectrics

27A-12 Estimate the maximum voltage to which a smooth,

metallic sphere 10 cm in diameter can be charged without ex-

ceeding the dielectric strength of the dry air around the sphere.

27B-13 An isolated parallel-plate capacitor is given a charge

Q. It is then filled with a dielectric material whose dielectric

constant is K. Show that the induced charge Q' that appears

on the surfaces of the dielectric is Q' = (1 — l/zvOQ.

27B-14 The plates of an isolated, charged capacitor are

1 mm apart and the potential difference across them is Vq. The

plates are now separated to 4 mm (while the charge on them

is preserved) and a slab of dielectric material is inserted, filling

the space between the plates. The potential difference across

the capacitor is now Vq/^- Find the dielectric constant of the

material.

27B-15 A parallel-plate capacitor (C = 5 pF) is connected

across a 20-V emf. Then the following procedure is carried out.

(1) A dielectric slab [k = 4) is inserted between the plates, fill-

ing the space completely. (2) The capacitor is disconnected from

the emf. (3) The slab is withdrawn. Find (a) the final charge Q
on the capacitor and (b) the final potential difference V across

the capacitor.

27B-16 A detector of radiation called a Geiger tube consists

of a closed, hollow, conducting cylinder with a fine wire along

its axis. Suppose that the internal diameter of the cylinder is

2.5 cm and that the wire along the axis has a diameter of

0.2 mm. If the dielectric strength of the gas between the central

wire and cylinder is 1.2 x 10^ V/m, calculate the maximum

voltage l/n,3j that can be applied between the wire and the

cylinder before breakdown occurs.

27B-17 A parallel-plate capacitor is constructed using a di-

electric material whose dielectric constant is 3 and whose dielec-

tric strength is 2 x 10^ V/m. The desired capacitance is

0.25 ii¥, and the capacitor must withstand a maximum potential

difference of 4000 V. Find the minimum area of the capacitor

plates.

27B-18 A 1-//F, parallel-plate capacitor has a polystyrene di-

electric. The maximum voltage rating of the capacitor is 1 kV.

Assuming that the two identical conducting plates each occupy

one-eighth of the total volume of the capacitor, find the volume

of the capacitor.

27B-19 A parallel-plate capacitor with air between its plates

has a capacitance Cq. A slab of dielectric material with a di-

electric constant K and a thickness equal to a fraction / of the

separation of the plates is inserted between the plates in contact

with one plate. Find the capacitance C in terms of/, k, and Cq.

Check your result by first letting / approach zero and then let-

ting it approach one.

27B-20 A 0.1-/(F parallel-plate capacitor has plates each with

an area of 0.75 m* and a dielectric whose dielectric constant

is 2.5. The capacitor is charged to a voltage of 600 V. (a) Find

the charge on each of the plates, (b) Find the induced charge

on the surfaces of the dielectric, (c) Calculate the electric field

within the dielectric.

27B-21 Consider a cylindrical capacitor with two layers of

dielectric material between the inner and outer cylinder, as

shdwn in Figure 27-19. Ignoring end effects, derive an expres-

sion for the capacitance C of the capacitor in terms of the

given parameters.

27B-22 The space between the plates of a parallel-plate ca-

pacitor has a volume / and is completely filled with a dielectric

material that has a dielectric constant K and a dielectric strength
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FIGURE 27-19

Problem 27B-21.

^max- For 3 capacitor of capacitance C, derive (in terms of the

given symbols) an expression for the maximum voltage V^^,

that can be applied to the capacitor.

27.5 Potential Energy of Charged Capacitors

27.6 Energy Stored in an Electric Field

27A-23 An 8-/(F capacitor is placed across a potential dif-

ference of 20 V. (a) What energy is stored in the capacitor?

(b) The charged capacitor is now removed from the source of

potential difference and connected across the terminals of an-

other uncharged 8-/iF capacitor. After the charges redistribute

themselves, what is the total energy stored in the capacitors?

(c) Explain why the final stored energy is less than that initially

stored on the original capacitor.

27B-24 Consider two parallel-plate capacitors that are con-

nected in parallel as shown in Figure 27-20. The capacitors are

identical except for the dielectric material in Cj. A potential

difference of 150 V is applied across the terminals A and B,

and then the source of potential difference is removed, (a) Find

the charge on each capacitor, (b) Find the total energy stored

in the capacitors, (c) If the dielectric material is now removed

from Cj, determine the total energy stored in the capacitors.

(d) Find the final voltage across the terminals A and B.

FIGURE 27-20

Problem 27B-24.

27B-25 Each plate of a parallel-plate capacitor has an area

A; the plate separation is d. (a) Show that the potential energy

Li of a capacitor with charge Q can be written as U = Q'd/lEoA.

(b) Using the result of Problem 27C-39, show that the force

per unit area on a plate is i^o^'-

27B-26 A spherical capacitor is formed of two concentric

metal spheres of radii 6 cm and 9 cm, respectively. The space

between the spheres is filled with castor oil (see Table 27-1).

Find the maximum energy that the capacitor can store without

causing electrical breakdown of the dielectric.

278-27 A parallel-plate capacitor with a polystyrene dielec-

tric between the plates has a capacitance of 10 nF ( = 10 x
10"''

F). While the capacitor is attached to a 100-V battery,

the dielectric is withdrawn. Find (a) the change in the charge

on one of the plates, (b) the change in energy stored in the

capacitor, and (c) the amount of work required to remove the

dielectric.

2 7.'\-28 A metal sphere 50 cm in diameter is charged to a

potential of 10 kV. Determine the energy density in the space

just next to the outer surface of the sphere.

288-29 Show that the energy storage capability of a paral-

lel-plate capacitor is proportional to the volume between the

plates of the capacitor.

Additional Problems

27C-30 A cylindrical capacitor is made of an inner con-

ducting cylinder of radius a and a concentric outer conducting

cylinder of radius b. The length L of the capacitor is sufficiently

large that end effects may be ignored. The total charge on the

inner cylinder is -I- Q, and the charge on the outer cylinder is

an equal-magnitude negative charge — Q. (a) Starting with

Gauss's law, find the electric field £ between the cylinders, (b)

Find the potential difference Vf, — I/, between the cylinders in

terms of the given symbols, (c) Find the capacitance C.

2 7C-31 Show that the equation for the capacitance of a

cylindrical capacitor of length L, C = 2ncQL/\n{b/a) approaches

the equation for the capacitance of a parallel-plate capacitor for

{b — a) « b.

27C-32 A 4-//F capacitor and a 12-^;F capacitor are con-

nected in parallel across a voltage of 600 V. The voltage source

is removed and the charged capacitors are isolated and then

reconnected in parallel but with their polarities reversed, that is,

positive-to-negative, (a) Calculate the voltage across the final

parallel combination, (b) Find how much energy was lost in the

reconnection.

27C-33 A 12-/iF capacitor and two 2-/iF capacitors, each

with a maximum voltage rating of 200 V, are connected so

that they produce a capacitance of 3 flY. Calculate the maximum
voltage rating of the combination of capacitors.

27C-34 A parallel-plate capacitor has plate area A and sep-

aration d. A slab of copper of the same area and thickness

t (t < d) is inserted symmetrically between the plates, (a) Find

the new capacitance C of the capacitor, (b) Suppose that the

copper slab is now moved closer to one plate so that the sep-

aration from that plate is half the separation between the slab

and the other plate. Find the capacitance for this new geometry.
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27C-35 Coaxial cable consists of a centra! wire surrounded

by a plastic insulator, which in turn is surrounded by a woven

metallic cylindrical conductor. Let K be the dielectric constant

of the insulator, a the radius of the central wire, and /) the inner

radius of the outer conductor. Derive an expression for the

capacitance C per unit length L of the cable.

27C-36 A dielectric slab (dielectric constant k) fills only half

of the space between the plates of a parallel-plate capacitor, as

shown in Figure 27-21. In terms of K, derive an expression for

the fraction / of the total energy that is stored in the dielectric.

1

FIGURE 27-21

Problem 27C-36.

27C-37 Repeat Problem 27C-36 for the case shown in Fig-

ure 27-22.

FIGURE 27-22

Problem 27C-37.

27C-38 Two capacitors, Ci = 1 /(F and C, = 6 /(F, origi-

nally uncharged, are connected in series and a potential differ-

ence of 200 V is applied across the combination. The capacitors

are then disconnected. Then, without any charge being lost

from either capacitor, they are connected together in parallel,

with the positive plate of one joined to the positive plate of

the other and with the negative plates joined together, (a) Find

the new potential difference across the parallel combination and

find the charge on each capacitor, (b) Calculate the total energy

initially stored in the capacitors, and also calculate the final

energy after they are connected in parallel. (If the energy

changes, explain what happens to the "lost" energy.) (c) Sup-

pose that, when the two capacitors are connected together, the

positive plate of one capacitor is joined to the negative plate

of the other capacitor (and the other two plates arc similarly

connected), again forming a parallel combination. Answer the

same questions as in parts (a) and (b) for this new situation.

27C-39 Derive an expression for the force of attraction be-

tween the plates of a parallel-plate capacitor in terms of the

capacitance C, the separation d of the plates, and the potential

difference V between the plates. (Hint: consider the difference

in stored energy dU when the plate separation is increased by

an amount dx. This equals the work done dW = Fdx.)

27C-40 Consider two concentric, conducting spherical shells

with equal but opposite charges (a) Beginning with u^ =
jEqE", calculate the total energy contained in the field between

the shells, (b) Show that this agrees with the energy stored in

the capacitor: jCV".

27C-41 Consider two capacitors, C, and Ct, that are charged

while connected in series. The charging voltage is removed

and the capacitors isolated. The capacitors are then connected

in parallel, positive-to-positive and negative-to-negative. Show

that the fraction of the energy stored originally that is lost by

connecting in parallel is given by (Cj — C2)"/(Ci -I- €2)'-

27C-42 Consider a parallel-plate capacitor that is formed of

a stack of thin, square sheets of metal, edge lengths 10 cm,

separated by similar slabs of dielectric of thickness d and dielec-

tric constant 3. A total of n metal sheets is used and the stack

forms a cube, 10 cm along each edge. The metal sheets are

numbered consecutively. All the even-numbered sheets are con-

nected together to form one terminal of the capacitor, and the

odd-numbered sheets are connected to form the other terminal.

(a) Assuming that the metal sheets have negligible thickness,

find the thickness d of each slab of dielectric if the total ca-

pacitance is 1 F. (b) What is the total number of metal sheets?

27C-43 Einstein said that energy is associated with mass

according to the famous relation £ = mc~. Estimate the radius

of an electron, assuming that its charge is distributed uniformly

over the surface of a sphere of radius R and that the mass

energy mc' of the electron is equal to the total energy in the

electric field between R and infinity. (Note: though this estimate

is useful in some theoretical discussions, this classical model

should not be taken literally. The answer one obtains depends

crucially on the model chosen for calculation, and on the method

of measurement used for experimental confirmation. High-

energy scattering experiments suggest that the charge of the

electron is concentrated in a region at least two orders of

magnitude smaller than this problem assumes.)

2 7C-44 A charged spherical capacitor consists of two con-

centric spherical shells separated by a dielectric material. The

inner shell has a radius a and the outer shell has a radius b.

Derive an expression for the radius r (where a < r < b) inside

of which half the energy is stored.
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28.1 Introduction

In this chapter we investigate the flow of electric charge—a current. Since the

flow of charge occurs simultaneously throughout a conductor, there is no net

accumulation of charge at any one place. The conducting path forms a con-

tinuous closed loop that contains an energy source to maintain the current. Net-

works of conductors and energy sources are called circuits. We will show that

the current through various parts of a circuit is determined by two conservation

laws: the conservation of charge, which means that the charge carriers are neither

created nor destroyed in a circuit, and the familiar conservation of energy.

28.2 Electromotive Force S'

In order for a steady flow of electric charge, or current, to exist in a conductor,

the conducting path must form a closed loop or complete circuit. The positive

charges always move from a region of high potential toward a region of lower

potential. Of course, after traveling around a complete loop in the direction of

decreasing potential, when a charge arrives back at the starting point, it must

be at the same potential as when it started. Therefore, at some location in the

circuit there must be a device to do work on the charge and raise it through a

potential difference. A local source of energy that performs this work on charges

to raise their potential is called a seat of electromotive force, abbreviated

emf. The script capital letter S designates the particular rise in potential.

A SEAT OF A seat of electromotive force is any device that

ELECTROMOTIVE transforms one source of energy into a source of

FORCE (emf, <?

)

electrical energy.
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(a) The circuit diagram of a closed

conducting path containing a

seat of emf.

(b) A plot of the potential V
(vertical axis) vs. distance for

the closed circuit of (a).

Positive charges entering the

negative terminal of the battery

are raised in potential an

amount S.

FIGURE 28-1

The source of emf <f in a closed

circuit raises the potential of charges

moving through the emf.

+ i_- +i_i_i_i_-

(a) (b)

FIGURE 28-2

In the symbol for a battery, the end

with the longer line designates the

positive terminal at the higher

potential. The -I- and — signs are

sometimes omitted.

Examples of seats of emf are

(a) batteries, such as flashlight cells and automobile cells (a "battery" is

really a series or battery of cells that transforms chemical energy

into electrical energy);

(b) generators, such as a power station generator driven by a water

turbine, or an automobile generator (commonly called an altemalor,

which produces an alternating current) driven by the automobile

engine;

(c) solar cells, such as those that provide power for spacecraft; these

transform radiant energy from the sun into electrical energy;

(d) certain biological cells that utilize chemical energy to maintain

potential differences in nerves and muscle cells of living organisms.

By whatever means—chemical, mechanical, radiant, etc.—a seat of emf main-

tains a potential difference between its terminals. If an external circuit is con-

nected to the terminals, electric charge will be driven around the circuit.' When
the charge returns to the emf at the lower potential terminal, the emf does work

on the charge, moving it through the seat of emf to the higher-potential ter-

minal, ready to be driven around the external circuit again. Figure 28-1. Even

though no external circuit is connected, the potential difference is maintained

between the terminals.

We will restrict our discussion of electrical circuits to batteries as a source

of electrical energy. However, our analysis of the circuits is valid for any type

of emf. The symbol for a battery. Figure 28-2, is somewhat similar to the symbol

for a capacitor, but in the context of a circuit they are seldom confused. The

longer line indicates the higher-potential end.

An emf is somewhat analogous to a pump in a circulating water system

that raises water vertically, increasing its gravitational potential energy. If the

water pipes form a closed loop, the pump drives water around the system,

Figure 28-3. A partial obstruction in the system (indicated by the portion of

the pipe containing screens or gravel) will offer some mechanical resistance to

the flow of water, somewhat reducing the rate of flow of the water. If the water

pipe is blocked completely, so that no water can flow, the pump still exerts

a pressure that will cause water to flow when the obstruction is removed. In

the electrical case, a partial obstruction to the flow of charge is called an elec-

trical resistance (symbolized by -M^). If a switch (symbolized by -^ <>-) in

the electrical circuit is opened, so that no complete electrical path exists from

one terminal to the other, the seat of emf still exerts an electromotive force

that appears as an electrical potential difference V across the open switch ter-

minals, ready to cause a flow of charge when the switch is closed.

28.3 Electric Current

An electric current is a flow of charge. Usually this occurs in solid conductors,

such as the wire that connects your study lamp to the source of electrical energy

in the wall outlet. There can be currents in liquids and gases in which both posi-

tive and negative ions move, and even in a vacuum there may be currents com-

' The first experiment to test the biological effects of electricity was perhaps made by Count Alessandro Volta

(1745-1827), the Italian physicist who invented the voltaic cell. He connected 50 cells in series, put the

ends of the wires in his ears, and reported that it felt like a strong blow to the head, followed by sounds

of boiling soup!
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posed of a beam of electrons, protons, or other charged particles that travel in

the evacuated chambers of high-energy particle accelerators. For the present

we will describe what is called "the classical theory of conduction" in metal con-

ductors. In a metal there is an array of fixed positive ions and an equal number

of "free" electrons that are free to move throughout the array or "lattice" of

ions. Suppose we connect the ends of a long, uniform metal wire to the ter-

minals of a battery. Because of the difference of potential between the terminals,

an electric field E will be established throughout the wire, almost with the

speed of light: V2— Vj = — JjE' d£. Since the wire is uniform, the field will

be constant from one end of the wire to the other.

The electric field within the conductor will exert forces on the charges in

the wire: F = qi.. The positively charged ions are held in place in the lattice

by the elastic forces between them. But the negatively charged electrons are

free to move along the wire. In an oversimplified picture, an electron is acceler-

ated by E (in a direction opposite to E) until it collides with a fixed positive ion,

losing some speed in the collision. It accelerates again until the next collision,

and so on. On the average, the electrons drift along the wire with an average

drift speed v^, ricocheting through the lattice of fixed positive ions. In these col-

lisions, the electrons transfer some of their kinetic energies to the vibrational

motion of the lattice, heating the metal. This behavior is similar to a stream of

water descending a rocky rapids: on the average, the water does not accelerate

as it falls through the gravitational field, but progresses at more or less uniform

speed as it descends the rocky slope. The average distance between collisions,

or riiean free path, is about 220 ionic diameters for copper. Collisions between

the electrons themselves are rare and have negligible eft-ect on the resistivity.

The electric current / is defined as the amount of charge per second that passes

through a cross-section of the conductor.

ELECTRIC CURRENT I 1 =
At

(28-1)

The SI unit of current is coulotnbs per second (C/s), called the ampere (A).

Milliamperes (mA = 10"^ A) and microamperes (/iA = 10 ~^ A) are also com-

monly encountered. The direction of the current'*' is defined to be the direction

that positive charges would move in response to the electric field. When the

current is due to a flow of electrons that have negative charges, as in a metal

conductor, the actual motion of the electrons is opposite to the direction we de-

fine for the current /. In certain cases, such as in an electrolyte or a semicon-

ductor, both positive and negative charge carriers are moving simultaneously

in opposite directions.

Let us examine the drift of electrons through the wire in a more quantitative

way. Consider a segment of the wire shown in Figure 28-4. All of the electrons

within the shaded volume will pass the plane perpendicular to the wire at P in

^ Note that this does not contradict the statements in previous chapters that in a perfect conductor the

electric field is zero. There we dealt with the static case, in which charges are at rest and no battery is

present to establish a potential difference between two different points on the conductor. Here, we discuss

dynamic situations, in which charges are in motion because a battery does maintain two different points on

a conductor at different potentials, establishing electric fields within the conductor.

^ This unit honours Andre Ampere (1775-1836), a French physicist who gained considerable knowledge of

the magnetic effects of currents.

'' Although we specify a direction for the current, this does not make / a vector. The current in a wire remains

the same even though we bend the wire or tie it in a knot. The arrow that designates a direction for /

merely indicates the sense of the flow that positive charges would have.

Mechanical resistance

to water flow (metal

screens or gravel)

Flow of water

(when valve

is open)

(a)

Electric current

(if switch is

closed) ( I

Switch

Electrical

resistance •

(b)

FIGURE 28-3

A water pump in a fluid-flow system

is analogous to a seat of emf in an

electrical circuit, and the flow of

water is analogous to the electric

current.

Area A

FIGURE 28-4

All the electrons in the shaded

volume drift past the plane P in a

time At = A/'/i'd.
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a time At. The length A/^ of the shaded volume is

A/ = v^ Al (28-2)

where v^ is the average drift speed of the electrons. The total charge within the

volume A Af is

A^ = neA Af (28-3)

where n is the number of conduction electrons per unit volume moving along the

wire, e is the magnitude of the charge on the electrons, and A is the cross-

sectional area of the wire. Combining Equations (28-2) and (28-3), we obtain

the amount of charge AQ passing a given point per unit time Af:

/ =
AQ
At

= nev^A (28-4)

(Be careful not to confuse the area A with the abbreviation for ampere: A.)

EXAMPLE 28-1

Calculate the average drift speed of electrons traveling through a copper wire

with a cross-sectional area of 1 mm" when carrying a current of 1 A (values

similar to those for the electric wire to your study lamp). It is knovm that about

one electron per atom of copper contributes to the current flow. The atomic

weight of copper is 63.54 and its density is 8.92 g/cm .

SOLUTION

We first calculate n, the number of current-carrying electrons per unit volume in

copper. Assuming one free conduction electron per atom, n = Nj^p/M, where

Na is Avogadro's number and p and M are the density and the atomic weight of

copper, respectively.

/ electron \ N^p
« = I

1

atom / M
electron \ / , , atoms' \ /

1 6.02 X 10"
-atem"

n = 8.45 X lO''

jBoh
63.54

«-^^5)

jnotv

electrons

lO^jaiT*"

Conversion

ratio

From Equation (28-4), we obtain, for the drift speed v^,

I lA
neA

8.45 X 10''
electrons \

1.602 X 10
19

electron /

(10"^ m^)

7.39 X 10 ' —
s

This is less than 0.1 millimeter per second. At this speed, it takes an elec-

tron 3.76 hours to travel just one meter!
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You are probably surprised at the slow drift speed calculated in the exam-

ple. If electrons typically travel through a wire at such a slow speed, why is it

that, when we flip a wall switch, the light goes on almost instantaneously? The

reason is that when a circuit is connected to a source of emf, the electric field

is established in all parts of the circuit at nearly the speed of light. So when the

final connection is made, forming a complete, closed path with the source of emf,

electrons start to flow more or less simultaneously in all parts of the circuit.

Even though the average drift speed of each electron is slow, all parts of the

circuit feel the effects of the current almost instantaneously. Also, even though

the cross-sectional area may vary along the length of the wire (thus causing

the drift speed to vary), the current has the same numerical value I throughout the

circuit.

The conduction electrons also take part in another motion. These electrons

behave somewhat like the molecules of a gas, with random thermal velocities

between collisions, whose average speed (for copper at room temperature) is

about 1.6 X 10^ m/s. So a typical current in a wire consists of random

conduction-electron velocities of more than a million meters per second, upon

which is superposed a slow drift speed of much less than a millimeter per second!

See Figure 28-5.

This picturesque description of electrons moving randomly as a gas while

they drift through the lattice of fixed ions, undergoing occasional collisions

—

the "classical" model of conduction—does lead to a quantitative theory that

explains Ohm's law (discussed in the next section). However, many other phe-

nomena disagree with this rather naive picture. A modem theory based upon

quantum mechanics gives much better agreement with experimental measure-

ments. In the more precise view we have today, the moving electrons have

wavelike properties (Chapter 43). These waves interact with the array of atoms

and ions such that, for a geometrically perfect lattice of identical ions, there is

almost no inhibition to the electrons' motions. But if the array of ions has de-

fects, such as a missing atom or the presence of an "impurity" atom in the array,

the electron waves "scatter" from these irregularities, disrupting the motions

of the electrons. Even concentrations as low as a few parts per million of im-

purity atoms are sufficient to make a large effect on the electrical resistance.

At higher temperatures, the vibrational motions of the ions also destroy the per-

fect symmetry of the lattice, contributing strongly to the resistance of the

material.

Vd

FIGURE 28-5

Free electrons in a metal have

random motions similar to those of

gas molecules. When an electric

field is established in the metal, the

electrons also experience an average

drift velocity v^j opposite to the

direction of E. This net drift speed of

(negatively charged) electrons in

one direction constitutes the

(conventional) current / in the

opposite direction.

28.4 Electrical Resistance

We now examine the relation / = nev^A to determine which factors are intrinsic

properties of the current-carrying material itself and which are determined by

the potential difference V across the material. The number of current-carrying

charges per unit volume n in a metal conductor is clearly an intrinsic property

of the material. The factor v^ is, in part, also an intrinsic property since it

depends on the mobility of the electrons as they ricochet through the lattice

of positive ions. F^owever, this mobility also depends on the force driving the

charges through the material, namely, F = cE. The electric field accelerates the

electrons between collisions, but the net result of this jerky motion is an average

drift velocity similar to the terminal velocity acquired by an object falling

through a viscous medium. The drift velocity is such that the work done by

the electric field just equals the kinetic energy "lost" in the collisions. Thus

the drift velocity is proportional to the driving force v^ X £.

It is instructive to write Equation (28-4) in another form by considering

a length L of conducting material that has a constant cross-sectional area A
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FIGURE 28-6

A uniform conductor of constant

cross-sectional area A and length L.

A potential difference V across the

ends establishes an electric field £

within the conductor, causing a

current /.

across which we apply the potential difference V, Figure 28-6. Since ^2~^\ —
— \\'^-di, the field £ = V/L. The drift speed v^ is proportional to the driving

force e£, so we have two relations, £ = K/Z, and v^ <x. E, which combine to

give

V
(28-5)

Substituting / = nev^A, we obtain

loc
VA

(28-6)

The constant of proportionality in the above relation depends on the intrinsic

properties of the particular material involved. We define this constant of pro-

portionality to be l/p (the Greek letter rho, p),

I V (28-7)

where p is called the resistivity of the material. The SI units of p are (volt/

ampere)(meter) or (V/A)(m). The unit V/A is called the ohm (Q, the Greek capi-

tal letter omega),^ so resistivity is usually expressed in SI units of the ohm meter

(Q-m). Occasionally the hybrid unit Q-cm is also encountered. Table 28-1

gives typical resistivities at 20°C for various materials. In some contexts (see

Section 28.7) it is more convenient to use the reciprocal of the resistance, de-

fined as the conductivity <T = l/p, in SI units of Siemens.

We have discussed resistivity in terms of a constant of proportionality. In

reality, the resistivity of a given material depends on a number of factors, such

as moisture content, pressure, crystalline structure, and temperature. Analyti-

cally, temperature dependence is most easily handled. It is known from experi-

ment that the fractional change in resistivity is approximately proportional to

the corresponding change in temperature. That is.

P-Po
Po

a(T - To) (28-8)

where a is the constant of proportionality called the thermal coefficient of

resistivity and Tq is the reference temperature for the handbook value of Pg.

Equation {2&-&) is often written in the more convenient form

CHANGE OF RESISTIVITY
WITH TEMPERATURE p = Poll + a(T- To)] (28-9)

Values of p and a are given in Table 28-1 for a few common substances.^

Because R is proportional to p, we also have

R = Ro{l + OL{T- To)] (28-10)

' This unit honors Georg Otim, the German physicist who in 1827 discovered the proportionality between

current and potential difference. See Ohm's law, Equation (28-11).

'' Not listed in Table 28-1 are a number of alloys and a few elements called supercotiduclors whose resistivity

falls truly to z£ro at temperatures near absolute zero. See "Superconductivity," page 647.
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TABLE 28-1 Resistivities and Thermal Coefficients of Resistivity

Material

Resistivity p at 20°C
(n-m)

Thermal Coefficient

of Resistivity at

(1/°C)

Insulators
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-V

An ideal

resistor.

.iiode. (c) A silicon-con-

trolled rectifier.

(d) A zener diode.

FIGURE 28-7

Relationships between / and V for some common resistive devices. Only the ideal

resistor in (a) obeys Ohm's law. Fortunately, many substances follow Ohm's law

quite closely over a usable range of temperatures.

The functional relationship between the potential difference across the

terminals of a resistive device and the current through it is not always a linear

one. Figure 28-7 describes relationships between / and V for a number of de-

vices. Of those shown, only the (ideal) resistor in (a) obeys Ohm's law, since

there the value of K does not depend on the current. For all the others, R is

still defined by the ratio of V to /, but it varies as the current changes. We
will restrict our discussion to those resistive devices that obey Ohm's law.

FIGURE 28-8

Typical resistors.

EXAMVLE 28-2

A resistor is constructed of a carbon rod that has a uniform cross-sectional area

of 5 mm^. When a potential difference of 15 V is applied across the ends of the

rod, there is a current of 4 x 10'

rod and (b) the rod's length.

A in the rod. Find (a) the resistance of the

SOLUTION

(a) Applying Ohm's law (Equation 28-11), we find the resistance of the rod,

15 VV
R = - =

I 4 X 10 -^ A
3750 Q = 3.75 kn

where kD designates the kilohm (1 kQ = 10^ Q). Similarly, MQ is used for

the megohm (1 MQ = 10*' Q). Note that, if R is written in units of kilohm

and potential difference is written in terms of volts, then the current is in

milliamperes (1 mA = 10"^ A), a more practical unit in modern electronics.

(b) The length of the rod is determined from Equation (28-12): R

Solving for /' gives

RA

p^/A.

Substituting numerical values for R, A, and the values of p given for carbon

in Table 28-1, we obtain

^ (3.75 X 10^12)(5 X 10"® m^)

(1.4 X 10 ^ Q-m)
= 1.34 X lO"* m
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Obviously, a resistor as large as 3.75 kO (a typical value) could not

be constructed of pure carbon and still be part of a miniaturized electronic

circuit. Resistors are constructed of a mixture of materials that is formulated

not only to have the desired resistance and size, but also to contribute to

its physical strength and constancy of resistance value under a variety of

environmental conditions.

28.6 Joule's Law

We have seen that the potential difference across a resistor forces electrons

through the resistor, with the electrons emerging with the same drift velocity

they had when they entered. Recall that the potential energy lost by the elec-

trons appears as thermal energy within the resistor. (An analogous situation

is that of a boat driven at constant speed through the water by a motor; energy

is dissipated in the water, heating it slightly.) For resistors, this effect is called

Joule heating.

To calculate the Joule heating in a resistor, consider a simple circuit of

a seat of emf and a resistor, as shown in Figure 28-9. The symbol ^W^ is

used for resistors that obey Ohm's law, and solid lines indicate resistanceless

conductors of current. Consistent with the usage introduced by Benjamin

Franklin, as well as that used today, outside a seat of emf, the current I is in the

direction from a point of higher potential to one of lower potential. This is sometimes

called conventional current. Of course, conduction electrons in metals move in

the opposite direction because of their negative charge. On the other hand,

positive charges contribute to current in many substances, including liquids,

gases, and certain solid-state devices. So the direction in which positive charges

would flow (whether or not such charges are actually moving) is the direction

of the conventional current.

As we have done before, we will isolate the system consisting of the

seat of emf and the resistor, so that no energy enters or leaves the system.

Because energy is conserved within the system, we know that the energy ac-

quired by the charges through the work done on them as they move through

the seat of emf must be equal to the thermal energy developed in the resistor.

The work dW done by the emf S on an element of charge dq is

dW=idq

The time rate at which work is done by the seat of emf is

dW
dt

= ^h

FIGURE 28-9

The work done by the seat of emf

appears as thermal energy in the

resistor.

dW
'di

,dq^

dt

or, by the definition of current (Equation 28-1), we have

dt

It is important to notice that, while S is the work done per unit charge

by the seat of emf, the charge acquires a corresponding increase in potential

energy, that is, a potential energy per unit charge (V), while moving through

the seat of emf The potential difference across the terminals of the seat of emf

is therefore V, the same as that across the resistor R. Conservation of energy

requires that the rate at which work is done {dW/dt) by the seat of emf must
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equal the rate at which thermal energy is developed in the resistor. (Because

this thermal energy is usually radiated away and thus "disappears" from the

circuit, one often uses the phrase "dissipated in the resistor" for this thermal

energy.) Using the symbol P for the power dissipated in the resistor, we have

dW
~df

(28-13)

0.15

0.10 -

Ji 0.05 -

a.

B
ra

V 1 o<jy

4.1 4.2 4.3 4.4

Temperature (K)

(a) The resistance of a sample of

mercury versus temperature

showing the sudden drop in

resistance at the critical

temperature T^. Modern experi-

ments indicate a measured

resistivity for the super-

conducting state of no more
than 10~'^^n'm; it may well be

be truly zero.

<*?«gfrT-7;T?W?ir'*~

(b) Current set up in a super-

conducting ring and ball

produces magnetic forces that

levitate the ball in space. The
currents persist for many years

without measurable change.

FIGURE 28-10

Superconductivity.

or, since fi = V, the voltage across the resistor,

P= VI (28-14)

This equation may be stated in another way. With Ohm's law, V = IR, Equation

(28-14) becomes

I'R (28-15)

The power dissipated in resistors is often called the "/ squared R loss," while

the total thermal energy developed is the Joule heat. Ohm's law also leads to

P = V^/R, so we have

POWER P DISSIPATED
IN RESISTIVE
CIRCUIT ELEMENTS

PS

fR
VI

Yl
R

(28-16)

EXAMPLE 28-3

Referring to Figure 28-9, if (f = 6 V and R = 12 Q, find (a) the rate at which

the seat of emf does work and (b) the power dissipated in the resistor.

SOLUTION

(a) Conservation of energy requires that the answers to parts (a) and (b) be the

same. Recognizing that the emf S is the potential difference V across the

resistor, from Ohm's law we have / = S/R. Substituting numerical values

gives

S" 6V
/ = — = —— = 0.500 A

R 12Q

The rate at which work is done by the seat of emf is given by Equation

(28-13):

dW
3.00 W= ^/ = (6 V)(0.5 A) = 3.00 - =

at s

(b) The power dissipated in the resistor, although equal to dW/dt, may also be

obtained from Equation (28-16):

p=/2;^ = (0.5 A)-(12n)= 3.00 W
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Superconductivity

in 1908, the Dutch physicist H. Kammerlingh Onnes succeeded in lique-

fying helium at 4.2 K and began to investigate various properties of

metals at low temperatures. Three years later he discovered the phenom-
enon of superconductivity, the astonishing behavior of some materials

in which the electrical resistance drops abruptly to zero below a certain

critical temperature T^, commonly a few degrees above absolute zero.

Figure 28-IOa. The consequences of zero resistance are surprising. For

example, if a current is established around a superconducting ring, it con-

tinues indefinitely with no production of heat (there are no I^R losses)

and with no driving emf in the loop! Circulating currents have been set

up that have persisted for years with no measurable loss.

An interesting example of the use of superconductivity is the

superconducting gravimeter, Figure 28-11, for taking remarkably precise

measurements of the earth's gravititional field. An aluminum shell, 2.54 cm
in diameter, is plated with lead, which is superconducting at the tempera-

ture of liquid helium, 4.2 K. The sphere is supported in midair by currents

established in two horizontal superconducting coils. As the coil currents

build up, they produce an increasing magnetic field, which induces cur-

rents in the sphere. The resultant magnetic forces levitate the sphere in

space without its physically touching any supports. The sphere is posi-

tioned symmetrically between six metal plates. If the value of g changes,

the sphere will rise or fall vertically by a tiny amount. Its altered position

changes the capacitance between the plates, which is sensed by external

electrical circuits, thereby indicating a change in g. Figure 16-9 shows a

graph of variations in the earth's field obtained with this instrument.

At present, superconducting electromagnets using liquid helium are

employed in many scientific laboratories; in some cases the magnet wind-

ings carry many tens of thousands of amperes. An intense search is on

for materials that become superconducting at higher temperatures, so

that expensive liquid helium ($3 per liter) [or less costly liquid nitrogen

{6^ per liter) at 77 K] may be abolished. The discovery of a room-

temperature superconductor would have far-reaching economic implica-

tions. Among the many possible benefits are cheaper electrical power

transmission, efficient superconducting magnets for large particle accele-

rators, the magnetic levitation of trains, and powerful electric motors of

compact size. If used for computer circuitry, superconductors would

greatly increase the speed of computing, as well as reduce the size of

computers.

The phenomenon is not just an extension of the normal conduc-

tivity of materials but is a wholly new quantum mechanical effect. Indeed,

some good metallic conductors do not have this property, while certain

ceramic compounds that normally are insulators do become supercon-

ducting—the latest (1988) reported at ~ 160 K. In 1972, John Bardeen,

Leon Cooper, and Robert Schrieffer received the Nobel Prize for their

theory of superconductivity. Its main feature is that, quantum mechanically,

pairs of electrons can all move through the material at the same speed

without giving up energy to the material itself.

Capacitance-sensing plates

Cross sections

of coil windings

FIGURE 28-11

A superconducting gravimeter

employs two horizontal current loops

(shown in color) that levitate a

sphere between capacitance-sensing

plates. Two additional plates above

and below the plane of the figure

are not shown.
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28.7 Current Density and Conductivity

In many cases, electric currents are not neatly confined to wires or other dis-

crete conductors. Instead, the current is diffused over extended regions that

are rather ill-defined, such as the atmosphere, the ocean, the earth, or the

ionized gases of stellar atmospheres and plasmas. In these situations, we are

more concerned with the current density J defined as the current per unit area

at a given point:

CURRENT DENSITY } I

(scalar form) A

By Equation (28-4), / = nqv^A, so we define the vector current density J as

CURRENT DENSITY J , , ,

(vector form) ^ = "'?"'' ^^^'''^^

Here, n is the number of free charge carriers per unit volume, and v^, is the

average drift velocity. As usual, Vj is defined to be the velocity that positive

charges would have. (If negative electrons are the carriers, the actual motion

of the electrons is opposite to Vj.)

By considering a conductor of length / and uniform cross-sectional area

A, we can derive an alternative form of Ohm's law. For such a conductor

(assumed to obey Ohm's law), / = V/R and E = V/f. Thus:

_V _Ef _ Ef _ EA

~R~~R~( ^\~7
Pa

Dividing both sides by the area A, we have

7 = 1 = (!)£ = .£ (28-19)

OHM'S LAW
(alternative form)

J = 0-E (28-20)

The conductivity a for the materia! is defined as the inverse of the resistivity,

a = (l/p), measured in SI units of (Q'm)~ ^ = Siemens (S).

We thus have two ways of analyzing electric currents in materials:

Macroscopic approach Microscopic approach

(for a conductor of (at a given point

finite dimensions) within a material)

V
I=- J = aE (28-21)

R

The macroscopic approach is useful for circuit elements that have finite dimen-

sions, and we can express the electrical characteristics of V and R for the entire

element. In contrast, the microscopic approach involves the local properties

of current density and electric field at a given point within a material, with no

reference to the physical extent of the material.

Sometimes the density of charges may vary from point to point. As a

consequence, the current density J also varies. To obtain the total current /
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through a given area A, we must integrate the current density over the total

area,

/.„,„ =
Jj

• M (28-22)'total

where Ah. is the vector area element perpendicular to the area under consid-

eration. Note that the current 7 is a scalar quantity, while the current density

J is a vector.

EXAMVLE 28-4

The electron beam emerging from a certain high-energy electron accelerator has

a circular cross-section of radius I mm. (a) If the beam current is 8 fiA, find the

current density in the beam, assuming that it is uniform throughout, (b) The speed

of the electrons is so close to the speed of light that their speed can be taken as

c with negligible error. Find the electron density in the beam, (c) How long does

it take for an Avogadro's number of electrons to emerge from the accelerator?

SOLUTION

I 8 X 10 " A
(a) / = - = 2.55 A/m^

A 71(1 X 10 ^ m)^

(b) From I = nev^, we have

/ 2.55 A/m^

(1.60 X 10"'^C)(3 X 10** m/s)
5.31 X 10'°m ^

(c) From 7 = AQ/A(, we have

AQ N/^e (6.02 x 10")(1.60 x 10" '"C)
Af =

7 7

1.20 X 10'° s

8 X 10 ^ A

(or about 381 years!)

EXAMPLE 28-5

The proton beam from an accelerator has a circular cross-section of radius 0.6 mm.

Figure 28- 12a shows how the charge density varies with radius. Find the total

current in the beam.

SOLUTION

Because of the circular symmetry of the charge density, we choose an element of

area in the form of a thin ring of radius r and width dr, Figure 28- 12b. Thus, dA =
Inrdr. From the graph, the current density ] (in SI units) is (4 — r/0.6 x 10"^)

A/m" in the range < r < 0.6 mm. The total current is

CR rO 6 X 10-^ m _ ,= \ ]dA=
\

(4 - r/0.6 X 10 ' m){nirdr)

2 \ 0.6 X 10-^ m

7 =
I
4r

1.2 X 10 '' m

(2.40 - 0.30) X 10 ^ A = 2.10 mA

0.2 0.4 0.6 0.8

(a)

(mm)

(b) A circular ring element of

cross-sectional area dA=2Trrdr.

FIGURE 28-12

Example 28-5.



1 msec

(a) This photograph was obtained with

a moving-film camera in which a

strip of film is moved at 27 m/s
through the camera during the

exposure. (Time increases left to

right.) It shows a faint stepped

leader : multiple discharges down-

ward from the cloud, followed by

a brilliant return stroke upward
from the ground to the cloud. The

return stroke is so rapid that it

appears as a single image whose

luminosity gradually dies out.

(b) The photographer resolved a

multistroke lightning flash into 12

separate strokes by swinging the

camera through an arc during the

exposure. Usually, most of the

branching occurs on the first

stroke; subsequent strokes follow

the same low-resistance path of

ionized air, which is heated to

~ 10'' K (hot enough to vaporize

rocks). This tube of current has a

diameter from a few millimeters to

a few centimeters. The explosive

expansion of the hot ionized air

generates the thunder. 1

FIGURE 28-13

The Anatomy of a Lightning Flash. Most lightning flashes between a cloud and

the ground are composed of about 3 to 5 strokes spread over a few tenths

of a second, so that the eye perceives a flickering of the light intensity.

Sometimes one of the strokes will persist longer than the others, producing a

continuing luminosity as charges flow in the low-resistance conducting path

for several tenths of a second.

There are many different types of flashes. The details can be analyzed by

a moving-film camera that spreads the time sequence of events horizontally

on the film. Figure 28- 13a shows one type of flash that is started by a faintly

glowing downward stepped leader from the base of the cloud toward the

ground. Each successive discharge extends the conducting path of ionization

about 50 m farther, with pauses of the order of 50 j-is between them. Finally,

as the leader nears the ground, the intense electric field between its lower tip

and the ground results in a massive spark-over that initiates the large return

stroke back to the cloud. This return stroke travels upward along the

established path with speeds of one-tenth to one-half the speed of light (so

it appears as a single streak on the film). While the stepped leader process

may take ~ 0.02 s to travel several kilometers from the cloud base to the

ground, the upward return stroke travels the same distance in only 70 /is.

Peak currents of tens of thousands of amperes are typical, transferring a few ten

of coulombs of charge.

The photographer took Figure 28-13b by swinging the camera through

an arc while the shutter was open, thus separating the 12 strokes in this flash

that lasted about 0.6 s. (These photographs are from Leon E. Salanave,

Lightning and Its Spectrum, Univ. of Arizona Press, 1980. The book includes

many fascinating photographs and offers suggestions on how you can take

daytime photographs of lightning with a simple 35mm camera.)
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Summary

A seat of emf S can perform work dV\l on a charge dQ, raising

its potential by an amount S:

dW=Sdq

An electric current I is the amount of charge per second

that passes through a cross-section of a conductor:

7 =
dq

Jt

The sense of direction of a current / is taken to be the direction

that positive charges would move in response to the applied

field E. (/ is not a vector, however.) In the classical model of

current in a metal conductor, the conduction electrons behave

similar to molecules of a gas, undergoing random velocities in

all directions. When an electric field is established within the

conductor, the electrons experience forces that give them an

average drift speed v^ (opposite to E), and cause them to collide

with the fixed atoms and ions arrayed in the geometric pattern

(or lattice) of the conductor. In a metal conductor of uniform

cross-sectional area A and n conduction electrons per unit vol-

ume, each of magnitude charge e and average drift speed v^,

the current / is

OHM'S LAW

J = nevAA

V=IR

The resistance R of a rod of uniform cross-sectional area A and

length ^ is

R = P^

where p is the resistivity of the material. The thermal coefficient

of resistivity % relates the resistivity p at temperature T to its

value Po at a reference temperature Tq:

p = Poll -I- !X(T - To)]

Certain elements and substances become superconducting

at sufficiently low temperatures, where the electrical resistivity

is truly zero.

On a microscopic scale, the current density ] within a

material is the current per unit area at a given point:

Scalar form

/

J = -r

Vector form

J = nq\i

where n is the number of charge carriers per unit volume, q is

the charge on each, and v^ is the average drift velocity that

(positive) charges would have. The total current I through a

given area A is

-s>
dA

OHM'S LAW
(alternative form) J = crE

where a = 1/p, the conductivity of the material.

Questions

1. Suppose you had a battery with unmarked terminals. How
can the polarity of the terminals be determined? List as

many ways as you can.

2. What are the merits, if any, in defining conventional current

flow?

3. Why is the thermal coefficient of resistivity negative for

insulators and semiconductors?

4. If the drift speed of electrons in a conductor is very slow,

why does a ceiling light bulb go on so soon after the wall

switch is closed?

5. What is the principal reason that resistors do not conform

to Ohm's law?

6. A solid copper wire has a resistance R^. The wire is used

to form a hollow tube of the same length as the wire, so

that the inside diameter is half the outside diameter. If the

resistance of the tube is R,, what is the value of the ratio

R^/R,?

7. Early Edison light bulbs had essentially a carbon filament.

Why was it necessary to operate these light bulbs with an

external series resistor?

8. In Chapter 22, we were careful to point out that E =
inside a conductor and that E is often not zero outside a

conductor. Why, in this chapter, do we assert just the

opposite?

9. How can the terminal voltage of a battery exceed the emf

of the battery?

10. At one time automobiles utilized a 6-V electrical system.

Why was a change made to the 12-V system, which is

now used?

11. Of the two light bulbs designated by 25 W, 110 V and

100 W, 110 V, which has the higher filament resistance?
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Problems

28.3 Electric Current

28A- 1 A conductor carries a current of 5 A. How many

electrons pass a given cross-section per second?

28A-2 A gas discharge tube has a metal plate (called an elec-

trode) at each end, with a high potential difference between the

two plates. An electron gun injects electrons into the gas at the

negative electrode. Electrons that reach sufficiently high speeds

ionize some gas atoms, producing additional electrons plus posi-

tive ions. As a result, 4 x lO'^ electrons and 1 x lO'" singly

charged positive ions pass a given cross-section of the tube per

second, traveling in opposite directions. Find the magnitude and

the sense of direction of the current in the tube.

28B-3 A silver wire 2 mm in diameter transfers a total charge

of 420 C in 2 hr, 15 min. (a) Find the number of free electrons

per cubic meter in the silver, assuming one conduction electron

per atom, (h) What is the current in the wire? (c) Calculate the

average drift speed of the electrons.

28B-4 The moving belt of a Van de Graaff generator is

30 cm wide and travels at 20 m/s. Charges are sprayed uni-

formly onto one side of the moving belt so that the eff-ective

current carried to the high potential sphere is 0.15 fiA. Find the

surface charge density a on the belt.

28.4 Electrical Resistance

28.5 Ohm's Law

28A-5 A copper wire has a diameter of 2.60 mm. The resis-

tivity of annealed copper is 1.77 //Q-cm. Find the resistance of

a 200-m length of this wire.

28A-6 Two solid cubes, A and B, are made of the same resis-

tive material. Their edge lengths are, respectively, ^ and 10/.

Find the ratio of their resistances RjRg as measured between

opposite faces of the cubes.

28.\-7 One type of thermometer, a resistance temperature de-

tector (RTD), utilizes the change of resistance of a platinum wire

with changing temperature. A coil of platinum wire has a resis-

tance of 100 Q at 20°C. When the coil is immersed in liquid

zinc as the zinc just begins to solidify, the resistance of the coil

becomes 256 O. Find the melting point of zinc.

28A-8 Find the resistance of a nichrome wire 1 m long with

a cross-sectional area of 0.1 mm" at (a) 20°C and (b) 1000°C.

28A-9 Find the temperature at which the resistance of a

length of copper wire will be double its value at 20°C.

28A-10 A potential difference of 40 V exists across a 10-Q

resistor. How many electrons pass through a cross-section of

the resistor in 5 min?

28B-11 We lengthen a wire with a resistance R to 1.25 times

its original length by pulling it through a small hole. Find the

resistance of the wire after it is stretched.

28B-12 A solid cube of silver (specific gravity = 10.50) has

a mass of 90 g. (a) What is the resistance between opposite faces

of the cube? (b) If there is one conduction electron for each silver

atom, find the average drift speed of electrons when a potential

difference of 10~' V is applied to opposite faces. The atomic

number of silver is 47, and its atomic mass is 107.87.

28B-13 A wire of constant diameter is composed of equal

lengths of copper and iron wires joined at one end. If a potential

difference of 12 V is applied across the ends of the combination,

find the potential difference across the copper portion of the

28.6 Joule's Law

28A-14 A lOOO-Q resistor is capable of dissipating a maxi-

mum power of 2 W. What is the maximum potential difference

that should be applied to the resistor?

28A-15 In a television picture tube, electrons from the

electron gun are accelerated to the screen through a potential

difference of 25 kV. With an average beam current of 0.210 mA,

how many watts are dissipated at the screen?

28.^-16 A 12-V car battery is rated at 120 A'hr (meaning

that its initial charge is 120 ampere-hours). While the car is

parked, the two headlights, each rated 80 W, are inadvertently

left on. Assuming that the terminal voltage remains constant,

determine the number of hours that elapse before half the initial

charge of the battery is used up. (See Problem 28C-43.)

28A-17 A 1300-W electric heater is designed to operate

from 120 V. Find (a) its resistance and (b) the current it draws.

28A-18 Find the cost of electrically heating 100 L of water

from 20°C to 90°C if the power company charges 8At per

kW-h.

28A-19 A generating station supplies power at 60 kV over

transmission lines to a distant load, (a) If the voltage can be

raised to 100 kV without damage to the power lines, how much

additional power (at the same current) can be transmitted? (b)

Will there be an additional transmission loss because of extra

heating in the lines? Explain.

28.\-20 When a light bulb at 20°C is first connected to a

potential diff^erence, the initial current through the tungsten

filament is ten times the current when the lamp has heated

up to its steady-state operating conditions. Find the operating

temperature of the tungsten filament.

28A-21 Figure 28-14 shows a hollow cylindrical conductor

of length L, with inner and outer radii a and b, respectively.

The resistivity of the material is p. A potential difference is

FIGURE 28-14

Problems 28A-21, 28C-36, and 28C-44.
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applied between the ends of the cylinder, establishing a current

parallel to the axis of the cylinder. Derive an expression for

the resistance R in terms of p, L, a, and b.

28B-22 A 500-W heating coil designed to operate from

110 V is made of nichrome wire 0.5 mm in diameter, (a) Assum-

ing that the resistivity of the nichrome remains constant at its

20°C value, find the length of wire used, (b) Now consider the

variation of resistivity with temperature. What power will the

coil of part (a) actually deliver when it is heated to 1200°C?

28B-23 An electric utility company supplies a customer's

house from the main power lines (120 V) with two copper

wires, each 140 ft long and having a resistance of 0.108 D per

1000 ft. (a) Find the voltage at the customer's house for a load

current of 110 A. For this load current, find (b) the power the

customer is receiving and (c) the power dissipated in the copper

wires.

28B-24 A certain toaster has a heating element made of

nichrome resistance wire. When first connected to a 120-V volt-

age source (and the wire is at a room temperature of 20°C) the

initial currrent is 1.8 A, but the current begins to decrease as

the resistive element heats up. When the toaster has reached its

final operating temperature, the current has dropped to 1.53 A.

(a) Find the power the toaster consumes when it is at its op-

erating temperature, (b) What is the final temperature of the

heating element?

28B-25 An electric hoist operates at 240 V and uses a steady

current of 9 A while lifting a 1700-lb load at the rate of

26 ft/min. Find (a) the power input to the hoist, (b) the power

output (in horsepower), and (c) the efficiency of the system.

28B-26 A Van de Graaff accelerator delivers a total of

0.127 mC of charge to a target by a 4-MeV beam of alpha par-

ticles. (An a particle is the nucleus of a helium atom and contains

two neutrons and two protons.) (a) Find how many a particles

hit the target, (b) If the beam was on for 6 min, what was the

average current in the beam? (c) Find the total energy (in joules)

delivered to the target.

28B-27 A beam of high-energy alpha particles strikes an

absorbing target. (An alpha particle is a helium nucleus, which

has a positive charge equal in magnitude to twice the electronic

charge.) If the beam current is 0.3 /;A and the kinetic energy of

the particles is 20 MeV, find (a) the number of particles striking

the target per second and (b) the power absorbed by the target.

28.7 Current Density and Conductivity

28A-28 Beginning with J = ctE, derive Ohm's law V = IR

for a uniform cylindrical conductor.

28A-29 A current density of 6 x 10" '^ A/m' exists in the

atmosphere where the electric field (due to charged thunder-

clouds in the vicinity) is 100 V/m. Calculate the conductivity

of the earth's atmosphere in this region.

28B-30 Find the thermal power per unit volume developed

in a uniform copper wire 2.6 mm in diameter, carrying a current

of 0.37 A.

28B-31 A potential difference of 5 V is applied between the

ends of a nichrome wire 1.2 m long with a diameter of 0.5 mm.

Find the current density / within the wire if the wire tempera-

ture is maintained at 20°C.

28B-32 The National Electrical Code for flexible copper

wires used for interior electrical wiring in homes and buildings

lists a maximum safe limit of 50 A for a rubber-insulated wire

of diameter 0.162 in. (note the units). For a wire carrying this

current, calculate (in SI units) (a) the current density /, (b) the

electric field within the wire, and (c) the rate of thermal energy

production for a 3-m length of wire.

28B-33 When a potential difference is applied across the

ends of a conductor that has a uniform cross-section, an elec-

tric field £ is established throughout the conductor (ignoring

end effects). Show that the thermal power per unit volume

within the conductor is erf", where a is the conductivity of

the conductor.

28B-34 A material of resistivity p has a uniform current

density / throughout. Show that the power per unit volume

developed in the material is p]'.

Additional Problems

28C-35 A precise definition of the thermal coefficient of

resistivity a is a = (ijp)(dpldT), where p is the resistivity of

the material at a temperature T. (a) If a is constant, show that

p = pf^e'^^~^°\ where po 's the resistivity at a reference tem-

perature Tq. (b) By making a series expansion for e', show that,

for a(T — Tq) « 1, the expression reduces to Equation (28-9).

28C-36 Refer to Problem 28A-21 and Figure 28-14. Sup-

pose, instead, that a potential difference is applied between the

inner and outer curved surfaces of the cylinder so that a current

is established in the radial direction. Derive an expression (in

terms of p, L, a, and b) for the resistance R of a length I of

the cylinder when it is used in this fashion. [Hint: consider the

resistance dR between the inner and outer surfaces of a thin

cylindrical shell of radius r and thickness dr. The total resistance

is the sum of all such elemental resistances in series.]

28C-37 A wire of length / has a thermal coefficient of re-

sistivity a. We can increase the resistance of the wire by either

stretching it or increasing its temperature. Show that a fractional

change in length A//i^ corresponds to a temperature change AT
by the relationship A/// = a AT/2.

28C-38 A conductor of length ^ and uniform cross-sectional

area A is made from a material whose resistivity p varies with

the distance x from one end according to p = Pq(1 + bx).

(a) What are the SI units of the constant bl (b) Derive a general

expression for the resistance R of the conductor in terms of

the given symbols.

28C-39 The current through a vacuum tube diode varies

with the applied voltage as / = (2.5 x 10"'*)l/^'- (in SI units),

(a) Derive an expression for the resistance R as a function of

the applied voltage V. (b) Derive an expression for the power

P developed as a function of the applied voltage V. (c) Make

qualitative graphs of these relationships and compare them with

the corresponding graphs for an Ohm's-law resistance.

28C-40 A graphite (carbon) rod is attached to a nichrome

rod of the same cross-sectional area. Find the ratio of the length

of the graphite rod to that of the nichrome rod such that the
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resistance of the combination is independent of temperature

over a small range of temperature.

28C-41 Figure 28-15 shows two resistors fabricated from

the same resistive material. The ends are plated with a con-

ducting substance. Assume that, in use, the current is uniform

over any cross-sectional area that is perpendicular to the axes

of the resistors. Show that they have the same resistance if the

radius r of the cylindrical resistor is the geometrical mean slr^Vj

of the two radii in the truncated cone. (Hint: in (b), consider the

resistance dR between opposite faces of a thin circular element,

oriented perpendicular to the axis, of thickness dx and radius

y = rj -f (r2 — r{ixlL. The total resistance is the sum of all

such elemental resistances in series.]

FIGURE 28-15

Problem 28C-41.

between the spheres is filled with a material of conductivity

(T. When a potential difference V is established between the

spheres, show that the current / between the spheres is

AnaVablib - a).

28C-48 Two rods made of iron and silver each have the

same length / = 80 cm and radius r = 1 mm. They are joined

together at one end, and a potential difference V = 5 V is

established between the extremities of the combination, (a) Find

the potential difference across each rod. (b) Determine the cur-

rent density / in each and (c) the electric field £ in each.

28C-49 There is a close analogy between the flow of heat

because of a temperature difference (Section 19.6) and the flow

of electrical charge because of a potential difference. The ther-

mal energy dQ and the electrical charge dq are both transported

by free electrons in the conducting material. Consequently, a

good electrical conductor is usually also a good heat conductor.

Consider a thin conducting slab of thickness dx, area A, and

electrical conductivity a, with a potential difference ^V between

opposite faces. Show that the current / = dqjdl is given by

Charge conduction

da dV-1= -aA—
di dx

Analogous heat conduction

(Equation 19-19)
I

dQ

dt
kA

dT

Tx

28C-42 As the applied voltage varies from 5 V to 25 V, the

current through a certain electronic device remains constant at

50 mA. Make a graph of the effective resistance R of the device

vs. V over the same voltage range.

28C-43 In Problem 28A-16, a more realistic assumption is

that the battery voltage V drops exponentially according to

V= (12 V)e~'^'*', where i is in hours. Under this assumption,

find the number of hours that elapse before half the initial charge

of the battery is used up. (Note: the actual time is shorter than

this estimate because the bulb resistances decrease as the current

becomes smaller.)

28C-44 In Figure 28-14, suppose that the inner and outer

curved surfaces of the object are plated with a conducting

substance, forming two cylindrical conductors with a material

of conductivity a between them. A potential difference V is

then applied between the two conductors, with the inner con-

ductor at the higher potential. A current is thus established in

the radially outward direction. Derive an expression for the

current density / at a radius r (for a > r > h), in terms of a,

b, L, a, and V.

28C-45 Two thin concentric conducting spheres have radii

a and h (with a < b). The space between the spheres is filled

with a material of conductivity a. Find the resistance R between

the inner and outer spheres.

28C-46 In the previous problem, a potential difference V is

established between the conducting spheres, with the inner

sphere at the higher potential. Derive an expression for the

current density J at a radius r (for a < r < b), in terms of the

given symbols.

28C-47 A metal sphere of radius a is nested symmetrically

inside a larger spherical metal shell of radius b. The space

In the analogous heat conduction equation, the rate of heat flow

dQ/dt (in SI units of joules per second) is due to a temperature

gradient dT/dx, in a material of thermal conductivity k. Include

a discussion of the origin of the minus sign in the charge con-

duction equation.

28C-50 As shown in Figure 28-16, a cylindrical conductor

of conductivity a has a cross-sectional area A^ that tapers to

a smaller cross-sectional area 7^2 Because of a potential differ-

ence across the ends (not shown), an electric field exists within

the conductor, causing a current, (a) Consider the closed Gauss-

ian surface that surrounds the tapered region of the conductor.

In terms of the given symbols, what is the electric flux O^ that

enters the left-hand face? That leaves the right-hand face? What
is the net flux through the entire Gaussian surface? (b) What
are the current densities /j and /2 in regions (T) and (2)? (c) Find

the electric field £2 in terms of £j and the areas A^ and A2.

(d) Find the average drift speed i>2 in terms of Vi and the areas.

Gaussian

surface

FIGURE 28-16

Problem 28C-50.



CHAPTER 29

DC Circuits

The moment man cast off his age-long belief in magic, Science bestowed

upon him the blessings of the Electric Current.

JBAN GIRAUDOUX
The Enchanted (1933)

29.1 Introduction

A direct-current (DC) circuit is one in which the flow of charge is in only one

direction. This chapter presents the methods of analyzing DC circuits that form

networks of conducting paths containing sources of emf, resistors, and capaci-

tors. From the conservation of energy and the conservation of electric charge,

we obtain Kirchhoff's rules: two statements that greatly simplify circuit analysis.

We then present the circuits that form a few common electrical devices, found

in any laboratory, that measure currents, potential differences, and emf's. Finally,

we analyze a special RC circuit in which the current varies with time.

29.2 Resistors in Series and in Parallel

The first step in the analysis of any circuit is to see whether we can simplify

the current by combining some of its elements into simpler configurations. An
array of resistors is particularly easy to reduce to an equivalent single resistor.

The combination of two or more resistors connected in series, as in Figure

29- la, is equivalent to a single resistance R^^ whose value can be found from

"=0

-V-
R,^ = R^+Rz

(a) Two resistors in series. (b) The equivalent resistor R.

FIGURE 29-1

The combined resistance of two

resistors in series is the sum of the

two individual resistances.
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the following analysis. The potential difference V across the combination is

the sum of the potential differences across each resistor:

1/ = V, + V^2

Each has the same current /, so from Ohm's law {V = IR) we have

or

/R,q = IRi + IR2

R.„ = R, + R,

If more than two resistors are connected in series, a similar reasoning shows

that the equivalent single resistance R^^ is

RESISTORS
IN SERIES

Ry + Rj + Ri + (29-1)

The combination of two or more resistors connected in parallel, as in

Figure 29-2a, is equivalent to a single resistance R^^ whose value we can find

by recognizing that, at point a, the current / splits into two parts: /j through

Ri and 12 through R2. From the conservation of charge we conclude that

the rate dq/dt = / at which charge enters point a equals the rate at which

charge leaves (since no charge accumulates at point a as time goes on). Thus:

I=I,+l2

From Ohm's law (/ = V/R), we have

V _Vi V2_

r7~T,'^r'2

(29-2)

(29-3)

Because both resistors are connected between the same two points, a and

the potential difference across each of the resistors is the same value: V =

Vj = Vj. Therefore, Equation (29-3) becomes

Dividing by V, we have

V

1

V V

r7^r7

1 I

r7^r;

FIGURE 29-2

The equivalent resistance R of two

resistors in parallel is less than the

resistance of either alone.

In

R2

-t\^

c=^

(a)
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When more than two resistors are connected in parallel between the same two

junction points, a similar analysis gives

RESISTORS
IN PARALLEL R,

1 1

+ — +
eq Ri Ri R3

(29-4)

for the equivalent resistance R^^. Note that the equivalent resistance of a parallel

combination is always less than any of the individual resistances alone. Also, it

is helpful to remember that resistors add in parallel the way that capacitors

add in series, and vice versa.

EXAMPLE 29-1

Find the equivalent resistance of the resistor network shown in Figure 29-3a.

SOLUTION

Usually the best procedure is to combine groups of parallel resistors to form a

single equivalent resistor and groups of series resistors to form a single equi-

valent resistor. These combinations can then be combined further to reduce the

entire network to a single equivalent resistor. In this example, we will combine

/?! and R2 to form a single resistor R12. Since they are in parallel, we utilize

Equation (29-4);

1 _ 1 1 _ 1 1

R^~ Ri R2
~ 6Q nil

Solving for R12 gives R12 = 4 Q

We next combine Rj, and R3 as shown in Figure 29-3b. Since these are in series,

9.00 Q

/?i=6n

I—^A/v-
i?2=i2n

(a)

R12

^SAA/

R3 =5Q

(b)

Req

-A/VV
(c)

R,

FIGURE 29-3

Example 29-1.

EXAMPLE 29-Z

Three 60-W, 120-V light bulbs are connected across a 120-V power source, as

shown in Figure 29-4. Find (a) the total power dissipation in the three light

bulbs and (b) the voltage across each of the bulbs. Assume that the resistance

of each bulb conforms to Ohm's law (even though in reality the resistance in-

creases markedly with current).

SOLUTION

(a) The first step is to determine the resistance of each light bulb. From Equation

(28-16),

P =

Thus:

R

(120 V)^

60 W
= 240 Q

FIGURE 29-4

Example 29-2.
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We obtain the equivalent resistance R^^ of the network of light bulbs by ap-

plying Equations (29-3) and (29-4):

/^c = K. +
1

1 1

= 240 Q + 120 Q = 360 Q

The total power dissipated in the equivalent resistance of 360 Q is

_V^ _ (120 V)^
40.0 W

Req 360 Q

(b) The current through the network is given by Equation (28-16):

P = I^R.„

P~
Solving for / gives / =

Mow _ 1

R,q V360f2
~3

The potential difference across Ri is

Vi = /Ri = (^ A)(240 Q) = 80.0 V

The potential difference V23 across the parallel combination of Ri and R3 is

/ 1
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sum of the voltage decreases. Assigning + and — signs to the voltage in-

creases and decreases, respectively, we have the loop rule ZV = 0. The junction

rule arises from the fact that no charges can accumulate at a junction point,

so if the currents entering a junction are considered as + and those leaving

as —
, the algebraic sum of the currents into a junction is zero: "LI = 0.

(1) The Loop Rule:. 2^ V = 0. The sum of the voltage

increases and decreases around any closed loop

is zero.

^J^^l?"^^^^ (2) The Junction Rule: U = 0. The algebraic sum of

all currents entering a junction is zero. (Currents

entering are positive, and those leaving are

negative.)

RULES

We apply these rules most easily by following a rather formal procedure.

We illustrate the procedure by solving for the currents in the circuit of Figure

29-5. Here are the steps:

(1) Label the polarity of each seat of emf with + and — signs. Notice

that, in the circuit shown, the two seats of emf oppose each other.

That is, one emf may be able to force current through the other

emf in the "backward" direction.

(2) Draw an arroiv showing the current direction in each branch of the

circuit. If you can guess ahead of time which direction is reasonable,

choose it. If not, assign the current in some direction. (If you guess

wrong, the numerical answer for that current will be a negative

number, indicating that the actual current is in the opposite

direction.)

(3) According to the direction assumed for each current, label each resistor

with a + at the end with the higher potential and a — at the other end.

Note that the current direction in a resistor is from a higher to a

lower potential. Thus the end at which the current enters has a +
label.

(4) Establish a direction for traveling around each individual loop. In this

example, we will traverse each loop in a clockwise sense, as

indicated by the dashed circular arrows. (The directions are

arbitrary: we could have chosen a counterclockwise sense for either

or both loops.) There is a third-loop path around the outer branches.

But, having chosen the other two loops, we will see that this third

path is redundant and need not be considered. The only criterion

that must be met is that every branch be traversed at least once by a

loop path.

(5) Starting at any convenient point, travel around each independent loop in

the direction chosen, keeping track of the potential increases and decreases.

(Increases are pmsitive; decreases are negative.) Equate the sum to zero.

For the circuit chosen, we start at point a in the left-hand loop and

point / in the right-hand loop, obtaining the following equations:

zy = o
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(6) Equate the sum of the currents entering each independent junction to zero.

(Currents that enter are positive and currents that leave are negative.) For

the circuit shown, at the upper junction we obtain

1.1=0

h + ^2 h (29-7)

The lower junction would yield the same equation except for the

sign. So it is not an independent junction.

We now have three equations—(29-5), (29-6), and (29-7)—and three un-

knowns— /j, I2, and I^. To organize the solution, it is helpful to rewrite these

equations in a "standard" format, aligning terms for each unknown in vertical

columns (and adding zeros for missing terms):

-R.L + -R3h= -'

Ri R2

AW—

1

Ri

(^^2=0)

(a)

Ri Ri

(^1 = 0)

(b)

FIGURE 29-6

The superposition of the currents in

circuits (a) and (b) gives the currents

in the circuit shown on Figure 29-5.

-I- R2I2 + Rih = ^2

h+ I2 - h =

(29-8)

(29-9)

(29-10)

From this point on, any of the usual methods for solving simultaneous equa-

tions may be used.' The solutions are

^1
= (R2 + Ri)^i - RJ2

h =

RIR2 + RIR3

(Rl + R3)^2
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Figure 29-6a by finding the equivalent resistances for the parallel and series

combinations. We find the currents in each resistor in the usual way. Similarly,

after we replace S^ by a conducting wire, the circuit of Figure 29-6b can be

solved. The actual current in each resistor is the sum of the currents found

from solving the two simplified circuits. This procedure is often simpler than

the brute-force solving of simultaneous equations.

EXAMPLE 29-3

In Figure 29-7a. find the current in each branch of the network.

SOLUTION

Method 1: Kirchhoff's rules

We choose currents in each branch as indicated in Figure 29-7a. The

polarities for the assumed potential differences across each resistor are labeled

with plus and minus signs (remembering that a current enters a resistor at the

positive end). Starting at the bottom junction at a, we travel around the loops,

equating the sum of the potential increases and decreases to zero (Kirchhoff's

first rule). Omitting the units for simplicity, we obtain

Left loop (clockwise)

Right loop (counterclockwise)

Sl/=0

10 - 2/i -4/3 =

4 - 4/, =

We next equate the sum of all currents entering the top junction to zero (Kirch-

hoff's second rule). Currents entering are positive, currents leaving are negative.

i;/ = o

7i -F 7, - /3 =

Rewriting the above equations in the standard format gives

-2/1-1-0 - 4/3 = -10

-I- - 4/3 = - 4

/i +I2 h

These simultaneous equations are simple to solve by direct algebraic substitu-

tion. Substituting the value for /3 from the second equation into the other two,

we obtain

Ii = 3.00 A /, 2.00 A h = 1.00 A

The minus sign for /, signifies that the current in that branch is actually opposite

to the direction assumed.

Method 2: Principle of superposition

With this method, we successively replace each of the emfs by a con-

ductor with zero resistance and solve for the currents due to the other emf,

obtaining the two simplified circuits in Figures 29-7b and c. To indicate that the

currents in these circuits are only partial currents, we use single and double

primes. We here assume currents in each branch that are plausible for the modi-

fied circuits. Thus, in (a), I\ would be the current if (fi were the only battery; sim-

ilarly,
/'i'

would be the current if S\ were the only battery. The actual current

direction in R^ will depend on which of these currents is larger.

/: ^ 2 9.

(T^^^x-D
llOV
-I

4 vT-

(a)

/,' 2 n

r
(b)

ir^ 2 n

FIGURE 29-7

Example 29-3.
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Circuit (b) is simply two resistors in parallel across S2. From Ohm's law

(/ = VjR), the current in each is

, 4 V
L = —— = 2 A and
' IQ.

From KirchhoFf's junction rule we get

4 V
^3 = ^^ = 1 A
^ 4n

or /'^ = /'j + /'j = 2 A + 1 A = 3 A

In circuit (c), the conducting wire on the right-hand side has zero resis-

tance, so all the current flows through this parallel branch and none through

R^- (We say that K2 has been "shorted out.") Thus:

/3=0
10 V

We now superpose these two sets of currents (noting their assumed

directions) to find the actual currents in the original circuit. In resistor Rj, /'[ = 2 A
is toward the left while l'[ = 5 A is toward the right. The actual current in that

branch is therefore

r; -
/'i
= 5 A - 2 A = 3.00 A (toward the right)

In Rt, both 73 and l'^ were assumed to be in the same direction. So

/'j -I- /j = 1 A -I- 1.00 A (down)

In the right-hand branch, /j and /j were assumed to be in opposite directions,

so the actual current is

/;' - /; = 5 A - 3 A 2.00 A (down)

EXAMPLE 29-4

Verify that in the previous example the power exchanged between the sources

of emf and the rest of the circuit does illustrate energy conservation.

SOLUTION

The current ij in the emf Sj is in the direction of increasing potential. Thus the

seat of emf is supplying power P, to the rest of the circuit:

Pj = SJ^ = (10 V)(3.00 A) = 30.0 W

The currents /j and I2, are in the resistors Rj and Rj, respectively. Thermal

energy is continuously being developed in the resistors at the rate /'R, so the

Joule power Pj in the resistors is

p, = l^'-R^ + /32R2 = (3-00 A)^(2 Q) + (1.00 A)2(4 Q) = 22.0 W

The current /, in the seat of emf Sj is forced through this emf in the

"backward" direction. (This is the process involved in charging a battery.) As
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we follow charges through the seat of emf they undergo a drop in potential,

transferring their potential energy to the chemical energy stored within the seat

of emf. Thus, the power P^ stored in the seat of emf (?2 is

P3 = ^2/3 = (4 V)(2.00 A) = 8.00 W

We see that the emf <f 1 supplies power to the rest of the circuit, the emf

S2 absorbs power, and thermal power is developed in the resistors. If energy

conservation holds true, then

Rate of energy

given up by (f
1

30.0 W

Rate of thermal

energy developed

P2

22.0 W

+

+

+

Rate of energy

stored in Sj

Pi

8.00 W

This power equation balances, thus verifying the conservation of energy.

EXAMPLE 29-5

Calculate the potential difference between the points A and B for the circuit

shown in Figure 29-8 and identify which point is at the higher potential.

SOLUTION

We identify the circuit as a single-loop circuit because points A and B are not

connected. (No currents can exist in the branches containing Sj and Rj- Con-

sequently, there is no potential difference across R,-) The only current is a

clockwise one in the loop at the left. The potential difference between A and

B is the sum of the potential differences across ^2- ^3- 3"^ R2 (which is zero).

We will first find the potential difference across R3 by applying Kirchhoff's rules

for the current in the loop. Assuming a clockwise direction, we sum the voltage

increases and decreases around the loop;

6\ - IR, - IR, :

Solving for / and substituting numerical values gives

12 V
1 = 2 A

i?, + R3 2Q + 4n

The potential difference V3 across R3 is thus

V3 = /R3 = (2 A)(4 Q) = 8 V

with the polarity indicated in Figure 29-8.

Starting at point B and moving along the network to point A, we find

the potential V^g of A with respect to B:

^.48 = ^^^2 + ^^3 - (^2 = -F 8 V - 4 V 4.00 V

The potential at point A is thus 4 V higher than the potential at point B.

<?i
= 12 V

Ri =2Q
^^2 = 4 V
+

I

-

A

FIGURE 29-8

Example 29-5.

•R,= 4fi

B

Ri=ion
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The voltmeter.
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29.5 Applications

A number of different devices are used to measure i:he parameters of a circuit.

They include the voltmeter, the ammeter, the Wheatstone bridge, and the

potentiometer.

The Voltmeter

Potential differences across the components of a circuit are often measured

with a voltmeter. A voltmeter usually has a sensitive current-measuring meter

called a galvanometer, shown in Figure 29-9. The sensitivity of a galvanometer

is the current that will cause a full-scale deflection of the needle, usually in the

range of 10 jiA to 1 mA. The meter movement itself has a resistance Rq. (In

circuit diagrams, it is usually drawn as a separate resistor, though one should

remember that this resistance is an internal part of the meter movement itself.)

Usually the external voltages to be measured are much greater than that which

will cause a full-scale deflection, so a resistance R is added in series to reduce

the voltage that appears across the meter movement. Let us now calculate the

resistance R for full-scale deflection when a potential difference V is applied

to the terminals AB. If we let /q be the current in the galvanometer that will

produce a full-scale deflection, and Rq is the internal resistance of the gal-

vanometer, then, from Ohm's law.

V = Iq(R + Rg)

V
or R

Ir.

Rr

(29-14)

(29-15)

In order to change the range of a voltmeter, it is necessary to change

the value of the series resistor. In a multirange voltmeter, this is usually accom-

plished by a switching arrangement. (See Problems 29B-30 and 29B-31.)

EXAMPLE 29-6

A galvanometer with a full-scale sensitivity of 1 mA requires a 900-0 series

resistor to make a voltmeter reading full scale when 1 V is across the terminals.

What series resistor is required to make the same galvanometer into a 50-V

(full-scale) voltmeter?

SOLUTION

We will use the values required for the 1-V voltmeter to obtain the internal

resistance of the galvanometer. Applying Equation (29-14),

V = loiR + Rg)

we solve for Rr

Rg = --R
in

IV

0.001 A
900 Q = 100 O

We then apply Equation (29-15) to obtain the series resistance required for the

50-V voltmeter:

V 50 V
R = --Rg =

0.001 A
100 Q = 49 900 Q
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Since a current Iq is required to operate a voltmeter, the introduction of

a voltmeter into a circuit alters the currents in the circuit. Consequently, the

voltmeter reading does not exactly represent the potential difference before

the voltmeter was introduced. It is therefore desirable that a voltmeter have

a very high internal resistance so that it does not draw much current from the

circuit being measured. To compare various voltmeters, one calculates the figure

of merit, or "quality," defined as the total resistance of the meter divided by

the full-scale voltage reading. For the voltmeter described in Example 29-4,

the quality is 1000 fi/V. (This means that it is not a particularly good meter;

a high-quality meter has a typical value of 20 000 Q/V.) Analysis shows that

a multirange meter that utilizes a given galvanometer movement will have the

same figure of merit on all voltage scales. It may also be shown that the figure

of merit is equal to the reciprocal of the current in the galvanometer that

produces a full-scale deflection.

The Ammeter

A galvanometer measures very small currents. An ammeter measures larger

currents by detouring, or shunting, some of the current around the galvanom-

eter, as shown in Figure 29-10. Of the current / entering terminal A of the

instrument, only a smaller portion Iq flows through the galvanometer move-

ment. The voltage across R is the same as that across the galvanometer move-

ment. Thus:

(I - Io)R = IcRg

The value of the shunt resistor R is

R =
l-lc

(29-16)

A
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Note that the resulting equation is simply Ohm's law applied to the shunt re-

sistor alone, where I — 1^ is the current through the shunt. Substituting the

appropriate values into the equation, we have

R =
50 X 10 ^ V

5 A - 0.001 A
0.010 fi

The shunt resistance is always very low for the measurement of currents

that are much larger than the current requirements of the galvanometer. Just as

in the construction of a voltmeter, a high-sensitivity galvanometer produces

an ammeter that will introduce little change in a circuit when making a

measurement.

A word of caution on the use of meters. Of course these instruments

must not be connected to a circuit that will exceed their maximum range of

values. But an additional hazard should be mentioned. Since an ammeter has

an extremely low resistance, if it were mistakenly connected as a voltmeter

across a source of voltage (instead of in series with other components), the

resultant large current through the meter might easily destroy the ammeter.

On the other hand, because a voltmeter has a large resistance, if it were mis-

takenly inserted in a circuit as an ammeter probably no damage would result.

Just remember: ammeters are connected in series in a line; voltmeters are cormecled

in parallel across a potential difference.

I u

Ri R.

The Wheatstone Bridge

The primary use of a Wheatstone bridge is the measurement of resistance.

Bridge-type circuits also have extensive application in electronics control cir-

cuits that detect small electrical imbalances.

A Wheatstone bridge circuit is shown in Figure 29-11. In the measure-

ment of an unknown resistance R^, the procedure is to adjust R^ (the symbol

;;W^ indicates a variable resistor) until no measurable current passes through

the galvanometer. This is known as the mdl-balance condition. What are the

conditions in the circuit at null balance? If no current passes through the gal-

vanometer, the potential differences across Rj and R, must be the same:

/iR, = I2R2 (29-17)

FIGURE 29-11

The Wheatstone bridge.

Moreover, the current through Rj is the same as that through R^. Similarly,

the current through Rj is the same as that through R4. Therefore, the potential

differences across R,. and Ra are the same:

hR. /2R4 (29-18)

Eliminating /j and 12 between Equations (29-17) and (29-18) and solving for

R^, we have

R. ^1 (29-19)

In practice the ratio of R4 to Rt is known, as is the value of the adjustable

resistance Rj, thereby yielding the value of the unknown resistance R^. Note

that the value of the seat of emf need not be known. (However, the mag-

nitude of the seat of emf and the sensitivity of the galvanometer are important

in the precision that the instrument can achieve, since both contribute to the

galvanometer deflection when the bridge is nearly balanced.)
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The Potentiometer

A potentiometer is an extremely important laboratory instrument because, in

principle, it is capable of measuring potential differences in a circuit when no

current at all is being drawn from the circuit. (This is in contrast to a voltmeter,

which always requires some current for its operation.)

In Figure 29-12 the external battery causes a current in a long, uniform

resistance wire called a slide wire. With the battery polarity shown, the poten-

tial along the slide wire drops uniformly with distance as one proceeds from

the left end toward the right. The symbol ^^ denotes a standard cell whose

potential difference is precisely known. When the switch S introduces the stan-

dard cell in the circuit, the sliding contact (the small arrow) is moved along

the slide wire until it reaches the point /"^ where the IR voltage decrease along

the wire equals S]^. This condition is indicated by a lack of current passing

through the galvanometer G, that is, a null-balance condition. Because the

potential change along the slide wire is uniform, this procedure calibrates the

potential at all points along the wire in terms of the distance / from the left

end. Thus, the voltage V along the slide wire is proportional to the distance ^:

C

V

7
(29-20)

After we calibrate the slide wire in this fashion, we change the switch to replace

^5 with the voltage V^ to be measured. The sliding contact is moved again

to achieve the null condition. The new setting /^ then gives sufficient information

to determine V^.

fl

L
(29-21)

Solving for V^ gives

V. (29-22)

Standard cells are available whose emf S^ has been calibrated by the

National Bureau of Standards or other agencies. In practice, the ratio SJi^ is set

to a convenient value by the insertion of a variable resistance (not shown) in

series with the external battery, allowing control over the amount of current

in the slide wire (and thus the magnitude of the /R decrease along the wire).

External

battery

AA/\aA/WNA/
Rheostat

FIGURE 29-12

The basic potentiometer circuit.

Note that the external battery, the

standard cell S.^, and the unknown

potential V^. have the same polarity

(here, positive) connected to the left

end of the slide wire. The variable

resistance of the rheostat controls the

amount of current / in the slide wire

to provide an appropriate range of

voltage along the length of the slide
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Also, a protective resistance is sometimes added in series with the galvanometer

to protect it from excessive currents in case the initial trial contact with the

slide wire is far from the correct null-condition point. When the correct point

is found (or closely approached), the protective resistance is shorted out, giving

maximum sensitivity to the galvanometer reading.

The virtue of the potentiometer, that it measures a potential difference when

no current is being drawn from the circuit, makes it a valuable instrument for

measuring potential differences when no disturbance of the circuit being mea-

sured can be tolerated.

Terminal

voltage

V

FIGURE 29-13

An external resistance R connected

across the terminals of a battery

that has an internal resistance r and

a "pure" emf S . The current /

produces the polarities shown for

the potential differences across the

circuit components. The current

through r reduces the terminal

voltage V below that of the emf S.

FIGURE 29-14

Example 29-8.

Internal Resistance and Terminal Voltage

All batteries have an internal resistance that we designate r. An automobile

battery may have a resistance as low as 0.01 Q, while that of an old flashlight

battery may be as high as 50 Q. This resistance is physically spread throughout

the source of emf, but for circuit analysis we draw it as a separate resistance

r (situated on either side of ^ between the terminals of the batteiy) in series

with a "pure" emf S, Figure 29-13. Of course, we can never measure the volt-

age at the point between S^ and r because this point exists only in the diagram.

But the simplified circuit is convenient for analysis.

Drawing a current from the battery causes a potential drop across r whose

polarity reduces^ the terminal voltage V across the battery terminals. Noting

the polarity of the voltages between the terminals, we have

V=S -Ir

where / is the current. For this single loop circuit, the current / is

7 =
R + r

(29-23)

(29-24)

(These two equations, while useful, are not worth memorizing since they can

be written by inspection for this simple circuit.)

EXAMPLE 29-8

The terminal voltage of a particular battery is measured in two ways: first, with

a potentiometer, which indicates 1.50 V, and then with a voltmeter, which in-

dicates 1.48 V on a 2-V scale. The voltmeter is known to have a figure of merit

of 1000 Q/V. Find the internal resistance of the battery.

SOLUTION

Figure 29-14 is a circuit diagram with the internal resistance drawn as a separate

resistance r between the terminals. When the potentiometer is used, at balance

conditions no current is drawn, so there is no potential drop across r and the

potentiometer measures the tme emf of the battery. However, when the volt-

meter is used, some current / exists, and the drop across r reduces the terminal

voltage to

V=S -Ir (29-25)

^ However, if the battery is being charged by an external seat of emf, the current is in the opposite direction

and the potential difference across r reverses its polarity.
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Ao

/\o-

2

AA/V

R_

A^Ar -OB

Ao- -Vs/WV -oB

(b) Removing branch bd.

/^o wv^
(c) Shorting branch hd.

FIGURE 29-15

Example 29-9.

-OB

The figure of merit of 1000 Q/V for the voltmeter means that its reciprocal is

the current that will produce a full-scale deflection. Thus, 1 mA produces a full-

scale deflection of the voltmeter. Since the meter deflects (1.48/2.00) of the full

scale, the current / in the meter is

/l.48\
I = (2 mA) = 0.740 mA

^2.00/

Solving Equation (29-25) for r gives

S-V 1.50 V -1.48 V

0.74 X 10'
27.0 Q

EXAMPLE 29-9

In the network of Figure 29-15a, each resistor has a resistance R. Find the equiv-

alent resistance R^^ between the terminals A and B.

SOLUTION

When symmetry is present, often that symmetry allows us to simplify the

analysis. Here, we imagine putting a current / into terminal A (and removing the

same current / from terminal B.) By symmetry, at junction a the current splits
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equally, so the currents in branches ab and ad are equal. Therefore, the potential

drops in those branches are equal, junctions b and d are at the same potential,

and no current exists in that branch. We could thus remove that branch without

disturbing the operation of the circuit, as shown in the left-hand diagrams of Figure

29-15b. Or, as an alternative, we could connect a resistanceless wire between b and d

without disturbing the operation of the circuit, as shown in the right-hand diagrams.

Both methods of analysis show that the equivalent resistance R^^ = R.

29.6 RC Circuits

Up to this point we have discussed circuits in which the currents are constant

in time. We now introduce a capacitor as an additional circuit element that

can cause the current to vary with time. As you will see, capacitors perform

very useful functions in circuits and, indeed, are a part of nearly all practical

electronic circuits.

Consider the circuit of Figure 29-16a. When the switch S is put in the

left position, the seat of emf (assumed to be "ideal" with zero internal resis-

tance) charges the capacitor with the polarities shown in (b). (The right-hand

branch is isolated from the charging circuit and plays no role.)

We adopt the convention of using lower-case letters for time-varying

quantities and capital letters for constant quantities.

Thus 1 designates the charging current. Applying Kirchhoff's loop rule to the

circuit while charging, we get

-iR

IV=

(29-26)

FIGURE 29-16

The switch in (a) is put in the

left-hand position to charge the

capacitor C through the resistor Rj.

(c) While charging, the charge on

the capacitor increases exponen-

tially. In one time constant

T = RiC, the charge q rises to

(l-l/e)i7o = 0.63(7o.

-I-

(b) Charging circuit.

(-0.37io) -

(d) While discharging, the current

decreases exponentially. In one

time constant t = RiC, the

current falls to (io/c) = 0.37!o.
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where cj/C is the potential difference across C. This equation indicates that, as

q increases, the current / must decrease. Let us find expressions for these time-

varying quantities.

Charging

Suppose that, initially, the capacitor is uncharged and the switch is closed at

f = 0. The charge q on the capacitor will increase exponentially as shown in

Figure 29- 16c. We obtain the mathematical form of this variation by substituting

! = dc\ldl in Equation (29-26) and rearranging;

^ = il-^ (29-27)
dl Ri R^C

An expression for cj may be found in the following way. Rearrange the

equation by placing terms involving q on the left-hand side and those involving

t on the right-hand side. Then integrate both sides:

'' - ' dl
{q-CS) R,C

rq dq _ 1 p
Jo (q - CS)

~ ~R^ Jo

CS J R^C

From the definition of the natural logarithm, we can write this expression as

CHARGING A CAPACITOR _ ,,,
THROUGH A RESISTOR q - L6[i e

]
(^^ ^o)

Figure 28- 16c shows this rising exponential curve for q, which changes from

zero toward its final value of CS . As time progresses, q asymptotically ap-

proaches^ the final value CS". The rapidity of charging the capacitor depends

on the numerical values of Rj and C. For example, if the product RjC is made

smaller, the capacitor charges more rapidly.

In this charging process, charges do not jump across the capacitor plates.

Instead, the emf S moves charges from one plate through the resistor and

battery to the other plate, producing equal and opposite charges on the plates.

As the potential across the capacitor builds up to tf , the current drops to zero.

To find a mathematical expression for the charging current i, we differentiate

Equation (29-28) with respect to t. Finding i = dq/dt, we obtain

CHARGING ,_(^'\^-„R.c (29-29)CURRENT \R^)

This falling exponential is shown in Figure 29-16d. Immediately after the switch

is closed at f = 0, the current ; has its maximum value limited only by the

' Mathematically, the exponential term C^e~"^'^ eventually becomes smaller than the fluctuations in q due

to thermal motions of electrons. So the statement that an exponential change "never" reaches its final

value becomes physically unimportant.
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resistance in the circuit, and all the potential drop is initially across the resistor.

At f = ' = /q =
(maximum current)

Ri

When the capacitor is fully charged to its maximum, then the current is zero

and all the potential drop is across the capacitor:

AU= X, Q = CS"

(maximum charge)

A useful parameter associated with RC circuits is the characteristic time

T = RC, the time at which the power of the exponential term equals — 1. This

value is called the RC time constant. It is related to the speed with which

currents, voltages, and charges change. For example, in the charging of a ca-

pacitor, in one time constant the charge rises to (1 — l/e) ~ 0.63 of its max-

imum final value. Similarly, in one time constant the charging current falls to

l/e % 0.37 of its initial value. In RC circuits, all the varying quantities have this

exponential behavior, so it will be helpful to remetnber these 0.63 and 0.37 values.

Discharging

After the capacitor has become fully charged, the switch is moved to the right,

connecting the charged capacitor to R2- The discharge circuit is simply the

capacitor in series with R,' Figure 29- 16a. Applying Kirchhoff's loop rule dur-

ing this discharge process, we have

Zy=0

i - ,R^ = (29-30)

where q/C is the potential difference across the capacitor as it discharges. Here,

1 = —dq/dt (the minus sign results from the fact that q decreases as time

increases), and after substituting and rearranging we have

dq dt

q R.C

Integrating and setting q = Qq a\. t = gives

rq dq _ I rt

JQo q
~ R,C Jo

In

dq

1 \ t

dt

QoJ RiC

DISCHARGING A CAPACITOR ^ ^ -,/r,c oo 31)
THROUGH A RESISTOR <? U^o« ( - )

where Qq = ^C the initial charge on the capacitor.

*
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We obtain an expression for the current i

above with respect to t to obtain

DISCHARGING
CURRENT R-.

- 'iRiC

dq/dt by differentiating the

(29-32)

where the initial (maximum) value of the current Iq = SjRi = Qo/^2*-- Graphs

of these quantities are shown in Figure 29-17. In this example, we have pur-

posely chosen Rj > Rj to illustrate how the time constant T = ^2^^ governs

the rapidity of the exponential changes. The discharging process occurs more

slowly than the charging process because R2C > R-^C.

The voltage changes across R and C in the circuit can easily be found from

Vr = iR and
C

These voltages thus also change exponentially with the time constant RC. The

exponential changes in q, i, and v are called transients; when such changes

have ceased, the final conditions are called the steady-state values.

Two important conclusions can be drawn regarding capacitors in DC
circuits:

(1) The charge on a capacitor {and, consequently, the voltage across it)

cannot change instantaneously. How fast such changes take place is

governed by the RC time constant.

(2) After the final steady-state conditions have been reached, the DC current

through a capacitor is always zero.

Remembering these conclusions will greatly help you predict the behavior of

DC circuits containing capacitors.

EXAMPLE 29-10
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kn

^^^c^^^^A/^A-

9V

CdpiO ,iF

15 kfi <R^
K,>3kS2

(a)

Switch

opened

f =
(b)

FIGURE 29-18

Example 29-11.

EXAMPLE 29-11

In Figure 29-18a, suppose that the switch has been closed sufficiently long for

the capacitor to become fully charged. Find (a) the steady-state current through

each resistor and (b) the charge Q on the capacitor, (c) The switch is now opened

at ( = 0. Write an equation for the current i^^ through R, as a function of time,

and (d) find the time that it t^ikcs for the charge on the capacitor to fall to ^
of its initial value.

SOLUTION

(a) After steady-state conditions have been reached, there is no DC current

through the capacitor. Thus:

For Ry. /r = (steady-state)

For the other two resistors, the steady-state current is simply determined

by the 9-V emf across the 12-kQ and 15-kf2 resistors in series:

For R, and/?,: /,^_+^^)
=

<f 9V

Ri + R2 (12 kO -I- 15 kD)

0.333 mA (steady-state)

(b) After the transient currents have ceased, the voltage across C is the same

as the voltage across Rj ( = /R2) because there is no voltage drop across Rj.

Therefore, the charge Q on C is

Q = CV'r, = QIR2) = (10 /<F)(0.333 mA)(15 kD) = 5.00 ^C

(c) When the switch is opened, the branch containing R^ is no longer part of

the circuit. The capacitor discharges through (R2 + R3) with a time constant

of (R2 + RiK = (15 kn -F 3 kQ)(10 /iF) = 0.180 s. The initial current Iq in

this discharge circuit is determined by the initial voltage across the capacitor

applied to (R2 + R3) in series:

^ = Vr IR. _ (0.333 mA)(15 kO)

(R2 + R3)
~

(Rj + R3)
"

(15 kQ -F 3 kD)
0.278 mA

Thus, when the switch is opened, the current through R2 changes instan-

taneously from 0.333 mA (downward) to 0.278 mA (downward) as shown

in Figure 29-18b. Thereafter, it decays according to

; _ r „-t/(«2 + R3)C
(0.278 mA)f-'/<°i»°^' (for f > 0)

(d) The charge q on the capacitor decays from Qq to Qo/5 according to

Qo = Qo«
-1/(0. 180 s)

5 _ j,(/(0.180s)

In 5
f

0.180 s

t = (0.180 s)(ln 5) = 0.290 s
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EXAMPLE 29-12

We charge a capacitor C by connecting it to a seat of emf S with wires of total

resistance R. When the capacitor is fully charged, the seat of emf will have done

an amount of work W equal to

W= QV (29-34)

where Q is the total charge and V the potential difference of the seat of emf.

The energy stored in the capacitor is

Uc = iCV^ = iQV (29-35)

which is only half the work done by the seat of emf. What happened to the

other half of the work done?

SOLUTION

The "missing" energy appears as I^R heating of the resistance of the charging

circuit. The current i during charging is

IRC

R^'

We integrate the instantaneous power Pjn,, = i'R from t = to t = co io find

the total Joule heating of the resistance. Letting U^y, represent this thermal energy,

we have

U,, = l-i^Rdt = RJ;(^lJ
- lllRC

L/.h
=

V^\(RC\

R
-2tlRC

1 -,1
= -Cy^ =\ -QV

1
\
1

Thus, the Joule heating of the resistance in the connecting wires accounts for

the other half of the work done by the seat of emf The Joule heating is always

exactly half of the energy stored in C, independent of the value of R.

Summary

The equivalent resistance R^^ for combinations of resistors is

In series:

In parallel:

Keq = Rl +R2 + R3+--1111
R^q Ri R2 R3

Kirchhojf's rules for circuit analysis:

Loop rule: Z 1/ = (around any dosed path)

Junction rule: Z/ = (currents entering a junction

are + ; those leaving are —

)

Superposition theorem: In a linear circuit containing more than

one seat of emf, the current in any branch is the superposition

of all the currents contributed by each seat of emf acting indi-

vidually, with all other emfs replaced by conducting wires of

zero resistance.

RC circuit: In a series combination of a seat of emf a resistor,

and a capacitor:

Charging:

Charge on capacitor

q = CV(1 - e-""^) i =

Current

s

r''

Discharging: q = QqB '^^^

(no emf in circuit)
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In one time constant, T = RC, the rising exponential rises to

1 — {1/ 1') * 0.63 of its maximum value, and a decreasing expo-

nential falls to (l/f) ;*: 0.37 of its initial value.

The general behavior of a capacitor in a series RC circuit

(with a constant emf) is as follows:

(1) The charge on a capacitor (and, consequently, the voltage

across it) cannot change instantaneously. The rapidity of

the exponential changes that occur is governed by the

RC time constant of the charging and discharging paths.

(2) After steady-state conditions have been reached, the

DC current through a capacitor is always zero.

Questions

1. A 10-W, 110-V light bulb connected to a series of bat-

teries may produce a brighter light than a 250-W, 110-V

light bulb connected to the same batteries. Why?

2. Consider a circular hoop of resistance wire with two ter-

minals attached to different places on the hoop. How
does the resistance between the terminals depend on

their relative positions on the hoop?

3. Imagine a closed surface in the midst of a complicated

electrical network, so that current-carrying conductors pen-

etrate the surface and so that some of the circuit com-

ponents such as resistors, batteries, and capacitors are

within the surface. Is the net current through the surface

zero? Does Gauss's law hold for this surface?

4. A potentiometer is often used to measure open-circuit

voltages of batteries, fiow can the potentiometer also be

used to measure current and resistance?

5

.

How does a somewhat run-dovm battery supply affect the

operation of a Wheatstone bridge?

6. If the battery and the galvanometer of a Wheatstone

bridge are interchanged, the circuit is still that of a Wheat-

stone bridge. Suppose a Wheatstone bridge is balanced.

Does interchanging the battery and the galvanometer re-

sult in a balanced bridge?

7. A volt-ohm-meter is a single meter movement with circuits

and switches that make it appropriate for use as an am-

meter, a voltmeter, or an ohmeter. When the device is not

in use, why is it best to leave the switch of a volt-ohm-

meter on a high-voltage scale rather than on a current

scale or a resistance scale?

8. Why is it more practical to specify the meter-current

sensitivity of a voltmeter in ohms per volt rather than in

amperes?

9. How can a voltmeter be used to measure capacitance?

10. In the slide-wire potentiometer of Figure 29-12, a variable

resistor (sometimes called a rheostat) is usually added in

series with the external battery in order to control the

amount of current through the slide wire. Suppose that

this variable resistor were a combination of two variable

resistors in parallel, one large and the other small, that

act as "coarse" and "fine" controls of the current. Which

resistor is the coarse control and which resistor is the fine

control?

Problems

29.2 Resistors in Series and in Parallel

29A- 1 Three resistors, R, 2R, and iR, are connected in

parallel, producing an equivalent resistance of 20 Q. Find their

equivalent resistance when they are connected in series.

29B-2 When n identical resistors are connected in series, the

equivalent resistance is N times the equivalent resistance when

they are connected in parallel. Express n in terms of N.

29B-3 Two wires, A and B, are made of the same material

and have the same length, but the cross-sectional area of A is

twice that of B. (a) When they are connected in parallel across

a potential difference V, which wire will dissipate the greatest

electrical power? (b) Repeat for when they are connected in

series across the same potential difference, (c) Find the ratio of

the total power developed in case (a) to that in case (b).

29B-4 For the circuit of Figure 29-19, find (a) the equivalent

resistance between the terminals, (b) An emf ^ = 40 V is now

connected between the terminals. What is the potential differ-

ence across the 8-Q resistor? (c) Find the current in the 10-Q

resistor and (d) the power developed in the 30-Q resistor.

(e) Show how a 20-Q resistor could be added to the circuit so

that the emf would furnish a total of 4 A.

30 n

7fi 15 n

10 fi

8Q

FIGURE 29-19

Problem 29B-4

29B-5 In Figure 29-20, each resistor has a resistance of 1 Q.

Suppose that a given current / enters at A and comes out at

B. By utilizing arguments based upon the symmetry of the net-
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work, show that the equivalent resistance R^^ of the network

from /I to B is f Q. (Hint: what would the resistance be if the

vertical resistors were absent?)

FIGURE 29-20

Problem 29B-5.

29B-6 Two resistors connected in series have an equivalent

(combined) resistance of 690 Q. When they are connected in

parallel, their equivalent resistance is 150 Q. Find the resistance

of each of the resistors.

29B-7 Find the equivalent resistance between terminals A
and B of the resistor network shown in Figure 29-21. (Hint:

use the "delta-wye" transformations of Problems 29C-43 and

29C-45.)

2R R

R

R 2R

FIGURE 29-21

Problem 29B-7.

29B-8 When two resistors, R^ and Rg, are connected in

series, their total resistance is R^. When they are connected in

parallel, their equivalent resistance is Rp. Find R 4 and Rg in terms

of R, and Rp.

29B-9 To achieve different values of power consumption,

four 40-W, 120-V light bulbs are connected in a variety of ways

across a 120-V power source. Sketch nine different ways and

calculate the total power consumption in each case. Assume

that the resistance of the light bulb is independent of the cur-

rent through it (a poor assumption).

29B-10 Using only three resistors—2 Q, 3 Q, and 4 Q—
find all 17 different resistance values that may be obtained by

various combinations of one or more resistors. Tabulate the

values in order of increasing resistance.

29.3 Multiloop Circuits and Kirchhoff's Rules

29.^-11 A 12-V car battery has an internal resistance of

0.02 Q. Find the terminal voltage while the starter motor draws

140 A from the battery. (This answer suggests a practical

procedure: if your car stalls and the motor stops, it is best to

turn off the headlights when restarting the engine in order to

minimize the drop in terminal voltage of the battery.)

29A-12 A typical fresh AA dry cell has an emf of 1.50 V
and an internal resistance of 0.311 Q. (a) Find the terminal volt-

age of the battery when it supplies 58 mA to a circuit, (b) What

is the resistance R of the external circuit?

29A-13 Consider a current / entering a circuit junction as

shown in Figure 29-22. Show that the fraction I^/I of / going

through the branch that contains R, is given by R2/(Ri + Rj)-

——^A/^

-A/^ 1

R2

FIGURE 29-22

Problem 29A- 13.

29A-14 In the circuit of Figure 29-23, find (a) the equiva-

lent resistance in the circuit outside the battery, (b) the current

through the battery, (c) the terminal voltage, and (d) the power

developed in the 6-Q resistor.

2 fi—vw

—

^=20 V

L 6fi 12 fi

3 n

FIGURE 29-23

Problem 29A-14.

29A-15 Consider the circuit of Figure 29-24. Verify that the

rate of work done by the emf SI equals the sum of the Joule

power I~R developed in each of the resistors.

3 kfi

I
—VvV

s^ 12 kn,

12 V

4 kn.

FIGURE 29-24

Problem 29A-15.

29A-16 The electrical source for the lights in a house trailer

is a battery with an emf S and an internal resistance r. Suppose

that n lights, each with a resistance R, are connected in parallel
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across the battery. In terms of the given symbols, find an ex-

pression for the current / that the battery supplies.

29B-17 In Figure 29-25, calculate (a) the equivalent resis-

tance of the network outside the battery, (b) the current through

the battery, and (c) the current in the 6-Q resistor.

30 V

FIGURE 29-25

Problem 29B-17.

29B-18 For the circuit shown in Figure 29-26, find (a) the

equivalent resistance external to the battery terminals, (b) What
is the terminal voltage of the battery? (c) Find the total power
that the battery supplies to the external circuit, (d) Make a

table showing the power in each resistor, listing the resistors

in order of increasing resistance. (Hint: for this network, you
can find the currents using Ohm's law; it is not necessary to

write equations from Kirchhoff's rules.)

12

I
—VWvVvV

7fi 60

4 n

9U

25 fi

AVvWVHi|i|i-
<f =80 V
r=2Q

FIGURE 29-26

Problem 29B-18.

29B-19 A certain run-down battery has an open-circuit volt-

age across its terminals of 7.22 V. While a battery charger is

charging the battery with a current of 8.60 A, the terminal

voltage is 7.96 V. Find the internal resistance of the battery.

(Note: a battery charger forces current into the + terminal of

the battery.)

29B-20 Using Kirchhoff's rules, (a) find the current in each

of the resistors in the circuit shown in Figure 29-27. (b) Find

the potential difference between points c and /. Which is at the

higher potential?

4 kfi

FIGURE 29-27

Problem 29B-20.

29B-21 Consider the circuit shown in Figure 29-28. Find the

current in each of the resistors using Kirchhoff's rules.

Ri> 6 n

18 V

i?2^4n

* 8V

12 fiAW
^3

FIGURE 29-2S

Problem 298-21.

29.4 The Superposition Principle

29B-22 In Figure 29-29, use Kirchhoff's rules to find the

magnitude and direction of the current in each branch.

Ki > 60 fi ^2 < 70 fi ;?3< 90 fi

12 V SimlSW

FIGURE 29-29

Problem 298-22.
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29B-23 Solve Problem 29B-22 by applying the superposi-

tion theorem.

29B-24 Solve Problem 29B-20 by applying the superposi-

tion theorem.

29B-25 Solve Problem 29B-21 by applying the superposi-

tion theorem.

29.5 Applications

29A-26 A certain meter movement has an internal resistance

of 100 n and requires a current of 200 /<A for full-scale deflec-

tion. Find the resistances that will convert the meter to (a) a

10-V voltmeter and (b) a 5 -A ammeter. Include sketches show-

ing how the resistance is connected in each case.

298-27 The value of a resistance R may be measured with

a circuit such as that shown in Figure 29-30. (a) If the ammeter,

which has an equivalent resistance of 50 Q between its ter-

minals, reads 5 mA and the voltmeter reads 12.3 V, determine

the value of R. (b) If the ammeter had zero resistance, what

would the value of R be?

r-AAAr

Voltmeter

FIGURE 29-30

Problem 29B-27.

298-28 The galvanometer G in Figure 29-31 has a resistance

of 50 Q and requires 400 f.iA for full-scale deflection, (a) Find

the values of R^ and R, that will convert the galvanometer to

a two-range ammeter with full-scale currents of 1 A and 0.1 A.

(b) Using the same galvanometer and two resistors R^ and R^,

<^

6
lA

6
0.1 A

sketch the circuit that will convert the galvanometer to a two-

range voltmeter whose three binding posts are marked " — ,"

1 V, and 10 V. Include the numerical values of R^ and R^.

29B-29 In the potentiometer circuit of Figure 29-32, the

slide wire is 100 cm long. For an unknown emf, the null position

occurs when the sliding contact is 58 cm from the left end with

an uncertainty in position of 0.30 mm. (a) Find the percentage

error in determining the unknown emf, assuming the instrument

is accurately calibrated, (b) If the current in the slide wire is

doubled, find the percentage error in the measurement, assum-

ing the position uncertainty is still 0.30 mm.

FIGURE 29-32

Problem 29B-29.

29B-30 Figure 29-33 shows the series resistances inside a

multirange voltmeter. The meter movement G has an internal

resistance of 500 Q and indicates full-scale deflection when a

current of 0.500 mA is present. The markings on the terminals

are as indicated. Find the values of Rj, R,- and R3.

Ri Ri R3

r©-AAVj^vVW^\^

6
IV

6

10 V
6

100 V

FIGURE 29-31

Problem 29B-28.

FIGURE 29-33

Problem 29B-30.

29B-31 A galvanometer is often made into a multirange

ammeter through the use of an Ayrton shunt such as that shown
in Figure 29-34. If the galvanometer has a resistance of 1000 Q
and a full-scale sensitivity of 50 /iA, find the values of R,, R2,

R3, and R4 such that the meter will deflect full scale for 10 mA,
100 mA, 1 A, and 10 A.

29B-32 The figure of merit of a voltmeter is defined as the

total resistance of the meter divided by the full-scale voltage



O.'^^

Galvanometer

50 ma i^ jy^- ^^

AAVyA^'V-

Input

FIGURE 29-34

Problem 29B-31.

reading. Prove that, for a multirange voltmeter (see Problem

29B-30), the figure of merit is the same on all voltage scales.

29B-33 Refer to the previous problem and prove that the

figure of merit is also equal to the reciprocal of the current in the

galvanometer movement that produces a full-scale deflection.

29.6 RC Circuits

29A-34 A capacitance C discharges through a resistance R.

How long does it take for the charge on the capacitor to reduce

to l/e'^ of its initial value?

29A-35 Verify that the product RC has dimensions of time.

29B-36 How many time constants elapse while charging

a capacitor in an RC circuit to within 2% of its maximum
charge?

29B-37 A 10-/<F capacitor is charged by a 10-V battery

through a resistance R. The capacitor reaches a potential dif-

ference of 4 V in a period of 3 s after the charging began. Find

the value of R.

29B-38 Suppose that we charge a capacitance C = 8 //F by

connecting it in series with an emf <? = 20 V (with negligible

internal resistance) and a resistance K = 500 kQ. (a) What is the

final energy stored in the fully charged capacitor? (b) By direct

integration of jo i^Rdt, show that the thermal energy devel-

oped in the resistor equals the energy stored in the capacitor.

29B-39 Verify that q = SCil - e''"^^) satisfies S - iR

-

qlC = 0.

29B-40 A capacitor has been fully charged with a 9-V bat-

tery. A 20 000-Q/V voltmeter set on its 10-V range is attached

to the capacitor. The voltmeter reading drops from 8.00 V to

5.60 V in 5 s. Calculate the capacitance of the capacitor.

2 9B-4 1 A 20 000-Q/V voltmeter set on a 100-V scale is con-

nected to a charged capacitor. If the reading on the voltmeter

reduces to half its initial value in 2 s, find the capacitance of

the capacitor.

29B-42 A 3-|iF capacitor is initially charged to a potential of

200 V, then isolated. Because of leakage through the dielectric,

5 min later the potential hias dropped to 185 V. Find the leakage

resistance between the plates of the capacitor.

Additional Problems

29C-43 Derive the following equations that transform the

"wye" configuration of resistors shown in Figure 29-35b into

the "delta" configuration shown in Figure 29-35a.

Ri = {RaRb + Rb^c + RcRa)/Rc

R2 = (RaRb + RbRc + RcRaVRa

R3 = (RaRb + RbRc + RcRa)/Rb

1

CO

(a) A "delta" circuit. (b) A "wye" circuit.

FIGURE 29-35

Problems 29C-43 and

29C-45.

29C-44 In Figure 29-36, a network of 12 resistors, each with

a resistance R, is joined so that each resistor forms the edge

of a cube. Find the resistance between diametrically opposite

vertices. (Hint; apply a potential difference across these vertices

and identify points of equal potential, which then may be joined

by a resistanceless wire. Noting certain symmetries will be

helpful.)

FIGURE 29-36

Probleir 29C-44.

29C-45 The "delta" network of resistors, shov^m in Figure

29-35a may be transformed into a "wye" network, shown in

Figure 29-35b, such that the resistance between corresponding
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terminals is equal. Derive the following values for R^, Rg, and

Re-

R^ = RiRi/iR, +R2 + R3)

Rg = R^R2/(Ri +R2+ R3)

Rc = RjRi/iR-i + R2 + R3)

29C-46 Figure 29-37 shows six terminals on an insulating

circuit board. Each terminal is connected to every other terminal

by a wire of resistance 2 Q. (The wires make electrical contact

only at the terminals, not where they cross one another.) Find

the net resistance between any two terminals and explain why

it is the same for every possible pair of terminals. (Hint; avoid

a "brute-force" method of resistance calculation. Instead, con-

sider the symmetry of the network and apply the hint given

in Problem 29C-57.)

FIGURE 29-37

Problem 29C-46.

29C-47 Consider the resistor network shown in Figure

29-38. Each resistor has the same value R. Show that the equiv-

alent resistance between the terminals A and B, as the number

of the network elements becomes very large, is R(l -F ^3).

[Flint: if just one element is present, the equivalent resistance

is Ri = 2R -F R. If two elements are present, the equivalent

resistance is Rt = 2R -F RRi/(R -F Ri). Continue the series

until you can deduce R„.]

c^^A/V

o—^A'V

R

R

R

AAV

R

R

Network

I

element 1

FIGURE 29-38

Problems 29C-47 and

29C-49.

29C-48 A 1000-Q resistor is attached to the terminals of a

battery. The voltage across the resistor is 45 V (measured with

a 20 000-Q/V voltmeter). When the resistor is replaced by a

3300-n resistor, the voltage is 47 V. Calculate the open-circuit

voltage of the battery and the internal resistance of the battery.

29C-49 A long parallel pair of current-carrying wires with

insulation between them may be represented by a network simi-

lar to that of Figure 29-38. F^owever, for this problem, the hori-

zontal resistors R^^ have a very low value, while the vertical

resistors Ry (representing the insulation between the wires)

have a very high value. The horizontal resistors represent the

resistance per unit length of the wires, Vi/L = IR^IL, and the

vertical resistors represent the insulation resistance per unit

length, r,/! = Rx'L. Show that, if r, » r^ the resistance per

unit length between the terminals A and B is sjrJr2iL.

29C-50 A resistor R^ is in series with a resistor Rg. The

equivalent resistance of the series combination is unchanged if

R^ is shunted by a resistor R and Rg is increased by the resis-

tance R. Find the value of R in terms of R^. (The value of R

is independent of Rg.)

29C-51 A power source consists of a seat of emf S and an

internal series resistance r. The source delivers power to an

externa! (variable) load resistance Rl- Show that, as R^ is varied,

the maximum power developed in R^ occurs when Rl = ''•

This is known as the nuiximum-power-transfer theorem.

29C-52 The resistance of a resistor may be measured with a

battery, a voltmeter, and an ammeter by either of the following

methods: (1) the ammeter is inserted in series with the parallel

combination of the resistor and voltmeter or (2) the voltmeter is

in parallel with the series combination of the resistor and am-

meter. Suppose that the voltmeter has a resistance of 2000 0,

the ammeter has a resistance of 20 Q, and the battery has negli-

gible resistance, (a) With method (1), the voltmeter indicates a

voltage of 40.0 V and the ammeter indicates 0.100 A. Deter-

mine the resistance of the resistor, (b) If method (2) is used, cal-

culate the indications of the voltmeter and the ammeter, (c) If

we determine the resistance by simply dividing the voltmeter

reading by the ammeter reading, which method would provide

the most accurate value of the resistance? Include clear circuit

diagrams with your solution.

29C-53 A source of power with an output voltage V^ sup-

plies power to a load resistance R. In certain electronic applica-

tions, it is necessary to reduce the output voltage of the power

source to a lower value VS without changing the resistance into

which the source provides power. This is accomplished through

the insertion of an attenuator pad as shown in Figure 29-39.

/

A^AA^v

Source Vi Rl Rl' V. R'

R.

aaMav
I Attenuator pad I

FIGURE 29-39

Problem 29C-53.
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With the attenuator pad in place, the source still "sees" an

equivalent resistance R. Show that R, = R(\/, + l/,)/(V, - Kj)

and R, = RiV,- - V,-)/4ViV,.

29C-54 Three batteries, with emf's of ^j, if 2. and (^3, have

internal resistances r^ rj, and rj, respectively. The batteries are

connected in parallel (positive terminals joined and negative

terminals joined). Derive an expression for the terminal voltage

of the combination of batteries when no external load resistor

is present.

29C-55 We obtain the value of a resistance by measuring

the current through the resistor and the voltage across it, as

shown in Figure 29-40. The voltmeter indicates 30 V on a 50-V

scale and the ammeter indicates 150 mA on a 500-mA scale.

What is the value of the resistance R if both meters have a

galvanometer with a I-mA full-scale sensitivity?

Ammeter

Voltmeter

FIGURE 29-40

Problem 29C-55.

29C-56 A variable resistor is constructed from a closed cir-

cular hoop of resistance wire. (When cut and measured end to

end, the resistance wire has a total resistance R.) As shown in

Figure 29-41, one terminal is at a fixed point on the closed hoop
and the other terminal is a sliding contact, (a) In terms of R
(in ohms) and the angle 6 (in radians), find an expression for

the resistance r between the terminals, (b) When a potential dif-

ference is applied across the terminals, what practical difficulty

might be encountered if the sliding contact is near = 0°?

FIGURE 29-41

Problem 29C-56.

29C-5 7 Consider an infinite network of resistors, as shown
in Figure 29-42. If each resistor has the same value R. find the

resistance between points A and B. (Hint; connect a battery be-

tween point A and infinity, causing a current / into point A.

Next connect another battery between point B and infinity,

causing a current / out of point B. Then apply the superposition

theorem.) Explain your reasoning clearly.

FIGURE 29-42

Problem 29C-5 7.

29C-58 A 4-/iF capacitor, initially charged to 100 V, is in

series with a 15 000-Q resistor. The series combination is con-

nected to an uncharged 10-^<F capacitor. Calculate the current

through the resistor when the voltage across the 4-/iF capacitor

is reduced to 50 V.

29C-59 A voltage source may be considered as a seat of emf

(f in series with an internal resistance r. When measured by a

20 000-Q/V multirange voltmeter, the terminal voltage is 95 V
on the 100-V scale and 120 V on the 200-V scale. Determine

(J and r. (The difference in the voltage readings is not a meter

malfunction; the meter accurately reads the terminal voltage.)

29C-60 In Figure 29-43, the switch is put in position A and

remains there until the capacitor C is fully charged, (a) What is

the time constant of the charging circuit? (b) What is the initial

charging current? (c) How long does the potential across C take

to reach 50 V? (d) What is the energy stored in the fully charged

capacitor? After the capacitor is fully charged, the switch is then

moved to position B. (e) Find the time constant of the discharge

circuit, (f ) What is the initial discharging current? (g) What is the

voltage across the capacitor 1 s after we switch to position B?

130 kn

B9
60 Vi

50 kfi

C: 4/iF

FIGURE 29-43

Problem 29C-60.



Problems 683

29C-61 Consider the circuit in Figure 29-44. With the capac-

itors initially uncharged, the switch is moved from A to B and

remains there until the lO-^lF capacitor is fully charged. The

switch is then moved to position C. By direct calculation of

{i^Rdt, calculate the thermal energy developed in Rj after

switching from A to B. After the switch to C, determine the

energy finally developed in Rj.

B C
o o

100 V

A

10 /(F

son

Ri

AAV
30 n

5;(F

FIGURE 29-44

Problem 29C-61.

29C-62 Consider the circuit of Figure 29-45. Initially, there

is no charge on the capacitor when the switch is closed at t = 0.

10 /^F

3 kQ

(a) Make a table showing the initial values (just after f = 0) of

the current through each element—!i2, '15, I3, and i^—and the

initial voltage across each element

—

v-^j, etc. (b) Repeat (a) for

the final steady-state values of currents and voltages.

29C-63 The circuit for a simple sawtooth oscillator is shown

in Figure 29-46a. The neon bulb conducts with very little resis-

tance when the voltage across the bulb reaches 90 V, and it

stops conducting when the voltage drops to 70 V. Calculate

the frequency / of the oscillator.

100 V

33 kO

R
4mF

c Neon
bulb

,®
Output

voltage

(a)

Output

voltage

90 V

70 V

FIGURE 29-45

Problem 29C-62.

FIGURE 29-46

Problem 29C-63.



The Magnetic Field

(Writing on his experiments and discoveries in magnetism)

We have dug them up and demonstrated them with much pain and

sleepless nights and great money expense. Enjoy them, you, and, if ye can,

employ them for better purposes.

WILLIAM GILBERT
On the Lodeslone (published in 1600)

,>>'

-/WiSr"^ -'ki • c^ < -'-' .'V,'

FIGURE 30-1

Iron filings sprinkled on a piece of

paper covering a bar magnet arrange

themselves in lines that suggest the

magnetic field pattern.

30.1 Introduction

In previous chapters we have discussed gravitational and Coulomb forces, both

of which are inverse-square laws that do not depend on the relative motion

of masses or charges. We now take up a type of force that does depend on

the motion of charges. If two charges are both moving, in addition to Coulomb

forces they exert a magnetic force on each other. The situation is a bit com-

plicated, so we will separate the discussion into two parts. In one part we will

show how a moving charge generates a magnetic field; in the other part, a

second charge moves in the presence of this field and experiences a force. (We

also followed this procedure in our discussion of Coulomb forces by considering

one charge as the source of an electric field; the field, in turn, produces a force

on another charge.) This chapter describes the effect that a magnetic field has

on a moving charge, and the next chapter will discuss the origin of the magnetic

field.

30.2 Magnetic Fields

The earliest recorded observations of magnetism were those of the Greeks

about 2500 years ago. The word magnetism comes from the Greek magnetis

lithos, a certain type of stone containing iron oxide {magnetite Fe304) found

in Magnesia, a district in northern Greece. This "lodestone" could exert forces

on similar stones and on pieces of iron. It would also impart this magnetic

property to a piece of iron it touched. The early Chinese were perhaps the

first to discover that, if a splinter of lodestone were suspended by a thread, it

would align itself in a north-south direction. This suggests that the earth

behaves like a large magnet. No doubt you have seen iron-filing patterns of

the magnetic field surrounding a bar magnet (Figure 30-1). In the presence of
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a magnetic field, iron filings themselves become small magnets, aligning along

the field directions and attracting each other to form chains that suggest the

pattern of the field.

Since a compass needle always points in a unique direction in a magnetic

field, the field has vector properties. How do we determine the existence of

a field in a given region of space? The formal operational definition of a mag-

netic field is as follows. We place a test charge in the space. If there is a force

exerted on the charge when it is at rest, we conclude that an electrostatic field

is present. If still another force arises when the charge is moving, we conclude

that a magnetic field also exists in the space. As a result of such experiments,

the following facts concerning magnetic fields emerge:

The magnitude of the force is proportional to the magnitude of the test charge.

The direction of the force is always perpendicular to the direction of motion.

When the charge is moving in a given direction, the force is proportional to

the speed, but for a given speed the force varies with the direction of motion.

{Thus the field must he a vector.)

The fact that the force is always perpendicular to the velocity implies a vector

cross-product definition for the magnetic field. The following equation, based

on experiment, defines the magnetic induction, also called the magnetic

flux density, B. We will follow the current widespread (although somewhat

loose) usage and call it simply the magnetic field.' The force F on a charge

q that has a velocity v in the presence of a magnetic field B is

MAGNETIC ^ „ , .

FIELD B F = <?v X B (30-1)

The units for the magnetic field are newton • seconds/coulomb • meters (N-s/

C-m), called^ a tesla (T). Because F is always perpendicular to the plane con-

taining V and B, we will often need to depict three-dimensional situations.

A magnetic field is represented graphically in the same way we represent

an electric field. Lines are drawn so that their density is proportional to the

magnitude of the magnetic field, and the tangent to a field line at a given

point represents the direction of the field at that point. As in the representation

of electric fields, the number of lines used to represent a given magnitude of

magnetic field is arbitrary. For example, we may associate 10 lines/m or

10 lines/m" with a given field, depending on convenience. There is no such

thing in nature as a field line; we sketch the lines merely to help us visualize

the properties of the magnetic field. The iron-filing patterns shown in Figure

30-1 depict the field directions fairly well, but do not give a good representation

of the magnitude of the fields.

The end of a magnetized compass needle, which seeks the northerly

direction, is called the north pole of the needle; the other end is the south pole.

Consistent with Equation (30-1), the direction of the magnetic field created by

a magnet is that the field lines leave the north pole and enter the south pole.

Formally, the term magneiic field strength has been assigned to the vector H = B//i, where /i is the perme-

ability of the space occupied by B.

^ This unit honors Nikola Tesla (1856-1943), a Serbo-American engineer who devised many ingenious

methods of electrical power generation and distribution. .'Vmong other accomplishments, he designed the

Niagara Falls power system. One tesla is a strong field: the largest magnetic field achieved (as of Spring

1987) was a pulsed field of 68 T, lasting for 5.6 ms, at the Francis Bitter National Magnet Laboratory,

Massachusetts Institute of Technology. A smaller unit (ft-om the cgs system) is the gauss (G): 1 G =
10"'' T. The earth's field at the equator is roughly 0.3 G, while that of a small bar magnet may be a

few hundred G. A still smaller unit, called the gamma (y), is used in geophysics and space physics:

ly = 10"^G = 10"' T.
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FIGURE 30-2

A way of depicting field lines

peqiendicular to the plane of the

diagram.

Out of the paper. (The dots

suggest the points of arrows

coming toward the reader.)

X X X X

X X X X

X X X X

X X X X

(b) Into the paper. (The crosses

suggest the tail feathers of

arrows going aivav from the

reader.)

(a) The usual right-hand rule for

the cross product F = (7v xB.

When the fingers curl around in

the direction of v rotating into

the direction of B, the

extended thumb points in the

direction of F.

(b) Another way of thinking about

the right-hand rule for cross

products. When the fingers

point in the direction of the field

lines of B and the thumb points

in the direction of the velocity

V, the force F is in the direction

your palm would push.

FIGURE 30-3

Two different ways of remembering the

right-hand rule.

A convenient way of indicating magnetic fields perpendicular to the plane

of a diagram is shown in Figure 30-2. In perspective sketches (refer to Figure

30-3b), idealized magnet poles are sometimes used to help establish the three-

dimensionality of the diagram, with field lines emerging from the north pole

and entering the south pole. The fringing fields are usually omitted in such

sketches.

The spatial relationship among the force, velocity, and magnetic field

vectors expressed in Equation (30-1) may be visualized by the usual right-

hand rule shown in Figure 30-3a. In this convention, the fingers of the right

hand curl around in the sense of rotation established when the first vector v

is rotated (through the smallest angle) into the direction of B. The extended

thumb then points in the direction of F. An alternative convention useful in

dealing with fields is shown in Figure 30-3b. Here, the hand is held flat (with

the thumb in the plane of the fingers). The fingers of the right hand point in

the direction of the magnetic field. You can remember this by identifying the

four fingers with field lines, which are spread through space. The thumb points

in the direction of the velocity of the charged particle. (The hitchhiker putting

out his thumb to ask for a ride on the moving particle!) By the definition of

a vector cross-product, the force F is in the direction: q\ X B = {qvB sin 0)n

where n is a unit vector perpendicular to both v and B according to the

right-hand rule. The angle 6 in this expression is then the angle between the

thumb and the first finger. The magnetic force is outward from the palm of

the hand and can be identified by the direction one would push.

When applying the right-hand rule, we will always consider ^ as a positive

charge. If q is negative, we simply determine the direction of the force for a

positive charge, then reverse the direction of the force. As an illustration, con-

sider the magnetic force on a negative charge moving in an easterly direction

near the equator, where the magnetic field of the earth is approximately hori-

zontal in a northerly direction. When the right-hand rule is applied, the

fingers point north and the outstretched thumb points east. The palm is up-

ward, indicating an upward force on a positive charge. However, since the

charge is negative, the force is downward.

30.3 Motion of a Charged Particle

in a Magnetic Field

An important feature of the motion of a charged particle in the presence of a

magnetic field arises from the fact that the magnetic force is always at right

angles to the velocity. Therefore, tJie magnetic force does no work on the particle;

the particle's speed remains constant, though its direction changes in response

to the sideways deflecting force of the magnetic field.

If the charged particle is given a velocity v at right angles to B, the

particle will travel in a circular path at constant speed, with the magnetic force
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providing the centripetal force necessary to cause the centripetal acceleration:

V R (see Figure 30-4). Since v and B are at 90°, the magnitude of the magnetic

force is

f = r/|v X B| = qvB sin 90° = qvB

The radius R of the circular path may be found from Newton's second law.

For the radially inward direction,

EF = ma

qvB = m

R
mv

The momentum mv of the particle is related to its kinetic energy K by

mv = yJZmK (30-4)

Combining the previous two equations yields

yJimK
R

qB
(30-5)

X X X X
B into the paper

(a) The velocity v.

X X X X
(30-2)
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The rotational frequency of the circular motion is called the cuclotwn

frequency. The name comes from the fact that motion of this type originates

in a cyclotron, a type of machine that accelerates charged particles (see Fig-

ure 30-8). We may obtain the cyclotron frequency from Equation (30-2):

qvB

For circular motion, v = 2nfR. Substituting this value and solving for / leads

to

CYCLOTRON
FREQUENCY

B

2n \m
(30-6)

FIGURE 30-5

In a uniform magnetic field, a charged

particle can travel in a helical path at

constant speed. The path lies on an

imaginary cylinder of constant radius.

where / is the rotational frequency of circular motion in units of revolutions

per unit time. This is the characteristic frequency of a particle of a given

charge-to-mass ratio iq/m) in a uniform magnetic field. Note that the cyclotron

frequency is independent of the speed and energy of the charged particle.

If a charged particle moves parallel to the field B, there is no force on

the particle because the cross-product v x B is zero. For motion at an arbitrary

angle (other than 90°) with respect to the field, its motion will be a helix rather

than a circle (Figure 30-5). Since the velocity of the particle can be resolved

into two components, parallel and perpendicular to the field, the cyclotron fre-

quency is also the characteristic frequency for the helical motion.

The motion of charged particles in Ho»uniform fields can be rather com-

plicated. However, there is one simple example worth mentioning. Figure 30-6

depicts an axially symmetric magnetic field that is stronger at the ends than

in the middle. A charged particle approaching one end as it moves in a helical

path will experience a magnetic force F having a horizontal component that

"reflects" the particle back toward the middle. This configuration is called a

magnetic bottle because it can trap charged particles within a confined region

as they oscillate in helical paths back and forth between the ends of the

bottle. In recent years, magnetic bottles have been used to confine plasmas in

controlled fusion experiments. Unfortunately, the bottle "leaks" somewhat,

since particles traveling along the magnetic field lines escape out the ends. To

solve this problem, the ends of the bottle are often joined together to form a

toroid.

V into the paper

FIGURE 30-6

A magnetic bottle can trap charged particles by "reflecting" their helical motions at

each end.



30.3 Motion of a Qiarged Particle in a Magnetic Field 689

(a) A cross-section of the Van Allen belts that surround the earth.

The earth's magnetic field acts as a magnetic bottle, trapping high-

energy electrons and protons from the sun within two regions.

The charged particles spiral between the north and south magnetic

poles of the earth, with a typical round trip taking about one

second. The inner belt traps mainly protons, while the other belt

traps mainly electrons. [The belts are named after their discoverer,

Dr. James Van Allen, who insisted that a Geiger counter to detect

charged particles be carried aboard the United States' first

successful earth-orbiting satellite (1958).]

(c) A satellite photo of the southern polar region of the earth. The
bright area in the upper left is the sunlit portion of the earth;

the circular ring is produced by aurora. (A similar auroral ring

also occurs at the north magnetic pole.) The process that

produces aurora is the following. Bursts of charged particles

ejected from solar flares on the sun reach the earth in a few

hours or days, causing extra numbers of particles in the Van

Allen belts to leak out near the magnetic poles where the

magnetic-bottle effect is "leaky." Because of the configuration

of the Van Allen belts, most aurora occur in circular zones

about 2000 km in diameter, centered on the magnetic poles.

When the charged particles collide with gases in the upper

atmosphere, they cause atoms of oxygen and nitrogen to glow,

producing the spectacular shimmering displays called auroras .

This image was obtained in the ultraviolet (primarily atomic

oxygen, 130.4 nm) and represents data received over a period

of 12 min by the University of Iowa's auroral-imaging

instrumentation.

FIGURE 30-7

Charged particles near the earth.

(b) The solar "wind," a stream of electrons

and protons emanating from the sun,

"blows away" the earth's magnetic

field pattern in a direction away from

the sun. The incoming particles

impinge at speeds of roughly 400-800

km/s, creating a bowed shock wave
and a long cometlike tail to the earth's

field that extends for millions of

kilometers. The magnetosheath is a

region of subsonic plasma flow behind

the shock wave. Some particles are

trapped in the Van Allen belts and

others are diverted away. The solar

wind is usually fairly steady but can

have occasional severe gusts due to

activity on the sun, such as sunspots

and solar flares.

(d) Auroral bands photographed in Alaska,
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The Cyclotron

Cmest O. Lawrence was awarded the Nobel Prize in 1939 for his develop-

ment (with M. S. Livingston) of the cyclotron, a device that accelerates

charged particles to high energies for use in nuclear experiments. Its basic

components are a short cylindrical box made of copper sheet metal,

divided into two sections called dees (see Figure 30-8). The dees are in

a vacuum chamber that is evacuated so the charged particles can move
without colliding with air molecules. A magnetic field is established

normal to the plane of the dees. A source of alternating voltage is con-

nected to the dees, creating an electric field across the gap between the

dees that reverses its direction every half cycle. Near the center of the

dees, an ion source supplies charged particles such as protons, deuterons,

or alpha particles, giving them a small velocity in the plane of the dees.

Within the copper dees, the metal walls shield the ions from electric

fields. However, the magnetic field is not shielded, causing the ions to

move in a semicircle. Consider an ion that arrives at the gap between

the dees just when the electric field between them is a maximum and in

a direction to accelerate the ion across the gap. Subsequently, the ion

will move in a larger semicircle because of its greater speed. If the fre-

quency of the voltage reversals is correct, the ion arrives again at the

gap just as the electric field reaches its maximum value in the opposite

direction, again accelerating the ion. Each time it crosses the gap, the ion

thus gains kinetic energy, traveling in larger and larger radii until it

approaches the circumference of the cylinder, where a negatively charged

deflecting plale pulls the ion from its circular path and allows it to pass

out of the chamber through a thin window. The key to the operation of

a cyclotron is that the travel time for each semicircular path is the same. As

Equation (30-6) shows, the cyclotron frequency is independent of the

speed or of the radius of the circle.

There is an upper energy limit—about 22 million electron volts

(22 MeV) for protons—because of relativity. As more work is done on

a particle to increase its speed, because of relativistic effects the speed

does not increase sufficiently to keep in step with voltage reversals. The

difficulty is overcome in the synchrotron, where both the frequency and

the magnetic field are varied, keeping the orbit radius essentially constant.

This method has the economical advantage of requiring a magnetic field

only in the region of the orbit, rather than in the entire area of the circle.

FIGURE 30-8

Under the influence of the magnetic

field, the charges move in semicircular

paths within the dees of the cyclotron.

Alternating

voltage

I- Deflecting plate

Beam
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EXAMPLE 30-2
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EXAMPLE 30-3

A stream of electrons passes through a velocity filter when the crossed magnetic

and electric fields are 2 x 10"^ T and 5 x 10* V/m, respectively. Find the id-

netic energy (in electron volts) of the electrons passing through the filter.

SOLUTION

We find the speed from Equation (30-8):

£ 5 X 10* V/m

B 2 X 10"^ T
= 2.50 X 10''

Substituting numerical values in the expression for kinetic energy gives

K = ~mv^ =-(9.11 X 10"^' kg) (2.50 x 10^-1

K = 2.85 X 10"
leV

1.602 X 10 ^"^
J

V
'

Conversion

ratio

17.8 eV

30.5 Magnetic Force on a

Current-Carrying Conductor

In most applications, moving charges are confined to move through conduc-

tors. In the case of a metal wire, the charges are electrons moving with the

drift velocity v^. We shall now investigate the total force on all these moving

charges when the conductor is in the presence of a magnetic field.

Equation (30-1) gives the force on one charge:

F = ^v X B

The total number of moving charges in a wire of length /^ is the number of

conduction charges per unit volume n times the volume of the wire segment

A^. Thus, the total force on a wire segment of length / is

F = ^(v X B)nA^ (30-9)

In a previous chapter [Equation (28-4)], we found the current / to be

/ = nqv^A

Combining these two equations and identifying v with the drift velocity v^ of

(positive) charges, we obtain

FORCE ON A CURRENT-
CARRYING CONDUCTOR
IN THE PRESENCE OF
A MAGNETIC FIELD

//"x B (30-10)
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Here, we maintain the vector form of the magnetic force by defining the length

of the conductor as a vector € in the direction of the conventional current (the

direction positive charges move).

Equation (30-10) assumes the wire segment is straight and the magnetic

field is uniform. If the wire segment is of arbitrary shape and if the field varies,

we recognize that the force rfF on a small element di of the wire is

^F = Id€ xB (30-11)

Then, to find the total force, we integrate over the entire length of the wire

using the value of B appropriate for each element d€.

EXAMPLE 30-4
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FIGURE 30-13

The normal to a current-carrying loop

is determined by this right-hand rule:

the fingers curl around in the current

direction and the extended thumb points

in the direction of fi.

(a) Perspective view.

(b) Side view.

FIGURE 30-14

A rectangular current-carrying loop

that has an arbitrary orientation in a

uniform, vertical magnetic field B.

SOLUTION

Since the conductors leading into and out of the wire are parallel to the magnetic

field, the cross-product in F = /^ x B involves sin 0° = 0. Thus the force on

these conductors is zero.

The force ii¥ on an incremental length d€ of the loop is given by Equation

(30-11): rfF = ld€ X B. Since B is perpendicular to d€ over the entire length of

the semicircular loop, the incremental force d¥ is directed radially outward every-

where and has a magnitude

dF= IBd€

We now make use of a symmetry argument. For every incremental force df on

the left side of the semicircular loop, there will be a corresponding increment

symmetrically located on the right-hand side. The x components of these two

forces are equal but in opposite directions, so they add to zero. However, the

1/ components are in the same direction. Therefore, as we sum up the forces

for the entire semicircle, we are left with only the sum of the y components:

dFy = IBR sin dO. Integrating gives

f^, = {dT^. = IBR f" sin ede = IBR{- cos 0)|^
= 2IBR

(in the +y direction)

Note that this would be the force on a straight conductor along the diameter

of the circular loop. Actually, the shape of the loop is unimportant. As shown in

a problem, the net force on any arbitrarily shaped segment of wire that lies in a

plane perpendicular to a field depends only on the length of the gap between the

current input and the current output. This example leads to the conclusion that

the net force on a closed current-carrying loop {of any shape) in a uniform magnetic

field is zero. The net force is zero not because the force on each segment of the

loop is zero, but because the sum of the forces on all segments is zero.

30.6 Magnetic Dipoles

Although a planar current-carrying loop in a uniform magnetic field experiences

no net force, it may experience a torque. The behavior is analogous to that of an

electric dipole in a uniform electric field. In fact, the analogy is so close that we
will define a current-carrying loop as a magnetic dipole, in much the same way as

we called a pair of charges of opposite sign an electric dipole.

We begin by defining a vector that is normal to a current-carrying loop.

As shown in Figure 30-13, we define the direction of the normal by curling the

fingers of the right hand around the loop so that the fingers circle the loop

in the direction of the conventional current. The extended thumb points in the

direction of the desired normal. This is the direction of the vector fi defined

shortly.

Consider the rectangular loop in a magnetic field shown in Figure 30-14.

Note how /I is related to the direction of the current around the loop by the

angle 6 between fi and B. The force on each of the sides of the rectangle is

given by Equation (30-10):

F = // X B

The forces Fj and F2 shown in Figure 30-15a are equal, but opposite in direc-

tion, so their contribution to the net force is zero. Also, since they are collinear,

they produce zero net torque. The forces F3 and F4 are equal and opposite,

so they, too, contribute zero net force. However, because they are not collinear,
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(a) Perspective view. (b) Side view.

FIGURE 30-15

The forces on each side of a rectangular

current-carrying loop in a uniform

magnetic field B. These forces exert a

net torque on the loop, trying to align

its magnetic moment ft in the direction

of B.

they form a couple (see Figure 13-12) and produce a torque about an axis (*)

normal to the view of the loop in Figure 30-15b. If 6 is the angle between B
and the normal to the loop (the vector fi), the magnitude of the torque about

(*)is

T = f, sin e + F^

Since fj = ^4, T = F^a sin 9 (or F4,a sin 6) (30-12)

Since sides 3 and 4 are perpendicular to B, from F = /^ X B we have

f3 = IbB

Substituting this value in Equation (30-12), gives

T = InbB sin (30-13)

Let A represent the area ab. The factor lA is called the magnitude of the

magnetic dipole moment fi. The direction of fl is defined by the right-hand

rule described previously. Using the notation A for the area normal vector

(whose magnitude is the area A), we write

MAGNETIC DIPOLE
MOMENT ft

For N turns:

/A

NIA

(the direction of ft is normal to

the plane of the loop of area A
according to the right-hand mie)

(30-14)

The units of fi are ampere-meters squared (A-m").

We write Equation (30-13) using vector notation as follows:

TORQUE ON A MAGNETIC
DIPOLE IN A MAGNETIC
FIELD B

fl xB (30-15)

Note the close similarity to the expression for torque on an electric dipole p in

an electric field E:

p X E
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FIGURE 30-16

The clockwise currents around all the

individual rectangles approximate the

current / around the loop. This is

because the currents in the sides of

adjacent rectangles are in opposite

directions, and (in the limit of infinitely

thin rectangles) these currents inside the

loop add to zero.

Although this derivation was based on a rectangular loop, it is valid for

am/ planar-loop shape. That is.

/i = (/)(area of the loop) (30-16)

Figure 30-16 provides the basis for this conclusion. A current-carrying loop

of arbitrary shape may be considered as a group of adjacent current-carrying

rectangles. (The greater the number of rectangles, the better the approximation

to the loop.) The currents in all the rectangles are clockwise. Thus, the currents

of adjacent rectangles cancel out in the interior of the loop, leaving only the

current around the perimeter. In this way, we generalize the derivation from

that of a rectangular loop to a (planar) loop of any shape whatever.

A torque on a current-carrying loop in a magnetic field implies a potential

energy associated with the orientation of the loop with respect to the field

direction. Following the similar development of a potential energy associated

with an electric dipole in an electric field (Section 22.5), we start with the

general definition of potential energy for rotation:

L/« U« •rJ Be
X dd

Since 9 increases counterclockwise, as indicated in Figure 30- 14b, T and

dO are antiparallel. Therefore, cos 180° = — 1, and

Ue-U,So r tdd

Substituting the expression for T given by Equations (30-13) and (30-14) and

integrating, we have

U, - Ug^ = r i.iB sin Ode = -/ii?(cos 9 - cos ^q)

Choosing the zero reference orientation for potential energy to be Ug^ =
when 9q = 90°, we have

U= -fiB cos 9 (30-17)

This suggests the vector dot product notation:

POTENTIAL ENERGY U
OF A MAGNETIC DIPOLE
IN A MAGNETIC FIELD

(L/ = when fi and

B are at 90°)

U (//•B) (30-18)

Note that the potential energy of the dipole is a maximum when ft is antiparallel

to B and a minimum when fi is parallel to B, with the zero reference orientation

midway between at 90°. This is the same notation we used for the potential

energy of an electric dipole in an electric field. Equation (24-20):

U =

Since physical systems tend to move toward positions of minimum potential

energy, the magnetic dipole fi tends to align itself in the direction of the

magnetic field B.
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EXAMPLE 30-6

A wire is formed into a circle with a diameter of 10 cm and placed in a uniform

magnetic field of 3 x 10"^ T. A current of 5 A passes through the wire. Find

(a) the maximum torque that can be experienced by the current-carrying loop and

(b) the range of potential energy the loop possesses for different orientations.

SOLUTION

The magnetic dipole moment of the current-carrying loop of wire is given by

Equation (30-16):

// = (/)(area of the loop)

Substituting numerical values gives

H = {5 A)(7r)(0.05 m)^ = 3.93 x 10"^ A-m^

(a) The torque exerted on a magnetic dipole in a uniform magnetic field is given

by Equation (30-15):

T = ft X B

which has a maximum value when the field and the dipole moment are per-

pendicular, that is, when the plane of the wire loop is parallel to the magnetic

field. Its maximum magnitude is

T = /iB

Substituting yields

T = (3.93 X 10 ^ A-m^)(3 x 10 ^ T) 1.18 X 10 *N-m

(b) The potential energy possessed by a magnetic dipole in a magnetic field is

given by Equation (30-18):

U= -/iB

The maximum potential energy occurs when the dipole moment is antiparallel

to the field, and a minimum occurs when the magnetic moment is parallel

to the field. The range of potential energy is

AU = U^^^ - U„i„ = -fiB cos n-{-nB cos 0°) = ZfiB

Substituting the values for |/ and B, we have

AU= 2(3.93 X 10"^ A-m^)(3 x 10"^ T) = 2.36 x 10"*]

30,7 Applications

Galvanometer

In Chapter 29 we discussed the construction of voltmeters and ammeters, both

of which utilize a sensitive current-measuring device called a galvanometer.

We shall now describe the basic principles underlying the operation of a

galvanometer.



698 30 ' The Magnetic Field

Axis of

rotation

FIGURE 30-17

The basic meter movement of a

galvanometer.

A galvanometer consists of a current-carrying coil in a magnetic field, as

shoM^n in Figure 30-17. Current is conducted to the coil of wire through the

bearings that support the coil and allow rotation about a fixed axis. The con-

nection from one bearing to the coil is through a spiral spring that not only

conducts the current, but also exerts a restoring torque when the coil is rotated

from its equilibrium position. As the loop rotates, the sides of the loop move
in a region of magnetic field B, which is constant in magnitude and always per-

pendicular to the fi of the coil. This is achieved by specially shaped pole faces of

a permanent magnet and a (fixed) iron cylinder inside the loop. Thus the torque

on the coil due to the current depends only on the current and is independent

of the orientation of the loop. The coil is restrained by a spiral spring that

conforms to Hooke's law:

T = —wR
"•spring "^^

The torque on the coil is given by Equation (30-15): z^^-^^ = /i X B. But

since fi is always perpendicular to B,

I

•"coil
= A/B

When the coil is in static equilibrium

or

spring 'coil

kB = nB

Expressing the angle of rotation from equilibrium 6 in terms of the current

through the coil, we have

K
(30-19)

where A is the area of the coil. If the coil has N turns of wire, the total current

/ in the loop is

where Iq is the current through the wire. Then Equation (30-19) becomes

„ fNAB\
e = i~^jIo (30-20)

The angle 6 is measured by a pointer attached to the coil. The angular deflection

6 is directly propwrtional to the current in the coil, so the scale along which the

pointer moves is linear.

EXAMPLE 30-7

A typical galvanometer has the following specifications and parameters: coil area,

1 cm^; number of lums of wire on the coil, 100 turns; spring constant of the spiral

spring, 3 x 10 ~ ^ N-m/rad; and a current sensitivity of 50 /<A for a coil rotation

of 7l/2 rad (full-scale deflection). Find the magnitude of the magnetic field through

which the coil moves.
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SOLUTION
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The drift speed v^ can be expressed in terms of the current and the parameters

of the conductor through the definition of current,

/ = nev^A (30-23)

where n is the number of current-carriers per unit volume and A is the cross-

sectional area of the conductor. In this instance, A = ah. Substituting and

solving for v^, we have

neab

Further substitution into Equation (30-22) gives

BI

(30-24)

Ea
neb

(30-25)

The electric field £ times the width a of the conductor is the potential difference

V across the width. This potential difference is referred to as the Hall potential,

V„

HALL POTENTL\L Vu =
BI

neh
(30-26)

Because the Hall potential depends upon the product BI, if we know the

current, for example, we can determine the value of B by measuring the Hall

potential. Hall-effect probes are commonly used to measure magnetic field

strengths. The other significant feature of the Hall effect is that, if the current-

carriers are positive charges (rather than negative electrons), the polarity of

the Hall potential will be reversed for the same direction of magnetic field and

current. So, in a known field B, the Hall effect can be used to determine the

number and the sign of the current-carriers within the material.

EXAMPLE 30-8

Suppose the conductor shown in Figure 30-18 is copper and is carrying a cur-

rent of 10 A in a magnetic field of 0.5 T. The width of the conductor d is

1 cm and the thickness is 1 mm. Find the Fiail potential across the width of the

conductor.

SOLUTION

The Hall potential is given by Equation (30-26):

BI
Vh =

neb

Copper has a density p of 8.92 x 10* g/m^, a molecular weight (mol. wt.) of

63.546 g/mol. We assume that each copper atom contributes one electron to

the current, so the number « of conduction electrons per unit volume is

PN^

(mol. wt.)
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where N^ is Avogadro's number: 6.022 x 10^"^ atoms/mol. Substituting the

appropriate values gives

8.92 X 10*A U 6.022 x lO^^^-^SJ^j

63.546
g

= 8.45 X 10
28 electrons

Substituting this and other values into Equation (30-26) yields

BI (0.5 T)(10 A)
Vh =

Vh =

,„ electron\/ ,„ coulomb \ ,

8.45 X 10-^ ^— II 1.602 X 10"'^^ 1(1 x 10~^m)
-)v- electr

-J(lx

3.69 X 10"' V

While this potential difference is very small for conductors, the corre-

sponding potential difference for semiconductors is much greater. [See Equation

(30-26): « is smaller for semiconductors than for ordinary conductors.] For this

reason semiconductors are useful as probes in measuring magnetic fields by the

Hall effect.

Analysis of the Hall effect gives us a clearer understanding of the nature

of the force on a current-carrying conductor in a magnetic field. The force on

the conductor is actually an electric force arising from the Hall field. Note that

in Figure 30-18 the net sideways force on the moving charge is zero:

Ff + F.

The magnetic force F^, is produced by a field external to the conductor,

whereas the electric force Fg arises within the conductor due to the Hall effect.

The force on the conductor is (by Newton's third law) equal and opposite to

the electric force on the charge-carriers. So we see that the magnetic force on

a current-carrying conductor is actually electrical in nature.

Linear Mass Spectrometer

Charged particles may be sorted according to their charge-to-mass ratio q/m

by a device illustrated in Figure 30-19. The material to be analyzed is placed

in the oven and heated to a temperature high enough to produce a gas of

ionized particles. The particles leave the oven with a relatively low velocity

and are accelerated by a potential difference between the oven and an aperture.

The particles then leave the aperture with velocities that have essentially the

same component in the x direction. Since the aperture does not collimate the

charged particles perfectly, the particles may also have a small component of

velocity perpendicular to the .r direction. After leaving the aperture, the parti-

cles enter a longitudinal magnetic field, causing them to execute a helical

trajectory. Because the cyclotron frequency is the same for all particles having
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FIGURE 30-19

A linear mass spectrometer. All charged particles with the same q/m ratio have the

same cyclotron frequency, so after one period of their motions, all converge at

the same point along the axis of the spectrometer.

the same q/m ratio, after one turn all such particles will cross the axis at the

same point (if their x components of velocity are the same).

Let us now solve for the charge-to-mass ratio in terms of the other pa-

rameters. The X component of the velocity v^ of a particle leaving the aper-

ture is obtained by the energy relation

qV ftnv^

Solving for v^~ gives vJ = IV (30-27)

Another expression for v^ is v^
T

where T is the time for the particle to execute one turn of its helical trajectory.

T is equal to the reciprocal of the cyclotron frequency / of the particle, given

by Equation (30-6):

f-

Therefore;

In \m

271 \m

Substituting this expression for v^ into Equation (30-27) and solving for qlm

yields

1
m

&K^V
(30-28)

In practice, a small fixed collector of charged particles is placed on the

axis of the spectrometer. The potential V is adjusted until the collection of

charges is a maximum, indicating the convergence of particles. The ratio q/m

can then be calculated using Equation (30-28).
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EXAMPLE 30-9

An electron microscope produces a magnified image on a photographic plate,

utilizing an electron beam rather than light rays. The electron beam is "focused"

by a magnetic field in the same way that a linear mass spectrometer converges

charged particles, (a) Find the magnitude of the minimum magnetic field that

will focus 10-keV electrons at a distance of 10 cm from the source of electrons.

(b) Calculate another value of the magnetic field that will also produce a focusing

of the electrons.

SOLUTION

(a) Focusing an electron beam is identical to operating the linear mass spectro-

meter. Therefore Equation (30-2) is applicable:

1
m

Solving for the magnetic field B, we get

_7i /sVmV'^ _ n

L\ q J
~

0.1 m
"(8X10* V)(9.11 X 10"^' kg)

(1.602 X 10" C)

1/2

B = 2.12 X 10~^T

(b) This is the minimum field required to produce one turn of the helical paths

of the electrons. Equation (30-27) indicates that, if the magnitude of B were

doubled, hvo turns of the helical paths would be executed in the same distance

L, again producing a focused spot. Therefore, focusing would also occur for

B = 4.24 X 10 ^ T

30.8 Magnetic Flux <^b

When we discussed electric fields, we defined in Section 25.2 the electric flux

Og as a measure of the number of electric field lines that penetrate a given

surface area A:

''-=5E- dA

flux (Dg is

Corresponding to this definition of electric flux, the definition of magnetic

(Dg = Jb • dA
MAGNETIC
FLUX <D„

(30-29)

Here, dA is the area element, and the integration is to be carried out over the

entire surface area A. Magnetic flux is measured in SI units of tesla-meters

squared (T-m^), also called a weher (Wb) in older texts. ^ When a plane area A

* This unit honors Wilhelm V^eber (1814-1891), a German physicist who did theoretical and experimental

work on magnetism. The unit is older than the tesla. Therefore, in many existing texts the magnetic field

is referred to in units of webers per square meter, rather than in units of tesla.
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is in a uniform field B, the expression is simply

(a) The plane ol- the loop is

perpendicular to the field lines.

(b) The plane ot the loop makes
an angle ol- 30' with the field

lines. Consequently, the normal

to the area A makes an angle of

60° with B.

FIGURE 30-20

Example 30-10.

(I)„ = B • A = M cos

where is the angle between B and the normal A to the plane.

EXAMPLE 30-10

A uniform magnetic field B = 2 x 10""^ T is perpendicular to the plane of a

circular wire loop of radius 3 cm. (a) Find the magnetic flux <tg that the loop

encloses, (b) If the loop were tilted so its plane makes an angle of 30° with

respect to the field direction, find the magnetic flux that now passes through

the loop.

SOLUTION

(a) As shown in Figure 30-20, the area vector A is parallel to the uniform field

B. Equation (30-29) reduces to

(1)„ = B • A = B/1 cos f?

= (2 X 10 ^ T)(7r)(0.03 m)-(l) = 5.65 x 10 ^ Wb

(b) When the plane of the loop makes an angle of 30° with the field direction, the

vector A (normal to the plane) makes an angle of 60° with B. Therefore:

<Db = B^ cos = (2 X 10 ^ T)(7r)(0.03 m)-(cos 60°) = 2.83 x 10 "^ Wb

30.9 Comments About Units

A difficulty arises in electricity and magnetism because many quantities are

given special names in honor of the early investigators. This obscures the more

fundamental units of meters, kilograms, seconds, and coulombs, and thus makes

it difficult to check the consistency of units in a given equation. Furthermore,

the same quantity may be expressed in a variety of ways, depending on the

problem. For example, here is a partial list of the different units that electric

and magnetic fields may have (the unit listed first is the most commonly used):

Electric Field E

\iy
Tm

s
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Summaty

The magnetic induction or magnetic flux density B (commonly

called the magnetic field) is defined from the relation

F = (jv X B

where F is the force on a charge cj moving in the field with

velocity v. The unit is the tesla [Tj.

The Lorentz force law expresses the forces on a charge in

the presence of both E and B fields:

F = (?(E + V X B)

The force on a current-carrying conductor of length / carry-

ing current / in the presence of a magnetic field is

F = 1€ xB

For an element of current-carrying conductor of length d(:

d¥ = hie X B

The magnetic dipole moment fi oi a current loop of area

A, current /, is

fl = lA (in Am-)

where the direction of fl is given by the right-hand rule: the

fingers curl around in the direction of the current and the ex-

tended thumb points in the direction of ft. The area vector A
is normal to the plane of the loop.

The torcjue t on a magnetic dipole in a magnetic field is

T = ft X B

Note the similarity with the electric dipole case: T = p X E.

The potential energy L/ of a magnetic dipole in a magnetic

field is

U = — (/I • B) (where U = for ft and B at 90°)

Note the similarity with the electric case: U = — (p • E).

The magnetic flux <t>^ is

Og = Tb dA (inTm^)

Note the similarity with the electric flux: (p,: = j E • dA.

Questions

1. Which pairs of vectors in the equation ¥ = q{\ x B) are

always perpendicular to each other and which are not

necessarily so?

2. An oscilloscope has a cathode ray tube, which at one end

produces a stream of electrons that travels the length of

the tube and strikes its face, forming a light spot. By observ-

ing the spot while orienting the tube in various directions,

how can you detect magnetic fields as well as electric

fields? How can the fields be distinguished?

3. An electron, in passing between the poles of a magnet,

experiences a change in momentum. Where is the source

of the force required to produce such a change in

momentum?

4. A cloud chamber consists of a chamber filled with super-

saturated water vapor. A charged particle passing through

the chamber leaves a trail of ions upon which small water

droplets form, thus making the particle's path visible. A
uniform magnetic field is often imposed upon the chamber,

so that the sign of the charged particle as well as its energy

can be determined. Electrons often produce spiral tracks

rather than circular tracks. Why?

5. With simple equipment, is it easier to deflect an electron

beam by an electric field or by a magnetic field?

6. The speed of a charged particle moving in only an electric

field may or may not change, while the speed of a charged

particle moving in only a magnetic field never changes.

Explain.

7. An electron with a kinetic energy greater than its rest

energy has a circular orbit in a magnetic field. Is the radius

of the orbit larger or smaller than that predicted using

nonrelativistic formulas? Explain. (See Chapter 41.)

8. A current-carrying loop lies on the top of a table. Suddenly

a vertical magnetic field penetrates the table top. What

changes in external forces does the loop experience?

9. Conventional current in one direction through a conductor

is equivalent to electron flow in the opposite direction. Is

a magnetic force on the conductor the same whether we

consider the current to be electron current, conventional

current, or a mixture of both?

10. A magnetic dipole is aligned with a magnetic field so that

it is in stable equilibrium with the field. The work required

to turn the dipole end-for-end is 2 ^B. Does the work

required to do this depend on the initial orientation of the

dipole?

11. The magnetic moment of a magnetic dipole is antiparallel

to a magnetic field. Is there a torque on the dipole? Is the

dipole in stable equilibrium, in unstable equilibrium, or not

in static equilibrium?

12. The precise measurement of an electric field involves the

measurement of the force on a charge that is necessarily
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very small. For similar reasons, does the precise measure-

ment of a magnetic field involve the measurement of the

torque on a magnetic dipole that must have a small mag-

netic dipole moment?

13. In «-type semiconductors electrons are the principal cur-

rent-carriers, while in ^^-type semiconductors the current

is carried by deficiencies of electrons called /lo/fs, which

behave like positive charges. How can the Hall effect be

used to determine whether a semiconductor is n-type or

p-type?

14. How would you design a magnetic compass without using

iron or any other magnetic material?

15. Using a galvanometer movement as a start, how would

you design an electric motor?

16. Why is it usually desirable to have a large number of turns

of wire in the rotating coil of a galvanometer?

Why is a linear mass spectrometer that is designed for the

analysis of ionized atoms unsuitable for electrons?

Why is the Hall potential greater for semiconductors than

for conductors?

Can we measure the drift velocity of charge carriers in a

conductor using the Hall effect? If so, how?

How is the description of magnetic flux using no more

than a number of webers incomplete? Why is magnetic

flux Oy not a vector quantity?

If current were to pass through the helical turns of a

stretched coil spring, would the force the spring exerts

increase, decrease, or remain the same? Explain.

22. Parallel current-carrying conductors interact with each

other. How do current-carrying conductors perpendicular

to each other interact?

18.

19

20

21

Problems

30.2 Magnetic Fields

30A-1 At a certain location, the horizontal component of the

earth's magnetic field is 30 /iT in a northerly direction. An
electron moving westward perpendicular to this field has

enough speed so that the magnetic force on the electron bal-

ances its weight. Find the speed of the electron. (The answer

reveals one difficulty in "weighing" a single electron.)

30B-2 At a particular instant, a particle with a charge i;

moves with the velocity v = ii^.x -I- i',,y under the influence

of a magnetic field B = B^\. Derive expressions for the magni-

tude and direction of the force on the charge at that instant.

30B-3 An electron moves with a speed of 3 x 10^ m/s

outward along the x axis. Find the force on the electron if there

is a magnetic field B = 0.4x -1- 0.7y -|- 0.3z (in tesla).

30.3 Motion of a Charged Particle

in a Magnetic Field

30A-4 A 0.15-MeV beta particle (electron) emitted during

the radioactive decay of '^C enters a magnetic field of 0.04 T
in a direction perpendicular to the magnetic field. Find the ra-

dius of curvature of the particle's trajectory.

30A-5 A proton moves in a circle perpendicular to a mag-

netic field. If the radius of the proton's path is 1.00 cm and the

field is 0.5 T, find the kinetic energy of the proton in units of

electron volts.

30A-6 A 4.2-MeV alpha particle (a helium nucleus consisting

of two protons and two neutrons) emitted during the radio-

active decay of ^'^U enters a magnetic field of 0.04 T with its

velocity perpendicular to the field. Find the radius of curvature

of the particle's trajectory.

30A-7 One type of radar oscillator, a magnetron, utilizes

the cyclotron frequency of electrons circulating in a magnetic

field to determine the transmitting frequency. Find the mag-

nitude of the magnetic field necessary to generate radar radia-

tion with a 3-cm wavelength.

30B-8 A 1.5-keV electron moves in a circular path with a

radius of 1 cm while in a uniform magnetic field B. (a) Calculate

the magnitude of B. (b) A proton in this field also has a circular

path with a radius of I cm. Calculate the proton energy in

electron volts.

30B-9 An electron (mass = m^ and charge — c), a proton

(mass = lS36m^ and charge +e), and an alpha particle (mass =
4 X 1836mj. and charge + 2e) all have the same kinetic energy

as they move in circular orbits in a uniform magnetic field. In

terms of the radius R of the electron's path, find the radii of

the paths of the proton and alpha particle.

30B-10 In the mass spectrometer shown in Figure 30-21,

singly charged lithium ions of mass 6 u and 7 u are accelerated

by a potential difference of 900 V before they enter the uniform

magnetic field B = 0.040 T. (One unified mass unit u = 1.66 x

10
~^^

kg.) After traveling through a semicircle, they strike a

photographic film, producing two spots on the film separated a

distance x. Find x.

B out of the paper

dj

w Photographic

film

Ion

source

FIGURE 30-21

Problems 308-10 and 30B-11.
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30B-11 As shown in Figure 30-21, in one type of mass

spectrometer charged particles (mass m and charge q) are accel-

erated from rest by a potential difference V. They then enter a

region of uniform magnetic field B perpendicular to the plane

of the diagram. Starting with Newton's second law, derive an

expression for the radius R of the particles' path in the field in

terms of m, q, V, and B.

30B-12 A 2-keV electron moving perpendicular to an earth's

magnetic field of 50 \iX has a circular trajectory, (a) Determine
the radius of the trajectory, (b) Determine the time required

for the electron to complete one circle, (c) Show that your

answer to (b) is consistent with the cyclotron frequency of the

electron.

30.4 The Lorentz Force Law

30A-13 A velocity selector for electrons employs an electric

field of 1.4 X 10* V/m and a magnetic field of 18 mT. Find

the speed of the electrons.

30B-14 At the equator, near the surface of the earth, the

magnetic field is approximately 50 //T northward, and the elec-

tric field is about 100 N/C downward. Find the gravitational,

electric, and magnetic forces on a 100-eV electron moving east-

ward in a straight line in this environment.

30B-15 A velocity filter consists of magnetic and electric

fields described by E = £z and B = By. If B = 0.015 T, find

the value of £ such that a 750-eV electron moving along the

-\-x axis will be undeflected.

30.5 Magnetic Force on a Current-Carrying

Conductor

30A-16 A weighing scale supports a 12-V battery, to which

a rigid rectangular wire hoop is attached, as shown in Figure

30-22. The lower portion of the hoop is in a magnetic field

B = 0.10 T. If the total mass of the battery and wire hoop is

100 g, calculate the resistance of the wire necessary for the scale

to indicate zero weight. Which pole of the battery is positive?

shown in Figure 30-23. When a current of 2 A exists in the

loop, the tension in the supporting string is 0.370 N. (a) What
is the direction of the current in the loop? (b) Find the mag-
nitude of B.
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Additional Problems

30C-30 Equal positive charges q, each located at the corner

of a cube, are each moving with an instantaneous speed v as

shown by the arrows in Figure 30-26. There is a uniform mag-
netic field B in the -f y direction, (a) Make a large sketch

of the figure and draw a magnetic force vector (in color) on

each charge, indicating the direction of the force. Label each

vector with the corresponding letter subscript. (Ignore Coulomb
forces.) (b) Make a table listing these forces vertically in alpha-

betical order, with additional columns for the magnitude and

direction of each force.

FIGURE 30-25

Problems 30A-21, 30B-22, and 30B-23.

30.7 Applications

30A-24 A silver ribbon 4 cm wide and 0.1 mm thick carries

a current of 5 A. If the plane of the ribbon is perpendicular to

a magnetic field of 0.15 T, calculate the Hall voltage across the

ribbon. Assume that, on the average, each silver atom contri-

butes one electron to the current flow. The density of silver is

10.5 g/cm^ and its atomic weight is 107.87 g/mol.

30A-25 A galvanometer has a full-scale sensitivity of 50 /iA.

By what factor must the spring constant k' of the galvanometer

movement be changed in order to change the full-scale sensi-

tivity to 10 iiAl

30A-26 A Hall-effect probe is made of a semiconductor with

a charge-carrier density of 10^*^ charges/m^. The dimensions

of the probe are 0.8 cm wide, 0.4 mm thick, and 1 cm long.

When the probe is placed appropriately in a magnetic field B,

a current of 0.9 mA in the long direction of the probe produces

a Hall voltage of 4 mV across the 0.8-cm width of the probe.

Find the value of B.

30B-27 A Hall-effect probe for measuring magnetic fields

is designed to operate with a 120-mA current in the probe.

When the probe is placed in a uniform field of 0.08 T, it

produces a voltage of 0.7 /iV. (a) When it is measuring an

unknown field, the voltage is 0.33 ;(V. What is the unknown
field strength? (b) If the thickness of the probe in the direction

of B is 2 mm, find the charge-carrier density (each of charge e).
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speed 3 x 10* m/s is injected from the origin into the region

of the field. The initial velocity of the electron lies in the xy

plane at an angle of 20° with the +i/ axis. The electron sub-

sequently travels in a helical path whose axis is along the +x
direction. Find (a) the direction of B, (b) the radius r of the helix,

and (c) the pitch p of the helix.

30C-33 The color purity of a color television set requires

that the electron beam strike a given location on the face of the

picture tube with an error of less than one millimeter. Show
that a component of the earth's magnetic field perpendicular

to the electron beam of about 10 /(T may well deflect a 20 keV

electron beam enough to affect color purity. (Note: the deflec-

tion corresponding to a circular trajectory may be approximated

using the sagiHa formula, explained in Appendix E.) Make your

own estimate of the distance from the electron gun to the

screen.

30C-34 A particle with a charge-to-mass ratio q/m has a

velocity v = I'x as it passes through the origin of a rec-

tangular coordinate system. A constant magnetic field B deflects

the particle so that it passes through the point r = «x -I- by.

(a) Determine the direction of B. (b) Derive an expression for

b in terms of a, q, m, B, and v.

30C-35 A particle with a charge-to-mass ratio q/m moves

with speed v in a circular path in the presence of a uniform

magnetic field B. Derive an expression for the angle through

which the particle's path has been deflected during a time f of

the motion. Note that the angle is independent of the speed

of the particle.

30C-36 An evacuated glass tube with a diameter of 8 cm
has a uniform magnetic field B'= 5 x 10"' T throughout its

volume, parallel to the axis of the tube. Electrons are injected

into the tube at a point on the axis with a speed of 2 x 10* m/s.

(a) Find the largest angle d that the electron velocity may have

with respect to the axis such that the subsequent spiral motion

of the electrons will not strike the tube walls, (b) How far along

the tube does such an electron cross the axis again?

30C-37 A circular loop of wire with a radius R carries a

current /. If the plane of the loop is perpendicular to a uniform

magnetic field B, the wire experiences a tension. Derive an

expression for the tension T in terms of R, I, and B. The leads

that carry current to and from the loop are parallel to the

magnetic field.

30C-38 A rigid rectangular loop of wire, sides a and b, is

pivoted about a horizontal axis as shown in Figure 30-28. The

mass of the loop is m, and a current / exists in the loop. There

is a uniform magnetic field B in the +y direction, (a) Derive

an equation for B, in terms of the given symbols, that expresses

the condition when the loop swings up to an equilibrium posi-

tion so that its plane makes an angle 9 with the t/z plane, (b)

What is the direction of the current in the lowest side of the

loop? (c) Suppose, instead, that side b of the loop were pivoted

about the horizontal z axis. Would your answer to (a) be

different? Explain.

30C-39 A rigid hoop of wire (mass m and radius R) rests

on a horizontal surface in a region where there is a uniform

magnetic field B = B^x -I- Byp, where y is vertically upward.

Find the minimum current / that will barely cause one side of

the hoop to lift off the surface.

FIGURE 30-28

Problem 30C-38.

30C-40 As shown in Figure 30-29, an irregular open loop

of current-carrying wire lies in the xy plane. The current input

to the loop is along the z axis, and the output is parallel to the

z axis at X = h. A uniform magnetic field is described by

B = Bz. Show that the net force on the loop is independent

of the shape of the loop and that the force is given by

F = - Bhiy.

FIGURE 30-29

Problem 30C-40.

30C-41 In the Bohr model of the hydrogen atom, the elec-

tron moves in a circle about the proton, with the Coulomb

force being the centripetal force necessary for circular motion.

In the lowest energy state, the radius of the path is 52.9 pm
(1 pm = 10"'" m). (a) Find the equivalent current the moving

electron generates, (b) Find the magnetic dipole moment of

this current loop (called the Bohr magneton).

30C-42 The maximum torque on a current-carrying rectan-

gular loop of wire placed in a magnetic field depends on the

shape of the loop. Show that, for a given length of wire formed

in a rectangular shape, the greatest maximum torque is achieved

when the loop is a square.

30C-43 A wire of length / is formed into a flat, circular coil

of N turns, (a) Show that, for a given current / in the coil, the

greatest magnetic dipole moment is for N = 1. (b) Explain why
a one-turn coil of any shape other than circular would have a

smaller magnetic moment.

30C-44 A circular wire hoop of radius R and mass m carries

a current I. The hoop hangs from its edge by a horizontal fric-

tionless hinge in a uniform vertical magnetic field B. The hoop

will assume an equilibrium position so that the plane of the

hoop makes an angle 9 with respect to the vertical. Derive an

expression for the angle 9 in terms of m, R, I, and B.

30C-45 A uniform disk of mass m has a total charge q dis-

tributed uniformly throughout its volume. As the disk rotates

about its axis, show that its magnetic moment ft is related to
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its angular momentum L hy ft = (q/2nt)L. You may use the

result of Problem 30C-51.

30C-46 A circular current-carrying loop of wire experiences

a maximum torque Tq when placed in a given magnetic field.

If the same loop were re-formed to a smaller circular loop con-

taining two turns of the wire, find the maximum torque on this

loop in terms of Tq-

30C-47 A thin rod of length / is made of a nonconducting

material and carries a uniform charge per unit length ?.. The

rod is rotated with angular velocity ct) about an axis through

its center, perpendicular to the length of the rod. Show that

the magnetic dipole moment is lok^^jlA. (Hint: consider the

charge dq located within the element dx a distance x from the

axis.)

30C-48 Show that a magnetic dipole in a divergent mag-

netic field may experience a net force as well as a torque.

Describe the condition under which the dipole moves in the

direction of increasing magnetic field.

30C-49 The axis of a magnetic dipole with a dipole moment

fi and angular momentum L is at an angle 9 with respect to a

uniform magnetic field B. The vectors /i and L are parallel. Show

that the dipole will precess with an angular velocity cOp =
— (/|/L)B. (See Section 13.6, The Gyroscope.)

30C-50 As shown in Figure 30-30, a nonuniform magnetic

field B = xBqZ is in the + z direction (toward the reader). The

field varies linearly with the distance x. A rectangular loop of

dimensions n and b is oriented so that its plane is perpendicular

to the field, with the left edge of the loop parallel to the y axis

at a distance d from that axis. Find the total flux Og through

•

•



CHAPTER 31

Sources of Magnetic Field

Science walks forward on two feet, namely theory and experiment.

ROBERT A. MILLIKAN
(from his Nobel lecture. May 1924)

31.1 Introduction

The last chapter described static magnetic fields and the forces they exert on

moving charges. In this chapter we will discuss the origin of static magnetic

fields. One interesting fact in electromagnetism is that a steady current of

electric charges produces a static magnetic field. We will also show a satisfying

symmetry between electric and magnetic fields. In particular, a changing mag-

netic field produces an electric field, and a changing electric field produces a

magnetic field. The English physicist James Clerk Ma.xwell (1831-1879) put

the finishing touch on the elegant electromagnetic theory, which expresses this

symmetry between electricity and magnetism.

31.2 The Biot—Savart Law

In 1819, the Danish scientist Hans Christian Oersted (1777-1851) was

concluding a lecture on electricity and magnetism when he moved a current-

carrying wire near a compass needle. The needle deflected in a new direction

in response to the current. ' This demonstration of a fundamental link between

electricity and magnetism was highly significant. Other scientists, especially in

France, quickly followed up on this discovery by developing new relationships

that deepened our understanding of electrojnagnetism.

In our study of electric fields, we found that they had their origin in elec-

trical charges. To find the field at a given point due to an arbitrary distribution

of charges, we recognize that each charge element dq produces a field dE at a

distance r from the charge according to Coulomb's law for electric fields. It is

an inverse-square law;

dE
4nS(

dq .

' Oersted's discovery was probably accidental. Each year the American Association of Physics Teachers

awards a medal to a physics teacher who has made a notable contribution to the teaching of physics. It

is called the Oersted Medal, since Oersted's discovery occurred in a teaching situation.
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Plane

containing

jnd di

FIGURE 31-1

This figure illustrates the geometrical

features of the Biot-Savart law.

Here we show how to find the

direction of dB at the top right

comer of the figure by applying

the right-hand rule for ld€ x r.

According to the right-hand rule

for cross products (see Figure 10-5),

the fingers of the right hand curl

around in the sense of rotation

established when the first vector d£

is rotated through the angle 6 into

the direction of the second vector f

(which points toward the location

where we wish to determine the

field direction). The extended thumb

points in the direction of rfB at the

top comer, a distance r away.

Several other (/B's are shown for

other locations. (For practice, verify

their directions by applying the

right-hand rule.) The overall pattern

of field lines, to which the iVB's are

tangent, is circles that lie in planes

perpendicular to the axis of the

element ld€.

Here, the unit vector f extends from the source of the field (the charge dq) to-

ward the point in question. To find the total electric field E, we sum over all the

charge elements present.

We now introduce a similar equation that describes how an element of

current-carrying wire Id€ produces a magnetic field dB at a point a distance r

from the element. Consider a current-carrying wire of arbitrary shape (Figure

3 1- 1). In 1820, the French physicists Jean Baptiste Biot and Felix Savart first

gave the expression for the field dB produced at a distance r from an element

of the wire df carrying a steady current /. It is an inverse-square law known
as the Biot-Savart law (pronounced "Bee-oh—Sah-vahr"):

BIOT-SAVART LAW dB = /io\ Id€ X f

An
(31-1)

The direction of the vector d€ is along the wire in the direction of the current

/. The unit vector r is from the source of the field (the current-carrying element

Idi ) toward the point in question. Thus, r = rr. To find the total magnetic field

B at the point, we sum over all the current-carrying elements present. The

constant fig is called the permeability of free space:

PERMEABILITY OF
FREE SPACE /Iq = 47r X 10

.-, T'm

This numerical value is chosen to be consistent with the definition of the unit

of current, the ampere (A). (The constant Hq should not be confused with the

symbol for the magnetic dipole moment fi.) The most significant feature of

Equation (31-1) is that magnetic fields, like electric fields, are inverse-square

fields. In contrast, unlike an electric field, which is generated by an isolated

electric charge, there is no isolated "magnetic charge" that generates a magnetic

field." Isolated current elements Idf do not exist—they are always part of a

complete closed circuit. Calculations of the total field for all but very simple

arrangements of conductors are quite cumbersome, so we will restrict our ex-

amples to simple, yet important, symmetrical configurations.

EXAMPLE 31-J

Calculate the magnetic field 10 cm from a very long, straight wire carrying a

current of 10 A.

SOLUTION

We first develop a general expression for the field in the vicinity of a straight

current-carrying conductor. In Figure 31-2b, the incremental field dB due to the

current element Id^ is directed into the plane of the figure at point P. Equation

(31-1):

i^B

^ Some advanced theories of magnetism have proposed that magnetic monopoles exist. No convincing

experimental confirmation has yet been found.



31.2 The Biot-Savart Law 713

(a) The right-hand rule for the cross

product d(xr establishes the

direction of dB.

FIGURE 31-2

Example 31-1.

The magnitude of dB is given by

(b)

dB =
Ho\ld/' .

471

where 9 is the angle between the forward directions of d€ and r. Introducing

the perpendicular distance a from the point to the wire, and letting d/ = dy, we

note that r = y' + a' and that sin 6 = a/yjy^ + a^ . Thus:

dB
la

dy

Since each element produces a field dB in the same direction, the total field B

is merely the scalar sum j dB:

B =
HolarJ -IX

dy

47C J-« (y^ + a^)^'^

Using the table of integrals in Appendix G, we obtain

B =
471 a^iy' + a-)

2x1/2

^lola

4na^
[l-(-l)]

MAGNETIC FIELD

DUE TO A CURRENT
IN A LONG,
STRAIGHT WIRE

B =
Ina

(31-2)

Substituting numerical values in SI units gives

T-m\

B

47r X 10"
A J

(10 A)

271(0.10 m)
2.00 X 10 ' T

The direction of B is found from the cross-product in the Biot-Savart law

(ld€ X f). From symmetry considerations, the field lines form concentric circles

surrounding the wire. Their direction is easily remembered using the right-hand

rule as defined in Figure 31-3c.

«II#S:

7.- :^----\ f^>J'- .$t • •
•

' ,

>::^f::

(a) If iron filin^^ ait sprinkled on a

horizontal plane perpendicular

to a straight, current-carrying

wire, they form a pattern that

suggests the magnetic field lines.

(b) One of the field lines that circle

the wire symmetrically.

(cl The magnetic field lines circle

the conductor in the direction of

the fingers of the right hand

when the extended thumb is in

the direction of the current. This

is another "right-hand rule" that

describes the field lines due to a

current-carrying wire.

FIGURE 31-3

The magnetic field associated with

a straight, current-carrying

conductor.
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(a) Two horizontal parallel

conductors one meter apart will

experience a mutual torce of

attraction equal to exactly

2X10~' N/m if each conductor

carries a current of one ampere

in the same direction. If the

currents are antiparallel, the

forces are repulsive.

B due to

wire (J)

(b) The current in wire ® produces

a downward magnetic field at

wire (2) • Consequently, a length

f of wire experiences a force

f=l/f xB| = /B/ as shown.

(The situation is symmetric. The
current in wire produces a

field, not shown, that causes a

force on wire (2) toward the

right.)

FIGURE 31-4

The definition of the ampere.

The previous example illustrates a very important characteristic of mag-

netic field lines: magnetic field lines are always closed loops. This closure of mag-

netic field lines is in contrast to electrostatic field lines, which always terminate

on plus and minus charges.

Having developed an expression for the magnetic field around a long,

straight wire enables us to define the ampere and thus the coulomb. Consider

two parallel conductors, each carrying the same current / in the same direction,

as shown in Figure 31-4. The field B produced by the current in wire 1 a

distances from the wire is given by Equation (31-2): B = Hol/lna. The direction

of this field at the location of wire ,2) is straight down in the —y direction.

The magnetic force (^F on an incremental length df of wire @ is, by Equation

(30-11), d¥ = Id€ X B, which, since d^ and B are perpendicular, equals

dF=IBd^

Substituting Equation (31-2) and rearranging, we have

T-m'

dF Hol'
471 X 10"

A
I'

(2 X 10" ')/ T-m

d/ Ina Ina

If the separation of the wires is one meter and the current in each wire is one

ampere, the force of attraction per unit length of wire is

Force

Unit length

DEFINITION OF
THE AMPERE

2 X 10 ''T-A or 2 X 10"
N

If one ampere is in the same direction in each of two

long, parallel conductors one meter apart, the con-

ductors will be attracted to each other with a force

of exactly 2 X 10"^ N per meter of length.

This basic definition of the ampere is the crucial link between electrical

quantities and mechanical quantities. It extends the SI system to include elec-

trical units by defining the ampere in terms of the meter, the kilogram, and the

second. As mentioned in Chapter 24, it also leads to the coulomb, since that

unit is defined as the amount of charge per second passing a cross section of

a conductor carrying a steady current of one ampere. Mechanical experiments

that measure forces between current-carrying wires are much easier to carry

out and give greater precision than experiments that measure the Coulomb

force between charges. Thus there are strong practical reasons for basing the

fundamental electrical definition on the ampere rather than on the coulomb.

From the above relations, we see that units of force per unit length are equiva-

lent to T- A, which leads to alternative units for j.Iq:

Hq = 471 X 10"
N

(31-3)

The two constants /ip ^nd fig are related. The first constant arises from

forces between current-carrying elements, and the second arises from forces

between charge elements. And, of course, currents and charges are intimately

connected. As we will see in Chapter 35, these constants are related to the

speed of light: c = I/Vmo^o- '" 1983, the speed of light was defined to be

exact. Because /ig 'S defined exactly, Eq also has an exact value.
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(a) The right-hand rule for cross-

products rffxf that identifies

the direction of liB at the center

of the circle.

(b) The right-hand rule that

associates the field direction due

to a current-carr\'ing wire.
FIGURE 31-5

Example 31-2.

EXAMPLE 31-2 1
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(a) A piece of paper placed

horizontally is perpendicular to

the plane of a current-carrying

loop. If iron filings are sprinkled

on the paper, they form a

pattern of lines similar to the

magnetic field in the plane.

FIGURE 31-6

The magnetic field produced by a

current-carrying loop.

FIGURE 31-7

Example 31-3.

(b) The right-hand rule for

determining the direction of

magnetic field lines.

(c) A horizontal current-carrying

loop with the right hand

determining the direction of the

magnetic field lines.

Most practical devices used for the production of magnetic fields are

constructed of loops or coils of wire. A right-hand rule determines the field

direction: if the current-carrying wire is grasped with the fingers of the right

hand so that the extended thumb is in the direction of the current, the curled

fingers indicate the magnetic field direction. Inside the loop, the field at the

center is along the axis of the loop. The field lines elsewhere are shown in

Figure 31-6.

EXAMPLE 31-3

The wire conductor in Figure 31-7 carries a current /. The straight portions are

radially outward from the point P. and the circular arc of radius R subtends an

angle 9 from point P. Find the magnetic field B at the point P.

SOLUTION

We note that the straight segments contribute nothing to the field at point P

since d( and r are parallel, so the cross-product involves sin 0° =» 0. For the

circular arc, d€ and f are at right angles, so we have

dB
Id€ X r

The cross-product all along the arc involves sin 90° = 1, and by the right-hand

rule all the dB's are in the same direction into the plane of the paper. Here,

d^ = ds = R dO, so we have

P« = J 4nR
-. as = ^
^ 4nR^ j:

RdO
^loie

47iR
(into the paper)

31.3 Ampere's Law (1823)

If the configuration of a current-carrying conductor is simple, an equivalent

and simpler form of the Biot-Savart law, known as Ampere's law, may be used.

The basic idea involves a closed path of integration, sometimes called an ampere



31.3 Ampere's Law (1823) 717

loop. Ampere's law^ states that the integral j B d€ around any closed path is

^IqI, where I is the current crossing any surface hounded by the path of integration.

AMPERE'S LAW' i Bd€ = fiol (31-5)

Like the Biot-Savart law, Ampere's law is true only for steady currents. Further-

more, just as the application of Gauss's law is feasible only for charge distribu-

tions that are highly symmetric, Ampere's law is useful only for very symmetric

arrays of currents leading to symmetric fields that are known all along the path

of integration. We now illustrate the use of Ampere's law for three important

configurations of conductors.

L The field of a long, straight current-carrying conductor. Although

Ampere's law is true for any path, the calculation is feasible only when

the value oi B d£ is constant along the path of integration. See Figure

31-3b. From symmetry considerations (and the right-hand rule) we know
that B is constant in magnitude on a circular path surrounding the wire

and therefore may be brought out from under the integral sign. We choose

a path along a field line, with df defined parallel to B, so the dot product

gives cos 0° = 1. Thus, the integral y d/ is simply around a circle of radius

a: the circumference 2na. The current passing through the circular area

bounded by the path is /. Therefore:

ij)d>' =
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(a) A loosely wound, short solenoid.

-^— G0000G00000G00OGX3 —-»

B

(b) An ideal solenoid has closely

wound windings that extend to

infinity in both directions, con-

fining the field wholly within

the solenoid.

(c) Iron filings reveal the magnetic

field pattern.

FIGURE 31-9

The magnetic field of a solenoid.

loop is M, where N is the total number of turns of wire around the toroid

and / is the current through the wire. Applying Ampere's law.

B d€ = HqI

we obtain B(2nR) = HqNI

MAGNETIC FIELD INSIDE
THE WINDINGS OF A
TOROIDAL COIL B =
(average circumferential

length of the toroid: 2nR)

2nR
(31-6)

Since the field depends on R, the field varies slightly within the windings,

being somewhat stronger near the inner radius of the toroid. (The circle

of the toroid itself acts as a single large loop of wire of radius R carrying

a current /. The external field outside the windings due to this effect is small

and usually may be ignored.) For this reason, a toroid is useful in elec-

tronic circuits whenever a magnetic field must be confined.

III. The field of a long solenoid. A solenoid is a straight coil of wire, as

shown in Figure 31-9a. Because of the relative ease of its fabrication, it is

the most common configuration used to produce a magnetic field elec-

trically. Calculation of the magnetic field is complicated for a loosely wound
solenoid that is short compared with its diameter. However, the field at the

center of the solenoid can be closely approximated by considering an ideal

solenoid: one that is long compared wfith the diameter, with the turns of

wire close together, as in Figure 31-9b. Just as we may consider a parallel-

plate capacitor to be a section of large concentric spheres, we may consider

a solenoid to be a short section of a toroid whose outer diameter is large

compared with the cross-sectional radius of the windings. The field will

then be essentially uniform within the solenoid and will be confined to the

solenoid's interior. The direction of the field lines is into one end of the

section and out of the other end. Rewriting Equation (31-6), we have

For a large value of R that does not change appreciably from the inner to

the outer diameter of the toroid, the quantity within the parentheses is the

number of turns n per circumferential length of the toroid. Then,

MAGNETIC FIELD IN

A LONG SOLENOID 6 = Hold

(where n is the

number of turns

per unit length)

(31-7)

Just a short bit or reasoning will lead us to the field at one end of a

long solenoid. Consider the point inside a long solenoid equally far from

either end. (The above equation is valid for this point.) By symmetry, each

half of the long coil contributes equally to the field at this midpoint. There-

fore if we remove one-half of the solenoid, the field at the (newly created)

open end is just half that of Equation (31-7):

MAGNETIC FIELD
AT ONE END OF A
LONG SOLENOID 2

(where n is the

number of turns

per unit length)

(31-8)
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EXAMPLE 31-4

A permanent magnet similar to the one shown in Figure 31-lOa has a magnetic

field of 0.4 T in the air gap between its pole pieces. To produce the same mag-

netic field within a solenoid of comparable size, how much current would have

to pass through its windings? Assume that the solenoid is 30 cm long with a

small cross-section and is wound with 2000 turns of copper wire.

SOLUTION

With the assumption that the solenoid is ideal, we solve Equation (31-7), B =
//q"^. for the current /;

/ =
0.4 T

^°" '4;rxl0-
_., T-m\ /2000 turns

A /\ 0.30m

= 47.7 A

To see whether the result in Example 31-4 is consistent with a prac-

tical laboratory device, suppose that the average length of each turn of wire

is 10 cm and that the cross-sectional area of the wire is 1.0 mm". The resis-

tance of the wire is given by R = p//A, where p is the resistivity of copper

(1.8 X 10" ohm-m), /' is the length of the wire, and A is the cross-sectional

area. Substituting the appropriate values in SI units, we get

(1.8 X 10 ^ Q-m)
(2000 tums)(0.1 m)

(1.0 X 10 m )

3.60 Q

The rate at which heat would be generated due to Joule heating of the cop-

per is

P=l^R = [^7.7 A)'(3.6 fi) = 8.19 kW

Clearly, the cooling requirements of such a solenoid make it impractical

as a source of magnetic field. However, the presence of an iron core in a solenoid

greatly increases the resultant magnetic field (as will be discussed in Chapter

ii). So, in practice, the solenoid would be constructed with an iron core similar

to that in Figure 31-lOb, greatly reducing the current requirements.

EXAMPLE 31-5

A long, hollow conducting wire carries a current /q that is uniformly distributed

over the cross-sectional area of the wire between radii a and b, as shown in Figure

31-11. Find the magnetic field B for region 1, r < a; region 2, a < r < b; and

region 3, r > b.

SOLUTION

From the symmetry of the situation, the only directions the magnetic field lines

can have in Figure 31-llb are counterclockwise concentric circles about the axis

of the wire (right-hand rule). Furthermore, by symmetry the magnitude B must

(a) A permanent magnet.

(b) An electromagnet (cross-

sectional view of the windings).

FIGURE 31-10

Example 31-4. Typical laboratory

magnets.

(b) The current Iq comes toward the

reader in the shaded area.

Following the sign convention

shown in Figure 31-3, the path

of integration for r<a is shown
dashed.

FIGURE 31-11

Example 31-5. A long, hollow wire

carries a current Iq that is uniformly

distributed over the cross-sectional

area between radii a and b.



(a) A segment ol- an infinite sheet

of current per unit x-length, k.

Ti"

h

). is out of

the paper
S^Sl

be constant everywhere along such a line. We purposely match this symmetry

by choosing paths of integration for (|) B • ti€ that are concentric circles about the

axis, in the direction of B.

In region \ (r < a), ^^- d€ = i.IqI

The dot product gives cos 0° = 1. Because B is constant along the path, it may
be brought out from under the integral sign. Since h d€ = Inr, and the value of

/ enclosed by the integration path is zero, we have

B,(27rr) = /io(0)

In region 1 (a < r < h), again, by symmetry, we choose the integration

path to be a concentric circle. However, we now need to know the fraction of

the total current /q that is enclosed by the path of integration. Since the current

is distributed uniformly over the cross-sectional area, it is the fraction'

Therefore,

(Area inside r

'

-T- i i I

1 otal area

B2(lnr) = Hq h'- 2 Mo

Mo r

InrW-a'l^"

The direction of B is counterclockwise in the figure (right-hand rule).

In region 3 (r > h), the path of integration encloses the entire current /.

B di' =

B^ilnr) =

63 =
Inr

The direction of B is counterclockwise in the figure (right-hand rule). Note that

^1 = B2 iox r = a and that B, = B3 for r = b.

(b) In this figure, the sheet of

current approaches the viewer.

Note that B has opposite

directions on opposite sides of

the sheet.

FIGURE 31-12

Example 31-6.

EXAMPLE 31-6

As shown in Figure 31-12a, an (essentially) infinite thin sheet lying in the xy

pljine carries a uniform current per unit length 1 in the +y direction, where

"per unit length" refers to the +x direction. Find the magnetic field B near the

sheet.

See Footnote 4 for cases in which the current distribution is nonuniform.
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SOLUTION

From symmetry arguments and the right-hand rule for determining the direction

of B due to a line of current, we conclude that B is parallel to the sheet as

shown in Figure 31-12b. Furthermore, from symmetry we note that, whatever

magnitude B has at a given distance above the sheet, it must have the same

magnitude at the same distance below the sheet. Therefore, we choose the

symmetrically placed, dashed rectangular path shown for integrating jB • d£. For

the two paths that are perpendicular to the sheet, this integration is zero be-

cause B and d€ are at 90°. The total current I within the rectangle is I = Aa.

Applying Ampere's law, we get

B df= /(p/

2Ba = /(q/^

B =
2

This shows that B is independent of the distance from the current sheet. (The result

is analogous to Example 25-5, in which we found that the electric field produced

by an infinite sheet of uniform charge density cf, E = o/IEq, is also independent

of the distance from the infinite sheet.)

One of the aesthetically pleasing aspects of electricity and magnetism is

the similarity of form among the equations describing both phenomena. As an

illustration, compare the equations in Table 31-1, which describe the magnetic

field of a long, straight, current-carrying conductor and the electric field of a

long line of charge. In addition to the obvious symmetries, also note that,

whenever Eq appears in the denominator of an electric field equation, //q

appears in the numerator of the analogous magnetic field equation.

TABLE 31-1

Fields

Similarities Between Electric and Magnetic

Magnetic Field of a Long,

Straight Current-Carrying

Conductor

Electric Field of a

Long Line of Charge

1. General equations

(both equations are

inverse square)

2. Allemative general

equations

Field equations for

a long line a

distance r away

from the line (both

equations are

inverse first power)

dB
/nA ld€x ?

(£ B • rf/ = fiol

(line integral)

Ampere's law

B = th'

Znr

where B circles the line

dE
1 \2.d€^

inej r^

where X is the linear

charge density

E • rfA = —

(surface integral)

Gauss's law

(.^iTir

where E is directed

away from a positively

charged line
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Summary

Magnetic fields are created by charges in motion. The field dB
produced by a current-carrying element ld€ is given by

Biot—Savart law: dB
_/nA ld€xi
~ An) T^

where / is the total current through the area enclosed by the

path of integration. Ampere's law is of practical use when
symmetry indicates that B has a constant magnitude and a con-

stant angle with respect to d€ along the path of integration.

Magnetic field B produced by current-carrying conductors:

where //q is the penneabilih/ of free space:

/io = 4n X 10"
, T-m N

A^

Wb
A- m

Ampere: A mutual force per unit length of exactly 2 x 10
~^

N/m exists between two parallel conductors one meter apart,

each carrying a current of one ampere.

Ampere's law: mB df = ^qI

Configuration of Current-Carrying

Conductors, Current / Magnetic Field B

Long straight wire, distance r 6 =

Circular loop, radius R B^, cemer
—

Toroid, N turns, average circumference R Sj„j.j(,j =

Long solenoid, n turns per unit length

2nr

IR

MqN/

InR

^inside = /'o"'

Questions

!• Discuss the similarities and differences between Ampere's

law and Gauss's law.

2. In what way is the Biot—Savart law similar to Coulomb's

lavvf? In what way are these two laws dissimilar?

3. For what kind of situation is it more appropriate to use

Ampere's law rather than the Biot-Savart law for com-

puting the magnetic field?

4. Is there a magnetic field inside hollow copper tubing that

is carrying a current? If not, why not?

5. Pairs of wires carrying current in opposite directions to

and from electrical devices are often twisted together to

reduce stray magnetic fields. Explain how this technique

works.

6. If a current is established in the helical turns of a stretched

coil spring, will the force that the spring exerts increase,

decrease, or remain the same? Explain.

7. Parallel current-carrying conductors interact with each

other. How do current-carrying conductors perpendicular

to each other interact?

8- Two concentric circular loops of wire (in the same plane)

have different radii and carry currents in the same direc-

tion. Discuss the magnetic forces on each loop. If both

currents are reversed, do the forces change? What happens

when the currents are initially in opposite directions? What
if these currents are reversed?

9. Repeat the previous question for two identical loops that

are aligned coaxially near each other.

10. A plasma is a very hot, ionized gas containing equal

amounts of positive ions and negative electrons. Consider

a plasma contained within a cylindrical region carrying a

current in the axial direction. Discuss the direction of the

magnetic forces on charges moving near the outer edge

of the cylinder. What are the consequences of these forces?

11- In the previous question, what happens (a) when there is

a "bend" in the cylinder? (b) when the cylinder "pinches

down" to a smaller diameter at a localized region? These

two effects are called, respectively, the kink instability and

the sausage instability.

Problems

31.2 The Biot—Savart Law

31A-1 A hiker observes a pocket compass while standing

40 m directly below a single power line that carries a steady

current of 150 A. If the horizontal component of the earth's

magnetic field is 3 x 10~' T at the hiker's location, calculate

the maximum possible error in the compass reading due to the

power line.

31.A,-2 At the earth's magnetic poles, the magnetic field is

roughly 1 x 10"'* T. If this field were produced by a current

in a wire around the equator, find the current. (Assume that

the current loop is symmetrically located between the poles.)

You may use the result of Problem 31C-17.

31B-3 Two circular coils, each containing N turns of wire,

have a radius R and are separated by a distance 2R, as shown

in Figure 31-13. Find the magnetic field at a point on the axis

of the coils midway between them. Assume that the coils are

in series (so that the circulation of the current / is in the same
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sense in both coils) and that the cross-section of the coils is

small compared with R". You may use the result of Problem

31C-I7.

FIGURE 31-13

Problem 31B-3.

31A-4 Find the force per unit length between two long,

thin, parallel wires that are separated by a distance of 5 an.

One of the wires carries a current of 10 A in one direction and

the other wire carries a current of 10 A in the opposite direc-

tion. Is the force betw^een the wires attractive or repulsive?

31A-5 Two long, thin, parallel wires carry currents different

from one another. Show that the force per unit length on one

wire is equal and opposite to the force per unit length on the

other wire. That is, show that Newton's third law is valid.

31B-6 Find the distance x along the axis of a circular loop

of radius R, carrying current /, where the magnetic field is half

that at the loop's center. You may use the result of Problem

31C-17.

31B-7 In Figure 31-14, suppose that the curved segments

were extended to form semicircles. (Thus, the 60" angle would

become 180°.) Find the magnitude and direction of the mag-

netic field B at point P.

FIGURE 31-14

Problems 31B-7 and 31B-8.

31B-8 Consider the current-carry^tng loop shov%'n in Figure

31-14, formed of radial lines and segments of circles whose

centers are at point P. Find the magnitude and direction of the

magnetic field B at P.

31B-9 In Figure 31-15, the rectangular wire loop and the

long, straight conductor lie in the same plane. The total elec-

trical resistance of the wire loop is 2 Q. For a steady current /

in the straight conductor, find the total magnetic flux $g that

passes through the loop. (Hint: choose an element of area dA =
/ dr and find the flux d<^g through this area. Then integrate

to find the total flux.)

FIGURE 31-15

Problems 31B-9 and 31B-10.

31B-10 In Figure 31-15, consider a current I^ = iO Ain the

straight wire and a clockwise current /2 = 8 A in the rectangular

loop. If ^ = 8 cm, find the net magnetic force on the loop.

31B-11 A square loop of wire, with side length b, carries a

current /. Find the magnetic field in the plane of the square at

its center. (Assume that the lead-in wires for supplying the

current are tightly twisted together so that their B fields cancel.)

You may use the result of Problem 31C-21.

31.3 Ampere's Law

3 1A-12 An air-core toroid has individual windings that form

loops 2 cm in diameter. The effective circumference of the

toroid is 50 cm. Find the number of turns per unit length re-

quired to produce a magnetic field of 0.07 T within the windings

when the current is 5 A.

31.\-13 A magnetic field B of 0.07 T is required within a

solenoid 50 cm long and 2 cm in diameter, (a) Calculate the

total magnetic flux within the solenoid, (b) Calculate the number

of turns of wire if the current is 5 A.

31B-14 Derive an expression for the magnetic field B inside

a long solenoid with n turns per unit length and current / by

applying Ampere's law to the rectangular path shown dashed

in Figure 31-16. Assume that B is uniform inside the solenoid

and negligible outside.

/
Rectangular path

FIGLUE 31-16

Problem 31B-14.
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3 IB- 15 A long, straight, solid, cylindrical conductor of ra-

dius a carries a current /. Starting with Ampere's law, derive

an expression for the magnetic field B inside the wire. (Note:

for steady currents, the current is spread uniformly over the

cross-sectional area.) Include a graph of B vs. r for regions inside

and outside the wire, specifying the mathematical behavior with

respect to r.

31B-16 The uniform magnetic field between the pole pieces

of a magnet cannot end abruptly at the edges of the pole pieces,

as shown in Figure 31-17a. Instead, the field must fringe out-

ward, as in Figure 3 1-1 7b. Prove this by applying Ampere's

law to the region at the edge of the field, as in Figure 3 1- 17a.

N N

s

(b)

FIGURE 31-17

Problem 31B-16.

31C-19 A pair of Helmholtz coils is often used to produce a

uniform magnetic field over a small region of space. The pair

consists of two flat, circular coils separated by the radius of

the coils, as in Figure 31-19. The current is in the same direction

in both coils. Show that, for a separation equal to the radius

of the coils, the magnetic field on the axis halfway between

the coils is such that dB/dx and d^B/dx^ are both zero, where

X is the distance along the axis. You may use the result of

Problem 31C-17.

FIGURE 31-19

Problem 31C-19.

Additional Problems

31C-17 As shown in Figure 31-18, a circular loop of radius

R carries a current /. Show that the magnetic field on the axis

of the loop a distance x from the plane of the loop is

B =
2 l(x'- + R-?^'

(Hint: as you sum the fields iVB due to the current elements ld(

around the loop, what happens to the field components d^^

perpendicular to the x direction?)

31C-20 A circular hoop with a radius of 15 cm carries a

current of 10 A. A small hoop with a radius of 1 cm carrying

a current of 5 A is placed at the center of the larger hoop so

that their centers are coincident but the planes of the hoops

are perpendicular. Calculate the torque on the smaller hoop due

to the current in the larger hoop. (Assume that the field created

by the larger hoop is essentially constant over the region

occupied by the smaller hoop.)

31C-21 Refer to Figure 31-20. Starting with the Biot-

Savart law, show that the magnetic field B at point P near the

straight segment of current-carrying wire is given by B =
(/<oV47rfl)(sin Oy -F sin Qj)-

Icifout of

the paper fV
--

'^^-.^dB

FIGURE 31-18

Problem 31C-17.

31C-18 Consider the magnetic field B at a point P near a

long, straight, current-carrying wire. Starting with the Biot-

Savart law, find the fraction of the field B that is due to the

nearest segment of the wire that subtends an angle of n/2 rad

from that point.

FIGURE 31-20

Problem 31C-21.

31C-22 Two long parallel wires, each having a mass per

unit length of 40 g/m, are supported in a horizontal plane by

strings 6 cm long as shown in Figure 31-21. Each wire carries

the same current /, causing the wires to repel each other so that

the angle d between the supporting strings is 16°. (a) Are the

currents in the same or opposite directions? (b) Find the mag-

nitude of each current.
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FIGURE 31-21

Problem 31C-22.

31C-23 Two long parallel wires in the xy plane carry equal

currents / in opposite directions, Figure 31-22. (a) Find the

direction and magnitude of the magnetic lield on the ; axis as

a function of z. (b) Show that the field diminishes as the inverse

square for : much greater than the separation of the wires.

FIGURE 31-22

Problems 31C-23, 31C-24, and

31C-30.

magnetic field B at a distance r from the axis (b) for r < a, (c)

ioT a < r < b, and (d) for r > b.

31C-28 (a) Find the magnetic field outside a very large sheet

of finite thickness d that carries a uniform current density / in

the +y direction. (You may assume that the sheet is infinite

in extent in the ±x and +y directions.) (b) What is the mag-

netic field within the sheet itself? (Hint: place the origin at the

center of the sheet, with the z axis perpendicular to the sheet.)

31C-29 A long, conducting cylinder, radius 2a, has a cy-

lindrical cavity of radius a whose axis is parallel to the axis of

the cylinder but displaced a distance a from the cylinder axis.

Figure 31-23 shows a cross-section of the conductor. The con-

ductor carries a current / (out of the paper) distributed uni-

formly over the cross-sectional area, (a) Show that the current

per unit area is / = Ijina'. (b) Find the magnetic field B along

the y axis for y < la. (Hint: the field may be considered the

superposition of the field due to a current l-y in an uncut solid

cylinder and the field of a smaller current U in the opposite

direction through a conductor occupying the cavity. What are

the currents l^ and l{>. You may use the result of Problem

31B-15.)

FIGURE 31-23

Problem 31C-29.

31C-24 In Figure 31-22, assume that both currents are in

the -j-x direction, (a) Sketch the magnetic field pattern in the

yz plane, (b) At what distance d along the - axis is the magnetic

field a maximum?

31C-25 A horizontal magnetic compass is placed at the

center of a circular coil of wire whose plane is vertical. The

coil has a radius R and consists of N turns of wire. The coil

(carrying no current) is oriented so that the compass needle

lies in the plane of the coil. If a current is now established in

the coil, the compass needle deflects through an angle d. Derive

an expression for the current / through the coil in terms of R,

N, 0, and B^, the horizontal component of the earth's mag-

netic field. (This device is called a tangent galvanometer)

31C-26 (a) Repeat Problem 3lC-23(a) for the case in which

both currents are in the same direction (toward the right), (b)

For very large distances z » a, how does the field vary with

z7 (c) Make a freehand sketch of the resultant magnetic field

in the yz plane, including large distances z from the origin.

31C-27 A long, straight, hollow wire of inner radius a and

outer radius b (see Figure 31-11) carries a current density / that

varies directly with the radius, / = kr. where fc is a constant.

(a) What are the SI units of kl Using Ampere's law, find the

31C-30 Consider the long, parallel conductors carrying equal

currents in opposite directions shown in Figure 31-22. (a) Find

the magnitude and direction of the magnetic field along the

+ y axis (in the plane of the wires) for (a) < y < a, and (b)

;/ > a. (c) Show that, for y » a, the field diminishes as the

inverse square.

31C-31 A uniform, thin, plastic disk of radius R has a uni-

form surface charge density a over both its top and bottom

surfaces. Calculate the magnetic field at the center of the disk

when the disk is rotating about its axis of symmetry with an

angular velocity (o. (Hint: consider the current produced by the

charge contained within an annular ring of radius r and width

dr)

31C-32 Consider the long, straight coaxial cable shown in

Figure 31-24. A current / is in one direction in the inner con-

ductor and in the opposite direction in the outer conductor.

The currents are uniform over the cross-sectional areas of the

conductors. Find expressions for the magnetic field B in the fol-

lowing regions: (a) r < a, (b) « < r < fc, (c) fc < r < c, and (d)

r > c. (e) Make a qualitative graph of the magnetic field as a

function of distance r from the center of the cable.
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FIGURE 31-24

Problem 3IC-32.

31C-33 A long, thin conducting strip of width w carries a

total current / along its length, uniformly distributed over the

strip as shown in Figure 31-25. Find the magnetic field B at a

point P (outside the strip) in the plane of the strip at a distance

d from one edge. (Hint: consider the field dB due to the current

{I/w)dx in a thin strip dx wide.)

3-IC-34 An electron is moving at 3 x 10^ m/s parallel to

and at a distance of 1.0 cm from a long, straight wire. Suddenly

a steady current of 10 A passes through the wire in a direction

parallel to the velocity of the electron, (a) Find the magnitude

and direction of the initial acceleration of the electron, (b) De-

scribe qualitatively the subsequent motion of the electron.

31C-35 A thin, uniform, plastic disk of mass m and radius

R has a charge Q distributed uniformly over one of its surfaces.

FIGURE 31-25

Problem 31C-33.

When the disk is rotating about its axis with angular velocity

CO, show (a) that at the disk's center, B = fioQoj/ZnR and (b)

that its magnetic dipole moment is /i = QojR^/4. (Hint: con-

sider the current loop due to the moving charge within the

annular ring of radius r and width dr.) (c) Show that the ratio

of the magnetic moment of the disk to its angular momentum
(called the gi/romagnetic ratio) is Q/2m.

31C-36 In Problem 31C-29, show that the magnetic field B
within the cavity has the same constant value at all points

within the cavity and is in the — x direction. You may use the

answer to Problem 31B-15.

31C-37 Derive the equation for the magnetic field at the

center of a long solenoid by integrating the contributions of

all of the individual turns of the solenoid. (Consider each turn

as a current-carrying loop. You may use the answer to Problem

31C-17.)
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Faraday's Law and Inductance

Sir Robert Peel, the British Prime Minister, visited Faraday in his

laboratory soon after the invention of the dynamo. Pointing to this

odd machine, he inquired of what use it was. Faraday replied, "I know
not, but I wager that one day your government will tax it!"

Eventually they did.

32.1 Introduction

After Oersted's discovery in 1820 that a current produces a magnetic field,

many investigators felt that the connection between electricity and magnetism

could not be in one direction only. So they tried to find an "inverse" effect

—

namely, could a magnetic field produce a current? The answer is yes, though

this did not become obvious until it was discovered that moving charges pro-

duce the magnetic field. Thus, perhaps a changing field could produce a current.

The discovery was made in 1831 by the English experimenter Michael Faraday,

renowned for his laboratory skills, and at the same time by Joseph Henry

(1797-1878) working independently in the United States. The effect is called

electromagnetic induction, and it is the physics behind the generators that pro-

vide the electricity used in our modem society. Previously, the only method

of generating current was through chemical reactions in voltaic piles. So this

discovery was of tremendous importance and began the development of elec-

trical engineering as we know it today.

Electromagnetic induction is also the phenomenon associated with the

important circuit elements known as induciors. Just as capacitors store energy

in their electric fields, inductors store energy in their magnetic fields. In a circuit

containing just a capacitor and an inductor, the stored energy can be repeatedly

transferred back and forth between the electric field of the capacitor and the

magnetic field of the inductor. This produces simple harmonic oscillations of

the currents and voltages in the circuit—the basis of all radio transmission and

other alternating-current (AC) circuits discussed in Chapter 34. In this chapter

we assume that there are no magnetic materials, such as iron, anywhere in the

vicinity. (See Chapter 2>i for the efi-ects of magnetic materials.)

32.2 Faraday's Law

It is easy to demonstrate that a changing magnetic field can produce a current.

Consider Figure 32-1, which shows a loop of wire connected to a galvanometer.

If we move a nearby magnet toward the loop as in (a), the deflection of the

galvanometer needle indicates a current in the loop while the magnet is moving.

(a) Moving the magnet toward the

loop of wire deflects the

galvanometer needle as shown.

(b) Moving the magnet away from

the loop deflects the galvanom-

eter needle in the opposite

direction from that in (a).

FIGURE 32-1

A loop of wire is connected to a

galvanometer whose zero is at the

center of the scale. By changing the

number of magnetic field lines that

thread through the loop, we induce

an emf in the loop, causing an induced

current as indicated by the

galvanometer needle deflection.
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FIGURE 32-2

The two circular loops are close

together but have no electrical

connection between them. When
switch S is closed and then opened,

the galvanometer needle momentarily

deflects in one direction and then in

the opposite direction, indicating

induced emf's in the left-hand loop as

the magnetic field in that loop changes.

When the magnet is moved away from the loop as in (b), the needle deflects

in the opposite direction while the magnet is moving, indicating a current in

the opposite direction. When the magnet is stationary, there is no deflection.

We can produce similar results by holding the magnet stationary and moving

the loop toward and away from the magnet, producing opposite needle de-

flections in the two cases. Thus it makes no difference whether we move the

magnet and hold the loop fixed, or move the loop and hold the magnet fixed.

Only relative motion between the loop and magnet is important.

The significant feature in these experiments is that a changing magnetic

field within the loop generates a current in the loop. If the magnetic field in the loop

does not change, there is no current. The currents produced in this way are

called induced currents, and they are the result of induced emf's in the circuit.

We can also generate induced emf's in stationary circuits by the proce-

dure illustrated in Figure 32-2. Here, two fixed loops are placed close together

without any electrical connection between them. Closing switch S to establish

a current in the right-hand loop causes the galvanometer needle momentarily

to deflect and then return to zero, indicating a brief induced current in the

left-hand loop. If the switch is now opened, there is a momentary current in

the opposite direction, which again drops to zero. Establishing a current in the

right-hand loop creates magnetic field lines, some of which thread through the

left-hand loop. Only when the magnetic field is changing is there an induced

current. With a steady current in the right-hand loop, there is no induced emf

in the left-hand loop.

The common theme in these experiments is this:

An induced emf is generated whenever there is a change of

the magnetic field lines that thread through the circuit.

The important word here is change. The number of field lines that pass through

the circuit does not matter; only the rate of change of these field lines deter-

mines the induced emf.

The quantity that specifies the number of magnetic field lines that thread

through a closed loop is the magnetic flax <1>b (Equation 30-29);

MAGNETIC FLUX (Db = Jb
• dA (in units of T'm^) (32-1)

Here, dA is the element of surface area. The integration is carried out over

the entire surface area that is defined by the circuit loop that forms its outer

perimeter. The area may be a plane or an arbitrarily curved surface. The value

of j B • c/A is called the flux linkage Og through the loop. If the same flux

passes through N turns in a coil, the flux linkage is NOg.

Faraday's law is the general statement that summarizes these experi-

mental observations. In words.

The magnitude of the induced emf ^ in a circuit equals the

time rate of change of magnetic flux through the circuit.

In equation form.

FARADAY'S LAW
OF INDUCTION

S = —d%
dl

(for a single loop) (32-2)

The minus sign (to be discussed in a later section) has a special meaning that

indicates the polarity of the induced emf S. If the circuit loop has N turns, this
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effectively puts all the individual emf s in series, increasing the induced emf by
a factor N:

FARADAY'S LAW
OF INDUCTION

= -N-
dt

(for N turns) (32-3)

Often we will deal with magnetic fields that are uniform over a plane

area A (though the field may change with time). In these cases, the magnetic

flux Og passing through the area A is simply

^n = B • A = BA cos (for uniform B) (32-4)

where the angle 6 is between B and the vector A normal to the plane.

Therefore,

FARADAY'S LAW
OF INDUCTION

= ——{BA cos 6) (for uniform B) (32-5)
at

There are thus several ways in which we can generate an induced emf in

a circuit. We can (1) change the magnitude of B with time, (2) change the area

A of the circuit with time, and (3) change the angle 6 with time. Each method

causes a change in the flux linkage NOg that threads through the circuit.

EXAMPLE 32-1

Changing the magnitude of B. A flat coil of wire with 100 turns and a cross-

sectional area of 40 cm'^ is placed with its plane perpendicular to a magnetic

field B = 0.45 T. If the field is changing at the rate of 0.05 T/s, find the magni-

tude of the induced emf at the terminals of the coil.

SOLUTION

The magnitude of the field B is not relevant in determining the induced emf;

only the rate of change of B is significant. We seek only the magnitude of S, so

we ignore the minus sign in Equation (il-i):

= N-
dt

dBNA—= (100)(40cm^)
dt

Im'
0.05

T
0.0200 V

Conversion ratio

EXAMPLE 32-2

Changing the orientation of the plane of the loop. A circular loop of wire, 20 cm^ in

area, lies on a horizontal table. At this geographical location the earth's magnetic

field, B = 50 nJ, is directed downward (toward the north) at an angle of 70°

with respect to the horizontal. Figure 32-3. The loop is turned completely over

in 0.60 s, with its final position again horizontal. Find the average emf induced

in the loop while it is being turned over.

FIGURE 32-3

Example 32-2.
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SOLUTION

The plane of the loop is not normal to the field lines, so the flux (t>^ threading

through the loop is, from Equation (32-4),

<Db = B • A = B/\ cos = (5 X 10"' T)(20 x 10"* m^Xcos 20°)

Ob = 9.397 X 10"* T-m"

As the loop is turned over, the flux linkages (from the loop's point of view)

drop to zero, then increase to their original value in the opposite direction.

So during the time At = 0.60 s, the change of flux linking the coil is twice the

original value: 2(9.397 x 10 "
'

(32-2) (again omitting the minus sign), we obtain

T-m^) = 1.879 X 10 ^ T-m^. From Equation

AOb (1.879 X 10 'T-m^)

At (0.60 s)

0.313 //V

B into the paper

X X X X X X
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Where does this power come from? Recall from Section 30.5 that a

current-carrying conductor in the presence of a magnetic field has a magnetic

force on it of F^^^ = If X B. In our case, the bar length € and the field B are

at right angles, so we have, for the magnetic force on the bar.

mag I/B
B/v

/B
R

(32-9)

As will be shown shortly, this magnetic force is toward the left, opposite to

the (equal-magnitude) external force F that pulls the bar toward the right. The

bar thus has zero net force on it, and it moves with constant velocity. The

rate of doing work done by this external force is

¥v
R

bVV
R

(32-10)

Equations (32-8) and (32-10) are equal, so we see that the power furnished to

the circuit by the work done by the external force just equals the l~R power

developed in the resistor. Again, conservation of energy holds true!

It is easy to determine the direction of the magnetic force on the current-

carrying bar. As the bar moves in the presence of the field, consider the Lorentz

force, F = q{\ X B), acting on a free (negative) conduction electron in the metal.

The Lorentz force F = ( — e)(v X B) is downward in Figure 32-4, moving elec-

trons downward. The bottom of the bar becomes negatively charged, and the

top end becomes positively charged. Therefore the current / circulates counter-

clockwise in the loop, and the current in the moving bar is upward. Con-

sequently, the magnetic force on that bar is F^^g = /^ X B, or toward the left.

If there is no external circuit that forms a closed path, the emf is still

present in the moving bar. Figure 32-5. In this case, as the bar begins to move
there will be a momentary movement of conduction electrons in response to

the Lorentz force, accumulating a negative charge at the bottom end and an

equal positive charge at the top. Equilibrium is rapidly achieved when the

Lorentz forces qvB are balanced by the electrostatic forces of attraction qE be-

tween the separated charges of opposite sign. The electric field £ within the bar

due to this separation of charge is related to the potential difference V = E/

between the ends of the bar. As long as the bar is in motion, the potential differ-

ence V is present across its ends. From qE = qvB, we choose £ = vB. Thus:

y = £/ = B/v (32-11)

This agrees with the result using Faraday's laws. Even in the case of a moving

nonconductor, this same potential difference is created by the Lorentz forces,

producing a slight displacement of positive and negative charges from their

equilibrium positions, creating an electric field within the bar (see Section

27.4, Dielectrics).

XXX
B into the paperXXX

EXAMPLE 32-3

In Figure 32-5, a metal bar 10 cm long moves through a magnetic field B =
1 mT as shown, (a) What speed v will produce a potential difference of 1 mV
between the ends of the bar? (b) If the bar moves in the opposite direction,

does the polarity change? (c) Suppose that the bar is aligned perpendicular to

the field lines, but the velocity v is at an angle of 120° (rather than 90°) with B.

Find the potential difference if the speed is the same as in part (a).

FIGURE 32-5

A conducting bar moving across a

magnetic field has a motional emf S
between the ends of the bar, whether

or not an extemal circuit allows a

current to exist.
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B into (increasing)

(a) A conducting ring of radius r is

placed symmetrically within
the region of a uniform, in-

creasing magnetic field. An emf

8=y^-di exists around the

ring. (If B were decreasing , the

direction of E would be in the

opposite sense.)

(c) When the magnetic field in (a)

increases, it induces an electric

field E both inside and outside

the region of the field.

(b) The same field E exists around
the path in (a) even if the

conductor is removed.

(d) The magnitude of the induced

E field as a function of r (see

Example 32-4).

FIGURE 32-7

In a circular region of radius R, a

uniform magnetic field B increases

with time at a steady rate. That is,

d^jAi = constant.

a constant emf is generated in the circuit due to the changing flux that links

the circuit. This emf can be written as the line integral of E around the closed

loop, S = ^Y.- d(, leading to the most general form of Faraday's law:

FARADAY'S LAW ^di
d%
di

(32-13)

This expression makes no reference to any conductor, charges, or currents; it

occurs in otherwise "empty" space. A changing magnetic flux produces an electric

field. Even if we now remove the circular conductor. Figure 32-7b, the same

induced electric fields still exist along the line integral path as before. Figure

32-7c shows the pattern of these induced E fields for this particular configura-

tion of changing magnetic flux. Faraday's law can be applied to any closed

path; it need not be a circular path as in our example.
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CXAMI'LL 32-4

In Figure 32-7, show that the magnitude of E varies with r as indicated in (d),

provided that dB/dt is constant.

SOLUTION

For r < R, we choose a circular path of radius r for the integration (to match

the symmetry of B). From Faraday's law,

E- d€ =
'

dt

(£)(27cr)= -inr^)

For the magnitude, we drop the minus sign and rearrange:

r fdB^
E =

2\dt
(constant)(r)

For r > R, the entire flux within nR~ is within the path of integration.

•^d€

(£)(27rr)= -inR~)

-^= -Ar--
dt \dt

dt

The magnitude is £ =
R^ fdB

Ir \dt
(constant)l

XXX
FIGURE 32-8

Electric Fields and emfs

In previous chapters we investigated electric fields that arose from the presence

of stationary electric charges. These were conservative fields because we could

define a potential difi-erence between two points that was the same for all

paths between the points:

V, V„ r E- di (32-14)

If we choose a and b to be the same point and integrate around a closed-loop

path, the integral is zero (the criterion for a conservative field):

E- d€ = (32-15)

But now consider Faraday's law for a closed loop in the presence of a changing

magnetic field, Figure 32-7b. As the field B changes, i:here is an emf S induced

in the loop described as the closed line-integral ^ E d€ around the loop:

dt

d

'It L B dA (32-16)
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where di is along the curve C that surrounds the surface area S. The direction

of dh. is given by the right-hand rule: circle the fingers of the right hand in

the direction of di around the loop; the extended thumb points in the direction

of dh.. Since this integral around the closed loop is not zero, the field E is not

conservative. That is, an electric potential cannot be defined for induced fields. This

is an important difference between electric fields due to static charges and the

induced electric fields generated by changing magnetic fields. Another distinc-

tion is that while the electric fields due to static charges always begin and end

on charges, the electric fields associated with changing magnetic fields exist

where no charges at all are present, and these electric field lines always form

closed loops.

32.4 Lenz's Law

The information in Faraday's law was originally expressed by Faraday in a

rather cumbersome form that involved several relations. Later investigators

revised and reduced these relations to the succinct equation we have today.

An important clarification was made by the German physicist Heinrich Lenz

(1804-1865), who contributed the minus sign. This minus sign has an impor-

tance greater than it might seem at first glance, since an understanding of its

meaning gives the direction of the induced emf. Lenz's law is the interpretation

we give to the minus sign. We illustrate the law with a specific case.

Consider the movable bar in Figure 32-8 which maintains electrical con-

tact with the stationary bars. We saw in Figure 32-4 that, as the external force

Fgj, moved the bar toward the right, the polarity of the induced emf was that

the top end of the bar becomes positive with respect to the bottom end. This

emf produces a counterclockwise current / around the circuit as shown, resulting

in a magnetic force on the bar of F^^^g = l€ X B toward the left that just bal-

ances Fj.xt toward the right, so the bar has zero net force on it.

Suppose, instead, that the induced current was clockwise (opposite to the

true direction). The magnetic force on the bar would reverse direction so that

it is toward the right. Once the bar started to move, the magnetic force would

take over and accelerate the bar even faster, developing more and more Joule

heating in R—a sort of perpetual motion machine that violates the conservation

of energy. So we conclude that any effects arising from induced emf's must oppose

the effect that generated those emf's. This is the insight that Lenz contributed,

and the minus sign in <j = —d^^/dt stands for this reasoning.

A convenient way to think about Lenz's law is in terms of flux linkages.

As we pull the bar toward the right, the number of magnetic flux lines that

link the circuit loop increases into the plane of the paper. The induced current

itself produces flux lines through the loop OUT OF the plane of the paper

(apply the right-hand rule for the magnetic field due to a current-carrying wire),

thus opposing the change of flux linkages that produced the current.

LENZ'S The induced current in a closed loop is in a direction so as to

LAW oppose the change in the flux linkages that produced it.

Note carefully that the induced current produces effects that oppose the change

of flux linkages, not the flux itself. Overlooking this distinction is a common
error. Even if the circuit does not form a closed loop so that no induced current

is actually present, we usually can imagine what would happen if it were a

closed loop and thus can determine the polarity of the induced emf across the

gap. Look at the examples in Figure 32-9. Before reading the analyses below,

can you apply Lenz's law correctly to predict the directions of the induced

currents in R for each case? Try it.

A B

(Move
contact

to right)

(a) Change the current in loop B
by moving the sliding contact

on the resistor toward the

right.

(b) Move the coils farther apart.

A B

(c) Close the switch S.

A

N

^
(d) Pull the magnet away from the

coil or push it into the coil.

(Induced current in A is shown
for pulling the magnet away.)

FIGURE 32-9

Methods of inducing an emf in the

conducting loop A by causing a change

in the flux linkage through that loop.

For each case, be sure that you

understand the Lenz's-law reasoning

that determines the direction of the

induced current 1.
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Magnet is

withdrawn

in this direction

(b) Field hnes of a permanent

magnet form complete, closed

loops. They emerge from the

north end and enter the south

end. Inside the magnet, the lines

extend from S to N,

FIGURE 32-10

Example 32-5.

Here is the application of Lenz's law to the changing-flux situations

shown in Figure 32-9.

(a) Initially, the current in loop B produces magnetic field lines that

thread through loop A toward the right. Moving the variable

resistor contact as shown increases the current in B, causing more

flux lines to thread through A toward the right. The induced

current in A is such that it produces flux lines in loop A toward

the left, opposing the original change of flux linkages.

(b) Initially, magnetic flux lines are toward the right inside both

loops. Moving B toward the right results in fewer lines threading

through loop A. The induced emf in A causes a current in the

direction that produces flux toward the right, opposing the change

of flux linkages in A.

(c) Closing the switch in the right-hand circuit causes magnetic flux

lines to increase toward the right in loop A. Therefore, the

induced current in A is such that it produces flux lines toward the

left within loop A, opposing the change of flux linkages in A.

(d) Magnetic field lines come out of the north pole of a magnet and

enter the south pole. So initially the flux line thread through

loop A toward the left. As the magnet moves toward the right,

these flux linkages decrease. Therefore, the induced current in

loop A is as shown, itself producing flux lines toward the left in

loop A, opposing the change of flux linkages in A.

EXAMPLE 32-5

In Figure 32-lOa, the wire loop with gap ab is held fixed while the permanent

magnet is withdrawn as indicated. Find the polarity of the induced emf across

the gap while the magnet is being withdrawn.

SOLUTION

Magnetic field lines always form complete, closed loops. Therefore, due to the

field lines inside the magnet, the net flux linkages through the wire loop are

initially toward the left, Figure 32-lOb. If an external wire were connected across

the gap, the induced current in this wire would be from fo to a as the magnet

is withdrawn, so that the induced current itself in the loop would create a mag-

netic field that tends to maintain the initial flux linkages through the loop. (It

opposes the change of flux linkages.) Thus point fc is at a higher potential than

point a. The points ab are, in effect, the terminals of a source of emf that would cause

a current from b to s in an external wire connected between them. The emf is present

in the gap whether or not an external wire is connected across ab.

Point b is at the higher potential.

32.5 Eddy Currents

In some instances, there is no well-defined conductor path to which the cur-

rents from induced emf's are confined. Often there will be a mass of metal

moving in the presence of a magnetic field or located where magnetic fields

are changing. In these cases, the induced currents circulate throughout the
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Fixed

Direction

of motion

B out of

the paper

(a) A magnetic field exists out of

the plane of the paper in the

shaded region. As the metal

sheet moves through the field,

eddy currents are induced as

shown. (The return paths for

the current loops are outside the

field region.) Magnetic forces on

these currents impede the

motion that generates them.

(b) Cutting slots in the metal

interrupts the current paths,

greatly reducing the eddy-

current braking effect.

FIGURE 32-11

A demonstration showing the presence

of eddy currents.

volume of the metal. These internal circulating currents are called eddy currents

in analogy to the eddies sometimes occurring in fluid flows.

We can demonstrate the presence of eddy currents by allowing a sheet

of nonmagnetic metal such as copper or aluminum, suspended from a horizontal

axis at one end, to swing freely into a region where a magnetic field exists,

Figure 32-11. As the conducting sheet moves, the field acts on the free con-

duction charges, causing circulating eddy currents as shown. By Lenz's law,

the currents within the region of the magnetic field result in magnetic forces

F = /^ X B on the metal that oppose the very motion which generated the

currents. (There is no force on the return currents of the loops outside the

field.) The net result is a braking action that impedes the motion of the metal.

This effect has been used commercially in a type of electromagnetic brake

called an eddy-current brake. If a series of slots is cut into the metal sheet inter-

rupting the current paths, the eddy currents are greatly reduced, minimizing

the eddy-current braking effect.

32.6 Self-Inductance

In contrast to a resistor, which restricts the amount of current in a circuit, a

loop or coil of wire in a circuit restricts any change of current in the circuit.

To understand this effect, consider the circuit of Figure 32-12 containing a re-

sistor, a coil of wire, and a battery. When the switch S is closed, a current /

is established in the direction indicated. But this current does not build up in-

stantaneously. As / begins to increase, there is a growing magnetic field in the

coil as indicated. By Faraday's and Lenz's laws, these changing flux lines in

the coil windings induce an emf in the coil that opposes this change. That is,

the polarity of the emf is that the bottom of the coil is positive with respect

to the top, trying to produce a current in the opposite direction. This is called

a "self-induced emf," or a "back-emf" Sj^, which opposes the current buildup.

+1^^*/

FIGURE 32-12

An inductance in series with a battery

and a resistor. As the current builds up,

note the polarities of the potential

differences across R and L.
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causing a slower increase in / than would occur without the coil. If no iron or

similar magnetic materials are present, this back-emf depends only on the phys-

ical dimensions of the coil and the rate of change of current dl/dt in the coil

(since these are the factors that determine the rate of change of flux linkages).

We call the factor of proportionality due to the physical dimensions alone the

self-inductance L of the coil. Its circuit symbol is -Tioooooo^ .

BACK-emf ACROSS g ^ _i^ (32 17)
AN INDUCTANCE L

^
dt

The SI unit of self-inductance' is the henry (H). Circuit elements that have in-

ductance are called inductors. (Note the correspondence to capacitance and capaci-

tors, and to resistance and resistors.)

A precise calculation of L for a given coil is ordinarily difficult because

of end effects and "leakage" of flux lines between the windings. However, for

an ideal solenoid (or a toroidal coil) with closely spaced windings, we evaluate

L as follows. For each single turn, the induced emf is S]^ = —d^^/dt. Ideally

the same flux ^^ links all N turns, so

Si^= -N—^ (32-18)
dt

Comparing this with Equation (32-17) we have

dl d^s

dt dt

Integrating both sides and noting that Og = when / = 0, we obtain

LI = N^s

Solving for L gives

SELF-INDUCTANCE L L = —^ (32-19)

The product NOg is called the number afflux linkages. Thus L is the number offlux

linkages per ampere; this depends solely upon the physical dimensions of the coil

itself. Since the SI unit for magnetic flux is the tesla-meter^, units for L are the

henry (H), or the fes/n meter"/ampere (T-m"/A). Usually L is called simply the

inductance of the coil.

Earlier in this chapter we showed that the magnetic field within an ideal

solenoid (ignoring end effects) is uniform and given by B = fignl, where n is

the number of turns per unit length and I is the current. For a cross-sectional

area A, the total flux inside the coil is (P^ = BA = /.ignlA. For a solenoid or

toroid of length / and N total turns (so n = N//), this relation becomes

' This unit honors the American physicist Joseph Henry (1797-1878), who discovered induction indepen-

dently of Faraday's discoveries in England. Faraday published his results first, so he is given priority in

naming the "law."
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Substituting this expression for O^ in Equation (32-19) gives

SELF-INDUCTANCE FOR A
TOROID OR IDEAL SOLENOID
(ignoring end effects)

(32-20)

where N is the total number of turns in the length /" with cross-sectional area

A. From Equation (32-20) we find that /.Iq, the permeability of free space, may
be expressed in units of henrys per meter (H/m) as well as other units found

previously. Here is a summary of possible units for i.Iq:

UNITS FOR /io ^0 471 X 10"
H N T-m

or —5- or
A- A

(32-21)

EXAMPLE 32-6

(a) Find the self-inductance of a solenoid that has a cross-sectional area of 1 cm',

a length of 10 cm, and 1000 turns of wire, (b) If the current through the inductor

is increasing at the rate of 15 A/s, find the magnitude of the induced back-emf.

SOLUTION

(a) The length of the solenoid is large compared with the cross-sectional radius,

and the turns of wire are closely wound. So we treat it as a "long" solenoid,

ignoring end effects. Substituting the appropriate values in SI units into Equa-

tion (32-21) yields

L =
HoN^A (47r X 10"^H/m)(1000tums)^(10 * m^)

if (0.10 m)

(b) From Equation (32-17), we have

1.26 mH

1^1 = (-)L-- = (1.26 X 10-3H)|l5-j = 18.9 mV

32.7 Mutual Inductance

In the previous section, we defined the self

the back-emf generated in a coil due to a

Similar effects occur between two coils that

flux lines generated in one coil can link th'

induced in either coil due to current changes

This process is known as mutual induction,

emf generated in coil 1 due to a changing

-M,;

inductance L of a coil that involves

changing current in the coil itself.

are close enough together so that

e other coil. Then, an emf will be

in the other coil (see Figure 32-13).

defined in the following way. The

current dljjdt in coil 2 is

dl2

IF

where Mj , is defined to be the mutual inductance of coil 1 with respect to

coil 2. Mutual inductance has the same unit as self-inductance: the henry (H).

FIGURE 32-13

Mutual inductance between two coils

occurs when they are close enough

together so that a current in one coil

causes flux linkages in the other. (Here,

current in coil 1 creates flux linkages in

coil 2.) It is a mutual effect: a changing

current in either coil will induce emf's

in the other coil.
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FIGURE 32-14

Small inductors used in electronic

circuits.

Similarly, the emf generated in coil 2 due to a changing current dl^^/dt in coil 1 is

dli

M,i
dt

where M^j is the mutual inductance of coil 2 with respect to coil 1. We omit

the proof and merely state that it can be shown that

Mi2 = M21 (32-22)

Thus the symbol M (without subscripts) may be used for mutual inductance:

<?i
= -M dl,

'df
and Sj -M

dli_

~d[
(32-23)

Since the mutual inductance depends upon the amount of flux linkages NOg
produced in one coil by the current / in the other coil, we may also write [by

analogy with Equation (32-19)]

MUTUAL
INDUCTANCEM M N^Ob

h
and M = Ni<I>Bl

(32-24)

The SI unit for M is the same as for L: henry (H). Provided no iron or similar

material is nearby, the value of M depends only on geometrical factors such

as how close together the two coils are and what their orientations are. Except

when the two coils are wound together so that all the flux from one coil links

the other coil, the calculation of M may be quite complicated.

As a practical example of mutual inductance, telephone lines in a cable

sometimes suffer from "cross-talk" when current changes in one line generate

emf's in adjacent lines. (Capacitive effects can similarly cause trouble.) Another
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example is the "hum" in audio amplifiers. This occurs because alternating cur-

rents in the power supply can induce alternating emf' s in nearby sensitive cir-

cuits unless these circuits are shielded from the magnetic fields or are placed

sufficiently far away.

EXAMPLE 32-7

A solenoid of length /j = 30 an, cross-sectional area A^ = 6 cm", containing

Ni = 500 turns, has a second coil of Ni = 20 turns wound tightly at its center,

Figure 32-15. Calculate the mutual inductance M between the coils.

SOLUTION

Because the coils are wound tightly together, they have the same area A and

so the same flux Og links both coils. From Equation (32-20), the flux at the

center of the solenoid when a current /j is present is

<I>B1 = 'I'b2 =

The mutual inductance M is thus

M =

M =

N2(Db2 Ho^.N^h f^oAN,N2

I, lA
,-7

(47t X 10 ^ H/m)(6 X 10 "* m^)(500)(20)

(0.30 m)
25.1 nH

o turns

HGURE 32-15

Example 32-7. Two coils wound
together on the same air core have

mutual inductance.

32.8 RL Circuits

Since the wire used to form a coil has some electrical resistance," an inductor

will also have some finite resistance—how much depends on the resistivity

of the wire material, its cross-sectional area, and its length. We usually com-

bine this winding resistance (if appreciable) with the other resistance in a series

circuit, so we have a "pure" inductance L in series with a resistance R. Such

RL circuits are common in electrical networks.

Consider the series RL circuit of Figure 32-16. When the switch 5 is

closed, the battery tries to establish a current in the coil. As the current rises,

however, the back-emf in the inductor acts similar to a "battery" whose polarity

opposes that of the real battery. For increasing current, the potential drop

across L, Si= —L dl/dt, thus has a polarity indicated by the + and — signs.

At all times after the switch closes, Kirchhoff's loop rule must hold true. Noting

the polarities across each element as the current rises, we have

(^ -IR

IS =

dl
L- =

dt
(32-25)

FIGURE 32-16

A series RL circuit for investigating the

growth of the current in an inductor.

Polarities shown are for the current

buildup after 5 is closed.

'' Superconductors are an exception. The resistivity of these materials becomes truly zero as the temperature

approaches a low value.
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(a) Growth

(b) Decay

FIGURE 32-17

Growth and decay of the current in an

RL series circuit.

The solution^ of this differential equation for the current / as a function of

time is similar to that for the RC circuit, Section 29.6:

GROWTH OF CURRENT
IN AN RL CIRCUIT '=r"

,-^R|L)t^
(32-26)

A graph of this equation is shown in Figure 32- 17a. Because of the exponential

factor, the current increases asymptotically toward the maximum value S'/R.

The rate of increase depends on the ratio L/R; the larger this ratio, the more

slowly the current increases. The ratio L/R is called the time constant T^ of

the RL circuit. In a time equal to one time constant after the switch is closed,

the current will rise to (1 — l/e) of its maximum value. This is ~63% of the

maximum value.

After the steady-state condition is reached (that is, the current is con-

stant at S'/R and there is no voltage across L), we next investigate the decay

of current in an RL circuit. One way to do this is to add a "shorting" branch

containing a switch $2 as shown in Figure 32-18. If we now close switch Sj,

it provides a continuous path for the current in L while effectively "shorting

out" the battery, and the battery can then be removed without affecting any-

thing in the remaining loop. Because the battery is no longer present, the cur-

rent in the loop immediately starts to decrease, inhibited, however, by the

A^Ar-

V

I
FIGURE 32-18

After a steady current is established in

L, a "shorting" branch containing

switch $2 is added. (After S, is closed,

we can remove the battery without

affecting the remaining loop circuit.)

The current in L then decays in the

loop containing only R and L.

' This equation is solved by the mathematical technique called Ihe separation of variables. A rearrangement

of the terms in Equation (32-25) produces

dl dt

i -IR L

thus separating the variables / and ( on either side of the equal sign. Both sides of the equation are

integrated:

dl c di

Jo ^ - K " Jo L

Using the table of integrals in Appendix G-II, we obtain

1 t

ln(^ -IR) = - + c

R L

where the constant of integration c is found from the initial conditions. Setting tg = and Iq = 0, we

find that c = — (l/R) In <?. Substituting this value in the above equation, we have

/(f - 1R\ R

\i\ny = X. then y = e\ so ' 1 - -~^'^'^^'

Solving for / gives
' = !"

' There are certain practical problems. If we open the switch in the original circuit, interrupting the current

suddenly, the high value of dl/dt in the inductor would generate extremely high emf s that (by Kirchhoff's

rule) would also appear across the gap between the switch contacts, creating a troublesome electric spark

or arc. For this reason, care must always be taken to avoid arcing at switch contacts in circuits containing

inductances.

Our method of using a "shorting" switch that does not interrupt the current also has practical

difficulties; some batteries would be severely damaged by a direct "short circuit," even for a second or

so. However, once the switch S, is closed, we could immediately remove the battery without affecting

the rest of the circuit. In this theoretical discussion, we ignore these annoying realities. But they must not

be ignored in the laboratory!
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back-emf generated in the inductor. From Kirchhoff' s loop rule.

IR + L

1^ =

dl

dl

(32-27)

We solve this equation (see Problem 32C-43) by using the same method em-

ployed for the solution of Equation (32-25), leading to

DECAY OF CURRENT
IN AN RL CIRCUIT R

(32-28)

The initial current Iq = SjR drops to l/« (^^7%) of its initial value in one time

constant: T^ = LIR. A graph of this equation is Figure 32-1 7b.

The exponential growth and decay of the current in RL circuits is similar

to the exponential changes occurring in RC circuits. It will be helpful if you

review the discussion of RC circuits (Section 29.6) to clarify these similarities.

It is always easier to remember facts if one can relate them to similar behavior

in other situations.

The general behavior of an inductor in a series RL circuit (with a constant-

voltage source) is as follows:

(1) The current through an inductor cannot change instantaneously. The

rapidity of the exponential changes that occur are governed by the L/R

time constant of the current path.

(2) After steady-state conditions have been reached, the voltage across a

"pure" inductance is always zero.

EXAMPLE 32-8

Consider the circuit in Figure 32-19. Find the steady-state currents in Rj, R2,

and R3.

SOLUTION

Because of the capacitor, there can be no steady current in that branch, so

U =
. (That branch is effectively an "open circuit.")

Because the steady-state current through L is constant, Sj^ = and the

current in that branch is

/, =
9V

(Ri -F R3) (3 kn -F 2 kfi)
1.80 mA

S . 3kn

9 V
r

Ri

10 mH
FIGURE 32-19

Example 32-8.
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12 V
R, > 4 kfi L OmH

FIGURE 32-20

Example 32-9.

\

Power supplied

by the battery:

VI

Hh
V

R

-AAV -mr-

EXAMPLE 32-9

In Figure 32-20, the switch is closed and a steady current is established in the

inductor. The switch is now opened at f = 0. (a) Find the initial voltage (^/,)o

across L just after the switch is opened, (b) How long does the current take to

decrease to one-sixth of its initial value?

SOLUTION

(a) After a steady current is established with the switch closed, there is no volt-

age across L so the current in that branch is limited only by ^2-

•'T'
12 V

2kD
= 6.00 nxA.

lust after the switch is opened, the current in L must initially have the same

value it had before the switch was opened: 6.00 mA. (Recall that the current

in an inductor cannot change instantaneously.) To produce this current in

the loop containing R^ and R2, the initial back-emf across the inductor must

therefore be

ij)^ = IR = (6.00 mA)(6 kfi) = 36.0 V

The polarity of this induced emf opposes the change of current, so the bot-

tom end of the coil is positive with respect to the top end, trying to main-

tain the current in the same direction. (See Problem 32C-43.)

(b) The time constant for this current path is L/iR^ + R2) = 9 mH/6 kQ =
1.50 us. Thus, the time for the current to drop to one-sixth of its initial value

is found from

/= V -(R/L)I

ln6 = (-lf

f =
I

- )ln6 = (1.50 /is)(ln 6) 2.69 us

32.9 Energy in Inductors

To find the energy stored within a current-carrying inductor, we apply Kirch-

hoff's loop rule to Figure 32-21, then multiply by / and rearrange:

Thermal power Rate at which

developed in energy is stored

the resistor: in the magnetic field:

I^R dl

FIGURE 32-21

The switch is closed at f = 0. As the

current rises toward its steady state

value, part of the power supplied by

the battery appears as energy stored in

the inductor, part as thermal energy

developed in R.

S -IR
dl
L- =

dt

rR + LI
M
It

(32-29)

£"1 = the power supplied by the battery

/"^R = the thermal power dissipated in the resistor

dl
LI— = the rate at which energy is stored in the inductor

dt
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Let U^ represent the energy stored in the inductor. Then

or

dU, dl—- = II-
dt dt

dUi^ = Lldl

Since 11^ = when / = 0, we integrate this equation to obtain

ENERGY STORED
IN AN INDUCTOR JJl = lU^ (32-30)

Note the similarity in form between this expression and the energy-

storage equation for a capacitor;

Ur = hcv^ (32-31)

An interesting difference between energy storage in a capacitor and in an

inductor is that a charged capacitor may be removed from the circuit retaining

its stored energy, whereas an inductor can retain its stored energy only by

maintaining a current through it.

Recall that starting with the expression for the energy stored in a capaci-

tor, U(- = 2^V~ , we obtained an expression for the energy density Wg in an

electric field:

*£ ~ 2^0^ (32-32)

We now follow a similar procedure for magnetic fields. The inductor that we
will consider is a large toroid that we form from a long solenoid bent into

a circle with the ends joined. Figure 32-22. The turns are tightly wound so

that all of the magnetic field is confined inside the turns and thus we know
the volume that the field occupies. If the radius of the circle is large compared

with the radius of the turns |so that R in Equation (31-6) doesn't vary much

across the windings], then the field 6 inside the windings is essentially uniform

and the same as that in a long straight solenoid, Equation (31-6):

1 =
H^N'A

and
^oM

where / is the average circumferential length around the toroid. Solving for

7 and subsituting these values in Equation (32-30), we have

1 , 1 [uoN^A
^ 1 2 \ / NJ

{An

FIGURE 32-22

A tightly wound coil in the shape of a

iorus (or doughnut) forms a toroidal

coil. If the radius of the torus is very

large compared with the radius of the

turns, the magnetic field inside the

windings is essentially uniform and the

same as that in a long straight solenoid.

But Af is the volume inside the windings containing the magnetic field. So the

energy per unit volume, or energy density Mg of the magnetic field, is

ENERGY DENSITY u^

IN A MAGNETIC FIELD «B = r- B' (32-33)

The units of energy density are joules per cubic meter (J/m^). Though for ease

of calculation we used a particular configuration for the inductor, the result is
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perfectly general and applies to any magnetic field B. Note the similarity^ to

the energy density in an electric field:

Me = i£o£^

[XAMPLE 32-W

Find the energy stored in the gap of a permanent magnet such as the one illus-

trated in the previous chapter in Figure 31-lOa. Assume that the field is uniform

within the gap and equal to 0.5 T. The volume of the gap is 2 cm^.

SOLUTION

From Equation {i2-3i), the energy density »b 's

1 (0.5 T)^

" 2^0 (2)(4n X 10"^ H/m)

The total energy L/g stored in the volume V is

J

= 9.95 X 10* ]/m^

U^ = '<r,V: 9.95 X 10* (2.0 X 10"" m'') 0.199

;

While it is possible to extract the energy associated with an electric field,

no practical method has yet been devised to extract the considerable energy

associated with the magnetic field of a permanent magnet. It is interesting to

speculate about the vast reservoir of magnetic-field energy associated with the

earth's magnetic field.

' Compare analogous equations for electric and magnetic fields. If Eq appears in the numerator in one equa-

tion, you will discover that Hg is in the dmommalor of the other equation, and vice versa.

Summary

Faraday's law: S, = -N-
di

E-d£ =
dt
Jb • M

Lenz's law. The induced current in a closed loop is in a direction

so as to oppose the change in the flux linkages that

produced it.

A motional ernf is produced by the motion of a conductor in

the presence of a (stationary) magnetic field B:

S = -B^v (when B, €. and v are

mutually perpendicular

Inductance L (also called self-inductance):

dl
S = -I

dt

The inductance of a long solenoid with a length /" or a large toroid

with a circumference /:

]_ = (N = total number ot turns)

Mutual inductance M:

^1 = -M
.dl2

a"
and ^2 = -M d_h

dl
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RL circuit: In a series combination ot' a seat of emf with termi-

nal voltage V, a resistor R, and an inductor L, the current is

Growth:

Decay:

'°f
""'''""*

"r'
- (R X)(

In one time constant, t^ = L/R, the growing exponential rises

to ~ 63% of its final (maximum) value and the decaying ex-

ponential falls to ~37% of its original value.

Energy stored in a current-carrying inductor:

u, = \Lr^ (in joules)

Energy density in a magnetic field:

1 /B

2 \Ho
(in joules/meter''

The general behavior of an inductor in a series RL circuit

(with a constant-voltage source) is

(1) The current through an inductor cannot change

instantaneously. The rapidity of the exponential

changes that occur are governed by the L/R time

constant of the current path.

(2) After steady-stale conditions have been reached, the

voltage across a "pure" inductance is always zero.

Questions

1. Where and in which direction would an airplane fly so

that the earth's magnetic field v^ould produce the greatest

potential difference between the wing tips, with the right

tip positive with respect to the left tip?

2. Can electric field lines form closed loops as well as orig-

inate on charges? Explain.

3. What is the connection between Lenz's law and the con-

servation of energy?

4. Is the net magnetic flux through a closed surface sur-

rounding the north pole of a magnet zero? Is the net elec-

tric field flux through a surface surrounding the positive

charge of an electric dipole zero?

5. A toroid inductor has essentially no external magnetic

field. However, there is a small, unavoidable external field.

Describe this field and its origin.

6. An airplane with a metal propeller is flying along the

direction of the magnetic field lines of the earth, (a) Is

there a potential difference between the tips of the pro-

peller blades? (b) Is there a potential difference between

the propeller hub and the propeller tips?

7. Two identical, rectangular loops of wire are situated so

that the plane of each loop is perpendicular to a uniform

magnetic field B. Loop A is then rotated with angular

velocity O) about a central axis parallel to the longer side

of the loop, while loop B is rotated with the same angular

velocity about a central axis parallel to the shorter side.

Is the peak value of the induced emf in loop A greater

than, equal to, or less than the peak emf induced in loop

B? Is the answer the same if the axes are coincident with

the sides of the loops (rather than passing through their

centers)?

8. Why does increased resistance increase the time constant

of an RC circuit, while it decreases the time constant of

an RL circuit?

An isolated long, straight wire does have inductance. How
could its inductance be calculated? (Hint: consider the flux

linkages inside the wire itself when it carries a current den-

sity ;.)

Here is an amusing demonstration. A (nonferrous) rigid

metal sheet such as aluminum is placed on a horizontal

surface in a strong magnetic field. If the sheet is initially

oriented with its plane almost (but not quite) vertical, and

released, it falls over in "slow motion," taking several sec-

onds to fall. Explain.

Compare the energy density stored in the electric field of

a capacitor and in the magnetic field of a solenoid, for

typical cases that are easily achieved in the laboratory.

When we wind a coil of resistance wire to form a resistor

that has very little inductance, half the length of wire is

wound in one direction and the other half in the oppo-

site direction. Explain why such a resistor has negligible

inductance.

9.

10

11.

12

Problems

il.2. Faraday's Law
32.4 Lenz's Law

32B-1 A circular hoop is linked through a toroidal coil as

shown in Figure 32-23. The switch is closed to produce a surge

of current through the coil, (a) Calculate the induced emf in

the hoop when the magnetic flux within the coil is changing

at the rate of 30 T-m"/s. Determine the direction of the in-

duced current in the hoop, (b) The magnetic field produced by

an ideal toroid is totally contained inside the windings of the

toroid. That is, none of the field inside the toroid touches the

hoop. What causes the induced current in the hoop?

32B-2 A flexible wire forms a circular loop 20 cm in diam-

eter. It lies on a horizontal surface in the presence of a uniform

magnetic field B = 0.7 T directed vertically upward. Opposite
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FIGURE 32-23

Problem 32B-1.

points of the loop are now rapidly pulled apart, collapsing the

area of the loop to zero in 0.06 s. (a) Find the average emf in-

duced in the loop, (b) As viewed from above, is the induced

current in the collapsing loop clockwise or counterclockwise?

32B-3 A circular wire loop of radius r and resistance R lies

in a plane perpendicular to a uniform magnetic field B. The

loop is rapidly turned over (by 180°) in a time f. Find the average

emf S induced in the loop during the time t.

328-4 An airplane with a wingspan of 70 m is flying

horizontally at 1000 km/h toward the north magnetic pole of

the earth. If the vertical component of the earth's magnetic

field at the airplane's position is 2 x 10 ~T, calculate the

potential diff^erence V between the wing tips. Which wing tip

is at the higher potential? Explain why this potential difference

cannot be used as a source of power.

32B-5 A rectangular wire loop of mass m, total resistance

R, and dimensions as shown in Figure 32-24 is falling freely

under gravity as it emerges from a region of uniform, horizontal

magnetic field B. The plane of the loop is perpendicular to B.

(a) Is the induced current in the loop clockwise or counter-

clockwise? (b) At a certain speed v, the loop falls without ac-

celeration while emerging from the field. Show that this speed

is y = mgR/B^a^.

/«> /^ A ,«.

X I X X ' X

X
B

X X

X

X

X

X

X

X

X

X

X

x_
Edge of

the field

f
FIGURE 32-24

Problem 32B-5.

32B-6 The cube in Figure 32-25 is 50 cm along each edge

and is situated in a uniform magnetic field B = 0.3 T directed

along the -l-z direction. One at a time, four wire segments 1,

2, 3, and 4 are moved in the directions shown with speed v =
2 m/s. (a) Find the motional emf generated in each wire and

tabulate the values in the order that the wires are numbered,

(b) Make a sketch of the figure and indicate with -I- and —
signs the polarities of the induced potential differences between

the ends of each wire.

FIGURE 32-25

Problem 32B-6.

32B-7 A 30-tum flat coil of wire is placed at the end of a long

solenoid wound with 4000 tums/m. The coil and solenoid have

the same radius, R = 5 cm, and their axis are coincident. Find

the rate of change of current in the solenoid if there is an in-

duced emf of 2 mV in the coil.

32.6 Self Inductance

32A-8 A back-emf of 28 mV is produced in a 400-tum coil

when the current changes at the rate of 12 A/s. Find the in-

ductance of the coil.

32A-9 Beginning with the basic definitions of inductance L

and resistance R, show that L/R has the dimensions of time.

32A-10 Ignoring end effects, find the inductance of a 1200-

tum solenoid, 39 cm long, with a diameter of 3 cm.

32A-11 The field B at the center of a current-carrying cir-

cular loop of wire is [from Equation (31-4)] B = I-IqI/IR, where

R is the radius of the loop. Assume that the field has this value

uniformly over the plane area bounded by the loop and esti-

mate the inductance of a flat coil of N turns, radius R.

32B-12 The current in a 12-mH inductor that has negligible

resistance varies with time according to the sawtooth waveform

shown in Figure 32-26. Make a graph (with numerical values)

of the voltage across the inductor as a function of time.

(mA)

FIGURE 32-26

Problem 32B-12.

32B-13 The current in a 90-mH inductor changes with time

as / = f^ — 6f (in SI units). Find the magnitude of the induced

emf at (a) f = 1 s and (b) f = 4 s. (c) At what time is the emf

zero?
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32B-14 A time-varying current / is applied to an inductance

of 5 H, as shown in Figure il-27. Make a quantitative graph

of the potential of point a relative to that at point b. The current

arrow indicates the direction of conventional current.

32B-21 Verify by direct substitution that the statement

/ = (SIR)(l - e"""^") is a solution of the differential equation

i -IR- Ldl/dt = 0.

(mA)

J-f

Current

source
5H'

FIGURE 32-27

Problem 32B-14.

32.7 Mutual Inductance

32A-15 A toroidal solenoid has two separate sets of wind-

ings that are each spread uniformly around the toroid, with total

turns N] and N2, respectively. The toroid has a circumferential

length /^ and a cross-sectional area A. (a) Write expressions

for the self-inductances Lj and L2, respectively, when each coil

is used alone, (b) Derive an expression for the mutual induc-

tance M of the two coils, (c) Show that M" = L^Lj- (This ex-

pression is true only when all the flux linking one coil also links

the other coil.)

32A-16 Two coils, A and B. are close enough to each other

to have mutual inductance. When the current in coil A is chang-

ing at the rate of 1.8 A/s, the emf induced in coil B is 24 mV.

(a) Find their mutual inductance, (b) What rate of change of

current in coil B will induce an emf of 30 mV in coil Al

32B-17 A long solenoid of length / and cross-sectional area

A contains a total of N, turns. A second coil of N2 turns is

closely wound around the center of the solenoid (keeping the

two coils electrically insulated from each other). Find the mutual

inductance M between the coil and the solenoid, ignoring end

effects.

32.8 RL Circuits

32A-18 A seat of emf S = lOV is in a series circuit with

a switch 5, a resistance R = 50 Q, and an inductance L = 5 H.

Find the time after the switch is closed for the current to reach

(a) half its final value and (b) 99% of its final value.

328-19 Consider Equation (32-28) for the decay of current

in an RL circuit, (a) Find the initial slope of the decreasing cur-

rent graph, (b) Show that, if this initial rate of decrease were

to continue at a constant rate (rather than to decrease expo-

nentially), the current would reach zero in one time constant.

32B-20 A battery is in series with a switch and a 2-H induc-

tor whose windings have a resistance R. After the switch is

closed, the current rises to 80% of its final value in 0.4 s. Find

the value of R.

32.9 Energy in Inductors

32A-22 Find the total energy stored in a toroidal solenoid

of 800 turns, circumferential length 44 cm, cross-sectional area

10 cm', carrying a current of 3 A.

32A-23 Calculate the energy density in the magnetic field

near the center of a long solenoid that has 3800 turns, m when

carrying a current of 4 A. Does the energy density depend

upon the radius of the turns?

32A-24 A 60-V emf is connected across a series combina-

tion of a 40-Q resistor and a 90-mH inductor. Find the mag-

netic energy stored in the inductor when the current has risen

to three-fourths of its steady-state value.

32B-25 A 10-V battery, a 5-Q resistor, and a 10-H inductor

are connected in series. After the current in the circuit has

reached its maximum value, calculate (a) the power supplied to

the circuit by the battery, (b) the power dissipated in the resis-

tor, (c) the power dissipated in the inductor, and (d) the energy

stored in the magnetic field of the inductor.

32B-26 At f = 0, a source of emf, (f = 500 V, is applied

to a coil that has an inductance of 0.80 H and a resistance of

30 Q. (a) Find the energy stored in the magnetic field when

the current reaches half its maximum value, (b) How long after

the emf is connected does it take for the current to reach this

value?

Additional Problems

32C-27 A thin metal rod of length 0.8 m falls from rest

under the action of gravity. It remains horizontal with its length

oriented along the magnetic east-west direction. At this loca-

tion, the earth's magnetic field B has a magnitude of 5 x
10"^ T and a downward direction at 70° below the horizontal

(the "dip" angle), (a) Find the induced emf in the rod after it

falls 8 m. (b) Which end of the rod has the higher potential?

32C-28 To monitor the breathing of a hospital patient, a

thin belt is girded about the patient's chest. The belt is a 200-

tum coil. During inhalation, the area within the coil increases

by 39 cm^. The earth's magnetic field is 50 ^T and makes an

angle of 28° with the plane of the coil. If a patient takes 1.80 s

to inhale, find the average induced emf in the coil while the

patient is inhaling.

32C-29 An automobile has a vertical radio antenna 1.2 m
long. The automobile travels at 65 km h on a horizontal road

where the earth's magnetic field is 50 /(T directed downward

(toward the north) at an angle of 65° below the horizontal, (a)

Specify the direction that the automobile should move in order

to generate the maximum motional emf in the antenna, with the

top of the antenna positive relative to the bottom, (b) Calculate

the magnitude of this induced emf.

32C-30 In Figure 32-28, the rolling axle, 1.5 m long, is

pushed along horizontal rails at a constant speed v = i m/s.

A resistor R = OA Q is connected to the rails at points A and
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B, directly opposite each other. (The wheels make good elec-

trical contact with the rails, so the axle, rails, and R form a

complete, closed-loop circuit. The only significant resistance in

the circuit is R.) There is a uniform magnetic field B = 0.08 T
vertically downward, (a) Find the induced current / in the re-

sistor, (b) What horizontal force f is required to keep the axle

rolling at constant speed? (c) Which end of the resistor, A or

B, is at the higher electric potential? (d) After the axle rolls

past the resistor, does the current in R reverse direction?
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32C-35 In Figure 32-31, a uniform magnetic field decreases

at a constant rate dB/dt = —k, where k is a positive constant.

A circular loop of wire of radius a containing a resistance R
and a capacitance C is placed with its plane normal to the field.

(a) Find the charge Q on the capacitor when it is fully charged.

(b) Which plate of the capacitor is at the higher potential?

(c) Discuss the force that causes the separation of charges.

32C-36 Figure 32-32 shows a circular loop of radius r that

has a resistance R spread uniformly throughout its length. The
loop's plane is normal to the magnetic field B that decreases

at a constant rate: dB/dt = —k, where k is a positive constant.

(a) What is the direction of the induced current? (b) Find the

value of the induced current, (c) Which point, a or b, is at the

higher potential? Explain, (d) Discuss what force causes the cur-

rent in the loop.

FIGURE 32-32

Problem 32C-36.

32C-37 Refer to Chapter 31, Figure 31-15 (Problem 31B-9).

If the current in the straight conductor decreases uniformly

from 10 A to 2 A in 2 s, find the induced current /' in the loop

for the case when / = 30 cm.

32C-38 A circular loop of wire of area A and resistance R

is held fixed with its plane normal to a magnetic field B. The

field is then reduced from an initial value of Bq so that it changes

as a function of time according to B = Bqc'", where a is a con-

stant, (a) Sketch the loop, showing the magnetic field directed

into the paper, and indicate on the diagram the direction of the

induced current, (b) Do the electromagnetic forces associated

with the induced current tend to make the loop expand, contract,

or neither? (c) Derive an expression in terms of Bq, A, and R for

the total quantity of charge Q that flows past a point in the

loop during the time the field is reduced from Bq to zero.

(d) Derive an expression in terms of Bg, A R, and a for the

amount of thermal energy dissipated in the loop while the field

is reduced from Bg to zero.

32C-39 Consider two coaxial long solenoids, one inside the

other. The inner solenoid has a radius R^ and «i tums/m. The

outer solenoid has a radius Rt and Hj tums/m. Show that the

mutual inductance per unit length of the combination is given

by (M//) = /io7rnifi2^i'-

32C-40 In Figure 32-33, the switch is closed and steady-

state conditions are established in the circuit. The switch is now
opened at f = 0. (a) Find the initial voltage Sq across L just

after t = 0. Which end of the coil is at the higher potential:

a or bl (b) Make fi-eehand graphs of the currents in /?i and in

^2 vs. (, treating the steady-state directions as positive. Show
values before and after t = 0. (c) How long after t = does

the magnitude of the current in Rj drop exponentially to 2 mA?

2kn

/
6 kfi < /?,

18 V

0.4 H

FIGURE 32-33

Problem 32C-40.

32C-41 Two inductors Z., and Li are connected in series

but are far enough apart so that the magnetic flux of one in-

ductor does not link with the other inductor, (a) Show that the

equivalent inductance of the combination is Z-i -t- Lj- (b) If the

two inductors are close enough together so that they have

a mutual inductance M, show that the combination has an

equivalent inductance of Lj -|- L2 i ^^- Explain the reason for

the + sign.

32C-42 Refer to Example 32-9. By direct calculation of

^£, = —L{dl/dt), verify that the initial back-emf induced in L just

after opening the switch is 36.0 V.

32C-43 Carry out the solution of Equation (32-27) to obtain

Equation (32-28). Include a circuit diagram showing polarities

across R and I while the current is decreasing.

32C-44 A flat coil of wire has an inductance of 2 H and a

resistance of 40 Q. At f = 0, a battery of emf, (f = 60 V, is

connected to the coil. Consider the state of affairs one time

constant later. At this instant, find (a) the power delivered by

the battery, (b) the Joule power developed in the resistance of

the windings, and (c) the instantaneous rate at which energy

is being stored in the magnetic field.

32C-45 A straight cylindrical conductor of radius R carries

a steady current I that is distributed uniformly over a cross-

sectional area of the conductor. Derive an expression for the

total magnetic energy per unit length contained within the con-

ductor. (Hint: what is the energy contained within a thin cyl-

indrical shell of radius r {<R), thickness dr, and length /? You
may use the result of Problem 31B-13.)

32C-46 Repeat the previous problem for the case in which

the current density ] varies linearly with the distance r from

the axis of the conductor: J = /pr. (a) Express the total current

/ in terms of ]q and R. (b) Derive an expression for the total

magnetic energy per unit length within the conductor.



CHAPTER 33

Magnetic Properties of Matter

The obedient [compass] steel with living instinct moves,

and veers forever to the pole it loves.

CHARLES DARWIN

33.1 Introduction

So far in our study of the magnetic fields produced by current-carrying con-

ductors, we have assumed that the surrounding space was a vacuum. If matter

is present, however, the magnetic field can be very different. Classically, we
imagine electrons in atoms to undergo circulatory motions, creating microscopic

magnetic-dipole fields of their own. In certain substances these dipoles can be

aligned so that they contribute greatly to the resultant magnetic field.

A complete description of the magnetic effects of materials requires an

understanding of quantum theory beyond the scope of this text. However,

without delving too deeply into details, we will present a brief introduction

to the three most familiar types of magnetic material behavior; paramagnetism,

diamagnetism, and ferromagnetism.

33.2 Magnetic Properties of Materials

The origin of the magnetic properties of materials is within their atomic struc-

tures. For our purposes, we may consider an atom to be made up of a positively

charged nucleus with electrons circulating in orbits about the nucleus. These

microscopic current loops create magnetic dipole fields. In addition, we assume

that each electron also "spins" about its own axis, similar to a spinning top,

producing a "spin" magnetic dipole moment.^ The resultant magnetic moment

fi (Equation 30-14) of the atom is due partly to the orbital motions of the elec-

trons and partly to their spins. There is a tendency for all the individual dipole

moments within a single atom to combine in pairs, with opposite orientations,

so that the net magnetic dipole moment for the atom as a whole can be zero.

This model of a spinning electron is too mechanistic and should not be taken literally. The properties of

spin are fully understandable only in the context of modem quantum theory. Nevertheless, this classical

description of a spinning electron is useful as a first introduction to these ideas.
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(a) An electric dipole. The electric

field lines near the center point

opposite to the direction of the

electric dipole moment /ie-

(b) A magnetic dipole formed by a

current loop. The magnetic

field lines near the center point

in the direction of the magnetic

dipole moment n^.

FIGURE 33-1

A comparison of electric and magnetic dipoles. Both dipole moments are pointing

up. At distances far from the dipoles, the field patterns are identical. But near their

centers, the lines of B and E are in opposite directions.

In other cases, however, the dipole moments do not exactly cancel. For exam-

ple, atoms with an odd number of electrons will necessarily have an unpaired

electron, resulting in a net magnetic moment.

Paramagnetism

For atoms that have a net dipole moment, thermal motions randomly orient

their dipoles so that the bulk material has zero net dipole moment. However,

as discussed in Chapter 30, in the presence of an external magnetic field the

dipoles experience a torque that tends to align them parallel to the field. De-

pending on the field strength and the temperature (thermal agitation tends to

misalign the dipoles), some materials thus exhibit a nei dipole moment in the

presence of a magnetic field. When the field is removed, thermal motions again

randomize the orientation of individual atomic dipoles, and the material no

longer possesses a net dipole moment. Substances that exhibit this property

are called paramagnetic.

When magnetic dipoles are aligned, they add to the overall magnetic

field, increasing its value slightly. We can see why this is so by comparing a

magnetic dipole and an electric dipole. Figure 33-1. Although their far-field

patterns are identical, in the regions near their centers the B and E field lines

are in opposite directions. Thus, when electric dipoles are aligned in an E field

(Section 27.3), their central field lines are opposite to the direction of E, resulting

in a net reduction of the electric field within the material. But the central field

lines of aligned magnetic dipoles in a B field are in the direction of B, resulting

in a net increase of the magnetic field. The efi^ect is small because thenmal

motions allow only a very small fraction of the magnetic dipoles to become

aligned.

In the presence of a nonuniform magnetic field, the dipoles experience a

net force that attracts them toward the region of the stronger field. This is similar

to the behavior of electric dipole moments. As shown in Figure 33-2a, they

feel a net force toward the stronger-field region. While it is an oversimplification

to imagine magnetic dipoles as tiny magnets with north and south poles as in

Figure 33-2b, it does make the attractive effect understandable. The model of

a dipole as a ring of current behaves similarly in a divergent field, Figure i3-3.

In a nonuniform electric field,

an electric dipole experiences a

net force that pulls it into the

stronger-field region.

(b) In a nonuniform magnetic

field, a magnetic dipole ex-

periences a net force that pulls

it into the stronger-field region.

FIGURE 33-2

Dipoles in nonuniform fields.
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FIGURE 33-3

A current loop, free to move in the

presence of a magnetic field B, will

orient itself so that the magnetic

dipole moment fi points in the

direction of the field. If the field is

nonuniform, the magnetic forces

(shown in color—always

perpendicular to B) on the current

loop result in a net force toward the

region of stronger field.

\

\

y

I inward

/ outward

(b) Side view of loop.

EXAMPLE 33-1

In the Bohr model of an atom, an electron of charge ( — )e and mass m travels in

a circular orbit of radius r with a speed v, thus forming a current loop, (a) Cal-

culate the orbital magnetic moment fXf due to this orbital motion.'^ (b) Quantum
theory says that the orbital angular momentum mvr is quantized such that it

can only have integral multiples of hlln, where h is Planck's constant (see

Chapters 42 and 44). For an electron in the smallest orbit allowed by quantum

theory—that is, one unit of hjln—express the value of Hf in terms of h and m.

SOLUTION

(a) The orbital magnetic moment j-if
= lA, where A is the area of the current

loop. The current / = q/T, where T is the period of the motion: T= Inrjv.

Thus:

l-h IA =
Inrjv

(nr') =
evr

2

(b) The angular momentum L = ynvr = hjln. Thus:

(mvr) =t^f

evr

2

eh

Anm

This quantity is called the Bohr nmgnetoii, the fundamental unit of magnetic

moment in atomic theory.

I

Diamagnetism

A few elements are repelled by a permanent magent. Such materials are called

diamagnetic. Michael Faraday noticed this effect in bismuth; silver is also

noticeably diamagnetic. The effect is quite weak. Elements whose atoms have

zero net magnetic dipole moments are diamagnetic. Atoms that have a perma-

nent dipole moment (and that are not /erromagnetic) may be either diamagnetic

or paramagnetic, depending on which effect is stronger. To understand the

' The notation ^l^ for the orbital magnetic moment (and /(, for the spin magnetic moment) agrees with the

notation in modern quantum theory.

•1
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B into

X the paper

fi inward

ft outward

(a) Two electrons circulating in

opposite directions with the

same speed. The net dipole

moment is zero because both

dipole moments are equal in

magnitude but opposite in

direction.

tl2

outward

(b) The external magnetic field

does not change the size of the

orbits, but it produces the

additional forces Fi and f^ so

that U2>Ui- Consequently,

Ii2>iii, making a net dipole

moment opposite to the

external field.

phenomenon, imagine a simple (classical) atomic model of circulating electrons

held in their orbits by the electrostatic attraction of the positively charged

nucleus. In diamagnetic atoms, some electrons are circulating in one direction,

some in the other, with the result that their dipole moments cancel. Consider

two electrons circulating in opposite directions with the same speed as shown

in Figure 33-4a. (For clarity, their centers of rotation have been separated.)

Because the electrons circulate in opposite directions, their combined dipole

moment is zero. When an external magnetic field is applied, the circulating

electrons experience an additional radial force; F = ^(v X B). In one case this

force adds to the radially inward electrostatic force, and in the other case it

opposes the inward electrostatic force. It can be shown that the radius of the

orbit remains the same. But the change in centripetal force (wrco ) changes the

angular velocity co of the electron. In one case the increased speed of the cir-

culating electron makes a larger magnetic moment opposite to B, while in the

other case the slower speed makes a smaller magnetic moment in the direction

of B. Botli effects result in a net induced dipole moment that is opposite in direction

to the applied field B (rather than in the field direction as in paramagnetism).

Because the induced dipole moment of the material opposes the field, when
placed in the nonuniform field of a nearby permanent magnet field, the material

is repelled away from the magnet— it is diamagnetic. Since all matter con-

tains atoms, all substances experience this diamagnetic effect. However, if per-

manent dipoles are present, this diamagnetic behavior is usually overwhelmed

by the effect of the permanent dipoles and the substance is attracted toward

stronger fields—the material is paramagnetic or ferromagnetic.

FIGURE 33-4

The origin of diamagnetism.

Ferromagnetism

The third class of magnetic materials contains five elements: iron, cobalt, nickel,

gadolinium, and dysprosium as well as some alloys made from them. These

are the ferromagnetic materials, whose magnetic effects are orders of mag-

nitude greater than those of paramagnetic or diamagnetic substances. The basic
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temperature is 770°C.) Above the Curie temperature, the material becomes

paramagnetic, and at still higher temperatures even paramagnetism disappears

and substances become diamagnetic.

33.3 B and H
Having described three basic types of magnetic materials—paramagnetic, dia-

magnetic, and /crromagnetic—we now investigate the effect of placing a para-

magnetic material inside the windings of a solenoid (Figure ll-l). Consider a

long solenoid whose interior magnetic field (without the paramagnetic material)

is Bq = ^'o"^' Equation (31-7). Since n = N//, the number of turns per unit

length, the magnetic field Bq inside, due only to the current / in the windings,

is

M

This equation is for a vacuum (and, to a close approximation, an "air core").

With a material in the core, an additional magnetic field is created due to the

oriented dipoles (paramagnetic materials) or the induced dipoles (diamagnetic

materials). This added field B' is proportional to the original field Bq = HqNIJ^,

produced by the current in the windings:

Domain

M
6 =z(^oy (33-1)

where '/_• the magnetic susceptibility, is the factor of proportionality. It is

very small, roughly 10"^, and is positive for paramagnetism and negative for

diamagnetism. The total field B is thus

6 = Bo + 6'

M

or, simply

B =

B = ^o(l + X)H (33-2)

(a) As the alignment of dipoles in

one domain shifts to a new
direction in an adjacent

domain, the change is gradual,

with a transition region several

hundred atoms thick in which

dipoles point outward from the

surface. Consequently, at these

walls or boundaries between

domains, a localized, intense

magnetic field bulges outward

from the surface. If a thin

colloidal suspension of finely

powdered iron oxide is spread

on the surface, the walls

become visible when the

powder particles are attracted

to the regions of intense fields

protruding from the surface.

(b) Domain wall patterns for a

single crystal of iron containing

3.8% silicon.

FIGURE 33-6

Magnetic domains.

(a) The current in one loop of a

solenoid with an air core

produces the field Bq.

(b) A solenoid with a paramagnetic

material in the core. The field

Bo aligns magnetic moments of

the paramagnetic material.

(c) The aligned moments result in

an effective current /
' around

the outside of the paramagnetic

material, producing a field B'

in the same direction as Bq.

FIGURE 33-7

The cross-section of a solenoid showing the effect of adding a paramagnetic material within its windings.
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TABLE 33-1 Magnetic Susceptibilities, x (^^ 20°C unless otherwise noted)

Material y

Paramagnetic

and

Diamagnetic

(Negative values

indicate diamagnetism.)

Ferromagnetic

Maximum saturation values.

(Varies widely depending on

prior magnetization, the value

of H, heat treatment, purity, and

the history of mechanical stress.)

Aluminum
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up to several hundred thousand. The ferromagnetic entries in Table 33-1 show
only the maximum positive values. The use of ferromagnetic materials in elec-

tromagnets, transformers, etc., immensely increases the magnetic field that can

be generated by a given current in a given set of windings. As someone has

remarked, "H is what you pay for, B is what you get!"

EXAMPLE 33-2

Suppose that the air core of a long solenoid is filled with iron, increasing the

magnetic field inside the solenoid from its original value Bq to B. Find the ratio

B/Bq, assuming that for this value of H the susceptibility of the iron is one-

quarter of its maximum value.

SOLUTION

Without the iron core, the magnetic field is Bq = /.IqH. With the iron, it is B =
/iod + 7.)H. The ratio B/Bq is thus

B ;Uo(l + Z)H

Bo ^loH
= (i + x)

From Table 33-1, we note the maximum value of y 's 5000. One-quarter of this

value is 5000/4, or 1250. Therefore,

B

Bo
= {1 + X) = (l+ 1250) ^ 1250

The use of the iron core greatly increases the magnetic flux density B inside

the coil.

33.4 Hysteresis

When a ferromagnetic substance is placed in a magnetic field, a variety of inter-

esting effects occur. The result can be quite complex since the value of / (which

describes the degree of alignment of domains in the material) depends not only

on H but also on the previous history of magnetization, the prior heat treat-

ment of the material, mechanical stresses, and other factors. Suppose we place a

piece of iron with randomly oriented domains inside the windings of a solenoid.

As we increase the current in the windings, we start at point a in the "B-H
graph" of Figure 33-8. The parameter H is proportional to the solenoid cur-

rent H = i.IqNI//. As orientation of domains occurs, the net field B increases

as shown. The curve levels off at point b, however, because of satitmtiou: the

majority of domains has become oriented, in the "proper" direction. If the satu-

ration is 100%, a further increase of current would increase B only slightly

through the //qH term of Equation (33-2). If the current is now reduced to

zero, the graph follows a different path to point c because some domains remain

permanently oriented. The material is now a "permanent" magnet. The fact that

the material does not retrace the original magnetizing curve is called hysteresis,

from a Greek root meaning "to lag behind." Increasing the magnetizing current

in the opposite direction and back again produces the characteristic curve called

a hysteresis loop, bcdeb.

(a) Starting with an unmagnetized

sample at O, the curve a—b is

the magnetization curve.

Repeated reversals of the

solenoid current then trace out

the outer portion (bcdeb),

called a hysteresis loop.

(b) Demagnetizing a ferromagnetic

material involves traveling

around successive hysteresis

loops, gradually decreasing the

magnitude of H with each

cycle.

FIGURE 33-8

A graph of the magnetic field B in

an iron core inside a solenoid

versus the magnetic field intensity

H produced by current in the coil

windings.
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Problems

flux density) is related to H as follows:

where ^ = /'od + I)

The firmicabilih/ yt of magnetic substances includes not only the

permeability of free space, /i^. but also the effects of aligned

dipole moments through the factor x, the magnetic suscep-

tibility. While j; is a constant close to zero for paramagnetism

(slightly positive) and diamagnetism (slightly negative), it has

extremely large values for ferromagnetic substances under sahi-

rahon: when aU the dipoles are aligned paraUel to the external

field. The net field inside a solenoid is B = Bp -(- B', where

Bp = ^(,H due to the current in the windings, plus B' = ^o/H,
i\\ir <fn the effects of the magnetic material,

T"he husteresis loops of B—H graphs allow classification of

tcrromagnctic materials as r "v hard (a "fat" loop), diffi-

cult to magnetize but retail , c remanent field and suit-

able for permanent magnets: or magnetically soft (a "thin" loop),

easy to magnetize but easy to demagnetize by mechanical or

thermal shocks. The area within a hysteresis loop represents the

energy "loss" (as heat) per unit volume per cycle around the

loop, so soft materials are used for cores of transformers in

which alternating currents repeatedly trace out a thin hysteresis

loop.

QtiCfiHottf

1- An unmagnetized iron rod placed halfway into a solenoid

will be suddenly drawTi into the solenoid as soon as current

begins to pass through the windings of the solenoid. What

is the explanation of this phenomenon on the basis of the

microscopic changes within the iron and on the basis of

energy' considerations?

2. Consider two iron bars that are identical except that only

one of them is magnetized. If you have only the two bars,

how can the magnetized bar be identified?

? Wrenches and screwdrivers sometimes become slightly

magnetized even though they are not used in electrical

work. Why?

4. In order to shield a dc\-ice from a magnetic field, we often

enclose the device in a box made of iron or a special metal

with a high permeability (called mu-metal). How does such

a shield work?

i*- The sensing element of most metal detectors is a coil of

wire. How does such a metal detector work? (This effect

is used for sensing automobiles at traffic-light intersections,

employing a conducting loop buried in the road surface.)

Figure 33-10 shows coils of wires with laminated iron cores

(thin sheets electrically insulated from each other) When an

AC voltage is applied to the windings, the changing mag-

netic flux induces alternating currents in the iron, called eddy

currents. To reduce /'R heating in the core, should the lami-

nations be oriented as in y^ or as in Bl

FIGLTRE 33-10

Question t.

' Must a permanent magnet have a detectable north pole and

south pole? Can you devise a magnet with, say, two north

poles? With tip poles (though the material is magnetized)?

Prohhems

33.A-1 A solenoid 20 cm long has 700 closely wound turns

around an iron core of diameter 1 .4 cm. Assuming that the iron

is saturated, what current will produce a magnetic flux of

3 X 10"* T-m^ through the center winding?

33.A-2 Find the permeabilit\' of a material that has a mag-

r>etic susceptibility of 1.8 x 10'".

33,^-3 When a superconducting material is placed in a mag-

netic field, surface currents are established that make the mag-

netic field inside the material truK' zero. (That is. the material

is perfectly diamagnetic ) Suppose that a circular disk, 1 cm in

diameter, is placed in a magnetic field B = 0.02 T with the

plane of the disk perpendicular to the field lines. Find the equiv-

alent surface current if it all lies at the circumference of the

disk.

33B-4 A solenoid 25 cm long has (?00 tightly wound turns

that carr\- a current of 30 mA. Find H and B at the center (a)

when there is air in the core and (b) when the core is filled

with 45 rermallo>- that has three-fourths of its maximum satura-

tion susceptibility.

33B-5 Show that the product P times H has units of energy

per unit volume.

33B-6 ,\ toroidal coil with a magnctn. material within its

windings is called a Rotcland rtng Consider a Rowland ring with

an iron core that has a mean circumferential radius o\ 10 cm and

carries a current of 150 mA through a winding of 250 turns, (a)

Calculate the magnetic field strength H within the windings

lb) Calculate the magnetic induction B within the iron if it is

"0% saturated.
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33B-7 A long iron-core solenoid with 2000 tums/m carries

a current of 10 mA. (a) Calculate the magnetic induction B with-

in the solenoid, assuming that the iron is 20% saturated, (b)

With the iron core removed, what current will produce the

same magnetic induction as in (a)7

33B-8 A toroidal coil with an effective circumference of

50 cm has 1000 turns that carry a current of 200 mA. The core

material has a magnetic susceptibility of 3000 when saturated,

(a) Calculate the magnetic induction B in the core if the mate-

rial is 85% saturated, (b) Find the magnetic field intensity H
within the windings, (c) Calculate the fraction of B due solely

to the current in the windings.

33C-9 A long solenoid with an iron core has a radius of

1.25 cm and a winding of 1200 turns m. A secondary winding

consisting of 40 turns with a total resistance of 5 Q is wrapped

tightly around the solenoid and the ends of the winding are

joined. A switch is closed, and a current of 50 mA is established

in the solenoid that causes the iron to become 100% saturated.

Calculate the total charge that passes a given point in the

secondary winding as a consequence of the change of magnetic

induction within the winding.



AC Circuits

The Buddha, the Godhead, resides quite as comfortably in the

circuits of a digital computer or the gears of a cycle transmission as

he does at the top of a mountain or in the petals of a flower.

ROBERT PIRSIG
(Zen and the Art of Motorcycle Maintenance)

34.1 Introduction

We have discussed the response of a series RC circuit when a battery voltage

is applied. The current initially is large, limited only by the resistance, and

decreases exponentially to zero. In a similar fashion, when a battery voltage

is applied to an RL circuit the current grows exponentially from zero to a

value limited only by the resistance. In both instances, the response is transient;

that is, the varying part lasts only momentarily, until steady-state conditions

have been achieved. The iime constant of the circuit determines how steep the

exponential curves are.

In this chapter we will investigate the response of a circuit to a constantly

changing applied voltage.' Most electromechanical generators of electricity

produce a simisoidalhj varying voltage, resulting in alternating current (AC).

The resultant voltages and currents are called AC voltage and AC current.

(The latter is firmly entrenched in common usage, so we shall go along with

it despite the redundancy.) AC circuits are used extensively for power trans-

mission, for radio, TV, and satellite communications, in computers, and for a

host of other applications in all technologically advanced societies.

34.2 Simple AC Circuits

For convenience, we use a special notation for AC circuits. Consider alternating

voltages and currents of the following type":

V = V sin ojt and I = / sin(tof — (j)) (34-1)

' Historically, formulation of the laws governing direct current was relatively simple compared with for-

mulation of those describing alternating current. It wasn't until just before the end of the last century that

the brilliant mathematician-engineer Charles Proteus Steirunetz developed the laws that describe alternating

current. The initial publication of his work consisted of three volumes of detailed and complicated math-

ematical development of alternating-current circuit theory.

^ The reason for the minus sign in (cut — cp) will become evident in Section J4.3.

Axis of

rotation

^load

Stationary brushes form sliding

contacts with the rotating rings

(a) A simple AC generator. An
emf S = fio sin jit is induced in

the wire loop as it rotates in the

presence of a magnetic field.

^'^'i'.

(b) The rotating armature ot a

modem AC generator contains

many coils, which rotate in the

field produced by large

electromagnets (outside the

photograph).

FIGURE 34-1

The AC generator.



764 34 / AC Circuits

u = V sin ii}t

The umplitudes, or peak vnhiea, of the voltage and current are represented by

capital letters (V and /, respectively). Small letters represent voltage and cur-

rent values that change in time (v and /, respectively). At any given instant,

sinusoidally varying quantities have a particular phase angle, such as col and

(cot — (j)) in the above expressions. The angle (/) is called the phase constant

and expresses the phase difference between two different sinusoidal variations.

Limiting the discussion to just one frequency is justifiable even though

many situations, such as the use of hi-fi amplifiers for music and speech repro-

duction, involve numerous frequencies simultaneously. The reason is that any

complicated waveshape that is periodic (that is, repeats itself again and again)

may be replaced by a combination of two sinusoidal variations involving a fun-

damental frequency (/q) and multiples (2/o, 3/o, 4/o, . . .). The mathematical

method is known as Fourier analysis (see Appendix F). Thus, more complicated

(periodic) waveshapes are understandable in terms of the simple sine and cosine

waves that we examine in this chapter.

We will discover that the current through a series combination of re-

sistors, inductors, and capacitors varies sinusoidally, but the voltage across

these elements will not necessarily have the same phase as the current through

them. How much current is present depends not only on the value of the

circuit components, but also on the frequency of the applied voltage.

Voltage V

Current i

FIGURE 34-2

A purely resistive AC circuit.

Circuits with Resistance Only

Consider the circuit shown in Figure 34-2. We write the applied voltage as

V = V^ sin (Ot, implying that at f = the voltage v = 0, going positive. In

circuit diagrams, the symbol for an AC voltage source is -Q)-- To find

the current i we use the fact that conservation-of-charge and conservation-of-

energy relationships hold for AC circuits just as they do for DC circuits. At

every instant Kirchhoff's rules apply. So we sum the voltage "rises" and "falls"

around the closed-loop circuit, using minus signs for potential drops:

Ii) =

V - iR =

Current i

(b)

FIGURE 34-3

A purely capacitive AC circuit.

Substituting for v from Equation (34-1) and rearranging, we obtain an expres-

sion similar to Ohm's law:

V sin iot = iR

V
I = — sin cot

R
(34-2)

Notice that the current has the same phase as the applied voltage, as shown in

Figure 34-2b.

Circuits with Capacitance Only

Now consider the circuit shown in Figure 34-3a. As always, the sum of the

potential differences around a closed loop must be zero at every instant. Thus;

V sin cut

Tv

_i
C
= (34-3)
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where q is the charge on the capacitor at time t. The current / through the

circuit is the rate at which the charge on the plates of the capacitor is changing:

I = dq/dt. Differentiating Equation (34-3) and solving for dq/dt, we have

dq

Ji
V(j)C cos coi (34-4)

We can write this expression in a form similar to Ohm's law

V'
1 = VcoC cos cot = 1

—
1 cos cot

where we introduce the new concept

CAPACITIVE
REACTANCE <^

'

1

(oC (34-5)

The symbol X^- is called the capacitive reactance, measured in ohms (Q). It

limits the amplitude of the current in the way that resistance limits the current

in a purely resistive circuit. (It is left as an exercise to show that capacitive

reactance does have dimensions of ohms.) Notice that the current leads the

applied voltage by n/2 rad (or 90°), as shown in Figure 34-3b. The phrase

"leading the applied voltage" means that, as time progresses (that is, as we
move along the t axis), the current reaches its positive peak value before the

applied voltage reaches its positive peak value. The word reactance emphasizes

the difference from resistance, where Vj^ and / are always in phase with each

other.

EXAMPLE 34-1

Find the reactance of a 2-/iF capacitor (a) at 60 Hz and (b) at one megahertz

(I MHz).

SOLUTION

(a) For / = 60 Hz, CO = 2nf = 2n{60 s" ') = 377 rad/s. Thus:

1
1326

^ COC (377rad/s)(2 x 10"^ F)

Because the standard frequency for power distribution in the United States

is 60 Hz, the value of co at 60 Hz, (o = 377 rad/s, is a useful number to

remember,

(b) At 10* Hz, we have

Xr =
11

coC (27r)(l X 10" Hz)(2 x 10 " F)
0.0796 Q

The reactance of a capacitor becomes less as the frequency increases. Con-

versely, as the frequency decreases toward zero, the reactance becomes very

large. In fact, at w = (direct current), the reactance is infinite, so a capacitor

completely blocks the current in that branch of a DC circuit.
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FIGURE 34-4

Voltage and current relations for a

purely capacitive circuit.

C
Voltage V

u = V sin tof

(a) A purely (b) A phasor diagram.

capacitive AC The phasors rotate

circuit. counterclockwise with

an angular frequency

oj, maintaining the

90^ angle between

Vand I.

Current i

(c) As the phasors in (b)

rotate, their projections on

a vertical axis generate

graphs of the instan-

taneous voltage V and

current i as a function

of time t.

Phasors

A useful way of portraying the phase relationship between the applied voltage

and the resulting current is by using a phasor diagram. The phasor diagram

for a purely capacitive circuit is shown in Figure 34-4. In this diagram, the

voltage and current are represented by vectorlike arrows, V and I, called

phasors,^ that rotate counterclockwise with an angular frequency CO, maintain-

ing their relative angular separations as they rotate. The lengths of the phasors

are the amplitudes of the time-varying voltage and current. Their angular

separation represents the phase constant (j) between the voltage v and the

current i. The projection of the phasors on a vertical axis is then expressed

by the equations

V = V sin cot I cos cot

or I = / sin cot H

—

2
(34-6)

These projections thus generate graphs of v and i versus time and are the

physically "real" quantities that are actually measured. The phase constant cj)

[in the general expression i = / sin(cof — 0)] is = — n/2 (equal to — 90°).

This means that, for a purely capacitive reactance, the current leads the voltage

by just one-quarter cycle of the sinusoidal variation. As the phasor diagram

rotates around, the current phasor I is ahead of the voltage phasor V (that is,

the current leads the voltage). As time progresses, the current reaches its peak

value before the voltage reaches its peak value. The phasor diagram helps us

visualize the phase relationship between the applied voltage and the current.

Circuits with Inductance Only

Consider the circuit shown in Figure 34-5a. We assume that L represents a

"pure" inductance (that is, the resistance of the windings is negligible). As

always, the instantaneous sum of the potential increases and decreases around

' Although voltage and current are not vectors in the usual sense, as phasors they do follow the rules for

vector addition. Their representation on a phasor diagram is a very useful mathematical technique that

helps us clearly visualize the phase relationships between the applied voltage and the current.
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Voltage V

^^U^

t; = Vsin cof

(a) A purely

inductive AC
circuit.

(b) A phasor

diagram. The
phasors

rotate counter-

clockwise

with an

angular fre-

quency O),

maintaining

the 90 ° phase

relationship

between V
and I.

(c) As the phasors in (b)

rotate, their projections

on a vertical axis

generate graphs of the

instantaneous voltage v

and current i as a

function of time t.

FIGURE 34-5

Voltage and current relations for a

purely inductive AC circuit.

the circuit loop must be zero. Recall that the voltage i\ across the inductor

due to the changing current through it is u^ = ^ ^ dxjAi, where the minus sign

indicates opposition to the applied voltage.

IV =

v-l- =0
dt

(34-7)

When we substitute v = 1/ sin cot and rearrange, Equation (34-7) becomes

di
L— = l^ sin cot

dt

We solve this equation by separating the variables / and /, so that they appear

on opposite sides of the equal sign, and integrating (see Appendix G):

P-iJ
V
—

I sin cotdt

V

coL
cos cot + c

Setting'* c = and using the fact that — cos cot = sin{cot — n/l), we write this

in a form similar to Ohm's law:

V ( n
i = — sin cot

X,
(34-8)

^ The constant of integration c represents a constant DC current, which could be present if a DC source

of voltage were in the circuit.
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where X^^ is defined as the inductive reactance, which, like capacitive re-

actance, is measured in ohms (fi).

INDUCTIVE
REACTANCE X^

X^ = ojL (34-9)

The inductive reactance Hmits the amplitude of the current just as resistance

limits the current in a purely resistive circuit. The reactance increases with

frequency because the inductor opposes a change in current. The faster this

change is made, the greater is the inductor's opposition to this change.

The phasor diagram is shown in Figure 34-5b. For a pure inductance, the

phase constant (j) is + n/2 (or + 90°). This means that the current lags the

applied voltage by one-quarter of the sinusoidal variation. The phrase "lags

the applied voltage" means that, as time progresses, the current reaches its

peak value after the voltage reaches its peak value. As the phasor diagram

rotates, the current phasor I lags behind the voltage phasor V.

R L c

C%)
v=V sin ojf

FIGURE 34-6

At any time t, the instantaneous

voltages across the circuit elements add

to equal the instantaneous applied

voltage. That is, v = v^ + Vj^ + Vq.

EXAMPLE 34-2
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V sin iot — L

Rearranging gives

di

It
iR

IV=0
_ 1
C

di a
L- + R, + ^

dt C
V sin cot (34-10)

In order l:o understand the physical significance of each term in Equation

(34-10), as well as to perform the initial step in the solution of the equation, we
must express the current i (and its derivatives) as derivatives of the charge q:

da da a
L -^ + R -^ + -^ = 1/ sin ojf

dt^ dt C
(34-11)

This equation is identical in form to the equation that describes a forced me-

chanical oscillator with viscous damping [Chapter 15, Equation (15-48)]:

d^x dx

dt^ dt
Fq sin cot (34-12)

A term-by-term comparison of Equations (34-11) and (34-12) reveals the

following.

(1) An inductance resists the surge of charge through an electrical

circuit in a way that is analogous to mass resisting acceleration in

a mechanical system.

(2) Resistance in an electrical circuit is analogous to viscosity in a

mechanical system, each being responsible for energy loss in the

system (in the electrical case. Joule heating).

(3) The reciprocal of capacitance provides the "resilience" to an

electrical circuit in the way the spring constant in a mechanical

system determines the restoring force.

These (plus other analogies) are summarized in Table 34-1.

Equation (34-11) may be solved for q as a function of time, then dif-

ferentiated with respect to time to yield the current. The solution of this equa-

tion requires a mathematical technique beyond the scope of this text. The result

TABLE 34-1 Electromechanical Analogues

Mechanical System Electrical Circuit

Mass M
(resists change of velocity)

Viscosity constant b

(dissipates energy into thermal form)

Spring constant k

(determines restoring force and

"elasticity" of mechanical motion)

Displacement x

Velocity v = dx/dt

Force f

Inductance L

(resists change of current)

Resistance R

(dissipates energy into thermal form)

Reciprocal of capacitance I/C

(provides "resilience" to an

electrical current)

Charge q

Current i = dq/dt

Voltage V
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V Applied voltage: V sin wt

FIGURE 34-7

Voltage and current in an RLC circuit

in which the inductive reactance is

greater than the capacitive reactance,

so that the circuit behaves as if it

were a smaller inductive reactance in

series with a resistor.

Steady-state conditions
<t>-*

Angle by which the current

lags the applied voltage

Voltage u r- »° Current ;

(0

we wouid obta

V

yjR^ + (X^ - Xc)

sin(cuf — (j)) + io(0 (34-13)

As before, X^ = loL and X^- = l/coC. The term igCO is called the tmnsieiit term.

It describes the current variations that occur immediately after the voltage is

first applied. In most circuits, it becomes essentially zero soon after the voltage

is applied." A typical example is shown in Figure 34-7, wherein the transient

effects die out rapidly as the AC current settles down to its steady-state

condition. For our purposes, we will not analyze these transient effects, but

instead will concentrate on steady-state conditions:

i = I sin(o)t — (j))

where the phase constant is given by

PHASE
CONSTANT <^

= tan ^

Xr

(34-14)

(34-15)

' The size of the transient effect depends on the initial conditions. For example, what is the phase of the

AC voltage at the instant it is applied? Are capacitors initially charged or uncharged? With suitable

adjustment of the initial conditions, the transient can be eliminated entirely. Unfortunately, under certain

adverse circumstances, the transient can cause extreme surges of current that could damage circuit

components.
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It may have any value between — n/2 rad and + n/2 rad, depending on the

relative magnitudes of Xf_ and X^. Recall that
(f)

is the phase constant between

the voltage v applied to the circuit and the current i in the circuit.

There is an easy way to keep track of the various phase relationships in

a series RLC circuit. Because at any instant the current is the same in all com-

ponents, we use the current phasor / as a reference, measuring all other

phase angles with respect to the current. In Figure 34-8(a) we develop a voltage

phasor diagram that depicts voltages and current in their correct phase relation-

ships. We represent each as a vectorlike phasor. V or I. By custom, the phasor

for the reference current I is drawn horizontally toward the right. Because the

voltage across the resistor is iu phase with the current, both V^ and I are in

the same direction. In an inductor, the current lags the voltage across the

inductor by n/2 rad, so V^^ is shown as a phasor 90° ahead of the current

phasor I. In a capacitor, the current leads the voltage across the capacitor by

n/2 rad, so V(^ is shown 90° behind the current phasor I. From Kirchhoff's

loop rule, the sum of the voltages across the circuit elements equals the applied

voltage phasor V. To take their various phases into account, we must add the

phasors as vectors to obtain the phasor for the applied voltage V;

PHASORS ADD
AS VECTORS

V = V^ + V^ + Vc (34-16)

The voltage phasor diagram portrays the various phase relationships in a series

AC circuit. As the phasor diagram rotates counterclockwise with angular fre-

quency 0), the projections of the phasors on the vertical axis give the instantaneous

values of all voltages and currents as functions of time.

34.4 Impedance in Series RLC Circuits

The alternating current through a series RLC circuit is impeded by an amount

dependent upon the value of the components as well as the frequency. The

amplitude / of the current is, from Equation (34-13),

/ =
V

(34-17)

whe

yjR' + (X^ - Xcf

V = amplitude of the applied voltage

R = resistance

X^ = OjL, the inductive reactance

X(- = l/coC, the capacitive reactance

The combination of resistance and reactances is defined as the impedance Z

measured in ohms (Q).

IMPEDANCE Z
IN A SERIES
RLC CIRCUIT

Z = VR^+ (Xl - Xc)^ (34-18)

Thus, the amplitude of the current is related to the amplitude of the applied

voltage by the simple relation / = V/Z, or

Vl

90^

90'

Vr

(a) A voltage phasor diagram with

the current I as a reference.

Vl

(b) The applied voltage phasor V
is the vector sum of the voltage

phasors for individual circuit

elements: V = V;j + Vl + Vc.

Vl i

%-'

(c) Another way of sketching the

vector sum of the individual

voltage phasors to obtain the

applied voltage phasor

V = VK + Vt + Vc.

FIGURE 34-8

Phase relationships between voltages

and current in a series RLC circuit.

(In this illustration, the net reactance

for the circuit as a whole is inductive,

so the current I lags the applied voltage

V by the phase-constant angle </>.

^OR^AC'^"^
V=/Z (34-19)

For AC, the impedance Z plays a role similar to resistance in DC circuits.
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(Xl-Xc)

(a) A right triangle formed by R,

Xl-Xc. and Z.

x,^
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and

Voltage V

Current ;

(a) The projections of the rotating phasors on a

vertical axis generate graphs of the instantaneous

voltage V and current i vs. the time f.

FIGURE 34-10

Example 34-3.

(Xl-Xc)<

(b) An impedance diagram. (c) A voltage phasor

diagram. The
current I is in

phase with Vr.

It has the same trequency, / = 60 Hz, as the applied voltage. The phase

constant (j) between the current and the applied voltage is found from Equa-

tion (34-20):

J. L -\ I^L ~ X-c
(p = tan

R

tan"
250 Q - 100 Q

200 fi

= 36.9°

(The net reactance is

inductive, so the current

lags the applied voltage.)

Incorporating these values in the general expression [Equation (34-14)], we
get

i = / sin(ajf -
(f))
= 0.200 sin[(2;r)(60 s" ') - 36.9°] A

(where / is in seconds)0.200 sin(120;tf - 36,9°) A

The current is expressed relative to the applied voltage, y = 50 sin(1207tf) V,

and it lags the voltage by 36.9°.

(b) The voltage V^ across the resistor is

V^ = IR = (0.200 A)(200 Q) = 40.0 V

The instantaneous voltage across a resistor is in phase with the current

through it, so = 0°.

(c) The voltage V(- across the capacitor is

Vr = IXr = (0.200 A)(100 Q) = 20.0 V

The instantaneous current through a pure capacitor always leads the voltage

across it by n/2 rad.

(d) The voltage V[_ across the inductor is

V, IX, = (0.200 A)(250 Q) = 50.0 V

The instantaneous current through a pure inductor always lags the voltage

across it by n/2 rad.
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(a) A voltage phasor diagram. The projections of the rotating

phasors on a vertical axis generate graphs of the

instantaneous voltages vs. time for the voltage across

each circuit element.

FIGURE 34-11

Voltage phasor diagrams for

Example 34-3.

R=i2oon Xi=3_oon

^wv—II

—^mnr^
Xr=80on

\/=50V sin wf

(a) A series RLC circuit with an

applied AC voltage of 50-V

amplitude.

Xi. = 300fi

Xc=800fi

R = 1200fi

(b) The impedance diagram for the

circuit shown in (a).

(c) The voltage phasor diagram.

FIGURE 34-12

Example 34-4.

(b) The voltage phasors for each

circuit element add together

as vectors to give the applied

voltage phasor V = V/? + Vi-t- Vc-

(Two different ways of drawing

the vector addition are shown.)

Figure 34-11 is a phasor diagram showing all voltages. Note the way in

which the AC voltages combine. In particular, the algebraic sum of their mag-

nitudes is not the applied voltage: V ^ V,^ + Vj^ + V,--. (This sum is 40 V -I-

50 V -I- 20 V = 110 V, instead of the correct value of 50 V.) On the other

hand, the algebraic sum of the instantaneous voltages across the circuit elements

always equals the instantaneous applied voltage:

V = Vr + v^ + Vc

These instantaneous voltages are the projections on the vertical axis of the volt-

age phasors in Figure 34-11. The fact that the projections of the phasors add

algebraically implies that the phasors themselves add as vectors:

V = V« -H V^ -I- Vc

From the vector diagram, we have

V^ = V^- -I- (Vi^ - Vcf = (40 V)^ -f (50 V - 20 V)^ = 50 V

which is the correct value of the applied voltage amplitude.

EXAMPLE 34-4

Consider the circuit shown in Figure 34-12. Find (a) the impedance, (b) the

amplitude of the current in the circuit, and (c) the phase constant between the

applied voltage and current.

SOLUTION

(a) The impedance is

Z = ^R^ + (Xi. - Xcf = [(1200 Qf + (300 Q - 800 Q.)^]^'^

1300 Q

Figure 34- 12b depicts the impedance diagram.
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(b) From Ohm's law for AC,

/ =
V 50 V

Z 1300 Q
0.0385 A

(c) The phase constant is

(^ = tan"

= tan^

X; —X(^l^L
R

300 O- 800 Q
1200 Q

- 22.6°
(The current leads

the applied voltage.)

The negative phase angle implies that the current leads the applied voltage.

This agrees with the fact that since X^ > X^, the net reactance is capacitive.

(a)

Ic'
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a reference). In Figure 34-13c, we add the current phasors as vectors to obtain

the total current 1 = 1;^ + I, + 1/ that the source supplies.

<t)i
= 67A

EXAMPLE 34-6

Three circuit elements R, L, and C are connected in parallel as shown in Figure

34-13a. (a) Sketch a phasor diagram showing the relative sizes of the current

phasors for each branch when R = X,_ = ZX^-. (b) Find the phase angle (p of

the total current phasor I relative to the applied voltage phasor V.

SOLUTION

(a) The same voltage V is applied to all three branches, so we use the voltage

phasor V as a reference. The current phasors in the reactive branches are

90° out of phase with the current phasor In as shown. From / = V/Z, their

relative magnitudes are /^ = I/^ and If- = llj^ (because X^ = R = IX^).

Thus, to an arbitrary scale, we sketch the phasor diagram of Figure 34-13b.

(b) Because /( = 2/^ = 2/^, the y component of the phasor for the total current

from the source has the magnitude

h = (k - k) = (2k -k) = k = k

Similarly, the x component has the magnitude

h = h

Thus the phase angle (j) between I and V is tan~^(/,,/4) = tan" '('rAr)
—

45° as shown in Figure 34-13c.

Note that the circuit as a whole behaves as an RC circuit with a net

capacitive reactance even though the individual reactances compare as

Xi_ > X^. This is similar to resistances in parallel: the branch with the smallest

resistance dominates the circuit—it carries the most current and dissipates

the most power.

(b) The current phasor diagram
using the voltage phasor V
(which is common to both

branches) as a reference.

FIGURE 34-14

Example 34-7.

EXAMPLE 34-7

Consider the circuit in Figure 34- 14a. The applied voltage is v = 260 sin cat,

Ri = 5 Q, R2 = 12 CI, Xc = U Q, and X^, = 16 Q. Write an expression for the

current i from the source, including the phase angle <p relative to the applied

voltage V.

SOLUTION

The solution involves the following steps:

(1) Calculate the impedance of each branch.

(2) For each branch, find the current amplitude and its phase relative to

the applied voltage.

(3) Construct a current phasor diagram and add the branch currents

vedorially to find the total current 1.
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Branch 1

Step 1:

Zi = sJisClf + (-12Q)^ = 13 Q

Step 2:

V 260 V
/, = — = — = 20 A

' Zi 13 fi

(^1 = tan '

(^1 = tan"
'

X, X,c,

-12Q

5D.
= -67.4°

The current Ij /eaiis the voltage V
by 67.4°.

Branch 2

Z, = VR2' + (Xt. - Xc,)'

Z2 = V(i2 ii)^ + (16 Q.f = 20 n

V 260 V
/, = — = — = 13 A

Z, 20 Q

tan''/'2

(/)2 = tan"

'

1 ( ^L2 X,C2

R2

16 f2

12Q
53.1°

The current I2 lags the voltage V
by 53.1°.

Step 3: We plot the currents as phasors in a current phasor diagram with the ap-

plied voltage V as a reference. We then calculate the vector addition I = Ii + I2.

using the method of component addition. Indicating the x and y axes as shown,

we have:

X component

= (20 A)(^) = 7.69 A

h- hx = h COS </)2

= (13 A)(|) = 7.80 A

= 7.69 A + 7.80 A = 15.5 A

Combining l^ and ly, we obtain

y component

liy = h Sinful

= (20 A)(|f) = 18.5 A

/jj. = 12 sin 02
= (13 A)(-f)= -10.4 A

ly = hy + hy
= 18.5 A - 10.4 A = 8.10 A

I = ^jlJ'^T/ = -Jo^y^^rVmoW = 17.5 A

The magnitude of the phase angle is found from

= ta.-'(|^) = tan-'(^l = 27.6°

From the phasor diagram we note that the current leads the voltage v by this

angle. Therefore, in the general expression i = / s\n(u)\ — (f))
we add a minus

sign for
(f)
= —27.6° to obtain

i = 17.5 sm((Ot + 27.6°) {current leads)

Note that the parallel network as a whole behaves as a series RC combination. Yet

the branch containing the capacitance has the lower impedance. (This is similar

to the situation in DC parallel resistive circuits: the smallest-resistance branch

dominates in determining the equivalent resistance of a parallel circuit, in contrast

to a series combination in which the largest resistance dominates in determining

the equivalent resistance.

FIGURE 34-15

The AC electrical field near the ground

beneath a 765 -kV transmission line is

strong enough to light two fluorescent

bulbs held in the hands.
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Even though most of us are aware of natural resonances in mechanical systems

such as springboards, tuning forks, and springs, we do not usually view them

as frequency-selection mechanisms. Yet this is exactly how they behave. If the

driving frequency coincides with one of the natural frequencies of the system,

large-amplitude oscillations occur. Electrical circuits composed of inductors, ca-

pacitors, and resistors behave in a similar way. If an AC voltage is applied to

a resonant circuit, at the resonant frequency the current will have either a max-

imum or a minimum value, depending upon the design of the circuit. We will

discover that the resonant frequency of a circuit is the frequency at which

the current through the circuit is in phase with the driving voltage. The most prac-

tical way to view electrical resonance is as a frequency-selection phenomenon.

Whenever we tune to a particular radio or television broadcast, we utilize this

selection capability of resonant circuits.

Series Resonance

Consider a series RLC combination, as shown in Figure 34-16a. In order to

examine the behavior of the circuit as the angular frequency CO changes, we

will construct a series of impedance diagrams. We begin by constructing the

diagram shown in Figure 34- 16b, for which X^^ = X,-; thus the impedance Z

is just the resistance R. The angular frequency cOq corresponding to this condi-

tion is found as follows:

Substituting for X^^ and X^ and solving for cOg gives

1

COnl
o)qC

RESONANT ANGULAR
FREQUENCY (o^ FOR A
SERIES RLC CIRCUIT

COn =
IC

(34-21)

-VR

HVvVr^Tinr^
-vc -VL-

i' = V sin ixit

(a) A series RLC circuit.

FIGURE 34-16

Series resonance.

Impedance I

Z

3aJo u!o 5a)o 641)0 ItjlQ 8u!o

4 I 4 4 4 4

I ,1

\C'
R R

R L^ ti-^
fv^ R R R

X

This example

for Q = 2.

Current and impedance as

a function of frequency.
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We then construct impedance diagrams for ^COq, ^OiQ, ^Wq, ... all the way to

fojQ. The arrow representing Z has two reactive components: X^, pointing

upward, and X^, pointing downward. As the frequency increases, X^^ increases

linearly and X^ decreases hyperbolically. The resistive component R remains

constant. The magnitudes of the impedance from each of the impedance dia-

grams are plotted as a function of frequency, generating the impedance curve

shown in Figure 34-16b. The corresponding values of the current / (equal to

V/Z) are plotted and represented by the dashed curve. The current-vs.-frequency

curve is called the resonance curve and reveals the following important features

of the series resonant circuit:

(1) The sharpness of the resonance curve increases as the value of

the resistance decreases relative to the inductive or capacitive

reactance. The sharpness is described by the Q, or quality factor, of

the circuit. By definition.

SHARPNESS Q
OF A RESONANT
CIRCUIT R

(34-22)

Since Q is a ratio of ohms over ohms, it is dimensionless. Typical

low-frequency resonant circuits may have a Q of less than 10,

while a very high-frequency resonant circuit may have a Q of

several thousand (see Figure 34-17).

(2) At the resonant frequency, the current becomes very large, limited

only by the value of R. At resonance.

V

R

Low Q
(a) Resonance curves for series

RLC circuits having different

sharpness Q.

Phase constant <3

log w

(b) The phase constant by which

the current leads or lags the

applied voltage in a series RLC
circuit.

FIGURE 34-17

Series RLC resonance.

(34-23)

where V is the magnitude of the applied voltage.

(3) At resonance, the magnitude of the voltage across the inductor

equals that across the capacitor. However, the voltage across one

is 180° out of phase with the voltage across the other, so they add

vectorially to zero. That is, V^^ -I- V^- = at every instant. But

each, by itself, may be a very large value; in high-Q circuits, the

voltage across a reactance may be thousands of times larger than

the applied voltage!

EXAMPLE 34-8

A series RLC circuit has the following values: L = 20 mH, C = 100 nF,

R = 20 Q, and V = 100 V, with v = V sin tot. Find (a) the resonant frequency,

(b) the magnitude of the current at the resonant frequency, (c) the Q of the

circuit, and (d) the magnitude of the voltage across the inductor at resonance.

SOLUTION

(a) The resonant frequency is obtained from Equation (34-21);

(Oo =
LC
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Substituting numerical values, wc obtain

(Oo = 1(20 X 10"-'H)(100 X 10""?)]""^ =

/o = ( 2.24 X 10

2.24 X 10"

, rad \ / 1 cycle

In rad
3.56 kHz

(b) At resonance, the magnitude of the current is simply the magnitude of the

applied voltage divided by the resistance:

_ V _ 100 V

~~K~ 20 Q
5.00 A

(c) The Q of the circuit is obtained from Equation (34-22):

iO^l
1.1^ X 10* —

I
(20 X 10 " H)

20 Q
22.4

Note that Q is dimensionless.

(d) The magnitude of the voltage V^ across the inductor is given by Vi^
=

Xil, where X^^ is the inductive reactance at the resonant frequency and /

is the magnitude of the current at resonance:

rad\
2240 VV^ = (cOo/-)(/) = (

2.24 X 10*— 1 (20 X 10 * H)(5 A) =

Note that this voltage is considerably higher than the applied voltage of

100 V.

(a) A parallel resonant circuit.

I \ V

(b) The current phasor diagram at

resonance.

FIGURE 34-18

Resonance in a parallel circuit.

Parallel Resonance

One of the most common forms of a resonant circuit is a parallel combina-

tion of a capacitor and an inductor, such as that illustrated in Figure 34-18a.

A resistor is shown in the branch containing the inductor to represent the

resistance of the windings inherent to all inductors. To analyze this circuit,

we draw a phasor diagram for currents in a parallel circuit, with the applied

voltage phasor V as a reference. At resonance, the current phasor I ( = Ij + I2)

is in phase with the applied voltage V. Furthermore, at resonance the current

I is a minimum. Figure 34-18b is drawn for this resonance condition. The cur-

rent phasor I is the vector sum of I, (the current through the capacitor) and

I2 (the current through the series RL branch). The current I, leads V by n/2 rad,

while the current I2 lags V by the angle
(f>,

where

(() = tan
oJqL

(34-24)

' The reason we do not show a resistance in the capacitive branch is the following. If the dielectric material

of a capacitor "leaks," allowing some current under DC conditions, this electrical resistance would be

represented as a resistance in parallel with the capacitor. (Thus, for DC, some current would flow.) Since

we usually try to design high-Q circuits, the DC resistance of capacitors can be made so high that the

current through it is essentially zero and therefore the leakage resistance can be neglected in circuit

analyses.
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The magnitudes of Ij and Ij are

V
h

V

V^^TT^
(34-25)

At resonance, the vertical components of Ij and It in the current phasor

diagram must be equal. So the circuit behaves essentially as just a resistor.

Thus:

V V

Xc VxTTr^
sin (p (34-26)

where X^, X^, and (j) are the values at resonance. Using Equation (34-24),

tan (p = oJqL/R. Therefore:

sin
(f)
= oJoL

V(WoL)' + R-

Substituting the appropriate quantities into Equation (34-26) and solving for

cOq yields

WqC
yj((0olf + RV\y/{(OoL)^ + R^

cOoL

RESONANT ANGULAR
FREQUENCY tOo FOR
THE PARALLEL RLC
CIRCUIT OF FIGURE
34-18

1 R'
COn =

LC
(34-27)

If R is small compared with L (corresponding to a high Q), the condition for

the parallel resonance frequency oJq is the same as that for series resonance.

See Figure 34-19.

Low-

log CO

FIGURE 34-19

Resonance curves for parallel resonance.

The current / into a parallel circuit

is a minimum at resonance. Such a

circuit may be used as a "band-stop"

frequency filter, reducing currents with

frequencies near oJq from existing in

parts of the circuit that follow.

34.7 Power in AC Circuits

When we are considering DC circuits, the energy balance is quite simple. The

average rate at which the seats of emf supply energy to the circuit equals the

rate at which energy is lost through the Joule heating of the resistors. At any

instant, the rate at which energy is supplied by the AC source must be balanced

not only by the rate of Joule heating of resistors but also by the rate at which

energy associated with magnetic and electric fields is stored or released in the

inductors and capacitors. At any instant, the incremental work dW done by a

source of varying voltage v in changing the potential of an incremental charge

dq is dW = v dq. The rate at which work is being done at that instant is the

instantaneous power p supplied by the source of the circuit: ;; = dW/dt. Com-

bining these two equations gives

dq
(34-28)

Since y = V sin cut and i = / sin(ojf — (p), the instantaneous power p = vi is

p= VI sin OJt sin(ojf - (j)) (34-29)
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(a) A pure resistive load. Current I

and voltage V are in phase:

0=0^. The power is always

positive.

(b) An inductive reactance with

resistance. The current / lags

the applied voltage V: = 45°.

When the power is negative,

energy is being returned from

the inductance to the source.

(c) A pure inductive load (no

resistance). The current / lags

the applied voltage V: 0=90°.

The power varies equally

between positive and negative

values, so the average power is

zero .

FIGURE 34-20

Voltage, current, and power vs. time in

AC circuits. The instantaneous power

P is the product of the instantaneous

values of V and / and varies

sinusoidally with a frequency 2/. The

average power P^^, depends upon the

phase angle (j): P^^ = VI cos (p.

The power supplied to the circuit thus varies in time (Figure 34-20).

However, we are most often concerned about the average power P^^ supplied

to the circuit. From the mathematical definition for the average over time (that

is, the time-weighted average):

1 rr
av = ~ pat" 7 Jo ^

where T is one period of power variation. [Note the similarity to the mass-

weighted average used in the determination of center of mass. Equation (9-12)].

Substituting from Equation (34-29), we have

'' I Jo
VI sin cot s'micot — (j)) dt (34-30)

From Appendix D, sin(c'jf — (^) = (sin cot cos (j) — cos cot sin ip). Therefore,

Equation (34-30) becomes

P =
VI cos CJ) ("T

T
sm"

Jo
ot dt

VI sin cj) ("T>in cp rr
sin ft

T Jo
ot cos o)t dt

Using Appendix G-11 to evaluate the integrals, we have

VI cos (j) ( t sin lcot\ ^ VI sm /'sin^ cot

T K^ T

Substituting the limits and using the relation T = In/co, we have

VI
cos (34-31)

where cj) is the phase angle between the voltage v and current i. (Note that

the integral of either sin" cot or cos cot over a period T is equal to t".) The

cosine term is called the power factor. From Figure 32-12b it equals

POWER FACTOR
R

Z
(34-32)

The fact that the average power supplied to the circuit depends on the

cosine of the phase angle has important implications concerning how the power

is dissipated in the components of the circuit. In a purely inductive circuit, the

phase angle cj) = n/2. Since the cosine of n/2 is zero, the average power dissi-

pated in the inductor is zero. We may interpret this physically by realizing

that the work done by the source of current in building the magnetic field of

the inductor is returned to the source when the field collapses. Similarly, since

for a purely capacitive circuit cj) = —n/2, the average power dissipated in a

capacitor is also zero. The work done in creating the electric field in the capaci-

tor is returned to the source when the field collapses. If you follow the buildup

and reduction of these fields, you will discover that the processes occur exactly

180^ out of phase; while the electric field is building up, the magnetic field is

collapsing and vice versa. In effect, the inductance and capacitance merely ex-

change energy back and forth between themselves. If the reactances are pure

(if there is no resistance associated with them), there is no average energy
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loss in the reactances. The only energy dissipation occurs in the resistance R by joule

heating. Since the voltage y^ across the resistor is in phase with the current i

through it, cos
(f>
= cos 0° = 1, and Equation (34-31) becomes

VrI
(34-33)

We may also express the average power in terms, of the root-mean-square^

(rms) values of V and /:

ROOT-MEAN-SQUARE „ V ^ ,,. ,..

VALUES ™^^V2 'Jl

leading to P^^ = l/^ms^rms COS
(f)

(34-35)

Using V,( = V cos 6, we may express P^^ in still another form:

Pav = (^RUs^ms (34-36)

The several forms for P^^. are listed together for easy reference;

VI
= — cos (/) (34-37)

2
^

AVERAGE POWER
DISSIPATED IN

AN RLC CIRCUIT

= K^J,^, cos (/. (34-38)

V^
= -^ cos (/) (34-39)

Z ^

= (V^kUU (34-40)

= ILR (34-41)

The last two equations are similar to the expression for DC circuits, in

which the power dissipated in a resistor is

(For DC circuits) P = V,^! and P = I^R (34-42)

where P is the constant power dissipated in a resistor that has a constant poten-

tial difference V^ across its terminals, resulting in a constant current / through

!
the resistor. The similarity of Equations (34-40) and (34-41) to Equations (34-42)

is the basis for describing rms values as effective values. The rms values of

current and voltage produce the same Joule heating in a resistor as DC current and

\
voltage of the same magnitudes; they are just as "effective" in producing / R

losses in a resistor.

Remember that the above rms values are "effective" values for sinusoidal

currents and voltages only. (Other waveshapes have different effective values.)

Power-line currents and voltages are always quoted in rms values, even though

the subscript is commonly omitted. For example, an electrical outlet supplying

' The root-mean-square value of any quantity is the square root of the average (or mean) value of the square

of the quantity. Thus, in the case of a sinusoidaliy varying voltage.

where T is the period of the variation. Since 1/T jj sin' (Otdi = \. this equals V',„, = V/V2.
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an AC voltage of 110 V, 60 Hz, has a peak value of (V2)(110 V), or 156 V.

Such a line voltage would be expressed analytically in SI units as 110 V,

60 Hz => 156 sin(1207i/) V.

LXAMPLE 34-9

An AC voltage of the form (in SI units)

V = 100 sin(lOOOf) (in voUs if I is in seconds)

is applied to a series RLC circuit. If R = 400 Q, C = 5.0 /iF, and L = 0.50 H,

find the average power dissipated in the circuit.

SOLUTION

All three expressions for the average power involve the current, so we first

solve for the current in the circuit. From Equation (34-18), the impedance Z is

Z = Vk' + (X/, - Xcf

X, =a)L =
{ 1000— ) (0.50 H) = 500 Qwhere

and X,
1

s /

1

v)C ( rad\ ,

I 1000— 1(5.0 X 10"* F)

200 Q

Substituting gives Z = 7(400 il)^ + (500 Q - 200 Q)^ = 500 Q.

V 100 V
The amplitude of the current is / = — = —

- = 0.200 A^ Z 500 Q

Knowing the current, we may use any one of the expressions for the average

power. We will illustrate the use of all five.

Using Equation (34-37): P^^ =— cos

^ R 400 Q
where cos <t> = — = — = 0.800

Z 500 Q

(100 V)(0.200 A)
Substituting gives P^^ = (0.800) = 8.00 W

Using Equation (34-38):

Pav = Kms-frms COS (j)
=

Using Equation (32-39):

100 V \ / 0.200 A
(0.800) 8.00 W

P = cos
(f>
=

100 V 1

500 Q
(0.800) = 8.00 W

where

Using Equation (32-40): P^^ = (V^),^J,^^

(0.200 A)(400 Q) 80
(VK)rn,s = m.

sjl sfl

V
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Substituting gives

Using Equation (34-41).

p ^
I

8^ ^\ (0.200 A)
8.00 W

/ 0.200 A \- ^
Pav = iL.R =

I
p~

I
(400 Q) = 8.00 W

34.8 Transformers

One of i:he most universally useful electrical devices is a iransformer. It is capable

of raising or lowering the amplitude of an AC voltage without appreciable

loss of power. To transmit pnDwer over great distances, the sinusoidally varying

voltage at the source is usually raised by a transformer to a very high value.

Since the total power (Vrms^rms) remains the same, raising the voltage means

that the current is lower. Consequently, the / R losses in the transmission lines

are reduced. At the consumer end, another transformer lowers the voltage to

a safe and practical value for use in household appliances.

Figure 34-21 is the conventional way of indicating a transformer. An AC
generator supplies the input voltage Vj to the primary winding. The other side

is the secondary winding, which has the output voltage 1^2 across its terminals.

The soft iron core greatly increases the magnetic flux and, because flux lines

are almost entirely confined within the iron, also ensures that essentially all the

flux that links the primary coil also links the secondary coil. That is, there is

very little "leakage." In an ideal transformer, we assume no leakage and no

thermal losses in the core or windings.^ Consider first that the secondary switch

is open, so that there is no secondary current and no power is transmitted

through the transformer. The changing magnetic flux in the secondary winding

induces an emf across the output terminals. Since both windings surround es-

sentially the same varying magnetic flux, the emf S^ per turn N^ in the pri-

mary is the same as the emf S'j per turn Nj in the secondary. Mathematically,

this is

N, N,
(34-43)

If the resistance of the primary windings is negligible compared with its reac-

tance, the transformer is essentially a pure inductor connected to an AC gen-

erator. Current and voltage are 90° out of phase, so the average power that

the AC generator delivers to the transformer is zero.

If we now add a resistive load R^o^^ across the secondary terminals, there

is a current in the secondary windings and power / R^^^^ is developed in the

load resistor. By Lenz's law, this secondary current produces a magnetic flux

that opposes the flux produced by the primary current, tending to reduce the

primary voltage. But the primary voltage V^ is fixed by the AC generator, so

the primary circuit draws extra current from the generator to maintain the

oad

(a:

Primary Secondary

An AC voltage source supplies

the input of a step-down, iron-

core transformer with N\ turns

in the primary and Nj turns in

the secondary.

(b) The circuit symbol for a step-

down, iron-core transformer.

(The vertical lines are omitted

for an air-core transformer.)

FIGURE 34-21

The transformer.

' There are well-designed, high-capacity transformers that approach 99% efficiency, so our assumption of

an "ideal" transfomier is reasonable. The Joule-heating losses in the windings are reduced by the use of

low-resistance wires, the eddy-current losses are reduced by the laminations of the core, and a soft iron

core with a very thin hysteresis loop reduces the hysteresis losses (Section 33.3).
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original flux. Replacing the emf symbols by their respective voltage symbols,

we can write the above equation as

N̂i
(34-44)

showing that the iums ratio (N2/N1) for an ideal transformer is the same as

the voltage ratio (Vzl^x)- If the output voltage is larger than the input voltage,

the transformer is called a step-up transformer; if the output voltage is lower,

it is a step-down transformer. Because the power input VJ^ equals the power
output V2I2 (if ideal), the turns ratio is the inverse of the current ratio:

N2
(34-45)

Thus a transformer may be used to transform a varying current as well as a

varying voltage. (Note that a step-up transformer steps down the current.)

In the United States, at the generator the voltage is commonly stepped

up to 350 kV for long-distance transmission, then for safety it is stepped down
to 20 kV for local distribution, and finally to 110 V or 220 V for household

use by the transformers on neighborhood utility poles. Three-wire systems are

used, with one wire grounded. Smaller appliances utilize the 110-V voltage

between one "hot" wire and the ground, while 220 V between the two hot

wires serves larger appliances such as clothes driers and electric stoves.

EXAMPLE 34-10
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magnitude impedance as the internal impedance of the generator itself.
^° This

is why, for example, sinusoidal voltage generators have impedance-matching

transformers just before the load terminals. If mismatched, more power is dis-

sipated in the generator than in the load.

EXAMPLE 34-11

An AC source has an intemal resistance of 3200 Q. In order for the maximum
power to be transferred to an 8-Q resistive load R,, a transformer is used between

the source and the load. Assuming an ideal transformer, (a) find the appropriate

turns ratio of the transformer. If the output voltage of the source is 80 V (rms),

determine (b) the rms voltage across the load resistor and (c) the rms current in

the load resistor, (d) Calculate the power dissipated in the load, (e) Verify that

the ratio of currents is inversely proportional to the turns ratio.

SOLUTION

(a) For maximum power transfer, the effective resistance of the 8-Q load (as

viewed from the primary side) should be 3200 Q. From Equation (34-47),

^eff
=

Thus:
N- \ 80

20

The primary should have twenty times as many turns as the secondary,

(b) Using Equation (34-44) and substituting rms numerical values, we obtain

N,
V, = VJ ^^ = (80 V rms) — :

^
^\nJ 20

4.00 V nms

(c) The load current is U =
R.

4 V rms
0.500 A nms

(d) Since the load is a pure resistance, the power is

P, ={h„fR2 = (0.500 A)^ (8 0) = 2.00 W

(If the impedance-matching transformer were omitted and the load resistor

connected directly to the AC source, the power in the load would be only

7.77 X 10"' W).

(e) The rms current in the primary is

Vi 80 V rms
/, = — = = 25 mA rms
'

i?i 3200 =^=^=

So the current ratio is

/i 25 X 10 ^ A rms

0.500 A rms

1

20

which is the inverse of the turns ratio.

' More accurately, it can be shown that, if the load has a reactive component that is capacitive, the source

should have an equal-magnitude inductive component and vice versa. We do not take up such cases.
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Summary

AC voltages and currents are described mathematically by

V = V sin lot and i = / sin(w/ — (j))

where i and !' are the sinusoidaliy varying values, / and V are

peak values, and (j) is the phase angle between v and i. The

phase relations in "pure" circuit elements are

Resistor: i and i' arc in phase.

Capacitor: i leads v by n/2 rad.

Inductor: i lags v by n/2 rad.

The reactances of circuit elements are

Capacitive:

Inductive:

Total reactance:

Series RLC circuit:

Xc = 1/ioC

x = ; Xr

Impedance Z: Z = ^R^ + (X^ - Xc)^

Current i: i = — sin(cof — (j))

X.
where q') = tan '

In phasor diagrams, the amplitudes of voltages and currents

are represented by vectorlike arrows called phasors, drawn to

depict their phase relationships. The phasor diagram rotates

counterclockwise, with angular frequency O). The projections

of the phasors on a vertical axis give the instantaneous values

of V and i.

An impedance diagram depicts R along the +x axis, X^
along the + y axis, and X^ along the — y axis. The arrows add

vectorially to give the impedance Z, with the phase angle (j)

between R and Z.

RESONANCE.

Series: Xr — Xr
LC

Parallel: For a capacitor in parallel with an inductor-resistor

series combination:

COn
1

LC

R^

Sharpness of resonance Q. ^ R

The effective (or rnis) value of a sinusoidaliy varying

current or voltage is that DC current or voltage that produces the

same heating effect in a resistor. It is related to peak values as

4ff — 'rms
— V r, = V =^ eff ^ rms

V

7i

The average power in AC circuits; All the average power
dissipated in AC circuits is in the resistive components. If a

power supply delivers to a circuit a current / at a voltage V
(peak values), then

VI V^^^
fav = y cos (^ = V'.n^/.ms COS (j) = -~- COS <j)

= (v«; rms^rms 'rms^
(These last two relations involve

the resistive element alone.)

Transformers: Letting the subscript 1 refer to the primary and

the subscript 2 refer to the secondary, in an ideal transformer

(no J R losses and no flux leakage) the input power equals the

output power:

Vyh = Vih

The turns ratio is

For the voltage

N, V,

For the current

N2 h
N, V, N, /,

In a step-up transformer, V2 > Vj (with I2 < /i); in a step-down

transformer, V2 < Vj (with I2 > /i).

The effective resistance R^ff of the load resistor Rj viewed

from the primary is

'^eff
= R-,

Questions

Using nonmathematical reasoning, can you explain why
the current through a capacitor leads the voltage across

the capacitor and why the current through an inductor

lags the voltage across the inductor?

A square-wave voltage is applied to a series combination

of a resistor and an inductor. If the resistance is large

compared with the inductive reactance (corresponding to

the lowest Fourier component of the square-wave), what

is the voltage waveform across the inductor?

If the secondary winding of a transformer is open circuit,

why does a small current still pass through the primary

winding?
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4. An AC voltage is applied to a series RLC circuit. How 15.

does the phase constant change as the frequency of the

applied voltage changes from zero to a very high value?

5. In what ways do Kirchhoff's junction and loop rules for

DC circuits have to be modified to apply to AC circuits? 16.

6. As the frequency of an AC power source varies from zero

to a very high value, how does the behavior of a series 17.

combination of a capacitor and an inductor compare with

that of a parallel combination of a capacitor and an inductor?

7. In a parallel circuit, one branch has a capacitive reactance 18.

Xq, while the other branch has an inductive reactance X^^,

where X^ > X^-. Is the parallel combination capacitive or

inductive?

8. Why is it often "hazardous to your health" to experiment 19.

with high-Q resonant circuits (unless you take careful

precautions)?

9. In a series RLC circuit, how should the frequency be ad-

justed so as to dissipate the maximum amount of power

in the resistor? 20.

10. Is the rms current through a series RLC circuit at l/N

times the resonant frequency equal to the rms current at

N times the resonant frequency, where N is any number? 21.

11. Is it possible to have resonance in a power transmission

line? If so, and if such resonance presents a serious problem

to power transmission, how could the problem be avoided? 22.

12. An RLC circuit is analogous to a driven mechanical oscil-

lator. What are the analogies between the two systems?

13. An AC voltage is applied to a series RLC circuit. In what

ways could you determine whether the circuit is above or

below resonance? Repeat for a parallel RLC circuit (capaci-

tance in one branch and inductance in the other). 23.

14. The resonant power circuit of a radio transmitter has

an inductor made of very heavy wire mounted on large

insulators. Why?

Why is it inadvisable to interchange the input and output

terminals of a step-down transformer in order to make it

a step-up transformer? (Hint: what limits the primary cur-

rent with an open-circuit secondary?)

Is the power dissipation in an RLC circuit continuous or

pulsating?

In order to reduce household electrical power consumption,

why not decrease the power factor rather than decrease

the rms current?

A resistor is connected to the secondary winding of a

transformer while a square-wave voltage is applied to the

primary winding. What is the voltage waveform across

the secondary?

The average power dissipated in an ideal inductor or ca-

pacitor is zero. How does the instantaneous power input

to these devices vary with time? How does this variation

lead to the conclusion that the average power input is

zero?

Edison proposed that power distribution systems should

be direct current. What are the advantages and disadvan-

tages of such a system?

Why is the engineer in a commercial power station con-

cerned about the power factor of the load the station sup-

plies? (Hint: consider power losses in transmission lines.)

An AC voltage source whose frequency can be varied is

applied to a series RLC circuit. As the frequency is raised

from cOi to cOj, the current gradually decreases. Suppose

a capacitor is now added in series with the circuit. Will

this increase or decrease the original impedance in this

range of frequencies?

How could a transformer be used as a variable inductance?

Your answer should also explain why the technique is not

used.

Problems

34.2 Simple AC Circuits

34A-1 Beginning with the definitions of capacitance and

inductance, show that (a) capacitive reactance and inductive

reactance have the dimensions of ohms and (b) that (LC) '' has

the dimensions of time.

34A-2 (a) Find the reactance of an 8-/iF capacitor at 60 Hz

and at 6000 Hz. (b) Repeat part (a) for an 8-mH inductor, (c)

At what frequency is the reactance of the capacitor equal to the

reactance of the inductor?

34A-3 Show that / = {V/wL) sin(cot - 90°) is a solution to

the differential equation V sin wt — L di/dt = 0.

34B-4 Refer to the AC voltage generator shown in Figure

34-22. (a) Show that the torque required to turn the generator

is given by T = [a){abBj^/R] sin" iot. (b) Describe the orienta-

tion of the loop relative to B at the instant when the torque

is a maximum. The rectangular loop has side lengths a and b.

Axis of

rotation

Stationary brushes form sliding

contacts with the rotating rings

FIGURE 34-22

Problems 34B-4 and 34B-5.
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34B-5 Figure 34-22 shows a simple AC generator. As the

wire loop rotates in the presence of a uniform magnetic field,

the induced emf in the loop is of the form v = V sin cot. Consider

a rectangular loop of sides a = 0.2 m and b = 0.4 m, rotating

at 3600 rpm in the presence of a uniform field B = 0.8 T.

(a) Write an equation for the induced emf, including numerical

values for V and CO in SI units, (b) Describe the orientation of

the loop relative to B at the instant t = 0.

34.4 Impedance in Series RLC Circuits

34A-6 A voltage v = 100 sin 2500f (in SI units) is applied

to a series combination of a 30-Q resistor and a lO-fi? capacitor,

(a) Make impedance and phasor diagrams for the circuit, (b)

Calculate the maximum energy stored in the electric field of

the capacitor.

34A-7 A voltage v = 100 sin 2500f (in SI units) is applied

to a series combination of a 30-^2 resistor and a 15 -mH induc-

tor, (a) Make impedance and phasor diagrams for the circuit, (b)

Calculate the maximum energy stored in the magnetic field of

the inductor.

34A-8 A voltage v = 100 sin 2500( (in SI units) is applied

to a series combination of a 30-Q resistor, a 15-mH inductor,

and a 10-/^F capacitor, (a) Make impedance and phasor diagram

for the circuit, (b) Calculate the maximum energy stored in the

magnetic field of the inductor.

34B-9 A voltage u = 10 sin lOOOf (in SI units) is applied

across a 1.0-/<F capacitor in series with a 1.5-kQ resistor, (a)

Draw a phasor diagram showing the input voltage, the volt-

ages across the resistor and the capacitor, and the current, (b)

Describe the voltage across the resistor in a functional form

similar to that describing the input voltage. Include the phase

constant.

34B-10 The input to a phase-shifting circuit (see Prob-

lem 34B-11) is 15 sin lOOOf (in SI units). The desired output is

Vq sin(1000f + n/i). (a) Devise the phase-shifter using a lO'^-Q

resistor and a capacitor, (b) Repeat, using the same resistor and

an inductor, (c) Determine the value of Vq in each case.

34B-11 Consider the phase-shifter circuit shown in Figure

34-23. The input voltage is described by !> = 10 sin 200f (in

SI units). If L = 500 mH, (a) find the value of R such that the

output voltage Vq lags the input voltage by 30° and (b) find

the amplitude of the output voltage.

r-^ifunr-

Vo

FIGURE 34-23

Problem 34B-11.

34B-12 The circuit shown in Figure 34-24 is called a "low-

pass" filter. The impedance of the capacitor becomes less at

higher frequencies, so the output voltage for higher frequencies

is reduced. The half-power frequency is defined as the frequency

above which the amplitude of the output voltage is smaller

than l/\/2 times the input voltage, (a) Derive the expression

for the half-power frequency, o), in terms of R and C. (b) Find

the phase of the output voltage relative to the input voltage

at this frequency.

9-AVvW

Input

voltage

Output
voltage

FIGURE 34-24

Problem 34B-12.

34.5 Impedance in Parallel RLC Circuits

34B-13 Show that the impedance Z of a resistor R, an in-

ductor L, and a capacitor C all in parallel with one another is

given by Z"^ = R'^ + (l/coL - ojC)~\

34B-14 The voltage v = 240 sin 500f (in SI units) is applied

across a parallel combination of a 600-Q resistor and a 1.5 -fl?

capacitor. Express the current from the voltage source in the

form 1 = / sin(500f — (j)), including numerical values for / and

(p in SI units.

34B-15 A voltage i' = 40 sin 10*/ (in SI units) is applied to

a parallel combination of a 60-0 resistor and a 0.2-mH inductor.

Write an equation for the current i from the source in the form

i = /sin(10'/ — (j)), including numerical values for / and <p in

SI units.

34.\-16 A sinusoidally varying voltage with an amplitude

of 100 V is connected across a series combination of a 10-Q

resistor, a 100-mH inductor, and a 0.1-/JF capacitor. Calculate

the amplitude of the voltage across the capacitor at (a) the reso-

nant frequency and (b) yo ^^^ resonant frequency, (c) At each

of these frequencies, is the circuit classed as mainly inductive,

capacitive, or resistive?

34.6 Resonance

34A-17 Calculate the Q of the circuit of Problem 34A-16.

34A-18 A series RLC circuit resonates at 1070 kilocycles

per second, (a) If C = 0.2 ft?, find the value of L (b) What is

R if Q = 70?

34A-19 The tuning circuit of an AM radio is a parallel LC
combination that has negligible resistance. The inductance is

0.2 mH and the capacitor is variable, so that the circuit can

resonate at frequencies between 550 kHz and 1650 kHz. Find

the range of values for C.

34B-20 For a parallel resonant circuit. Figure 34-18, sketch

a freehand graph of the phase constant (p vs. (o where (j) is

the angle by which the phase of the current i differs from the

applied voltage v.

34B-21 Show that the phase constant in a series RLC cir-

cuit may be expressed in terms of Q and the resonant frequency

cOq by the equation tan (j) = Q(co^ — cOq~)/covJq.
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34.7 Power in AC Circuits

34A-22 A 4.7-kW clothes drier operates from 220 V (rms),

60 Hz. Find (a) the rms current and (b) the peak current, (c)

What would these values be for a IIO-V (rms) source?

34A-23 The voltage at a household electrical outlet is often

stated as "120 volt, 60 cycle." The "120 volt" is the rms value

of the voltage and the "60 cycle" represents a frequency of

60 Hz. Describe this voltage in the form v = V sin ojf, includ-

ing numerical values.

34A-24 For the circuit of Problem 34A-16, find the average

power dissipated in the circuit (a) at resonance and (b) at one-

tenth the resonant frequency.

34A-25 A sinusoidal voltage with an amplitude of 156 V
is connected to a heater with a resistance of 100 Q. Calculate

the power dissipated in the heater.

34A-26 A voltage v = 100 sin 5000f (in SI units) is applied

across a series combination of a 700-0 resistor and a 100-mH

inductor, (a) Sketch impedance and phasor diagrams for the cir-

cuit, (b) Calculate the rms current in the circuit, (c) Find the

power dissipated in the resistor, (d) Calculate the power sup-

plied to the circuit by the voltage source.

34B-27 A sinusoidal voltage with an rms amplitude V^ms is

applied to a series combination of a resistor R, an inductor L,

and a capacitor C. Show that the average power P^^ dissipated

in the circuit may be expressed as P^^. = RV^^JZ".

34B-28 An AC current of 0.5 A (rms) exists in an inductor

that has a reactance of 39 Q. The I^R loss in the inductor is

8 W. Find the impedance of the inductor.

34B-29 The circuit shown in Figure 34-25 can be used as

a "high-pass" filter. For a given input rms voltage Vrms, the

power delivered to the resistor is essentially Vf^JR at high

frequencies. Derive an expression for the frequency at which

the power delivered to the resistor is V^^JlR.

345-32 A 60-Hz, sinusoidally varying voltage with an am-

plitude of 156 V is applied to a 0.15-H inductor that has a

resistance of 50 Q. Calculate the rate at which heat is produced

in the inductor when (a) the resistance of the inductor is consid-

ered to be a resistance in series with a resistanceless inductance

and (b) when the resistance of the inductor is considered to be

a resistance in parallel with a resistanceless inductance.

348-33 The power delivered by a 110-V (rms), 60-Hz source

is 480 W. The power factor is 0.70 and the current lags the

voltage, (a) Find the value of the capacitor C added in series

that will change the power factor to unity, (b) Find the power

delivered by the source under these new conditions.

348-34 The windings of a 150-mH inductor have 30-Q re-

sistance. A 20-V (rms), 60-Hz voltage is applied to the inductor.

Assuming that the equivalent circuit is a resistance in series

with a pure inductance, find (a) the power factor and (b) the

power developed in the windings, (c) Suppose that the fre-

quency of the applied voltage were changed to 50 Hz (with

the same rms value). Find the power developed in the windings.

(This problem is of practical importance when -American elec-

tronic equipment designed for 60 Hz is taken to a foreign

country where 50 Hz is the standard.)

348-35 Consider a series combination of a 10-mH inductor,

a 100-//F capacitor, and a 10-Q resistor. A 50-V (rms) sinusoidal

voltage is applied to the combination. Calculate the rms current

for (a) tlie resonant frequency, (b) half the resonant frequency,

and (c) double the resonant frequency.

348-36 An AC voltage of amplitude 200 V, frequency

60 Hz, is applied to a series combination of a 900-fl resistor

and a 4-/^F capacitor, (a) Sketch a phasor diagram showing V,

V„, V(-, and I, with their (peak) numerical values, (b) Find the

rms value of the current in the circuit, (c) What is the phase

angle between the applied voltage and the current? Does the

current lead or lag the applied voltage? (d) Find the power de-

veloped in the circuit.

C

Input

voltage
uo

FIGURE 34-25

Problem 34B-29.

34B-30 An .AC voltage with an amplitude of 100 V is ap-

plied to a series combination of a 200-/iF capacitor, a 100-mH

inductor, and a 20-Q resistor. Calculate the power dissipation

and the power factor for a frequency of (a) 60 Hz and (b) 50 Hz.

348-31 A voltage v = 200 sin 2000f is applied across a se-

ries combination of a 2500-Q resistor and a 1.5-H inductor.

(a) Sketch an impedance diagram and a phasor diagram for this

circuit. Calculate the rms values of (b) the applied voltage,

(c) the current, (d) the voltage across the inductor, and (e) the

voltage across the resistor.

34.8 Transformers

34A-37 An "ideal" model-train transformer operates from

120 V (rms), 60 Hz. There are 600 turns in the primary and

100 in the secondary. When there is an rms current of 0.11 A
in the primary, find the rms values of (a) the output voltage

and (b) the output current in the secondary.

348-38 A step-up transformer operating from 120 V (rms)

furnishes 20 kV to a neon sign. For protection, a fuse inserted

in the primary circuit is designed to blow when the secondary

current exceeds 8 mA. (a) Find the turns ratio of the trans-

former, (b) At maximum current, what power is supplied to the

transformer? (c) What is the current rating of the fuse?

34A-39 A power plant generates 400 mW at 22 kV, 60 Hz.

For economy of transmission, an (ideal) transformer steps up

the voltage to 440 kV. (a) Find the rms current on the gener-

ator side, (b) Find the rms current in the transmission line.

348-40 A transfonmer operating from 120 V (nms) supplies

a 12-V lighting system for a garden. Eight lights, each rated

40 W, are installed in parallel, (a) Find the equivalent resistance

of the total lighting system, (b) What current is in the sec-

ondary circuit? (c) What single resistance, connected across the
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120 V supply, would consume the same power as when the

transformer is used? Show that this equals the answer to part

(a) times the square of the turns ratio.

Additional Problems

34C-41 A voltage v = 100 sin 1000/ (in SI units) is applied

across a series combination of a 1000-ii resistor, a 0.5-fi¥ ca-

pacitor, and a 1.5-H inductor, (a) Sketch an impedance diagram

for the circuit. At t = 0.7 ms, calculate the instantaneous volt-

age across (b) the resistor, (c) the capacitor, and (d) the inductor,

(e) Calculate the algebraic sum of these voltages and compare

with the applied voltage at that instant, (f) On a sketch of the

circuit, indicate the instantaneous polarities of these voltages.

34C-42 Phase-shifters with only a resistor and a capacitor

or an inductor can only produce phase shifts of less than 90°.

Greater phase shifts can be achieved by using a series com-

bination of a resistor, a capacitor, and an inductor. Consider

such a circuit containing an 80-mH inductor, a 10-/<F capaci-

tor, and resistance R. (a) Determine the value of R and the

location of the output terminals to produce an output volt-

age Vq = Vq sin(1000f + 120°), where the input voltage v-, =
10 sin lOOOf. (b) Find the value of Vq.

34C-43 Consider the circuit shown in Figure 34-26. The

input voltage is a time-varying voltage (not necessarily sinu-

soidal). Show that the output voltage Vq is approximately pro-

portional to the integral of the input voltage ;' if the resistance

R is much less than the inductive reactance at all frequencies

present in the input voltage.

Input ,

voltage
vo

FIGURE 34-26

Problem 34C-43.

34C-44 A voltage v = 100 sin 2000f (in SI units) is applied

across a series combination of a 2500-f2 resistor and a 1.5-H

inductor, (a) Sketch an impedance diagram for this circuit. For

the time t = 1 ms, calculate the instantaneous values of (b) the

applied voltage, (c) the current, (d) the voltage across the re-

sistor, and (e) the voltage across the inductor. The sum of your

answers to (d) and (e) should equal the answer to (b).

34C-45 In the circuit of Figure 34-24, suppose that the in-

ductor L is removed and a capacitor C is inserted in its place.

Show that the output voltage Vq is approximately the deriva-

tive of the input voltage v if the resistance is much less than

the capacitive reactance at all frequencies present in the input

voltage.

34C-46 A nonideal inductor whose windings have appre-

ciable resistance is connected in series with a 4-/iF capacitor

across a 120-V (rms), 60-Hz power source. The rms voltage

across the capacitor is 180 V and the rms voltage across the in-

ductor is 75 V. If the nonideal inductor is assumed to be equiva-

lent to a resistor in series with an ideal inductor, find (a) the

inductance of such an ideal inductor and (b) the resistance of

the series resistor.

34C-47 A 30-mH inductor and a 40-kO resistor are con-

nected across a voltage source described by y = 100 sin lO^f

(in SI units). Find the maximum rate at which the current is

changing in the circuit.

34C-48 A sinusoidal voltage is applied to a series circuit

of a 50-mH inductor, a 40-/xF capacitor, and a 500-Q resistor.

Determine the frequency of the applied voltage that will create

a current through the circuit that leads the applied voltage by

30°.

34C-49 Consider the circuit shown in Figure 34-27. The

input voltage is time-varying (but not necessarily sinusoidal).

Show that the output voltage Vq is approximately proportional

to the integral of the input voltage v if the capacitive reactance

is much less than the resistance at all frequencies present in the

input voltage.

Input

voltage
C: Vo

FIGURE 34-27

Problem 34C-49.

34C-50 Sketch a qualitative phasor diagram of the circuit

shown in Figure 34-28 for the case in which the current in the

source leads the applied voltage v.

,C

-np^r^^

FIGURE 34-28

Problems 34C-50 and 34C-56.

34C-51 Show by direct substitution that

/ = (V/Z) sin(cof - (j)), where (j) = tan"M(Xi. - Xc)/Rl is a

solution of Kirchhoff's loop rule for a series RLC circuit with an

AC voltage source: Udi/dt) + Ri + q/C = V sin (ot.

34C-52 In the circuit of Figure 34-14a, v = 100 sin wt,

Ri = 0, Xc = 80 Q, and i = 2 sinicot - 32.0°). (a) Find the total

impedance Z (including phase angle) that the source "sees." (b)

Find the impedance Z, of the inductive branch, including its

phase angle 02 with respect to the resistance i?2- (c) Find the

resistance R2 and the reactance Xj^ of the inductance L.

34C-53 The circuit of Figure 34-14a has the following

numerical values: v = 200 sin cot, i?i = 4 Q, R2 = 15 Q, X,- =

3 Q, and X^_ = 20 Q. Find an expression for the current i from

the source, including the phase angle (p relative to the applied

voltage.
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34C-54 Using a method similar to that used to demonstrate

resonance in a series inductance-capacitance-resistance circuit,

plot a resonance curve for a capacitor in parallel with a series

combination of a resistance and an inductance.

34C-55 An inductor is in series with an 80-0 resistor and

the combination is placed across a 110-V (rms), 60-Hz power

source. If the resistor dissipates 50 W of power, find the induc-

tance of the inductor.

34C-56 A series resonant circuit consists of an ideal inductor

and a capacitor that "leaks," as indicated in Figure 34-28. Sketch

a qualitative phasor diagram at the resonant frequency. Indicate

the phasor representing the current through each component

and the voltage across each component.

34C-5 7 A series RLC circuit has the following values: R =
20 Q and Xf_ = 10 Q. The applied voltage is 50 V (rms) at

ft) = 400 rad/s, and the value of the capacitance is unknown.

The power factor is 0.800 and the current of 2 A (rms) leads

the applied voltage, (a) Find the value of the capacitor, (b)

There are several ways to bring the circuit into resonance. To

what value should the angular frequency be changed to make

resonance occur? (c) At this new resonant frequency, what

power is developed in the circuit? (d) At this new resonance,

what is the rms voltage across the inductor? (e) Suppose that

we kept the original frequency of 400 rad/s and instead changed

the value of C to achieve resonance. Find the value of a single

capacitor that could be added to the circuit to bring it into

resonance. Would it be added in series or in parallel with the

original capacitor?

34C-58 A voltage v = 100 sin cot (in SI units) is applied

across a series combination of a 2-H inductor, a IO-/1F capacitor,

and a lO-Q resistor, (a) Determine the angular frequency ojq

at which the power dissipated in the resistor is a maximum.

(b) Calculate the power dissipated at that frequency, (c) Deter-

mine the two angular frequencies cOi and 0)3 at which the

power dissipated is one-half the maximum value. [The Q of the

circuit is approximately C0q/{0)2 — O)^).]

34C-59 A certain source of AC power has an internal resis-

tance r^. (a) Prove that the maximum power that will be devel-

oped in a variable, external load resistor R]oaci occurs when
Tj = Rioad- (The matching of source and load resistances for

maximum power transfer is called impedance-matching.)

34C-60 A 5-Q resistor, a 2-fiT capacitor, and an inductor

are connected in series. An AC voltage of 20 mV (rms) at the

resonant frequency of 5000 Hz is applied to the circuit, (a)

What is the inductance L in the circuit? (b) Find the rms voltage

across each circuit element, (c) The frequency of the applied

voltage is now changed to 7500 Fiz at the same rms value.

Sketch an impedance diagram for the circuit at 7500 Hz. (d)

Find the current in the circuit at this new frequency. Does the

current lead or lag the applied voltage? (e) Find the power

dissipated in the circuit at this new frequency.
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/ have also a paper afloat, with an electromagnetic theory of light, which,

till I am convinced to the contrary, I hold to be great guns.

J. C. MAXWELL, in a letter to C. H. Cay, 5 January 1865

[American Journal of Physics, 44, 676 (1976)]

One cannot escape the feeling that these [Maxwell's] mathematical

formulae have an independent existence and an intelligence of their own,

that they are wiser than we are, wiser even than their discoverers, that we
get more out of them than was originally put into them.

HEINRICH HERTZ

35.1 Introduction

The waves that we discussed in Chapter 18 are mechanical waves, which must

have a medium for their transmission from one location to another. For ex-

ample, such phenomena as sound waves, water waves, and waves on a string

all involve some physical medium undergoing mechanical motions as the wave

disturbance passes by. We now describe electromagnetic waves, which can

travel through the perfect vacuum of empty space.

In 1864, James Clerk Maxwell drew together the laws of electricity and

magnetism into a single theory of eledromagneiism} It was surely a great stride

forward in physics—indeed, one of the momentous intellectual achievements

of humankind. Maxwell's complete unification of electricity and magnetism

easily ranks with Newton's mechanics and Einstein's relativity. Maxwell's work

also had a profound effect on the philosophical foundation of physics. The laws

of physics began to assume a unity that was not previously apparent; this

search for unification in other areas of physics continues today. Maxwell's work

' Maxwell's theory of electromagnetism rivals Newton's laws of mechanics for its elegance and wide appli-

cability. In spite of their brevity. Maxwell's four equations include all that is known concerning macroscopic

effects of electricity, magnetism, and electromagnetic waves (light, radio waves, and so on). True, on an

atomic scale, quantum mechanics and relativity must be introduced. But these modem theories were pur-

posely developed so as to reduce to the classical expressions of Maxwell and Newton in the limit of low

velocities and macroscopic dimensions.

Commenting on Maxwell's famous work, Treatise on Eteclriciiu and Magnetism, R. A. Millikan (1921

Nobel Prize winner) ranked it with Newton's Pnncipia, "the one," he said, "creating our modem me-

chanical world and the other our modem electrical world."
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led to the concept of the electromagnetic spectrum and to Heinrich Hertz's

experimental verification of radio waves in 1890 (later exploited commercially

by Marconi). His theory also made optics a branch of electromagnetism and

established the basis for Einstein's work in relativity.

35.2 Displacement Current and

Maxwell's Equations

We begin our discussion of Maxwell's equations by summarizing the laws of

electricity and magnetism as they were known in 1870, Table 35-1. We will

show how Maxwell made a crucial addition to one of them to create a unified

theory that brought together the great discoveries of Coulomb, Faraday,

Oersted, Ampere, and others into a single theory of electromagnetism.

By considering the following example, Maxwell recognized that Ampere's

law, in the form fB-d^= ^IqI, was incomplete. Suppose that a parallel-plate

capacitor is being charged by a current / through the wires leading to the capaci-

tor, as shown in Figure 35-1. We apply Ampere's law by constructing the curve

C encircling the wire leading to the capacitor. If we choose Sj as the flat

surface enclosed by the curve C, the current / passes through this surface,

producing a magnetic field in accordance with Ampere's law. If, however, we
choose a curved surface 5, that passes between the plates of the capacitor

and is not pierced by a current-carrying conductor. Ampere's law predicts that

a magnetic field does not exist along the curve C. To resolve this contradic-

tion. Maxwell restated Ampere's law to cover such cases.

i B df /'o U + ec (35-1)

where Op is the electric field flux through the surface enclosed by the curve C.

We obtain the term EQ(d^^/dt) by considering the circuit shown in Figure

35-2. After the switch is closed, charge flows in the conductor, charging the

plates of the capacitor and creating an electric field £ between the plates. If

TABLE 35-1 The Laws of Electricity and Magnetism

Law Phenomenon Equation

Coulomb's law

Gauss's law

Lorentz force law

Biol-Savart law

Ampere's law

(original form)

Faraday's law

The electrostatic force between charges

A mathematical consequence of the inverse-

square form of Coulomb's law

The magnetic force on a moving charge (the

definition of a magnetic field)

The electric force on a stationary charge (the

definition of an electric field)

The magnetic field of a current-carrying

conductor

A mathematical consequence of the

Biot-Savart law

An electric field produced by a changing

magnetic flux

I \'?l'?2.

4 Tie,

E rfA = ^

F = qv X B

F = <;E

(DB ci€ = Ho

in J r'

E-rf/' =
"

di

FIGURE 35-1

The integral ^B di is calculated for the

closed loop C that circles the wire.

Gaussian surface

1

L^AWV^Hlll^
R

FIGURE 35-2

After the switch is closed, charges

flow to the plates of the parallel-plate

capacitor, creating the electric field E

between the plates. The Gaussian

surface encloses the charge c] on one

plate.
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we enclose one plate with a Gaussian surface, the charge i/ on the plates at any

time is related to the electric flux Og through the surface according to Gauss's

law:

= (DE • dA = (Dp

We solve for q and find the current / = dq/dt in the wire leading to the ca-

pacitor plate:

dq

Jt 'di~
(35-2)

We may interpret this result by considering Figure 35-1. Since ^B • d£ must

have the same value whether the Gaussian surface encloses either of the sur-

faces, S] or S2, then

NEW FORM OF
AMPERE'S LAW
(extended by

Maxwell)

B • rf^ = /lo U + ^0
~df

(35-3)

(a) The path of integration is the

closed loop C.

Magnetic field lines

Changing electric

field lines

(b) The current causes the electric

flux 4>E to increase between the

plates.

FIGURE 35-3

A changing electric field generates a

magnetic field. Such a magnetic field

between the plates of a capacitor

has been experimentally verified.

The term / equals zero if the surface S2 is chosen, and the term £Q(d^^/dt)

equals zero if Sj is chosen. The term £Q{d<I>^/dt) has units of current and is

called the displacement current':

DISPLACEMENT
CURRENT /d

^d = £0
IT

(35-4)

We may obtain the magnetic field that exists between the plates of a

charging capacitor solely by applying the Biot—Savart law to the conduction

current in the wires leading to the plates.^ Alternatively, we can evaluate the

magnetic field using the extended form of Ampere's law. Equation (35-3).

Suppose that we choose the curve C to enclose a plane between the plates of

the capacitor. In this case, no current / pierces the plane, so that

i B d€ = ^IqSo
~df

(35-5)

In Figure 35-3, the curve C is a circle of radius r < R, concentric with the

symmetry axis of the capacitor to take advantage of the symmetry. Integrating,

we obtain

B{2nr) = /igeo
di

^ The word displacement comes from the fact that £(,£ is sometimes called the electric displacemeni. This term

is a historical remnant from early proposals that a vacuum contained a polarizable ether analogous to

dielectric materials that become polarized by the displacement of electric charges. The idea was eventually

discarded, but the term remained. Interestingly, the concept of a displacement current was not favorably

received by Maxwell's most distinguished contemporaries.

^ This fact is often overlooked in discussions of the displacement current. See A. P. French and Jack R.

Tessman, "Displacement Currents and Magnetic Fields," American Journal of Physics 31, 201 (1963).
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The factor (r/R)- is the fractional part of d^^/dt that lies within the circle of

radius r. Solving for B gives

B =
In dt \r^

(for r < R) (35-6)

We see that B increases linearly with the radius r until r = R. For r > R,

B
In dt \ r

(for r > R) (35-7)

From Equation (35-2), SQ{d(t>^/dt) equals the current I leading to the capacitor,

so the expression for B for r > R becomes

2nr
(for r > R) (35-8)

This is the value of B around the current-carrying wire leading to the capacitor

[also see Equation (31-2), Chapter 31]. Thus, the magnetic field outside the ca-

pacitor (r > R) is the same as the field an equal distance from the wire.

The extended form of Ampere's law enables us to calculate the magnetic

field where only a changing electric field exists, as shown in the following

example.

EXAMPLE 35-

r

Consider the situation illustrated in Figure 35-4. An electric field of 300 V/m is

confined to a circular area 10 cm in diameter and directed outward from the plane

of the figure. If the field is increasing at a rate of 20 V/m-s, what is the direction

and magnitude of the magnetic field at the point P, 15 cm from the center of

the circle?

SOLUTION

We use the extended form of Ampere's law. Equation (35-3). Since no moving

charges are present, 7 = and we have

j)B-de = /^o£o
dt

(35-9)

In order to evaluate the integral, we make use of the symmetry of the

situation. Symmetry requires that no particular direction from the center can be

any different from any other direction. Therefore, there must be circular symmehy

about the central axis. From the experiment of Figure 35-3, we know the mag-

netic field lines are circles about the axis. Therefore, as we travel around such

a magnetic field circle, the magnetic field remains constant in magnitude. Setting

aside until later the determination of the direction of B, we integrate j B df

around the circle at R = 0.15 m to obtain 2nRB. Differentiating the expression

Og = AE, we have

d^
dt

Kd^\dE

Tj'dt

FIGURE 35-4

Example 35-1.
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Equation (35-9) thus becomes 2nRB = /(qEoI I

—

Solving for B gives B
IIqEq (nd^\ dE

InR \ A dt

Substituting the numerical values yields

(47r X 10"''H/in)(8.85 x 10"'^ F/m){;r)(0.10 m)^(20 V/m-s)
B =

(27r)(0,15 m)(4)

1.85 X 10 "*T

Equation (35-2) determines the field direction, because it states that an

increasing electric flux produces a magnetic field in the same manner as a current

/. In Figure i5-i, the direction of the increase of electric field is out of the plane

of the paper. By the right-hand rule, this implies that the direction of B is

counterclockwise. Note that the magnitude of the electric field is irrelevant; only

the rate of change of the electric flux determines the magnetic field.

(a) An isolated electric charge.

(b) One end of a magnetic dipole.

FIGURE 35-5

In (a), the electric flux through a

closed Gaussian surface will not be

zero if the surface encloses a net

charge. In (b), the magnetic flux

through the closed Gaussian surface is

believed to always equal zero because

monopoles apparently do not exist.

Table 35-1 has a notable omission. It does not include the fact that to

our knowledge magnetic monopoles do not exist. The concept of a magnetic

monopole has its origin in the comparison of a magnetic dipole with an electric

dipole. Since electric dipoles are made up of two distinct electric charges,

+ q and —q, it is tempting to visualize a magnetic dipole similarly as a pair of

magnetic "charges," or monopoles. +p and —p. The north pole of a magnet

would contain a +p monopole (from which field lines would emanate) and the

south pole a — p monopole (toward which field lines would converge). Of
course, this way of thinking about it is contrary to the model of a magnetic

dipole as a current loop. For a current loop, it seems inconceivable that a

monopole could exist by itself: the current loop inherently generates both

"poles" together, so that a magnetic dipo\e is the most fundamental magnetic

structure. Breaking a long bar magnet in half produces two separate dipoles

(not monopoles). Presumably the fragmenting process could be continued

until just a single atom was left, with its inherent "loop current" and electron

spin, also creating a dipole. It is interesting that some recent theories do pre-

dict that monopoles should exist. Many experiments have attempted to detect

them, but to date they have not been found in nature. If monopoles were

experimentally detected, it would require a change in certain electromagnetic

equations.

Despite this disclaimer, it will be helpful to use the concept of a monopole

for a short discussion. Figure 35-5 shows a comparison between charges and

magnetic poles. Figure 35-5a demonstrates Gauss's law for electric fields:

GAUSS'S LAW FOR
ELECTRIC FIELDS

E-dA (35-10)

where the total electric flux emanating from the Gaussian surface is not zero.

Figure 35-5b shows the north-seeking pole of a long magnet surrounded

by a Gaussian surface.

Since isolated magnetic monopoles apparently do not exist, the north

pole of the magnet is always paired with a south pole. Thus, the magnetic

flux emanating from any closed surface must equal that entering from the

paired south pole. This fact may be formulated as
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GAUSS'S LAW FOR
MAGNETIC FIELDS

B- dA = (35-11)

Table 35-2 is a revised version of Table 28-1. Coulomb's law and the

Biot-Savart law have been deleted because they are represented, respectively,

by Gauss's law for electric fields and Ampere's law. The Lorentz force law has

been deleted because it is essentially a statement of forces in terms of electric

and magnetic fields. Ampere's law has been extended to include magnetic

fields arising from changing electric field flux, and Gauss's law for magnetic

fields has been added. The resulting Table 35-2 is a collection of four basic

equations known as Maxwell's electromagnetic field equations,* in honor

of Maxwell's great contribution.

To physicists. Maxwell's equations have great mathematical elegance and

power. In spite of their compactness, they describe all phenomena in elec-

tricity and magnetism. Their far-reaching scope covers everything from electric

motors and generators, radio, television, and high-energy particle accelerators

to modem communication by fiber optics and the electromagnetic levitation

of high-speed transportation vehicles. Maxwell's equations are regarded as

the same kind of gigantic achievement as Newton's laws of motion.^ An un-

expected bonus (which no doubt would have pleased Maxwell greatly had he

lived to see it) was the fact that Maxwell's equations survived the impact of

Einstein's relativity unchanged, while Newton's laws had to be drastically al-

tered for relative speed approaching the speed of light.

35.3 Electromagnetic Waves

As we have shown. Maxwell unified the theories of electricity and magnetism

by extending Ampere's law. But another startling result of his accomplishment

was the fact that his equations had wavelike solutions, which predicted that

TABLE 35-2 Maxwell's Equations (in vacuum)

Gauss's law for electric fields

Gauss's law for magnetic fields

Ampere's law (extended by Maxwell)

Faraday's law

E rfA = —

B-dA =

Bdi = ^iJl + e.^-^

E-d£ =
"

dt

(35-12)

(35-13)

(35-14)

(35-15)

Maxwell's equations are often expressed as differentials. But the use of the differential form leads to mathe-

matical procedures best postponed to a more advanced course in electromagnetism. In these equations,

we can incorporate the presence of a dielectric material by simply replacing Eq, the permittivity of free

space (a vacuum), with £, the permittivity of the dielectric material. Similarly, for magnetic materials, /io.

the permeability of free space, is replaced by /i, the permeability of the magnetic material.

The thermodynamicist Ludwig Boltzmann used a line from Goethe in commenting on them: "Was it a god

who wrote these lines . . .
7". In his 1964 book Electrons and Wijufs, John R. Pierce gives a chapter the

title "Maxwell's Wonderful Equations" and says, "To anyone who is motivated by anything beyond the

most narrowly practical, it is worthwhile to understand Maxwell's equations simply for the good of his

soul."
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_ _ _ _
_ _ _ _

(a) The E and B fields are at right

angles. (They extend like this,

uniformly to infinity, all over

the yz plane.)

E(x+ Aa-)

(b) The E and B field vectors at

two different yz planes, spaced

a distance Ax apart. The fields

at X differ from the fields at

x+Ax.

(c) The paths of integration along

the edges of the top of the slab

depicted in (b).

FIGURE 35-7

A plane electromagnetic wave traveling

in the + x direction has this pattem

of "crossed" E and B fields.

/,

Faraday's law

d<i>B

Ampere's law

(as extended by Maxwell)

dt /,B-df- =^o«o-
dt

(a) If <I>B increases uniformly,

a constant E field is

generated.

(for current-free regions)

(b) If <I>E increases uniformly,

a constant B field is

generated.

FIGURE 35-6

The symmetry of E and B in the absence of moving charges. Note that the symmetry

is not quite exact, however, since the circular fields are in opposite senses. (One

equation has a minus sign.)

electromagnetic waves could exist, even in a perfect vacuum. Furthermore,

Maxwell showed that these waves had a numerical speed equal to c, the speed

of light. This was the first definite indication that light was an electromagnetic

wave phenomenon.

While you learn about electromagnetic waves, in addition to developing

skill in manipulating the mathematical expressions it will also be helpful to

gain a "feel" for what the wave patterns are like in space. As a first step in

acquiring a pictorial acquaintance with electromagnetic waves, consult Figure

35-6. This illustrates the symmetry between E and B fields; in particular, that

a changing E field generates a B field and vice versa.

It takes some mathematical manipulation to start with Maxwell's equa-

tions and derive electromagnetic waves. So we will not present the complete,

step-by-step story. However, if we start with a simple combination of E and

B fields, we will show that electromagnetic waves follow and that the equa-

tions for these waves do agree with Maxwell's equations. The starting point

is a combination of "crossed" E and B fields^ in a vacuum. Figure 35-7a. In

this simplified example we assume that, in the yz plane, the fields are uniform,

extending without change to plus and minus infinity. (We have sketched only

a small segment of the field pattern.) As we will demonstrate in a later chapter,

it is easy to verify experimentally that a traveling wave has E and B fields that

Maxwell's equations do require that E and B be at right angles, though they need not be uniform. Our

arrangement of crossed fields is a simpler version of the fields associated with displacement current; if you

examine the space between the capacitor plates of Figure 35-J, you will see that E and B are everywhere

at right angles.
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are each perpendicular to the direction of propagation. Therefore, we suggest

that this particular configuration is applicable to plane wave propagation along

the X axis.

For a wave traveling along the x axis, we could expect the magnitudes

of E and B to be different at different points along x, as well as to vary with

time. To ferret out the ways these fields vary in both space and time, we ex-

amine the fields on either side of a thin slab of space Ax thick and parallel to

the yz plane, as shown in Figure 35-7b. Both £,, and B. on the plane at x differ

from the corresponding fields on the plane at x + Ax.

We now apply Ampere's law. Equation (35-11), to the top face of the

slab (Figure 35-7c). There are no actual charges in a vacuum, so there can be

no current /. Thus we have only the displacement-current term

B d€ = HoEq —-^ (35-16)
at

The dimensions of the slab are L along two edges and A.r along the other

two edges. We now calculate j B d€ around the perimeter of this slab. Begin-

ning at the comer marked P, the four segments of the closed-path integration

give

B di = B.{x)l + - B.{x + Ax)L +

® Q) ®
For paths @ and (4), B is perpendicular to d^, so the dot product is zero for

these segments.

The right-hand side of Equation (35-16) may be written in terms of E using

the fact that Op = AE^, and therefore d^Jdt = A dEJdt. The area A enclosed

by the path is L Ax. Since £j, varies in both space and time, we use partial deriva-

tive symbols to indicate that all other variables are to be held constant as we
take the derivative indicated. Thus the right-hand side is

Combining the previous two equations, we have

dE
B.(x)L - B.{x + Ax)L = Ho£oL Ax -r^

ol

Canceling L from both sides and allowing the thickness of the slab to become
infinitesimally small, we obtain

B.(.r + Ax) - B,(x) dE,
lim '— = -n^Eo -^ (35-17)
AX-.0 Ax Ot

The left-hand side is just the definition of the derivative dBjdx, so

dB^ dE,
-^=-/.o%-^ (35-18)

For a comment on partial derivatives, see Appendix G-V.
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(Again, the partial derivative cB./dx acknowledges that B. may also vary in

time.) In a similar fashion, we apply Faraday's law

l.-d€ = -^ (35-19)
dl

to the face perpendicular to the z direction and obtain

5£„ dB,

-f-=-^ (35-20)
Ox ct

Equations (35-18) and (35-20) are now solved simultaneously to obtain two

equations: one involving only the electric field £^, and the other involving only

the magnetic field B,. The procedure is not difficult. We first differentiate both

sides of Equation (35-18) with respect to x and obtain

d^B, d%
^=-/'o.o^ (33-21)

We next differentiate Equation (35-20) with respect to t and obtain

^=-^ («-22,
dxdt dt^

Substituting this value for the mixed derivative d^Bjdx dt into Equation (35-21)

we obtain an expression involving B alone:

WAVE EQUATION ^^B.- f'^B.- ,,^ ,„
FOR B. -d^ = ^'°'« ^F ^"'-"^

By a similar process. Equations (35-18) and (35-20) may be combined to obtain

an expression involving £ alone:

WAVE EQUATION d% _ d^E^

FOR E, ^ - ^°'° -dF
^^' ^

The previous two equations have the same form as the wave equation

we developed in Chapter 18 [Equation (18-8)] for the propagation of trans-

verse waves on a rope. A solution to the wave equation is

. . . , I ,

,

/for a wave movine \ ,.,_-,- \A = Ao Sm{kx - cot)
(^^ ^,^ +, d.rect,onj

(^5-25)

where Aq = amplitude of the wave

2n
k = ^, the wave number for a wave of wavelength A

m
,

(ii = — , the angular frequency

T = --, the period for a wave oi frequency f

CO— = [', the speed of propagation of the wave
k

V = A/ (in free space, v = c)
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The electric field £j. thus varies in space and time according to

ELECTRIC FIELD £^.

FOR PLANE WAVES
(traveling in +.r direction)

£j. = EyQ s'm(kx — cot) (35-26) f =

For a wave traveling in the —x direction, the argument of the sine is (kx + (Ol). t=T/8

A graph of E^. is shown in Figure 35-8.

Evaluating derivatives c'Ey/cx' and d^Ey/dt^, and substituting into Equa-

tion (35-24), we obtain

CO

~k vT'oSo

= Speed of propagation (35-27)

This relation says that the electric field pattern propagates with a speed

(/io^o)"^'^ iri a direction perpendicular to E.

Because the magnetic field 6. satisfies an equation identical to that of £,.,

we also have

MAGNETIC FIELD B.

FOR PLANE waves'
(traveling in +x direction)

where, again.
I VJM

B. = 6-0 sin(i..r — U)t)

= Speed of propagation (35-29)

The combination of £,, and 6. is called a plane electromagnetic wave because

the wavefronts, which are surfaces of constant phase, are planes perpendicular

to the direction of propagation. It is important to become familiar with the

characteristics of plane waves since they occur in many different contexts in

physics. (It will be helpful to review Section 18.6, which describes waves in

three dimensions). Because the electromagnetic field equations are linear, if two

sets of waves satisfy Maxwells equations, so does their sum (the Principle

of Superposition).

Plane Waves

(1)

(2)

(3)

The wavefronts are planes perpendicular to the direction of

propagation. (Wavefronts are surfaces of constant phase.)

The E and B fields are perpendicular to each other. This was

assumed initially but proved to be entirely consistent with Maxwell's

equations (and, indeed, can be derived from Maxwell's equations).

The E and B fields are transverse waves (perpendicular to the

direction of propagation) and are in phase with each other. This

is ensured by the identical form of the wave equations for E and B
(see Figure 35-9a). The sine-wave curves in (a) and (b) represent the

magnitudes of the E and B fields. The diagram should not be

interpreted as vibrations of something like a string or water waves.

Instead, the sine curves are the envelope of the tips of the field

vectors, where the length of the vector represents the strength of the field.

Another representation (c) of the spatial distribution makes use of the

convention that the density of field lines corresponds to the field

strength. Although the sketch in (c) is more cumbersome to draw,

perhaps it gives the best impression of the actual field distribution

in a plane wave. Careful study of Figure 35-9 will help you avoid

misconceptions regarding the nature of plane waves.

f = T/4

f = 3T 8

f = T 2

f = 5T/8

(35-28) f= 3T/4

f = 7T 8

t=T

FIGURE 35-8

A series of "snapshots," taken at

intervals at T/8 s (where T = 2n/o)),

showing the electric field variation

moving in the -l-x direction with a

speed p. A point of constant phase

(the peak positive value of £j.) is

shown as it moves along in the' +x
direction.
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(a) A "snapshot" of the spatial variation of a plane electromagnetic wave

moving in the +x direction. The length of the vectors corresponds to the

field strength. The pattern moves along the +x direction with a speed c.

Pattern moves
with velocity

c

Pattern moves
with velocity

c

(b) Sine-wave representation

" ' ini, M ,,, ,,

(c) Field-line representation

(b) and (c) In the sine-wave representation (b) for the electric field, the vectors

themselves are often omitted. This curve implies that the field lines

are crowded together where the field is stronger and are farther

apart where the field is weaker, as shown in (c). Since it is a plane

wave (that is, uniform over the j/z plane), the field lines should be

mentally extended to infinity in the ±y direction and the pattern

should be duplicated in and out of the paper to fill all space in the

±z direction. The wavefronts are planes in the yz direction; they

move in the +x direction with the speed c. (A wave has the same

phase at every point on a wavefront.)

FIGURE 35-9

Representations of a plane electromagnetic wave.

FIGURE 35-10

A "snapshot" of a portion of a plane electromagnetic wave traveling in the +x
direction. (Compare with Figure 35-9.)
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(4) The speed of propagation of the wave is (A^o^o)"'' - ^ term

whose numerical value constitutes one of the most remarkable aspects

of the electromagnetic wave. Before evaluating this combination of

//q and Eg, let us review the origin of these constants.

The constant fig appears in Coulomb's law:

'^i'^^
(35-30)

47ien/ r^

In the modern definition, the quantity of charge q is determined in

terms of the ampere. The current / of one ampere (one coulomb per

second) is defined in terms of the force per unit length F//^ between

parallel current-carrying conductors a distance d apart:

- = ^-^- (35-31)
/ 2nd

On the other hand, /ig is an assigned number that fixes the value of

F// in Equation (35-31) to be exactly In x 10"^ N/m ior d = I m.

Thus:

p =88542 X TO" 1^ (Formerly, this was experimentally
j

N'm^ \determined. See Footnote 8. /

N-s^
/^O

= 47r X 10 ^ — (defined exact)

Substituting these values into the expression for the speed of

propagation, we obtain

(/<oeo)'''^= (47r X 10-'^)( 8.8542 x 10" i^—=



806 Electroni.iv;tieiif W.ives

Frequency

(Hz)

2410^*

10^2

lO^O-

10'

10'

10''

10'

10"

10»

lO''

lo-"

10-

Wavelength

(m)

-10-'

Gamma
rays

I X-rays

Ultraviolet

!

_L
Visible

Infrared

- Microwaves

Short

!
radio

waves

UHF
TV

1 FM

Jam

Long
radio

1

Frequency

(Hz)

10"

10"

C

E
o

<

10^

10"

10-2

-1

-102

io-»

3

ii '-

lO"'" Ji

10"
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EXAMPLL 35-2

The electric field in an electromagnetic wave is described by the equation

Ey = 100 sin(10^.r — cot) (in SI units)

Find (a) the amplitude of the corresponding magnetic wave, (b) the wavelength

/., and (c) the frequency /.

SOLUTION

(a) From Equation (35-34) we obtain

c

100

3 X 10"

333 X 10 ^ T

(b) To find the wavelength /. and the frequency /, we note that the given equa-

tion is of the form £,, = £,,o sin(tr — tot). From the relations following Equa-

tion (35-25) we have

271 Zn

k (10 ^ m"
= 6.28 X 10 ' m

flQ" nm\
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(a) Field lines for a positive point

charge at rest.

(b) Field lines for a point charge

moving with constant velocity.

Because of relativity, the pat-

tern of field lines is "squashed

together" along the direction of

motion. As a result, the field

lines are not quite so close

together along the direction of

motion as in (a) and are closer

together perpendicular to that

direction.

(c) Field lines for a positive point

charge that has undergone a

very brief acceleration from rest

at O to O'and then traveled

at constant speed to the point

P (where it continues to move).

The "kink" in the field lines

produced by the acceleration

travels outward with speed c

from the region OO'.

FIGURE 35-12

When a point charge accelerates, it

generates a "kink" in the pattern of

field lines. In (c) and (d), the kink has

a component of E that is perpendicular

to the direction of motion as the kink

(d) Field lines around an isolated

point charge moving clockwise

at constant speed v = 0.9c in a

circle centered on the X . The
kink in the spiral pattern

travels outward with speed c.

moves outward (at speed c) from the

region where the acceleration occurred.

This outward-moving component is the

electromagnetic radiation from the

accelerated charge.

A common example of radiation is the dipole antenna illustrated in Figures

35-13 and 35-14, composed of two wires that are connected to an AC voltage

source. Electrons are accelerated first in one direction and then in the other,

making one wire positive and the other negative and then vice versa. These

oscillations produce a growing electric field pattern, as shown in Figure 35-13a.

At the instant when the potential reverses, there is no net charge on the dipole,

so no field lines can terminate there. Consequently, the loops of electric field

are "pinched off" and propagate away from the antenna with the speed c. At
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FIGURE 35-13

The generation of an electromagnetic

wave by the accelerating charges in

a dipole antenna. (Only the electric

field is shown; the associated magnetic

field is omitted for clarity.) The

complete field pattern forms a

figure-of-revolution about the axis of

the dipole wires. (See Figure 35-14.)

any given point in space, the electric field changes in time, so according to

Maxwell's equations there is also a changing magnetic field (not shown). At

very large distances from the antenna, the waves become approximately plane

waves, as described in Figure 35-10 (p. 804).

35.5 Energy in Electromagnetic Waves

Electromagnetic waves from the sun bring to the earth about 174 trillion kilo-

watts of power striking the top of the earth's atmosphere. This inflow of energy

undoubtedly was essential to the origin of life and to the storage of immense

reserves of fossil fuels. It continues to be important in driving the earth's winds

and ocean currents, in the evaporation of water to produce rain which replenishes

fresh-water supplies, and in other energy-transfer processes that are so important

in sustaining living systems. The flow of energy to the earth appears to be in

balance with enough energy radiated from the earth to maintain thermal equili-

brium. Although living matter relies directly on only a few hundredths of one

percent of this incoming radiant energy, life could not continue very long

without this constant flow of energy from the sun.

In this section, we will explain how electromagnetic waves transport

energy along the direction of propagation. As shown in previous chapters

[Equations (27-16) and (32-33)], the energy per unit volume, energy density u,

of electric and magnetic fields is

ENERGY DENSITY
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FIGURE 35-15

A plane wave carrying electromagnetic

energy through the thin slab with a

speed c. The electric field varies in the

+ y direction and the magnetic field

varies in the +: direction.

Since the volume of the slab is L~ Ax, the energy All in the slab is

L~ Ax(me + Mg). Using Equations {35-35) and (35-36), we have

AU = -L^Ax(ea^,- +^B.- (35-38)

Noting that E,. = cB-, we may write Equation (35-38) so that each term con-

tains the product £,.6^:

AU = - L^ A:r ( SqcE.B, +— E,B.

Since c~ = l/fio/Uo' ^^ have AU = L'E^B.

L^E^B.
Ax

EnC
1

Ax f 1
(35-39)

The time Af required for the energy AU to pass through the face of the volume

is Af = Ax, f. Designating the energy per unit time that flows through a unit

area as 5,

5 =
(Energy) AU

(Area)(Time) L' At

and substituting the previous expressions we obtain

1

£J
;"o

(35-40)

Because E and B are both vectors perpendicular to the direction of prop-

agation (Figure 35-15), we know that E X B is along the direction of propaga-

tion. Therefore, we may write the previous equation as

THE POYNTING VECTOR^
(instantaneous value)

E X B (35-41)

/^o

The vector S is called the Poynting vector in honor of its originator, John

Henry Poynting (1852—1914). It is measured in SI units of watts per square

meter (W/m").

' As discussed in Qiapter 3J, Equation (33-4), in a vacuum the imgtietic field H is related to the magnetic

itiduclioii B according to B = /IqH. So Equation (35-41) is sometimes written as S = E x H.
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The Poynting vector gives the instantaneous rate of energy flow per unit

area in terms of £ and B. For the waves we consider, these quantities vary

sinusoidally, so the instantaneous power oscillates between zero and some
maximum value. When we measure the intensity of a wave as it moves by,

we measure its value averaged over many cycles of the variation. So the average

rate of energy flow per unit area is of more practical importance. It is easy to

calculate. We substitute the basic sine-wave expressions for E^ and B. into the

Poynting vector:

^h
Ej.qB.q s'm'ikx — OJf) (35-42)

The energy received at a given point thus varies in time as the sine squared,

which repeats itself every half cycle of the basic period T. To find the average

power flow, we calculate

S, =
1 pr/2

72)" Jo(T/2)
sin~(^-.r — iOt)dt (35-43)

The quantity in brackets yields a factor of i. so

THE POYNTING VECTOR
(average value for

a sinusoidal wave) 2/'o
-.vO":0 (35-44)

Thus the average power flow (in W) through a surface area A that is oriented

perpendicular to the wave is

1^ S3, • dA = {SJ{A} =
dU\ Average power flow

through a surface area A
normal to the wave

(35-45)

Energy Density

The energy densities u associated with £ and B fields are also of interest. As

shown previously,

^E - 2
^-0^

2j"o

B^ (35-46)

For a traveling electromagnetic wave, £ and B are related through E = cB and

c = 1/sJ£qI.Iq. Therefore, we may write

1,1,, 1 2

Mp = - Er,E = - EnCB' = B = Mr
*" 2 " 2 " 2/(0

(35-47)

which shows that the instantaneous energy density in the electric field equals

that in the magnetic field. The E and B fields each contain half the total energy.

The total instantaneous energy density u is therefore

M = (Mg + Mb) = £0^'^ —
fJ-o

(35-48)

FIGURE 35-16

Ninety-five percent of the

world's current conversion of

solar-to-electrical energy occurs on

1000 acres of the Mojave desert

near Los Angeles, California. Here,

650 000 parabolic mirrors track the

sun's motion to focus light on pipes

containing synthetic oil, heating the

oil to 400°C. The hot oil then flows

through heat exchangers, producing

superheated steam for conventional

turbine generators. The peak electrical

power of 196 MW is sold to the

Southern California Edison Company,

providing 1% of the system's peak

demand of 20 000 MW. Though the

process is not competitive with today's

costs for conventional power plants

using petroleum and coal, valuable

experience in this new technology is

being gained.
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The average value of u for these sinusoidally varying fields involves a factor

of 2 [cf. Equation (35-43)] when written in terms of their peak values £,,„

and B.Q. So the total average energy per unit volume u^^ in an electromagnetic

wave is

AVERAGE ENERGY
DENSITY IN AN
ELECTROMAGNETIC
WAVE

-£o£>.o' or M,, = ^B,o' (35-49)

measured in SI units of joules per cubic meter (J/m^). Comparing this with

Equation (35-44) and noting that £ = cB, we conclude that

WAVE INTENSITY •-'av "av'^ (35-50)

The wave intensity in watts per square meter (W/m ) equals the average energy

density {in //w^) times the speed c.

LXAMPLtE 35-3

Consider a lamp that emits essentially monochromatic green light uniformly in

all directions. If the lamp is 3% efficient in converting electrical power to electro-

magnetic waves and consumes 100 W of power, find the amplitude of the elec-

tric field associated with the electromagnetic radiation at a distance of 10 m
from the lamp.

SOLUTION

Since the lamp is 3% efficient, it emits 3.0 W of electromagnetic power, which

is spread uniformly over a sphere of radius 10 m. Thus, the average power per

unit area is

S =
P 3.0 W _ 0.030 /W

4nR-
"

471(10 m)^ 471 Im"

Since the light is essentially of only one color, we can assume a single elec-

tromagnetic wave of wavelength / and use Equations (35-49) and (35-50):

Solving for E^.q from the outer two expressions, we obtain

W
(2)

I
0.030 —5-

m"

"n^)(^^^°^7)<^'^'
8.85 X 10

1.34
V

35.6 Momentum of Electromagnetic Waves

We have shown that energy is transported in an electromagnetic wave. We
will now show that the wave also possesses momentum. We begin by demon-

strating that the electromagnetic wave exerts a force on a charged particle in

the direction of the wave propagation. This is true in spite of the fact that the
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The moving elcclron also experiences a magnetic force:

Fb = -("(Vd X B) (35-53)

Substituting the expressions for v,, and B into this equation, we have

Fb = -el——^ sin vjt y X (B^) sin col)z = —~ sin" iOt x (35-54)

Because the sin~ (i)t factor is always positive, the force is always in the +x
direction—the direction that the electromagnetic wave travels. The sheet of resistive

material experiences the sum of all the forces on all of the electrons in the sheet.

In being forced through the resistive material, the electron absorbs energy

from the electromagnetic wave to overcome the "viscous" force on the electron.

The power or rate that energy is given to the electron by the electromagnetic

wave is'°

dU

Tt^^^'"'^

where U is the energy absorbed by the electron. Substituting expressions for

F£ and Vj in this equation, we have

dU „ f — eEQ \ , f'fvo^ 7-— = ( — f£n sin cot)y —;— sin ojM y =—f— sin" OJt (35-55)
dt \ h J b

Since £ = cB, the rate of energy absorption can be written as

dU fe^EoBo
sin" cot

)
(35-56)

dt

Comparing this with Equation (35-54), we have

dU dp- = cF. =
.J

(35-57)

where Fb = dpi/dt, the rate of momentum change acquired by the electron in

the +x direction. This equation states that the rate of energy absorption dU/dt

by the electron equals the speed of light times the rate of momentum change

of the electron. Since both the energy absorbed and the momentum acquired

by the electron were extracted from the electromagnetic wave, we apply the

conservation of energy and momentum principles, integrate Equation (35-57)

with respect to time, and obtain

rv dU rp d]

Jo dt ~ '^

^o~d.

MOMENTUM p
CARRIED BY A WAVE U = cp (35-58)

OF ENERGY U

' Recall that a magnetic field does no work because fg is always perpendicular to v.
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Because an electromagnetic wave of total energy U carries momentum
p, when the wave strikes a surface perpendicularly it exerts an average force

f = dp/dt. From Equation (35-57), this force is

FORCE OF ABSORBED
RADIATION

idU
~

c dt
(35-59)

If the radiation is totally absorbed, the force per unit area exerted on a surface

is l/c times the rate of energy absorbed per unit area. The force per unit area

is the radiation pressure, or light pressure.
'

' Since the Poynting vector is the

rate of energy per unit area in the wave, we have

RADIATION
PRESSURE
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(a) A radiometer.

vr
k
\
\

»

»

(b) The thermal creep of air

around the edges of the vanes

(viewed from above).

FIGURE 35-19

A radiometer turns on its axis when

exposed to a moderately strong light.

The torque causing it to tum is not

produced by the pressure of the light.

the air is removed. When the radiometer is exposed to moderately strong light

(or even the infrared radiation from a flatiron), the vanes rotate about the axle,

with the blackened faces trailing in the motion. Being aware of radiation pres-

sure, a person may hastily conclude that the motion is due to radiation pressure.

But this conclusion is incorrect for three reasons:

(1) If the torque producing this rotation of the radiometer vanes is

attributable to light pressure, the vanes are rotating in the wrong

direction. (We have shown that the force exerted on the silvered

side of the vane is twice the magnitude of that on the blackened

side. Therefore, the silvered side should trail in the rotation.)

(2) The force exerted by the electromagnetic wave is far too small

to account for the rapid angular acceleration of the vanes when

the radiometer is suddenly exposed to light. (Example 35-4

indicated how small the force would be on the radiometer vanes

even if the radiometer were placed close to a light bulb.)

(3) If the radiometer bulb is evacuated to an extremely low pressure,

the vanes will not rotate. (The torque on the vanes due to light

pressure is too small to overcome the friction on the bearings of

the vane support.)'"

The explanation of the moving vanes in a radiometer was first suggested

by Maxwell in 1879. The explanation is based on the fact that air moves along

the surface of an unevenly heated object toward regions of higher temperature.

This phenomenon is known as tlieriual creep} ^ In the case of a radiometer

vane, air flows over the edge of the vane toward the warmer blackened side.

The resulting increase in air pressure on the blackened side produces the rotation of

the vanes. In a typical radiometer, the air-pressure effect is about 10 000 times

greater than the radiation pressure.

In spite of the relative smallness of the radiation pressure, in certain

situations it can become a significant effect. For example, sunlight exerts a

force on the earth of about 6 x 10* N (over 60 000 tons). Sunlight falling on

balloon satellites circling the earth (such as the Echo satellite launched in the

1960s) produces noticeable alterations of the orbit. Spacecraft that have ex-

tended vanes of solar cells to capture sunlight will experience a rotation if the

forces due to radiation pressure produce a net torque about the center of mass

of the spacecraft.

Some comets have two tails, one composed of ionized atoms and molecules

and the other of dust particles. Figure 35-20. The "nucleus" of a comet is

believed to be composed of a mixture of ices, dust grains, and particles. As a

comet nears the sun, thermal radiation evaporates a thickness of a meter or so

from its surface. Radiation pressure from the sun pushes the dust particles into

a curved, diffuse tail. The evaporated atoms and molecules of the ices, however,

are accelerated to faster speeds (up to 100 km/s) by the solar wind: streams of

ions (mostly electrons and protons) that are ejected more or less steadily by

the sun.

Calculations show that with sufficiently large "sails," space vehicles might

feasibly by propelled away from the sun through interplanetary space by radia-

tion pressure from the sun. The method will not work for interstellar journeys,

however, because the spacecraft moves too far away from the source of

radiation.

'

If the vanes are suspended by a thin quartz fiber, and If the air pressure is extremely low, then the true

radiation-pressure effect can be demonstrated. If just one of the vanes is illuminated, the vanes can be

turned through an angle in opposition to the restoring torque of the fiber.

' Experiments establishing the thermal-creep explanation of radiometers are described in E. H, Kennard,

Kmeiic Theory of Gases. McGraw-Hill, 1938.
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Questions

1. What kind of simple apparatus would be needed to demon-

strate that a changing magnetic field produces an electric

field? Similarly, what simple apparatus would be required

to show that a changing electric Held produces a magnetic

field?

2. In her laboratory' a physicist creates a magnetic field that

is directed upward and increasing. When she directs a beam

of electrons upward (along the direction of B), the beam

is deflected in a certain direction. What causes the deflec-

tion? What information about the extent of the magnetic

field does this provide?

3. A parallel-plate capacitor in series with a resistor is charged

by a battery. How would the displacement current be-

tween the plates of the capacitor depend on the dielectric

material?

4. Does the magnitude or direction of an electric field that

is induced by a changing magnetic field give any informa-

tion about the instantaneous direction or magnitude of the

magnetic field?

5. The behavior of magnetic dipoles and quadrupoles is

consistent with Maxwell's equations. Is it possible to con-

struct a magnetic tripole (two north poles and one south

pole, for example) that also has properties consistent with

Maxwell's equations?

6. At a given point in space, there is an instant when both

the electric and the magnetic fields associated with an

electromagnetic wave are zero. How can the wave propa-

gate from that point if no fields exist there?

7. Straight-wire radio receiving antennae are designed to

detect the electric field variation of an electromagnetic

wave rather than the magnetic field variation. Explain.

8. A directional radio receiving antenna is in the form of a

circular coil of wire. Is such an antenna sensitive to the

magnetic field variation of the transmitted electromagnetic

wave or to the electric field variation? How should this

antenna be oriented with respect to a straight vertical radio

transmitter antenna?

9. Design an electrical apparatus by which, in principle, the

speed of light could be determined through the measure-

ment of time-varying forces alone.

14
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10. Since the measured values of Cq and c are related by the

defined constant //„, what form would Maxwell's equa-

tions take if fi^ or i:q did not appear explicitly?

11. In what ways does the radiation from a light bulb differ

from the radiation from a radio transmitter antenna?

12. Identify what is wrong with the following statement: "The

electric field associated with the electromagnetic wave is

much greater than the magnetic field because E = cB."

13. An electromagnetic wave transports energy in its electric

and magnetic fields. Which, if either, of the fields contains

the greater amount of energy?

Does a detector of a monochromatic electromagnetic wave

experience a continuous or pulsating flow of momentum
and energy? If pulsating, what is the frequency of the

pulses?

Explain what is inappropriate about the way the following

question is worded; "What fraction of the total electro-

magnetic spectrum does visible light represent?" What

would be a better way to ask the question?

16. In what ways is an electromagnetic wave similar to a

stream of particles?

17. A Crooke's radiometer turns so that the white sides of the

vanes advance forward and the black sides recede. This is

opposite to the direction of rotation expected if light

"pressure" were causing the effect. Can you think of a

way, without tampering with the radiometer, to cause the

vanes to rotate in the opposite direction? [See Frank S.

Crawford, "Running Crooke's Radiometer Backwards,"

American journal of Physics 53, 11 (1985).]

18. An ideal battery charges a capacitor to a potential dif-

ference V. All the wires and circuit elements are made of

superconducting materials so that there is zero resistance

in the circuit. The battery loses a charge Q at a potential

difference V, so the battery loses energy QV. The capacitor

gains energy jQ^- Where did the other half of the energy

go?

Problems

35.2 Displacement Current and Maxwell's Equations

35A-1 Find the distance in centimeters that light travels in

one nanosecond.

35B-2 A parallel-plate capacitor consists of circular plates

10 cm in diameter and separated by 1 mm. Calculate the mag-

nitude of the magnetic field between the plates at their outer

edge while the potential difference on the capacitor is changing

at the rate of 1000 V/s. (Neglect fringing of the electric field.)

35B-3 Show that the displacement current defined by ij =
Eq d(^^/dt has the units of amperes.

35B-4 A 0.5-/(F parallel-plate capacitor is being charged

through a resistance of 100 Q by a 9-V battery. Calculate the

displacement current in the capacitor 50 fis after the charging

is initiated.

35B-5 Show that the displacement current i^ between the

plates of a parallel-plate capacitor may be expressed by ij =

CdV/dt, where C is the capacitance of the capacitor and dV/dt

is the rate of voltage change across the capacitor.

35B-6 Consider the region between the plates of a charging

parallel-plate capacitor that has circular plates. Make a qualita-
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Hve plot of the magnitude of the magnetic field as a function

of the distance from the axis of the capacitor. Include the region

beyond the edge of the plates. (Neglect the fringing of the

electric field at the edge of the plates.)

35B-7 A parallel-plate capacitor with circular plates of radius

R has a capacitance C. The potential across the capacitor is

increasing at the constant rate dV/dt. Assuming that there is

no fringing of the electric field, show the expressions for the

magnetic field at distances radially away from the center of

the capacitor are (in SI units) the following: for r < R:

(IrCIR^)dVlcdi x 10"^; for r > R: (2C/r)dV/dt x 10" \

35.3 Electromagnetic Waves

35A-8 An electromagnetic wave in a vacuum has a magnetic

field amplitude of 3 x 10"^ T. (a) Calculate the amplitude of

the associated electric field, (b) When the electric field is in the

— 1/ direction, what direction is the magnetic field if the propa-

gation of the wave is in the —x direction?

35A-9 Show that the equation E = cB balances dimen-

sionally in SI units.

3 5 A- 10 The electric field component of a plane electro-

magnetic wave has a peak value of 25 V/m. (a) Find the ampli-

tude of the associated magnetic field, (b) If the wavelength is

2.80 m, what is the frequency? (c) Write a numerical equation

in SI units for the electric component of the wave of this form:

£ = £^ sin(b: — wt).

35B-11 The ratio (-IqE/B has dimensions of an impedance.

For a traveling electromagnetic wave in a vacuum, this ratio is

called the characteristic impedance of free space. Show that in SI

units it does have units of ohms, and calculate its numerical

value.

35.5 Energy in Electromagnetic Waves

35B-12 A typical value of the earth's magnetic field is 50 jiT.

Calculate the average wave intensity of an electromagnetic

wave that would have a similar magnetic field amplitude.

35A-13 The electric field oscillations received at an FM radio

antenna have an amplitude of 5 x 10 ~ ' V/m. (a) Calculate the

amplitude of the associated magnetic field oscillations, (b) Cal-

culate the wave intensity of the radiation.

358-14 Standard wire tables indicate that 12-gauge copper

wire has a diameter of 0.080 81 in. and a resistance of 1.588 Q/
1000 ft (note units). When the wire carries an AC current of

20 A (peak), find (a) Eq, (b) Bg, and (c) S^y just outside the sur-

face of the wire. (At any instant, the current is unitorm through-

out the volume of the wire.)

35B-15 The electric field associated with an electromagnetic

wave traveling in the +x direction is described in SI units by
E = 6 sin{kx — 10 '^Oy. (a) Write the corresponding expression

for the magnetic field, (b) Calculate the wavelength of the radi-

ation, (c) Calculate the average energy density in the radiation.

35B-16 Using the value of S^,. obtained in Problem 35B-14,

verify numerically that j S^^ • dA = I^R for a 1000-ft length of

12-gauge copper wire.

35B-17 A pulsed laser produces a flash of light 4 ns in

duration, with a total energy of 2 J, in a beam 3 mm in diameter.

(a) Find the spatial length of the traveling pulse of light, (b)

Find the energy density in joules/meters'' within the pulse, (c)

Find the amplitude Eq of the electric field in the wave.

35B-18 A monochromatic light source emits 100 W of elec-

tromagnetic power uniformly in all directions, (a) Calculate the

average electric-field energy density one meter from the source.

(b) Calculate the average magnetic-field energy density at the

same distance from the source, (c) Find the wave intensity at

this location.

35B-19 Show that, for a sinusoidal electromagnetic wave,

the average value of the Poynting vector \S^y\ is related to

the root-mean-square value of the electric field by E^^^ =
\'7'oc5av.

35B-20 A cube, each edge I m long, is aligned so that the

edges are parallel to a rectangular coordinate system. A plane

sinusoidal electromagnetic wave propagates through the cube

in the -I- y direction with a peak electric field £o = 600 V/m.

The wavelength / is so long that at any instant the field has

(essentially) the same value throughout the cube, (a) Calculate

the maximum instantaneous electric-field energy within the

cube, (b) When E = Egx, what are the magnitude and direction

of B? (c) Using the Poynting vector, calculate the average power
flow through each face of the cube.

35.6 Momentum of Electromagnetic Waves

35A-21 An inflated mylar balloon 50 m in diameter orbits

the earth at an altitude of approximately 1000 km. Calculate

the maximum force on the balloon due to the direct electro-

magnetic radiation from the sun, assuming that the radiation is

totally absorbed.

35A-22 A 100-mW laser beam is reflected back upon itself

by a mirror. Calculate the force on the mirror.

35A-23 On a clear day, sunlight at the earth's surface de-

livers 840 W/m" on a surface oriented perpendicular to the

incoming radiation. If the surface is perfectly reflecting, what

pressure does this radiation exert?

35B-24 (a) Assuming that the earth absorbs all the sunlight

incident upon it, find the total force that the sun exerts on the

earth due to radiation pressure, (b) Compare this value with the

sun's gravitational attraction.

35B-25 A 15-mW helium-neon laser (A = 632.8 nm) emits

a beam of circular cross-section whose diameter is 2 mm. (a)

Find the maximum electric field in the beam, (b) What total

energy is contained in a 1-m length of the beam? (c) Find the

momentum carried by a 1-m length of the beam.

35B-26 Radiation with an intensity of 50 W/m" falls per-

pendiculariy on the surface of a plane object that absorbs 10%
of the radiation and reflects the rest. Calculate the pressure

exerted upon the object by the radiation.

Additional Problems

35C-27 By means of a wire attached to a small metal sphere,

the sphere is alternately charged positive and negative accord-
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ing to (( = (4 pC) sin (Ot, where (O = Inf. (a) Find the displace-

ment current ij(f) existing in one octant of the empty space

surrounding the sphere if the frequency /of the charge variation

is 60 Hz. (b) Repeat for a frequency of 60 MHz.

55C-28 A plane electromagnetic wave propagates along the

X axis. At a time and point on +he axis, the electric field asso-

ciated with the wave is 7.5 V/m and changing at a rate of

2.8 X lO"* V/m'S. (a) Show that this is a reasonable value for

a typical electromagnetic wave in the optical portion of the

spectrum, green light: /. = 500 nm. (b) Calculate dBJdx at the

same time and place.

35C-29 Show by direct substitution that the function £ =

Eo/'*""' satisfies the wave equation V'E/dx' = (l/c") d'E/di^.

(Any function of the fonm f(x + d) satisfies the wave equation.)

35C-30 Monochromatic light with a wavelength of 500 nm
and an intensity of 60 /iW/m" propagates along the -|-.r axis.

At a particular instant the Poynting vector has zero magnitude

at the origin. At that instant, what are the magnitudes of the

electric and magnetic fields at a distances of two-thirds of a

wavelength along the x axis?

35C-31 Show that £ = Eofix ± d), where fix ± d) is an

arbitrary function, satisfies the wave equation d'E/dt" =
c^d^E/8x\

35C-32 A microwave transmitter utilizing a parabolic re-

flector emits an electromagnetic wave into a solid angle of

10" steradians. At 2 km from the transmitter, the amplitude

of the electric field associated with the radiation is 8 V/m.

Calculate the output power of the transmitter.

35C-33 A very long line source of radiation emits mono-

chromatic electromagnetic waves at the rate of 20 watts per

meter length of the source. Find the amplitude of the electric

field of this radiation 5 m from the line source.

35C-34 For the previous problem, find the energy density

in the radiation 5 m from the line source.

35C-35 A dust particle in outer space is attracted toward

the sun by gravity and repelled by the radiation from the sun.

Suppose that a particle is spherical, with a radius R and density

p = 2 g/cm^, and that it absorbs all the radiation falling on its

surface, (a) Determine the value of R such that the gravitational

and radiation forces are equal. Obtain the necessary constants

from the appendices, (b) Explain why the distance from the sun

is irrelevant.

35C-36 A parallel-plate capacitor is composed of circular

plates with a radius of 15 cm separated by a distance of 0.1 mm.
The capacitor is charged by being connected in series with a

120-V battery and a 5-MQ resistor. Consider a point between

the plates 8 cm from the axis of the plates. One millisecond

after the charging starts, calculate the magnitudes of (a) the

magnetic field, (b) the electric field, and (c) the instantaneous

Poynting vector.

35C-3 7 Figure 35-21 shows the charging of a parallel-plate

capacitor by a current i. As the electric field is increasing, (a)

show that the Poynting vector S is toward the axis everywhere

throughout the volume between the plates. (Ignore fringing

of the electric field.) (b) The integral of the Poynting vector

over the cylindrical surface surrounding the volume between

the plates represents the energy flow into the volume. Show

that this energy flow equals the rate of increase of energy

stored in the electric field between the plates, (in this view, the

energy stored in a capacitor does not come through the wires

carrying the current, but flows in from the surrounding space.)

Area A

'imw
FIGURE 35-21

Problem 35C-37.

35C-38 A plane electromagnetic wave varies sinusoidally

at 90 MHz as it travels along the +x direction. The peak value

of the electric field is 2 mV/m and it is directed along the +;/

direction, (a) Find the wavelength, the period, and the peak

value Bq of the magnetic field, (b) Write expressions in SI units

for the space and time variations of the electric field and of the

magnetic field. Include numerical values as well as subscripts

to indicate coordinate directions, (c) Find the average power

per unit area that this wave propagates through space, (d) Find

the average energy density in the radiation (in units of J/m ).

(e) What radiation pressure would this wave exert upon a

perfectly reflecting surface at normal incidence?

35C-39 A long cylindrical resistor of radius a, made of ma-

terial of resistivity p, carries an alternating current, (a) Show

that the Poynting vector S is radially inward (at all times)

everywhere on the surface of the resistor, (b) Integrate S^^

over the surface for a length / of the resistor to show that it

equals the if^^R losses within that length. Note that, at the

surface, E is parallel to the axis of the cylinder. (This calcula-

tion implies that the thermal energy developed in the resistor

originates not inside the resistor that carries the current, but

from the space surrounding the resistor.)

35C-40 A totally reflecting "solar sail" can be used to

propel a spacecraft by the radiation pressure exerted on it by

solar radiation. Consider a spacecraft located midway between

the orbits of Earth and Mars, (a) Using data from Appendix

L, find the solar power incident normally on a square meter

at this location, (b) Suppose that a flat rectangular solar sail,

900 m X 1200 m, is attached to the spacecraft and oriented

with its plane perpendicular to the sun's radiation. The sail is

a perfect reflector. If the total mass of the spacecraft plus sail

is 2900 kg, calculate the acceleration of the spacecraft, (c) If the

orientation of the sail is changed so that its normal makes an

angle of 28° with the incoming radiation, find the magnitude

I
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FIGURE 35-22

This portable probe uses a new method for locating

underground gas pipes. An 80-kHz AC signal is applied at

one point to the pipe where it emerges from the ground,

causing the entire pipe system to act as a giant antenna, which

radiates electromagnetic waves. The two cross-pieces on the

probe contain identical pick-up coils that detect these waves.

As the detector is moved along the ground, the strongest

signal occurs when the detector is directly over a pipe, while

the difference in the signal strengths from the two coils

enables the depth of the pipe to be calculated automatically

by a small computer in the handle. See Problem 35C-43.

and direction of the spacecraft's acceleration. (Note: for in-

cidence at an oblique angle on a surface, the angles of incidence

and reflection are equal.

35C-41 An astronaut, stranded in space "at rest" 10 m from

his spacecraft, has a mass (including equipment) of 110 kg.

He has a 100-W light source that forms a directed beam, so

he decides to use the beam of light as a photon rocket to

propel himself continuously toward the spacecraft, (a) Calculate

how long it will take him to reach the spacecraft by this

method, (b) Suppose, instead, he decides to throw the light

source away in a direction opposite to the spacecraft. If the

mass of the light source is 3 kg and, after being thrown, moves

with a speed of 12 m/s relative to the recoiling astronaut, how
long will the astronaut take to reach the spacecraft?

35C-42 (a) Derive the relationship between the radiation

pressure on a nonreflecting surface with the energy density

associated with radiation incident normally just outside the

surface, (b) Explain why the relationship does not depend on

whether or not the surface is nonreflecting. (c) Is the relation-

ship the same for non-normal incidence? Explain.

35C-43 See Figure 35-22. The two horizontal pick-up coils

are 50 cm apart, and the lower coil is 10 cm above the ground.

The probe is held over a buried, straight section of gas pipe

that has an AC voltage applied to it as described in the cap-

tion. The induced AC (effective) signals in the upper and lower

coils are, respectively, 0.052 mV and 0.074 mV. How far below

the ground surface is the pipe buried?
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Mirrors have one Umifation: You can't

either by hook or by crook

Use them to see how you look when you aren't

looking to see how you look.

PIET HEIN
(Grooks 4)

TABLE 36-1
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visible range. The carbon arc is a particularly bright source formed when a DC
electric arc is produced between two carbon rods a few millimeters apart. The

intense electron bombardment of one rod produces a temperature of about

4000 K, resulting in a source of white light suitable for motion picture projectors

and large searchlights. An arc discharge in a metal vapor contained within a glass

rod produces the familiar blue-green mercury-arc light, or the yellowish sodium-

vapor arc lights used for highway illumination. Fluorescent lights operate on an

electric discharge in a mercury-argon vapor, which produces radiation mostly

in the ultraviolet. The ultraviolet radiation is absorbed by a thin coating of

phosphors on the interior walls of the tube. The phosphors fluoresce, re-emitting

the energy as visible light. Lasers, those spectacular sources developed within

the past few decades, emit a narrow beam of extremely intense radiation of

nearly monochromatic light—light of essentially a single wavelength. Lasers will

be discussed in Chapter 39.

36.2 Wavefronts and Rays

For this introductory discussion we consider a point source of light that emits

radiation of a single wavelength /. A cross-section of the spherical waves

moving away from this point source is analogous to circular water waves

moving away from a small object that is moved up and down on the surface

of a pond. We may identify the electric field variations in the electromagnetic

waves with the crests and troughs of the water waves, as shown in Figure 36-1.

The similarity between water waves and electromagnetic waves is more

than just geometrical. They also share other properties. For example, electro-

magnetic waves bend around obstacles just as ocean waves bend around the

end of a breakwater. If the obstacle has an opening, or aperture, in it, the waves

will spread out as they pass through the opening, an effect called diffraction

(Chapter 39). The amount of bending depends on the size of the aperture com-

pared with the wavelength of the waves. (The closer this dimension is to the

wavelength, the more the bending.) But we postpone these diffraction phe-

nomena to a later chapter and treat here only those cases in which the obstacle

or aperture size is very large compared with the wavelength, ignoring the

bending and spreading effects. This approximation is an excellent one for ana-

lyzing mirrors, lenses, prisms, and other optical instruments such as telescopes

and microscopes.

Representation of spherical light

waves traveling outward from a

point source. (b) Circular water waves.

FIGURE 36-1

A cross-section of tne spherical waves

emanating from a point source of light

is geometrically similar to water waves

moving outward from a localized

disturbance on the surface of the water.
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Source

(a) A portion of the spherical

wavefronts emerging from a

point source.

Wavefront

(b) The usual way of depicting

spherical wavefronts from a

point source.

'Wavefront

VRay

(c) A plane wave traveling toward

the right.

FIGURE 36-2

Rays are perpendicular to wavefronts. The arrows on the rays indicate the direction of wavefront motion.

FIGURE 36-3

Shafts of sunlight give the impression

of light rays traveling in straight lines.

The shafts are actually parallel, though

our perspective makes them appear to

diverge.

For light waves emitted from a point source, each point on an expanding

spherical surface has the same phase and is called a wavefront. In sketching

diagrams we often draw wavefronts as lines, as in Figure 36- la. However, keep

in mind that wavefronts for electromagnetic waves are surfaces. The direction

that a wavefront moves is always perpendicular to the wavefront itself. Any
line drawn perpendicular to a wavefront is called a ray; an arrow on the ray

indicates the direction of motion. Figure 36-2b illustrates some rays associated

with the spherical wavefronts emerging from a point source of light. At very

great distances from the source, the wavefronts become essentially plane be-

cause the radius of curvature is so great. Sometimes for convenience we consider

wavefronts that are spaced one wavelength apart; the spacing of the rays, how-

ever, has no significance. As we will show, just two rays from a source are

adequate for the analysis of an optical system.

36.3 Huygens' Principle

A useful technique for the analysis of optical systems was devised by the

Dutch physicist and astronomer Christian Huygens (1629-1695). He proposed

the following:

HUYGENS' Every point on a wavefront may be considered as a point

PRINCIPLES source of secondary waves, called wavelets. These wave-

lets spread outward with the speed of light. After a time t,

the new position of the wavefront is the envelope, or tan-

gent surface, to these secondary wavelets."

Figure 36-4 illustrates the procedure. Each point along a wavefront AA' is con-

sidered to be a point source, each radiating secondary wavelets. At a later time

t, the envelope of these wavelets forms the new wavefront BB' . The method

works for a wavefront of any arbitrary shape, not just the plane and spherical

wavefronts illustrated.

" There is a degree of artificiality in this procedure. If all points on the wavefront were true point sources, the

secondary wavelets would radiate not orJy in the forward direction of wave propagation, but also in the

backward direction. Huygens ignored the backward radiation. In a more sophisticated treatment done

later by Kirchhoff, it was shown that the backward radiation actually would be zero due to interference

effects discussed in Chapter 38.
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(a) Plane water waves in a ripple

tank are incident upon a barrier

that has a small opening whose
size is comparable to the

wavelength of the waves. In

agreement with Huygens'

principle, the opening acts as a

source of secondary circular

wavelets.

FIGURE 36-4

Huygens' principle. A wavefront AA'
is considered to be a series of point

sources for secondary wavelets. After a

time t, the secondary wavelets travel

forward a distance ct. The envelope

(b) Plane wavefronts.

of these secondary wavelets forms the

new wavefront BVi . The arrows on

the rays indicate the direction of wave
propagation.

Primary

source

Secondary

sources

(c) Spherical wavefronts.

36.4 Reflection by a Plane Mirror

Laws describing reflection of light by mirrors were probably known as early as

the time of Plato in the fourth century B c We now deduce these laws by two

different methods, each illustrating an important principle in physics.

Using Huygens' Principle

We often speak of looking "into" a mirror in the same sense as looking into a

room. We see images that certainly appear to be on the other side of the mirror,

and every child has wondered what it would be like to pass through the

looking glass into that other world, whose contents have a one-to-one relation-

ship with objects in the real world. How far behind the mirror is the image of

a given object? Consider a plane wave approaching a mirror as in Figure 36-5a.

The rays associated with incoming wavefront AB form an angle aj with the

surface of the mirror. As each portion of the incoming electromagnetic wave
strikes the mirror, electrons in the surface of the mirror are set into oscillations.

These oscillating electrons reradiate electromagnetic waves, so each becomes

a source of secondary wavelets.^

The idea of Huygens' wavelets originating from every point on a wavefront in free space does seem to be

merely a "trick" that gives the right answer. However, when a material medium is present, with oscillating

electrons acting as sources of reradiated waves, the idea becomes plausible and, indeed, correctly describes

the mechanism of electromagnetic waves interacting with matter. In Huygens' time, it was believed that

the medium that transmitted light waves—the ether, as it was called—was present everywhere, even in a

vacuum, so it is easy to see how Huygens' principle arose. Of course, following Einstein, the present-day

theory of light makes no use of the ether concept.
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FIGURE 36-5

A plane wave reflected by a plane

mirror.

Incident

wave
Reflected

A D
MIRROR

(a) The reflected wavefront CD is

formed by the envelope of

secondary waves originating at

the surface of the mirror.

Normal
to

mirror

MIRROR
(b) The angle of incidence equals

the angle of reflection: d,=dr-

Let us look more closely at the reflected wavefronts shown in Figure

36-5a. As the point A on the wavefront AB strikes the mirror, a circular wavelet

originating at A will proceed to a point C on the reflected wavefront CD.

Meanwhile, a wavelet originating at B will proceed toward the point D on the

mirror. If the time required for a wavelet to travel from A to C equals the time

required for a wavelet to travel from 6 to D, the points C and D will be in

phase, thus constituting parts of a reflected wavefront. Of course, all wavelets

originating from points between A and B will be reflected to reach correspond-

ing points between C and D. Therefore, the distances AC and BD are equal,

and the right triangle ABD is congruent to the right triangle ACD. (They have

the common hypotenuse AD and equal sides.) Thus angles a, and a2 are equal.

It follows that their complements, 0^ and d^, are also equal. In optics it is cus-

tomary to measure angles of rays with respect to the normal, or perpendicular,

to a surface. Therefore, in Figure 36-5b we see that the angle of incidence 9^ is

equal to the angle of reflection 6^. Moreover, if we carry out the analysis in three

dimensions, it can be shown that the incident ray, the normal to the mirror, and

the reflected ray all lie in the same plane.

Incident

rays

FIGURE 36-6

In the case of diffuse reflection, parallel

rays are reflected in various directions

because of surface irregularities.

LAWS OF (1) The angle of incidence equals the angle of reflection:

REFLECTION
0i
= O,.

(2) The incident ray, the normal to the mirror, and the

reflected ray all lie in the same plane.

If the surface is rough, as in Figure 36-6, a bundle of parallel rays will be

reflected at various angles. This type of reflection, called diffuse reflection, is

illustrated by the surface of the page you are now reading. Even though the

illumination on the page is essentially parallel rays from a single study lamp,

you can observe the page from any angle. Most nonluminous objects you see

are observed by diffuse reflection. The difference between diffuse and specular

(mirrorlike) reflection depends on the size of surface irregularities compared

with the wavelength of the illumination. If such irregularities are small com-

pared with the wavelength of light, specular reflection occurs. On the other

hand, if such irregularities are of the order of a wavelength or larger, the reflec-

tion is diffuse. Thus the roughened surface of a piece of aluminum that has been

sanded would cause diffuse reflection of visible light, but specular reflection of

radar waves of 5 cm wavelength.
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Using Fermat's Principle

The laws of reflection may also be deduced from Fermat's'* principle, another

important relation of physics.

FERMAT'S PRINCIPLE In going from one point to another, a liglit

ray travels a path that requires equal or less

time in transit than the time required for

neighboring paths.

To illustrate this principle, we apply it to the situation shown in Figure 36-7.

The source and the observer lie in a plane perpendicular to the surface of a plane

mirror. An arbitrary path of a ray is shown as a dashed line. Clearly this path

is not the shortest from source to observer, so it will not be traveled in the

least time. While it seems obvious that the shortest path (the solid line) lies in

the plane containing the normal to the mirror, it is also true that the angle of

incidence equals the angle of reflection. Proof of the latter by Fermat's principle

is left as a problem.

Let us now return to the question asked at the beginning of this section:

How far behind the mirror is the image of an object? To find the answer, we
trace the paths of a few rays in accordance with the laws of reflection. Figure

36-8 is a ray diagram that shows rays leaving the source (*) at A and being

reflected by the mirror. The directions along which the reflected rays travel

make them appear to come from the single point C behind the mirror, a point

that is the image of the source. (Although we show three rays in the figure, just

two rays would be sufficient to locate the point C.) We now introduce a nota-

tion that will simplify the discussion. The object distance p is the perpendicular

distance from the object to the mirror, and the image distance q is the perpen-

dicular distance from the image to the mirror. The second law of reflection

ensures that the rays shown lie in the plane of the figure. The first law of re-

flection leads to the conclusion that the triangle ABD is congruent to the tri-

angle CBD. (They have a common side BD. and the other two sides of the

triangles form equal angles with BD) Thus:

IMAGE LOCATION IN

PLANE MIRRORS
The image distance q equals the object dis-

tance p.

This conclusion is based on a point source.

An object of finite size may be thought of as a distribution of point

sources, each with its own image. Thus there is a point-to-point correspondence

between an object and its image in the mirror. Because p = q (or each point,

the object and the image are located symmetrically on opposite sides of the

mirror and are the same size as shown in Figure 36-9.

An interesting feature of plane mirror images is that left and right are

interchanged. For example, the image of your right hand appears as a left hand.

* Pierre de Fermat (1601-1665), a French nobleman, founded modem probability theory as a result of his

interest in calculating gambling odds. In addition to Fermat's principle, he is also famous for 'Temnafs last

theorem," a tantalizing puzzle that still frustrates mathematicians. In a note (discovered posthumously)

written on the margin of a book page, he claimed to have proved that there are no nontrivial integral

solutions of x" + y" = z" for « > 2. To date, no one else has been able to prove or disprove it.

Plane perpendicular to

the surface that

contains the source

and the observer

FIGURE 36-7

Fermat s principle; a light ray will be

reflected in such a way that the total

time in transit from the source to the

observer is a minimum.

Reflected

rays

FIGURE 36-8

The image formed by a plane mirror lies

behind the mirror at a distance equal

to the distance the object is from the

I

Object

^/

Mirror

Image

FIGURE 36-9

The image of an object formed by a

plane mirror is the same distance

behind the mirror as the object is in

front. The image and the object are of

equal size.
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Mirror
Reflected,

ray

Right

hand

FIGURE 36-10

The images in a plane mirror have left

and right interchanged. A right-handed

coordinate system becomes a left-handed

coordinate system in the mirror world.

(a) Two mirrors at right angles

form a two-dimensional corner

reflector for rays that lie in a

plane perpendicular to the

mirrors. After two reflections,

any incident ray is returned in

an antiparallel direction back

toward the source.

(b) A square-cube corner reflector

produces a retroreflection for

rays incident at any angle (so

they reflect off all three faces),

returning the light along a

direction antiparallel to the

incident rays. Many such small

reflectors are used for highway

signs and lane buttons in

roadways to reflect motorists'

headlights.

FIGURE 36-12

Comer reflectors.

(c) A Laser Ranging Retroreflector

(LRRR) on the moon. Three

18-in. square arrays, each

containing 100 corner-cube

reflectors, were placed on the

moon by Apollo astronauts,

and a fourth was deposited by

a Russian spacecraft. Several

earth satellites also contain

corner-cube reflectors. The
round-trip travel time of a laser

pulse sent from the earth to

these reflectors can be measured

so accurately that the earth-

LRRR distance is determined

with an uncertainty of only a

few centimeters, permitting

long-term studies of subtle

earth and moon motions.

Continental drift is now
measured directly using this

technique.

h

FIGURE 36-11

Two plane mirrors at right angles

produce three images of an object at O.

(It will be helpful to sketch the rays

from the object that produce images

/i and I-),. Each involves just one

reflection.)

Figure 36-10. Also, a right-handed coordinate system has a mirror image that

is a left-handed coordinate system.

Two mirrors at right angles form a two-dimensional corner reflector, Fig-

ure 36-I2a. Any incident ray, after two reflections, is returned precisely in an

antiparallel direction back toward the source (Problem 36A-1). Three mirrors

forming the comer of a cube similarly act as a comer reflector in three dimen-

sions. Figure 36-12b. Arrays of large numbers of small comer-cube reflectors

are used to reflect headlights at night from road signs, safety reflectors on

bicycles, etc.

36.5 Reflection by a Spherical Mirror

Much to the distress of some of us, we are greeted in the morning by a larger-

than-life-size image of ourselves as we look into a shaving or makeup mirror.

In most of our encounters with mirrors, the image is behind the mirror, though

we will see that, under certain circumstances, images can also be formed in front

I
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Axis

Object

Concave mirror

(a) All rays from this point object ( * ) are reflected by the concave mirror and
converge to form a real image.

Axis -

Object Virtual

image

Axis-

Image

distance

Object ' Virtual

image

Convex
mirror

(b) All rays from these point objects (*) are reflected by a concave or a convex

mirror so that they diverge to form a virtual image.

FIGURE 36-13

Image formation by spherical mirrors.

of the mirror. Mirrors with curved surfaces

—

spherical mirrors—may be concave

or convex, depending on the type of surface curvature that the incident light

rays encounter. The surface of a spherical shell approached from inside the shell

is concave; when approached from outside the shell, the surface is convex.

To locate and describe an image produced by a spherical mirror, we use

the technique of ray-tracing. A line called the optic axis is sketched symmetri-

cally through the center of the mirror, perpendicular to the mirror surface. We
then consider a point (*) on the axis and investigate how the mirror affects

light rays that leave the object. After reflection, the rays may either converge

to form a real image, as shown in Figure 36-13a, or diverge to form a virtual

image, as shown in Figure 36- 13b. The word real signifies that light rays actu-

ally converge at the image location to form an image. If we placed a screen

there (without interfering with the passage of the rays), an image would appear

on the screen. The word virtual signifies that light rays do not actually reach

the image location; if a screen were placed there, no image would appear on the

screen as in the case of the image in a plane mirror. In either case, if our eyes

are in a position to intercept the rays after they leave the mirror, we see an

image at that location. Without other clues we cannot know whether the image

is real or virtual: both types of images have the same visual appearance.

To find the location of the image, we trace two rays whose paths we can

easily determine. All reflected rays pass through the same point, so determining

the paths of just two rays is sufficient to locate the image. We use the following



>c CaMniftih.il Octus 1 Reflection

(a) Case 1. Concave mirror: real image

.^:^I

(b) Case 2. Concave mirror: virtual image

FIGURE 36-14

Ray-tracing analysis for spherical

mirrors. One ray, from the object O,

travels along the axis and is reflected

backward along the axis. The other ray

travels at an angle a to the axis and is

reflected along a direction at an angle

P to the axis. The image is located

at the intersection of the two reflected

rays. (c) Case 3. Convex mirror: virtual image

notation, as shown in Figure 36-14. The center of curvature is at C, the object

is at O, the image is at /, and the position of the mirror is at M. We restrict

our considerations to those cases for which the angles involved are small

enough that the tangent of the angle is approximately equal to the angle itself

in radian measure. That is, tan a ~ sin a ^ a. Such rays that lie close to the axis

and are nearly parallel to it are called paraxial rays. Accepting this approxi-

mation, we find the results of the ray-tracing analysis to be valid for mirrors

whose diameters are much smaller than the radius of curvature. In all cases, we

will apply the laws of reflection, and for simplicity we will drop the subscripts,

so that

e, = e, = e

Let us now analyze three different cases of image formation by spherical

mirrors and summarize the results in a single, convenient equation known as

the mirror equation.

' Often this criterion is expressed by ttie phrase "a small-aperture mirror." That is, the aperture (diameter) of

the mirror is small compared with its radius of curvature. Since this is a relative matter, an astronomical

mirror 3 m in diameter may be classified as a small-aperture mirror, while a mirror 5 cm in diameter may

not be.
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Ctisi- 1. Concave Minor: Heal Image

In Figure 36-14a, we trace these two rays: one ray travels from the object O along

the axis and (since it strikes the mirror perpendicularly) is reflected back along the

axis. The other ray travels at an angle a to the axis and is reflected along a direction

at an angle [1 to the axis. The point where these two reflected rays intersect is

the image location. Because the exterior angle of a triangle is equal to the sum
of the opposite interior angles, we have, for one triangle, P = y + 6, and for

another triangle, p = y. -\- lO. Eliminating 9, we obtain

a + /? = 2y

When we use the small-angle approximations for paraxial rays.

(36-1)

OM ^
h

m CM

Treating these expressions as equalities and substituting into Equation (36-1)

gives

1 1 _ 2

om'^1m~cm
(36-2)

Note that h and 9 do not appear in the expression. This implies that all rays

emanating from the object and reflected by the mirror will converge to the image

point (at least, within the validity of the small-angle approximations used in the

derivation).

Cai^e 2. Concave Minor: \ iiliiiil linage



832 36 / Geoiiu'lii^.il Optics 1

—

Reflection

The ray-tracing analysis of image formation by spherical mirrors pro-

duced similar results in all three cases. Equations (36-2), (36-3), and (36-4) are

identical in form, varying only in the signs of some terms. It is convenient to

summarize the results by deducing a siii^'^h' equation that is valid for all cases.

We do this by establishing a sign convention to determine the sign of the

numerical values to be used in that equation. Observe that, in Figure 36-14,

OM is the object distance ;;, IM is the image distance q, and CM is the radius

of curvature R of the mirror. All object and image distances are measured along

the axis to the center (M) of the mirror. Equations (36-2), (36-3), and (36-4)

may then be combined in a single equation:

MIRROR i + i = i (36-5)
EQUATION p q R ^

'

where p = object distance

q = image distance

R = radius of curvature of the mirror

To use this equation, we adopt the following sign convention:

SIGN CONVENTION (1) The numerical value of p is positive if the

FOR MIRRORS^ rays approaching the mirror are divergent.

Otherwise p is negative.

(2) The numerical value of q is positive if the

rays leaving the mirror are convergent.

Otherwise q is negative.

(3) The numerical value of R is positive if the

mirror is concave, and it is negative if the

mirror is convex.

You should memorize this sign convention since the solutions to most problems

use it in the mirror equations (36-5 and 36-7). Remember that the mirror

equation is always written as shown. Minus signs are introduced only when we

substitute numerical values for the symbols. This same procedure is followed with

all general equations in physics.

In certain cases of multiple-mirror systems, the object distance p can be

negative. For example, in Figure 36-15 the first mirror, M^, acting alone, would

produce a real image at /j. In a sense, this image becomes the object for mirror

2 (with an object distance pj)- However, since mirror 2 intercepts the rays

before they form the image, the rays that strike mirror 2 are converging.

According to the sign convention, the numerical value of pj would therefore

be negative. In such cases, the object is called a virtual object.

A common term applied to mirrors (and lenses) is the focal length /,

Figure 36-16. A group of rays parallel to the axis will be reflected by a concave

mirror so that they converge to a point a focal length / in front of the mirror.

' Several other sign conventions are in use. One version is p, q, and /are each positive for the "standard

case" of a converging mirror forming a real image of a real object. Any change from this standard case

requires a minus sign. This implies that the object distance p is greater than the focal length of the mirror.

For mirrors, light is reflected, so real images are formed on the incident-light side. The sign for R is given

by rule (3) above.
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Ml

Mirror 1

FIGURE 36-15

A multiple-mirror system in which the

object distance p, 's negative (p, < 0)

according to the sign convention. This

is because the rays approaching mirror

2 are converging.

The point at which i:hey focus is the focal point^ f. If parallel rays are incident

on a convex mirror, they reflect along divergent lines that meet at a focal-length

distance behind the mirror. Parallel incoming rays imply that the object is at

infinity, or p = X . Substituting this value into the mirror equation, we obtain

1 1 _ 2

CO q R

where q then becomes equal to the focal length /. Solving for /, we get

/=- (36-6)

Since the numerical value of the focal length is positive for concave mirrors and

negative for convex mirrors, Equation (36-5) becomes

MIRROR EQUATION
(alternative form)

1 1
- + -

P 1

1

1
(36-7)

In this chapter it is easy to become confused in the discussions of num-
erous cases of mirrors and lenses in a variety of situations. However, the major

content of the chapter is the single equation ijp -f l/q = l/f, which is the

starting point for locating images formed by both mirrors and lenses. Knowing

the sign convention is essential. One easy way to remember the sign convention

is the following: for the "standard setup" of an object situated farther from a

converging mirror than the focal-length distance, the symbols p, q, /, and R
each have positive numerical values. If any of these distances are on the opposite

side of the mirror (compared with their locations in this standard setup), they

have negative numerical values. The following two examples will illustrate the

use of the mirror equation and the sign convention.

(a) Concave mirror

(b) Convex mirror

FIGURE 36-16

When light parallel to the axis is

incident on a mirror, the image distance

is called the focal length f of the mirror.

The point F is the focal point. For

concave mirrors, / is positive; for

convex mirrors, it is negative.

' Calling F the focal point of the mirror does not mean thai all images are formed at that location. Only

for the single case of incident light parallel lo the axis is this true; in all other cases, the image is

elsewhere. It is helpful to think of /' as a point that "belongs" to the mirror and that we find useful in

constructing ray diagrams.
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FIGURE 36-17

Example 36-1.

While holding his shaving mirror near a window, a man is able to produce the

image of the sun on the wall next to the window. The mirror is 50 cm from

the wall. When the man is .shaving, his chin is 20 cm in front of the mirror. Find

the location of the final image of his chin.

SOLUTION

Light rays from the sun are essentially parallel, so that the image of the sun is

produced at the focal point of the mirror. Thus, / = + 50 cm. (We know that

/ is positive from the fact that only concave mirrors are capable of producing

a real image of an object, and according to the sign convention, concave mirrors

have positive focal lengths.) Light from a point on the man's chin is diverging

as it approaches the mirror, so according to the sign convention, p = + 20 cm.

Starting with the mirror equation

1 1 _ 1

f <? 7
^

1 1 1

+ - =
+ 20 cm q +50 cm

Solving for q gives q = —33.3 cm

According to the sign convention, the minus sign indicates that the light diverges

from the surface as if it came from a virtual image behind the mirror. (Again,

virtual implies that no rays are actually present at the image location.) So the

image is 33 cm behind the mirror. Figure 36-17.

EXAMPLE 36-2

Consider the system of mirrors shown in Figure 36-18. Locate the final image

of the object. Is the image real or virtual?

SOLUTION

The procedure in a multiple-mirror system is to find the image formed by each

mirror acting alone in the order in which the rays are reflected. In this case

FIGURE 36-18

Example 36-2.

Location of

the image

produced by
Mirror 1

acting alone

-60 cm

Mirror 2 Mirror 1
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mirror 1 is first. Starting with the mirror equation

111
p q f
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following two rays for such diagrams because they can be sketched in all cases,

and it is easy to draw what happens to them after they strike the mirror.

Starting from the tip of the arrow:

RAYS USED IN (1) A ray striking the center of the mirror is reflected

RAY-TRACING symmetrically. (The angle of incidence equals the

DIAGRAMS angle of reflection.)

(2) A ray parallel to the axis is reflected through the

focal point F.

(a) Case 1. Concave mirror: real

image

O T
/

/
-p-

(b) Case 2. Concave mirror:

virtual image

q—

(c) Case 3. Convex mirror: virtual

image

FIGURE 36-20

Magnification by spherical mirrors.

Extensions of rays behind the mirrors

are represented by dashed lines. Virtual

images are indicated by dotted lines.

From these two reflected rays^ we locate the image of the arrow tip; other

portions of the arrow are similarly imaged on a point-to-point basis.

As in the last section, we will treat each of the three possible cases

separately. Remember that concave mirrors have positive focal lengths and

positive radii of curvature, both located in front of the mirror. In contrast,

convex mirrors have negative focal lengths and negative radii of curvature, both

located behind the mirror. For all mirrors, / = R/2.

Case 7. Concave Miiror: Real Image

Referring to Figure 36-20a, the object O is the tip of the arrow located a distance

p from the mirror. Two rays are drawn from the tip. One ray strikes the center

of the mirror and is reflected symmetrically (the angle of incidence equals the angle

of reflection). The other ray approaches the mirror parallel to its axis and is reflected

through the focal point F. The intersection of these two rays locates the image /

of the arrow tip.

The size of the images formed is a significant feature of optical systems.

They may be larger or smaller than the object. In a ray-tracing diagram, the

triangles formed by the axis, the object, and the image lead to a simple expres-

sion for the lateral, or transverse, magnification M (perpendicular to the

Image size

Object size
(36-8)

Note that the shaded triangles in Figure 36-20a are similar right triangles with

corresponding sides having the same ratio. Then,

LATERAL
MAGNIFICATION

M-
P

(36-9)

The minus sign is introduced so that a negative value of M indicates an inverted

image and a positive value of M indicates an erect image. This same sign con-

vention holds true for both mirrors and lenses.

' Two other rays also can be used for ray-tracing. Starting at the arrow-tip:

(3) Aij incidenl ray along a mirror-radius line strikes the surface perpendicularly and is reflected

back along its original path.

(4) A ray passing through the focal point F {or proceeding toward Fj is reflected parallel to the axis.

Sketching more than two rays is useful since it verifies your construction. Unfortunately, in some cases

these additional rays are awi^ward to draw.
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By sketching ray diagrams we can verify that if a real image is created

by a concave mirror, it is always inverted and may be larger than, the same

size as, or smaller than the object. It is not necessary to memorize such detajls

for various cases, since the information is contained inherently in the sign con-

vention and in the definition for the lateral magnification. In each case, a ray

diagram verifies such characteristics.

Cnse Z. Coiicuvf Minor: Virtual liua}(e

If the object is placed closer than the focal point to a concave mirror, the image

is virtual, as shown in Figure 36-20b. As in the first case, we use two rays: one

leaves the tip of the arrow parallel to the axis and is then reflected through the

focal point F; the other ray is reflected syrmnetricalhj at the center of the mirror.

Unlike the first case, the rays diverge after reflection, seemingly from a point

behind the mirror. This point is the image of the arrow tip. We locate it by
extending the two reflected rays backward along their directions until they

intersect. The point of intersection is the image point. But because no actual

light rays travel along these extended lines, we draw them dashed. Also, because

no actual light rays form the image, it is a virtual image, which we sketch with

dotted lines.

The shaded triangles are again similar, so that (as before) the lateral

magnification is M = —qjp. As we can verify by sketching ray diagrams, if a

concave mirror forms a virtual image, it is always erect and always larger than

the object. A shaving or makeup mirror is concave and, when held the proper

distance from the face, produces an erect, virtual image behind the mirror.

The two cases just discussed differ in important ways. In Case 1, the

object is farther than a focal-length distance from the mirror and produces an

inverted, real image. In Case 2, the object is closer than a focal-length distance

from the mirror and produces an erect, virtual image.

Case 3. Convex Mirror: Virtiin! hiui<(f

In Figure 36-20c, one ray from the tip of the arrow is reflected symmetrically

at the center of the mirror. The other ray approaches the mirror parallel to the

axis and is reflected in a direction away from the focal point. (Remember that

the center of curvature as well as the focal point of a convex mirror lie behind

the mirror.) The lateral magnification is M = —q/p. Convex mirrors always

form virtual images (of real objects) and are always smaller than the object.

Images seen in polished balls are of this type.

To describe an image, we specify the following:

IMAGE
CHARACTERISTICS

real or virtual

erect or inverted

magnification

Do not try to memorize rules for all the types of imaging that result when
objects are at various distances from converging and diverging mirrors (and

lenses.) Instead, gain skill in rapidly sketching ray diagrams, which reveal the

nature of the image. This approach is much simpler and enables you to deal

with situations you have not seen before. For numerical calculations, knowing

the sign convention is essential.
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FIGURE 36-21

Example io-i.

FIGURE 36-22

Here is an unusual illusion created using

a concave mirror. A light bulb in a

socket is mounted beneath a concealing

surface and positioned so that the bulb

is at the center of curvature of the

concave mirror. An empty socket is

mounted on top of the surface (also at

the center of curvature) in clear view of

the observer. When the bulb is lighted,

a real image of the glowing bulb

suddenly appears in the empty socket.

With a good-quality mirror, the illusion

is striking.

A concave mirror rests face up on a table 0.50 m below a desk lamp bulb, as

in Figure 36-21. An inverted image of the bulb appears on the ceiling in clear

focus and is five times the size of the bulb in the lamp, (a) How high is the

ceiling above the table top? (b) Find the focal length of the mirror.

SOIUTIOI^

(a) The situation described in this example is highly unlikely (except by chance).

Ordinarily a clear image would not be produced on the ceiling because, for

a given focal length, a definite relationship between the object and image

distances must exist. This relationship is the mirror equation:

I 1 1

" + " = 7
P ^ f

Since in this example we are given only the object distance p, we still have two

unknowns: q and /. An additional relationship between p and the image distance

q is needed. With the lateral magnification M known. Equation (36-9) is appro-

priate: M = —qlp. Usin^ the numerical values of M = —5 (it is negative be-

cause the image is inverted) and p = 0.5 m (it is positive because the rays from

the bulb diverge before striking the mirror), we solve for the distance v,^ from

the table top to the ceiling:

q = -Mp = -{-5){0.5 m) = 2.50 m

Because q is positive, we know that the rays leaving the mirror are converging

(as they must to form a real image on the ceiling).

(b) Now that we know two of the three unknowns, we can apply the mirror

equation:

1 1 _ 1

P '1 1
+

-1-0.5 m -1-2.5 m /

Solving for the focal length / gives /= 0.417 m

Summary

The propagation of light is characterized by rays and wavefronts:

Rays: Imaginary lines in the direction of propagation.

Wavefronts: Imaginary surfaces perpendicular to rays,

moving in the direction of propagation; each point on

a wavefront has the same phase.

Huygens' principle: Every point on a wavefront may

be considered as a point source of secondary wavelets that

spread outward with the speed of light. After a time t, the new

position of the wavefront is the envelope, or tangent surface,

to these secondary wavelets.

Fermat's principle: In going from one point to another,

a light ray travels a path that requires equal or less time in

transit than the time required for neighboring paths.

Law of reflection: 0j = 6^

We construct ray diagrams by tracing these two rays

from the arrow tip (or from additional rays, Footnote 8). Their
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intersection locates the image of the tip:

(1) A ray striking the center of the mirror is reflected

symmetrically.

(2) A ray parallel to the axis is reflected through the

focal point F.

Images are real or virtual, ered or inverted, with lateral magnifica-

tion according to the following:

Mirror equation

1 1 _ 1

P ^ ]

Lateral magnification

where p is the object distance, q is the image distance, and / is

the focal length ( = R/2). These equations are used with the

sign convention:

(1) The value of p is positive if the rays that impinge

on the mirror are divergent.

(2) The value of cj is positive if the rays leaving the

mirror are convergent.

(3) The sign of the focal distance / = R/2 is

determined by the sign of R, the radius of

curvature of the mirror surface. It is positive if the

surface is concave and negative if the surface is

convex.

The sign convention may be remembered from the fact that,

for the "standard setup" of an object situated farther than a

focal-length distance from a converging mirror, all the symbols

in the corresponding equation are positive; if any of the distances

are on the opposite side of the mirror, they are negative.

Questions

1. A plane mirror produces an image that is reversed right-

for-left. Why does a plane mirror not produce an upside-

down image?

2. Will convergent rays reflected by a plane mirror produce a

real or a virtual image?

3. A sign painted on a store window is reversed when viewed

from inside the store. When the reversed sign is viewed in

a mirror, does the image of the sign appear reversed?

4. Devise a system of plane mirrors that will produce an im-

age that is not right-left reversed as it is with a single

plane mirror.

5. At one comer of a room, the ceiling and the two walls are

plane mirrors. As you look into the comer, how many
images of yourself can you see?

6. Under what conditions will a convex mirror produce a real

image? (It can be done if a second mirror is used.)

7. Sketch a system of mirrors that would allow you to see

the back of your head. Can you do it using only two mir-

rors such that your view is from a point on a line extending

directly backward from your head? Make a ray diagram for

this situation. (The image you see should be erect.) Is this

image reversed left-for-right? What is the minimum num-

ber of mirrors required if the direction you look is horizon-

tally straight ahead? Include a ray diagram. Is this image

reversed left-for-right?

8. Describe the range of conditions for which a spherical

mirror will form images that are (a) real, (b) virtual, (c) erect,

(d) inverted, (e) enlarged, and (f) reduced. Do this for both

convex and concave mirrors.

9. A very distant object is brought (along the axis) toward

a concave mirror until it touches the mirror. Describe how
the characteristics and location of the image change as this

process occurs. Repeat for a convex mirror.

10. In some automobiles the rear-view mirror is slightly con-

vex. Why? Do images in such a mirror appear closer or

farther away than they would in a plane mirror? Do they

appear to move faster or slower than they would in a

plane mirror?

11. A navigator uses a sextant to measure the angle between

the sun and the horizon. If the horizon is obscured by a

distant fog bank, the navigator can determine the horizon

angle by measuring the angle between the sun and its

reflection in a pail of water and dividing this angle by 2.

Using a diagram, explain why this procedure works.

Problems
36.4 Reflection by a Plane Mirror

36A-1 A light beam strikes a plane mirror and is reflected.

Show that, if the mirror is rotated through an angle a. about

an axis in the plane of the mirror, the reflected beam moves

through an angle 2a.

36A-2 As shown in Figure 36-23 (p. 840), a light ray strikes

a plane mirror at a 15° angle of incidence and is reflected to a

scale 3 m away. When the mirror is turned through an angle

of 2°, how far along the scale will the light spot move? The

scale is curved so that the reflected ray always strikes the scale

perpendicularly.

36B-3 A laser beam undergoes two reflections in two right-

angle mirrors as shown in Figure 36-12a. The beams and the

normals to the mirrors all lie in the same plane. Show that, for

all angles of incidence that result in reflections by both mirrors,

the final reflected beam is always antiparallel to the incident

beam.

36B-4 A woman whose eyes are 1.59 m from the floor

stands before a mirror, (a) If the top of her hat is 14 cm above

her eyes, find the minimum vertical dimension of a wall mirror

that would enable her to see an entire image of herself (hat
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Mirror

Light

source

*- Î5V
'\

/ 3 m

Curved

scale

FIGURE 36-23

Problem 36A-2.

included), (b) How far from the floor is the bottom edge of the

mirror?

36B-5 The edge of a plane mirror is in contact with the

edge of another plane mirror, with 90° between their reflecting

surfaces. One mirror is in the xy plane and the other in the yz

plane, so that the joined edges are along the +z axis. By draw-

ing ray diagrams, locate the (.r, ;/) coordinates of the three im-

ages of an object that is at the position x = iO cm, y = 40 cm.

36B-6 A light ray undergoes two reflections in two mirrors

as shown in Figure 36-24. All rays and normals to the two

mirrors lie in the same plane. Derive an expression for fi in

terms of a. Verify that, for a = 90°. /? = 0.

FIGURE 36-24

Problem 36B-6.

36.5 Reflection by a Spherical Mirror

36.6 Ray Diagrams and Lateral Magnification

3 6A- 7 A spherical glass ball, 6 cm in diameter, has a mirror-

like surface. The ball is at rest on a table. A fly crawls on the

table toward the ball, (a) Find the distance from the ball's surface

to the fly's image when the fly is 4 cm from the ball's surface.

Include a ray diagram, (b) Describe the image characteristics.

36A-8 An object 2.7 cm high is placed 15 cm from a convex

mirror whose radius of curvature is 29 cm. Locate and describe

the final image, including its lateral magnification. Include a ray

diagram.

36.4-9 A concave mirror has a radius of curvature of 30 cm.

(a) Where must an object be placed in front of the mirror to

produce an image 15 cm behind the mirror? (b) If the mirror is

convex with the same radius of curvature, where should the

object be placed? Include a ray diagram for (a).

36B-10 Consider light rays parallel to the principal axis ap-

proaching a concave spherical mirror. According to the mirror

equation, rays close to the principal axis focus at F, a distance

R/1 from the mirror. What about a ray farther from the principal

axis? Will it be reflected to the axis at a point closer than f or

farther than ¥ from the mirror? Illustrate with an accurately

drawn light ray that obeys the law of reflection.

36B-11 An object placed 30 cm in front of a curved mirror

produces a real image 40 cm from the mirror. Find where the

object must be placed to produce the image 20 cm behind the

mirror. Include ray diagrams for both cases.

36B-12 In Footnote 8, rays (3) and (4) are said to be occa-

sionally awkward to draw in ray diagrams. Illustrate with a ray

diagram for each case. (Hint: consider situations in which the

object is close to F or close to the center of curvature R of

the mirror.)

36B-13 An object placed 5 cm from a concave mirror prod-

uces a real image four times as large as the object. Find the ra-

dius of curvature of the mirror. Include a ray diagram.

Additional Problems

36C-14 Figure 36-25 shows a triangular enclosure whose

inner walls are mirrors. A ray of light enters a small hole at

the center of the short side. For each of the following, make a

separate sketch showing the light path and find the angle Q

for a ray that meets the stated conditions, (a) A ray that is

reflected once by each of the side mirrors and then exits through

the hole, (b) A light ray that reflects only once and then exits.

(c) Is there a path that reflects three times and then exits? If

so, sketch the path and find d. (A) A ray that reflects four times

and then exits.

(Normal

to base)

FIGURE 36-25

Problem 36C-14.

36C-15 An observer views a point source of light reflected

in a mirror as in Figure 36-7 (page 8Z7). Show by application of

Fermat's principle that the angle of incidence ^i equals the angle

of reflection 6,. Assume that the incident ray and the reflected

ray lie in the same plane. However, do not assume that the

source and the observer are the same distance above the mirror.
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(Hint: choose the variable, upon which both 6^ and 6, depend,

to be the distance between the point on the mirror directly

below the source and the point of reflection.)

36C-1 6 Two plane mirrors have their reflecting surfaces fac-

ing one another, with the edge of one mirror in contact with

an edge of the other, so that the angle between the mirrors is

a. When an object is placed between the mirrors, a number of

images are formed. In general, if the angle a between the two
mirrors is such that no. = 360°, where n is an integer, the num-
ber of images formed is n — 1. Graphically, find all of the image

positions for the case n = 6 when a point object is between

the mirrors (but not on the angle bisector).

36C-17 The size of a real image produced by a concave

mirror is doubled if the object distance is decreased from 80 cm
to 50 cm. Find the radius of curvature of the mirror. Include

ray diagrams for both positions.

36C-18 Figure 36-26 shows a simple vertical periscope

formed by two plane mirrors placed at 45° as shown, (a) How
far from the bottom mirror is the image of the arrow at O? (b)

Is the final image real or virtual, erect or inverted? (c) To an

observer looking into the periscope, has the image undergone

a left-right reversal? Explain your reasoning, (d) Suppose you
use the periscope to look around a comer at a vertical arrow

by holding the periscope length horizontal. Is the image erect?

Does the image undergo a right-left reversal? Explain, (e) Now
view a vertical arrow by holding the periscope with its length

oriented 45° to the vertical. Describe what you see.

t—1^
O

effective way for lost hikers, or survivors at sea, to signal a

searching aircraft.)

36C-21 A concave mirror with a focal length of 25 cm pro-

duces an image 200 cm away from the object. Find the two

object distances that produce such an object-to-image separa-

tion. Describe the image in each case.

36C-22 Complete the following table for mirrors. In every

case assume that the diameter of the mirror is small compared
with the radius of curvature of its surface. All numerical values

are expressed in centimeters. Indicate the appropriate sign of

the values in accordance with the sign convention.

Type

of

Mirror
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optical instruments for analyzing the image. The radius of cur-

vature of the large mirror is 14 m and the two mirrors are

separated by 5 m. (a) Should the small mirror be concave or

convex to form an image 1 m behind the surface of the large

mirror? (b) Find the radius of curvature of the small mirror.

36C-27 A "floating coin" illusion consists of two parabolic

mirrors, each with a focal length 7.5 cm, facing each other so

that their centers are 7.5 cm apart, Figure 36-28. If a few coins

are placed on the lower mirror, an image of the coins is formed FIGURE 36-28

at the small opening at the center of the top mirror. Show that Problem 36C-27.

the final image is formed at that location and describe its char-

acteristics. (Note: a very startling effect is to shine a flashlight 36C-28 An object is placed 50 cm in front of a concave mir-

beam on these images. Even at a glancing angle, the incoming ror, creating a real image. As the object moves 5 cm toward

light beam is seemingly reflected off the images of the coins! the mirror, the image moves 10 cm. Find the focal length of

Do you understand why?) the mirror.



Geometrical Optics II-

Refraction

Three brothers bought a cattle ranch and named it "Focus." When
their father asked why they chose that name, they replied: "It's the

place where the sons raise meat"

Triple pun attributed

to Professor W. B. Pietenpol, Physics Department,

University of Colorado, Boulder, Colorado

37.1 Introduction

In this chapter we continue our discussion of geometrical optics in which the

paths of light rays involve only geometric considerations. Refraction, or the

bending, of a light ray that is incident at an oblique angle at the interface

between two different materials leads to the construction of lenses that form

images. The refraction of light makes possible the cameras, telescopes, micro-

scopes, and eyeglasses that enable us to see the tiny details of living organisms

and the awesome formations in the night sky.

37.2 Refraction at a Plane Surface

The universal constant c always designates the speed of light in a uacuum. In

matter the speed is slower. The reason is that, as light propagates through a

substance, it is continually being absorbed and reradiated by atoms in the

material. The incoming wave causes electrons to absorb the radiation and

vibrate at the frequency of the wave. A careful analysis shows that the vibrating

electrons reradiate electromagnetic waves at a retarded phase, depending upon

the electron density of the material and their natural resonant frequencies. This

retarded phase results in a slower speed for the wave in the material' Thus the

speed of light in matter is less than c. For air, the speed d^^^ is only about 0.03%

less:

c
= 1.000 29 (at 0°C. 1 atm)

' See R. P. Feynman et al.. The Feymnan Lectures in Physics (Addison-Wesley), Vol. I, Chapter 31, for a discus-

sion of this process.
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TABLE 37-1
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Dense flint glass.

Light flint glass

Incident

white

light

Deviation

of yellow

light

Rtd

200 400 600 800 :ooo

(Blue) (Red)

Wavelength X (nm)

FIGURE 37-2

The refractive index n as a function

of wavelength / for various types of

glass (visible-wavelength range shown

shaded.) For visible wavelengths, the

refractive indices can usually be

measured to five significant figures.

(Graph adapted from Eugene fiecht and

Alfred Zajac, Optics, Addison-Wesley,

1974.)

This angle is a measure of

the amount of dispersion.

FIGURE 37-3

White light is a mixture of all

wavelengths from about 400 nm to

about 700 nm. Because the refractive

index varies with wavelength, dispersion

by a glass prism separates a white-light

ray into a continuous range of

wavelengths at slightly different angles.

A measure of the amount of dispersion

is the angle between the deviated

ray for red light and that for violet

light. When the dispersed beam falls

on a screen, it forms a spectrum. If a

second identical prism is placed

upside-down in the dispersed beam, it

will recombine the beam into a single

ray of white light.

Refraction

When a light ray encounters an interface between two materials with different

refractive indices, the direction of the light ray may change. The bending of

a light ray in this manner is called refraction. In Figure 37-4, a plane wave

traveling in a material of refractive index n^ encounters a plane interface and

passes into a material of higher refractive index h,. In these two materials, the

light moves with speeds

and (37-2)

Applying Huygens' principle to the wavefront AC, we note that, in the time t

required for a secondary wavelet to move from C to D in medium 1, another

secondary wavelet moves from A to B in medium 2:

t

CD
t

AB
{37-3)

Vi 1'2

Using Equations (37-2) gives UiCD = rijAB (37-4)

Triangles ACD and ABD are similar right triangles with the common side AD,

so

Incident

wavefronts

Refracted

wavefronts

FIGURE 37-4

Refraction of a plane wave by a plane

interface between two materials.

CD = AD sin 0, and AB = AD sin 0,

FIGURE 37-5

Light from the submerged portion

of the straw is refracted at the

water—air boundary, causing the straw

to appear bent.
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Observer
Antisolar

direction

52°

(Not to scale)

(a) Formation of a primary rainbow.

(b) A ray of green

light in the

secondary bow.

FIGURE 37-6

Rainbows. Because of dispersion,

different wavelengths contained in the

light from the sun are refracted by

water droplets into different directions.

In water, n^^^ = 1.332 and Hyioiet
~

1.343. As shown in (a), dispersion

occurs as light enters a spherical

raindrop and also when it leaves the

drop. The reflection at the back surface

is total internal reflection, Section il.i.

As a result, an observer receives light

of different wavelengths from slightly

different directions. The outer red edge

of a rainbow appears at 42.2° above the

antisolar direction, while the inner violet

edge is at 40.6°. These angles lie on

a conical band centered on the antisolar

direction. A fainter secondary how is

formed at angles 50.7° to 53.6° by rays

that undergo two internal reflections

as in (b). The spectrum of the secondary

bow is reversed compared to that in

the primary bow (Problem 37C-44). It

is interesting that no two persons ever

see precisely the same rainbow and that

there is no arc of colors out there.

Substituting these relations into Equations (37-4), we obtain

= n^ sin B-,
SNELL'S LAW 3 FOR
REFRACTION «, sin (37-5)

Note that d^ is the angle between the incident ray and the normal to the inter-

face between the materials, and dj is the angle between the refracted ray and

the same normal. As in reflection, the incident ray, the normal, and the refracted

ray all lie in the same plane.

The same law of refraction applies for a ray of light going from a higher

refractive index to a lower, so if any light ray is reversed, it will retrace the

same path in the opposite direction (provided no absorption occurs). Because

the same reversibility is also true for reflection, we have the following:

PRINCIPLE OF
REVERSIBILITY

If the direction of a light ray passing through any

optical system is reversed, the light will retrace its

original path in the opposite direction.

^ Snell's law is named after its discoverer, ttie Dutcfi physicist Willebrord Snel van Royen (1591-1626).

At age 21, tie succeeded his father as professor of mathematics at the University of Leyden, Holland, and

his unpublished discovery in 1621 has been called one of the great moments in optics. The same relation-

ship was probably discovered independently by the French philosopher-mathematician, Rene Descartes

(1596-1650), who derived it using the particle theory of light and published it in his Dioptnque: in France

the law is known as Descartes' law. In 1617, Snel determined the size of the earth by measuring the earth's

curvature between Alksmaar and Bergen-op-Zoom.
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Fermal's principle (page 827) applies to refracted rays just as it does to

reflected rays. See Figure 37-7. That is, of all the possible paths from a point on

one side of an interface between two media to a point on the other side, lighi

takes the path that requires the least time in transit. In fact, Snell's law can be

derived from Fermat's principle. (See Problem 37C-37.)

EXAMPLE 37-1

A tin can 14 cm high and 12 cm in diameter is filled with an unknown liquid. An
observer looicing along a direction 25° above the horizontal (see Figure 37-S) can

barely see the inside bottom edge of the can. Find the index of refraction of the

liquid.

SOLUTION

The light ray from the bottom edge incident within the liquid on the top surface

has an angle of incidence 6i = tan" '(yj) = 40.6°. The index of refraction of air

is «2 = 1.000 (to four significant figures). We apply Snell's law to the refraction

of the ray as it emerges into the air with an angle of refraction 62 = 65°.

Ml sin 0, = «2 sin 62

«i sin 40.6° = (1.00) sin 65°

Solving for Hj gives "i =
sin 65°

sin 40.6°
1.39

Apparent Depth

When we look straight down into a pail of water resting on the floor, the

bottom of the pail appears to be noticeably above the floor level. How do we
visually judge distance? Human depth perception involves a variety of mecha-

nisms. One clue is the comparison we make between the known size of an object

and its perceived size. For distant landscapes, atmospheric haze provides addi-

tional helpful information. (In the absence of such haze, one can be fooled into

greatly underestimating the distance of "nearby" mountains.) For objects close

to us, an aid is the parallax effect that occurs when we move our head slightly.

Also, we need to "aim" each eye along slightly different directions in order to

match the divergence of light rays as they leave a nearby object: our minds,

through experience, relate this "aiming" effect to distance estimation. The next

example utilizes this last method of judging distance.

FIGURE 37-7

Fermat's principle applied to refraction.

Of all the rays emanating from a point

source S, only one ray will pass

through the point P. This ray lies in a

plane, satisfies Snell's law (nj sin Sj =
«2 sin 62), and requires the least time of

tratisit from S to P, Fermat's principle.

Even though some of the alternative

paths indicated by the dashed lines are

shorter in distance, they are longer in

travel time, so no rays of light take

these other routes in traveling from

S to P.

[--12 cm

FIGURE 37-8

Example 37-1.

^

EXAMPLE 37-2

An obser\'er looks straight down into the same tin can of fluid described in

Example 37-1. What is the apparent depth of the fluid?

SOLUTION

In Figure 37-9a, the two rays shown coming from a point on the bottom of the

can diverge as they approach the top of the fluid. As they proceed into the air,

they diverge even more due to refraction. To the obser\'er, the rays will appear

to originate from a point at a depth d below the surface. To emphasize the refrac-

tion at the surface water, an exaggerated view is shown in Figure 37-9b. The
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d

12 cm-

(a) Looking straight down into a

can of fluid.

(b) An exaggerated sketch of the

refraction that occurs at the

liquid surface.

FIGURE 37-9

Example 37-2.

angles involved in this example arc so small that wc may use the small-angle

approximations

sin 6^1 ^ tan 0^ ^ fl, id sin (), ^ tan 0-, * 0,

(For simplicity of notation, wc replace the approximately equal sign with the

equal sign in the discussion that follows.) From trigonometry, we have x =
d tan 0, and j: = H tan O^. Eliminating x between these equations and using the

small-angle approximations, we obtain

fl,H= OJ

Snell's law relates 0, and O2:

Since sin d * 0, we have

11 1 sin 9 1 = Hi sin O2

„^0^ = ,1262

We combine Equations (37-6) and {i7-7) to obtain

APPARENT DEPTH d
(viewed perpendicularly)*

Thus: d = 14

d = H

1.00

1.39

(37-6)

(37-7)

(37-8)

10.1 cm

37.3 Total Internal Reflection

Whenever light traveling in a medium of one refractive index encounters an

abrupt transition to a medium of a different refractive index, there is always

some reflection at the interface. A special case arises if the second medium has

a lower index of refraction than the first. Under certain conditions, the reflection

is 100% and no light is inmsriiiited through the interface. To see this, we start with

Snell's law:

n, sin 0, n-, sin 0,

In Figure 37-10, as the angle of incidence increases, the angle of refrac-

tion 82 approaches 90°. At the "dividing-line" case of exactly 90°, sin 90° = 1

and we have

sin ffj =

For angles of incidence larger than this critical angle 0^, total internal reflection

occurs and there is no refracted ray.

CRITICAL ANGLE
0, FOR TOTAL
INTERNAL REFLECTION

sin e.= (for Ki < "1) (37-9)

Because we used small-angle approximations in deriving the expression for the apparent depth, it holds

true only when the hght rai/s from the bottom are incident almost perpendicularhj on the water-air interface. When

viewed at more oblique angles, the apparent depth changes considerably. For example, note the appa-

rently curved bottom of a (calm-water) swimming pool when viewed from the edge of the pool and how

the image of the bottom changes as you walk around the pool.
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(There is, of course, no critical angle of light traveling from a medium with a

lower refractive index into a medium with a higher refractive index.)

Total internal reflection is used in a variety of practical applications. For

example, in binoculars (Figure 3 7-1 lb) the image is made erect by several re-

flections at 45°. Since 45° is greater than the critical angle for glass, a 45° prism

is used rather than a mirror with a silver coating (which might become tarnished

with time); the reflection is 100% from the interior glass interfaces. Similarly,

solid glass "corner" reflectors, whose three faces meet mutually at 90°, are

used to reverse the direction of any light ray incident on the reflector. Arrays

of these corner reflectors have been placed on the moon to reflect laser pulses

sent from the earth. Precise timing of the round trip of a pulse enables earth-

moon distances to be determined within a few centimeters, aiding studies of

continental drifts, effects of tides, and numerous other phenomena. Because of

total internal reflection, light is conducted along a flexible, transparent rod

called a liglit pipe, provided the angle of bending is small enough to ensure that

all angles of incidence are greater than 0^. Such light pipes, only a few hun-

dredths of a millimeter in diameter, are used for long-distance transmission of

radio, TV, and telephone channels, in addition to the rapid transmission of

computer data. Figure 37-12. Glass fibers a few thousandths of a millimeter

Norma

Incident

ray

Incident

ray

(a) Glass prisms (45°-45°-90°)

reflect light rays by total

internal reflection.

Objective

lens (c)

Inverts

image

vertically

Light is transmitted through

glass fibers by total internal

reflection.

Reverses

right and left
Eyepiece

lens

(b) Optical path for one eye of

prism binoculars. The use of

two 45° prisms oriented at

right angles causes the final

image to be upright and not

reversed right-for-left. Because

the magnification is

proportional to the focal length

of the objective lens, the use of

prisms also "folds" the long

optical path into a shorter,

more convenient length.

(d Thousands of transparent fibers

are held parallel, forming a

light pipe, so that they transmit

a true image even though the

pipe is bent.

Total

internal

reflection

FIGURE 37-10

Total internal reflection. When a ray of

light traveling in a medium of index of

refraction «i encounters a medium of

loiver index of refraction, the ray may
undergo total internal reflection at the

interface. As the angle of incidence 9^

increases, the angle of refraction Sj

becomes larger. The critical angle 0^

is the "dividing-line" case between the

refracted ray, barely emerging parallel

to the boundary surface (Oj ~ 90°), and

the slightly larger incident angle, for

which no light escapes and the reflection

is 100%. For all angles 9^ > 9^, total

internal reflection occurs. (Note: there is

always some reflection (not shown) at

the interface for angles less than 9,..

For a glass-air interface, it varies from

about 4% at normal incidence, to

~ 40% for a refracted ray at S0°, and

approaching 100% as fl, - 90°.)

FIGURE 37-11

Examples of total internal reflection.



?-'^0 .*" ' Geometrical Opiii R.-fi.Klion

(a) Glass fibers used for long-

distance transmission lines. At

present, distances up to 50 km
are possible before an

amplifying station, or repeater,

is necessary to compensate for

absorption losses.

Cladding

(b) Light is transmitted down the

core by total internal reflection.

One type of fiber in use has a

diameter of 50 /jm, about that

of a human hair. Others have

core diameters as small as 2 nm.

FIGURE 37-12

Optical fiber communication. Tremendous

advances in the development of optical

glass fibers for transmitting information

have been made in the past 20 years.

A light beam, carrying the information

coded as a series of pulses (digital

modulation), is injected into the core of

a glass fiber. Even though the fiber

bends, light is guided down the core by

total internal reflections at the core

walls. An outer layer of glass with a

lower index of refraction, called

cladding, protects the core surface from

moisture, dust, oil, etc., that would

cause light leakage by upsetting the

reflections at the walls. One big

advantage of optical-fiber

communication is its enormous

information-carrying capacity, far

superior to copper-cable, or radio,

systems. For example, recently a fiber

the size of a human hair carried about

25 000 voice channels! Since even this

impressive performance is well below

theoretical limits, further advances are

expected. Other advantages include

small size and weight, immunity to

electrical interference, security against

eavesdropping, and lower cost. (See

Problems 37B-14, 37C-42, and 37C-43.)

thick are sufficiently flexible that bundles of them can be used as probes, en-

abling physicians to see internal parts of the body, or technicians to view

inaccessible parts of a mechanism. Nature has used this principle of fiber optics

for millions of years; certain insects and crustaceans have visual sensors that

consist of bundles of crystalline "light pipes" that transmit light between an

array of outer corneal lenses and light-sensing elements deep within the insect

body.

EXAMPLE 37-3
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37.4 Refraction at a Spherical Surface

Most familiar optical instruments utilize lenses rather than mirrors because

of their durability and ease of combination with other elements of an optical

system. As a first step in the study of lenses, we will investigate how light is

refracted when it is incident on a glass surface that has a spherical curvature.

This approach introduces a technique for studying lenses and also has useful

applications in itself. Consider a point object on the axis of a spherical inter-

face between two media, as in Figure 37-13a. We first take the case in which

all the rays are refracted sufficiently to intersect the axis inside the medium.

We will show that within the small-angle approximation all rays converge to

form a real image at the point /.

Tracing a single ray, as in Figure 37-13b, we find that it intersects the

axis at the image distance CI. Using the fact that the exterior angle of a triangle

is equal to the sum of the opposite interior angles, we have for one triangle

^1 a + O2 + [i (37-10)

We eliminate 0^ and Oj by multiplying these equations by the appro-

priate refractive indices:

^i^i = »!i7 + 11 ly and '^z^h — "2)' ~ 'hP

and combining them with the small-angle approximation of Snell's law (Equa-

tion 57-7): Hjflj = iuOj, to obtain

«!« + hjP = («2 - "i)y (37-11)

Since a, ji, and 7 are small, a = tan (X = h/OC, ^ = tan /J = h/IC, and

)' = tan }' = h/RC. Equation (37-11) then becomes

^ + !!l = "^ ~ "'

OC IC RC
(37-12)

"2 (>"i)

(a) A real image is formed by the

convergence of rays refracted at

the spherical interface.

(b) Tracing a single ray from the

object O to the image /.

(c) If the refraction is insufficient

to produce converging rays, a

virtual image is formed outside

the medium. (Of course, only

an observer within the medium
could intercept the rays after

they have been affected by the

interface, and thus see the

virtual image.)

FIGURE 37-13

Refraction at a spherical interface

between two media.

In terms of the object distance ;;, the small distance q, and the radius of curva-

ture R, we have

REFRACTION AT A
SINGLE SPHERICAL
INTERFACE

n, n-f 11,

P ^
(37-13)

The usual sign convention applies for p and q, with R being positive for

convex outer surfaces (that is, the center of curvature is inside the medium).

Since /; and 9 do not appear in this expression, we know that all rays refracted

by the interface will converge to the same image point / (at least within the

validity of the small-angle approximations we have made). If the rays are not

bent sufficiently to converge inside the medium, their diverging directions

may be traced backward to a point of intersection to the left of the interface,

forming a virtual image /as in Figure 3 7- 13c. The following example illustrates

this type of situation.
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FIGURE 37-14

Example 37-4.

(a) A swimmer wearing a diving

mask with a face plate that

bulges outward. The image of a

fish is much closer than the fish

itself.

(b) The divergence of the light ray

from the fish has been

exaggerated to show more
clearly the refraction at the

interface between the water and

air inside the diving mask.

Axis

(a) Plane

Axis—::*r^

I ^~o

(b) Convex

Axis

(c) Concave

Axis

(d) Convex

FIGURE 37-15

Refraction at a single interface. Shaded

regions indicate a higher refractive

index. Dashed lines are extensions of

the refracted rays and form virtual

images.

EXAMPLE 37-4

A swimmer views a small fish through a face plate on her diving mask, as shown

in Figure 37-14a. The face plate bulges outward, forming an outer convex sur-

face with a radius of curvature of 0.40 m. If the actual distance to the fish is 3.0 m,

find the apparent distance to the fish as viewed by the swimmer.

SOLUTION

Ignore the thickness of the face plate itself. The plate forms an interface between

the water («j = 1.33) and the air within the mask (mt = 1). If we trace a single

ray from the fish as in Figure 37-14b, two triangles are formed in which Oi =
a -I- y and f 2 = /i -f y. Using Snell's law n^Oi = "2^2' ^^ proceed as before

and obtain

DC IC RC

Substituting the appropriate numerical values, we have

1.33 1 1.00 - 1.33

3.00 m IC 0.40 m

Solving for IC gives IC 0.788 m

Instead of 3 m, the apparent distance is only 0.788 m. Obviously, a convex face

plate produces large distortion of actual distances. As indicated in Example 37-2,

a flat face plate would produce an image of the fish at 23 m, much closer to the

actual location of the fish.

Figure 37-15 shows examples of how rays from an object on the axis are

refracted at an interface between two media. A convex surface may create

either a real or a virtual image.

37.5 Thin Lenses

Most lenses have spherical surfaces, with each surface contributing some re-

fraction. Thus, unless a ray strikes a surface at normal incidence, the ray will

bend as it enters the lens and also as it leaves the lens (see Figure 37-16a). We
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will limit our discussion to the thin-lens case, in which the thickness of the

lens is negligible compared with other dimensions. This thin-lens approximation

means that it makes no difference whether object and image distances are mea-

sured from the front surface or the back surface. To simplify ray-tracing dia-

grams, we assume that all bending of a ray occurs at a plane passing through

the center of the lens and that all distances are measured from this plane. We
use the same notation as for mirrors: p = object distance, q = image distance,

/ = focal length, and R = radius of curvature of a surface. By restricting our

discussion to "thin" lenses, we can use the small-angle approximations, greatly

simplifying the analysis.

Figure 37-17 illustrates various types of lenses. For lenses with a refractive

index greater than that of the surrounding medium, those that are thicker in the

center than on the edge are called convergent or positive lenses and have positive values

of f. Those with a center that is thinner than the edge are called divergent or negative

lenses and have negative values of f. Centers of curvature all lie on the axis.

The analysis of refraction by a lens is a three-step process: (a) calculating

the refraction of a light ray by the lens surface first encountered by the ray,

(b) calculating the refraction of the ray as it emerges from the second surface,

and (c) combining the results of (a) and (b) to obtain a general formula relating

object distance p, image distance q, and the lens parameters. Fortunately, the

thin-lens approximation makes the final result a simple expression.

(a)

FIGURE 37-16

Tlie thin-lens approximation, (a) In actual

lenses, a ray is refracted at both surfaces

(unless it happens to strike a surface at

normal incidence), (b) In ray-tracing

diagrams, the physical thickness of a

lens is ignored, and we assume that all

bending of a ray occurs at a plane

passing through the center of the lens.

The distances p, q, and / are all measured

from this plane.

(a) Double-convex converging lens. (b) Plano-convex converging lens. (c) Meniscus converging lens.

(d) Double-concave diverging lens.

FIGURE 37-17

Lenses are named according to the

types of surfaces they have. Dashed

lines are extensions of rays to locate

virtual images. Converging lenses are

(e) Meniscus diverging lens.

always thicker at the center than at

the edges; diverging lenses are always

thinner at the center than at the

(f) A thick glass plate with parallel

surfaces forms a virtual image.

edges. (This assumes that the index of

refraction for the lens is greater than

that of the surrounding medium.)
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tuting these in Snell's law for small angles, ni(/>i = n24^2' ^^ obtain

"ii^2 ~ "2^2 = ("2 ~ "1)72

Using the small-angle approximations, a, ~ tan a, = h/q^. ^2 * tan )?2 = V^-
and "/S ~ ^'^ 'ii — W^Z' ws obtain

n, n-, n-, — n.
(37-15)

^7 <?! ^2

The Combined Result

Adding Equations (37-14) and (37-15) eliminates Hi/^i to g'^e

-^ + -^ = („,-nM — + —
]

(37-16)
P <? V^i ^2,

which we may simplify by introducing the relative refractive index n of the

lens material, relative to the surrounding medium, Hj:

RELATIVE ^^12^

REFRACTIVE INDEX " ~
„j

(3 7-17)

Making this substitution, we have

- + -=(« -1)(^ + ^) (37-18)

R is positive for convex outer surfaces and negative for concave outer surfaces

(if the index of refraction of the lens is greater than that of the surroundings).

As in the case of mirrors, the focal length / of a lens is defined as the

image distance of parallel light incident upon the lens (p = x). Substituting

this value in Equation (37-18), we obtain the Ims-maker's formula-.

LENS-MAKER'S 1 / 1 1
- = („ - 1) — -I-

—
/ V^l ^2

FORMULA 7 = (« - 1)
I
— + - 1

(3 7-19)

Finally, combining Equations (37-18) and (37-19), we obtain the thin-lens

equation^:

THE THIN-LENS 1 1 _ 1

EQUATION
P
^ ^

~
7

(37-20)

Our development of the lens equation was based on the analysis of a

real image produced by a double-convex lens. If we analyze the other cases

shown in Figure 37-14, we obtain equations similar to the lens-maker's formula,

* The equal status of p and q in the thin-lens equation led Helmholz to state a prindple of optical reversibility:

if any ray is reversed, it will retrace the same path back through the optical system.
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but with various changes in the signs of the terms. However, the lens-maker's

formula is valid for all cases, with the following sign convention'':

SIGN CONVENTION
FOR THIN LENSES

(1) The numerical value of p is positive if the

rays approaching the lens are divergent.

Otherwise p is negative.

(2) The numerical value of q is positive if the

rays leaving the lens are convergent. Other-

wise q is negative.

(3) Assuming that the refractive index of a lens

is greater than that of the surrounding

medium, the radius of curvature R of the

outer surface of a lens is positive if it is con-

vex and negative if it is concave.

Note that the first two rules are identical to those used for mirrors. Regarding

R, our sign convention for both mirrors and lens surfaces has the following

consistency: if an incident plane wave becomes a converging wave, R for that surface

is positive, and vice versa. You should memorize the sign convention since you

will find it essential when using the thin-lens equation.

37.6 Diopter Power

The strength of a lens is a measure of its ability to alter the direction of light

rays. This strength is measured in diopters, defined as the reciprocal of the focal

length measured in meters:

D = Strength (in diopters) =
/ (in meters)

(37-21)

FIGURE 37-19

Example 37-5.

EXAMPLE 37-5

A converging eyeglass is constructed of crown glass {n = 1.50). As shown in

Figure 37-19, the radii of curvature are /?i
= 15 cm and R2 = —iO cm (minus

because the outer surface is concave). Find (a) the focal length and (b) the strength

of the lens, (c) Locate the image of a book held 20 cm in front of the lens.

SOLUTION

(a) For a lens in air, the relative refractive index is just that of the crown glass.

Substituting numerical values into Equation (37-19), we obtain

1

1)

1 1

^
1 \ 1
- = (1.50 - 1) -I-

/ \15ar\ (-30 cm)

Solving for / gives / = -f- 60.0 cm

' Several other sign conventions are in use. Here is a companion to the convention for mirrors in Foot-

note 6. Chapter 36:

p. (J,
and / are each positive for the "standard case" of a converging lens forming a real

image of a real object. Any change from tins siatidard case reijiiires a mniuf ngn.

For the standard case, the object distance f is greater than the focal length of the lens. Light passes through

a lens, so real images are formed on the "far" side of the lens. The sign of R is given by rule (3) above.
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The positive sign indicates a converging lens, thicker at the center than at

the edge,

(b) The strength of the lens is

Strength
/ (in meters) 0.60 m

(c) To locate the image, we use the lens equation:

1.67 diopters

1 I _ 1

P 1 f

I 1 1
+ - =

20 cm q 60 cm

The numerical sign of the object distance p is positive because rays from

the object are divergent as they strike the lens. Solving for cj gives

q = \

- 30.0 cm

By the sign convention, the negative sign for the image distance indicates

that the rays are divergent after they leave the lens. The image is therefore

virtual, located on the same side of the lens as the object, 30 cm from the

lens. As we look through the lens, we see this image.

37.7 Thin Lens Ray-Tracing and Image Size

We now describe ray-tracing techniques used for locating images formed by

thin lenses. They are similar to the ray-tracing methods used for mirrors. We
will sometimes indicate two focal points F located equidistant on either side

of the lens, called principal foci. This recognizes that, for thin lenses, paraxial

rays incident on a converging lens from either side are brought to a focus at

a focal-length distance on the other side of the lens (for divergent lenses, they

are brought to a focus on the same side). Furthermore, rays from a point source

at either focal point of a converging lens emerge from the lens parallel to the

axis. As shown in Figure 37-20, the situation is symmetrical regarding the

direction that the light passes through the lens. (This is not true for thick

lenses.)

Incident

light
Incident

light

Point

source

Point

source

(a) Parallel light incident on

opposite sides of a lens. If the

lens is thin, the focal distance /

is the same for each case.

(b) Light rays from a point source

at either focal point F emerge

from the lens in directions

parallel to the axis.

FIGURE 37-20

A thin lens affects light the same way regardless of which side of the lens the

incident light strikes. (This is not true for thick lenses.)
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Refraction

(a) Case 1. Convergent lens: real

image

\^-^^-

(h) Case 2. Convergent lens:

virtual image

,^U\-
(c) Case 3. Divergent lens: virtual

image

FIGURE 37-21

Image formation by ray-tracing. If the

rays leaving the lens do not intersect,

the virtual image is located by

extending dashed lines backward from

the directions of the actual rays.

As is also the case for mirrors, a focal point f is not the location of the

image, except in the one case of incident parallel light. It is helpful to think

of the focal points as points "belonging" to a lens, which we find useful in coti-

struding ray diagrams.

For ray-tracing diagrams, we draw two particular rays^ that are always

easy to trace:

RAYS USED IN

RAY-TRACING
FOR THIN LENSES

(1) A ray passing through the center of the lens

is undeviated. (Near the center, the lens acts

as a thin piece of glass with parallel sides. The

slight sideways displacement of rays not parallel

to the axis can be neglected in the thin-lens

approximation.)

(2) A ray parallel to the axis is refracted so that

it passes through (or extends through) the focal

point F.

Figure 37-21 illustrates the three possible cases of refraction by a thin lens

(refractive index greater than the surrounding medium).

Case 1. Converging Lens: Real Image

In Figure 37-20a, the object is the tip of the arrow at O, located more than a

focal-length distance from the lens. (We investigate an object that extends only

above the axis, recognizing that, because of symmetry about the axis, an object

that extends below the axis would produce the same result.) We trace two rays

from the tip whose directions we can easily determine. One ray passes through

the center of the lens undeviated, and the other approaches the lens parallel to

the axis and is refracted so that it converges toward the focal point F of the

lens. The intersection of these two rays locates the image of the arrow tip at /.

(Other parts of the arrow are similarfy imaged to form the complete arrow.)

Since light rays actually converge to form the image, it is real; a screen placed

at that location would have an image formed on it. The image is inverted, as

revealed by the ray diagram.

The linear magnification M is defined as the ratio of the image size to

the object size:

LINEAR
MAGNIFICATION M =

Image size

Object size

(37-22)

The minus sign is introduced so that a negative value of M indicates an inverted

image and a positive value of M indicates an erect image. That is, if p and q are

both positive, M is negative, indicating an inverted image. This same sign con-

vention holds true for all cases of lenses as well as mirrors. The term magtnfica-

tion is somewhat of a misnomer, since the image can be smaller than the object,

in which case the absolute value of M is less than one.

A third ray car be drawn:

(3) A ray falling on a lens after it passes tlirough (or extends through) the focal

point f emerges from the lens parallel to the axis.

This ray, however, is sometimes not feasible with a large object located near a focal point.
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Case 1. Converging Lens: Virtual Image

In Figure 3 7-2 lb, the object is located closer than a focal-length distance from

the lens. Again we trace two rays from the tip of the arrow. One ray passes

through the center of the lens undeviated, and the other approaches the lens

parallel to the axis and is refracted so that it passes through the focal point of

the lens. We determine the intersection of these two rays by extending them

backward along their directions until they intersect at the image location /.

Because no actual light rays travel along these extended lines, we draw them

dashed. Since no actual light rays form the image, it is virtual. (A screen placed

at that location would not have an image formed on it.) The image is erect, as

revealed by the ray diagram (and also by the fact that the numerical value of

M is positive). You may verify that, for all cases in which the object is closer

than a focal-length distance from a converging lens, the image is always larger

than the object, always virtual, always erect, and on the same side of the lens

as the object.

Case 3. Divergent Lens: Virtual Image

As shown in Figure 37-21c, the rays from the arrow tip always diverge after

passing through a divergent lens, no matter how far the object is from the lens.

As a consequence, a virtual image is formed that is always smaller than the

object, always erect, and on the same side of the lens as the object.

Ray diagrams are very helpful in determining image characteristics since

the diagram itself reveals these properties; thus there is no need to memorize

the + and — sign "rules" for real or virtual, erect or inverted.

One feature of image formation should be noted. !f, say, one-half of a

lens is covered, the complete image is still present, though half as bright. In-

deed, any fragment of a broken lens will still form complete images. The reason

is clear if you remember that a lens acts on incident wavefronts (or on all the

rays emanating from each point on the object), rather than on just the few

rays we usually trace in ray diagrams.

37.8 Combinations of Lenses

Most optical instruments contain a system of several lenses. In many cases,

the use of multiple lenses helps to correct certain image defects. In other in-

stances, if the final image is formed in a series of steps, the overall length of

the instrument is much shorter than it would be if just a single lens were used.

We will limit the discussion to simple two-lens combinations.

Consider two thin lenses in contact, a common situation in many optical

instruments. Figure 37-22 depicts two such lenses, which have positive focal

lengths /i and /i. Parallel light from the left strikes lens ;l) and would focus

at a distance f\ if the second lens were absent. After leaving lens (T), the rays

are convergent as they strike lens @. Therefore, according to the sign con-

vention, the object distance pj for the second lens is —f^. Applying the lens

equation to the second lens

I 1 _ 1

P2 ^2 fi

1 2

FIGURE 37-22

Two thin, converging lenses in contact.
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and noting that iji '^ the resultant focal length / for the combination, we have

Rearranging, we obtain

THIN-LENS
COMBINATIONS
(lenses in contact)

1 1

+
-/, / fi

1 _ 1 1

7"A ^/a

or, expressed as diopters, D,

D = D^ + Dj

(37-23)

(37-24)

Diopter notation is particularly convenient for lens combinations because the

strength of two thin lenses in contact is merely the sum of the strengths of

the individual lenses. These are general relations, valid for any combination of

positive and negative lenses in contact.

EXAMPLE 37-6

Two thin lenses of focal lengths /, = 20 cm and /, = 60 cm are placed in con-

tact, (a) Find the focal length /' of the combination, (b) Find the focal length f^

of a third lens placed in contact with these two that would result in an overall

focal length /" = — 40 cm.

SOLUTION

(a) Substituting numerical values in the lens-combination formula gives

Using focal lengths

1 _ 1 1

I

7

r =

1

20 cm 60 cm

15.0 cm

D,

D, =

Using diopters (D)

= = 5 diopters
0.2 m

1

0.6 m
1.67 diopters

D' = Di + Dj
= (5 + 1.67) diopters

D' = 6.67 diopters

(b) Adding one more lens in contact, we repeat the same analyses.

1 _ 1 1 _.. 1

1
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Location of image

formed by first

lens (if second

lens is absent)

FIGURE 37-23

Example 37-7.

EXAMPLE 37-7

Consider the two lenses in Figure 37-23. An object is placed 15 cm from the

convergent lens (/j = 10 cm). The divergent lens (/j = — 20 cm) is placed 15 cm
on the other side of the convergent lens. Locate and describe the final image

formed by the two lenses.

SOLUTION

Because these two lenses are not in contact, we cannot use the lens-combination

formula. Instead, we investigate the focusing properties of each individual lens

by itself. The first step is to locate the image formed by the first lens, pretending

that the second lens is absent. Applying the lens equation, we obtain

1 1
- + -

p 1
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37.9 Optical Instruments

The Simple Magnifier

The simplest optical instrument is the single-lens magnifier or reading glass.

A convergent lens is placed in front of fine print or a small object and moved
closer or farther away until the best magnified image appears. Because the

object is closer than a focal-length distance from the lens, the image is erect,

as shown in Figure 37-24b. How much is the object magnified and how does

that depend on the focal length of the lens? The answer is complicated because

the image distance may be fairly short, or even infinitely far away, depending

on what distance the observer finds most comfortable for viewing. Also, the

observer's eye may be at various distances from the leris, so the angular size

of the image the eye sees may vary. To reduce the number of possibilities,

we will discuss only the case in which the observer's eye is close to the lens.

When we use a magnifier, we are interested in how much larger the

image appears with the magnifier compared to viewing the object with the

unaided eye. A person with so-called normal eyesight can see clearly objects

located anywhere from infinity to about 25 cm from the eye. The largest an-

gular size of an object will be when it is held as close to the eye as possible.

By definition, the "closest distance for comfortable viewing" is taken to be 25 cm.

Of course, some persons can see objects closer than this, while others cannot

see objects this close; the 25 cm figure is chosen as an average value.

We define the angular magnification m as the ratio

ANGULAR
MAGNIFICATION

Angle subtended by the image

when using the magnifier

Angle subtended by the object

when viewed from 25 cm by

the unaided eye

(a) Viewing the object with the

unaided eye at the closest

distance for comfortable

viewing, 25 cm. The object

subtends an angle /3= /;/25 cm.

(b) With the eye close to the

magnifying lens and the image

at the closest distance for

comfortable viewing {q= —25
cm), the image subtends an

angle a = h/p.

FIGURE 37-24

The simple magnifier.

P
(37-25)

With the unaided eye and with the object at 25 cm, the angular size is /? *
/i/25 cm. Figure 37-24a. Using the magnifier with the eye close to the lens and

the image at 25 cm. Figure 37-24b, we have q = — 25 cm with an angular size

a 3s h/p. Solving the lens equation for l/p and substituting q = —25 cm, we

have

1 1 Hi +
J —25 cmy \f 25 cm

When we use the magnifier, the angular size a = h/p is thus

a = /i (
~ +
J 25 cm^

Solving for the angular magnification m = (x/ji, we obtain

ANGULAR MAGNIFICATION
OF A MAGNIFIER (with

image at 25 cm and the eye

placed close to the lens)

25 cm
m = — h 1

(where / is in

centimeters)
(37-26)
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Carrying out a similar analysis with the magnifier image at infinity (Problem

37C-53), we find that

ANGULAR MAGNIFICATION
OF A MAGNIFIER
(image at infinity)

25 cm (where / is in

centimeters)
(37-27)

f
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The Eye

1 he eye, with its linkage to that master computer—the brain—is surely

one of the most remarkable of human organs.* The overwhelming major-

ity of information input comes to us via our eyes, and the way we analyze

and sort out the ever-changing pattern we see is astonishing. Basically,

the eye is similar to a camera with a lens that forms images on a photo-

sensitive surface, but there are many unique features that no camera can

duplicate (see Figure 37-25). The focusing of light rays occurs primarily

at the outer surface of the cornea, where the change in refractive index

from air to the cornea is greatest. (Its power is about 40 to 45 diopters

in the average person.) On the other hand, the lens is surrounded by fluids

whose refractive indices are not too different from that of the lens ma-

terial, so relatively less refraction occurs at these surfaces. (The major

reason you cannot see clearly under water is that the refractive index for

water, lu 1.33, is too close to that of the cornea, n^. = 1.367, to

cause sufficient refraction. A face plate corrects the problem by maintain-

ing an air contact with the eye.)

The lens is somewhat flexible, enabling the ciliary muscles to adjust

its power from about 20 to 24 diopters. In this way, even though the lens

is a fixed distance from the photosensitive surface, sharp images can be

formed for varying object distances. The overall power of the cornea

plus the lens is about 60 to 65 diopters. The ability of the eye to change

its focal length is called accommodation. With age, the lens material grad-

ually hardens, so the degree of accommodation becomes less as we grow

older. The closest object distance for which sharp images can be formed

is called the near point. For an average 10-year-old, it is around 7 cm, in-

creasing to about 22 cm in middle age, and to about 100 cm at age 60,

often requiring "reading" glasses to assist vision at closer distances.

The retina consists of roughly 125 million photoreceptor cells called

rods and cones. An elaborate network of neurons and nerve fibers connects

them to the brain via the optic nerve (Figure 37-26). As you read these

words, your eye jumps abruptly from point to point, so that the center of

your field of view falls on the fovea, a small area about 0.3 mm in diameter

containing only cones packed closely together. (To get some idea of the

field of view that covers the fovea, the full moon's image on the retina is

about 0.2 mm in diameter.) The eye's ability to detect detail (resolution)

is greatest in the fovea. Only the cones are sensitive to colors. Away
from the fovea, the rods become relatively more numerous, and though

they have no color sensitivity, they can detect very dim light. You can

test the rods' sensitivity to low light levels by trying to observe a faint

star. You may not see the star if you look directly at it, but shifting the

direction of vision to one side a bit so the image falls on the rods makes

the star's presence detectable. It is believed that some data analysis of

the image occurs at the retina, particularly in certain animals with photo-

* Srimfi/ir American has many interesting articles on vision. Among them are the following: "The

Visual Cortex of the Brain," David Hubel, November 1963. "Attitude and Pupil Size," E. Hess, April

1965. "Retinal Processing of Visual Images," Charles Michael, May 1969. "The Neurophysiology

of Binocular Vision," John Pettigrew, August 1972. "Visual Pigments and Color Blindness,"

W. Rushton, March 1975. "The Resources of Binocular Perception," John Ross, March 1976.
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receptors that send signals to the brain only for specific orientations of

light-dark edges or for motions in certain directions.

The ins is an adjustable diaphragm that controls the amount of

light passing into the eye. The size of the iris opening, the pupil, is affected

not only by the amount of incident light but also by drugs and by our

emotions. If something pleases us, our pupils tend to enlarge; if we are

displeased, they tend to contract. Clever poker players aware of this effect

claim they can sometimes discern the value of their opponents' hands by
watching changes in the sizes of their pupils. Although the iris controls

light intensity only by a factor of 16 or so, the retina itself has an enor-

mously larger range of sensitivity. Light causes chemical changes in the

rods and cones, reducing their sensitivity; after about half an hour in the

dark, the eye becomes "dark adapted" and the greatest sensitivity is

achieved. There is no completely adequate theory of color vision that

explains all phenomena, though it is reasonably certain that the cones are

of three types whose color sensitivities overlap somewhat; one type is

most responsive to blue light, one to green light, and the third to yellow

light (not red, as previously thought). About 8% of males and 1% of

females have some defects of color vision, a hereditary malady that is

recessive and sex linked.

In the fovea, where resolution is greatest, each cone has a separate

path to the optic nerve, but near the edge of the retina several receptors

may be connected to the same nerve path. The region where the optic

nerve leaves the retina produces a blind spot in the field of vision (Figure

37-27). A portion of the nerve pathways from each eye cross over and

lead to the opposite half of the visual cortex in the brain, a feature of the

"wiring diagram" believed to be involved in depth perception and in main-

taining the use of both eyes in case one side of the brain is damaged.

The eye-plus-brain combination is a surprisingly effective visual

system that enables us to rapidly scan a scene, investigating interesting

portions with the high-resolution fovea, sorting out the varying images,

and picking up significant information on intensity, form, motion, and

color to store temporarily in our memory, thereby building up a single,

three-dimensional concept of our surroundings.

FIGURE 37-27

Diagram for revealing the blind spot.

Close your left eye and look at the

circle as you move the book closer to

your eyes. When the diagram is about

20 cm away, the star will disappear.

(A similar effect occurs when you close

the right eye and look at the star.)

The brain tends to "fill in" the missing

portion of the field of view with a

color and pattern similar to its

surroundings. For example, if a pattern

of stripes is present, the blank space

seems filled with matching stripes!
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(a) In nearsightedness {myopia}, a

person cannot see distant

objects because the eye

converges incoming light too

strongly and the image is

formed in front of the retina.

(b) A negative lens corrects

nearsightedness by forming a

virtual image of a distant object

closer to the eye. The eye itself

can then form an image of it on

the retina.

(c) In farsightedness (hyperopia), a

person cannot see nearby

objects because the eye does

not refract the light sufficiently

and the image distance is

behind the retina.

(d) A positive lens corrects

farsightedness by forming a

virtual image of a nearby object

farther from the eye. The eye

itself then can form an image of

it on the retina.

FIGURE 37-28

Eyeglasses can correct the visual defects caused by the eye's inability to form

images on the retina.

100 cm 15 cm
I

(a) A nearsighted person's range of

clear vision without eyeglasses.

Eyeglasses

The lens of a normal eye can slightly change its focal length (called accommoda-

tion) so that, even though the retina is a fixed distance from the lens, it produces

sharp images on the retina for both near and distant objects. Sometimes the lens

of the eye is not symmetrical and tends to produce elongated images of point

sources of light, an abnormality called astigmatism. Both lack of accommodation

and astigmatism can be corrected by eyeglasses.

See Figure 37-28. If the unaided eye is nearsighted and cannot form sharp

images of distant objects, an eyeglass can produce a virtual image of the object

at a sufficiently close distance so that the eye can look at this image and, with

its own lens, focus it on the retina. Conversely, if the eye is farsighted and nearby

objects seem blurred, an eyeglass can form a virtual image of the object farther

away, so that the eye can look at it and form a sharp image on the retina. In

each case, it is easiest to think of the eyeglass as forming a virtual image in front of

the observer within the distance that the eye can accommodate. Then the eye itself

looks at this image and properly focuses it on the retina. The following example

illustrates these procedures.

20 cm

oo-^- 1

^

(b) The person's range of clear

vision with eyeglasses.

FIGURE 37-29

Example 37-8.

EXAMPLE 37-8

A nearsighted person (Figure 37-29a) can see objects easily and comfortably

within the range of 15 cm to 100 cm. (a) Describe the eyeglasses that will pro-

vide a normal range of 25 cm to infinity, (b) Find the image distance these eye-

glasses would produce of an object held at the convenient reading and working

distance of 25 cm.
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SOLUTION

(a) While this person can read easily without glasses, distant objects are out of

focus. The glasses should therefore produce images of distant objects that fall

within the range of 15 to 100 cm. In practice, objects at infinity should have

images at the most distant point of clear vision, so that reasonably close vision

is not impaired with the eyeglasses on. Thus, for this person, an object at in-

finity should have its image ai q = — 100 cm (negative because it is a virtual

image). Starting with the lens equation.

1 1 _ 1

P "7 7 X +
1 1

- 100 cm /

Solving for the focal length of the eyeglass, we obtain

/ = — 100 cm 1.00 diopter

(b) Again, using the lens equation gives

1 1
- + -

1 11

+ - =
25 cm q — 100 cm

Solving for the image distance q yields il
= 20.0 cm

This is well within the clear viewing range of the person. The eyeglasses

would thus expand the range of clear vision as shown in Figure 37-29b.

Toward middle age, people often lose accommodation, so that their

range of clear vision becomes smaller. (This condition is called presbyopia.)

A person with a narrow range of clear vision near 100 cm would need bi-

focals: a convergent portion of the eyeglass for viewing nearby objects and

a divergent portion for distance objects. Trifocals are also sometimes used.

The Astronomical Telescope

The simplest form of the astronomical telescope consists of two converging

lenses: the objective lens (focal length fj and the eyepiece lens (focal length f^). As

shown in Figure 37-30a, the objective lens creates a real, inverted image /;

at its focal-length distance because the object's distance is essentially infinite. In

turn, the eyepiece forms a virtual image of /j . In practice, most viewers focus

the eyepiece so that the final image is at infinity. (In doing so, they can shift

the eye from the eyepiece to the object without eye accommodation.) For a final

image at infinity, the image /j must be at the first focal point of the eyepiece

lens.

The angular magnification m of an astronomical telescope is the ratio of

the angle subtended by the image formed by the eyepiece to that formed by

the object. Thus, m = a//?, where X and P are as indicated in Figure 37-30a.

Ordinarily, the image formed by the objective is small compared with either

the objective focal length /„ or the eyepiece focal length f^. Then, since h « f^,

a = tan" V/i/7e) ~ 'V/e- Similarly, P ^ h/f„. Thus w = a/^ becomes

ANGULAR MAGNIFICATION
OF AN ASTRONOMICAL
TELESCOPE

4
7e

(37-28)

An important characteristic of a telescope is its light-gathering ability.

Ideally, when we are viewing through a telescope, all of the light that enters

the objective lens should ultimately enter the pupil of the eye. As shown in
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Objective

lens

To the

,

final image

at intinity-

Eyepiece

lens

(a) The objective lens forms a real, inverted image /i of a distant object. The
eyepiece lens forms a distant virtual image of /i.

Objective

Exit

pupil

Eyepiece /

^>:

Objective
f|)|

*-

-Object

' Final image
|

FIGURE 37-31

A simple microscope. The objective

lens forms a greatly enlarged real image

/i of the object. The eyepiece is a

magnifier that creates a virtual image of

1 1. The final image is usually chosen at

the closest distance for comfortable

viewing.

-/o-

Eyepiece Exit

pupil

(b) The eyepiece lens forms an image of the objective lens, called the exit pupil.

All the light that passes through the telescope goes out through the exit

pupil. The pupil of the viewer's eye should be placed at the exit pupil so that

the maxiumum amount of light enters the eye. The distance from the

eyepiece lens to the exit pupil is the eye relief; it should be large enough to

accommodate viewers with glasses.

FIGURE 37-30

The astronomical telescope.

Figure 37-30b, the bundle of light rays emerging from the eyepiece becomes

constricted, then spreads out. The area of constriction, called the eye ring or

exit pupil, is actually the image of the objective lens formed by the eyepiece

lens. If the exit pupil diameter is smaller than the observer's eye pupil, the eye

can capture all the light passing through the telescope.

The Simple Microscope

In the simple two-lens microscope. Figure 37-31, the object is placed just outside

the focal point of the objective lens (whose focal length /„ is very short), producing

a greatly enlarged real image /j. This image is magnified by the ocular or

eyepiece lens (focal length f^) in the way we discussed for a simple magnifier

with the final virtual image at the closest distance for comfortable viewing.

The eyepiece lens has an angular magnification m [Equation (37-27)] of approxi-

mately 25 cm//g. (We drop the 1 in the formula because /^ is usually much

shorter than 25 cm.) The objective lens has a linear magnification M, so that

the total magnifying power of the microscope is Mm = M(25 cm//). The linear

magnification of the objective lens is ///„, where / is called the tube length of

the microscope. A typical value of /' is 18 cm. Substituting these values, we have,

for the magnifying power,
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MICROSCOPE
MAGNIFYING
POWER

Mm 25 cm

/.

450 cm''

/o/e

(where [^ and f^

are in centimeters)
(37-29)

In order to achieve good exit pupil size and eye relief (see Figure 37-30b), /^

must be of the order of 1 cm. Thus, by Equation (37-41), /„ must be very short.

For a magnifying power of 2000, /„ is of the order of 2 mm.

Fresnel Lens

Often it is desirable to concentrate light, as in lighthouse searchlights, certain

types of solar energy collectors, and overhead projectors. Instead of a large-

diameter, simple converging lens that is heavy and expensive to manufacture,

we can achieve the same light concentration with a Fresnel lens. In Figure 37-32a,

the unshaded portions of the ordinary lens do not contribute to the focusing

action and are eliminated. Only the light-bending surface contour of the lens is

retained in the form of a great many concentric circular ridges, greatly reducing

the weight. Thin Fresnel lenses are often molded of plastic at low cost. The

image quality is usually not the goal, so surface contouring is often not very

precise. Fresnel lenses are used in traffic lights that are visible only in the lane

intended. In addition to its light-directing uses, a large lens three feet square

in sunlight can create temperatures over 3000 K at its focus, sufficient to melt

a variety of metals. Smaller versions make a lightweight camp stove for hikers.

The Camera and /-Stops

The light-gathering ability of a lens is proportional to its area. In most cameras,

the effective area can be changed by use of an ins diaphragm: a circular hole

of variable diameter called an aperture stop. The aperture size is expressed by

the f/number, or f-stop, defined as the focal length divided by the diameter of the aper-

ture. Lenses are usually calibrated in successive //numbers that change by

(rounded) factors oiyjl. Thus, each step corresponds to a factor of 2 in light-gathering

ability. Typical /-stops are //1.4, //2, //2.8, //4, //5.6, //8, //ll, //16. A low

//number signifies a "fast" lens because its larger diameter gathers enough

light to expose the film in a shorter exposure time.

Ordinary lens

Fresnel lens

FIGURE 37-32

(a) A cross-section of an ordinary

converging lens, (b) A Fresnel lens

equivalent to (a) in its light-focusing

properties. Concentric circular segments

(many more than are shown here)

contain the light-bending surface

contour of the ordinary lens; the light

color shaded portions in (a) have been

eliminated. A negative Fresnel lens is

sometimes used in the rear window of

recreational vehicles to provide a

wider-angle view than the window

itself allows.

EXAMPLE 37-9

The focal length of an f/2 camera lens is 50 m.m. (a) Find the diameter of the lens,

(b) If the correct exposure for photographing a scene is jgg s at //2.8, what is the

correct exposure time at //8?

SOLUTION

(a) Diameter =
Focal length 50 mm
//number 2

25.0 mm

(b) The change in aperture stop is three steps along the increasing /^number

scale, or three factors of 2 smaller area (less light-gathering ability). Thus the

exposure time should be increased by 2 , or 8 times longer, or

(8)( 1/400) s io'-
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37.10 Aberrations

We used several simplifying assumptions in deriving thin-lens formulas. In par-

ticular, we employed small-angle approximations, ignored far-off-axis objects

and rays, and neglected the fact that the index of refraction is not the same

for all colors of light (dispersion). Consequently, every actual lens produces cer-

tain defects, or aberrations, in the image. Some common examples are illustrated

in Figures 37-33 through 37-35. Many of these aberrations can be minimized

r 1

(a) Parallel rays farther from the

axis of a spherical mirror are

brought to focus closer to the

mirror than are rays near the

axis.

(b) Parallel rays near the edge of a

spherical lens have a shorter

focal length than those rays

near the axis of the lens.

FIGURE 37-33

Spherical aberration. Because spherical surfaces are the easiest curvature to manufacture,

the surfaces of most mirrors and lenses are spherical. Thus paraxial rays impinging

near the edges will necessarily have different focal distances than those near the

center. Consequently, the image is "smeared out" and appears out of focus. To
reduce this effect, cameras often have an irjs, or adjustable aperture stop, that can be

"closed down" to allow only the central portion of a lens to be used. (To compensate,

longer exposure times are necessary.) A parabolic mirror does focus parallel rays at

the same point and thus has no spherical aberration. Lenses can also be ground to

have special contours (expensive to fabricate) that reduce spherical aberration.

4

Violet

(a) A prism (dispersion

exaggerated).

FIGURE 37-35

Chromatic aberration of lenses. Because

the index of refraction in glass is

greater for shorter wavelengths,

blue-violet light is refracted more than

red light. Consequently, a lens tends to

separate white-light images into a

(b) A single convergent lens has a

longer focal length for red light

than for violet light.

spectrum the same way a prism does.

So a simple lens has different focal

lengths for different colors, a defect

called chromatic aberratwn. The amount

of dispersion is exaggerated here.

Multiple-lens systems can be designed

Point

source

FIGURE 37-34

Astigmatism. If a lens is not perfectly

spherically symmetric but has a small

amount of cylindrical property, a point

source forms a line image. (Light from

off-axis sources striking a spherical lens

also produce this defect.) Astigmatic

vision can be helped by eyeglasses that

have a compensating cylindricality

whose axis is perpendicular to the axis

of the corneal lens defect.
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with multiple-lens systems in which the aberrations of one lens are partially

cancelled by those of another lens. The recent development of new optical-glass

materials that have special index-of-refraction characteristics, and the use of

high-speed computers in complex ray-tracing calculations for nonspherical sur-

faces, have greatly improved the design of optical systems. No lens is perfect,

but (at additional expense) the most troublesome defects can be minimized.

Summary

The index of refraction n (which depends upon wavelength) is

defined as

Ray diagrams give much information about image characteristics.

We construct them by tracing two of the following rays:

Snell's law for the refraction at an interface between two different

materials (where 6 is the angle between the ray and the normal

to the surface) is

«i sin 01 = H2 sin 0,

Total internal reflection: The critical angle 6^ is given by

0.= («2 < «l)

-r. ,, ,
111

Ihe thin-lens equation: —I— = -

P q f

where p is the object distance, q is the image distance, and /is

the focal length. The equation is to be used with the sign

convention:

(1) The value of p is positive if the rays that impinge

on the lens are divergent.

(2) The value of q is positive if the rays leaving

the lens are convergent.

(3) The focal length / for a converging lens is positive;

for a diverging lens, it is negative.

The lens-maker's

formula: f

= (« - 1)

1 1

where n is the refractive index of the lens relative to the sur-

rounding medium and Rj and Rj ^r^ l^he radii of curvature of

the lens surfaces. R^ and R, are positive if the corresponding

outer surfaces are convex and negative if they are concave (as-

suming that n of the lens is greater than that of the surrounding

medium).

(1) a ray that strikes the center of the lens and passes

through undevialed:

(2) a ray that is parallel to the axis and passes (or is

extended) through the focal point F;

(3) a ray that passes through (or extending through) a

focal point F and then strikes the lens, emerging

from the lens parallel to the axis.

Images are real or virtual, erect or inverted, with linear magnification

M= -(q/p).

The /-stop, or f/ number, of a lens is the focal length divided

by the diameter of the lens (or diameter of the aperture stop).

The diopter power D is the reciprocal of the focal length in meters.

For two lenses

in contact:

or, in diopters, D

1 _ 1 1

D = D^+D2

For two separated lenses, the image produced by the first lens

acting alone is the object for the second lens.

Angular magnification:

25 cm
Magnifier: m = h 1

Telescope: m =

(image at 25 cm,

/in cm)

(image at oo)

Magnifying power of a microscope:

,V \/25 cmMm = —
U\ L

/ is hi(>e length (usually 18 cm)

and /p and /^ are in centimeters

Common aberrations: spherical aberration, astigmatism, and

chromatic aberration (lenses).
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Questions

1

.

Do we alter the focal length of a spherical mirror by immers-

ing the mirror in water?

2. An observer walks toward a swimming pool. Why docs the

apparent depth of a swimming pool depend on the

observer's distance from the edge of the pool?

3. Why does a straight pole penetrating the surface of a pond

often appear to be bent at the point where the pole enters

the water?

4. If a fisherman can see the eye of a fish in a still pond, can

the fish always see the eye of the fisherman? That is, are

there situations for which total internal reflection prevents

either from seeing the other?

5. What does a swimmer see as she looks upward toward

the smooth surface of a swimming pool? Include consider-

ations of total internal reflection.

6. What are the optical properties of an air bubble in glass?

7. When measuring the angle between the late afternoon sun

and the horizon with a sextant, a navigator must apply a

correction to the observed angle. Why is a correction nec-

essary and what is the sign of the correction?

8. Is it possible for a lens to be convergent in air and divergent

in water?

9. How does the focal distance of a converging lens depend

on the color of light? Is the dependence the same for a

diverging lens?

10. The two focal points of a thin lens are the same distance

from the lens. Can you show by sketching ray diagrams

that the two focal points of a thick lens may not be the

same distance from the center of the lens?

11. What is a procedure for determining the focal lengths of

(a) a diverging lens and (b) a convex mirror?

12. A person's eyes appear to be smaller when he wears his

glasses. Is he nearsighted or farsighted?

13. While swimming under water without a diving mask, does

the swimmer become more nearsighted or more farsighted?

Can she correct this by wearing eyeglasses? If so, what kind

of eyeglasses?

14. A simple two-lens astronomical telescope (both converging

lenses) is used to view a distant sign. Is the image simply

inverted or is the lettering on the sign reversed, as in a plane

mirror image?

15. Why does a person with normal vision often adjust the

eyepiece of an astronomical telescope so that the image

is at infinity?

16. Without asking the wearer (but being allowed to experi-

ment with the lens), how would you determine if an eye-

glass lens includes a correction for astigmatism?

17. Do two different observers see the same rainbow in exactly

the same place? Explain.

Suppose that the top half of a lens is covered. How will

this affect the image? Is the complete image still present?

Are there other changes? Explain.

A pinhole camera has no lens. Instead, a tiny hole is sufficient

to form images on the film at the back of the camera box.

Explain how these images are formed and why the image

is "sharp" for nearby as well as distant objects.

In a physics lab, a student uses a converging lens to form

a real image of a window frame on a piece of paper. Should

he move the paper closer to, or farther from, the lens in

order to produce a sharp image of a distant tree?

In Figure 37-5, why does the submerged straw appear to

have a smaller diameter than the straw in air?

How close to a converging lens can an object be placed

such that the lens still produces a real image? Where is

that image located?

18

19.

20

21.

22.

Problems

37.2 Refraction at a Plane Surface

37A-1 A microscope may be used to measure the refractive

index of a plane sheet of glass. The top surface of the glass is

brought into focus by the microscope. The microscope is then

lowered 2.50 mm to bring the lower surface into focus. The

measured thickness of the glass is 3.80 mm. Calculate the re-

fractive index of the glass.

37B-2 A narrow laser beam reflected from a thick glass

plate produces two parallel beams, one reflected from the front

surface of the plate and the other reflected from the rear surface

of the plate. Assume an angle of incidence 9, a plate thickness

D, and an index of refraction n for the glass plate. Derive an

expression for the perpendicular distance d between the two re-

flected beams in terms of 6, D, and n.

37B-3 The time required for a light signal to travel vertically

from the bottom to the top of an empty vessel is fg- Show
that when the same vessel is filled with a liquid (n > 1) the time

required for a signal to travel vertically in the liquid the distance

of the apparent depth of the vessel is also (g-

37B-4 A can 12 cm deep is filled with a layer of water

(n = 1.33) 5 cm thick and a layer of oil (n = 1.48) 7 cm thick

that floats on the water. Calculate the apparent depth of the can

when it is viewed from a point directly above the can. (Hint: use

the result of Problem 37B-3.)

37B-5 A beam of light strikes a plane slab of glass at an

angle of 40° with the surface of the glass. The glass is 1.5 cm
thick and has a refractive index of 1.60. The beam emerging

from the other side of the slab will be parallel to the incident

beam but displaced laterally. Calculate the distance that the

emerging beam direction is displaced sideways from the inci-

dent beam direction.

37B-6 A flat-bottomed container is filled with water {n =
1.33) to a depth of 8 cm. A 4-cm layer of oil {n = 1.47) floats

I
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on the water. Figure 37-36. A light ray in air approaches the

oil at an angle of incidence = 55°. Find the horizontal distance

X.

r
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Refraction

Acceptance / ^

angle U

This ray is

eventually lost

by absorption

V

FIGURE 37-39

Problems 37B-14 and 37C-43.

37.4 Refraction at a Spherical Surface

37A-15 A small air bubble is at the center of a large glass

sphere that has a refractive index n and radius R. Determine

how far the air bubble appears to be from the surface of the

sphere.

37A-16 A solid polystyrene sphere {n = 1.59) of radius

8 cm has a decorative object embedded in its interior. If a point

on the object is 3 cm from the center of the sphere, how far

away from the sphere's surface does it appear to an outside

observer?

37B-17 A small-diameter parallel light beam is directed to-

ward the center of a large solid sphere made of transparent

plastic. The beam is brought to a focus on the opposite side

of the sphere. Find the refractive index of the plastic.

37B-18 A glass rod {n = 1.63) with a circular cross-section

has a bundle of light rays traveling parallel to the axis of the

rod as shown in Figure 37-40. Find the radius of curvature R
of the end of the rod that will bring the bundle of rays to a focus

12 cm from the end of the rod when the rod is immersed in

water.

surface is 50 cm. Calculate the radius of curvature of the other

surface. Is it concave or convex?

37A-21 A pair of 1.25-diopter eyeglasses is made of glass

having a refractive index 1.50. The outer surface next to the

eye is concave and has a radius of curvature of 80 cm. Find

the radius of curvature of the other surface of the lens.

37A-22 A lens made of glass (n = 1.62) has a concave outer

surface with a radius of curvature of 100 cm and a convex outer

surface with a radius of curvature of 40 cm. Calculate the focal

length of the lens.

37B-23 The two surfaces of a double-convex converging

lens have the same radius of curvature. The lens of focal length

/ is now cut into two equal halves by a plane through its

center, perpendicular to the axis, forming two plano-convex

lenses. In terms of /, find the focal length /' of each of these

new lenses.

378-24 A lens made with a material of refractive index n

has a focal length / in air. When immersed in a liquid with a

refractive index Mj, the lens has a focal length /'. Derive the

expression for/' in terms of/, n, and n^.

37.7 Thin Lens Ray-Tracing and Image Size

37A-25 When the full moon is viewed from the earth, its

diameter subtends an angle of about 0.5°. A photograph of the

full moon is obtained with a camera lens having a focal length

of 50 mm. (a) Find the diameter of the moon's image on the

film, (b) If the film width is 35 mm, what fraction of this width

is the moon's image?

37A-26 A 6-diopter magnifying glass is held 10 cm from a

printed page. Find the image size of a letter 4 mm high. Include

a ray diagram.

37B-27 Figure 37-41 depicts four thin lenses made of glass

{n = 1.58). For each lens, the two radii of curvature of the sur-

faces are 15 cm and 30 cm. Calculate the focal length of each

lens.

FIGURE 37-40

Problem 37B-18.

37.5 Thin Lenses

37.6 Diopter Power

37A-19 A camera has a single thin lens with a focal length

of 50 mm. Determine how far and in which direction the lens

must be moved relative to the film in order to change the

object distance from infinity to 75 cm.

37A-20 A lens made of polystyrene (n = 1.59) has a power

of 2 diopters. The radius of curvature of one outer convex

(a)

FIGURE 37-41

Problem i7B-27.

(b) (d)

37B-28 A slide projector forms an image on a screen 5.8 m
away. The image is 80 times larger in its linear dimensions than

the slide. Find (a) the distance between the slide and the pro-

jection lens and (b) the focal length of the lens.

37B-29 A converging lens has a focal length of 28 cm. (a)

Find the distance from the lens at which an object produces a

real image twice as large as the object, (b) Repeat for a virtual

image twice as large as the object. Include ray diagrams for each.

i
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37.8 Combinations of Lenses

37.9 Optical Instruments

37A-30 One way to determine the focal length of a thin

divergent lens is to place the lens in contact with a convergent

lens strong enough so that the combination produces a real

image of a very distant object. Suppose that a divergent lens

of unknown focal length is combined with a 2-diopter con-

verging lens to produce a real image of a distant object on a

screen 75 cm away from the lenses. Calculate the focal length

of the divergent lens.

C3.7A-31 A simple telescope is constructed with two lenses

of focal lengths 120 cm and 5 cm. (a) Find the angular magnifi-

cation of the telescope, (b) A tower 70 m high, 2 km away, is

viewed with the telescope. What is the angular size of the

image (at infinity) when it is viewed through the eyepiece?

37.\-32 A certain microscope has a tube length of 18 cm
and an overall magnification of 800. If the eyepiece lens is

1.2 cm, find the objective lens focal length.

37B-33 A farsighted person can comfortably view objects

no nearer than 2 m but can see very distant objects clearly, (a)

Calculate the power of eyeglasses necessary for the person to

read a book held 25 cm away, (b) Find the farthest object that

the person could see comfortably while wearing these glasses,

assuming that the eye cannot make more accommodation for

distant vision than when unaided.

37B-34 (a) Calculate the effective focal length of the com-

bination of two thin converging lenses, each with a focal length

of 50 cm, when the lenses are separated by a distance of 5 cm.

(b) Compare the result with the focal length of the two lenses

in contact.

3 7B-35 A nearsighted person wearing eyeglasses with a

power of — 1.5 diopters can see clearly objects as close as 25 cm
as well as very distant objects. Determine the person's range

of vision without eyeglasses, assuming that no further accom-

modation for distant vision is possible.

375-36 An object is located at the origin of the :i' axis. Two
converging lenses of focal lengths 10 cm and 20 cm are placed,

respectively, at x = 15 cm and .r = 35 cm. (a) Locate and de-

scribe the final image, (b) Sketch a ray diagram for the first lens

(acting alone).

Additional Problems

37C-37 Derive Snell's law of refraction using Fermat's prin-

ciple. Use assumptions similar to those in Problem 36C-15,

Chapter 36.

37C-38 A ray of light is incident upon a cube of glass

(« = 1.68) as shown in Figure 37-42. The ray lies in a plane

parallel to the plane of the diagram, (a) Find the largest angle of

incidence 9^ for which total internal reflection will occur at the

top face of the cube, (b) Is there an angle of incidence 8^ for

which total internal reflection will also occur when the inter-

nally reflected ray strikes the right-hand face of the cube? Ex-

plain, (c) Solve part (a) for the case in which the cube is totally

immersed under water.

37C-39 A convenient way to measure the index of refrac-

tion of a transparent substance is by constructing a prism of

/
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Incident

parallel

rays

FIGURE 37-44

Problem 37C-42.

37C-43 See Figure 37-39. The core of an opHical fiber is

50 /im in diameter, made of glass (n = 1.58), with a cladding

layer {n = 1.52). Consider two rays traveling down a straight

fiber 20 km long. One ray travels parallel to the axis with (es-

sentially) no reflections, and the other ray reflects from side

to side, incident always at the largest angle of incidence that

produces total internal reflections, (a) What total distance within

the fiber does the second ray travel? (b) How many reflections

does this ray undergo in traveling to the end of the fiber? (c)

If the two rays start simultaneously, find the time interval

between their arrivals at the far end. (This effect smears out,

or broadens, the light pulses, limiting the maximum rate of pulse

transmission that can be used. To correct the problem, fibers

with core diameters of only ~ 2 /im are used, in which the

more extreme zigzag paths can be eliminated. In such small

fibers, whose diameters are comparable to the wavelengths of

light used, one must analyze the light as waves propagating

through a waveguide, involving standing-wave patterns that

eliminate certain modes of propagation.)

37C-44 Make a qualitative sketch similar to Figure 37-6b

that traces a red ray and a violet ray in the secondary rainbow.

Explain why the sequence of wavelengths in the observed spec-

trum has a reversed order compared to the spectrum in the

primary bow.

37C-45 When images are projected onto a "beaded" screen,

the tiny glass spheres embedded in the white surface of the

screen reflect more light back toward the viewer (within about

+ 30° of the projection axis) than when a plain white surface

is used. The focusing action of the spheres concentrates the light

on a small area at the back surface. Light from this extra-bright

area is then refracted by the sphere back (approximately) toward

the viewer. Consider a very narrow laser beam that is incident

on a glass sphere (n = 1.60) along a diameter. Figure 37-45a.

(a) Considering refraction at the front surface only, find the

focal point for this beam in terms of the sphere radius R. Sketch

a bundle of rays in the beam, showing how they strike the

(a)

FIGURE 37-45

Problem 37C-45.

(b) (c)

back surface of the sphere, (b) Consider a ray of light that ap-

proaches the sphere tangentially and does refract into the sphere.

Where does this ray cross the midplane of the sphere [shown

dashed in (b)|? (c) In terms of R, find the distance /; from the

midplane such that the incident ray strikes the center of the

back surface. Figure 37-45c.

37C-46 In Figure 37-46, the small set of axes is a three-

dimensional object, (a) Sketch the image formed by the converg-

ing lens, showing clearly the directions of the corresponding

axes. Is the image a right-handed or a left-handed coordinate

system? (b) Repeat, placing the object between f and the lens.

FIGURE 37-46

Problem 37C-46.

37C-47 Show that the thin-lens formula l/p + l/q = l/f

may be written in the so-called Newtonian form, xx = f^,

where, for a convergent lens, x is the distance from the object

to the nearest focal point and x' is the distance from the other

focal point to the real image. Both x and x' are positive quanti-

ties. Describe how .r and x' must be defined for a divergent

lens. (This form of the thin-lens equation first appeared in

Newton's Opticks in 1704.)

37C-48 A lens placed a distance x from a luminous object

produces a clear image on a screen 30 cm from the lens. When
the screen is moved 10 cm further away from the lens, the lens

must be moved 1 cm closer to the object in order to restore

a clear image, (a) Calculate the distance x. (b) Calculate the focal

length of the lens.

3 7C-49 A luminous object and a screen are a distance L apart.

A converging lens with a focal length / placed at either of two

positions between the object and the screen will produce a real

image of the object on the screen. Derive an expression for

the distance between those two positions.

37C-50 In the table below, fill in the missing data, in every

case assume that the diameter of the lens is small compared

with the radii of curvature of its surfaces. All numerical values

are expressed in centimeters. Indicate the appropriate sign of

the values in accordance with the sign convention.

Type of

Lens
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3 7C-51 Sketch ray diagrams for each of the cases given in

Problem 37-52.

37C-52 As shown in Figure 37-2, the index of refraction of

glass differs for different wavelengths. Consider a flint glass

lens of focal length / (for blue light). Find the fractional change

in focal length A/// between light of wavelengths 434 nm (blue,

n = 1.675) and 656 nm (red, n = 1.644).

3 7C-53 A small change in object distance A;; corresponds

to the thickness (along the axis direction) of a thin object. Show
that the image of the object produced by either a lens or a

mirror has an apparent thickness equal to M" Ap, where M is

the linear magnification of the lens or mirror.

37C-54 A thin double-convex lens has surfaces with radii

of 40 cm and 50 cm. The index of refraction of the lens material

is 1.50. The surface with the 50-cm radius is silvered so the

surface forms a concave mirror. A small object is placed 60 cm
from the lens on the unsilvered side. Locate and describe the

image.

37C-55 An object is located 40 cm in front of a converging

lens of focal length 20 cm. A plane mirror is placed behind

the lens 25 cm from the lens. Figure 37-47. (a) Locate and

describe the final image, including the magnification, (b) Where

would you place your eye in order to view this image?

37C-56 Three lenses are lined up along the x axis as follows:

the first lens, with a focal length of -f25 cm, is at x-^ = 40 cm;

the second lens, with a focal length of — 100 cm, is at x, =
55 cm; and the third lens, with a focal length of -|- 40 cm, is at

t.

O

FIGURE 37-47

Problem 37C-55.

X3 = 70 cm. Locate and describe the image of an object placed

at the origin, x = 0.

37C-5 7 Consider the combination of lenses shown in Figure

37-23 but with the convergent (/, = 0.1 m) and the divergent

(fj = — 0.2 m) lenses interchanged. Locate and describe the final

image. Compare your results with the results of Example i7-7.

3 7C-58 Consider a converging lens A. Suppose that a sec-

ond lens B is made, with the same type glass, that is twice the

diameter and twice the radii of curvature of lens A. (a) Find the

focal length of lens B relative to that of lens A. (b) Lens A is

used at its maximum aperture to photograph a scene correctly

at 1/100 s. If lens B is used with its maximum aperture to

photograph the same scene using the same type film, what

exposure time would be appropriate?

37C-59 Derive the expression for the angular magnifica-

tion of a simple magnifier with the image at infinity. Equation

(37-27).



CHAPTER 38

Physical Optics I—Interference

One takes tip fundamental science out of a sense of pure excitement, out

of joy at enhancing human culture, out of awe at the heritage handed

down by generations of masters and out of a need to publish first and
become famous.

LEON M. LEDERMAN, Nobel Prize 1988 (with Melvin Schwartz and Jack Steinberger).

"The Value of Fundamental Science," Scientific American 251, 40 (Nov. 1984).

38.1 Introduction

Maxwell's electromagnetic theory describes light as waves of electric and

magnetic fields that travel through space. For the next few chapters we will

discuss phenomena that demonstrate these wavelike properties.' Although we
developed the laws of reflection and refraction of light using a wave model,

these laws can be derived just as easily with a particle model. In fact, Newton
was the first to work out a particle model in some detail, explaining reflection

and refraction on that basis. However, as we now discuss the interference,

diffraction, and polarization of light, Newton's particle model is clearly unwork-

able. Only waves seem to make sense.

38.2 Double-Slit Interference

In 1802 and 1803, Thomas Young^ presented papers before the Royal Society,

proposing a wave model for light. It signalled the downfall of Newton's particle

theory. By passing light from a single small source through two pinhole open-

ings in an opaque screen. Young observed a series of light and dark fringes on

a viewing screen. Later the effect was demonstrated using two slits to pro-

vide greater light intensity, Figure 38-1. (This figure is not to scale. Typically,

' We should mention that visible light, as well as all forms of electromagnetic radiation, possess a dual,

apparently contradictory, nature. Light in transit seems to behave as a wave, but, as we will show in Chapter

42, when radiation is absorbed by matter U ahoaus behaves as particles. This dual nature of light—explainable

as a wave in certain instances but as particles in other cases—is one of the central features of our under-

standing of matter and radiation.

~ Thomas Young (1773— 1829) was a brilliant English physician-scientist who contributed not only to the

wave theory of light and the three-color theory of light perception, but also to Egyptology. It was largely

through his efforts that the Rosetta stone, the key to Egyptian hieroglyphics, was deciphered.
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Screen

Double

sUt

Double

slit

Point

light

source

Intensit>- /

Interference

fringes

(a) A pictorial view showing the

arrangement of the point light

source, the double slit, and the

Screen

(b) A schematic sketch that

includes a graph of the intensity

versus position on the screen.

Relative

slit

spacing

mrnTTTmn
(c) As the slit separation decreases.

the distance between fringes

increases.

FIGURE 38-1

The double-slit interference experiment.

the slit separation is about 0.5 mm and the screen is about 2 m from the slits,

producing fringes about 2 mm apart.)

Unlike the phenomena of geometrical optics, the fringe pattern cannot

be explained by a simple particle theorj' of light. The reason is the following.

If we cover one of the slits, the result is a general illumination of the screen,

as sho\%Ti in Figure 38-2a. It does not matter which slit we cover; the screen

illumination is the same broad pattern if only one slit is open. Now suppose

that we uncover both slits. If light were simply a stream of particles, as Newton
proposed, uncovering both slits should merely add the two individual patterns

together to produce an overall intensity- of twice the original value. Instead,

the pattern of light and dark fringes is produced. Even more surprising, the

intensit\' at the central axis is now four times the intensity of ha\ing just one

slit open (instead of twice the intensity), so obviously the light passing through

the two individual slits is not simply the addition of the two intensities.

The fringe pattern is explained as the superposition of two light waves

that emerge from the slits and interfere with each other as they reach the

screen. At some locations on the screen, the two waves arrive in phase and

reinforce each other, producing an extra bright light. At other locations they

arrive out of phase and cancel each other (see Figure 38-3). The interference of

light waves produces the array of light and dark fringes called an interference

pattern.

A requirement for producing an interference pattern is that the light from

the two slits must be coherent:

COHERENCE Two sources of light (or of any other type of waves I are

coherent if they have the same wavelength and maintain

a phase difference that remains constant in time.

If the two sources ha\-e difrerent wavelengths, a constant phase difference

between them is impossible. Thus, only monochromatic light—light of just a

single frequency', and hence a precise wavelength^—can be coherent.

^ In practice, no source of Ught is stricUy monochrofnabc. But such a source can be approxiinated by a

low-pressuFe. gas-discharge lamp that emits discrete cdocs. each involving a ver>' narrotv range of

wavelengths. For example, the green line in the mercur>' spectrum (546.075 run) has a wavelength range,

or "line widtK" of about ±0.001 nm. The red bte emitted by a helium—neon laser (632.8165 nm) has a

line width of only about one part in 10^.
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(a) A portion of a wave train of

infinite length.

(b) A wave train of finite length.

From a low-pressure gas source,

a visible-light wave train is

about one meter long,

containing several million

wavelengths.

(c) Two light waves in phase

superpose to produce an extra

bright light (increased

intensity). This is called

constructive interference.

^A/^
=c>

(d) Two light waves 180" out of

phase (with equal amplitudes)

superpose to produce darkness

(zero intensity). This is called

destructive interference.

FIGURE 38-3

The result of the superposition of two

coherent light waves depends strongly

on the phase relation between the two

waves. Other (constant) phase relations

between the two cases illustrated in

(c) and (d) are also possible,

producing a resultant brightness

between zero and maximum intensity.

Point

light

source
•

Barrier

Intensity /

Screen

(a) With only one slit open, the illumination on the screen is diffuse, diminishing

gradually in intensity for distances away from the center.

(b) With both slits open, the pattern on the screen is equally spaced bright and

dark fringes.

fference= d sin 6

(c) If the screen distance is very much larger than y and d, we may consider the

two rays as essentially parallel. With this approximation, the shaded triangle

is a right triangle and the path difference Ar is equal to d sin 8.

FIGURE 38-2

A screen illuminated by coherent light from two slits produces an interference

pattern.

As we will see in Chapter 44, light is emitted as a result of an energy

transition in an atom. Each transition produces a single wave train of finite

length. Figure 38-3b. When a single wave train illuminates both slits, the

Huygens wavelets that emerge from the two slits are necessarily coherent since

they are generated by the same wave train. The geometry of Figure 38-2

ensures that, for the wave train emitted by each atom in the point source, the

phase difference between the two corresponding wavelets emerging from the

slits is ahvays zero. (With different geometry, this phase difference could be

some other constant value.) It is this constant phase difference (plus other geometry

of the setup) that determines the fringe pattern on the screen.

In contrast, if each sHt had its own separate light source, there would be

no interference pattern because light from the two slits would be emitted by

different atoms and the light from one atom does not maintain coherence with

the light from other atoms.
'*'

* Laser light is different. As explained in Section 44.10. in a laser all the atoms are

phase and frequency, so that the light in all parts of the beam is coherent.

'locked together"

1
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_
Destructive

Point

light

- Constructive source
•-

O,esfr,
'Acti-ve

C,

(a) Water waves spreading from two coherent sources

produce a stationary pattern of constructive and

destructive interference where the waves overlap.

.;•• V
Constructive

interference

_ along

these lines

FIGURE 38-4

Waves from coherent sources produce stationary interference patterns

(b) According to Huygens' principle, light waves emerging

from the two slits spread out in all directions, causing

interference in the region where they overlap. If the

slits are located symmetrically from the source, the

waves emerging from them have equal amplitudes, are

in phase with one another, and are coherent.

When two coherent light waves add together, they illustrate the fol-

lowing important principle:

PRINCIPLE When two waves combine, the resultant wave am-
OF LINEAR plitude at any given point is the sum of the instan-

SUPERPOSITION ^ taneous amplitudes that would be produced if each

wave were present alone.

The linear superposition principle is one of the most important principles in

physical optics, as well as in other areas of physics.

Here is a summary of the criteria necessary for producing a stationary

pattern of light-wave interference. We consider the superposition of two waves

from the two slits in a Young's interference experiment:

CRITERIA FOR
INTERFERENCE
OF TRANSVERSE
WAVES

(1) The waves emerging from the two sHts must

be coherent. That is, the waves must have the

same wavelength and a phase difference that

remains constant in time.

(2) The electric field oscillations must be in the

same direction so that the linear superposition

principle applies.

In the discussions that follow, we always assume that these criteria apply. A
single point source behind the slits meets these criteria (Figure 38-4). If the

source is equidistant from each slit, the light passing through the two slits will

be in phase and of equal ampliiudes, and their electric field oscillations are in

the same direction.

* We do not discuss waves that add

very-large-ampiitude waves.

a nonlinear fashion. Such nonlinear cases are often associated with
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We now investigate the details of the interference. Consider the rays

leaving each of the slits shown in Figure 38-2b and arriving on the screen at

the point P, a distance y from the center of the fringe pattern. The light from

the lower slit will be out of phase with that from the upper slit because it

travels a greater distance. As shown in Figure 38-2c the extra path distance

Ar is essentially

Path difference Ar = d sin (38-1)

where d is the slit separation (center-to-center). This introduces a phase differ-

ence (j) between the two waves when they arrive at the screen. The phase

difference will be 2n rad for each wavelength ?. in the distance Ar. That is,

Phase difference

{due to the extra

path length Ar)

4) = 2n\-j (in radians) (38-2)

Note that (j) is greater than Zn if Ar is greater than A. The two light waves

arriving at the point P on the screen may be represented by corresponding

electric-field amplitudes,

and £2

Eq sin cot

Eq sin{ojf -f (f))

(38-3)

(38-4)

where E^ is the wave amplitude from the upper slit and Ej is the wave ampli-

tude from the lower slit. Note that £; and £2 will be in phase for

(f)
= mln (38-5)

where m = 0, 1, 2, 3, ... , thus producing a resultant wave £ = 2£o sin 0)t.

For intermediate values of the phase difference (j), we can best obtain

the resultant wave by using the mathematical technique of phasors (which we

employed in Chapter 34 in the addition of alternating currents at an AC circuit

junction). Equation (38-3) suggests that Ej is the vertical projection of a phasor

Eg that is rotating at an angular velocity w, as in Figure 38-5a. Similarly, Ej

is the vertical projection of Eg that is rotating at the same angular velocity

but is leading the phasor Eg of (a) by the angle (/). This is shown in Figure

38-5b. The sum £3 of the vertical projections, Ej and £2, is then the sum of the

waves:

£3 = Ej 4- £2 = Eq sin cot + Eq sin(fof -f (j))
I

^
(a) Ei = £o sin wf (tof-f0)^

(b) £2 = £osin(cof-H0)

FIGURE 38-5

Phasor diagrams for two waves, Ej and E,, and their sum, £3 = E, -I- £2.

c) £3 = £sin(wf+ 2 \

i-U)t
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Figure 38-5c shows that the vector sum of the two rotating phasors Eg

shown in (a) and (b) produces a projection equal to £3. The application of sim-

ple trigonometry for the sum gives (see Appendix D)

(p f (t>\
£3 = ZEq cos — sin I cot H (38-6)

Amplitude

where 2Eq cos{<j)/2) is the projection of both phasors Eg in the direction of E

and cot + (j)/2 is the angle that £ makes with the horizontal axis.

The intensity of the light is proportional to the square of the amplitude

of the resultant wave.

/oc(2£ocos — I =4£o^cos--

Expressed in terms of the intensity Iq at the central maximum (cj) = 0), the

intensity at other locations is

I = Iq cos^ J (38-7)

Thus a maximum occurs for (0/2) = mn, or cj) = mln, which is consistent

with our earlier observation. Equation (38-5).

Summarizing this relation, we see that the location of the maxima in the

intensity pattern (that is, the centers of the bright fringes) will occur when
the path difference Ar is an integral number of wavelengths:

DOUBLE-SLIT
INTERFERENCE Maxima (bright fringes) ml = d sin 6 (38-8)

PATTERN (where m = 0, 1,2, 3,...)

Similarly, the mi>iii)m (the centers of the dark fringes) occur for a path difference

of a half-integral number of wavelengths:

Minima (dark fringes) (m + j)/. = d sin 9 (38-9)

(where m = 0, 1, 2, 3, . . .)

In practice, the distance D » ;/, so that sin ^ ian 6 = 6. Using the tangent

approximation, we may write the above two equations as

Maxima wA = d

Minima { m + -]/. = d\ —

(where m = 0, 1, 2, 3, . . .)

(small-angle

approximation)

(38-10)

(38-11)

The central bright fringe is called the zero-order fringe {m = 0). As we
move away on either side of the central maximum, successive bright fringes

are the first-order fringes (m = + 1), the second-order fringes (m = + 2), and so

on. A characteristic feature of double-slit interference is that, as the separation

between the slits decreases, the distance between the fringes increases. The first

experimental determination of the wavelength of light was made by Young
using this double-slit method.
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EXAMPLE 38-1

In a double-slit experiment using light of wavelength 486 nm, the slit spacing

is 0.60 mm and the screen is 2 m from the slits. Find the distance along the

screen between adjacent bright fringes.

SOLUTION

Assuming the small-angle approximation. Equation (38-10) gives the location

y of the Dith maximum;

"•''%

The separation between adjacent maxima is then

Vm+l Vm —
(486 X 10 ^ m)(2 m) _ _ 3

(0.60 X 10 ^ m)
[1] = 1.62 X 10"^ m

1.62 mm

Because this is such a small distance relative to the slit-to-screen distance, the

small-angle approximation is justified.

EXAMPLE 38-2

Consider the situation shown in Figure 38-6. The source illuminates the slits

with green light from a mercury lamp (/. = 546 nm). The screen is D = 1 m
from the slits, and the slit separation d is 0.30 mm. (a) Find the intensity

I of the light at a distance y = 1 cm from the center of the pattern relative to

the intensity of the central fringe maximum Ig. (b) Find the number of bright

fringes between the central fringe and the point y.

/= (3.00X10-*)/o

3.00X10

£i = £o sin a>f

(at the screen)

Intensity

m= -|-6 Sixth order

m= +5
m=-l-4
w=+3
m=+2 Second order

m= -1-1 First order

-3, m= Zero order

w = — 1 First order

m= —2 :

(a) For cases where D»y and d, the two

shaded triangles are similar.

FIGURE 38-6

Example 38-2.

(b) The numerical values. The sizes of the slit separation and

fringe pattern are greatly exaggerated for clarity.
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SOLUTION

(a) To find the difference in phase between the waves originating at the up-

per and lower slits shown in Figure 38-6, we first find the path difference

Ar. Within the approximation of Figure 38-2c, and recognizing that

sin 6 ^ tan 9, we find that the shaded triangles in the figure are similar.

Therefore, corresponding sides of the triangles are proportional. Thus,

Ar/y = dlD, or

Ar = -v
0.30 X 10 "^ m

1 m
(1 X 10 - m) = 3.00 X 10"

Equation (38-2) yields the phase angle in terms of the wavelength and the

distance Ar:

/Ar\ / 3 X 10"^ m
' / / V 5-46 X 10 ^ m

= 34.523 rad

Applying Equation (38-7) gives

i = in COS — =
2

(2.98 X 10"*)/o

This answer indicates that the point y lies very near a point of minimum
intensity,

(b) As we move along the screen away from the central fringe, the path differ-

ence Ar increases. As Ar increases by one full wavelength, the two waves

from the slits are again in phase, corresponding to moving from the central

bright fringe to the adjacent fringe, and so on. How many wavelengths are

there in the total path difference Ar = 3.00 x 10"* m?

Ar _3.00 x 10"

;.
~ 5.46 X 10"

= 5.49 wavelengths

Thus 5 bright fringes will exist between the central maximum and the point

y. The remaining 0.49 wavelength indicates that the waves from the upper

and lower slits are nearly n rad out of phase, which is consistent with the

answer in part (a).

An alternative approach is to determine the number of times the phase

angle
(f>

is divisible by 27r. As we move away from the central fringe, each

increase of 27r in the phase angle corresponds to moving from one bright

fringe to the next. Thus, for (p = 34.5 rad:

In

34.5 rad

271

= 5.49 multiples of 27t

Thus, we conclude that 5 bright fringes appear between the central bright

fringe and the point y = 1 cm. The solution to this example is summarized

in Figure 38-6b.

We may also produce a phase difference between the light waves emitted

from a double slit by introducing a transparent material with a different refrac-

tive index into the path of one of the waves (see Figure i&-7). Inserting a

refractive material of thickness h and refractive index n increases the number

of wavelengths in that path. If the wavelength in air is z^, a distance h (in air)

MaH
Air: n = \.00

FIGURE 38-7

A phase difference may be produced

by inserting a material with refractive

index n in the path of a light wave.
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contains b//.^ wavelengths. In a material of refractive index n, the wavelength

is shorter: /.„ = /.^/n. Thus the same distance b contains b//.„ wavelengths, or

= « I
~

J

wavelengths
A,, \ \ A,,

I

The increase in number of wavelengths is therefore

nb b\ b
{n-D

K K) K
(38-12)

Since a phase difference of In corresponds to each full wavelength increase,

the phase difference is

Phase difference

due to inserting in one

path a material of thickness
I J f L- J (where /„ is the wavelength in air)

b and retractive index n ' ^

4) = ln\ — ]{n- I) (38-13)

The following example illustrates an interference pattern's sensitivity to

small changes in the refractive index associated with one of the light paths.

EXAMPLE 38-3

Consider the double-slit arrangement shown in Figure 38-8, where the separation

d of the slits is 0.30 mm and the distance D to the screen is 1 m. A very thin sheet

of transparent plastic, with a thickness of fo = 0.050 mm (about the thickness

of this page) and a refractive index of n = 1.50, is placed over only the upper

slit. As a result, the central maximum of the interference pattern moves upward

a distance y'. Find this distance.

SOLUTION

The central maximum corresponds to zero phase difference. Thus the added

distance Ar traveled by the light from the lower slit must introduce a phase

FIGURE 38-8

Example iS-i.

m = Zero order
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difference equal to that introduced by the pi

given by Equation (38-13):
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« ^ ^ Major
- maximum

Resultant

(a) 0=0

,A

|2_W
:0 =

2(f)

"-5^

Zero

Minor

(d) = 3 (f)=,

3 slits
n'A:/K:A\KA.

FIGURE 38-11

Multiple-slit interference patterns. As
the number of slits is increased (with

the slit separation kept constant), the

major maxima remain fixed in position

as they become narrower and more

intense. The intensity of the sharp

peaks increases with the square of the

number of slits. (Note the changes in

vertical scale.)

Zero

(f)0 = 5(f)

^ Major
•- maximum

(g)(i = 6(^) = 27r

FIGURE 38-10

A series of phasor diagrams for

triple-slit interference. Each successive

diagram represents an additional phase

delay of = n/i rad behveen adjacent

phasor components.

The development of the triple-slit interference pattern by the use of

phasors is show^n in Figure 38-10. The central maximum corresponds to the

addition of three electric phasors, all in phase, as in Figure 38-10(a). As the dis-

tance from the central maximum increases, the phase angle between the elec-

tric phasors from adjacent slits also increases, in increments of n/3. Note that

one minor maximum (d) occurs between each of the major maxima [(a) and (g)].

As the number of slits increases, the number of minor maxima between

major maxima also increases, as illustrated in Figure 38-11. The number of

these minor peaks is always hvo less than the total number of slits in the array.

Furthermore, as the mimber of slits increases, these minor peaks are suppressed in in-

tensity, while the major maxima become much more intense and also much narrower.

Since the positions of the major maxima depend only on the slit separation d

(and not on the number of slits), Equation {38-S) expresses the location of the

major maxima for any number of slits.

MULTIPLE-SLIT
INTERFERENCE
PATTERN
(major maxima)

d sin 9 = mX (where m = 0, 1, 2, . . .) (38-14)

38.4 Interference Produced by Thin Films

We have all enjoyed a beautiful display of colors from a thin oil film on the sur-

face of a puddle, or the colored reflection of light from the surface of a soap

bubble. Both of these phenomena result from the interference of light.

Consider a thin film of refractive material such as glass. Figure 38-12

illustrates the observation of white light reflected from two different places,

A and B, on the film. At both places, the light reaching the eye of the observer

is a combination of light reflected from the top surface and from the lower
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Incident

light

Air

Incident

light

> Thin \ IA
> film ,/

Air

FIGURE 38-12

Interference of light reflected from a thin film.

:^

Vb

surface. In each case, these two light waves interfere with each other, reinforcing

certain wavelengths and canceling others, depending on the particular path

difference between them. For example, suppose that, at A, wavelengths in the

red portion of the spectrum undergo destructive interference. Then the observer

will see a predominantly blue-green reflection at that location. On the other

hand, if at 6, where the path difference is shorter, blue wavelengths experience

destructive interference, the observer will see a predominantly reddish reflec-

tion. In this manner, an entire rainbow of colors is often reflected from various

portions of the film.

Light reflected from a very thin soap film also shows another interesting

feature. Generally, a freshly blown soap bubble displays a swirl of reflected

colors when viewed against a dark background. This is partially due to the

nonuniform refractive index of the soap solution as well as the varying thick-

ness of the film. However, if we continue to watch a soap film supported verti-

cally, as in Figure 38-13, the various colors gradually sort themselves into

horizontal rainbow stripes, slowly compressing together toward the bottom.

This happens because the action of gravity drains fluid from the upper portion

of the film, causing it to be thinner at the top than at the bottom. But now a

surprising effect occurs. As the top part of the film becomes much thinner than

a wavelength of visible light, no light at all is reflected from the film. It has become

invisible! The reason is that light reflected from the front and back surfaces in-

terferes destructively because of a phase change of n rad (180°) that occurs at

one surface and not the other. A detailed analysis of the reflection of light

from refractive materials shows that

PHASE CHANGE
UPON REFLECTION

(1) When light traveling in a given medium re-

flects from another medium of higher refrac-

tive index, it undergoes « phase change of n

rad {180°).

(2) When light traveling in a given medium re-

flects from another medium of lower refrac-

tive index, no phase change occurs.

Reflections from the front and back surfaces of the soap film are of these two

different types, so the reflections alone introduce a 180° phase difference. Thus,

as the film thickness shrinks toward zero, making the path differences negligible,

the two reflected rays become 180° out of phase because of the different types

of reflections and undergo destructive interference. If you observe reflections

from a soap bubble against a dark background and watch carefully as the bubble

ages, you will see the color contrasts diminish. Then, just before the film breaks,

no light is reflected from the spot where the break originates.

FIGURE 38-13

Interference of white light reflected

from a thin vertical film of soap

solution. Gravity pulls the fluid

downward, causing the film to become

very thin near the top. If the thickness

changes uniformly from top to bottom,

horizontal bands of interference colors

are produced as shown here. When the

upper part of the film becomes

sufficiently thin, the path difference

between reflections from the front and

rear surfaces approaches zero. Because

the front reflection is shifted by 180°

and the rear reflection is unshifted,

with a sufficiently thin film their

combination produces destructive

interference for all reflected

wavelengths of visible light, and the

top segment of the film becomes

invisible.
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Air

M,,= 1.00

Coating d ;7'=1.38

Glass
T

n = 1.80

FIGURE 38-14

Example 38-4.

Incident

Reflected light ray

rays

b\\a

(a) A small wire (whose cross-

section is greatly exaggerated)

separates the glass plates at

one edge.

llllllll
H

(b) The interference fringes seen

by reflected light. A dark

fringe occurs at the point of

contact of the plates because

of the 180° phase shift for one

of the reflections.

FIGURE 38-15

The interference pattern produced

by a wedge of air between two glass

plates. The angle 6 between the plates

is greatly exaggerated to emphasize

the variation in thickness of the air

wedge.

EXAMPLE 38-4

NonreflecHng coalings for camera lenses reduce the loss of light at various sur-

faces of multiple-lens systems, as well as prevent internal reflections that might

mar the image. Find the minimum thickness of a layer of magnesium fluoride

()/ = 1.38) on flint glass (n = 1.80) that will cause destructive interference of re-

flected light of wavelength A = 550 nm near the middle of the visible spectrum.

Consider normal incidence on the coating.

SOLUTION

In Figure 38-14, both rays reflect from a medium of higher refractive index than

the medium they are traveling in, so both undergo a phase shift of 7r rad upon

reflection. Therefore, the only factor contributing to a net phase shift is the extra

path length of one ray. For destructive interference, the (minimum) round trip

distance Zd should be A„./2, where A„. = /.Jn is the wavelength in the coating.

Thus, 2d = kjln. Solving for d gives

d =
An'

(5.50 X 10 ^ m)

4(1.38)
99.6 nm

Though such coatings are very thin (approximately a hundred atomic diameters

thick), they are easily applied by evaporating the magnesium fluoride and allow-

ing it to condense on the glass surface. For complete destruction, the amphtudes

of the two reflected rays must be equal. We can show that this is true only if

the refractive indices of the coating (n) are the geometric mean between the refractive

indices of the materials on either side of the coating. For air, n^= 1, and we have

NONREFLECTIVE
COATINGS n = V"«a = V " (38-15)

Thin Wedges

Consider two glass plates that are in contact at one edge and separated slightly

at the opposite edge by a hair or a small wire between the plates. A side view

of such an arrangement is shown in Figure 38-15. Parallel, monochromatic light

rays incident downward are reflected from the two surfaces of the wedge

back to an observer above the plates. The reflected light is thus composed of

a combination of light ray A reflected from the lower surface of the top plate

(no phase shift) and light ray B reflected from the upper surface of the lower

plate (phase shift n). Destructive interference (dark fringes) thus occurs if the

extra distance traveled by ray B {id for the round trip) is an integral number

of wavelengths X. That is,

Dark fringes

(air wedge)
Id = mX {where ty\ = 1, 2, 3, . . .

and d = plate separation)
(38-16)

^ Reflections from other pairs of surfaces may be ignored. When the two surfaces are relatively far apart,

or the angle becomes appreciable, the interference fringes are so close together that the eye cannot

resolve them. (Exception: highly coherent parallel laser light reflected from almost parallel surfaces will

produce visible fringes, even though the surfaces are far apart. The hght, however, must remain coherent

over the path length difference of the two rays.)
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Note that this equation is the condition for destructive interference and includes

the phase shift that occurs in one of the reflections.

If the glass plates have plane surfaces, the interference pattern is a series

of equally spaced bright and dark fringes. As we proceed from one dark fringe

to the next, the air wedge increases in thickness by /1/2 (making the round-trip

path increase by A). The separation / of adjacent dark fringes is found as fol-

lows. In traveling along the plate a distance if, the wedge increases by X/2.

Therefore, the tangent of the wedge angle is tan = {A/2)//'. Since is or-

dinarily a very small angle, we may substitute tan 6 = {in radians) to obtain,

for^,

20
(38-17)

The flatness of a glass surface is often determined by the interference pat-

tern produced when it is placed in contact with an optical flat, a surface known

to be flat to within a small fraction of a wavelength of light (see Figure 38-16).

A dark fringe is located at the region where the two surfaces touch because of

the 180° phase shift that occurs for (only) one of the two reflections.

EXAMPLE 38-5

Suppose two flat glass plates 30 cm long are in contact along one end and sepa-

rated by a human hair at the other end, as indicated in Figure 38-15. If the diam-

eter of the hair is 50 fim, find the separation of the interference fringes when

the plates are illuminated by green light, / = 546 nm.

SOLUTION

The angle of the air wedge between the plates is = D/L (in radians), where

D is the diameter of the hair and L is the length of the plates. Substituting this

expression for 9 into Equation (38-18), we obtain

A _ U _ (0.3 m)(5.46 x 10" m)

2d 2D 2(5.0 X 10 ^ m)
1.64 X 10" 1.64 mm

Newton's Rings

When illuminated from above, a plano-convex lens placed on an optical flat

produces a circular interference pattern known as Newton's rings (Figure 38-17).

The thickness d of the air wedge between the lens and the flat glass plate is

related to the radius of curvature R of the lens surface and the distance r

from the center of the pattern. Applying the Pythagorean theorem, we obtain

r2 = r~ + {R- d)^ = r~ + R^ - 2Rd + d'. Since the radius of curvature R

of the lens is much greater than the thickness d of the air wedge, we ignore

the d~ term and obtain 2d * r~/R. The condition for destructive interference

exists when the extra (round-trip) path 2d for the ray reflected from the bot-

tom surface is an integral number of wavelengths (because of the 180° phase

change for one of the reflections):

Dark fringes

(air wedge)
2d

(a) A wavy fringe pattern indicates

an uneven surface. Three

"high" (or "low") spots are

revealed by the regions of

circular fringes.

(b) The surfaces are in contact at

one edge and separated a small

amount at the opposite edge.

The regularly spaced bright and

dark fringes indicate that the

surface is uniformly flat.

FIGURE 38-16

We can test the flatness of a glass

surface by placing it in contact with

an optical flat and observing the

interference pattern of reflected

monochromatic light.

(where i
: 0, I, 2, 3 )
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FIGURE 38-17

Newton's rings. [Note: the faint

patterns in (b) are spurious.]

(a) Reflections between thie surface

of a convex lens and a flat glass

plate produce Newton's rings.

(b) Photograph of Newton's rings

obtained with monochromatic

light.

Equating these two values for 2d, we obtain an expression for r„,, the radius

of the mth ring:

RADII OF
NEWTON'S RINGS V^wX (m = 0, 1,2,3 )

(38-18)

As we proceed outward from one dark ring to the next, the radii r^ increase

in size with ^/w, becoming closer together. One of the most interesting aspects

of this interference pattern is that the area between each of the successive

circles is a constant.

Extended

light

source

Thinly

silvered

mirror

at 45°
Eye

(or other

detector)

FIGURE 38-18

The basic components of a Michelson

interferometer. The clear glass slab C
is called a compensating plate. It has

the same dimensions and orientation as

the 45° mirror in order to make the light

paths in glass equal along the two
arms, a condition necessary when a

white-light source is used.

38.5 The Michelson Interferometer

The Michelson^ interferometer is an ingenious device that utilizes the inter-

ference of light to measure distances, or changes of distance, with great accuracy.

The basic components, shown in Figure 38-18, include an extended light source,

such as a ground-glass screen illuminated uniformly from behind with mono-

chromatic light. (The reason a point source is unsatisfactory will be evident

after we discuss the origin of the interference pattern.) Light from the source

falls on a thinly silvered, semitransparent mirror at 45°, an angle that reflects

half the light to mirror Mj and transmits half to mirror Mj. Light reflected

from Mj and Mj eventually merges together at the eye or other detector

(minus, of course, that part further diverted by the 45° mirror). If we straighten

out the several right-angle deflections caused by the 45° mirror, the situation is

' Albert Michelson (1852-1931) was the son of Polish immigrants who were somewhat poor, and his

prospects for education beyond high school were not promising. However, when his application to the

U.S. Naval Academy was homed down, he shrewdly arranged to meet President Grant "by chance" while

the President was walking his dog on the White House grounds. Michelson so highly impressed the

President with his determination that a special appointment to Annapolis was granted. After graduating

in 1873, Michelson became a physics and chemistry instructor at the Academy, where he began a lifelong

interest in precision measurements of the speed of light. He then became a professor of physics at Case

Institute of Technology, where he improved his earlier interferometer experiments on the ether drift, this

time with a collaborator, Edward Morley, a chemist at nearby Western Reserve. Michelson was keenly

disappointed in the null result: he would much have preferred to report a finite velocity through the ether,

and he felt that the absence of a positive value was somehow due to an unknown defect in his method.

In 1907, for his work on light, Michelson became the first American to win the Nobel prize.
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Extended

light

source

2d-^

FIGURE 38-19

The origin of the circular fringes in a

Michelson interferometer. In this

figure, the right-angle deflections

produced by the thinly silvered mirror

at 45° have been straightened out.

Mirror M; is observed directly

(through the 45° mirror), while Mj is

Images of

source

the virtual image of M, produced by

reflection in the 45° mirror. These

mirrors form two images, I^ and I2,

of the extended light source. Light

waves from corresponding points in

these images are coherent.

essentially as shown in Figure 38-19. The extended source is reflected by the

two mirrors, forming two images of the source, /j and A. The mirrors can be

aligned so that the two images are parallel. If the distance between Mj and

M2 is d, the images are separated by a distance of 2d.

The significant feature of these images is that light waves from correspond-

ing points in the images are coherent. These waves come from a wave train emitted

from a single atom in the source at point P. Thus, the light waves that enter

the eye from the image points Pj and Pj are coherent and they will interfere.

The phase relation between the two rays depends on their path difference,

2d cos 0. The in-phase condition for bright fringes is

2d cos 9 = m/.

When the two image planes are parallel, all corresponding points on a circle

surrounding the central axis have the same phase relationship, producing an

overall fringe pattern of concentric circles similar to Newton's rings. If one

mirror is moved by A/2, the path difference changes by k and we are again

at an in-phase condition: each fringe has moved to the position previously

occupied by the adjacent fringe. This shifting of the fringe pattern enables us

to observe tiny motions. (For example, if one of the interferometer arms is

arranged vertically and a small mirror is attached to a mushroom, the growth

rate of the mushroom can be accurately observed as fringes sweep past, usually

at the rate of about one per second!) Slowly moving one mirror continuously

in the same direction causes the circular fringes to shrink in size and vanish

at the center (or, for the other direction, to expand from the center). As d

approaches zero, the path differences for all points approach zero and the entire

field of view thus becomes bright (or dark), depending on the net phase change

due to reflections at the various glass surfaces. If one mirror is tilted slightly,

the separation of the image planes becomes a thin wedge. In effect, this moves

the center of the fringe pattern off to one side, so we now see an array of

slightly curved, almost parallel bright and dark fringes that are part of the ring

pattern far away from the center (Figure 38-21).

FIGURE 38-20

Light from the laser at the left

passes through a small Michelson

interferometer to produce the

bull's-eye image on the ground glass

screen in the foreground.
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FIGURE 38-21

The interference patterns seen in a

Michelson interferometer are similar

to Newton's rings. In (a), the image

planes are parallel (Figure 38-19) and

the pattern is a series of concentric

circles, whose overall size depends on

the separation of the image planes.

In (b), the image planes are not parallel

and the pattern is a series of curved,

almost parallel lines.

With monochromatic light, the fringe pattern remains sharp for path

differences of 10 cm or more. However, an interferometer may also be used

with white light, provided the path difference id is no more than a few wave-

lengths and the field of view is near the center of the pattern. With a range

of wavelengths between 400 nm and 700 nm, the spacing between fringes

varies for different colors; hence each bright ring for the monochromatic case

becomes a spreadout rainbow of colors. Beyond about a dozen fringes from

the center, the patterns overlap so much that they fade out to produce essen-

tially white illumination. The interference is still taking place for each individual

color, however, as we can verify by viewing the pattern with a filter that

allows only one color to pass through. In some applications, it is necessary to

have a reference position that can be found again, even though the mirror

has been moved in the meantime. This can be accomplished with white-light

fringes, because there is a unique, color-free, all-bright (or all-dark) field of view

when d is exactly zero. It thus serves as a fixed reference position that can be

repeatedly reached at will to within a fraction of a wavelength of visible light.

An important early use Michelson made of the interferometer was to

determine the length of the then-standard meter bar in Paris in terms of the

wavelengths of certain spectral lines of cadmium, counting the number of fringes

that swept by as one mirror was moved along the meter bar. Based upon

recent refinements in measuring the speed of light, on October 20, 1983, the

Seventeenth Conference Generale des Poids et Mesures adopted the new
definition:

THE The meter is the length of the path traveled by light in vac-

METER uum during a time interval of 1/299 792 458 of a second.

Another historic use of the interferometer was in the Michelson—Morley

experiment in 1887, an attempt to determine motion of the earth through the

hypothetical medium; the ether, whose existence was believed necessary to

propagate light waves. The inability to detect such motion—the famous mdl

result—not only seemed exceedingly paradoxical but also was a profound blow

to ether theories. The dilemmas posed by these experimental results were not

resolved until Einstein presented his special relativity theory in 1905 (Chapter

41).

There is an almost endless list of applications for the Michelson inter-

ferometer, particularly when laser light is used as a source. Instruments using

microwaves or other portions of the electromagnetic spectrum have also been

constructed. The interferometer has proved to be a versatile and extremely

precise measuring instrument, helpful in all areas of science and technology.

Summary

Coherent light waves have a phase difference that remains con-

stant in time. When two different portions of a wave train

(emitted from a single atom) are combined, they are coherent

and they interfere. The sum of two waves

£i = Eq sin cot and £, = ^o sin(cyf -|-
(f))

4> ( 4>
is £j -|- £2 = 2£q cos — sin I oj( -I

The phase difference (j) may result from three effects:

(1) A difference in path length Ar of the waves:

^ = ^Kt
(in radians)

(2) Placement of a material with refractive index n

and thickness h in the path of one of the
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iTib

<P = -^— (« - 1) (in radians)

(3) Reflections that the two waves may undergo:

(a) A phase change of n rad (180°) occurs for a wave
traveling in one medium when that wave is

reflected from a medium of higher refractive index.

(b) No phase change occurs on reflection from a

medium of lower refractive index.

Double-slit interference:

For small angles: (m + j)/. = dl —

Multiple-slit interference: For the same slit separation, the

major maxima are the same as for the double-slit case.

The maxima are given by

m/ = d sin (where m = 0, 1, 2, 3, . . .)

For small angles: m/. = d
D

The major characteristics of multiple-slit interference may be

summarized as follows:

d = slit separation (center-to-center)

D = slit-to-screen distance

1/ = distance along the screen from the central maximum

m = order

The maxima are given by

(1) The angular separation of major maxima depends

on the phase difference of waves from adjacent

slits, not on the number of slits.

(2) The number of minor maxima between major

maxima is two less than the number of slits.

(3) The sharpness and intensity of major maxima
increases as the number of slits increases.

m/l = a sin a (where m = 0, I, l,i )

For small angles: m/ =
i

D

The minima are spaced halfway between the bright fringes:

(m -I- j)/. = d sin (where m = 0, 1, 2, 3 )

Interference patterns produced by thin film and wedges
depend on the phase difference (upon recombination) of waves

reflected from the two surfaces. Phase diff^erences are due to

the extra path length (round-trip) for one of the waves and the

different types of reflections at the two surfaces.

The Michelson interferometer is an ingenious and versatile

instrument capable of measuring distances to within a small

fraction of a wavelength of light.

Questions

1. Why is it impossible for all the fringes of a double-slit in-

terference pattern to be of exactly the same intensity?

2. Would longitudinal waves such as sound waves produce

double-slit interference effects?

3. Two closely spaced parallel fluorescent light tubes, both

covered with a green filter, illuminate a distant wall. Is an

interference pattern produced?

4. Our discussion of double-slit interference was based on

a plane light wave falling with normal incidence upon a

screen containing two slits. What changes in the inter-

ference pattern would we observe if the screen containing

the slits were tilted relative to the incident light? Consider

tilting about an axis parallel to the slits and about an axis

perpendicular to the slits.

5. Describe the interference pattern produced by two closely

spaced pinholes.

6. If a pure tone is sounded in a room, a listener experiences

large changes in intensity by moving his head from side

to side. Is this an interference phenomenon? Why is the

effect less pronounced when music is heard?

7. Suppose a double-slit experiment is immersed under water.

What changes, if any, occur in the pattern of fringes on

the screen?

8. In a Young's double-slit experiment, the lower halves of

the two vertical slits are covered with a blue filter and the

upper halves are covered with a red filter, (a) What is the

appearance of the resultant interference pattern observed

on a screen? (b) Suppose, instead, that one slit is covered

with a blue filter and the other slit is covered with a red

filter. Describe the pattern and explain the reasoning be-

hind your conclusions.

9. How would a triple-slit interference pattern be altered if

the center slit were covered by a gray filter to reduce the

intensity of the light emanating from that slit?

10. An oil slick on water seems brightest where the oil film

is much thinner than a wavelength of visible light. Is

the refractive index of the oil greater or less than that of

water?

11- A lens is coated to reduce reflection. What happens to

the light energy that had previously been reflected?

12. When looking at the light reflected from a windowpane,
why do we not observe an interference pattern? After all,

light is reflected by both the front and the rear surfaces

of the glass.

13. Why do coated camera lenses look purplish when we
observe them by reflected light?
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14. Suppose we use reflected white light to observe a thin,

transparent coating on glass as the coating material is grad-

ually being deposited by evaporation in a vacuum. De-

scribe possible color changes that occur during the process

of building up the thickness of the coating.

15. Consider two glass plates in contact at one edge and sep-

arated slightly at the opposite edge. In analyzing the

visual appearance of the interference pattern produced by

reflections from the "air wedge" between the plates, why
can we ignore interference between waves reflected from

the top surface of the top plate and the bottom surface of

the bottom plate, even if the plates have perfectly parallel

surfaces?

16. What change, if any, would occur in the pattern of New-
ton's rings if the space between the lens and the plate were

filled with water?

17. Could an acoustical Michelson interferometer be used to

measure the wavelength of ultrasonic sound waves? If so,

how would such an interferometer be constructed and

what procedure would be used in the measurement?

Problems

38.2 Double-Slit Interference

38A-1 Light of wavelength 600 nm illuminates a double slit

'ith-a slit separation of 0.30 mm. An interference pattern is

produced on a screen 2.5 m from the slits. Calculate the separa-

tion of the interference fringes on the screen near the central

maximum.

38.'\-2 Design a double-slit system that will produce fringes

2 mm apart on a screen 3 m away using light of 550 nm.

38A-3 In a double-slit experiment, sodium light (/ =
589 nm) produces fringes spaced 1.8 mm apart on a screen. Find

the fringe spacing when mercury light (A = 436 nm) is used.

38B-4 Light composed of two different wavelengths illumi-

nates a double slit, forming two interference patterns that are

superimposed on a screen. The fifth-order maximum of one

color falls exactly at the location of the third-order maximum
of the other color. Calculate the ratio of the two wavelengths.

38B-5 Two waves that differ only in phase are described

by £i = Eq s'mikx — iot) and £, = £o sin{kx — cut + 4>). Show
that the linear combination of these waves produces £3 = Ej -f

£2 = 2£q cos(4>/2) sin(b: — ojt + 4>ll). Hint: refer to Figure

38-5.

38B-6 A double-slit interference pattern has a distance i/q

between the maxima, (a) Sketch a phasor diagram describing

the wave amplitude £ at a distance yo/4 from the central max-

imum, (b) What is the intensity / at this position relative to the

intensity maximum /q at the central peak?

38B-7 A glass plate 0.4 mm thick, with a refractive index

of 1.50, is placed in a light beam (/ = 580 nm) such that the

plane of the plate is perpendicular to the beam, (a) Calculate

to eight significant figures the number of wavelengths of light

within the glass plate, (b) Find the net phase shift in the light

beam resulting from the introduction of the glass plate into

the beam.

38B-8 The beam from a helium-neon laser (/ = 633 nm) is

directed toward a screen. Find the number of additional wave-

lengths of light in the optical path from the laser to the screen

when a thin slab of glass, with a thickness of 0.110 mm and a

refractive index of 1.55, is inserted into the beam. The surface

of the slab is perpendicular to the beam.

38B-9 Using light of wavelength 500 nm, we produce a

double-slit interference pattern on a screen 1.5 m from a pair

of vertical slits separated by 0.50 mm. Find the number of

interference maxima that lie between the central maximum and

1.00 cm to the left of the central maximum.

38B-10 We can produce interference fringes using a Lloyd's

mirror arrangement with a single monochromatic source Sq, as

in Figure 38-22. The image S of the source formed by the

mirror acts as a second coherent source that interferes with Sg.

If fringes spaced 1.2 mm apart are formed on a screen 2 m from

the source Sq, 606 nm, find the vertical distance h of the source

above the plane of the reflecting surface.

Region of

interference

on screen

Glass slab A
Screen

image

of source

FIGURE 38-22

Problems 38B-10 and 38B-11.

38B-11 In the Lloyd's mirror setup of the previous problem,

light waves are interfering in space wherever the two sets of

waves pass through each other. Suppose we use a lens of high

magnification to examine the interference in the vertical plane

just above the edge A of the mirror. Will the fringe nearest

the edge of the mirror be light or dark? Explain.

38B-12 A double slit is illuminated by light of wavelength

600 nm and produces an interference pattern on a screen. A
very thin slab of flint glass (n = 1.65) is placed over only one

of the slits. As a consequence, the central maximum of the

pattern moves to the position originally occupied by the tenth

order maximum. Find the thickness of the glass slab.

38.3 Multiple-Slit Interference

38B-1 3 The following radiations from three coherent sources

combine at a point P with their electric vectors parallel (or

antiparallel): £[ = Eg sin ojf, £3 = £0 sin(a)f + (/>), and £3 =
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Eq sin(<yf + Z(t>). The resultant field is E^ = E, sin(ojf + a).

Using phasor diagrams, calculate E^ and a for (a) (j) = 30°,

(b) (p = 60°, and (c) = 120°.

38B-14 Repeat the construction shown in Figure 38-10 for

a four-slit interference pattern. Show phasor combinations cor-

responding to major maxima, minima, and near-minor maxima.

38.4 Interference Produced by Thin Films

38A-15 A lens is made of glass with a refractive index of

1.70 at a wavelength of 550 nm. Find (a) the minimum thickness

and (b) the refractive index of a nonreflecting coating for use

at this wavelength. [Hint: see Equation (38-15)].

'i^^zl^ Find the thickness of the thinnest soap film [n =
1.33) that will reflect blue light of wavelength 400 nm at

maximum intensity.

38A-17 In Example 38-4, the minimum thickness of a non-

reflecting coating was found to be 99.6 nm. Calculate the next

thicker coating that will produce the same effect.

(5SA-18^ An air wedge is formed between two glass plates

separated at one edge by a very fine wire, as was shown in

Figure 38-15. When the wedge is illuminated from above by
light with a wavelength of 600 nm, 30 dark fringes are ob-

served. Calculate the radius of the wire.

38B-19 An oil film {n = 1.45) floating on water is illumi-

nated by white light at normal incidence. The film is 280 nm
thick. Find (a) the dominant observed color in the reflected light

and (b) the dominant color in the transmitted light. Explain

your reasoning.

38B-20 A glass plate (w = 1.62) is coated with a thin, trans-

parent film {n = 1.27). Light reflected at normal incidence is

observed as the wavelength is varied continuously. Construc-

tive interference occurs for light at 680 nm, while destructive

interference occurs at 544 nm (with no other such instances

between these wavelengths). Find the thickness of the film.

38B-21 A film of soap solution is illuminated by white light

at normal incidence and reflects bands of color, as was shown
in Figure 38-13. Calculate the thickness of the film at the first

green band (/ = 530 nm) below the nonreflecting portion of

the film. The soap solution has a refractive index of 1.33.

38B-22 Consider the radii r„ in a Newton's-rings pattern.

Show that, for m » 1, the area between successive rings is

approximately equal to the constant value nRX, where R is the

radius of curvature of the plano-convex lens and / is the wave-

length of light.

38B-23 An air wedge is formed between two glass plates

in contact along one edge and slightly separated at the opposite

edge. When illuminated with monochromatic light from above,

the reflected light reveals a total of 85 dark fringes. Calculate

the number of dark fringes that would appear if water (« = 1.33)

were to replace the air between the plates.

38B-24 A Newton's-rings apparatus consists of a flat plate

and a plano-convex lens with a radius of curvature of 4 m.

When the apparatus is illuminated from directly overhead with

monochromatic light, a radial distance of 3.50 mm is measured

between the tenth and thirtieth dark rings. Calculate the wave-

length of the light.

38B-25 When a liquid is introduced into the air space be-

tween the lens and the plate in a Newton's-rings apparatus,

the diameter of the tenth ring changes from 1.50 to 1.31 cm.

Find the index of refraction of the liquid.

38.5 The Michelson Interferometer

^---38A-26 As the mirror Mj of the Michelson interferometer

^shown in Figure 38-18 is moved through a distance of

0.163 mm, 500 bright fringes move across the field of view.

Calculate the wavelength of the light illuminating the mirrors

of the interferometer.

38B-2 7 One of the mirrors of a Michelson interferometer

is attached to the growing tip of a bamboo shoot. When we
use 550-nm light with a photoelectric cell to count fringes

electronically, 473 bright fringes/min pass a given point in the

field of view. Find how much the shoot grows in one 24-h

period.

Additional Problems

38C-28 Yellow light from the mercury spectrum (A =
579 nm) illuminates a pair of vertical slits separated by 0.20 mm.
An interference pattern is produced on a screen 2.5 m from the

slits. Find the intensity of the light at a distance of 1.5 cm to

the right of the central maximum relative to the intensity at

the central maximum.

38C-29 Show that the dashed curves representing lines of

constant phase difference shown in Figure 38-4b are hyperbolas.

The general form for a hyperbola in rectangular coordinates is

/-/«' Vfo' = 1.

38C-30 Monochromatic light of wavelength / illuminates at

normal incidence a pair of narrow slits separated by a distance

d. The mth order interference maximum subtends an angle

(with the incident direction) given by the equation sin 9 =
inX/d. Derive an expression for the angular position of the

Kith-order interference maximum if the plane containing the

slits is rotated about an axis parallel to the slits through a small

angle (p.

38C-31 Figure 38-23 shows a Fresnel biprism for producing

interference fringes using a single monochromatic source Sg.

The biprism is two identical glass prisms joined at their bases

Region of

interference

on screen

Fresnel

•-I biprism
Screen

FIGURE 38-23

Problem 38C-31.
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with very small vertex angles a. The prisms form two coherent

virtual images, S, and St, separated a distance d. If the glass

has an index of refraction n, show that d = 2x{n — l)a.

38C-32 Consider two coherent point sources of radiation

separated by a distance of four wavelengths. In a plane con-

taining the two sources, sketch a closed path that surrounds

the two sources. As you travel once around this path, how
many interference maxima do you cross?

38C-33 Consider the central peak of a double-slit interfer-

ence pattern. The half-width at half maximum is twice the dis-

tance between the central maximum and the point at which

the intensity / drops to Ig/Z. Show that this half-width sub-

tends an angle = A/2d. Make the small-angle approximations

sin 6 K ian 6 ^ 9.

38C-34 A double slit with a separation of 0.45 mm is

illuminated by light of wavelength Aj and produces an inter-

ference pattern on a screen 3 m away. The tenth-order in-

terference maximum is 4 cm from the central maximum. When
light of another wavelength Z, also illuminates the slits, the

combination of fringes overlaps such that the tenth fringe re-

mains distinct while neighboring fringes become less clear,

(a) Calculate /, and (b) find the two closest values for /j-

38C-35 One slit of a double slit is wider than the other so

that one slit emits light with three times greater amplitude than

the other slit. Show that Equation {i8-7) would then have the

form I = {/o/4)(l - 3 cos^ 0/2).

38C-36 Pohl's interferometer. A point source S reflected from

a thin transparent film produces two coherent virtual sources

Si and Si that lie on a line perpendicular to a viewing screen

as shown in Figure 38-24. Derive an expression for the angular

location 6 of interference maxima along a vertical line. Assume
appropriate small-angle approximations for 9. (Note: We can

produce striking interference fringes in this manner by reflect-

ing a diverging laser beam from a microscope slide, a plastic

film, or any thin sheet that is smooth and transparent.)

Av/vJSi 52
Screen

FIGURE 38-24

Problem 38C-36.

38C-37 (a) Show that, for a three-slit interference pattern.

Equation (38-7) becomes / = (4/o/9)(l/4 + cos (j) + cos" (/)).

(b) Using the equation derived in part (a), verify that the first

minimum occurs for (j) = 2n/i.

38C-38 Make a phasor diagram for the combination of

these two parallel electric fields that have different amplitudes

(in SI units) £, = 2 sin a>t and £2 = 4 sin(cy/ -|- 50°). Write a

numerical equation for the resultant field of the form £, =
£0 sin(a)f + a).

38C-39 The intensity distribution for a triple-slit interfer-

ence pattern is given by / = (4/o/9)(l/4 + cos (j) + cos^ (j)),

where <j> is the phase difference between waves from two

adjacent slits, (a) In terms of the slit separation d (center-to-

center) and the wavelength A, calculate the angular half-width

9^12 of the central maximum, where Oi/j 's the angle subtended

by the central maximum Ig and the point at which / = /q/2.

(b) Compare your result with the corresponding value for a

double-slit pattern (see Problem 38C-33).

38C-40 In terms of the slit separation d and the wavelength

A, derive an expression for the total angular width A9 of the

central maximum for (a) a three-slit interference pattern, (b) a

four-slit interference pattern, and (c) an N-slit interference

pattern.

38C-41 A nonreflecting coating with a refractive index of

1.38 is applied to the surface of a lens of refractive index 1.90.

The coating is equally nonreflecting for wavelengths of 500 nm
and 600 nm. Assuming that the values of n are valid for both

wavelengths, calculate the minimum thickness of the coating.

38C-42 Because of greater clarity in the interference pattern,

Newton's rings are usually observed in the light that is re-

flected back toward the source. The light that is transmitted

through the apparatus also shows an interference pattern (the

"transmitted pattern"), (a) Why is the clarity, or contrast,

greater in the reflected pattern? (b) Derive an expression for

the transmitted pattern analogous to Equation (38-19) for the

radius of the mth dark ring.

38C-43 The expression for the radius of Newton's rings,

r„ = {RmX}^^^ is the result of an approximation. Show that an

exact expression is r„, = {RnU. — m'k /4)''".

38C-44 The yellow light emitted by a sodium source has

two wavelengths, at 589.0 nm and 589.6 nm. Consider a

Michelson interferometer used with this light. When the mirror

at the end of one arm is moved continuously in one direction,

the observed fringes "wash out," then reappear sharply, then

wash out, and so on. (a) Explain this effect, (b) Calculate the

distance between two successive positions of the mirror when

the fringes are sharp.

38C-45 An air-tight tube with parallel end windows 6.0 cm
apart is placed in one arm of a Michelson interferometer so

that light with a wavelength of 570 nm passes through the

tube, is reflected by the mirror, and again passes through the

tube. When the air is withdrawn from the tube by a vacuum

pump, 63 fringes pass a given point in the field of view. Cal-

culate the refractive index of air to six significant figures.



Physical Optics II—Diffraction

where the telescope ends, the microscope begins.

Which of the two has the grander view?

VICTOR HUGO
(Saint Dennis)

39.1 Introduction

As we proceed into this chapter, which discusses diffraction, you will see that

the phenomenon is really one of interference. There is no physical difference

between interference and diffraction. In both cases, light waves interfere to

produce regions of extra brightness or darkness. However, it has become

customary to use the term interference for situations involving a finite number

of point or line sources (such as multiple slits) and the term diffraction for the

interference of waves from a single area source (essentially an infinity of neigh-

boring point sources).

If light traveled only in straight lines, the shadows of opaque objects

would have sharp edges, changing abruptly from bright to dark. The fact is,

however, that light does bend somewhat around the edge of an object into

the shadow region, often producing bright and dark fringes as a result of the

interference of light waves. The bending of light away from straight-line paths as

it passes near an object is an example of the diffraction of light. Figure 39-1.

For things we look at in our everyday experience, diffraction effects are

usually quite small and therefore overlooked.' Another consideration is that

most light sources have an extended area, so that diffraction patterns from one

part of the source overlap with patterns from another part of the source, making

them difficult to distinguish. Furthermore, each wavelength of light produces

its own distinct pattern, so when many wavelengths are present, as in white

light, the various patterns again overlap. It is important to understand diffrac-

tion effects because they place inescapable upper limits on the sharpness of

images formed by all optical instruments. They also limit the accuracy of cer-

tain measurements.

One way to observe diffraction is to place your hand over your eye so that you can see light from a

point source penetrating the craci^s between your fingers. A Ime source, such as a straight neon tube far

away, may also be satisfactory if it is aligned in the same direction as the crack between your fingers. If

the crack is narrow enough, you will observe a pattern of bright and dark fringes. They are particularly

pronounced when you view a distant mercury-vapor street light, because of the dominance of only a few

different wavelengths of light emitted from such a source.
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(a) A magnified view ot the

transition from a dark shadow

on the left to the bright region

on the right.

Light

intensity

Distance

(b) A plot of the light intensity

versus distance for the knife-

edge diffraction pattern. If there

were no diffraction, the intens-

ity would change abruptly from

dark to light as shown by the

dashed line at the geometrical

edge of the shadow.

FIGURE 39-1

The diffraction pattern produced by a

sharp knife-edge. Note that the bright

bands adjacent to the geometrical

shadow are actually brighter than the

uniform illumination farther to the right.

Limit of

geometrical

shadow

Screen

FIGURE 39-2

Diffraction: a general case. Light

reaching the screen is composed of

waves emanating from all parts of the

wavefront as it emerges from the

aperture.

Diffraction effects were known to both Newton and Huygens, but it was

not until the nineteenth century that an explanation was proposed by Augustin

]. Fresnel (1788-1827), a brilliant French physicist. His work, coupled with that

of the British physicist Thomas Young (1773-1829), firmly established the

wave theory of light.

Generally, diffraction effects are produced by either an aperture or an

obstacle placed between a light source and a screen, as pictured in Figure 39-2.

To find out what happens, we adopt Huygens' approach and imagine that each

point on the wavefront acts as a new point source of radiation. Thus, the light

falling on any given location on the screen (for example, P, in the directly

illuminated part of the screen or P2 in the geometrical shadow region) contains

contributions from all parts of the wavefront passing through the aperture. The

case shown in this figure is complicated for two reasons: (1) The wavefront

at the aperture is divergent rather than plane. This means that as we consider

different points on the wavefront, the angle between the normal to the wave-

front and the direction to a given point P varies for different points on the

wavefront. (2) The distances from various points on the wavefront to a given

point P are all different.

Another representation of this same situation is shown in Figure 39-3a.

The light diverges from a nearby point source as it moves toward the aperture.

The light reaching point P on the screen is made up of Huygens wavelets that

emanated from all parts of the wavefront as it emerges from the aperture. This

general case is known as Fresnel diffraction and is quite complicated to ana-

lyze. We will mention only a few such cases, at the end of the chapter.

Figure 39-3b illustrates a situation that is easier to analyze. Rays ap-

proaching the aperture are parallel (with a plane wavefront), and rays leaving

the aperture that reach a given point P on the screen are parallel (or essentially

parallel), because the screen is so far away. This case is known as Fraunhofer

diffraction. If large distances for the source and screen are not available, we
can achieve this condition experimentally by using lenses with a nearby source

and screen, as in Figure 39-3^ Fraunhofer diffraction is easy to analyze because

we do not have to deal with the varying angles characteristic of Fresnel

diffraction.

The distinction between Fresnel and Fraunhofer diffraction patterns some-

times cannot be sharply defined. For example, if we start with a nearby source

and screen and gradually move them farther away from the aperture, the

Fresnel diffraction pattern gradually changes over into the Fraunhofer pattern.

Thus, Fraunhofer diffraction is really just a limiting case of the more general

Fresnel diffraction.

39.2 Single-Slit Diffraction

We will discuss two approaches to single-slit Fraunhofer diffraction. The first

is a simple but useful technique of halfwave zones that yields the criterion for

constructive and destructive interference. The second is a more detailed ap-

proach utilizing phasors, which yields a quantitative expression for the intensity

distribution within a diffraction pattern.

i

i

' In Figure 39-3 and later figures, we draw orJy those rays from the wavefront at the aperture that reach

the given point P. Of course, simultaneously there are other rays at other angles, which travel to other

points on the screen.
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Spherical

wavefront

Aperture

Parallel rays

from a very

distant light

Screen

(a) Fresnel diffraction. The source

and screen are both near the

aperture. Rays from the source

and rays to the screen cannot

be considered parallel.

FIGURE 39-3

The distinction between Fresnel and

Fraunbofer diffraction. In Fraunhofer

diffraction, the light rays striking the

source
pi-,^^

wavefront

Parallel rays

to a very

distant screen

(b) Fraunhofer diffraction. The
light source and the screen are

both very far from the aperture.

Rays incident on the aperture

are parallel, and rays leaving

the aperture toward the screen

are parallel.

aperture are parallel, and the light rays

leaving the aperture are parallel.

Point

light

source

Parallel rays Screen

in these regions

(c) With the use of two lenses, we
can produce conditions for

Fraunhofer diffraction using a

nearby light source and a

screen.

Halfwave Zones

Consider the Fraunhofer diffraction apparatus illustrated in Figure 39-4. To
restrict the problem to two dimensions, we analyze a slit of width a ahgned

perpendicular to the plane of the figure. The slit is divided into zones such that

the path length of a ray emanating from one edge of a zone is one-half wave-

length longer than that from the corresponding edge of the adjacent zone.

Such zones are called halfwave zones. In Figure 39-4 the aperture is wide enough

to contain exactly four such zones.

What happens to the rays from two adjacent zones? The rays coming

from two corresponding points, such as Pj and Pj, will differ in path length

by one-half wavelength as they reach the screen. Combining similar pairs of

rays for all of the two zones, we conclude that the light from one zone will

interfere destructively with that from the neighboring zone.

Intensity
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HALFWAVE ZONE A minimum in the diffraction pattern occurs if the

CRITERION FOR slit viewed from that point on the screen contains

SINGLE-SLIT exactly an even number of halfwave zones.

DIFFRACTION
MINIMA

In reference to Figure 39-4, for point A on the screen the slit contains

/our halfwave zones, while for point B the slit contains hoo halfwave zones.

An alternative criterion for a minimum in a single-slit diffraction pattern

may be based upon the total width of the slit.

ALTERNATIVE A minimum in the diffraction pattern occurs if the path

CRITERION for a ray of light arriving at that point from one edge

FOR SINGLE-SLIT of the slit is an integral number of wavelengths longer

MINIMA than the path of a ray from the opposite edge of the slit.

Thus, in Figure 39-4 a minimum in the diffraction pattern occurs when

SINGLE-SLIT
FRAUNHOFER , ,,

^ ^ .^^ ^^

DIFFRACIION
PATTERN MINIMA

Note that the central maximum corresponds to m = 0, with all other values

of »H designating minima. In most situations, the angle 9 is small enough to

justify the small-angle approximation: sin 9 ^ ian 9 K 6. When this is true,

the central maximum and all the other minima are equally spaced. Thus, the full

width of the central maximum is twice the separation of adjacent minima.

Do not confuse this relation with Equation {3S-S), Chapter 38:

m/l = d sin 9 (imumm for m = 0, 1, 2, . . .)

The equations have the same form, but Equation (39-1) is for the single-slit

diffraction pattern minima, while the double-slit relation [Equation (38-8)] is for

the inteference pattern maxima.

Phasors

The use of phasors to determine the intensity distribution in a single-slit Fraun-

hofer diffraction pattern is an extension of the technique used in multiple-slit

interference patterns. We consider the slit to be divided into small incremental

zones, Ai/ wide, as illustrated in Figure 39-5. Each of these zones, or strips,

may be considered a source of radiation contributing an incremental electric

field amplitude A£ at the point P on the screen. The total field amplitude £„ at

the point P will be the sum of such increments from all of the zones. However,

depending on the angle 9, the incremental field amplitudes will be slightly out

of phase with one another. Since

ha'we nave

Path difference
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Intensity

FIGURE 39-5

Fraunhofer diffraction. The electric

field at P is the sum of incremental

fields emanating from incremental

zones Ay wide at the aperture.

where / is the wavelength and A<p is the phase difference of the electric field

increments from adjacent zones. Rearranging, we have

A0 =
(
-7-

I
Ai/ sin (39-2)

Figure 39-6b shows the difference in phase between electric field incre-

ments from three adjacent zones at the top of the slit shown in Figure 39-5.

If 9 is small, all of the incremental field elements may be considered equal in

amplitude. The angle (j) between the first incremental zone at the top of the

slit and the last zone at the bottom is shown in Figure 39-6a. The sum of all

the incremental phasors is then Eg, the base of the isosceles triangle with equal

sides R. From trigonometry.

2R sin I

-

2n
vhere, from Equation (39-2), (p = {—^\a sin

(39-3)

(39-4)

We can obtain the value of R by letting the incremental phasor amplitude

approach zero as the number of increments approaches infinity. In this limit,

the sum of increments forms the arc of a circle with radius R. The length of

the arc is simply the incremental phasor sum when all of the increments are

in phase. This occurs for light rays parallel to the axis {0 = 0) forming the

central peak of the diffraction pattern. Thus the amplitude Eg of the central

maximum is

R(/»

Combining Equations (39-3) and (39-5), we have

7F •
("^

ZLq sin —
\2J _ / sm a

(39-5)

(39-6)

(a) The phasor addition of in-

cremental electric fields AE„ to

produce the total field £«.

(b) A magnified view of the first

three increments.

FIGURE 39-6

Phasor addition to determine the total

electric field amplitude £(, at a point

P on the screen.
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= ATr

(/) = 5ir

4> = 6ir

FIGURE 39-7

Phasor-addition diagrams corresponding

to the maxima and minima of a

single-slit diffraction pattern. For

clarity, the arcs shown in (c) through (f)

are drawn as spirals instead of circles.

where a = (f)/2. From Equation (39-4) we thus obtain

a = I y Ifl sin fl (39-7)

Mathematically, (sin a/a) approaches unity as a approaches zero. Therefore,

Eg approaches Eg as approaches zero. Recall that the intensity / of light is

proportional to the square of the amplitude of the electric field strength

(1 cc E^), so the single-slit diffraction relations are as follows:

SINGLE-SLIT
FRAUNHOFER
DIFFRACTION
INTENSITY

/« = /n

sm a

—
1 a sinwhere a

Minima occur when a = mn (where m = i, 2,

3

)

Combining this with Equation (31-7), we have {n//S)a sin 9 = mn, or

(39-8)

(39-9)

SINGLE-SLIT
FRAUNHOFER
DIFFRACTION
MINIMA

ik = a sin 9 {minima for m = 1, 2, 3, . . .) (39-10)

which is the same equation derived using halfwave zones.

The mathematical form of Equation (39-8) makes it difficult to determine

the exact relative amplitude of diffraction maxima and their locations. However,

we can obtain approximate relative amplitudes by assuming that the maxima

lie halfway between the minima. That is, since we know that the minima occur

when a = mn, an approximate maximum occurs when

a = (m -f- j)n (where m = 1, 2, 3 )

Substituting this into Equation (39-8), we obtain

(39-11)

or
/n

sin(m -t- y)7r

(m + i)7r

1

{m ifn'

(where m = 1, 2, 3, . . .)

(approximate maxima for

m = 1, 2, 3 )

Thus, if /q is the intensity at the central peak, for m = 1, Ig = 0.045 /g; for

m = 2, Ig = O.OI6/0; and for m = 3, Ig = 0.0083/o. Clearly, almost all of the

light in a diffraction pattern falls within the central maximum peak.

A graphical approach to diffraction pattern intensities is enlightening. In

Figure 39- 7a, at the central maximum the sum of the incremental electric-field

' We find the actual maximum values of Ig by setting dlg/cloL = 0, which leads to the relation tan a = a.

The first four values of a satisfying this relation are 4.4934, 7.7253, 10.9041, and 14.0662. See Problem

39C-32.
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phasors A£j forms a straight electric field phasor Eg. As we move away from

the central maximum (that is, as 6 increases), the sum of incremental phasors

forms an ever-tightening arc that closes around on itself to form successive

minima, with maxima occurring between closures. In the limit of negligibly

small increments, the length of the arc remains constant as it winds up. In

Figures 39-7c and 39- 7e we see that the lengths of the resultant phasor are a

maximum just slightly before (j) = 2>n and 5n because, as the arc tightens, the

diameter of the circle becomes smaller. However, this difference is very small,

justifying the approximation used in deriving Equation (39-10).

As you look at Figures 39-8 and 39-9, it will be helpful to remember the

following general characteristics of a single-slit diffraction pattern (when is

small):

(1) The minima are equally spaced from one another.

(2) The full width of the central peak is twice the spacing between

all other minima.

(3) The maxima of other peaks are relatively faint and approximately

midway between the minima. (Actually, they are displaced slightly

toward the central peak.)

(4) As the width of the slit is made smaller, the diffraction pattern

becomes larger.

(5) As the wavelength is made smaller, the diffraction pattern

becomes smaller.

FIGURE 39-8

Two photographs of the same

single-slit diffraction pattern. Ninety

percent of the light passing through

the slit falls in the central peak. In (b),

the exposure time has been greatly

increased to bring out the faint maxima

on either side. (This greatly

overexposes the central peak.) The scale

indicates the minima.

Aperture

orientation

EXAMPLE 39-7

The width of the central maximum in the diffraction pattern is often of particular

interest. Suppose that a slit 3 x 10 '^ m wide is illuminated by a yellow-green

light {A. = 500 nm). Find the total width of the central maximum on a screen

2 m from the slit.

SOLUTION

The total width of the central maximum is the distance between the first minima

on either side of the peak. We obtain the value of 6 shown in Figure 39-10 by

using Equation (39-1):

a sin 6 = mX

where m = 1 for the first minimum. Substituting values for a and X, we obtain

e =
{l)X 5.00 X 10 ' m

3 X lO'^^m
= (|) X 10"^

——•#»•—

FIGURE 39-9

The diffraction pattem of a rectangular

aperture. Along the horizontal axis, the

minima are spaced farther apart than

along the vertical axis because the

aperture width is narrower along the

horizontal direction.

a = 3X10-''m

i

ri^^
' f— L =2m-J

FIGURE 39-10

Example 39-1.
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The distance y is half the width of the central

sin ^ tan for small angles, we have
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39.3 Diffraction by a Circular Aperture

Diffraction effects impose a serious limitation on the resolving power of micro-

scopes, telescopes, and other instruments used in all regions of the electro-

magnetic spectrum. Most instruments employ a circular aperture such as a lens

or the circular "dish" of a radio antenna. The analysis of this diffraction pattern

is more complicated than that for a single slit, though the result is similar to

the minima in a single-slit pattern (a sin 9 = m/.). For a circular aperture of

diameter D, the minima are located at

CIRCULAR APERTURE
FRAUNHOFER
DIFFRACTION MINIMA

D sin = p^A (39-12)

where p^ = 1.220, p^ = 2.233, p^ = 3.13?,, p^, = A.lAl, p^ = 5.243, etc. Fig-

ure 39-12 shows the pattern. The central spot is called the Airy disk, after Sir

George Airy, who first analyzed the pattern in 1835. The Airy disk contains

84% of the light passing through the aperture, while 91% is contained within

the central spot plus the first diffraction ring.

Rayleigh's criterion for barely resolving two, equal-intensity point

sources is that Ihe peak of one dijfraction pattern falls on the first minimum of the

other pattern. See Figure 39-13. Since the angles are small, sin 6f^ ^ 0^, giving

MINIMUM ANGLE OF RESOLUTION
0R FOR A CIRCULAR APERTURE
(Rayleigh's criterion)

^R
1.22/1

D
(39-13)

FIGURE 39-12

The Fraunhofer diffraction pattem of

a distant point source produced by
a circular aperture. The size of the

pattem is always larger than the

diameter D of the hole. Also, the

smaller the hole, the larger the pattem.

The location of the first diffraction

minimum determines the minimum
angle of resolution 0R. (This

photograph is somewhat overexposed

to bring out the faint rings surrounding

the bright central spot.)

—I 9r 1^

(a) The angular separation of the

two patterns is clearly large

enough to reveal two sources.

(b) The patterns overlap according

to the Rayleigh criterion. The
resulting pattern is barely

discernible as two overlapping

diffraction patterns.

FIGURE 39-13

Superimposed Fraunhofer diffraction

patterns associated with the images of

two distant, incoherent point sources.
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(a) The world's largest radio

telescope antenna is the 305-

m-diameter, fixed-dish

reflector at Arecibo, Puerto

Rico. Its movable overhead

antenna near the focus can

collect signals within ±20°

from the vertical. At the time

of construction, its 20-acre

surface was greater than the

combined area of all other

telescopes ever built.

FIGURE 39-14

Radio telescopes.

(b) The Very Large Array (VLA)
system in New Mexico

employs 27 steerable dishes,

each 26 m in diameter,

arranged in a movable array

in the shape of a "Y"
extending over a 27-km

baseline. The signals are

simultaneously analyzed with

an interferometric technique

known as aperture si/nthesis

by a large computer at the

center of the "Y". The angular

resolution depends on the

baseline distance and is

comparable to the

1-arcsecond resolution of

visible-light observations

from large telescopes.

(c) The Very Long Baseline Array (VLBA)
to be completed in 1992 is a series of 10

antennae, each 25 m in diameter,

extending 8000 km across the Northern

Hemisphere. This photograph shows
the antenna at Los Alamos, New
Mexico, USA. The array will be

operated by remote control from the

Array Operations Center (AOC) at

Socorro, New Mexico. Information from

the magnetic data tape from each

antenna will be recorded and
synthesized in a computer at the AOC
that can perform 10^" multiplications

per second. This process will achieve

the same resolving power as a single

radio telescope 8000 km in diameter —
equivalent to sitting in New York while

reading a newspaper that is located in

San Francisco.

where D is the diameter of the circular aperture and A is the wavelength. Ap-

plied to the human eye, this relation gives a resolving power of roughly 20

seconds of arc. In practice, the resolving power of the average eye is slightly

worse due to the finite size of the receptors in the retina. On the other hand,

careful analyses of photographic images can routinely achieve somewhat better

results than the Rayleigh limit. The signals from two or more radio telescopes

(Figure 39-14) can be combined to give an effective resolution comparable to

that of a single instrument with a diameter equal to the baseline distance sep-

arating the telescopes (but with far less energy-gathering ability).

EXAMPLE 39-3

The world's largest operating refracting telescope is the University of Chicago's

Yerkes telescope. The objective lens of the telescope is 1.02 m (40 in) in diam-

eter and has a focal length of 18.9 m. Find the total width of the central peak

(Airy disk) of the diffraction pattern at the image of a star, assuming an average

wavelength of 500 nm.
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SOLUTION
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(a) Astronomer R. S. Richardson

displays a 40-ft record of the

sun's spectrum obtained by a

grating spectrograph.

FIGURE 39-16

Fraunhofer was the first person to

investigate the spectrum of sunlight

with a diffraction grating and in so

doing observed thousands of dark

lines (the 'Traunhofer lines"). He
noted that some lines fell in the same

positions as known bright lines in the

spectra of certain elements he had

430

I
(b) A segment of the visible

spectrum of the sun.

Wavelengths (in nanometers)

are listed above the spectrum,

while elements responsible for

certain strong lines are shown
below.

studied in the laboratory, but he was

unable to explain the mechanism that

produced the dark lines. More than

half a century later, Kirchhoff gave the

correct explanation that the cool

atmosphere of gas atoms above the

sun's glowing surface nbsorbed the

(c) A laboratory (bright-line)

spectrum of iron is placed

above and below the sun's

absorption spectrum for

comparison, indicating the

presence of iron in the sun.

characteristic wavelengths of those

atoms from the continuous spectrum

of the sun. The element helium (a

Greek word meaning "the sun") was

first discovered in the Fraunhofer

lines of sunlight, as were several other

elements.

If the source emits several different discrete wavelengths, then instead

of a single line at each order position there will be a cluster of lines spread

out at various angles, one for each wavelength present. The greater the

number of lines per centimeter in the grating, the more this cluster will be

spread out, allowing very precise measurements of wavelengths. If a source

emits a continuous spectrum, the full distribution of wavelengths is displayed

over a range of angles. Unfortunately, sometimes the spectrum of one order

will overlap a portion of the spectrum of an adjacent order, a possible source

of confusion that must be taken into account. Many instruments record the

spectrum photographically or analyze the light with a sensitive photocell.

Such devices are called grating spectroscopes, Figure 39-16.

Gratings are made of a series of parallel lines scratched with a diamond

stylus onto a clear glass plate (forming a transmission grating) or onto a flat

metal plate (forming a reflection grating, in which the interference effects are

viewed by reflected light).
'' Because a good grating is so difficult to manu-

facture, most gratings in use are replicas formed by pouring a thin layer of

a transparent collodion solution on the grating, allowing it to harden, and

^ Maldng a series of parallel scratches sounds like a simple task. However, in practice, the procedure is

full of unexpected difficulties. An interesting discussion of one of the most precise mechanical devices

ever invented can be found in A. G. Ingalls, "Ruling Engines," Scientific American, lune 1952. Most modem

gratings are made on a thin layer of aluminum evaporated on a glass plate "optically flat" to within a

fraction of a wavelength of light. Low-cost replica gratings made on acetate film are often used in school

laboratories.

I

!
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Incident

paralle

light -^

Multiple-slit

interference

pattern

Plane

wavefront

Grating
Diffraction

pattern

due to slit

width a

Screen

FIGURE 39-17

A four-slit grating. As the slits

become narrower and the number of

slits increases to that in a typical

diffraction grating, the interference

major maxima become sharper and

more intense, while the diffraction

envelope becomes broader.

peeling it off, producing a transmission grating. The collodion sheet is then

mounted on glass or supported in a rigid frame. This transparent plastic replica

contains a series of ridges where the scratches were, separated by undisturbed

clear strips. In an overly simplified picture, we may think of such a transmis-

sion grating as allowing light to transmit through the clear strips, which there-

fore act as slits, while the somewhat irregular ridges scatter the light in all

directions and are thus effectively opaque.

We begin a discussion of the theory of gratings by analyzing a trans-

mission grating with just four slits, as shown in Figure 39-17. Parallel light

is incident, so that as the plane wavefront passes through the grating the slits

act as a series of coherent light sources. Unlike the double-slit interference dis-

cussion in Chapter 38, in which we ignored the diffraction occurring at each

slit, here we take diffraction into account. Note that the slit widths a are com-

parable to the center-to-center slit separation d. The parallel light rays that

leave the slit at an angle are brought to a focus on the screen as a line image

perpendicular to the plane of the diagram. (Of course, diffraction causes light

rays to leave the slit at other angles, too, which are similarly brought to a

focus at other points on the screen; we show just one particular angle 6 on

the diagram.) The lens enables us to use the Fraunhofer single-slit diffraction

theory we developed in the previous section.

Before proceeding further, we point out that, because of the lens, the

diffraction peaks (at a given angle) produced by all of the slits in the grating

superimpose at the same place on the screen. That is, a maximum formed by

a slit at one edge of the grating falls in precisely the same place as that formed

by a slit at the opposite edge. (All parallel rays entering a lens converge at

the same focal point.)

In Section 38.2 we showed that the following equation describes the

condition for the major maxima in a multiple-slit interference pattern:

MULTIPLE-SLIT
INTERFERENCE
(major maxima)

m.k = d sin (maior maxima at

m = 0, 1, 2 )

(39-14)
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Intensity

1 slit

2 slits

3 slits

O
\^l\Zk;:Ll.

sin 6

sin 6

4 slits V/W wJ W*J<aMo-'

—

O

FIGURE 39-18

The diffraction and interference

patterns for 1, 2, 3, and 4 slits. The

resultant intensity is shown with the

solid line.

where d is the center-to-center slit separation, is the angle between the

central maximum {m = 0) and other major maxima, and ^ is the wavelength.

When we derived this equation, diffraction effects were ignored. However, if

we now take into account the slit width a, we can interpret the distance d to

be the distance betiveen corresponding pjoinls within adjacent slits.

This equation specifies the angular location of the major interference

peaks. But the overall intensity of the pattern is reduced by the single-slit dif-

fraction effects of Equation (39-8):

h = Ic

sin a

where ex. = {Tt/A)a sin and a = slit width. Figure 39-18 shows the net result

of combining the single-slit and multiple-slit effects. The diffraction due to the

slit width a (shown dashed) determines the upper limit of intensity of the overall

pattern. Within this pattern, the multiple-slit effects further reduce the intensity

at various locations determined by the slit spacing distance d.

EXAMPLE 39-4

For the multiple-slit pattern depicted in Figure 39-18, find the ratio of the slit

width a to the slit separation d (center-to-center).

SOLUTION

Note that the first diffraction minimum falls at the fourth interference maximum.

From Equation (39-14), the major interference maxima for multiple-slits are given

by mA = d sin d. Rearranging and substituting m = 4 gives

41
(39-15)

Equation (39-10) gives the single-slit diffraction minima: a sin 9 = m/.. Rearrang-

ing and substituting m = 1, we get

6 =

Combining Equations (39-15) and (39-16), we obtain

(39-16)

u
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tral pattern is repeated for other orders of diffraction. That is, m = 1 corre-

sponds to the first-order pattern, m = 2 corresponds to the second-order pattern,

and so on. As the next example illustrates, in certain cases the pattern of one

order can overlap that of another order.

EXAMPLE 39-5

A diffraction grating disperses white light so that the red wavelength A =
650 nm appears in the second-order pattern at 9 = 20°. (a) Find the so-called

grating constant—that is, the number of slits per centimeter, (b) Determine

whether or not visible light of the third-order pattern appears ai = 20°.

SOLUTION

(a) Equation (38-14) gives the multiple-slit interference maxima: mk = d sin 8.

Rearranging, we have

m/. (2)(650 nm)
d = = = 3800 nm

sin 9 (sin 20°)

The number of slits per centimeter (, I ") becomes

^ = -.

1 slit

d 3800 X 10 ' m V 100 cm
2630 slits/cm

(b) Again, Equation (38-14) is appropriate; m/l = d sin 0. Solving for / and sub-

stituting the given values, we get

A =
d sin (3800 nm)(sin 20°

433 nm

A wavelength of 433 nm is a faintly visible violet. Thus, for this grating

visible portions of the second and third orders do overlap.

Dispersion

Diffraction gratings are often used rather than prisms in the analysis of spectra,

because gratings are capable of spreading the spectrum over a wider range

of angles, enabling more precise measurements of /, to be made. The disper-

sion D expresses the ability of a grating or prism to spread a range of wavelengths

dA over an angular spread of dO.

DISPERSION D = dO

dX
(39-17)

The greater the dispersion, the greater the angular separation of two lines that

are close together in wavelength. As shown in Table 39-1, the dispersion is

greater than that produced by a prism and greater for larger values of the

order m.
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TABLE 39-1 Comparison of the Dispersion of a Prism and

a Diffraction Grating

/. (nm)
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The "sharpness" of the central peak is measured by 0r, the angular separation

between the center of the peak and the first minimum. The symbol d is the

separation of the slits, and 9 is the diffraction angle of the peak. The notation

0R we adopt for this angle comes from its use in the criterion proposed by

Lord Rayleigh for the minimum resolvable angular separation for two over-

lapping diffraction patterns. According to Rayleigh's criterion, two closely

spaced, equal-intensity patterns are acceptably "resolved" {that is, one can decide they

are definitely due to two point sources instead of one) if

RAYLEIGH'S CRITERION
FOR MINIMUM
RESOLUTION OF TWO
EQUAL-INTENSITY PATTERNS

The peak of one diffraction pattern

is located at \.\\e first minimum of the

other pattern.

Figure 39-20 illustrates the criterion. For a diffraction grating, the angle

Oft^ is exceedingly small, corresponding to a wavelength difference A/?., as given

by Equation (39-18):

^« 1 ad cos U
AA (39-22)

Combining Equations (31-21) and (31-22), we have

d cos
A/ =

Nd cos

from which we obtain, for the resolving power of a grating R = A/AA,

RESOLVING POWER
OF A GRATING R = Nm (39-23)

where N is the total number of slits in the grating and m is the order.

The distinction between dispersion and resolving power becomes obvious

from Table 39-2, which compares data for three different gratings. As illus-

trated in Figure 39-21, gratings A and B have the same dispersion I) (Ihey

separate two given wavelengths by the same angular distance), while gratings

A and C have the same resolving power R (the ability to distinguish two
wavelengths very close together, limited only by the width of each diffradiun

peak). Note that grating B has the highest resolving power, while grating (

has the highest dispersion.

lABLh 39-2 Ihi- J ir(*t-(>rder Spectrum (nt = I) for l-ighl near

Wavelength A = 550 nm

Crating N,

(nm)

I) I)

A
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Incident

radiation

Scattered

radiation

FIGURE 39-22

A line of equally spaced scattering

centers.

Incident

x-rays
Scattered

x-rays

FIGURE 39-23

A diagram illustrating the Bragg

"reflection" of x-rays from planes of

atoms near the surface of a crystal. In

x-ray work, the angle of the incident

radiation is traditionally measured with

respect to the plane rather than to the

normal.

EXAMPLE 39-6

A sodium-vapor lamp emits a yellow light corresponding to two wavelengths,

589.00 nm and 589.59 nm. How many rulings must a grating have to barely

resolve this sodium doublet in the first order?

SOLUTION

The required resolving power is given by Equation (39-20)

/I

R =
AX

where

and

Thus:

589.00 nm + 589.59 nm
A = = 589.30 nm

AA 589.59 nm - 589.00 nm = 0.59 nm

R =
AA

589.3 nm

0.59 nm
= 1000

The resolving power for a diffraction grating is [Equation (39-23)]: R = Ntn. For

the first order (»i = 1), the number of rulings is thus equal to the resolving power

R:

N-- 1000 rulings

Since a typical diffraction grating has approximately 5000 rulings per centimeter,

we can easily resolve the sodium doublet without resorting to either very fine

rulings or large gratings.

39.5 X-Ray Diffraction

In 1912, the German physicist Max von Laue (1879-1960) first suggested

that a crystalline array of atoms might act as a three-dimensional "diffraction

grating" for x-rays of wavelengths comparable to the atomic spacing in the

crystal (~0.1 nm). The incoming radiation would be absorbed by electrons

and, according to the Huygens theory, each electron would reradiate expanding

wavelets in a process called scattering. Thus, just as the slits in a diffraction

grating act as coherent sources of radiation, the three-dimensional array of scat-

tering centers would act as coherent sources. Because electrons are concen-

trated near the atoms, each atom is effectively a scattering center. In certain

directions, the scattered waves will be in phase, producing a high intensity

of scattered radiation in that direction. For certain other directions, the waves

will be out of phase, resulting in destructive interference and no scattering.

Consider the line of scattering centers in Figure 39-22. For radiation in-

cident at an angle 6^ as shown, the scattered waves will be in phase if the

two distances AB and CD are equal. By symmetry, this happens when the scat-

tering angle Oj equals the incident angle Oi- Sir William Bragg ^ noted the

similarity to optical reflection ("the angle of incidence equals the angle of reflec-

tion"), so he proposed an alternative explanation involving "Bragg reflection"

^ The British father-son team W. H. and W. L. Bragg received the Nobel Prize in 1915 for their studies of

crystal structures by x-ray diffraction; this was just a year after von Laue received the Nobel Prize for

his basic discovery of the diffraction of x-rays.
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from atomic planes. Though this "reflection" is an incorrect picture of the

scattering process, it is a simple and useful way of thinking about the phe-

nomenon. Adopting this simple view, look at Figure 39-23, wherein the inci-

dent radiation strikes a cubical array of atoms, which form atomic planes spaced

a distance d apart. Consider rays (1/ and (2). The lines aA and aC are drawn
perpendicular to the incident and reflected ray (ij, so that the distance ABC
is the extra path length traveled by ray (2). Thus, for incident radiation at an

angle (p with respect to the atomic planes (not to the normal to the plane, as in

optical reflection), the extra path length is

Path length difference = Z{d sin (j))

When this path difference is an integral number of wavelengths m/., the scat-

tered rays will be in phase. (Similar relations also apply to other rays, such as

(3), scattered from deeper regions.) The relation for constructive interference

is called the Bragg scattering condition.

BRAGG
SCATTERING
CONDITION

il = Id sin (/) (39-24)

»/here w = 1, 2, 3, . . . (the order of scattering)

(/) = the glancing angle between the incident ray

and the plane (not between the ray and the

normal, as in optical reflection)

d = atomic plane spacing

The scattered radiation is very sharply "peaked" at these angles. As
for a plane diffraction grating with a great many slits, the three-dimensional

"grating" has an enormous number of scattering centers, which causes the

major maxima to become extremely narrow and intense, while suppressing all

minor maxima. If a continuous spectrum of radiation containing all wavelengths

(called "white" radiation) is incident, we may also consider the simultaneous

Bragg reflections from other planes in the crystal (Figure 39-24). The various

sets of parallel planes will have different spacings between them, depending

on the geometric positions of the atoms. Since the incident radiation contains

all wavelengths, there will be some radiation at the correct values of mk that

match all the various Bragg conditions. A photograph of the scattered spots

(Figure 39-25) is called a Laue diffraction pattern. The positions of the spots

(range of

wavelengths)

FIGURE 39-24

The lattice of atoms in a crystal may
be grouped into parallel planes at

various angles, each with its own
spacing. The wavelength that matches

the Bragg condition will be reflected

from its corresponding set of planes.

Three different sets of planes are

illustrated.

Incident

beam of

Photographic

film

(a) Experimental arrangement for

making a Laue-spot diffraction

pattern.

(b) A Laue diffraction pattern for a

single quartz crystal.

FIGURE 39-25

X-ray diffraction patterns. The

positions of the spots correlate with

the configuration of atoms in the

crystal. For unknown crystals, by

- «
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FIGURE 39-26

A Fresnel diffraction pattern of a

circular aperture, made with

monochromatic light. As the screen is

moved to different distances, the spot

at the center changes alternately from

dark to light and the number of

diffraction rings changes.

FIGURE 39-27

A diffraction pattern due to a penny

reveals the Poisson bright spot at the

center. To produce this pattern, a

penny was placed midway between a

monochromatic point source of light

and a screen 40 m away.

correlate with the configuration of the atoms in the specimen. For a crystal

whose atomic structure is unknown, one can "work backward" from the Laue

pattern to figure out the locations of the atoms. For example, in 1962 James

Watson, Francis Crick, and Mauric Wilkins'' received the Nobel Prize in biol-

ogy for discovering the double-helix structure of DNA using x-ray diffraction

methods.

39.6 Fresnel Diffraction—Circular Apertures

and Obstacles

When parallel light passes through a small circular hole in an opaque plate

and falls on a nearby screen,^ a surprising pattern results. Not only will the

pattern be larger than the hole and contain diffraction rings, there may even

be a dark spot in the center. Figure 39-26. This is quite unexpected since one

would anticipate that the straight-through direction from the center of the

opening to the screen would be bright, not dark!

Another startling result is the diffraction pattern for a small circular

obstacle, such as a ball bearing with free space around it. Careful inspection

reveals that there is always a bright spot in the center,^ as if the ball bearing had

a tiny hole! Figure 39-27 shows the bright spot in the shadow of a penny.

These patterns are examples of Fresnel diffraction, in which light reaching

a given point on the screen comes at various angles from different parts of a

wavefront as the wavefront emerges from the aperture or passes around an

obstacle. Figure 39-28. The origin of these effects is discussed in the next

section.

39.7 The Fresnel Zone Plate

Consider parallel light passing through a small circular hole and falling on a

screen. The point P at the center of the diffraction pattern receives light from

all parts of the plane wavefront in the aperture (Huygens' principle). Let us

divide that wavefront into circular zones by the procedure of Figure 39-29.

The central circle, called a half-period zone, contains light reaching P that dif-

fers in phase only from to tt rad. Light from the next half-period zone arrives

at P with phases from n to 2n rad, the next zone with phases 27!; to 3n rad,

and so on. The net contributions from any two adjacent zones are one-half

wavelength out of phase and therefore, upon their arrival at P, tend to cancel

each other by destructive interference. If -t-Ej is the net electric vector for

light from the first zone, then the net electric vector for light from the second

* For a fascinating story of a scientific quest, see James D. Watson, The Double Helix, Atheneum Press, New

York, 1968. Also see Horace Judson, The Eighlh Day of Creatmj, Simon & Schuster, 1979.

' Because the screen is nearby, light falls at a given point on the screen at various angles, a situation called

Fresnel diffraction—in contrast to Traunhofer diffraction, in which only parallel light falls on the screen.

* There is an interesting anecdote about the spot. In response to a Prize Essay competition, Fresnel sub-

mitted his wave theory of diffi-action to the French Academy in 1818. Poisson, a member of the judging

committee and a firm believer in the corpuscular theory of light, strongly ridiculed Fresnel's theories. To

clinch his objections, and hoping to deal a death blow to the wave theory of light, Poisson told a com-

mittee member, Arago, that (as Fresnel had not realized) the theory unrealistically predicted the existence

of a bright spot at the center of the shadow of a circular obstruction—clearly an absurd prediction!

Arago immediately tried the experiment and rediscovered the bright spot, which actually had been found

85 years earlier by Miraldi but had been long forgotten. The bright spot's existence gave a big boost to

Fresnel's wave theory. Poisson, however, stubbornly clung to the Newtonian particle model for light until

his death 22 years later. Ironically, today the spot is usually called Poisson's bright spot, ignoring the

true heroes in the story: Miraldi, Fresnel, and Arago. Fresnel ultimately did win first prize for his essay.
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A rectangular aperture. (b) An opaque square.

(c) The diffraction pattern of an
opaque disk with a source

consisting of an illuminated

transparent portrait of

Woodrow Wilson. The opaque
disk acts as a sort of lens, since

for every point in the source

there is a Poisson bright spot in

the image.

(d) Three opaque
circular disks. Note

the bright spot in the

center of each disk.

(e) The shadow of a

small screw-

supported by a wire.

FIGURE 39-28

Fresnel diffraction patterns. The bright

bands just outside the shadow of an

opaque object are actually brighter

(g) A magnified

photograph of (f), the

diffraction pattern of

the head of a screw.

(f) A longer exposure of

(e) to bring out the

faint diffraction

pattern within the

shadow.

than the unobstructed uniform

illumination farther from the shadow.

Half-period zones

Circular

aperture

FIGURE 39-29

The geometrical construction of

Fresnel zones. Within the aperture, the

spheres centered at P have radii Vq,

ro + A/2, ro + 2A/2, r^ + 3 A/2, etc.

Screen

The intersections of these spheres with

the plane in the aperture form the

circular half-period zones.
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FIGURE 39-30

The average electric field vectors for

the light from each of the four zones.

They add together to zero. (For clarity,

the vectors have been displaced

sideways from one another.)

Electric

field

O
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FIGURE 39-31

When the electric field vectors for a

very large number of zones are added

together, the resultant amplitude

approaches half that due to the first

zone acting alone.

FIGURE 39-32

Alternate half-period zones are made
opaque to form a Fresnel zone plate.

The negative of this pattern (with

the central zone opaque) is also a

Fresnel zone plate. In most cases,

the area of each zone (tt/L) is quite

small. For example, for L = 1 m and

/. = 500 nm, each area would be about

1.6 mm".

zone is — E,, that from the third zone is +E3, and so on. Each zone has

approximately the same area (Problem 39C-38), so each vector E„ has approx-

imately the same amplitude,^ but they alternate in sign. Figure 39-30. The

number of zones for a given geometry depends upon the diameter of the hole,

the distance L, and the v^^avelength /I. If there are an even number of zones in

a small aperture, the net E is essentially zero, causing a dark spot at P. If the

screen is moved either toward or away from the opening so that an odd number

of zones fills the aperture, then the point P will become bright. This explains

why the center spot alternates between light and dark when the screen is

moved in Figure 39-26. If we block out some zones at the center, all the

remaining zones will still contribute some light at P, explaining the Poisson

bright spot in the shadow of a penny. Figure 39-27.

Suppose that we now make every other zone opaque (either the odd

ones or the even ones). Because all the light from the transparent zones is

now in phase, the electric vectors all add in the same direction and a lot more

light reaches point P. A transparent film with alternate zones blocked out is

called a Fresnel zone plate. Figure 39-32. Isn't it interesting that, by making

half the area of an aperture opaque, we can dramatically increase the light

transmitted to the center of the pattern? As shown in Footnote 8, the light

from the entire unobstructed wavefront equals approximately half the contri-

bution from the first zone: £i/2. If we construct a zone plate that passes only

the first 20 odd zones, then the electric field at P is E = E^ + E^ +
£5 -1- • • • -h £39. Each of these terms is approximately equal to the others.

Without the zone plate, the field at P is approximately £i/2, but with the zone

plate it is 20£i. Therefore, the zone plate increases the light intensity (pro-

portional to E~) by a factor of 1600! Thus the zone plate acts as a sort of lens,

diffracting incident parallel light so that it converges to a real point image a dis-

tance L away.^'^

A Fresnel zone plate would be nothing more than an amusing gadget

were it not for the fact that it provides an easy explanation of how a holo-

gram generates its eerie three-dimensional image.

' Because light from higher-number zones has a bit farther to travel, the inverse-square law reduces their

amplitudes slightly. An obliquity factor also enters in. The net result is shown in Figure 39-31.

^ ^ There are other point images along the axis, both real and virtual. However, the image at L that we

have discussed is the brightest real image.
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39.8 Holography

Everyone is familiar with holographic images, those fascinating ghostlike

images that have full three-dimensional properties, formed without the use

of lenses by passing coherent light through a flat sheet of film. In the old-

fashioned stereoscopic image, each of a pair of almost identical pictures is

viewed separately by each eye, producing the mental impression of a three-

dimensional image as viewed from a fixed perspective. In contrast, when we view

a holographic image with the unaided eye by looking through the hologram

as through a window, the image has a true three-dimensional property and

we can easily see behind an object in the foreground by merely changing

our position. In fact, 360° holograms in the form of a cylinder have been made,

allowing the viewer to move completely around the image, seeing all sides.

The principles of holography (Greek, meaning "whole writing") were first

presented in 1948 by Dennis Gabor, who was awarded the Nobel Prize in

1971 for his theories. We can explain the basic principle of holography simply

by using the idea of a zone plate. Consider Figure 39-33, in which two sets

of monochromatic coherent waves impinge on a photographic film. One set,

the reference beam, consists of plane waves. The other set is the light scattered

from a point object. At the film, the interference of these two sets of coherent

waves produces a pattern of light and dark rings. Upon development, the

film will have opaque and clear regions, forming a Gabor zone plate, similar to

a Fresnel-zone-plate pattern. If the developed film (called a hologram) is then

illuminated with coherent monochromatic light, an observer located properly

to receive the diffracted light coming through the hologram will see a virtual

point image, as in Figure 39-34. (The real image is also present on the viewer's

side of the hologram.)

Suppose that a small extended object is used instead of a point object.

Then each point of the object forms its own zone-plate pattern, which super-

imposes with patterns for all the other points. The resulting hologram is a

very complicated array of fringes (Figure 39-35) that contains the full infor-

mation about the zone-plate pattern for each point on the object. When the

hologram is illuminated with coherent monochromatic light, the diffracted light

reconstructs a full virtual image of the object. In practice, to make about

I I

Incident

monochromatic

plane waves

•'oint

scatterer
1 I 1

I
I

Fine-grain

photographic

film

FIGURE 39-33

Plane monochromatic waves and the

waves scattered coherently from the

point object produce an interference

pattem on the photographic film.

When the film is developed, the

resulting hologram is a series of light

and dark concentric circles similar to a

Fresnel zone plate.

Incident

parallel

light

FIGURE 39-34

When parallel light is incident on

a zone plate, real and virtual point

images are formed on opposite sides

of the plate. [Additional point images

Observer can

see the virtual

image

(not shown) for other orders of

diffraction are also located along the

central axis.]

FIGURE 39-35

A highly magnified portion of a

hologram, showing the complicated

pattem of interference hinges.
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Mirror

FIGURE 39-36

A common arrangement for making

and viewing a hologram.

Coherent

reference

beam

Reference

beam

Photographic

film

Light scattered

from the object

Virtual

image

(a) One arrangement for making a

hologram. Light from the

reference beam combines with

light scattered from the object to

produce a complicated

interference pattern at the film

surface. When the film is

developed, the recorded pattern is

called a hologram.

Hologram

Diffracted

light

(b) To view the hologram, we use a

coherent reference beam to

illuminate the hologram at the

same angle as the reference beam
used in making the hologram.

The diffracted light forms a

virtual image of the object at its

original location. The image is a

true three-dimensional image; we
can see hidden parts by moving
the eye to a new location.

(a) A holographic contour map of

a fossil badger tooth (8 mm
long). Two holograms of the

specimen were recorded on the

same photographic plate using

two slightly different

wavelengths. When the

resulting hologram is

reconstructed using one

wavelength, the interference

between the two images creates

fringes in the form of height

contours.

FIGURE 39-37

A few applications of holography.

(b) Details of the spark detonation

of acetylene gas inside a

transparent cylinder are made
visible by a double exposure

using a pulsed ruby laser that

illuminates the scene from the

rear through a ground-glass

diffuser. The first exposure was

made prior to ignition. The
second exposure was recorded

10 ms after ignition. Upon
reconstruction, three-

dimensional patterns are

formed by the interference of

the two holographic images.

(c) A photograph of a "time-

averaged holographic interfero-

gram" of a loudspeaker

vibrating at 3000 Hz. The
hologram was a time exposure

over several thousand cycles.

Only the nodal lines and the

stationary portions of the scene

reconstruct brightly.

I

I

it,
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equal intensities for the two sets of waves and thus achieve maximum con-

trast in the interference pattern, the arrangement diagrammed in Figure 39-36

is often used.'

'

Since no lenses are used at any stage of the procedure, the troublesome

Rayleigh limit of resolution is avoided. The detail in the reconstructed image

can actually be better than that produced by any conventional photography

using lenses. Each small fragment of a hologram contains information about

the entire object (as seen from that vantage point) and will reconstruct the

entire image.

The applications of holography are impressive (see Figure 39-37). One
limitation on making a hologram is that the incident reference beam and the

scattered light (both portions of the same wave train) must not differ in optical

path by more than a coherence length when they arrive at the film. Ordinary

lasers produce light with coherence lengths of several meters, though special

techniques can push the upper limit of laser-light coherence to ~ 10^ m.

Summary

Fraunhofer single-slit diffraction:

a = slit width

6 = angle measured from the center line

/. = wavelength

lu = order

A diffraction minimum occurs when

m/. = a sin (where m = I, 2, 3, . . .)

The intensity distribution Ig (in units of W/m") is given

by

Ie = lo where 2 :

The mnxima of the diffraction pattern fall approximately

halfway between the minima.

The diffraction grating:

d = separation of the slits (center-to-center)

9 = angle measured from the center line

1 = wavelength

m = order

A diffraction maximum occurs when

m/ = d sin (where m = 0, 1, 2, 3, . . .)

The dispersion D of a diffraction grating is defined as

de m
D = —

=

The resolving poioer R o( a diffraction grating is defined as

R = ^r=^Nm
A/.

where N is the total number of rulings in the grating.

In Fraunhofer diffraction by a circular aperture, the angle

0R between the center of the diffraction pattem and the first

minimum (measured from the center of the aperture) is

sin (?R
=

(1.22)i

D

where D is the diameter of the aperture and / is the wavelength.

The Rayleigh criterion for the minimum angle of resolution

0R is that two adjacent point sources are distinguishable if the

central peak of one diffraction pattem falls on the first minimum

of the diffraction pattem of the other. Thus, for a telescope

aperture of diameter D (or other optical instrument with a cir-

cular aperture).

Ok =
(1.22)/

D

X-ray diffraction:

d/. d cos 6

d = atomic plane spacing

(f)
= the glancing angle between the incident ray

and the plane (not between the ray and the normal,

as in optical reflection)

A = wavelength

m = order

^^ For a method of making a hologram that can be viewed from all sides, see W, R. Schubert and C. R.

Throckmorton, "Making a 360° Hologram," The Physics Teacher 13, 310 (1975).
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For the Bragg scattering condition, a diffraction maximum

occurs at

m/. = 2d sin
<f> (where m = 1, 2, 3, . . .)

Fresnel diffraction occurs when either the source of

light or the observing screen (or both) lies at a finite distance

from the diffracting aperture or obstacle. Fresnel's method of

analysis employs half-period zones, for which the average light

from any two adjacent zones is out of phase by one-half

wavelength.

A Fresnel zone plate is a special screen in which alternate

half-period zones are made opaque. The zone plate has lens-like

focusing properties (with multiple focal lengths).

Holography is a two-step process in which an object

illuminated by coherent light produces a complicated diffraction

pattern on a photographic film. When the developed film, a

hologram, is illuminated with coherent light, diffraction effects

produce a three-dimensional image in which true differences in

perspective occur if the viewer's position is changed. Since no

lenses are used, the conventional Rayleigh resolution limits are

avoided (though other limits eventually are present).

Questions

1. A small hole illuminated by monochromatic light produces

a diffraction pattern on a screen. The edges of the hole are

poorly defined. If a lens is properly placed between the

hole and the screen, the diffraction effects seem to dis-

appear and the edges of the hole are well defined. Explain.

2. What happens to a Fraunhofer single-slit diffraction dis-

played on a screen if water replaces air in the space between

the slit and the screen?

3. Since interference and diffraction effects depend on the

addition of the electric fields associated with electromag-

netic waves, why isn't it necessary to have a light source

in which all electric field variations are polarized in the

same direction?

4. Rather than a long narrow slit producing a diffraction

pattern, suppose that a "slit" only twice as long as it is

wide is used to produce the pattern. Qualitatively, what

is the appearance of the pattern?

5. Two diffraction gratings, one larger than the other, are of

the same quality and have the same number of rulings per

centimeter. What are the advantages of using the larger

of the two gratings?

6. Light from a slit is collimated by a lens, then passes through

a diffraction grating whose rulings are parallel to the slit.

What happens to the diffraction pattern on a distant screen

as the grating is tilted about an axis parallel to its rulings?

7. Suppose a grating or a prism is used in the spectral analysis

of light containing a mixture of wavelengths. Under what

circumstances is resolving power more important than dis-

persion and vice versa?

8. Describe the diffraction pattern produced by two crossed

diffraction gratings.

9. What are the advantages, if any, of a diffraction grating

versus a prism in displaying the spectral components of a

light source? What are the disadvantages, if any?

10. At night distant road signs are easier to read if they are

painted in green and white rather than red and white. Why?

11. A diffraction grating produces a continuous spectrum when
illuminated by white light, fiow does a crystal produce a

discontinuous array of dots ("Laue spots") when illuminated

by "white x-rays" containing a range of wavelengths?

12. What are the similarities and differences between Fraun-

hofer and Fresnel diffraction?

13. The shadows of objects cast by the sun seem to have a

fuzzy edge. Is this a diffraction phenomenon in which

fringes are not evident because of the mixture of wave-

lengths in sunlight? If this is not a diffraction phenomenon,

what is the cause of the fuzziness?

14. If you peer at a distant light source through very small

cracks between your fingers, you will see light and dark

fringes. Is this a diffraction phenomenon? If so, is it an ex-

ample of Fraunhofer or Fresnel diffraction?

15. Why is it necessary to have a very nearly circular obstacle

in order to observe Poisson's bright spot?

16. To describe the dilTraction of sound waves, how would our

development of light-diffraction analysis have to be modi-

fied? Remember that sound waves are longitudinal pressure

waves.

17. In what way is a Fresnel zone plate like a converging lens?

In what ways is it dissimilar?

Problems

39.2 Single-Slit Diffraction

39A-1 Light of wavelength 550 nm passes through a single

slit and forms a diffraction pattern on a screen 3 m away. The

distance between the third minima on opposite sides of the

central maximum is 25 mm. Find the width of the slit.

39A-2 A single slit is illuminated by light of wavelength

550 nm and produces a diffraction pattern on a screen 3 m
from the slit. Find the total width of the central maximum for

a slit width of (a) 0.2 mm and (b) 0.4 mm.

39B-3 A single slit 0.20 mm wide is illuminated by mono-

chromatic light of wavelength 600 nm, producing a diffraction

pattern on a screen 1.5 m away. Find the distance between the

first and fifth diffraction minima.

39B-4 In a Young's double-slit experiment, green light

(520 nm) produces a pattern of bright fringes spaced 1.5 mm
apart on a screen 1.8 m away, (a) Find the distance between

the centers of adjacent slits, (b) As one counts fringes away
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from the central {m = 0) bright fringe, every sixth bright tringe

is missing. Calculate the width of each slit.

39B-5 A single slit is illuminated by light composed of two
wavelengths, /-i and /, The diffraction patterns produced

overlap such that the first minimum created by the light of

wavelength /-i falls at the second minimum of the pattern

produced by light of wavelength Aj. (a) Calculate the ratio

/I1/A2. (b) At what other places in the combined diffraction

pattern will the minima coincide?

39B-6 Suppose that the photographs in Figure 39-8 are

exact-size reproductions of the diffraction pattern produced by

a slit 0.150 mm wide on a screen 1.25 m from the slit. Mea-

sure the photographs to determine the wavelength of the light

producing the pattern.

39B-7 A double-slit diffraction pattern is produced by slits

that are one-third as wide as the separation of their centers.

Calculate the ratio of the intensity of the first-order maximum
of the double-slit pattern relative to the central maximum.

39B-8 A vertical single slit 0.25 mm wide is illuminated by

light with a wavelength of 600 nm, and a pattern is produced

on a screen 2.5 m from the slit, (a) Find the intensity relative

to the central maximum intensity Iq at a point 2 cm left of the

central maximum position, (b) Describe the position in terms

of the nearest minimum location.

39B-9 Two slits, each with a width of 0.150 mm, are sepa-

rated by a distance of 9 mm. Calculate the number of interfer-

ence maxima that are observed (a) within the central diffraction

maximum and (b) within one of the first-order diffraction

39A-14 Using the Rayleigh criterion, find the minimum
angle of resolution (in degrees) for these two astronomical

instruments: (a) the 200-in.-diameter telescope at Mt. Palomar

at a wavelength of 500 nm and (b) the 1000-ft-diameter radio

telescope at Arecibo, Puerto Rico, at a wavelength of 80 cm.

39B-15 A helium-cadmium laser emits a beam of light

containing two wavelengths, 325 nm (in the ultraviolet) and

442 nm (blue). The beam emerges from a circular opening 3 mm
in diameter, resulting in two superimposed diffraction patterns

on a very distant screen. Find the distance to the screen for

which the first diffraction minima for the two wavelengths are

separated by 2 cm.

39B-16 The Post-Impressionist painter Georges Seurat per-

fected a technique known as "pointillism," whereby paintings

were composed of small, closely spaced dots of pure color,

each about 2 mm in diameter. The illusion of color mixing is

produced in the eye of the viewer. Estimate the minimum dis-

tance away a viewer should be in order to see a blending of

the color dots into a smooth variation of color. Assume that

the level of illumination causes the viewer to have a pupil di-

ameter of about 2 mm.

39B-1 7 A telescope with an objective aperture of 10 cm has

a focal length of 80 cm. A distant point source emitting radia-

tion with a wavelength of 550 nm produces a diffraction pattern

at the focal plane of the telescope. Calculate the diameter of

the ring formed by (a) the first diffraction minimum and (b) the

second diffraction minimum.

39B-18 A circular radar antenna on a navy ship has a di-

ameter of 2.1 m and radiates at a frequency of 15 GHz. Two
small boats are located 9 km away from the ship. How close

together could the boats be and still be detected as two objects?

39.3 Diffraction by a Circular Aperture

39A-10 Calculate the diameter of a reflecting-telescope mir-

ror that by the Rayleigh criterion can resolve two point sources

whose angular separation is ^ s. Assume a wavelength of

550 nm.

39A-11 A person observing the taillights of an automobile

as it recedes in the distance at night can barely distinguish them

as separate sources of light. Assuming that the lights are 1.5 m
apart and emit at an average wavelength of 640 nm, estimate

the distance between the observer and the automobile. The

pupil size of the observer's eye is 6 mm in diameter. (Note:

refraction effects in patches of air with different densities cause

blurring, so the actual distance is shorter than calculated.)

39A-12 A parabolic microwave antenna has a diameter of

1.5 m and is designed to receive "x-band" microwave signals

(2 = 3 cm). Calculate the minimum angular separation (in de-

grees) of two microwave sources that can be resolved by this

antenna.

39A-13 An American standard television picture is com-

posed of about 485 horizontal lines of varying light intensity.

Assume that your ability to resolve the lines is limited only

by the Rayleigh criterion and that the pupils of your eyes are

5 mm in diameter. Calculate the ratio of minimum viewing dis-

tance to the vertical dimension of the picture such that you will

not be able to resolve the lines. Assume that the average wave-

length of the light coming from the screen is 550 nm.

39.4 The Diffraction Grating

39,A-19 A speed-control radar system transmits microwave

radiation at a wavelength of 3 cm. A wide beam of this radiation

strikes a fence formed of vertical rods, 5 cm apart. Find the

angle between the direction of the incident beam and the di-

rection of the first diffraction minimum beyond the fence.

39.-\-20 When illuminated with monochromatic light, a cer-

tain diffraction grating produces a pattern in which the third,

sixth, ninth, etc., orders are missing. Determine the ratio of slit

width to slit separation for this grating.

39A-21 A diffraction grating is 2.5 cm square and has a

grating constant of 5000 rulings/cm. Calculate (a) the disper-

sion and (b) the resolving power of this grating in the second

order for a wavelength of 600 nm.

39B-2 2 A diffraction grating with 2500 rulings cm is used

to examine the sodium spectrum. Calculate the angular sepa-

ration of the sodium yellow doublet lines (588.995 nm and

589.592 nm) in each of the first three orders.

39B-23 A certain grating has 20 000 slits spread over 5.5 cm.

Find the wavelength of light for which the angle between the

two second-order maxima is 60°.

39B-24 A diffraction grating has a ratio of slit separation

to slit width of 10:1. Calculate the ratio of the first-order in-

tensity maximum to the central (m = 0) maximum intensity.
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39B-25 A certain diffraction grating has a dispersion of

2.5 X 10"^ deg/nm and a resolving power of 10"* in the first

order. Calculate the angular separation of two spectral lines

near 550 nm that can barely be resolved in accordance with

the Rayleigh criterion.

39.5 X-Ray Diffraction

39.7 The Fresnel Zone Plate

39A-26 Monochromatic x-rays incident upon a crystal pro-

duce first-order Bragg reflection at a glancing angle of 20°. Cal-

culate the expected angle for the second-order reflection.

39A-2 7 X-rays of wavelength 0.30 nm produce a first-order

reflection from a crystal of NaCl when the glancing angle of

incidence is 30°. Calculate the lattice spacing that corresponds

to this reflection.

39A-28 X-rays of wavelength 0.188 nm are incident on the

cubic crystal LiF. The first-order scattering maximum occurs at

a grazing angle of 27.9°. (a) Find the lattice spacing of the LiF

crystal, (b) At what angle would second-order scattering

occur?

39A-29 Let d be the spacing between adjacent atoms of a

cubic crystal. Show that x-rays of wavelength greater than dyjl

cannot satisfy the Bragg scattering condition for any of the

three scattering planes illustrated in Figure 39-24.

39B-30 Figure 39-27 shows the diffraction pattern of a

penny. The diameter of a penny is 19 mm. Using the data in

the figure caption and assuming a wavelength of 546 nm, esti-

mate the number of Fresnel half-period zones that the penny

obscures when viewed from the center of the pattern on the

screen.

39B-31 Light of 490-nm wavelength passes normally

through a circular aperture 1 cm in diameter. At the center of

a screen 6 m away, how many half-period zones are within the

aperture?

Additional Problems

39C-32 The condition for the angular position 6 of single-

slit diffraction maxima is given by tan a = a, where a =

{n/?.)a sin 9, with slit width a. This equation is most easily

solved by successive approximations made with a pocket cal-

culator. Assuming that a = 20/., (a) show that the angular

position of the first-order maximum does not lie exactly midway

between the first and second minima and (b) find its value.

(Hint: as a first approximation for a, use an angle 9^^ that is

the average value of 9^ and 9 2, the first two minima. Then

try slightly smaller values of a until you "zero in" on the correct

value.) See Footnote 3 on page 904.

39C-33 Using the information in the previous problem, find

the angular position (in radians) of the second-order diffraction

maximum when a = 20/.

39C-34 A pair of vertical slits, each of width 0.150 mm,

whose centers are separated by 0.9 mm, are illuminated per-

pendicularly by light of wavelength 550 nm. A combined inter-

ference-diffiraction pattern is produced on a screen with the

double-slit maxima spaced 1 mm apart, (a) Sketch the pattern

on the screen, (b) Find the slit-to-screen distance L. (c) Find the

intensity of the m = 3 double-slit peak in terms of the central

peak intensity Iq.

39C-35 In Equation (39-8), we obtain the maximum values

of Ig by setting dlg/da = 0. (a) Show that this leads to the

relation tan a = a. (b) Using successive approximations, find

(to five significant figures) the first three values of a that satisfy

that relation, and compare them with the approximate values

of a, using Equation (39-11).

39C-36 A diffraction grating illuminated perpendicularly by

light with a wavelength / produces an interference pattern on

a large screen parallel to the grating. Calculate the ratio of the

maximum slit width of the grating slits to the wavelength so

that no difiraction minima are present no matter how close

the screen is to the grating.

39C-37 Show that the ability of a grating to resolve two

spectral lines that differ in frequency by A/ is given by A/ =

c/NmX, where c is the speed of light, N is the number of grat-

ing rulings, ni is the order, and / is the wavelength.

39C-38 The dispersion D of a diffraction grating depends

upon the diffraction order m, the slit separation d, and the

wavelength /. Derive an expression for D in terms of m,

d, and A.

39C-39 Consider the Bragg planes indicated in the two-

dimensional lattice shown in Figure 39-24. (a) Show that the

spacing of these planes can be represented hy d = a[,n +
I)' "", where n = 1, 1, i, . . . , and a is the atomic spacing in

the lattice, (b) In general, d = a{n + -1/2
^'here both n

and in are integers. Make a sketch similar to Figure 39-24,

showing the planes separated by cf = fl(13)

39C-40 Show that the area of each zone in a zone plate is

approximately n/.L, where L is the primary focal length of the

zone plate.

39C-41 As shown in Figure 39-38, a beam of parallel mono-

chromatic light passes through a large, circular hole to produce

a spot of light on the screen. Consider a point P, away from

the straight-through beam, located where no light strikes the

screen. Now suppose that an opaque disk with an arbitrary

opening in it (object A) is placed in the hole, causing some dif-

fracted light to reach P. Next, suppose that we replace object A
with its "complement," object B, which is opaque where ob-

ject A is transparent, and vice versa. Of both objects were

present at the same time, the combination would be completely

opaque.) According to Babinet's principle, the diffracted light

reaching P is exactly the same in the two cases. Prove the theorem

using superposition concepts.

Parallel

monochromatic

light

FIGURE 39-38

Problem 39C-41.

O
Object A Object B

Screen



Polarized Light

We can scarcely avoid the inference that light consists in the transverse

undulation of the medium which is the cai4se of electric and magnetic

phenomena.

JAMES CLERK MAXWELL (1856)

40.1 Introduction

Maxwell's equations describe electromagnetic radiation as a transverse wave
of oscillating electric and magnetic fields. It is called transverse because the E

and B fields are represented by vectors that lie in a plane perpendicular to the

direction of propagation. By convention, the direction of the electric vibration

is called the direction of polarization of the linearly polarized wave. Figure

40-1 shows methods of depicting linearly polarized light rays in diagrams. The

Polarized

in the y
direction

Polarized

>^ X in the x

direction

7^̂
45° Polarized

X at 45° to the

X direction

(a) Linearly polarized light rays

approaching the viewer (that

is, the rays are perpendicular

to the plane of the paper).

/> M a il ;l

»

r
w „ ,, ,,

(b

Polarized

in the plane

of the paper

Polarized

—«»«»» » perpendicular

to the plane

of the paper

Linearly polarized light rays

traveling in the plane of the

paper. The direction of

polarization is indicated by an

array of short arrows or a

series of dots.

FIGURE 40-1

Ways of indicating the direction of

polarization of the electric field for

linearh/ polarized light rays.
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No radiation

this direction

Transmitter

^ r

Receiver

Dipole

antenna

FIGURE 40-2

Radiation from a dipole antenna is

polarized. The direction of polarization

is perpendicular to the direction of

Dipole

antenna

propagation and lies in the plane

containing the dipole antenna.

(a)

^ Components have

random (and rapidly

changing) phase

relationships.

(b)

" t f t T

(c)

FIGURE 40-3

(a) and (b) show two ways of depicting

unpolarized transverse waves

approaching the viewer, (c) An
unpolarized ray traveling in the plane

of the paper; the arrays of short arrows

and dots are separated in space to

emphasize that there is no fixed phase

relationship between the two

com.ponents, which vibrate incoherently.

arrays of short arrows indicate the direction of polarization; if you wish, you

may instead think of them as oscillating electric field vectors. Other words are

also used to describe polarized waves. The terms plane of polarization and plane-

polarized waves are common, but these have possible ambiguities. For example,

in Figure 40-2 the two rays A and B have the same plane of polarization (the

plane of the paper), but their directions of polarization are different.

Radio waves and microwaves emitted from antennae are polarized in di-

rections related to the direction of the accelerated charges in the antenna wires

(Figure 40-2). A receiving dipole oriented parallel to the direction of polariza-

tion will absorb energy from the waves because the alternating electric field

causes electrons in the receiving dipole to accelerate back and forth along the

wires, producing an oscillating potential difference between the dipole halves.

However, if the receiving dipole is oriented perpendicular to the direction of

polarization, the two halves of the dipole remain at the same potential and

the waves are not detected by the receiver.

The fact that electromagnetic waves can be polarized is conclusive

evidence that they are transverse waves. Interference and diffraction give

evidence of their wave nature, but these effects do not differentiate between

longitudinal and transverse waves. Sound waves, for example, are longitudinal

and do show interference, but they cannot be polarized. Only transverse waves

can be polarized.

Visible light emitted by ordinary sources, such as light bulbs and glowing

hot objects, has its origin in excited atoms and molecules. Classically, each

atom or molecule emits a short burst of electromagnetic waves lasting about
10~^ s and containing a few million vibrations, thereby sending out a wave

train that extends up to a meter or so along the direction of propagation. Be-

cause the atoms emit light independently of one another, the resultant light is

a superposition of many wave trains whose electric vectors are oriented ran-

domly in all possible directions perpendicular to the direction of propagation.

We call such light unpolarized. As shown in Figure 40-3, there are two cus-

tomary ways of depicting unpolarized light in diagrams. In (a), the light ray

is approaching the viewer, and the array of arrows represents the superposition

of many wave trains plane-polarized with random orientations. Since an electric

field at any arbitrary direction in the xy plane may be resolved into components

along the x and y axes, an equivalent representation is shown in (b). Here, the

electric field of each individual wave train has been resolved separately; when

summed along the x and y axes, the two net components are equal in (average)

magnitude. One important characteristic should be noted. Since the phases of

the wave trains are completely random (the light from the various atoms is
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incoherent), there is no fixed phase relationship in the net components. In fact,

the components have a random and rapidly changing phase relationship. How-
ever, their time average is the same in each direction. Consequently, our choice

for the orientation of the x and i/ axes about the direction of propagation

makes no difference for unpolarized light: in each case the (average) components

at right angles are equal.

40.2 Polaroid

The human eye is not very sensitive to the direction of polarization. ' However,

polarized light can be produced and analyzed easily with a commercial material

called Polaroid." Ideally, a "perfect" polarizing sheet would transmit 50% of

an incident unpolarized beam intensity and absorb 507o. However, in practice

the transmission is about 40% or less because of reflection at surfaces and

some unwanted absorption. As shown in Figure 40-4, if two Polaroid sheets

are "crossed" so that their transmission axes are at an angle of 90°, approxi-

mately 90% of the light intensity is absorbed.

When two polarizing sheets are used together, the first is called the po-

larizer and the second, which is used to determine the direction of polarization

of light coming from the first, is called the analyzer. Consider two polarizing

sheets whose transmission axes are at angle 6 with respect to each other, as

in Figure 40-5. If light coming from the first polarizer has an electric field am-

plitude Eq, the analyzer (assumed "ideal") will transmit only the component

£q cos 6 parallel to its transmission axis. Since the intensity / is proportional

to the square of the amplitude, the transmitted intensity varies with the angle

0as

MALUS'S LAW I = Iq cos (in W/m^) (40-1)

where Iq is the intensity of the polarized light incident on the analyzer, whose

transmission axis is at an angle 9 with that of the polarizer. Equation (40-1)

is named after its discoverer. Captain Etienne Malus, a military engineering

officer in Napoleon's army (see Footnote 3). When several polarizing sheets

at various angles are used in series. Equation (40-1) is applied to each successive

sheet.

^

FIGURE 40-4

When polarizing sheets are crossed, their

transmission axes are at right angles.

Each individual sheet appears gray

because it absorbs approximately half

of the incident unpolarized light

intensity.

The unaided eye can sometimes detect the direction of polarization through a faint pattern known as

Haidinger's brush, which some, but not all, people can observe. For a description of this effect and other

interesting features of polarized light, see the Science Series paperback Polarized Light, by W. A. Shurcliff

and S. S. Ballard (D. Van Nostrand Co.. 1965).

"Polaroid" was invented in 1928 by Edwin H. Land while he was a 19-year-old undergraduate at Harvard,

The modem version of Polaroid is made by the heating and stretching of a plastic sheet that contains

long-chain molecules of polyvinyl alcohol. The stretching process aligns the molecules parallel to one

another. The sheet Is then dipped into an iodine solution, which causes iodine atoms to attach themselves

to the alcohol molecules, forming chains of their own that apparently act as microscopic conducting wires.

An incident electromagnetic wave that has a component of E parallel to the chains will drive conduction

electrons along them, absorbing essentially all the energy of that component of the wave. On the other

hand, if the f field is perpendicular to the chains, only a small absorption takes place and most of this

component passes through. This property is called selective absorption. The transmission axis of a sheet

of Polaroid is thus perpendicular to the direction the film was stretched. Sheets as large as 1 m by 30 m
(or longer) are available. For protection and strength, the material is usually laminated between thin sheets

of cellulose or glass. The way a sheet of Polaroid affects light has its macroscopic counterpart in a grid

of parallel conducting wires. The grid affects an unpolarized beam of radio waves or microwaves in exactly

the same fashion, transmitting only the component whose electric vector is perpendicular to the direction

of the wires, provided that the separation between wires is somewhat less than the wavelengths of the

radiation.
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Incident

y unpolarized

light

Polarized

light
Polarized

light

cos^e

FIGURE 40-5

Two parallel polarizing sheets, one

rotated so that its transmission axis is

at an angle with respect to the

other. Unpolarized light traveling along

the X axis at A becomes linearly

polarized in the y direction at B and

polarized at an angle 6 with respect to

the 1/ axis at C. If the intensity at B

is Iq, the intensity at C is Iq cos^

(for "ideal" polarizing materials).

Incident

unpolarized

light

Reflected ray

is 100% linearly

polarized

(perpendicular

to the plane

of the paper).

Index of

refraction n

Refracted ray is

partially linearly

polarized

(predominantly

in the plane

of the paper).

FIGURE 40-6

When light is incident at the polarizing

angle 9^, the reflected and refracted

rays are at right angles.

EXAMPLE 40-1

Unpolarized light of intensity /g is incident upon two (ideal) polarizing sheets

whose transmission axes are at an angle of 35° with respect to each other. Find

the intensity / of the light emerging from the second sheet in terms of 1q.

SOLUTION

After passing through the first sheet, the light intensity is reduced to (/o/2). The

second polarizing sheet further reduces the intensity by a factor of cos' 9. So

the final beam intensity is

/ = k
cos- 35° 0.336/o

40.3 Polarization by Reflection and Scattering

Another way to obtain polarized light is by reflection from a nonconducting

surface such as glass, water, or a glossy painted surface. The reflected beam

may be partially, or wholly, polarized depending on the angle of incidence.

Sir David Brewster, a Scottish physicist, investigated the reflection from glass

in 1812 and found that the reflected wave was 100% polarized when the re-

fracted and reflected waves at the surface of the glass were at right angles.

This relation becomes plausible when we think of the incident unpolarized light

as made up of two (incoherent) £-field components at right angles (Figure

40-6). As the light is refracted into the material, it causes electrons to vibrate

along these right-angle directions. However, since accelerating electrons cannot

radiate energy along the direction of acceleration, the electron vibration com-

ponent in the plane of the diagram in the material cannot reradiate in the direc-

tion of the reflected beam. Only the vibration component perpendicular to the

plane of the paper radiates in that direction, producing a reflected beam that

is 100% polarized, as shown.
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Letting dp be the polarizing angle of incidence that produces this right-

angle condition, we have 0p + 62 = 90°. Combining this equation with Snell's

law for refraction, n^ sin 9^ = Uj sin Oj, we can derive the following relation,

found in 1812 by Sir David Brewster (Problem 40B-10):

BREWSTER'S LAW
(for 100% polarization

of light by reflection

from dielectric materials)

tan 0p = n (40-2)

where n = njhh, the index of refraction of the material relative to that of the

surrounding medium. The phenomenon works only for dielectric materials. (The

process of reflection by conducting surfaces is more complex, and we will not

take up those cases. In general, metallic surfaces reflect all components of

polarization with varying degrees of effectiveness, depending on the angle of

incidence.)

Sunglasses made of polarizing sheets make use of the fact that glare

reflections from water surfaces, roadways, and other horizontal surfaces are (at

least partially) linearly polarized; such reflections can therefore be reduced if

the transmission axis of the sunglasses is oriented correctly. (What direction

is correct?)

EXAMPLE 40-2
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FIGURE 40-8

Crossed polarizing sheets. The left-hand

sheet is darker, indicating that sky light

is partially polarized.

100%
linearly

polarized

Component
directions

of induced

vibrations

of electrons

Incident

unpolarized

light

100%
inearly

polarized

inearly

polarized

FIGURE 40-7

Scattering of unpolarized light by

molecules. The transverse oscillating

electric fields of the incident light set

electrons into vibration in all directions

in the yz plane, shown here resolved

into u and ; component directions.

Each component radiates like a dipole

antenna (see Figure 35-14). For an

observer in the +y directions, only

the + ; component of electron motion

radiates in that direction, so the

scattered radiation is 100% polarized.

(An antenna does not radiate along the

direction of its length.) Similarly, only

component motions of electrons in the

+ y directions contribute to radiation in

the +; direction; hence it also is 100%
linearly polarized. Scattering in the

forward and backward directions is

unpolarized; at other angles the scattered

radiation is partially polarized.

40.4 Birefringence

In a few crystalline substances, the atoms are arranged in arrays that have high

degrees of symmetry. As a result, they have just a single index of refraction,

which is independent of the polarization direction of the incident light. Most

gases, liquids, and amorphous solids such as unstressed glass or plastic also

behave this way. They are called optically isotropic. However, many crystalline

substances and stressed amorphous materials have considerable asymmetries

in their basic molecular structures. As a result, they have two indices of refrac-

tion, depending on the direction of polarization of the incident light. These

doubly refractive, or birefringent, substances are optically anisotropic. The reason

for the two indices of refraction is straightforward. If the crystal lattice of

atoms is not symmetrical, the binding force on the electrons is also not sym-

metrical. That is, electrons displaced from their equilibrium positions along one

direction have a greater effective "spring constant" than when displaced along

another direction. Because the propagation of electromagnetic waves through

materials is a process of electrons absorbing and then reradiating this energy,

the fact that electrons respond differently along one direction than along an-

other causes the waves to be transmitted with different speeds in different

directions.

Calcite, quartz, and ice are examples of birefringent materials. Figure 40-9

shows that an unpolarized ray incident on calcite splits into two polarized

components: an ordinary ray (called the "o-ray"), which obeys Snell's law of

refraction, and an extraordinary ray (the "e-ray"), which does not. Within the
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CllclM '.

(birefrlnqi

e-Wave

surface

(a) A calcite crystal forms a

double image.

o-Wave
surface

A point light-source inside a

calcite crystal generates two
different Huygens' wave
surfaces. The o-wave surface

(solid line) is a sphere. The
e-wave surface (dashed line) is

an ellipsoid of revolution

formed by rotation of an

ellipse about the axis that

passes through the two points

where the circle and ellipse

shown in the figure are in

contact. This axis is called the

optic axis and is the direction

in which both the o-wave and

the c-wave propogate with the

same speed. In the plane

perpendicular to the optic axis,

the e-wave also propagates in

the same direction as the

o-wave, but with greater

speed. (Note that the optic

"axis" is a direction, not a line.)

Incident

unpolarized

light

(b) An unpolarized ray incident

perpendicularly on the face of

a calcite crystal splits into two

polarized rays. The o-ray

continues in the same straight

line; the e-ray is at an angle

inside the crystal, emerging

parallel to the o-ray but

displaced to one side. (This is

one case in which the direction

of the ray is not normal to the

wavefronts.)

FIGURE 40-9

Some optical properties of calcite, a birefringent crystal.

crystal, the extraordinary ray generally does not propagate in the same direc-

tion as the incident ray. To observe this effect, place a crystal of calcite on a

piece of paper with a black dot on it; two images of the dot can be seen. Rota-

ting the crystal causes one image to remain stationary, while the other image

revolves around it. Furthermore, the two images are linearly polarized with

their directions of polarization at right angles.^ Magnetized plasmas also exhibit

^ The polarization of these two images was the effect that enabled Malus to discover that reflected light

could be polarized. The Paris Academy had offered a prize for a theory of double refraction. In 1808,

Malus was standing at a window of his house examining a calcite crystal hoping to learn something

about double refraction. By chance, he happened to look through the crystal at the image of the setting

sun reflected in the windows of the nearby Luxembourg Palace, and he was surprised to see one of the

two images disappear as he rotated the calcite. Serendipity had struck again. Not only did Malus have

the good fortune to have a natural polarizer in his hand, but he was lucky enough to be suitably aligned

at the Brewster angle to the palace window! He spent the rest of the night experimenting with candlelight

reflected at various angles from water and glass surfaces. This was about forty years before light was

understood as a transverse electromagnetic wave, so the effects of polarization were truly a mystery.

FIGURE 40-10

Safety glass used for the front

windshields of automobiles is usually

formed of a transparent plastic sheet

glued between two glass sheets so that

if the windows shatter the glass

fragments will be held together. The

side and rear windows, however,

are often a single sheet of glass

heat-treated in a way that purposely

introduces mechanical strains into

the glass as it cools. If broken, the

entire window then crumbles into

relatively safe, gravel-sized fragments

rather than shattering into large

shards as ordinary glass does. The

strains make the glass birefringent.

As shown here, you can see this strain

pattern when partially polarized sky

light is reflected at the Brewster angle

from the rear window. Although no

polarizing filters were used for this

photograph, viewing the reflection

with polarizing sunglasses makes the

strain pattern even more pronounced.



934 40 / Polarized Light

birefringence, and the effect is a useful tool in astronomical studies of magnetic

fields in distant clouds of ionized gases.

A few crystalline substances are natural polarizers in that they absorb

one component of polarization while being transparent to the other compo-

nent. Tourmaline, a semiprecious stone often used in jewelry, is an example.

This property of selective absorption is called dichroism (from the Greek di, mean-

ing "two," and chws, meaning "skin" or "color"), because when viewed by
transmitted light along two different directions these crystals usually exhibit

two different colors. Unfortunately, natural dichroic crystals are generally very

small.

40.5 Wave Plates and Circular Polarization

As mentioned previously, a birefringent material has two indices of refraction,

one each for the o-ray and the f-ray. Light therefore travels with two different

speeds through the material, depending on the direction of polarization of the

incident light. (In calcite, the e-ray is faster; in some other materials, the o-ray

is faster.) Suppose that we cut a piece of calcite into a thin slab"* such that for

a given wavelength of light the o-ray emerges from the slab just half a wave-

length behind the e-ray. The two rays are thus out of phase by 180°. Such a

slab is called a halfwave plate. It has interesting properties.

In Figure 40-11, a beam of light traveling along the x axis is linearly

polarized at 45° with respect to the y axis. We can represent its electric field

as two electric field components along the y and z axes that vibrate in phase

with each other. (Do not confuse this representation with that of Figure 40-3b,

in which components of unpolarized light have random and changing phase

M

Direction

of linear

polarization

FIGURE 40-11

A linearly polarized light wave travels

along the x axis, with its direction of

polarization at 45° with respect to

the y axis. The electric field E is

resolved into two equal-amplitude

components along the i/ and z

directions, respectively.

' In general, a ray of light incident on a birefringent material is split into two distinct beams traveling al

an angle to each other. However, there are certain directions in which the rays travel along the same direc-

tion at different speeds, along the direction of the "optic axis." The slab is constructed with this direction

perpendicular to the front and back surfaces of the plate so that the two rays do not get out of alignment

in traveling through the slab.
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Direction

of linear

polarization

Fast

direction

Half-wave

plate

FIGURE 40-12

The halfwave plate is oriented so that

By is along the "fast" direction and

E- is along the "slow" direction. As

they emerge from the halfwave plate.

the Ej vibrations have been retarded

a half-wavelength (180°) behind the E^

vibrations, shifting the direction of

polarization by 90°.

relationships.) Now allow this polarized light to enter a halfwave plate oriented

so that these two components become the o- and e-rays in the plate. As they

pass through the plate, the o-ray is retarded slightly relative to the e-ray. When
they emerge, the components will be exactly 180° out of phase, shifting the

direction of polarization 90°, as shown in Figure 40-12.

Figure 40-13 shows the effect of a quarterwave plate (that is, the slow and

fast rays become out of phase by 90°). The two components of the electric

field emerge 90° out of phase, producing circularly polarized light. If you look

toward the source of such a wave as it approaches you, its electric field vector

E will rotate at an angular frequency OJ = Znf (where / = light frequency).

Direction

of linear

polarization

Quarterwave

plate

(a)

(b) When we look along the

negative x direction, the E

vector of the approaching

wave rotates clockwise.

FIGURE 40-13

The quarterwave plate is oriented so

that E,, is along the "fast" direction

and E. is along the "slow" direction.

As these two equal components emerge

from the quarterwave plate, the E,

vibrations have been retarded a

quarter-wavelength (90°) behind the Ej.

vibrations, producing a circularly

polarized wave.
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FIGURE 40-14

If a quarterwave plate is oriented

at some arbitrary angle with respect to

the direction of polarization of the

incident light, the electric field

components are unequal in magnitude

(but 90° out of phase) and the emerging

light is elliptically polarized.

Depending on which component lags behind, the direction of rotation will be

dochvise or amnterdockwise, corresponding to the two possible states of cir-

cularly polarized light/" If the direction of polarization is at an angle other

than 90° with the fast and slow axes, the y and z components of the electric

field are unequal (but still 90° out of phase), producing elliptically polarized

light (Figure 40-14). The general name for halfwave plates, quarterwave plates,

and so on, is retardation plates.^

EXAMPLE 40-3

What minimum thickness of calcite will make a halfwave plate for yellow light

of wavelength A = 589.3 nm7 The indices of refraction for the o- and e-rays are

rig = 1.6584 and n^ = 1.4864, respectively.

SOLUTION

The times t^ and t^ for the o- and ?-rays to travel through a plate of thickness

d are t„ = d/v„ and t^ = d/v^. The respective velocities in the plate are v„ = c/n„

and v^ = c/rig. The time difference. At = (/„ — t^), is thus

Af = - («„ - n^}
c

(40-3)

To form a halfwave plate, we want the emerging e-ray to travel (in air) a half-

wavelength before the o-ray finally emerges from the plate. The time required

to do this is therefore

Af =
(A/2)

(40-4)

Combining Equations (40-3) and (40-4) gives X/2 = d(n„ — n^). Solving for the

plate thickness d and substituting numerical values yields

d =
X (5.893 X 10 ' m)

2(1.6584 - 1.4864)
1.713 X 10"

Note that a phase difference between the o- and e-rays of three-halves of a wave-

length (3A/2) would also produce a "halfwave" plate. In this case, the calcite

would be three times as thick, or 5.139 x 10"*" m. Similarly, 5//2, 7A/2, etc.,

would also act as "halfwave" plates.

^ As discussed in Chapter 35, a light beam carries linear momentum, so that when it strikes an absorber it

imparts a force against the absorber. It can be verified experimentally that, in addition to this force, a

mcularly polarized light beam has angular momentum and therefore also exerts a torque on the absorber.

It is interesting that in the particle, or photon, model for light every individual photon is circularly polarized

and carries one unit of angular momentum L = h/ln, where h is Planck's constant. The conservation of

angular momentum requires that an atom that emits a photon must therefore itself undergo a change of

angular momentum by one unit in a sense of rotation opposite to that of the photon. Plane-polarized

light is actually an equal mixture of photons, with clockwise and counterclockwise senses of rotation.

^ You can make fairly good retardation plates for amateur experimentation from certain kinds of cellophane

tape, or by stretching transparent plastic food-wrap films. For interesting experiments with these plates,

see the "Amateur Scientist" section of Scientific American. December 1977.
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40.6 Optical Activity

Just as certain materials transmit linearly polarized light with two different

speeds, some substances transmit circularly polarized light with two different

speeds, depending on the sense of rotation of the electric vector. As will be

explained, this has the interesting effect of causing a shift in the direction of

linearly polarized light. For example, if a sugar solution is placed between a

polarizer and an analyzer, the solution will rotate the direction of polarization,

as shown in Figure 40-15. Such substances are called optically active. The amount

of rotation is proportional to the distance traveled; in solutions, it is also pro-

portional to the concentration of the optically active substance.

We can explain the mechanism causing the rotation by recognizing that

linearly polarized light may be considered as the sum of two circular polar-

izations rotating in opposite directions. Figure 40-16. In optically active sub-

stances, one of the rotating components of light travels through the material

faster than the other. This causes the two rotating components to gradually

change their phase with respect to each other, so they add to a resultant vector

along a different direction. Consequently, the direction of linear polarization

gradually changes to a new direction as the light travels through the substance.

The shift may be in a clockwise or a counterclockwise sense, depending

on the arrangement of atoms in the molecules. For example, sugar comes in

two different forms with the same chemical formula, but with atoms arranged

as mirror images of each other. Such pairs are called stereoisomers, Figure 40-17.

right

(a) As a linearly polarized wave travels through an optically active substance,

the plane of polarization gradually rotates about the direction of

propagation.

FIGURE 40-16

A linearly polarized light wave travels

OUT of the paper toward the reader.

The electric vector E oscillates up and

down along the dashed line (the

direction of polarization). We may
represent the vector E as the sum of

two circularly polarized components,

E|ef, and E,jght- rotating in opposite

senses as shown. As they rotate, they

add together to form the oscillating

vector E.

Light

source

Polarimeter

chamber

Polarizer

Analyzer

(b) A polarimeter measures the angle 6 through which the direction of

polarization is rotated. Often, different wavelengths are rotated by

different amounts, causing color changes as the analyzer is rotated.

To standardize measurements, usually light of a single specified

wavelength is used.

FIGURE 40-15

Optically active substances cause a shift in the direction of linearly polarized light.

FIGURE 40-17

Stereoisomers have the same chemical

composition, but the physical

configurations of their atoms are

mirror images.



0^,8 40 Polarized Light

r^^-
Incident

light »-

Reflected ^
light

Mirror

Polarizer

Polarizer

Liquid

crystal

Incident

light

(b)

FIGURE 40-18

UquiA crystal displays. An interesting

application of optical activity is the

liquid crystal display (LCD) used on

wristwatches, lap-top computer

screens, calculators, the gallon- and

dollar-displays on some gas pumps,

and many other items. The molecules

of a liquid crystal are more ordered

than in a liquid, but not as ordered as in a

crystal. They have interesting properties.

Certain types of LCs have the ability

to rotate the direction of polarization

Voltage

applied

to crystal

(c) A strip of Polaroid reveals the direction of

polarization of the light reflected from the LC
display on this hand calculator.

of polarized light and to lose that

ability in the presence of a small electric

field. In Figure 40- 18a, a thin layer of

LC that causes a 90° rotation is placed

between crossed polarizing sheets and

backed by a mirror. When light is

incident from outside, the polarized light

falling on the LC is rotated 90°,

reflected, and rotated 90° again so that

it passes through the front polarizer

and appears bright in reflected light.

When a voltage is applied to the

crystal. Figure 40-18b, the plane of

polarization is not rotated and no light

reaches the mirror; hence that region

appears dark. Electrical circuitry is

formed by transparent conducting

electrodes evaporated on the surface.

With a grid of closely spaced

conducting rows and columns, pictures

can be formed as patterns of extremely

small dots. LCDs require very little

power because the ambient room

illumination is used as the light source.

The molecules of one type form long twisted chains that rotate clockwise as

you travel along the axis, while the other type forms a counterclockwise helix.

The sugar called dextrose (from the Latin dextro, meaning "right") causes the

direction of linear polarization to revolve clockwise as seen by an observer

toward whom the light is moving, a sense of rotation called right-handed. The

sugar called levidose (from the Latin leva, meaning "left") causes a counterclock-

wise or left-handed rotation.^ A saccharimeter measures the amount of optical

rotation to determine the sugar concentration in commerical syrups, wines, and

so on, and in urine samples to test for suspected diabetes.

40.7 Interference Colors and Photoelasticity

If a sheet of birefringent cellophane is folded randomly several times and placed

between polarizing sheets, the transmitted light shows a pattern of vividly

colored areas. These colors arise because certain layers of cellophane may act

Note that a given helix has the same sense of rotation as you travel along the axis in either direction

—

so it doesn't matter how the molecules are oriented in the solution. You can easily observe optical activity

in ordinary transparent com syrup (dextrose), which causes about llVcm rotation. Turpentine causes a

counterclockwise rotation of — 3.7''/cm. Liquid crystals, a class of organic compounds that can flow yet

maintain molecular orientations, have helical molecules that produce extremely large wintory powers, on

the order of 40 OOO'/mm.

I
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&_3H

FIGURE 40-19

Models of mechanical structures are

made of special photoelastic plastic and

placed between polarizing sheets. When
forces are applied to the models, they

become birefringent, producing patterns

that indicate the stress distribution

within the models.

as a quarterwave plate for red light, while also acting as a halfwave plate for

blue light, and so forth. Thus the direction of polarization of the light striking

the cellophane may be rotated different amounts for different wavelengths,

allowing some wavelengths to pass the analyzer while others are blocked. The

emerging light is therefore deficient in certain portions of the spectrum, pro-

ducing striking color effects. Rotating the cellophane or either polarizing sheet

produces changing colors that are beautiful to see.

This aesthetically pleasing effect has practical uses. Transparent scale

models of mechanical structures such as I-beams and arches are made from

special photoelastic plastics. When the models are placed between a polarizer

and an analyzer and "loaded" by having forces applied to them, the plastic

becomes birefringent in amounts proportional to the applied stress. The resul-

tant patterns of light and dark (and colors) give a map of the regions of me-

chanical stress within the model. Figure 40-19. Similar photoelastic colors can

be observed if you use polarizing glasses to view light reflected from plastic

boxes, plastic T-squares used in drafting, and other transparent objects, Figure

40-20. Some plastics are not strongly birefringent, so you may have to search

to find those that show marked effects.

Polarized light is useful in numerous other applications. For example,

atoms in the presence of magnetic fields emit polarized light (the Zeeman effect);

this polarization is used in the investigation of magnetic fields near sunspots

and in distant stars. Also, magnetic fields in far regions of our galaxy cause

elongated dust grains present in interstellar gas and dust clouds to align parallel

to one another. Light from nearby stars scattered by these clouds is partially

polarized, so by analyzing the percentage and direction of polarization of this

scattered starlight, we can obtain information about these distant magnetic

fields. Much information about crystal structure, biological specimens, and other

materials is obtained by analysis with polarized light.

FIGURE 40-20

A plastic template placed between

sheets of Polaroid produces

rainbow-colored strain patterns. When
the template was manufactured,

stresses caused the plastic to become

birefringent.
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Summary

Transverse waves are linearly polarized if all the vibrations asso-

ciated with the waves are parallel to the direction of a fixed

line in space. The direction oj polarization of an electromagnetic

wave is the direction of the electric field vector.

When a single (free) atom undergoes a transition from a

higher to a lower energy state, it emits a wave train of radia-

tion, which for visible light is of the order of 1 to 3 m long in

the direction of propagation. Unpolarized light is the superpo-

sition of many wave trains whose electric vectors are oriented'

randomly in all possible directions.

Certain transparent materials such as Polaroid selectivity

absorb some directions of polarization more than other direc-

tions, so they transmit electromagnetic waves that are partially

or completely linearly polarized. If the direction of polarization

of incident polarized light (intensity Iq) has an angle 9 with

respect to the transmission axis of an ideal polarizer, the trans-

mitted intensity / (proportional to E~) is

MALUS'S LAW 7 = /o cos^ 6

Unpolarized light becomes 100% polarized when re-

flected from dielectric materials at an angle of incidence called

the Brewster angle 0^, for which the reflected and refracted

rays are at right angles.

BREWSTER ANGLE 0„ tan t/p = n

where n is the index of refraction of the material relative to

that of the surrounding medium. At other angles, the reflected

light is partially polarized.

Birefringent substances have two indices of refraction, de-

pending on the direction of polarization of the incident light.

Retardation plates (or wave plates) are constructed of birefringent

materials so that the ordinary (o) and extraordinary {e) waves

emerge out of phase. When a polarized wave passes through

a quarterwave plate, one component is shifted 90° relative to the

other component; when a polarized wave passes through a half-

wave plate, one component is shifted 180° relative to the other.

Circularly polarized light is composed of o and e components of

equal amplitude that are out of phase by 90°. Optically active

substances (sugar solution, for example) transmit circularly po-

larized light with two different speeds, causing a shift in the

direction of incident linearly polarized light.

Interference colors ate produced from white light when var-

ious thicknesses of birefringent films are placed between po-

larizing sheets (a polarizer and an analyzer). The colors arise

because certain layers of the film act as a halfwave plate for,

say, blue light, but as a quarterwave plate for red light, thus

shifting the direction of polarization more for certain wave-

lengths than for others and allowing some wavelengths to pass

the second polarizer while others are blocked. Therefore, the

emerging light has certain portions of the spectrum missing;

the remaining portions produce the color effects.

We can analyze mechanical structures by constructing

transparent models from photoelastic materials. When a model

is placed between polarizing sheets and mechanically stressed,

the material becomes birefringent, producing fringe patterns

that reveal the stress conditions within the structure.

Questions

1. Can longitudinal waves such as sound waves be polarized?

If so, how?

2. Which phenomenon, polarization or interference, pro-

vides the most convincing evidence for the wave nature of

light?

3. What aspect of the wave nature of light do polarization

phenomena reveal that interference does not?

4. A radio-telephone transmitter in an automobile uses an

antenna that is straight and vertical. Is the electromagnetic

radiation from such an antenna vertically or horizontally

polarized? Explain.

5. A grid of closely spaced vertical wires is opaque to verti-

cally polarized microwaves. Why?

6. Light is not transmitted through crossed polarizers. How-
ever, if a third polarizer is placed between the crossed

polarizers, some light may be transmitted. Explain.

7. How can a stack of polarizing sheets be used to rotate the

plane of polarization of polarized light?

8. One form of a variable-density light filter consists of two
polarizing sheets placed together such that the orientations

of their transmission axes may be rotated relative to each

other. Does a small rotation produce a greater change in

transmitted intensity when the axes are nearly aligned,

nearly crossed, or at some angle in between?

9. One sheet of polarizing material is removed from a stack

of randomly oriented polarizing sheets. As a result, the

light transmitted through the stack decreases. How could

this happen?

10. An ideal polarizing sheet transmits only half of the incident

unpolarized light. What happens to the other half?

11. Many fishermen use polarized sunglasses while fishing.

Why?

12. Can light be polarized by reflection at an interface between

two transparent media if the light is traveling toward the

interface from the region of higher refractive index?

13. How would you determine whether a beam of light is

unpolarized, plane-polarized, or circularly polarized?

14. In some situations a photographer uses a polarizing filter

over the lens of his or her camera. What would be some

of these situations?

15. A beam of plane-polarized light may be represented by

the superposition of two circularly polarized beams of op-

posite rotation. What is the effect of changing the relative

phase of the two beams?
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16. A fascinating device consists of a pair of polarizing sheets,

each of which has a quarterwave plate laminated to it.

Light is transmitted when one of the pair is placed over
the other, but is not transmitted when the order of the

pair is interchanged. What are the details of their con-

struction and why do they behave as they do?

17. If one slit of a double-slit interference apparatus were
covered by a polarizing sheet with its axis perpendicular

18

to the slit, while the other slit were covered by a polarizing

sheet with its axis parallel to the slit, would an interference

pattern be produced? Explain.

Photoelastic plastic models of mechanical structures placed

between polarizers exhibit stress by producing colored

bands, as shown in Figure 40-16. How can the spacing of

the bands be interpreted?

Problems

40.2 Polaroid

40A-1 Unpolarized light passes through two (ideal) polariz-

ing sheets. If the angle between the transmission axes of the

sheets is 60°, detenmine the fraction of the incident light inten-

sity absorbed by the sheets.

40A-2 Two ideal polarizing sheets are placed together so

that there is an angle 6 between their transmission axes. Find

the angle such that the sheets transmit 45% of the incident

unpolarized light intensity.

40B-3 Two polarizing sheets are placed together with their

transmission axes crossed so that no light is transmitted. A
third sheet is inserted between them with its transmission axis

at an angle of 45° with respect to each of the other axes. Find

the fraction of incident unpolarized light intensity that will be

transmitted by the combination of the three sheets. (Assume

that each polarizing sheet is ideal.)

40B-4 Unpolarized light falls upon three ideal polarizing

sheets. The transmission axis of the second sheet is rotated 30°

with respect to that of the first sheet, and the transmission axis

of the third sheet is rotated 30° with respect to that of the sec-

ond sheet. Calculate the fraction of the incident light intensity

transmitted by the three sheets.

40.3 Polarization by Reflection and Scattering

40A-5 A beam of unpolarized light is incident upon a sheet

of glass at the polarizing angle of 58°. Find the angle of the re-

fracted beam inside the glass.

40A-6 For a particular wavelength, the index of refraction

is 1.50 for a sample of glass. Calculate the Brewster angle ()„

for this refractive index. In general, does the Brewster angle

increase or decrease as the wavelength of incident light

increases?

40A- 7 The Brewster angle of a plate of glass is 57° when

the plate is in air. Calculate the Brewster angle for the glass

plate when the plate is under water {n = 1.33).

40.A.-8 An unpolarized light beam reflected from the surface

of water is plane polarized for a reflection angle of 53°. (a) Cal-

culate the index of refraction for the water, (b) Show that the

angle that the refracted beam makes with the normal to the

surface is the complement of 53°.

40B-9 The critical angle for total internal reflection in a di-

electric material is 0,.. Derive an expression for the Brewster

angle 0p in terms of 0^ for the material.

40B-10 Derive Brewster's law for polarization by reflection.

Equation (40-2).

40.4 Birefringence

40.5 Wave Plates and Circular Polarization

40.6 Optical Activity

40B-11 Quartz is birefringent, with indices of refraction of

1.553 and 1.544 for incident light of wavelength 589 nm. Find

the minimum thickness of quartz that acts as a quarterwave

plate at this wavelength.

40H- 1 2 A beam of circularly polarized light is incident upon
a polarizing sheet. Explain why the light is transmitted equally

well for all orientations of the sheet.

40B-13 (a) Show that when a beam of circularly polarized

light is incident upon a quarterwave plate the emerging light

is plane-polarized, (b) Show that if the rotation sense of the

circulariy polarized light is reversed the direction of polariza-

tion of the emerging light is changed by 90°.

40B-14 A retardation plate made of quartz (n^ = 1.544,

n„ = 1.553) is cut so that the optic axis lies in the plane of the

plate. Calculate the minimum thickness of the plate such that

it will be a hillwave plate for light with a wavelength of

500 nm and a halfwave plate for light with a wavelength of

600 nm.

40B-1 5 A concentration of one gram of cane sugar (sucrose)

in one cubic centimeter of water rotates lineariy polarized light

66.8° for 10 cm of path length. An unknown sucrose solution

in a saccharimeter 35 cm long produces a 16° rotation. Find the

concentration of the solution.

40B-16 A halfwave plate is inserted between two polariz-

ing sheets whose directions of polarization are parallel. The
halfwave plate is oriented with respect to the first sheet as in

Figure 40-11. (a) Explain why nc light passes through the com-

bination, (b) If, instead, the two polarizing sheets are crossed

at 90°, explain why all the light transmitted by the first sheet

passes through the second sheet, (c) In part (a), explain quali-

tatively the nature of the light emerging from the combination

as the halfwave plate is slowly rotated through 360°.

Additional Problems

40C-17 A variable transmission filter is composed of two

polarizing sheets, one of which can be rotated relative to the
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other. Determine the angle between the transmission axes at

which an incremental change in rotation dB produces the

greatest fractional change dl/Io in the intensity of the trans-

mitted light.

40C-18 Two ideal polarizing sheets are placed together

with their transmission axes at 90°. A third sheet is inserted

between the sheets so that its transmission axis is at an angle

with respect to that of the sheet closest to an incident beam
of unpolarized light. Derive an expression for the fraction

///q of the incident light intensity /(, that is transmitted through

the three sheets as a function of 0.

40C-19 A stack of polarizing sheets will rotate the direction

of polarization of incident, linearly polarized light if each suc-

cessive sheet is oriented at an angle 9 (in the desired direction)

with respect to the previous sheet. Using 10 ideal sheets to

produce a 90° rotation, determine the maximum percentage of

the incident, polarized light intensity /q that will be trans-

mitted through the tenth sheet.

40C-20 Light composed of both linearly polarized and un-

polarized light passes through an ideal polarizing sheet. As the

sheet is rotated, the transmitted light varies from a maximum
intensity to one-third maximum intensity. Calculate the fraction

of the incident light intensity that is linearly polarized.

40C-21 Figure 40-8b shows that the extraordinary ray does

not conform to Snell's law for refraction. Utilizing Huygens'

principle show, by a sketch of Huygens' wavelets within the

calcite, how the refraction shown in the figure is possible.

40C-22 Figure 40-21 shows a calcite prism made with its

optic axis perpendicular to the plane of the paper. A beam of

yellow sodium light (/ = 589 nm) is incident normally on the

top face as shown. For this wavelength, the indices of refrac-

tion are n„ = 1.658 and n^ = 1.486. (a) Find the minimum
prism angle 6 such that the ordinary ray will be totally intern-

ally reflected, (b) Show that the extraordinary ray will emerge

from the slant face and thus be 100% linearly polarized. What
is this direction of polarization? (c) Find the direction of the

extraordinary ray after it emerges.

Incident

unpolarized

light

(Optic axis

is perpendicular

to plane of paper)

FIGURE 40-21

Problem 40C-22.

40C-2 3 A Babinet compensator consists of two quartz wedges,

A and B, in contact with one another as shown in Figure 40-22.

The optic axis of wedge A is vertical in the plane of the paper

and that of wedge B is perpendicular to the plane of the paper.

Thus, the extraordinary ray (refractive index ^2) in wedge A
becomes the ordinary ray (refractive index n

1
) in wedge B, and

Unpolarized

incident light

FIGURE 40-22

Problem 40C-23.

vice versa. By sliding wedge B along wedge A, we vary the

difference between distances .Ti and x^- Show that a phase

difference A(p between the two emergent rays can be varied

according to the equation A((> = ((27r)//l)(«2 — «i)(xi — X2).

40C-24 Unpolarized light of wavelength / is incident upon

a thin slab of birefringent material. The slab thickness is b, and

the indices of refraction are »„ for the ordinary ray and n^ for

the extraordinary ray. In terms of the given constants, derive

an expression for the phase difference (j) between the two

emerging rays from the slab.

40C-25 The minimum thickness of the halfwave plate de-

scribed in Example 40-3 is too thin to be practical. Determine

an exact thickness near 0.1 mm that will produce the same

effect as the minimum thickness.

40C-26 A quartz plate 0.610 mm thick is cut so that the

optic axis lies in the plane of the plate. Polarized light incident

on the plate has its direction of polarization at an angle of 45°

with respect to the optic axis of the plate. Calculate the wave-

length(s) between 600 nm and 700 nm that will produce an

emergent light that is linearly polarized. (Assume that n^ =
1.544 and n„ = 1.553 for all wavelengths.)

40C-27 Show that the angle of rotation for polarized light

passing through an optically active medium is exactly half of

the phase shift between the right and left circularly polarized

components.

40C-28 As shown in Figure 40-16, linearly polarized light

may be considered as the sum of two circularly polarized com-

ponents, rotating in opposite senses. In some optically active

substances, circularly polarized waves travel with two different

speeds, ^l ^nd v^, respectively, for left and right senses of ro-

tation. As a consequence, linearly polarized light incident on a

slab of this substance will emerge with its direction of polariza-

tion rotated through an angle 6. Derive an expression for the

angle 9 in terms of the thickness d of the slab, the two indices

of refraction «l snt^ "r' a"'^ the wavelength A.

40C-29 Colorless com syrup (from the grocery store) is

mixed with 3 times its own volume of water. A 20-cm path

length of this solution rotates linearly polarized light 59°. Find

the rotation produced in a 10-cm path length of pure com
syrup.

40C-30 Describe the appearance of a liquid crystal display

(Figure 40-18) whose polarizers are oriented with their axes

parallel.



CHAPTER 41

Special Relativity

It was Einstein who made the real trouble. He announced in 1905 that

there was no such thing as absolute rest. After that there never was.

STEPHEN LEACOCK

Newton, forgive me.

ALBERT EINSTEIN

41.1 Introduction

Two revolutions in physics occurred in the early part of the twentieth century

that radically changed our concepts of the universe. One was the work of sev-

eral people over a period of decades: the development of quantum mechanics.

The other was the theory of special relativity,' published by Albert Einstein

in 1905. Einstein's theory not only led to apparent paradoxes that seemed to

violate common sense in the most radical way, but it completely changed our

basic understanding of space and time. As far as is known today, special rel-

ativity unquestionably describes the way the world "is."

The main difficulties in understanding special relativity are not mathemat-

ical ones. Rather, the challenge comes from our reluctance to discard deeply

ingrained ideas about space and time. We grow up using Newtonian concepts

to explain physical phenomena, and it is disturbing to have cherished beliefs

overthrown. Furthermore, the structure of our language reflects these common-
sense classical notions, so this adds to the difficulty of gaining a new perspec-

tive. Of course, the classical way of thinking cannot be completely wrong,

since it does serve admirably to explain everyday experiences. But scientists

exploring the fine details of natural phenomena must abandon classical concepts

and deal with a more modem theory.

The basic question that relativity asks is this:

// n given phenomenon is viewed from two different frames of

reference that have uniform relative motion with respect to each other,

how do the two measurements of the phenomenon compare?

' The special theory deals with frames of references that have constant motion in a straight line relative to

each other. The general theory, published in 1916, treats accelerated frames of reference (see Section 41.16).
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Einstein points out that making a measurement involves determining

where and when something happens in space and time. In particular, we seek

four quantities about an event that happens at a given point in space and at

a given time:

A point event {x.y.z,i)

Event

I

I

/ P M^Motion of

relative

to S

FIGURE 41-1

The two coordinate systems S and S

.

The S frame has velocity V in the

-\-x direction relative to S. The frames

are coincident at the time f = f' = 0.

At a later time I, their origins O and

O' have moved a distance Vt apart

when the event P occurs.

These four quantities (x,y,z,t) are measured in some inertial frame of refer-

ence that we will call the S frame, assumed to be "at rest." Another frame of

reference, the S' frame, moves with constant velocity V along the -|-x direction

of 5. For convenience, we align the two frames so that their origins and re-

spective axes are coincident at the time t = (see Figure 41-1). Unprimed quan-

tities designate measurements made in the 5 frame, while primed (') quantities

are for the S' frame. Each frame is equally valid, and measurements made in

either frame correctly measure space and time for that frame. Both frames of

reference are inertial frames, since neither has acceleration. Relativity shows

that it is only the relative velocity that is important, not which system is imag-

ined to be "at rest." We could equally well assume that 5' is at rest and S

moves with a velocity —V (in the negative x direction). The basic conclusions

of relativity would be exactly the same.

How to Make Measurements

Basically, all measurements reduce to determining the four quantities associated

with a point event: (x,y,z,t). Einstein suggests that, in principle, a meter-stick

framework be extended throughout the frame of reference and an "observer"

be stationed at every location within the frame. Each observer has a clock that

has been synchronized with all other clocks in the frame. Every event is to be

measured by a "local" observer, situated where the event occurs. The spatial coor-

dinates (x,y,z) of the event are found by reference to the meter-stick frame-

work in that vicinity, and the time (t) is given by the observer's clock. Because

all measurements are of local events, one does not have to take into account

the transit times that would be involved for light signals to travel from some
distant event to the observer. Even if such cases were allowed, however, the

conclusions of relativity would be the same.

41.2 The Galilean Transformation

Classically, we assume that measurements of spatial intervals and time inter-

vals are the same for observers in all inertial frames. Indeed, this is the basic

assumption upon which Newtonian mechanics is founded. It agrees with our

common sense. For relatively slow velocities, Newtonian mechanics is suffi-

ciently valid in all inertial frames of reference (as anyone who has flown in a

smoothly moving airplane will testify). Stated another way, there is no me-

chanical effect by which observers in the S and 5' frames could determine

which frame is "truly" moving and which is "at rest." This fact is known as

the Galilean relativity principle: the laws of Newtonian mechanics are the same

in all inertial frames.

If these assumptions are true, how do we express the relationship be-

tween an event as measured in the 5 frame and the measurement of the same

event as made in the 5' frame?" For the event P depicted in Figure 41-1, simple

'' Note that events happen in space and time. They do not happen in a particular frame of reference. Any

inertial frame can be used for determining the four coordinates of an event, relative to that frame.
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Galilean transformation, Equation (41-1), we have

{X2 - V\2) - Ui - Wi)

or, rearranging the right-hand side.

X,) - va, - f.) (41-2)

The quantity (^2 ~ ^i) is the length of L of the rod as measured in the S

frame. Obviously, it would not make much sense to locate the left end of the

rod at f, and later, after the rod has moved, to locate the other end at a dif-

ferent time ^2- So, in the 5 frame we adopt the reasonable procedure of deter-

mining the locations of the ends simultaneously, when tj = f^ Thus, Equation

(41-2) becomes

or

Xi = Xj — X

L' = L

The ends of the moving object are located simultaneously, so the length

as measured in S (where the object is moving) corresponds to the length as

measured in S' (where the object is at rest). In Galilean relativity, these two

length measurements give the same answer. Einstein showed that this conclu-

sion is incorrect.

Velocity Addition in Galilean Relativity

At the instant the S and 5' frames coincide at f = f' = 0, assume that a particle

passes the origin moving along the -\-x (and -\-x') direction with a constant

speed u' as measured in the 5' frame. We obtain the velocity addition relation

by considering the following two events:
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velocities are in the —x (or —x) direction, minus signs are used with the

corresponding numerical values. This relation is the same as the one that we
derived previously in Section 9.4.

EXAMPLE 41-1

A child on a moving train rolls a ball along the aisle with a speed of 2 m/s
toward the front of the train, (a) If the train moves along a straight track at a

constant speed of 5 m/s, what is the speed of the ball as measured in the earth's

frame of reference? (b) If the child rolls the ball toward the rear of the train,

what velocity does the ball have in the earth's frame?

SOLUTION

(a) We choose the train as the S' frame and the earth as the 5 frame, with the

+ x and +.r' axes in the direction of the train's motion. In S', the ball's

velocity is u' = 2 m/s. Thus:

(b) In this case, u'

= u' + V = Z m/s + 5 m/s =

- 2 m/s so

7 m/s

u = u' + V = — 2 m/s + 5 m/s = 3 m/s

The numerical value is positive, so in S the ball's velocity is in the +x direction.

To obtain the transformation relation for accelerations, we differentiate

Equation (41-3) with respect to time:

du du dV

dt
~

di dt

Since V is constant, we obtain

a = a (41-4)

The acceleration of a particle is thus the same in all inertial frames of reference

in relative motion. In classical physics, the mass i>i of a particle is not affected

by motion, so ma = ma', which leads to the conclusion that Zf = ma and the

rest of Newtonian laws are valid in both 5 and S', and therefore are valid in

all inertial frames of reference. As we have shown in prior chapters, the funda-

mental conservation relations for energy and momentum are direct conse-

quences of Newton's laws, so we conclude that all the laws of mechanics are

the same in all inertial frames of reference. This statement is called the Galilean

relativity principle. True, the velocity, momentum, and kinetic energy of a

particle will have different values in different frames that are in uniform relative

motion. But the fundamental laws of mechanics will be the same in all inertial

systems. We express this property by saying that "the fundamental laws of

mechanics are invariant under the Galilean transformation."

To the degree of accuracy normally required, classical mechanics provides

an excellent description of the motions of objects. Engineers and scientists

have used it for centuries and will continue to do so. However, after Maxwell

developed electromagnetic theory in the 1860s, certain puzzles emerged that
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(a) At f =f' = 0, a flashbulb is set

off at the coincident origins O
andO'.

(b) In the 5 frame at a later time f,

the expanding spherical

wavefront is centered on the

origin O. The S' frame has

moved in the +x direction a

distance Vt.

(c) In the 5' frame at a later time

t' . the expanding spherical

wavefront is centered on the

origin O' . The S frame has

moved in the —x direction a

distance Vt'

.

FIGURE 41-3

The so-called "paradox" of the

expanding light sphere. Observers in

each frame of reference, measuring the

same expanding wavefront, find that it

is a sphere centered on their own
origin. This is not a paradox in the

context of the new space and time of

special relativity.

were not resolved until Einstein took a bold new approach. The major difficulty

arose because Maxwell's equations predicted a specific speed for light: c =

l/VA'o^o = 3 X 10^ m/s. In the late nineteenth century, light was believed to

be an electromagnetic wave propagated through a medium called the ether.

But if this were true, the speed of light would certainly not have the same

value in frames of reference that moved relative to the ether.* This lack of

invariance of Maxwell's equations with respect to the Galilean transformation

profoundly disturbed Einstein. For philosophical reasons, Einstein felt deeply

that a relativity principle ought to apply to all the laws of physics, not just

the laws of mechanics. In fact, it would be bizarre if mechanics were separated

from the rest of physics in this respect.

41.3 The Fundamental Postulates of Special Relativity

Einstein based his theory of relativity on two assumptions:

BASIC
POSTULATES
OF SPECIAL
RELATIVITY

(1) All the laws of physics have the same form in all

inertial frames. {The Principle of Relativity)

(2) The speed of light in a vacuum has the same value

c in all inertial frames. (The Principle of the Constancy

of the Speed of Light)

The entire theory of special relativity is derived from just these two postulates.

Their simplicity and generality are characteristic of Einstein's genius. As a con-

sequence, Einstein showed that Newtonian mechanics is only approximately

correct, usable in cases in which velocities are small compared with the speed

of light. In fact, Einstein's relativistic mechanics approaches Newtonian me-

chanics when V « c.

The first postulate appears quite reasonable and can be accepted without

qualms. However, the implications of the second postulate seem absurd. For

example, suppose that at the instant the two frames are coincident, a flashbulb

is set off at the coincident origins O and O', Figure 41-3. If the speed of light

is c in all frames of reference, at a later time observers in each frame would

detect a symmetrically expanding sphere of light that is centered on their

respective origin. Though each set of observers measures the same expanding wave-

front, each finds it to he an expanding sphere, centered on the observers' own origin!

In this chapter we will convince you that this, indeed, is the true situation,

and that it is not a paradox.

We now examine some important conclusions of relativity, particularly

with respect to space and time. By themselves, these conclusions seem para-

doxical and contrary to common sense. But if we consider all the conclusions

of special relativity together, and manage to give up our Newtonian concepts of

absolute space and time, they form a coherent and satisfying theory—one that

has been verified experimentally an overwhelming number of times. And, of

course, experiment is the ultimate test of any theory. Einstein commented upon

the fact that relativity disagrees radically with our common sense by saying,

"Common sense is that layer of prejudices laid down in the mind prior to the

age of eighteen."

* For example, motion through the ether (or, equivalently, an ether "wind" blowing past the observer)

should result in a different speed for hght along two right-angle paths: parallel to the motion and at right

angles to the motion. This is the effect sought (but not found) in the Michelson-Morely experiment.

Section 38.5. An analogy to this situation is treated in Problem 9B-23.
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41.4 Setting Clocks in Synchronism

Einstein points out that to make measurements of events, a "local" observer,

situated where the event occurs, determines the coordinates {x,y,z) by compar-

ison with the meter-stick framework, and the time (t) by comparison with the

observer's local clock, which has been synchronized with all other clocks in

the frame of reference. In principle, all measurements are to be made in this fash-

ion. We now discuss the procedure for synchronizing a system of clocks that

are stationed at various points throughout the frame of reference. This matter

of synchronization is the source of many of the "paradoxes" of relativity, so

it has greater significance than might be suspected at first glance.

We cannot synchronize clocks when they are together, then move them

to their respective positions. Because of an effect called time dilation, which

we will discuss shortly, to transport clocks in this fashion would cause them

to get out of synchronization. Instead, Einstein proposed the method illustrated

in Figure 41-4, which utilizes the constant speed of light c in its procedure.

When two clocks are placed at their appropriate locations, a flash-bulb situated

at the point midway between the clocks is set off, sending light pulses in

opposite directions. The light pulses take the same time to traverse equal

distances. The clocks are set so that they indicate the same times at the arrivals

of the pulses. This is the basic synchronizing procedure that, in principle, could

be extended, to all other clocks in the frame of reference one by one. The

entire array of synchronized clocks establishes a time scale by which the simul-

taneity of events separated in space is judged in that frame. This gives the

speed of light a more fundamental significance than that of being just one of

the constants of nature. In particular, it is intimately related to our concepts

of time and of simultaneity.

Clock A

(a)

Light source

at midpoint

sends signals

•

Clock B

O sends signals ^—

^

(b) ( ' V-AAAAAAAr,—1

Signals received

at each clock

©
FIGURE 41-4

One method of synchronizing two

clocks that are separated in space. A
flashbulb at the midpoint sends light

signals to each clock. If the clocks are

set to read the same times when the

signals arrive at each clock, they are

correctly synchronized.

41,5 The Lorentz Transformation

Einstein derived a new set of transformation equations that replaced the Galilean

transformation. They have the same mathematical form as an earlier transforma-

tion developed by H. A. Lorentz, so they are called the Lorentz transforma-

tion. However, Einstein derived them using reasoning different from that of

Lorentz, and the interpretation of the equations is vastly different from the

meaning Lorentz attached to them. The derivation is based upon the second

postulate of relativity and certain assumptions about the homogeneity of space

and time, for example, that as far as physical experiments are concerned, all

points in space are equivalent. To simplify the mathematical form, we define

P = Vjc, where V is the relative speed along the x axis of the two frames of

reference.

THE LORENTZ
TRANSFORMATION
(where fi = Vjc)

X -h W

y = y

t =
t' + Vx'/c^

x- Vt

y' = y

z = z

t'

t Vx/c^

V^^^

(41-5)

' Appendix I presents a simplified derivation of the Lorentz transformation.
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Note that the two sets of equations "turn the crank" in opposite directions.

We obtain either set from the other by interchanging primed and unprimed

quantities and changing the signs of V and p. (To observers in 5, the other

moving frame has a velocity + V; but in S', the other frame has a velocity

— V. Hence there is a sign change.)

The Lorentz transformation has an interesting characteristic. If the veloc-

ity of the moving frame is much smaller than c, then the factor [i approaches

zero and the Lorentz transformation becomes identical to the Galilean trans-

formation. So classical relativity is just a special case contained within Einstein's

more compreliensive special relativity theory.

We now discuss specific details. Note that the only novel features of the

derivations are the use of Einstein's two postulates (as expressed by the Lorentz

transformation). All the surprising conclusions that follow are contained implic-

itly in these two assumptions. Their justification rests on the tremendous

successes that special relativity has had in explaining physical phenomena.

FIGURE 41-5

Einstein enjoying a moving frame of

reference in 1936.

Albert Einstein

i^ etween 1900 and 1927, there were two great revolutions in physics:

quantum mechanics and relativity. The former grew from contributions

by many physicists (including Einstein), but relativity was the creation

of Einstein alone, a stunning accomplishment ranking easily with the

achievements of Newton.

Albert Einstein was bom in Ulm, Germany, in 1879, the year of

Maxwell's death. His father owned a small electrochemical shop. Einstein

did not speak at all before the age of three, nor fluently until he was

almost nine. He particularly disliked the rigid discipline and authoritarian

teaching methods common in German schools. His relatives predicted he

would never amount to much, and his high school teachers considered

him a "disruptive influence," asking him to leave school, which he did

at age 15. Yet during this time he was intensely interested in geometry,

algebra, and calculus; these he studied diligently on his own. After a year

of roaming about in Northern Italy, at age 16 (two years younger than

most applicants) he took the entrance examination for admission to the

Federal Institute of Technology in Zurich, a renowned engineering school.

He failed the test because of deficiencies in modem languages, zoology,

and biology. After retuming to high school to earn his diploma and

doing some extra studying with the help of a friend, he took the exam

again and was admitted. He seemed an indifferent student, uninspired by

the old-fashioned nature of the curriculum, attending classes sporadically,

and spending considerable time in the local cafes. But he also thought a

great deal about physics and during this time taught himself Maxwell's

theory of electromagnetism. He graduated in 1900 with no particular

distinction.

Perhaps it was Einstein's middling academic record that prevented

him from obtaining the immediate teaching position he desired. After an

unsatisfactory interval of trying to eam a living by tutoring poor stu-

dents, he obtained a job in the Swiss patent office in Bem through the

aid of a friend. It was an undemanding position with modest pay, but it

left a great deal of spare time for his absorbing intellectual pursuits.

During the next eight years, Einstein made remarkable contributions to

physics. Though isolated from the ferment and stimulation of an academic

environment, he completed his doctoral thesis and published several
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papers on statistical mechanics and molecular motions. The year 1905

was truly a baruier period, in which he published four short papers on

the photoelectric effect, Brownian motion, and the special theory of rela-

tivity. In spite of Einstein's questionable background, the scientific com-
munity began to recognize the value of his accomplishments. He was
offered numerous professorial positions in various universities; he ac-

cepted those in Zurich and Prague, and he finally took a prestigious

appointment at the University of Berlin which left him entirely free from

specified duties.

In 1916, Einstein published his general theory of relativity. Its

abstract, mathematical nature made acceptance slow until one of its pre-

dictions—the bending of starlight in the strong gravitational field of the

sun—was experimentally verified by a group of English physicists in

1919. After that, Einstein's reputation soared in academic circles and with

the general public (for whom he became the perfect symbol of the ab-

sent-minded brilliant professor, whose theories, it was reputed, "only

seven people in the world could understand"). In 1921, he was awarded

the Nobel Prize in physics—not for relativity (!), but for his explanation

of the photoelectric effect.

Einstein was noted for his warm, generous personality and his gentle

sense of humor. He was a fairly accomplished musician, playing his violin

or piano frequently. Mozart and Bach were his favorites. He had a dogged
persistence in intellectual pursuits, repeatedly seeking simplicity and unity

in describing nature. This fondness for simplicity, for eliminating all but

essentials, was also evident in his personal life: in his clothes and in his

behavior.

Unfortunately, political events—World War I, increasing national-

ism, and the rise of the Nazis—had considerable impact on Einstein's

life. His invited lectures in France and England were occasionally boy-

cotted by some professors whose nationalistic feelings apparently over-

whelmed their scientific interests. Being a Jew and a confirmed pacifist

who refused to support the German war effort, Einstein became the target

of Nazi anti-Semitism. His prestige protected him for a time, but in 1933

he decided to emigrate to the United States, settling after a few years

at the Institute for Advanced Study at Princeton. He continued to work

on a unified field theory in which he attempted (unsuccessfully) to com-

bine gravitation and electromagnetism into a single theoretical structure.

In his later years, Einstein devoted much attention to pacifist ideas,

the Zionist movement, world government, and similar social and political

issues. He became a passionate and fearless spokesman for causes of

human freedom. Some persons considered him naive, but all believed in

his sincerity. He frequently was perplexed and saddened by the contradic-

tions of people and politics. In 1939, concerned about the rising fury in

Europe and aware of German research in uranium fission, he lent his

name to a letter to President Roosevelt urging immediate investigation

into the possibility of a nuclear bomb. After the war, in response to

criticism in a Japanese journal reproaching him for this involvement, he

wrote: "There are circumstances in which I believe the use of force is

appropriate—namely, in the face of an enemy bent on destroying me
and my people."

Einstein died in 1955. His most famous legacy—the truly brilliant

insight of relativity—gives a new unity and clarity to our understanding

of the universe.
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(a) The first event. The moving

clock A ' is coincident with the

stationary clock B in the S

frame. (For convenience, we
set all clocks to read zero at

this instant.)

(b) The second event. The moving

clock A ' is coincident with the

stationary clock C in the S

frame.

FIGURE 41-6

The two events, measured in the S

frame, by which we compare the

rate of a moving clock A with

synchronized clocks B and C at rest

in S.

41.6 Comparison of Clock Rates

How do we determine the rate at which a moving clock runs? We cannot just

compare a moving clock with a stationary clock at a single instant of time;

the procedure necessarily involves measuring a time interval between two

events. Figure 41-6 illustrates the procedure in "our" frame of reference, the

5 frame. Three clocks are involved. The clock A' is at rest in the S frame. At

one instant, it is adjacent to clock B, which is at rest in the S frame. This coin-

cidence is ihe first event. In each frame, observers located next to the clocks

record the readings on the clocks at this time: t^ and t\. The second event occurs

later, when the moving clock A' is coincident with clock C, which is at rest

in the S frame. Again, local observers situated where this event occurs record clock

readings for this event: the times f, and f,. The time interval between these

two events is

'5-^
r = f.

(in the S frame)

(in the 5' frame)

The two time intervals are not the same. Using the Lorentz transformation,

Equation (41-5), we find how the time intervals are related.

T=t^-t,=
f, +

Vx\
f'i +

Vx\

v'l P' s/T^'

In the S' frame, the two events occur at the same location, (x'2

above expression becomes

x\), so the

T =
t\ r

VT^ VT^^

The time interval T = t'j — t\ is measured by a single clock in 5' (in contrast

to the time interval T, which is measured by two different clocks in S). As we

will point out in Section 41.9, this has a special significance. Since single-clock

readings may occur in either frame, instead of a prime we will use a zero sub-

script to signify this type of measurement.

TIME
DILATION

T
sfT^'

(where Tq must be a time

interval measured by a

single clock)

(41-6)

Because the factor -Jl — jS^ is always less than unity, the time interval T is

always larger than Tg. We conclude that moving clocks run slower than clocks

at rest. The effect is called time dilation. The moving clocks run slower not

because the motion somehow deforms them so that they show an incorrect

time; rather, it is time itself that is different for a moving frame compared with

the time scale in a "stationary" frame. All clocks in a frame of reference show

the correct time for that frame.

An even more startling feature of time dilation is that since either frame

may be considered "at rest," observers in S' who carry out the procedure

described above would find that clocks in 5 run more slowly than their own

S' clocks. The effect is entirely symmetrical: observers in each frame find that the

other "moving" clocks run shiver than clocks at rest in their own frame. All measure-

ments depend on the frame of reference of the observer, and each frame has

its own scale of time, which does not necessarily agree with the time scale in



41.7 Comparison of Length Measurements Parallel to the Direction of Motion 953

other frames. We can properly answer the question "Do moving clocks really

run slower?" by pointing out that according to all measurements made on
moving clocks, yes, they certainly do run slower than clocks in our own frame

of reference. It is not an illusion. All clocks show the correct time in their

own frame of reference. There is simply no absolute time scale, valid in all

frames. By itself, this conclusion may seem paradoxical. But when all aspects

of special relativity are taken together, they form a most logical and impres-

sive structure that agrees completely with experimental evidence. This unusual

behavior is a basic feature of our universe.

EXAMPLE 47-2

A clock at rest in the S' frame gives a "tick" once each second. Thus, as measured

in the S' frame, the time interval between ticks is Tq = 1 s. If the S' frame has

a velocity of 0.80c relative to the S frame, what is the time between ticks as

determined in the 5 frame?

SOLUTION

Since Tg = 1 s and P = 0.80, we have

T-
To (Is) (Is)

s/l - P^ y/l - 0.64 ^/a36
1.67 s

The moving clock thus runs slower than our own clocks at rest.

41.7 Comparison of Length Measurements Parallel to

the Direction of Motion

In Section 41.2, we compared the length L' of a rod at rest in the S' frame

with a measurement L of the rod made in the S frame (in which the rod is

moving with speed V parallel to the x axis). We now follow the identical pro-

cedure, but instead of the Galilean transformation, we will use the Lorentz

transformation. Consider a meter stick at rest in the S' frame, aligned along

the direction of relative motion of the two frames, the x and x axes. See Figure

41-7. As measured in S', the stick's length is L' = x'2 — x\. Applying the

Lorentz transformation yields

Lt r I= X2 — Xi =

O
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In the S frame, the two events of locating the ends of the stick must occur

siinulhmeously {t^ = ti), so t^ = t2, and the above expression reduces to

L'

Xj — X,

VT^F vr^
The length L' is made in the S' frame, in which the object is at rest (in contrast

to L being measured in the S frame, in which the object is moving). Since

measurements of an object at rest may occur in either frame, instead of a prime

we will use a zero subscript to signify this type of measurement.

LENGTH
CONTRACTION L = LoVl-i?'

(where Lq must be a

measurement in a frame

in which the object

is at rest)

(41-7)

Because the factor ^1 — p^ is always less than unity, the length L is always

less than Lq. Consequently, we conclude that the length of a moving object

is less along the direction of its motion than it is when the object is measured

at rest. (Distances perpendicular to the direction of motion are unchanged.)

The effect is called length contraction.

As with time dilation, this, too, is a symmetrical effect. Observers in each

frame measure the other meter stick to be shorter than theirs. There is no paradox,

since the two sets of measurements are made in different frames of reference.

The length of an object is not some attribute possessed by that object. Rather,

it is the result of a measurement. We can properly answer the question "Is the

moving stick really shorter?" by pointing out that all measurements made of

the moving stick show that, yes, it certainly is shorter than meter sticks at rest

in our own frame of reference. Because there is no absolute space and no abso-

lute time, measurements in one frame do not necessarily agree with those made

in another frame. Nevertheless, measurements made in each frame are equally

valid. Martin Gardner^ makes an interesting analogy: if two people stand on

opposite sides of a huge reducing lens, each sees the other as smaller. But that

is only to say that, in each person's frame of reference, the other person is smaller.

It is not the same as making the paradoxical statement that each person actually

IS smaller than the other.

EXAMPLE 41-3

A meter stick moving with speed 0.60c is oriented parallel to the direction of

motion. Find the length of this meter stick as measured by an observer at rest.

SOLUTION

Since Lq = 1 m and fi = 0.60, we have

L = LqsJi - P^ = (1 m)Vl -0.36 = (1 m)Va64 = 0.800 m

Thus the moving meter stick is shorter than a meter stick at rest.

^ Martin Gardner, The Relativity Explosion. Vintage Books (1976).
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41.8 Proper Measurements

Observers in different frames of reference may find different answers for mea-
surements of lengths and time intervals. It is customary to use a special name
for the measurements made, as follows:

Proper length: A length determination made in a frame of reference

in which the object is at rest.

Proper time interval: A time interval between two events when
measured in a frame of reference in which the events occur at the

same location. Proper time is measured by only a single clock. All

clocks indicate the proper time at their respective locations.

The use of the word proper does not imply that other measurements are

somehow improper or incorrect. The adjective is used in the sense of "naturally

belonging to" or "characteristic of." Although one can always find the proper

length of an object, there are situations in which the concept of a proper time

interval does not apply. Note that a proper time interval is measured by ontu

a single clock. Thus, if two events occur apart in space, but so close together

in time that a frame of reference cannot move fast enough to enable a single

clock to be located where each event occurs (without traveling at the speed

of light, or faster), then the concept of a proper time interval does not apply.

It is important to remember that the symbols Tg and Lq in the expressions

for time dilation and length contraction are piroper measurements, regardless of

which frame of reference is designated the primed frame.

Because classical ideas of space and time are so deeply ingrained in our

thought processes, it is surprisingly easy to be led astray in solving relativity

problems. For this reason, it is prudent always to think in terms of point events

and to make careful sketches of these events as measured in a particular frame

of reference.

41.9 Relativistic Momentum
Thus far, our discussion of special relativity has been restricted to kinematics.

We now develop relativistic dynamics using the same basic concept that forms

the foundation of Newtonian mechanics: the conservation of momentum. If we
apply a constant force to an object, Newton's second law (F = dp/dt, where

p = mo) places no limit on the speed that an object may acquire. Experimen-

tally, however, the momentum of an object approaches infinity as its speed

approaches the speed of light, so there is a relativistic upper limit to the maxi-

mum attainable speed.

To investigate this effect, we analyze an elastic collision between two

identical particles and require that momentum conservation hold true in all

frames of reference, in accordance with Einstein's first postulate. Consider two

railroad flatcars, the S and S' frames, approaching each other on parallel tracks

with equal speeds in opposite directions. Figure 41-8a shows the situation in

the earth's frame of reference. Observers in both frames have balls whose

masses m are equal. The two observers launch their balls perpendicular to the

direction of motion with equal speeds u (as measured in their respective frames).

After traveling the same distance y perpendicular to the motion of the cars,

the balls collide elastically and rebound the same distance }/ before each bull

is caught. We use the following notation: in S, ball A of mass m travels a total

Ball B thrown

Ball B^y
caught

caught

Ball A thrown

(a) In the earth's frame, the elastic

collision is completely

symmetrical.

V „

r

"11

(b) The collision as measured in

the S frame (observer A).

(c) The collision as measured in

the S' frame (observer B).

FIGURE 41-8

A hypothetical experiment involving

an elastic collision of two identical

balls. In the earth's frame of reference,

the collision is entirely symmetrical.
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distance 2i/ at the speed u. In S', ball B of mass m travels a total distance 2y'

at the speed u. Since lengths in the 1/ direction are not contracted, y = y'- The
situation is symmetrical.

An unusual feature emerges, however, when the collision is analyzed in

one of the moving frames, Figure 41-8b. The y component of B's velocity is

the distance 2j/ { = 2y') divided by the time interval between throwing and

catching B. In S', this time interval is a proper time Tq since the two events

(throwing and catching) occur at the same location in 5 and thus are measured

by a single clock. But in S these same two events (throwing and catching B)

occur at two different locations. The time T measured in S is related to Tg

according to the time-dilation relation: T = Tq/^1 — fi^ . Consequently, even

though y = I/', the times are different and the 1/ component of ball B's speed

(as measured in S) is not the same as the 1/ component of ball A's speed (as

measured in S).

Speeds of
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(in units of

o
>.

'u

Classical prediction

(i mv^)

Speed of light squared

Einstein's prediction

8 (in 10-3
J)

I I I
.

I .

12 3 4 5 (inMeV)

Kinetic energy of electrons

FIGURE 41-10

The experimental points show
evidence for the speed of light as a

limiting velocity for any particle that

has mass. (Adapted from W. Bertoozi,

American Journal of Physics 32 (1964),

p. 555, with permission of the

American Journal of Physics.)

We generalize this equation and define relativistic momentum as

RELATIVISTIC
MOMENTUM p

(41-12)

1 -

Note that this definition does not involve the relative speed of frames of ref-

erence. Instead, the speed u is the particle velocity as measured in a frame of

reference. With this definition, momentum conservation holds true for relativ-

istic situations. It also reduces to the familiar classical value p = mu for u « c.

Figure 41-9 shows how the relativistic momentum varies with velocity.

Because of the relativistic momentum increase, c is the upper limit to the

velocity attainable by any particle that has a rest mass. As the momentum
increases, an increasingly larger force is required to further accelerate the particle.

It would take an infinite amount of energy to achieve the speed c. Thus the

speed of light is truly an upper limit. Figure 41-10 shows convincing experi-

mental evidence for this limiting velocity. Here, the square of the speed of an

electron is plotted versus its kinetic energy. On the scale of this graph, electrons

emerging from Stanford's three-kilometer accelerator (Figure 41-11) would be

a point plotted 188 m to the right (more than the length of two football fields!).

These electrons have measured velocities that are essentially c, but, of course,

they still have not achieved a speed of precisely c—a remarkable discrepancy

from the classical prediction for that energy.

EXAMPLE 41-4

Electrons emerging from Stanford's three-kilometer linear accelerator are travel-

ing at 99.999 999 97% the speed of light. Find their momentum in terms of mc.

SOLUTION

Their momentum is not ryw s; mc as classical theory predicts, but instead is given

by Equation (41-12). Because /? is extremely close to unity, we may use the

'
It has been proposed that particles called tachyons, which always travel faster than c, might exist. For

them, the speed of light would be a lower limiting velocity. The existence of such particles is consistent

with special relativity; approached from either side, c remains an impenetrable barrier. So far, experiments

to detect them have been unsuccessful, and they may not exist. For more information, see G. Feinberg,

"Particles That Go Faster Than Light," Scienlific American 223, 2 (Feb. 1970), p. 69.

FIGURE 14-11

The Stanford three-kilometer linear

accelerator for electrons at the Stanford

Linear Accelerator Center (SLAC). (An

interstate highway passes over the

accelerator.) The operation of the

accelerator verifies all aspects of special

relativity. Electrons emerging from the

accelerator differ from the speed of

light by only about 5 parts in lO".

If classical (Galilean) relativity were

correct and the relativistic momentum
increase did not occur, the accelerator

would need to be only a few inches

long to achieve this speed.
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approximation (see Appendix E)

1 - P^ = (1 + li)(l -/j)~2(I-/i)

For P = 0.999 999 999 7, the factor (1 - P) is equal to 3 x 10"'". Hence,

7l - ^^ % 7^(1 - jS) = V6 X 10"'", and we have

4.08 X 10*mcVr^ V6X 10-'°

This agrees with the experimentally measured momentum for the electrons when

they are deflected by a magnetic field as they emerge from the accelerator. Al-

though it is common to speak of these electrons as having a relativistic mass

4 X 10"* greater than their rest mass, we emphasize again that this change occurs

because of the unusual properties of space and time, not because of any peculiar

changes in the mass itself. (See the next section.)

EXAMPLE 41-5

A baseball moves at 30 m/s. By what fraction does its true relativistic momen-

tum differ from the classical value of mvl

SOLUTION

Here the velocity is very small compared with c, so we use the following ap-

proximation, valid for /?" « 1 (see Appendix E):

a ± P~)" X 1 ± nfi- (for/?«l)

Therefore,

The fraction we seek is

[Difference] p — mv p

= (1 - r)
2^-1/2

Si 1-1-

1 =
mv{l - P^)

2x-l/2

The ical value of ^ is P = — =

mv

30 m/s

c 3 X 10** m/s

p^ P^
1 % 1 -h

— - I Si —
2 2

1 X 10'

1 X 10
- 14

5 X 10"

Thus the relativistic correction is negligible for speeds we usually encounter in

everyday experience.

Note that for such problems as Examples 41-3 and 41-4, which involve

speeds of v « c and v ~ c, the approximation formulas help to avoid awkward

procedures such as directly calculating ^Jl — (0.999 999 999 7f, an operation

beyond the capability of most pocket calculators. If you find yourself tangled

in such unwieldy operations, you have not made the appropriate approxima-

tions before substituting numerical values.
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41.10 A Note about Rest Mass

Sometimes Equation (41-12) is interpreted to mean that as a particle's speed

increases, its mass increases. In the following discussion, njQ refers to the rest

mass and m^^i designates the so-called relativistic mass.

' u~

Dividing by u gives

Wrel"

''rel

'-7

m (41-13)

'-7

Some authors use this definition since it leads to a few expressions that

are similar to classical formulas, such as the relativistic momentum, p = m^^^v,

and the convenient formula for the total energy, £ = m,^^c~. However, other

classical equations are incorrect when m^g, is substituted for m. F does not

equal m^^^a, nor does the relativistic kinetic energy equal 2"Jrei^^- Further mis-

understanding occurs if we make the claim that "mass increases with speed,"

ignoring the fact that the square root factor in Equation (41-9) comes into the

derivation in connection with a velocity measurement (involving space and time)

when the momentum is determined. Thus the square root factor is a consequence

of the transformation properties of space and time, not those of mass. Relativity

changes our ideas about space and time, and it affects dynamical quantities

like velocity and momentum. But it does not affect the intrinsic properties of

fundamental particles, such as charge and mass. In this text, m always refers

to the invariant rest mass—a notation also preferred in advanced treatments

of relativity.

u' (relative to S')

\S' V (relative to S)

O'l

41.11 Relativistic Velocity Addition

Suppose that a particle has a speed co along the x direction in the S' frame

of reference. The S' frame itself has the speed V along the + x direction rela-

tive to the S frame. See Figure 41-12. At the instant the two frames coincide

ai t = t' = 0, the particle passes the origin O (and O'). We obtain the relativ-

istic velocity addition relation by following the identical procedure we used to

obtain the classical velocity addition [Equation (41-3)], except that we use the

Lorentz transformation rather than the Galilean transformation. Consider again

the following two events:

FIRST EVENT:

SECOND EVENT

In the S' frame, the particle has the speed u' = x'/t'. The S' frame itself moves

along the +x direction with constant speed V relative to S. This motion is

the second velocity V that we will add to the particle velocity u to obtain

the velocity u of the particle as measured in the S frame. In the S frame, u = x/t.

o\
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Making use of the Lorentz transformation, Equation (41-5), we have

x' + Vi'

u = -= -^^^ l'{u + V)

I t' + Vx'/c^ t'{l + u'V/c^)

RELATIVISTIC
VELOCITY ADDITION
(for velocities along

the + X direction)

u' + V

TV
1 +

(41-14)

For speeds much less than c, this expression reduces to the classical velocity

addition relation u = u' + V. li any velocities are in the —x (or —x') direc-

tion, minus signs are used with the corresponding numerical values.

What happens if both of the velocities, u and V, are close to the speed

of light? Can this result in a velocity greater than cl No. The successive addi-

tion of any number of such velocities less than c, all in the same direction, still

results in a final velocity less than c.

StarA

•

0.7c relative

to the earth

Earth
StarB

•

(At rest) 0.8c relative

to the earth

(a) As seen in the earth's frame of

reference (the S frame)

Star A

(At rest)

Earth

V=0.7c
relative to

star A

StarB

u'=0.8c
relative to

the earth

(b) As seen in star A's frame of

reference (the S frame)

FIGURE 41-13

Example 41-6. Two stars move away

from the earth in opposite directions

with relativistic speeds. What would

observers on star A measure for the

speed of star B?

EXAMPLE 41-6

Suppose that two stars, A and B, recede from the earth in opposite directions,

with speeds as shown in Figure 41-13a. Find the speed that star B would have

for observers on star A.

SOLUTION

In terms of the notation we have developed, star A is the S frame, while the

earth (S' frame) is the moving frame {V = 0.7c), in which star B is observed to

have the speed it' = 0.8c relative to the earth (Figure 41-13b). Using the rela-

tivistic velocity addition formula, Equation (41-14), we have

u' + V

T

(0.8c + 0.7c)

1 4- 1 -F

(0.8)(0.7)c^
0.962c

Note that this is less than the speed of light. [The Galilean velocity addition

relation would give the incorrect value u = u + V = (0.8c + 0.7c) = 1.5c.)]

EXAMPLE 41-7

To push velocity addition to its limit, suppose that a spaceship (S' frame) passes

the earth (S frame) at an extremely fast speed, say, V = 0.9999c. A rider aboard

the spaceship sets off a flashbulb at the rear of the ship and measures the speed

of the light pulse progressing toward the nose of the ship to be c in the S'

frame. Using the relativistic velocity addition relation, find the speed of the same

light pulse as measured in the earth's frame of reference.
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SOLUTION



•II
' Spedal Relativity

TABLE 41-1 Mass-Energies of Some Common Particles

(rounded 1986 CODATA values)

Particle Symbol mc^ (in MeV) m(kg)

Electron (or positron)
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EXAMPLE 41-8

A penny has a mass of about 3 g. Compute the energy that would be released

if this mass were entirely converted into energy.

SOLUTION

E = mc- = (0.003 kg)(3 x 10^ m/s)^ = 2.70 X lO'*

This is about equal to the maximum energy output of Hoover Dam for 2| days.

The sum of the rest energy mr and the kinetic energy K equals the total

energy £ of a system:

TOTAL
RELATIVISTIC
ENERGY £ and

£ = mc^ + K

E
mc

^l-P'

(41-20)

(41-21)

This leads to a new conservation principle, the conservation of mass-energy, vi'hich

unites the two separate conservation principles of classical physics—the con-

servation of energy and the conservation of (classical) mass (as in chemical

reactions).

The internal energy L/ of a system of particles is part of the resi: energy

£o = mc" of the system. For example, if we stretch a spring, thereby giving

it positive internal potential energy U^^, the rest energy of the spring increases

slightly (though by an amount far too small to measure directly). An example

having negative internal energy is the bound system of a proton and a neutron,

which forms the stable particle called a deuteron (the nucleus of the isotope

""H). To pull the proton and the neutron apart against the attractive force that

holds them together, we must do work on the system. In other words, the

internal binding energy is negative (relative to zero potential energy when the

particles are separated at rest), and the rest energy of the deuteron is slightly

less than the combined rest energies of the free proton and neutron.

EXAMPLE 41-9

A deuteron is composed of a neutron and a proton bound together. Referring

to Table 41-1, calculate how much energy would be required to break up the

deuteron into a proton and a neutron.

SOLUTION

The combined rest energies of a proton and a neutron are 938.280 MeV -f

939.573 MeV = 1877.853 MeV. The rest energy of a deuteron, 1875.628 MeV,

is subtracted from this to yield 2.22 MeV , the binding energy of the deuteron

In the above example, to supply the energy required to break apart the

deuteron, we could bombard the deuteron with another particle or with an
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FIGURE 41-14

To help you remember relations

between £, K, and p, this right triangle

and the Pythagorean theorem illustrate

that E^ = {pcf + mc^. Also, note that

E = mc

that sin

^ + K. It is also easy to show

= /? and sin </) = sjl - p\

energetic photon (symbol }', for gamma ray). Such a p'hoto-induced reaction is

written

y + d ^ n + p

The inverse reaction is the combination of a proton and a neutron to form a

deuteron, releasing a photon having 2.22 MeV of energy to account for the

change in the rest energies of the particles.

n + p -* d + y

See Chapter 45 for a more detailed discussion of nuclear reactions.

We usually think of "particles" as having mass greater than zero. How-

ever, there are three types of particles that are believed to have zero mass:

photons, neutrinos, and (as yet unobserved) gravitons.^ From the relation

£^1 — p- = mr, we conclude that particles with zero mass must travel only

at the speed of light, v = c, in order to make the square-root factor zero.

Combining equations for £, K, and p, we can obtain the following useful

relations:

£2 = („,f2,2 ^ (p^)2

p = - y/K' + Imc^K

ADDITIONAL
RELATIVISTIC
ENERGY AND
MOMENTUM
RELATIONS

= lmK\ 1 +

p' ^ {per

Im Imc

PL
£

(41-22)

(41-23)

= K 1 (41-24)

(41-25)

When the total energy £ is much greater than the rest energy mc', the

first term of Equation (41-22) may be neglected, giving the useful relation

!

I

HIGH-ENERGY
APPROXIMATION

pc (for £ » mc )
(41-26)

' In the detection of Supernova I987A, the time of arrival of the neutrino burst relative to the light flash

suggests that one form of neutrino—the electron anthmtirmo—may have a small mass, no greater than

~ 14 eV/c^. This conclusion relies on how well we understand the details of supernova explosions (still

somewhat controversial), so all neutrino masses may be truly zero. The gravilon is a zero-mass particle

proposed in current theories of gravitation.

J
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EXAMPLE 4J-10

Find (a) the momentum and (b) the speed of a proton whose kinetic energy

equals its rest energy.

SOLUTION

(a) From Equation (41-23) we have

p = - yjK^ + Imc^K = - 1 +

For K = mc~, we obtain

mc^
I

(938 MeV) r
p = VI + 2 = V^ =

c c

1625
MeV

(b) For K = mc^, we have £ = mc~ + K = Imc'. Thus, from Equation (41-24),

V =
Pc

1625
MeV\ ,

(2)(938 MeV)
0.866f: 2.60 X 10^

EXAMPLE 41- J

1

Find (a) the total energy £, (b) the kinetic energy K, and (c) the momentum p
of an electron moving with speed v = 0.6c.

SOLUTION

(a) £ =

Since Jl - P^ = Vl - (0.6)- = 0.8, and mr = 0.511 MeV, we hav

0.511 MeV

0.8
0.639 MeV

(b) The kinetic energy is

K= E - mr = 0.639 MeV - 0.511 MeV = 0.128 MeV

(c) The momentum is p = mv/yjl — J?^ . Multiplying numerator and denomin-

ator by c", we have

mrv (0.511 MeV)(0.6c)

yf^^T' io.8){cn
0.383

MeV



96c 41 Special Relativity

EXAMPLE 41-12

Protons emerge from an accelerator with a kinetic energy of 500 GeV ( = 5 x

lO' MeV). (a) By how much does (i differ from 1 for these protons? (b) Find

their momentum in units of GeV/c.

SOLUTION

(a) Because the kinetic energy of these protons is more than 500 times their

rest energy, we may use the approximation suitable for the extreme relativistic

case (cf. Example 41-4):

s/l-P' yjia - p)

Rearranging gives

:^ 938 MeV
V2(l - ^)

(1 - i?)
=

£ 5 X 10* MeV

(1.876 X 10"^)^

= 1.876 X 10 ^

1.76 X 10"

(b) From Equation (41-26), we have

Note the obvious convenience of expressing momentum in units of GeV/c.

41.13 The Nonsynchronism of Moving Clocks

A system of clocks, properly synchronized in the moving 5' frame, will appear

not to be properly synchronized when viewed from the 5 frame of reference.

This effect is in addii:ion to the time dilation phenomenon and is perhaps rela-

tivity's greatest jolt to our commonsense ideas. The effect is the source of

most of the so-called "paradoxes" of special relativity.

Recall the procedure for synchronizing two clocks. A' and B', at rest in

the 5' frame (Section 41.3). As seen in the S' frame, a light flash at the midpoint

between the clocks sends light signals in opposite directions. When a pulse

arrives at a clock, that clock is set to indicate t' = 0. In this manner. A' and

B' are correctly synchronized in the 5' frame.

Now let us view this procedure from the S frame of reference. Figure

41-15. Since clock A' is moving toward its light signal, it will intercept the

light pulse first and be set to read t'^ = 0. At some later time (as seen in the

S frame), the other light signal reaches clock B', which has been moving away

from its light signal, and clock B' is set to read t'g = 0. Thus, according to

observers in the 5 frame, the "chasing" clock is set to read a later time than

the "leading" clock. As measured at a given instant in the 5 frame, the clocks

are not in synchronism.

As usual, the situation is a symmetrical one. Observers in 5' similarly

find that clocks in S are not properly set in synchronism. Yet, the synchronizing

of clocks establishes a time scale by which the simultaneity of events is judged in

that particular frame of reference. There is no reason, however, to prefer one
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Clock

A'
Clock

o-

h
'»-^'\j\r\j\j\A ^.

V

f=
(a) (Signals start at the

midpoint.)

(b) (Signal intercepts

clock A' , which is set

to read tA = 0.)

t=t2

(c) (Signal intercepts

clock B' , which is set

to read fB = 0.)

FIGURE 41-15

As measured in the S frame, the procedure for synchronizing two clocks in S' results

in their being out-of-synchronism by an amount e. Of course, in the S' frame the

clocks have been correctly synchronized, since the procedure illustrated in Figure

41-4 was followed. There is no absolute "scale" of simultaneously, valid in all

frames.

sense of simultaneity over another. Thus, events (separated in space) that appear

simultaneous in one frame are not necessarily simultaneous in another frame.

The amount of nonsynchronism is directly related to the {Vx'/c') term in the

Lorentz transformation for time. Consequently, the time f depends not only

on t and V, but also on the space coordinate x. Space and time are truly inter-

dependent in relativity. It can be shown that the discrepancy £ between two

moving clocks is

NONSYNCHRONISM
OF MOVING
CLOCK SYSTEMS

Two clocks, separated a distance Ax' ayui correctly

synchronized in the 5' frame, are incorrectly synchro-

nized to observers in the S frame by an amount £.-

V^x'
(41-27)

The "chasing" clock indicates a later time than the

"leading" clock.

Only moving clocks located along the +x' direction are out-of-synchronism

in the 5 frame; a line of clocks along the y' or z direction (in 5') is correctly

synchronized in both frames of reference.

Another feature of nonsynchronism is illustrated if we consider three

frames of reference, each with a line of several clocks along the direction of

motion. Figure 41-16. We consider the S frame to be at rest, the S' frame

moving in the -\- x direction, and the 5" frame moving in the — x direction.

For simplicity, we assume all of the center clocks read zero at the instant de-

picted in the 5 frame. For a line of moving clocks, each individual clock reads

a later time than its predecessor. Now suppose that at the instant sketched,

two lightning bolts, A and 6, strike the left and right groups of clocks, respec-

tively. These two events would be judged simultaneous in the 5 frame because

clocks in that frame indicate the same time. However, as measured in S', the

clock readings indicate that B occurs before A and, in the S" frame, that A
occurs before B. There is no such thing as absolute simultaneity.
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Bolt .4 Bolts

,0 0.0
O'

V
Correctly synchronized

clocks in S', moving
toward the right.

to0 0s©0^
o

Correctly synchronized

clocks in S, at rest.

O © 0.0
O'

Correctly synchronized

clocks in S", moving
tovi^ard the left.

AS MEASURED IN THE S FRAME

FIGURE 41-16

A comparison of clocks in three frames of reference as measured at a given instant

in the S frame. Each set of clocks is correctly synchronized in its own frame.

However, when measured at a given instant in the S frame, the moving clock

systems are found not to be in synchronism. To simplify the comparison, we

suppose that the clocks located at the respective origins read zero at the instant

the origins coincide.

Does this reversal of the time sequence of events imply that in some

frame of reference an "effect" might occur before a "cause"? Could the arrow

hit the target before the bowstring is released? No. A careful analysis reveals

that only those events that could not conceivably be causally related in any

way can occur in a reversed time sequence in some frame of reference. So the

important principle of cause and effect is still preserved in relativity theory.

It should be emphasized that this lack of agreement regarding the time

sequence of certain events is not due to the fact that light signals from a distant

event take a finite time to reach an observer (and thus the observer may visually

see one event after the other). Even after all corrections for finite transit times

of light signals are made, the same peculiarities of simultaneity (or the lack

thereof) still remain. Of course, within any given frame, the concept of si-

multaneity is clearly defined; it just does not agree with the scale of simultaneity

in other frames. All the so-called "paradoxes" of special relativity are traceable to

the lack of absolute simultaneity.

One possible misunderstanding about relativity should be clarified. The

message of relativity is not that "everything is relative." True, we must discard

absolute space, absolute time, and a few other "absolute" concepts. But the

major significance of Einstein's theory (aside from being the theory that agrees

best with experimental facts) is this:

THE "MESSAGE"
OF RELATIVITY

When correctly expressed, the laws of nature

are the same for all observers.

What a chaotic situation it would be if each frame had its own fundamental

laws of nature, which would not agree with laws valid in other frames. (This

is actually the situation if one clings to Newtonian concepts.) By devising a

model for the universe in which nature behaves exactly the same way for all

frames of reference, Einstein made a great unifying simplification to our under-

standing of the universe.
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41.14 The Twin Paradox

The so-called twin paradox has generated more controversy than any other

topic in relativity.^" Briefly stated, the paradox is as follows. Two twins live

on the earth. One decides to take a relativistic trip to a distant star and return.

According to relativity, upon his return the traveling twin will be younger
than the brother who remained on earth. The paradox arises when one asks

why the traveling twin cannot claim that, in his frame of reference, his earth

brother moved away from him and returned, and that the earth twin (not the

traveling twin) is therefore the younger upon their reunion. After all, does not

relativity tell us that absolute motion is a fiction? Cannot either twin be con-

sidered the stationary one and thus the situation be symmetrical? No. Because

the traveling twin must accelerate in some fashion to change his velocity for

the return trip, acceleration is involved with only the traveling twin's frame

of reference. Acceleration is an absolute, not a relative, matter, so the situation

is not a symmetrical one. The consequences are laborious to straighten out,

but the conclusion is inescapable: the traveling twin really would be younger

upon his return compared with the twin who stayed home.

We can analyze the twin paradox effect using just special relativity by

imagining a straight-line trip in which the turnaround time involving accelera-

tion is negligibly short compared to other time intervals. The acceleration times

in starting and stopping are also assumed to be negligible.'^ Consider a trip

to the star Alpha Centauri, 4 light-years away. One twin, in the S' frame,

travels at a constant velocity V = O.&c to the destination, turns around in a

negligibly short time, and returns to the earth at the same constant speed. His

twin brother remains on the earth, the 5 frame. In the earth's frame, the round-

trip distance is 8 light-years. (It is convenient to write this as 8 cyr, because

the unit c may cancel in equations just as other units do.) The time to make

the journey at a constant speed of 0.8c is t = x/v = (8 c-yr)/(0.8c) = 10 years

in the earth's frame. In the traveling twin's frame, the distance is contracted

to L = LoVl - P' = (8 c-yT)y/l - (0.8)' = (8 c-yr)(0.6) = 4 c-yr. The rela-

tive velocity is 0.8c. Therefore , it takes the time t' = x'/v = (4.8 c-yr)/'(0.8c) =
6 years in the traveling twin's frame.

To further verify the elapsed times for each twin, suppose that the journey

starts on January 1st. To notify the other twin of the elapsed time, each twin

agrees to send the other a New Year's message via radio waves on January

1st of each year during the journey. These signals travel with the speed of

light c and are emitted at a frequency /q of 1 per year according to the sender's

local time scale. Figure 41-17 shows a diagram of the journey as drawn in the

earth frame of reference. Here, we plot distance (in units of light-years) on the

horizontal axis and time (in years) on the vertical axis.

We now make use of a well-verified effect known as the relativistic Doppler

shift for light (similar to the Doppler shift for sound discussed in Section 18.10).

The effect describes how light signals (or any electromagnetic wave) received

from a moving source are shifted in frequency /. (Remember, however, that

the speed of light received from a moving source is always c.) When the light

'° An excellent source of information about relativity is Resource Leiler SRT-l {Selecteii Reprinii: Special Rela-

Hvity Theory), published by the American Institute of Physics, 335 East 45th St., New York, NY 10017.

For an interesting discussion of the historical origins of relativity, see G. Holton, American Journal of

Physics 28, 627 (1960). A comprehensive discussion of the twin paradox is L. Marder's Time and the

Space Traveller, University of Pennsylvania Press, 1971.

'
' It has been experimentally verified (via the Mbssbauer effect) that accelerations up to the order of lO'* ^

produce no effect in clock rates. Only relative velocities alter clock rates. See C. W. Sherwin, Physical

Review 120, 17 (1960).

a;

a.

Signals sent by S : y^

Signals sent by S': \

Destination

Line representing the

motion of the

traveling twin

Distance in the earth's frame

(light-years)

AS DRAWN IN THE EARTH'S
FRAME OF REFERENCE (S)

FIGURE 41-17

A diagram of the twin-paradox example

as drawn in the earth's frame of

reference. The traveling twin moves in

a straight line at constant speed

V = 0.8c. (The time intervals for starting,

stopping, and turnaround are assumed

to be negligibly short.) Each twin sends

a radio signal to the other twin on

every January 1st, local time. These radio

signals travel at the speed c and thus

are drawn at 45° with respect to the

X-axis.
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source is receding along the line of sight with a speed V = /?f, the received

frequency / is lower than the frequency /g emitted by the source. When the

source is approaching along the line of sight, the received frequency is higher

than [q.

RELATIVISTIC
DOPPLER SHIFT

FOR LIGHT'2

Light source

moving away

/ = /o 1+^

Light source

approaching

/ = /o
ll±l
1-P

(41-28)

For the twin paradox example, the radio signals are sent with a frequency

/o of 1 pulse per year. The speed of the source is fi = 0.8. Putting these values

into the Doppler shift formulas, we calculate the rate of signals received for

the two cases:

When separating: / = /o

When approaching: / = /o
/i+i
1-^

/o

= /o

/I -0.8

1 + 0.8

/l + 0.8

1 - 0.8

3/0

3/o

It is clear that 10 years elapses in the earth's frame (S) for the journey. The

most puzzling feature is that only 6 years elapse in S'. Here is how the twins

can verify this result using the Doppler shift formula and the rate at which

radio signals are received in each frame of reference. They calculate the elapsed

time as follows:

The twin in S' receives signals at the rate of y per

year for half the journey and 3 per year for half the

journey. The average rate of receiving signals during

the entire journey is thus
Calculated

in S'

Calculated

in 5

(M) + (i)(3) = I per year

Ten signals are received altogether, so the total time

for 5' is 10/(f) = 6 years.

The twin in 5 receives signals at the rate of 3 per

year for 9 years and 3 per year for 1 year. The

total number of signals received by 5 is thus

(i)(9) + (3)(1) = 6, signifying that 6 years has

elapsed in S'.

Thus, both twins conclude that the elapsed time in S' is 6 years. Although both

twins have aged during the trip, after they are reunited the space traveler is

4 years younger than the twin who remained on earth.

A more detailed analysis reveals that the turnaround of the 5' frame is

the crucial feature. This acceleration does not alter clock rates, but it does dra-

matically change the scale of simultaneity for that frame (cf. Figure 41-15). You

If there is an angle 6 between the line of sight and the velocity of the source, the equation is

/ = /o

VTT;
^I + /icosi

For 6 = 90°, the shift in frequency is just the time dilation effect.
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may enjoy the challenge of working out the details. (Hint: sketch arrays of

clocks in the two frames at various instants during the turnaround, being care-

ful to depict only pwint events as measured at a given instant in a frame of

reference. Remember that events that are simultaneous in one frame are not

necessarily simultaneous in another frame.
'^

The twin-paradox effect has been amply verified experimentally. For ex-

ample, radioactive particles that have a very short half-life have been placed

in "storage rings" associated with high-energy accelerators. More of these

particles survive one round trip than we would predict for identical particles

at rest in the laboratory because a shorter time elapses in the "traveler's" frame

of reference. In one experiment, the discrepancy was a factor of 30, exactly in

accordance with the predictions of relativity. The first direct experiment using

macroscopic clocks was made in 1971, when four cesium clocks were flown

on commercial jets around the world, two eastward and two westward. ^"^ The
results confirm the twin-paradox effect. It does seem odd that two clocks ini-

tially synchronized, both of which always show the proper time, will disagree after

being separated and then brought together in this manner. Nevertheless, this

is the essence of the twin paradox. It is merely a consequence of the fact that

there is no absolute time and no absolute simultaneity.

As a final comment, a startling example of the twin paradox is a hypo-

thetical straight-line trip in which travelers on a spaceship undergo constant

acceleration g throughout, accelerating the first half of the outward journey,

decelerating the second half, and coming to rest at the destination. The return

trip is made in a similar fashion. Such constant acceleration of ^ would be com-

fortable for the travelers, since it simulates earth-gravity conditions. For a round

trip to Andromeda galaxy, 2 million light-years away, the elapsed time in the

spaceship would be only 59 years. Yet the earth would be more than 4 million

years older upon the travelers' return. For a similar round trip lasting 78 years

in the spaceship's frame, it would be possible to reach a destination 500 million

light-years away, returning to find the earth more than one billion years older.

Such trips are essentially impossible, however, because of practical engineering

difficulties (not because of any limitations in the laws of nature).'^

41.15 Relativity and Electromagnetism

Consider a single electric charge q at rest in the 5' frame of reference. To ob-

servers in S', there is an electric field surrounding the charge. However, to ob-

servers in the S frame the charge is in motion, so there is not only an electric

field but also a magnetic field: the moving charge constitutes an electric current,

and currents generate magnetic fields. Thus, electric and magnetic fields are

viewed differently in frames of reference that have relative motion. Interestingly,

this phenomenon was the subject of Einstein's original paper on special rela-

tivity: "On the Electrodynamics of Moving Bodies," Ammlen der Physik, Volume

17, 1905. All of the startling ideas about space and time for which special rela-

tivity is famous emerged unexpectedly from one man's delving into a question

about charged objects in motion.

(b)

FIGURE 41-18

The Terrell effect. In 1959, James Terrell

showed (surprisingly) that if a snapshot

is taken of an object in rapid motion

at a relatively large distance away, the

object will appear to have undergone

rotation, not contraction. As mentioned

in the reference cited below, Terrell

considers a relativistic rocketship

approaching an observer with speed

v/c = 0.98974, viewed in a direction

at 150° from the flight direction, as

sketched in (a). As shown in (b), a

snapshot, or the visual appearance to

the observer, will show the rocketship

approaching almost tail-end first! This

unusual effect results partly from the

fact that, in a snapshot, the camera

captures light that arrives simultaneously

at the camera. Thus light from more

distant parts of the object must have

left earlier than the light from closer

parts of the object because it had

farther to travel. Other unexpected

shear distortions occur if a finite solid

angle of viewing is considered or if a

pair of stereoscopic photos are

obtained. This example emphasizes that

the data acquired in an experiment

depend crucially on the method of

measurement employed. [See Letter to

the Editor, "The Terrell Effect," James

Terrell, American Journal of Physics 57,

9 Oan. 1989).]

'^ The consequences of this are explained in an article by E. S. Lowry. Americun ]mnuil of Physics 31, 59

(1963). Good discussions of the twin paradox will also be found in articles by G. David Scott, American

foumal of Physics 27, 580 (1959) and A. Schild, American Mathematical Monthly 66, 1 (1959).

'* See two consecutive articles: J. C. Hafele and R. E. Keating, "Around-the-World Atomic Clocks," Science

177, 14 July 1972, pp. 166-70. Later experiments have verified the effect to better than 1%.

'
' For an interesting discussion of the practical difficulties of extended space travel, see S. von Hoemer,

"The General Limits of Space Travel," Science 137, (1962), pp. 18-23.
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FIGURE 41-19

One situation, viewed from two

different frames of reference. Whether

the force on the electron is magnetic,

electrostatic, or a combination of both

depends upon the frame of reference.

In the S frame, the electron e moves to

the right with a speed v and the wire

is stationary. The force is entirely

magnetic. In the S' frame, the wire moves

to the left with a speed d and the

electron e is stationary. The force is

entirely electrostatic.

THE S FRAME
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moving to the right with a velocity v. The electrons appear closer together

along the wire than their "proper" separation by the Lorentz length-contrac-

tion factor y/l — v^/r. However, the contracted separation is just equal to

the separation of the stationary positive ions because the wire has no net charge.

Viewed from the S' frame (which is moving with the charge e), the situation

is quite different: the electrons in the wire are at rest and thus are more widely

separated than they were in frame S. At the same time, the positive ions now
appear closer together by the Lorentz contraction factor ^1 — u^/c'^. The net

effect is that the wire now has a net positive charge. Therefore, the electron e

viewed in S' is attracted to the wire by an electrostatic force. A detailed analysis

shows that the magnetic force viewed in the S frame is exactly equivalent to the electro-

static force viewed in the S' frame.

The validity of this analysis is based on the supposition that the magnitude

of the electronic charge does not vary with relative motion between a charge

and the observer. A variety of experiments indicates that this is true. For

example, when a block of metal is heated, the thermal motion of the electrons

increases much more than that of the positive ions. Yet the net charge on the

block does not change.

Recall Example 28-1, which showed that the drift speed of electrons in

a typical current-carrying wire is only on the order of 0.1 mm/s. How aston-

ishing that the relativistic length contraction effect for speeds this low accounts

for the magnetic field!

41.16 General Relativity

Up to this point, we have sidestepped a curious puzzle. There are two, seem-

ingly different, properties of mass: a gravitational attraction for other masses

and an inertial property that resists acceleration. These two attributes are ap-

parently distinct. To designate them, we will use the subscripts g and i and

write

Gravitational property W = m„g

Inertial property F = m-^a

The numerical value for the gravitational constant G was chosen to make

the magnitudes of m^ and m-, numerically equal. But regardless of how G is

chosen, the strict proportionality of m^ and Wj has been established experimen-

tally to an extremely high degree: a few parts in lO'"". Thus it appears that

gravitational and inertial mass may be indeed exactly proportional.

But why? They seem to involve two entirely different attributes: a force

of mutual gravitational attraction between masses, and the resistance a single

mass has regarding acceleration. This puzzled Newton and other physicists

until Einstein published his theory of gravitation known as general relativity in

1916. It is a mathematically complex theory, and thus we will be able to only

hint at the elegance and insight Einstein achieved.

In Einstein's view, the remarkable coincidence that hi; and m^ seem to

be exactly proportional was evidence for a very intimate and basic connection

between the two concepts. He pointed out that no mechanical experiment (such

as dropping a mass) could distinguish between the two different situations

sketched in Figure 41-20 (a and b). In each case, if the observer released a

mass from his hand, it would undergo a downward acceleration of g relative

to the floor of the box.

Einstein carried this idea further to propose, as one of two fundamental

postulates in his general theory of relativity, that no experiment, mechanical

or otherwise, could distinguish the difference between the two cases. This

(a) An observer at rest in a

uniform gravitational field

where the acceleration due to

gravity is g.

(b) An observer in a region where
gravity is negligible, but whose
frame of reference is

accelerated through space (by

the external force F) with an

acceleration equal to g.

(c) If (a) and (b) are truly

equivalent, as Einstein

proposed, then a ray of light

would be bent in a gravita-

tional field. Such an effect has

been experimentally verified by
light and radio signals that

pass close to the strong

gravitational field of the sun.

FIGURE 41-20

According to Einstein, these (a) and

(b) frames of reference are equivalent in

every way. No experiment of any sort

could distinguish any difference.
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extension to include all phenomena (not just mechanical ones) has interesting

consequences. For example, suppose that a pulse of light is sent horizontally

across the box in Figure 41-19b. The pulse of light would have a trajectory

that bends downward toward the floor as the box accelerates upward to meet

it. Therefore, proposed Einstein, in case (a) a beam of light should be bent

downward by the gravitational field. (No such bending is predicted in Newton's

theory of gravitation.)

The two postulates of Einstein's general relativity are

POSTULATES (l) All the laws of nature may be stated so that they

OF GENERAL have the same form for observers in any space-

RELATIVITY time frame of reference, whether accelerated or not.

(This is the principle of covariance}^)

(2) In the neighborhood of any given point, a gravita-

tional field is equivalent in every respect to an

accelerated frame of reference in the absence of

gravitational effects. (This is the principle of equiva-

lence.)

The second postulate implies that gravitational mass and inertial mass are

completely equivalent, not just proportional. What were thought to be two

different types of mass are actually, in a basic sense, identical.

One interesting effect predicted by general relativity is that time scales

are altered by gravity. A clock in the presence of gravity runs more slowly

than one situated where gravity is negligible. Consequently, spectral lines emit-

ted by atoms in the presence of a strong gravitational field are red-shifted to

lower frequencies when compared with the same spectral emissions in a weak

field. This gravitational red shift has been detected in spectral lines emitted by

atoms in massive stars. It has also been verified on the earth by comparisons

of the frequency of gamma rays emitted from nuclei separated vertically by

about 20 m.^"'

The second postulate suggests that a gravitational field may be "trans-

formed away" at any point if we choose an appropriately accelerated frame

of reference—a freely falling one. Einstein developed an ingenious way of

describing the exact amount of acceleration necessary. He specifies a certain

quantity, the curvature of spacetime, that describes the gravitational effect at

every point. In fact, the curvature of spacetime completely replaces Newton's

gravitational theory. ^^ According to Einstein, there is no such thing as a gravi-

tational force. Rather, the presence of a mass such as the sun causes a curvature

of spacetime in its vicinity, and this curvature dictates the spacetime path that

all freely moving objects follow. As one physicist says: "Mass tells spacetime

how to curve; curved spacetime tells mass how to move."

If the concentration of mass becomes very great, as is believed to occur

when a large star exhausts its nuclear fuel and collapses to a very small volume,

a black hole may be formed. Here, the curvature is so extreme that, within a

certain distance from the center, all matter and light become trapped.

' An equation that has the same form after transformation to another frame of reference is covananl with

respect to the transformation.

'

See R. V. Pound and J. L. Snider, "Effects of Gravity on Gamma Radiation," Physical Review B 140, 788

(1965). For another test, see R. F. C Vessot et al., "Test of Relativistic Gravitation with a Space-Borne

Hydrogen Maser," Physical Review Letters 45, 2081 (1980).

' For an introduction to curved spacetime, see J. J. Callahan, "The Curvature of Space in a Finite Universe,"

Scientific American, August 1976, pp. 90-100.
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In this chapter we have focused on those aspects of relativity that involve

space and time, energy and momentum. The major significance of relativity

lies in its application to atomic and nuclear physics and electric and magnetic

fields, as well as astrophysics and cosmology. This brief introduction should

whet your appetite for further study of this fascinating subject. Relativity

theory is surely one of the towering achievements of the human mind.

Summaty

Special relativity compares measurements of events made in

two different frames of reference (S and 5') that have uniform

relative velocity V with respect to each other.

A point event:
{x,y,Z,t) (in the S frame)

{x',y',z,t') (in the S' frame)

Each event is to be measured by a local observer, situated where

the event occurs and equipped with a cloci< that has been syn-

chronized with other clocks in the frame.

Postulates of special relativity:

(1) All the laws of physics have the same form in nil inertial

frames (the principle of relativity).

(2) The speed of light in a vacuum has the same value c

in all itiertial frames (the principle of the constancy

of the speed of light).

From these two postulates, the following relations are derived.

(Note: P = Vic and y = 1/yJl - P^.)

Time dilatio)i:

T =
To

Length contraction.

where Tq must be a

time interval measured

by a single clock)

L = La P'

(where L^y must be a

measurement made in

a frame in which the

object is at rest)

Relativistic momentum:

P =
x/T f'

Relativistic velocity addition (for

velocities along the +x
direction):

v' + V

1 +
v'V

Kinetic energy.

K
mc

4^^'

T=yTo

L =

p = ym\

K = mc^iy - 1)

Rest energy: Total energy:

Eo = mc^ E=mc^ + K E = ymc^

When £ » mc''', then £ a pc

(Also see Equations (41-22) through (41-25).]

If an amount of mass Aw disappears when particles com-

bine into a bound system, the equivalent energy A£ = (Am)c^

is called the binding energy of the system.

The twin paradox: If one twin goes on a relativistic

round-trip journey, that twin will be younger upon returning

than the twin who remained at home.

The nonsynchronism of moving clock systems. Two clocks, sepa-

rated a distance Ax' and correctly synchronized in S', are in-

correctly synchronized to observers in the S frame by an amount

|e| = VAx'/c The "chasing" clock indicates a later time

than the "leading" clock.

The message of relativity: When correctly expressed, the

laws of nature are the same for all observers.

General relativity. Experiment shows that two different

attributes of mass are exactly proportional:

m = gravitational mass (the property of attraction for other

masses)

mj = inertial mass (the property of resisting acceleration)

The value of G, the universal gravitational constant, is chosen

so that there is numerical equivalence for the units of m^ and

m,. Einstein generalized his theory of relativity to include ac-

celerated frames of reference as well as the inertial frames of

special relativity.

Postulates of general relativity:

(1) All the laws of nature have the same form for observers

in any frame of reference, accelerated or not (the

principle of covariance).

(2) In the neighborhood of any given paint, a gravitatioyml

field is equivalent in every respect to an accelerated

frame of reference in the absence of gravity (the

principle of equivalence).

In place of Newtonian gravitational forces, the curvature of

spacetime determines the trajectories that freely moving ob-

jects follow.
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Questions

3.

What were Galileo's contributions to special relativity?

Explain how it is possible for the moving spot on an oscillo-

scope screen to move across the screen faster than the

speed of light without violating relativity.

Discuss what life would be like if the speed of light were,

say, 100 km/ h.

List several quantities whose measured values would be

different in two inertial frames in relative motion. Other

than the speed of light, what quantities would have the same

values in these two frames?

Under what circumstances would you be older than your

parents?

Interestingly, there is nothing in special relativity that for-

bids speeds faster than c as long as such particles always

travel faster than c. As a particle approaches the speed of

light from either side, the speed c seems to be an effective

barrier that cannot be "penetrated" from either direction. It

is proposed that particles that always travel faster than c

be called tachyons, after the Greek word tachos, meaning

"speed." Experiments have been performed to detect them,

without success. What might be some properties of tach-

yons? Could they have a rest mass? What would be some

consequences for fundamental ideas about causality? (See

Bilaniuk and Sudarshan, "Particles Beyond the Light Bar-

rier," Physics Today, May 1969, p. 43.)

7. Explain why it has been suggested that the "theory of

relativity" could equally well be called the "theory of

absolutism."

8. In a famous science fiction story, aliens kidnap several people

and take them away in a spaceship. One person remarks,

"We are traveling at the speed of light—look at your

watches." Someone does and exclaims, "My God! My watch

has stopped!" What blunder has the author made in writing

this incident?

Problems

41.6 Comparison of Clock Rates

41.7 Comparison of Length Measurements

41.8 Proper Measurements

41B-1 The speeds of electrons emerging from Stanford's

linear electron accelerator differ from the speed of light by

about 5 parts in 10^ ^ Find this difference in centimeters per

second.

41B-2 In 1849, H. L. Fizeau experimentally detenmined the

speed of light by sending a light beam through the slots of a

rotating toothed wheel to a distant mirror 8633 m away. Fig-

ure 41-21. Upon return of the reflected light pulses, if the ro-

tation speed of the wheel was just right the light pulses could

Rotating

toothed

wheel

Observer

Thinly silvered

mirror at 45°

FIGURE 41-21

Problem 41B-2.

Light

source

again pass through the slot openings between the teeth and

thus be seen by the experimenter. On the other hand, with a

different rotation speed the teeth interrupted the return light

pulses, so no light was observed. Thus, as the wheel was

speeded up, the observer would see a gradual progression from

brightness to darkness to brightness, and so on, depending on

whether the return pulses met a tooth or a slot on the rotating

wheel. Fizeau reported that as the wheel was speeded up, the

first "eclipse" of the return pulses occurred when the speed

of rotation was 12.6 rev/s. The wheel had 720 teeth and 720

slots, all of the same width. Using these data, find the speed

for light that Fizeau must have calculated. (His value was some-

what larger than more accurate determinations made later.)

41A-3 According to his wristwatch, an astronaut takes

2 min to eat a chocolate bar. (a) If the astronaut is traveling

with a speed of 0.5c relative to the earth, determine the amount

of time that elapses in the earth's frame of reference during

this time interval, (b) Find the distance in the earth's frame that

the spaceship travels during this time.

41A-4 Though the Shinkansen "Bullet Train" in Japan can

travel safely at 260 km/hr, its cruising speed is limited to

210 km/hr to keep the loudness level down to 75 phons. At

this slower speed, by how much is the moving train's length

(in the earth's frame) shorter than its rest length of 230 m?

41A-5 Alpha Centauri is a star about 4 light-years away. A
rocketship travels at constant speed from the earth to this

star in one day as measured by the rocketship's occupants.

(a) Find the speed of the rocketship relative to the earth. Ex-

press your answer as the amount by which /? differs from 1.

[Hint: because ^ is so nearly equal to 1, use the convenient ap-

proximation 1- P^ = {l + i?)(l - j8) % 2(1 - J5).] (b) In the

rocketship's frame, how far away is the star at the beginning of

the trip?
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41B-6 Two spaceships, A and B, pass close to each other as

they travel in opposite directions. Each ship has a proper length

of 300 m. In ship A% frame of reference, it takes 2 x 10~* s

for the nose of ship B to pass the full length of ship A. A
clock located in the nose of ship A reads exactly zero as the

nose of B passes close by. Find the reading on this clock as the

tail of B passes close by.

41B-7 The half-life of a given sample of radioactive parti-

cles is the time it takes for half the initial number of particles

to undergo a disintegration. A group of radioactive particles

moving at a speed of 0.8c travels through the laboratory a dis-

tance of 30 m. Half the particles survive the trip. Find the half-

life of the particles in their own frame of reference.

41B-8 A beam of 71"^ pions has a speed of 0.7c. When at

rest, the pions have an average lifetime of 2.6 x 10"^ s be-

fore disintegrating, (a) In the laboratory frame of reference,

how long, on the average, will the moving pions live before

disintegrating? (b) On the average, how far will they travel

through the laboratory in this time?

41B-9 If you travel on a jet plane from New York to

Los Angeles (4000 km air distance), at an average speed of

1000 km/h, how much younger are you on arrival than you

would have been had you remained in New York during the

time it took the plane to make the journey? (Hint: note that T,

the time that would have been spent in New York, is ex-

tremely close to Tq, the time spent on the plane.)

41B-10 An astronaut wishes to visit the Andromeda galaxy

(2 million light-years away) in a one-way trip that will take

30 yr in the spaceship's frame of reference. Assuming that

his speed is constant, how fast must he travel relative to the

earth? Express your answer as the amount by which fi differs

from 1.

41B-11 A spaceship has a proper length of 100 m. It travels

close to the earth's surface with a constant speed of 0.8c. Ob-

servers on earth decide to measure the length of the ship by

erecting two towers, A and B, that coincide with the ends of

the ship simultaneously (in the earth's frame) as it passes by.

Tower A is at the tail of the ship, and tower B is at the nose

of the ship, (a) How far apart do the earthmen build the

towers? (b) How long do the earthmen say it takes for the nose

of the ship to travel from tower A to tower B7 (c) How long,

according to measurements in the spaceship frame, does it take

for the nose of the ship to travel from tower A to tower B?

(d) As measured by the space travelers, how far apart are the

towers? (e) Find the proper time interval between event 1, in

which the nose of the ship coincides with tower A, and event

2, in which the nose of the ship coincides with tower B.

41B-12 Refer to the previous problem, (a) In the spaceship

frame, how long does it take a beam of light to travel from the

front to the rear end of the spaceship? (b) How long, according

to earthmen, is required for a beam of light to travel from the

front to the rear end of the moving spaceship? (c) A projectile

is fired from the rear of the spaceship toward the front end

with a speed of 0.6c as measured by the space travelers. Find

the speed of the projectile in the earth frame of reference,

(d) Find the earth speed of the projectile if it had been fired in

the opposite direction with the same speed relative to the

spaceship.

41.9 Relativistic Momentum
41.11 Relativistic Velocity Addition

4T7^;^T5> A certain type of meson decays at rest into two

equaPmass particles, which are ejected in opposite directions

with speeds of 0.8c. Suppose that the meson is traveling

through the laboratory with a speed v = 0.6c when the decay

particles are emitted along the line of motion (in opposite di-

rections). Find the speeds of the two decay particles as mea-

sured in the laboratory frame.

41A-14 A meter stick, oriented parallel to the direction of

motion, and a 1-kg object are on board a spaceship that has a

speed V = 0.6c relative to the earth. Find (a) the length of

the meter stick and (b) the momentum of the object as mea-

sured in the earth's frame of reference, (c) If it takes an astro-

naut 6 h to do her physics homework, calculate the time it

takes her as measured in the earth's frame of reference, (d)

According to observers on earth, how far (in c-hr) does the

spaceship travel during this time?

41A- 15 An astronomer observes that two distant galaxies

are traveling away from the earth in opposite directions, each

with speed v = 0.9c. What would an observer in one galaxy

measure for the speed of the other galaxy?

41A- 16 A certain quasar recedes from the earth with a speed

V = 0.87c. A jet of material is ejected from the quasar toward

the earth with a speed of 0.55c relative to the quasar. Find

the speed of the ejected material relative to the earth.

418-17 A particle of mass M moving at I'l = 0.6c collides

head-on with and sticks to another particle of mass m moving

at V2 = 0.8c in the opposite direction. After the collision, the

combined mass is at rest with respect to the laboratory.

Find the ratio M/m of the masses.

41B-18 A mass m moving with an initial speed Vq has a

head-on elastic collision with a mass 3m, which is initially at

rest. Nonrelativistically, the mass m rebounds with a speed Vq/Z

while the mass im moves in the forward direction, also with

a speed fo/^- Relativistically, however, the final speeds cannot

be equal. Letting Vq = 0.8c, show that if the final speeds are

each assumed to be 0.4c, then momentum is not conserved.

41.12 Relativistic Energy

41A- 19 Determine an object's speed if its kinetic energy

equals its rest energy.

41A-20 A proton moves with speed 0.8c. Find, in units of

MeV, (a) the proton's total energy E and (b) its kinetic energy

K. (c) Find its momentum in units of MeV/c.

41A-21 It is estimated that the total energy input (from all

sources) to the U.S. economy in the year 1987 was about

8 X 10^'
J. Assuming that all this energy came from nuclear

reactions in which mass is converted to energy according to

£ = nic, determine the total mass annihilation that would be

involved.

41A-22 The rest energy of a tritium nucleus, ^He (two

protons and a neutron), is 2808.413 MeV. Find the minimum

energy required to remove one proton, resulting in a deuteron,

"H, plus the proton.
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41B-23 The Stefan-Boltzwami radiation law (Section 42.2)

states that the total power R radiated per square meter by a

surface at kelvin temperature T is R = ffT*, where the Stefan—

Bcltzmann constant a = 5.672 x 10'** W/m-'K*. Calculate the

rate of mass loss of the sun due to the conversion of mass to

energy by nuclear reactions in the sun's core. (See Appendix

G for additional data.)

41B-24 At normal incidence at the top of the earth's at-

mosphere, the incident solar power per unit area is about

1370 VV/m'^. From this information (and other data from Ap-

pendix L), estimate the sun's mass loss per second (£ = mc^).

41B-25 Starting with fundamental definitions of £ and p,

derive Equation (41-22), £^ = (mc-)' + (pc)'.

418-26 (a) Determine the work required to accelerate an

electron from rest to 0.8c according to Newtonian mechanics,

(b) How much work is required according to relativity? Express

your answers in terms of mc^. (Hint: recall that the work done

on an object equals the change in kinetic energy of the object.)

41B-27 Starting with fundamental definitions of £ and p,

derive the first relation of Equation (41-25), i> = pc^jE.

41B-28 A free neutron will decay into a proton, an electron,

and a massless particle called an antineutrino. From the difference

between the mass energies of the neutron and of the decay

particles, calculate the total kinetic energy (in joules) the decay

particles would have if the neutron were initially at rest.

41B-29 Starting with fundamental definitions of K and p,

derive Equation (41-23), p = v'2mK[l + {K/2mr)].

41B-30 An electron's kinetic energy is three times its rest

energy. Find (a) the electron's total energy in electron volts

and (b) its speed in terms of c.

41B-31 Starting with the fundamental definitions of £o and

£, show that the second relation of Equation (41-25) is true:

v = c[l- [Eo/Ef]' -.

41.13 The Nonsynchronism of Moving Clocks

41.14 The Twin Paradox

41A-32 A certain galaxy moves away from the earth so fast

that the spectral lines in its light emission are Doppler-shifted

to one-half their frequencies here on the earth. Find the galaxy's

speed.

41B-33 Two clocks are located in the nose and the tail of

a spaceship whose proper length is 300 m. They are correctly

synchronized in the spaceship frame of reference. If the space-

ship moves past the earth with a speed V = 0.90c, (a) find the

difference in the readings of the two clocks as measured simul-

taneously in the earth's frame, (b) Which clock reads the earlier

time?

41B-34 Imagine that the entire sun collapsed to a sphere of

radius Rg such that the work required to remove a small mass

tn from the surface would be equal to its mass energy mc".

This radius is called the gravitational radius for the sun. Find

Kg. (It is believed that the ultimate fate of many stars is to

collapse to their gravitational radii or smaller.)

41B-35 Refer to Problem 41B-11. As the spaceship passes

the towers, the following two events are simultaneous in the

earth frame:

Event (a): Coincidence of tower A with the tail of the ship.

Event (b): Coincidence of tower B with the nose of the ship.

(a) Make pictorial sketches (with dimensions) to show how
these same two events look in the spaceship frame of refer-

ence, (b) Find the time interval, if any, between these events

as measured in the spaceship frame.

41B-36 A spaceship (S' frame) passes the earth (S frame) at

the times / = f' = in their respective frames. The spaceship's

velocity relative to the earth is 0.9c. One second later as mea-

sured in the earth's frame, a radio signal is sent to the space-

ship. Find the time in the spaceship's frame when the radio

signal is received.

Additional Problems

41C-37 At exactly noon in our frame of reference, a clock

moving with speed i' = 0.8c reads 12:00 (noon) as it passes

the origin of our frame, (a) How far away will it be when its

hands indicate 1 s after 12:00? (Leave the symbol c in the

answer.) (b) When the clock face indicates 1 s after 12:00, a

light signal is sent from the clock back toward the origin of

our frame of reference. At what time (in our frame) does this

signal arrive at our origin?

41C-38 A spaceship of proper length L travels past the

earth with a speed v = (4/5)c. When a clock at the tail of the

spaceship reads t' = (and when earth clocks also read t = 0),

a light signal is sent from the tail to the front of the space-

ship. Determine the time at which the signal reaches the front

end of the ship (a) according to spaceship clocks and (b) ac-

cording to earth clocks, (c) The answers to parts (a) and (b)

are not related according to the time dilation formula. Why
not? (d) The light signal is reflected by a mirror at the front

end back toward the rear. Find the time at which it reaches the

rear according to rocket clocks, (e) Find the time in (d) according

to earth clocks, (f) Are the answers to parts (d) and (e) related

according to the time dilation formula? Explain why or why not.

41C-39 Imagine that a runner carries a mirror 1 m (in the

runner's frame of reference) in front of her face to observe her

own reflection as she runs. Figure 41-22. Her speed is 0.6f

relative to the earth. She blinks, (a) In the runner's frame of

reference, how much time will pass after she blinks before she

sees the blink of her mirror image? (b) In the earth's frame of

reference, what is this time interval? Leave the symbol c in the

answers.

Mirror

The self-admiring runner

FIGURE 41-22

Problem 41C-39.
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41C-40 Electrons in Stanford's 10 000-ft linear accelerator

attain a final velocity of (0.999 999 999 7)c. (a) In a frame of

reference moving at this speed, how long is the accelerator?

(Use the appropriate mathematical approximation.) (b) Travel-

ing at this (constant) speed, how long would it take to travel

this distance in the frame of reference of an electron? (c) How
long would the electron's journey take as measured by a Stan-

ford physicist?

41C-41 We could define "the length of a moving rod" to

be the product of its velocity times the time interval between

the instant one end of the rod passes a fixed point in our frame

of reference and the instant the other end passes the same point.

Show that this definition also leads to the familiar result for

length contraction, L = Lq{1 - PV'^.

41C-42 A golf ball travels with a speed of 90 m/s. By what

fraction does its relativistic momentum p differ from nwl That

is, find the ratio (;; — niv)/mv.

41C-43 One way of expressing the relativistic momentum
increase is the fraction / by which the relativistic momentum
p exceeds its classical value mu. That is, f = (p — mv)/mv. De-

rive the following expression for the speed ratio P = v/c in

terms of /: ^ = ^f{f + 2)/(/ + 1).

41B-44 Bandits try to stop a train (which is moving for-

ward) by setting off explosive charges near the engine and near

the caboose. The two explosions are simultaneous in the earth's

frame of reference. In the train's frame, which explosion, if

either, occurred first according to relativity? Does it make any

difference whether the train is traveling in the -|-.r or the —x
direction? Justify your answers.

41C-45 Primary cosmic "rays" are high-energy protons that

impinge on the earth from outer space. They collide with and

break apart atomic nuclei in the upper atmosphere, creating

secondary cosmic rays: a debris of electrons, positrons, neu-

trons, mesons, photons, etc., that shower down upon the earth's

surface. (The most penetrating particles reach the deepest mines

within the earth.) By recording the simultaneous arrival of par-

ticles over an area of a square mile or so at the earth's surface,

one can estimate the energy of the single proton that initiated

the shower of particles. Events involving a shower of perhaps

100 million particles have been measured whose total energy

is about 10-' eV (1 eV = 1.6 x 10" ''
J). Suppose that a pho-

ton (which travels always with the speed c in a vacuum) and

a proton of 10" '-eV energy have a race to earth from the near-

est star, 4 light-years away. By how much time would the

proton lose the race?

41C-46 An unmanned spaceship recedes from the earth with

a speed of 0.8t". Transponder equipment aboard the spaceship

sends back to earth a radio signal of exactly 1 s duration (mea-

sured in the spaceship's frame of reference) whenever an "in-

terrogation pulse" is received from earth. Suppose that two

very short interrogation pulses are sent from the earth, 10 s

apart as measured in the earth's fi-ame. (a) In the earth's frame,

find the duration At of a single signal pulse received from the

spaceship, (b) Find the time interval T between the leading

edges of the two response signals as received at the earth.

41C-47 A high-energy proton has a speed of approach v

relative to a proton at rest on the earth. Find the speed V

relative to the earth of a frame of reference in which the two

protons have equal speeds.

41C-48 A laser emits monochromatic light of wavelength

/. The laser beam is directed at normal incidence on a mirror

that is moving away at speed V (relative to the laser). Show
that the beat frequency between the incident light and the re-

flected light is approximately 2V;/.. (Hint: in the mirror's frame

of reference, light is received from a source moving away from

the mirror. In the laser's frame, the reflected light is as if it

were emitted from a receding source.)

41C-49,.' The total energy £ of a proton from a high-energy

accelerator is 5 times its rest energy Eg (equal to mc^). In terms

of its rest energy Eg, find (a) its kinetic energy K and (b) its

momentum p. (c) Find the value of ^. When appropriate, leave

the symbol c in the answer.

41C-50 Suppose that noted astronomers conclude that our

sun is about to undergo a supernova explosion. In an effort to

escape, we depart in a spaceship and head toward the star Tau

Ceti, 12 light-years away. When we reach the midpoint (in

space) of our journey, we see the supernova explosion of our

sun and, unfortunately, at the same instant we see the explo-

sion of Tau Ceti. (a) In the spaceship's frame of reference, should

we conclude that the two explosions occurred simultaneously?

If not, which occurred first? (b) In a frame of reference in which

the sun and Tau Ceti are at rest, did they explode simulta-

neously? If not, which occurred first?

The following problems are famous "paradoxes" of special

relativity. They are presented here without answers. Ex-

plaining why these situations are not paradoxical will chal-

lenge your understanding of the true nature of space and

time.

41C-51 In a space war, two identical rocketships pass close

to each other, traveling in opposite directions at speeds close

to that of light. When the tail of ship B is adjacent to the nose

of ship A, a mortar shell is fired sideways (perpendicular to the

relative motion) from a gun barrel located near the tail of A
in an attempt to hit ship B, Figure 41-23. Obviously, both

As seen in the

frame of reference

of ship A, the

length of B is

contracted; thus the

shell does not hit

ship B.

(b) As seen in the

frame of reference

of ship B, the

length of A is

contracted; thus the

shell does hit ship

B.

FIGURE 41-23

Problem 41C-51.

^O
As seen in Ship A's

frame of reference

-«•-

As seen in Ship B's

frame of reference
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statements in Figure 41-23 and their corresponding diagrams

cannot be true. Ship B is either hit or it is not. Find the am-

biguities in the statements of this problem, and discuss briefly

what really happens and why there is no paradox. Assume that

the ships pass very close to each other and that the shell's

speed is very great, so that the transit time of the shell itself

is not a factor in the analysis.

41C-52 The "stick-in-the-hole" paradox is one of the most

puzzling paradoxes in special relativity. A lOO-cm stick is

moving horizontally with relativistic speed such that its length

is contracted to 50 cm as seen in the earth's frame. Figure 41-24.

An observer in the earth's frame has a thin board with a circular

hole, 70 cm in diameter, cut out of it. As the pole passes by,

the observer quickly lifts the board vertically (keeping its plane

horizontal), allowing the stick to pass through the hole. Thus,

at some instant, the (contracted) stick fits entirely inside the

horizontal hole. Here is the paradox: "In the stick's frame of

reference, the stick is 100 cm long, and the hole is only 35 cm

across. How can the 35 -cm opening engulf the 100-cm stick?"

(Hint: focus your attention on point events. For example, con-

sider four points equally spaced along the stick's length. At

some instant in the earth's frame, these four points simulta-

neously lie in the plane of the board. What do these four events

look like in the pole's frame? Are they simultaneous?)

FIGURE 41-24

Problem 41C-52.

41C-53 The "pole-in-the-bam" paradox is one of the classic

puzzles of special relativity. Consider a 20-ft pole carried along

so fast that it is only 10 ft long as measured in the earth's

frame. Figure 41-25. The pole is carried through a bam that

has doors C and D on opposite walls. The bam is 12 ft long

(2 ft longer than the moving pole), so both doors could be

FIGURE 41-25

Problem 41C-53.

simultaneously shut for a brief period, trapping the pole inside

the bam. (Door D would then be opened to permit the pole

to travel on through.) On the other hand, to the mnner carry-

ing the pole, the bam is only 6 ft long because of length con-

traction. Here is the apparent paradox: "To the runner, how
can his 20-ft pole fit inside the 6-ft barn with both doors

closed?" Obviously, there is an inconsistency somewhere. Can

you resolve this apparent paradox? (Hint: as with most para-

doxes in relativity, the root of the problem lies in the fact that

two events that are simultaneous in one frame of reference are

not necessarily simultaneous in another frame.)

41C-54 Here is the famous "string paradox." Consider two

frames: S is "our" frame, and S' is a "moving" frame traveling

at constant speed 0.8c in the +x direction. Two spaceships, A
and B, each of proper length 100 m, are at rest in our frame,

aligned in the same +x direction with A in front of B and

with their "noses" 200 m apart. A 300-m string (with 100 m
of "slack") ties the nose of A to the nose of B. Simultaneously

(in our frame) the two ships are now given identical constant

accelerations along the +x direction until they each reach a

speed of 0.8c, when the accelerations are simultaneously

stopped. Thus each ship is finally at rest in S'.

In our S frame: Because the ships started

simultaneously, had identical accelerations, and

stopped accelerating simultaneously, their

nose-to-nose separation remains 200 m. (Also, the

distance between any such pair of corresponding

points on the two ships remains constant at 200 m.)

Because of the Lorentz contraction, the final length

of each is 60 m.

In the moving S' frame: Each ship was initially

contracted to 60 m long, and the initial

nose-to-nose distance was contracted to 120 m. In

the final rest position, each ship is 100 m long.

Here is the problem: (a) Show that, in the S' frame, the final

nose-to-nose separation (at rest) is actually 323 m and the string

is therefore broken, (b) The comments under "In our S frame"

are correct, yet they seem to imply that the string should not

break because the final nose-to-nose distance is only 200 m.

Resolve this apparent paradox. Include diagrams for the initial

and final situations in each frame.

41C-55 Consider the twin paradox. In the traveling twin's

frame the earth clocks move away and come back, so as mea-

sured in that frame the moving earth clocks run more slowly

than clocks at rest in that frame. This is true during both the

receding and the approaching motions of the earth. Therefore, why
is it that, upon his return, the traveling twin finds that more

time has elapsed on the earth than in the traveling frame of

reference?

Note: for an interesting example in which twins undergo the

same acceleration for the same length of time, yet age differ-

ently, see S. P. Broughn, "The Case of the Identically Accele-

rated Twins," American Journal of Physics 57 (Sept. 1989).



The Quantum Nature of Radiation

All these fifty years of pondering have not brought me any closer to

answering the question, What are light quanta?

EINSTEIN
(in a letter to Besso, 1951)

Physics is very muddled again at the moment; it is much too hard for me
anyway, and I wish I were a movie comedian or something like that and
had never heard anything about physics!

WOLFGANG PAUL!
(in a letter to R. Kronig, 25 May 1925)

[American Journal of Physics 43, 208 (1975)1

/ do not like it, and I am sorry I ever had anything to do with it.

E. SCHRODINGER
(on quantum mechanics)

42.1 Introduction

Toward the end of the nineteenth century, our understanding of what is now
called classical physics had reached an impressive stage. It was believed that

almost everything was known about the physical world and its interactions

—

at least, this was the opinion expressed by several well-known scientists at

that time. A more embarrassing misconception can hardly be imagined. Yet, con-

sidering the widespread success of Newtonian mechanics in explaining the

motion of all kinds of objects from baseballs to the solar system, and the fact

that these same ideas also brought all heat phenomena under the rules of me-

chanics, it seemed reasonable that we had, at last, found a great unifying theory

that explained all phenomena. There were also radio waves, light, and thermal

radiation, which were obviously apart from mechanics, but these, too, were

brought together in another unifying theory: Maxwell's electromagnetism. To-

gether these two theories seemed to complete our understanding of all natural

phenomena in terms of particles and waves.

However, a few surprises began to surface. In 1895 Wilhelm Konrad

Roentgen discovered x-rays; the next year Antoine Becquerel discovered nu-

clear radioactivity; and the year after that J. J. Thomson's measurements of e/m

for electrons showed that they were a fundamental component of all atoms,

so the model of an atom needed revision. In addition, there were a few well-
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known phenomena that still remained a mystery. For example, the spectral dis-

tribution of wavelengths emitted by hot, glowing bodies had no satisfactory

theoretical explanation. And the fact that ultraviolet light could eject electrons

from metals had some very puzzling aspects. But most scientists felt that these

were merely a few isolated instances that sooner or later would also be ex-

plained by the two "complete" theories of the day, Newton's mechanics and

Maxwell's electromagnetism. If this had been true, the future activity for phys-

icists would have been quite dull—merely applying these theories to the few

remaining puzzles and determining the next decimal places in the fundamental

constants of nature (the charge on the electron, the speed of light, Avogadro's

constant, and so on).

We now tell the story of how the few minor cracks in the foundations

of physics widened and brought the smug complacency of the nineteenth

century tumbling down. In the process, physics itself expanded rapidly and

became greatly strengthened. The revolution that occurred—the quantum rev-

ohiHon—was even more troubling and difficult to accept than Einstein's theory

of relativity was a few years later. In a sense, relativity is considered part of

classical physics (prequantum, that is) because the fundamental concepts of

mass, momentum, energy, and the way systems interchange energy remain

essentially unchanged. Einstein's revolution was to change completely the struc-

ture of space and time within which measurements are made and to extend

classical concepts so that physical laws would be correct for high velocities.

The quantum revolution revised classical concepts so that they were correct

for very small distances. The new physics of both relativity and quantum

mechanics includes classical physics as special cases. But the quantum revolu-

tion was perhaps the more revolutionary because it altered our most basic

concepts of particles and of electromagnetic waves—the only "stuff" physicists

in those days believed the universe was made of. The new quantum physics

demonstrated that these classical ideas were inadequate and often led to pro-

found contradictions, both in disagreeing with experiment and in challenging

basic philosophical issues about the nature of matter and our perception of it.

FIGURE 42-1

A practical approximation of an ideal

blackbody is a hole that leads to a

cavity with rough walls. The hole

itself is the blackbody, since essentially

all of the radiation incident on the hole

is absorbed. The radiation inside the

cavity is called hlackhody radiation or

cavity radiation.

i^l.l The Spectrum of Cavity Radiation

One outstanding unsolved puzzle in physics in the late nineteenth century was

the spectral distribution of so-called cavity radiation, also referred to as black-

body radiation. It was shown by Kirchhoff that the most efficient radiator of

electromagnetic waves was also the most efficient absorber. A "perfect" ab-

sorber would be one that absorbs all incident radiation; since no light would

be reflected, it is called a blackbody.

To investigate the nature of radiation, it seems best to construct the most

efficient radiator of all. How does one make a blackbody? The nearest practical

approach to an ideal blackbody is a tiny hole in a cavity with rough walls

(Figure 42-1). Any radiation that enters the hole has negligible chance of being

reflected out through the opening: it is essentially 100% absorbed. As the walls

of the cavity absorb this incoming radiation, their temperature rises and they

begin to radiate. They continue to radiate until thermal equilibrium is reached,

at which time they radiate electromagnetic energy at the same rate they absorb

it. The radiation inside is then called blackbody radiation, or cavity radiation, and

the tiny amount that manages to leak out the hole can be studied. The hole

itself is the blackbody.

In 1879, the Austrian physicist J. Stefan first measured the total amount

of radiation emitted by a blackbody at all wavelengths and found that it varied

as the fourth power of the absolute temperature. This was later explained
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through a theoretical derivation by L. Boltzmann, so the result became known
as the Stefan—Boltzmann radiation law.

STEFAN-BOLTZMANN
RADIATION LAW R = (jr (42-1)

where the total emittance R is the total energy at all wavelengths emitted'

per unit time and per unit area of the blackbody, 7 is the kelvin temperature,

and a is the Stefan-Boltzmann constant, equal to 5.672 x 10"^ W/m'^ • K*.

In examining the spectral distribution of cavity radiation (the amount of

energy at various wavelengths), researchers made a startling discovery. The

spectral distribution does not depend on the material of the cavity, but only on the

absolute temperature T. No matter what the cavity is made of, the spectral dis-

tribution is the same for a given temperature. Whenever physicists discover a

phenomenon that is independent of the material involved, there is a strong

probability that the effect involves a very basic interaction. So it is important

to understand the effect thoroughly.

42.3 Attempts to Explain Cavity Radiation

Many capable physicists tried to develop a theory based on classical ideas that

could predict the spectral distribution of cavity radiation. The goal was to

derive the spectral energy density (in joules/meter^) for the cavity radiation

between wavelengths / and A + d?.. This is defined in terms of a mathematical

function, f(/~,T), that depends on both the wavelength /. and the absolute tem-

perature T. Figure 42-2 shows experimental curves for three different tempera-

tures. Note that as the temperature increases, the wavelength at the peak of

each curve is displaced toward shorter wavelengths. The German physicist W.
Wien obtained an empirical relationship for this feature, known as Wien's dis-

placement law.

WIEN'S
DISPLACEMENT LAW kST = constant (42-2)

where /„, is the wavelength at the maximum of the spectral distribution, T is

the absolute temperature, and the constant is experimentally found to be

2.898 X lO"-"* m-K.

The total energy density at all wavelengths is the area under the curve:

Total energy density ^ ["/(/l.D^/l
(all wavelengths) Jo

(42-3)

According to the Stefan-Boltzmann law, the total energy radiated is propor-

tional to the fourth power of T, so the area under the curve for T = 6000 K
is 16 times that for T = 3000 K. Also note that the fraction of the radiation

that falls within the visible range^ is not uniform. At low temperatures, there

' As pointed out in Question 4 at the end of the chapter, the surfaces of materials have a total emittance

somewhat less than that of an ideal blackbody. The emittance depends upon the physical conditions of

the surface and is different for different materials. A surface coated with lampblack (carbon soot) is close

to an ideal emitter and absorber.

'
It is interesting that the visual sensitivity of our eyes centers on the peak of the sun's radiation distribution.

If there are sensing beings on planets around a star with a different temperature, perhaps, through evolu-

tion, their "eyes" evolved to respond to a different portion of the electromagnetic spectrum.

f(\.T)

7=6000 K
(Approx. temperature

\y of surface of sun)

7=4000 K
7=3000 K
(Hot lamp

filament)

LJ 1000 2000 3000

Visible

range
Wavelength X (nm)

FIGURE 42-2

The spectral distribution curves for cavity

radiation at three different equilibrium

temperatures. The function f{/.,T)

describes how the intensity of the

radiation inside the cavity depends upon

wavelength. It is in units of energy per

unit volume per unit wavelength interval

between wavelengths / and A + d/..

The small vertical lines on the peaks

of the curves show that as the

temperature becomes hotter the

wavelength at the peak becomes

shorter, according to Wien's

displacement law.
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FIGURE 42-3

Most exposed surfaces are not perfect

blackbody radiators, though they are

often close enough to the Planck curves

so that temperatures can be accurately

estimated. These curves are the best fit

to the spectral distribution from the

surfaces of three different stars.

(Absorption by the earth's atmosphere,

particularly in the ultraviolet, greatly

distorts the spectral distributions

obtained by earth-based telescopes.) Our

sun, at 5800 K, looks yellowish. The

8000-K star emits more blue light than

our sun and appears bluish-white. The

4000-K star is reddish, emitting most

of its radiation in the invisible infrared.

(From W. M. Protheroe, E. R. Capriotti,

and G. H. Newsom, Exploring the Universe,

2nd ed., Charles E. Merrill Publishing

Company, 1981.)

is relatively more energy radiated at long wavelengths (red) than at shorter

wavelengths (blue). As the temperature increases, this changes to relatively

more radiation in the blue, which explains the color changes that occur as a

solid is heated: it first begins to glow with a dull red, progressing through

orange, yellow-white, and finally, at very high temperatures, blue-white.

EXAMPLE 42-1
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/(X, T)

10 000

Wavelength X (nm)

FIGURE 42-4

The circles are experimental points for

cavity radiation at 1600 K. Curves for

three different theories are shown for

comparison.

to all systems, often thermodynamic arguments do not give insight into the

particular processes involved in a given system. Perhaps more success would
come if one focused on the source of the cavity radiation, the actual process

of electromagnetic radiation and absorption by the walls.

Rayleigh (1900) approached the problem from this viewpoint. He con-

sidered a rectangular cavity with metallic walls and assumed that the electric

charges in the walls were the source of the radiation. They behaved as simple

harmonic oscillators and could radiate as well as absorb radiation, each with

its "characteristic" natural frequency of oscillation. For any sufficiently large

enclosure, there was such an extremely great number of oscillators that the

resulting negligible differences between adjacent frequencies caused the radia-

tion to appear continuous over all wavelengths. At a given temperature T,

constant operation of the oscillators means that standing waves would be set up

in the enclosure. With perfectly conducting walls, the standing waves must

have nodes at each wall. The total number^ of such standing waves (per unit

volume) turned out to be 8in^~*.

The eqiiipartition theorem (Chapter 21) states that, on the average, jkT of

energy is associated with each variable required to specify the energy of a

system in thermal equilibrium at absolute temperature T. For electromagnetic

waves* there are two variables (the two directions of polarization), so the total

energy associated with each is

AVERAGE ENERGY OF A
CLASSICAL SHM OSCILLATOR
(in a system at

thermal equilibrium)

£,„ = kT (42-5)

where the Boltzmann constant k is equal to 1.381 x 10 "^J/K. Multiplying

the number of standing waves by the average energy of each gives the

^ Rayleigh made a trivial error of a factor of 8 in the derivation. After the result was published, Sir James

Jeans pointed out the obvious mistake, so the corrected formula became known as the Rayleigh-Jeans

law. In this instance, considerable fame resulted from a rather minor contribution. Of course, Jeans also

made a great many other contributions to physics.

* One could also apply the equipartition theorem to the SHM oscillators in the walls. In SHM, two variables

are required: one for the kinetic energy and one for the potential energy. Therefore, each SHM oscillator

has an average energy of kT.
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Rayleigh-Jeans law for the spectral energy density (in joules/meter^) between

wavelengths / and / + d?^:

RAYLEIGH-JEANS , ,, -r,,- o ,-r--4j-, , , ,.

RADIATION LAW '^"^ = ^^'"^^ ^'^ = '""^^'^
'^^^

^^^'^^

where k is the Boltzmann constant.

The theory fits the data at extremely long wavelengths, but as shown

in Figure 42-4 it was in drastic error everywhere else. The curve never "bent

over": as the wavelength approached zero, the curve continued to increase

toward infinity. Since the discrepancy was greatest at short wavelengths, it

became known as the ultraviolet catastrophe. And a catastrophe for classical

physics it was. The Rayleigh—Jeans derivation was based on classical concepts

of thermodynamics and statistical mechanics, which had been completely suc-

cessful in every other application. Each step of the derivation seemed so plau-

sible that it was extremely disturbing to find the result so inaccurate. Where was

the error in thinking?

42.4 Planck's Theory

In 1900, the German physicist Max Planck stumbled upon a solution to the

difficulties. He first found it by some purely mathematical reasoning, then tried

to figure out the physical implications of the mathematical trick he employed.

Even though he obtained a radiation law that agreed with the experimental

data, the physical implications were so startling that for many years Planck

himself did not want to accept them as describing what the "real world" was

like. The quantum ideas were just too radical.

Planck's stratagem was the following. In the Rayleigh-Jeans derivation,

an important step in the procedure was to find the average energy of a SHM
oscillator by integrating over all possible energies the oscillator might have.

Classically, such an oscillator (as, for example, a mass on a spring) could vibrate

with any amplitude from zero on up. Since the energy is proportional to the

square of the amplitude, the oscillator could have any of a continuum of energy

states, a range of values that varied smoothly from to go. The trouble was

that integrating over a continuous range of energies from to X made the

function become infinite as /. —> 0. Planck was a good enough mathematician

to realize that if, instead, he made a summation over a discrete range of energies

from to 00, the result was a function that "turned over" and approached

zero as /. -^ 0, just like the experimental radiation curves. As it turned out,

the curve Planck obtained matched the experimental points exactly. This put

Planck in a position similar to that of a student who has looked in the back

of the book to find the right answer to a problem, but is then faced with

finding out how to get there from the given facts. What was it about nature

that made a summation of discrete energy states the proper approach?

Planck decided on a bold step. Although it disagreed with all classical

theories, he assumed that a SHM oscillator with a natural frequency / was

"allowed" to have only one of a discrete series of energies: 0, hf, Ihf, 3hf, . . .

,

where /; is a constant.

ALLOWED ENERGIES
FOR A QUANTIZED £„ = nhf (where „ = o. i, 2, 3, . . .) (42-7)

SHM OSCILLATOR

Planck first determined the constant by fitting experimental data to the expres-

sion for f(/.,T) that evolved from his theory. He obtained a value very close
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to the currently accepted value:

PLANCK'S CONSTANT
;, = |

^-^^^ ^ IQ-^"^ J-s

I 4.136 X 10~'^ eV-s

Figure 42-5 compares energy-level diagrams for the classical and the quantum
cases.

As a second assumption, Planck proposed that the only amount of energy

A£ an oscillator could emit or absorb was a quantum^ of energy:

M = hf (42-8)

With these assumptions, Planck found the average energy for a collection of

oscillators in thermal equilibrium at absolute temperature T to be

hf

hflkT
(e'^' I)

(42-9)

Transforming the variable from frequency / to wavelength A through // = c,

we have

AVERAGE ENERGY OF A
QUANTIZED SHM OSCILLATOR
(in a system at thermal

equilibrium)
ie"'

''''^ - 1)

(42-10)

This is quite different from the classical value of E^^ = kT [Equation (42-5)].

However, as h —> 0. this relation does reduce to the classical value (see Prob-

lem 42C-39).

If the oscillators had this average energy, then it must also be the

average energy of the waves in the cavity (because the walls and the radia-

tion are in thermal equilibrium). Multiplying this average energy by the Ray-

leigh—Jeans calculation for the number of standing waves. Sua''*', Planck

obtained his expression for the spectral distribution /(/, T). The Planck spectral

energy density (in joules/meter^) for cavity radiation between wavelengths / and

A + d/. is

Increasing

energy

(a According to classical

mechanics, the possible energy

states from a continuous

distribution.

Increasing

energy

t
4hf

3hf

2hf

hf

—
(b) According to quantum

mechanics, the possible energy

states form a discrete

distribution.

FIGURE 42-5

Energy-level diagrams for a SHM
oscillator of natural frequency /.

PLANCK'S
RADL\TION LAW du,_ = /(;., D d/. =

&nhcl'

{e'
.hciXkT

I)

dA (42-11)

As you can see from Figure 42-4, the Planck theory fits the experimen-

tal points beautifully. For short wavelengths, the Planck equation approaches

the Wien expression, which was correct in that region. For long wavelengths,

the Planck equation approaches the Rayleigh-Jeans law, correct for long wave-

lengths. Planck effectively built a bridge between the two classical radiation

theories. However, to do so, he had to make a radical break with all previous

ideas about the energy a system could possess. If nature really behaved this

way and all systems had quantized energy states, why wasn't it discovered

long ago? The following example will explain why.

' The word qiianhim comes from the Latin word quanhis, meaning "how much." Planck originally proposed

that quanta could have integral multiples of hf, but Einstein and others later showed that only single units

of hf were permissible.
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EXAMPLE 42-2

A 5-g mass is hung from a string 10 cm long and is set into motion so that, at

extreme positions, the string makes an angle of +0.1 rad with the vertical.

Because of friction with the air, the amplitude gradually decreases. Can we de-

tect the quantum jumps in energy as the amplitude decreases?

SOLUTION

The frequency of oscillation / is obtained from Equation (15-21):

^ 1 g 1 /9.8m/s^ _,fx— -^ = — / ^= 1.58s '

2n \^ /^ 271 V 0.1 m

The energy of the pendulum is equal to the gravitational potential energy at

an extremity:

£ = mg/'(l — cos 6)

E = (0.005 kg)(9.8 m/s^)(0.1 m)(l - cos 0.1) = 2.45 x 10"'
J

The quantum jumps in energy would be

A£ = hf= (6.63 X 10"^*J-s)(1.58s"') = 1.05 x 10""
J

The ratio is A£/£ = 4.28 x 10 ~"'. Therefore, in order to detect the quantized

nature of the energy states, we would have to measure energy to better than

4 parts in 10 ~"^, a sensitivity far beyond the capability of any experimental

technique.

FIGURE 42-6

The experimental apparatus used by

Hertz to detect electromagnetic waves.

As the example shows, the quantization of energy states is undetectable

for macroscopic mechanical systems. The "graininess" of energy transfers is

usually not noticed in everyday phenomena because of the smallness of h. If

h were bigger, we would see quantum effects all around us. Quantum effects

are always present, but they become noticeable only for microscopic systems

on an atomic scale, that is, for cases in which A £ is of the order of £. This

condition is what makes blackbody radiation (at high frequencies) behave in

an unusual way, traceable to quantum effects. It is interesting that if we let

h —> 0, all quantum equations turn into the corresponding classical expres-

sions. Thus the new quantum mechanics is a more general theory that con-

tains classical mechanics as a special case.

42.5 The Photoelectric Effect

Today it is hard to realize the magnitude of the break with classical thinking

that Planck initiated. Planck himself, who strongly resisted giving up the con-

tinuity of possible energy states, spent much effort in trying (unsuccessfully)

to find an alternative solution to the ultraviolet catastrophe within the frame-

work of classical physics. Though he grudgingly came to accept the idea that

oscillators could have only quantized energy states and emit or absorb radia-

tion in units of hf, he held to the classical view of radiation: electromagnetic

waves were not quantized. But soon even this link to classical physics was

broken.
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FIGURE 42-7

An experimental arrangement for

investigating the photoelectric effect.

The quartz window passes wavelengths

in the ultraviolet that would be stopped

by ordinary glass. The variable voltage

y applied to the electrodes can be

reversed by a switching arrangement

(not shown).

Heinrich Hertz was the first (in 1887) to experimentally produce the elec-

tromagnetic waves predicted by Maxwell's equations. Using an induction coil

(a step-up transformer with a great many turns on the secondary) attached to

two small metal spheres as shown in Figure 42-6, he initiated an oscillating^

spark across gap A. A nearby metal ring with a gap B would respond by

sparking across its gap, verifying that electromagnetic energy had traveled

from A to B. Quite by accident. Hertz discovered that the spark at B could

be initiated much more easily if the gap were illuminated by ultraviolet light.

Ten years later Thomson discovered the electron, and it was then verified that

the ultraviolet light ejected electrons from the gap electrodes, making the

spark easier to form. The phenomenon of electron ejection by light is called

the photoelectric effect.

Figure 42-7 shows an experimental apparatus for investigating the effect.

At any one time, monochromatic light is used. According to classical wave
theory, the electric field of the incident light could transfer some of its energy

to electrons in the surface of the metal, allowing them to acquire sufficient

energy to escape. If the intensity of the light is increased, the ejected photo-

electrons should acquire greater kinetic energy because of the stronger electric

field of the light. The frequency of the light, however, should not make any

difference at all. Both of these deductions from classical theory disagree with ex-

perimental data.

Figure 42-8 shows experimental curves for the photocurrent resulting when
light of (essentially) a single wavelength is incident. The stopping potential is

the negative voltage Vq applied to the collecting electrode such that the

kinetic energy of the most energetic electrons will be converted to potential

energy at the collector. That is, the voltage Vq barely stops the most ener-

getic photoelectrons from reaching the collector. The relation is

1/ 1 2
(42-12)

' The frequency of the oscillation was determined by the capacitance of the spheres and the inductance of

the induction coil.

Photoelectric

current

_i_

h

h

I

-2 -1 -I-: -1-2 +3 +4

V (volts)

FIGURE 42-8

The photoelectric current versus the

potential V of the collecting electrode

with respect to the photocathode.

Curves for monochromatic light of two

different intensities are shown. Both

have the same stopping potential.
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The above two features of the photoelectric effect that are contrary to

predictions of classical theory, along with a third feature, are summarized as

follows;

Stopping potential Vq

(proportional to the
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The power that falls on the area of one atom is

W
2 X 10 * ^- (3 X 10"^° m^) = 6 X 10"

The minimum energy needed to escape the surface is

(2.14 eV)
1.60 X 10"^']

TeV
= 3.42 X 10'

Conversion ratio

and the time required to absorb this much energy is then

3.42 X 10"'"]
f =

6 X 10"^*-
5.71 X 10^ s

This is about 18 years! Yet, experimentally, the upper limit to any possible time

delay is less than 10~' s—a discrepancy of a factor of ~10'^!

From electromagnetic theory a plausible argument can be made that an

electron might absorb energy over a larger target area of the order of X^,

where k is the wavelength of the incident radiation. For visible light (A ~
500 nm), this improves the situation by a factor of only ~ 10^, still leaving

a factor of ~ 10^ unaccounted for. There are not many experiments that dis-

agree with theory so drastically!

In 1905, Einstein^ proposed a solution to the photoelectric dilemma.

Though Planck was reluctant to accept the possibility that electromagnetic

waves were quantized, Einstein saw that if one assumed that radiation was

actually well-localized "bundles" or quanta (later called photons), then the

photoelectric effect could be simply explained. Einstein proposed the following:

EINSTEIN'S ASSUMPTION
OF THE QUANTIZATION
OF RADIATION

The emission and absorption of radiation

of frequency / always occur in quanta (or

photons) of energy: £ = hf. The photon

remains localized in space as it moves away
from the source with a velocity c.

If photons remain well localized, then, Einstein reasoned, in the photoelectric

process the photon could be completely absorbed by a single electron. After

gaining an energy hf, the electron would use part of this energy in escaping

from the surface, and its remaining energy would appear as kinetic energy of

the electron. The minimum energy required to barely escape from a surface is

called the work function Wq. (Typical values for metals are about 2 to 6 eV.

Visible photons have energies of around 2 eV in the red to somewhat above

3 eV for blue. For this reason, some materials exhibit a photoelectric effect

for only the more energetic photons of ultraviolet light.) Applying conserva-

tion of energy to the process, Einstein proposed that the maximum kinetic

*
It was an incredible year for 26-year-old Einstein. Volume 17 of Anmlen der Phi/sik (1905) included his

revolutionary paper on special relativity, a treatise on Brownian motion that enabled Perrin to determine

Avogadro's number, and his article on the photoelectric effect. It was this last article that led to Einstein's

Nobel Prize in 1921. (See the chronology of quantum theory development at the end of Chapter 43.)
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^max of

photoelectrons

FIGURE 42-10

Photoelectric data for various substances

produce straight lines whose slope is

hje. The lines intersect the horizontal

axis at the threshold frequencies and

the vertical axis at the respective work

functions.

energy K^^^ of the electrons would be related to the photon energy hf accord-

ing to

EINSTEIN'S

PHOTOELECTRIC
EQUATION

^/ = K^ax + "'O (42-13)

This simple idea immediately explained the three baffling features of the

photoelectric effect mentioned above:

(1) Since K^^ax depends on only the frequency of the light, and not

on its intensity, dim light has the same stopping potential as

bright light (Figure 42-7).

(2) For certain materials, the photon energy at a given wavelength

may be less than the work function. Therefore, there is a threshold

frequency, below which no photoelectrons would be produced.

(3) Since the photon energy is localized in space (rather than spread

uniformly over a wavefront), its total energy can be transferred to

an electron in a single step, ejecting the electron with negligible

time delay no matter how dim the illumination. (Of course,

the number of photoelectrons depends on the light intensity.)

This close agreement with experiment in another area, distinct from blackbody

radiation, seemed to force acceptance of the photon's existence. However, as

we will discuss shortly, it was a large pill to swallow.

Photoelectric experiments yield a great deal of important information. For

example, combining Equations (42-12) and (42-13) and rearranging, we have

Vo = / Wc
(42-14)

This is a straight-line function for the stopping potential Vq as a function of

frequency / (Figure 42-9). The slope of the line is hje, which furnishes another

experimental method of determining Planck's constant h. These values agree

with those found previously from the completely different phenomenon of

blackbody radiation. It is reassuring that separate pieces of evidence lock

together like this to form an overall coherent picture. Another feature of Equa-

tion (42-14) is shown in Figure 42-10. The intercept of the straight line on the

horizontal axis is the threshold frequency, and the intercept with the vertical

axis is the work function Wq.

EXAMPLE 42-4

If the 1-^W light source of Example 42-3 emits only monochromatic light of

wavelength X = 550 nm, (a) find the number of photons per second incident

normally on a circular target area 1 cm in diameter and located R = 2 m from

the source, (b) Find the maximum kinetic energy (in electron volts) of the photo-

electrons. (c) Find the threshold frequency for cesium.

SOLUTION

(a) The fraction of the energy output of the source that falls on a circular target

area (r = 5 mm) that is 2 m away is

47lF

7t(0.005 m)^

471(2 m)^
= 1.56 X 10"
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The power incident on the target is therefore

f I X 10-* - j{1.56 X 10-"^) = 1.56 X 10"'- -

Each photon has an energy of

fc\ (6.63 X lO-^'^J-sXa X 10«m-s-')
/'/ = '' 7 = —9 = 3.62 X 10" '^

JW 550 X 10 ' m

The number of photons per second striking the target is therefore

1.56 X 10"

3.62 X lO-'^J

, photons
4.33 X 10*

second

(b) The photon energy in electron volts is

(3.62 X 10"'"])
leV

1.6 X 10"'"
J

Conversion

ratio

= 2.26 eV

The work function Wg for cesium is (from Example 42-3) 2.14 eV. The maxi-

mum kinetic energy, K^^,, of the photoelectrons is given by Equation

(42-13):

''/ = Kn,3, -I- Wo

Solving for K^^^ gives K„,^^ = hf - w^

2.26 eV - 2.14 eV = 0.120 eV

(c) At the threshold frequency,
f]^^, the photon energy /i/,^(= hc/^i^,) equals the

work function Wg. Solving for A,,,, and substituting numerical values, we
obtain

'(•Ih —
he (4.136 X 10"" eV-s)(3 x 10* m/s)

Wo

5.80 X 10"^ m =

2.14 eV

580 nm

This is in the orange-yellow portion of the spectrum, so shorter wavelengths

of visible light (toward the green-blue) will eject photoelectrons from cesium.

The photoelectric effect has many practical applications. Most light

meters for determining proper exposures in photography use the photocurrent

produced by incident light for operating the meter. A photocell is the "elec-

tric eye" that opens a door, or sets off an alarm, when a beam of light is in-

terrupted. It is also used to detect holes in punched cards or paper tape. An
instrument widely used in nuclear physics experiments is the scintillation

counter, shown in Figure 42-11. A typical detector uses certain materials that

emit tiny flashes of light, or scintillations, when energy is absorbed from pho-

tons or charged particles. This light, in turn, falls on a photocathode surface,
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Gamma ray, x-ray,

or charged particle

FIGURE 42-11

A scintillation counter uses a

scintillation material with a

photomultiplier tube to produce a large

electrical pulse at the collector when a

gamma ray, an x-ray, or a charged

particle is absorbed in the scintillator.

Scintillation

material

Photocathode

surface

-1-200 V

-400 V

-h600 V

Photoelectron

100 V

-f300 V

-1-500 V

Collector
-1-700 V

ejecting photoelectrons that subsequently strike a series of dynodes. If the impact

velocity is high enough, a single electron striking a dynode will eject one or

more additional electrons in a process called secondary emission. Typical mul-

tiplication factors are from 2 to 5 or more. In a photomultiplier with 10 dynodes

and a multiplication factor of 4 at each impact, a single photoelectron that

starts down the chain produces 4^'^ (SilO^) electrons at the collector, suf-

ficient to produce an electrical pulse that can be easily amplified. Many photo-

multipliers have gains as high as 10 or more.

42.6 The Cotnpton Effect and Pair Production

An additional piece of evidence for the existence of photons was presented by

A. H. Compton in 1923. Directing a monochromatic beam of x-rays at a thin

slab of carbon, he observed that the x-rays that were scattered from the carbon

at various angles had a longer wavelength X' than the incident wavelength

Aq. Figure 42-12 shows the experimental arrangement, and Figure 42-13 shows

FIGURE 42-12

X-rays scattered at various angles have

longer wavelengths /' than the incident

wavelength /.g.

Incident

monochromatic

x-rays

(Xo)

Carbon
block

'NAAAAAAAAAAAAAAAA/WVVWVVAAAAAAAAAAA'WVW

Collimators

for the x-ray

beam
= 135 8 = 15'

6 = 90'
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the experimental data. The amount of wavelength shift. A/ = // — /.q, was
the same regardless of the target material, implying that it is an effect involving

electrons rather than the atom as a whole. Classical wave theory cannot explain

this result. According to classical theory, the oscillating electric field of the in-

coming wave would set electrons in the target material into oscillations. These
vibrating electrons would then reradiate electromagnetic waves, but necessarily

at the same frequency of the incident wave, contrary to what was observed.

Compton invoked the photon model to explain the results in a simple

way. From Einstein, the energy of a photon is £ = hf. According to relativity,

energy and mass are related by £ = mc^. Combining these equations gives

hf = mc^ (42-15)

If photons travel with a speed c,

Equation (42-15), becomes

MOMENTUM p
OF A PHOTON

their momentum is p = mc, which, from

hf _ h

7~I (42-16)

It should be noted that even though photons have momentum, they have zero

mass. This is seen from the relativistic relation [Chapter 41, Equation (41-22)]

between energy £, momentum p, and mass m.

E~
2 2 I / 2\2

c p + (mc ) (42-17)

Since the momentum of a photon is p = hf/c = E/c, it becomes clear that the

mass term in Equation (42-17) must be zero.

Compton viewed the interaction as a billiard-ball type of "collision" be-

tween the incoming photon and an (essentially) "free" electron^ at rest. Figure

42-14 sketches the process. Conservation of energy and of momentum applies

in the collision. Since the scattered electron acquires some energy, the scat-

tered photon must have less energy than the incident photon. Applying rela-

tivistic equations for the conservation of energy and momentum, Compton
derived the following expression for the shift in wavelength:

COMPTON
SHIFT

COMPTON
WAVELENGTH

A'-;. = — (1 - cos 6)
mc

(42-18)

Wavelength (10~'- m)

FIGURE 42-13

Experimental data for Compton
scattering. The intensity ot the x-rays

scattered at various angles is plotted

versus the wavelength. The presence of

the peak at Aq is due to scattering from

the atom as a whole. Using the atomic

mass rather than the electronic mass in

Equation (42-18) produces a wavelength

shift of only about 10"^* m, a

Ac = — = 0.002 43 nm
mc

<42-19^ negligible amount on this scale.

Because Compton shifts are of this order, the effect is noticeable only for

photons of comparably short wavelengths (x-rays and gamma rays).

Equation (42-18) agrees with the experimental data of Figure 42-13. The

presence of the wishifted line at /.q is the result of scattering from inner-shell

electrons, which are firmly bound to the atom, so that the atom as a whole

recoils. Because of its relatively great mass, the atom acquires negligible energy

in the collision (see Problem 9C-50). The success of the photon model in ex-

' The bonds that hold outer electrons lo atoms have energies of only a few electron volts. The x-rays

Compton used had energies thousands of times greater, so the outer electrons were essentially "free" in

their interactions with the incoming photons.
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FIGURE 42-14

In a Compton scattering process, a

photon of wavelength /q undergoes a

particle-like collision with an electron

initially at rest. The scattered photon

has a longer wavelength /'.

plaining Compton scattering further reinforced belief in the particle-like nature

of radiation.

EXAMPLE 42-5

Write equations for the conservation of energy and momentum in the Compton
scattering process of Figure 42-14. Outline the derivation of Equation (42-18).

SOLUTION

We use relativistic expressions for energy and momentum. From E' = {mc')^ +
ipc) , we note that since a photon has no mass, the incident photon energy is

Pp(,f and the final photon energy is p'pi,c. The electron's initial energy is mc',

and its final energy £ is given by the above expression.

Conservation of energy: Eo = E

PphC + mc^ = PphC + Ee

Solving for £ and squaring, then substituting EJ' = (mc')^ + (p^c)^, we get

iPphC - Pph'^ + ""^^^^ = (""^')^ + (fe^)^ (42-20)

We eliminate p^ from this equation by using the vector diagram (Figure 42-14c)

representing momentum conservation: (Pph)o — Pph + Pe- From the law of cosines

for this triangle, we have

Pe^ = (Pph)o + Pph - 2(pph)oPph cos e (42-21)

This value for p^^ is now substituted into Equation (42-20), and the left-hand side is

multiplied out. After simplification, we obtain

Pph' (Pph)o.

1 - cos (42-22)

Substituting (ppi,)o
= ^/^ and ;?p^ = h//.', we obtain the Compton scattering

relation. Equation (42-18).

Pair Production

Another interaction in which a photon behaves as a particle is the process

called pair production. If a photon of sufficient energy passes close to a

nucleus, the photon can disappear and create an electron positron pair, y —

»

e'^ + e~ . The rest energy of the pair is 2m^c~ = 1.022 MeV (twice that of

a single electron), so the photon must have at least this much energy. Any
additional photon energy appears as kinetic energy of the electron and positron.

Electric charge is conserved in the reaction because of the equal and opposite

charges of the pair. Momentum is conserved by the presence of the nucleus

(which absorbs usually a negligible amount of kinetic energy). Problem 42C-49

shows that pair production cannot occur in empty space because both momen-

tum and energy conservation cannot be simultaneously satisfied.

PAIR
PRODUCTION hf = Im^c^ + Ki -t- K2 (42-23)
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42.7 The Dual Nature of Electromagnetic Radiation

Up to this point, we have reviewed some of the experimental evidence for

the particle-like behavior of radiation. No doubt the photon model now appears

logical and straightforward. However, its acceptance was a slow and painful

process for most physicists. Robert Millikan, the noted American physicist,

expressed his reluctance thus (in 1916):

/ spent ten years of my life testing the 1905 equation of Einstein's and

contrary to all my expectations, I was compelled in 1915 to assert its

unambiguous experimental verification in spite of its unreasonableness

since it seemed to violate everything that we knew about the

interference of light.

The reasons for the reluctance are as follows. All interference and diffraction

phenomena seem to furnish ample evidence that radiation is a wave. If we
accept the photon model, can we interpret an effect such as double-slit inter-

ference on the basis of photons! You will recall that we explained the light and

dark fringes as an interference between two coherent waves that spread out as

they emerge from the slits. What happens if we assume that the incident light

is a stream of photonsl

First, we can clearly associate the light intensity pattern on the screen

with the varying numbers of photons that arrive at different locations. Each

individual photon arrival is a locahzed "point event," perhaps knocking an

electron off a silver-halide molecule in a photographic emulsion, causing the

molecule to deposit a silver grain during the development process. If a photon

is, indeed, a localized particle small enough to interact with a single electron,

it certainly should go through just one of the slits at a time. Therefore, it

should not make any difference if we close one of the slits for half the exposure

time, then open it and close the other slit for the other half of the exposure

time. Yet if we do that experiment, we do not obtain the double-slit pattern. As

shown in Figure 42-15, the light pattern is just a superposition of two single-sWi

patterns, due to each slit acting alone. Apparently the photon, even though

it is a well-localized particle, "knows" whether or not the other slit is open.

How do photons cause interference effects? Could one photon pass

through one slit and interfere with another photon going through the other

slit? No. Experiments have been performed using extremely dim light, which

Intensity Intensity

Incident stream

of photons

Double

slit Pattern with

both slits open

Individual

maxima for

each single-slit

diffraction »._Jv^

Observed

pattern

Pattern with each slit

open by itself for half

the exposure time

FIGURE 42-15

An attempt to interpret a double-slit

interference experiment in terms of

photons.
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FIGURE 42-16

A stellar interferometer. Mirrors at 45°

reflect light from a distant star into a

telescope, causing certain interference

effects in the image. Essentially, the

stellar interferometer is a double-slit

apparatus, in which the slit separation d

may be as large as 10 meters.

Thin layer of fluorescent

material

FIGURE 42-17

One face of a slab of glass has a thin

layer of fluorescent material that glows

when illuminated by ultraviolet light.

Consider the light from a single atom at

A. (Because of coherence requirements

for forming an interference pattern,

light from a single atom interferes only

with itself, not with light from other

atoms.) The part of the light that

reflects from the rear surface of the

glass slab interferes with the light

traveling directly to the eye, and the

observer sees a pattern of light and

dark rings similar to Newton's rings

(Figure 38-17). This effect is easily

understandable in terms of spherical

wavefronts that expand outward from

the atom and eventually come together

to interfere, forming the pattern. But in

the photon model for light, the atom

emits a single photon. Does this photon

start to travel outward simultaneously

in two opposite directions? In this

experiment, thinking in terms of

photons clearly leads to perplexities.

guarantees that (on the average) only one photon at a time passes from the

source to the screen. In one such case, the experimenter started the exposure

in an interference experiment, then went on a sailing trip for a few months.

Upon his return, he developed the photographic film and found the usual fringe

pattern, even though only one photon at a time had passed through the appa-

ratus. Each photon interferes only with itself.
'"

Does this imply that the photon is "smeared out" so that part of it goes

through each slit? This is hard to imagine when we consider an instrument

known as the stellar iiitcrfewiiieter, Figure 42-16. Basically this instrument is a

double-slit apparatus with the two slits separated by up to 10 m. Both slits

must be open simultaneously for the correct interference effect to be obtained.

But if we try to imagine a photon as spread out so much that parts of it can

go through both slits simultaneously, we must keep in mind that the photon

must also be capable of giving up all its energy to a single electron should the

photon, instead, just happen to undergo a photoelectric process. Such a scenario

is certainly inconsistent. We do run into serious difficulties if we try to imagine

photons as spread out in space. Figure 42-17 shows another experiment that

cannot be explained using a photon model.

The behavior of photons in such an experiment is understandable only

in a probabilistic way. It is not possible to predict where a single photon will

hit the screen. Only the average distribution of a statistically large number of

photon impacts is predictable. The observed distribution is the same as the

intensity distribution calculated from the wave theory of light. Here we have

an important clue to a new way of thinking about light, described in the next

chapter. The probability that a photon arrives at a given location is proportional to

the intensity of the light wave at that location.

When interpreting light phenomena, apparently one has to become an

expert in "double-think." For some experiments, a wave model for light gives

us insight into what is occurring; for another class of experiments, only a

particle model makes sense. Are there any hints we can find for choosing a

model? One clue is the following. If the dimensions of the apparatus (slit

widths, apertures, and so on) are of the order of ?., then the wave nature of

the radiation is usually most important because of interference and difiraction.

On the other hand, when significant dimensions are »/. (as in Chapters 36 and

i7, "Geometrical Optics"), we are usually not interested in the wave charac-

teristics, so we can assume that light rays do not bend around edges but travel

in straight lines—as particles, if we wish. Another clue is that if the energy

and momentum of a photon are comparable with other energies and momenta

in the system, then we must treat the photon as a particle (as in the photo-

electric effect and Compton scattering). However, all of these clues are only

rule-of-thumb considerations. We must use care: for example, in a stellar inter-

ferometer we think of waves passing through the apparatus, but p'liotons arriving

at the photographic plate.

At this stage in the development of physics (the early 1900s), light

seemed to develop a split personality. Even today, for most applications we

still think of light in terms of waves or particles. But one significant fact should

be noted. Whenever we detect light experimentally, it always irwolves a particle-like

interaction, not a wave-like one. We need the wave model to understand such

effects as interference and diffraction, yet we never physically detect light in those

'" Photon-photon interactions do take place under certain circumstances, but they are rare and of no con-

sequence here.
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a) 3 10^ photons (b) 1.2 >^ 10' photons (c) 9.3 10' photons

(d) 7.6 10^ photons (e) 3.6 10' photons

FIGURE 42-18

A great many photons are needed to form a complete image. The number of

photons involved is indicated below each picture.

regions where we thhik of ii as waves. If light interacts with matter, we must

always use a particle model. The formation of an interference pattern is the

result of a very large number of photons that statistically sort themselves out

to gradually form the pattern of light and dark fringes. This statistical behavior

of photons is present in all image formation (see Figure 42-18). It is ironic that

we need the wave model to understand the propagation of light only through

that part of the system where it leaves no trace!

Perhaps the moral of the story is that we should not take either the particle

model or the wave model too seriously. They are useful, but inherently con-

tradictory: particles are localized, waves are spread out. Conceptually, we cannot

blend them together. The modem resolution to this paradoxical duality is

revealed in the next chapter.

If) 2 8 10' photons

Summary

One of the characteristics of hlackbody (or cavitiA radiation is

that the total emittance R at all wavelengths (in watts/meter") is

proportional to the fourth power of the Kelvin temperature T.

Stefan- Boltzmann

radiation law
R = aT-'

where the Stefan-Boltzmann constant is (T = 5.672 x 10 *'W/

(m- • K*). Another characteristic is that as the Kelvin temper-

ature increases, the wavelength /.„, at the maximum of the

spectral distribution becomes shorter according to

Wien displacement law /.„,T = constant

The classical radiation laws of Wien and Rayleigh-Ieans are

approximations that are correct only for short and long wave-

lengths, respectively. Planck derived the correct expression by
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making the following assumption:

Planck assumption

of quantization

SHM oscillators (with a natural fre-

quency /) can exist only in quantized

energy states:

£„ = nhf

where n = 0, 1, 2, 3, . . . and h =
6.626 X 10"^'*

J
• s, known as

Planck's constant. The oscillators emit

or absorb only quanta of energy:

A£ = hf. (Planck originally proposed

nhf, but it was shown later that only

« = 1 occurs.)

Planck's

radiation law
du^=f(A, T)dk =

SnhcX'

MIXkT _
dX

where f(k. T) dk is the energy per unit volume from wavelength

A to 2 + dk, and the Boltzmann constant k equals 1.381 x

10~^^ J/K. As h —^ 0, quantum mechanical expressions ap-

proach the corresponding classical expressions.

Einstein explained the photoelectric effect by assuming that

radiation is quantized as photons that remain localized in space

as they travel with speed c (in a vacuum) and that have zero

rest mass.

Photon energy
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18. Why is the Compton effect not readily observable for

visible light?

19. In what way does the Compton effect reinforce the photo-

electric effect in substantiating the quantum theory of

radiation?

20. What is wrong with the following explanation of the

Compton effect? Electromagnetic radiation is only a wave
phenomenon. The wave interacts with electrons, causing

the electrons to recoil due to the momentum carried by

the wave as well as causing the electrons to oscillate

at the frequency of the incoming electric wave. The fre-

quency shift observed is simply a Doppler shift of radia-

tion produced by the oscillating electrons, which are also

moving under the recoil.

21. A photon and an electron have the same momentum.
Which has the greater total energy (including rest-mass

energy)?

Problems

42.2 The Spectrum of Cavity Radiation

42A-1 A 200-W tungsten-filament light bulb operates with

a filament temperature of 2200 K. Assuming that the filament

radiates as an ideal blackbody, calculate its surface area.

42B-2 (a) Assuming that the sun's surface is an ideal black-

body emitter at 5 780 K, find the total power radiated from the

sun. (b) Find the incident power of sunlight at the earth (above

the atmosphere) on a square meter of surface area oriented per-

pendicular to the incident radiation.

42B-3 Suppose that a small area on the surface of a person's

skin increases to 37.5°C above the normal surface temperature

of 37.0°C. Assuming blackbody radiation, calculate AR/R, the

fractional increase in the rate of radiation per unit area for the

warmer area compared to the normal rate of radiation. (Such

slight differences can be revealed by thermography, an infrared

or microwave photographic technique that is useful in detecting

tumors and other diseases located a few centimeters below the

surface of the skin.)

42B-4 An insulated oven operating at a temperature of

500°C has a peephole with a diameter of 2 cm. Calculate the

net amount of energy per second that is transferred through

the peephole into a room at 30°C. (Hint: consider both the

room and the oven as ideal blackbody radiators.)

42.3 Attempts to Explain Cavity Radiation

42A-5 Find the wavelength at the maximum of the black-

body radiation curve for a room temperature of 27°C.

42A-6 As a result of the Big Bang and the expansion of the

universe, interstellar space contains a background radiation at

a temperature of about 2.7° K. Find (a) the wavelength and (b)

the frequency at which this radiation is a maximum.

42A-7 The sensitivity of the human eye is greatest at a

wavelength of about 555 nm. Find the temperature of black-

body radiation that produces the maximum spectral output at

this wavelength.

42B-8 The radius of our sun is 6.96 x 10^ m and its total

power output is 3.86 x 10"'' W. (a) Assuming that the sun's

surface emits as an ideal blackbody, calculate its surface tem-

perature, (b) Using the result of part (a), find the wavelength

at the maximum of the spectral distribution of radiation from

the sun.

42.4 Planck's Theory

42A-9 Find the wavelength of a photon that has an energy

equal to the rest energy of an electron (0.511 MeV).

4 2.A- 10 An FM radio station emits 80 kW of power at a

frequency of 92.4 MHz. How many photons per second does

it emit?

42.A-1 1 A useful relation between the energy £ of a photon

and its wavelength / is £/. = 1.240 x 10"^ MeVnm. Derive

this expression.

42.A-12 A He-Ne laser emits light at a wavelength of

632.8 nm. (a) In what portion of the electromagnetic spectrum

is this light? (b) How many photons per second are emitted by

a He-Ne laser whose beam power is 2 mW?

42B-13 Experiments indicate that a dark-adapted human eye

can detect a single photon of visible light. Consider a point

source that emits 2 W of light of wavelength 555 nm in all di-

rections. How far away would this source have to be for on

the average, one photon per second to enter an eye whose

pupil is 6 mm in diameter?

42B-14 For small amplitudes, a simple pendulum behaves

like a simple harmonic oscillator. Consider a 50-g mass sus-

pended by a string (of negligible mass) of length 40 cm.

(a) According to Planck, what is the smallest nonzero energy

that this pendulum may have? (b) What is the amplitude of

oscillation of the pendulum bob at this minimum energy? (The

answer reveals why quantization is not observable for macro-

scopic motions.)

42.5 The Photoelectric Effect

42A-15 The work function for sodium is 2.75 eV. Find the

threshold wavelength for the photoelectric effect in sodium.

42.^-16 Bismuth exhibits photoelectron emission only for

ultraviolet wavelengths shorter than 294 nm. Calculate the work

function (in electron volts) for bismuth.

42B-17 Ultraviolet light (/. = 384 nm) illuminates a clean

calcium surface whose work function is 2.87 eV. Calculate

(a) the maximum speed of the emitted photoelectrons and

(b) the threshold wavelength.

42B-18 Light of wavelength 410 nm is incident upon a me-

tallic surface. The stopping potential for the photoelectric effect

is 0.83 V. Find (a) the maximum kinetic energy (in electron

volts) of the ejected photoelectrons, (b) the work function for

the metal, and (c) the threshold wavelength.
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42.6 The Compton Effect and Pair Production

42.7 The Dual Nature of Electromagnetic Radiation

42A-19 Find the change in wavelength of a photon that is

"back-scattered" at 180° by an electron initially at rest. Does

this change depend upon the wavelength of the incident photon?

42A-20 In a Compton scattering process, a photon under-

goes a wavelength increase of 4.1 pm. At what angle was the

photon scattered by the electron?

42A-21 A high-energy photon can create a proton-anti-

proton pair in a pair production process. A 2.10-GeV photon

creates such a pair, with the proton having a kinetic energy of

95 MeV. Find the kinetic energy of the antiproton.

42B-22 A gamma-ray photon with an energy equal to the

rest energy of an electron (511 keV) collides with an electron

that is initially at rest. Calculate the kinetic energy acquired by

the electron if the photon is scattered 30° from its original line

of approach.

42B-23 A pair-production process, y —> e''' + e' , can occur

only near a nucleus in order to conserve momentum. Show
that even though the nucleus absorbs all of the initial momen-

tum of the photon, it absorbs very little of the energy. (Hint:

find the ratio of the final kinetic energy of the nucleus, \ Mv",

to the initial energy of the photon, and show that this ratio is

truly negligible. Consider photon energies less than ~ 10 MeV
for which nonrelativistic equations are sufficiently accurate.)

42B-24 The nucleus of a radioactive isotope of chlorine

(^^"'Cl) decays by the emission of a 660-keV photon. (The

symbol m indicates a wetnstnble state. Instead of decaying im-

mediately, the nucleus exists in this excited state a relatively

long time.) If the nucleus is initially at rest, determine the ratio

of the kinetic energy acquired by the nucleus to the energy of

the emitted photon. The mass-energy equivalent of the '"CI

nucleus is 35.4 GeV.

42B-25 A 2-W helium-neon laser beam (632 nm) is com-

pletely absorbed when it strikes a target. Find (a) the number

of photons striking the target each second and (b) the momen-

tum of each photon, (c) Using these data, find the force that

the laser beam exerts on the target.

Additional Problems

42C-26 A person whose skin area is 1.70 m" sits naked in

a sauna that has a wall temperature of 61°C. The person's skin

temperature is 37°C. Assuming blackbody radiation, find the net

rate at which the person absorbs heat by radiative transfer,

(b) The latent heat of evaporation of sweat is essentially the

same as that of water at 37°C: 2427 kj/kg. At what rate must

sweat evaporate to compensate for this heat absorption?

42C-2 7 The net power radiated from an object at absolute

temperature T in surroundings at absolute temperature Tg is

proportional to (T** — Tg"*). Show that if the temperature dif-

ference is small, then Newton's law of cooling holds true: the rate

of cooling of a body is approximately proportional to the temperature

difference between the body and its surroundings.

42C-28 Show that, for short wavelengths, Planck's radiation

law. Equation (42-11), approaches Wien's radiation law. Equation

(42-4).

42C-29 Show that, for long wavelengths, the Planck radia-

tion law. Equation (42-11), approaches the Rayleigh-Jeans law.

Equation (42-6). (Hint: expand the exponential term in a power

series.)

42C-30 By differentiating Planck's radiation law. Equation

(42-11), to find the peak value, show that it agrees with Wien's

displacement law. Equation (42-2).

42C-31 A point source of monochromatic light Q. =
550 nm) emits 2 W of light uniformly in all directions. Calculate

the distance from the light source at which the average volume

density of photons is one photon per cubic centimeter.

42C-32 A 10-g mass oscillates with an amplitude of 3.0 cm
under the influence of a spring whose force constant is 0.0 1 N/m.

Find the decrease in amplitude of oscillation corresponding to

the loss of a single quantum of energy.

42C-33 A parallel beam of uniform, monochromatic light of

wavelength 546 nm has an intensity of 200 W/m". Find the

number of photons in 1 mm' of this radiation.

42C-34 The dark-adapted human eye can barely detect green

light (500 nm) that delivers 1.7 x 10"'** W to the retina. As-

sume that the incoming light is parallel so that it is focused on

a single receptor, (a) Find the average number of photons per

second arriving at the receptor, (b) If the pupil of your dark-

adapted eye is 8 mm in diameter, at what distance would you

barely be able to detect a point source that emits 10 W of

500-nm light uniformly in all directions? Only about 20% of

the light incident on the eye reaches the retinal receptors; the

other 80% is absorbed by the layer of nerve fibers, blood ves-

sels, and other tissues overlaying the receptors.

42C-35 Show that the average energy E^^ of a quantized

SHM oscillator, Equation (42-10), approaches the classical value

kT as }. becomes very large.

42C-36 In the Planck law for cavity radiation. Equation

(42-11), change the variable from / to /and obtain the spectral

energy density duj- between frequencies / and / -I- df:

dUj=f(f,J)df =
8nhf^

^i(^hflkT
1)

df

42C-37 (a) By integrating the result of Problem 42C-36 over

all frequencies, find the total energy density u of cavity radiation:

H = j^-' f(fj)df. (Hint: change to the variable .r = hflkJ. An
integral you will encounter is \q x^(e^ — l)~'tfa = 71''/15.)

(b) Find the numerical value of u for T = 300 K (room

temperature).

42C-38 Show that Planck's radiation law, Equation (42-11),

integrated over all wavelengths, is consistent with the Stefan-

Boltzmann law. That is, show that \q f{kJ)dX = aT*, where

a is a constant. (Hint: make the change of variable, x = hcjkkT,

and note the integral given in the previous problem.)

42C-39 Show that the average energy of a quantized SHM
oscillator [Equation (42-10)] reduces to the classical value (Equa-

tion 42-5) as Planck's constant h approaches zero.

42C-40 An electron initially at rest recoils from a head-on

collision with a photon. Show that the kinetic energy acquired

by the electron is given by 2/i/a/(l -F 2a), where a is the ratio

of the photon's initial energy to the rest energy of the electron.
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42C-41 A metal target is placed in a beam of 662-keV

gamma rays emitted by a radioactive isotope of cesium (
' ^"Cs).

Find the energy of those photons that are scattered through

an angle of 90°. The electrons in the target may be considered

as essentially free electrons.

42C-42 The table below shows data obtained in a photo-

electric experiment, (a) Using these data, make a graph that plots

as a straight line. From the graph, determine (b) an experimental

value for Planck's constant (in joules per second) and (c) the

work function (in electron volts) for the surface. (Two significant

figures for each answer are sufficient.)

Wavelength

(ran)

Maximum Kinetic

Energy of

Photoelectrons

(eV)

588

505

445

399

0.67

0.98

1.35

1.63

42C-46 Show that a photon colliding with a moving electron

cannot be totally absorbed by the electron because to do so

violates the relativistic conservation laws. For simplicity, con-

sider a one-dimensional collision.

42C-4 7 A photon of initial energy Eq undergoes a Compton

scattering at an angle 6 by a free electron (mass m) initially at

rest. Using relativistic equations for energy and momentum con-

servation, derive the following relation for the final energy £

of the scattered photon: £ = £(,[1 - (£o/wc^)(l - cos 9)]~K

42C-48 A photon strikes a free {.'wtoii initially at rest in a

Compton type of collision. Find the minimum energy of the

photon that will give the proton a kinetic energy of 4 MeV.

42C-49 Figure 42-19 shows momentum considerations in a

pair-production process, y ^f e'^ + e~ , occurring in empty

space. Show that this is impossible (without the presence of a

nucleus to conserve momentum) because energy and momen-
tum conservation cannot both be true. (Hint: using the figure,

write equations for momentum conservation in the x and i/ direc-

tions and an equation for energy conservation. Divide the mo-

mentum equations by c and the energy equation by c , Square

and add the momentum equations, and compare with the square

of the energy equation. Show that they are inconsistent.)

42C-43 A low-energy photon (£ « electron rest-mass en-

ergy) collides head-on with a free electron initially at rest. The

photon is scattered backward along the line of approach. Show
that the ratio of the scattered photon energy to the kinetic en-

ergy acquired by the electron is approximately c/v, where v is

the speed of the electron. (Hint: this is a nonrelativistic Compton

scattering problem.)

42C-44 A 200-MeV photon is scattered at 40° by a free pro-

ton initially at rest, (a) Find the energy (in mega electron volts)

of the scattered photon, (b) What kinetic energy (in mega elec-

tron volts) does the proton acquire?

42C-45 Following the suggestions in Example 42-5, derive

the Compton shift relation A' — Aq = {h/mc){l — cos 9).

mvi

vi-/?.

FIGURE 42-19

Problem 42C-49.



The Wave Nature of Particles

. . . one may feel inclined to say that Thomson, the father, was

awarded the Nobel prize [in 1906] for having shown that the electron

is a particle, and Thomson, the son, for having shown that the electron

is a wave [in 1937].

MAX JAMMER
(commenting on ). }. Thomson and G. P. Thomson)
The Conceptual Development of Quantum Mechanics,

McGraw-Hill (1966)

43.1 Introduction

The discovery of i:he dual nai:ure of radiation was a fascinating revelation in its

own right, but in the 1920s, an equally startling development occurred when

particles of matter were found to exhibit wave-like behavior. This rounded out

the physicist's "picture" of nature in a particularly symmetrical and satisfying

way. Radiation and matter exhibit particle-like characteristics as well as wave-

like characteristics. To place this discovery in context, we will describe some

related developments that set the stage for this important step.

43.2 Models of an Atom

At the turn of the century it was believed that atoms were made of just two

components: positive charges and electrons. But how were these components

put together so they formed stable atoms? What configuration of charged

particles could produce the extraordinary complexity of atomic spectral lines

observed when we excite a gas by passing an electrical current through it (Fig-

ure 43-1)? These spectra had been studied and catalogued carefully, and many

attempts were made to discover some mathematical relationship between wave-

FIGURE 43-1

When hydrogen gas is heated by having

an electrical current pass through it, the

gas emits light consisting of a series

of spectral lines called a bright-line

spectrum, or an emission spectrum

(indicated here by dark lines).
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lengths that might reveal a clue to the atom's structure. Also, the cyclic varia-

tion in chemical properties of atoms in the periodic table was another clue to

the puzzle. As a starting point, atoms were assumed to be spherical with radii

~ 10" ^° m. This could be calculated from the density, the atomic mass, and
Avogadro's number.

The Thomson Model

One notable attempt to devise an atomic model was that of the British physicist

J. J. Thomson at Cambridge University. In 1898, he suggested a kind of fluid

of positive charge Ze (where Z is the atomic number) that contained most of

the mass of the atom. The electrons were embedded within this positive fluid

somewhat like plums in a plum pudding (Figure 43-2a). Supposedly, the elec-

trons could then vibrate in various modes of oscillation and thereby (according

to classical theory) emit radiation at these natural frequencies of oscillation.

Unfortunately, quantitative agreement with observed spectral frequencies was
lacking.

The Rutherford Model

Before 1910, physicists had made many attempts to discover the secrets of

atomic structure by observing how incident particles and radiation were scat-

tered from atoms. X-rays, electrons, and alpha particles were the main pro-

jectiles. A former student of Thomson's, Professor Ernest Rutherford,^ was
conducting experiments at the University of Manchester in England on the

scattering of alpha particles by matter. An alpha particle was known to have

a positive charge twice the magnitude of the electronic charge and a mass

about four times that of hydrogen. Alpha particles were a convenient projectile

since they were emitted with several million electron volts of energy by cer-

tain naturally radioactive elements. Rutherford wanted a very thin target be-

cause he hoped to observe the scattering by just a single atom rather than the

multiple scattering by many atoms; multiple encounters would tend to obscure

the characteristics of the single collision he wished to investigate. Although

several different elements were investigated, gold was a particularly convenient

target substance because it could be hammered to extremely thin foils, only a

few hundred atoms thick. As shown in Figure 43-3, the scattered alpha particles

struck a small screen coated with zinc sulfide, causing tiny flashes of light that

(a) Thompson's "plum pudding"

model, with electrons embedded
in a sphere of positively

charged fluid.

-lO-'Om-

Nucleus

(b) Rutherford's nuclear model,

with all the positive charge

(and most of the mass) concen-

trated in a very small region at

the center. Electrons surround

the nucleus in an unknown
way.

FIGURE 43-2

Classical models of the atom.

' Rutherford received the Nobel prize in chemistry in 1908 for discovering that the radiation from uranium

consisted of at least two types he called alpha and beta radiation. He later showed that alpha "radiation"

actually consisted of particles, being nuclei of helium atoms.

Alpha-particle

source (radioactive

polonium)
Thin gold

foil

target

Zinc

sulfide

screen ;?
-v "^ Microscope

'C Scattering

6 \ angle

Sheets of lead

with collimating

holes

FIGURE 43-3

The Rutherford alpha-scattering

experiment. The zinc sulfide detector

can be moved to record scattering at

various angles. The apparatus is placed

within an evacuated chamber.
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Force due to a positive

P{r} point charge (Rutherford model)

Force due to a uniform

spherical volume of

' charge (Thomson model)

Varies with -

Radius

of the atom

FIGURE 43-4

The force on an alpha particle due to

a positive charge in two different

configurations: a point charge and a

uniform spherical volume of charge.

(See Figure 25-16, Chapter 25.)

(a) According to the Thomson
model, multiple scattering could

occur if the alpha particle

penetrates more than one atom.

(The scattering is greatly

exaggerated.)

(b) According to the Rutherford

model, a single close encounter

with a nucleus could produce a

large-angle scattering.

FIGURE 43-5

Scattering of alpha particles by a thin

foil. The target foil is typically several

hundred atoms thick.

were observed by watching the screen with a microscope. It was tedious work,

requiring well-dark-adapted eyes. Rutherford's assistants were Dr. Hans Geiger"

and an undergraduate student, Ernest Marsden.

Early data for small-angle scattering of 1° or 2° seemed to confirm the

Thomson model. Wishing to start Marsden on a research project of his own,

Rutherford suggested he look for scatterings in the backward direction ( > 90°),

though Rutherford personally felt that the chance of a fast alpha particle being

scattered backward by a Thomson atom was truly negligible. Much to every-

one's amazement, many alphas were back-scattered. The reason for surprise is

clear from the estimates of the scattering probabilities. The mass of an alpha is

about 8000 times the mass of an electron, so electrons have negligible effect

on the scattering: all the scattering occurs from the massive positive charge.

In a Thomson atom, the positive charge is spread uniformly throughout a

spherical volume, so the maximum force a single atom could exert on an alpha

particle was limited (Figure 43-4), causing a deflection of just a few hundredths

of a degree at most. Thus, thousands of scatterings would have to take place,

with a majority adding up in the same direction, to cause a net deflection of 90°

or more. The chance of a backward scattering by Thomson atoms in the foil

used in one experiment was calculated to be incredibly small—about 1 in

jg3 5oo Yet Geiger and Marsden found roughly 1 in lO'^! Undoubtedly this

discrepancy of a factor of ~ 10^'*^^ takes the all-time prize for the greatest

disagreement between theory and experimental results ever encountered.

Rutherfold later wrote of his reaction:

It was quite the most incredible event that has ever happened to me in

my life. It was almost as incredible as if you fired a 15-inch shell at a

piece of tissue paper and it came back and hit you.

Recognizing that a single scattering at large angles could occur only if

the forces were extremely strong, in 1911 Rutherford proposed his nuclear

model of an atom. In it, the massive positive charge was concentrated in a

region he called the nucleus, no bigger than 10" '* m, since to create a force

big enough to scatter the alpha particle backward, the alpha would have to

approach at least that close to the point charge Ze. Figure 43-5 compares the

two situations, and Figure 43-6 shows experimental points for one experiment.

Though the Rutherford model was clearly superior to the Thomson model,

there were still some troublesome aspects. For example, what held the positive

charges in the nucleus together? And what held the negatively charged elec-

trons away from the positively charged nucleus? They presumably could not

rotate around the nucleus in a "solar system" motion because Maxwell's equa-

tions predicted that accelerated charges radiate electromagnetic waves. Indeed,

such radiation was observed in every instance in which electrons were accel-

erated. According to classical physics, if you started electrons moving in circular

orbits, they would radiate energy and spiral into the nucleus in less than 10"^

seconds. Obviously atoms did not do this, so what was wrong?

The Bohr Model

As shown in Figure 43-7, the spectrum of a hydrogen atom—the simplest

atom of all—had a baffling complexity and regularity. How could just a proton

and an electron interact to produce this series of spectral lines? A Swiss high

^ To avoid the painstaking and boring method of data talcing, Geiger later invented an electronic gadget

for detecting charged particles: the "Geiger" counter, widely used today.



43.2 Models of an Atom 1007

Rutherford model

45° 90° 135° 180°

Scattering angle 6

FIGURE 43-6

Typical data by Geiger and

Marsden for the scattering of alpha

particles by gold foils. The solid

lines are theoretical curves based on

the Thomson and Rutherford models.
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film

J^l -gh voltage

/
Hydrogen
discharge
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(a) A prism spectrometer. Light from the hydrogen discharge tube is refracted

by the prism to form the line spectrum on the photographic film.
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(b) The Balmer series is a group of an infinite number of spectral lines whose

spacings regularly converge toward the short-wavelength limit of 364.6 nm.

FIGURE 43-7

The Balmer series emission spectrum

of hydrogen.

school teacher of descriptive geometry, J. Balmer, had found by trial and error

an empirical formula that agreed almost exactly with the observed wavelengths.

THE BALMER
SERIES IN
HYDROGEN

A = (364.56 nm)
n'-2'

(wheren = J, 4, 5, .. .) (43-1)
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But how the hydrogen atom produced this mathematically simple series of

lines remained a nagging puzzle.

In I9I3, the Danish physicist Niels Bohr proposed his famous model of

the hydrogen atom. Bohr was young (age 28) and fearless. His theory contained

radical ideas that were clearly contrary to classical physics, but his model

predicted all observed lines almost exactly. It was based on the following

assumptions, known as the Bohr Postulates:

(1) The electron travels in circular orbits around the proton, obeying

the classical laws of mechanics. (The Coulomb force of attraction

is the centripetal force.)

(2) Contrary to classical theory, the electron can move in certain

allowed orbits of radius r„ without radiating. Since the energy £„ is

constant in such orbits, the electron is said to be in a stationary

state.

(3) The allowed orbits are those for which the angular momentum

mvr of the electron (mass m) is an integral multiple of Planck's

constant divided by 2n (notation^: ^ = h/2n).

= nfi
(where n = I, 2, 3, 4, . . .

and-fi = 1.0546 x 10"^*]
(43-2)

(4) Transitions between stationary states are possible when the

electron somehow "jumps" from one allowed orbit to another.

Electromagnetic radiation is emitted or absorbed by the atom,

and the difference in the two energy states is the energy hf of

the radiation emitted or absorbed.

"/ ^ Minal Hnit ial
(43-3)

FIGURE 43-8

The Bohr model for a one-electron

atom. The electron of charge — e

travels in a circular orbit around a fixed

nucleus of charge Ze. The Coulomb

force F is the centripetal force on the

electron.

Bohr's proposal was a peculiar mixture of classical and quantum physics.

Thanks to the classical Coulomb force, the electron moved in circular orbits

according to classical mechanics. Contrary to classical physics, it did not radiate.

Also, Planck's quantum constant h entered the picture in two ways: in the en-

ergy hf associated with the radiation and in an entirely new way by quantizing

the angular momentum, a parameter that had previously been nonquantized.

The allowed radii and energy states are calculated as follows. Applying

Newton's second law to the circular motion of the electron of charge e and

mass m about a nucleus"* of charge Ze (Figure 43-8), we have

Zf = ma

1 \{Ze){e) IV'
-^— = m\

Am,

The quantum restriction on the angular momentum is

mvr„ = nh

(43-4)

(43-5)

^ For convenience, h/2n is often written as ft, pronounced "h-bar."

"
If we consider a diarge Ze in the nucleus (Z = atomic number), the analysis also applies to a singly ionized

helium, doubly ionized lithium, and so on. The equations obtained predict the observed spectra for all

these cases very well.
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FIGURE 43-9

Niels Bohr (1885-1962, facing camera)

was a Dutch physicist who received the

Nobel Prize in 1922 for his model of

the hydrogen atom. He is shown here

with his physicist son, Aage Bohr

(b. 1922), who succeeded his father

as Director of the Niels Bohr Institute

in Copenhagen. Niels Bohr made many
later contributions to the liquid-drop

model of the nucleus and to theories

of nuclear fission. His son also received

the Nobel Prize in 1975 (with Ben

Mottleson and James Rainwater) for

theoretical studies on nuclear structure.

(Photo courtesy of AIP Niels Bohr

Library, Margrethe Bohr Collection.)

Combining the two equations to eliminate p, we obtain the radii r„ for the

allowed orbits:

RADII OF
BOHR ORBITS
FOR FIYDROGEN

Substituting numerical

values (Z = 1) gives

{« = 1,2,3.4, ...)

(0.0529 nm)n^

(43-6)

(43-7)

The allowed radii are thus proportional to n'^.

The energy state £ of the atom is found from E = K + U. Defining the

zero reference for L/ = when the electron is infinitely far from the nucleus,

we have

U
4n£c

{Ze){e)

Therefore;
1

1

1

4m,

{Ze){e)

(43-8)

Substituting values of v and r from Equations (43-5) and (43-6), we obtain

(n = I, 2, 3, 4, ...) (43-9)

ENERGY STATES
OF THE BOHR
HYDROGEN ATOM

£„= -

Substituting numerical

values (Z = 1) gives

13.6 eV
(43-10)

The allowed hydrogen energy states are thus negative and proportional

to l/«^ (see Figure 43-10). Each series of spectral lines is characterized by the

common final state involved in the transitions. Problem 43C-35 shows that

the Balmer series, Equation (43-1), can be obtained from this expression.

Energy (eV)

-13.6

V Pfund" = 4

"Y^
"=3

Brackett

n = 2

Lyman
M = l

FIGURE 43-10

Energy states of a hydrogen atom.

Between the levels « = 4 and n = oo,

there are an infinite number of energy

levels. Transitions from higher to lower

energy states result in emission of

radiation of energy hf. The names of

the experimenters who investigated

the different spectral series are shown.

Only a portion of the Balmer series is

in the visible range of wavelengths.
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43.3 The Correspondence Principle

Every new revolution in physics introduces concepts radically different from

the older, established theories. For example, in relativity the equations appro-

priate for high speeds are quite different from those of Newtonian mechanics.

Similarly, the quantum ideas of radiation are radically different from the clas-

sical Maxwell equations. Yet, physically, the transition between cases in which

classical equations apply and in which the newer ideas must be used cannot

be an abrupt one; there must be a smooth transition in the "overlap" region

from one theory to the other.

In quantum physics, the relation between the new and old theories was

pointed out by Bohr in a statement he called the correspondence principle. Ac-

cording to classical electromagnetic theory, the frequency emitted by an elec-

tron traveling in a circular orbit is just the orbital frequency of revolution /g.

From Equations (43-5) and (43-6) we obtain, for this orbital frequency for hy-

drogen (Z = 1),

/o
=

AEo^h^n^
(43-11)

In the newer, Bohr theory, the frequency / emitted in a transition between

adjacent energy states is intermediate between the two orbital frequencies,

given by Equation (43-3):

From Equation (43-9), hf -

'-final

SeJh^

'initial

1 1

(« + D"
(43-12)

The factor in brackets may be written as

1

{n + 1)

~)z^ + 2n + 1 - H^'

nHn + 1)-

When n becomes very large, we have

2n + 1

lim
n» 1 n^in + 1)-

So for large n the frequency of emission is

(43-13)

/ =

me

4£o'/l'«^
(43-14)

Comparing this equation with Equation (43-11), we see that in the limit of large

n, the qiumtum expression agrees with the classical expression. This illustrates Bohr's

correspondence principle.

BOHR'S Any new theory must reduce to the classical

CORRESPONDENCE theory to which it corresponds when applied to

PRINCIPLE situations appropriate to the classical theory.

This means that the new theory must contain the old theory as a special case.

In Bohr's model of the hydrogen atom, if n becomes very large the system
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approaches a macro system (not a micro system) and, as shown above, the clas-

sical equations become an adequate description. Of course, electrons do not

change their behavior for large n—they always obey quantum mechanics (as

does every other object in the universe). But for n = 10 000, say, the very

large values of the radius, energy, and angular momentum make the small

quantum differences from the n = 10 001 values essentially negligible, and the

behavior of the system approaches that described by classical equations. As
another example, we have seen that for slow speeds Einstein's special relativity

reduces to Newtonian mechanics—so special relativity also illustrates Bohr's

correspondence principle. This principle provides a valuable check on the va-

lidity of new theoretical developments.

43.4 De Broglie Waves

Bohr's model for the hydrogen atom was a great triumph. It agreed very

closely with wavelengths of the Balmer series, and it correctly predicted the

spectrum of other series outside the visible range. Yet small but unmistakable

discrepancies were still present. The reason for part of these discrepancies

originated in the fact that energies were calculated on the basis of a fixed

nucleus (which is equivalent to assuming that the proton has an infinitely large

mass compared with the electron mass). Agreement with experimental data

was improved by consideration of the proton's motion about the CM of the

rotating proton-electron system. Still further improvements were made by A.

Sommerfeld, who considered elliptical as well as circular orbits and included

relativistic effects for the electron's motion.

In some respects, this improved theory was still not completely satisfac-

tory. What was the reason for the strange quantum restriction on angular

momentum? It implied, for example, that a top could spin only with certain

discrete values of angular velocity co instead of with any arbitrary value among
a smooth continuum of possible velocities. As experiments continued, more

puzzles were uncovered. Some individual spectral lines are apparently multiple

lines at the same frequency, because subjecting the atom to an electric or mag-

netic field "splits" the lines into a cluster of two or more lines spaced closely

together. One spectral line of dysprosium, for example, splits into 137 closely

spaced lines!

Other questions were also disturbing. Why does the orbiting electron

not radiate as classical laws of electromagnetism say it should—those very

same laws that provide the central force for these orbits? Why do atoms

undergo transitions? Why was the Bohr theory a failure in calculating the spec-

trum of atoms with more than one electron? All of these drawbacks were elimi-

nated in the new quantum theory that emerged in the next decade. We will

now trace these developments step by step, culminating in the next chapter

with a quantum mechanical description of atomic structure.

A crucial step toward understanding these mysteries was made by a graduate

student in physics at the University of Paris, Prince Louis Victor de Broglie

(1892—1987). While studying for his doctor's degree in physics, de Broglie

began to think that perhaps the wave-particle duality applied not only to

radiation but also to particles of matter. It would, indeed, form a grand sort

of symmetry in nature if particles showed wave-like characteristics just as

waves have particle-like characteristics. In his doctoral thesis (1924), de Broglie

proposed the following ideas (somewhat simplified here). Since photons of

FIGURE 43-11

Louis Victor de Broglie was a member
of an old, aristocratic French family

that pronounces its last name to rhyme

approximately with the English word
troy. He originally majored in medieval

history at the Sorbonne, specializing

in Gothic cathedrals. However, he later

became interested in physics, switched

majors, and received his first degree

in physics in 1913. De Broglie's

novel proposal that a wave was

associated with a moving particle was

soon developed by Erwin Schrodinger

into the quantum mechanical theory'

known as wave mechanics. Disturbed

by the probabilistic nature of quantum

mechanics, de Broglie made great

(unsuccessful) efforts to find a causal,

rather than probabilistic, interpretation

of wave mechanics. He was awarded

the 1929 Nobel Prize in physics. For a

summary of the development of de

Broglie's ideas, see H. Medicus, 'Tifty

Years of Matter Waves," Physics Today,

Feb. 1947.
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electromagnetic radiation have momentum p according to

Photons
A

(43-15)

de Broglie proposed that a wavelength / is also associated with any particle

having momentum niv according to

Particles mv = - (43-16)

DE BROGLIE WAVELENGTH
(for a particle having

momentum p)

(43-17)

Just as for electromagnetic radiation, the question as to what it is that is

"waving" (if anything) requires a long explanation. It definitely is not electro-

magnetic waves. De Broglie called them matter waves, or phase waves, since he

believed there might be interference between the phase of the waves as there

is for light waves.

I

EXAMPLE 43-1

FIGURE 43-12

De Broglie waves for the orbiting

electron in the Bohr model for

hydrogen form a standing-wave patlem.

The distance between adjacent nodes

is /./2. This illustration is for the

energy state n = 4.

A particle of mass 1 g moves at a speed of 1 mm/s. Calculate the de Broglie

wavelength associated with this particle.

SOLUTION

The associated de Broglie wavelength is

6.63 X 10"^*]-s
6.63 X 10 -" m

mv (0.001 kg)(0.001 m/s)

This is an impossibly small wavelength to measure, since a single proton is

about 10^^ times larger. Indeed, de Broglie waves are of little consequence for

macroscopic particles. However, for microscopic particles such as electrons, neu-

trons, and atoms, interference effects due to these waves are clearly evident and

lead to some surprising effects.

De Broglie showed that if one assumes there are matter waves for elec-

trons, there is a reasonable explanation for the Bohr quantum condition on

angular momentum that originally seemed so baffling. According to de Broglie,

it is simply a case of a standing-wave pattern for the electron's motion. This re-

quires that, for stationary states, only an integral number of wavelengths can

fit around the circular orbit, as in Figure 43-12: «A = 27ir. Substituting the de

Broglie relation for the wavelength, /. = hjmv, and rearranging, we obtain

mvr = n
In
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This is just the Bohr condition for allowed orbits. Thus the arbitrary assumption
Bohr made for no reason other than that it led to the right answer could now
be derived in a plausible way if one assumed that only the motions of the elec-

tron that make standing-wave patterns represent stationary states of the atom.

Note that what is involved is interference between different parts of the de

Broglie wave associated with a single electron. (This is similar to the case of

light, for which it is the interference between different parts of the electric field

wave of a single photon that is significant, not the interference between waves
of one photon and waves of another.)

De Broglie's proposal did not win immediate acceptance. While it was
recognized as a worthy exercise in theoretical physics, it was treated more as

a curious hypothesis that might turn out to have some validity but on the other

hand might not. During the oral examination for his doctoral degree, de Broglie

was asked how one might detect these waves. He suggested that perhaps a

beam of electrons impinging on a crystal would exhibit interference effects,

since the crystal lattice of atoms would provide the necessary close spacing of

the order of / that was required to bring out the interference behavior of the

waves. The first experiment to detect de Broglie waves did not succeed be-

cause of a variety of experimental difficulties. But three years after de Broglie

presented his thesis, a dramatic confirmation of matter waves occurred in the

United States.

43.5 The Davisson—Germer Experiments

The experiments that first verified de Broglie waves began in 1921, when an

American physicist, Clinton Davisson, was investigating the reflection of elec-

trons by metal surfaces for the Western Electric Company (now the Bell Tele-

phone Laboratories).^ Some of the results he obtained were puzzling. Instead of

being scattered uniformly at all angles, the electrons seemed to be scattered

at certain angles more than at others. Davisson published the results, but could

give no satisfactory explanation for the unusual scattering. He continued the

experiments with an assistant, Lester Germer.

In 1925, Davisson was using a target of pure nickel metal in the usual

metallic form: innumerable microcrystals with random orientations. An acci-

dental explosion in the laboratory shattered the glass enclosure that kept the

apparatus in a vacuum. The exposure to air oxidized the surface of the nickel

making it unusable for the experiment. To remove the layer of oxide, Davisson

and Germer rebuilt the vacuum enclosure and then heated the target, inadver-

tently heating it so much that the nickel melted and recrystallized into just a

few large crystals at the spot where the electrons struck the target. When they

resumed the experiment, the data showed unmistakable peaks in the scattering

distribution when the velocity of the electrons was adjusted to certain values.

They traced the difference to the fact that the target now consisted of just a few

large crystals rather than being in a polycrystalline state. However, unaware

of de Broglie's ideas, they proposed an incorrect origin for the peculiar scatter-

ing. They felt that the crystal lattice planes somehow "channeled" electrons

in certain directions. In 1927, after Davisson attended a physics meeting at

Oxford University and learned that matter waves might be responsible, he

checked de Broglie's theory with the data and found an excellent agreement.

Figure 43-13 shows results from an experiment using a single large crystal.

' The General Electric Company had brought a patent suit against Western Electric over a vacuum-tube

design. This experimental work on the scattering of electrons was undertaken to obtain evidence with

which to fight the suit. Western Electric won.
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FIGURE 43-13

The scattering of electrons in a

Davisson-Germer experiment. Each plot

is a polar graph for the number of

scattered electrons as a function of

angle. Several different values of the

accelerating voltage are show^n.

FIGURE 43-14

A detailed view of the cleaved nickel

crystal, showing the arrangement of

atoms on its surface.

Electrons are scattered from the surface of a metallic crystal in preferred

directions. The wave-like character of the electrons causes them to interact with

the regular array of atoms on the surface to produce interference effects, similar

to the way that light impinging on a diffraction grating produces interference.

Let's examine the crystal in Figure 43-13 in greater detail. Figure 43-14 is an

enlarged view of the crystal, showing the arrangement of atoms on its surface.

We need not be concerned with the arrangement of atoms within the crystal,

because low-energy electrons do not penetrate the surface of the crystal to

any significant degree. A nickel crystal is composed of basic units called face-

centered cubic units. Figure 43-14 shows 27 such units with a comer cleaved off.

This cleaved surface reveals rows of atoms, indicated by the dashed lines in the

figure. These rows of atoms are separated by a distance d = 0.215 79 run. The

scattering of electrons from these rows produces interference of the wave-like

electrons. Figure 43-15 is an edge-on view of the cleaved surface. Consider

electrons incident normal to the cleaved surface that are scattered at an angle

(j) relative to the normal to the surface. More specifically, consider electrons

impinging on rows A and B shown in Figure 43-15. These electron waves will

interfere constructively when scattered if the path difference is a multiple of the

wavelength associated with the electrons. That is,

Incident

electrons

nX = d sin (43-18)

FIGURE 43-15

An edge-on view of the cleaved

surface shown in Figure 43-14.

where m = 1, 2, 3, . . . (the order of scattering)

A = wavelength associated with the electrons

d = distance between the rows of atoms

(f)
= angle between the scattered beam of electrons and the normal

to the surface

We obtain the relationship between the energy of the electrons and their de

Broglie wavelength by recognizing that electrons accelerated through a poten-

tial difference V less than 100 V have nonrelativistic kinetic energies given by

Solving for [> yields
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(a) X-rays on NaCl (b) Neutrons on NaCl (c) 0.071-nm x-rays (d) 600-eV electrons (el 0.057-e\' neutrons

FIGURE 43-16

Diffraction patterns produced by

electromagnetic waves and by particles,

(a) and (b): Laue-spot patterns

demonstrate the wave nature of

photons and of neutrons, (c), (d), and

(e): Diffraction rings produced by

scattering from polycrystalline metal

samples.

The momentum p = nw is thus

2eV
I

p = m
I

= yj2meV (43-19)

and the de Broglie wavelength / = h/p is

x =
ImeJ JV

(43-20)

Substituting numerical values, we obtain the useful relation

DE BROGLIE
WAVELENGTH
FOR ELECTRONS
(nonrelativistic)

1.226 nm
A = -;= (where V is in volts) (43-21)

In Figure 43-13, the most prominent peak at 50° occurred for 54-eV elec-

trons with a de Broglie wavelength of k = (1.226 nm)/v54 eV = 0.167 nm.

Comparing this value of k with that predicted by Equation (43-18) and assum-

ing m = 1, we have

k = d sm(p = (0.215 79 nm) sin 50° = 0.165 nm

which is in excellent agreement with the de Broglie wavelength.

The experiments of Davisson and Germer in 1925-1927, and similar

studies by G. P. Thomson in Scotland, were the first experimental confirmation

of the de Broglie wave properties of particles.^ Essentially all of the interference

and diffraction effects of electromagnetic waves were later duplicated with par-

ticles (see Figures 43-16 and 43-17).

* Davisson and Thomson shared the Nobel Prize in 1937 for demonstrating the wave properties of electrons.

Thirty-one years earlier, Thomson's father, J. j. Thomson, received the Nobel Prize for investigating the

conduction of electricity by gases, a phenomenon involving the particle properties of electrons.



1016 4.^ ' The Wn\'e Nntiire of Particle

(a) Visible light

FIGURE 43-17

Fringes formed in the shadow of a

straightedge by visible light and by

electrons. In (b), the fringes were

recorded with the aid of an electron

microscope, (c) An interference pattern

(0

produced by electrons is the sum of

many independent events. As the

number of events increases, the pattern

becomes more distinct.

43.6 Wave Mechanics

Before matter waves were experimentally verified, two physicists used de

Broglie's ideas in 1925-1926 to develop a theory called wave mechanics, or

quantum mechanics, which describes what happens when a force acts on a de

Broglie wave. The two theories are vastly different in mathematical form. The

German physicist Werner Heisenberg used sophisticated matrix methods, while

the Austrian physicist Erwin Schrodinger devised a differential equation

approach.^ Shortly after the theories were published, it was discovered that

they were entirely equivalent; either could be derived from the other. Since

matrix methods are usually treated in more advanced mathematics courses, we
will discuss only the Schrodinger theory here.

For all but the simplest cases, the theory is mathematically difficult to

apply. Perhaps the most troublesome aspect of the theory is that its concepts

are foreign to our everyday experience and common sense. Yet it has proved

to be the only correct way of analyzing the microphysical world. In fact, in

its complete relativistic form, known as quantum electrodynamics ("Q.E.D."),

there is no discrepancy with experimental data (at least, to the date of this

publication).

' Nobel prizes were awarded to Heisenberg in 1932 and to Schrodinger (along with P. A. M, Dirac) in 1933 for

their accomplishments in developing quantum mechanics.



43.6 Wave Mechanics 1017

The central idea of quantum mechanics is contained in a differential equa-

tion called "the Schrodinger equation." (Its counterpart in classical mechanics is

the differential equation of Newton's second law: m d^x/dt'^ = F.) A rigorous

derivation would lead us too far astray, so we will give just a plausibility argu-

ment here for its origin.

The (nonrelativistic) kinetic energy K of a particle may be written in

terms of the momentum p as

K=-mv^
2

P_
Im

(43-22)

If the potential energy is U, the total energy E = K + U becomes

£ =— + U
Im

Solving for p gives p = yJlm(E — U) (43-23)

If we put this value into the de Broglie relation / = hjp, we obtain

h
A = (43-24)

V2w(£ - U)

As developed in Chapter 18, a solution to the classical wave equation for

a wave traveling in the +x direction (Equation (18-16)] is

y = A Sin.{kx — cot) ( where Jt = -^ and
In

T

The kx term gives the space variation of y, while the OJt term gives the time

variation that causes y to vary in amplitude at the angular frequency co. We
will discuss only the space variation. If we take partial derivatives with respect

to X, we obtain the following:

dx

u I In
-f-

^fhere y = Asm
Inx

(43-25)

(43-26)

This relation describes any type of mechanical wave—sound waves, waves on

a stretched rope, and so on.

Schrodinger put the value of / from Equation (43-24) into Equation

(43-25) to obtain the time-independent Schrodinger wave equation:

SCHRODINGER'S
TIME-INDEPENDENT
WAVE EQUATION
(one dimension)

where

d-ip /2m(£ - U)\
,

•A = "An sm
2nx

T

(43-27)

(43-28)

The Schrodinger equation is used in the following way. To find the effect

of applying a force to a particle, we substitute into the Schrodinger equation
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the potential energy function U that is associated with the force. Solutions to

the differential equation then express the behavior of the matter wave for the

particle. For example, if we put the Coulomb potential U{r) = — (l/4nF.Q)iqq'/r)

into the Schrodinger equation for three dimensions, we obtain the
\J/

functions

that represent the matter waves for the stationary states of the electron in a

hydrogen atom. (We do this in the next chapter.)

But what does ij/ itself represent? We have called it a "matter wave," but

naming it does not give us much insight. Since waves are inherently spread out

in space, does this mean, for example, that an electron in a hydrogen atom is

somehow "smeared out" in space in a way described by the value of ij/l

Schrodinger originally proposed this interpretation, but it did not gain much
support. The difficulties arose in the complete time-dependent theory, in which

the wave packet representing a free electron gradually spreads out in space as

time goes on. Interpreting this to mean that the charge and mass of an electron

in free space similarly spread out seemed impossible for most physicists to

accept.

In 1926, a more reasonable interpretation for ip was proposed by Max
Born, a professor at the University of Gottingen. Bom noted that Einstein had

put forth a new interpretation of the amplitude of the electric field £ for electro-

magnetic waves. Since the square of the amplitude is proportional to the in-

tensity of the wave, Einstein suggested that E^ is proportional to the probability

of finding a photon near that location. Thus the light and dark fringes on a

photographic film (which can be predicted from wave interference) may be

interpreted as the probability of a photon arriving near that particular location

on the film. Bom extended this idea to the wave function ij/. He proposed that

ij/^ represents the probability that the particle is located near that region of

space. This interpretation gave back to the electron its status as a particle rather

than a smeared-out entity. Ofdy our ability to predict the electron's location becomes

spread out.

Generally i/' is a complex mathematical function (that is, it involves ^—1).
Because only mathematically real numbers correlate with physically real objects,

Bom removed the complex characteristics of ij/ by suggesting that the square

of the absolute value of ip be used. In particular.

BORN'S PROBABILITY
i , 12 a ,,

INTERPRETATION OF i/f
m^v The probability of being found

within the volume element AV

The probability density function P is defined as

P=\\p\^
'

(43-29)

Then, the probability # of finding an electron in a given volume V is

^ =
J^

PdV (43-30)

where the integral is evaluated over the volume V. In order to identify ip with

a probability, we recognize that the probability of finding the electron some-

where is a certainty. That is, when we integrate the probability density function

P over all space, it must equal 1. This imposes the following normalization

condition on the wave function:

NORMALIZATION OF ^ f \il/\^ dV = 1 (43-31)
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Particle in a Box

To illustrate the connection between the wave function ij/ and the probability

^, consider the case of an electron moving in one dimension between rigid wails
a distance D apart. Figure 43-18. The electron confined in this "box" is de-
scribed as a standing-wave pattern of de Broglie waves that must have nodes
at each wall. That is, we fit an integral number n of half-wavelengths within
the distance D. Therefore,

= D or ;. = 2D/n (43-32)

The solution to the Schrodinger equation [Equation (43-28)] becomes >p =
•Amax sin(27ix/A = t/^^^, sin[27rx/(2D/(01, or

-D-
m

FIGURE 43-18

A particle is confined to move in a

one-dimensional box, bouncing

elastically at each wall.

WAVE FUNCTION FOR A
PARTICLE IN A BOX •AW = 'Ama.x sin

M7CX

Id'
(43-33)

where x is measured from one wall. Before proceeding further, we normalize

the wave function by integrating Equation (43-33) over all of the space that is

available to the electron, from x = to x = D, and set the result equal to 1:

j:
dx

Substituting Equation (43-33) gives

Jo (^.ax) sin I

—

dx= 1

Evaluating this integral, we obtain

'Amax
=

The normalized wave function is then

I
(43-34)

NORMALIZED WAVE
FUNCTION FOR A
PARTICLE IN A BOX

/ 2 / nnx
w(x) = /

— sin^ ' D \ D
(43-35)

and the probability density function P = |(/'|" is

'2

P{x)
nnx

„ . sin' !

D \ D
(43-36)

Figure 43-19 illustrates the wave functions and probability density functions

for the first three quantum states corresponding to n = 1, 2, and 3. Note that

the probability of finding the electron in a small region at the center between

the walls is a maximum for n = 1 and a minimum for n = 2. The total area

under each of the probability density function curves is equal to 1 because each

of the wave functions is normalized.

Oa^.'Jzm
(c)n=3

FIGURE 43-19

The first three quantum states for an
electron confined to one-dimensional

motion between rigid walls a distance

D apart.
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EXAMPLE 43-2

An electron is confined to one-dimensional motion between two rigid walls

separated by a distance D. (a) What is the probability of finding the electron

within the interval x = io x = D/i from one wall if the electron is in its

n = 1 state? (b) Compare this value with the classical probability.

SOLUTION

(a) The probability J^ of finding the electron in an interval Aj: along a line is

given by the one-dimensional version of Equation (43-30):

-!: P(x)dx

where P{x) is given by Equation (43-36). Substituting this value in the above

equation gives

^ 2 CD/3 , fnnx\
,# = - sin^ \dx

D Jo \o J

(innx (Innx
sin

2

4«7:
D/3

0.196 (for n = \)

The wave-mechanical probability of finding the electron somewhere be-

tween x = and x = D/i is thus about 1/5 for the « = 1 state,

(b) To illustrate the correspondence principle, as n — oo we note that

lim„_Qo [{sin an)/bn] = 0. Therefore, the classical probability becomes

lim„_oo ^ = 1/3. Viewed classically, the electron moves back and forth with

constant speed between the walls, so the probability of finding it in one-third

of the available space is, indeed, 1/3.

Energy States of a Particle in a Box

The energy of each of the quantized states that the electron may have as it

moves between the walls is found from E = U + K. Here, U = (Why?). K
may be written in terms of the momentum p = h/?i, so we have

£ =
2m lm?i

(43-37)

For stationary energy states (a standing-wave pattern), there must be an integral

number of /ifl//-wavelengths within the distance D between the walls (in contrast

to an integral number of whole wavelengths around a circle for standing waves

in the hydrogen atom):

D (where « = 1, 2, 3, . .
.

)

(43-38)

Substituting this value in Equation (43-37), we obtain

h^ENERGY STATES OF A
PARTICLE IN A BOX £„ =

8wD'
(n = 1, 2, 3, .

.

(43-39)

where the number n refers to the nth quantum state of the electron.



43.7 Barrier Tunneling 1021

EXAMPLE 43-3

An electron with an energy of approximately 6 eV moves between rigid walls

exactly 1 nm apart, (a) Find the quantum number n for the energy state that

the electron occupies, (b) Find the exact value for the electron's energy.

SOLUTION

The relationship between the quantum number and the energy is given by
Equation (43-37). Solving this equation for n yields

Substituting numerical values for £ = (5 eV)(1.6 x 10 '"^ J/eV) = 8 x 10" ''
;

we obtain

2(10'^ m)
VU)(9.1 X 10"^' kg)(8 X 10"'']) = 3.642

(6.626 X 10"^*
J -s)

Since n must equal an integer, we try n = 4 in Equation (43-37), which gives

£ = 6.017 eV. For « = 3, we obtain £ = 3.384 eV. Because the value for n = 4

is closer to "approximately 6 eV," we conclude that

(a)

(b)

n = 4

E = 6.02 eV

We have given only the briefest introduction to quantum mechanics.

Numerous innovations and additions to the theory were made by many phys-

icists, most notably the British physicist P. Dirac (1928), who developed the

relativistic wave equation that accounts for the splitting of spectral lines in the

presence of a magnetic field and predicts the existence of antimatter.^

43.7 Barrier Tunneling

One fascinating conclusion of quantum mechanics is that the wave function

for a particle may penetrate into a region forbidden by classical theory. Suppose

that we repeatedly throw a grain of sand at a piece of paper held fixed in

space. If the kinetic energy of the sand grain is insufficient to break through

the paper, our expectation is that we would never find the particle traveling

at the same speed on the other side, with the paper intact. But in the analogous

situation of an electron approaching a potential "wall" with kinetic energy less

than the height U of the potential barrier, the electron wave function can

penetrate the barrier and have a finite amplitude on the far side of the wall.

This means that occasionally we would find that the electron has quantum-

mechanically "tunneled" through the barrier to appear on the other side where.

' Antimatter—antielectrons, antiprotons, antineutrons, and so forth— is another form of matter, created in

high-energy interactions of photons and particles. An antiparticle has the same mass and the same spin

(see Section 44.4) as its ordinary matter counterpart, but it has opposite electric charge and the alignment

between its spin and magnetic moment is opposite to that of the particle. If an antiparticle comes in contact

with a particle of the same type, they mutually annihilate, forming an equivalent amount of energy (mr")

in photons. Since matter and antimatter are always experimentally formed in equal amounts, one of the

problems to be solved in cosmology is why we live in a universe that seems dominated by matter rather

than antimatter.
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where / is the wavelength of light used and D is the lens diameter. This mini-

mum angle of resolution 0r may also be written as d^ld. It implies that the

electron's position is known only within an uncertainty ±!S.x.

Rearranging gives

Ax

T
^x =

(1.22U

D

{I.22U

[Did)

If 2o£ is the angle of the cone of light from the object the lens gathers, then

tan a = (D/2)/d = 2(D/d). For an order-of-magnitude estimate, we may replace

tan a with the approximation sin a (not an overwhelmingly good approxima-

tion, but it is still in the ballpark).

Ax
(I.22U

2 sin a

Finally, in the same spirit of estimation, we drop the factor 1.22/2 to obtain

Ax
sin a

(43-40)

This is the inherent uncertainty in determining the x coordinate of the position

of the electron. It is due to the fact that we used a lens of diameter D. If we
used a lens with a smaller diameter, the uncertainty would be greater (because

sin a would be smaller).

Perhaps we could try to improve matters by using light of shorter wave-

length, say, in the x-ray region. But, unfortunately, a photon of shorter wave-

length has a greater momentum p = h/?^ and would give the electron a harder

"kick" as it scatters off the electron into the microscope lens. The scattered

photon can enter the lens anywhere within an angle 2a. We do not know the

exact direction because we do not detect the photon until after it travels through

the lens to reach the image location. All we know is that it went through the

lens at some point. As the photon scatters off the electron in a Compton inter-

action, its X component of momentum can vary anywhere from + (p^ sin a) to

— {p^ sin a). And, by the conservation of momentum, this uncertain amount is

transferred to the electron. So the uncertainty in the x component of the elec-

tron's momentum becomes

Apx 2p sin a ~ 2 (
-

| sm a (43-41)

Combining these uncertainties in position and momentum, we have

Ax Ay,. ^ 2 -7 sin a s; 2/1

sin a \/ '

(43-42)

As the uncertainty m position is reduced, inevitably the uncertainty in momentum

increases, and vice versa. Note that this uncertainty is not due in any way to

lack of refinement in our measuring instruments. Even with the most ideal ap-

paratus imaginable, the fundamental limitation still remains; this hmitation is

traceable to the wave-particle aspects of both matter and radiation.

FIGURE 43-21

A computer-processed image of data

obtained with a scanning tunneling

microscope. Each ring-shaped image is

an hexagonal array of the six carbon

atoms in a benzene molecule. The

molecules have been deposited on a

rhodium metal surface.

Diffraction pattern

of a point source

Focal plane

Microscope

lens

FIGURE 43-22

Observing the position of an electron

with a microscope. The central peak of

the diffraction pattern is within + (J^

of the axis.



lo: 13 / The Wave Nature of Particles

A more rigorous statement of the Heisenberg uncertainty relation is

HEISENBERG
UNCERTAINTY
RELATION

lS,x Ap^ > fi (43-43)

In a simultaneous measurement of the position and

momentum of a particle, the product of the uncertain-

ties is equal to or greater than a number of the order

of-fi =-fi/27r.

No amount of ingenuity or improvement in measurement techniques can out-

wit this limitation. Because of the wave—particle aspects of matter and radia-

tion, the very act of measurement itself inevitably disturbs the system under

investigation in an unknown way that cannot be avoided. It is a built-in limita-

tion in nature. The uncertainty principle underscores the fact that classical

models of atomic phenomena are bound to be misleading.

Note, however, that there is no limit on determining the position (only)

of a particle to any desired degree of accuracy, or the momentum (only). But

as we narrow down the uncertainty in position {Ax —> 0), inevitably the un-

certainty in the sinmllaneous determination of the momentum of the particle

becomes larger and larger (Ap^ —> oo), and vice versa. The precise relation

between Ax and Ap^ depends on how one defines the limits of uncertainty in

a particular case. The product may vary somewhat in the range of ih down
to about -h. Similar relations also apply in the y and ; directions.

AyApyZ'h

Az Apj > -/j

(43-44)

(43-45)

Different sets of variables are also related in the same way. It can be

shown that

AEAt>^ (43-46)

where A£ is the uncertainty in the measurement of energy £ and Af is the

time interval for determining the energy. The principle also applies to angular

measurements. For excunple, if we wish to determine where the electron is lo-

cated in the orbit of a Bohr-model hydrogen atom, the uncertainty in the angle

(j) measurement is related to the uncertainty in the angular momentum L^:

A(t)AL^>^ (43-47)

This form of the uncertainty principle essentially leads to the destruction of

the planetary view of the Bohr model, in which the electron occupies a well-

defined position in an orbit. Consider the following example:

EXAMPLE 43-4

Estimate the uncertainty in the angular position A</) of the electron in a Bohr

orbit.

SOLUTION

The value A(p is related to the electron's uncertainty in angular momentum AL^

by Equation (43-47): A(j) AL^ > h. Since L^ is quantized according to one of the
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Bohr-model postulates, it has discrete values only, with no uncertainty in any of

the Bohr orbits:

Equation (43-47) then states that A(j) must have no finite value, which is equiva-

lent to stating that (p is completely uncertain. The electron is equally likely to be
anywhere in the orbit all of the time. Thus, it is meaningless to speak of the

electron as moving from point to point along its orbit.

J

EXAMPLE 43-5

An electron (m = 9.11 x 10 ^^ kg) and a bullet (m = 0.02 kg) each have a

speed of 500 m/s, accurate to within 0.01%. Within what limits could we deter-

mine the position of the objects?

SOLUTION

(a) The electron's momentum is p = mr = (9.11 x 10"''^ kg)(500 m/s) =
4.56 X 10~ kg m/s. The uncertainty Ap^ in this momentum measurement

is given as 0.01%. Thus:

Ap^ = (4.56 X 10"^^ kg-m/s)(0.0001) = 4.56 x 10"" kgm/s

From the Heisenberg uncertainty relation [Equation (43-43)], the uncertainty

Ax in position is of the order of

Ax
-fi 6.63 X 10" Js

Apj. (27r) Ap^ / , , kg • m
^"^

^ '
f^

(27C)( 4.56 X 10""^

—

0.002 31m, or :2.31 mm

This is an unbeatable lower limit on the uncertainty with which we could

determine the electron's position. A model of an electron as a small point mass

is not valid for this situation,

(b) The bullet's momentum is p = mv = (0.02 kg)(500 m/s) = 10.0 kg m/s. The

uncertainty Ap^ in this momentum measurement is given as 0.01%, or

Ap^ = (10.0kg-m/s)(0.0001) =10"^ kg -m/s

From the Heisenberg uncertainty relation [Equation (43-43)], the uncertainty

Ax in position is of the order of

Ax X
6.63 X 10 ^"^Is^

Ap, (27r)(ApJ (.^Y^o-^*^^
1.00 X 10'

This uncertainty in position is far below any conceivable possibility of mea-

surement (an atomic nucleus is about 10^ " m in size), so for macroscopic

objects under everyday circumstances, we may confidently treat them as

classical particles.
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The uncertainty principle has profound philosophical consequences. Just

as Einstein showed that absolute space, absolute time, and absolute simultaneity

are inherently unmeasurable and therefore meaningless concepts that should

be eliminated from our theories, Heisenberg pointed out that precise knowledge

of the position and momentum of an electron at a given instant is inherently

limited.

This is in contrast to the situation in classical physics, in which any mea-

surements could, in principle, be made with increasing precision without limit.

The uncertainty principle denies this. It points out the impossibility of making

a measurement without disturbing the object by an unknown amount, there-

by reducing our knowledge of some related quantity. This is true even with

"perfect" measuring instruments that have no technical imperfections because

the uncertainties do not originate in defects in the equipment or in the measur-

ing techniques. The uncertainties originate in the wave-particle duality of matter

and radiation. Since we can never experimentally determine the exact behavior

of particles at the atomic level, we should not speak of their motions in classical

terms.

It now becomes clear why the paradoxes arose in the analysis of the

double-slit interference effect in terms of classical trajectories for photons (or

particles) as they pass through the slit system. In an experiment in which a

beam of electrons incident on two slits whose spacing is of the same order of

magnitude as the de Broglie wavelength, the usual two-slit interference pattern

results. Even if we send only one electron at a time to the slit, the interference

fringes are still formed (statistically) if enough electrons are used. However, if

one slit at a time is covered alternately during the exposure time, we do not

get the two-slit fringe pattern, but just the single-slit diffraction pattern. Thus

we must conclude that with both slits open each electron somehow interacts

simultaneously with both slits, in spite of our classical model of an electron

as a well-defined particle that could go through only one slit at a time. As far

as we can experimentally verify, electrons are not classical particles with well-

defined trajectories, so we should not talk as if they were. This is the essence

of the positivist philosophy that gained a strong foothold in physics, first

through Einstein's relativity (which rejected the idea of an ether because it was

unmeasurable) and later through quantum mechanics (which rejected precise

classical descriptions of atomic phenomena as unmeasurable). In its place, quan-

tum mechanics sometimes offers only probability estimates. If a series of iden-

tical measurements is made of a property of a system, quantum mechanics can

predict precisely the average value of these measurements, yet it can give only

a probability estimate for any single measurement.

This probabilistic interpretation of quantum mechanics is associated with

the Copmihagen school of thought, so-named because of its main architect, the

Danish physicist Niels Bohr. The majority of physicists today accept this inter-

pretation. However, there are some notable exceptions. Einstein, for example,

never accepted the abandonment of the strict causality on which classical phys-

ics is based. "God does not play dice with the universe," he said, and felt there

must be some underlying causal relations that produce the statistical behavior

we observe. He had faith that some future theory' could reveal a strict causality

at a deeper level. A few good theorists have devoted years in attempting to

devise such a "hidden parameter" theory. None has succeeded to date.

Finally, one point deserves emphasis. '° All observations are described

in the language of classical physics because we ultimately record measurements

'"The following remarks are adapted from Herman Feshbach and Victor F. Weisskopf, "Ask a Foolish

Question " Physics Today, Oct. 1988. The April 1989 issue contains Letters to the Editor that express

other viewpoints with lively enthusiasm.
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with macroscopic instruments. However, this does not imply that measuring
instruments and other large-scale objects obey classical laws instead of quantum
laws. Even/ object obeys quanhtm laws. It is only because macroscopic objects

are so large that we can describe their behavior using classical concepts with

negligible error. But when we analyze atomic phenomena, only quantum physics

gives correct predictions.

Quantum mechanics makes certain predictions with extreme precision.

For example, it gives the ground-state energy for hydrogen to one part in

10 . Yet for certain other questions quantum mechanics gives only a prob-

ability distribution rather than a definite answer. As Feshbach and Weisskopf

point out:

The Heisenberg uncertainty relations are the signposts saying, "You are

allowecl to use [certain pairs of] classical . . . variables up to here, but

go no further. The use of such variables beyond this limit is inappropriate.

If you ask an inappropriate question you get a probabihty distribution

as a response." On the other hand, if an appropriate question is asked,

quantum mechanics gives a crisp, precise answer such as the energy

of a hydrogen atom in its ground stale.

These authors clarified their use of the word inappropriate: "Observations are

formulated in the language of classical physics. . . . But classical physics con-

cepts are not always appropriate for the description of atomic situations." They
did not mean that such "inappropriate" questions should not be asked. The
meaning of quantum mechanics remains a continuing, heated debate among
certain physicists and philosophers.

43.9 The Complementarity Principle

We have described how physicists came to believe in a certain symmetry in

nature involving particles and waves. But this new unity came at the price

of new conceptual difficulties. The best theory we have—quantum electro-

dynamics—does not allow us to picture the motions and interactions of micro-

scopic objects as we did in classical physics. They are neither particles nor waves,

yet on occasion they show more strongly one or the other of these attributes.

An experiment designed to bring out the wave aspects (such as double-slit inter-

ference) cannot be dealt with in terms of particles. Similarly, an experiment that

brings out particle aspects (such as Compton scattering) cannot be visualized in

terms of waves. Bohr (1928) recognized this essential characteristic of nature

by suggesting a principle of complementarity at the atomic level.

BOHR'S In the quantum domain, wave and particle as-

COMPLEMENTARITY pects complement each other. Though the

PRINCIPLE choice of one description precludes the simul-

taneous choice of the other, both are required

for a complete understanding.

In explaining this principle, Bohr suggested an analogy: both sides of a

coin must be included for a complete description of the coin, yet we cannot

see both sides simultaneously. As with the Copenhagen interpretation of quan-

tum mechanics, a few physicists and philosophers still seek an alternative view.

Nevertheless, Bohr's principle of complementarity does seem to express in gen-

eral terms why we find ourselves in a dilemma when we try to cling to classical

ideas at the atomic level.
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Our concepts, our modes of thought and language—indeed, what we call

common sense— all originate in our experiences. Classical physics is the crown-

ing achievement of this common sense. In the 1920s, however, our experiences

in the microworld and in the relativistic domain began to include observations

that violated classical ideas, so our "common sense" had to be enlarged and

changed to include these new types of experiences. Nature continues to chal-

lenge us with new mysteries. What surprising concepts will we need to accept

in the future in order to unravel them?

43.10 A Brief Chronology of Quantum
Theory Development

1900 Explanation of blackbody radiation by energy quantization.

Max Planck {Nobel Prize 1918).

1900 Discovery that the energy of electrons emitted by the photoelectric

effect was independent of the light intensity.

Philip von Lenard {Nobel Prize 1905).

1905 Explanation of the photoelectric effect.

Albert Einstein {Nobel Prize 1921).

1905 The theory of special relativity.

Albert Einstein {Nobel Prize 1921).

1907- Explanation of the specific heats of solids by energy quantization.

1911 Albert Einstein {Nobel Prize 1921).

1911 Observation of the nuclear atom.

Ernest Rutherford {Nobel Prize, Chemistry, 1908)

1913 First quantized model of the hydrogen atom.

Niels Bohr {Nobel Prize 1922).

1916 Experimental studies of the photoelectric effect.

Robert Millikan {Nobel Prize 1923).

1923 Discovery and explanation of the collisions between light quanta and

electrons.

Arthur Compton {Nobel Prize, with C. T. Wilson, 1927).

1924 Proposal that electrons have an associated wavelength / = h/p.

Prince Louis Victor de Broglie {Nobel Prize 1929).

1925 Mathematical theory of wave mechanics.

Erwin Schrodinger {Nobel Prize, with P. Dirac, 1933).

1925 Mathematical theory of matrix mechanics.

Werner Heisenberg {Nobel Prize 1932).

1925 The Exclusion Principle.

Wolfgang Paidi {Nobel Prize 1945).

1926 Statistical interpretation of the wave function.

Max Born {Nobel Prize 1954).

1927 The Uncertainty Principle.

Werner Heisenberg {Nobel Prize 1932).

1927 Observation of electron-wave diffraction by crystals.

Chnton Davisson {Nobel Prize, with G. P. Thompson, 1937).

1928 Relativistic theory of quantum mechanics and the prediction of the

positron.

Paul Dirac {Nobel Prize, loith E. Schrodinger, 1933).

1932 Observation of the positron.

Carl Anderson {Nobel Prize, with Victor Hess, 1936).

1948 Completion of the theory of quantum electrodynamics.

Sin-Itiro Tomanaga, Julian Schwinger, and Richard Feynman {Nobel Prize

1965).

.U
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Summary

The Bohr model for hydrogen assumes the following:

(1) The electron travels in circular orbits about the

proton. The Coulomb force is the centripetal force.

(2) There exist allowed energy states £„ for which

the electron moves without radiating.

(3) The allowed energy states are those for which

mvr = nh

(4) Transitions between allowed energy states involve

the emission or absorption of photons of energy

hf, where

hf:

Heisenberg's uncertainty relation places a fundamental limit

on the accuracy with which certain pairs of variables can be

measured simultaneously. The product of the uncertainties is

>fi. Following is a partial list of these variables:

Position and momentum:

Energy and time:

Angular position and

angular momentum:

AEAt>ft

SCHRODINGER'S
TIME-INDEPENDENT ^V [

2m{E - V)

WAVE EQUATION Sx^
"*"

\^ ^2

(one dimension)

lA =

The orbital radii and the energy of allowed energy states in

the Bohr model are

r„ = — T = (0.0529 nm))!'

E„ =

nmZe^

mZ e 13.6 eV
2[,2„2

8£o^/i-«

(n = 1. 2, 3.

where

In Bom's interpretation,

1

^'"-^

•AW = "Amax sin
I

—

^Ax =
The probability that the particle will

be found within the region Ax

Bohr's correspondence principle:

Any new theory must reduce to the corresponding

classical theory when applied to situations

appropriate to the classical theory.

We normalize the wave function by determining tf/^.^^ from

Jan
\^\''^='

Under certain circumstances, particles exhibit wave char-

acteristics with a de Broglie wavelength

/l = -

where p is the momentum of the particle. For electrons accele-

rated from rest through a potential difference V,

1.226 nm
/. = vhere V is in volts)

Wave mechanics, or quantum mechanics, is a theory

developed by Erwin Schrodinger (and independently by

Heisenberg in a different mathematical format) that includes

the wave and particle characteristics for both matter and ra-

diation. It is a differential equation for an amplitude i/'. In Bom's

interpretation,

I
/ 12 _ jthe probability that the particle will

^^^ ~ [he found within the region Ax

For a particle confined in a one-dimensional box of width D
with rigid walls, the normalized wave functions form standing-

wave patterns with nodes at each wall:

iAW =
PARTICLE
IN A BOX

2 nnx— sin
D \ D

£„ =
\SmD^

n = I, 2, 3,

where x is measured from one wall.

The wave function \jj for a particle may penetrate into

regions forbidden by classical theory (where £ < U), leading

to harrier tunneling. (See Problem 43B-23 for the probability of

penetrating a rectangular potential barrier.)

Bohr's complementarity principle:

In the ijuantum domain, wave and particle aspects com-

plement each other. Though the choice of one description

precludes the simultaneous choice of the other, both are

required for a complete understanding.



1030 I
':, .v,m X.iture of Particles

Questions

1. How does the correspondence principle apply to Einstein's

theory of special relativity?

2. What would be the observable consequences' ' if Planck's

constant were on the order of 0.1 ]'s?

3. What are the similarities between particle waves and elec-

tromagnetic waves? What are the dissimilarities?

4. In what ways are high-energy electrons and photons sim-

ilar? In what ways are they dissimilar?

5. Do the wave-like properties of particles imply that a base-

ball pitched through an open door may be deflected?

6. In what ways does the wave-like concept of particles con-

tradict Bohr's model of the hydrogen atom?

7. Attempt to clarify this statement; If a beam of electrons

8.

9.

10.

11.

were used to produce a double-slit interference pattern,

each of the electrons would have to pass through both

slits.

In what way is the uncertainty principle a direct conse-

quence of the wave-like nature of particles?

How is the de Broglie concept of an orbital standing wave

for the electron in the hydrogen atom inconsistent with

the uncertainty principle?

What is the role of the complementarity principle in an

experiment that demonstrates electron diffraction?

For a particle confined in a box. Figure 43-18, the proba-

bility density may be zero at certain points. Can the

particle move through these points?

1

Problems

43.2 Models of an Atom

43A- 1 Before the Bohr model for hydrogen was developed,

J. R. Rydberg obtained an empirical expression for the wave-

length / emitted when an atom undergoes a transition from

the initial state Hj to the final state Uf-.

RYDBERG FORMULA = R

where R is the Rydberg constant. Using the fact that the Balmer

series transition from n = 3 io n = 2 produces the H^ line at

656.3 nm, show that for hydrogen R = 1.097 x lO'' m"\

43A-2 When spectroscopists tabulate wavelengths, those

longer than 200 nm are given as they would be in air, since

that is how they are usually measured. (Wavelengths shorter

than about 200 nm don't penetrate air, so these values are tab-

ulated for a vacuum.) The H^ line (Balmer series) has a listed

wavelength of 656.28 nm. Calculate its value in a vacuum to

five significant figures.

43B-3 Derive the following expression for the hydrogen

spectrum wavelengths emitted when the electron undergoes a

transition from the Hj state to the >if state.

/l = 91.13
nW

43B-4 Consider a hydrogen atom in the ground state. Find

the following quantities (in electron volts): (a) the kinetic energy

of the electron, (b) the potential energy, (c) the total energy,

For an amusing account of the strange consequences of relativity and quan-

tum theory see George Gamow, Mr. Tompkins in Wonderland (Macmillan,

1940). Here, i = 10 mi/hr, h = 1 ergs and G = lo'^ times larger than its

actual value. A companion volume is Mr. Tompkins Explores the Atom

(Macnullan, 1940). Both are currently available in Mr. Tompkins in Paperback

(Cambridge Univ. Press, 1967).

and (d) the energy required to remove the electron completely

from the proton.

43B-5 Solve the previous problem for singly ionized helium

(a helium atom with one electron removed).

43B-6 Determine the longest and shortest wavelengths of

light that are emitted in the Paschen series of spectral lines

from atomic hydrogen.

43B-7 Consider an ideal, rigid, diatomic molecule in which

two equal point masses ni, separated by a (constant) distance

2a, are rotating about an axis that is halfway between the

masses and perpendicular to the line joining the masses. As-

suming quantization of angular momentum as in the Bohr hy-

drogen atom, show that the rotational energy levels are given

by £„ = n^h^/16n^ma^.

43B-8 A photon is emitted when the hydrogen atom under-

goes a transition from the « = 3 state to the « = 1 state. The

work function for lead is 4.25 eV. Find the maximum kinetic

energy (in electron volts) that a photoelectron can have when

ejected from lead by this photon.

43.4 De Broglie Waves
43.5 The Davisson-Germer Experiments

43A-9 A certain electron microscope uses 50-keV electrons.

By what factor is the de Broglie wavelength of these electrons

smaller than that of visible light of 500-nm wavelength?

43A-10 A 1-g particle and an electron are moving at

150 m/s each. Calculate the de Broglie wavelength of each.

43.^^-1 1 Calculate the de Broglie wavelength of an electron

that has been accelerated from rest through a potential differ-

ence of 50 V.

43.A-12 A moving neutron has a de Broglie wavelength of

0.2 nm. Find (a) its speed and (b) its kinetic energy in electron

volts.
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43A-13 An alpha particle is a helium nucleus whose mass

is 4 u (where u is the atomic mass unit: 1 u = 1.661 x
10"^' kg). Calculate the de Broglie wavelength associated with

an alpha particle that has a kinetic energy of 2 MeV.

43A-14 An electron microscope achieves very high reso-

lution by using electrons whose de Broglie wavelengths are

usually less than 0.01 run. Explain why we can't design a pho-

ton microscope using photons with wavelengths of this order

of magnitude.

43A-15 Electron A moves such that its de Broglie wave-

length is twice that of electron B. Find the ratio of their kinetic

energies, KJKb-

43B-16 Explain, in a quantitative way, why second-order

electron scattering peaks are not evident for any of the elec-

tron energies shown in Figure 43-13.

43B-17 Consider the experimental result of the Davisson-

Germer experiment shown in Figure 43-13 for incident 60-eV

electrons, (a) Find the de Broglie wavelength of the incident

electrons on the basis of their energy, (b) What scattering angle

would you predict for this case?

43B-18 A beam of "white" x-rays (containing many differ-

ent wavelengths) is incident upon a cubic crystal at a glancing

angle of incidence of 35° with respect to the crystal surface.

The longest wavelength of x-rays that are "reflected" sym-

metrically at the same glancing angle is 0.330 nm. (a) Find the

spacing between adjacent planes of atoms in the crystal, (b) If

a beam of electrons were substituted for the x-ray beam, what

minimum energy (in electron volts) of electrons would also

produce a strong "reflection" at this angle?

43B-19 Electrons are accelerated through a potential differ-

ence Vand then directed at a target of powdered crystals whose

largest atomic-plane separation is 0.283 nm. Find the smallest

value of V for which Bragg reflection occurs when the reflected

beam is deviated through an angle of 130° with respect to the

incident beam direction.

43.6 Wave Mechanics

43.7 Barrier Tunneling

43B-20 The space part of the wave function describing a

free electron is l//(x) = A sin(7 x 10';c) in SI units. Find (a) the

de Broglie wavelength of the electron, (b) the electron's speed,

and (c) its kinetic energy in electron volts.

43B-21 A particle is confined to one-dimensional motion

between two rigid walls separated by a distance D. The prob-

ability density function P = \ij/\' is given by Equation (43-29).

Show that the distance Aa- between minima is D/u.

43B-22 A particle of dust whose mass is 80 pg floats in air,

trapped between two rigid walls 0.6 mm apart. It takes the dust

particle 5 min to move from one wall to the other. Considering

this situation quantum-mechanically as that of a particle trapped

in a one-dimensional box, find (a) the quantum number n for

this energy state, (b) Explain why it is not possible to experi-

mentally determine the quantum number for this state, (c) Now
assume that this dust particle is in its lowest possible (n = 1)

energy state. Find the time (in years) it would take the particle

to travel from one wall to the other wall.

43B-23 The transmission coefficient T gives the probability

that a particle of mass m approaching the rectangular potential

barrier of Figure 43-23 may "tunnel" through the barrier:

T=e~ where k =
Sn^miU - E)

Consider a barrier with L/ = 5 eV and D = 950 pm. Suppose

that an electron with energy £ = 4.5 eV approaches the barrier.

Classically, the electron could not pass through the barrier be-

cause E < U. However, quantum-mechanically there is a finite

probability of tunneling. Calculate this probability.

Energy
-H D

£
_L

T
u

o

FIGURE 43-23

Problems 43B-23 through 43B-26.

438-24 In the previous problem, calculate the probability

that a 4.5 -eV proton could tunnel through the barrier. Obtain

a finite (though extremely small!) nonzero numerical answer.

43B-25 In Problem 43B-23, by how much would the width

D of the potential barrier have to be increased so that the

chance of an incident 4.5-eV electron tunneling through the

barrier is one in a million?

43B-26 (a) In Problem 43B-23, calculate the de Broglie wave-

length of the 4.5 -eV electron as it approaches the potential

barrier, (b) What fraction of this de Broglie wavelength is the

barrier width of 950 pm? (c) Repeat (b) for a 4.5-eV proton.

43.8 The Uncertainty Principle

43B-27 A 9-g marble is rolling along a table at 2 m/s. (a)

If its linear momentum is measured to an accuracy of 0.1%,

what is the uncertainty in the simultaneous measurement of its

position? (b) Repeat for an electron moving at the same speed.

Comment upon the answers.

43B-28 An atom in an excited state 1.8 eV above the ground

state remains in that excited state on the average 2 x 10"
* s

before undergoing a transition to the ground state. Find (a) the

frequency and (b) the wavelength of the emitted photon, (c)

Find the approximate uncertainty in energy of the photon.

43B-29 A n° meson is an unstable particle that is produced

in high-energy particle collisions. It has a mass-energy equiv-

alent of about 135 MeV, and it exists for an average lifetime

of only 8.7 x 10"'"
s before decaying into two gamma rays.

Using the uncertainty principle, estimate the fractional uncer-

tainty Am/m in its mass determination.

Additional Problems

43C-30 A negative /i-meson (called a muon) has a charge

of — e and a mass of about 206.8»i<.. Consider a hydrogenlike

atom formed of a proton and a muon. (a) Assuming that the
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proton remains fixed, find the n = 1 Bohr orbit radius for this

"atom." (b) What is the ground-state energy in electron volts?

(c) Find the wavelength of the radiation emitted for the transi-

tion from the h = 2 state to the n = 1 state.

43C-31 An electron and a positron (same mass as an elec-

tron but with a positive electronic charge) can form a bound

system known as positronium. The two particles revolve about

their mutual center of mass, and the total angular momentum
is quantized according to the Bohr condition. Derive general

expressions for (a) the quantized radii r„ and (b) a numerical

expression (in electron volts) for the energy states £„. (c) Cal-

culate the longest and shortest wavelengths of radiation emitted

from positronium in transitions to the ground state.

43C-32 Consider a hypothetical atom having a neutron for

a nucleus, with an electron held in orbit by the gravitational

force between the neutron and the electron. Using an analysis

similar to that used for the Bohr hydrogen atom, determine (a)

the radii of the orbits, similar to Equation (43-7), and (b) the

energy states, similar to Equation (43-10).

43C-33 As a photon is emitted from an atom, a small frac-

tion of the energy associated with the transition appears as the

recoil energy of the atom. Show that this fraction is approxi-

mately equal to E/2mc^, where £ is the energy of transition

and m is the mass of the atom.

43C-34 A 50-kg satellite is in a circular orbit about the earth

with a period of 2 h. (a) Applying the Bohr quantum condition

on angular momentum, calculate the quantum number n for this

orbit, (b) Find the radial distance between this orbit and the

next "allowed" higher orbit. Could we experimentally detect

this distance?

43C-35 Starting with Equation (43-9), derive the empirical

relation for the Balmer series in hydrogen. Equation (43-1).

43C-36 A singly ionized helium atom (designated He ii)

has one electron and a nucleus of charge -I- 2e. Apply the Bohr

theory to find expressions for (a) the energies £„ and (b) the

electron radii r„ for allowed states of this ionized atom, (c)

Show that for every spectral line in the hydrogen spectrum,

there is a line of identical wavelength in the ionized helium

spectrum. What is the relationship between the corresponding

n-values for these "matching" lines? (Note: these lines are iden-

tical in the original Bohr theory. Actually, they differ slightly

because the Rydberg constant R has a small dependence on

the nuclear mass.)

43C-37 An example of the correspondence principle is that

the relativistic kinetic energy K = mc^[l/(I — d^/c^)^'^ — 1] re-

duces to the classical value K = mv^jl for v « c. Prove this

statement.
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If all this damned quantum jumping were really here to stay, I should be

sorry I ever got involved with quantum theory.

EDWIN SCHRODINGER (in a heated discussion with Bohr
regarding the Bohr postulates)

The great initial success of quantum theory cannot convert me to believe

in that fundamental game of dice.

ALBERT EINSTEIN (in a letter to

Max Born, November 7, 1944)

44.1 Introduction

As we saw in the last chapter, there is a fundamental difference between classical

mechanics and quantum mechanics. Classical Newtonian mechanics describes

the motion of an object under the influence of a force in terms of measurable

parameters such as mass, position, velocity, and acceleration, giving us (sup-

posedly) precise predictions for numerical values of these quantities at any

instant. The results agree with our everyday experience. Quantum mechanics

also describes relationships between measurable parameters, but it reveals a basic

limit. Because of the uncertainty principle (whose roots lie in the fundamental

wave-particle duality of matter and radiation), certain pairs of parameters can-

not be measured simultaneously with unlimited accuracy. Consequently, quan-

tum mechanics makes some of its predictions by giving a precise statement of

the probability that a given parameter has a certain range of values about some

average, rather than giving the exact value of the parameter as classical physics

does.

Lest you think that quantum mechanics is not a very good substitute

for the unlimited precision of classical mechanics, we point out that classical

mechanics is merely an approximation of the more subtle and rich theory of

quantum mechanics. The exactness—without limit—of classical mechanics is an

illusion. That approach is valid for macroscopic conditions in which so many
atoms are involved that the uncertainties in the average values are negligible.

But for small-scale systems, quantum mechanics must be used. A particularly

pleasing aspect of quantum theory is that it contains within itself the full

Newtonian theory, which emerges automatically when quantum mechanics is

applied to macroscopic systems. So quantum mechanics is the single best theory
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to date that describes most' of our wondrous universe. In the words of Herman

Feshback and Victor F. Weisskopf^:

Quantum physics holds a unique position in intellectual history as

the most successful framework ever developed for the understanding

of natural phenomena.

In this chapter we apply quantum mechanics to the hydrogen atom and

interpret the results. This example of the simplest two-particle system will dra-

matically illustrate the unique features of quantum mechanics.

The Bohr model of the hydrogen atom was a magnificent achievement.

It predicted results that were in remarkable agreement with experimental data.

Probably the greatest impact of Niels Bohr's discovery, however, was that the

model raised more problems than it solved, thereby initiating a closer look into

the nature of atomic structure. Among the unresolved problems were these:

(1) How, in clear contradiction to firmly established electromagnetic

theory, could an electron orbit about a proton and not continually

lose energy by radiation?

(2) Why, upon careful observation of the hydrogen spectrum, do we

find many of the lines to be closely spaced combinations of two or

more lines (fine structure)!

(3) How could the Bohr model account for the fact that some spectral

lines are more intense than others?

(4) What is the justification for the quantization of orbits in the

Bohr model?

As we pointed out in the previous chapter, in 1924 Louis de Broglie pro-

vided a rationale for quantization through the idea of matter waves. With the

experimental verification of matter waves by C. J. Davisson and L. H. Germer

in 1925, the stage was set for a new theory of atomic structure. The two main

architects of the new theory were Erwin Schrodinger, who devised a wave-

mechanical model, and Werner Heisenberg, who used mathematical matrices to

represent transitions between initial and final energy states of the atom. Both

theories were later found to be exactly equivalent. We discuss only the simpler

wave-mechanical model.

Wave mechanics yields predictions that are in exact agreement with ex-

perimental data. But by accepting this purely mathematical model we are forced

to reject the idea of electrons orbiting a nucleus in precisely defined trajectories.

Instead, we can only say that the electron has a certain probability of being

in this region of space, or in that region of space. It is gratifying, however, that

the regions of highest probability correspond to the discrete orbits of the old

Bohr atomic model.

Another success of wave mechanics is that quantization arises naturally

when only standing-wave solutions to the wave equation are "allowed." Allowed

solutions are those for which certain boundary conditions are met. As an illus-

tration, in the previous chapter we discussed an electron moving in one-

dimensional motion between rigid walls. For that case we require that i// = at

the walls, automatically restricting solutions to standing-wave patterns between

' There are still enough unsolved puzzles in nuclear physics and fundamental particles to keep physicists

challenged for a long time to come.

'Physics Today. Oct. 1988.
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the walls. For the three-dimensional case of an electron in an atom, we require

that the value of xj/ ior
(f)
= 0° must equal i// for = 360°. (That is, one com-

plete rotation brings us back to the original angular position.) Another boundary
condition is that i// -» as r -> co. As discussed in the next section, such re-

strictions lead to quantum numbers, which designate the allowed solutions.

44.2 The Schrodinger Wave Equation

The wave-mechanical approach to the solution of the hydrogen atom is to con-

sider the electron, influenced by the Coulomb potential U of the proton nucleus,

as a de Broglie "matter" wave. As a wave, the electron must obey the wave
equation. For a one-dimensional wave, the time-independent Schrodinger equa-

tion [Equation (43-27)] is

ft.
1? +

lm(E - U)
\p =

which is often written as

SCHRODINGER
WAVE EQUATION
(one dimension) Im I dx^

+ U{x) il/
= Eil, (44-1)

Since the electron wave is three-dimensional (analogous to the mechanical vi-

brational waves in a wiggly sphere of gelatin), the wave equation must be writ-

ten in a three-dimensional form:

^' fd'ip oV ^V+
2m \dx^ dy^ dz"

+ U{x,y,z)ip = E\}j (44-2)

where the potential energy U{x,y,z) is the Coulomb potential in Cartesian

coordinates:

U{x.y.z) = - 1

AkEoJ [x^ + y^ + z^)
2x1/2

(44-3)

Because of the spherical symmetry of Li = — ke^/r, however, it is advantageous

to write the Schrodinger wave equation in spherical coordinates: r, 6, and (j),

Figure 44-1. With these substitutions, the wave equation in spherical coordinates

becomes

FIGURE 44-1

The point P may be specified by its

rectangular coordinates {x,y,z) or by its

spherical coordinates (r,6,<f>).

THE SCHRODINGER
WAVE EQUATION
(spherical coordinates) 2m

'i_d_

r^ dr

2#V ^
' dr j r^ sin d 86

8 r ,# +
r sm e d4>\

-h U(r)^ = Eijj (44-4)

where the potential energy function is simply

U{r) =
Arts,

(44-5)

Don't be alarmed at this elaborate equation—we won't be working with it

directly. The complete solution of Equation (44-4) is complicated, so we will

present only some important aspects of its solution that give physical insight
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into the nature of quantum mechanics. They are the following:

(1) The solution of the wave equation 1/^(^0,0) is expressed as the

product of three functions: a radial part R(r), which is a function

only of r; a polar part Q{0). which is a function only of 0; and an

azimuthaP part 0(0), which is a function only of (p. Thus:

i}/{r.e,(f)) = R(r)e(om(i)) (44-6)

W/

-1

<f=l

/=3

FIGURE 44-2

The allowed values of L, = m^fi for

two different values of /" (drawn to

different scales). The values of m^ are

the integral numbers along the z axis,

covering all possibilities from +/ to

— /. The magnitude of

The central thread of the story is that for each of the spatial

variables r, 6, and (j) a quantum number {which designates the

"allowed" solutions) arises naturally when we restrict solutions to

only those that are single-valued and approach zero as r — oo.

These are "standing-wave" solutions representing different

quantum states of the atom.

(2) The radial function R{r) that satisfies the boundary condition

[i/' —> as r ^ cxj] exists only for integral values of a quantum

number n = 1, 2, 3 The number n is called the principal

quantum number because the energy of the electron depends

principally upon n in the following way:

£„ =
me

Sso^h^

1

(44-7)

Note that this is the same energy function that was obtained with

the Bohr model, as should be expected. After all, the Bohr model

was very successful in providing energy levels.

(3) The solution of the polar function &{6), which satisfies the

boundary conditions, gives rise to the orbital quantum number i:

/ = 0, 1, 2, [n

Thus, for n = \, f may only be 0; for « = 3, / = 0, 1, or 2;

and so forth. It is called the orbital quantum number because it

determines the orbital angular momentum L of the electron about

the proton. The discrete values of / quantize the orbital angular

momentum to only these values:

L=^^/(/+ 1) (44-8)

(Note that this result does not agree with the (incorrect) Bohr

quantization of angular momentum: L = nfi.)

(4) The solution of the azimuthal function 0(0) gives rise to a

third quantum number m^ called the magnetic quantum number m^:

m. 0, ±1, ±2, ±3, + /

The value of m^ determines the ; component of the angular

momentum L according to the relation (see Figure 44-2)

L. = m/f{ (nv = 0. ± T ±2, ±n (44-9)

The word azimuth comes from astronomy, where it designates the angular distance around the horizon,

measured eastward from the north point.



44.2 The Schrodinger Wave Equation 1037

The orbital angular momentum L of the electron is associated with a mag-
netic dipole moment //^ (see Problem 30C-41) given by

l^f
2m

(44-10)

Therefore, the z component of the magnetic dipole moment (/i^). is also

quantized:

iHf), = -mf
ePi_

Zm

where efi/2m is called the Bohr magneton:

BOHR MAGNETON (
—

) = 9.27 x 10"^* A m^
2m

(44-11)

(44-12)

thanSince (/v). is the measurable quantity, it is physically more significanf^

H^ or L.

Atomic states that have the same values of n and /", but different wave
functions, represent different directions for L. To measure these differences

experimentally, we place the atom in a weak magnetic field that is aligned

along the + z direction (to identify a specific direction in space). We infer the

discrete orientations of L in Figure 44-2 by measuring the z component

of /i^.

A helpful way to picture this situation is with a vector model. The

angular momentum L and the magnetic moment /t^ are rigidly connected

together. The magnetic field exerts a torque on fi^. As a consequence of the

gyroscopic behavior of angular momentum, L and fi^, precess together about

the z axis. But because of Heisenberg's uncertainty principle, {AL,)(A(j)) > ~/i,

we can never measure where in the precessional motion these vectors are at any

instant. Our mental image of this vector model must show the precessional

motion only as an average blurred cone. Figure 44-3. The only information that

we can experimentally obtain is the magnitude of these vectors and their

projections along the z axis. Nothing else!

L. = m.fi

(lJ;)z=—m

FIGURE 44-3

A vector model for visualizing the

quantized spatial orientations of vector

quantities in quantum mechanics. Here

we show one of the possible

orientations for L and its projection

on the z axis. The vectors L and ft/,

precess together about the ; axis.

EXAMPLE 44-1
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The solution to the wave equation that we have described fails to ac-

count for the so-called fine structure of the spectral lines. A high-resolution

spectrometer reveals that some of the lines are actually closely spaced com-

binations of two or more lines. As we will see in the next section, this fine

structure was explained in 1925 by S. A. Goudsmit and G. E. Uhlenbeck, grad-

uate students at Leiden University in the Netherlands, who proposed that

the electron itself possesses an angular momentum, or "spin," and a related

magnetic moment. Both of these characteristics are inherent properties of the

electron, just like the electronic charge and mass. A simple way of visualizing

the origin of these properties is to imagine that the electron is a charged sphere,

spinning on its axis." Thus the total angular momentum of an electron in the

hydrogen atom is made up of two parts: its orbital angular momentum L and

its spin angular momentum S. Aware that fine-structure lines often come in

pairs, Goudsmit and Uhlenbeck proposed that the electron spin could have

only two possible orientations with respect to an external magnetic field: par-

allel or antiparallel. Consequently, a fourth quantum number enters the picture.

(5) Electron spin gives rise to the spin quantum number m^ and is

related to the z component of the spin angular momentum S^:

S = a^/sis + 1)

S, = m.h

(where 5 = \)

(where m^= +j)

(44-13)

(44-14)

If 5- = +2^, the electron's spin is said to be "up"; if S, = —^r,

its spin is "down." Analogous to the case of orbital motion, there

is a 2 component of the spin magnetic moment (/i,), associated

with s,:

(/^s

eh

m
(where m^ : (44-15)

Referring to Equation (44-11), we note that the electron spin

angular momentum seems to be twice as effective in producing a

magnetic dipole moment as is the orbital angular momentum.

Here is a summary' of the four quantum numbers that designate the al-

lowed states of the hydrogen atom. The first three arise naturally in the quan-

tum-mechanical description of an electron confined in a particular region of

space by the Coulomb attraction of a proton. The fourth is due to the inherent

properties of spin of the electron.
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44.3 Electron Spin and Fine Structure

In the 1920s, t:he development of atomic theory provided a scenario that

would rival that of a good mystery story. The discrepancies betw'een theory

and experimental evidence began to grow in the early part of the decade. Two
notable problems were that spectral lines had a fine structure and that neutral

atoms passing through a nonuniform magnetic field were deflected either in

one direction or in the opposite direction. Figure 44-4. These phenomena could

not be explained by the existing theory. In 1925 Goudsmit and Uhlenbeck

made two proposals that did lead to correct predictions. They suggested (1)

that an electron behaves as though it is a spinning ball of charge with quantized

angular momentum and (2) that in the presence of a magnetic field the magnetic

dipole moment can assume only two orientations: parallel or antiparallel to the

field. But such a literal picture of a spinning electron did not fit into the current

framework of wave mechanics and thus was not a completely satisfactory ex-

planation. A welcome solution to the spinning-electron myster>' came in 1928,

when P. A. M. Dirac introduced relativity to the wave-mechanical treatment

of the electron. The concepts that previously had to be accepted only because

they led to the right answers now emerged as the natural consequences of

applying relativity to wave mechanics. Indeed, the Dirac theory, using only the

electron charge and mass as given data, predicts all the other intrinsic properties of

electrons, including spin and the existence of anti-electrons (positrons)! It is justifiably

considered one of the major triumphs of theoretical physics. Dirac received

the 1933 Nobel Prize (with Schrodinger).

44.4 Spin—Orbit Coupling

As mentioned in the last section, the fine structure of spectral lines is due to

the interaction of two magnetic dipole moments: the one associated with elec-

tron spin and the other associated with the orbital motion of the electron. This

interaction, or "coupling," is called spin—orbit or L—S coupling. Because of

the abstractions of the purely mathematical description of the atom, we often

think of the visual picture of a spinning electron orbiting a nucleus.^ Such a

\iew, although incorrect, does help visualize spin-orbit coupling. Thinking

classically, we note that in the electron's frame of reference the proton circu-

lates around the electron, Figure 44-5. This motion is equivalent to a current

FIGURE 44-4

The Stem-Gerlach experiment (1922)

demonstrates the spatial orientation of

spin magnetic moments in a magnetic

field. A beam of neutral silver atoms

is sent through a nonuniform magnetic

field. The magnetic moment of the

silver atom is due solely to the single

valence electron, which has zero orbital

magnetic moment (/ = 0); only the spin

magnetic moment for that electron is

present. Classically, a single smeared

pattern is expected since the magnetic

moments of the atoms in the beam

should be able to have any orientation

as they pass through the field. Instead,

the beam splits into two distinct lines,

verifying the spatial orientation of spin

magnetic moments in a magnetic field.

The spin magnetic moments tilign either

parallel or antiparallel to the field

direction, and the nonuniform field then

pushes them either up or down to

form the double-line pattern.

' The earth-sun s\-stem is an analogy-: the orbital motion of the earth about the sun produces angular

momentum, while the earth's rotation about its own axis adds additional angular momentum.

nCURE 44-5

In the electron's frame of reference, the

proton circulates around the electron.

This motion is equivalent to a current

loop, producing a magnetic field B at

the location of the electron.
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niffi

»i,/i

mji

(a);=^-|

loop, producing a magnetic field B at the location of the electron. The mag-

netic moment fi^ of the electron orients itself either parallel or antiparallel to

B, with a corresponding potential energy U = — /i^ • B for this interaction.

(The magnetic field B is calculated in the electron's frame of reference.)

In quantum mechanics we must combine quantized vectors in the manner

discussed previously, so we extend those ideas to spin-orbit coupling. Since

the magnetic dipole moment is associated with angular momentum, we may
couple dipole moments by combining angular momenta. The angular momen-
tum of orbital motion L [defined by Equation (44-8)] and the angular momen-
tum of spin S [defined by Equation (44-13)] are added vedorially to produce

the total angular momentum J:

SPIN-ORBIT
COUPLING
(or L-S)

J = L + S (44-17)

(b)/=^+i

FIGURE 44-6

In L-S coupling, the orbital and spin

angular momenta may add in two ways

to form the total angular momentum I.

Because of the unusual quantized values

for their magnitudes, L = sj^\^ + 1),

5 = Vs(s + 1), and / = sjj(j + 1),

these vectors can add only at certain

discrete angles.

The magnitude of J is quantized in a manner similar to L and S by the relation

] = ^^i{}+ 1) (44-18)

The vector addition of L and S to form J is shown in Figure 44-6. The symbol

j is the inner quantum number that tells how / and s combine. Since 5 = 2- we
have only these values:

; = ^±i (44-19)

The projection of J on the z axis is quantized in the same way that L has a

quantized projection m/h. Thus, the z component of J is

L mjh

where Wy may have the values

j. (j - 1), a - 2) -a- 2), -(; - I), - j

(44-20)

(44-21)

Therefore, there are 2; + 1 values of mj.

The way that the angular momentum vectors L and S add vectorially

determines how the corresponding dipole moments add. The vector addition

is shown in Figure 44-6. The magnitudes of all three vectors L, S, and J are

quantized, so the angles between these vectors can have only certain discrete

values. The energy difference of the doublet levels is the difference between

the electron being in the (/ + j) "up" state and the (/ — 2) "down" state.

ALTERNATE
QUANTUM
NUMBERS
(for L-S
coupling)

At this point it may appear that, by introducing spin—orbit coupling, we
have added to the list of quantum numbers required to define the state of the

electron. As we will see later, the state of the electron can be described either

by the quantum numbers n, /, m^, and m^ or by the quantum numbers n, { , j,

and mi. No more than four quantum numbers are needed.

n = 1, 2, 3, . .

/ = 0, 1, 2, . .

W: = j, a — 1),

,(«-!)

-
(i
- 1).

Principal quantum number

Orbital quantum number

Inner quantum number

(z component of j)

(44-22)
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44.5 Quantum States of the Hydrogen Atom
We now show how to describe the various possible energy states of the elec-

tron in the hydrogen atom. We have pointed out that the state of the electron

is specified by four quantum numbers. The following example illustrates the

procedure for determining all of the possible states.

EXAMPLE 44-2



1042 I 4 Atomic Physics

EXAMPLE 44-3

Among the following electron states, some are not allowable. Identify those

states and tell why they are incorrect.

(a) lpii2 (b) lSi/2 (c) 2psi2 (d) 4(^3/2 (e) 5/5/2 (0 6/3/2

SOLUTION

Only (b), (d), and (e) are possible because ;' = / + 2 and / < « — 1. (a) is incor-

rect because / > « — 1, (c) is incorrect because j > ^ + 2' and (f) is incorrect

because ; < ^ — 2-

Shell Notation

Although not used in spectroscopic notation, the value of the principal quan-

tum number n is sometimes indicated by a capital letter according to the

following notation used in x-rays:

/=0 /=! /=2

n Value 1
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44.7 The Hydrogen Atom Wave Functions

The solutions to the wave equation. Equation (44-4), always have a constant
multiplier that is not initially deteimined. For example, in the lowest (Is) state

of hydrogen, the solution is of the form

where yl is an arbitrary constant. As will be shown, the symbol a is the Bohr
radius, the radius of the ground-state orbit in the Bohr model:

e h^
BOHR RADIUS a = -^ = 0.0529 nm (44-23)

nme

Choosing a suitable value for the constant A is called normalization,
discussed first in Section 43-6. (Here, the hydrogen wave functions are three-

dimensional, while in Section 43-6 we dealt with a one-dimensional situation.)

The physical significance of l/r is that it provides information about where the

electron is likely to be relative to the nucleus (in contrast to the Bohr theory,

which states that, for example, in the ground state the electron is precisely at a

radial distance of 0.0529 nm). The probability density function P, as before,

is defined to be

P = |iA|^ = i/^iA* (44-24)

where \jj may be complex.^

For the ground state (Is) of hydrogen, the solution of the wave equation

is i/^ = /!£-"•"", so

P = |l/^|2 = ^^* = ^2^-(2r/fl)
(44-25)

The probability -^ of finding the electron within the volume dV is

PROBABILITY ^ OF FINDING
THE PARTICLE DESCRIBED BY ^=\\il/\^dV (44-26)

fj/ WITHIN THE VOLUME ^dV

We now recognize that the probability .^ of finding the electron somewhere

between r = and r = go is 1. Since the wave function for the ground state

is symmetrical about the nucleus, the probability does not depend upon the

coordinates 9 or (p. So the volume differential dV is chosen as a spherical shell

with area 47rr' and thickness dr, giving

I
""

Ah-^^'"'hnr^dr=l

Evaluating the integral yields 47r/\^(fl^/4) = 1

Solving for A, we get A = (na3N-1/2

' Complex numbers involve i = v 1- The complex conjugate of a number denoted by (*), replaces i with

-
;. Thus if i// = Ae'*, then i//* = Ae''*. The product iii<li* = /l^e'*c"'* = A^e" = A^, always a real

number.
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The normalized wave function for the ground state (Is) is thus

l/^ = (7tfl3)-''2«
"<'/"'

(44-27)

The normalized wave functions for the lowest two states of hydrogen are

given in Table 44-3. The value of the constant a is the radius of the Bohr orbit

for hydrogen in its ground state. Note that in the Is and 2s states the wave

functions do not depend upon either or (j), which indicates that in these states

the wave functions are spherically symmetric about the nucleus.

TABLE 44-3 Normalized Wave Functions* of

the Hydrogen Atom

n f ntf ^

K Shell
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EXAMPLE 44-4

For the ground state (Is) of the hydrogen atom, detennine the distance r (from
the proton) near which the electron is most likely to be found.

SOLUTION

The electron is most likely to be found near the distance corresponding to the

maximum value of the radial probability density function, that is, near the value

of r for which

dPir)

dr
=

Eliminating constants gives

2re

d

Ir

-(2r!a)

4H
-(2r a)

2 -ana)

=

dr

Ir"

\r-e 1 =

,-(2r/a) _

which yields

In the ground state, the most probable distance from the nucleus is the

Bohr radius for n = \. Note that the result of this example is noi in agreement

with the Bohr model. The Bohr model defines a precise orbital radius, while

wave mechanics describes only the likelihood of finding the electron within

various radial increments from the center. The next example emphasizes this

point.

EXAMPLE 44-5

For the ground state of hydrogen, what is the probability of finding the elec-

tron closer to the nucleus than the Bohr radius corresponding to n = 1?

SOLUTION

The probability, ^, of finding the electron within the Bohr radius is given by

Equation (44-30):

^ = j" P(r)dr

Substituting P{r) given by Equation (44-29), we obtain

The electron is likely to be within the Bohr radius about one-third of the time.

The Bohr model indicates none of the time.

0.323

We can better understand the results of the last two examples by examin-

ing Figure 44-8, which is a graph of the radial probability density function.
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0.6 r

5 6

(b)The 2s state (m = 2, /=0).

2 3

r/flo

(a) The Is state (» = 1, /=0). The
shaded portion indicates that

there is about a 32% probabil-

ity of the electron being inside

the classical Bohr radius aq (the

peak of the curve) and a 68%
probability of its being farther

from the nucleus.

5 6

(c) The 2p state (ii =

10

^2, /=1).

FIGURE 44-8

The radial probability density function

P(r) for the three lowest states of

hydrogen.

P(r), for the Is state of hydrogen. As shown in Example 44-4, the maximum
of the curve in Figure 44-8a occurs at r = Aq = 0.0529 nm (the Bohr n = 1

radius). The shaded portion is 32.3% of the total area under the curve, indicat-

ing that during this fraction of its time, the electron is closer to the nucleus

than the Bohr radius.

(a) n = l,/ =

(b) M = 2, /=0

FIGURE 44-9

One way of representing the

probability density for the Is, 2s, and

2p states of the hydrogen atom. (We
have drawn rather artificial boundaries

to the distributions; the probability of

finding an electron outside the

boundary of a cloud is less than about

10%.) In each case, the nucleus is at the

coordinate origin. The greater the cloud

density, the greater the probability of

finding the electron in that region. (c) n = 2, /=0, tw=±l (d) n = 2, (=\, m,= Qi

L
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While it is relatively easy to visualize the definite orbitlike states of the
Bohr model of the hydrogen atom, the visualization of the wave-mechanical
model requires not only a three-dimensional perspective but also a way of
showing the most probable locations of the electron. One way of picturing this

is shown in Figure 44-9. The figure shows cross-sectional views of probability

"clouds." The greater the density of the cloud, the greater the probability of
finding the electron there. The rather artificial boundaries of the clouds shown
in the figure are such that the probability of finding the electron outside the
boundary is less than about 10%. Do not confuse this probability density re-

presentation with the mdial probability density P(r). Consider, for example.
Figure 44-9a. Even though the cloud is most dense near its center, the electron

will spend little time there because the volume for a given Ar at small r is

much less than it is for a large r. The combination of both a high-volume
probability density and high incremental volume makes it most probable for the

electron to be found at 0.0529 nm from the center (the Bohr « = 1 orbital

distance). Another way of representing the volume probability density is shown
in Figure 44-10. Here, the cloud density is represented by the height of the

bumps on the cross-sectional slice through the nucleus.

44.8 The Pauli Exclusion Principle and the

Periodic Table of the Elements

In this section, we show how electrons in multi-electron atoms are distributed

among the possible energy states. The lowest possible energy state of the elec-

trons within the atoms account for such things as the chemical and electrical

properties of certain elements. Thus, the periodic table of chemical behavior

established by Mendeleef in 1870 can be explained on a physical basis.

Suppose that we build atoms by adding electrons (and, of course, adding

corresponding positive charges to the nucleus to preserve the overall electric

neutrality of the atom). We begin with hydrogen in its ground state. Is', where

the superscript indicates the number of electrons in the Is state. As we add

electrons, they seek the lowest possible energy state. Thus, when helium is

formed, both of its electrons will be in the » = 1, / = state, and will have

opposite spins. The ground state of helium is written as Is". Proceeding to

lithium, no more n = 1 states exist, so the third electron goes to the n = 2

shell. The ground state of lithium is Is'ls'. As we add more electrons, we
find ground-state configurations as shown in Table 44-4.

Apparently electrons do not always seek the lowest energy state. If they

did, they would all be in the Is state. An inspection of the ground-state

configurations shown in Table 44-2 reveals that only two electrons can occupy

the M = 1 state and that only eight electrons can occupy the n = 2 state. In

Example 44-1 we discovered that there are only two possible states for the

electron in the ii = 1 state (the K shell) and only eight possible states for « = 2

(the L shell). The connection between possible energy states and ground-state

configurations was stated by Wolfgang Pauli in 1925 as follows:

(a)

(b)

(c)

(d)

FIGURE 44-10

Representations of the

probability-density distributions for

highly excited states (n = 8) of the

hydrogen atom that have different

values of angular momentum. The
nodal lines are either concentric

circles or straight lines passing through

the nucleus. The true three-dimensional

distributions may be visualized by

imagining that the graph is rotated

about a horizontal line passing through

the nucleus, forming nodal surfaces that

are spherical shells or cones. In these

excited states, the hydrogen atom is

much larger than it is in its lowest

energy state. The distance from the

nucleus to the edge of these graphs is

380 times the Bohr radius for n = 1.

THE PAULI EXCLUSION In the same atom, no two electrons can have
PRINCIPLE the same set of values for the four quantum

numbers [rt, f , irx/, m^ or \n, /, ;', Wj].

This rule was later derived as a consequence of a more sophisticated version

of quantum theory. At the time, it was of great help in our understanding of

the characteristics of atoms and the regularities of the periodic table. The
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TABLE 44-4

the Elements

Ground-State Configuration of

Element

Number of

Electrons

Ground
State* n Value

f
K shellH

He

Li

Be

B

C
N
O
F

Ne

Na

Mg
Al

1

2

3

4

5

6

7

8

9

10

11

12

13

Is'

ls^2s^2p'

ls-2s-2p^

]s^2s^2p^

ls^2s^2p*

Is^2s^2p'

ls^2s^2p**

ls^2s^2p*3s'

ls^2s^2p*3s^

lj^25^2p*3s^3p'

L shell

(n = 2)

M shell

{n = i)

* A shorthand notation is often used for closed inner shells. Thus, lithium may be

written |He| 2s': aluminum, [Ne| is^ip': and so forth. The symbol in brackets

designates the closed-shell configuration for that atom.

following example illustrates how to determine the number of states corre-

sponding to a particular shell.

EXAMPLE 44-6

Determine the number of electrons that can occupy the n = 3 shell

SOLUTION

Following the procedure in Example 44-1, we enumerate the quantum states for

n = i.

For / = 2 there are five values for ni/,, each with two values of m^, producing

a total of ten f = 1 states, or id^^.

For / = 1 there are three values for m^, each with two values of m,,

producing a total of six / = 1 states, or 3p*.

For ^ = there is only one value for m^, with two values for m^, producing

a total of two / = states, or is^.

Thus, the configuration for the filled n = 3 shell would be is^ip^id^'^ , a

total of eighteen states.

Table 44-3 suggests a pattern of simply filling the n = 2 shell, the « = 3

shell, and so on. It is a bit more complicated than that. Because the energy

level depends not only on n but also on / (and on the particular L-S coupling),

the energy states in some higher shells begin to overlap those of an inner shell,

disrupting the orderly sequence of adding electrons. See Table 44-5. Never-

theless, quantum theory does explain these exceptions. The ground state con-



44.8 The Pauli Exclusion Principle and the Periodic Table of the Elements 1049

TABLE 44-5 Shells

X-Ray

Notation M

TABLE 44-5

Paschen's triangle, an array that

organizes shells and subshells in a

convenient pattern. The arrows indicate

the sequence of energy levels for adding

electrons. {There are a few exceptions

in heavy atoms.) The electronic

configuration for cobalt is thus

27C0: ls-2s-2p^3s^3p^4s^id''. also

written (Ar) 4s'3d\ In another common
notation, the sequence is listed in order

of increasing n, so the last two terms

could be interchanged: lAi]3d'As^.

figuration of an atom places electrons in the lowest possible energy state without

violating the Pauli exclusion principle.

For a filled shell, S = 0, L = 0, and J = 0. Thus electrons in closed shells

combine to give zero net angular momentum and zero net magnetic moment.

The chemical properties^ of an atom are principally determined by the atom's

outermost electrons. Thus all the "filled-shell-plus-one" configurations have

similar chemical properties that depend mainly on just the extra electron that

is relatively loosely bound and "located" far outside the inner closed shells.

This group forms the highly reactive alkali metals (lithium, sodium, potassium,

rubidium, cesium, and francium). These atoms readily give up their extra elec-

tron to certain other atoms, forming an ion of + 1 charge, while the other atom

becomes an ion of — 1 charge. The "filled-shell-minus-one" group are the

halogens (fluorine, chlorine, bromine, iodine, and astatine)—atoms that strongly

seek an extra electron to form a closed shell. One type of chemical bonding

that joins atoms to form molecules is the ionic bond. For example, in the forma-

tion of sodium chloride, the sodium atom gives up its 3s electron to fill the

3p subshell of chlorine, forming Na'^CP; the two ions are held together by

their mutual Coulomb attraction. There are other types of chemical bonds,

including those in which the atoms share more than one electron. In a covalent

bond, there is a more or less equal sharing of one or several electrons by two

or more atoms. The hydrogen molecule H2 is an example of a molecule with

the covalent type of bonding. Finally, "filled-shell" configurations are the inert

gases (helium, argon, krypton, xenon, and radon); they have little tendency

to gain or lose an electron so do not normally form molecules with other

atoms. '° See Figure 44-11.

' Some physicists get a kick out of telling their chemist friends that all of chemistry is contained in the

Schrodinger equation—an exaggeration that does contain some truth. The chemists usually respond by

pointing out that the Schrodinger equation cannot be exactly solved for any atom contairung more than

one electron! Approximation methods must be used. Of course, in all of the sciences (including chemistry)

only approximations are achieved. Absolute certainty is claimed only by a few disciplines outside science.

'^ They are also called the "noble" gases, signifying their aloofness in associating with other, less royal

atoms!
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FIGURE 44-11

The ionization energy of an atom is the

minimum energy (in electron volts)

required to remove an electron from the

atom in its ground state. The peaks at

the inert gases are for atoms whose

electron subshells are all complete. The

next added electron must go into the

next higher shell, farther from the

nucleus, so notably less energy is

required to remove it from the atom;

these form the alkali metals. As more

electrons are added (and, of course,

more protons to the nucleus), the

binding of the electrons becomes

progressively stronger, until the next

shell is complete. Thus, each period in

the periodic table starts with a strongly

reactive alkali metal, and ends with an

inert noble gas. The numbers of

elements in these periods are 2, 8, 8,

18, 18, and 32.

IONIZATION ENERGIES OF ATOMS

50 60 70 80 90 100

Atomic number Z

44.9 X-Rays

When energetic electrons strike a metal target, they produce x-rays—photons

of very short wavelengths from roughly 0.001 to 10 nm. Figure 44-12 shows

a modem x-ray tube and typical x-ray spectra. Two different processes occur

when the electrons strike the target. The rapid deceleration of the electrons

produces a smooth, continuous spectrum of photon wavelengths called

brenisstrahhmg (German: hrenise, brake, and stmhhmg, radiation). The spectrum

has a short-wavelength limit /i„j„ that depends upon the voltage across the

tube, that is, upon the kinetic energy of the bombarding electrons. From the

conservation of energy.

[K of electron] = [Maximum photon energy]

he
Ve = hf^^^ = (44-31)

Thus, the cutoff wavelength A^j^ depends on only the accelerating voltage,

not the target material.

Pyrex

Heated ^y,,,,^^^
gl^^s

filament / envelope

Target

X rays '' \ Thin

window

(a) An x-ray tube.

FIGURE 44-12

X-rays.

^a Characteristic

lines

,40 kV Continuous

spectrum

(40 kV) (20 kV)

Wavelength

(pm)

(b) The x-ray spectrum of a metal

target obtained at two different

accelerating voltages.

K

^6

rill

n = 5

n = 4

L,

Til

11 n = l

(M shell)

n = 2

(L shell)

« = 1

{K shell)

(c) The x-ray series are named for

the shell vacancy that the

electron fills.
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The characteristic line spectra are sharp peaks superposed on the con-

tinuous spectrum. They are produced when the bombarding electrons have

sufficient energy to knock out an electron from one of the inner shells of the

target atoms, creating a vacancy in the K shell, the L shell, or another inner

shell. When one of the outer electrons falls to fill this vacancy, the atom
emits an x-ray photon whose energy equals that lost by the electron in making

the transition. If an electron falls from the L shell to the K shell (from n = 2

io n = 1) it produces the K^ line; a transition from the M shell to the K shell

(from n = 3 io ri = 1) produces the Kp line, and so forth. There are also L

series, M series, etc., named for the shell vacancy the electron fills (not the

shell from which it came). These lines are all "characteristic" of the particular

element used for the target material. K electrons, being close to the nucleus,

are very sensitive to the nuclear charge Ze. Electrons in higher shells "feel" a

smaller nuclear charge because inner electrons neutralize, or "screen," a portion

of that charge from those outer electrons.

In 1913, the British physicist H. G. J. Moseley (1887-1915) investigated

the characteristic x-ray spectra using a variety of different elements as targets.

He found an interesting straight-line relationship by plotting the square root

of the Kj, frequency vs. the atomic number Z, Figure 44-13, establishing the

atomic number Z (rather than atomic weight) as the true "signature" of an

atom.^^ This Moseley diagram showed that a few elements fell off the line

unless their positions in the atomic table were interchanged with those of a

neighbor. The reason was that prior to Moseley's work the periodic table was

ordered on the basis of atomic weights. But for a few elements, different isotopic

abundances (Section 45.2) caused their masses to be out of line with their

neighbors. For example, nickel formerly came before cobalt in the periodic

table. Moseley's diagram, however, clearly showed that the atomic number Z
of cobalt was smaller than that of nickel and that the atomic number Z was

the best basis for ordering the periodic table. A few other discrepancies were

FIGURE 44-13

This Moseley diagram plots the square

root of the frequency y/f vs. the atomic

number Z of the target element for two

lines of the K series. [Later plots used

(Z — 1) instead of Z, still obtaining a

straight line. See Problem 44C-38.1

" Moseley later plotted v/ vs. |Z — I], rather than Z, He justified this by pointing out (correctly) that a

vacancy in the K shell still leaves one K electron, which effectively shields one nuclear charge from the

other electrons.

FIGURE 44-14

Harry G. ]. Moseley (1887-1915).

Immediately after graduating with

honors from Oxford, Moseley began to

work in Rutherford's laboratory in

Manchester, the same year that Bohr

was developing his atomic model.

Moseley's work was especially valuable

since it provided the first experimental

link between the chemist's periodic

table and the physicist's new model of

the atom. Moseley was an ingenious

experimenter and a tireless worker. For

example, to solve the problem of the

longer-wavelength .r-rays being

absorbed by the glass wall of the

vacuum tube, Moseley cut a hole in the

glass and covered it with the thin

membrane from the large intestine of

an ox. It worked—between frequent

ruptures! Moseley traveled to Australia

to report his research at a meeting of

the British Association for the

Advancement of Science, arriving the

day that England declared war on

Germany in 1914. Returning home a

few weeks later, he volunteered his

services to the government. Though

offered a job in a research laboratory,

he preferred more active service and

accepted a commission in the Royal

Engineers. His brilliant career was cut

short when he was killed at Gallipoli

at age 28.
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similarly corrected, resulting in better agreement with the known chemical

properties of the elements. At the time, vacancies in the sequence soon led to

claims of discoveries of new elements—claims that were validated by the K^

line in their spectra (or, more often, were clearly shown by this test to be

false!). Moseley's simple method also sorted out the rare-earth elements of

atomic numbers 57 through 71—a confusing group whose similar chemical

properties made Z determination difficult.

44.10 The Laser

The word laser is an acronym for the phrase "Light Amplification by Stimulated

Emission of Radiation." Einstein was the first to predict the effect in a 1916

lecture (published the following year). Consider an atom that can undergo a

transition from an excited state £2 to a lower state Ej, emitting a photon of

energy hf = (£, — £1) in the process. Suppose that while the atom is in the

excited state, a photon with exactly the energy hf passes nearby. This photon

can stimulate the excited atom to decay and emit a photon of energy hf. The

intriguing aspect to this process is that we now have two photons with the

same energy, traveling in the same direction with the same phase and the same

polarization as the original photon. The two photons can, in turn, stimulate

emission by other excited atoms, in a sort of chain reaction. The light is coherent

(Section 38.2) and can build up to very great intensities.

The trick is to keep more atoms in state £2 than in £;. After all, an atom

in state £1 can absorb a photon of energy hf in a resonance process, raising

the atom to state £2. This causes photons to disappear—an unwanted event.

In a collection of atoms in thermal equilibrium, the number of atoms N in

various energy states follows the Boltzmann equation, N = Q"^'''^, where £

is the energy of a state, k is Boltzmann's constant, and T is the kelvin temper-

ature (C is a constant). Thus, normally the ratio of two state populations is

N.

N,

2 = ^-iE2-E0'kT (44-32)

FIGURE 44-15

The He-Ne gas laser. The windows W
at each end are tilted at the Brewster

angle to reflect light of the unwanted

polarization out of the laser.* The other

polarization component transmits

essentially 100% through the windows.

(With windows perpendicular to the

beam, each reflection would have ~4%
loss—an intolerable situation.)

Focussing mirrors M reflect light back

and forth about 100 times, while the

right-hand mirror permits a liny fraction

( ~ 1%) to pass through, forming the

external beam.

* This does not mean that the laser

loses half its power. After only one puss

through the tube, the Brewster reflection

removes that component, so it doesn't build

up much energy in the tube in the first place.

Higher-energy states are less populated. We must create a population inver-

sion that reverses the normal condition, so that the production of photons by

stimulated emission occurs more often than the absorption of photons. To

maintain the population inversion, we need to "pump" atoms up to an excited

state continuously; this state is always a metastable^^ state to aid in prolonging

the inversion condition. Pumping can be done in many ways: by an intense

flash of light (pulsed ruby laser), by an electrical discharge (argon laser), by a

' The mean lifetime for excited atomic states is roughly ~ I0~* s. However, certain melaslable states exist,

on the average, for up to ~10~' s before decaying, because spontaneous transitions to lower states

are "forbidden" (Section 44.6, Footnote 7).

External

beam
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FIGURE 44-16

Significant energy levels in the He—Ne
gas laser.

FIGURE 44-17

The top left photograph is a highly

magnified view of a defective

hypodermic needle—note the tiny

hook at the tip. When illuminated by

a laser, that tip produces the diffraction

pattern below. A perfect needle

produces the diffraction pattern at the

right, a difference that enables rapid,

automatic quality control in the

manufacturing process.

chemical reaction (CO2 laser), or by atomic collisions (He—Ne laser). The pop-

ular helium-neon laser, Figure 44-15, contains a gaseous mixture of those ele-

ments. Pumping is accomplished by an electrical discharge through the gas,

which excites helium atoms to two upper levels that, by a lucky coincidence,

are very close to two excited metastable states of neon. Figure 44-16. The

excited helium atoms collide inelastically with ground-state neon atoms, trans-

ferring their internal energies to the neon. This raises neon to the metastable

5s and 4s levels, where they form a population inversion with the lower 4p

and 3p states. (Transitions from 5s to 4s are forbidden.) The main transitions

are by stimulated emission in the infrared (1152 and 3391 nm) and the familiar

bright red (632.8 nm). The fact that stimulated emission is between two upper

levels is most advantageous: the p states immediately drain off to the 3s state,

maintaining the population inversion. (If the lower state were the ground state,

it would rapidly fill up to become the most populated.) Furthermore, we can

easily create the inversion condition without having to half-empty the greatly

populated ground state.

Laser technology is leaping ahead furiously, and any list of the most

powerful laser, the smallest laser, or the most unusual laser application would

be out-of-date by the time you read it here. Lasers are now bounced off the

moon to determine continental drift; they spot-weld detached retinas; they play

hi-fi and TV discs; they store 10 billion "bits" of information (the contents of

about 250 books, each the size of an Encyclopaedia Brittanica volume) on an

ultra-high-density computer disc 1 ft in diameter; they guide milling machines

and missiles; they provide a surgical "knife" that automatically cauterizes the

cut as it removes cancerous growths; they make holograms; they generate fusion

by imploding tiny spheres of deuterium-tritium; they alter genes; they simulta-

neously carry hundreds of TV and telephone signals in optical fibers; and they

are used in myriad other ways that continue to amaze us all.

51000"05887 4

FIGURE 44-18

The bar code scanner in supermarket

checkout counters uses a narrow beam

from a He-Ne laser to sweep across

the Universal Product Code (UPC)

symbol that identifies the item. The

reflection from the light and dark bars

is detected by a photocell, and the

information is sent to a central

computer. If the number is listed in

the computer memory, the scanner

sounds a beep, prints out the product

information and price on the sales slip,

and tallies the sale of that item in the

store's inventory records. Some stores

analyze daily records to make smart

marketing decisions, taking advantage,

for example, of the evidence that

candy bar sales zoom when the bars are

placed near the checkout counter, or

that sales of bean dip increase if taco

chips are on sale. Daily record analysis

can also measure the effectiveness of a

newspaper advertisement vs. an in-store

display. In the code above, the initial

zero identifies a grocery item, the next

five digits the manufacturer (The

Campbell Soup Co.), the next five digits

the specific item (10| oz., reduced-salt,

condensed tomato soup), and the final

digit the weight or volume.
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Summaty

The time-independent Schrodinger equation (one dimension) is

For a hydrogen atom, £ is the total energy and U is the Cou-

lomb potential energy

l;= -
Ane,

Because of spherical symmetry, the wave equation in three di-

mensions is most conveniently solved in spherical coordinates:

r, 0, and (/>. The requirements that solutions be single-valued

and approach zero as r -^ oo restrict "allowed" solutions to

only those characterized by four quantum numbers: n, f , m^, and

The principal quantum number n is identified with the total

energy £„:

ALLOWED
ENERGIES
OF THE
HYDROGEN
ATOM

SEo^h^ ) n^

13.6 eV
(n = 1, 2, 3, . .

The orbital quantum number { is identified with the angular

momentum L of the electron about the nucleus:

L = -ft ^af + 1)

The magnetic quantum number nif is identified with the

projection of the angular momentum on the ; axis:

L. = "hmf

Associated with the angular momentum and its projection on

the 2 axis is a magnetic dipole moment fi such that

"^-'^'^

and /'z=
-

2m
L.= -I — |m,

2m

,

The constant efi/2m, called the Bohr magneton, has the value

BOHR
MAGNETON

eh

2m
= 9.27 X 10"^* A-m^

The electron behaves as if it were spinning on its axis, producing

an additional quantum number m^, called the spin quantum num-

ber. It is associated with the projection of the spin angular mo-

mentum S on the z axis:

S = 1is/s{s+ 1)

S, = ft m^

where s = -2 and m^ = + 2 The associated spin magnetic dipole

moment fl^ has a : component:

^eti

The qiuvttum state of an electron in an atom is described

by the set of four quantum numbers n, / , nXf, and m,, where

« = 1, 2, 3, . . .

^ = 0, 1, 2, 3 [n-

nxf = 0, +1, ±2, ±3,

m = ±1

Principal quantum number

1) Orbital quantum number

. , + / Magnetic quantum number

Spin quantum number

The interaction of the magnetic dipole moments due to the

electron's orbital motion and its spin produces a spin—orbit, or

L-S, coupling. The coupling slightly alters the energy levels

of the electron to produce a fine structure in the hydrogen

spectrum. As a consequence, an alternate set of quantum num-

bers may be used to describe the quantum state of an electron.

They are

w = 1, 2, 3

/ = 0, 1, 2, 3 (n- 1)

;=±i
mj= ±j, ±(;-l), +0--2),

Principal quantum number

Orbital quantum number

Inner quantum number

(; component of ;')

A few hydrogen atom wave functions [p are listed in

Table 44-3, page 1044. They are normalized such that

Jl
PrfV=l

where, for radial functions, dV = Anr' dr.

The probability density function P is

The probability ^ of finding the electron in the volume dV is

^ = jpdv
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The probability of finding the electron in the radial element dr

9 = Jpw dr

where ?(r) is the radml prohabdity density function.

The periodic table of the elements can be constructed from
two principles:

(1) The Pauli exclusion principle. No two electrons in an
atom may have the same set of four quantum numbers

[n, f, mg, mj or \n, {,], mj].

(2) Electrons tend to seek the lowest possible energy level

without violating the Pauh exclusion principle.

Spectroscopic notation identifies the energy level of an electron as

illustrated by the example, 4di/2. where the number preceding

the letter is the principal quantum number n, the subscript is the

value of the quantum number /, and the letter corresponds to

the orbital quantum number / according to the following

scheme: the / values of 0, 1, 2, 3, 4, and 5 correspond to the

letters s, p, d,
f, g, and h. respectively.

The ground-slate configuration may be expressed in spec-

troscopic notation as illustrated by the example, Is^ls^lp^,

where the superscript indicates the number of electrons in a par-

ticular n/ state.

X-rays. When a beam of energetic electrons strikes a

target and causes vacancies in the inner shells of the target

atoms, x-rays are produced when outer electrons fill these va-

cancies. The resulting characteristic sharp-line spectra are desig-

nated by the common lower energy level of the transitions.

Thus we have the K series, the L series, etc. A continuous spec-

trum, called bremsstrahlung, is also produced by the abrupt decel-

eration of the incident electrons. The continuous spectrum has

a minimum cutoff wavelength /.„,j„, produced when the initial

K of an incident electron produces a single photon of energy

Vmax = W'^-min- Moseley showed that the x-ray spectrum of an

atom is a true "signature" of an element when he obtained a

straight line by plotting v'/k^ vs. the atomic number [Z — 1]

(rather than the atomic weight A). Such a plot is called a Moseley

diagram.

Lasers generate beams of coherent light of high intensity

by stimulating radiative transitions from an excited metastable

state to a lower state. The populations of the two states must

be inverted through "pumping," so that stimulated emissions

from the higher state occur more frequently than the absorption

of photons by the lower state.

Questions

1. why must the wave function ij/ describing a three-

dimensional situation always have the dimensions (L]~^'^?

2. In the wave-mechanical model of the atom, how can there

be uncertainty in the position and velocity of an electron,

yet precise values for angular momenta?

3- For all of the wave functions listed in Table 44-3, what is

implied by the fact that \{l/\- (or ij/ij/'') is independent of

(/> for each?

4. In the wave-mechanical view of the hydrogen atom, is the

electron a point charge, a ball of charge, a charge distri-

buted around the nucleus, or something else?

5. Consider the assumptions that Bohr made in devising his

model of the hydrogen atom. Which assumptions are con-

sistent with classical theory and which are not?

6. A student (incorrectly) writes the ground-state configura-

tion of sodium as ls'^2s^2p^2d^. Discuss the error.

7. In the Stem-Gerlach experiment. Figure 44-2, what would

happen if singly ionized atoms of silver (rather than neu-

tral atoms) were sent through the apparatus? Since this

experiment reveals the spatial orientation of the magnetic

moments of electrons in a magnetic field, why couldn't

a beam of electrons be used (rather than neutral silver

atoms)? Why is it necessary to use a nonuniform mag-

netic field rather than a uniform field?

8. What is meant by the phrase "allowed solutions" to the

Schrodinger equation?

9. Discuss how our mental picture of the hydrogen atom
differs in the Schrodinger theory from that in the Bohr

theory.

10. Consider the spin angular momentum and the magnetic

moment of an electron. Why are these vectors in oppo-

site directions?

11. In three-dimensional space, three parameters—for exam-

ple, the three rectangular components—are required to

describe a vector. Yet we use only two quantum numbers

to describe the vector angular momentum of an electron

in the hydrogen atom. Explain.

12. Define these terms and explain the differences between

them: (a) wave function, (b) probability density function,

and (c) radial probability density function.

13. Explain why it takes more energy to remove an electron

from an argon atom (Z = 18) than from a potassium

atom (Z = 19), which has a higher positive charge in the

nucleus.

14. Why must the electrons in the ground state of the helium

atom have opposite spins?

15. About 5 eV are required to remove an electron from a

potassium atom. Would you expect the energy required

to remove an additional electron to be more, less, or about

the same? Explain.

16. The ionization energies of the first five alkali atoms are

highest for lithium (5.39 eV), dropping fairly uniformly
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to the lowest value for cesium (3.89 eV). Which of these

two atoms would you expect to be the most chemically

active? Why? In terms of atomic structure, explain why
these values drop monotonically as we progress toward

higher-Z atoms.

Problettts

44.3 Electron Spin and Fine Structure

44.4 Spin-Orbit Coupling

17. Do the characteristic x-ray lines for the L series have

longer or shorter wavelengths than those for the K series?

18. The fact that only specific orientations of certain quantum-

mechanical vectors are allowed is called spatial quantiza-

tion. Is space quantized? If not, what is?

44A-1 We can observe the effects of the magnetic quantum

number m^ by placing the atom in a magnetic field (the Zeeman
splitting of energy levels). Into how many levels will the / = 3

state split? Include a freehand sketch of the orientations of the

magnetic dipole moment ft with the field direction (the -|- 2 axis).

44B-2 All objects, large and small, behave quantum-

mechanically. (a) Estimate the quantum number / for the earth

in its orbit about the sun. (b) What energy change (in joules)

would occur if the earth made a transition to an adjacent al-

lowed state?

44B-3 In the presence of a magnetic field, an electron orients

its magnetic moment /i, "parallel" or "antiparallel" to the field

direction (the z axis). Actually, ft^ makes a finite angle 6 (not

0°) with the field because of the way such vectors must project

on the - direction. Determine the two values of 9.

^44B-4 The following constants appear often in atomic

physics theories:

Bohr radius:

Compton wavelength:

Classical electron radius:

Fine structure constant:

_ Boh'
'O — „ 2

Ar =
m.c

AnEQtn^c

„2

Iz^hc

By direct calculation, find the numerical value of each (including

units) in the SI system.

44B-5 The magnitude of the total angular momentum J that

an electron in hydrogen may have is / = ^]{i -\- Vfi. The pos-

sible projections of J on the ; axis are given by ]. = nijfi. Find

the allowed angles between J and the +z axis for / = f .

44B-6 The magnitude of the orbital angular momentum L

that an electron in hydrogen may have is L = v/(/ -j- l}fi. The
possible projections of L on the z axis are given by L. = m/H.

Find the allowed angles between L and the -I-; direction for

/ = 2.

44.5 Quantum States of the Hydrogen Atom
44.6 Energy Level Diagram for Hydrogen
44.7 The Hydrogen Atom Wave Functions

44B-7 List all the quantum states of the hydrogen atom for

H = 4 in a manner similar to that of Example 44-2.

44A-8 A hydrogen atom is in a state for which / = 3. What

are the possible values for n, m^, and m,?

44B-9 In interstellar space, atomic hydrogen produces the

sharp spectral line called the 21-cm radiation, which astron-

omers find most helpful in detecting clouds of hydrogen be-

tween stars. This radiation is useful because interstellar dust

that obscures visible wavelengths is transparent to these radio

wavelengths. The radiation is not generated by an electron

transition between energy states characterized by n. Instead, in

the ground state (n = 1), the electron and proton spins may be

parallel or antiparallel, with a resultant slight difference in these

energy states, (a) Which condition has the higher energy? (b)

The line is actually at 21.11 cm. What is the energy difference

between the states? (c) The average lifetime in the excited state

is about 10 yr. Calculate the associated uncertainty in energy

of this excited energy level.

44B-10 Consider hydrogen in its ground state. Using the

approximation of Equation (44-26), estimate the probability of

the electron being within the range of distance (1 + 0.01)fl from

the nucleus. The distance a is the Bohr radius (n = 1).

44B-11 Consider the hydrogen atom in its ground state.

Using the approximation of Equation (44-28), estimate the ratio

of (1) the probability of finding the electron within a distance

Ar = (1 + 0.01)fl from the nucleus to (2) the probability of

finding it within a distance Ar = (4 + 0.01)fl from the nucleus.

The distance a is the Bohr radius {n = 1).

44.8 The Paul! Exclusion Principle and the Periodic

Table of the Elements

44A-12 Identify the elements corresponding to the follow-

ing electron configurations: ls^2s^2p' and [Ar] id^°4s-4p^.

44B-13 Using Table 44-4, write the electronic configuration

for the ground state of an atom whose "last" electron is in the

4p^ state. What is the element?

44B-14 Consider an atom whose M shell is completely filled

(with no additional electrons), (a) Identify the atom, (b) List the

number of electrons in each of its subshells.

44B-15 Show that the number of quantum states in the fith

shell is 2n^.

44B-16 All atoms are roughly the same size, (a) To show

this, estimate the diameters for aluminum, with molar atomic

mass = 27 g/mole and density 2.70 g/cm^, and uranium, with

molar atomic mass = 238 g/mole and density 18.9 g, cm-\ (b)

What do the results imply about the wave functions for inner-

shell electrons as we progress to higher and higher atomic
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weight atoms? (Hint: the molar volume is roughly proportional

to D^Na, where D is the atomic diameter and \\ is Avo-
gadro's number.)

44.9 X-Rays

44.10 The Laser

44A-17 The wavelength of the K^ line from silver is 56.3

pm. If we are using a silver target, what minimum accelerating

voltage on an x-ray tube must we exceed to (barely) make this

line appear in the emitted spectrum?

44A-18 Find the cutoff wavelength for an x-ray tube oper-

ated at 45 kV.

44B-19 In the Bohr model of an atom of fairly high atomic

number, a X-shell electron moves in a hydrogenlike orbit under

the Coulomb force between the nuclear charge Ze and the elec-

tron's charge (
— )e. Adapt Equation (43-12) in Chapter 43 to

this situation, and derive the following relation between the

frequency / of the X, x-ray line and the atomic number Z
(Moseley's law) (This expression ignores the screening effects

of inner electrons.):

44B-20 The same x-ray tube that was used to obtain the

graph of Figure 44-12b is operated at 15.5 kV. Make a freehand

sketch of its x-ray spectrum, including the numerical value of

'•min-

44B-21 For a photon traveling along the axis of a typical

He-Ne laser, the amplification due to stimulated emissions is

~0.7% per meter of path. Find the average number of addi-

tional photons that the original photon generates while travel-

ing the 1-m length of the tube 200 times.

44B-22 A high-power, pulsed laser delivers 30 k] of energy

in 4 ns. (a) What is the power in this pulse? (b) What is the

physical length of the pulse as it travels through space? (c) Find

the impulse delivered to a target that completely absorbs this

radiation.

44B-23 A pulsed ruby laser emits light at 694.4 nm. For a

14-ps pulse containing 3 ] of energy, find (a) the physical length

of the pulse as it travels through space, and (b) the number of

photons in the pulse, (c) The beam has a circular cross section

of 0.6 cm diameter. Find the number of photons per cubic milli-

meter in the beam.

44B-24 A Nd:YAG laser used in eye surgery emits a 3-ml

pulse in 1 ns, focussed to a spot 30 /im in diameter on the

retina, (a) Find (in SI units) the power per unit area at the retina.

(This quantity is called the imniinnce.) (b) What energy is de-

livered to an area of molecular size, say a circular area 0.6 nm
in diameter?

Additional Problems

44C-25 In a Stern-Gcrlach experiment, a beam of silver

atoms of mass M and magnetic moment // has a most prob-

able speed V as it travels a distance x through a magnetic field

whose gradient is ilB/dz. Derive an expression for the distance

d between the t\vo subbeams as they emerge from the mag-
netic field. Note that quantum-mechanically, the vector fi has

an angle 6 with respect to the field direction. (See Problem

44B-3.)

44C-2t' Consider a classical model of an electron as a spin-

ning sphere of uniform mass m^, with a radius r, as gi\'en in

Problem 44B-4. From the known spin angular momentum s. =
^Ti, calculate the speed of rotation at the equator.

44C-27 A hypothetical one-electron atom emits radiation

with wavelengths of 160 nm, 120 nm, 100 nm, 90 nm, and

85 nm, with a series limit of SO nm. (a) Assuming that all of

the radiation results from transitions to the lowest energy

(n = 1) state, calculate the three lowest energy levels of the

atom, (b) Show that the energy le\'els cannot be represented

by £„ = £i/n^. (c) Calculate the wavelength of radiation cor-

responding to a transition from the h = 3 state to the n = 2

state.

44C-28 Consider an electron in the lowest (classical) Bohr

orbit, moving in a circle in the xy plane around a stationary'

proton at the origin. The direction of motion is such that the

electron's angular momentum is in the — ; direction. From the

electron's frame of reference, the proton moves in a circle around

the electron, (a) Find the magnitude and direction of the

magnetic field B at the electron's location due to this circular

motion by the proton, (b) In which case does the magnetic

potential energy U = —ft^-B have a positive value (relative

to U = for 90° orientation): when /
= / -h \, or when

j = ^ — 2^ (Hint: relative to the angular momentum direction

due to spin, in what direction is the electron's spin magnetic

moment? Remember that the electron has a negative charge.)

(c) Calculate the energy difference (in electron volts) between

these closely spaced doublet states.

44C-29 The ground-state configuration of an element is

ls^2s^2p*3s^3p*4s'. (a) Identif\' the element, (b) The following

configurations are excited states of this element. From which

of these are transitions directly to the ground state possible

according to the selection rules of Footnote 7:
[ ] 3p*4p',

1 1 3p'4sl [ 1 3p*4t/', and
[ ]

3p'4p-7

44C-30 A hydrogen atom in its ground state is in a mag-

netic field of 0.3 T. Find (in electron volts) the magnitude of the

magnetic interaction energy £ = — ft
• B between the field and

the spin of the electron, (b) What is the difference in energy

between the parallel and antiparallel orientations of the spin

magnetic moment? (c) Find the wavelength of an incident pho-

ton that would induce a "resonance" transition from the parallel

to the antiparallel state. (See Problem 44B-3.)

44C-31 Consider excited states of hydrogen, (a) Show how
a 3p —> 2s transition results in a fine structure of two closely

spaced lines, (b) How many lines are in the fine structure for

a 4d — 3p transition? Indicate any forbidden transitions be-

tween these levels. (Hint: see Figure 44-4 and the selection rules

of Footnote 7.)

44C-32 The average, or mean, value of the distance r that

the electron is from the hydrogen nucleus is given by r^, =

jo ''P(r)dr. Find the value of r^,, in terms of the >i = 1 Bohr

radius a for hydrogen in the ground state. (Hint: consult Ap-

pendix G-IIl, Equation 1.)
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44C-33 Verify that the hydrogen wave function for n = 2,

f = 0, and nif = (Table 44-3) is normalized. That is, show

that J \\i/\^
dV = 1, where dV = 4nr^ dr.

44C-34 Consider the hydrogen atom in its ground state.

For r = a, calculate the values of (a) if/, (b) ji/'l', and (c) P{r).

What physical meanings do we associate with these values?

44C-35 The wave function for the ground state of hydrogen

is independent of the polar angle and the azimuthal angle (j).

Show by direct substitution that the wave function for the

ground state (Is) in Table 44-3 satisfies the Schrodinger wave

equation, Equation (44-4).

44C-36 For hydrogen in the Is state, what is the probability

of finding the electron farther than 2.50n from the nucleus?

44C-37 The 2p state of hydrogen is described by the

three wave functions i/'2.i.O' 'Aa.i. + i'
^^i*^ '/'2.1.-1 I'sted in

Table 44-3. All of these wave functions are for the same energy

state. Suppose that an electron with this energy is described

by each of these wave functions one-third of the time. The

probability density P for this energy state would then be

\^2 |'=i|'A2,l.o|'+i|'A2.,..l|'+i|«A2.1.-l|

(a) Calculate |i/'2.i|'^- Note that the result is independent of 9

and 4), indicating spherical symmetry, (b) Determine the radial

probability density function P{r). (c) By calculating dP{r)/dr = 0,

find the most probable radial distance for the electron in the

2p state. Express the answer in terms of a, the Bohr radius for

« = 1.

44C-38 Accepting the Bohr model as correct for atoms,

prove that a Moselcy diagram will be a straight line, regardless

of the amount of screening that is assumed; that is, plotting >//

vs. Z or vs. (Z — 1) or vs. (Z — k) where k = constant, will in

each case result in a straight line.

44C-39 (a) Find the nonmal population ratio (without

"pumping"), N^JN^^, for the two excited states of neon that

produce the 632.8-nm red light from a He-Ne laser. The gas

inside the laser is at 27°C. (b) For lasing to be achieved, a popu-

lation inversion must occur. That is, N2/N1 > 3. At what

temperature would the gas (at equilibrium) have N2/N1 = |?

44C-40 A high-power CO2 laser operates continuously,

producing 200 kW at 10.6 ^m (sufficient to cut through a 1-in.-

thick steel plate in a few seconds), (a) If the beam coming from

the laser has a diameter of 4 mm, find the average power per

square millimeter of cross-sectional area of the beam. This

beam now passes through an ideal lens of focal length 6 cm.

At the image plane, there is a circular diffraction pattern as

shown in Figure 39-12. The central spot contains 84% of the

beam energy. Find (b) the diameter of this central spot and

(c) its average power per square millimeter.

44C-41 The conditions of a population inversion are some-

times referred to as a state of negative absolute temperature.

(a) Explain why this term is appropriate, (b) For an inversion

population ratio N2/NJ = 1.09, what would be the equivalent

negative kelvin temperature of an argon laser that emits

514.5 nm?
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The energy produced hy breaking down the atom is a very poor thing.

Anyone who expects a source of power from the transformation of these

atoms is talking moonshine.

ERNEST RUTHERFORD, 1933
(five years before fission

was accidentally discovered

by the German physicists

Hahn and Strassman)

Consider E = mc^. Hitler, Stalin, Churchill, and FDR had only the

dimmest notion of what it means. Yet this simple equation is the product

of a theory as beautiful as a Mozart concerto, more useful to humanity
in the long run than the stock market, more revolutionary than the

Communist party. And this theory, the theory of relativity, was something
a funky mathematician, kicked out of Germany because the practical men
who were running the Fatherland couldn't stand Jews, made up in his

head. If Hitler had understood the formula he might not have lost the war.

MARTIN GARDNER, Order and Surprise

(Prometheus Books, 1983, page 299)

45.1 Introduction

We now turn our attention to the properties and behavior of the atomic

nucleus. Our knowledge of the nucleus has been gained over a period of about

one century, with a tremendously accelerated growth over the last 50 years.

In no other period in human history has physics had a more awesome and

profound impact on the world.

In the 1930s, the nucleus was believed to consist of neutrons and protons,

with electrons and photons completing the list of basic building blocks for

constructing everything in the physical universe. But with new data from more

powerful accelerators built after World War II, many additional particles were

soon discovered—currently we know of over 200 so-called "elementary" par-

ticles and antiparticles. One of the major frontiers of physics today is the quest

for a theory that brings this huge zoo of elementary particles into what we
hope is a simple, conceptual unity with all other phenomena. In this chapter

we discuss the structure and behavior of nuclei, radioactivity, nuclear reactions,

and nuclear power, and we conclude with some comments about elementary

particles.
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FIGURE 45-1

A cross section of a human head,

obtained by magnetic resonance imaging

(MRI).* Like an electron, a proton has

spin jii, so its magnetic moment

can assume either of two quantized

orientations with respect to an external

magnetic field: "spin up" or "spin

down." The two states differ slightly in

energy, and normally most protons are

in the lower energy state. Because of

gyroscopic action, their magnetic

moments precess about the field

direction with a frequency / (see Figure

44-3). If a short pulse of an alternating

electromagnetic field of the same

frequency / is now applied, resonant

transitions to the upper state can be

induced. As these excited states decay

down to the lower state, the "spin

flips" can be detected externally. The

interesting feature of this process is that

the frequency / at which a transition

occurs depends on the precise magnetic

field in the proton's vicinity, and this

field is affected slightly by surrounding

electrons and nuclei. Thus hydrogen

atoms in different chemical compounds

will have slightly different resonant

frequencies, allowing discrimination

between different organic materials.

Computer processing of the data can

produce an image of a cross section of

the body, revealing clear differences

between various organs and soft tissues.

The imaging technique is similar to

computerized tomography (CT) scanning

using X rays. However, MRI has the

unique advantages of showing many
details not revealed by x rays and of

discriminating sensitively between

healthy and diseased tissues.

Furthermore, it is a non-invasive

technique and does not subject the

patient to the physiological hazards of

x-ray dosages. (See Ian L. Pykett,

"NMR Imaging in Medicine," Scientific

American 246, 78 (May 1982). For a

simple explanation of the remarkable

technique of computerized tomography,

see Margaret Stautberg Greenwood,

"X-Ray CT-Scan Analogy," Tl:e Physics

Teacher 23, 94 (Feb. I985).|

* Formerly called niidenr magnetic

resonance (NMR) imaging. The name was

changed when It was realized that the word

nuclear caused some patients undue

apprehension.
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FIGURE 45-2

The isotopes found in nature. The black

squares represent isotopes that are

completely stable (nonradioactive). The

colored squares represent radioactive

isotopes, with half-lives greater than

100 000 yr [with the exception of ^*C

{57iO yr) and "^Ra (1600 yr)].

45.2 A Description of the Nucleus

The nucleus is composed of protons and neutrons, each of wfhich is called a

nucleon. The combination is called a nuclide. The proton has a positive charge

equal in magnitude to the charge on the electron, 1.602 x 10 ^ C, and a

mass of 1.673 X 10~^^ kg. The neutron has no charge and a mass of 1.675 x
-27 1510" ^ ' kg. Both the neutron and the proton have a "radius" of about 10' ""' m,

or one femtometer (1 fm). Each has a spin of jfi. Every element is characterized

by an atomic number Z, the number of protons in the nucleus. The nucleus

may also have a number of neutrons, designated by the neutron number N.

Each element has the same number of protons but may have a variety of

isotopes, each with a different number of neutrons. For example, the oxygen

nucleus has eight protons but has three isotopes found in nature: 99.785% of

these have eight neutrons, 0.038% have nine neutrons, and 0.204% have ten

neutrons. The total number of protons and neutrons is the mass number A.

Thus:

MASS NUMBER A A = Z + N (45-1)

The isotope of oxygen that has nine neutrons in its nucleus is identified by

the notation ^gO. The superscript preceding the letter is the atomic mass

number A, and the subscript preceding the letter is the atomic number Z

—

in general, ^X. Since the letter and the subscript both represent the element

(here oxygen), the subscript is often omitted. The three naturally occurring

isotopes are then designated by ^^O, '^O, and '^O.

The nucleus is bound together by a very strong attractive force, which

has a limited range. This force, called the strong nuclear force, acts on both

protons and neutrons alike. The "stable" isotopes found in nature are indicated

by the squares in Figure 45-2. For low Z, the stable isotopes have roughly

equal numbers of neutrons and protons (N = Z). But as Z increases, the
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Coulomb repulsion also increases, so it is reasonable that additional numbers
of neutrons (which experience only the attractive nuclear force) are required for

stability. Beyond Z = 82, there are no completely stable nuclides; here, ap-

parently, additional neutrons are unable to overcome the very large Coulomb
repulsion. The number of naturally occurring isotopes for a given element
varies. Tin (Z = 50) has ten such isotopes, while gold (Z = 79) has only one.

The elements technetium (Z = 43) and promethium (Z = 61) have not been
found in nature; when artificially produced, all their isotopes have relatively

short half-lives.

It is easy to show why a strong nuclear force must exist. The gravitational

force between nucleons is far too weak to counteract the Coulomb repulsive

force between protons, as the following example illustrates.

EXAMPLE 45-1

Find the ratio of the repulsive Coulomb force to the attractive gravitational force

between two protons.

SOLUTION

Coulomb repulsion Gravitational attraction

^iKEoJ r^
° ?

The ratio of the two forces is

fr 1

9 X lO'N-mVC^

6.67 X 10"" N-m^Ag^

1.602 X 10"

1.673 X 10" kg.
1.24 X 10^

The fact that all nuclei have about the same density leads us to conclude

that the strong attractive nuclear force has a very short range. If the nuclear

force were to extend very far beyond the nearest neighbors of a nucleon, the

cumulative effect would be to draw all of the nucleons closer together, thus

increasing the density of the nucleus as the atomic mass number increases.

Scattering experiments with high-energy electrons indicate that most nuclei

are approximately spherical with a radius R given by

RADIUS R OF THE NUCLEUS R = RqA^i^ (45-2)

where A is the mass number and Rg 'S a constant' equal to about 1.2 fm. Since

the volume of a sphere is proportional to R , this suggests that all nuclei have

' The "size" of the nucleus depends upon the particular interaction used to' probe the nucleus. Values of

Rq range from about 1.0 to 1.5 fm. Data from the scattering of high-energy electrons (which feel only the

Coulomb force) give ~ 1.2 fm, while data from scattering of neutrons and protons (which respond to the

nuclear force) give somewhat larger values, probably because the nuclear force field extends a bit beyond

the nucleus.

The unit femlomeler is sometimes called the fermi, in honor of Enrico Fermi (1901-1954), the bril-

liant Italian physicist who made important contributions to both theoretical and experimental physics. In

addition to his studies of p decay and nuclear fission, Fermi received the Nobel Prize in 1938 for the

production of new isotopes by neutron bombardment.
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TABLE 45-1 Selected Particles and Elements*

Particle Charge kg (MeV/c*)

Proton
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EXAMPLE 45-3

Calculate the amount of work required (in MeV) to separate the neutron and

the proton in the nucleus of deuterium.

SOLUTION

The amount of work done, or the energy added to the system, is equivalent

to the increase in mass in transforming "H into 'H plus a neutron. From Table

45-1, we have

f 'H mass = 1.007 825 u

After separation J Neutron mass = 1.008 665 u

\ Total mass = 2.016 490 u

Before separation ^H mass = 2.014 102 u

The mass difference Am = 0.002 388 u. The energy equivalent of this mass,

A£ = (Am)c^, is

0.002 388 u
931.5 MeV/c^

1 u
2.22 MeV

The above example illustrates an important procedure for calculating

mass differences in nuclear reactions. Note that both ^H and ^H atoms have a

single extranuclear electron. We thus may use atomic masses for such calculations

because the same number of electrons appear in both the "before" and "after" masses;

the mass difference is not affected} (This simplification ignores the energy that

binds electrons to atoms. But this energy is on the order of ~ 10 eV, so it may
be neglected compared with the usual energies involved in nuclear reactions.)

Binding Energy

The nucleons are more tightly bound in some nuclei than in other nuclei. The

strength of the nuclear bonding is characterized by the binding energy per

nucleon (BE/nucleon). The more tightly bound the nucleons are, the more

stable the nucleus becomes. For a nucleus of the atom ^X, we determine the

BE/nucleon by calculating the total mass of Z [H atoms and (^1 — Z) neutrons

and then subtract the mass of the ^X atom. This calculates the mass increase

upon separation of the atom into individual nucleons. Dividing this by the

number of nucleons A and converting to energy units gives

BE

nucleon
[ZmH + {A- Z)m„ m.

Energy equivalent

Mass

where m^ is the atomic mass of }H, m„ is the neutron mass, and m^ is the

atomic mass of the ^X atom. Obtaining the result in MeV/nucleon, we have

BE

nucleon
[(1.007 825 u)(Z) + (1.008 665 m)(A - Z) - wj

931.494 MeV/c^

1 u

(45-4)

^ There is one exception. See the discussion of positron decay leading to Equation (45-23).
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EXAMPLE 45-4

Calculate the binding energy per nucleon for (a) ^H, (b) *He, (c) '*Fe, and
(d) "*U.

SOLUTION

(a) We can calculate the binding energy per nucleon for "H using the results

of Example 45-3 or Equation (45-3). We will use the former. The total binding
energy corresponds to a mass increase of 0.002 388 u or (l/2){0.002 388 u) =
0.001 194 u per nucleon. Converting to the appropriate energy units, we
obtain

BE/nucleon = (0.001 194 u)

For the remaining parts of this example we refer to Table 45-1 for the atomic

masses. Atomic masses are valid for these calculations because the same number of

electrons appear in the "before" and "after" calculations and thus do not affect the

mass differences.

(b) For '*He we apply Equation (45-3), using appropriate units:

BE/nucleon = ^1(1.007 825)2 + (1.008 665)(4 - 2) - 4.002 6031(931.5}

931.5 MeV/c^'

1 u
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FIGURE 45-4

Binding energy per nucleon. We plot

this graph by calculating the BE/nucleon

for some representative isotopes,

plotting the points, and connecting the

points by straight lines. Note that '*He

lies well above the general trend of

points for low mass numbers. Mass number A

45.4 Radioactive Decay and Half-Life

Not all combinations of neutrons and protons form stable nuclei. Most of the

approximately 1960 currently known nuclei decay to form other nuclei. Such

nuclei are said to be radioactive. Only 279 of the naturally occurring nuclei are

considered stable or nonradioactive. That is, they exhibit very little or no ten-

dency to decay. The tendency for a nucleus to decay is indicated by its half-

life T„r-

HALF-LIFE 7,^2 The average amount of time required for half the nu-

clei in a given large sample to decay to other nuclei.

Radioactive decay is a purely random process: any given radioactive

nucleus may decay in the next second or one year from now. Thus, only by

considering a very large number of nuclei can we make the concept of half-life

meaningful. For a very large number of nuclei N, the rate of decay dN/dt,

called the activity, is proportional to the number N of nuclei present:

ACTFVITY
dN

It
-XN (45-5)

where I is a positive constant of proportionality indicative of the stability of

the nucleus. The larger the value of X, the less stable the nucleus. The minus

sign indicates that the number of nuclei decreases with increasing time. The

constant X is called the decay constant. Equation (45-4) may be rewritten in

the form

dN
-Xdt

Integrating both sides of the equation, we obtain

'JV 1

r'-dN=-X{'
Jno N Jo

dt (45-6)

h
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where Nq is the number of nuclei at f = and N is the number at time f.

Performing the integration, we obtain

RADIOACTIVE DECAY
(using decay constant X)

N=Noe~^' (45-7)

The half-life 7,^2 is related to 1 in the following way. Equation (45-6)

gives

Nq it-

Taking the natural logarithm of both sides, we obtain

In 2 = XTii2

_ ln2
M/2or

A
(45-8)

A convenient form of Equation (45-6) then becomes

RADIOACTIVE DECAY
(using half-life T, ^2)

(45-9)

The following example illustrates the statistical nature of radioactive decay and

its relationship to half-life.

EXAMPLE 45-5

Suppose that we have a huge number of dice. In order to make our calculations

simple and avoid rounding-off difficulties, let us start with 279 936 000 dice at

noon on April 1st. Suppose that at noon on April 2nd wc throw all the dice

and extract those that have only one dot uppermost. At noon on April 3rd, we
again throw the remaining dice, extracting those with one dot uppermost. We
continue the process day after day. When would only about half of the original

number of dice remain?

SOLUTION

Since each side of a die is equally probable to be uppermost, approximately

one-sixth of the dice will fall with one dot uppermost. The greater the number

of dice, the more valid this assumption becomes. Thus, on April 2nd we extract

(279 936 000)/6, leaving only 233 280 000 dice. We continue this process each

noon and tabulate the results in Table 45-2. Because ln(N/No) = —/If, a semilog

plot is appropriate to display the results,'' Figure 45-5. Intcrploating between the

^ Because it is easiest to curve-fit data points that plot as a straight line, exponential functions are usually

plotted on semilog graph paper on which exponential curves plot as straight lines. On semilog graph paper,

the spacings of divisions along the vertical axis are logarithmic. This causes the vertical distance Ay to

be the same between all pairs of numbers having the same ratio (for example, 4 and 2, 6 and J, or 20

and 10). Thus, a given distance Ay between points implies a fixed fractional ratio AN/N between numbers.

Formally, if N = Nge'", then log N = log No - -*'• Defining log N = y, we have y = yo - Af, a straight

line.

TABLE 45-2
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FIGURE 45-5

Example 45-5. The data points given in

Example 45-5 are plotted on a semilog

graph to produce a straight line.
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A radioactive isotope has an initial activity of 5 mCi. Forty-eight hours later,

the observed activity is 4 mCi. (a) Determine the half-life of the isotope, (b)

Determine the initial number of nuclei in the sample of the isotope.

SOLUTION

(a) From Equation (45-9) we have

Since by Equation (45-5) N = -(l/X){dN/dt). we may write

dt \dtJo

Setting {dN/dt)g = Aq as the initial activity, we have

ACTIVITY A A = Age'^'" ^'^"2"
(45-10)

Taking the logarithm of both sides of this equation and solving for Tj/j

we have

^1/2

(In 2)t (In 2)48 h

"^^0
In

5 mCi

4 mCi

149 h

(b) To obtain the number of radioactive nuclei corresponding to a given half-

life and activity, we eliminate X between Equation (45-5)

dN

Hi
= -m

and Equation (45-8)

and obtain

_ ln2

N =
dN\ T,,,

<^f / In 2

Noting that the initial activity, 5 mCi = (5 x 10 ^)(3.71 x 10'°) =
1.86 X 10^ disintegrations per second, corresponds to — 1.86 x 10* nuclei

per second and that the half-life must be expressed as (149 h)(3600 s/h) =
536 x lo' s, we obtain

N= -(-1.86 x 10*
5.36 x 10'

In 2
1.44 X 10^* nucle

45.5 Modes of Radioactive Decay

Certain isotopes may spontaneously decay to form other isotopes. Though a

given isotope will choose only one (or, rarely, more) mode of decay, the

process may happen in many different w^ays:

(1) a decay

(2) p decay

(3) y decay

(4) internal conversion

(5) electron capture

(6) spontaneous fission
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We will discuss each in turn. What determines whether a given isotope may
spontaneously decay? The criterion is this:

The mass of the reaction products must be less than the mass

of the original isotope.

An important measure of this difference is the "Q" of the reaction. If a mass

Am disappears in the reaction, an amount of energy, (Am)c^ = Q, appears as

energy of the products.

Q OF A REACTION (Original mass)c^ = (Product mass)c' + Q (45-11)

In the following discussions, note how we always turn our attention first to the

mass differences.

(1) Alpha Decay

The decay of a nuclide by alpha decay produces a new element. Such a process,

called transmutation, is written as

ix lY+lHe (45-12)

Note that this representation shows the conservation of the number of nucleons

because the superscript on the left side of the equation equals the sum of those

on the right. Similarly, charge is conserved because the number of protons

represented by the atomic number Z, as well as the atomic electrons, also

balances. The nuclide ^X is called the parent nuclide, while z-t^ 's called

the daughter nuclide.

The high binding energy per nucleon for *He shows that it is a partic-

ularly tightly bound configuration (see Figure 45-4). This accounts for the

likelihood of alpha decay among the heavy radioactive nuclides. In fact, alpha

decay rarely takes place for elements lighter than osmium, ^^^Os, because

such a process would produce an isotope above the curve of stable isotopes in

Figure 45-1. A particular mode of decay is enhanced if the Q defined by Equa-

tion (45-11) is large. The following example illustrates the relative likelihood

of alpha decay.

EXAMPLE 45-7
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' The mass of the parent atom exceeds the mass of the decay products by

0.005 805 u, indicating that alpha decay can (and does) occur. Converting the

mass difference to energy, we have

E = {Am)c^ = (0.005 805 u)
931.5 MeV/c^

1 u
5.41 MeV

(Note that, as usual, we use atomic masses here; when we calculate Am, the

masses of the extranuclear electrons cancel.) This energy appears as kinetic en-

ergy of the products. Because the a particle mass is much less than the mass

of the daughter nucleus, momentum conservation requires that the a particle

recoil with much greater velocity than the daughter nucleus. The lighter par-

ticles always receive most of the kinetic energy in nuclear decays.

Quantum Mechanical Tunneling in Alpha Decay The mechanism of alpha

decay has an interesting quantum mechanical explanation. The nucleons that

constitute an alpha particle are strongly bound to the nucleus by an attractive

nuclear force of short range and are repelled by the Coulomb force of the other

protons in the nucleus. Figure 45-6 shows the net potential energy that results

from the combination of these two forces. The nucleons forming the alpha

particle have the total energy £ shown in the figure. Classically, the alpha

particle would be bound forever within the nucleus because of the Coulomb

potential barrier. Recall that the total energy £ is equal to the sum of the

kinetic energy K and the potential energy U; consequently, within the shaded

region between R and R^ the kinetic energy of the alpha particle would have

to be negative—classically impossible. However, quantum-mechanically the

alpha-particle wave function extends beyond the boundary of the nucleus to

where the kinetic energy is positive, and therefore it has a finite probability

of being found outside Rj. In effect, the alpha particle repeatedly "knocks on

the door" of the barrier until it quanium-mechankally tunnels through it to ap-

pear outside the nucleus (cf. Section 43.7). The dashed line of Figure 45-6

shows one possible wave function for the alpha particle.

(2) Beta Decay

Certain nuclei emit electrons, -°e (or P~), or positrons, +1^ (or ji'^), in a

process called beta decay. These reactions involve the "weak" interaction—one

of the four basic interactions in nature: electromagnetic, strong, weak, and

gravitational.

Repulsive potential energy U
due to the Coulomb force

O

Wave function describing

the state of the

alpha particle

_Total
energy £

R Ri

Attractive potential energy

due to the nuclear force

w
FIGURE 45-6

The total potential energy of the

alpha-particle-nucleus interaction

versus the separation distance r.

BETA
DECAY
PROCESSES

ix z4y + l? + V

0„

(45-13)Electron {fi ) decay ^z

Positron iP^) decay JX » z^Y -F +^f + v (45-14)

As will be discussed shortly, the process also includes the emission of a

neutrino''' v or an antineutrino v. Since j? particles are emitted from a nucleus.

* There are three kinds of neutrinos and their corresponding antineutrinos: the electron neutrino \\ (emitted

during beta decay), and two other neutrinos emitted in other processes— the muon neuinno v„. and the

tauon neuinno v,. Neutrino masses are postulated to be zero, though they may have a small mass. Experi-

ments to measure neutrino masses can place only an upper Imiil to the mass. To date (1989). the v^ mass

is believed to be less than - 20 eV/c^ from 'He decay and less than - 14 eV/c^ from the delay between

the arrival times of the neutrino pulse and the light pulse from Supernova I987A. (This does not rule out

the possibility of truly zero mass.)
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jS Decay

Before After

FIGURE 45-7

In a ^~ decay, the number of nucleons

remains the same. The net effect is that a

neutron within the nucleus disintegrates

into a proton, which remains in the

nucleus, and an electron e^ plus an

antineutrino v escape. (In ^"^ decay, a

proton in the nucleus transforms into a

neutron plus a positron and a neutrino.)

it is reasonable to ask, "Do electrons and positrons actually reside inside a

nucleus?" As Problem 45B-24 shows, because of the uncertainty principle, fi

particles do not exist as a separate entity inside nuclei; they are created during

the beta-decay process itself.

/?~ Decay The fi~ decay process is equivalent to the transformation of a

neutron within the nucleus into a proton, an electron, and an antineutrino,

which together escape from the nucleus. Figure 45-7. To predict whether a

given nucleus may undergo such a process, we calculate the Q value. Equation

(45-11). The atomic mass of the parent nuclide M^- is equal to the atomic mass

of the nucleus m^r plus Z atomic electrons, each with a mass m^:

Similarly, the mass of the daughter nuclide is

My = my + (Z + l)m^

The Q of the reaction. Equation (45-11), becomes

(45-15)

(45-16)

(45-17)

indicating that although the mass of the beta particle is involved in the mass

loss, the Z atomic electrons are not. Using Equations (45-15) and (45-16), we

have

Q={Mx- Zmy - [My' -{Z+ Dm, + m^

Q FOR P'
DECAY Q = (Mx- My)c' (45-18)

t

Thus, if the parent atomic mass is at all greater than the daughter atomic mass,

P
~ decay can occur. Conversely, if the atomic mass of the parent nuclide is less

than that of the daughter, li~ decay cannot occur, as the following example

illustrates.

EXAMPLE 45-8

Show that ;6 decay of ^'°Po cannot occur.

SOLUTION

first identify the daughter nuclide by writing the reaction equationWe first

84^0 ^^°At+_?. + v

The daughter nuclide must have an atomic number Z one unit greater than that

of polonium, with the atomic mass A unchanged. This is the nuclide astatine

(A = 210, Z = 85). From Table 45-1, we obtain the atom mass numbers ^'°Po,

209.982 848 u; and ^'°At, 209.987 126 u. The daughter nuclide is more massive

than the parent nuclide. Therefore, P~ decay of -^°?o cannot occur.
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Figure 45-8 shows how the available kinetic energy is distributed among

the beta particles. This energy distribution reveals that essentially all of the

emitted electrons have less kinetic energy than the Q of the reaction provides.

(Because the daughter nucleus is so massive compared to the electron's mass,

the recoil nucleus carries negligible kinetic energy.) Where is the missing en-

ergy? Furthermore, when the trajectories of the beta particle and the recoiling

nucleus are determined, they almost never have exactly opposite directions, so

linear momentum is not conserved. Also, for reasons beyond the scope of this

discussion, angular momentum is not conserved. Following Wolfgang Pauli's

suggestion (in 1930) that another uncharged particle participated in the decay,

Enrico Fermi developed a new theory in 1934. Fermi proposed that a neutral

particle that escaped detection shared some of the kinetic energy. He coined the

name "neutrino" for this unseen particle. By proposing that the neutrmo had the

properties of zero charge, no rest mass, and spin I, Fermi could thereby preserve the

three important principles of the conservation of energy, linear momentum, and angular

momentum. A worthy achievement!

P* Decay P^ (positron) decay is a rarer occurrence than ji' decay because

a much greater mass difference between parent and daughter nuclides is neces-

sary. The reaction equation for positron decay is

ix iY+ ,1e+y (45-19)

where +°e is the positron and v the neutrino. Following the procedure we used

for P
~ decay, we seek an expression for the Q of the reaction. The mass of the

parent nuclide is

^ -I-

M ^

n! C

2 5

5S
01 ^
-9 =

3 U

c

O

Energy equivalent

of the mass lost

in beta decay

i

Kinetic energy K

FIGURE 45-8

The kinetic energy distribution among

the emitted beta particles in beta decay.

Most particles have considerably less

than the available energy Q for the

reaction. The "missing" energy is

mainly taken up by the antineutrino in

P' decay (or the neutrino in P decay),

which is emitted simultaneously with

the beta particle. A small amount of

energy is taken up by the recoil of the

daughter nucleus.

Mx = W;t + Zm^ (45-20)

where Mx is the atomic mass, Wy is the nuclear mass, and Zm^ is the total mass

of the atomic electrons. For the daughter nuclide, we have

Mj- = my + (Z — l)m^

From Equation (45-11), we obtain the equation for Q

(45-21)

Q = mxc~ — {my + m^)c'^ (45-22)

where m^ is the positron mass (equal to the electron mass). Again the Z atomic

electrons are not involved in the reaction. Using Equations (45-20) and (45-21),

we obtain

Q = {Mx - Zm^)c- - [M,. - (Z - l)»!e + m^c,.2

Q FOR P*
DECAY

Q = (M.Y - M,- - Imy (45-23)

Thus, for P^ decay, the parent nuclide mass must exceed the daughter nuclide mass

by at least two electron masses. (This is an exception to the general procedure of

using atomic masses only in nuclear reaction equations.)
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EXAMPLE 45-9

Find the maximum energy of the positrons emitted from Na.

SOLUTION

As in the previous example, we identify the daughter nuclide by writing the

reaction equation;

fNa ?^Ne + +?^ + V

From Table 45-1, we obtain the atomic masses for '^^Na, 21.994 434 u; ^'^Ne,

21.991 383 u; and m^, 0.000 549 u. Substituting into Equation (45-23), we have

Q = [21.994 434 u - 21.991 383 u - 2(0.000 549 u)lc
2, 931.5 MeV/c^

1 u

1.82 MeV

(3) Gamma Decay

Gamma rays emitted from the nucleus are high-energy photons of electromag-

netic radiation emitted during energy-state transitions within the nucleus. (They

are analogous to the photons emitted from atoms when atomic electrons move
from a higher energy state to a lower state.) Since gamma decay does not alter

the atomic mass number or the atomic number, transmutation to another ele-

ment does not take place.

Excited nuclear states occur most often in the daughter nuclide of another

decay reaction. A simple illustration is the P^ decay of ^^^Cs. When observing

the decay of ^'^Cs, we find that electrons and gamma rays are emitted essen-

tially simultaneously. However, the gamma rays are emitted by the daughter

nuclide. The reaction equations for this decay are

137
55Cs

[i^^^Ba*]

\'^"2Ba*]+ _?f + V

137
saBa + y

(45-24)

(45-25)

'llCs

Q= 1.17MeV

Beta particle

J0.512 MeV)

':'iBa

Gamma ray

(0.662 MeV)

FIGURE 45-9

The energy-level diagram associated

with the beta decay of '55CS to the

metastable state of barium, ['^45Ba*]

followed by gamma decay to the

ground state of barium.

where the asterisk (*) represents an excited state of barium. The state is called

metastable because it exists for a relatively long time before undergoing a tran-

sition to a lower energy state—long enough for the state's half-life to be di-

rectly measurable. The half-life of the beta decay shown in Equation (45-24)

is 30.17 yr, while the gamma decay shown in Equation (45-25) has a half-life

of 2.55 min.

Energy levels within a nucleus may be inferred from the energies of the

gamma rays emitted. In the case of ^^^Cs decay, an energy level within the

'^^Ba nuclide is determined by reference to the energy-level diagram shown

in Figure 45-9. From Equation (45-24) we obtain a Q value of 1.17 MeV. This

corresponds to the sum of the maximum energy of the beta decay electron,

0.512 MeV, and the observed gamma-ray energy of 0.662 MeV. Thus, '^^Ba

has a nuclear excited energy state of 0.662 MeV above the ground state. Most

decay processes are accompanied by the emission of gamma rays with many

discrete energies. For example, the beta decay of ''^''Cs produces gamma rays

with twenty different energies, indicating a very complicated nuclear-energy-

level structure of the daughter nuclide, [^ Ba*].
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(4) Internal Conversion

Instead of undergoing gamma decay, an excited nucleus can get rid of its ex-

cess energy in a process called internal conversion. The wave functions for

atomic electrons penetrate the nucleus slightly, permitting a direct interaction

between the nucleus and an atomic electron. The nucleus transfers its excess

energy to the electron, ejecting it with a kinetic energy equal to the nuclear

transition energy minus the Coulomb energy that bound the electron to the

atom. Though internal conversion occurs most frequently with K-shell electrons,

it can also occur with electrons in other shells. These internal-conversion elec-

trons appear as spikes of discrete energies superposed upon the continuous

beta-decay spectrum of Figure 45-7. The ejection of such electrons leaves va-

cancies in low-lying atomic energy levels, and outer electrons falling into these

vacancies produce x-rays. For example, for the decay of Equations (45-24) and

(45-25), an x-ray of energy 0.032 MeV is produced.

(5) Electron Capture

As we have shown, /? decay is essentially the transformation of either a proton

p or a neutron n within the tiudeus. Such reactions are

THE BASIC
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TABLE 45-3 Radioactive Decay Processes

Process Daughter Nucleus Q

P' emission

P^ emission

Gamma emission

Internal conversion

Electron capture {K capture)

One Z higher

One Z lower

Same 2

Same Z

One Z lower

Positive

Positive ( > Im^c^

Positive

Substituting values of m^ and Wy from Equations (45-28) and (45-29), we have

Q = {Mx~ Zmy - [My - (Z - Dm, - wjc^

Q FOR
ELECTRON
CAPTURE

Q = iMx- My)c^ (45-30)

Electron capture and positron emission are competing processes [see Equation

(45-23)], and each leads to a nuclide one unit lower in Z. For each, the atomic

mass of the parent exceeds that of the daughter. However, if the Q for the

reaction is less than the equivalent of two electron masses {Im^c^ = 1.02 MeV),

only electron capture can occur. Table 45-3 summarizes the various processes

by which an excited nucleus gets rid of its excess energy. The characteristic )'

rays and x-rays identify the Z of the daughter nucleus, thus distinguishing

between the processes.

(6) Spontaneous Fission

Many heavy nuclides above Z = 90 experience spontaneous fission, splitting

into two unequal fragments plus two or three neutrons. Figure 45-10 shows the

distribution of the fragments from '^^^U. The fragments generally lie along a

straight line (shown dashed) joining the parent nuclide and the origin. From

Figure 45-3, the binding energy per nucleon of the fragments is greater than

that of the original nuclide, so the total mass of the fragments is always less than

that of the parent, releasing roughly 200 MeV in each fission process. Both frag-

ments have excess neutrons, and they immediately (<10"'" s) emit two or

three so-called prompt neutrons. (A few other delayed neutrons may be emitted

later.) The following example describes one of the probable fission reactions of

EXAMPLE 45-10

Determine the Q associated with the spontaneous fission of ^'^U into the frag-

ments '°Rb and '*3Cs.

SOLUTION

The reaction equation must be written in order to determine the number of

neutrons involved in the fission;

236U > f^Rb + 'tiCs + 3hn (45-31)
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120 140 160 180

Mass number A
(a) The distribution of the yields

of fission fragments indicates

that fission is usually asym-

metrical, with the most

probable fission yielding two
nuclei having mass numbers

around 96 and 140. [Adapted

from J. M. Siegel et a!.,

"Plutonium Project Report on

Nuclei Formed in Fission,"

Review of Modern Physics 18,

538 (1946).]

(b) The line of stable isotopes is

derived from Figure 45-1. The
fission fragments initially

"land" on the dashed line, and

they usually move diagonally

downward by [i
~ emission to

reach the stability curve of

stable isotopes.

FIGURE 45-10

The fission of '^^^U after the absorption

of a thermal neutron by ^ U. The

kinetic energy of each fragment is

roughly 90 MeV. The fragments

subsequently decay by ejecting

neutrons, /? particles, }' rays, and

neutrinos, yielding an additional

20 MeV or so, for a total energy

release of roughly 200 MeV per fission.

We deduce the fact that three neutrons are products of the reaction by balancing

the mass numbers and atomic numbers on both sides of the reaction equation.

From Table 45-1 we obtain the atomic masses "''U, 236.045 562 u; '*^Cs,

142.927 220 u; '°Rb, 89.914 811 u; and n, 1.008 665 u. It can be shown (see

Problem 45A- 16) that the Q = (Am)c^ for this fission reaction is

Q = {Myj- MRb - Mcs - irny

Q = [236.045 562 u - 89.914 811 u - 236.045 562 u - 3(1.008 665 u)]c^

= (0.1775 u)r

Converting to the conventional units of MeV, we have

"931.5 MeV/f-
Q = (0.1775 u)r

1 u
166 MeV

As shown in Table 45-4, if we include the additional energy from the

decay of fission fragments, the total energy of this fission process is approxi-

mately 200 MeV. This very high energy is typical of fission reactions but, as

we will discuss later, for several reasons it is not the ideal source of energy.

TABLE 45-4

Distribution of Energy in Fission
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We can form a mental picture of the fission process by considering the

parent nucleus to behave as a liquid drop with a "surface tension" arising from

the strong nuclear forces, if energy is added to a nucleus by the absorption of

a neutron (or other energy transfers) this excitation energy sets up oscillations

of the drop, distorting the shape alternately into a football-shaped ellipsoid or

a flattened-doorknob shape as shown in Figure 45-11. Surface tension forces

tend to pull the drop back into a spherical shape, while the excitation energy

tends to distort the drop even further. When it distorts into a dumbbell shape

with a neck, the Coulomb repulsion of the two ends can split the drop into two

fragments,^ with a few energetic neutrons emitted immediately in the process.

Radioactive Decay Series

The radioactive decay of one nuclide may result in successive decays of a

series of isotopes until a stable nuclide terminates the sequence of decays.

Prominent among these radioactive decay series is one that originates with U
and terminates with ~°*'Pb, as shown in Figure 45-10. The half-life for each

decay process is shown in the figure. Notice that the half-life of the first decay,

from ^^^U to ^^"^Th (4.5 x lO'' yr), is so much longer than the others that it

is essentially the half-life of the entire series that transforms ^'^U to ^°*'Pb.

This long half-life enables geologists to determine the age of certain rocks. As

molten rocks crystallize, there is often a natural separation of minerals because

of their different melting-point temperatures. Thus, when initially formed, the

rocks contain known proportions of different elements. If one of the elements

is radioactive, the composition of the mineral changes as time passes, forming

a sort of geological calendar. The following is an example of such a process.

C^/o/
FIGURE 45-11

The liquid-drop model of an excited

^'^U nucleus undergoing fission. The

excess energy causes the charged drop

to undergo rapid oscillations between

flattened and elongated shapes (the

arrows indicate motions of the drop's

surface). Finally, the drop elongates

sufficiently to form a "neck," and

electrostatic repulsion breaks the

nucleus into two unequal-size fragments

with the emission of a few prompt

neutrons.

EXAMPLE 45-11

A specimen of uranite (a uranium-bearing mineral) contains five times as many

atoms of ^^*U as of ^°^Pb. Assume that all of the lead originated from the

radioactive decay sequence shown in Figure 45-12 and that the uranite contained

uranium and no lead when it was formed. (Other isotopes of uranium form series

not terminating in ^°*Pb.) Calculate the number of years that have passed since

the formation of the uranite.

SOLUTION

The total number of nuclei in a given sample does not change, so

No = Nu + Npb

where Ng is the original number of "^®U nuclei, Ny is the current number of

^^^U nuclei, and JVpu is the current number of ^°*Pb nuclei. Then

Nn Np; 1 6
= 1 -I- -^ = 1 -I- - =

Nu Nu 5 5

The current number of uranium nuclei N relative to the original number Nq is

given by Equation (45-9):

Af=No£-<'"2/ri,2)t

'

If the exdtation energy is not large enough to cause fission, the drop can get rid of the excess energy by

gamma radiation.
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_ 92 (U)

c 91 (Pa)

g 90 (Th)

^ 89 (Ac)

N 88 (Ra)

^ 87 (Fr)

I 86 (Rn)

5 85 (At)

B 84 (Po)

I 83 (Bi)

82 (Pb)

Beta\
decay

/AllAlpha
decay

y^-w 20 min ^
138 d\ 'I

lefX .

^'^ 22 yi^''^ 27 min^''^

3-1 min

3.8 d

7.SX10-'yr

1600 yr

/

^y^l mi

2.5X10Syr\. 4

^''^ 24 d>

^^1.2 min ^
4.5X10''yr

/

124 126 128 130 132 134 136 138 140 142 144 146

Number of neutrons (/4-Z)

FIGURE 45-12

The primary sequence in the

"*U-to-^°*'Pb decay series. The

arrows represent the steps in the decay

process. The half-life of each step is

shown along the arrow. This figure

corresponds to the upper right-hand

portion of Figure 45-2.

Solving for \ gives ^
_ ln(No/N)Ti,,

in 2

With the half-life of the series essentially 4.5 x lO'^ yr and the ratio Nq/N =
Nq/Nu = 6/5, we obtain

t =
ln(6/5)(4.5 X lo" yr)

In 2
1.18 X 10^ yr

For time periods much shorter than a billion years, an interesting fact is that

one gram of ^'^U decays to produce 1.33 x 10"'" g of ^°^Pb per year. (See

Problem 458-21.)

45.6 Nuclear Cross Section

The likelihood of an interaction betvkreen two particles depends upon their

mutual "sphere of influence." A convenient way to picture the situation is to

imagine that the incoming particles are point projectiles and that each nucleus

presents a projected target area called the cross section (7 to the incoming

particles, Figure 45-13. A reaction occurs only if a particle strikes a target area.

The cross section has little relation to the actual physical size of the interacting

particles. Indeed, a give nucleus can have widely different cross sections for

different nuclear reactions. For example, the cross section a^ for scattering the

incoming particle may have two parts: the cross section a^ for elastic scattering

(involving no kinetic energy loss) and a different cross section a-^ for inelastic

scattering. Furthermore, a can depend strongly on the speed of the incoming

particle, as shown in Figure 45-14. The unit for measuring cross sections is

the barn (b):

THE BARN 1 b = 10
28 ^2m 10 ^^cm^ (45-32)

Not all of the particles incident upon a target foil necessarily interact

with target nuclei—some may pass through the foil without interacting. To

^ Another analogy is throwing darts at a wall on which inflated balloons are attached at various points.

The chance that a randomly thrown dart will strike a balloon depends upon the projected area a that

each balloon presents to the incoming dart, the number of balloons, and the total area of the wall.

—
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find the probability that an incoming particle will interact with a nucleus, we
calculate the total effective interaction area that an incoming particle "sees" as it

approaches the foil. This target area is the product of the number of nuclei in

the foil and the cross-sectional area (T of each nucleus. For a square foil of area

/^ and thickness dx, this equals n(7/^~ dx, where n is the number of nuclei per

unit volume, / ^.r is the volume, and CT is the cross section. The ratio of the

number of collisions dN to the number of incident nuclei N equals the ratio

of the total area of target nuclei to the area / of the foil. Thus:

dN na^^ dx

N
na dx (45-33)

(The minus sign indicates that particles are being removed from the beam.)

Integrating,
^N dN rx

JNo N Jo
nadx

InN
IJVo

- nax\

in = —nax

we obta N=Noe-"'"'

(45-34)

(45-35)

Thus the number of incoming particles that penetrates a distance x into a target

material without interacting decreases exponentially with the distance x.

10^

103

102

10

0.01 0.1 1.0 10

Neutron energy (eV)

FIGURE 45-14

The cross section for neutron capture

by natural cadmium 48Cd as a function

of neutron energy. Note the logarithmic

scales. The large cross section for slow

neutrons is due almost entirely to the

isotope
'

' ^Cd. (Adapted from Donald

J. Hughes and Robert B. Schwartz,

Neutron Cross Sections, Brookhaven

National Laboratory, July 1, 1958.)

EXAMPLE 45-12

Control rods made of cadmium are often used to capture excess slow neutrons

in a fission reactor because of the very high slow-neutron capture cross section

of the cadmium isotope "'Cd, Figure 45-14. This cross section of 1.99 x 10* b

is the largest of any known nuclide. Calculate the approximate thickness (in cen-

timeters) of a sheet of natural cadmium that will absorb half the slow neutrons

falling upon its surface. The cadmium isotope ' '^Cd is 12.22% abundant in nat-

ural cadmium. The density of natural cadmium is 8.65 g/cm^, and its molecular

weight is 112.41 g/mole.

SOLUTION

Equation (45-34) gives the absorption of a beam of neutrons as it passes through

a thickness x of material whose nuclear cross section for absorption is a. The

number n of cadmium nuclei per unit volume is

PN^

(mol. wt)

where p is the density, N^ is Avogadro's number, and mol. wt is the molecular

weight. Of this number, only 12.22% are ''^Cd nuclei. Thus the number n of

'''Cd nuclei per cubic centimeter is

n = (0.1222)
PNa (0.1222)(8.65 g/cm3)(6.022 x 10^^ molecules/mole)

(mol. wt) (122.41 g/mole)

n = 5.66 X 10- jclei/cm
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Using this value in Equation (45-34) to find the distance x in which the incident
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We limit our discussion to low-energy reactions for which the kinetic energies

and momenta may be considered classically instead of relativistically. The Q
value for a reaction is the difference between the initial and final mass-energies

of the particles. From the above equation, we see that it also equals the differ-

ence in kinetic energies:

Q VALUE FOR
A REACTION

Q = (Aw)c^ = (w^ + Mx -niy- My)c^
(45-38)

If some mass disappears in the reaction, Q is positive and the kinetic energy

of the products is greater than the initial kinetic energy; some mass-energy

has been transformed into kinetic energy. This is called an exoergic reaction

—

one that releases some mass-energy. If Q is negative, some mass has been

created at the expense of the output kinetic energy—an endoergic reaction.

When Q is negative, not all of the kinetic energy of the incident particle

is available for the reaction because a portion of it is tied up in the energy

associated with the motion of the center of mass (Section 9.5). Thus the incident

particle must have a kinetic energy larger than — Q to make the reaction "go."

As shown in Problem 45C-37, from the conservation of energy and momentum
we find that the minimum kinetic energy that will cause the reaction is the

threshold energy'' £,,,:

THRESHOLD ENERGY
(when Q < 0)

£.h= -Q My
(nonrelativisHc) (45-39)

EXAMPLE 45- T3

Calculate the minimum kinetic energy that an alpha particle must have to produce

the following (endoergic) reaction that Rutherford investigated:

JHe + 'tN IH+'^O

SOLUTION

Using the values of atom mass units given in Table 45-1, we have

*He

Total

Before

14.003 074 u

4.002 603 u

18.005 677 u Total

After

16.999 131 u

1.007 825 u

18.006 956 u

Because the final mass is greater than the initial mass, the change of mass is

Am = —0.001 279 u. So the Q of the reaction is

Q = (Am)c^ = (-0.001 279 u)
931.5 MeV

1 u
1.19 MeV

' The initial kinetic energy must also be at least large enough to overcome the Coulomb repulsion so that

the nuclei can get close enough together to interact.
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The threshold energy, from Equation (45-39), is

^,"^x + Mx\ / 18.01 u
£ih= -Q[ .. 1= -(-1.19 MeV)'

Mv 14.00 u
1.53 MeV

Most alpha particles from naturally radioactive isotopes have energies in excess

of 4 MeV. So the alpha particles that Rutherford used were sufficiently energetic

to make the reaction occur. The excess energy appears as kinetic energy of the

reaction products.

After Rutherford's experiment, many attempts were made to accelerate

other charged particles to energies high enough to cause nuclear reactions. In

1930, J. D. Cockcroft and E. Walton succeeded in accelerating protons to an

energy of 0.3 MeV, which was more than sufficient to induce the reaction

IH + ]Li Be=' 2tHe (45-40)

The excited state of beryllium decays with a half-life of about 10 ~
s into two

alpha particles. This reaction has historical interest since it was one of the first

quantitative verifications of Einstein's mass-energy relationship, A£ = (Am)c .

With the possibility of inducing transmutations artificially, physicists at-

tempted to realize the alchemists' dream of producing gold from metals of less

value. In 1936, gold was produced by a transmutation performed by J. M. Cork

and E. O. Lawrence. The reactions involved were

196

followed by

-Pt + iH
197
VsP^ + IH

79Au .°e + v

In the words of J. M. Cork, "the luster of the achievement was somewhat

dulled by the fact that the parent element in the reaction was platinum."

Neutrons play a central role in nuclear technology because their lack of

charge allows easy penetration to the nuclear surface, resulting in high reaction

cross sections with nuclei. In contrast, as Figure 45-15 shows, an incoming

proton must overcome the Coulomb barrier, so only very energetic charged

particles reach the nucleus. This is dramatically demonstrated in the analytical

technique known as neutron-activation analysis, in which a minute quantity of

an unknown substance is subjected to a high concentration of neutrons. The

neutrons are absorbed by the nuclei, often forming radioactive isotopes, which

in turn decay. By recognizing the characteristic gamma-ray energy spectrum

associated with the decay, we can then identify the elements in the unknown

substance.

An example of neutron-activation analysis is the detection of arsenic

through the reaction (see Figure 45-14)

75
33As [^!As*

76
34',Se + Jle + v + 2y (45-41)

Extremely small amounts of arsenic can be detected by this method. At some

airport check-in gates, neutron-activation detectors are now used to discover

the presence of explosives.

Coulomb
repulsion U(r)

O

(a) An approaching proton must

overcome the Coulomb
repulsion to reach the nuclear

surface.

U{r)

.^

o

(b) An approaching neutron "sees"

no barrier, thus allowing easy

penetration of the nuclear

surface.

FIGURE 45-15

Using a simplified square-well nuclear

potential, we can make the difference

between the potential energy of an

approaching proton or neutron clear.

(The actual potential energy is more

like the dashed curves.)
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The Discovery of the Neutron

Early researchers found that when an alpha emitter was placed in contact with

some of the light elements, such as boron or beryllium, a very penetrating

type of radiation resulted. Originally the reaction was thought to produce

gamma rays. But in 1932 I. Chadwick found that after he placed paraffin in the

path of the radiation, an unusually large number of protons emerged from the

paraffin, a result inconsistent with incident gamma rays. After a variety of ex-

periments, Chadwick concluded that the unknown radiation must be uncharged

particles with about the same mass as the proton. If such a particle hits a pro-

ton in the paraffin "head-on," it can transfer all its energy in one collision. He
named the particles "neutrons." Because of their lack of charge, high-energy

neutrons are highly penetrating, capable of passing through several centimeters

of lead.

A common source of energetic neutrons is a mixture of powdered beryl-

lium and an alpha-emitter such as plutonium. The alpha particles from the plu-

tonium have a high cross section for the production of neutrons by the following

reaction:

iHe + iBe IC + hn+Q (45-42)

Thin
Metal

window Central tube

.^^
Incoming

radiation
^as

To amplifier

and counting

circuit

(a) A simple end-window Geiger

tube.

(b) A portable battery-operated

Geiger counter measures the

activity of pitchblende, a

radioactive mineral containing

uranium.

FIGURE 45-16

A Geiger-Miiller (GM) counter, often

called simply a Geiger counter.

Because most of the kinetic energy of the products resides in the lighter-mass

neutron, the kinetic energy of the neutron is essentially the Q value plus the

kinetic energy of the incident alpha. In this case, the maximum neutron energy

is about 6 MeV.

Detection of Charged Particles

In addition to the scmtillation detector described in Chapter 42, Figure 42-11,

various methods of detecting radiation and particles all rely on the ionization

produced when a photon or a charged particle passes through matter. The

familiar Geiger counter, Figure 45-16, is a metal tube filled with a gas at low

pressure. A wire along the axis is maintained at a high positive potential

{ ~ 10^ V) with respect to the outer tube. When a charged particle passes

through the chamber, it produces a trail of ionized gas atoms. The high field

accelerates the freed electrons, which in turn ionize other atoms, producing an

avalanche of electrons that causes a voltage pulse when the electrons arrive

at the wire. Semiconductor detectors, such as a silicon crystal, similarly record a

pulse of conduction electrons generated by the passage of a charged particle.

Since semiconductors are solids, they are particularly useful where a detector

of small size is required.

Neutrons have no charge, so they do not directly produce appreciable

ionization when passing through matter. One type of neutron detector utilizes

the very high cross section for neutron absorption by boron, which produces

energetic alpha particles that create the necessary ionization for detection.

Often a tube filled with boron trifluoride gas (BFj) is used, producing the

reaction

in+ ^^B >tHe+ ]Li + Q (45-43)

Radioactive Dating

A neutron reaction is involved in the radioactive dating of ancient organic

materials. Neutrons resulting from interactions of cosmic radiation with the

upper atmosphere are absorbed by the common nitrogen isotope N to pro-
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duce the radioactive isotope of carbon '"^C. The reaction is

In + '^N C+\H + Q (45-44)

Because the production of ^'^C has been going on much longer than its half-life

of 5730 years, the rate of production of '"^C equals the rate of disintegration

of C. Thus an equilibrium concentration of ''''C exists in the atmosphere:

about one '*C atom for every lO'" stable atoms of '^C and ^^C. The radio-

active atoms interact chemically in the same way as other carbon atoms, so

carbon is ingested by living plants and animals in this definite proportion. When
the living organism dies, it no longer ingests carbon, and the proportion of ^*C
to the stable carbon gradually decreases as the radioactive isotope '*C decays

according to

14-r-6^
14;n + .?. + v (71,2 = 5730 yr) (45-45)

As time passes, the organic material becomes less radioactive, making radiocar-

bon daiing possible. The very low energy of the beta decay of ^^C and the

low activity of samples limit the accuracy of radiocarbon dating to about +50
years in 5000 years. The validity of the technique depends upon whether the

rate of '*C production has been constant over time. Comparing data for objects

whose ages are accurately known from historical records shows that radiocar-

bon dating is a valid technique.

EXAMPLE 45-14
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conversion. The mechanisms of fission and fusion processes are so different

that we will discuss them separately.

Nuclear Fission

All of the naturally occurring isotopes of uranium as well as most of the heavier

nuclides undergo spontaneous fission. The tremendous energy associated with

such fission is illustrated in Example 45-10. While a nuclear power fission reactor

may utilize a number of reactions, currently the most common reactor uses a

"fuel" consisting primarily of ^^^U. This isotope accounts for only 0.72% of

natural uranium, while ^-^"U constitutes 99.27% and ^^*U only 0.005%. Even

though it is possible to fuel a reactor with natural uranium, a greater concen-

tration of U is more practical. A costly gas-diffusion process is commonly
used to "enrich" natural uranium to a '^^^U concentration as high as 90%.

The first step in the energy-extraction process is to produce ^^^U by the

neutron capture by U. The U immediately undergoes fission such as

that shown in Example 45-10. Since each fission reaction produces two or three

neutrons, each of which is capable of initiating another fission, a violent chain

reaction will occur unless excess neutrons are removed from the reactor. Excess

neutrons are those not required to maintain the desired rate of fission produc-

tion. In a reactor operating at a constant power level, for every fission only one

of the neutrons produced is used to initiate another fission. Excess neutrons

escape the reactor, decay radioactively, or are captured by control rods made
of cadmium or other elements with a high neutron-capture cross section. Hap-

pily, not all of the neutrons emitted in fission are "prompt"—about 1% are

"delayed" because they originate in the neutron-rich fission fragments with life-

times of a fraction of a second to a few minutes. The presence of these delayed

neutrons enables the relatively simple mechanical insertion of the cadmium rods

for control purposes. The fuel consumption of uranium for power generation

may seem small, yet the plants are rapidly depleting the world supply of easily

obtainable uranium.

EXAMPLE 45- J 5

A typical nuclear fission power plant produces about 1000 MW of electrical

power. Assume that the plant has an overall efficiency of 40% and that each

fission produces 200 MeV of thennal energy. Calculate the mass of ^^^U con-

sumed each day.

* The free neutron is an unstable particle that decays as follows, with a mean lifetime of 900 s;

Free neutron n > p + e + V (45-46)

The reason that neutrons can be stable in nuclei is a consequence of the Pauli exclusion principle. In the

ground state of a nucleus, the lowest nuclear energy states are filled. The proton produced in the reaction

must therefore go into one of the higher vacant states. For most nuclei, the proton does not have sufficient

energy to do this. Thus the exclusion principle restricts the decay of neutrons in stable nuclei. Only free

neutrons decay.

Some recent theories suggest that a free proton may also be unstable, with a lifetime of ^ 10^*^ yr

or longer. Several reactions have been proposed.

Free proton p —
nth a probable one being

(45-47)

Experimental evidence is difficult to obtain, but to date lifetimes shorter than ^ 10 y appear unlikely. If

the proton is unstable, fortunately its mean lifetime is more than 10^^ times the age of the universe since

the Big Bang, so we are not in imminent danger of annihilation.
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SOLUTION

If the electrical power output of 1000 mW is 40% of the power derived from
fission reactions, the power output of the fission process is

1000 MW / <,j\/86 400s\ ,, J= 2500 MW = 2.5 X 10^ - = 2.16 x lo'* -
0.40 \ s/V d 7 d

The number of fissions per day is

1 fission
2.16 X lO'*-

leV
6.74 X 10^"* d"

d/V200 X lO^eV/Vl-602 x 10"^'
]y

This also is the number of "'^U nuclei used, so the mass of ^^'U used per day is

,. nuclei\/ 235 e/mole
6.74 X 10--* ^

d / \6.02 X lO"^"* nuclei mole
2631 g/d= 2.63 kg/d

In contrast, a coal-burning steam plant producing the same electrical power uses

more than 6 x 10* kg/d of coal.'

The Nuclear Reactor Many problems need to be solved in designing a

reactor. For example, the neutrons emitted during fission are "fast" neutrons

with energies from ~ 1 MeV to ~ 15 MeV. The cross section for absorption

by " U is large only for "slow" neutrons with energies just a fraction of 1 eV.

So fission neutrons must be slowed down by the use of a moderator—atoms

whose masses are close to that of neutrons so that the average energy loss per

elastic collision is large. Unfortunately JH (whose mass is ideal) does absorb

some neutrons, so it is not the best material to use. Deuterium, jH, is the next

best choice, and its neutron capture cross section is low. Thus heavy water,

formed by replacing 'H atoms in water with ^H, is a feasible moderator. Very

pure carbon '^C is another alternative. Purity is essential since many other

elements absorb neutrons, including the fission products themselves. Some
neutrons escape from the surface of the reactor, further reducing the overall

neutron supply. The minimum amount of fissionable material that will maintain

a chain reaction is called the critical mass. It depends on the type of nuclear

fuel, the degree of enrichment, the moderator, and the geometry of arranging

lumps or rods of fuel spaced apart by the moderator. Pure ^^^U with ordinary

water as a moderator has a critical mass of about 3 kg.

Since only one neutron per fission is utilized in sustaining a chain reaction,

some of the excess neutrons may be used to convert ordinary " Th and U
into the fissionable isotopes "^^^U and ^^^Pu. Such an arrangement is called a

breeder reactor; it not only produces enough fuel to maintain the operating level

of the reactor, but also generates additional fissionable fuel for another reactor

' In 1986. nuclear power plants generated 16.6% of the electric power consumed in the United States: coal-

buming plants generated 55.7%. (The remaining power was produced by petroleum, natural gas, hydro-

electric, and other sources.) An interesting way to illustrate the magnitude of this energy usage is the

following. The daily (1986) U.S. consumption of coal for electric power generation would fill a railroad

train of coal cars 197 miles long! In the same year, the daily (total) U.S. use of petroleum would fill a

railroad train of oil tank cars 30 1 miles long!
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in about 10 years. '° The use of breeder reactors to produce plutonium has been

curtailed primarily for two reasons. First, plutonium is extremely dangerous,

both biologically and radioactively. Second, plutonium produced by breeders

(and other nuclear fuels) may be stolen by terrorist groups, either for ransom

or for the construction of rather simple but devastating explosive devices—

a

possibility of grave concern as the worldwide use of reactors increases.

As a power source, all reactors generate heat, which is then used in the

conventional way to operate steam turbines that drive electric generators. Some

special problems are the intense radiation bombardment that structural members

of the reactor must withstand and the containment of the hot fluids that transfer

heat from the reactor core to the turbine. Any rupture within the core could

release dangerous radioactivity. Also, the safe disposal of long-lived, highly

radioactive fission products is a serious problem. The lifetime of a reactor is

limited to about three decades because of the radiation weakening of the struc-

ture. (Note that decommissioning a large nuclear power plant is not cheap!)

Reactors used for research are sources of high-intensity neutron beams and

gamma rays that are valuable tools in many scientific investigations. They also

produce useful radioactive isotopes for "tracer" studies in biological and medical

research.

Nuclear Fusion

The fusion of light nuclei is the source of energy emitted by the sun and other

stars. A sequence of fusion reactions called the proton-proton cycle is believed

to be the main source of stellar energy in the sun and other stars cooler than

the sun. The net effect of this sequence is to combine four protons to form 2He

plus two positrons, two neutrinos, and two gammas:

4 JH > *He -f 2f ^ + 2v + 2>' + Q (45-48)

As shown in Problem 45C-39, the total energy released is 27.7 MeV, about

6.9 MeV/nucleon, compared with an energy release in fission reactions of

roughly 1 MeV/nucleon. For stars hotter than the sun, the carbon cycle (Problem

45B-17) is believed to be the principal source of energy.

The prospect of achieving a practical fusion reactor for power genera-

tion is very appealing. In contrast to fission, fusion involves much less of a

radioactive-waste-disposal problem. No weapons-grade materials are involved,

and there is no danger of a runaway nuclear accident. In addition, the fuel cost

could be extremely low if the naturally occurring deuterium fH in seawater

and lakes could be utilized. A possible sequence of reactions is

iH + lH > fH + iH
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thermal energy could then be used to generate steam to operate the electric

generator. As a bonus, neutrons from the reactor produce tritium in the follow-

ing reactions:

+ ]Li fH + ^He + kn

(fast)

In

(slow)

+ 3Li

(slow)

fH + ^He + 4.8 MeV

(45-52)

(45-53)

The tritium could then be circulated back into the reactor as fuel—a sort of

breeder reaction that converts inexpensive lithium to the more valuable tritium.

Though these fusion reactions do not produce radioactive fission frag-

ments, the copious production of radioactive ,H and of neutrons that induce

radioactivity in the surrounding structures does present radiological hazards.

An interesting reaction that avoids such hazards uses abundant natural boron

and hydrogen. Called thermonuclear fission because of the multiple fragments

in the product, it is

B+\H y 3iHe + 8.7 MeV (45-54)

There is hope that some method may be devised to convert the energetic alpha

particles directly to electrical power without the intermediate steam-turbine-

generator process. The main difficulty in achieving this reaction is attaining a

temperature of about 3 x 10^ K to overcome the Coulomb barrier of the boron

nucleus.

In Example 45-16 we compare fusion power with the power derived

from the burning of fossil fuels. While the reaction has not yet been utilized

in a reactor, it clearly indicates the tremendous potential of fusion power.

EXAMPLE 45-76

Calculate the energy ideally derivable from one gallon of seawater, utilizing the

deuterium that it contains in the following reaction:

TH -I- tH ^He -I- in (45-55)

Deuterium is a stable isotope that makes up 0.015% of natural hydrogen. (The

cost of extracting the water molecules containing deuterium from one gallon of

water is currently less than 10 cents.)

SOLUTION

We begin by calculating the Q of the reaction. From Table 45-1, the mass loss

in the reaction is

Initial mass

2 ^H 2(2.014 102 u)

Final mass

•'He 3.016 029 u

Total

1.008 665 u

Total 4.028 204 u Total 4.024 694 u

with a mass difference of 0.003 510 u, which corresponds to

Q = (Am)c^ = (0.003 510 u)

931.5 MeV/c^

1 u
3.27 MeV
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In joules, Q = (3.27 X 10" eV)
1.602 X 10

leV

-19

= 5.24 X 10
13

The number of water molecules in a gallon of water is (6.03 x 10^"' molecules/

mole)(3785 g/gal)ll/(18 g/moie)] = 1.27 x 10^*" molecules/gal. The number of

^H nuclei in a gallon of water is (1.27 x 10^* molecules/gal)(2 H nuclei/mole-

cule)(0.000 15 -H/H) = 3.80 x 10^^ ^H nuclei/gal. Two deuterons are involved

in each reaction. The total energy derivable from the gallon of water then

becomes

3.80 X lO'' ^H/gal \

2 H/reaction) /
5.24 X 10

-13

reaction
9.95 X 10' ]/gal

In order to comprehend the immensity of this amount of energy, we compare

this to the combustion of one gallon of gasoline, which provides about

1.3 X 10* ]/gal.

= 76.6 gal
9.95 X lo' ]

_1.3 X 10^ J/gal_

Potentially, one gallon of ordinary seawater has the fusion energy content of

76.6 gallons of gasoline!

Containment Nuclei are positively charged. To get them close enough to-

gether for the short-range attractive nuclear force to cause fusion, the nuclei

must have very large kinetic energies to overcome their Coulomb repulsion

(see Problem 45A-25). High-energy accelerators achieve these speeds easily.

But to produce large amounts of power, very high collision rates are necessary.

Thus the problem to be solved is to hold together nuclei at the highest den-

sities possible at the fusion temperatures of roughly 200—400 million K. The

British physicist John D. Lawson showed that the required conditions for a

self-sustaining reaction at fusion temperatures are expressed by Lawson's cri-

terion: m < ~ lO'^^ S'm'^, where n is the interacting particle density and T

is the confinement time.

Currently, two types of confinement mechanisms show promise. In mag-

netic confinement, a neutral plasma of nuclei and electrons is contained in a

"magnetic bottle." (For a discussion of the forces that confine the plasma, see

Figure 30-6, Chapter 30.) Unfortunately, a shape as simple as that shown in

Figure 45- 17a tends to be leaky at the ends. An improved configuration, first

developed in the USSR, joins the ends together, forming a toroid, Figure 45-

17b. It is called a tokamak, an acronym for the Russian words for "torus,"

"chamber," and "magnetic." The hot plasma must not touch the walls of the

vacuum chamber; it is not that the walls might melt, but rather that the plasma

would chill below the temperature required for fusion. A variety of techniques

are being investigated to heat the confined plasma to fusion temperatures: by

passing a current through the electrically conducting plasma, by bombarding it

with neutral particles, by compressing the plasma with a greatly increasing

magnetic field, and by radiofrequency heating.

Another method of containment is called inertial confinement. A fuel

pellet about 1 mm in diameter or smaller is suddenly imploded by simultaneous

bombardment from all sides with very powerful laser beams. This produces an

inwardly moving shock wave that momentarily increases the density of the

material about a factor of 10^ and heats the core of the pellet to fusion

temperatures. Due to the inertia of the nuclei, these fusion conditions exist for
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(a) A simple "magnetic-mirror"

field configuration. Magnetic
forces on the moving charged

particles "reflect" them at each
end back toward the center.

Unfortunately, the ends are

leaky since particles traveling

parallel to the field lines ex-

perience no deflecting forces.

-Shielding

Toroidal'

field

coil

Vacuum \
chamber Neutral

containing beam
plasma injector

A portion of

the external
Vacuum

j windings
chamber

f

current

(b) In the tokamak. the two ends

of the bottle in (a) are joined to

form a toroid, or doughnut
shape. A toroidal magnetic field

B, around the toroid is

produced by current in the

external windings. A poloidal

field Bp is produced by current

in the plasma itself (which also

helps heat the plasma). The
combination of these two fields

is a net helical field B that

improves the confinement

characteristics.

(c) The Tokomak Fusion Test Reactor

(TFTR) at Princeton, New Jersey. In

addition to the heating produced by
the induced current in the plasma,

further heating is produced by injecting

high-speed neutral atoms into the

plasma.

FIGURE 45-17

Schemes for confining hot plasmas of

nuclei and electrons to achieve fusion.

about 10"*' to 10"^
s, after which the high pressure created within the pel-

let blows the pellet apart. One calculation suggests that if good efficiencies

are achieved, the fusion of only 10 pellets/s would be sufificient to supply a

1000-MW power station.

To date (1989), an experimental reactor has achieved the break-even point

at which the fusion energy produced equals the energy input needed to trigger

fusion. No device has yet reached ignition, the conditions necessary for the

plasma to sustain its own thermonuclear reactions. A great many difficult en-

gineering problems are yet to be solved. With international cooperation, it is

hoped that fusion will be achieved in the near future.
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"We have sailed many months, we have sailed many weeks

(Four weeks to the month you may mark),

But never as yet {'tis your Captain who speaks)

Have we caught the least glimpse of a Snark!"

LEWIS CARROLL
"The Hunting of the Snark" (1891)

Introduction

The structure of matter and the laws that govern its behavior have always

fascinated scientists. As energies of probing instruments have increased, allow-

ing matter to be examined with ever finer resolution, new and at times mysti-

fying phenomena have been revealed. Although the pace of discovery during

this century has been truly breathtaking, one of the more remarkable aspects

of the current evolution of modem physics is the extent to which our accepted

theoretical ideas can accommodate the rich and varied spectrum of mounting

experimental observations. What is emerging is that the universe is composed

of a very small number of fundamental objects. These objects interact through

just four forces, which seem at first glance to be quite distinctive. Yet closer

examination has given us the hope that one day they will be seen to be

different aspects of a single fundamental law.

As we look up into the sky, we first notice the effects of gravity in our

Solar System: enormous masses attracting each other over vast distances. There

is barely a hint of the presence of the far stronger electromagnetic, nuclear, or

weak forces. Although the electromagnetic force falls with distance at the same

rate as the gravitational force, most large objects have a very small net charge,

and the overwhelming importance of electromagnetism is therefore evident

only when we start looking at things on the molecular or atomic scale. Be-

cause the two remaining forces are exceedingly short-ranged, we do not notice

the strong force until we penetrate the atomic nucleus, and the effect of the

weak force is obvious only when we observe the radioactive decay of certain

unstable nuclei and particles.

We have already learned that the atomic world, condensed matter, and

chemical phenomena can be understood, at least in principle, with the help of

quantum mechanics applied to electromagnetism. The nucleus is a complex

object, which through its very stability implies the existence of a strong at-

tractive force that is able to overcome the electromagnetic repulsion among

its closely crowded positively charged protons. This new force seems to be

independent of electric charge. But what is the origin of the nuclear force?
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Does it reflect some truly basic property of matter—as Coulomb's law reflects

presence of electric charge—or can it be accounted for through a remanent

effect after the cancellation of the more fundamental attributes? For example,

though the total electric charge of neutral molecules adds to zero, there is still

an electromagnetic attraction between the molecules because their charge dis-

tributions are not uniform. As we are about to learn, experiments in particle

physics indicate that the nuclear force is most likely a residual phenomenon.

Progress in particle physics, especially during the past thirty years, has

been impressive. New, higher-energy accelerators produced a veritable zoo of

hundreds of different and unexpected particles. They were given names and

symbols such as the muon (fi), the pion (tt), the lambda (A), the sigma (Z),

and so forth, until the capacity of the Greek alphabet was exhausted. All were

unstable, with mean lives ranging from ~ 10~^^ s to ~ 10"^
s. This remark-

able flood of discovery was initially very confusing. But as important similar-

ities began to be observed among different particles, theoretical schemes were

suggested for grouping them into larger families that had some common char-

acteristics. Although this brought a degree of order to the subject, it was still

all pretty complex.

Eventually, particle physicists began to wonder whether the many sup-

posedly fundamental particles might not be composed of combinations of just

a few, more elementary objects. Indeed, current theory maintains exactly that.

It describes most of the hundreds of particles as combinations of just a few

constituents called quarks and certain "messengers" called gluons. The prop-

erties of these new constituents (e.g., color and flavor) are given somewhat

fanciful names (there are six flavors, among which we have strangeness and

charm). Of course, these words do not mean what their ordinary usage implies

—

they are just easy-to-remember names for quantum numbers that characterize

the way the constituents interact.

The latest discoveries and their theoretical interpretations have led to

the formulation of what is called the Standard Model of particle physics.

Though not a complete theory, this view of particle phenomena does correlate

and predict essentially all the known interactions of all elementary particles.

Before delving into the consequences of the theory, we will mention three

characteristics of particles that are particularly useful for sorting out their dif-

ferent attributes. These help us organize a large number of particles into the

few categories that are the basis of the Standard Model.

1. Spin. Particles with half-integral spin (in units of h), called fermions,

obey the Pauli exclusion principle (Section 44.6). This means that

only one fermion can occupy any given quantum state—from

which it also follows that fermions cannot be produced one at a

time. Particles with integral spin, called bosons, do not obey this

principle; any number of identical bosons can occupy a given state,

and any number can be produced at once in high-energy collisions.

2. Fundamental interactions. All objects, because they have energy

(and energy is equivalent to mass), respond to the gravitational

force. All electrically charged objects are influenced by the

electromagnetic interaction. Particles that sense both the weak and

the strong nuclear forces are called hadrons. Those that respond

to only the weak force are called leptons. There are two types of

hadrons

—

baryons and mesons—the distinction being that baryons

are fermions and mesons are bosons. Protons and neutrons are the

simplest baryons. All baryons carry the baryon quantum number;

that is, all baryons are composed of the same kind of matter that

exists within the nucleus of the hydrogen atom. Mesons, on the
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TABLE 45-5 Types of Elementary Particles

Particles

Weak Force

(Leptons)

Strong Force

(Hadrons) Produced in Collisions

Fermions
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appear to be pointlike, and they carry one unit of negative electric charge (a

definition attributed to Benjamin Franklin). The nucleus consists of positively

charged protons and electrically neutral neutrons, which, in turn, are composed
of quarks and gluons. Just as electric charge is known to be the source of the

electromagnetic field (as well as the origin of its quanta, the photons), so a

"color" charge, contained within both quarks and gluons, is the source of the

strong (color) force (and the origin of its quanta, the gluons). Both electrons

and quarks have electric charge, so both electrons and quarks feel the electro-

magnetic force. Gluons, on the other hand, being neutral and pointlike, do not

sense electromagnetism. Electrons, which also appear fundamental, neither con-

tain nor sense the presence of color.

Colors, Flavors, QED, and QCD
As the previous section implies, there is an important distinction between

the carriers of electromagnetism (photons) and the carriers of the color force

(gluons): photons cannot send any messages or couple to other photons, while

gluons can communicate with other gluons. This difference arises because there

is only one type of electric charge in nature (ignoring the difference between

positive and negative charge), while experimental evidence is conclusive that

there must be three different types of color quantum numbers for quarks and

gluons. The fully quantized field theories of electromagnetism. Quantum Elec-

hodynamics (QED), and of the color force. Quantum Chromodynamics (QCD),

are based on similar principles and account for this crucial difference. Figure

45-18 shows schematically the allowed processes in terms of Feynman dia-

grams for scattering of two quarks, two electrons, and two gluons, and the

appropriate exchanged force-carrying quanta.

Two kinds (or flavors) of quarks, up (u) and down (d), suffice to describe

normal matter. The electric charges are +|e and —^e for the u and d quarks,

respectively. The proton consists of two u and one d valence quarks, and the

neutron of one u and two tf^valence quarks. The existence of antimatter sug-

gests that antiquarks iT and d must also exist. It also follows that if the prop-

erties of baryons can be accounted for by three valence quarks, then quarks

must themselves be fermions.

The discovery, during the late 1940s, of the pion and the muon in cosmic

rays indicated that particles intermediate in mass between that of electrons and

nucleons abounded in nature. Muons appear to be pointlike objects that behave

exactly like electrons, except that they have a mass 207 times greater. (We
will return to their properties later.) Pions have strong interactions akin to

those observed for nuclear matter, but they do not carry baryon number, and

nucleons therefore cannot transform into pions (at least not yet!). The neutral

pion usually decays into two photons (bosons), which suggests that, in addi-

tion to being bosons, pions must have no quark content, or, perhaps more

reasonably, that they may be regarded as having a quark-antiquark substruc-

ture. Pions are the simplest members of the meson family of hadrons.

During the 1950s, cosmic-ray experiments revealed the presence of other

objects with properties that could not be comprehended without the introduc-

tion of a new flavor quantum number. These "strange" particles, which also

appear to possess the kind of properties observed for nuclear matter, suggested

the need for an additional quark, the s-quark. Many strangeness-carrying bary-

ons and mesons were eventually discovered, which expanded the spectrum

of hadrons. During the 1970s, "charm" flavor was discovered (attributed to

the c-quark), and this was followed shortly by the discovery of the "bottom"

or t-quark. All these newer and more massive hadrons can be understood on

Time

quark quark

quark quark

(b)

gluon gluon

gluon gluon

FIGURE 45-18

Feynman diagrams showing the

scattering of several pointlike objects.

The quanta or "messenger" particles

that corrununicate the force between

the two interacting particles are the

photon I7] in (a) and the gluon [g] in

(b) and (c).
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the basis of a substitution of one or more of the heavier quarks for a light one

in the structure of the previously known particles.

Color Confinement

All known hadrons come in integral multiples of both electric charge and

baryon number. Also, there has been no confirmed observation of a physical

(or "bare") quark or gluon. This is all entirely consistent with QCD, which

predicts that quarks and gluons are confined within hadrons, which, in turn,

have no net color. Table 45-6 provides a summary of the properties of quarks

and gluons. It contains an entry for the yet to be discovered "top" quark, which

is the last flavor required to complete the Standard Model. Table 45-7 indicates

the valence-quark composition of several well-studied hadrons.

It might seem outrageous to discuss properties of physical objects (of

zero net color) in terms of their colored fundamental building blocks that we
can never even hope to see. The situation is not quite as anomalous as one

might first imagine. Consider, for example, the neutron. As we know, this

object has no electric charge, yet it has a large magnetic moment, a fact that

must be attributed to a distribution of currents within the neutron. If the neu-

tron were structureless, there would be no way of understanding such an

electromagnetic effect. As another example, consider again molecular forces.

Molecules are electrically neutral, yet most properties of matter can be at-

tributed to molecular electromagnetic interactions. Although the total charge

TABLE 45-6 The Fundamental Fermions and the Boson Force-Carriers

FUNDAMENTAL FERMIONS (spin = i)
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Examples of allowed particle collisions.

In all such strong interactions, the sum

of the quark flavors on the left and

right sides of the arrow is the same

(conserved!). When a h is produced, a
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panied by an antibaryon. Similarly, when a charm-flavored meson or baryon

is produced, another particle is always produced that contains the c-quark. This

is what is referred to as associated pirodudion, and the principle is illustrated in

several of the reactions shown in Figure 45-19. There are, however, other pro-

cesses in which quark flavor is not conserved (although baryon number is).

These kinds of interactions are very weak, and they do not compete favorably

when other transitions are possible. All beta-decay processes (Section 45.5), for

example, proceed through this weak interaction.

Being pointlike, having no electric charge, and carrying no color charge,

the neutrino interacts only weakly. There is definite evidence for the existence

of two kinds of neutrinos (and, of course, their antineutrino partners). These are

the electron neutrino (v^.) and the muon neutrino (v^). Just as the electron neu-

trino arises in processes that involve electron or positron weak interactions,

so i:he muon neutrino is found in interactions involving muons. There is an-

other weakly interacting charged particle, the tau (t), that also has essentially

the same properties as the electron, but is even more massive than the muon.

Although the existence of the tau-associated neutrino (v^) has yet to be proven,

no one doubts that it will have an inherent property that will distinguish it from

the v^ and the v^. These six pointlike, weakly interacting particles (and their

antiparticles) constitute the lepton family of fermions. The electron, the muon,

and the tau (and their partner neutrinos) carry electron, muon, and tau lepton

numbers that are unique; and, just as flavor content is preserved in the strong

interactions, lepton number (or lepton flavor) is always conserved in all particle

interactions. The lepton flavor of any neutrino is defined to be the same as that

of its charged partner. So, anytime a lepton is produced, it is accompanied by

an appropriate antilepton, and consequently the total lepton flavor of the

universe is unchanged (that is, it is conserved). As illustrated in Figure 45-20,

the beta decay of a neutron, for example, involves the production of an elec-

tron and its antineutrino.

All weak processes are now thought to be mediated by the massive and

pointlike W"^, VV", and Z° bosons, the carriers of the weak force. These objects

are the analogues of the gluons and photon for the other forces. Properties of
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FIGURE 45-20

Examples of weak interactions. All such

processes involve either VV- or Z°

bosons as the messengers of the weak

force. The basic mechanisms are

illustrated in terms of Feynman
diagrams.

these mediators (Table 45-6) and some of their simpler reactions are illustrated

in Figure 45-20. The figure shows examples of weak interactions that proceed

through VV exchange, in which quark flavor is not conserved. Weak transitions

that conserve quark flavor involve the Z°. There are many rules that emerge

from the Standard Model that we cannot consider here for of lack of space.

It is worth mentioning, however, that though W's and Z's can be emitted or

absorbed directly by quarks, they do not carry color and consequently do not

couple to gluons. They can originate only from the "weak charge" contained

within leptons and quarks. W's and Z's can therefore carry messages of the

weak force only among quarks and leptons.

Unification and the Future

A noteworthy point is that, except for mass, the photon and the Z° have many
properties in common. From quantum theory, this implies that for some reac-

tions it may not be possible to tell whether the Z° or the photon was the

mediator. This suggests that the weak force and the electromagnetic force may
be related. In fact, this, among other features, has led to the formulation of a

single theory that unifies the weak and electromagnetic interactions, forming

one of the underpinnings of the Standard Model. The success of this Electro-

weak Theory in predicting both the observed properties and the precise values

of the masses of the W's and the Z^, as well as other subtle effects, gives

physicists hope for even unifying the strong force with the electroweak {"Grand

Unification").

In Figures 45-18 and 45-20, we presented interactions of constituents and

electrons in terms of their exchanged quanta. Is it possible that all fundamental

reactions proceed through such mechanisms? There is at present no quantized

field theory of gravitation, but the search for the graviton (G), the quantum

boson thought to be the carrier of the gravitational field, has been going on for

several years. Although there is as yet no convincing experimental evidence for

such an object, few doubt that the graviton exists, and that it is to quantum
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gravity (QGD) what the photon is to QED, what the gluon is to QCD, and

what the W's and the Z° are to the weak interaction. Also, just as interacting

(or accelerating) charges of the weak, electromagnetic, and strong interactions

provide the sources for their respective quanta, accelerating mass (or energy)

is the source of gravitons. Gravity is, however, the weakest of the known
forces, one that does not have much of an effect on elementary particles at

energies available at existing accelerators. As an example, we can compare the

relative strengths of the different forces for two protons that are about
10"'^ cm apart (nucleon dimensions). If the Coulomb force is equated to a

strength of unity, then the gravitational attraction would be about 10 ~^^ of

that, and the residual strong force about a factor of 20 times the electromag-

netic. The weak interaction would have a value of about 10 ~ ^ on this scale.

The similarity of the fundamental interactions (and of quarks to leptons)

has inspired theorists to try to unify all these forces under one framework.

How can one theory encompass forces of such varying strengths? The answer

is that the strengths of the individual forces depend on the distances between

objects, and therefore, through the Heisenberg uncertainty principle, on the

size of momentum and energy transfers in the interactions. For separations of

about 10"^^ cm the strengths of all the forces seem to merge. This is a

fascinating concept that, although appealing, does not as yet stand on firm

ground.

In fact, although the Standard Model is a remarkable achievement, there

are still gaping holes in our understanding. For example, the simple question

of why there are three groupings (or "generations") of pointlike fermions, or

whether there are more Z's and W's yet to be discovered, cannot be answered.

We also do not understand the origin of mass: Why is the tau lepton 3500

times heavier than the electron? Why is the photon massless while the Z° has

a mass of 100 protons? Nor do we know whether the leptons and quarks are

truly elementary and indivisible; they certainly appear to be structureless down
to scales of order 10" ^^ cm. It is the hope of particle physicists that answers

to these questions will be forthcoming from the next generation of accelerators,

like the Superconducting Super Collider (SSC, proposed to be constructed in Ellis

County, Texas) and the Large Hadron Collider (LHC, proposed for construction

at the European physics laboratory CERN outside of Geneva, Switzerland);

these machines have been specifically designed to probe the energy scales

where many of the important issues that we have just discussed are likely to be

clarified.

The Cosmic Connection"

Cosmologists today believe that the universe was bom in a single tremendous

explosion, the "Big Bang." The elementary particles, the fundamental forces, the

chemical elements, the stars and galaxies—all trace their origin to this primor-

dial conception. The Big Bang was not an explosion of matter and radiation into

a previously empty space, but was the creation of space itself along with every-

thing else. We measure both time and the amount of space in the expanding

universe from the Big Bang instant at f = 0.

The earliest moments of the universe were too hot for atoms or nuclei

to exist. There were only the simplest objects interacting through fundamental

forces. It is thought that initially there was only one force; but when the uni-

verse was at the barely imaginable age of 10
""'^

of a second, gravity sepa-

" This section is based largely on the booklet "To the Heart of the Matter—The Superconducting Super

Collider," Universities Research Association, Washington, D.C., April 1989.
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rated from the unified strong—electroweak force, and therefore two types of

forces became apparent. The universe expanded and cooled rapidly. When it

was 10"^^ s old, and the temperature had fallen to an equivalent of lO'^* eV
in energy, the strong force and the electroweak force became distinct. The
universe continued to cool. At 10"^^ of a second, and 10^^ eV, the electro-

weak force split into two, and the four forces that we know today all became
distinct. A little later, close to 10"^ of a second, quarks and gluons coalesced

into protons and neutrons. Later still, at an age of several minutes, atomic nuclei

began to condense from the sea of protons and neutrons; whole atoms started

appearing only after hundreds of thousands of years. It is certainly difficult to

imagine that at an age of 10"'^"
s all the matter and energy in the universe

today was squeezed into a volume less than one tenth of a millimeter across!

Today, the universe is about 10
^'^

years old and has a typical temperature

of 2.3 X 10^''' eV (2.7 K). What astronomers observe today are the cool rem-

nants of that dazzling initial fireball. But cosmologists have been remarkably

successful in reconstructing cosmic history back to the first microsecond of the

Big Bang, and particle physics is an essential ingredient in the reconstruction.

Two particles colliding in an accelerator recreate an early moment from cosmic

history. And the greater the collision energy, the further back in time we see.

To explore the world of elementary particles is to explore the early universe.

Particle physicists and cosmologists now find they have many common
goals and interests. As an example, the issue of "dark matter" is one region of

great mutual concern. The mass of a galaxy, as measured from the motion of

gas clouds about its center, turns out to be greater than the combined mass

of all the observed stars, gas, and dust. The unseen matter—the dark matter

—

has long puzzled astronomers, but now particle physicists may be able to offer

an explanation. Dark matter may consist of certain particles that have survived

unseen since their production long ago, when the universe was much hotter.

(The only known stable particles in the universe are protons, photons, elec-

trons, and neutrinos, and they cannot account for the missing mass.) A dis-

covery of such new particles at higher-energy accelerators will not only guide

physicists toward unification of forces, but may also help cosmologists solve

the dark matter problem.

Postscript

The W's and the Z°, the leptons and the quarks, the gluons, and all the other

mind-boggling richness we have described would not be ours were it not for

the accelerator scientists who invented the machines that provided the oppor-

tunity for discovery, and the ingenious experimenters who built the detectors

to "see" the new phenomena created at increasingly higher energies. At times

we tend to forget that physics is an experimental science. Viki Weisskopf, one

of the major theorists of this century, likes to compare our experimenters to

the explorer Columbus, accelerators to the ships he sailed, and our theoretical

physicists to the know-it-alls who stayed behind in Spain and convinced every-

one (including Columbus) that India would be reached sailing West. The irony

of the story, which might have even escaped Viki, is that to this very day the

islands scattered in the Caribbean are called the West Indies! Theorists have

always had great influence!

It is not possible in the space available to do justice to the beautiful

technical achievements that have propelled this field. Some of the techniques

have been sketched in several chapters of this book, but their scale cannot be

captured. (The late Sir John Adams, a master builder of the CERN accelera-

tors, was once overheard saying that his kind publishes in cement!) An example
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FIGURE 45-21

Assembly of the 2000-ton Collider

Detector at Fermilab (CDF).

Sophisticated detector systems are used

to measure energies and directions of

all particles produced in high-energy

collisions. Such detectors are built up

in layers surrounding the interaction

point. Each layer is designed to reveal

specific information about the traversing

particles. Closest to the point of

collision is a vertex detector (not shown

in the photograph) to detect any

particles with exceedingly short flight

paths (that is, with short lifetimes). The

next layer, here shown being moved

into position, is the central tracking

chamber. This consists of sets of coaxial,

cylindrically positioned planes of wire

electrodes that sense and trace the paths

of any charged particles by recording

ionization produced along the particle

trajectories. Bathing the chambers in

a magnetic field allows positively

charged particles to be distinguished

from those of negative charge by the

sense of curvature of the reconstructed

paths. In CDF, a 1.5-T axial magnetic

field is produced by a 5-m-long

superconducting solenoidal coil that

surrounds the central tracking chamber.

Beyond the coil are additional layers of

instrumentation. First come segmented

"calorimeter" modules, constructed from

lead or steel plates, interleaved with

planes of scintillator. Photomultiplier

tubes record energies deposited by

particles as they pass through the

calorimeter stacks, interact in the

material, and produce more particles

and scintillation light. Because muons

deposit very little energy along their

paths, they penetrate beyond the region

of calorimetry, where they are measured

using special outer muon-detection

chambers. In the photograph, the end

calorimeters are shown in their

operating positions, while the

wedge-shaped central calorimeters are

retracted for servicing. The boxlike iron

superstructure, besides providing

mechanical support, also serves as the

yoke for the return path of the magnetic

flux. The object on the side that looks

like a nose cone is one of two sets of

end calorimeters that fit snugly into the

front and rear apertures of CDF. When
fully assembled, this multilayered,

intricate, about-100,000-channel device

is rolled during a one-day operation

from its "garage" into the collision

hall to study collisions between 1-TeV

protons and 1-TeV antiprotons.

Detector performance is monitored and

controlled on-line through a houseful

of electronic devices and computers.
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is the apparatus shown in Figure 45-21, which is used by the Collider Detector

at the Fermi National Accelerator Laboratory—Fermilab, just outside of Chi-

cago—to study interactions of quarks and gluons contained within colliding

protons and antiprotons. This detector is a maze of sophistication. Its tens of

thousands of separate elements track charged and neutral particles and measure

all their momenta and energies. From reconstruction of the properties of colli-

sions of the type shown in Figure 45-22, the unimagined can emerge. The Stan-

dard Model may be a magnificent achievement, but finding its limitations,

and recognizing that it is only a fleeting approximation to nature, would be

a truly exhiliarating experience, and one that only an experimenter can stumble

FIGURE 45-22

Production of a Z° boson at CDF. A
computer reconstruction of particles

created in a proton—antiproton collision

at CDF. The curved lines represent

trajectories of electrically charged

particles that are deflected in the axial

magnetic field. (The straighter the

track, the higher the momentum of the

particle.) The energies of the two

high-energy, back-to-back particles, as

measured in the calorimeter (represented

by the light rectangles on the perimeter

of the display), show that they are

electrons (one e* and one e~) with an

effective mass of a Z particle. The

lifetime of the Z" is too short for it to

interact directly with any part of the

detector; its existence is inferred from its

characteristic decay modes. The other

particles accompanying the Z° have very

low energy, and correspond to the

remnants of the "spectator" quarks that

barely participated in the collision.

The Feynman diagram shows how to

understand the production of the Z° in

this pp reaction. A quark from the p
and an antiquark from the p fuse to

form a Z°, which then decays into the

e'*'
e~

pair. Overall color, like charge

and momentum, must be conserved in

the collision. (The rectangular box just

singles out the particle with highest

momentum.)

upon 12

'' For further reading see F. Close, M. Martin, and C. Sutton, The Particle E:cpIosion, Oxford University Press,

1987, and L. Lederman and D. Schramm, From Quarks to the Cosmos, W. H. Freeman, 1989. We also wish

to thank A. Hudson, K. Metropolis, and C, Quigg for valuable comments on this essay.
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Summary

A nucleus is characterized by the ntoiiiic number Z (the num-

ber of protons) and the neutron number N. The mnss number

A is the sum A = Z + N. Isotopes have the same Z but differ-

ent values of N and are written in the following notation:

^[element symbol]. (The Z is often omitted since the element

symbol identifies the atomic number.)

The approximate nuclear radius R = M''^, where k is

a constant equal to ~ 1.2 fm to ~ 1.4 fm, depending on the

type of interaction used to probe the nucleus. The nuclear

density is approximately constant, indicating the short-range

nature of the nuclear force.

Nuclear masses are measured in unified atomic mass

units u:

Y2 the mass of atomic '"C

931.494 MeV/c^
I u = <

1.660 540 X 10 ^^ kg

1.492 42 X 10''°J/c^

The binding energy per nucleon is the energy required to

separate a nucleus into its nucleons divided by the number of

nucleons.

A sample containing JVq initial radioactive nuclei decays

according to

N = Noe' or N = N^e
-(ln2)t/Ti/2

where /. is the decay constant and Tiy, is the half-life. Radio-

activity is also measured in units of the curie (Ci), where the

activity A is

A = Aoe-" 1 Ci s 3.71 X 10
jQ disintegrations

A radioactive nucleus may decay by alpha emission

(a), beta emission (either jS~ or fi'^), gamma decay ()'), internal

conversion, electron capture (also called K capture), or in a few

heavy nuclei, spontaneous fission. In each case, the Q of the

reaction must be positive:

Q = [Original mass — Product massesjc

In the case of positron decay (/?^), the parent nuclide must

exceed the daughter nuclide by at least lm^c~.

Typical nuclear reactions involve an incident particle x

striking a target nucleus X (initially at rest), yielding the reac-

tion products 1/ and Y. Reactions are classified as exoergic

(Q positive), in which mass-energy is released, and endoergic

(Q negative), in which some initial kinetic energy is converted

to mass-energy. When Q is negative, the incident particle

must have at least the minimum threshold kinetic energy £,,, to

cause the reaction

£.h= -Q My
(nonrelativistic)

The nuclear cross section a is a measure of the relative proba-

bility that a reaction will happen. It can be pictured as the

effective area a target nucleus presents to an incoming particle

(assumed to be a point); a nuclear reaction occurs only if the

incident particle strikes a target area. Cross sections are mea-

sured in bams (1 b 10" cm"). Cross sections

vary widely depending upon the type of reaction and the

kinetic energy of the incoming particle.

Radioactive dating makes use of the 5730-yr half-life of

'*C to determine the age of carbon-based artifacts. We also

can date geologic specimens by noting the ratios of certain

elements that are part of radioactive decay series.

Nuclear power can be obtained from the neutron-induced

fission of very heavy nuclei, such as ~^'U and '^^''Pu, or by

the fusion of very light nuclei, such as "H and "H. Commercial

power generation by fusion has not yet been achieved because

Lawson's criterion at fusion temperatures, nz > ~10 s-m

has not been reached for large-scale operations.

Particle physics. The "Standard Model" classifies par-

ticles (other than photons) into two groups: hadrons (which

interact mainly via the strong force) and leptons (which interact

only via the weak force). Hadrons are subdivided into baryons,

which have half-integral spin (fermions), and mesons, which

have integral spin (bosons). Recent experiments support the

c\uark model, in which hadrons are made up of various com-

binations of quarks. Interactions between particles occur by

means of "messenger" particles (or "force carriers") that are

exchanged during the process.

Force Force Carrier

Electromagnetism
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3. Why is nuclear mass-density independent of the number
of nucleons in the nucleus?

4. What is the qualitative comparison of the size of nuclei

and the bam?

5. If radioactive decay is a random process, why can it be

represented by a simple mathematical function?

6. What mode(s) of decay would you expect for '^*Ba?

Why?

7. Why are nuclei of the form -^X (n even) particularly

stable for n < 10 yet unstable for n > 10?

8. Why do most of the fragment nuclei of nuclear fission

undergo /?" decay rather than ^'*" decay?

9. An isotope of gold is ^jIAu. What other pair of numbers
would also identify this isotope?

Technetium results from the decay of molybdenum,
which is a common product of nuclear fission. What in-

ference can be made about the fact that natural techne-

tium is probably not present in the earth's crust?

Compare the value for the cross section for neutron cap-

ture by "^Cd given in Example 45-12 with the data in

Figure 45-14. Why is the former value about an order of

magnitude larger than that indicated by the graph?

10.

11

Problems

45.2 A Description of the Nucleus

45.3 Nuclear Mass and Binding Energy

45A-1 A rough estimate of the relative strengths of the

nuclear force that holds protons in a nucleus and the Cou-

lomb force of repulsion can be made by the following calcula-

tion. Find the ratio of the binding energy (BE) of one proton in

the '''He nucleus to the Coulomb potential energy U of the two

protons, assuming that in the nucleus they are 1 fm apart.

45A-2 (a) Find the approximate radius of the nuclide

'55CS. (b) What is the approximate mass number A of a

nucleus whose geometrical cross section is 0.8 b?

45A-3 On the Richter scale, the magnitude M of an earth-

quake is related to energy E released according to the relation

M= (1/1.5) logio(£/25 000), where E is expressed in joules.

The energy release of a one-megaton (equivalent to 10** tons

of TNT) hydrogen bomb is 4.18 x lo'" J. Find the magnitude

of an earthquake that produces the same energy as the ex-

plosion of a two-megaton hydrogen bomb.

45B-4 How much energy (in joules) would be required to

separate the nuclei in one gram of l^¥e into separate

nucleons?

45.4 Radioactive Decay and Half-Life

45.5 Modes of Radioactive Decay

45A-6 A mummy known as Whiskey Lil was discovered

in a cave near Lake Winnemucca, Nevada, in 1955. With carbon

dating methods, it was determined that 73.9% of the original

'^C was still present. What year did Whiskey Lil die?

45A-7 Find the time required for the activity of an iso-

tope with a half-life of 12 min to decay to one-fifth its initial

activity.

45B-8 The half-life of ^'^'Am is 432 yr. The isotope decays

by alpha emission, (a) Write the reaction for this decay, (b) Find

the mass of this isotope that has an activity of 1 mCi.

'^Ca53-9 Assuming that the molecular weight of radium is

226 and that its half-life is 1620 yr, find the activity of one

gram of "^Ra.

45B-10 Refer to Example 45-5. Of the original 279 936 000

dice, one-sixth are removed every succeeding day. (a) From

the plot of data shown in Figure 45-6, determine the time

elapsed for only one-quarter of the original dice to remain.

(b) Using Equation 45-6, calculate the time for only one-quarter

to remain, (c) Find the percent discrepancy between these two

results. Explain.

45B-11 After a nuclear explosion, the resulting aggregate

radioactivity does not follow the exponential decay law. In-

stead, for a period of about six months following the explo-

sion, the activity decreases according to the relation

A^Aoit/to)-'-'

where Aq is the activity at a time fg after the explosion. (After

six months, the decay is more rapid, so that after 10 years

the activity is only about y^th that predicted by the above

relationship.) Calculate the short-term half-life Tj 2 in terms of

/q according to this relationship.

45B-12 The isotope 24Cr decays by positron emission

with a half-life of 42 min. (a) Write the reaction equation, (b) If

a sample has an initial activity of 24 mCi, what is the activity

two hours later?

45.6 Nuclear Cross Section

45B-13 A beam of thermal neutrons is incident upon a slab

of carbon, ' ^C. The total capture cross section for thermal neu-

trons is 3.5 mbn. Calculate the thickness L of carbon that will

capture 20% of the incident neutrons. The specific gravity of

carbon is 2.25.

45B-14 A lead brick is mostly empty space. Assuming that

the lead atoms within the brick are uniformly distributed, how
thick would the brick have to be for the projected area of the

geometrical cross sections of all of the nuclei on a face of the

brick to be one-tenth of the area of the face of the brick? The

value of Rq is 13 fm.

45B-15 Supernova 1987A, located about 170 000 light-

years from the earth, is estimated to have emitted a burst of

~ lO'** J of neutrinos. Assuming an average neutrino energy

of 6 MeV and a 5000-cm^ cross-sectional area for your body.
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how many of these neutrinos passed through your body?

[Adapted from a problem in the Back of the Envelope column in

American Journal of Physics 56, 5 (May 1988).]

45.7 Nuclear Reactions

45A-16 The isotope "^''U undergoes fission to produce

the fission products ''°Rb and '"^^Cs. Show that the Q of

this reaction is given by Q = (M^ — Mr^, — M^ — 3m„)c^,

where M^', M^b. and Mq^ are the respective atomic masses

and m„ is the neutron mass.

45B-17 The carbon cycle, believed to be the main source of

energy in stars hotter than the sun, is the following sequence

of reactions;

'iC+lH
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Show that the effective half-life T^ that combines these two
effects is given by l/T, = l/Tp + 1/Ty,.

45C-32 An alpha particle is emitted from -^*Ra with an

energy of 4.7845 MeV. Calculate the total decay energy (in-

cluding the recoil of the parent nucleus).

45C-33 A pellet of ^'°Po with an activity of 50 Ci feels

warm to the touch. Find the rate at which thermal energy is

produced within the pellet.

45C-34 Example 45-12 describes a reaction cross section

that is very much larger than the projected area of the nucleus.

At the other extreme is the tiny cross section for neutrino

interactions, making neutrinos exceedingly difficult to detect.

One reaction used to detect antineutrinos is v -I- }H »

+ ie + on. This reaction has an approximate cross section

of lO^'^b.

(a) Determine the thickness of water (in kilometers) required

to reduce an incident neutrino flux by one part in a million.

(b) Compare your answer to the earth-sun distance.

45C-35 Refer to the previous problem. The antineutrino

flux from a nuclear reactor is 10^^ antineutrinos cm"- s. Sup-

pose that this flux impinges uniformly on one side of a cube

of water 10 cm on a side. Calculate the average number of

interactions per day between the antineutrinos and the pro-

tons in the water.

45C-36 A slow neutron with negligible kinetic energy is

absorbed by a boron nucleus at rest, producing the reaction

of Equation (45-43). Find the kinetic energies of each of two

nuclei produced in the reaction.

45C-37 Consider an endoergic reaction whose Q value is

negative. Using the conservation of energy and momentum
(nonrelativistic) in a one-dimensional collision, show that the

threshhold energy £,,, is given by Equation (45-39).

45C-38 In a particular fission of ^^'U by a slow neutron,

one of the fission fragments is '^^Te. No neutrons are emitted.

(a) Identify the other fragment, (b) The Q for this reaction is

190 MeV. Using whole-number masses, calculate the kinetic

energy of each fission fragment.

45C-39 The following sequence of fusion reactions is the

proton—proton cycle, believed to be the main source of energy in

the sun:

1H+|H JH + e^ + V

iHe + y

tHe-f \H+ ;H

(a) Find the Q value for each reaction, (b) Noting that each of

the first two reactions must occur twice to produce the two

|He nuclei for the third reaction, find the total energy released

in the (net) fusion of four protons to produce one JHe nuclei

by the proton-proton cycle, (c) When each of the two posi-

trons produced in the cycle encounters an electron, a positron-

electron annihilation occurs, producing two photons of equal

energy emitted in opposite directions (to conserve momentum).

The energy released in an {e'^,e~) annihilation is Im^c', and

this also contributes to the total energy release for the process.

Calculate the total energy released in the p-p cycle, including

positron annihilations.

45C-40 The fusion of two deuterons ("H) will form an alpha

particle C^He). (a) Calculate the energy released in this reaction

due to the decrease in mass, (b) How many such reactions must

occur each second to light a 60-W light bulb? (c) Starting with

one milligram of deuterium atoms, how long could we keep

the light bulb burning?

45C-41 A particle of mass m and initial kinetic energy Kq
is captured by a nucleus of mass M initially at rest. The com-

pound nucleus immediately ejects a light particle of mass Mj
at 90° to the incident-particle direction, and the recoil nucleus

has a mass Mj. Show that the kinetic energy K of the ejected

light particle is

K = Q
m — M2

^0
M,

Ml -f M2

where the energy equivalent of the total mass difference is Q.

45C-42 Which conservation laws, if any, are violated in the

following reactions? Could these processes proceed through

one of the fundamental interactions? Which ones?

(a)
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APPENDIX C

Conversion Factors
The SI unit is listed first in each table.

Use of Conversion Factors

The ratio of any pair of quantities listed in a table of conversion factors

is dimensionless, having the value of I. To illustrate, consider the ex-

pression I mi = 5280 ft. Dividing both sides by 5280 ft, we obtain the

ratio

1 mi

5280 ft

The reciprocal is also a

ratio that equals 1.

Any quantity may be multiplied by a conversion ratio without chang-

ing the value of the quantity.

Example C-1
To express 44 ft/s in units of miles per hour, we make use of two con-

version ratios:

I mi
= 1 and

3600 s
= I

^5280 ft/ \ ^^

Multiplying conversion ratios and canceling units, we get

ft A4,if\/3600xV I mi
44-

.s- /\ 1 h

mi
, 30—

5280 if/ h

Conversion ratios
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1 pound (lb) (at standard g) has a mass of^ 0.4536 kg
1 metric ton = 1000 kg
1 ton-mass = 907.2 kg = 2000 lb-mass

Density

1 kg/m^ = 1 X 10 ^ g/cm^ = 1.940 X 10 ^ slug/ft^

1 ft^ of water weighs^ 62.43 lb (at standard g, 4°C)

Speed

1 m/s = 3.600 km/h = 3.281 ft/s = 2.237 mi/h
30 mi/h = 44 ft/s (exact)

1 knot (or 1 nautical mile per hour) = 0.5144 m/s
= 1.852 km/h = 1.688 ft/s = 1.151 mi/h

Acceleration

1 ^ (standard gravity) = 9.806 65 m/s^ (exact)

= 32.174 ft/s^

1 ft/s^ = 0.304 80 m/s^ (exact)

1 Gal = 0.010 m/s^ (exact). Thecal (Gal) is a special

unit used in geodesy and geophysics, named to honor

Galileo.

Plane Angle

1 rad = 57.30° = 0.1592 rev

1 rev = 360° = 2n rad

1° = 60 min (') = 3600 s (") = 1.745 x 10"^ rad

= 360 rev

1 rev/min = 0.1047 rad/s

Solid Angle

1 sphere = in steradian (sr)

Force

1 newton (N) = 1 x 10^ dynes = 0.2248 lb

It is incorrect to state that 1 kg = 2.205 lb. since there are units of mass on

one side of the equal sign and units of force on the other. Furthermore, the

value of the gravitational force depends on the local value of g. varying from

point to point on the earth. However, with care, the fact that a mass of 1 kg

weighs 2.205 lb (at standard g) can be used to change the mass of an object

as expressed in one system to its weight in another system. It is generally

safest to make this conversior^ prior to solving a numerical problem. In this

table, we use the avoirdupois pouiid = 16 ounces = 0.4536 kg. Another sys-

tem of weight used for precious metals and stones is the Iroy system:

1 pound troy = 12 ounces troy = 0.8229 pound avoirdupois = 0.3732 kg

and

1 ounce troy = yi pound troy = 3.1 103 x 10 ' kg

The troy system is also called the apothecary system (of dry weight) used in

pharmacy.

' From this fact, one can obtain the weight density (in pounds/foot^), which is

dimensionally different from the mass demity (in slugs/foot^).

Pressure

1 pascal (Pa) = 1 N/m^ = 10 dynes/cm^
= 9.869 x lO^^atm
= 1 x 10"^ bar = 2.089 x 10"^ Ib/ft^

= 1.450 X 10"'^ Ib/in.^

= 7.501 X 10
-3

torr

14.70 Ib/in.^

1 atm = 1.013 X 10^ Pa (or N/m^)
= 1.013 X 10^ dynes/cm^
= 1013 millibars = 2116 Ib/ft^

= 76.00 cm Hg (0°C)

= 29.92 inches of mercury (0°C)

= 406.8 inches of water (4°C)

= 33.90 feet of water (4°C)

1 bar = 1 X 10^ Pa (or N/m^) = 0.9869 atm
= 75.01 cm Hg

1 torr = 1 millimeter of mercury (mm Hg)
= 1.333 X lO' Pa (or N/m^)

Work and Energy^

1 J = 1 X 10^ erg = 0.7376 ft-lb = 0.U&& cal

= 9.478 X 10""^ Btu = 9.872 x 10"^ L-atm
= 2.778 X 10"^ kW-h
= 3.725 X lO^'' hp-h = 6.242 x lO'^ eV

1 ft-lb = 1.356 J = 0.3239 cal = 1,285 x 10"^ Btu
= 3.766 X 10"^ kW-h

1 cal = 4.186 J (exact)

1 Btu = 1055 J = 252.0 cal = 2.930 x lO"'* kW-h
1 kW-h = 3.600 X lO" J = 2.655 x 10*^ ft-lb

= 8.598 X 10^ cal = 3412 Btu

B

1 eV = 1.602 X

1 kg (mc~ equiv.)

10
19

J

8.987

1 u (mc equiv.) = 1.492 x 10

Power

,16

-lOj

1 W = 1 J/s = 0.7376 ft-lb/s = 1.341 x 10"Hp
= 0.2389 cal/s = 3.413 Btu/h

1 hp = 550 ft-lb/s (exact) = 745.7 W = 178.1 cal/s

= 2545 Btu/h

Temperature

T =Tc + 273.15°

5(Tf + 40°) = 9(rc + 40°)

7"c
= (f)(Tp - 32°)

Ip = (f)rc + 32°

T is in kelvin (K)

(absolute scale); Tq is

in degrees Celsius (°C);

Tp is in degrees

Farenheit (°F).

continued

* Pressures in barometric units that involve the height of a column of mercury

or water are measured where the acceleration due to gravity has the standard

valuer = 9.806 65 m/s^.

' There are several other (slightly different) definitions of the calorie and the

British thennal unit.
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Magnetic Field

1 tesia (T) = 1 weber per square meter (Wb/m^)
= 1 X 10* gauss

sin a cos /J = j|sin(a —
ft) + sin(a + (i)]

sin a sin /J = 5|cos(a — ji) — cos(a + ji)]

cos OLcos P = 5lcos(a - P) + cos(a + /?)]

sin a + sin /? = 2 cos I (a — P) sin | (a + /i)

D

APPENDIX D

Mathematical Formulas

Pythagorean Theorem

a' + b' = c'

Quadratic Formula for Roots

If nx^ + bx + c =

then
-b±^/b^ -4ac

2a

Trigonometric Functions of Angle

esc 9-

cos 9 =

tan 6

sec 9 •

cote

Trigonometric Identities

sin( — 0) = —sin

cos( — 0) = cos 9

tan( -9)= - tan

sin" 6 + cos" 9 = 1

sec" 9 — tan" 9=1

CSC- - cot- 9 = 1

2 tan 9
tan 29 :

sin = cosigO" — 0)

cos 9 = sin(90° - 0)

cot 9 = tan(90° - 9)

c.'r. fl

tanO :

cos 9

I — tan" I

/I — cos I

tan - =
2 V 1 -I- cos I

sin 2a = 2 sin a cos a

sin(a ± P) = sin a cos /J + cos a sin P

cos(a + P) = cos a cos /? + sin a sin /)(

tan a + tan j8

tan(5( ± ^) =

For All Plane Triangles

Sides a, b, and c, with opposite angles a, /J, and y.

a + ^ + 7 = 180°

Law of sines:

Law of cosines:

Law of tangents:

a b c

sin a sin P sin y

c'^ = a^ + b^ — 2ab cos y

(fl + b) _ tani(a + ^)

(fl - b)
~

tani(a - i?)

Plane Angle 6

measured in

radians (rad)

The whole plane angle (360°) is 2n radians.

Solid Angle il (in general)

n
Subtended area measured in

steradians (sr)

The subtended area A on the curved surface of the sphere of

radius r may have any arbitrary shape.

The whole solid angle = in steradians.

Subtended

area A

1 + tan a tan P
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Conical Solid Angle Q

where

n = 2n{l - cos 6)

half the vertex

angle of the cone
=

Truncated Right Circular Cone

Lateral surface area = n{a + b)<f

Volume = ^nh(a^ + ab + b^)

Pythagorean Theorem in Three Dimensions

2 , I 2 , 2 2
a + b + L = r

Sphere

Surface area = 4nr'

Spherical Cap

Surface area = 2nrh

Volume (shaded) = ^nlr{ir - h)

Right Circular Cone

Lateral surface area = nr^

Right Circular Cylinder

Lateral surface area = Znrh

Volume = Tir'h

Sagitta Formula (approximation)

R te-
la

for-«l

B

where R is the radius of the arc, a is the arc-to-chord distance, and b

is the half-chord length.

Exponentials
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APPENDIX E

Mathematical

Approximations,

Expansions, and Vector

Relations

a

Approximations

For X « 1:

s/l±x * 1 ±-
I ±x

I +x

1 ^ X^ 1 ^ _3£^

+ 1'

For j: « 1: C - x^) « 2(1 - x)

Vector Relations

Any vector A with components A^, Ay, A. along the .r, y, z directions

may be written

A = A^x + A^y + A.i.

Let be the smaller angle between the forward directions of A and

B. Then

Scalar (or Dot) Product:

A • B = B • A = |A| |B| cos = /IB cos (

= A^B^ + AyBy + A,B,

Vector (or Cross) Product:

AxB=-BxA=
X
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where
27t

2 fT
H„ = — /(O COS nCDtdt

the average

value of /(f)

sin nojtdt

Note that for even functions |/(() = /{ — f)l all the b's are zero, and for

odd functions [/( — f) = — /(Ol all the as are zero (except possibly Uq).

Very often a function may be made even or odd by a shift of the

origin, as shown in Figure F-2.

hit) hit)

I I

FIGURE F-1

A periodic function with a

period T that may be expressed

by an infinite sum of sine and

cosine functions and a constant.

FIGURE F-2

A square wave may be expressed

either as a sum of only sine

terms or as a sum of only cosine

terms. The Fourier series of /^(t)

contains only sine terms (since

it is an odd function), and /^(t)

contains only cosine terms

(since it is an even function).

Example F-1

The periodic function shown in Figure F-3 is written mathematically as

T

/(') = <

A, <t <

-A, -<t<T
2

/(f)

I 1 I

-i-:d—^-

\ n I

FIGURE F-3

Example F-1.

Its Fourier series is

4(4 /sin wt sin icot sin Swt
/(o = —^^ +^^ +^—

+

71 \ 1 3 5

Example F-2

The sawtooth waveshape of Figure F-4 is expressed mathematically as

m = t.

m

T T
< f <-

2 2

7
1 ---" T y

nCURE F-4

Example F-2.

Its Fourier series is

,' sin cat sin Iwt sin iwtm = 2(— : +

The following illustrations show the Fourier series approximations

made by combining, respectively, the first three, six, and nine terms

of the series. B
KfH

1



APPENDIX G

Calculus Formulas

In the following, a, b, c, and n are constants: » and v are functions of

x-, and X and y are functions of i. Logarithmic expressions are to the

base e = 2.718 28 .... All angles are measured in radians.

G-I Derivatives

d du
1. — [cm] = c —

dx dx

d du dv
2. v 1" + fl = T + T

dx dx dx

du dv

a

d
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'dx =

''dx =

d%
dc'

da"-

d"
8. h. = i-V"-I.

9. /.„..=(-!)" ,^/.

The Definite Integral

Most of the use of integration in this text involves the definite integral,

that is, the integration between two specific values of the variable.

The procedure may be illustrated by the following example.

Consider a one-dimensional force F{x). which varies as a func-

tion of distance x, as shown in Figure G-1. Let us find the work done

by this force as it moves through a displacement from j, to j:,- ^^
divide the total displacement into a large number N of small intervals,

All, ^2' '^'^3' • ^i ^.\- Since Fix) is nearly constant during

each small displacement, we may assume it has the average value f(i,)

during the displacement Aj,. Thus, the work AWi accomplished

during the first interval Ajj is approximately

AVv\ % fU,)Aj:,

F{x^) —
Hx)

I

I

Net

displacement
]

X\ Xl

(a) A mass m is moved
through a displacement

X2—X\ by the variable

force F{x).

FIGURE G-1

Illustration of the definite integral.

Xl X2

(b) The area under the

curve of F(x) vs. x

between the limits x\

and X2 equals the work
done by the force ¥{x).

and so on for the rest of the intervals. The total work done in moving

from jr, to .r, is therefore

i= 1

To make a better approximation, we divide the diplacement into an

even greater number of intervals, so that each Ai, becomes smaller

and the total number of intervals N becomes larger. Continuing to

improve the approximation, we let the intervals become smaller and

smaller as the total number of intervals becomes larger and larger.

The exact value for the work done is obtained as Ajr shrinks to zero

and N goes to infinity. This defines the definite integral of F(x) with

respect to x from x, to Xj. The notation is

THE DEFINITE

INTEGRAL lim y f(i,)Aj, = F{x)dx (G-1)

The definite integral is equal to the area under the curve of F{x) vs.

x between the limits x, and i2-

There is a close connection between the definite integral, such

as Equation (G-1), and the indefinite integral, such as
J
F(x)dx and those

integrals listed in G-IL The connection is known as the fundamental

theorem of calculus, which we state here without proof:

T' F{x)dx = h{x)dx - h{x)dx (G-2)

Evaluated Evaluated

ati: ati =

Thus, in calculating a definite integral between two limits, one

merely evaluates the integral at the upper limit of ii ^""^ subtracts

its value at the lower limit x^. In the process, the constant of integra-

tion c is eliminated.

G-IV Differentiation and

Integration of Vectors

To differentiate the dot and cross products of vectors, care must be

taken (particularly with the cross product) to preserve the order of

multiplication. The rule is similar to the derivative of an ordinary scalar

product.

d dv du— (uv) = u— + —V
dt dt dt

d dB d\
Thus: -(A-B) = A-— -I- —-B

dt dt dt

d rfB dA
-(AxB) = Ax— -t---xB
dt dt dt

To solve integrals involving the dot or cross products of vec-

tors, the first step is to replace the dot or cross symbol by the appro-

priate sine or cosine function, thus changing the operation to a simple

scalar integral.

F • rfx becomes f(cos Q) dx

(r X F) dr becomes rF(sin 6) dr

where 9 is the smaller angle between the forward directions of the

vectors.

G-V Partial Derivatives

If a function depends upon more than one variable, we may take its

derivative with respect to one of the variables, holding the other

variables fixed. The notation cf'rx means the derivative of / with

respect to x, with other variables treated as constants. For example, if

then 1-^

fix.y) = xy^

and
dy
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APPENDIX H

Finite Rotations

Finite rotations of an object cannot be represented by vectors. Con-

sider a book that is to be turned through two rotations, one about

a vertical axis and the other about a horizontal axis. Suppose a 90°

rotation about the vertical axis is represented by the axial vector V
and a 90° rotation about the horizontal axis by the axial vector H.

The sum V + H is the vertical rotation followed by the horizontal

rotation, as shown in Figure H-l(a).

1/

H
PHYSICS

(b)

FIGURE H-1

Successive 90° rotations of a book.

The sum H -I- V is represented by the horizontal rotation fol-

lowed by the vertical rotation, as shown in Figure H-l(b). The final

orientation of the book depends on which rotation is first. Mathemat-

ically, V -f- H # H -)- V. Therefore, finite rotations cannot be repre-

sented as axial vectors because vectors must have the property of

commuting in addition.

However, as the angular displacements become smaller and

smaller, the final orientation depends less and less upon the order of

the rotations. In the limit of iuftniteiinuil rotations, axial vectors may

be used to describe such rotations because they commute in addition.

Thus, while A0 is not an axial vector, dO is. For this reason, angular

velocity w = lim^,^o (A9/Af) = dd/dt may be represented by the

axial vector (i) according to the right-hand rule, as shown in Figure

H-2. Angular acceleration a = d(o/dt may similarly be defined.

FIGURE H-2
Right-hnnci nde: If the fingers of

the righl hand are curled around

in the rotational sense, the

extended thumb points in the

direction of w. The axial vector O)

represents the angular velocity of

rotation of the disk.

Direction

of rotation

APPENDIX I

Derivation of the Lorentz

Transformation

Suppose that at the instant two reference frames S and S' are coin-

cident, a flashbulb is set off at the coincident origins O and O' (refer

to Figure 41-3). At a later time, observers in each frame measure an

expanding spherical wavefront that is centered at the origin of their

respective frame of reference. The equation of a sphere of radius r

in three dimensions is x' + i/^ -I- ;^ = r', so the equations for this

light sphere are

In the S frame

(at time t)

^2 =r'-

In the S' frame

(at time f)

+ y" + z' = cY- (1-1)

We seek the relations between the primed and unprimed parameters.

We require that these relations be linear in x and x'. If they were

not, a single event in one frame would not necessarily be a single

event in the other frame—clearly an unacceptable situation. The rela-

tions should also reduce to the familiar Galilean transformation x' =
[x — Vt) as V -> 0, which we know to be satisfactory in ordinary

classical mechanics.

Because there is no relative motion in the i/ and ; directions,

we assume that

1/ = I/' and z = z

As a simple possibility, we try the relation

x' = y{x - Vt)

(1-2)

(1-3)

where y is a factor that can depend on V or c, but not on x or t.

Now the equations of physics must have the same form in S and S';

so, changing the sign of V(to account for the difference in the direction

of relative motion) and interchanging primes and unprimes, we obtain

the inverse relation

X = y{x' + Vt') (1-4)

We find the relation between t and f' by substituting the value

of x' from Equation (1-3) into Equation (1-4):

Solving for f' gives t' = yt +

.r = )--(;(- vt) + yVt'

1-7'

yV
(1-5)

We evaluate )' by considering a flash of light that starts at

f = f' = at the origins O and O'. Light travels at the same speed c

in each frame, so at the later times t and f' the light will arrive along

the X axis at

In the S friime

(at lime t)

x = ct

In the S' frame

(at time t)

x' = ct'
(1-6)
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In the right-hand equation above, we substitute for x and f' from

Equations (1-3) and (1-5);

y(x - Vt) = cyi + c

yV

Solving for x gives

cyf + Vyl

1-r
yV

y-c

I -I-

^-H^-^

(1-7)

This will yield the expression x = ct \{ the factor in brackets equals 1.

V
1 + -

c

Solving for )' yields

= 1

r-

(1-8)

(1-9)

Inserting this into the relevant equations above, we obtain the Lorentz

transformation:

THE LORENTZ
TRANSFOR-
MATION
(where fi

= V/c)

x' + Vt' I- Wl

y =y

t' + Vx'lc^ f - Vxir
t = .

f =
v'l-^^ vT^rj

(I-IO)

The notation }' = l/Vl — V^/c' has become standard, so the Lorentz

transformation is frequently written as

THE LORENTZ
TRANSFOR-
MATION
(relative

velocity V)

'x = 7(1 -I- Vt') x = >'(i - Vt)

y = y'
y =y

2 = 2'
z' = 2

, i = y(t' + Vx'lc^) t' = y{t - Vx/c^))

' (i-n)
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APPENDIX K

Constants and Standards*

Quantity Symbol Value Units

Uncertain t>'

(parts per million)

Speed of light in vacuum
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APPENDIX L

Terrestrial and

Astronomical Data

Data of the Solar System"

Terrestrial

Equatorial radius

Polar radius

Radius of sphere having

the earth's volume

Volume

Mean orbital speed

Sidereal rotation period

Tangential speed of

rotation at equator

Solar constant (average solar

power incident

perpendicularly on

unit area)

at top of atmosphere

6.378 X lO" m

6.357 X 10* m

6.371 X 10* m

1.083 X 10^' m^

2.977 X 10* m/s

86 164 s

465.1 m/s

1.37 X 10^ W/m^
at earth's surface (average) 0.84 x lo' W/m" = 1.13 hp/m-^

Astronomical

I

Solar power output (luminosity)

Solar surface temperature

Number of stars in the

Milky Way

Distance of sun from center

of Milky Way

Diameter of Milky Way

Total mass of Milky Way

Number of galaxies in the

observable universe

Distance to edge of the

observable universe

Age of universe

3.86 X 10^* W
5780 K

~1.6 X lO"

~2.2 X 10^° m

~7 X IO^°m

~1 X lO*' kg

-10'

~10-^"'m

1.5

Body
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APPENDIX M
SI Units

The General Conference on Weights and Measures has developed Le

Systeme International d'Unites, abbreviated SI, a system of units that

has been adopted by almost all industrial nations of the world. It is

an outgrowth of the MKSA (meter-inlogram-second-fimpere) system.

SI units are divided into three classes: base units, derived units, and

supplementary units. Although such a division is not logically essential,

it does have certain practical advantages. The General Conference

meets from time to time, occasionally revising or adding to the list

of official standards. The following information is from the second

revision (1973) of the publication NASA SP-7012, available from

the Superintendent of Documents, U.S. Government Printing Office,

Washington, D.C. 20402.

SI Derived Units

Names and Symbols of SI Units

Quantity Name of Unit (Symbol)

SI Base Units

length

mass

time

electric current

thermodynamic temperature

luminous intensity

amount of substance

meter (m)

kilogram (kg)

second (s)

ampere (A)

kelvin (K)

candela (cd)

mole (mol)

S/ Derived Units

area

volume

frequency

mass density (density)

speed, velocity

angular velocity

acceleration

angular acceleration

force

pressure (mechanical stress)

kinematic viscosity

dynamic viscosity

work, energy, quantity of heat

power

quantity of electricity

potential difference,

electromotive force

electric field strength

electric resistance

capacitance

magnetic flux

inductance

square meter (m^)

cubic meter (m'')

hertz (Hz, s"')

kilogram per cubic

meter (kg/m^)

meter per second (m/s)

radian per second (rad/s)

meter per second squared (m/s )

radian per second squared

(rad/s-)

newton (N, kg m/s")

pascal (Pa, N/m")

square meter per second (m'/s)

newton-second per square

meter (N-s/m'^)

joule (], N-m)

watt (W, J/s)

coulomb (C, A • s)

volt (V, W/A)

volt per meter (V/m)

ohm {Q, V/A)

farad(F, A-s/V)

weber (Wb, V-s)

henry (H, V-s/A)

magnetic flux density

magnetic field strength

magnetomotive force

luminous flux

luminance

illuminance

wave number

entropy

specific heat capacity

thermal conductivity

radiant intensity

activity (of a radioactive source)

tesla (T, Wb/m^)

ampere per meter (A/m)

ampere (A)

lumen (Im, cd-sr)

candela per square meter

(cd/m-)

lux (Ix, Im/m^)

1 per meter (m~ ')

joule per kelvin (J/K)

joule per kilogram kelvin

IJ/(kg-K)|

watt per meter kelvin

[W/(m-K)l

watt per steradian (W/sr)

I per second (s"')

SI Supplementary Units

plane angle

solid angle

radian (rad)

steradian (sr)

Definitions of SI Units

meter (m)

The meter is the length of the path traveled by light in vacuum during

a time interval of 1/ 299 792 458 of a second.

kilograin (kg)

The kilogram is the unit of mass; it is equal to the mass of the inter-

national prototype of the kilogram. (The international prototype of the

kilogram is a particular cylinder of platinum-iridium alloy which is

preserved in a vault at Sevres, France, by the International Bureau of

Weights and Measures.)

second (s)

The second is the duration of 9 192 631 770 periods of the radiation

corresponding to the transition between the two hyperfine levels of

the ground state of the cesium-133 atom.

ampere (A)

The ampere is that constant current which, if maintained in two straight

parallel conductors of infinite length, of negligible circular cross section,

and placed 1 meter apart in vacuum, would produce between these

conductors a force equal to 2 x 10 " newton per meter of length.

kelvin (K)

The kelvin. unit of thermodynamic temperature, is the fraction 1/273.16

of the thermodynamic temperature of the triple point of water.

candela (cd)

The candela is the luminous intensity, in the perpendicular direction, of

a surface of 1/600 000 square meter of a blackbody at the temperature

of freezing platinum under a pressure of 101 325 newtons per square

meter.

mole (mol)

The mole is the amount of substance of a system which contains as

many elementary entities as there are carbon atoms in 0.012 kg of

carbon- 12. The elementary entities must be specified and may be

atoms, molecules, ions, electrons, other particles, or specified groups

of such particles.

G
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newton (N)

The iiewton is thai force which gives to a mass of I kilogram an ac-

celeration of 1 meter per second per second.

joule (])

The joule is the work done when the point of application of I newton

is displaced a distance of 1 meter in the direction of the force.

watt (W)

The wntt is the power which gives rise to the production of energy

at the rate of I joule per second.

volt (V)

The volt is the difference of electric potential between two points of a

conducting wire carrying a constant current of 1 ampere, when the

power dissipated between these points is equal to 1 watt.

ohm iil)

The ohm is the electric resistance between two points of a conductor

when a constant difference of potential of 1 volt, applied between

these two points, produces in this conductor a current of 1 ampere,

this conductor not being the source of any electromotive force.

coulomb (C)

The coulomb is the quantity of electricity transported in 1 second by

a current of I ampere.

farad (F)

The farad is the capacitance of a capacitor between the plates of which

there appears a difference of potential of I volt when it is charged by

a quantity of electricity equal to 1 coulomb.

hemy (H)

The henry is the inductance of a closed circuit in which an electromotive

force of 1 volt is produced when the electric current in the circuit varies

uniformly at a rate of 1 ampere per second.

weber (Wb)

The weber is the magnetic flux which, linking a circuit of one turn,

produces in it an electromotive force of I volt as it is reduced to zero

at a uniform rate in I second.

lumen (Im)

The lumen is the luminous flux emitted in a solid angle of 1 steradian

by a uniform point source having an intensity of I candela.

radian (rad)

The riidiiin is the plane angle between two radii of a circle which cut

off on the circumference an arc equal in length to the radius.

steradian (sr)

The steradian is the solid angle which, having its vertex in the center

of a sphere, cuts off an area of the surface of the sphere equal to that

of a square with sides of length equal to the radius of the sphere.

Units Outside the International System

Though not official SI units, certain other units are in widespread use

with the International System of Units.

Units in
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A-18 Answers to Odd-Numbered Problems for Chapters 1-23

5A-11 14.8°

5A-13 1.63 m/s^

SB-IS (a) 6.00 lb (b) 53.r below the horizonlal

(c) a straight line

5B-17 (b)359N

5B-19 (a) 0.102 s (b) 0.0255 m
5B-21 (a)20.0ft/s^ (b) 1875 lb (c) 1125 lb

5A-23 (a) 170 N (b) 170 N
5A-25 }.00 lb

SA-27 0.39 N
5A-29 (a) 0.300 m/s^ (b) 0.900 N

5B-31 t = 2n
/i iO

5B-33

5B-35

5B-37

5B-39

5A-41

5A-43

5A-45

5A-47

5B-49

5B-51

5B-53

5B-55

5B-5 7

5B-59

5B-61

5B-63

5C-65

5C-67

5C-69

5C-71

5C-73

5C-75

(a) 2.05 kg (b) 16.0 N
(an0.7ft/s- (b) 5.33 lb (c) 3.27 ft/s

(a)4.90m/s- (b)1.96m/s^

4.70 kg

(a) 8.40 N (b) 15.7 N
7.00 s

0.364

0.732

28.7 m
7.54 lb

(a) 0.204 (b) 90.8 N
4343 lb

(b) gR/v-

Answer given.

31.4 N
(a)600N (b)nOON
(a) 4.92 N (b) 16.7 N
0.143 m
Answer given.

(a) 403 lb (b) 11.4

Answer given.

0.209 rev/s

(c) 297 lb

Chapter 6

6A-1



Answers to Odd-Numbered Problems for Chapters 1-23 A-19

(b) 3900 N;

8B-9 7.22 m/s; - 48.4°

8B-11 e = tan"'i:

8B-13 2.93 ft/s; 47° north of east

8B-15 13.0 kg- m/s; 202.6° counterclockwise from the -l-.r direction

8B-17 Answer given.

8B-19 0.0466

8A-21 900 N, opposite to the particle's original velocity

8A-23 (a) 1.20 X 10* kg-m/s (b) 2.40 x 10* N
8B-25 6.38 N-s upward

8B-27 7.80 m/s

8B-29 (a)4.37 X 10"*s (b) 0.153 m (c) 1.22 X 10" '
J

(d) 1.23 X 10^
]

8B-31 (a) 7.80 kg-m/s; 22.6° above the horizontal

22.6° above the horizontal

8A-33 200 N
8A-35 (a) 1.88 N (b) 3.75 N
8B-37 4.00 X 10^ N
8A-39 535 m/s

8B-41 (a) 3.48 X 10* N (b) 1659 kg/s

8C-43 (a) 338 m/s (b) 56.3 N
8C-45 (a) (M - m)/M

8C-47 Answer given.

8C-49 nmg{t+

8C-51 0.368M

Chapter 10

Chapter 9

9A-1 (a) -0.167 m/s (b) 0.333 m/s

9A-3 (a) 42.9 m/s, 37° south of west (b) 7720 ]

9A-5 No; 2.80 J lost

9B-7 (a) vTil m/s (b) 57.4 m/s (c) 97.6%

9B-9 Answer given.

9B-11 1.81 m/s, 2.27 m/s

9A-13 0.200 m
9A-15 (T^m,p3m)

93-17 5.35 m
9A-19 (a) 30 m/s, horizontal (b) 21.2 m/s, 45° below horizontal

9B-21 Answer given.

9B-23 Answer given.

9B-25 7.28 m/s

9B-27 (a) 3.00 m/s (b) 3.00 m/s (c) 608 ] and 824 ]

(d) and 216 J

9B-29 216 J

9C-31 (a

M-

9C-33

9C-35

9C-37

9C-39

9C-41

9C-43

9C-45

9C-47

9C-49

M +m
AM\lg^lm

(a) 65.2 m/s

sjl - d/h

(3.46 ft,3.00 ft)

Answer given.

(b) the same as (a)

(b) 0.458

- 0.667 m/s; Vg = 0.800 m/s

2.21 m/s

(a) |t) (b) ^^lv

{a)- ^v (This is a quantitative response to

lOA-1

lOA-3

lOA-5

lOA-7

lOB-9

lOB-11

lOA-13

lOA-15

lOA-17

lOA-19

lOB-21

lOB-23

lOB-25

lOB-27

lOB-29

lOB-31

lOB-33

108-35

lOB-37

lOB-39

lOC-41

lOC-43

lOC-45

lOC-47

lOC-49

lOC-51

lOC-53

lOC-55

lOC-5 7

lOC-59

(b) 173 N toward right, 100 N up

(a) 1.50 m (b)24.0N-m

(a) 2bF (b) 2bF

Answer given.

//2

R/12

6.19 ft

(a) 200 N
3.17 ft

Ainswer given.

Answer given.

= tan" '(////,)

(a) 1011 N (b) 854 N, 14.2° above horizontal

(a) 214 N (b) 369 N, 54.5° above horizontal

ba + Jl)

515 N
(a) 277 lb

Answer given

e = tan"'

(a) N^ =

15.9°

446 lb

Answer given.

Answer given.

(a) 17.6 N (b) 42.9 N
Answer given.

Answer given.

(0,3fl/4)

Answer given.

1.04 T

(b) 260° at 67.7° with respect to horizontal

/^k

N« 60 N (b) 16.4 N

(c) 13.3 N, 41.0° from vertical

Chapter 11

(a) 3.14 X 10"* m/s (b) 1.75 x 10 ' rad/s

hour hand: ^ x 10"* rad/s; astronaut: 1.05 x 10"^ rad/s;

minute hand: 1.75 x 10"'' rad/s; grindstone: 628 rad/s

(a) 17.4 s (b) 4.85 rev

13.5 s

llB-9 Answer given.

llA-11 43.4 rad/s

V [Ih
llB-13 — /—

llA-1

llA-3

llA-5

llB-7

llC-15 S = {R r)e/r

(c) 2mr (d) m/^

Chapter 8, Question 6.)

Chapter 12

12A-1 (a)2m/^ {h) m^^

12B-3 Answer given.

12B-5 Answer given.

12A-7 3.16 cm

12A-9 8.50 x lO"-'- kg-m-/s

12A-11 (a)0.320kg-m- (b) 0.960 kg- m'/s

12B-13 32.9 N-m in the — z direction

12A-15 0.480 N
12B-17 (a) 24.0 N-m (b) 3.56 x 10

12B-19 (a) T, = 24.2 N, Tj = 30.0 N

(c) 4.80 N

rad/s- (c) 1.07 m/s^

(b) 4.30 m/s

12B-21 (a)
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12B-23 (a) 6.25 rad/s" (b) 50 rad

12B-25 0.103 rad/s

12B-27 0.526 rad/s

12A-29 L'/2mR^

12B-31 2.87 rad/s^

12B-33 (b) 85.0 ft

12C-35 iMa-
12C-37 (c)2Mf^li

12C-39 376 kgm-
12C-41 (a) mjM (b) \[mMI(m + MJlD^fO^

12C-43 Answer given.

12C-45 (a) 0.506 kg (b) 60.4 N
12C-47 1.97 X 10"' lb

12C-49 Answer given.

12C-51 (a) 6/ (in units of Newton -meters if / is in seconds)

(b) 0.060f^ (in units of radians if ( is in seconds)

12C-53 Answer given.

12C-55 sligD sin

12C-57 2.20 m/s

12C-59 Du)o\[l

Chapter 13

13A-1 (a) 4.00 J (b) 2.00 J (c) 6.00 J

13A-3 5.96 m/s

13B-5 e = tan"'(7/i,/2)

13B-7 Answer given.

13B-9 Answer given.

13B-11 (a) 66.7 rad/s (b) 8.84 rad/s

13A-13 Mf^li

13B-15 g sin 0/(1 + fco^/R^)

13B-17 i5.i°

13B-19 (a) 7.48 m/s (b) 55.0°

13B-21 (a) 0.741 rad/s (b) counterclockwise

[n(R-r)l/4

h = lR

a = F/{M + m/i]

47
(b)
—
11

sin"'(r/R)

13C-33 Answer given.

13C-35 j/

13C-37 (a) 5!)o/7 (b) I2myo749/

13C-39 (a) 2Mg/3. down incline (b) R/2 from CM
13C-41 Answer given.

13C-43 (a) I'o/i (b) 0.500

13C-45 (a) fi = 197 N, Fj = 131 N
13C-47 Right

13C-23

13C-25

13C-27

13C-29

13C-31

Chapter 14

14A-1 2.2 m/s' upward

14A-3

14B-5

14B-7

16.0 ft/s^

11.7 m/s^

14B-9 (a) 20.6°

14B-11 5.5 N
14A-13 8.54 rpm

14A-15 50.4

(b) 3.20 lb

14B-17

14B-19

14B-21

14C-23

14C-25

14C-27

14C-29

14C-31

14C-33

14C-35

14C-37

14C-39

14C-41

South, 60° above the horizon

(a) a radially inward friction force: /, = 4.00 x 10""' N
(b) the above, plus an outward centrifugal force: F^.f

=
4.00 X 10' * N (c) TURNTABLE'S FKAME: the forces in (a) and

(b) plus a Coriolis force Fc„r = 8.00 x 10 * N toward the

bug's right and an equal and opposite tangential friction

force component /, = 8.00 x 10 * N toward the bug's left

(d) INERTIAL FRAME: only the two friction components: /,
=

4.00 X 10"' N radially inward and /,
= 8.00 x 10"* N

tangentiaily toward the bug's left

5N/m
(a) 10.6 ft

g tan 20

F/(M + 2m/7)

Answer given.

7.5 N, toward the left

(a) 20 N, radially outward (b) 80 N, radially outward

(c) 180 N, radially inward

(a) zero (b) mwR, inward

Answer given.

(a) 4mwv (b) westward

Chapter 15

15A-1 (b) 0.942 m/s, at midpoint

at extremities

15B-3

15B-5

15B-7

15A-9

(a) 0.020 m
(c) 17.8 m/s-

0.0356 m
inYA/g
(a) 0.910 s"' (b) 0.588 N
(a) 0.50 s (b) 79.0 lb/ft (c) 6.28 ft/s (d) 79.0 ft/s^

(e)9.88ft-lb (f) 5.45 ft/s (g) 39.5 ft/s^

(b) 0.210 s

(b) 1.42 s"'

(b) 1.03 m/s

(b) -0.0654 m

(b) 7.37 s

15A-11 (a) 1.19 Hz

15B-13 (a) 8.17 cm

15B-15 (a) 0.0280 J

15B-17 (a) 0.10 m
(e) 0.0160 I

15A-19 (a) 0.130 Hz

15B-21 Answer given.

15A-23 19.9 s

15B-25 1.58 s

15B-27 0.790 Hz

15B-29 (a) 3.559 Hz

15A-31 1.104 cm'

15A-33 952 N/m^

15B-35 AY/Lq

15C-37 (a) ik, 1.5ic

15C-39 4ms//

15C-41 Answer given.

15C-43 Answer given.

15C-45 Answer given.

15C-47 7lM-ffl

15C-49 (a) 0.149 m (b) 132

15C-51 (h) (y/2){AL/Lf

c) 0.784 N downward

(d) 0.0123 ](c) 0.0158 J

(c) 0.262 s (d) 0.0160 J

(b) 3.554 Hz; 1.38 s

(b)V2:l

Chapter 16

16A-1 (a) 3.32 x 10"

16A-3 g/9

16A-5 35.0 N

' N (b) 5.92 x 10 ' N
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16A-7

16A-9

16B-11

16B-13

16B-15

16B-17

163-19

16B-21

16A-23

16B-25

16B-27

16A-29

16A-31

16B-33

16B-35

16B-37

16B-39

16C-41

16C-43

16C-45

16C-47

16C-49

16C-51

16C-53

16C-55

16C-57

18.8 mi/s

2.41

An^IGm, 3.00 x 10"''' s^/m'

(a) 84.4 min (b) 7.90 km/s

8.74 X lo'' m
1.62 X 10-'' kg

1.9lGm,y^, toward diagonally opposite comer

Answer given.

Chapter 18

(a) 1.32 X lO'^ m/s-

(c) 7.70 X 10""
J

V'(GM/R)(2- V2)

2380 m/s

4R/3

iGm^l/'

s/lRgd + R/r)

Answer given.

Answer given.

Vl257l/3Gp

(b)9.21 X lO" N

(b) m^D^liCM
(b) 6.54 X 10"^

Gm^lil-

iJWlGM
T = 27t Vk'/GM = 84.5 min

1.41 h

GMin
3 - I

2R

Gm (M

Chapter 17

(b) 667 kg/m^

(b) 59.8 N

17B-1 90.0%

17B-3 Answer given.

17A-5 50 lb

17A-

7

20 cm

17B-9 (a)5000kg/m^

17B-11 (a)2704kg/m^

17B-13 55.5 lb/ft'

17B-15 4.00 mg
17B-17 AV/V = 0.0830

17A-19 1.77 X 10"^ m^s
17A-21 40 cm/s

17B-23 7.71 Ib/in.^

17B-25 4.49 atm

17B-27 pAv-

17B-29 (a) 7.67 m/s (b) 2.80 mm
17B-31 Answer given.

17C-33 ij/'/g

17C-35 0.933

17C-37 (1 - l/y/l)

17C-39 (1 - I/V2)

17C-41 Answer given.

17C-43 T= InJm/pAg

17C-45 Answer given.

17C-47 27.3 cm'/s

17C-49 H/2

>-3 ,-1

18A-1 (a) 2.27 x 10 ' s (b) 0.782 m
18A-3 Answer given.

18A-5 8.33 cm

18B-7 A = 7 X 10""* m, k = 3.14 m"', co = 6.28 x 10~ " s

18B-9 (a) 1.27 Pa (b) 170 Hz (c) 2.00 m (d) 340 m/s

18B-11 18.56 m
18B-13 860 m
18A-15 2.94 X 10"'*J/cm^

18B-17 1.13 //W

18B-19 Answer given.

18B-21 (a) 565 Hz (b) A sound of descending pitch.

18A-23 2.07 N
18A-25 (a) 515 Hz (b) 4.13 cm

18A-27 (a) 0.773 m (b) 1.55 m (c) 330 Hz (d) 220 Hz

18A-29 870 Hz, 2610 Hz

18B-31 (a) 34.8 m/s (b) 0.977 m
18B-33 800 Hz

18A-35 19.9 m/s

18B-37 (a) I09I Hz (b) 1100 Hz (c) 1000 Hz

18A-39 28.4°

18B-41 5.64 Hz

18C-43 Answer given.

18C-45 3.14 m/s, 9.87 x lO' m/s^

18C-47 B = 2.47 X 10" N/m^

5= 1.25 X 10" N/m^

18C-49 (b) V = Rw
18C-51 (a)+6.99dB (b) 2.24

18C-53 p = 4.00 X 10"^ kg/m, 2.50 cm long

18C-55 12.6 m/s^

18C-57 60.0 Hz

18C-59 0.335 cm

Chapter 19

19A-1 40.0°C

19B-3 Answer given.

19A-5 Add 7.20 mm
19A-7 3 X 10"VC
19B-9 2.17 X lO'N

19B-11 0.0191 gal

19A-13 6.44 k]

19A-15 0.463 k]/kg-C°

19A-17 0.103 cal/g-C°

19A-19 0.122 kg

19B-21 0.126 kJAg-C°

19B-23 87.5

19B-25 Answer given.

19A-27 557 J/s

19A-29 1.38 X 10^
I

19B-31 (a)290g (b) 42.9 g

19B-33 Answer given.

19B-35 Answer given.

19B-37 (a) 8.44 kW;

19A-39 5.00W/m^-C°

19B-41 2.84 ]/s

19A-43 (a) 61.1 kW-h

19A-45 (a) -28.3°C, 244.7 K

(c) 37.0°C, 310.0 K

(b) $162 (!)

(b) $3.67

(b) 5.56°C, 267.4 K
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19A-47 (a) -32.8°F (b) 192.2°F (0-178.6°? (d) 167°F

19C-49 Answer given.

19C-S1 (a) 13.9 cm (b) 2.6 x 10"' (C°)"
'

19C-53 8.0039 cm

T,A, Aj, + Tik-,Ax,

itj Axi + ki 0X2

19C-57 Answer given.

19C-59 3.52 X lO* s = 9.78 h

19C-61 Answer given.

19C-63 Answer given.

Chapter 20

ZO-A-l 48.5 L

20A-3 (a) 4.48 m' (b) 5.60 kg

20A-5 1.63 ft'

20A-7 12.0 L

20A-9 27.8 Ib/in.-

20A-11 38 100 lb, or about 19 tons!

20A-13 (a) 1.10 X 10^° electrons (b) 1.82 x 10* mol

20A-15 8.01 km

20B-27 (a)0.489al:m (b) 0.888 kg/m'

20B-19 244 ft'

20B-21 on the average, 59.0 atoms

20B-23 on the average, 3.48 molecules

20B-25 (a) 2.56 atm (b) 16.1 m
20B-27 Answer given.

20B-29 (a) 4.14 x 10" '**
I (b) 7.04 x 10^ m/s

20A-31 5.80 X lO' K
20B-33 Answer given.

20B-35 (b) 10.8% of the escape speed

20B-37 (8.28 X 10"^/') N/m" (with / in meters)

20C-39 8.22 X 10"' collisions 's

20C-41 mv^lif^

20C-43 Answer given.

20C-45 w = vOjx

20C-47 385 m/s, 417 m/s

20C-49 (a) 1.77 cm (b) 12.6°C

20C-51 63.4°C

Chapter 21

21A-1

21A-3

21A-5

21B-7

21B-9

21B-11

(d) 0.0896 L(a) 209 J (b) 209 J (c)

(a) 0.144 atm (b) 157 K

(a) 0.160 atm (b) 131 K

(a)546K (b)4538] (c) 1.13x10*] (d) 6806 ]

Answer given.

2.09 X lO* J

21B-13 Answer given.

21A-15 2.93R

21B-17 (a)216°C (b) 0.178 L

21B-19 4.14 X 10 -'J

21A-21 56.1

21C-23 Answer given.

21C-25 (a) 70.2 I (b) 36.0 J (c) 208.3 J

(e) -36.0 J (f) 16.6]

21C-27 (a)47.3] (b) 1.61 x lO"* m'
la

(d) -53.6]

(c) 13.5 J (d) 33.8 ]

21C-29 (b)|t

Chapter 22

22A-1 150]

22A-3 14.2%

22A-5 280 K

2 2A-

7

5.76%

22B-9 (a) 44.6% (b) 25%

22B-11 -5.40°C

22B-13 Answer given.

22B-15 (a) 414 J (b) 4600 ]

22B-17 (a) 0.99 ] (b) 3.45 ]

22B-19 1.97 X lO' ]

22B-21 (a) 370 persons (b) $14 800.00 (c) $4.80

22B-23 (a)fPoV'o (b) 22.2%

22B-25

22C-27 (a) 12.4 (b) 2.07 x 10'
J (c) 6.00 x 10^

]

(e) 1.33 L

22C-29

22C-31 1

22C-33

22C-35

22C-37

-1)

13

(a) 12.4

(d) 2.32 L

173 W

(a) a: 4.92 L; h: 1.67 atm; c: 6.69 L, I,, = 408 K

(b) 52.7 J

Answer given.

iOO N, 400 N

Chapter 23

23A-1 -24.2 J/K

23A-3 123 ]/K

23A-5 5.27 ]/K

23A-7 12.6 J/K

23B-9 Answer given.

23B-11 ~5 X 10-' ]/K

23B-13 Answer given.

23C-15 3807 ]

23C-17 Answer given.

23C-19 (b) wf[(T, + T,) - 2VT2T1 ]

23C-21 Answer given.

23C-23 Answer given.

23C-25 (a) 588 ] (b) zero (c) 1.96 ]/K (d) 1.96 ]/K

23C-27 8)cln2

23C-29 2.40 X lO'^'l/K-h
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Answers to Odd-Numbered
Problems for Chapters 24—45

Chapter 24

24A-1

24A-3

24A-5

24B-7

24B-9

24B-11

24A-13

24B-15

24A-17

24B-19

24B-21

24C-23

24C-25

24C-27

24C-29

24C-31

649 kg

2.27 X lO'^

110 N at 157° from the +x axis

2,51 X 10^'° (or about I in 4 billion)

at I = 0.817 m
9.55 electrons

4.90 X 10^^ C

y = (qEo/2mvo^)x^

1.70 X 10~'°m
Q/4neod{d + L)

Answer given.

Answer given.

Answer given.

W = Q-i8KEgR

3.67 cm

2n sJmfllqE

24C-33 d
n

2oi

eE„
f

tnuj V 2 J

24C-35 (a) E^ = /iL''47t£o«\'L- + a'

(b) £, = (//47t£o)l(l/fl) - (l/V^

Answer given.

Answer given.

37r

2(.(j

e£oV2

«')]

24C-37

24C-39

24C-41 £ = (Q/4n^E(,R2) sin(('"/2R), away from the remaining

segment

Chapter 25

25A-1



A-24 Answere to Odd-Numbered Problems for Chapters 24-45

Chapter 28



Answers to Odd-Numbered Problems for Chapters 24-45 A-25

31C-35 Answer given.

31C-37 /(qN//^

Chapter 32

32B-1 30 V, clockwise

32B-3 S =
f

32B-5 Answer given.

32B-7 3.38 A/s

32A-9 Answer given.

32A-11 NfionR/2

32B-13 (a) 360 mV (b) 180 mV
32A-15 (a) /(oN,M//, /(qN^M//

32B-17 M = HqAN^NJ^
32B-19 (a) VII

32B-21 Answer given.

32A-23 145 I/m^

32B-25 (a) 10 W (b) 20 W (c)

32C-27 (a) 0.171 mV (b) East

32C-29 (b) 0.458 mV
32C-31 (a) b to n (b) AQ = NAO/R
32C-33 3.08 /<C

32C-35 (a) CTtn"*. (b) the top plate

32C-37 0.132 /(A

32C-39 Answer given.

32C-41 Answer given.

32C-43 Answer given.

32C-45 /io/"/l67t

32C-47 Answer given.

(c) 3.00 s

(d) 20 ]

(c) B = QRINA

Chapter 33

33A-1 88.6 mA
33A-3 318 A
33B-5 Answer given.

33B-7 (a) 0.0251 T (b) 10.0 A
33B-9 1.48 mC

Chapter 34

34A-1 Answer given.

34A-3 Answer given.

34B-5 (a) V = 24.1 sin 377f

(b) Plane of the loop is perpendicular to B.

34A-7 (b)3.2 X 10""
J

34B-9 (b) V = 8.32 sin(1000f + 33.7°) (in SI units)

34B-11 (a) 173 ft (b) 8.66 V
34B-13 Answer given.

J4B-15 I = 2.11 sindO^f + 71.6°)

34A-17 100

34A-19 46.5 pF to 419 pF

34B-21 Answer given.

34A-23 t) = 170 sin(377f) V
34A-2S 122 W
34B-27 Answer given.

34B-29 Answer given.

34B-31 (b) 141 V (c) 36.2 mA (d) 109 V (e) 90.5 V
34B-33 (a) 211 /iF (b) 979 W

34B-35 (a) 5.00 A (b) 2.77 A (c) 2.77 A
34A-37 (a) 20.0 V (b) 0.660 A
34A-39 (a) 1.82 x lO* A (b) 909 A
34C-41 (b) 82.1 V (c) - 70.8 V (d) 53.1 V (e) 64.4 V
34C-43 Answer given.

34C-45 Answer given.

34C-47 2000 A/s

34C-49 Answer given.

34C-51 Answer given.

34C-53 i = 40.8 sin(wf + 25.6°)

34C-55 239 mH
34C-5 7 (a)100/(F (b) 632 rad/s (c) 125 W (d) 39.5 V

(e) 150 fif, in parallel

34C-59 Answer given.

Chapter 35

35A-1

35B-3

35B-7

35A-9

35B-11

35A-13

35B-15

35B-17

35B-19

35A-21

35A-23

35B-25

35C-27

35C-29

35C-31

35C-33

35C-3S

35C-37

3SC-39

35C-41

,-'.

30.0 cm (about one foot)

Answer given.

for r < R:.(2rC/R-)dV/dt x 10'

for r>R: {C/r)dV/dl X W''
Answer given.

377 Q
(a) 1.67 X 10'^ T (b)3.32 X 10'- W/m^
(a) (2 X ]0"^)sin(fa:- lO'^Oi (b) 1.88 x 10"''

m

(c)1.59 X W'^J/m^
(a) 1.20 m (b) H = 2.36 x lO' J/m^

(c) £o = 2.31 X 10* V/m
Answer given.

8.97 X 10"' N
5.60 X 10''*N/m^

(a) 1900 V/m (b) 5.00 x 10" "
J

(c) 1.67 X 10""kg-m/s
(a) 1.88 X 10"'°cos377f

(b) 1.00 X 10"*cos|("
~"

Answer given.

Answer given.

21.9 V/m

(a) 292 nm
Answer given.

Answer given.

(a) 22.6 h (b) 30.5 s

is|(3.77 X 10*)fl

Chapter 36

36A-1 Answer given.

36B-3 Answer given.

36B-5 (30,-40), (-30,40), (-30,-40), all in cm

36A-7 (a) 1.09 cm inside (b) erect, virtual, M = 0.273

36A-9 (a) 7.50 cm (b) oo

36B-11 9.23 cm

36B-13 8.00 cm

36C-15 Answer given.

36C-17 40.0 cm

36C-19 Answer given.

36C-21 for p = 228 cm, the image is inverted, real, and M = —0.123

for p = 21.9 cm, the image is erect, virtual, and M = 8.12

36C-23 Answer given.

36C-25 (a) 30.0 cm (b) 1.67

36C-27 real, erect, unit magnification



A-26 Answers in i\l.l Numbered Problems for Chapters 24-45

Chapter 37

-51.7cm

37A-1 M = 1.52

37B-3 Answer given.

37B-5 0.624 cm

37B-7 (a) 20.6° (b) 0.400 sr (c) 35.4°

378-9 1.51

378-11 2.14 sr

378-13 17.0%

37A-15 R

378-17 2.00

378-19 3.57 mm outward

37A-21 26.7 cm

378-23 If

37A-25 (a) 0.436 mm (b) 0.0125

37B-27 (a) 17.2 cm (b) 51.7 cm (c)

(d) -17.24 cm

378-29 (a) 42.0 cm (b) 14.0 cm

37.'\-31 (a) 24.0 (b) 48.1°

378-33 (a) -1-3.50 diopters (b) 28.6 cm

378-35 18.2 cm to 66.7 cm

37C-37 Answer given.

37C-39 Answer given.

37C-41 Answer given.

37C-43 (a) 20.8 km (b) 113 million;

37C-45 From front of sphere: (a) 2.67K

37C-47 Answer given.

37C-49 (L^ - 4/L)''^

37C-51 Answer given.

37C-S3 Answer given.

37C-55 (a) 20 cm behind the lens, virtual, inverted, M = — 2

(b) on the object side of the lens

37C-5 7 real, inverted image 0.174 m beyond the convergent lens;

M= -0.42

37C-59 Answer given.

(c) 2.63 |(s

(b) 1.80R (c) 0.960R

Chapter 38

38A- 1 5.00 mm
38A-3 1.33 mm
388-5 Answer given.

388-7 (a) 1034.4827 wavelengths

(b) 62.1°, lagging the uninterrupted beam

388-9 six

388-11 dark

388-13 (a) 2.73£o, 30° (b) IEq. 60° (c) 0, not defined

38A-15 (a) 105 nm (b) 1.30

38A-17 199 nm
388-19 (a) green (b) red

388-21 99.6 nm
388-23 113

388-25 1.31

388-27 18.7 cm

38C-29 Answer given.

38C-31 Answer given.

38C-33 Answer given.

38C-35 Answer given.

38C-37 Answer given.

38C-39 (a) 0.155A/rf (b) 0.500A/d

38C-41 543 nm

38C-43 Answer given.

38C-45 1.000 30

Chapter 39

39A-1



Answers to Odd-Numbered Problems for Chapters 24-45 /\.-27

41B-25 Answer given.

41B-27 Answer given.

41B-29 Answer given.

41B-31 Answer given.

41B-33 Clock in nose earlier by 270 mjc or 9.00 x 10"^
;

41B-35 (b) 80 m/c

41C-37 (a) 1.33C-S (b) 3.00 s

41C-39 (a) 2.00 m/c (b) 2.50 m/c

41C-41 Answer given.

41C-43 Answer given.

41C-45 5.55 X 10"'^
s

41C-47 V =

(b)p =

(where ji = v/c)

4uEJc (c) /( = vH41C-49 (a) K = 4£o

41C-51 Answer given.

41C-53 Answer given.

41C-55 Answer given.

Chapter 42

42A-1 1.51 cm-

42B-3 0.646%

42A-5 9660 nm
42A-7 5222 K
42A-9 2.43 x 10"'^ m

42A-11 Answer given.

42B-13 3.54 X 10*' m (about the distance between New York and

London!)

42A-15 451 nm
42A-17 (a) 3.56 X 10^ m/s (b) 432 nm
42A-19 4.85 pm
42A-21 128 MeV
42B-23 Answer given.

42B-25 Answer given.

42C-27 Answer given.

42C-29 Answer given.

42C-31 i6.i m
42C-33 Answer given.

42C-35 Answer given.

42C-37 (b) 2.27 x 10"'^ J/m^

42C-39 Answer given.

42C-41 288 keV

42C-43 Answer given.

42C-45 Answer given.

42C-47 Answer given.

42C-49 Answer given.

Chapter 43

43A-1





Photograph and
Illustration Credits

Chapter 2

Fig. 2-3: National Institute of Standards and
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Chapter 3
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Chapter 5
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tory, University of California.

Chapter 10

Fig. 10-24: Lacy Atkins/Los Angeles Times.

Chapter 13
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Chapter 19
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Chapter 27
Fig. 27-3: Photo, A. Hudson. 27-5: Photo, A.

Hudson.

Chapter 28
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D. C. Heath and Company and Education

Development Center, Newton, MA. 30-7c:

L. A. Frank, University of Iowa. 30-7d:

Photo by Lee Snyder, Geophysical Institute,

University of Alaska, Fairbanks, ©1977.
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Chapter 31
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D. C. Heath and Company and Education
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Heath and Company and Education Devel-
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Chapter 33
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Chapter 34
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Chapter 37
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copyright 1976, McGraw-Hill. 39-8: From
Fundamentals of Optics by Jenkins and White;

copyright 1976, McGraw-Hill. Reproduced
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Fig. 40-4: A. Hudson and R. Nelson. 40-8:

Photo, A. Hudson. 40-9a: A. Hudson and

R. Nelson. 40-10: Photo, A. Hudson. 40-18c:
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and the U.S. Department of Energy.

Chapter 42
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ed., by W. M. Protheroe, E. R. Capriotti,

and G. H. Newsom; copyright ©1989 Mer-

rill Publishing Company, Columbus, OH.
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Albert Rose.
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John Wiley and Sons, 1949. 43-17b: H.

Raether, "Elektron Interferenzen," Hand-

buck Der Physik, XXXIl, Springer, Berlin,
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Fig. 44-9: Drawings constructed from com-
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William P. Spencer, MIT. 44-11: Graph
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Chapter 45
Fig. 45-1: Kevin C. Jones, RT; MRI Institute.

45-3: Reproduced with permission from the
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1-4 Index

Boyle's law, 474

Bragg, W. H. and W. L., 916

Bragg

reflection of x-rays, 916

scattering condition, 917

Brahe, Tycho, 369

Branch point, 658

Breakdown, electric field, 614

Breaking stress, 358

Breeder reactor, 1087

Brcnisatrahlu)!^ (x-rays), 1050

Brewster's law, 931

Bright-line spectrum, 1004

Browning motion, 545

Btu (British thermal unit), 451

Bubble chamber, 203

Bulk modulus, 360

Buoyant force, 399

Cadmium-113 ('"Cd), neutron capture by,

1080

Calculus, formulas, A-8

Calorie, 451

food calorie, 450

thermochemical, 451

Calorimeter, 453

Camera, 869

/-stop, 869

iris diaphragm, 869

pinhole, 872

Capacitance, 618

combinaHons of, 623

in parallel, 623

in series, 624

cylindrical capacitor, 620

electrolytic capacitor, 626

equivalent, 624

parallel-plate capacitor, 619

spherical capacitor, 621

variable capacitors, 622

Capacitive reactance, X^, 765

Capacitor, 618

charged, 628

energy stored in, 628

charging of, 671

combinations of

in parallel, 623

in series, 624

cylindrical, 620

discharge of, 672

electrolytic, 626

equivalent, 624

parallel plate, 619

spherical, 621

variable, 622

Carbon cycle, 1088

Carnot

cycle, 519

steps, 520

engine

efficiency, 523

table, 520

refrigerator, 524

theorem, 528

Cartesian coordinates, 41

plane polar, 41, 64

Cassegrain reflector, 841

Cavendish experiment, 378

Cavity radiation, 982

Planck's theory, 986

radiation law, 987

Rayleigh-Jeans

radiation law, 986

theory, 984

spectral

distribution curves, 983

energy density, 983

Wien's displacement law, 983

Wien's radiation law, 984

Celsius temperature scale, 444

Center of gravity

definition, 229

"negative" mass method, 233

X coordinate, 230

Center of mass, 213, 229

acceleration, 205

collisions, 205, 213

frame of reference, 213

kinetic energy, 211

location, 205

"negative" mass method, 233

Newton's second law, 294

velocity, 205

zero-momentum frame, 212

Centimeters of mercury, 396

Central force, 371

Centrifugal force, 322

Centripetal acceleration, 65, 66, 253

Cerenkov radiation, 434

Cesium-137 decay scheme, 1074

Change of phase, 451, 454

latent heat, 454

Characteristic line spectra, x-rays, 1051

Charles' and Gay-Lussac's law, 474

Charge

electronic, 558

by induction, 557

negative, 556

positive, 556

Charging, 671

Charm flavor, e-quarks, 1095

Chladni figures, 432

Circle of reference, simple harmonic

motion, 344

Circuits

AC (alternating current), 763

amplitude variations, 764

C only, 764

impedance, 772, 775

L only, 766

Ohm's law, 771

phase constant, 764, 770, 772

power, 781

R only, 764

RLC parallel, 775

RLC series, 768

resonance, 778, 780

steady-state, 770

transient term, 770

DC (direct current), 775

Kirchhoff's rules, 658

junction rule, 659

loop rule, 659

multiloop, 658

phase shifter, 790

RC (with battery), 670

RL (with battery), 741

root-mean-square (rms) values, 783

Circular motion, 64

kinematic equations, 254

Circular polarization, 934

Clocks

nonsynchronism of moving, 966

synchronization, 949

Coaxial cable, 636

Coefficient of performance, 524, 525

Coefficient of restitution, 219

Coherence, 879

Collider detector, Fermilab (CDF), 1102

Collision, 199

angular momentum, 278

center of mass, 205, 213

elastic, 200

inelastic, 200

Color

confinement (particles), 1096

by interference, 938

Combinations of capacitors

in parallel, 623

in series, 624

Combinations of resistors

in parallel, 655

in series, 655, 656

Comet, Mrkos, 817

Complex conjugate, 1043

Complimentarity principle, 1027

Compression and tension, 88

Compton
effect, 994

scattering, 995

shift, 995

wavelength, 995, 1056

Computerized tomography (CT), 1060

Concave mirror, 829

Condensation, 451

Conduction, heat, 456

Conductivity, 642, 648

electron, 641

drift speed, 641

Siemens, 642

thermal, table, 457

Conductor, 557

and Gauss's law, 591

and superconductor, 647

Conical solid angle, 595

Conservation of

angular momentum, 277

energy, 156

with friction, 170

linear momentum, 180

mechanical energy, 161

momentum, system of particles, 211

Conservative force, 156

definition, 157

and potential energy, 159, 160

Conservative system, 159
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Constant-volume gas thermometer, 463

Constants and standards, A-13

Constraint forces, 119

Containment, fusion reactor, 1090

inertial confinement, 1090

magnetic confinement, 1090

Continuity equation, 402

Continuous spectrum, x-rays, 1050

Convection

coefficients, table, 458

heat transfer, 458

Conventional current, 645

Convergent lens, 853

Conversion factors, A-2

Conversion of energy, 143

Conversion of units, 11

Convex mirror, 829

Conveyor belt, 189

Cooling, Newton's law, 472

Coordinate systems, 13

Cartesian^ 41, 48

plane polar, 64

right-handed, 48

two-dimensional, 41

Coriolis force, 322, 325

Corner reflector, 828

laser ranging retroreflector, 828

Correspondence principle, 1010

Coulomb (unit), 557

Coulomb's law, 557, 558

Couple, 302

Coupling

L-S, 1039

alternate quantum numbers, list, 1040

spin-orbit, 1039

Covariance, principle of, 974

Critical mass, 1087

Critical temperature, 477, 647

Cross section, nuclear, 1079

barn (unit), 1079

Curie (unit), 1068

Current, electric, 638

conductivity, 648

conventional, 645

density /, 648

direction, 639

resistance, 641

Current loop

in external magnetic field, 754

magnetic field of, 715, 724

Curvature of spacetime, 974

Curvilinear motion, 69

Cutoff wavelength, x-rays, 1050

Cyclotron, 690

frequency, 688

Cylindrical capacitor, 620

D
Damped oscillations, 352

damping coefficient, 352

equation of motion, 352

resonant frequency, 355

Dark matter, 1101

Daughter nuclide, 1070

Davisson-Germer experiments, 1013

DC Circuits. See Circuits, DC.
de Broglie, Louis, 1011

de Broglie wave, 1011

wavelength, 1012

for electrons, 1015

matter waves, 1012

phase waves, 1012

Decay constant \, 1066

Decay series, radioactive, 1078

Decibel, 424

Definite integrals, A-9

Deformation

length, 359

shear, 359

volume, 359

Degree of freedom, 508

Del, 609

Delta-wye transformation, 680

Density, 394

electric current, 648

specific gravity, 394

table, 394

weight, 394

Derivative

partial, 608

of vectors, A-9

Detection of charged particles, 1084

Deviation, angle of (prism), 875

Dewar flask, 462

Diamagnetism, 754

Dielectric, 624

constant, 626

table, 626

nonpolar, 625

polar, 625

strength, 626

table, 626

Diesel engine, 526

Differentiation

formulas, A-8

of vectors, A-9

Diffraction

Fraunhofer, 900

circular aperture, 907

half-wave zones, 901

minimum angle of resolution, 907

rectangular aperture, 905

single-slit, 900, 902, 904, 905

Fresnel, 900

of circular aperture, 918

of zone plate, 918, 920

grating, 909

dispersion, 914

Fraunhofer lines, 910

resolving power, 914

hologram, 921

Laue-spot pattern, 917

pattern

of circular aperture, 918

of opaque disk, 918

by particles, 1015

of various objects, 919

by x-rays, 1015

single-slit

formula, 902

minima, 904

pattern, 905

phasors, 902

x-ray

Bragg reflection, 916

Bragg scattering condition, 917

Dimensional analysis, 28

Diopter power, 856

Dipole antenna, 808

pattern, 809

Dipole, electric, 565

electric field of, 566, 568

far-field approximation for, 567

moment, 567

in nonuniform field, 569

potential, 609

potential energy of, 568

torque on, 568

Dipole, magnetic, 694, 798

of Bohr magneton, 709

Direct current. See Circuits, DC.

Discharge of capacitor, 672

Dispersion, 844, 913

of grating, 914

of prism vs. grating, table, 914

water waves, 426

Displacement, 14

current, 795

equation, 796

Distances, measurement, comparison

table, 8

Divergent lens, 853

DNA molecule, 547

Domain
magnetic, 756

of physics, 1

Doppler shift, 432

for light, 970

sound, 433

Dosimeter, pocket, 559

Dot product, 118

Double refraction, 932

Double-slit interference, 878

equation, 883

Downhill direction of heat flow, 543

Drift speed of electrons, 639, 641

Drift-tube accelerator, 578

Driving force, 354

Dulong and Petit law, 512

Dumbbell

ngid, 507

vibrating, 507

Dynamic imbalance, 285

Ear, human, 330

Eddy currents, 736

Effective resistance, transformer, 786

Effective values, root-mean-square, 783

Efficiency, 142

Carnot, 523

table of typical, 143

Einstein, Albert, 950

Einstein's

general relativity, postulates, 974

photoelectric equation, 992



1-6 Index

Einstein's (continued)

quantization of radiation, 991

special relativity theor\', 943

Elastic collision, 200

Elastic moduli

bulk, 360

shear, 360

Young's, 360

Elastic properties of matter, 357

Electric current, 638

conductivity, 648

conventional, 645

density, 648

direction, 639

resistance, 641

Electric dipole, 565

comparison with magnetic dipole,

753

electric field, 566, 568

far-field approximation, 567

moment, 567

nonuniform field, 569

potential, 609

potential energy, 568

torque on, 568

Electric equilibrium, 594

Electric field

breakdown, 614

conductor, 588

continuous charge distributions, 569

dipole, 566, 568

and emf, 734

energy density, 631

energy, stored in, 630

Gauss's law, 585, 798

infinite line charge, 572

lightning, 592, 650

lines, 562

of plane charge, 588

of point charge, 563

similarity to magnetic field, table, 721

of surface charge, 588

thunderstorm, 592, 650

Electric flux, 580

definition, 581

point charge, 583

Electric potential, 597

differences, table, 598

energy, 597

Electric quadrupole, 578

Electricity, laws, table, 795

Electrolytic capacitors, 626

Elecfromagnehc radiation, dual nature,

997

Electromagnetic spectrum, 806

Electromagnetic waves, 799

and accelerated charge, 808

energy, 809

density, 809, 812

equation for E and B, 802

forces on electrons, 813

intensity, 812

momentum of, 812, 814

plane, 803

pressure, 815

production of, 807

relation between £„ and B^, 806

Electromagnetism and relativity, 971

Electromechanical analogues, table, 769

Electromotive force, 637

seat of, 637

Electron

capture, radioactivity, 1075

charge, 558

de Broglie wavelength, 1015

drift speed, 639, 641

radius, classical, 1056

spin, 1038

and fine structure, 1039

quantum number, 1038

Electron-volt (unit), 603

Electroscope, 559

Electrostatic force, 159, 555

Electrostatics, 555

Electroweak theory, 1099

Elements

ground-state configuration, table,

1048

Paschen's triangle, table, 1049

nuclear data, table, 1063

periodic table, 1047

Elliptic polarization, 936

emf, 637

back-emf, 737

battery, 601

and electric fields, 734

motional, 730

Emissivity, 461

Emittance, radiation, 983

Energy

availability, 357

binding, 383

conservation of, 156

with friction, 170

mechanical, 161

conversion efficiency, table, 143

in electric field, 630

in electromagnetic waves, 809

electron-volt, 603

entropv and unavailable, 545, 548

equipartition, 508

variables, 506

for the future, 144

gravitational potential energy, 130,

382

in inductors, 744

internal, 132, 137, 450, 494

ionizahon of atoms, 1050

kilowatt-hour, 141

kinetic, 124, 126, 211

per mole, 483

per molecule, 483

mass-energies, particles, table, 962

and momentum relation, relativistic,

964

potential, 130

and conservative forces, 159

relativistic, 961

kinetic, 961

total, 963

rest-mass, 962

rotational motion, 281

satellite motion, 385

simple harmonic motion, 345

spring potential energy, 131

stored

in charged capacitor, 628

in electric field, 630

thermal, 132, 450, 494

threshold, 1082

wave motion, 426

work-energy relation, 124. See also

names of kinds of energy.

Energy density

in £ and B fields, 809

electric field, 631

in electromagnetic waves, 812

in magnetic field, 745

spectral, 983

Energy diagrams, 165

hydrogen, 1042

Engine

Carnot, 519

efficiency, 523

table, 521

diesel, 526

efficiency, 523

internal combushon, 526

jet, 192

Stiriing, 527

Enrichment, nuclear reactor, 1087

Entropy, 536

and information, 549

bits, 546

macroscopic view, 536, 537, 540

microscopic view, 540, 542

negative, 549

and probability, 540, 541

and second law of thermodynamics,

543

statement, 549

state function, 537

and unavailable energy, 545, 548

Entropy change

free expansion, 538

heat conduction, 540

ice to water, 539

mixture, 539

Equation

of continuity, 402

of motion, 352

of state, 474, 537

Equilibrium, 235

conditions, 236, 474

dynamic, 235

electrostatic, 594

neutral, 235

stable, 235

static, 236

thermodynamic, 493

unstable, 235

Equipartition theorem, 508

energ)' variables, 506

Equipotential surfaces, 610

Equivalence, principle of, 974
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Equivalent

capacitor, 624

in parallel, 623

in series, 624

resistor

in parallel, 657

in series, 656

Escape velocity, 383

Ether, 825, 894

Event, point, 944

Expansion

isothermal, ideal gas, 497

thermal, 445

Extraneous roots, 30

Extraordinary ray, 932

Eye, human, 864

accommodation of, 864

blind spot, 865

defects of, 866

diagram, 863

iris, 865

near point, 864

retina, 863

Eyeglasses, 866

/-stop, 869

Fahrenheit temperature scale, 444

Farad (unit), 619

Faraday, Michael, 619

Faraday cage, 615

Faraday's law of induction, 727, 728

most general form, 733

Femtometer (unit), 1060

Fermat, Pierre de, 827

Fermat's

last theorem, 827

principle

of reflection, 827

of refraction, 847

Fermi, Enrico, 1061

Fermions, fundamental, table, 1096

Ferromagnetism, 755

Fictitious forces, 316

Field

electric, 562

in conductor, 588

of continuous charge distributions,

569

of dipole, 566, 568

energy densit\', 631

energy stored in, 630

Gauss's law, 585

of line charge, 572

of lines, 562

of plane charge, 588

of point charge, 563

of surface charge, 588

in thunderstorm, 592

gravitational, 379

lines, 382

magnetic, 685

Field ion microscope, 613

Figure of merit, 665

Filter, low-pass, 790

Fine structure

constant, 1056

spectral lines, 1038

and electron spin, 1039

Finite rotahons, A-9

First law

Newton's, 74

statement, 76

of thermodynamics, 492, 494

statement, 495

Fission, nuclear, 1086

distribution of energy, table, 1077

liquid-drop model, 1078

power, 1086

spontaneous, 1076

yields, 1977

Fizeau experiment, 976

Flavors, quarks, 1095

Floating-coin illusion, 842

Flow

laminar, 401

streamline, 401

Fluid, 393

laminar flow, 401

in motion, 400

pressure in, 396

streamline flow, 401

Flux

electric, 580

definition, 581

point charge, 583

magneHc, 703, 728

Focal length

of lenses, 855, 857

of mirrors, 832

Focal point

of lenses, 857

of mirrors, 833

Force

of absorbed radiation, 815

buoyant, 399

carriers, 1104

central, 371

centrifugal, 322

conservative, 156, 157

potenhal energy, 159

contact, 82

Coriolis, 322, 325

on current-carrying conductor, 692

electrostatic, 159, 555

fictitious, 316

gravitational, 373

Hooke's law, 388

inertial, 318

line of action, 224

Lorentz, 691

moment of, 225

nonconservative, 159

noncontact, 82

spring, 122

work by constant, 116

work by varying, 120

Forced harmonic motion, 354

Forced oscillation

driving force, 354

steady-state term, 354

transient term, 354

Foucault pendulum, 328

Fourier analysis, A-6

Frames of reference, 7, 10, 13

center of mass, 213

inerhal, 77

linearly accelerated, 316

Newton's second law, 325

rotating, 321

uniformly accelerated, 317

zero-momentum, 213

Fraunhofer diffraction, 900

of circular aperture, 907

minimum angle of resolution, 907

half-wave zones, 901

lines, 910

pattern

of circular aperture, 907

of rectangular aperture, 905

of single-slit, 905

single-slit, 900

equation, 902

minima, 904

phasors, 902

Free-body diagram, 86

Free expansion, 538

Freezing, 451

Frequency

angular, 338, 420

cyclotron, 688

damped, 338

half-power, 790

harmonic, 431

natural, 352

resonant, damped oscillations, 355

simple harmonic motion, 419

waves, 419

Fresnel

biprism, 897

diffraction, 900

circular aperture, 918

lens, 869

zone plate, 918, 920

FricHon, 93

energy conservation, 170

kinetic, 94

static, 94

thermal energy, 132

Fundamental forces in nature, 74

Fundamental interaction, particle physics,

1093

Fusion, nuclear, 1088

carbon cycle, 1088

Galilean

acceleration relation, 208

relativit\' principle, 78, 944, 947

transformation, 944

equations, 945

velocity addition, 208
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Galvanometer, 664, 697

tangent, 725

Gamma decay, 1074

Gas
constant, universal, 475

constant volume thermometer, 463

ideal, 474, 479

processes, 497

specific heat, 499

molar specific heats, table, 510

standard conditions, 475

Gauge pressure, 396, 408

Gaussian surface, 583

Gauss's law, 583

conductors, 591

for electric fields, 585, 798

example, 586

for magnetic fields, 799

and symmetry, 586

Gay-Lussac's law, 474

Geiger counter, 1084

General relativity, theory of, 973

black hole, 974

curvature of spacetime, 974

postulates, 974

principle of covariance, 974

principle of equivalence, 974

Gluons, 1093, 1104

properties, table, 1096

Grad, 609

Gradient of V, 608

Gram-molecular mass, 475

Grand unification, 1099

Grating spectroscope, 910

Gravimeter, superconducting, 647

Gravitation, 77

acceleration due to, 22, 83

action-at-a-distance, 17

extended mass, 373

field, 379

field lines, 382

inverse-square law, 371

Newton's law of universal, 370

potential energy, 130, 382

shell theorems, 377

universal constant, 82

Gravitational

constant, universal, 82

potential energy, 130, 382

Graviton, 964, 1099, 1104

Gravity, 77

acceleration due to, 22, 83

action-at-a-distance, 77

center of, 229

X coordinate, 230

variations, 381

work by, 119

Great American Revolution, 104

Greek alphabet, A-1

Ground-state configuration of elements,

table, 1048

Paschen's triangle, table, 1049

Gulliver's Travels, 138

Gyration, radius of, 268

Gyromagnetic ratio, 726

Gyroscope, 306

H

H and B, 758

h-bar, 1008

Hadrons, 1093

quark structure of, table, 1097

Half-life, 1066

Half-power frequency, 790

Halfwave plate, 934

Halfwave zone, 901

Hall

effect, 699

potential, 700

Halley, Edmund, 371

Harmonic frequencies, 431

Harmonic motion

circle of reference, 344

damped, 352

forced, 354

simple, 166, 338

He-Ne gas laser, 1052

Heat, 132, 449

absorption, 451

conduction, 455

downhill flow, 543

of fusion, 454

latent, fable, 454

phase changes, 451

pump, 524

coefficient of performance, 525

reservoir, 493

transfer by convection, 458

coefficients, table, 458

transfer by radiation, 459

of vaporization, 454

Heavy water, 1087

Heisenberg's uncertainty principle, 1024

Helmholtz coil, 724

Henry (unit), 738

Hertz, Heinrich, 338

Hertz (unit), 338

Holography, 922

applications, 922

hologram, 921

Hooke, Robert, 123

Hooke's law, 123

for oscillations, 338

for vertical springs, 347

Horsepower, 141

Hubble constant, 35

Huygens' principle, 824

Hydrogen atom

Balmer series, 1007

Rydberg formula, 1030

Bohr model, 1006

energy states, 1009

postulates, 1008

radii of orbits, 1009

radius, 1043

energy-level diagram, 1042

probability-density distributions, 1047

quantum states, 1041

based on quantum numbers

n, I, m„ i»5, table, 1041

based on quantum numbers

n, t, j, and m,, table, 1041

wave functions, hydrogen atom, 1043

normalization, 1043

normalized, table, 1044

probability density function, 1043,

1046

Hysteresis, 759

I

Ideal gas, 474, 476

law, 475

model, 475

specific heat, 499

thermodynamic relations, table, 506

Ideal liquid, 393

Ideal mechanical advantage, 147

Ignition, nuclear, 1091

Image

characteristics, 837

in plane mirror, 827

size, 857

in spherical mirror, 829

virtual, 829

Impedance

diagram, AC series, circuits, 772

in parallel RLC, 775

in series RLC, 771

diagram, 772

Impedance matching, 793

Impulse, 185

Inch, definition, 10

Index of refraction, 844

of materials, table, 844

relative, 855

Inductance

mutual, 739

self, 737

back emf, 737

unit (henry), 738

Induction

charging by, 557

eddy currents, 736

Faraday's law of, 728

m.ost general form, 733

Lenz's law, 735

mutual, 739

Inductive reactance, X^, 768

Inductors, energy in, 744

Inelastic collision, 200

Inertia, 76

moment of, 264

calculation, 266

table, various shapes, 266

Inertial confinement, fusion reactor, 1090

Inertial force, 318

Inertial frame of reference, 77

Inertial mass, 80

Information, 549

bits, 546

entropy and, 549

Infrared, 461

Initial phase angle, simple harmonic

motion, 339

Instruments, optical, 862

astronomical telescope, 867

angular magnification, 867
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Cassegrain reflector, 868

exit pupil, 868

eye relief, 868

camera, 869

eyeglasses, 866

microscope, 868

magnifying power, 869

periscope, 841

reversibility, principle of, 847

simple magnifier, 862

Insulation R-value, 457

Insulator, 557

Intensity level, sound, 424

Interference

colors by, 938

constructive, 429

criteria, 881

destructive, 429

double-slit, 878

equation, 883

multiple slit, 887, 911

intensity equation, 912

pattern, 888

path difference, 882

phase difference, 882

superposition principle, 881

by thin films, 888

by thin wedges, 890

Interferometer

Michelson, 892

compensating plate, 892

Pohl's, 898

Internal combustion engine, 526

Internal conversion, 1075

Internal energy, 132, 137, 450, 494

Internal kinetic energy, 213

Internal reflection, total, 848

critical angle, 848

light pipe, 849

Internal resistance, 668

Inverse-square law, 371

Ionization energy, atom, 1050

Ionosphere, 633

Iris diaphragm, 869

Iris, human eye, 865

Irreversible processes, 496, 535

Isobaric process, 500

Isochoric process, 500

Isolation diagram, 86

Isotherm, 477

Isothermal expansion, 497

Isothermal process, 498

Isovolumic process, 500

J

Jet engine, 192

Joule heating, 645

Joule, James, 117

Joule's law, 645

Junction, 658

K
Kelvin absolute temperature scale, 465, 529

Kepler's laws, 369

planetary motion, 369

second law, 290

Kilogram, international prototype, 80

Kilowatt-hour, 141

Kinematics, 24

definition. 6

equations

comparison of linear and rotational,

table, 284

constant acceleration, 21

derivation using calculus, 24

linear motion, 20

rotational motion, 253, 254

graphical relations, 26

rotational, 251, 254

Kinetic energy, 124, 126, 211

center of mass, 211

internal, 213

per mole, 483

per molecule, 483

relativistic, 961

rotational, 254, 265, 281

system of particles, 211

variable force, 127

Kinetic friction, 401

Kirchhoff's rules, 658

junction rule, 659

loop rule, 659

Laminar flow, 401

Land, Edwin H., 929

Large hadron collider, 1100

Laser, 1052

He-Ne gas laser, 1052

population inversion, 1052

ranging retroreflector, 828

Latent heat, 454

of fusion, 454

phase change, 454

table, 454

of vaporization, 454

Lateral magnification, 835

equation, 836

Laue diffraction pattern, 917

LCD (liquid crystal display), 938

Length

contraction, 954

interval of, 9

proper length, 955

standard, 9

Lens

aberrations, 870

combinations, 859

convergent, 853

diopter power, 856

divergent, 853

focal length, 855

focal point, 857

Fresnel, 869

linear magnification, 858

negative, 853

positive, 853

thin-lens, 852

approximation, 853

equation, 855

image size, 857

principal foci, 857

ray tracing, 857

sign convention, 856

various types, 853

Lens-maker's formula, 855

Lenz's law, 735

Leptons, 1093

Lever arm, 224

Light

coherence, 879

Doppler shift, 970

extinction length, 844

polarized, 927

circularly, 935

elliphcally, 936

linearly, 927

spectrum of visible, 845

speed and (jL,ito, 805

defined exact, 806

"Hred," 844

unpolarized, 928

waves, superposition, 880

Light pipe, 849

Lightning, 592, 650

Lilliputians and Brobdingnagians, 138

Line of action, 224

Linear accelerator, Stanford (SLAC), 957

Linear expansion, thermal, 446

Linear magnification, 858

of lens, 858

of mirror, 835

Linear mass spectrometer, 701

Linear momentum, 180

conservation, 180

Linear motion

comparison with rotational motion, 284

kinematic equations, 20

Linear polarization, 927

Liquid crystal display (LCD), 938

Liquid, ideal, 393

Liquid-drop model, 1078

Llovd's mirror, 896

Longitudinal waves, 414

Loop, 658

Loop rule, Kirchhoff's, 659

Lorentz

force, 691

transformation, 949, A-10

derivation, A-10

equations, 949

Low-pass filter, 790

M
Mach, Ernst, 434

Mach
cone, 434

number, 434

Macroscopic view

and entropy, 536, 537

of matter, 473

Magdeburg sphere, 397
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Magnetic bottle, 688

Magnetic confinement, fusion reactor, 1090

Magnetic dipolc, 694, 798

of Bohr magneton, 709

comparison, electric dipole, 753

moment, 695

torque on, 695

potential energy, 696

Magnetic field, 684

Ampere's law, 716

Biot-Savart law, 711

cyclotron frequency, 688

due to currents in

Helmholtz coil, 724

infinite sheet, 720

long straight wire, 713, 717, 724

loop, 715

loop, along axis, 724

parallel wires, 725

solenoid, 718

toroidal coil, 718

energy density, 745

flux, 703

Gauss's law for, 799

intensity, 758

motion of charged particles in, 686

right-hand rule for, 686, 713

similarities to electric field, table, 721

sources of, 711

strength, 685

search coil, 750

Magnetic flux, 703, 728

Magnetic force on a current-carrying wire,

692

Magnetic properties of materials, 752

diamagnetism, 754

ferromagnetism, 755

hysteresis, 759

paramagnetism, 753

permeability, 758

Magnetic resonance imaging (MRI), 1060

Magnetic susceptibility, 757

table, 758

Magnetism, laws, table, 795

Magneton, Bohr, 813

Magnefosheath, 689

Magnetostriction, 760

Magnification

angular, 862

of magnifier, 862

lateral, 835

equation, 836

of lens, 858

linear, 858

of mirror, 835

Magnifier

angular magnification, 862

simple, 862

Malus, Etienne, 929, 933

Malus's law, 929

Mass, 80

atomic, tables, 484, 1063, A-12

center of, 213, 229

acceleration, 405

collisions, 205, 213

kinetic energy, 211

location, 205

"negative" mass method, 233

velocity, 205

zero-momentum frame, 212

comparisons, table, 81

inertial, 80

mass-energies, particles, table, 962

molecular, 475

table, 484

number, 1060

rest, 959

standard, 80

unified atomic mass unit, 81, 475

units, 84

on vertical spring, 347

and weight, 83

Matching stub, 429

Mathematical

approximations, expansions, and

vector relations, A-6

formulas, A-4

symbols, A-1

Mathematics, role of, 4

Matter

elastic properties, 357

macroscopic view, 473

microscopic view, 473

Matter waves, 1012

Maxwell distribution

equation, 490

graph, 485

Maxwell's equations

and displacement current, 795

in vacuum, table, 799

Measurements in relativity, 944

length contraction, 954

observer, 944

proper length, 955

proper time interval, 955

rest mass, 962

time dilation, 952

Mechanical advantage, 146

actual, 147

ideal, 147

Mechanical energy, conservaHon of, 161

Melting, 451

Mesons, 1093

"Message" of relativity, 968

Meter

definition, 9, 894

standard bar, 9

Method of mixtures, 453

Michelson, Albert, 892

Michelson interferometer, 892

compensation plate, 892

Microscope, 868

field ion, 613

magnifying power of simple, 869

scanning tunneling, 1022

Microscopic view

and entropy, 540, 542

of matter, 473

Microwave oven, 813

Milikan oil drop experiment, 577

Minimum angle of deviation, 875

Mirror

concave and convex, 829

equation, 832

sign convention for, 832

in terms of /, 833

in terms of R, 832

focal length, 832

focal point, 833

lateral magnification, 835

Lloyd's, 896

plane

image location, 827

ray-tracing, 827

reflection by, 825

spherical

optic axis, 829

ray-tracing, 829

reflection, 828

Mixtures, method of, 453

Moderator, nuclear reactor, 1087

Moduli

bulk, 360

shear, 360

Young's, 360

Molar specific heat, 500

gases, table, 510

Mole, kinetic energy, 483

Molecular

kinetic energy, 483

mass, 475

table, 484

specific heat, 422

vifeight, 475

Moment arm, 224

Moment of force, 225

Moment of inertia, 264

calculation, 266

table, various shapes, 266

Momentum, 81

angular, 269

continuous rate of change, 188

conservation, system of particles,

210

of electromagnetic waves, 812, 814

linear, 180

of photon, 995

relativistic, 955, 957

system of particles, 205

Mosley, Harry G., 1051

Mosley diagram, 1051

Motion

Brownian, 545

of charged particle in magnetic fields,

686

circular, 64

constant acceleration, 21

curvilinear, 69

equation of, 352

extended object, 294

in fluids, 400

linear, kinematic equations, 20

Newton's laws

first, 76

second, 81
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third, 98

summary, 103

one-dimensional, 6

perpetual, devices, 549

periodic, 167, 337

planetary

Kepler's laws, 369

Kepler's second law, 290

projectile, 54

rotational, kinematic equations, 254

satellite, 385

simple harmonic, 166, 338

steady-state, 355

in three dimensions, 50

Motional emf, 730

Mrkos comet, 817

Miiller, Erwin, field ion microscope, 613

Multiloop circuits, 658

Multiple-slit interference, 887, 911

intensity formula, 912

pattern, 888

Mutual inductance, 739

N
Nanometer (unit), 822

Natural processes, 535

Negative lens, 853

Negative mass, method, 233

Neutrino, 1073

Neutron

free, lifetime, 1086

number, 1060

Neutron-activation analysis, 1083

Newton, Isaac, 75

Newton's first law, 74

statement, 76

Newton's law of cooling, 472

Newton's law of universal gravitation, 370

Newton's laws of motion, summary, 103

Newton's rings, 891

radii, 892

Newton's second law, 74, 81

applications, 86

rotating frames, 325

rotational motion, 272

statement, 81

system of particles, 206

translation of center of mass, 294

Newton's third law, 98

statement, 99

Newton's third-law pairs, 99

Nodal lines, surfaces, 431

Nodes, 430

Nonconductor, 557

Nonconservative force, 159

Nonpolar dielectric, 625

Nonreflective coatings, 890

Nonsynchronism of moving clocks, 966

Normalization condition, 1018

of 4<, 1018

Nuclear

data, particles and elements, table, 1063

fission, 1086

force

strong, 1060, 1104

weak, 1104

fusion, 1088

carbon cycle, 1088

mass, 1062

unified atomic mass unit, 1062

physics, 1059

potential, square-well, 1083

power, 1085

reactors, 1087

breeder, 1087

fission, 1087

fusion, 1088, 1090

Nucleon, 1060

binding energy, 1064

graph, 1066

Nucleus, 1060

atomic number, 1060

binding energy, 1062

cross section, 1079

barn (unit), 1079

data, particles, elements, table, 1063

half-life, 1066

mass, 1062

number, 1060

neutron number, 1060

nucleon, 1060

binding energy, 1064

nuclide, 1060

radioactive decay, 1066

radius, 1061

"size," 1061

strong nuclear force, 1060, 1104

unified atomic mass unit, 1062

weak nuclear force, 1104

Nuclide, 1060

daughter, 1070

parent, 1070

o
Observer, in relativity, 944

Ohm (unit), 642

Ohm's law, 643

alternative form, 648

Optic axis, 934

of spherical mirror, 829

Optical activity, 932, 937

Optical fiber

acceptance angle, 873

cladding, 850

communication, 850

Optical instruments, 862

astronomical telescope, 867

angular magnification, 867

Cassegrain reflector, 841

exit pupil, 868

eye relief, 868

camera, 869

eyeglasses, 866

microscope, 868

magnifying power, 869

periscope, 841

reversibilits', principle of, 846

simple magnifier, 862

Optical reversibility, 855

Ordinary' ray, 932

Organ pipes, 431

Orthogonality, 611

Oscillations, 337

amplitude, 338

angular frequency, 338

damped, 352

forced, 354

hertz, 338

period, 338

phase angle, 338

steady-state term, 354

transient term, 354

Oscillator, sawtooth, 683

Otto cycle, 526

efficiency, 526

Pair production, 994, 996

Paradoxes, special relativity, 979

Parallel-axis theorem, 298, 299

Parallel combinations

of capacitors, 623

of resistors, 655

Parallel plate capacitor, 619

Parallel resonance, 780

Paramagnetism, 753

Paraxial ray, 830

Parent nuclide, 1070

Partial derivative, 608, A-9

Particle

detection of charged

Geiger counter, 1084

scintillation counter, 1084

diffraction by, 1015

in a box

normalized wave function, 1019

energy states, 1020

mass-energies, table, 962

momentum of system, 205

nuclear data, table, 1063

wave nature of, 1004

wave-particle duality, 1022, 1026

complimentarity principle, 1027

Particle-anHparticle symmetry, 1094

Particle physics, 1092

fundamental interactions, 1093

particle-antiparticle symmetry, 1094

particles

elementar)', table, 1094

strange, 1095

spin, 1093

Pascal (unit), 395

Pascal's principle, 398

Paschen's triangle, 1049

Path difference (optical), 882

Pauli exclusion principle, 1047

Pendulum
ballistic, 203

Foucault, 328

physical, 350
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Pendulum (coiitmued)

simple, 347

torsional, 349

Period

simple harmonic motion, 338

in waves, 419

Periodic motion, 167, 337

Periodic table of the elements, 1047, A-12

Periodic wave train, 415

Periscope, 841

Permeability

of free space, 712

and speed of light, 805

of magnetic materials, 758

Permittivity of free space, 558

and speed of light, 805

Perpendicular-axis theorem, 313

Perpetual motion devices, 549

Perspective

Chapters 1-5, 114

Chapters 6-9, 222

Chapters 10-18, 442

Phase, 418

change, 451, 454, 889

latent heat, 454

velocity, 418

Phase angle, simple harmonic motion, 338

Phase constant

in AC circuits, 764, 770

in RLC circuits, 772

Phase difference, interference, 882

Phase of oscillation, 339

Phase-shifter, AC circuit, 790

Phase waves, 1012

Phasor

AC circuits, 766

diagrams, 766, 771

optical, 902

Photoelasticity, 938

Photoelectric effect, 988

Einstein's equation, 992

threshold frequency, 990

wave function, 991

Photomultiplier, 994

secondary emission, 994

Photon

Compton scattering, 995

Compton shift, 995

Compton wavelength, 995

momentum of, 995

pair production, 994, 996

Physical pendulum, 350

Pinhole camera, 872

Planck's

constant, 987

quantum hypothesis, 511, 986

radiation law, 987

Plane mirror

image location, 827

ray tracing, 827

reflection by, 825

Plane waves, 425

for £ and B, description, 803

Planetary motion

Kepler's laws, 369

Kepler's second law, 290

Plasma, 393

Pocket dosimeter, 559

Pohl's interferometer, 898

Point event, 944

Poisson's bright spot, 918

Polar coordinates, 64

Polar dielectric, 625

Polar vectors, 228

Polarimeter, 937

Polarization, 626

Brewster's law, 931

circular, 934

direction, 927

elliptic, 936

linearily polarized wave, 927

Malus's law, 929

polarizer, 929

polarizing angle (reflection), 931

Polaroid, 929

by reflection, 930

by scattering, 931

Polaroid, 929

analyzer, 929

transmission axis, 929

Population inversion, laser, 1052

Position

angular, 64, 251

one-dimensional, 14

Position vector, 41, 42

Positive lens, 853

Positronium, 1032

Postulates

of general relativity, 974

of special relativity, 948

Potential barrier, classical, 167

Potential, electric, 597

differences, 598

energy, 597

Potential, V, dipole, 609

Potential energy, 130

of charged capacitors, 628

and conservative force, 160

electric, 597

gravitahonal, 130, 382

of magnetic dipole, 696

of spring, stressed, 131

Potential well, 167, 1083

Potenhometer, 667

Power, 140

in AC circuits, 781

average, 140

definition, 140

horsepower, 141

nuclear, 1085

fission, 1086

fusion, 1088

in resistors, 646

transmitted by waves, 427

Power factor, 782

PoynHng vector

average value, 811

instantaneous, 810

Precession, 306

angular speed, 307

Prefixes, metric, table, 11

Prefixes, SI (Appendix A), 10

Pressure, 395

absolute, 396

of electromagnetic waves, 815

fluid at rest, 396

gauge, 396, 408

radiation, from sun, 816

standard atmospheric, 396

The Principia, 75

Principle of covariance, 974

Principle of equivalence, 974

Principle of relativity, Galilean, 78

Principle of reversibility, 846

Principle of superposiHon, 559, 665, 881

DC circuits, 660

Prism

dispersion of, vs. grating, table, 914

minimum angle of deviation, 875

Probability, 1018

Bom's interpretation, 1018

density distribution, hydrogen, 1047

density function, 1018

hydrogen, 1043, 1046

Problem solving, general procedures, 91

Processes

irreversible, 535

reversible, 535

thermodynamic, 497

summary, table, 506

Projectile motion, 54

Proper measurements, 955

length, 955

time interval, 955

Proton, free, lifetime, 1086

Pseudovectors, 228

P-T diagram, 477

P-V diagram, 477, 495

PVT surface, 476

Q (resonance), 779

Quadrupole, electric, 578

Quantization of radiation, 991

Quantum
chromodynamics (QCD), 1095

electrodynamics (QED), 1016, 1095

hypothesis

Einstein, 991

Planck, 511, 986

mechanical tunneling, alpha decay,

1071

Quantum number
alternate numbers for L-S coupling,

list, 1040

inner, 1040

list, 1038

magnetic, 1036

orbital, 1036, 1040

principal, 1036, 1040

spin, 1038

Quantum physics, 1004

chronology of theory, 1028

probability interpretation of, 1018

Quantum radiation, 981

Quantum states

energy-level diagram, hydrogen, 1042
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ground-state configuration of elements,

table, 1048

of hydrogen atom, 1014

based on quantum numbers

n, (, m,, and m^, table, 1041

based on quantum numbers
n, I, ], and m^, table, 1041

probability density distribution, 1047

selection rules, 1042

spectroscopic notation, 1041

Quarks, 1093

flavors

bottom, 1095

charm, 1095

down, 1095

strange, 1095

top, 1096

up, 1095

properties of, table, 1096

structure of hadrons, table, 1097

Quarterwave plate, 935

Quasi-static processes, 496

R

R-value, insulation, 457

Radial acceleration, 65, 66, 253

Radiation

black body, 982

cavity, 982

Planck's theory, 986, 987

Rayleigh-Jeans theory, 984, 986

spectral distribution curves and

energy density, 983

Wien's displacement law, 983

Wien's radiation law, 984

Cerenkov, 434

Compton effect, 994

shift, 995

wavelength, 995

electromagnetic, dual nature of, 997

force of absorbed, 815

heat transfer, 458

photoelectric effect, 988

Einstein's equation, 992

threshold frequency, 990

work function, 991

Planck's

constant, 987

quantum hypothesis, 987

radiation law, 987

pressure, 815

from sun, 816

quantization, 991

quantum nature, 981

Stefan-Boltzmann law, 461, 983

emittance, 983

Radiometer, 815

Radio telescope, 908

Very Large Array (VLA), 908

Very Long Baseline Array (VLBA),

908

Radioactive dating, 1084

Radioactive decay, 1066

activity, 1066

alpha decay, 1070

quantum-mechanical tunneling,

1071

beta decay, 1071

p-, 1072

P^ 1073

cesium-137, 1074

daughter nuclide, 1070

decay constant X, 1066

electron capture, 1075

gamma decav, 1074

half-life, 1066

internal conversion, 1075

modes, 1069

parent nuclide, 1070

processes, table, 1076

Q of reaction, 1070

series, 1078

spontaneous fusion, 1076

uranium-238 decay series, 1079

Radiocarbon dating, 1085

Radius, nucleus, 1061

Radius of gyration, 268

Rainbow, 846

Rankine temperature scale, 467

Ray

extraordinary, 932

ordinary, 932

paraxial, 830

and wavefronts, 832

Ray tracing, 829

and magnification, 835

plane mirror, 827

spherical mirror, 829

rays used for

mirrors, 836

thin lens, 857, 858

thin lens, 857

used in, 858

Rayleigh-Jeans

radiation law, 986

theory, 984

Rayleigh's criterion, 907, 915

RC circuits, 670

charging, 671

discharging, 672

RC time constant, 672

Reactance

capacitive, 765

inductive, 768

Reactor, nuclear, 1087

breeder, 1087

fission, 1086

fusion, 1088

inertial containment, 1090

magnetic containment, 1090

Reflection

by corner reflector, 828

laser ranging retroreflector, 828

diffuse, 826

Fermat's principle, 827

floating-coin illusion, 842

Huygens' principle, 824

laws of, 826

nonreflective coatings, 890

optical reversibility, 855

periscope, 841

phase change in, 889

by plane mirror, 825

image location, 827

ray tracing, 827

reversibility, principle of, 846

by spherical mirror, 828

image location, 829

ray tracing, 829

by thin films, 888

total internal, 848

critical angle, 848

light pipe, 849

of waves, 428

Refraction, 845

depth, apparent, 847

dispersion, 844

double, 932

index of materials, 844

optical reversibility, 855

by plane interface, 843

relative index, 855

reversibilit)', principle of, 846

Snell's law! 846

by spherical interface, 851

by thin lens, 852

Refractive index, 844

of materials, table, 844

relative, 855

Refrigeration, coefficient of performance,

524

Refrigerator, Carnot, 524

Relative velocitv, geometrical method, 207

Relativistic

Doppler shift for light, 970

energy and momentum relations, 946

momentum, 955, 957

total energy, 963

velocity addition, 946

Relativity, general theory of, 973

black hole, 974

curvature of spacetime, 974

postulates, 974

principle of covariance, 974

principle of equivalence, 974

Relativity, special theory of, 78, 943

clocks

nonsvnchronism, of moving, 966

synchronization of, 949

Doppler shift for light, 970

and electromagnetism, 971

energy, relativistic, 961

Fizeau experiment, 976

fundamental postulates, 948

Galilean

relativity principle, 944, 947

velocity addition, 946

kinetic energy, relativistic, 961

length contraction, 954

mass-energies, particles, table, 962

measurements, 944

length contraction, 954

observer, 944

proper length and time, 955

rest mass, 962

time dilation, 952
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Relativity, special theory

of (continued)

"message" of, 968

momentum, 955, 957

paradoxes, 979

point event, 944

postulates, 948

principle, Galilean, 944, 947

rest energy, 962

rest mass, 962

Terrel effect, 971

time dilation, 952

transformation

Galilean, 944, 945

Lorentz, 949

twin paradox, 969

velocity addition

Galilean, 208, 946

relativistic, 959

Reservoir, heat, 493

Resistance, electrical, 641

equivalent

in parallel, 657

in series, 656

internal, 668

Resistivity, 642

ohm, 642

thermal coefficient of, 642

table, 643

Resistor

delta-wye transformations, 680

equivalent

in parallel, 657

in series, 656

in parallel, 655, 657

power in, 646

in series, 655, 656

wye-delta transformation, 680

Resolving power of grating, 914

Resonance, 778

frequency, 355

in parallel RLC, 780

in series RLC, 778

sharpness, Q, 779

Rest energy, 962

Rest mass, note about, 959

Retardation plates, 934

Rehna, human eye, 863

Reversibility, principle of, 846

Reversible processes, 496

Right-hand rule

for magnetic fields, 686, 713

cross-product, 686

for torques, 226

for vector cross products, 226

Right-handed coordinate system, 48

Rigid body, rotational kinematics, 251

RL circuits, 941

RLC circuits, series, 768

phase constant, 772

Rocket, 190

Rolling

with slipping, 301

without slipping, 258

Root-mean-square (rms)

effechve values, 783

speed, 483

values, AC circuits, 783

Rosa, E. B, and Dorsey, N. E., 806

Rotational dynamics

axes, fixed, 264

axes, moving, 294

kinematic equahons, 254

kinetic energy, 281

radius of gyration, 268

of symmetrical objects, 271. See also

Rotational motion.

Rotational kinematics, 251, 254

angular acceleration, 252

angular position, 251

angular speed, 252

kinematic equations, 253, 254

rigid body, 251

Rotational kinetic energy, 254, 265, 281

kinematic equations, 254

derivation using calculus, 254

Rotational motion

comparison with linear motion, 284

energy, 281

equations, summary, 309

frames of reference, 321

kinemahc equations, 254

kinetic energy, 281

linear analogies, table, 284

Newton's second law, 272

work, 281

work-energy relation, 282

Rotations, finite, A-10

Rowland ring, 761

Rutherford model of atom, 1005

Rydberg

constant, 1030

formula, 1030

Sagitta formula, A-5

Sailboat, 408

Satellite moHon, energies, 385

Sawtooth oscillator, 863

Scalar, 118

Scalar product of vectors, 117

Scanning tunnehng microscope, 1022

Schrodinger

time-independent wave equation, 1017

wave equation, 1035

quantum number, 1036

Scientific method, 3

Scintillation counter, 944, 1084

Search coil, 750

Seat of electromotive force, 637

Second law, Kepler's, 290

Second law, Newton's, 74, 81

applications, 86

rotating frames, 325

rotational motion, 272

system of particles, 206

translation of center of mass, 294

Second law of thermodynamics, 517

and entropy, 543

statement, 549

Clausius statements, 519

Kelvin-Planck statement, 519

Secondary emission, 994

Selection rules, 1042

Self-inductance, 737

back emf, 737

unit (henry), 738

Semiconductor, 557

Separation of variables, 742

Serendipity in science, 5

Series combinations

of capacitors, 624

of resistors, 655, 656

Series resonance, 778

Sharpness Q, 779

Shear modulus, 360

Shell notation, atom, 1042

Shell theorems, 377

SHM, 338. See also Simple harmonic

motion.

Shock waves, 434

mach cone, 434

mach number, 434

SI system, A-15-A-16

conversion factors, A-2

length, 9

prefixes, 10, A-1

time interval, 9

units, A-15

base and supplementary, 84

Siemen (unit), 642

Sign convention

for mirrors, 832

for thin lenses, 856

Significant figures, 12

Simple harmonic mohon, 166, 338

amplitude, 338, 419

angular frequency, 338

circle of reference, 344

energy, 345

equations, 340

frequency, 419

hertz, 338

initial phase angle, 339

period, 338, 419

phase angle, 338

phase of oscillation, 339

steady-state motion, 355

Simple pendulum, 347

Single-slit diffrachon, 900

Fraunhofer

formula, 902

minima, 904

phasors, 902

pattern, 905

Sinusoidal

wave train, 415, 418

waves, 415, 520

Size, comparison, table, 2

"Size" of the nucleus, 1061

Slide wire, 667

Snel van Royen, Willebrord, 846

Snell's law for refraction, 846

Solar wind, 689, 816

Solid angle, 376, 584, A-4

Solids, specific heat capacities, 512



Index 1-15

Sonic boom, 434

Sound
decibels, 424

dispersion, 426

Doppler shift, 433

intensity

average, 427

level, 424

table, 424

organ pipes, 431

speed in gases, 422

timbre, 431

Sound waves

antinodes, 430

beats, 435

nodes, 430

shock waves, 434

standing, 429

Space, free

permeability of, 712

permittivity of, 558

speed of light in, 805

Space, homogeneous and isotropic, 227

Space travel, general limits of, 971

Spacetime curvature, 974

Special relativity, 943

fundamental postulates, 948. See also

Relativity, special theory of.

Specific gravity, 394

Specific heat

capacity, 452

solids, 512

table, 452

ideal gas, 499

molar, 500

Spectral

distribuhon curves, 983

energy density, 983

lines, fine structure, 1038

and electron spin, 1039

radiation curve, 461

Spectrometer, linear mass, 701

Spectroscope, grating, 910

Spectroscopic notation, quantum states,

1041

Spectrum

bnght line, 1004

electromagnetic, 806

Fraunhofer lines, 910

visible light, 845

x-rays, characteristic line spectra,

1051

Speed

angular, instantaneous, 252

average, 14

instantaneous, 16, 252

most probable, 484

sound, in gases, 422

transverse waves, 414, 420

wave, 421

Speed of light, 805

defined exact, 806

and m.|)Eq, 805

Spherical capacitor, 621

Spherical mirror

optic axis, 829

ray tracing, 829

reflection, 828

Spin, electron, 1038

and fine structure, 1039

L-S coupling, 1039

quantum number, 1038

spin-orbit coupling, 1039

Spin, in particle physics, 1093

Spontaneous fission, 1076

Spring

constant, 123

forces, 122

Hooke's law, 123, 347

stressed, potential energy, 131

vertical, 347

Square-well nuclear potential, 1083

Standard

atmospheric pressure, 396

cell, 667

conditions, 475

length, 9

mass, 80

time interval, 9

Standards and constants, A-13

Standing waves, 429

anhnodes, 429

nodes, 429

Standing-wave solutions, wave equation,

1034

Stanford Linear Accelerator Center

(SLAC), 957

State, variables, 537

State function

entropy, 537

variables, 495, 537

Static friction, 94

Stahstical mechanics, 473

Steady-state conditions, AC circuits, 770

Steady-state motion, 355

terms, 354

Steel yard, 249

Stefan-Boltzmann radiation law, 461, 983

Steiner's theorem, 298, 299

Step-up/step-down transformer, 786

Steradian (unit), 376, 584, A-4

Stereoisomers, 937

Stern-Gerlach experiment, 1039

SHrling heat engine, 527

Stirling's approximation, A-6

Strain, 357

Strange particles, 1095

Stream tube, 402

Streamlines, 401

Stress, 357

breaking, 358

Strong nuclear force, 1060

Sublimation, 451

Superconducting gravimeter, 647

Superconducting Super Collider (SSC),

1100

Superconductivity, 647

Supernova 1987A, 964, 1071

Superposition principle, 429

DC circuits, 660

fields, 559

light waves, 880

Synchronization of clocks, 949

Synchrotron, 690

System of particles

conservation of momentum, 211

kinetic energy, 211

momentum, 205

Newton's second law, 206

Tachvons, 957

Tacoma Narrows Bridge collapse, 356

Tangent galvanometer, 725

Tangential acceleration, 65, 253

Telescope

astronomical, 867

angular magnification, 867

Cassegrain reflector, 841

exit pupil, 868

eye relief, 868

radio, 908

Very Large Array (VLA), 908

Very Long Baseline Array (VLBA),

908

Temperature, 443

absolute scale, 465, 529

Celsius scale, 444

conversion

Celsius, 444

Celsius-Kelvin, 467

Fahrenheit scale, 444

Rankine scale, 467

critical, 477

for superconductivity, 647

Fahrenheit scale, 444

gradient, 456

Kelvin scale, 465

Rankine scale, 467

Tension and compression, 88

Terminal voltage, 668

Terrell effect, 971

Terrestrial and astronomical data, A-14

Tesia, Nikola, 685

Tesla (unit), 685

Theory, 3

Therm, 451

Thermal

coefficient of resistivity, 642

table, 643

conductivity, table, 457

contact, 493

energy, 132, 450, 494

expansion, 445

area, 445

coefficients, table, 447

linear, 445

volume, 447

Thermochemical calorie, 450

Thermodynamic processes

adiabatic, 502

Carnot cycle, 519

irreversible, 496

isobaric, 500

isochoric, 500

isothermal, 497



M6 Index

Thermodynamic processes (continued)

isovolumic, 500

quasi-static, 496

reversible, 496

summary, table, 506

Thermodynamic system, 474

Thermodynamics, 492

equation of state, 474

equilibrium, 493

conditions, 474

first law, 492, 494

statement, 495

macroscopic view, 473

microscopic view, 473

relations for ideal gas, table, 506

second law, 517

and entropy, 543, 549

state, 495

system, 492

third law, 530

Zeroth law, 494

Thermography, 1001

Thermometer, 443

constant-volume gas, 463

Thermos bottle, 462

Thin films, interference by, 888

Thin lens, 852

approximation, 853

equation, 855

image size, 857

principle foci, 857

ray tracing, 857

rays used, 858

sign convention for, 856

Thin wedges, optical, 890

Third law

Newton's, 98, 99

thermodynamics, 530

Thomson, Benjamin (Count Rumford), 449

Thomson model of atom, 1005

Threshold

energy, 1082

frequency, 990

Thrust, effective, 191

Thunderstorm electricity, 592

Timbre, 431

Time

constant, RC, 672

dilation, 952

proper time, 955

standard, 9

Tippy tube, 248

"Tired" light, 844

extinction length, 844

Tokamak, 1090

Tonne (unit), A-16

Torque, 224

couple, 303

on electric dipole, 568

on magnetic dipole, 695

right-hand rule, vector cross products,

226

as a vector, 226

Torricelli's law, 404

Torsion balance, 556

Torsional pendulum, 349

Torsional waves, 425

Total internal reflection, 848

critical angle, 848

light pipe, 849

Transformation

delta-wye, 680

Galilean, 944

equations, 945

Lorentz, 949

equations, 949

wye-delta, 680

Transformer, 785

effective resistance, 786

step-up/step-down, 786

turns ratio, 786

Transient term, 354

AC circuits, 770

Transmission axis, 929

Transmission coefficient, quantum
mechanics, 1031

Transverse waves, 414, 420

speed, 420, 422

Trigonometric identities, A-4

Triple point, 477

of water, 464

Triple product, 323

Troy system, A-3

Turns ratio, transformer, 786

Twin paradox, 969

u
Ultrasonic waves, 421

Uncertainty principle, 1022

Heisenberg relation, 1024

Unification, grand, 1099

Unified atomic mass unit, 81, 475, 1062

Unit vectors, 68, 609

in rectangular coordinates, 609

in spherical coordinates, 609

Units

American customary system, 84

conversion of, 11

mass, 84

SI, 84, A-15-A-16

weight, 84

Universal

gas constant, 475

gravitational constant, 82

Universal gravitation, Newton's law, 370

Uranium-238 decay series, 1079

Van Allen belts, 689

Vapor, 477

Vaporization, heat of, 454

Variable capacitor, 622

Variable force, 127

work by, 120

Variables, separation of, 742

Variables of state, 537

Vector differentiation and integration, A-9

Vector relations, mathematical, A-6

Vector(s)

addition of, 144

angular acceleration, 271

angular velocity, 271

area element, 581

axial, 228, A-10

components of, 42

displacement, 43

model of atom, 1037

multiplication, A-9

scalar product, 117

vector product, 226

polar, 228

position, 41, 42

Poynting

average value, 811

instantaneous, 810

product, A-9

pseudovectors, 228

rectangular, 609

scalar product, 117, A-9

spherical, 609

subtraction of, 44

three-dimensional, 48

unit, 68, 609

Velikovsky problem, 292

Velocity

angular, 271

average, 14

center of mass, 205

escape, 383

Galilean addition, 208, 946

instantaneous, 16, 51

relative, geometrical method, 207

relativistic addition, 959

Velocity addition

Galilean, 946

relativistic, 959

Velocity filter (charged particles), 691

Vena contracta, 404

Venturi

effect, 406

meter, 406

Vertical spring, 347

Virtual image, 829

Viscosity, 393

Volta, Count Allesandro, 598, 638

Voltage

phasor diagram, 771

terminal, 668

Voltmeter, 664

figure of merit, 665

w
Water

triple point, 464

waves, dispersion, 426

Watt (unit), 140

Watt, James, 140

Wave equation, 415, 417

allowed solutions, 1034

boundary conditions, 1034

general solution, 417

mechanical, 415

particular solution, 418

Schrodinger, time-independent, 1017

sinusoidal wave train, 418

standing-wave solutions, 1034



Index 1-17

Wave function

Bern's probability interpretation, 1018

of hydrogen atom, 1043

normalization of, 1018, 1043

normalized

hydrogen atom, table, 1044

particle in a box, 1019

probability, 1018

density function, hydrogen, 1046

Wave mechanics, 1016

Born's probability interpretation, 1018

Heisenberg's uncertainty principle,

1022

relation, 1024

Wave nature of particles, 1004

Wave-particle duality, 1022, 1026

complimentarity principle, 1027

Wave plates (optical), 934

Wavefront, 425

and rays, 823

Wavelength, 419

and color, table, 822

Compton, 1056

cutoff, x-rays, 1050

de Broglie, 1012

for electrons, 1015

matter vifaves, 1012

phase waves, 1012

Waves

amplitude, 419

beats, 435

de Broglie, 1011

wavelength, 1012, 1015

dispersion, water, 426

electromagnetic, 799

and accelerated charge, 808

energy density, 809

equation for E and B, 802

forces on electrons, 813

intensity, 812

momentum of, 812, 814

plane, 803

pressure, 815

production of, 807

relation between E„ and B., 806

energy of, 426

equation, 415, 417

frequency, 419

infrasonic, 421

linearly polarized, 927

longitudinal, 414

number, 420

period, 419

periodic wave train, 415

plane, 425

for E and B, 803

power transmitted, 427

pulse, 415

reflection, 428

shock, 434

sinusoidal, 415, 420

wave train, 415, 418

speed, 421

compression, 422

sound, 422

transverse, 420, 422

standing, 429

superposition principle, 429

torsional, 425

transverse, 414

speed, 420, 422

traveling

amplitude, 419

frequency, 419

period, 419

wavelength, 419

two and three dimensions, 423

ultrasonic, 421

water, 426

wavelength, 419

Weak processes, nuclear, 1097

Weber (unit), 703

Weight

density, 394

and mass, 83

units, 84

Wheatstone bridge, 666

Wien's law

of displacement, 983

of radiation, 984

Wind chill factor, 459

Wmd tunnel, 408

Work, 116, 118, 126

alternative form, 134

area under f-vs.-x graph, 121

constant force, 116

by gravity, 119

kinetic energy, 124

in rotational motion, 281

scalar product, 117

in stretching spring, 123

variable force, 120, 127

Work-energy relation, 124, 125, 134

for rotation, 282

Work function, 991

Wye-delta transformation, 680

X,^, capacitive reactance, 765

X^ , inductive reactance, 768

X-ray, 1050

bremsstrahlung, 1050

characteristic line spectra, 1050

continuous spectrum, 1050

cutoff wavelength, 1050

Mosley diagram, 1051

X-ray diffraction, 916

Bragg reflection, 916

Bragg scattering condition, 917

pattern, 1015

Laue spot, 917

"y-delta" (wye-delta) transformation,

680

Young, Thomas, 878

Young's modulus, 360

Z, AC impedance, 771

Zero-momentum frame, 213

Zeroth law of thermodynamics, 494































































Some Solar System Data (See Appendix L for a more complete list.)
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Selected Conversion Factors (Rounded)
(See Appendix C for a more complete list.)

I ENGTH

1 m = 39.37 in. = 3.280 ft = 1.094 yd

1 km = 0.6213 mi

1 in. = 2.54 cm (exact)

1 mi = 5280 ft = 1.609 x 103 ni

1 nm = 1 X 10 9 m = 10 A

TIME

1 s = 4;min = -i-h = 1.157 x 10 s d = 3.169 x 10^8 yr
60 3600

^

1 yr = 3.156 x 10^ s = 365.24 d

1 ASS

1 kg = 6.852 X 10^2 slug = 5 022 x IO22 u

1 slug = 14.59 kg

1 unified atomic mass unit (u) = 1.660 540 2 x 10 " ^7 kg

1 kg mass weighs 2.205 lb (where g — 9.806 65 m/s^)

1 pound (lb) (at standard ^) has a mass of 0.4536 kg

SPEED

1 m/s = 3.600 km/h = 3.281 ft/s = 2.237 mi/h

30 mi/h = 44 ft/s (exact)

FORCE

1 newton (N) = 1 x 10^ dynes = 0.2248 lb

l^ESSURE

1 pascal (Pa) = 1 N/m^ = 10 dynes/cm^ = 9.869 x 10" atm

1 atm = 1.013 X 10^ Pa (or N/m^) = 1.013 x 10^ dynes/cm^

= 14.70 Ib/in.2 = 76.00 cm Hg (0°C)

VORK AND ENERGY

1 J = 1 X 107 erg = 0.7376 ftlb = 0.2388 cal

= 9.478 X lO-^Btu = 9.872 x lO'L-atm = 2.778 x lO-^kW-h
= 3.725 X 10-7 hp-h = 6.242 x 10i« eV

1 ftlb = 1.356 J = 0.3239 cal = 1.285 x lO^Btu = 3.766 x lO'^kWh
1 cal = 4.186 J (exact)

leV = 1.602 X 10-19
J

POWER

1 W = 1 J/s = 0.7376 ftlb/s = 1.341 x IQ-^ hp

1 hp = 550 ft-lb/s (exact) = 745.7 W

MAGNLllC MLLI

1 tesla (T) = 1 (Wb/m^) = 1 x W gauss

Pnce

Our
Price




